

102 Dodds Street
Southbank Victoria 3006

Email: highereducation@thomsonlearning.com.au
Website: www.thomsonlearning.com.au

First published in 2003
This edition published in 2006
10 9 8 7 6 5 4 3 2
09 08 07 06 05

Copyright © 2007 Nelson Australia Pty Limited.

COPYRIGHT

Reproduction and Communication for educational purposes
Apart from fair dealing for the purposes of study, research, criticism or review, or as permitted under Part VB of the
Copyright Act, no part of this book may be reproduced by any process without permission. Copyright owners may
take legal action against a person who infringes on their copyright through unauthorised copying. Enquiries should
be directed to the publisher.

For details of the CAL licence for educational institutions contact:

Copyright Agency Limited
Level 19, 157 Liverpool Street
Sydney NSW 2000
Telephone: (02) 9394 7600
Facsimile: (02) 9394 7601
E-mail: info@copyright.com .au

Reproduction and Communication for other purposes
Except as permitted under the Act (for example a fair dealing for the purposes of study, research, criticism or review)
no part of this book may be reproduced, stored in a retrieval system, communicated or transmitted in any form or
by any means without prior written permission. All inquiries should be made to the publisher at the address above.

Copyright owners may take legal action against a person who infringes on their
copyright through unauthorised copying. Enquiries should be directed to the publisher.

National Library of Australia
Cataloguing-in-Publication data

Robertson, Lesley Anne.
Simple program design.

5th ed.

ISBN 0 17 012851 2.

1. Computer programming – Textbooks. 2. Structured
 programming – Textbooks. 3. Pseudocode (Computer program
 language) – Textbooks. I. Title.

005.12

Publishing manager: Michael Tully
Publishing editor : Elizabeth Vella
Project editor : Chris Wyness
Developmental editor : Ben Cocks
Production controller : Jodie Tamblyn
Cover designer: Olga LaVecchia
Editor : Marta Veroni
Indexer: Russell Brooks
Typeset in Melior medium 10/13pt by Polar Design Pty Ltd
Printed in China by C & C Offset Pty Ltd

This title is published under the imprint of Thomson.
 Nelson Australia Pty Limited ACN 058 280 149 (incorporated in Victoria)
trading as Thomson Learning Australia.

The URLs contained in this publication were checked for currency during the production process.
Note, however, that the publisher cannot vouch for the ongoing currency of URLs.

Preface xi

Program design
Describes the steps in the program development process, and introduces
current program design methodologies, procedural and object-oriented
programming, algorithms, pseudocode and program data.

1.1 Steps in program development 2
1.2 Program design methodology 4
1.3 Procedural versus object-oriented programming 5
1.4 An introduction to algorithms and pseudocode 6
1.5 Program data 7
Chapter summary 10

Pseudocode
Introduces common words, keywords and meaningful names when writing
pseudocode. The Structure Theorem is introduced, and the three basic control
structures are established. Pseudocode is used to represent each control
structure.

2.1 How to write pseudocode 12
2.2 Meaningful names 15
2.3 The Structure Theorem 15
Chapter summary 17

Developing an algorithm
Introduces methods of analysing a problem and developing a solution. Simple
algorithms that use the sequence control structure are developed, and methods
of manually checking the algorithm are determined.

3.1 Defining the problem 19
3.2 Designing a solution algorithm 23
3.3 Checking the solution algorithm 25
Chapter summary 33
Programming problems 33

1

2

3

Contents

v

Selection control structures
Expands the selection control structure by introducing multiple selection,
nested selection and the case construct in pseudocode. Several algorithms,
using variations of the selection control structure, are developed.

4.1 The selection control structure 36
4.2 Algorithms using selection 40
4.3 The case structure 48
Chapter summary 51
Programming problems 51

Repetition control structures
Develops algorithms that use the repetition control structure in the form
of DOWHILE, REPEAT…UNTIL, and counted repetition loops.

5.1 Repetition using the DOWHILE structure 55
5.2 Repetition using the REPEAT…UNTIL structure 64
5.3 Counted repetition 67
Chapter summary 69
Programming problems 70

Pseudocode algorithms using sequence,
selection and repetition
Develops algorithms to solve eight simple programming problems using
combinations of sequence, selection and repetition constructs. Each problem is
properly defined; the control structures required are established; a pseudocode
algorithm is developed; and the solution is manually checked for logic errors.

6.1 Eight solution algorithms 73
Chapter summary 85
Programming problems 85

Array processing
Introduces arrays, operations on arrays, and algorithms that manipulate arrays.
Algorithms for single and two-dimensional arrays, which initialise the elements of
an array, search an array and write out the contents of an array, are presented.

7.1 Array processing 89
7.2 Initialising the elements of an array 92
7.3 Searching an array 94
7.4 Writing out the contents of an array 96
7.5 Programming examples using arrays 97
7.6 Two-dimensional arrays 101
Chapter summary 105
Programming problems 105

4

5

6

7

vi Contents

First steps in modularisation
Introduces modularisation as a means of dividing a problem into subtasks.
Hierarchy charts and parameter passing are introduced, and several
algorithms that use a modular structure are developed.

8.1 Modularisation 110
8.2 Hierarchy charts or structure charts 114
8.3 Steps in modularisation 116
8.4 Programming examples using modules 118
Chapter summary 129
Programming problems 130

General algorithms for common business
problems
Develops a general pseudocode algorithm for four common business
applications. All problems are defined; a hierarchy chart is established; and a
pseudocode algorithm is developed, using a mainline and several subordinate
modules. The topics covered include report generation with page break, a
single-level control break, a multiple-level control break and a sequential file
update program.

9.1 Program structure 134
9.2 Report generation with page break 135
9.3 Single-level control break 137
9.4 Multiple-level control break 141
9.5 Sequential file update 146
Chapter summary 152
Programming problems 153

Communication between modules,
cohesion and coupling
Introduces communication between modules and develops algorithms that pass
parameters between modules. Module cohesion and coupling are introduced,
several levels of cohesion and coupling are described, and pseudocode
examples of each level are provided.

10.1 Communication between modules 160
10.2 Programming examples using parameters 165
10.3 Module cohesion 174
10.4 Module coupling 180
Chapter summary 185
Programming problems 185

8

9

10

viiContents

An introduction to object-oriented design
Introduces object-oriented design, classes and objects, attributes,
responsibilities, operations, accessors and mutators, and information hiding.
The steps required to create an object-oriented solution to a problem are
provided and solution algorithms developed.

11.1 Introduction to object-oriented design 192
11.2 Public and private access methods 198
11.3 Steps in creating an object-oriented solution 203
11.4 Programming examples using object-oriented design 204
Chapter summary 212
Programming problems 212

Object-oriented design for more than
one class
Introduces relationships between classes including association, aggregation,
composition and generalisation. Introduces a simplified UML language,
describes polymorphism and operation overriding and lists the steps required
to create an object-oriented design for a problem with more than one class.

12.1 Further object-oriented design 216
12.2 Steps in creating an object-oriented solution using

more than one class 221
12.3 Programming examples using more than one class 222
Chapter summary 238
Programming problems 238

Object-oriented design for multiple classes
Expands an object-oriented solution to cater for multiple classes, inheritance
and polymorphism and introduces interface and GUI design.

13.1 Object-oriented design for multiple classes 242
13.2 Interface and GUI objects 256
Chapter summary 259
Programming problems 259

Appendix 1 Flowcharts

Introduces flowcharts for those students who prefer a more graphic approach
to program design. Algorithms that use a combination of sequence, selection
and repetition are developed in some detail.

Introduction to flowcharts 264
The three basic control structures 265
Simple algorithms that use the sequence control structure 268
Flowcharts and the selection control structure 272

11

12

13

viii Contents

Simple algorithms that use the selection control structure 274
The case structure expressed as a flowchart 280
Flowcharts and the repetition control structure 282
Simple algorithms that use the repetition control structure 283
Further examples using flowcharts 291
Flowcharts and modules 315

Appendix 2 Special algorithms

Contains a number of algorithms that are not included in the body of the
textbook and yet may be required at some time in a programmer’s career.

Sorting algorithms 327
Dynamic data structures 330

Appendix 3

Translating psuedocode into computer languages:
quick reference chart 335

Glossary 342

Index 349

ixContents

With the increased popularity of programming courses in our WW
universities, colleges and technical institutions, there is a need for an easy-
to-read textbook on computer program design. There are already dozens of
introductory programming texts using specific languages such as C++, Visual
Basic, Pascal and COBOL, but they usually gloss over the important step of
designing a solution to a given programming problem.

This textbook tackles the subject of program design by using modern pro-
gramming techniques and pseudocode to develop a solution algorithm. The
recommended pseudocode has been chosen because of its closeness to writ-
ten English, its versatility and ease of manipulation, and its similarity to the
syntax of most structured programming languages.

Simple Program Design, Fifth Edition is designed for programmers who
want to develop good programming skills for solving common business prob-
lems. Too often, programmers, when faced with a problem, launch straight
into the code of their chosen programming language, instead of concentrating
on the actual problem at hand. They become bogged down with the syntax
and format of the language, and often spend many hours getting the program
to work. Using this textbook, the programmer will learn how to properly
define the problem, how to divide it into modules, how to design a solution
algorithm, and how to prove the algorithm’s correctness, before commenc-
ing any program coding. By using pseudocode and modern programming
techniques, the programmer can concentrate on developing a well-designed
and correct solution, and thus eliminate many frustrating hours at the testing
phase.

The content of the book covers program design in two distinct sections.
Chapters 1 to 10 cover algorithm design in the context of traditional program-
ming languages. The section begins with a basic introduction to program
design methodology, and the steps in developing a solution algorithm. Then,
concept by concept, the student is introduced to the syntax of pseudocode;
methods of defining the problem; the application of basic control structures
in the development of the solution algorithm; desk-checking techniques;
arrays; module design; hierarchy charts; communication between modules;
parameter passing; and module cohesion and coupling.

Chapters 11 to 13 cover algorithm design in the context of object-oriented
programming. The section introduces the concepts of object-oriented design

Preface

and the steps involved in creating an object-oriented solution to a problem.
Step-by-step algorithms using object-oriented design are provided, as well as
material on polymorphism, operation overriding, multiple classes and inter-
faces.

Each chapter thoroughly covers the topic at hand, giving practical exam-
ples relating to business applications, and a consistently structured approach
when representing algorithms and hierarchy charts.

This fifth edition has been thoroughly revised, in keeping with modern
program design techniques. It includes an improved section on modularisa-
tion and communication between modules, and a greatly expanded section
on object-oriented design with many more step-by-step examples.

Programming problems of increasing complexity are provided at the end
of most chapters, so that teachers have a choice of exercises that match the
widely varying abilities of their students. Detailed solutions are available to
teachers and students on CD for half of each chapter’s problems.

I would like to thank Kim Styles and Wendy Doube, lecturers in Computing
at Monash University, for their wonderful input on object-oriented design
methodology; Victor Cockrell, Curtin University, for his enthusiastic sugges-
tions and his Quick Reference Chart for translating pseudocode into several
computer languages; and my brother, Rick Noble, for his amusing cartoons at
the beginning of each chapter.

Lesley Anne Robertson

AAbout the author
Lesley Anne Robertson was introduced to pseudocode and program design
methodology when she joined IBM Australia in 1973 as a trainee programmer.
Since then, she has consistently used these techniques as a programmer, sys-
tems analyst, and lecturer in Computing at the University of Western Sydney,
NSW, where she taught computer program design for 11 years.

Lesley now lives on a vineyard and winery in Mudgee, Australia, with her
daughters Lucy and Sally and labradoodles Milly and Molly.

xii Preface

Program design

Objectives

• To describe the steps in the program development process

• To introduce current program design methodology

• To introduce procedural and object-oriented programming

• To introduce algorithms and pseudocode

• To describe program data

Outline

1.1 Steps in program development

1.2 Program design methodology

1.3 Procedural versus object-oriented programming

1.4 An introduction to algorithms and pseudocode

1.5 Program data

Chapter summary

1

2 Simple program design

1.1 Steps in program development

Computer programming is an art. Many people believe that a programmer
must be good at mathematics, have a memory for figures and technical
information, and be prepared to spend many hours sitting at a computer,
typing programs. However, given the right tools and steps to follow, anyone
can write well-designed programs. It is a task worth doing, as it is both
stimulating and fulfilling.

Programming can be defined as the development of a solution to an identi-
fied problem, and the setting up of a related series of instructions that, when
directed through computer hardware, will produce the desired results. It is
the first part of this definition that satisfies the programmer’s creative needs;
that is, to design a solution to an identified problem. Yet this step is so often
overlooked. Leaping straight into the coding phase without first designing
a proper solution usually results in a program that contains many errors.
Often the programmer then needs to spend a significant amount of time find-
ing these errors and correcting them. A more experienced programmer will
design a solution to the program first, desk check this solution, and then code
the program in a chosen programming language.

There are seven basic steps in the development of a program, as follows.

1 Define the problem

This step involves carefully reading and rereading the problem until you
understand completely what is required. To help with this initial analysis, the
problem should be divided into three separate components:

• the inputs
• the outputs
• the processing steps to produce the required outputs.

A defining diagram, as described in Chapter 3, is recommended in this
analysis phase, as it helps to separate and define the three components.

2 Outline the solution

Once the problem has been defined, you may decide to break it down into
smaller tasks or steps, and establish a solution outline. This initial outline is
usually a rough draft of the solution and may include:

• the major processing steps involved
• the major subtasks (if any)
• the user interface (if any)
• the major control structures (e.g. repetition loops)
• the major variables and record structures
• the mainline logic.

The solution outline may also include a hierarchy or structure chart. The
steps involved in developing this outline solution are detailed in chapters 2
to 6.

3Chapter 1: Program design

3 Develop the outline into an algorithm

The solution outline developed in Step 2 is then expanded into an algorithm:
a set of precise steps that describe exactly the tasks to be performed and
the order in which they are to be carried out. This book uses pseudocode (a
form of structured English) to represent the solution algorithm. Flowcharts
for every pseudocode algorithm up to and including Chapter 8 are provided
in Appendix 1 for those who prefer a more pictorial method of algorithm
representation.

4 Test the algorithm for correctness

This step is one of the most important in the development of a program, and
yet it is the step most often bypassed. The main purpose of desk checking the
algorithm is to identify major logic errors early, so that they may be easily
corrected. Test data needs to be walked through each step in the algorithm
to check that the instructions described in the algorithm will actually do
what they are supposed to. The programmer ‘walks’ through the logic of the
algorithm, exactly as a computer would, keeping track of all major variables
on a sheet of paper. The use of a desk check table to desk check the algorithm
is introduced in Chapter 3, and many examples of its use are provided.

5 Code the algorithm into a specific programming
language

Only after all design considerations in the previous four steps have been met
should you actually start to code the program into your chosen programming
language.

6 Run the program on the computer

This step uses a program compiler and programmer-designed test data to
machine test the code for syntax errors (those detected at compile time) and
logic errors (those detected at run time). This is usually the most rewarding
step in the program development process. If the program has been well
designed, the time-wasting frustration and despair often associated with
program testing are reduced to a minimum. This step may need to be
performed several times until you are satisfied that the program is running
as required.

7 Document and maintain the program

Program documentation should not be listed as the last step in the program
development process, as it is really an ongoing task from the initial definition
of the problem to the final test result.

Documentation includes both external documentation (such as hierarchy
charts, the solution algorithm and test data results) and internal documenta-
tion that may have been coded in the program. Program maintenance refers
to changes that may need to be made to a program throughout its life. Often,
these changes are performed by a different programmer from the one who

4 Simple program design

initially wrote the program. If the program has been well designed using
structured programming techniques, the code will be seen as self-document-
ing, resulting in easier maintenance.

1.2 Program design methodology

The fundamental principle of program design is based on the fact that a
program accepts input data, processes that data, and then delivers the data
to the program user as output. Recently, a number of different approaches to
program design have emerged, and the most common are:

• procedure-driven
• event-driven
• data-driven.

Procedure-driven program design

The procedure-driven approach to program design is based on the idea that
the most important feature of a program is what it does – its processes ort
functions. By concentrating on what a program must do, the programmer
identifies and organises the processes in the program solution. The flow of
data into and out of each process or function is then considered and a strategy
developed to break each function into smaller and more specific flows of data.
The details about the actual structure of the data are not considered until all
the high-level processes or functions of the program have been defined.

Event-driven program design

The event-driven approach to program design is based on the idea that an
event or interaction with the outside world can cause a program to change
from one known state to another. The initial state of a program is identified,
then all the triggers that represent valid events for that state are established.
Each of these events results in the program changing to a new defined state,
where it stays until the next event occurs. For example, when a program user
decides to click the left mouse button, click the right mouse button, drag the
mouse or double click the mouse, each action could trigger a different event
within the program and thus result in a different program state.

Data-driven program design

The data-driven approach to program design is based on the idea that the
data in a program is more stable than the processes involved. It begins with
an analysis of the data and the relationships between the data, in order to
determine the fundamental data structures. Once these data structures have
been defined, the required data outputs are examined in order to establish
what processes are required to convert the input data to the required output.

The choice between procedure-driven, event-driven or data-driven
program design methodologies is usually determined by the selection of a

5Chapter 1: Program design

programming language. However, regardless of the program design method
chosen, you must develop the necessary basic skills to be able to design a
solution algorithm to a given problem. These basic skills include a well-
defined and disciplined approach to designing the solution algorithm and
adherence to the recommended program development process:

Step 1: Define the problem.
Step 2: Outline the solution (or user interface).
Step 3: Develop the outline into a solution algorithm.
Step 4: Test the algorithm for correctness.
Step 5: Code the algorithm into a specific programming language.
Step 6: Run the program on the computer.
Step 7: Document and maintain the program.

1.3 Procedural versus object-oriented
programming

Procedural programming is based on a structured, top-down approach to
writing effective programs. The approach concentrates on what a program hast
to do and involves identifying and organising the processes in the program
solution. The problem is usually broken down into separate tasks or functions
and includes top-down development and modular design.

Top-down development

In the top-down development of a program design, a general solution to the
problem is outlined first. This outline is then divided gradually into more
detailed steps until finally the most detailed levels have been completed. It
is only after this process of top-down development (also called functional
decomposition or stepwise refinement) that the programmer starts to code.
The result of this systematic, disciplined approach to program design is a
higher precision of programming than was previously possible.

Modular design

Procedural programming also incorporates the concept of modular design,
which involves grouping tasks together because they all perform the same
function (for example, calculating sales tax or printing report headings).
Modular design is connected directly to top-down development, as the
steps or subtasks into which the program solution is divided actually form
the future modules of the program. Good modular design also assists in the
reading and understanding of the program.

Object-oriented programming

Object-oriented programming is also based on breaking down the problem;
however, the primary focus is on the things (or objects) that make up the
program. The program is concerned with how the objects behave, so it breaks

6 Simple program design

the problem into a set of separate objects that perform actions and relate
to each other. These objects have definite properties, and each object is
responsible for carrying out a series of related tasks.

This book looks at both approaches to program design, procedural and
object-oriented. It is then left to you and your choice of programming lan-
guage to determine which methodology you will use. It must be noted, how-
ever, that, regardless of design methodology or programming language, all
programmers must have the basic skills to design solution algorithms. It is the
intention of this book to provide these skills.

1.4 An introduction to algorithms and
pseudocode

A program must be systematically and properly designed before coding
begins. This design process results in the construction of an algorithm.

What is an algorithm?

An algorithm is like a recipe: it lists the steps involved in accomplishing a
task. It can be defined in programming terms as a set of detailed, unambiguous
and ordered instructions developed to describe the processes necessary to
produce the desired output from a given input. The algorithm is written in
simple English and is not a formal document. However, to be useful, there are
some principles that should be adhered to. An algorithm must:

• be lucid, precise and unambiguous
• give the correct solution in all cases
• eventually end.

For example, if you want to instruct someone to add up a list of prices on
a pocket calculator, you might write an algorithm such as the following:

Turn on calculator
Clear calculator
Repeat the following instructions

Key in dollar amount
Key in decimal point (.)
Key in cents amount
Press addition (+) key

Until all prices have been entered
Write down total price
Turn off calculator

Notice that in this algorithm the first two steps are performed once, before
the repetitive process of entering the prices. After all the prices have been
entered and summed, the total price can be written down and the calcula-
tor turned off. These final two activities are also performed only once. This
algorithm satisfies the desired list of properties: it lists all the steps in the

7Chapter 1: Program design

correct order from top to bottom in a definite and unambiguous fashion until
a correct solution is reached. Notice that the steps to be repeated (entering
and summing the prices) are indented, both to separate them from those steps
performed only once and to emphasise the repetitive nature of their action.
It is important to use indentation when writing solution algorithms because it
helps to differentiate between the different control structures.

What is pseudocode?

Pseudocode and flowcharts are both popular ways of representing algorithms.
Flowcharts are discussed in Appendix 1, while pseudocode has been chosen
as the primary method of representing an algorithm because it is easy to
read and write, and allows the programmer to concentrate on the logic of the
problem. Pseudocode is really structured English. It is English that has been
formalised and abbreviated to look like the high-level computer languages.

There is no standard pseudocode at present. Authors seem to adopt
their own special techniques and sets of rules, which often resemble a
particular programming language. This book attempts to establish a standard
pseudocode for use by all programmers, regardless of the programming
language they choose. Like many versions of pseudocode, this version has
certain conventions:

1 Statements are written in simple English.
2 Each instruction is written on a separate line.
3 Keywords and indentation are used to signify particular control

structures.
4 Each set of instructions is written from top to bottom, with only one entry

and one exit.
5 Groups of statements may be formed into modules, and that module given

a name.

1.5 Program data

Because programs are written to process data, you must have a good
understanding of the nature and structure of the data being processed. Data
within a program may be a single variable, such as an integer or a character,
or a group item (sometimes called an aggregate), such as an array or a file.

Variables, constants and literals

A variable is the name given to a collection of memory cells designed to store
a particular data item. It is called a variable because the value stored in those
memory cells may change or vary as the program executes. For example, a
variable called total_amount may contain several values during the execution
of the program.

A constant is a data item with a name and a value that remain the same
during the execution of the program. For example, the name fifty may be y
given to a data item that contains the value 50.

8 Simple program design

A literal is a constant whose name is the written representation of its
value. For example, the data item may contain the literal ‘50’.

Data types

At the beginning of a program, the programmer must clearly define the form
or type of the data to be collected. The data types can be elementary data
items or data structures.

Elementary data items
An elementary data item is one containing a single variable that is always
treated as a unit. These data items are usually classified into data types. A
data type consists of a set of data values and a set of operations that can be
performed on those values. The most common elementary data types are:

 integer:
representing a set of whole numbers, positive, negative or zero
e.g. 3, 576, –5

 real:
representing a set of numbers, positive or negative, which may include
values before or after a decimal point. These are sometimes referred to
as fl oating point numbers
e.g. 19.2, 1.92E+01, –0.01

 character:
representing the set of characters on the keyboard, plus some special
characters
e.g. ‘A’, ‘b’, ‘$’

 Boolean:
representing a control fl ag or switch that may contain one of only two
possible values, true or false.

Data structures
A data structure is a structure that is made up of other data items. The data
items that it contains are its components, which may be elementary data
items or another data structure. In a data structure, data is grouped together
in a particular way, which reflects the situation with which the program is
concerned. The most common data structures are:

 record:
a collection of data items or fi elds that all bear some relationship to
one another. For example, a student record may contain the student’s
number, name, address and enrolled subjects.

 file:
a collection of related records. For example, a student fi le may contain
a collection of the above student records.

9Chapter 1: Program design

array:
a data structure that is made up of a number of variables or data
items that all have the same data type and are accessed by the same
name. For example, an array called scores may contain a collection of
students’ exam scores. Access to the individual items in the array is
made by the use of an index or subscript beside the name of the array.
For example, scores (3) represents the third score in the array called
scores.

string:
a collection of characters that can be fi xed or variable. For example,
the string Jenny Parker may represent a student’s name.r

Files

A popular method of storing information is to enter and store data in a file.
There are several major advantages of using files:

• Several different programs can access the same data.
• The data can be entered and reused several times.
• The data can be easily updated and maintained.
• The accuracy of the data is easier to enforce.

There are two types of files in which data can be stored:

• sequential or text files, in which data is stored and retrieved sequentially
• direct or random-access files, in which data is stored and retrieved ran-

domly, using a key or index.

Sequential files may be opened to read or to write, but not both operations
on the same file. Random-access files can be opened to read and write on the
same file.

Data validation

Data should always undergo a validation check before it is processed by a
program. Different types of data require different checks and can be quite
specific; however, the most common data validation checks are as follows:

• Correct type: the input data should match the data type definition stated:
at the beginning of the program.

• Correct range: the input data should be within a required set of values.:
• Correct length: the input data – for example, string – should be the correct:

length.
• Completeness: all required fields should be present.:
• Correct date: an incoming date should be acceptable.:

10 Simple program design

Chapter summary
In this chapter, the seven steps in program development were introduced and briefly
described:

1 Define the problem.
2 Outline the solution.
3 Develop the outline into an algorithm.
4 Test the algorithm for correctness.
5 Code the algorithm into a specific programming language.
6 Run the program on the computer.
7 Document and maintain the program.

Three different approaches to program design were introduced, namely procedure-
driven, event-driven and data-driven program design. Procedural programming and
object-oriented programming were introduced, along with top-down development and
modular design.

An algorithm was defined as a set of detailed, unambiguous and ordered instruc-
tions developed to describe the processes necessary to produce the desired output
from the given input. Pseudocode is an English language-like way of representing the
algorithm; its advantages and some conventions for its use were listed.

Programmers need to have a good understanding of the data to be processed;
therefore, data variables, constants and literals were defined, and elementary data
items, data structures, files and data validation were introduced.

Pseudocode

Objectives

• To introduce common words, keywords and meaningful names when
writing pseudocode

• To define the three basic control structures as set out in the Structure
Theorem

• To illustrate the three basic control structures using pseudocode

Outline

2.1 How to write pseudocode

2.2 Meaningful names

2.3 The Structure Theorem

Chapter summary

2

12 Simple program design

2.1 How to write pseudocode

When designing a solution algorithm, it is necessary to keep in mind the fact
that a computer will eventually perform the set of instructions you write. If
you use words and phrases in the pseudocode that correspond to some basic
computer operations, the translation from the pseudocode algorithm to a
specific programming language becomes quite simple.

This chapter establishes six basic computer operations and introduces
common words and keywords used to represent these operations in pseudocode.
Each operation can be represented as a straightforward instruction in English,
with keywords and indentation to signify a particular control structure.

Six basic computer operations

1 A computer can receive information
When a computer is required to receive information or input from a particular
source, whether it be a terminal, a disk or any other device, the verbs Read and
Get are used in the pseudocode. Read is usually used when the algorithm is
to receive input from a record on a file, while Get is used when the algorithm
is to receive input from the keyboard. For example, typical pseudocode
instructions to receive information are:

Read student name
Get system date
Read number_1, number_2
Get tax_code

Each example uses a single verb, Read or Get, followed by one or more
nouns to indicate what data is to be obtained.

2 A computer can put out information
When a computer is required to supply information or output to a device,
the verbs Print, Write, Put, Output or Display are used in the pseudocode. Print is
usually used when the output is to be sent to the printer, while Write is used
when the output is to be written to a file. If the output is to be written to the
screen, the words Put, Output or Display are used in the pseudocode. Typical
pseudocode examples are:

Print ‘Program Completed’
Write customer record to master file
Put out name, address and postcode
Output total_tax
Display ‘End of data’

Usually an output Prompt instruction is required before an input Get
instruction. The Prompt verb causes a message to be sent to the screen, which
requires the user to respond, usually by providing input. Examples are:

Prompt for student_mark
Get student_mark

13Chapter 2: Pseudocode

3 A computer can perform arithmetic
Most programs require the computer to perform some sort of mathematical
calculation, or to apply a formula, and for these a programmer may use either
actual mathematical symbols or the words for those symbols. For instance, the
same pseudocode instruction can be expressed as either of the following:

add number to total
total = total + number

Both expressions clearly instruct the computer to add one value to another,
so either is acceptable in pseudocode. The equal symbol ‘=’ is used to indicate
assignment of a value as a result of some processing.

To be consistent with high-level programming languages, the following
symbols can be written in pseudocode:
+ for add
– for subtract
* for multiply
/ for divide
() for parentheses

The verbs Compute and Calculate are also available. Some examples of
pseudocode instructions to perform a calculation are:

divide total_marks by student_count
sales_tax = cost_price * 0.10
compute C = (F – 32) * 5/9

Order of operations
When writing mathematical calculations for the computer, the standard
mathematical order of operations applies to pseudocode and to most computer
languages. The first operation carried out will be any calculation contained
within parentheses. Next, any multiplication or division, as it occurs from
left to right, will be performed. Then, any addition or subtraction, as it occurs
from left to right, will be performed.

4 A computer can assign a value to a variable or memory location
There are three instances in which you may write pseudocode to assign a
value to a variable or memory location:

1 To give data an initial value in pseudocode, the verbs Initialise or Set are
used.

2 To assign a value as a result of some processing, the symbols ‘=’ or ‘←’ are
written.

3 To keep a variable for later use, the verbs Save or Store are used.

Some typical pseudocode examples are:

Initialise total_price to zero
Set student_count to 0
total_price = cost_price + sales_tax
total_price ← cost_price + sales_tax
store customer_num in last_customer_num

14 Simple program design

Note that the ‘=’ symbol is used to assign a value to a variable as a result of
some processing and is not equivalent to the mathematical ‘=’ symbol. For
this reason, some programmers prefer to use the ‘←’ symbol to represent the
assign operation.

5 A computer can compare two variables and select one of two
alternative actions

An important computer operation available to the programmer is the ability
to compare two variables and then, as a result of the comparison, select one
of two alternative actions. To represent this operation in pseudocode, special
keywords are used: IF, THEN and ELSE. The comparison of data is established
in the IF clause, and the choice of alternatives is determined by the THEN or
ELSE options. Only one of these alternatives will be performed. A typical
pseudocode example to illustrate this operation is:

IF student_attendance_status is part_time THEN
add 1 to part_time_count

ELSE
add 1 to full_time_count

ENDIF

In this example the attendance status of the student is investigated, with the
result that either the part_time_count or the full_time_count accumulator is
incremented. Note the use of indentation to emphasise the THEN and ELSE
options, and the use of the delimiter ENDIF to close the operation.

6 A computer can repeat a group of actions
When there is a sequence of processing steps that need to be repeated,
two special keywords, DOWHILE and ENDDO, are used in pseudocode. The
condition for the repetition of a group of actions is established in the DOWHILE
clause, and the actions to be repeated are listed beneath it. For example:

DOWHILE student_total < 50
Read student record
Print student name, address to report
add 1 to student_total

ENDDO

In this example it is easy to see the statements that are to be repeated,
as they immediately follow the DOWHILE statement and are indented for
added emphasis. The condition that controls and eventually terminates the
repetition is established in the DOWHILE clause, and the keyword ENDDO acts
as a delimiter. As soon as the condition for repetition is found to be false,
control passes to the next statement after the ENDDO.

15Chapter 2: Pseudocode

2.2 Meaningful names

When designing a solution algorithm, a programmer must introduce some
unique names, which will be used to represent the variables or objects in
the problem. All names should be meaningful. A name given to a variable is
simply a method of identifying a particular storage location in the computer.

The uniqueness of a name will differentiate this location from others. Often
a name describes the type of data stored in a particular variable. For instance,
a variable may be one of three simple data types: an integer, a real number
or a character. The name itself should be transparent enough to adequately
describe the variable; for example, number1, number2 and number3 are more
meaningful names for three numbers than A, B and C.

If more than one word is used in the name of a variable, then underscores
are useful as word separators, for example sales_tax and word_count. Most
programming languages do not tolerate a space in a variable name, as a space
would signal the end of the variable name and thus imply that there were two
variables. If an underscore cannot be used, then words can be joined together
with the use of a capital letter as a word separator, for example salesTax and
wordCount. For readability, it is not advisable to string together words all
in lower case. A name such as ‘carregistration’ is much harder to read than
‘carRegistration’.

2.3 The Structure Theorem

The Structure Theorem revolutionised program design by establishing a
structured framework for representing a solution algorithm. The Structure
Theorem states that it is possible to write any computer program by using
only three basic control structures that are easily represented in pseudocode:
sequence, selection and repetition.

The three basic control structures

1 Sequence
The sequence control structure is the straightforward execution of one
processing step after another. In pseudocode, this construct is represented as
a sequence of pseudocode statements:

statement a
statement b
statement c

The sequence control structure can be used to represent the first four
basic computer operations listed previously: to receive information, put out
information, perform arithmetic, and assign values. For example, a typical
sequence of statements in an algorithm might read:

16 Simple program design

add 1 to pageCount
Print heading line1
Print heading line2
Set lineCount to zero
Read customer record

These instructions illustrate the sequence control structure as a
straightforward list of steps written one after the other, in a top-to-bottom
fashion. Each instruction will be executed in the order in which it appears.

2 Selection
The selection control structure is the presentation of a condition and the
choice between two actions, the choice depending on whether the condition
is true or false. This construct represents the decision-making abilities of the
computer and is used to illustrate the fifth basic computer operation, namely
to compare two variables and select one of two alternative actions.

In pseudocode, selection is represented by the keywords IF, THEN, ELSE
and ENDIF:

IF condition p is true THEN
statement(s) in true case

ELSE
statement(s) in false case

ENDIF

If condition p is true, then the statement or statements in the true case will be
executed, and the statements in the false case will be skipped. Otherwise (the
ELSE statement) the statements in the true case will be skipped and statements
in the false case will be executed. In either case, control then passes to the
next processing step after the delimiter ENDIF. A typical pseudocode example
might read:

IF student_attendance_status is part_time THEN
add 1 to part_time_count

ELSE
add 1 to full_time_count

ENDIF

The selection control structure is discussed fully in Chapter 4.

3 Repetition
The repetition control structure can be defined as the presentation of a set of
instructions to be performed repeatedly, as long as a condition is true. The
basic idea of repetitive code is that a block of statements is executed again
and again, until a terminating condition occurs. This construct represents
the sixth basic computer operation, namely to repeat a group of actions. It is
written in pseudocode as:

DOWHILE condition p is true
statement block

ENDDO

17Chapter 2: Pseudocode

The DOWHILE loop is a leading decision loop; that is, the condition is tested
before any statements are executed. If the condition in the DOWHILE statement
is found to be true, the block of statements following that statement is executed
once. The delimiter ENDDO then triggers a return of control to the retesting of
the condition. If the condition is still true, the statements are repeated, and
so the repetition process continues until the condition is found to be false.
Control then passes to the statement that follows the ENDDO statement. It is
imperative that at least one statement within the statement block alters the
condition and eventually renders it false, because otherwise the logic may
result in an endless loop.

Here is a pseudocode example that represents the repetition control
structure:

Set student_total to zero
DOWHILE student_total < 50

Read student record
Print student name, address to report
add 1 to student_total

ENDDO

This example illustrates a number of points:

1 The variable student_total is initialised before the DOWHILE condition is
executed.

2 As long as student_total is less than 50 (that is, the DOWHILE condition is
true), the statement block will be repeated.

3 Each time the statement block is executed, one instruction within that
block will cause the variable student_total to be incremented.

4 After 50 iterations, student_total will equal 50, which causes the DOWHILE
condition to become false and the repetition to cease.

It is important to realise that the initialising and subsequent incrementing
of the variable tested in the condition is an essential feature of the DOWHILE
construct. The repetition control structure is discussed fully in Chapter 5.

Chapter summary
In this chapter, six basic computer operations – to receive information, put out information,
perform arithmetic, assign a value to a variable, decide between two alternative actions,
and repeat a group of actions – were listed, along with the pseudocode words and
keywords to represent them. Typical pseudocode examples were given as illustrations,
and the importance of using meaningful names was discussed.

The Structure Theorem was introduced. It states that it is possible to write any
computer program by using only three basic control structures: sequence, selection
and repetition. Each control structure was defined, and its association with each of the
six basic computer operations was indicated. Pseudocode examples for each control
structure were provided.

Developing an
algorithm

Objectives

• To introduce methods of analysing a problem and developing
a solution

• To develop simple algorithms using the sequence control
structure

• To introduce methods of manually checking the developed
solution

Outline

3.1 Defining the problem

3.2 Designing a solution algorithm

3.3 Checking the solution algorithm

Chapter summary

Programming problems

3

19Chapter 3: Developing an algorithm

3.1 Defining the problem

Chapter 1 described seven steps in the development of a computer program.
The very first step, and one of the most important, is defining the problem.
This involves carefully reading and rereading the problem until you under-
stand completely what is required. Quite often, additional information will
need to be sought to help resolve any ambiguities or deficiencies in the prob-
lem specifications. To help with this initial analysis, the problem should be
divided into three separate components:

1 Input: a list of the source data provided to the problem.:
2 Output: a list of the outputs required.:
3 Processing: a list of actions needed to produce the required outputs.:

When reading the problem statement, the input and output components
are easily identified, because they use descriptive words such as nouns and
adjectives. The processing component is also identified easily. The problem
statement usually describes the processing steps as actions, using verbs and
adverbs.

When dividing a problem into its three different components, analyse the
actual words used in the specification, and divide them into those that are
descriptive and those that imply actions. It may help to underline the nouns,
adjectives and verbs used in the specification.

In some programming problems, the inputs, processes and outputs may
not be clearly defined. In such cases, it is best to concentrate on the outputs
required. Doing this will then determine the inputs, and the way will be set
for determining the processing steps required to produce the desired output.

At this stage, the processing section should be a list of what actions need
to be performed, not how they will be accomplished. Do not attempt to find a
solution until the problem has been completely defined. Let’s look at a simple
example.

EXAMPLE 3.1 Add three numbers
A program is required to read three numbers, add them together and print their total.

Tackle this problem in two stages. First, underline the nouns and adjectives
used in the specification. This will establish the input and output compo-
nents, as well as any objects that are required. With the nouns and adjectives
underlined, our example would look like this:

A program is required to read three numbers, add them together and print their total.

By looking at the underlined nouns and adjectives, it is easy to see that the
input for this problem is three numbers and the output is the total. It is help-
ful to write down these first two components in a simple diagram, called a
defining diagram.

20 Simple program design

Input Processing Output

number1 total

number2

number3

Second, underline (in a different colour) the verbs and adverbs used in the
specification. This will establish the actions required. Example 3.1 should
now look like this:

A program is required to read three numbers, add them togetherg and printp their total.

By looking at the underlined words, it can be seen that the processing verbs
are ‘read’, ‘add together’ and ‘print’. These steps can now be added to our
defining diagram to make it complete. When writing down each processing
verb, also include the objects or nouns associated with each verb. The defin-
ing diagram now becomes:

Input Processing Output

number1 Read three numbers total

number2 Add numbers together

number3 Print total number

Now that all the nouns and verbs in the specification have been consid-
ered and the defining diagram is complete, the problem has been properly
defined. That is, we now understand the input to the problem, the output to
be produced, and the processing steps required to convert the input to the
output.

When it comes to writing down the processing steps in an algorithm, use
words that describe the work to be done in terms of single specific tasks or
functions. For example:

Read three numbers
add numbers together
Print total number

There is a pattern in the words chosen to describe these steps. Each action
is described as a single verb followed by a two-word object. Studies have
shown that if you follow this convention to describe a processing step, two
benefits will result. First, you are using a disciplined approach to defining
the problem and, second, the processing is being divided into separate tasks
or functions. This simple operation of dividing a problem into separate func-
tions and choosing a proper name for each function will be extremely impor-
tant later, when considering algorithm modules.

21Chapter 3: Developing an algorithm

EXAMPLE 3.2 Find average temperature
A program is required to prompt the terminal operator for the maximum and minimum
temperature readings on a particular day, accept those readings as integers, and cal-
culate and display to the screen the average temperature, calculated by (maximum
temperature + minimum temperature)/2.

First, establish the input and output components by underlining the nouns
and adjectives in the problem statement.

A program is required to prompt the terminal operator for the maximum and minimum
temperature readingsp g on a particular day, accept those readings as integers, and cal-
culate and display to the screen the average temperatureg p , calculated by (maximum
temperature + minimum temperature)/2.

The input components are the maximum and minimum temperature read-
ings, and the output is the average temperature. Using meaningful names,
these components can be set up in a defining diagram as follows:

Input Processing Output

max_temp avg_temp

min_temp

Now establish the processing steps by underlining the verbs in the prob-
lem statement.

A program is required to promptp p the terminal operator for the maximum and minimum
temperature readings on a particular day, acceptp those readings as integers, and cal-
culate and displayp y to the screen the average temperature, calculated by (maximum
temperature + minimum temperature)/2.

The processing verbs are ‘prompt’, ‘accept’, ‘calculate’ and ‘display’. By find-
ing the associated objects of these verbs, the defining diagram can now be
completed, as follows:

Input Processing Output

max_temp Prompt for temperatures avg_temp

min_temp Get temperatures

Calculate average temperature

Display average temperature

22 Simple program design

EXAMPLE 3.3 Compute mowing time
A program is required to read from the screen the lengthg and width of a rectangular
house block, and the lengthg and width of the rectangular house that has been built on
the block. The algorithm should then compute and display the mowing timeg required to
cut the grass around the house, at the rate of two square metres per minute.

To establish the input and output components in this problem, the nouns or
objects have been underlined. By reading these words, you can see that the
input components are the length and width of the block, and the length and
width of the house. The output is the mowing time to cut the grass.

The input and output components can be set up in a defining diagram, as
follows:

Input Processing Output

block_length mowing_time

block_width

house_length

house_width

Now the verbs and adverbs in the problem statement can be underlined.

A program is required to read from the screen the length and width of a rectangular
house block, and the length and width of the rectangular house that has been built on
the block. The algorithm should then computep and displayp y the mowing time required to
cut the grass around the house, at the rate of two square metres per minute.

The processing steps can now be added to the defining diagram:

Input Processing Output

block_length Prompt for block measurements mowing_time

block_width Get block measurements

house_length Prompt for house measurements

house_width Get house measurements

Calculate mowing area

Calculate mowing time

Remember that at this stage you are only concerned with the fact that the
mowing time is to be calculated, not how the calculation will be performed.
That will come later, when the solution algorithm is established. You must be
absolutely confident of what is to be done in the program before you attempt
to establish how it is to be done.

23Chapter 3: Developing an algorithm

3.2 Designing a solution algorithm

Designing a solution algorithm is the most challenging task in the life cycle
of a program. Once the problem has been properly defined, you can start to
outline your solution. The first attempt at designing a solution algorithm
usually does not result in a finished product. Steps may be left out, or some
that are included may later be altered or deleted. Pseudocode is useful in
this trial-and-error process, since it is relatively easy to add, delete or alter
an instruction. Do not hesitate to alter algorithms, or even to discard one and
start again, if you are not completely satisfied with it. If the algorithm is not
correct, the program will never be.

There is some argument that the work of a programmer ends with the algo-
rithm design. After that, a coder or trainee programmer could take over and
code the solution algorithm into a specific programming language. In prac-
tice, this usually does not happen. However, it is important that you do not
start coding until the necessary steps of defining the problem and designing
the solution algorithm have been completed.

Here are solution algorithms for the preceding three examples. All involve
sequence control structures only; there are no decisions or loops, so the solu-
tion algorithms are relatively simple.

EXAMPLE 3.4 Solution algorithm for Example 3.1
A program is required to read three numbers, add them together and print their total.

A Defining diagram

Input Processing Output

number1 Read three numbers total

number2 Add numbers together

number3 Print total number

B Solution algorithm
The defining diagram shows what is required, and a simple calculation will
establish how. Using pseudocode and the sequence control structure establish
the solution algorithm as follows:

Add_three_numbers
Read number1, number2, number3
total = number1 + number2 + number3
Print total

END

24 Simple program design

There are a number of points to consider in this solution algorithm:

1 A name has been given to the algorithm, namely Add_three_numbers.
Algorithm names should briefly describe the function of the algorithm,
and are usually expressed as a single verb followed by a two-word object.

2 An END statement at the end of the algorithm indicates that the algorithm
is complete.

3 All processing steps between the algorithm name and the END statement
have been indented for readability.

4 Each processing step in the defining diagram relates directly to one or
more statements in the algorithm. For instance, ‘Read three numbers’ in
the defining diagram becomes ‘Read number1, number2, number3’ in the
algorithm; and ‘Add numbers together’ becomes ‘total = number1 + num-
ber2 + number3’.

Now that the algorithm is complete, desk check the solution and only
then translate it into a programming language. (Desk checking is covered in
Section 3.3.)

EXAMPLE 3.5 Solution algorithm for Example 3.2
A program is required to prompt the terminal operator for the maximum and minimum
temperature readings on a particular day, accept those readings as integers, and cal-
culate and display to the screen the average temperature, calculated by (maximum
temperature + minimum temperature)/2.

A Defining diagram

Input Processing Output

max_temp Prompt for temperatures avg_temp

min_temp Get temperatures

Calculate average temperature

Display average temperature

B Solution algorithm
Using pseudocode, a simple calculation and the sequence control structure,
the algorithm can be expressed as follows:

Find_average_temperature
Prompt operator for max_temp, min_temp
Get max_temp, min_temp
avg_temp = (max_temp + min_temp)/2
Output avg_temp to the screen

END

25Chapter 3: Developing an algorithm

EXAMPLE 3.6 Solution algorithm for Example 3.3
A program is required to read from the screen the length and width of a rectangular
house block, and the length and width of the rectangular house that has been built on
the block. The algorithm should then compute and display the mowing time required to
cut the grass around the house, at the rate of two square metres per minute.

A Defining diagram

Input Processing Output

block_length Prompt for block measurements mowing_time

block_width Get block measurements

house_length Prompt for house measurements

house_width Get house measurements

Calculate mowing area

Calculate mowing time

B Solution algorithm
The actions to be carried out in this algorithm are listed sequentially in the
processing component of the defining diagram. These steps are expanded in
the solution algorithm to include actual calculations, as follows:

Calculate_mowing_time
Prompt operator for block_length, block_width
Get block_length, block_width
block_area = block_length * block_width
Prompt operator for house_length, house_width
Get house_length, house_width
house_area = house_length * house_width
mowing_area = block_area – house_area
mowing _time = mowing_area/2
Output mowing_time to screen

END

3.3 Checking the solution algorithm

After a solution algorithm has been established, it must be tested for cor-
rectness. This step is necessary because most major logic errors occur
during the development of the algorithm, and if not detected these errors
can be passed on to the program. It is much easier to detect errors in the
pseudocode than in the corresponding program code. This is because once
programming begins it is usually assumed that the logic of the algorithm

26 Simple program design

is correct. Then, when an error is detected, your attention is focused on the
individual lines of code to identify the problem, rather than on the logic
expressed in the algorithm. It is often too difficult to step back and analyse
the program as a whole. As a result, many frustrating hours can be wasted
during testing, which could have been avoided by spending a few minutes
desk checking the solution algorithm.

Desk checking involves tracing through the logic of the algorithm with
some chosen test data. That is, ‘walk’ through the logic of the algorithm exactly
as a computer would, keeping track of all major variable values on a sheet of
paper. This ‘playing computer’ not only helps to detect errors early, but also
helps you to become familiar with the way the program runs. The closer you
are to the execution of the program, the easier it is to detect errors.

Selecting test data

When selecting test data to desk check an algorithm, look at the program
specification and choose simple test cases that are based on the requirements
of the specification, not the algorithm. By doing this, you will still be able to
concentrate on what the program is supposed to do, nott how.

To desk check the algorithm, you need only a few simple test cases that
will follow the major paths of the algorithm logic. A much more comprehen-
sive test will be performed once the algorithm has been coded into a program-
ming language.

Steps in desk checking an algorithm

There are six simple steps to follow when desk checking an algorithm:

1 Choose simple input test cases that are valid. Two or three test cases are
usually sufficient.

2 Establish what the expected result should be for each test case. This is one
of the reasons for choosing simple test data in the first place: it is much
easier to determine the total of 10, 20 and 30 than 3.75, 2.89 and 5.31!

3 Make a table on a piece of paper of the relevant variable names within the
algorithm.

4 Walk the first test case through the algorithm, line by line, keeping a step-
by-step record of the contents of each variable in the table as the data
passes through the logic.

5 Repeat the walk-through process using the other test data cases, until the
algorithm has reached its logical end.

6 Check that the expected result established in Step 2 matches the actual
result developed in Step 5.

By desk checking an algorithm, you are attempting to detect errors early. It
is a good idea for someone other than the author of the solution algorithm to
design the test data for the program, as they are not influenced by the program
logic. Desk checking will eliminate most errors, but it still cannot prove that
the algorithm is 100% correct!

27Chapter 3: Developing an algorithm

Now let’s desk check each of the algorithms developed in this chapter.
Note that the statements in the algorithm have been numbered; however, this
is for desk checking purposes only and is not required at any other time.

EXAMPLE 3.7 Desk check of Example 3.1
A Solution algorithm

Add_three_numbers
1 Read number1, number2, number3
2 total = number1 + number2 + number3
3 Print total

END

B Desk checking
1 Choose two sets of input test data. The three numbers selected will be 10,

20 and 30 for the first test case and 40, 41 and 42 for the second.

First data set Second data set

number1 10 40

number2 20 41

number3 30 42

2 Establish the expected result for each test case.

First data set Second data set

total 60 123

3 Set up a table of relevant variable names, and pass each test data set
through the solution algorithm, statement by statement. Line numbers
have been used to identify each statement within the program.

Statement number number1 number2 number3 total

First pass

1 10 20 30

2 60

3 print

Second pass

1 40 41 42

2 123

3 print

28 Simple program design

4 Check that the expected results (60 and 123) match the actual results (the
total column in the table).

This desk check, which should take no more than a few minutes, indicates
that the algorithm is correct. You can now proceed to code the algorithm into a
programming language. Note that if, at the end of a desk check, the actual results
do not match the expected results, the solution algorithm probably contains a
logic error. In this case, it is necessary to go back to the solution algorithm, fix
the error, then desk check the algorithm again. (See Example 3.10.)

EXAMPLE 3.8 Desk check of Example 3.2
A Solution algorithm

Find_average_temperature
1 Prompt operator for max_temp, min_temp
2 Get max_temp, min_temp
3 avg_temp = (max_temp + min_temp)/2
4 Output avg_temp to the screen

END

B Desk checking
1 Choose two sets of input test data. The max_temp and min_temp values

will be 30 and 10 for the first case, and 40 and 20 for the second.

First data set Second data set

max_temp 30 40

min_temp 10 20

2 Establish the expected result for each test case.

First data set Second data set

avg_temp 20 30

3 Set up a table of variable names and then pass each test data set through
the solution algorithm, statement by statement, using the algorithm line
numbers as indicated.

29Chapter 3: Developing an algorithm

Statement number max_temp min_temp avg_temp

First pass

1, 2 30 10

3 20

4 output

Second pass

1, 2 40 20

3 30

4 output

4 Check that the expected results in Step 2 match the actual results in Step 3.

EXAMPLE 3.9 Desk check of Example 3.3
A Solution algorithm

Calculate_mowing_time
1 Prompt operator for block_length, block_width
2 Get block_length, block_width
3 block_area = block_length * block_width
4 Prompt operator for house_length, house_width
5 Get house_length, house_width
6 house_area = house_length * house_width
7 mowing_area = block_area – house_area
8 mowing _time = mowing_area/2
9 Output mowing_time to screen

END

B Desk checking

1 Input data:

First data set Second data set

block_length 30 40

block_width 30 20

house_length 20 20

house_width 20 10

30 Simple program design

2 Expected results:

First data set Second data set

mowing_time 250 minutes 300 minutes

3 Set up a table of variable names and then pass each test data set through
the solution algorithm, statement by statement.

Statement
number

block_
length

block_
width

house_
length

house_
width

block_
area

house_
area

mowing_
area

mowing_
time

First pass

1, 2 30 30

3 900

4, 5 20 20

6 400

7 500

8 250

9 output

Second pass

1, 2 40 20

3 800

4, 5 20 10

6 200

7 600

8 300

9 output

4 Check that the expected results match the actual results. Yes, the expected
result for each set of data matches the calculated result.

31Chapter 3: Developing an algorithm

EXAMPLE 3.10 Desk check of Example 3.3, which now
contains a logic error

A Solution algorithm

Calculate_mowing_time
1 Prompt operator for block_length, block_width
2 Get block_length, block_width
3 block_area = block_length * block_width
4 Prompt operator for house_length, house_width
5 Get house_length, house_width
6 house_area = block_length * block_width
7 mowing_area = block_area – house_area
8 mowing_time = mowing_area / 2
9 Output mowing_time to screen

END

B Desk checking
1 Input data:

First data set Second data set

block_length 30 40

block_width 30 20

house_length 20 20

house_width 20 10

2 Expected results:

First data set Second data set

mowing_time 250 minutes 300 minutes

3 Set up a table of variable names and then pass each test data set through
the solution algorithm, statement by statement.

32 Simple program design

Statement
number

block_
length

block_
width

house_
length

house_
width

block_
area

house_
area

mowing_
area

mowing_
time

First pass

1, 2 30 30

3 900

4, 5 20 20

6 900

7 0

8 0

9 output

Second pass

1, 2 40 20

3 800

4, 5 20 10

6 800

7 0

8 0

9 output

4 Check that the expected results match the actual results. Here, you can
see that the calculation for house_area in line 6 is incorrect, because when
house_area is subtracted from block_area in line 7, the result is zero, which
cannot be right. The algorithm needs to be adjusted. The statement

house_area = block_length * block_width

 is changed to

house_area = house_length * house_width

 Another desk check would establish that the algorithm is now correct.

33Chapter 3: Developing an algorithm

Chapter summary
The first section of this chapter was devoted to methods of analysing and defining a
programming problem. You must fully understand a problem before you can attempt
to find a solution. The method suggested was to analyse the actual words used in the
specification with the aim of dividing the problem into three separate components:
input, output and processing. Several examples were explored and the use of a defining
diagram was established. It was emphasised that the processing steps should list what
tasks need to be performed, rather than how they are to be accomplished.w

The second section was devoted to the establishment of a solution algorithm. After
the initial analysis of the problem, you must attempt to find a solution and express this
solution as an algorithm. To do this, you must use the defining diagram, the correct
pseudocode statements and the three basic control structures. Only algorithms using
the sequence control structure were used as examples.

The third section was concerned with checking the algorithm for correctness. A
method of playing computer by tracing through the algorithm step by step was intro-
duced, with examples to previous problems given.

Programming problems
In the following problems, you will need to:

• define the problem by constructing a defining diagram
• create a solution algorithm using pseudocode
• desk check the solution algorithm using two valid test cases.

1 Construct an algorithm that will prompt an operator to input three characters,
receive those three characters, and display a welcoming message to the screen
such as ‘Hello xxx! We hope you have a nice day’.

2 You require an algorithm that will receive two integer items from a terminal operator,
and display to the screen their sum, difference, product and quotient.

3 You require an algorithm that will receive an integer from the screen, add 5 to it,
double it, subtract 7 from it, and display the final number to the screen.

4 You require an algorithm that will read in a tax rate (as a percentage) and the prices
of five items. The program is to calculate the total price of the items before tax and
then the tax payable on those items. The tax payable is calculated by applying
the tax rate percentage to the total price. Print the total price and the tax payable
as output.

5 You require an algorithm to read in three values from a customer’s bank account:
the account balance at the beginning of the month, a total of all withdrawals from
the account for the month, and a total of all deposits into the account during the
month. A federal tax charge of 1% is applied to all transactions made during the
month. The program is to calculate the account balance at the end of the month

34 Simple program design

by (1) subtracting the total withdrawals from the account balance at the beginning
of the month, (2) adding the total deposits to this new balance, (3) calculating the
federal tax (1% of total transactions – that is, total withdrawals + total deposits), and
(4) subtracting this federal tax from the new balance. After these calculations, print
the final end-of-month balance.

6 You require a program to read in the values from an employee’s time sheet, and
calculate and print the weekly pay for that employee. The values read in are the
total number of regular hours worked, the total overtime hours and the hourly wage
rate. Weekly pay is calculated as payment for regular hours worked, plus payment
for overtime hours worked. Payment for regular hours worked is calculated as (wage
rate times regular hours worked); payment for overtime hours worked is calculated
as (wage rate times overtime hours worked times 1.5).

Selection control
structures

Objectives

• To elaborate on the uses of simple selection, multiple selection and nested
selection in algorithms

• To introduce the case construct in pseudocode

• To develop algorithms using variations of the selection control structure

Outline

4.1 The selection control structure

4.2 Algorithms using selection

4.3 The case structure

Chapter summary

Programming problems

4

36 Simple program design

4.1 The selection control structure

The selection control structure was introduced in Chapter 2 as the second
construct in the Structure Theorem. This structure represents the decision-
making abilities of a computer. That is, you can use the selection control
structure in pseudocode to illustrate a choice between two or more actions,
depending on whether a condition is true or false. The condition in the IF
statement is based on a comparison of two items, and is usually expressed
with one of the following relational operators:

< less than
> greater than
= equal to
<= less than or equal to
>= greater than or equal to
<> not equal to

There are a number of variations of the selection structure, as follows.

1 Simple selection (simple IF statement)

Simple selection occurs when a choice is made between two alternative
paths, depending on the result of a condition being true or false. The structure
is represented in pseudocode using the keywords IF, THEN, ELSE and ENDIF.
For example:

IF account_balance < $300 THEN
service_charge = $5.00

ELSE
service_charge = $2.00

ENDIF

Only one of the THEN or ELSE paths will be followed, depending on the
result of the condition in the IF clause.

2 Simple selection with null false branch
(null ELSE statement)

The null ELSE structure is a variation of the simple IF structure. It is used
when a task is performed only when a particular condition is true. If the
condition is false, then no processing will take place and the IF statement will
be bypassed. For example:

IF student_attendance = part_time THEN
add 1 to part_time_count

ENDIF

In this case, the part_time_count field will be altered only if the student’s
attendance pattern is part-time.

37Chapter 4: Selection control structures

3 Combined selection (combined IF statement)

A combined IF statement is one that contains multiple conditions, each
connected with the logical operators AND or OR. If the connector AND is used
to combine the conditions then both conditions must be true for the combined
condition to be true. For example:

IF student_attendance = part_time
AND student_gender = female THEN

add 1 to female_part_time_count
ENDIF

In this case, each student record will undergo two tests. Only those stu-
dents who are female and whose attendance is registered as part-time willd
be selected, and the variable female_part_time_count will be incremented. If
either condition is found to be false, the counter will remain unchanged.

If the connector OR is used to combine any two conditions then only one
of the conditions needs to be true for the combined condition to be consid-
ered true. If neither condition is true, the combined condition is considered
false. Changing the AND in the above example to OR dramatically changes
the outcome from the processing of the IF statement.

IF student_attendance = part_time
OR student_gender = female THEN

add 1 to female_part_time_count
ENDIF

In this example, if either or both conditions are found to be true, the com-
bined condition will be considered true. That is, the counter will be incre-
mented:

1 if the student is part-time, regardless of gender
or

2 if the student is female, regardless of attendance pattern.

Only those students who are not female and not part-time will be ignored.
So, female_part_time_count will contain the total count of female part-time
students, male part-time students and female full-time students. As a result,
female_part_time_count is no longer a meaningful name for this variable. You
must fully understand the processing that takes place when combining condi-
tions with the AND or OR logical operators.

More than two conditions can be linked together with the AND or OR
operators. However, if both operators are used in the one IF statement,
parentheses must be used to avoid ambiguity. Look at the following
example:

IF record_code = ‘23’
OR update_code = delete
AND account_balance = zero THEN

delete customer record
ENDIF

38 Simple program design

The logic of this statement is confusing. It is uncertain whether the first
two conditions should be grouped together and operated on first, or the
second two conditions should be grouped together and operated on first.
Pseudocode algorithms should never be ambiguous. There are no precedence
rules for logical operators in pseudocode, but there are precedence rules
in most programming languages. Therefore, parentheses must be used in
pseudocode to avoid ambiguity as to the meaning intended, as follows:

IF (record_code = ‘23’
OR update_code = delete)
AND account_balance = zero THEN

delete customer record
ENDIF

The IF statement is now no longer ambiguous, and it is clear what
conditions are necessary for the customer record to be deleted. The record
will only be deleted if the account balance equals zero and either the record
code = 23 or the update code = delete.

The NOT operator
The NOT operator can be used for the logical negation of a condition, as fol-T
lows:

IF NOT (record_code = ‘23’) THEN
update customer record

ENDIF

Here, the IF statement will be executed for all record codes other than code
‘23’, that is, for record codes not equal to ‘23’.

Note that the AND and OR operators can also be used with the NOT opera-T
tor, but great care must be taken and parentheses used to avoid ambiguity, as
follows:

IF NOT (record_code = ‘23’
AND update_code = delete) THEN
update customer record

ENDIF

Here, the customer record will only be updated if the record code is not equal
to ‘23’ and the update code is not equal to delete.

4 Nested selection (nested IF statement)

Nested selection occurs when the word IF appears more than once within an
IF statement. Nested IF statements can be classified as linear or non-linear.

Linear nested IF statements
The linear nested IF statement is used when a field is being tested for various
values and a different action is to be taken for each value.

This form of nested IF is called linear, because each ELSE immediately
follows the IF condition to which it corresponds. Comparisons are made until

39Chapter 4: Selection control structures

a true condition is encountered, and the specified action is executed until
the next ELSE statement is reached. Linear nested IF statements should be
indented for readability, with each IF, ELSE and corresponding ENDIF aligned.
For example:

IF record_code = ‘A’ THEN
increment counter_A

ELSE
IF record_code = ‘B’ THEN

increment counter_B
ELSE

IF record_code = ‘C’ THEN
increment counter_C

ELSE
increment error_counter

ENDIF
ENDIF

ENDIF

Note that there are an equal number of IF, ELSE and ENDIF statements,
that each ELSE and ENDIF statement is positioned so that it corresponds with
its matching IF statement, and that the correct indentation makes it easy to
read and understand. A block of nested IF statements like this is sometimes
referred to as ‘cascading IF statements’, as they cascade like a waterfall across
the page.

Non-linear nested IF statements
A non-linear nested IF statement occurs when a number of different conditions
need to be satisfied before a particular action can occur. It is termed non-
linear because the ELSE statement may be separated from the IF statement
with which it is paired. Indentation is once again important when expressing
this form of selection in pseudocode. Each ELSE and ENDIF statement should
be aligned with the IF condition to which it corresponds.

For instance:

IF student_attendance = part_time THEN
IF student_gender = female THEN

IF student_age > 21 THEN
add 1 to mature_female_pt_students

ELSE
add 1 to young_female_pt_students

ENDIF
ELSE

add 1 to male_pt_students
ENDIF

ELSE
add 1 to full_time_students

ENDIF

40 Simple program design

Note that the number of IF conditions is equal to the number of ELSE and
ENDIF statements. Using correct indentation helps to see which set of IF,
ELSE and ENDIF statements match. However, non-linear nested IF statements
may contain logic errors that are difficult to correct, so they should be used
sparingly in pseudocode. If possible, replace a series of non-linear nested
IF statements with a combined IF statement. This replacement is possible in
pseudocode because two consecutive IF statements act like a combined IF
statement that uses the AND operator. Take as an example the following non-
linear nested IF statement:

IF student_attendance = part_time THEN
IF student_age > 21 THEN

increment mature_pt_student
ENDIF

ENDIF

This can be written as a combined IF statement:

IF student_attendance = part_time
AND student_age > 21 THEN

increment mature_pt_student
ENDIF

The outcome will be the same for both pseudocode expressions, but the
format of the latter is preferred, if the logic allows it, simply because it is
easier to understand.

4.2 Algorithms using selection

Let us look at some programming examples that use the selection control
structure. In each example, the problem will be defined, a solution algorithm
will be developed and the algorithm will be manually tested. To help define
the problem, the processing verbs in each example have been underlined.

EXAMPLE 4.1 Read three characters
Design an algorithm that will promptp p a terminal operator for three characters, acceptp
those characters as input, sort them into ascending sequence and outputp them to the
screen.

41Chapter 4: Selection control structures

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

B Solution algorithm
The solution algorithm requires a series of IF statements to sort the three char-
acters into ascending sequence.

Read_three_characters
1 Prompt the operator for char_1, char_2, char_3
2 Get char_1, char_2, char_3
3 IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
4 IF char_2 > char_3 THEN

temp = char_2
char_2 = char_3
char_3 = temp

ENDIF
5 IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
6 Output to the screen char_1, char_2, char_3

END

In this solution, most of the logic of the algorithm is concerned with the
sorting of the three characters into ascending sequence. This sorting is carried
out with the use of pseudocode that ‘swaps’ two items, as follows:

temp = char_1
char_1 = char_2
char_2 = temp

Here, the values in the variables char_1 and char_2 are ‘swapped’, with the
use of the temporary variable, temp. Pseudocode such as this must be written
carefully to ensure that items are not lost in the shuffle.

42 Simple program design

To make the algorithm easier to read, this sorting logic can be performed
using modules, as demonstrated in Chapter 8.

C Desk checking
Two sets of valid characters will be used to check the algorithm; the charac-
ters k, b and g as the first set and z, s and a as the second.

1 Input data

First data set Second data set

char_1 k z

char_2 b s

char_3 g a

2 Expected results

First data set Second data set

char_1 b a

char_2 g s

char_3 k z

3 Desk check table
Line numbers have been used to identify each statement within the program.
Note that when desk checking the logic each IF statement is treated as a single
statement.

Statement number char_1 char_2 char_3 temp

First pass

1, 2 k b g

3 b k k

4 g k k

5

6 output output output

Second pass

1, 2 z s a

3 s z z

4 a z z

5 a s s

6 output output output

43Chapter 4: Selection control structures

EXAMPLE 4.2 Process customer record
A program is required to read a customer’s name, a purchase amount and a tax code.
The tax code has been validated and will be one of the following:

0 tax exempt (0%)
1 state sales tax only (3%)
2 federal and state sales tax (5%)
3 special sales tax (7%)

The program must then computep the sales tax and the total amount due, and printp
the customer’s name, purchase amount, sales tax and total amount due.

A Defining diagram

Input Processing Output

cust_name Read customer details cust_name

purch_amt Calculate sales tax purch_amt

tax_code Calculate total amount sales_tax

Print customer details total_amt

B Solution algorithm
The solution algorithm requires a linear nested IF statement to calculate the
sales tax.

Process_customer_record
1 Read cust_name, purch_amt, tax_code
2 IF tax_code = 0 THEN

sales_tax = 0
ELSE

IF tax_code = 1 THEN
sales_tax = purch_amt * 0.03

ELSE
IF tax_code = 2 THEN

sales_tax = purch_amt * 0.05
ELSE

sales_tax = purch_amt * 0.07
ENDIF

ENDIF
ENDIF

3 total_amt = purch_amt + sales_tax
4 Print cust_name, purch_amt, sales_tax, total_amt

END

44 Simple program design

C Desk checking
Two sets of valid input data for purchase amount and tax code will be used
to check the algorithm.

1 Input data

First data set Second data set

purch_amt $10.00 $20.00

tax_code 0 2

2 Expected results

First data set Second data set

sales_tax 0 $1.00

total_amt $10.00 $21.00

Note that when desk checking the logic, the whole linear nested IF state-
ment (13 lines of pseudocode) is counted as a single pseudocode statement.

3 Desk check table

Statement number purch_amt tax_code sales_tax total_amt

First pass

1 $10.00 0

2 0

3 $10.00

4 print print print

Second pass

1 $20.00 2

2 $1.00

3 $21.00

4 print print print

As the expected result for the two test cases matches the calculated result,
the algorithm can be considered correct.

EXAMPLE 4.3 Calculate employee’s pay
A program is required by a company to read an employee’s number, pay rate and the
number of hours worked in a week. The program is then to validate the pay rate field
and the hours worked field and, if valid, computep the employee’s weekly pay and then
printp it and the input data.

45Chapter 4: Selection control structures

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 60 hours, and the maximum hourly rate is $25.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printedp and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 35 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

A Defining diagram

Input Processing Output

emp_no Read employee details emp_no

pay_rate Validate input fields pay_rate

hrs_worked Calculate employee pay hrs_worked

Print employee details emp_weekly_pay

error_message

B Solution algorithm
The solution to this problem will require a series of simple IF and nested IF
statements. First, the variables ‘pay_rate’ and ‘hrs_worked’ must be validated,
and if either is found to be out of range, an appropriate message is to be
placed into a variable called ‘error_message’.

The employee’s weekly pay is only to be calculated if the input variables
‘pay_rate’ and ‘hrs_worked’ are valid, so another variable, ‘valid_input_
fields’, will be used to indicate to the program whether or not these input
fields are valid.

Boolean variables
The variable valid_input_fields is a Boolean variable – that is, it may
contain only one of two possible values (true or false). When using
the IF statement with a Boolean variable, the IF statement can be
simplified in pseudocode. For example, the following pseudocode

IF valid_input_fields = true THEN
statement

ENDIF

can be simplified to imply ‘= true’, and so can be written as:

IF valid_input_fields THEN
statement

ENDIF

46 Simple program design

The variable valid_input_fields acts as an internal switch or flag to the
program. It will initially be set to true, and will be assigned the value false if
one of the input fields is found to be invalid. The employee’s weekly pay will
be calculated only if valid_input_fields is true.

Compute_employee_pay
1 Set valid_input_fields to true
2 Set error_message to blank
3 Read emp_no, pay_rate, hrs_worked
4 IF pay_rate > $25 THEN

error_message = ‘Pay rate exceeds $25.00’
Print emp_no, pay_rate, hrs_worked, error_message
valid_input_fields = false

ENDIF
5 IF hrs_worked > 60 THEN

error_message = ‘Hours worked exceeds 60’
Print emp_no, pay_rate, hrs_worked, error_message
valid_input_fields = false

ENDIF
6 IF valid_input_fields THEN

IF hrs_worked <= 35 THEN
emp_weekly_pay = pay_rate * hrs_worked

ELSE
overtime_hrs = hrs_worked – 35
overtime_pay = overtime_hrs * pay_rate * 1.5
emp_weekly_pay = (pay_rate * 35) + overtime_pay

ENDIF
Print emp_no, pay_rate, hrs_worked, emp_weekly_pay

ENDIF
END

In this solution, there are two separate functions to be performed in the algo-
rithm: the validation of the input data, and the calculation and printing of
the employee’s weekly pay. These two tasks could have been separated into
modules before the algorithm was developed in pseudocode (see Chapter 8).

Similarly, if we want to test if valid_input_fields is false, we can
say in pseudocode:

IF NOT valid_input_fields THEN
statement

ENDIF

47Chapter 4: Selection control structures

C Desk checking
Two sets of valid input data for pay rate and hours worked will be used to
check this algorithm.

1 Input data

First data set Second data set

pay_rate $10.00 $40.00

hrs_worked 40 35

2 Expected results

First data set Second data set

pay_rate $10.00 $40.00

hrs_worked 40 35

emp_weekly_pay $425.00 –

error_message blank Pay rate exceeds $25.00

3 Desk check table

Statement
number

pay_rate
hrs_

worked
overtime_

hrs
overtime_

pay

emp_
weekly_

pay

valid_
input_
fields

error_
message

Print

First pass

1 true

2 blank

3 $10.00 40

4

5

6 5 75.00 425.00
Print
fi elds

Second pass

1 true

2 blank

3 $40.00 35

4 false
Pay rate
exceeds
$25.00

Print
message

5

6

48 Simple program design

4.3 The case structure

The case control structure in pseudocode is another way of expressing a
linear nested IF statement. It is used in pseudocode for two reasons: it can be
translated into many high-level languages, and it makes the pseudocode easier
to write and understand. Nested IFs often look cumbersome in pseudocode
and depend on correct structure and indentation for readability. Let us look
at the example used earlier in this chapter:

IF record_code = ‘A’ THEN
increment counter_A

ELSE
IF record_code = ‘B’ THEN

increment counter_B
ELSE

IF record_code = ‘C’ THEN
increment counter_C

ELSE
increment error_counter

ENDIF
ENDIF

ENDIF

This linear nested IF structure can be replaced with a case control struc-
ture. Case is not really an additional control structure. It simplifies the basic
selection control structure and extends it from a choice between two values
to a choice from multiple values. In one case structure, several alternative
logical paths can be represented. In pseudocode, the keywords CASE OF and
ENDCASE serve to identify the structure, with the multiple values indented,
as follows:

CASE OF single variable
value_1 : statement block_1
value_2 : statement block_2

.

.

.
value_n : statement block_n
value_other : statement block_other

ENDCASE

The path followed in the case structure depends on the value of the
variable specified in the CASE OF clause. If the variable contains value_1,
statement block_1 is executed; if it contains value_2, statement block_2
is executed, and so on. The value_other is included in the event that the
variable contains none of the listed values. We can now rewrite the above
linear nested IF statement with a case statement, as follows:

49Chapter 4: Selection control structures

CASE OF record_code
‘A’ : increment counter_A
‘B’ : increment counter_B
‘C’ : increment counter_C
other : increment error_counter

ENDCASE

In both forms of pseudocode, the processing logic is exactly the same.
However, the case solution is much more readable.

Let us now look again at Example 4.2. The solution algorithm for this
example was earlier expressed as a linear nested IF statement, but it could
equally have been expressed as a CASE statement.

EXAMPLE 4.4 Process customer record
A program is required to read a customer’s name, a purchase amount and a tax code.
The tax code has been validated and will be one of the following:

0 tax exempt (0%)
1 state sales tax only (3%)
2 federal and state sales tax (5%)
3 special sales tax (7%)

The program must then compute the sales tax and the total amount due, and print
the customer’s name, purchase amount, sales tax and total amount due.

A Defining diagram

Input Processing Output

cust_name Read customer details cust_name

purch_amt Calculate sales tax purch_amt

tax_code Calculate total amount sales_tax

Print customer details total_amt

B Solution algorithm
The solution algorithm will be expressed using a CASE statement.

Process_customer_record
1 Read cust_name, purch_amt, tax_code
2 CASE OF tax_code

0 : sales_tax = 0
1 : sales_tax = purch_amt * 0.03
2 : sales_tax = purch_amt * 0.05
3 : sales_tax = purch_amt * 0.07

ENDCASE
3 total_amt = purch_amt + sales_tax
4 Print cust_name, purch_amt, sales_tax, total_amt

END

50 Simple program design

C Desk checking
Two sets of valid input data for purchase amount and tax code will be used
to check the algorithm. Note that the case structure serves as a single pseudo-
code statement.

1 Input data

First data set Second data set

purch_amt $10.00 $20.00

tax_code 0 2

2 Expected results

First data set Second data set

sales_tax 0 $1.00

total_amt $10.00 $21.00

3 Desk check table

Statement number purch_amt tax_code sales_tax total_amt

First pass

1 $10.00 0

2 0

3 $10.00

4 print print print

Second pass

1 $20.00 2

2 $1.00

3 $21.00

4 print print print

As the expected result matches the actual result, the algorithm is considered
correct.

51Chapter 4: Selection control structures

Chapter summary
This chapter covered the selection control structure in detail. Descriptions and pseudo-
code examples were given for simple selection, null ELSE, combined IF and nested
IF statements. Several solution algorithms that used the selection structure were
developed.

The case structure was introduced as a means of expressing a linear nested IF
statement in a simpler and more concise form. Case is available in many high-level
languages, and so is a useful construct in pseudocode.

Programming problems
Construct a solution algorithm for the following programming problems. Your solution
should contain:

• a defining diagram
• a pseudocode algorithm
• a desk check of the algorithm.

1 Design an algorithm that will receive two integer items from a terminal operator,
and display to the screen their sum, difference, product and quotient. Note that the
quotient calculation (first integer divided by second integer) is only to be performed
if the second integer does not equal zero.

2 Design an algorithm that will read two numbers and an integer code from the screen.
The value of the integer code should be 1, 2, 3 or 4. If the value of the code is 1,
compute the sum of the two numbers. If the code is 2, compute the difference (first
minus second). If the code is 3, compute the product of the two numbers. If the
code is 4, and the second number is not zero, compute the quotient (first divided
by second). If the code is not equal to 1, 2, 3 or 4, display an error message. The
program is then to display the two numbers, the integer code and the computed
result to the screen.

3 Design an algorithm that will prompt an operator for a student’s serial number and the
student’s exam score out of 100. Your program is then to match the exam score to a
letter grade and print the grade to the screen. Calculate the letter grade as follows:

Exam score Assigned grade

90 and above A

80–89 B

70–79 C

60–69 D

below 60 F

52 Simple program design

4 Design an algorithm that will receive the weight of a parcel and determine the deliv-
ery charge for that parcel. Calculate the charges as follows:

Parcel weight (kg) Cost per kg ($)

<2.5 kg $3.50 per kg

2.5–5 kg $2.85 per kg

>5 kg $2.45 per kg

5 Design an algorithm that will prompt a terminal operator for the price of an article
and a pricing code. Your program is then to calculate a discount rate according to
the pricing code and print to the screen the original price of the article, the discount
amount and the new discounted price. Calculate the pricing code and accompany-
ing discount amount as follows:

Pricing code Discount rate

H 50%

F 40%

T 33%

Q 25%

Z 0%

If the pricing code is Z, the words ‘No discount’ are to be printed on the screen.
If the pricing code is not H, F, T, Q or Z, the words ‘Invalid pricing code’ are to be
printed.

6 An architect’s fee is calculated as a percentage of the cost of a building. The fee is
made up as follows:
8% of the first $5000.00 of the cost of a building and
3% on the remainder if the remainder is less than or equal to $80 000.00 or
2.5% on the remainder if the remainder is more than $80 000.00.

Design an algorithm that will accept the cost of a building and calculate and
display the architect’s fee.

7 A home mortgage authority requires a deposit on a home loan according to the
following schedule:

Loan ($) Deposit

less than $25 000 5% of loan value

$25 000–$49 999 $1250 + 10% of loan over $25 000

$50 000–$100 000 $5000 + 25% of loan over $50 000

Loans in excess of $100 000 are not allowed. Design an algorithm that will read
a loan amount and compute and print the required deposit.

53Chapter 4: Selection control structures

8 Design an algorithm that will receive a date in the format dd/mm/yyyy (for example,
21/07/2006) and validate it as follows:
i the month must be in the range 1 to 12, and
ii the day must be in the range of 1 to 31 and acceptable for the corresponding

month. (Don’t forget a leap year check for February.)
9 The tax payable on taxable incomes for employees in a certain country is set out

in the following table:

Taxable income Tax payable

From $1.00 to $4461.99 Nil

From $4462.00 to $17 893.99 Nil plus 30 cents for each $ in excess of $4462.00

From $17 894.00 to $29 499.99 $4119.00 plus 35 cents for each $ in excess of $17 894.00

From $29 500.00 to $45 787.99 $8656.00 plus 46 cents for each $ in excess of $29 500.00

$45 788.00 and over $11 179.00 plus 60 cents for each $ in excess of $45 788.00

Design an algorithm that will read as input the taxable income amount and
calculate and print the tax payable on that amount.

10 A transaction record on a sales commission file contains the retail price of an item
sold, a transaction code that indicates the sales commission category to which an
item can belong, and the employee number of the person who sold the item. The
transaction code can contain the values S, M or L, which indicate that the percent-
age commission will be 5%, 7% or 10% respectively. Construct an algorithm that
will read a record on the file, calculate the commission owing for that record, and
print the retail price, commission and employee number.

Repetition control
structures

Objectives

• To develop algorithms that use the DOWHILE and REPEAT…
UNTIL control structures

• To introduce a pseudocode structure for counted repetition
loops

• To develop algorithms using variations of the repetition
construct

Outline

5.1 Repetition using the DOWHILE structure

5.2 Repetition using the REPEAT…UNTIL structure

5.3 Counted repetition

Chapter summary

Programming problems

5

55Chapter 5: Repetition control structures

5.1 Repetition using the DOWHILE
structure

The solution algorithms developed so far have one characteristic in common:
they show the program logic required to process just one set of input values.
However, most programs require the same logic to be repeated for several
sets of data. The most efficient way to deal with this situation is to establish
a looping structure in the algorithm that will cause the processing logic to be
repeated a number of times.

There are three different ways in which a set of instructions can be
repeated, and each way is determined by where the decision to repeat is
placed:

• at the beginning of the loop (leading decision loop)
• at the end of the loop (trailing decision loop)
• a counted number of times (counted loop).

Leading decision loop

In Chapter 2, the DOWHILE construct was introduced as the pseudocode rep-
resentation of a repetitive loop. Its format is:

DOWHILE condition p is true
statement block

ENDDO

The DOWHILE construct is a leading decision loop – the condition is tested
before any statements are executed. In the above DOWHILE loop, the following
processing takes place:

1 The logical condition p is tested.
2 If condition p is found to be true, the statements within the statement

block are executed once. The delimiter ENDDO then triggers a return of
control to the retesting of condition p.

3 If condition p is still true, the statements are executed again, and so the
repetition process continues until the condition is found to be false.

4 If condition p is found to be false, control passes to the next statement
after the delimiter ENDDO and no further processing takes place within the
loop.

There are two important considerations of which you must be aware before
designing a DOWHILE loop:

• The testing of the condition is at the beginning of the loop. This means
that it may be necessary to perform some initial processing to adequately
set up the condition before it can be tested.

• The only way to terminate the loop is to render the DOWHILE condition
false. This means some process must be set up within the statement block
that will eventually change the condition so that the condition becomes
false. Failure to do this results in an endless loop.

56 Simple program design

Using DOWHILE to repeat a set of instructions a
known number of times

When a set of instructions is to be repeated a specific number of times, a
counter can be used in pseudocode, which is initialised before the DOWHILE
statement and incremented just before the ENDDO statement. Let’s look at an
example.

EXAMPLE 5.1 Fahrenheit–Celsius conversion
Every day, a weather station receives 15 temperatures expressed in degrees Fahrenheit.
A program is to be written that will acceptp each Fahrenheit temperature, convert it to
Celsius and displayp y the converted temperature to the screen. After 15 temperatures
have been processed, the words ‘All temperatures processed’ are to be displayedp y on
the screen.

A Defining diagram

Input Processing Output

f_temp Get Fahrenheit temperatures c_temp

(15 temperatures) Convert temperatures (15 temperatures)

Display Celsius temperatures

Display screen message

Having defined the input, output and processing, you are ready to outline
a solution to the problem. This can be done by writing down the control
structures needed and any extra variables that are to be used in the solution
algorithm. In this example, you need:

• a DOWHILE structure to repeat the necessary processing
• a counter, called temperature_count, initialised to zero, that will control

the 15 repetitions.

B Solution algorithm
Fahrenheit_Celsius_conversion

1 Set temperature_count to zero
2 DOWHILE temperature_count < 15
3 Prompt operator for f_temp
4 Get f_temp
5 compute c_temp = (f_temp – 32) * 5/9
6 Display c_temp
7 add 1 to temperature_count

ENDDO
8 Display ‘All temperatures processed’ to the screen

END

57Chapter 5: Repetition control structures

This solution algorithm illustrates a number of points:

1 The temperature_count variable is initialised before the DOWHILE condi-
tion is executed.

2 As long as temperature_count is less than 15 (that is, the DOWHILE
condition is true), the statements between DOWHILE and ENDDO will be
executed.

3 The variable temperature_count is incremented once within the loop, just
before the ENDDO delimiter (that is, just before it is tested again in the
DOWHILE condition).

4 After 15 iterations, temperature_count will equal 15, which causes the
DOWHILE condition to become false and control to be passed to the state-
ment after ENDDO.

C Desk checking
Although the program will require 15 records to process properly, at this stage
it is only necessary to check the algorithm with two valid sets of data.

1 Input data

First data set Second data set

f_temp 32 50

2 Expected results

First data set Second data set

c_temp 0 10

3 Desk check table

Statement number
temperature_

count
DOWHILE
condition

f_temp c_temp

1 0

2 true

3, 4 32

5 0

6 display

7 1

2 true

3, 4 50

5 10

6 display

7 2

58 Simple program design

Using DOWHILE to repeat a set of instructions an
unknown number of times

1 When a trailer record or sentinel exists
When there are an unknown number of items to process, a counter cannot
be used, so another way of controlling the repetition must be found. Often, a
trailer record or sentinel signifies the end of the data. This sentinel is a special
record or value placed at the end of valid data to signify the end of that data.
It must contain a value that is clearly distinguishable from the other data to
be processed. It is referred to as a sentinel because it indicates that no more
data follows. Let’s look at an example.

EXAMPLE 5.2 Print examination scores
A program is required to read and print a series of names and exam scores for students
enrolled in a mathematics course. The class average is to be calculated and printed at
the end of the report. Scores can range from 0 to 100. The last record contains a blank
name and a score of 999 and is not to be included in the calculations.

A Defining diagram

Input Processing Output

name Read student details name

exam_score Print student details exam_score

Calculate average score average_score

Print average score

You will need to consider the following when establishing a solution algo-
rithm:

• a DOWHILE structure to control the reading of exam scores, until it reaches
a score of 999

• an accumulator for total scores, namely total_score
• an accumulator for the total students, namely total_students.

59Chapter 5: Repetition control structures

B Solution algorithm

Print_examination_scores
1 Set total_score to zero
2 Set total_students to zero
3 Read name, exam_score
4 DOWHILE exam_score not = 999
5 add 1 to total_students
6 Print name, exam_score
7 add exam_score to total_score
8 Read name, exam_score

ENDDO
9 IF total_students not = zero THEN

average_score = total_score/total_students
Print average_score

ENDIF
END

In this example, the DOWHILE condition tests for the existence of the trailer
record or sentinel (record 999). However, this condition cannot be tested until
at least one exam mark has been read. Hence, the initial processing that sets
up the condition is a Read statement immediately before the DOWHILE clause
(Read name, exam_score). This is known as a priming read.

The algorithm will require another Read statement, this time within the
body of the loop. Its position is also important. The trailer record or sentinel
must not be included in the calculation of the average score, so each time an
exam score is read it must be tested for a 999 value before further processing
can take place. For this reason, the Read statement is placed at the end of the
loop, immediately before ENDDO, so that its value can be tested when con-
trol returns to the DOWHILE condition. As soon as the trailer record has been
read, control will pass from the loop to the next statement after ENDDO – the
calculation of average_score.

C Desk checking
Two valid records and a trailer record should be sufficient to desk check this
algorithm.

1 Input data

First record Second record Third record

score 50 100 999

60 Simple program design

2 Expected results

 First name, and score of 50
 Second name, and score of 100
 Average score 75

3 Desk check table

Statement
number

total_score
total_

students
exam_score

DOWHILE
condition

average_
score

1, 2 0 0

3 50

4 true

5 1

6 print

7 50

8 100

4 true

5 2

6 print

7 150

8 999

4 false

9 75

print

2 When a trailer record or sentinel does not exist
When there is no trailer record or sentinel to signify the end of the data, it is
necessary to check for an end-of-file marker (EOF). This EOF marker is added
when the file is created, as the last character in the file. The check for EOF
is positioned in the DOWHILE clause, using one of the following equivalent
expressions:

DOWHILE more data
DOWHILE more records
DOWHILE records exist
DOWHILE NOT EOF

61Chapter 5: Repetition control structures

In this case, all statements between the words DOWHILE and ENDDO will be
repeated until an attempt is made to read a record but no more records exist.
When this occurs, a signal is sent to the program to indicate that there are no
more records and so the ‘DOWHILE more records’ condition is rendered false.
Let’s look at an example.

EXAMPLE 5.3 Process student enrolments
A program is required that will read a file of student records, and select and print only
the records of those students enrolled in a course unit named Programming I. Each
student record contains student number, name, address, postcode, gender and course
unit number. The course unit number for Programming I is 18500. Three totals are to be
printed at the end of the report: total females enrolled in the course, total males enrolled
in the course, and total students enrolled in the course.

A Defining diagram

Input Processing Output

student_record Read student records selected student records

• student_no Select student records total_females_enrolled

• name Print selected records total_males_enrolled

• address Compute total females enrolled total_students_enrolled

• postcode Compute total males enrolled

• gender Compute total students enrolled

• course_unit Print totals

You will need to consider the following requirements when establishing a
solution algorithm:

• a DOWHILE structure to perform the repetition
• IF statements to select the required students
• accumulators for the three total fields.

62 Simple program design

B Solution algorithm

Process_student_enrolments
 1 Set total_females_enrolled to zero
 2 Set total_males_enrolled to zero
 3 Set total_students_enrolled to zero
 4 Read student record
 5 DOWHILE records exist
 6 IF course_unit = 18500 THEN

print student details
increment total_students_enrolled
IF student_gender = female THEN

increment total_females_enrolled
ELSE

increment total_males_enrolled
ENDIF

ENDIF
 7 Read student record

ENDDO
 8 Print total_females_enrolled
 9 Print total_males_enrolled
 10 Print total_students_enrolled

END

C Desk checking
Three valid student records should be sufficient to desk check this algorithm.
Since student_no, name, address and postcode are not operated upon in this
algorithm, they do not need to be provided as input test data.

1 Input data

First record Second record Third record

course_unit 20000 18500 18500

gender F F M

2 Expected results

 Student number, name, address, postcode, F (2nd student)
 Student number, name, address, postcode, M (3rd student)
 Total females enrolled 1
 Total males enrolled 1
 Total students enrolled 2

63Chapter 5: Repetition control structures

3 Desk check table

Statement
number

course_
unit

gender
DOWHILE
condition

total_
females_
enrolled

total_
males_
enrolled

total_
students_
enrolled

1, 2, 3 0 0 0

4 20000 F

5 true

6

7 18500 F

5 true

6 print print 1 1

7 18500 M

5 true

6 print print 1 2

7 EOF

5 false

8, 9, 10 print print print

The priming Read before the DOWHILE condition, together with the subse-
quent Read within the loop, immediately before the ENDDO statement, form
the basic framework for DOWHILE repetitions in pseudocode. In general, all
algorithms using a DOWHILE construct to process a sequential file should have
the same basic pattern, as follows:

Process_sequential_file
Initial processing
Read first record
DOWHILE more records exist

Process this record
Read next record

ENDDO
Final processing

END

64 Simple program design

5.2 Repetition using the REPEAT…UNTIL
structure

Trailing decision loop

The REPEAT…UNTIL structure is similar to the L DOWHILE structure, in that a
group of statements is repeated in accordance with a specified condition.
However, where the DOWHILE structure tests the condition at the beginning
of the loop, a REPEAT…UNTIL structure tests the condition at the end of theL
loop. This means that the statements within the loop will be executed once
before the condition is tested. If the condition is false, the statements will be
repeated UNTIL the condition becomes true.L

The format of the REPEAT…UNTIL structure is:L

REPEAT
statement
statement

.

.

.
UNTIL condition is true

REPEAT…UNTIL is a trailing decision loop; the statements are executed onceL
before the condition is tested. There are two considerations of which you
need to be aware before using REPEAT…UNTIL.

First, REPEAT…UNTIL loops are executed when the condition is false; itL
is only when the condition becomes true that repetition ceases. Thus, the
logic of the condition clause of the REPEAT…UNTIL structure is the oppositeL
of DOWHILE. For instance, ‘DOWHILE more records’ is equivalent to ‘REPEAT…
UNTIL no more records’, and ‘L DOWHILE number NOT = 99’ is equivalent to
‘REPEAT…UNTIL number = 99’.L

Second, the statements within a REPEAT…UNTIL structure will always beL
executed at least once. As a result, there is no need for a priming Read when
using REPEAT…UNTIL. One Read statement at the beginning of the loop is suf-
ficient; however, an extra IF statement immediately after the Read statement
must be included, to prevent the processing of the trailer record.

Let us now compare an algorithm that uses a DOWHILE structure with
the same problem using a REPEAT…UNTIL structure. Consider the followingL
DOWHILE loop:

65Chapter 5: Repetition control structures

Process_student_records
Set student_count to zero
Read student record
DOWHILE student_number NOT = 999

Write student record
increment student_count
Read student record

ENDDO
Print student_count

END

This can be rewritten as a trailing decision loop, using the REPEAT…UNTIL
structure as follows:

Process_student_records
Set student_count to zero
REPEAT

Read student record
IF student number NOT = 999 THEN

Write student record
increment student_count

ENDIF
UNTIL student number = 999
Print student_count

END

Let us look at an example.

EXAMPLE 5.4 Process inventory items
A program is required to read a series of inventory records that contain an item number,
an item description and a stock figure. The last record in the file has an item number of
zero. The program is to producep a low stock items report, by printingp g only those records
that have a stock figure of less than 20 items. A heading is to be printedp at the top of
the report and a total low stock item count printedp at the end.

A Defining diagram

Input Processing Output

inventory record Read inventory records heading

• item_number Select low stock items selected records

• item_description Print low stock records • item_number

• stock_figure Print total low stock items • item_description

• stock_figure

total_low_stock_items

66 Simple program design

You will need to consider the following requirements when establishing a
solution algorithm:

• a REPEAT…UNTIL to perform the repetitionL
• an IF statement to select stock figures of less than 20
• an accumulator for total_low_stock_items
• an extra IF, within the REPEAT loop, to ensure the trailer record is notT

processed.

B Solution algorithm using REPEAT…UNTIL

Process_inventory_records
1 Set total_low_stock_items to zero
2 Print ‘Low Stock Items’ heading

REPEAT
3 Read inventory record
4 IF item_number > zero THEN

IF stock_figure < 20 THEN
Print item_number, item_description, stock_figure
increment total_low_stock_items

ENDIF
ENDIF

5 UNTIL item_number = zero
6 Print total_low_stock_items

END

The solution algorithm has a simple structure, with a single Read statement
at the beginning of the REPEAT…UNTIL loop and an extraL IF statement within
the loop to ensure the trailer record is not incorrectly incremented into the
total_low_stock_items accumulator.

C Desk checking
Two valid records and a trailer record (item number equal to zero) will be
used to test the algorithm:

1 Input data

First record Second record Third record

item_number 123 124 0

stock_figure 8 25

2 Expected results
 Low Stock Items
 123 8 (first record)
 Total Low Stock Items = 1

67Chapter 5: Repetition control structures

3 Desk check table

Statement
number

item_number stock_figure
REPEAT
UNTIL

total_low_
stock_items

heading

1 0

2 print

3 123 8

4 print print 1

5 false

3 124 25

4

5 false

3 0

4

5 true

6 print

5.3 Counted repetition

Counted loop

Counted repetition occurs when the exact number of loop iterations is known
in advance. The execution of the loop is controlled by a loop index, and
instead of using DOWHILE, or REPEAT…UNTIL, the simple keyword DO is used
as follows:

DO loop_index = initial_value to final_value
statement block

ENDDO

The DO loop does more than just repeat the statement block. It will:

1 initialise the loop_index to the required initial_value
2 increment the loop_index by 1 for each pass through the loop
3 test the value of loop_index at the beginning of each loop to ensure that it

is within the stated range of values
4 terminate the loop when the loop_index has exceeded the specified final_

value.

In other words, a counted repetition construct will perform the initialising,
incrementing and testing of the loop counter automatically. It will also
terminate the loop once the required number of repetitions has been
executed.

68 Simple program design

Let us look again at Example 5.1, which processes 15 temperatures at a
weather station each day. The solution algorithm can be rewritten to use a
DO loop.

EXAMPLE 5.5 Fahrenheit–Celsius conversion
Every day, a weather station receives 15 temperatures expressed in degrees Fahrenheit.
A program is to be written that will acceptp each Fahrenheit temperature, convert it to
Celsius and displayp y the converted temperature to the screen. After 15 temperatures
have been processed, the words ‘All temperatures processed’ are to be displayedp y on
the screen.

A Defining diagram

Input Processing Output

f_temp Get Fahrenheit temperatures c_temp

(15 temperatures) Convert temperatures (15 temperatures)

Display Celsius temperatures

Display screen message

B Solution algorithm
The solution will require a DO loop and a loop counter (temperature_count)
to process the repetition.

Fahrenheit_Celsius_conversion
1 DO temperature_count = 1 to 15
2 Prompt operator for f_temp
3 Get f_temp
4 compute c_temp = (f_temp – 32) * 5/9
5 Display c_temp

ENDDO
6 Display ‘All temperatures processed’ to the screen

END

Note that the DO loop controls all the repetition:

• It initialises temperature_count to 1.
• It increments temperature_count by 1 for each pass through the loop.
• It tests temperature_count at the beginning of each pass to ensure that it is

within the range 1 to 15.
• It automatically terminates the loop once temperature_count has exceeded

15.

69Chapter 5: Repetition control structures

C Desk checking
Two valid records should be sufficient to test the algorithm for correctness. It
is not necessary to check the DO loop construct for all 15 records.

1 Input data

First data set Second data set

f_temp 32 50

2 Expected results

First data set Second data set

c_temp 0 10

3 Desk check table

Statement number temperature_count f_temp c_temp

1 1

2, 3 32

4 0

5 display

1 2

2, 3 50

4 10

5 display

Desk checking the algorithm with the two input test cases indicates that the
expected results have been achieved.

A requirement of counted repetition loops is that the exact number of
input data items or records needs to be known before the algorithm can be
written. Counted repetition loops are used extensively with arrays or tables,
as seen in Chapter 7.

Chapter summary
This chapter covered the repetition control structure in detail. Descriptions and
pseudocode examples were given for leading decision loops (DOWHILE), trailing decision
loops (REPEAT…UNTIL) and counted loops (DO). Several solution algorithms that used
each of the three control structures were defined, developed and desk checked.

70 Simple program design

We saw that most of the solution algorithms that used the DOWHILE structure had
the same general pattern. This pattern consisted of:

1 some initial processing before the loop
2 some processing for each record within the loop
3 some final processing once the loop has been exited.

Expressed as a solution algorithm, this basic pattern was developed as a general
solution:

Process_sequential_file
Initial processing
Read first record
DOWHILE more records exist

Process this record
Read next record

ENDDO
Final processing

END

Programming problems
Construct a solution algorithm for the following programming problems. Your solution
should contain:
• a defining diagram
• a pseudocode algorithm
• a desk check of the algorithm.

1 Design an algorithm that will output the seven times table, as follows:
7 × 1 = 7
7 × 2 = 14
7 × 3 = 21 . . .

2 Design an algorithm that will display to the screen the first 20 numbers, with their
squares and cubes, as follows:

Number Square Cube

1 1 1

2 4 8

3 9 27 . . .

3 Design an algorithm that will prompt for, receive and total a collection of payroll
amounts entered at the terminal until a sentinel amount of 999 is entered. After the
sentinel has been entered, display the total payroll amount to the screen.

71Chapter 5: Repetition control structures

4 Design an algorithm that will read a series of integers at the terminal. The first inte-
ger is special, as it indicates how many more integers will follow. Your algorithm is
to calculate the sum and average of the integers, excluding the first integer, and
display these values to the screen.

5 Design an algorithm that will prompt for and receive the time expressed in 2400
format (e.g. 2305 hours), convert it to 12-hour format (e.g. 11.05 pm) and display
the new time to the screen. Your program is to repeat the processing until a senti-
nel time of 9999 is entered.

6 Design a program that will read a file of product records, each containing the item
number, the item name, the quantity sold this year and the quantity sold last year.
The program is to produce a product list showing the item number, the item name,
and the increase or decrease in the quantity sold this year for each item.

7 The first record of a set of records contains a bank account number and an open-
ing balance. Each of the remaining records in the set contains the amount of a
cheque drawn on that bank account. The trailer record contains a zero amount.
Design a program that will read and print the bank account number and opening
balance on a statement of account report. The following cheque amounts are to
be read and printed on the report, each with a new running balance. Print a closing
balance at the end of the report.

8 Design a program that will read a file of employee records containing employee
number, employee name, hourly pay rate, regular hours worked and overtime
hours worked. The company pays its employees weekly, according to the following
rules:

regular pay = regular hours worked × hourly rate of pay
overtime pay = overtime hours worked × hourly rate of pay × 1.5
total pay = regular pay + overtime pay

Your program is to read the input data on each employee’s record and compute
and print the employee’s total pay on the weekly payroll report. All input data and
calculated amounts are to appear on the report. A total payroll amount is to appear
at the end of the report.

9 Design an algorithm that will process the weekly employee time cards for all the
employees of an organisation. Each employee time card will have three data items:
an employee number, an hourly wage rate and the number of hours worked during
a given week. Each employee is to be paid time-and-a-half for all hours worked
over 35. A tax amount of 15% of gross salary is to be deducted. The output to the
screen should display the employee’s number and net pay. At the end of the run,
display the total payroll amount and the average amount paid.

10 As a form of quality control, the Pancake Kitchen has recorded, on a Pancake file,
two measurements for each of its pancakes made in a certain month: the thick-
ness in mm (millimetres) and the diameter in cm (centimetres). Each record on the
file contains the two measurements for a pancake, thickness followed by diameter.
The last record in the file contains values of 99 for each measurement. Design a
program that will read the Pancake file, calculate the minimum, the maximum and
the average for both dimensions, and print these values on a report.

Pseudocode
algorithms using

sequence, selection
and repetition

Objectives

• To develop solution algorithms to eight typical programming
problems using sequence, selection and repetition constructs

Outline

6.1 Eight solution algorithms

Chapter summary

Programming problems

6

73Chapter 6: Pseudocode algorithms using sequence, selection and repetition

6.1 Eight solution algorithms

This chapter develops solution algorithms to eight programming problems of
increasing complexity. All the algorithms will use a combination of sequence,
selection and repetition constructs. The algorithms have been designed to
be interactive or to process sequential files. Reading these algorithms will
consolidate the groundwork developed in the previous chapters.

Each programming problem will be defined, the control structures required
will be determined and a solution algorithm will be devised.

1 Defining the problem

It is important to divide the problem into its three components: input,
output and processing. The processing component should list the tasks
to be performed, that is, what needs to be done, nott how. The verbs in
each problem have been underlined to help identify the actions to be per-
formed.

2 The control structures required

Once the problem has been defined, write down the control structures
(sequence, selection and repetition) that may be needed, as well as any extra
variables that the solution may require.

3 The solution algorithm

Having defined the problem and determined the required control structures,
devise a solution algorithm and represent it using pseudocode. Each solution
algorithm presented in this chapter is only one solution to the particular
problem; other solutions could be equally correct.

4 Desk checking

Desk check each of the algorithms with two or more test cases.

EXAMPLE 6.1 Process number pairs
Design an algorithm that will promptp p for and receive pairs of numbers from an operator
at a terminal and displayp y their sum, product and average on the screen. If the calcu-
lated sum is over 200, an asterisk is to be displayedp y beside the sum. The program is to
terminate when a pair of zero values is entered.

74 Simple program design

A Defining diagram

Input Processing Output

number1 Prompt for numbers sum

number2 Get numbers product

Calculate sum average

Calculate product ‘*’

Calculate average

Display sum, product, average

Display ‘*’

B Control structures required

1 A DOWHILE loop to control the repetition
2 An IF statement to determine if an asterisk is to be displayed

C Solution algorithm
Note the use of the NOT operand with theT AND logical operator.

Process_number_pairs
Set sum to zero
Prompt for number1, number2
Get number1, number2
DOWHILE NOT (number1 = 0 AND number2 = 0)

sum = number1 + number2
product = number1 * number2
average = sum / 2
IF sum > 200 THEN

Display sum, ‘*’, product, average
ELSE

Display sum, product, average
ENDIF
Prompt for number1, number2
Get number1, number2

ENDDO
END

75Chapter 6: Pseudocode algorithms using sequence, selection and repetition

EXAMPLE 6.2 Print student records
A file of student records consists of ‘S’ records and ‘U’ records. An ‘S’ record contains
the student’s number, name, age, gender, address and attendance pattern – full-time
(F/T) or part-time (P/T). A ‘U’ record contains the number and name of the unit or units
in which the student has enrolled. There may be more than one ‘U’ record for each ‘S’
record. Design a solution algorithm that will read the file of student records and printp
only the student’s number, name and address on a ‘STUDENT LIST’.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records selected student records

• name Select ‘S’ records • number

• address Print selected records • name

• age • address

• gender

• attendance_pattern

‘U’ records

B Control structures required

1 A DOWHILE loop to control the repetition
2 An IF statement to select ‘S’ records

C Solution algorithm

Print_student_records
Print ‘STUDENT LIST’ heading
Read student record
DOWHILE more records exist

IF student record = ‘S’ record THEN
Print student_number, name, address

ENDIF
Read student record

ENDDO
END

76 Simple program design

EXAMPLE 6.3 Print selected students
Design a solution algorithm that will read the same student file as in Example 6.2, and
producep a report of all female students who are enrolled part-time. The report is to be
headed ‘FEMALE PART-TIME STUDENTS’ and is to show the student’s number, name,
address and age.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records selected student records

• name Select female P/T students • number

• address Print selected records • name

• age • address

• gender • age

• attendance_pattern

‘U’ records

B Control structures required

1 A DOWHILE loop to control the repetition
2 An IF statement or statements to select ‘S’, female and part-time (P/T)

students

C Solution algorithm
Several algorithms for this problem will be presented, and all are equally
correct. The algorithms only differ in the way the IF statement is expressed. It
is interesting to compare the three different solutions.

Solution 1 uses a non-linear nested IF:

Produce_part_time_female_list
Print ‘FEMALE PART-TIME STUDENTS’ heading
Read student record
DOWHILE more records

IF student record = ‘S’ record THEN
IF attendance_pattern = P/T THEN

IF gender = female THEN
Print student_number, name, address, age

ENDIF
ENDIF

ENDIF
Read student record

ENDDO
END

77Chapter 6: Pseudocode algorithms using sequence, selection and repetition

Solution 2 uses a nested and compound IF statement:

Produce_part_time_female_list
Print ‘FEMALE PART-TIME STUDENTS’ heading
Read student record
DOWHILE more records

IF student record = ‘S’ record THEN
IF (attendance_pattern = P/T
AND gender = female) THEN

Print student_number, name, address, age
ENDIF

ENDIF
Read student record

ENDDO
END

Solution 3 also uses a compound IF statement:

Produce_part_time_female_list
Print ‘FEMALE PART-TIME STUDENTS’ heading
Read student record
DOWHILE more records

IF student record = ‘S’ record
AND attendance_pattern = P/T
AND gender = female THEN

Print student_number, name, address, age
ENDIF
Read student record

ENDDO
END

EXAMPLE 6.4 Print and total selected students
Design a solution algorithm that will read the same student file as in Example 6.3 and
producep the same ‘FEMALE PART-TIME STUDENTS’ report. In addition, at the end of
the report you are to printp the number of students who have been selected and listed,
and the total number of students on the file.

78 Simple program design

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records selected student records

• name Select female P/T students • number

• address Print selected records • name

• age Compute total students • address

• gender Compute total selected students • age

• attendance_pattern Print totals total_students

‘U’ records total_selected_students

B Control structures required

1 A DOWHILE loop to control the repetition
2 IF statements to select ‘S’, female and P/T students
3 Accumulators for total_selected_students and total_students

C Solution algorithm

Produce_part_time_female_list
Print ‘FEMALE PART-TIME STUDENTS’ heading
Set total_students to zero
Set total_selected_students to zero
Read student record
DOWHILE records exist

IF student record = ‘S’ record THEN
increment total_students
IF (attendance_pattern = P/T
AND gender = female) THEN

increment total_selected_students
Print student_number, name, address, age

ENDIF
ENDIF
Read student record

ENDDO
Print total_students
Print total_selected_students

END

Note the positions where the total accumulators are incremented. If these
statements are not placed accurately within their respective IF statements, the
algorithm could produce erroneous results.

79Chapter 6: Pseudocode algorithms using sequence, selection and repetition

EXAMPLE 6.5 Print student report
Design an algorithm that will read the same student file as in Example 6.4 and, for each
student, printp the name, number and attendance pattern from the ‘S’ records (student
records) and the unit number and unit name from the ‘U’ records (enrolled units records)
as follows:

STUDENT REPORT

Student name ..

Student number ..

Attendance ..

Enrolled units

.. ..

.. ..

At the end of the report, print the total number of students enrolled.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records detail lines

• name Print ‘S’ record details • name

• attendance_pattern Print ‘U’ record details • number

‘U’ records Compute total students • attendance_pattern

• unit_number Print total students • unit_number

• unit_name • unit_name

total_students

B Control structures required

1 A DOWHILE loop to control the repetition
2 An IF statement to select ‘S’ or ‘U’ records
3 An accumulator for total_students

80 Simple program design

C Solution algorithm

Print_student_report
Print ‘STUDENT REPORT’ heading
Set total_students to zero
Read student record
DOWHILE records exist

IF student record = ‘S’ THEN
add 1 to total_students
Print ‘Student name’, name
Print ‘Student number’, number
Print ‘Attendance’, attendance_pattern
Print ‘Enrolled units’

ELSE
IF student record = ‘U’ THEN

Print unit_number, unit_name
ELSE

Print ‘student record error’
ENDIF

ENDIF
Read student record

ENDDO
Print ‘Total students’, total_students

END

EXAMPLE 6.6 Produce sales report
Design a program that will read a file of sales records and producep a sales report. Each
record in the file contains a customer’s number and name, a sales amount and a tax
code. The tax code is to be applied to the sales amount to determine the sales tax due
for that sale, as follows:

Tax code Sales tax

0 tax exempt

1 3%

2 5%

The report is to print a heading ‘SALES REPORT’, and detail lines listing the cus-
tomer number, name, sales amount, sales tax and the total amount owing.

81Chapter 6: Pseudocode algorithms using sequence, selection and repetition

A Defining diagram

Input Processing Output

sales record Print heading Heading line

• customer_number Read sales records detail lines

• name Calculate sales tax • customer_number

• sales_amt Calculate total amount • name

• tax_code Print customer details • sales_amt

• sales_tax

• total_amount

B Control structures required

1 A DOWHILE loop to control the repetition
2 A case statement to calculate the sales_tax

Assume that the tax_code field has been validated and will only contain a
value of 0, 1 or 2.

C Solution algorithm

Produce_sales_report
Print ‘SALES REPORT’ heading
Read sales record
DOWHILE not EOF

CASE of tax_code
0 : sales_tax = 0
1 : sales_tax = sales_amt * 0.03
2 : sales_tax = sales_amt * 0.05

ENDCASE
total_amt = sales_amt + sales_tax
Print customer_number, name, sales_amt, sales_tax, total_amt
Read sales record

ENDDO
END

82 Simple program design

EXAMPLE 6.7 Student test results
Design a solution algorithm that will read a file of student test results and producep a
student test grades report. Each test record contains the student number, name and
test score (out of 50). The program is to calculate for each student the test score as a
percentage and to printp the student’s number, name, test score (out of 50) and letter
grade on the report. The letter grade is determined as follows:

 A = 90–100%
 B = 80–89%
 C = 70–79%
 D = 60–69%
 F = 0–59%

A Defining diagram

Input Processing Output

Student test records Print heading Heading line

• student_number Read student records student details

• name Calculate test percentage • student_number

• test_score Calculate letter grade • name

Print student details • test_score

• grade

B Control structures required

1 A DOWHILE loop to control the repetition
2 A formula to calculate the percentage
3 A linear nested IF statement to calculate the grade

(The case construct cannot be used here, as CASE is not designed to cater for
a range of values such as, 0–59%.)

83Chapter 6: Pseudocode algorithms using sequence, selection and repetition

C Solution algorithm

Print_student_results
Print ‘STUDENT TEST GRADES’ heading
Read student record
DOWHILE not EOF

percentage = test_score * 2
IF percentage >= 90 THEN

grade = ‘A’
ELSE

IF percentage >= 80 THEN
grade = ‘B’

ELSE
IF percentage >= 70 THEN

grade = ‘C’
ELSE

IF percentage >= 60 THEN
grade = ‘D’

ELSE
grade = ‘F’

ENDIF
ENDIF

ENDIF
ENDIF
Print student_number, name, test_score, grade
Read student record

ENDDO
END

Note that the linear nested IF has been worded so that all alternatives have
been considered.

EXAMPLE 6.8 Gas supply billing
The Domestic Gas Supply Company records its customers’ gas usage figures on a
customer usage file. Each record on the file contains the customer’s number, name and
address, and their gas usage expressed in cubic metres. Design a solution algorithm
that will read the customer usage file, calculate the amount owing for gas usage for
each customer, and printp a report listing each customer’s number, name, address, gas
usage and the amount owing.

The company bills its customers according to the following rate: if the customer’s
usage is 60 cubic metres or less, a rate of $2.00 per cubic metre is applied; if the
customer’s usage is more than 60 cubic metres, then a rate of $1.75 per cubic metre
is applied for the first 60 cubic metres and $1.50 per cubic metre for the remaining
usage.

84 Simple program design

At the end of the report, print the total number of customers and the total amount
owing to the company.

A Defining diagram

Input Processing Output

customer usage records Print heading Heading line

• customer_number Read usage records customer details

• name Calculate amount owing • customer_number

• address Print customer details • name

• gas_usage Compute total customers • address

Compute total amount owing • gas_usage

Print totals • amount_owing

total_customers

total_amount_owing

B Control structures required

1 A DOWHILE loop to control the repetition
2 An IF statement to calculate the amount_owing
3 Accumulators for total_customers and total_amount_owing

C Solution algorithm

Bill_gas_customers
Print ‘CUSTOMER USAGE FIGURES’ heading
Set total_customers to zero
Set total_amount_owing to zero
Read customer record
DOWHILE more records

IF usage <= 60 THEN
amount_owing = usage * $2.00

ELSE
amount_owing = (60 * $1.75) + ((usage – 60) * $1.50)

ENDIF
Print customer_number, name, address, gas_usage, amount_owing
Add amount_owing to total_amount_owing
Add 1 to total_customers
Read customer record

ENDDO
Print total_customers
Print total_amount_owing

END

85Chapter 6: Pseudocode algorithms using sequence, selection and repetition

Chapter summary
This chapter developed solution algorithms to eight typical programming problems. The
approach to all eight problems followed the same pattern:

1 A defining diagram was used to define the problem.
2 The control structures required were written down, along with any extra variables

required.
3 The solution algorithm was produced using pseudocode and the three basic control

structures: sequence, selection and repetition.

It was noted that the solution algorithms followed the same basic pattern, although
the statements within the pattern were different. This pattern was first introduced in
Chapter 5, as follows:

Process_sequential_file
Initial processing
Read first record
DOWHILE more records exist

Process this record
Read next record

ENDDO
Final processing

END

Programming problems
Construct a solution algorithm for the following programming problems. Your solution
should contain:

• a defining diagram
• a list of control structures required
• a pseudocode algorithm
• a desk check of the algorithm.

1 Design an algorithm that will prompt for and receive a person’s age in years and
months and calculate and display the age in months. If the calculated months figure
is more than 500, three asterisks should also appear beside the month figure. Your
program is to continue processing until a sentinel of 9999 is entered.

2 Design an algorithm that will prompt for and receive the measurement for the diam-
eter of a circle, and calculate and display the area and circumference of that circle.
Your program is to continue processing until a sentinel of 999 is entered.

3 A file of student records contains name, sex (M or F), age (in years) and marital
status (single or married) for each student. Design an algorithm that will read through
the file and calculate the numbers of married men, single men, married women

86 Simple program design

and single women. Print these numbers on a student summary report. If any single
men are over 30 years of age, print their names and ages on a separate eligible
bachelors report.

4 Design an algorithm that will read a file of employee records and produce a weekly
report of gross earnings for those employees. Gross earnings are earnings before
tax and other deductions have been deducted. Each input record contains the
employee number, the hours worked and the hourly rate of pay. Each employee’s
gross pay is calculated as the product of the hours worked and the rate of pay. At
the end of the report, print the total gross earnings for that week.

5 Design an algorithm that will read the same file as in Problem 4, and produce a
weekly report of the net earnings for those employees. Net earnings are gross
earnings minus deductions. Each employee has two deductions from their gross
earnings each week: tax payable (15% of gross earnings) and medical levy (1% of
gross earnings). Your report is to print the gross earnings, tax payable, medical levy
and net earnings for each employee. At the end of the report, print the total gross
earnings, total tax, total medical levy and total net earnings.

6 A parts inventory record contains the following fields:
• record code (only code 11 is valid)
• part number (six characters; two alpha and four numeric, for example AA1234)
• part description
• inventory balance.

 Design an algorithm that will read the file of parts inventory records, validate the
record code and part number on each record, and print the details of all valid
inventory records that have an inventory balance equal to zero.

7 Design a program that will read the same parts inventory file described in Problem
6, validate the record code and part number on each record, and print the details
of all valid records whose part numbers fall within the values AA3000 and AA3999
inclusive. Also print a count of these selected records at the end of the parts
listing.

8 Design a program that will produce the same report as in Problem 7, but will also
print at the end of the parts listing a count of all the records with part numbers
between AA3000 and AA3999, as well as a count of all records with part numbers
that begin with AA.

9 An electricity supply authority records on an electricity usage file the amount of elec-
tricity that each customer uses. This file consists of:
a a header record (first record), which provides the total kilowatt hours used

during the month by all customers
b a number of detail records, each containing the customer number, customer

name and electricity usage (in kilowatt hours) for the month.
 Design a solution algorithm that will read the electricity usage file and produce an

electricity usage report showing the customer number, customer name, electricity
usage and the amount owing. The amount owing is calculated at 11 cents for each
kilowatt hour used, up to 200 hours, and 8 cents for each kilowatt hour used over
200 hours. The total electricity usage in kilowatt hours is also to be accumulated.

87Chapter 6: Pseudocode algorithms using sequence, selection and repetition

At the end of the program, compare the total electricity usage accumulated in
the program with the value provided in the header record, and print an appropriate
message if the totals are not equal.

10 Design an algorithm that will read a file of customer records showing the total
amount owing on his or her credit card, and produce a report showing the custom-
er’s minimum amount due. Each customer record contains the customer’s number,
name, address and postcode, and total amount owing. The minimum amount due
is calculated on the total amount owing, as follows:

If the total amount owing is less than $5.00, the total amount owing becomes
the minimum amount due. If the total amount owing is greater than $5.00, the
minimum amount due is calculated to be one-quarter of the total amount owing,
provided this resulting amount is not less than $5.00. If the resulting amount is less
than $5.00, the minimum amount due is $5.00.

Array processing

Objectives

• To introduce arrays and the uses of arrays

• To develop pseudocode algorithms for common operations on
arrays

• To illustrate the manipulation of single- and two-dimensional
arrays

Outline

7.1 Array processing

7.2 Initialising the elements of an array

7.3 Searching an array

7.4 Writing out the contents of an array

7.5 Programming examples using arrays

7.6 Two-dimensional arrays

Chapter summary

Programming problems

7

89Chapter 7: Array processing

7.1 Array processing

Arrays are one of the most powerful programming tools available. They
provide the programmer with a way of organising a collection of homogeneous
data items (that is, items that have the same type and the same length) into a
single data structure. An array, then, is a data structure that is made up of a
number of variables all of which have the same data type, for example all the
exam scores for a class of 30 mathematics students. By using an array, a single
variable name such as ‘scores’ can be associated with all 30 exam scores.

The individual data items that make up the array are referred to as the
elements of the array. Elements in the array are distinguished from one another
by the use of an index or subscript, enclosed in parentheses, following the
array name, for example ‘scores (3)’.

The subscript indicates the position of an element within the array; so,
scores (3) refers to the third exam score, or the third element of the array
scores, and scores (23) refers to the 23rd exam score.

The subscript or index may be a number or a variable, and may then be
used to access any item within the valid bounds of an array, for example:

scores (6), or
scores (index)

Arrays are an internal data structure; they are required only for the
duration of the program in which they are defined. They are a very convenient
mechanism for storing and manipulating a collection of similar data items in
a program, and you should be familiar with the operations most commonly
performed on them. Arrays are sometimes referred to as tables.

Operations on arrays

The most typical operations performed on arrays are:

• loading a set of initial values into the elements of an array
• processing the elements of an array
• searching an array, using a linear or binary search, for a particular

element
• writing the contents of an array to a report.

Usually, the elements of an array are processed in sequence, starting with
the first element. This can be accomplished easily in pseudocode with either
a DO loop or a DOWHILE loop.

Simple algorithms that manipulate arrays

The following algorithms involve the simple manipulation of arrays. Each
algorithm is written using a DO loop. In each algorithm, the array is named
‘array’, the subscript is named ‘index’ and the contents of the array and the
number of elements have been established. The number of elements in the
array is stored in the variable number_of_elements.

90 Simple program design

EXAMPLE 7.1 Find the sum of the elements of an array
In this example, each element of the array is accumulated into a variable called
sum. When all elements have been added, the variable sum is printed.

Find_sum_of_elements
Set sum to zero
DO index = 1 to number_of_elements

sum = sum + array (index)
ENDDO
Print sum

END

EXAMPLE 7.2 Find the mean (average) of the elements
of an array

In this example, each element of the array is accumulated into a variable
called sum. When all elements have been added, the average of the elements
is found and printed.

Find_element_average
Set sum to zero
DO index = 1 to number_of_elements

sum = sum + array (index)
ENDDO
average = sum / number_of_elements
Print average

END

EXAMPLE 7.3 Find the largest of the elements of
an array

In this example, the elements of an array are searched to determine which
element is the largest. The algorithm starts by putting the first element of the
array into the variable largest_element, and then looks at the other elements
of the array to see if a larger value exists. The largest value is then printed.

Find_largest_element
Set largest_element to array (1)
DO index = 2 to number_of_elements

IF array (index) > largest_element THEN
largest_element = array (index)

ENDIF
ENDDO
Print largest_element

END

91Chapter 7: Array processing

EXAMPLE 7.4 Find the smallest of the elements of
an array

In this example, the elements of an array are searched to determine the small-
est element. The algorithm starts by putting the first element of the array into
the variable smallest_element, and then looks at the other elements of the
array to see if a smaller value exists. The smallest value is then printed.

Find_smallest_element
Set smallest_element to array (1)
DO index = 2 to number_of_elements

IF array (index) < smallest_element THEN
smallest_element = array (index)

ENDIF
ENDDO
Print smallest_element

END

EXAMPLE 7.5 Find the range of the elements of
an array

In this example, the elements of an array are searched to determine the small-
est and the largest elements. The algorithm starts by putting the first element
of the array into the variables smallest_element and largest_element, and then
looks at the other elements to see if a smaller or larger value exists. The two
values are then printed.

Find_range_of_elements
Set smallest_element to array (1)
Set largest_element to array (1)
DO index = 2 to number_of_elements

IF array (index) < smallest_element THEN
smallest_element = array (index)

ELSE
IF array (index) > largest_element THEN

largest_element = array (index)
ENDIF

ENDIF
ENDDO
Print the range as smallest_element followed by largest_element

END

92 Simple program design

7.2 Initialising the elements of an array

Because an array is an internal data structure, initial values must be placed
into the array before any information can be retrieved from it. These initial
values can be assigned to the elements of the array as constants, or they can
be read into the array from a file.

Loading constant values into an array

This method should only be used when the data in the array is unlikely to be
changed – for example, the names of the 12 months of the year. To initialise
such an array, establish an array called month_table, which contains 12
elements all of the same size. Then assign the elements of the array with the
names of the months, one by one, as follows:

Initialise_month_table
month_table(1) = ‘January ’
month_table(2) = ‘February ’

:
:
:

month_table(12) = ‘December ’
END

Note that each element of the array must be the size of the largest element
– in this case September – so, the shorter month names must be padded with
blanks (spaces).

Loading initial values into an array from an input file

Defining array elements as constants in a program is not recommended if the
values change frequently, as the program will need to be changed every time
an array element changes. A common procedure is to read the input values
into the elements of an array from an input file.

The reading of a series of values from a file into an array can be represented
by a simple DOWHILE loop. The loop should terminate when either the array
is full or the input file has reached end of file. Both of these conditions can
be catered for in the condition clause of the DOWHILE loop.

In the following pseudocode algorithm, values are read from an input file
and assigned to the elements of an array, starting with the first element, until
there are no more input values or the array is full. The array name is ‘array’,
the subscript is ‘index’, and the maximum number of elements that the array
can hold is max_num_elements.

93Chapter 7: Array processing

Read_values_into_array
Set max_num_elements to required value
Set index to zero
Read first input value
DOWHILE (input values exist) AND (index < max_num_elements)

index = index + 1
array (index) = input value
Read next input value

ENDDO
IF (input values exist) AND index = max_num_elements THEN

Print ‘Array size too small’
ENDIF

END

Note that the processing will terminate when either the input file has reached
EOF or the array is full. An error message will be printed if there are more
input data items than there are elements in the array.

Arrays of variable size

In some programs, the number of entries in an array can vary. In this case,
a sentinel value (for example, 9999) is used to mark the last element of the
array, both in the initialising file of data items and in the array itself. The
sentinel record will indicate the end of input records during initial processing
and the last element of the array during further processing. The algorithm for
loading values into an array of variable size must include a check to ensure
that no attempt is made to load more entries into the array than there are
elements, as in the following example:

Read_values_into_variable_array
Set max_num_elements to required value
Set index to zero
Read first input value
DOWHILE (input value NOT = 9999) AND (index < max_num_elements)

index = index + 1
array (index) = input value
Read next input value

ENDDO
IF index < max_num_elements THEN

index = index + 1
array (index) = 9999

ELSE
Print ‘Array size too small’

ENDIF
END

Note that the processing will terminate when either the sentinel record has
been read or the array is full. An error message will be printed if there are
more input data items than there are elements in the array.

94 Simple program design

Paired arrays

Many arrays in business applications are paired; that is, there are two arrays
that have the same number of elements. The arrays are paired because the
elements in the first array correspond to the elements in the same position
in the second array. For example, a sales number array can be paired with a
sales name array. Both arrays would have the same number of elements, with
corresponding sales numbers and sales names. When you have determined
where in the sales number array a particular salesperson’s number appears,
retrieve the salesperson’s name from the corresponding position in the sales
name array. In this way, the salesperson’s number and name can appear on
the same report, without any extra keying.

In the following example, an algorithm has been designed to read a file
of product codes and corresponding selling prices for a particular company
and to load them into two corresponding arrays, named product_codes and
selling_prices. In the algorithm, the subscript is ‘index’, and the field max_
num_elements contains the total number of elements in each array.

Read_values_into_paired_arrays
Set max_num_elements to required value
Set index to zero
Read first input record
DOWHILE (NOT EOF input record) AND (index < max_num_elements)

index = index + 1
product_codes (index) = input product_code
selling_prices (index) = input selling_price
Read next record

ENDDO
IF (NOT EOF input record) AND index = max_num_elements THEN

Print ‘Array size too small’
ENDIF

END

7.3 Searching an array

A common operation on arrays is to search the elements of an array for a
particular data item. The reasons for searching an array may be:

• to edit an input value – that is, to check that it is a valid element of an array
• to retrieve information from an array
• to retrieve information from a corresponding element in a paired array.

When searching an array, it is an advantage to have the array sorted into
ascending sequence, so that, when a match is found, the rest of the array does
not have to be searched. If you find an array element that is equal to an input
entry, a match has been found and the search can be stopped. Also, if you find
an array element that is greater than an input entry, no match has been found
and the search can be stopped. Note that if the larger entries of an array are

95Chapter 7: Array processing

searched more often than the smaller entries, it may be an advantage to sort
the array into descending sequence.

An array can be searched using either a linear search or a binary search.

A linear search of an array

A linear search involves looking at each of the elements of the array, one by
one, starting with the first element. Continue the search until either you find
the element being looked for or you reach the end of the array. A linear search
is often used to validate data items.

The pseudocode algorithm for a linear search of an array will require
a program flag named element_found. This flag, initially set to false, will
be set to true once the value being looked for is found, that is, when the
current element of the array is equal to the data item being looked for. In the
following algorithm, the data item being searched for is stored in the variable
input_value, and the variable max_num_elements contains the total number
of elements in the array.

Linear_search_of_an_array
Set max_num_elements to required value
Set element_found to false
Set index to 1
DOWHILE (NOT element_found) AND (index <= max_num_elements)

IF array (index) = input_value THEN
Set element_found to true

ELSE
index = index + 1

ENDIF
ENDDO
IF element_found THEN

Print array (index)
ELSE

Print ‘value not found’, input_value
ENDIF

END

A binary search of an array

When the number of elements in an array exceeds 25, and the elements are
sorted into ascending sequence, a more efficient method of searching the
array is a binary search.

A binary search locates the middle element of the array first, and deter-
mines if the element being searched for is in the first or second half of the
table. The search then points to the middle element of the relevant half table,
and the comparison is repeated. This technique of continually halving the
number of elements under consideration is continued until the data item
being searched for is found, or its absence is detected.

In the following algorithm, a program flag named element_found is used to
indicate whether the data item being looked for has been found. The variable

96 Simple program design

low_element indicates the bottom position of the section of the table being
searched, and high_element indicates the top position. The maximum number
of elements that the array can hold is placed in the variable max_num_
elements.

The binary search will continue until the data item has been found, or
there can be no more halving operations (that is, low_element is not less than
high_element).

Binary_search_of_an_array
Set element_found to false
Set low_element to 1
Set high_element to max_num_elements
DOWHILE (NOT element_found) AND (low_element <= high_element)

index = (low_element + high_element) / 2
IF input_value = array (index) THEN

Set element_found to true
ELSE

IF input_value < array (index) THEN
high_element = index – 1

ELSE
low_element = index + 1

ENDIF
ENDIF

ENDDO
IF element_found THEN

Print array (index)
ELSE

Print ‘value not found’, input_value
ENDIF

END

7.4 Writing out the contents of an array

The elements of an array can be used as accumulators of data, to be written to
a report. Writing out the contents of an array involves starting with the first
element of the array and continuing until all elements have been written. This
can be represented by a simple DO loop.

In the following pseudocode algorithm, the name of the array is ‘array’ and
the subscript is ‘index’. The number of elements in the array is represented
by number_of_elements.

Write_values_of_array
DO index = 1 to number_of_elements

Print array (index)
ENDDO

END

97Chapter 7: Array processing

7.5 Programming examples using
arrays

EXAMPLE 7.6 Process exam scores
Design a program that will promptp p for and receive 18 examination scores from a math-
ematics test, calculate the class average, and displayp y all the scores and the average
score to the score screen.

A Defining diagram

Input Processing Output

18 exam scores Prompt for scores 18 exam scores

Get scores average_score

Calculate average score

Display scores

Display average score

B Control structures required

1 An array to store the exam scores – ‘scores’
2 An index to identify each element in the array
3 A DO loop to accept the scores
4 Another DO loop to display the scores to the screen

C Solution algorithm

Process_exam_scores
Set total_score to zero
DO index = 1 to 18

Prompt operator for score
Get score
scores (index) = score
total_score = total_score + scores (index)

ENDDO
Compute average_score = total_score / 18
DO index = 1 to 18

Display scores (index)
ENDDO
Display average_score

END

98 Simple program design

EXAMPLE 7.7 Process integer array
Design an algorithm that will read an array of 100 integer values, calculate the average
integer value, and count the number of integers in the array that are greater than the
average integer value. The algorithm is to displayp y the average integer value and the
count of integers greater than the average.

A Defining diagram

Input Processing Output

100 integer values Read integer values integer_average

Compute integer average integer_count

Compute integer count

Display integer average

Display integer count

B Control structures required

1 An array of integer values – ‘numbers’
2 A DO loop to calculate the average of the integers
3 A DO loop to count the number of integers greater than the average

C Solution algorithm

Process_integer_array
Set integer_total to zero
Set integer_count to zero
DO index = 1 to 100

integer_total = integer_total + numbers (index)
ENDDO
integer_average = integer_total / 100
DO index = 1 to 100

IF numbers (index) > integer_average THEN
add 1 to integer_count

ENDIF
ENDDO
Display integer_average, integer_count

END

99Chapter 7: Array processing

EXAMPLE 7.8 Validate sales number
Design an algorithm that will read a file of sales transactions and validate the sales
numbers on each record. As each sales record is read, the sales number on the record
is to be verified against an array of 35 sales numbers. Any sales number not found in
the array is to be flaggedgg as an error.

A Defining diagram

Input Processing Output

sales records Read sales records error_message

• sales_number Validate sales numbers

Print error message

B Control structures required

1 A previously initialised array of sales numbers – ‘sales_numbers’
2 A DOWHILE loop to read the sales file
3 A DOWHILE loop to perform a linear search of the array for the sales

number
4 A variable element_found that will stop the search when the sales number

is found

C Solution algorithm

Validate_sales_numbers
Set max_num_elements to 35
Read sales record
DOWHILE sales records exist

Set element_found to false
Set index to 1
DOWHILE (NOT element_found) AND (index <= max_num_elements)

IF sales_numbers (index) = input sales number THEN
Set element_found to true

ELSE
index = index + 1

ENDIF
ENDDO
IF NOT element_found THEN

Print ‘invalid sales number’, input sales number
ENDIF
Read sales record

ENDDO
END

100 Simple program design

EXAMPLE 7.9 Calculate freight charge
Design an algorithm that will read an input weight for an item to be shipped, search an
array of shipping weights and retrieve a corresponding freight charge. In this algorithm,
two paired arrays, each containing six elements, have been established and initialised.
The array ‘shipping_weights’ contains a range of shipping weights in grams, and the
array ‘freight_charges’ contains a corresponding array of freight charges in dollars, as
follows:

Shipping weights (grams) Freight charges

1–100 3.00

101–500 5.00

501–1000 7.50

1001–3000 12.00

3001–5000 16.00

5001–9999 35.00

A Defining diagram

Input Processing Output

entry weight Prompt for entry weight freight_charge

Get entry weight error_message

Search shipping weights array

Compute freight charge

Display freight charge

B Control structures required

1 Two arrays – ‘shipping_weights’ and ‘freight_charges’ – already initialised
2 A DOWHILE loop to search the shipping_weights array and hence retrieve

the freight charge
3 A variable element_found that will stop the search when the entry weight

is found

101Chapter 7: Array processing

C Solution algorithm

Calculate_freight_charge
Set max_num_elements to 6
Set index to 1
Set element_found to false
Prompt for entry weight
Get entry weight
DOWHILE (NOT element_found) AND (index <= max_num_elements)

IF shipping_weights (index) < entry weight THEN
add 1 to index

ELSE
Set element_found to true

ENDIF
ENDDO
IF element_found THEN

freight_charge = freight_charges (index)
Display ‘Freight charge is’, freight_charge

ELSE
Display ‘invalid shipping weight’, entry weight

ENDIF
END

7.6 Two-dimensional arrays

So far, all algorithms in this chapter have manipulated one-dimensional
arrays; that is, only one subscript is needed to locate an element in an array.
In some business applications, for example, there is a need for multidimen-
sional arrays, in which two or more subscripts are required to locate an
element in an array. The following freight charge array is an example of a
two-dimensional array, and is an extension of Example 7.9 above. It is a two-
dimensional array because the calculation of the freight charge to ship an article
depends on two values: the shipping weight of the article, and the geographical
area or zone to which it is to be shipped, namely zone 1, 2, 3 or 4.

The range of shipping weights, in grams, is provided in the same one-
dimensional array as in Example 7.9, as follows:

Shipping weights (grams)

1–100

101–500

501–1000

1001–3000

3001–5000

5001–9999

102 Simple program design

Freight charges ($) (by shipping zone)

1 2 3 4

2.50 3.50 4.00 5.00

3.50 4.00 5.00 6.50

4.50 6.50 7.50 10.00

10.00 11.00 12.00 13.50

13.50 16.00 20.00 27.50

32.00 34.00 35.00 38.00

In the freight charges array, any one of four freight charges may apply to a
particular shipping weight, depending on the zone to which the shipment is
to be delivered. Thus, the array is set out as having rows and columns, where
the six rows represent the six shipping weight ranges, and the four columns
represent the four geographical zones.

The number of elements in a two-dimensional array is calculated as the
product of the number of rows and the number of columns – in this case,
6 × 4 = 24.

An element of a two-dimensional array is specified using the name of the
array, followed by two subscripts, enclosed in parentheses and separated
by a comma. The row subscript is specified first, followed by the column
subscript. Thus, an element of the above freight charges array would be
specified as freight_charges (row_index, column_index). So, freight_charges
(5, 3) refers to the freight charge listed in the array where the fifth row and
the third column intersect – that is, a charge of $20.00.

Loading a two-dimensional array

A two-dimensional array is loaded in columns within row order; all the
columns for row one are loaded before moving to row two and loading the
columns for that row, and so on.

In the following pseudocode algorithm, values are read from an input file
of freight charges and assigned to a two-dimensional freight_charges array.
The array has six rows, representing the six shipping weight ranges, and four
columns, representing the four geographical shipping zones, as in the above
example.

The reading of a series of values from a file into a two-dimensional array
can be represented by a DO loop within a DOWHILE loop.

103Chapter 7: Array processing

Read_values_into_array
Set max_num_elements to 24
Set row_index to zero
Read input file
DOWHILE (input values exist) AND (row_index < 6)

row_index = row_index + 1
DO column_index = 1 to 4

freight_charges (row_index, column_index) = input value
Read input file

ENDDO
ENDDO
IF (input values exist) AND row_index = 6 THEN

Print ‘Array size too small’
ENDIF

END

Searching a two-dimensional array

Search method 1
In the following pseudocode algorithm, the freight charges for an article are
to be calculated by searching a previously initialised two-dimensional array.
The input values for the algorithm are the shipping weight of the article, and
the geographical zone to which it is to be shipped.

First, the one-dimensional shipping_weights array is searched for the
correct weight category (row_index) and then the two-dimensional freight_
charges array is looked up using that weight category (row_index) and geo-
graphical zone (column_index).

Calculate_Freight_Charges
Set row_index to 1
Set element_found to false
Prompt for shipping_weight, zone
Get shipping_weight, zone
DOWHILE (NOT element_found) AND (row_index <= 6)

IF shipping_weights (row_index) < input shipping_weight THEN
add 1 to row_index

ELSE
Set element_found to true

ENDIF
ENDDO
IF element_found THEN

IF zone = (1 or 2 or 3 or 4) THEN
freight_charge = freight_charges (row_index, zone)
Display ‘Freight charge is’, freight_charge

ELSE
Display ‘invalid zone’, zone

ENDIF
ELSE

Display ‘invalid shipping weight’, input shipping_weight
ENDIF

END

104 Simple program design

Search method 2
In the following algorithm, an input employee number is validated against
a two-dimensional array of employee numbers, which has 10 rows and five
columns. The array is searched sequentially, by columns within rows, using
two DOWHILE loops until a match is found. If no match is found, an error
message is printed.

Search_employee_numbers
Set row_index to 1
Set employee_found to false
Read input employee_number
DOWHILE (NOT employee_found) AND (row_index <=10)

Set column_index to 1
DOWHILE (NOT employee_found) AND (column_index <= 5)

IF employee_number (row_index, column_index) = input
employee_number THEN
Set employee_found to true

ENDIF
column_index = column_index + 1

ENDDO
row_index = row_index + 1

ENDDO
IF NOT employee_found THEN

Print ‘invalid employee number’, input employee_number
ENDIF

END

Writing out the contents of a two-dimensional array

To write out the contents of a two-dimensional array, write out the elements
in the columns within a row, before moving on to the next row. This is
represented in pseudocode by a DO loop within another DO loop.

In the following pseudocode algorithm, the elements of a two-dimensional
array are printed to a report, by column within row, using two subscripts.

Write_values_of_array
Set number_of_rows to required value
Set number_of_columns to required value
DO row_index = 1 to number_of_rows

DO column_index = 1 to number_of_columns
Print array (row_index, column_index)

ENDDO
ENDDO

END

105Chapter 7: Array processing

Chapter summary
This chapter defined an array as a data structure made up of a number of variables
or data items that all have the same data type and are accessed by the same name.
The individual elements that make up the array are accessed by the use of an index or
subscript beside the name of the array, for example scores (3).

Algorithms were developed for the most common operations on arrays, namely:

• loading a set of initial values into the elements of an array
• processing the elements of an array
• searching an array, using a linear or binary search, for a particular element
• writing out the contents of an array to a report.

Programming examples using both one- and two-dimensional arrays were devel-
oped.

Programming problems
Construct a solution algorithm for the following programming problems. Your solution
should contain:

• a defining diagram
• a list of control structures required
• a pseudocode algorithm
• a desk check of the algorithm.

1 Design an algorithm that will read an array of 200 characters and display to the
screen a count of the occurrences of each of the five vowels (a, e, i, o, u) in the
array.

2 Design an algorithm that will accept a person’s name from the screen entered as
surname, first name, separated by a comma. Your program is to display the name
as first name, followed by three blanks, followed by the surname.

3 Design an algorithm that will prompt for and receive 10 integers from an operator
at a terminal, and then count the number of integers whose value is less than the
average value of the integers. Your program is to display the average integer value
and the count of integers less than the average.

4 Design an algorithm that will prompt for and receive up to 20 integers from an opera-
tor at a terminal and display to the screen the average of the integers. The operator
is to input a sentinel of 999 after the required number of integers (up to 20) have
been entered.

5 Design an algorithm that will read a file of student letter grades and corresponding
grade points and load them into two paired arrays, as follows:

106 Simple program design

Letter grade Grade points

A 12

B 9

C 6

D 3

F 0

Your program is to read each record on the file (which contains a letter grade
followed by a grade point), validate the letter grade (which must be A, B, C, D or F),
check that the grade point is numeric, and load the values into the parallel arrays.
Your program is to stop processing when the file reaches EOF or the arrays are
full. Print an error message if there are more records on the file than elements in
the array.

6 Design an algorithm that will read a file of student records containing the student’s
number, name, subject number and letter grade. Your program is to use the letter
grade on the student record to retrieve the corresponding grade points for that let-
ter grade from the paired arrays that were established in Problem 5. Print a report
showing each student’s number and name, the subject number and the letter grade
and grade point. At the end of the report, print the total number of students and the
grade point average (total grade points divided by the number of students).

7 Design an algorithm that will prompt for and receive an employee number from an
operator at a terminal. Your program is to search an array of valid employee num-
bers to check that the employee number is valid, look up a parallel array to retrieve
the corresponding employee name for that number, and display the name to the
screen. If the employee number is not valid, an error message is to be displayed.

8 An employee file contains records that show an employee’s number, name, job code
and pay code. The job codes and pay codes are three-digit codes that refer to cor-
responding job descriptions and pay rates, as in the following tables:

Job code Job description

A80 Clerk

A90 Word processor

B30 Accountant

B50 Programmer

B70 Systems analyst

C20 Engineer

C40 Senior engineer

D50 Manager

107Chapter 7: Array processing

Pay code Pay rate

01 $9.00

02 $9.50

03 $12.00

04 $20.00

05 $23.50

06 $27.00

07 $33.00

Your program is to read the employee file, use the job code to retrieve the job
description from the job table, use the pay code to retrieve the pay rate from
the pay rate table, and print for each record the employee’s number, name,
job description and pay rate. At the end of the report, print the total number of
employees.

9 The ACME Oil and Gas Company needs a personnel salary report for its employ-
ees, showing their expected salary increase for the next year. Each record contains
the employee’s number, name, gross salary, peer performance rating and super-
visor performance rating. The percentage increase in salary to be applied to the
gross salary is based on two factors: the peer performance rating and the supervi-
sor performance rating, as specified in the following two-dimensional array:

Salary increase percentage table

Peer
performance
rating

Supervisor performance rating

1 2 3 4 5

1 .013 .015 .017 .019 .021

2 .015 .017 .019 .021 .023

3 .017 .019 .021 .023 .027

4 .019 .021 .023 .025 .030

5 .021 .023 .025 .027 .040

Your program is to retrieve the percentage increase in salary, using the peer
performance rating and the supervisor performance rating as indexes to look up
the salary increase percentage table. Then calculate the new salary by applying
the percentage increase to the gross salary figure. For each employee, print the
employee’s number, name, this year’s gross salary and next year’s gross salary. At
the end of the report, print the two total gross salary figures.

10 Fred’s Auto Dealership requires a program that will calculate the sales discount to
be applied to a vehicle, based on its year of manufacture and type. The discount is
extracted from a two-dimensional table as follows: the year of manufacture of the

108 Simple program design

vehicle is divided into six categories (2006, 2005, 2004, 2003, 2002 and 2001),
and the type of car is divided into five categories (mini, small, medium, full-size and
luxury). No discount is given for a vehicle older than 2001.

Year of
manufacture

Discount percentage

Mini Small Medium Full-size Luxury

1 2 3 4 5

2006 .050 .055 .060 .065 .070

2005 .040 .045 .050 .055 .060

2004 .030 .035 .040 .045 .050

2003 .020 .025 .030 .035 .040

2002 .010 .015 .020 .025 .030

2001 .005 .010 .015 .020 .025

 Your program is to read the vehicle file, which contains the customer number and
name, the make of car, year of manufacture, car type code (1, 2, 3, 4 or 5) and
the sales price. Use the year of manufacture and the car type code as indexes to
retrieve the discount percentage from the discount percentage table, then apply
the discount percentage to the sales price to determine the discounted price of the
vehicle. Print all vehicle details, including discounted price.

First steps in
modularisation

Objectives

• To introduce modularisation as a means of dividing a problem into subtasks

• To present hierarchy charts as a pictorial representation of modular
program structure

• To develop programming examples that use a simple modularised structure

Outline

8.1 Modularisation

8.2 Hierarchy charts or structure charts

8.3 Steps in modularisation

8.4 Programming examples using modules

Chapter summary

Programming problems

8

110 Simple program design

8.1 Modularisation

Many solution algorithms have been presented in this book, and all were
relatively simple – that is, the finished algorithm was less than one page in
length. As the complexity of the programming problems increases, however,
it becomes more and more difficult to consider the solution as a whole. When
presented with a complex problem you may need to divide the problem into
smaller parts.

To do this, first identify the major tasks to be performed, and then divide
the problem into sections that represent those tasks. These sections can be
considered subtasks or functions. Once the major tasks in the problem have
been identified, look at each of the subtasks and identify within them further
subtasks, and so on. This process of identifying first the major tasks, then
further subtasks within them, is known as ‘top-down design’ (also known as
functional decomposition or stepwise refinement).

By using this top-down design methodology, you are adopting a modular
approach to program design. That is, each of the subtasks or functions will
eventually become a module within a solution algorithm or program. A
module, then, can be defined as a section of an algorithm that is dedicated
to a single function. The use of modules makes the algorithm simpler, more
systematic, and more likely to be free of errors. Since each module represents
a single task, you can develop the solution algorithm task-by-task, or module-
by-module, until the complete solution has been devised.

Modularisation is the process of dividing a problem into separate tasks,
each with a single purpose. Top-down design methodology allows you to
concentrate on the overall design of the algorithm before getting involved
with the details of the lower-level modules.

The modularisation process

The division of a problem into smaller subtasks, or modules, is a relatively
simple process. When you are defining the problem, write down the activities
or processing steps to be performed. These activities are then grouped
together to form more manageable tasks or functions, which will eventually
become modules. The emphasis when defining the problem must still be on
the tasks or functions that need to be performed. Each function will be made
up of a number of activities, all of which contribute to the performance of a
single task.

A module must be large enough to perform its task, and must include only
the operations that contribute to the performance of that task. It should have
a single entry, and a single exit with a top-to-bottom sequence of instructions.
The name of the module should describe the work to be done as a single
specific function. The convention of naming a module by using a verb
followed by a two-word object is particularly important here, as it helps to
identify the task or function that the module is to perform. Also, the careful
naming of modules using this convention makes the algorithm and resultant
code easier to follow. For example, typical module names might be:

111Chapter 8: First steps in modularisation

Print_page_headings
Calculate_sales_tax
Validate_input_date

By using meaningful module names, you automatically describe the task
that the module is to perform, and anyone reading the algorithm can see what
the module is supposed to do.

The mainline

Since each module performs a single specific task, a mainline routine must
provide the master control that ties all the modules together and coordinates
their activity. This program mainline should show the main processing
functions, and the order in which they are to be performed. The mainline
should be easy to read, be of manageable length and show sound logic
structure. Generally, you should be able to read a pseudocode mainline and
see exactly what is being done in the program.

Benefits of modular design

There are a number of benefits from using modular design.

• Ease of understanding: each module should perform just one function.
• Reusable code: modules used in one program can also be used in other

programs.
• Elimination of redundancy: using modules can help to avoid the repetition

of writing out the same segment of code more than once.
• Efficiency of maintenance: each module should be self-contained and

have little or no effect on other modules within the program.

Let us now re-look at Example 4.1 and introduce a module into the
solution algorithm.

EXAMPLE 8.1 Process three characters
Design a solution algorithm that will promptp p a terminal operator for three characters,
acceptp those characters as input, sort them into ascending sequence and outputp them
to the screen. The algorithm is to continue to read characters until ‘XXX’ is entered.

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

112 Simple program design

B Original solution algorithm

Process_three_characters
Prompt the operator for char_1, char_2, char_3
Get char_1, char_2, char_3
DOWHILE NOT (char_1 = ‘X’ AND char_2 = ‘X’ AND char_3 = ‘X’)

IF char_1 > char_2 THEN
temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
IF char_2 > char_3 THEN

temp = char_2
char_2 = char_3
char_3 = temp

ENDIF
IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
Output to the screen char_1, char_2, char_3
Prompt operator for char_1, char_2, char_3
Get char_1, char_2, char_3

ENDDO
END

This solution looks cumbersome and involves some repetition of code, so it
is an ideal candidate for modularisation, as follows.

C Solution algorithm using a module
One of the processing steps in the defining diagram is to ‘sort three characters’.
In the algorithm above, this sorting process is performed by three separate IF
statements, one after the other. The mainline could have been simplified
considerably if these three IF statements were put into a separate module
called Sort_three_characters and the module was called by the mainline
when required. The module would then perform the single specific task of
sorting the three characters into ascending sequence. The solution algorithm
would now look like this:

113Chapter 8: First steps in modularisation

Process_three_characters
Prompt the operator for char_1, char_2, char_3
Get char_1, char_2, char_3
DOWHILE NOT (char_1 = ‘X’ AND char_2 = ‘X’ AND char_3 = ‘X’)

Sort_three_characters
Output to the screen char_1, char_2, char_3
Prompt operator for char_1, char_2, char_3
Get char_1, char_2, char_3

ENDDO
END

Sort_three_characters
IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
IF char_2 > char_3 THEN

temp = char_2
char_2 = char_3
char_3 = temp

ENDIF
IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
END

The solution algorithm now consists of two modules: the mainline module
Process_three_characters, and the submodule Sort_three_characters. When
the mainline wants to pass control to its submodule, it simply names that
module. Control will then pass to the called module, and when the process-
ing in that module is complete, the module will pass control back to the main-
line. The resultant mainline is simple and easy to read. The mainline and its
module can now be represented in a hierarchy chart.

President

Vice-president Vice-president Vice-president Vice-president Vice-president Vice-president Vice-president Vice-president
Finance Finance Finance Finance Sales Sales Sales Personnel

Manager C Manager D Manager E Manager C Manager C Manager C Manager D Manager D Manager D Manager E Manager E Manager E Manager F Manager A Manager A Manager A Manager A Manager B Manager B Manager B

Process_three_
characters

Sort_three_
characters

114 Simple program design

8.2 Hierarchy charts or structure
charts

Once the tasks have been grouped into functions or modules, these modules
can be represented graphically in a diagram. This diagram is known as a
hierarchy chart, as it shows not only the names of all the modules but also
their hierarchical relationship to each other.

A hierarchy chart may also be referred to as a structure chart or a visual
table of contents. The hierarchy chart uses a tree-like diagram of boxes; each
box represents a module in the program and the lines connecting the boxes
represent the relationship of the modules to others in the program hierarchy.
The chart shows no particular sequence for processing the modules; only the
modules themselves in the order in which they first appear in the algorithm.

At the top of the hierarchy chart is the controlling module, or mainline. On
the next level are the modules that are called directly from the mainline – that
is, the modules immediately subordinate to the mainline. On the next level
are the modules that are subordinate to the modules on the first level, and so
on. This diagrammatic form of hierarchical relationship appears similar to an
organisational chart of personnel within a large company.

The mainline will pass control to each module when it is ready for that
module to perform its task. The controlling module is said to invoke or call
the subordinate module. The controlling module is therefore referred to
as the ‘calling module’, and the subordinate module the ‘called module’.
On completion of its task, the called module returns control to the calling
module.

The hierarchy chart for Example 8.1 is relatively simple. It shows a
calling module (Process_three_characters) and a called module (Sort_three_
characters):

115Chapter 8: First steps in modularisation

Example 8.1 could also have been designed to use a mainline and three
modules, one for each of the main processing steps in the defining diagram,
as in Example 8.2.

EXAMPLE 8.2 Process three characters
Design a solution algorithm that will promptp p a terminal operator for three characters,
acceptp those characters as input, sort them into ascending sequence and outputp them
to the screen. The algorithm is to continue to read characters until ‘XXX’ is entered.

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

B Solution algorithm
The processing steps in the above diagram can be divided into three separate
tasks: Read three characters, Sort three characters and Print three characters.
Each of these tasks could then become a module in the solution algorithm,
to be called from the mainline module. The solution algorithm would now
look like this:

Process_three_characters
Read_three_characters
DOWHILE NOT (char_1 = ‘X’ AND char_2 = ‘X’ AND char_3 = ‘X’)

Sort_three_characters
Print_three_characters
Read_three_characters

ENDDO
END

Read_three_characters
Prompt the operator for char_1, char_2, char_3
Get char_1, char_2, char_3

END

Process_three_
characters

Sort_three_ Sort_three_ Sort_three_ Sort_three_ Print_three_ Read_three_ Read_three_ Read_three_
characters characters characters characters characters characters characters characters

116 Simple program design

Sort_three_characters
IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
IF char_2 > char_3 THEN

temp = char_2
char_2 = char_3
char_3 = temp

ENDIF
IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF
END

Print_three_characters
Output to the screen char_1, char_2, char_3

END

The hierarchy chart will be made up of a mainline module and three sub-
modules:

8.3 Steps in modularisation

A solution algorithm with modules requires a few more steps to be followed
each time you are presented with a programming problem. Following these
steps will result in effective top-down modular design.

1 Define the problem by dividing it into its three components: input, out-
put and processing. The processing component should consist of a list of
activities to be performed.

2 Group the activities into subtasks or functions to determine the modules
that will make up the program. Remember that a module is dedicated to

Process_
sequential_file

Process_this_ Process_this_ Process_this_ Process_this_ Perform_final_Perform_initial_ Perform_initial_ Perform_initial_
record record record record processingprocessing processing processing

117Chapter 8: First steps in modularisation

the performance of a single task. Not all the activities may be identified at
this stage. Only the modules on the first level of the hierarchy chart may
be identified, with other more subordinate modules developed later.

3 Construct a hierarchy chart to illustrate the modules and their relationship
to each other. Once the structure (or organisation) of the program has been
developed, the order of processing of the modules can be considered.

4 Establish the logic of the mainline of the algorithm in pseudocode. This
mainline should contain some initial processing before the loop, some
processing within the loop, and some final processing after exiting the
loop. It should contain calls to the major processing modules of the
program, and should be easy to read and understand.

5 Develop the pseudocode for each successive module in the hierarchy chart.
The modularisation process is complete when the pseudocode for each
module on the lowest level of the hierarchy chart has been developed.

6 Desk check the solution algorithm. This is achieved by first desk checking
the mainline, then each subordinate module in turn.

Your solution algorithm may contain many modules. The three most common
modules are:

1 an initial processing module, containing the steps to be performed at the
beginning of the algorithm, before the loop begins;

2 a processing module inside the loop containing all the steps necessary to
process one record or piece of data;

3 a final processing module, containing the steps to be performed at the end
of the algorithm, outside the loop.

The hierarchy chart would look like this:

The mainline module would look like this:

Process_sequential_file
Perform_initial_processing
Read first record
DOWHILE more records exist

Process_this_record
Read next record

ENDDO
Perform_final_processing

END

118 Simple program design

8.4 Programming examples using
modules

The solution algorithms to the following programming examples will be
developed using the above six steps in modularisation. The first example,
Example 8.3, Gas Supply Billing, is a modularised version of Example 6.8.

EXAMPLE 8.3 Gas supply billing
The Domestic Gas Supply Company records its customers’ gas usage figures on a
customer usage file. Each record on the file contains the customer’s number, name,
address, and gas usage expressed in cubic metres. Design a solution algorithm that
will read the customer usage file, calculate the amount owing for gas usage for each
customer, and then printp a report listing each customer’s number, name, address, gas
usage and the amount owing.

The company bills its customers according to the following rate: if the customer’s
usage is 60 cubic metres or less, a rate of $2.00 per cubic metre is applied; if the
customer’s usage is more than 60 cubic metres, then a rate of $1.75 per cubic metre
is applied for the first 60 cubic metres and $1.50 per cubic metre for the remaining
usage.

At the end of the report, print the total number of customers and the total amount
owing to the company.

A Define the problem

Input Processing Output

customer usage records Print heading Heading line

• customer_number Read usage records customer details

• name Calculate amount owing • customer_number

• address Print customer details • name

• gas_usage Compute total customers • address

Compute total amount owing • gas_usage

Print totals • amount_owing

total_customers

total_amount_owing

B Group the activities into modules
Four modules will be used in the solution algorithm:

• a module to perform some initial processing before the loop
• a module to calculate the amount owing for each customer,

Bill_gas_
customers

Print_customer
_details

Perform_initial
_processing

Print_gas_
totals

Calculate_
amount_owing

119Chapter 8: First steps in modularisation

• a module to print the customer details
• a module to print the totals after exiting the loop.

C Construct a hierarchy chart

D Establish the logic of the mainline of the algorithm, using
pseudocode

Bill_gas_customers
 1 Perform_initial_processing
 2 Read customer record
 3 DOWHILE more records
 4 Calculate_amount_owing
 5 Print_customer_details
 6 Read customer record
 ENDDO
 7 Print_gas_totals

END

E Develop the pseudocode for each successive module in the
hierarchy chart

Perform_initial_processing
 8 Print ‘CUSTOMER USAGE FIGURES’ heading
 9 Set total_customers to zero
 10 Set total_amount_owing to zero

END

Calculate_amount_owing
 11 IF usage <= 60 THEN
 amount_owing = usage * $2.00
 ELSE
 amount_owing = (60 * 1.75) + ((usage – 60) * $1.50)
 ENDIF
 12 add amount_owing to total_amount_owing

END

120 Simple program design

Print_customer_details
 13 Print customer_number, name, address, gas_usage, amount_owing
 14 add 1 to total_customers

END

Print_gas_totals
 15 Print total_customers
 16 Print total_amount_owing

END

F Desk check the solution algorithm
The desk checking of an algorithm with modules is not different from the
method developed for our previous examples:

1 Create some valid input test data.
2 List the output that the input data is expected to produce.
3 Use a desk check table to walk the data through the mainline of the algo-

rithm to ensure that the expected output is achieved. When a submodule
is called, walk the data through each line of that module as well and then
return to the calling module.

1 Input data
Three test cases will be used to test the algorithm.

Customer record gas_usage (cubic metres)

customer1 40

customer2 61

customer3 80

EOF

2 Expected results

CUSTOMER USAGE FIGURES

Customer Details Gas Usage Amount Owing

Customer1 name, address 40 $80.00

Customer2 name, address 61 $106.50

Customer3 name, address 80 $135.00

Total customers 3

Total amount owing $321.50

121Chapter 8: First steps in modularisation

3 Desk check table

Statement
number

customer
number

gas_usage
DOWHILE
condition

amount_
owing

total_
amount_

owing

total_
customers

Heading

1, 8 print

9, 10 0 0

2 customer1 40

3 true

4, 11 $80.00

12 $80.00

5, 13, 14 print print print 1

6 customer2 61

3 true

4, 11 $106.50

12 $186.50

5, 13, 14 print print print 2

6 customer3 80

3 true

4, 11 $135.00

12 $321.50

5, 13, 14 print print print 3

6 EOF

3 false

7, 15, 16 print print

EXAMPLE 8.4 Calculate employee’s pay
A company requires a program to read an employee’s number, pay rate and the number
of hours worked in a week. The program is then to validate the pay rate field and the
hours worked field and, if valid, computep the employee’s weekly pay and then printp it
and the input data.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 60 hours, and the maximum hourly rate is $25.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printedp and the employee’s weekly pay is not to be calculated.

Compute_
employee_pay

Validate_input_
fields

Calculate_
employee_pay

Read_employee_
details

Print_employee_
details

122 Simple program design

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 35 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

A Define the problem

Input Processing Output

emp_no Read employee details emp_no

pay_rate Validate input fields pay_rate

hrs_worked Calculate employee pay hrs_worked

Print employee details emp_weekly_pay

error_message

B Group the activities into modules
Each of the processing steps in the defining diagram will become a module
in the algorithm.

C Construct a hierarchy chart

D Establish the logic of the mainline of the algorithm, using
pseudocode

When each employee record is read, the hours_worked field and hourly_rate
field must be validated before the weekly pay can be calculated. These vali-
dations will be performed in a module called Validate_input_fields, using a
flag called valid_input_fields, which is checked in the mainline, before the
weekly pay is calculated.

123Chapter 8: First steps in modularisation

Compute_employee_pay
1 Read_employee_details
2 DOWHILE more records
3 Validate_input_fields
4 IF valid_input_fields THEN

Calculate_employee_pay
Print_employee_details

ENDIF
5 Read_employee_details

ENDDO
END

E Develop the pseudocode for each successive module in the
hierarchy chart

Read_employee_details
6 Read emp_no, pay_rate, hrs_worked

END

Validate_input_fields
7 Set valid_input_fields to true
8 Set error_message to blank
9 IF pay_rate > $25 THEN

error_message = ‘Pay rate exceeds $25.00’
Print emp_no, pay_rate, hrs_worked, error_message
valid_input_fields = false

ENDIF
10 IF hrs_worked > 60 THEN

error_message = ‘Hours worked exceeds 60’
Print emp_no, pay_rate, hrs_worked, error_message
valid_input_fields = false

ENDIF
END

124 Simple program design

Calculate_employee_pay
11 IF hrs_worked <= 35 THEN

emp_weekly_pay = pay_rate * hrs_worked
ELSE

overtime_hrs = hrs_worked – 35
overtime_pay = overtime_hrs * pay_rate * 1.5
emp_weekly_pay = (pay_rate * 35) + overtime_pay

ENDIF
END

Print_employee_details
12 Print emp_no, pay_rate, hrs_worked, emp_weekly_pay

END

F Desk check the solution algorithm

1 Input data
Three test cases will be used to test the algorithm.

Employee Record pay_rate hrs_worked

employee 1 $20.00 35

employee 2 $20.00 40

employee 3 $50.00 65

EOF

2 Expected results

Employee Pay Rate Hours Worked Weekly Pay Error Message

employee 1 $20.00 35 $700.00

employee 2 $20.00 40 $850.00

employee 3 $50.00 65 Pay rate exceeds $25.00

employee 3 $50.00 65 Hours worked exceeds 60

125Chapter 8: First steps in modularisation

3 Desk check table

Statement
number

valid_
input_
fields

pay_rate
hrs_

worked
DOWHILE
condition

error_
message

emp_
weekly_

pay
ovt_hrs ovt_pay

1, 6 $20.00 35

2 true

3, 7–10 true blank

4

11 $700

12 print print print

5, 6 $20.00 40

2 true

3, 7–10 true blank

4

11 $850 5 $150

12 print print print

5, 6 $50.00 65

2 true

3, 7, 8 true blank

9 false print print
Pay rate

exceeds $25

10 false print print
Hours

worked
exceeds 60

4

5, 6 EOF

2 false

EXAMPLE 8.5 Product orders report
The Acme Spare Parts Company wants to produce a product orders report from its
product orders file. Each record on the file contains the product number of the item
ordered, the product description, the number of units ordered, the retail price per unit,
the freight charges per unit, and the packaging costs per unit.

Your algorithm is to read the product orders file, calculate the total amount due for
each product ordered and printp these details on the product orders report.

126 Simple program design

The amount due for each product is calculated by multiplying the number of units
ordered by the retail price of the unit. A discount of 10% is allowed on the amount due
for all orders over $100.00. The freight charges and packaging costs per unit must be
added to this resulting value to determine the total amount due.

The output report is to contain headings and column headings as specified in the
following chart:

ACME SPARE PARTS

ORDERS REPORT PAGE XX

PRODUCT NO PRODUCT DESCRIPTION UNITS ORDERED TOTAL AMOUNT DUE

xxxx xxxxxxxxxxx xxx xxxxx

xxxx xxxxxxxxxxx xxx xxxxx

Each detail line is to contain the product number, product description, number of
units ordered and the total amount due for the order. There is to be an allowance of 45
detail lines per page.

A Define the problem

Input Processing Output

Product orders record Print headings as required Main headings

• prod_number Read order record column headings

• prod_description Calculate total amount due page number

• no_of_units Print order details detail lines

• retail_price • prod_number

• freight_charge • prod_description

• packaging_cost • no_of_units

• total_amount_due

B Group the activities into modules
The four steps in the processing component of the defining diagram will
become the four modules in the algorithm. Note that Print_page_headings
is a reusable module that is called whenever the report needs to skip to a
new page.

Produce_orders_
report

Read_order_
details

Calculate_total_
amount_due

Print_page_
headings

Print_order_
details

127Chapter 8: First steps in modularisation

C Construct a hierarchy chart

D Establish the logic of the mainline of the algorithm, using
pseudocode

Produce_orders_report
1 Set page_count to zero
2 Print_page_headings
3 Read_order_details
4 DOWHILE more records
5 IF line_count > 45 THEN

Print_page_headings
ENDIF

6 Calculate_total_amount_due
7 Print_order_details
8 Read_order_details

ENDDO
END

E Develop pseudocode for each successive module in the hierarchy
chart

The pseudocode for Print_page_headings is standard for a page heading rou-
tine that will increment the page counter, print a series of headings and reset
the line counter.

Print_page_headings
9 Add 1 to page_count

10 Print main heading ‘ACME SPARE PARTS’
11 Print heading ‘ORDERS REPORT’
12 Print column headings 1
13 Print column headings 2
14 Print blank line
15 Set line_count to zero

END

Read_order_details
16 Read product order record

END

128 Simple program design

Calculate_total_amount_due
 17 amount_due = no_of_units * retail_price
 18 IF amount_due > $100.00 THEN

discount = amount_due * 0.1
ELSE

discount = zero
ENDIF

 19 amount_due = amount_due – discount
 20 freight_due = freight_charge * no_of_units
 21 packaging_due = packaging_charge * no_of_units
 22 total_amount_due = amount_due + freight_due + packaging_due

END

Print_order_details
 23 Print prod_number, prod_description, no_of_units, total_amount_due
 24 add 1 to line_count

END

F Desk check the solution algorithm

1 Input data
Three test cases will be used to test the algorithm. To test for correct page
skipping, we would temporarily reduce the line limit from 45 to a conve-
niently small number – for example, two.

Record prod_no
prod_

description
no_of_
units

retail_price
freight_
charge

packaging_
charge

1 100 Rubber hose 10 $1.00 $0.20 $0.50

2 200 Steel pipe 20 $2.00 $0.10 $0.20

3 300 Steel bolt 100 $3.00 $0.10 $0.20

EOF

2 Expected results

ACME SPARE PARTS

ORDERS REPORT PAGE 1

PRODUCT NO PRODUCT DESCRIPTION UNITS ORDERED TOTAL AMOUNT DUE

100 Rubber hose 10 $17.00

200 Steel pipe 20 $46.00

300 Steel bolt 100 $300.00

129Chapter 8: First steps in modularisation

3 Desk check table

Statement
number

DOWHILE
condition

page_
count

line_
count

prod_no
no_of_
units

retail_
price

freight_
charge

pckg_
charge

total_
amount_

due

1 0

2, 9–15 1 0

3, 16 100 10 1.00 0.20 0.50

4 true

5

6, 17–22 17.00

7, 23–24 1 print print print

8, 16 200 20 2.00 0.10 0.20

4 true

5

6, 17–22 46.00

7, 23–24 2 print print print

8, 16 300 100 3.00 0.10 0.20

4 true

5

6, 17–22 300.00

7, 23–24 3 print print print

8 EOF

4 false

Chapter summary
This chapter introduced a modular approach to program design. A module was
defined as a section of an algorithm that is dedicated to the performance of a single
function. Top-down design was defined as the process of dividing a problem into major
tasks and then into further subtasks within those major tasks until all the tasks have
been identified. Programming examples were provided showing the benefits of using
modularisation.

130 Simple program design

Hierarchy charts were introduced as a method of illustrating the structure of a
program that contains modules. Hierarchy charts show the names of all the modules
and their hierarchical relationship to each other.

The steps in modularisation that a programmer must follow were listed. These
were: define the problem; group the activities into subtasks or functions; construct
a hierarchy chart; establish the logic of the mainline, using pseudocode; develop the
pseudocode for each successive module in the hierarchy chart; and desk check the
solution algorithm.

Programming examples using these six steps in modularisation were then developed
in pseudocode.

Programming problems
Construct a solution algorithm for the following programming problems. To obtain your
final solution, you should:

• define the problem
• group the activities into modules
• construct a hierarchy chart
• establish the logic of the mainline using pseudocode
• develop the pseudocode for each successive module in the hierarchy chart
• desk check the solution algorithm.

1 Design an algorithm that will prompt for and accept an employee’s annual salary,
and calculate the annual income tax due on that salary. Income tax is calculated
according to the following table and is to be displayed on the screen.

Portion of salary Income tax rate (%)

$0 to $4999.99 0

$5000 to $9999.99 6

$10 000 to $19 999.99 15

$20 000 to $29 999.99 20

$30 000 to $39 999.99 25

$40 000 and above 30

Your program is to continue to process salaries until a salary of zero is entered.
2 Design an algorithm that will prompt for and accept four numbers, sort them into

ascending sequence and display them to the screen.
3 Design an algorithm that will prompt for and accept a four-digit representation of the

year (for example, 2003). Your program is to determine if the year provided is a leap
year and print a message to this effect on the screen. Also print a message on the
screen if the value provided is not exactly four numeric digits. Continue processing
until a sentinel of 0000 is entered.

131Chapter 8: First steps in modularisation

4 The members of the board of a small university are considering voting for a pay
increase for their 25 faculty members. They are considering a pay increase of 8%.
However, before doing so, they want to know how much this pay increase will cost.
Design an algorithm that will prompt for and accept the current salary for each of
the faculty members, then calculate and display their individual pay increases. At the
end of the algorithm, print the total faculty payroll before and after the pay increase,
and the total pay increase involved.

5 Design an algorithm that will produce an employee payroll register from an employee
file. Each input employee record contains the employee number, gross pay,
income tax payable, union dues and other deductions. Your program is to read the
employee file and print a detail line for each employee record showing employee
number, gross pay, income tax payable, union dues, other deductions and net pay.
Net pay is calculated as gross pay – income tax – union dues – other deductions.
At the end of the report, print the total net pay for all employees.

6 Design an algorithm that will produce an inventory report from an inventory file. Each
input inventory record contains the item number, open inventory amount, amount
purchased and amount sold. Your program is to read the inventory file and print a
detail line for each inventory record showing item number, open inventory amount,
amount purchased, amount sold and final inventory amount. The final inventory
amount is calculated as opening inventory amount + purchases – sales. At the end
of the report, print the total open inventory amount, the total amount purchased, the
total amount sold and the total final inventory amount.

7 Design an algorithm that will produce a savings account balance report from a cus-
tomer savings account file. Each input savings account record contains the account
number, balance forward, deposits (sum of all deposits), withdrawals (sum of all
withdrawals) and interest earned. Your program is to read the savings account file
and print a detail line for each savings account record showing account number,
balance forward, deposits, withdrawals, interest earned and final account balance.
The final account balance is calculated as balance forward + deposits – withdrawals
+ interest. A heading is to appear at the top of each page and allowance is to be
made for 45 detail lines per page. At the end of the report, print the total balances
forward, total deposits, total withdrawals, total interest earned and total final account
balances.

8 Design an algorithm that will read a file of sales volume records and print a report
showing the sales commission owing to each salesperson. Each input record con-
tains salesperson number, name and that person’s volume of sales for the month.
The commission rate varies according to sales volume, as follows:

On sales volume ($) of Commission rate (%)

$0.00–$200.00 5

$200.01–$1000.00 8

$1000.01–$2000.00 10

$2000.01 and above 12

132 Simple program design

 The calculated commission is an accumulated amount according to the sales
volume figure. For example, the commission owing for a sales volume of $1200.00
would be calculated as follows:

Commission = (200 * 5%) + ((1000 – 200) * 8%) + ((1200 – 1000) * 10%))

 Your program is to print the salesperson’s number, name, volume of sales and
calculated commission, with the appropriate column headings.

 9 Design an algorithm that will prompt for and receive your current cheque book
balance, followed by a number of financial transactions. Each transaction consists
of a transaction code and a transaction amount. The transaction code can be a
deposit (‘D’) or a cheque (‘C’). Your program is to add each deposit transaction
amount to the balance and subtract each cheque transaction amount. After each
transaction is processed, a new running balance is to be displayed on the screen,
with a warning message if the balance becomes negative. When there are no more
transactions, a ‘Q’ is to be entered for transaction code to signify the end of the
data. Your algorithm is then to display the initial and final balances, along with a
count of the number of cheques and deposits processed.

 10 At Olympic diving competition level, 10 diving judges award a single mark (with one
decimal place) for each dive attempted by a diving competitor. This mark can range
from 0 to 10. Design an algorithm that will receive a score from the 10 judges and
calculate the average score. The screen should display the following output:

Judge 1 2 3 4 5 6 7 8 9 10

Mark 6.7 8.1 5.8 7.0 6.6 6.0 7.6 6.1 7.2 7.0

Score for the dive 6.81

General algorithms
for common

business problems

Objectives

• To provide general pseudocode algorithms for four common business
applications:
– report generation with page break
– single-level control break
– multiple-level control break
– sequential file update

Outline

9.1 Program structure

9.2 Report generation with page break

9.3 Single-level control break

9.4 Multiple-level control break

9.5 Sequential file update

Chapter summary

Programming problems

9

Process_
sequential_file

Process_ Process_ Process_ Process_ Perform_final_ Perform_initial_ Perform_initial_ Perform_initial_
this_record this_record this_record this_record processing processing processing processing

134 Simple program design

9.1 Program structure

The aim of this chapter is to present a number of general pseudocode solutions
for typical programming problems, using a modular structure.

Chapter 8 introduced a general modularised solution algorithm for the
processing of sequential files. This general solution algorithm consisted of a
mainline module and three subordinate modules. These are:

1 an initial processing module, containing the steps to be performed at the
beginning of the algorithm, before the loop begins;

2 a processing module inside the loop containing all the steps necessary to
process one record or piece of data; and

3 a final processing module, containing the steps to be performed at the end
of the algorithm, outside the loop.

The hierarchy chart looked like this:

The mainline module looked like this:

Process_sequential_file
Perform_initial_processing
Read first record
DOWHILE more records exist

Process_this_record
Read next record

ENDDO
Perform_final_processing

END

Let’s now use this basic program structure to develop solution algorithms
for four common business programming applications.

Print_report_
program

Process_
this_record

Initialise_
variable_fields

Print_report_
totals

Print_page_
headings

Print_detail_line
Accumulate_
total_fields

135Chapter 9: General algorithms for common business problems

9.2 Report generation with page break

Most reports require page heading lines, column heading lines, detail lines
and total lines. Reports are also required to skip to a new page after a pre-
determined number of detail lines have been printed.

A typical report might look like this:

GLAD RAGS CLOTHING COMPANY

12/5/2006 CURRENT ACCOUNT BALANCES PAGE: 1

CUSTOMER
NUMBER

CUSTOMER NAME CUSTOMER ADDRESS ACCOUNT
BALANCE

12345 Sporty’s Boutique The Mall, Redfern $300.50

12346 Slinky’s Nightwear 245 Picnic Road, Pymble $400.50

Total customers on file 200

Total customers with balance owing 150

Total balance owing $4300.00

Our general solution algorithm for processing a sequential file can be
extended by the addition of three new modules to cater for these report require-
ments. These new modules are Print_page_headings, Print_detail_line and
Accumulate_total_fields.

A Hierarchy chart

Once the hierarchy chart has been established, the solution algorithm can be
developed in pseudocode.

136 Simple program design

B Solution algorithm

Mainline

Print_report_program
Initialise_variable_fields
Print_page_headings
Read first record
DOWHILE more records exist

IF linecount > max_detail_lines THEN
Print_page_headings

ENDIF
Process_this_record
Read next record

ENDDO
Print_report_totals

END

Subordinate modules

1 Initialise_variable_fi elds
set accumulators to zero
set pagecount to zero
set linecount to zero
set max_detail_lines to required value

END

2 Print_page_headings
increment pagecount
Print main heading lines
Print column heading lines
Print blank line (if required)
set linecount to zero

END

3 Process_this_record
Perform necessary calculations (if any)
Print_detail_line
Accumulate_total_fields

END

4 Print_detail_line
Print detail line
increment linecount

END

5 Accumulate_total_fi elds
increment accumulators as required

END

137Chapter 9: General algorithms for common business problems

6 Print_report_totals
Print total line(s)

END

This general pseudocode solution can now be used as a framework for any
report program that requires page breaks.

9.3 Single-level control break

Printed reports that also produce control break total lines are very common in
business applications. A control break total line is a summary line for a group
of records that contain the same record key. This record key is a designated
field on each record, and is referred to as the control field. The control field
is used to identify a record or a group of records within a file. A control break
occurs each time there is a change in value of the control field. Thus, control
break total lines are printed each time a control break is detected.

Here is a single-level control break report.

MULTI-DISK COMPUTER COMPANY

12/05/2006 SALES REPORT BY SALESPERSON PAGE: 1

SALESPERSON
NUMBER

SALESPERSON
NAME

PRODUCT
NUMBER

QTY
SOLD

PRICE EXTENSION
AMOUNT

1001 Mary Smith 1032 2 $10.00 $20.00

1033 2 $20.00 $40.00

1044 2 $30.00 $60.00

Sales total for Mary Smith $120.00

1002 Jane Brown 1032 2 $10.00 $20.00

1045 1 $35.00 $35.00

Sales total for Jane Brown $55.00

Report sales total $175.00

Note that a control break total line is printed each time the salesperson
number changes.

There are two things you must consider when designing a control break
program:

1 The file to be processed must have been sorted into control field sequence.
(In the example above, the file was sorted into ascending sequence of
salesperson number.) If the file has not been sorted, erroneous results will
occur.

Produce_
single_level_
control_break

Initialise_
variable_fields

Print_page_
headings

Process_
this_record

Print_report_
totals

Print_control_
total_line

Print_
detail_line

Reset_
control_totals

Accumulate_
control_totals

138 Simple program design

2 Each time a record is read from the input file, the control field on the
current record must be compared with the control field on the previous
record. If the control fields are different, a control break total line must be
printed for the previous set of records, before the current record is pro-
cessed.

The general solution algorithm, which was developed for a report generation
program, can be extended by the addition of two new modules to incorporate
a single-level control break. These modules are named Print_control_total_
line and Reset_control_totals.

A Hierarchy chart

All control break report programs will require the following variables:

1 a variable named this_control_field, which will hold the control field of
the record just read;

2 a variable named prev_control_field, which will hold the control field of
the previous record. (To cater for the first record, the statements after the
first Read statement will set the new control field to both the variables
this_control_field and prev_control_field.)

3 one or more variables to accumulate the control break totals; and
4 one or more variables to accumulate the report totals.

139Chapter 9: General algorithms for common business problems

B Solution algorithm

Mainline

Produce_single_level_control_break
Initialise_variable_fields
Print_page_headings
Read first record
this_control_field = control field
prev_control_field = control field
DOWHILE more records exist

IF this_control_field NOT = prev_control_field THEN
Print_control_total_line
prev_control_field = this_control_field

ENDIF
IF linecount > max_detail_lines THEN

Print_page_headings
ENDIF
Process_this_record
Read next record
this_control_field = control field

ENDDO
Print_control_total_line
Print_report_totals

END

There are four points in this mainline algorithm that are essential for a control
break program to function correctly:

1 Each time a new record is read from the file, the new control field is
assigned to the variable this_control_field.

2 When the first record is read, the new control field is assigned to both the
variables this_control_field and prev_control_field. This will prevent the
control totals printing before the first record has been processed.

3 The variable prev_control_field is updated as soon as a change in the con-
trol field is detected.

4 After the end of the file has been detected, the module Print_control_total_
line will print the control break totals for the last record or set of records.

Subordinate modules

1 Initialise_variable_fi elds
set control total accumulators to zero
set report total accumulators to zero
set pagecount to zero
set linecount to zero
set max_detail_lines to required value

END

140 Simple program design

2 Print_page_headings
increment pagecount
Print main heading lines
Print column heading lines
Print blank line (if required)
set linecount to zero

END

3 Process_this_record
Perform necessary calculations (if any)
Print_detail_line
Accumulate_control_totals

END

4 Print_control_total_line
Print control total line
Print blank line (if required)
increment linecount
Reset_control_totals

END

5 Print_report_totals
Print report total line

END

6 Print_detail_line
Print detail line
increment linecount

END

7 Accumulate_control_totals
increment control total accumulators

END

8 Reset_control_totals
add control total accumulators to report total accumulators
set control total accumulators to zero

END

Notice that when a control total line is printed, the module Reset_control_
totals is called. This module will add the control totals to the report totals and
reset the control totals to zero for the next set of records. This general solution
algorithm can now be used as a framework for any single-level control break
program.

141Chapter 9: General algorithms for common business problems

9.4 Multiple-level control break

Often reports are required to produce multiple-level control break totals. For
instance, the sales report produced in Section 9.3 may require sales totals for
each salesperson in the company, as well as sales totals for each department
within the company.

The monthly sales report might then look like this:

MULTI-DISK COMPUTER COMPANY

12/05/06 SALES REPORT BY SALESPERSON PAGE: 1

DEPT SALESPERSON
NUMBER

SALESPERSON
NAME

PRODUCT
NUMBER

QTY
SOLD

PRICE EXTENSION
AMOUNT

01 1001 Mary Smith 1032 2 $10.00 $20.00

1033 2 $20.00 $40.00

1044 2 $30.00 $60.00

Sales total for Mary Smith $120.00

1002 Jane Brown 1032 2 $10.00 $20.00

1045 1 $35.00 $35.00

Sales total for Jane Brown $55.00

Sales total for Dept 01 $175.00

02 1050 Jenny Ponds 1033 2 20.00 $40.00

1044 2 30.00 $60.00

Sales total for Jenny Ponds $100.00

Sales total for Dept 02 $100.00

Report sales total $275.00

Note that a control break total line is printed each time the salesperson
number changes and each time the department number changes. Thus,
there are two control fields in this file: salesperson number and department
number.

The concepts that applied to a single-level control break program also
apply to a multiple-level control break program:

1 The input file must be sorted into control field sequence. When there
is more than one control field, the file must be sorted into a sequence
of minor control field within major control field. (To produce the sales
report, the sales file must have been sorted into salesperson number with-
in department number.)

2 Each time a record is read from the file, the control field on the current
record must be compared with the control field of the previous record.

Produce_
multiple_level_
control_break

Initialise_
variable_fields

Print_page_
headings

Process_
this_record

Print_major_
control_totals

Print_minor_
control_totals

Print_report_
totals

Print_
detail_line

Accumulate_
control_totals

Reset_minor_
control_totals

Reset_major_
control_totals

142 Simple program design

If the minor control field has changed, the control totals for the previous
minor control field must be printed. If the major control field has changed,
the control totals for the previous minor control field and major control
field must be printed.

The general solution algorithm that was developed for a single-level
control break program can be extended by the addition of two new modules
to incorporate a two-level control break. If three control breaks were required,
another two modules would be added to the solution algorithm, and so on.

The names of the modules that produce the control totals have been
changed slightly, so that they indicate which level of control break has
occurred. These new module names are Print_minor_control_totals, Print_
major_control_totals, Reset_minor_control_totals and Reset_major_control_
totals.

A Hierarchy chart

143Chapter 9: General algorithms for common business problems

B Solution algorithm

Mainline

Produce_multiple_level_control_break
Initialise_variable_fields
Print_page_headings
Read first record
this_minor_control_field = minor control field
prev_minor_control_field = minor control field
this_major_control_field = major control field
prev_major_control_field = major control field
DOWHILE more records exist

IF this_major_control_field NOT = prev_major_control_field THEN
Print_minor_control_totals
prev_minor_control_field = this_minor_control_field
Print_major_control_totals
prev_major_control_field = this_major_control_field

ELSE
IF this_minor_control_field NOT = prev_minor_control_field THEN

Print_minor_control_totals
prev_minor_control_field = this_minor_control_field

ENDIF
ENDIF
IF linecount > max_detail_lines THEN

Print_page_headings
ENDIF
Process_this_record
Read next record
this_minor_control_field = minor control field
this_major_control_field = major control field

ENDDO
Print_minor_control_totals
Print_major_control_totals
Print_report_totals

END

The points to be noted in this mainline are:

1 Each time a new record is read from the input file, the new control fields
are assigned to the variables this_minor_control_field and this_major_con-
trol_field.

2 When the first record is read, the new control fields are assigned to both
the current and previous control field variables. This will prevent control
totals printing before the first record has been processed.

3 After the end of the input file has been detected, the two modules Print_
minor_control_totals and Print_major_control_totals will print control
totals for the last minor control field record, or set of records, and the last
major control field set of records.

144 Simple program design

Subordinate modules

 1 Initialise_variable_fi elds
set minor control total accumulators to zero
set major control total accumulators to zero
set report total accumulators to zero
set pagecount to zero
set linecount to zero
set max_detail_lines to required value

END

 2 Print_page_headings
increment pagecount
Print main heading lines
Print column heading lines
Print blank line (if required)
set linecount to zero

END

 3 Process_this_record
Perform necessary calculations (if any)
Print_detail_line
Accumulate_control_totals

END

 4 Print_minor_control_totals
Print minor control total line
Print blank line (if required)
increment linecount
Reset_minor_control_totals

END

 5 Print_major_control_totals
Print major control total line
Print blank line (if required)
increment linecount
Reset_major_control_totals

END

 6 Print_report_totals
Print report total line

END

 7 Print_detail_line
Print detail line
increment linecount

END

145Chapter 9: General algorithms for common business problems

8 Accumulate_control_totals
increment minor control total accumulators

END

9 Reset_minor_control_totals
add minor control total accumulators to major control total accumulators
set minor control total accumulators to zero

END

10 Reset_major_control_totals
add major control total accumulators to report total accumulators
set major control total accumulators to zero

END

Because the solution algorithm has simple design and good modular structure,
the processing of intermediate control field breaks as well as major and minor
control field breaks can be handled easily. The solution algorithm would
simply require the addition of two new modules: Print_intermed_control_
totals and Reset_intermed_control_totals. The IF statement in the mainline
would then be expanded to include this extra condition, as follows:

IF this_major_control_field NOT = prev_major_control_field THEN
Print_minor_control_totals
prev_minor_control_field = this_minor_control_field
Print_intermed_control_totals
prev_intermed_control_field = this_intermed_control_field
Print_major_control_totals
prev_major_control_field = this_major_control_field

ELSE
IF this_intermed_control_field NOT = prev_intermed_control_field THEN

Print_minor_control_totals
prev_minor_control_field = this_minor_control_field
Print_intermed_control_totals
prev_intermed_control_field = this_intermed_control_field

ELSE
IF this_minor_control_field NOT = prev_minor_control_field THEN

Print_minor_control_totals
prev_minor_control_field = this_minor_control_field

ENDIF
ENDIF

ENDIF

This pseudocode algorithm can now be used to process any multiple-level
control break program.

Sequential update
program

New master file
Audit and error

reports

Old master file Transaction file

146 Simple program design

9.5 Sequential file update

Most current file transaction update systems are real-time systems; however,
for batch processing applications, sequential file updating is very common.
It involves updating a master file by applying update transactions to a
transaction file. Both the master file and the transaction file are sequential.
A new master file that incorporates the updated transactions is produced.
Usually, audit reports and error reports are also printed.

A system flowchart of a sequential update program would look like this:

System concepts

1 Master file
A master file is a file that contains permanent and semipermanent information
about the data entities it contains. The records on the master file are in
sequence, according to a key field (or fields) on each record. For example,
a customer master file may contain the customer’s number, name, address,
phone number, credit rating and current balance, and may be in sequence of
customer number. In this case, customer number would be the key.

2 Transaction file
A transaction file contains all the data and activities that are included on the
master file. If the transaction file has been designed specifically to update a
master file, there are usually three types of update transactions on this file.
These are transactions to:

• add a new record
• update or change an existing record
• delete an existing record.

For example, a customer transaction file might contain transactions that are
intended to add a new customer record, change some data on an existing
customer record, or delete a customer record on the customer master file.
The transaction file is also in sequence according to the same key field as the
master record.

147Chapter 9: General algorithms for common business problems

3 Audit report
An audit report is a detailed list of all the transactions that were applied to
the master file. It provides an accounting trail of the update activities that take
place, and is used for control purposes.

4 Error report
An error report is a detailed list of errors that occurred during the processing
of the update. Typical errors might be the attempted update of a record that
is not on the master file, or the addition of a record that already exists. This
error report will require some action to confirm and correct the identified
errors.

Sequential update logic

The logic of a sequential update program is more difficult than the other
problems encountered, because there are two sequential input files. Processing
involves reading a record from each of the input files and comparing the keys
of the two records. As a result of this comparison, processing falls generally
into three categories:

1 If the key on the transaction record is less than the key on the old master
record, the transaction is probably an add transaction. The details on the
transaction record should be put into master record format, and the record
should be written to the new master file. Another record should then be
read from the transaction file.

2 If the key on the transaction record is equal to the key on the old master
record, the transaction is probably an update or delete transaction. If the
transaction is an update, the master record should be amended to reflect
the required changes. If the transaction is a delete, the master record
should not be written to the new master file. Another transaction record
should then be read from the transaction file.

3 If the key on the transaction record is greater than the key on the old mas-
ter record, there is no matching transaction for that master record. In this
case the old master record should be written unchanged to the new master
file and another record read from the old master file.

Sequential update programs also need to include logic that will handle
multiple transaction records for the same master record, and the possibility
of transaction records that are in error. The types of transaction record errors
that can occur are:

• an attempt to add a new master record when a record with that key already
exists on the master file

• an attempt to update a master record when there is no record with that key
on the master file

• an attempt to delete a master record when there is no record with that key
on the master file

• an attempt to delete a master record when the current balance is not equal
to zero.

148 Simple program design

Balance line algorithm

The logic of the sequential update program has fascinated programmers for
many years. Authors have offered many solutions to the problem, but none
of these has been a truly general solution. Most solutions have been designed
around a specific programming language.

A good general solution algorithm written in pseudocode was presented
by Barry Dwyer in a paper entitled ‘One More Time – How to Update a Master
File’.1 This algorithm has been referred to as the balance line algorithm. It
handles multiple transaction records for the one master record, as well as the
possibility of transaction record errors.

A modularised version of the balance line algorithm is presented in this
chapter. It introduces the concept of a current record. The current record is
the record that is currently being processed, ready for updating and writing
to the new master file. The current record is established when the record keys
on the two files are compared. The current record will be the record that has
the smaller record key. Its format will be that of a new master record.

Thus, if the key on the transaction record is less than the key on the
old master record, the current record will be made up of the fields on the
transaction record. If the key on the transaction record is equal to or greater
than the key on the old master record, the old master record will become the
current record.

The current record will remain the current record until there are no more
transactions to be applied to that record. It will then be written to the new
master file, and a new current record will be established.

Another variable, current_record_status, is used as a program flag to
indicate whether or not the current record is available for processing. If the
current_record_status is active, the current record has been established and
is available for updating or writing out to the new master file. If the current_
record_status is inactive, the current record is not available to be up-dated or
written to the new master file; for example, the current record may have been
marked for deletion.

The processing of the two files will continue until end_of_job has been
reached. End_of_job will occur when both the input files have no more data
to be processed. Since it is not known which file will reach end of file first,
the record key of each file will be set to a high value when EOF is reached.
When the record key of one of the files is high, the other file will continue
to be processed, as required, until the record key on that file is assigned the
same high value. End_of_job occurs when the record keys on both the files
are the same high value.

Let us now establish a general solution algorithm for a sequential update
program. The logic provided will also include the printing of the audit and
error reports.

1 Barry Dwyer, ‘One More Time – How to Update a Master File’, Communications of the ACM, Vol. 124,MM
No. 1, January 1981.

Sequential_
file_update_

program

Initialise_
variable_

fields

Read_
transaction_

record

Read_old_
master_
record

Apply_
transaction_to_
current_record

Select_
current_
record

Write_
current_
record

Print_
report_
totals

Read_old_
master_
record

Print_error_
report

Read_
transaction_

record

Print_audit_
report

Print_error_
report

Print_audit_
report

Print_error_
report

Print_audit_
report

Print_error_
report

Apply_
addition_

transaction

Apply_
deletion_

transaction

Apply_
update_

transaction

149Chapter 9: General algorithms for common business problems

A Hierarchy chart

B Solution algorithm
Mainline

Sequential_file_update_program
Initialise_variable_fields
Read_transaction_record
Read_old_master_record
set current_record_status to ‘inactive’
DOWHILE NOT end_of_job

Select_current_record
DOWHILE transaction_record_key = current_record_key

Apply_transaction_to_current_record
ENDDO
IF current_record_status = ‘active’ THEN

Write_current_record
set current_record_status to ‘inactive’

ENDIF
ENDDO
Print_report_totals

END

150 Simple program design

Subordinate modules

 1 Initialise_variable_fi elds
set total_transaction_records to zero
set total_old_master_records to zero
set total_new_master_records to zero
set total_error_records to zero
set end_of_job to false

END

 2 Read_transaction_record
Read transaction record
IF NOT EOF THEN

increment total_transaction_records
ELSE

set transaction_record_key to high value
IF old_master_record_key = high value THEN

set end_of_job to true
ENDIF

ENDIF
END

 3 Read_old_master_record
Read old master record
IF NOT EOF THEN

increment total_old_master_records
ELSE

set old_master_record_key to high value
IF transaction_record_key = high value THEN

set end_of_job = true
ENDIF

ENDIF
END

 4 Select_current_record
IF transaction_record_key < old_master_record_key THEN

set up current record with transaction record fields
ELSE

set up current record with old master record fields
set current_record_status to ‘active’
Read_old_master_record

ENDIF
END

151Chapter 9: General algorithms for common business problems

5 Apply_transaction_to_current_record
CASE OF transaction_type

addition : Apply_addition_transaction
deletion : Apply_deletion_transaction
update : Apply_update_transaction
other : error_message = ‘invalid transaction type’

 Print_error_report
ENDCASE
Read_transaction_record

END

6 Write_current_record
Write current record to new master file
increment total_new_master_records

END

7 Print_report_totals
Print total_transaction_records
Print total_old_master_records
Print total_new_master_records
Print total_error_records

END

8 Apply_addition_transaction
IF current_record_status = ‘inactive’ THEN

set current_record_status to ‘active’
Print_audit_report

ELSE
error_message = ‘Invalid addition; record already exists’
Print_error_report

ENDIF
END

9 Apply_deletion_transaction
IF current_record_status = ‘active’ THEN

set current_record_status to ‘inactive’
Print_audit_report

ELSE
error_message = ‘Invalid deletion, record not on master file’
Print_error_report

ENDIF
END

152 Simple program design

10 Apply_update_transaction
IF current_record_status = ‘active’ THEN

apply required change(s) to current record
Print_audit_report

ELSE
error_message = ‘Invalid update, record not on master file’
Print_error_report

ENDIF
END

 11 Print_audit_report
Print transaction details on audit report
CASE OF transaction_type

addition : print ‘record added’
deletion : print ‘record deleted’
update : print ‘record updated’

ENDCASE
END

 12 Print_error_report
Print transaction details on error report
Print error_message
increment total_error_records

END

Note that end_of_job is reached when the transaction_record_key = high value
AND the old_master_record_key = high value. This pseudocode algorithm can
now be used to process any sequential file update program.

Chapter summary
The aim of this chapter was to develop general pseudocode algorithms to four common
business applications. The applications covered were:

• report generation with page break
• single-level control break
• multiple-level control break
• sequential file update.

In each section, the application was discussed, a hierarchy chart was developed, and a
general solution algorithm was presented in pseudocode. These solution algorithms can
be used when writing programs that incorporate any of the above applications.

153Chapter 9: General algorithms for common business problems

Programming problems
Using the sample solution algorithms provided in this chapter, design a solution algo-
rithm for the following programming problems. Your solution should contain:

• a defining diagram
• a hierarchy chart
• a pseudocode algorithm
• a desk check of the solution.

1 Design an algorithm to produce a list of customers from the Glad Rags Clothing
Company’s customer master file. Each record on the customer master file con-
tains the customer’s number, name, address (street, city, state and postcode) and
account balance.

Your program is to read the customer master file and print a report of all cus-
tomers whose account balance is greater than zero. Each detail line is to contain
the customer’s number, name, address and account balance. Print headings and
column headings at the top of each page, allowing for 35 detail lines per page, and
at the end of the report, the total customers on file, the total customers with balance
owing, and the total balance owing, as follows:

GLAD RAGS CLOTHING COMPANY

XX/XX/XX CURRENT ACCOUNT BALANCES PAGE: XX

CUSTOMER
NUMBER

CUSTOMER NAME ADDRESS ACCOUNT BALANCE

xxxxx xxxxxxxxxx xxxxxxxxxxxxxxxxxxxx 9999.99

xxxxx xxxxxxxxxx xxxxxxxxxxxxxxxxxxxx 9999.99

Total customers on file 999

Total customers with balance owing 999

Total balance owing 99999.99

2 Design an algorithm to produce a sales commission report from a company’s sales
file. Each record on the sales file contains the salesperson’s number, name and sales
amount.

Your program is to read the sales file, calculate the sales commission according
to the following table, and print a sales commission report.

Sales range Commission rate

$0–$499.99 No commission

$500.00–$749.99 2%

$750.00 and above 3%

154 Simple program design

Each detail line is to contain the salesperson’s number, sales amount, commis-
sion rate and total commission. Print headings and column headings at the top of
each page, allowing for 35 detail lines per page, and at the end of the report, the
total commission, as follows:

SALES COMMISSIONS PAGE: XX

SALESPERSON
NUMBER

SALESPERSON NAME SALES AMOUNT COMMISSION
RATE

COMMISSION

xxxxx xxxxxxxxxxxxxx 9999.99 x% 999.99

xxxxx xxxxxxxxxxxxxx 9999.99 x% 999.99

Total Commission 9999.99

3 Design an algorithm that will create a validation report from a customer sales file.
Each field on the sales record is to be validated as follows:

Field Format

Customer number Numeric

Customer name Alphanumeric

Street Alphanumeric

Town Alphanumeric

Postcode Numeric

Phone Alphanumeric

Fax Alphanumeric

Balance due Numeric

Credit limit Numeric (0–$1000)

If a field is found to be in error, print a line on the validation report showing the
customer number, name, address (street, town, postcode) and an appropriate mes-
sage, as indicated in the diagram below. There may be multiple messages for the
one record. Print headings and column headings at the top of each page, allowing
for 45 detail lines per page.

VALIDATION REPORT

CUSTOMER SALES FILE PAGE: XX

CUSTOMER
NUMBER

CUSTOMER NAME ADDRESS MESSAGE

xxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx Postcode not numeric

xxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx Credit limit invalid

4 The Multi-Disk computer company requires a single-level control break program to
produce a sales report by salesperson from their sales file. Design an algorithm that
will read the sales file and create the sales report as shown below.

155Chapter 9: General algorithms for common business problems

Each record on the sales file contains the salesperson’s number, name, the
product number of the product sold, the quantity sold and the price of the prod-
uct. There may be more than one record for each salesperson, depending on the
products sold that month. The sales file has been sorted into ascending sequence
of salesperson number.

Your program is to read the sales file sequentially, calculate the extension amount
(price * quantity sold) for each product sold and print a detail line for each record
processed. Control total lines showing the sales total for each salesperson are to be
printed on change of salesperson number. Print headings and column headings at
the top of each page, allowing for 40 detail lines per page.

MULTI-DISK COMPUTER COMPANY PAGE:XX

SALES REPORT BY SALESPERSON XX/XX/XX

SALESPERSON
NUMBER

SALESPERSON
NAME

PRODUCT
NUMBER

QTY
SOLD

PRICE EXTENSION
AMOUNT

xxxx xxxx xxxxxxxxx xxxxxx 99 999.99 9999.99

xxxxxx 99 999.99 9999.99

xxxxxx 99 999.99 9999.99

Sales total for xxxx xxxxxx 99999.99

Report sales total 999999.99

5 A sales file as described in Problem 4 exists, with the addition of a further field, the
department number. The sales file has been sorted into ascending sequence of
salesperson number within department number. Print the same sales report, with
the additional requirement of printing a sales total line on change of department
number, as well as on change of salesperson number.

Print the report details as per the following sales report. Print headings and col-
umn headings at the top of each page, allowing for 40 detail lines per page.

MULTI-DISK COMPUTER COMPANY PAGE:XX

SALES REPORT BY SALESPERSON XX/XX/XX

DEPT SALESPERSON
NUMBER

SALESPERSON
NAME

PRODUCT
NUMBER

QTY
SOLD

PRICE EXTENSION
AMOUNT

xx xxxx xxxx xxxxxxxxx xxxxxx 99 999.99 9999.99

xxxxxx 99 999.99 9999.99

xxxxxx 99 999.99 9999.99

Sales total for xxxx xxxxxxxx 99999.99

Sales total for dept xx 99999.99

Report sales total 999999.99

156 Simple program design

6 ABC University requires a single-level control break program to produce a lecturer
information report by lecturer from the university’s course file. Design an algorithm that
will read the course file and create the lecturer information report as shown below.

Each record on the course file contains details of a lecturer’s teaching load – that
is, the lecturer’s number, name, the course number of the course being taught, the
credit hours for that course and the class size. There may be more than one record
for each lecturer, depending on the number of courses he or she teaches. The
course file has been sorted into ascending sequence of lecturer number.

Your program is to read the course file sequentially, calculate the lecturer’s
contact hours ((class size/50) * credit hours), and produce the lecturer information
report. On change of lecturer number, print control total lines showing the total con-
tact hours for each lecturer. Print headings and column headings at the top of each
page, allowing for 40 detail lines per page.

ABC UNIVERSITY

LECTURER INFORMATION REPORT

LECTURER
NUMBER

LECTURER
NAME

COURSE
NUMBER

CREDIT
HOURS

CLASS
SIZE

CONTACT
HOURS

xxxx xxxxxxxxxx xxxxx x xxx xxx

xxxxx x xxx xxx

xxxxx x xxx xxx

Contact hours for lecturer xxxx x xxx

Contact hours for university xx xxx

7 A course file as described in Problem 6 exists, with the addition of a further field,
the university department number. The course file has been sorted into ascending
sequence of lecturer number within department number. Print the same lecturer
information report, with the additional requirement of printing a total contact hours
line on change of department number, as well as on change of lecturer number.

Print the report details as per the following lecturer information report. Print
headings and column headings at the top of each page, allowing for 40 detail lines
per page.

ABC UNIVERSITY

LECTURER INFORMATION REPORT

DEPT
NUMBER

LECTURER
NUMBER

LECTURER
NAME

COURSE
NUMBER

CREDIT
HOURS

CLASS
SIZE

CONTACT
HOURS

xxx xxxx xxxxxxxxxx xxxxx x xxx xxx

xxxxx x xxx xxx

xxxxx x xxx xxx

Contact hours for lecturer xxxx x xxx

Contact hours for department xxx x xxx

Contact hours for university xx xxx

157Chapter 9: General algorithms for common business problems

8 A course file as described in Problem 7 exists, with the addition of a further field, the
college number. The course file has been sorted into ascending sequence of lec-
turer number within department number within college number. The same lecturer
information report is to be printed, with the additional requirement of printing a total
contact hours line on change of college number, as well as on change of department
number and on change of lecturer number.

Print the report details as per the following lecturer information report. Print
headings and column headings at the top of each page, allowing for 40 detail lines
per page.

ABC UNIVERSITY

LECTURER INFORMATION REPORT

COLLEGE
NUMBER

DEPT
NUMBER

LECTURER
NUMBER

LECTURER
NAME

COURSE
NUMBER

CREDIT
HOURS

CLASS
SIZE

CONTACT
HOURS

xxxxx xxx xxxx xxxxxxxxxx xxxxx x xxx xxx

xxxxx x xxx xxx

xxxxx x xxx xxx

Contact hours for lecturer xxxx xxx

Contact hours for department xxx x xxx

Contact hours for college xxxxx xx xxx

Contact hours for university xx xxx

9 The XYZ Bank requires a program to sequentially update its savings account master
file. A sequential file of update transactions is to be used as the input transaction file,
along with the customer master file.

The customer master file contains the customer’s account number, and the bal-
ance forward amount. The customer transaction update file contains three types of
records, as follows:
i Deposit records containing a record code of ‘D’, the account number and the

amount of a deposit.
ii Withdrawal records containing a record code of ‘W’, the account number and

the amount of a withdrawal.
iii Interest records containing a record code of ‘I’, the account number and the

amount of interest earned.
There is a deposit record for each deposit a customer made, a withdrawal record

for each withdrawal, and an interest record if interest was credited during the period.
The updating process consists of adding each deposit or interest to the balance
forward amount on the master record, and subtracting each withdrawal.

Both files have been sorted into account number sequence. There can be mul-
tiple update transactions for any one savings account master record and a new
savings account master file is to be created.

158 Simple program design

If a transaction record is in error, the transaction details are to be printed on the
transaction error report, with one of the following messages:

‘invalid deposit, account number not on file’
‘invalid withdrawal, account number not on file’
‘invalid interest record, account number not on file’

 10 The Yummy Chocolates confectionery company requires a program to sequentially
update its customer master file. A sequential file of update transactions is to be
used as the input transaction file, along with the customer master file.

The customer master file contains the customer number, name, address
(street, city, state and postcode) and account balance. The customer transaction
file also contains these fields, as well as a transaction code of ‘A’ (add), ‘D’ (delete)
and ‘U’ (update).

Both files have been sorted into customer number sequence. There can be
multiple update transactions for any one customer master record and a new cus-
tomer master file is to be created.

Transaction records are to be processed as follows:
i If the transaction record is an ‘Add’, the transaction is to be written to the

new customer master file.
ii If the transaction record is a ‘Delete’, the old master record with the same

customer number is not to be written to the new customer master file.
iii If the transaction record is an update, the old master record with the same

customer number is to be updated as follows:
if customer name is present, update customer name
if street is present, update street
if town is present, update town
if state is present, update state
if postcode is present, update postcode
if balance paid is present, subtract balance paid from account balance on old

customer master record.
As each transaction is processed, print the transaction details on the customer

master audit report, with the message, ‘record added’, ‘record deleted’ or ‘record
updated’ as applicable.

If a transaction record is in error, the transaction details are to be printed on the
customer update errors report, with one of the following messages:

‘invalid addition, customer already exists’
‘invalid deletion, customer not on file’
‘invalid update, customer not on file’.

Communication
between modules,

cohesion and
coupling

Objectives

• To introduce communication between modules

• To develop solution algorithms that pass parameters between modules

• To introduce cohesion as a measure of the internal strength of a module

• To introduce coupling as a measure of the extent of information interchange
between modules

Outline

10.1 Communication between modules

10.2 Programming examples using parameters

10.3 Module cohesion

10.4 Module coupling

Chapter summary

Programming problems

10

160 Simple program design

10.1 Communication between modules

When designing solution algorithms, it is necessary to consider not only
the division of the problem into modules but also the flow of information
between the modules. The fewer and simpler the communications between
modules, the easier it is to understand and maintain one module without
reference to other modules. This flow of information, called ‘intermodule
communication’, can be accomplished by the scope of the variable (local or
global data) or the passing of parameters.

Scope of a variable

The scope of a variable is the portion of a program in which that variable has
been defined and to which it can be referenced. If a list is created of all the
modules in which a variable can be referenced, that list defines the scope of
the variable. Variables can be global, where the scope of the variable is the
whole program, or local, where the scope of the variable is simply the module
in which it is defined.

Global data

Global data is data that can be used by all the modules in a program. The
scope of a global variable is the whole program, because every module in the
program can access and change that data. The lifetime of a global variable
spans the execution of the whole program.

Local data

Variables that are defined within a submodule are called local variables.
These local variables are not known to the calling module, or to any other
module. The scope of a local variable is simply the module in which it is
defined. The lifetime of a local variable is limited to the execution of the
single submodule in which it is defined. Using local variables can reduce
what is known as program side effects.

Side effects

A side effect is a form of cross-communication of a module with other parts
of a program. It occurs when a subordinate module alters the value of a
global variable inside a module. Side effects are not necessarily detrimental;
however, they do tend to decrease the manageability of a program. A
programmer should be aware of their impact.

Sometimes, a programmer may need to modify an existing program, and
in doing so, may make a change to a global variable. This change could cause
side effects or erroneous results because the new programmer is unaware of
other modules that also alter that global variable.

161Chapter 10: Communication between modules, cohesion and coupling

Passing parameters

A particularly efficient method of intermodule communication is the passing
of parameters or arguments between modules. Parameters are simply data
items transferred from a calling module to its subordinate module at the time
of calling. When the subordinate module terminates and returns control to
its caller, the values in the parameters may be transferred back to the calling
module. This method of communication avoids any unwanted side effects,
as the only interaction between a module and the rest of the program is via
parameters.

To pass parameters between modules, two things must happen:

1 The calling module must name the parameters that it wants to pass to the
submodule, at the time of calling.

2 The submodule must be able to receive those parameters and return them
to the calling module, if required.

In pseudocode and most programming languages, when a calling module
wants to pass parameters to a submodule, it simply lists the parameters,
enclosed in parentheses, beside the name of the submodule, for example:

Print_page_headings (pageCount, lineCount)

The submodule must be able to receive those parameters, so it, too, lists
the parameters that it expects to receive, enclosed in parentheses, beside the
submodule name when it is defined, for example:

Print_page_headings (pageNumber, lineNumber)

The names that the respective modules give to their parameters need not
be the same – in fact, they often differ because they have been written by a
different programmer – but their number, type and order must be identical. In
the above example, the parameter pageCount will be passed to pageNumber,
and the parameter lineCount will be passed to lineNumber. In this book,
parameters will be named without underscores, to differentiate them from
variables.

Formal and actual parameters

Parameter names that appear when a submodule is defined are known as
formal parameters. Variables and expressions that are passed to a submodule
in a particular call are called actual parameters. A call to a submodule will
include an actual parameter list, one variable for each formal parameter name.
There is a one-to-one correspondence between formal and actual parameters,
which is determined by the relative position in each parameter list. Also, the
actual parameter corresponding to a formal parameter must have the same
data type as that specified in the declaration of the formal parameter.

For example, a mainline may call a module with an actual parameter list,
as follows:

Calculate_amount_owing (gasFigure, amountBilled)

162 Simple program design

while the module may have been declared with the following formal param-
eter list:

Calculate_amount_owing (gasUsage, amountOwing)

Although the parameter names are different, the actual and formal parameters
will correspond.

Value and reference parameters

Parameters may have one of three functions:

1 To pass information from a calling module to a subordinate module. The
subordinate module would then use that information in its processing,
but would not need to communicate any information back to the calling
module.

2 To pass information from a subordinate module to its calling module. The
calling module would then use that parameter in subsequent processing.

3 To fulfil a two-way communication role. The calling module may pass
information to a subordinate module, where it is amended in some fash-
ion, then passed back to the calling module.

Value parameters
Value parameters pass a copy of the value of a parameter from one module to
another. When a submodule is called, the value of each actual parameter is
assigned to the corresponding formal parameter, and from then on, the two
parameters are independent. The called module cannot modify the value of
the parameter in any way, and, when the submodule has finished processing,
the value of the parameter returns to its original value. This form of parameter
passing is called ‘passing by value’.

Reference parameters
Reference parameters pass the memory address of a parameter from one
module to another. When a submodule is called, the reference address of the
parameter is passed to the called module and that module can then use and
change the value of the parameter. Each actual parameter is an ‘alias’ for the
corresponding formal parameter; the two parameters refer to the same object,
and changes made through one are visible through the other. As a result, the
value of the parameter may be referenced and changed during the processing
of the submodule. This form of parameter passing is called ‘passing by
reference’.

The requirements of the program will determine whether a parameter
is passed by value or by reference. The parameter is passed by reference, if
the called module is designed to change the value of the actual parameter.
Conversely, the parameter is passed by value, to ensure the called routine
cannot modify the parameter.

Let’s look at an example that illustrates the passing of parameters by
value:

163Chapter 10: Communication between modules, cohesion and coupling

EXAMPLE 10.1 Calculate percentage value
Design an algorithm that will receive a fraction in the form of a numerator and a denomi-
nator, convert that fraction to a percentage and displayp y the result. Your program is to
use a module to calculate the percentage.

A Defining diagram

Input Processing Output

numerator Get numerator, denominator percentage

denominator Convert fraction to percentage

Display percentage

B Solution algorithm

Calculate_percentage_value
Prompt for numerator, denominator
Get numerator, denominator
Convert_fraction_value (numerator, denominator, percentage)
IF percentage NOT = 0 THEN

Output to screen, percentage, ‘%’
ELSE

Output to screen ‘invalid fraction’
ENDIF

END

Convert_fraction_value (numerator, denominator, calculatedPercentage)
IF denominator NOT = 0

calculatedPercentage = numerator / denominator * 100
ELSE

calculatedPercentage = 0
ENDIF

END

In this example, copies of the numerator and denominator values are passed
as parameters to the module Convert_fraction_value, which will use those
values to calculate the percentage. When the percentage is calculated, a
copy of the value in the parameter calculatedPercentage will be passed to
the parameter percentage, which will be displayed to the screen. This is an
example of passing by value.

Now let’s look at an example that illustrates the passing of parameters by
reference.

164 Simple program design

EXAMPLE 10.2 Increment two counters
Design an algorithm that will increment two counters from 1 to 10 and then outputp those
counters to the screen. Your program is to use a module to increment the counters.

A Defining diagram

Input Processing Output

counter1 Increment counters counter1

counter2 Output counters counter2

B Solution algorithm

Increment_two_counters
Set counter1, counter2 to zero
DO I = 1 to 10

Increment_counter (counter1)
Increment_counter (counter2)
Output to the screen counter1, counter2

ENDDO
END

Increment_counter (counter)
counter = counter + 1

END

In this example, the module Increment_counter is defined with a formal
parameter named counter. Increment_counter is called by the mainline,
first, with the actual parameter counter1, and then with the actual parameter
counter2. At the first call, the reference address of counter1 is passed to the
parameter counter, and its value is changed. Then the reference address of
counter2 is passed to the parameter counter, and its value is also changed.
The values of counter1 and counter2 are displayed on the screen and the pro-
cess is repeated, so that each time the module Increment_counter is called the
values in the parameters counter1 or counter2 are increased by 1. The screen
output would be as follows:

 1 1
 2 2
 3 3
 4 4 etc.

This is an example of passing parameters by reference.

For data parameters For status parameters

165Chapter 10: Communication between modules, cohesion and coupling

Hierarchy charts and parameters

Parameters that pass between modules can be incorporated into a hierarchy
chart or structure chart using the following symbols:

Data parameters contain the actual variables or data items that will be
passed as parameters between modules.

Status parameters act as program flags and should contain just one of two
values: true or false. These program flags or switches are set to true or false,
according to a specific set of conditions. They are then used to control further
processing.

When designing modular programs, avoid using data parameters to indi-
cate status as well, because this can affect the program in two ways:

1 It may confuse the reader of the program because a variable has been over-
loaded; that is, it has been used for more than one purpose.

2 It may cause unpredictable errors when the program is amended at some
later date, as the maintenance programmer may be unaware of the dual
purpose of the variable.

10.2 Programming examples using
parameters

Let us now look at an example that passes both data and status parameters.
This example offers an alternative solution to Example 8.4.

EXAMPLE 10.3 Calculate employee’s pay
A company requires a program to read an employee’s number, pay rate and the number
of hours worked in a week. The program is then to validate the pay rate field and the
hours worked field and, if they are valid, to computep the employee’s weekly pay and
then printp it and the input data.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 60 hours, and the maximum hourly rate is $25.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printed,p , and the employee’s weekly pay is not to be calculated.

Compute_
employee_pay

Calculate_
employee_pay

Read_employee_
details

Print_employee_
details

Validate_input_
fields

166 Simple program design

Weekly pay calculationy p y : Weekly pay is calculated as hours worked multiplied by pay
rate. If more than 35 hours have been worked, payment for the overtime hours worked
is calculated at time-and-a-half.

A Defining diagram

Input Processing Output

emp_no Read employee details emp_no

pay_rate Validate input fields pay_rate

hrs_worked Calculate employee pay hrs_worked

Print employee details emp_weekly_pay

error_message

B Hierarchy chart

C Solution algorithm
When each employee record is read, the hours_worked and hourly_rate fields
must be validated before the weekly pay can be calculated. These values will
be passed, as parameters, to the module Validate_input_fields, and a third
parameter, validInput, will be used as a flag to indicate whether or not the
fields are valid.

Compute_employee_pay
Read_employee_details
DOWHILE more records

Validate_input_fields (pay_rate, hrs_worked, validInput)
IF validInput THEN

Calculate_employee_pay
Print_employee_details

ELSE
Print emp_no, pay_rate, hrs_worked, error_message

ENDIF
Read_employee_details

ENDDO
END

167Chapter 10: Communication between modules, cohesion and coupling

Read_employee_details
Read emp_no, pay_rate, hrs_worked

END

Validate_input_fields (payRate, hrsWorked, validInput)
set validInput to true
Set error_message to blank
IF payRate > $25 THEN

error_message = ‘Pay rate exceeds $25.00’
validInput = false

ENDIF
IF hrsWorked > 60 THEN

error_message = ‘Hours worked exceeds 60’
validInput = false

ENDIF
END

Calculate_employee_pay
IF hrs_worked <= 35 THEN

emp_weekly_pay = pay_rate * hrs_worked
ELSE

overtime_hrs = hrs_worked – 35
overtime_pay = overtime_hrs * pay_rate * 1.5
emp_weekly_pay = (pay_rate * 35) + overtime_pay

ENDIF
END

Print_employee_details
Print emp_no, pay_rate, hrs_worked, emp_weekly_pay

END

Let us now look again at Example 8.2, this time changing the solution algo-
rithm so that parameters are used to communicate between the modules.
There are two solution algorithms offered for this example, the second solu-
tion more elegant than the first.

EXAMPLE 10.4 Process three characters
Design a solution algorithm that will promptp p a terminal operator for three characters,
acceptp those characters as input, sort them into ascending sequence and outputp them
to the screen. The algorithm is to continue to read characters until ‘XXX’ is entered.

Process_three_
characters

Read_three_
characters

Print_three_
characters

Sort_three_
characters

168 Simple program design

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

B Hierarchy chart 1

C Solution Algorithm 1
The mainline will call the module Read_three_characters, which will get the
three input characters (char_1, char_2, char_3) and send them to the mainline
as parameters (char1, char2, char3). These parameters will then be passed to
the module Sort_three_characters, which will sort the three characters and
send these sorted values back to the mainline as parameters. The three char-
acters will then be passed to the module Print_three_characters, which will
print them.

Process_three_characters
Read_three_characters (char1, char2, char3)
DOWHILE NOT (char1 = ‘X’ AND char2 = ‘X’ AND char3 = ‘X’)

Sort_three_characters (char1, char2, char3)
Print_three_characters (char1, char2, char3)
Read_three_characters (char1, char2, char3)

ENDDO

END

Read_three_characters (char1, char2, char3)
Prompt the operator for char_1, char_2, char_3
Get char_1, char_2, char_3

END

Swap_two_
characters

Process_three_
characters

Read_three_
characters

Print_three_
characters

Sort_three_
characters

169Chapter 10: Communication between modules, cohesion and coupling

Sort_three_characters (char1, char2, char3)
IF char1 > char2 THEN

temp = char1
char1 = char2
char2 = temp

ENDIF
IF char2 > char3 THEN

temp = char2
char2 = char3
char3 = temp

ENDIF
IF char1 > char2 THEN

temp = char1
char1 = char2
char2 = temp

ENDIF
END

Print_three_characters (char1, char2, char3)
Output to the screen char1, char2, char3

END

The module Sort_three_characters above contains some repeated code. To
avoid this, a new module, called Swap_two_characters, will be introduced,
which is called by the module Sort_three_characters. The calling module
(Sort_three_characters) will pass two characters at a time to the submodule
(Swap_two_characters), which will swap the position of the parameters and
return them to the mainline.

B Hierarchy Chart 2

170 Simple program design

C Solution Algorithm 2

Process_three_characters
Read_three_characters (char1, char2, char3)
DOWHILE NOT (char1 = ‘X’ AND char2 = ‘X’ AND char3 = ‘X’)

Sort_three_characters (char1, char2, char3)
Print_three_characters (char1, char2, char3)
Read_three_characters (char1, char2, char3)

ENDDO

END

Read_three_characters (char1, char2, char3)
Prompt the operator for char_1, char_2, char_3
Get char_1, char_2, char_3

END

Sort_three_characters (char1, char2, char3)
IF char1 > char_2 THEN

Swap_two_characters (char1, char2)
ENDIF
IF char2 > char3 THEN

Swap_two_characters (char2, char3)
ENDIF
IF char1 > char2 THEN

Swap_two_characters (char1, char2)
ENDIF

END

Print_three_characters (char1, char2, char3)
Output to the screen char1, char2, char3

END

Swap_two_characters (firstChar, secondChar)
temp = firstChar
firstChar = secondChar
secondChar = temp

END

Let us now look at a more complex example that passes a data structure as a
parameter.

171Chapter 10: Communication between modules, cohesion and coupling

Example 10.5 Calculate vehicle registration costs
A program is required to calculate and print the registration cost of a new vehicle that a
customer has ordered. The program is to be interactive; that is, all the input details will
be provided at a terminal on the salesperson’s desk. The program is to getg the input
details, calculate the federal tax payable, calculate the registration costs, calculate the
total amount payable and then outputp the required information to the screen.

The input details required are:

• owner’s name
• vehicle make
• vehicle model
• vehicle weight (in kg)
• body type (sedan or wagon)
• private or business code (‘P’ or ‘B’)
• wholesale price of vehicle.

The federal tax payable is calculated at the rate of $2.00 for each $100.00, or part
thereof, of the wholesale price of the vehicle.

The vehicle registration cost is calculated as the sum of the following charges:

Registration fee $27.00

Tax levy
Private
Business

3% of wholesale price
5% of wholesale price

Weight tax
Private
Business

1% of vehicle weight (converted to $)
3% of vehicle weight (converted to $)

Insurance premium
Private
Business

1% of wholesale price
2% of wholesale price

The total amount payable = federal tax + total registration charges. The information to
be printed to the screen is as follows:

Vehicle make:
Vehicle model:
Body type:
Registration fee:
Tax levy:
Weight tax:
Insurance premium:
Total registration charges:
Federal tax:
Total amount payable:

Calculate_
registration_costs

Calculate_
federal_tax

Calculate_vehicle_
registration

Output_registration_ Get_vehicle_ Get_vehicle_ Get_vehicle_ Get_vehicle_ Calculate_total_ Calculate_total_ Calculate_total_
details details details details details amount–payable amount–payable amount–payable

172 Simple program design

The program is to process registration costs until an owner’s name of ‘XXX’ is
entered. None of the other entry details will be required after the value ‘XXX’ has been
entered.

A Defining diagram

Input Processing Output

owners_name Get input details vehicle_make

vehicle_make Calculate federal_tax vehicle_model

vehicle_model Calculate registration_costs body_type

vehicle_weight Calculate total_amount_payable registration_fee

body_type Output details to screen tax_levy

usage_code weight_tax

wholesale_price insurance_premium

total_registration_charges

federal_tax

total_amount_payable

Each of the five steps in the processing component will become a module
in the solution algorithm.

B Hierarchy chart

173Chapter 10: Communication between modules, cohesion and coupling

C Solution Algorithm
The module Get_vehicle_details will collect the input vehicle details into a
data structure called vehicleDetails. The module Calculate_registration_costs
will collect all the costs of registration into a data structure called registra-
tionCosts. The total amount payable will also be put into the data structure
registrationCosts. These data structures will be passed between modules as
parameters.

The module Calculate_federal_tax will calculate the federal tax, which is
payable at the rate of $2.00 for each $100.00 or part thereof of the wholesale
price of the car. (A variable called tax_units is used to count the number of
whole $100 units.)

Calculate_vehicle_registration
Read owners_name
DOWHILE owners_name NOT = ‘XXX’

Get_vehicle_details (vehicleDetails)
Calculate_total_amount_payable (vehicleDetails, registrationCosts)
Output_registration_details (vehicleDetails, registrationCosts)
Read owners_name

ENDDO
END

Get_vehicle_details (vehicleDetails)
Prompt and Get vehicle_make
Prompt and Get vehicle_model
Prompt and Get vehicle_weight
Prompt and Get body_type
Prompt and Get usage_code
Prompt and Get wholesale_price

END

Calculate_total_amount_payable (vehicleDetails, registrationCosts)
Calculate_federal_tax (vehicleDetails, federalTax)
Calculate_registration_costs (vehicleDetails, registrationCosts)
total_amount_payable = federalTax + total_registration_charges

END

Calculate_federal_tax (vehicleDetails, federalTax)
Set tax_units = zero
DOWHILE wholesale_price > $100

wholesale_price = wholesale_price – 100
increment tax_units by 1

ENDDO
federalTax = (tax_units + 1) * $2.00

END

174 Simple program design

Calculate_registration_costs (vehicleDetails, registrationCosts)
registration_fee = $27.00
IF usage_code = ‘P’ THEN

tax_levy = wholesale_price * 0.03
weight_tax = vehicle_weight * 0.01
insurance_premium = wholesale_price * 0.01

ELSE
tax_levy = wholesale_price * 0.05
weight_tax = vehicle_weight * 0.03
insurance_premium = wholesale_price * 0.02

ENDIF
total_registration_charges = registration_fee + tax_levy + weight_tax +
insurance_premium

END

Output_registration_details (vehicleDetails, registrationCosts)
Output vehicle_make
Output vehicle_model
Output body_type
Output registration_fee
Output tax_levy
Output weight_tax
Output insurance_premium
Output total_registration_charges
Output federalTax
Output total_amount_payable

END

10.3 Module cohesion

A module has been defined as a section of an algorithm that is dedicated to
the performance of a single function. It contains a single entry and a single
exit, and the name chosen for the module should describe its function.

Programmers often need guidance in determining what makes a good
module. Common queries include: ‘How big should a module be?’, ‘Is
this module too small?’ and ‘Should I put all the read statements in one
module?’

There is a method you can use to remove some of the guesswork when
establishing modules. You can look at the cohesion of the module. Cohesion
is a measure of the internal strength of a module; it indicates how closely the
elements or statements of a module are associated with each other. The more
closely the elements of a module are associated, the higher the cohesion of the
module. Modules with high cohesion are considered good modules, because
of their internal strength.

175Chapter 10: Communication between modules, cohesion and coupling

Edward Yourdon and Larry Constantine established seven levels of
cohesion and placed them in a scale from the weakest to the strongest.1

Cohesion level Cohesion attribute Resultant module strength

Coincidental Low cohesion Weakest

Logical

Temporal

Procedural

Communicational

Sequential

Functional High cohesion Strongest

Each level of cohesion in the table will be discussed in this chapter, and
pseudocode examples that illustrate each level will be provided.

Coincidental cohesion

The weakest form of cohesion a module can have is coincidental cohesion.
It occurs when elements are collected into a module simply because they
happen to fall together. There is no meaningful relationship between the
elements at all, and so it is difficult to concisely define the function of the
module.

Fortunately, these types of modules are rare in current programming
practice. They typically used to occur as a result of one of the following
conditions:

• An existing program may have been arbitrarily segmented into smaller mod-
ules because of hardware constrictions on the operation of the program.

• Existing modules may have been arbitrarily subdivided to conform to a
badly considered programming standard (for example, that each module
should have no more than 50 program statements).

• A number of existing modules may have been combined into one module
either to reduce the number of modules in a program or to increase the
number of statements in a module to a particular minimum number.

Here is a pseudocode example of a module that has coincidental cohesion:

File_processing
Open employee updates file
Read employee record
Print_page_headings
Open employee master file
Set page_count to one
Set error_flag to false

END

1 Edward Yourdon and Larry Constantine, Structured Design: Fundamentals of a Discipline of Computer Program
and System Design (Prentice-Hall, 1979).

176 Simple program design

Notice that the instructions within the module have no meaningful relationship
to each other.

Logical cohesion

Logical cohesion occurs when the elements of a module are grouped together
according to a certain class of activity. That is, the elements fall into some
general category because they all do the same kind of thing.

An example might be a module that performs all the read statements for
three different files: a sort of ‘Read_all_files’ module. In such a case, the
calling module would need to indicate which of the three files it required the
called module to read, by sending a parameter.

A module such as this is slightly stronger than a coincidentally cohesive
module, because the elements are somewhat related. However, logically
cohesive modules are usually made up of a number of smaller, independent
sections, which should exist independently rather than be combined together
because of a related activity. Often when a module such as this is called, only
a small subset of the elements within the module will be executed.

A pseudocode example for a ‘Read_all_files’ module might look like this:

Read_all_files (file_code)
CASE of file_code
1 : Read customer transaction record

IF not EOF
increment customer_transaction_count

ENDIF
2 : Read customer master record

IF not EOF
increment customer_master_count

ENDIF
3 : Read product master record

IF not EOF
increment product_master_count

ENDIF
ENDCASE

END

Notice that the three Read instructions in this module perform three separate
functions.

Temporal cohesion

Temporal cohesion occurs when the elements of a module are grouped
together because they are related by time. Typical examples are initialisation
and finalisation modules in which elements are placed together because
they perform certain housekeeping functions at the beginning or end of a
program.

A temporally cohesive module can be considered a logically cohesive
module, where time is the related activity. However, it is slightly stronger than

177Chapter 10: Communication between modules, cohesion and coupling

a logically cohesive module because most of the elements in a time-related
module are executed each time the module is called. Usually, however, the
elements are not all related to the same function.

A pseudocode example of a temporally cohesive module might look like
this:

Initialisation
Open transaction file
Issue prompt ‘Enter today’s date – DDMMYY’
Read todays_date
Set transaction_count to zero
Read transaction record
IF not EOF

increment transaction_count
ENDIF
Open report file
Print_page_headings
Set report_total to zero

END

Notice that the elements of the module perform a number of functions.

Procedural cohesion

Procedural cohesion occurs when the elements of a module are related
because they operate according to a particular procedure. That is, the
elements are executed in a particular sequence so that the objectives of the
program are achieved. As a result, the modules contain elements related more
to program procedure than to program function.

A typical example of a procedurally cohesive module is the mainline of
a program. The elements of a mainline are grouped together because of a
particular procedural order.

The weakness of procedurally cohesive modules is that they cut across
functional boundaries. That is, the procedure may contain only part of
a function at one level, but multiple functions at a lower level, as in the
pseudocode example below:

Read_student_records_and_total_student_ages
Set number_of_records to zero
Set total_age to zero
Read student record
DOWHILE more records exist

add age to total_age
add 1 to number_of_records
Read student record

ENDDO
Print number_of_records, total_age

END

178 Simple program design

Note that the use of the word ‘and’ in the module name indicates that this
module performs more than one function.

Communicational cohesion

Communicational cohesion occurs when the elements of a module are
grouped together because they all operate on the same (central) piece of
data. Communicationally cohesive modules are commonly found in business
applications because of the close relationship of a business program to the
data it is processing. For example, a module may contain all the validations
of the fields of a record, or all the processing required to assemble a report
line for printing.

Communicational cohesion is acceptable because it is data-related. It is
stronger than procedural cohesion because of its relationship with the data,
rather than the control-flow sequence.

The weakness of a communicationally cohesive module lies in the fact
that usually a combination of processing for a particular piece of data is
performed, as in this pseudocode example:

Validate_product_record
IF transaction_type NOT = ‘0’ THEN

error_flag = true
error_message = ‘invalid transaction type’
Print_error_report

ENDIF
IF customer_number is NOT numeric THEN

error_flag = true
error_message = ‘invalid customer number’
Print_error_report

ENDIF
IF product_no = blanks
OR product_no has leading blanks THEN

error_flag = true
error_message = ‘invalid product no’
Print_error_report

ENDIF
END

Sequential cohesion

Sequential cohesion occurs when a module contains elements that depend
on the processing of previous elements. That is, it may contain elements in
which the output data from one element serves as input data for the next.
Thus, a sequentially cohesive module is like an assembly line – a series of
sequential steps that perform successive transformations of data.

Sequential cohesion is stronger than communicational cohesion because it
is more problem-oriented. Its weakness lies only in the fact that the module
may perform multiple functions or fragments of functions.

179Chapter 10: Communication between modules, cohesion and coupling

Here is a pseudocode example of a sequentially cohesive module:

Process_purchases
Set total_purchases to zero
Prompt and Get number_of_purchases
DO loop_index = 1 to number_of_purchases

Promt and Get purchase
add purchase to total_purchases

ENDDO
sales_tax = total_purchases * sales_tax_percent
amount_due = total_purchases + sales_tax

END

Note that this module first calculates total_purchases and then uses the
variable total_purchases in the subsequent calculation of amount_due.

Functional cohesion

Functional cohesion occurs when all the elements of a module contribute to
the performance of a single specific task. The module can be easily named by
a single verb followed by a two-word object.

Mathematically oriented modules are a good example of functional
cohesion, as the elements making up the module form an integral part of the
calculation.

Here is a pseudocode example of a functionally cohesive module.

Calculate_sales_tax
IF product is sales tax exempt THEN

sales_tax = 0
ELSE

IF product_price < $50.00 THEN
sales_tax = product_price * 0.25

ELSE
IF product_price< $100.00 THEN

sales_tax = product_price * 0.35
ELSE

sales_tax = product_price * 0.5
ENDIF

ENDIF
ENDIF

END

Summary of cohesion levels

When designing an algorithm, try to form modules that have a single problem-
related function. If functional cohesion is achieved, the modules will be more
independent, easier to read and understand, and more maintainable than
modules with less cohesion.

2 Glenford Myers, Composite Structured Design (Van Nostrand Reinhold, 1978).

180 Simple program design

In some cases, it is not easy to construct a program where every module has
functional cohesion. Some modules may contain lower levels of cohesion, or
even a combination of types of cohesion. This may not be a problem. However,
it is important that you can recognise the various cohesion levels and justify a
module with a lower cohesion in a particular set of circumstances.

Your prime consideration is to produce modules and programs that are
easy to understand and modify. The higher the cohesion of the modules, the
more likely it is that you have achieved this aim.

10.4 Module coupling

When designing a solution algorithm, look not only at the cohesion of
modules but also at the flow of information between modules. You should
aim to achieve module independence – that is, modules that have fewer
and simpler connections with other modules. These connections are called
interfaces or couples.

Coupling is a measure of the extent of information interchange between
modules. Tight coupling implies large dependence on the structure of one
module by another. Because there are many connections, there are many
paths along which errors can extend into other parts of the program.

Loose coupling is the opposite of tight coupling. Modules with loose
coupling are more independent and easier to maintain.

Glenford Myers2 devised a coupling scale similar to Yourdon and
Constantine’s cohesion scale.

Coupling level Coupling attribute Resultant module design quality

Common Tight coupling Poorest

External

Control

Stamp

Data Loose coupling Best

The five levels of coupling are listed in a scale from the poorest module
design quality to the best. Each of the levels of coupling will be discussed,
and pseudocode examples that illustrate each level will be provided. Note
that these levels of coupling are not definitive. They are merely the coupling
levels that Myers believes can exist in modular programs.

Common coupling

Common coupling occurs when modules reference the same global data
structure. (A data structure is a collection of related data items, such as
a record or an array.) When modules experience common coupling, the
modules share a global data structure.

Global data structure

Module B Module A

Global data variable

Module B Module A

181Chapter 10: Communication between modules, cohesion and coupling

This means that the data can be accessed and modified by any module in
the program, which can make the program difficult to read.

The following pseudocode example shows two modules that experience
common coupling because they access the same global data structure (the
customer record):

A Read_customer_record
Read customer record
IF EOF THEN

set EOF_flag to true
ENDIF

END

B Validate_customer_record
IF customer_number is NOT numeric THEN

error_message = ‘invalid customer number’
Print_error_report

ENDIF
:
:

END

External coupling

External coupling occurs when two or more modules access the same global
data variable. It is similar to common coupling except that the global data is
an elementary data item, rather than a data structure. Because the global data
has a simpler structure, external coupling is considered to be looser than
common coupling.

Module B

Module A

flag

182 Simple program design

The following pseudocode example shows two modules that exhibit
external coupling because they share the same global data item (sales_tax).

A Calculate_sales_tax
IF product is sales tax exempt THEN

sales_tax = 0
ELSE

IF product_price < $50.00 THEN
sales_tax = product_price * 0.25
:
:

ENDIF
ENDIF

END

B Calculate_amount_due
:
:
amount_due = total_amount + sales_tax

END

Control coupling

Control coupling occurs when a module passes to another module a control
variable that is intended to control the second module’s logic. These control
variables are referred to as program flags, or switches, and are passed between
modules in the form of parameters.

The weakness of control-coupled modules is that the passing of the control
variable between modules implies that one module is aware of the internal
logic of the other.

The following pseudocode example shows two modules that are control
coupled because of the passing of the parameter (input_code):

A Process_input_code
Read input_code
Choose_appropriate_action (input_code)
:
:

END

Module B

Module A

data structure

183Chapter 10: Communication between modules, cohesion and coupling

B Choose_appropriate_action (input_code)
CASE OF input_code
1 : Read employee record
2 : Print_page_headings
3 : Open employee master file
4 : Set page_count to zero
5 : error_message = ‘Employee number not numeric’
ENDCASE

END

Stamp coupling
Stamp coupling occurs when one module passes a non-global data structure
to another module in the form of a parameter.

Stamp-coupled modules demonstrate loose coupling and offer good
module design quality. The only relationship between the two modules is the
passing of the data structure between them; there is no need for either module
to know the internal logic of the other.

The following pseudocode example shows two modules that are stamp
coupled because of the passing of the current_record data structure.

A Process_transaction_record
:
:
IF transaction record is for a male THEN

Process_male_student (current_record)
ELSE

Process_female_student (current_record)
ENDIF
:
:

END

B Process_male_student (current_record)
increment male_student_count
IF student_age > 21 THEN

increment mature_male_count
ENDIF
:
:

END

Module B

Module A

elementary data item

184 Simple program design

Data coupling

Data coupling occurs when a module passes a non-global data variable to
another module. It is similar to stamp coupling except that the non-global
data variable is an elementary data item, not a data structure.

Modules that are data coupled demonstrate the loosest coupling and offer the
best module design qualities. The only relationship between the two modules
is the passing of one or more elementary data items between them.

The following pseudocode example shows two modules that are
data coupled because they pass the elementary data items total_price and
sales_tax.

A Process_customer_record
:
:
Calculate_sales_tax (total_price, sales_tax)
:

END

B Calculate_sales_tax (total_price, sales_tax)
IF total_price < $10.00 THEN

sales_tax = total_price * 0.25
ELSE

IF total_price < $100.00 THEN
sales_tax = total_price * 0.3

ELSE
sales_tax = total_price * 0.4

ENDIF
ENDIF

END

A summary of coupling levels

When designing solution algorithms, you should aim towards module inde-
pendence and a minimum of information interchange between modules.

If the programming language allows it, try to uncouple each module from
its surroundings by:

1 passing data to a subordinate module in the form of parameters, rather
than using global data

185Chapter 10: Communication between modules, cohesion and coupling

2 writing each subordinate module as a self-contained unit that can

• accept data passed to it
• operate on it without reference to other parts of the program, and
• pass information back to the calling module, if required.

Chapter summary
This chapter introduced communication between modules and parameters.

Intermodule communication was defined as the flow of information or data between
modules. Local and global variables were introduced, along with the scope of a variable
and the side effects of using only global data.

The passing of parameters was introduced as a form of intermodule communication,
and the differences between formal and actual parameters, and value and reference
parameters, was explained. Programming examples using parameters were then
developed.

Module cohesion and module coupling were introduced and must be considered
when designing modular programs. A program that has been well designed has
modules that are independent, easy to read and easily maintained. Such modules are
likely to exhibit high cohesion and loose coupling.

Cohesion is a measure of the internal strength of a module. The higher the cohesion,
the stronger the module. Seven levels of cohesion were discussed, and a pseudocode
example provided for each level.

Coupling is a measure of the extent of information interchange between modules.
The fewer the connections between the modules, the more loosely they are coupled,
offering good module design quality. Five levels of coupling were discussed, and a
pseudocode example provided for each level.

Programming problems
Construct a solution algorithm for the following programming problems. To obtain your
final solution, you should:

• define the problem
• group the activities into modules (also consider the data that each module

requires)
• construct a hierarchy chart
• establish the logic of the mainline using pseudocode
• develop the pseudocode for each successive module in the hierarchy chart
• desk check the solution algorithm.

186 Simple program design

1 Design an algorithm that will produce a reorder list of products from a product inven-
tory file. Each input product record contains the item number, the quantity on hand
for the item, the quantity on order, the minimum inventory level for that item, and an
obsolete code (‘X’ if the item is obsolete, blank if it is not).

Your program is to read the product file and determine which items are to be
reordered. An item is to be reordered if it is not obsolete and if the quantity of the
item currently on hand, plus the amount on order, is less than its minimum inven-
tory level. Print a detail line for each item to be reordered, listing the item number,
quantity on hand, quantity on order and minimum inventory level. Print headings and
column headings at the top of each page, allowing for 45 detail lines per page, and
at the end of the report, print the total number of items to be reordered.

2 Design an algorithm that will produce a list of selected student names from a student
file. Each input student record contains the student’s number, the student’s name,
the number of semester hours the student is currently taking, and the age of the
student.

Your program is to read the student file and prepare a list of names of all full-time
students (students taking 12 or more semester hours) who are 30 years of age or
older. If a student appearing on the list is taking more than 20 semester hours, place
three asterisks after the student’s name. Print a detail line for each student selected,
listing student number, name, age and number of semester hours. Print headings
and column headings at the top of each page, allowing for 45 detail lines per page.
Print the total number of selected students at the end of the report.

3 Design an algorithm that will produce a list of selected customers from a customer
file. Each input record contains the customer’s name, current monthly sales and
year-to-date sales. Each time the program is run, a parameter record containing a
dollar amount is read in as the first record in the file.

Your program is to read the parameter record, followed by the customer file, and
prepare a list of customers whose purchases total at least $10 000 in the current
month. Customers should also be included in the list if their year-to-date sales are
at least as great as the amount read in as the parameter.

Print a detail line for each customer, listing customer’s name, current monthly
sales, year-to-date sales and the parameter amount. Print headings and column
headings at the top of each page, allowing for 45 detail lines per page. Print the total
number of selected customers at the end of the report.

4 Design an algorithm that will produce a tax report from an employee income file.
Each input record contains the employee number and the employee’s taxable
income. There is one record for each employee.

Your program is to read the employee income file and calculate the tax owing on
that employee’s taxable income, according to the following table:

187Chapter 10: Communication between modules, cohesion and coupling

Taxable income Tax payable

$0–14 999.99 20% of taxable income

$15 000–29 999.99 $3000 + 30% of amount greater than $15 000

$30 000–49 999.99 $7500 + 40% of amount greater than $30 000

$50 000–74 999.99 $15 500 + 50% of amount greater than $50 000

$75 000 and above $28 000 + 75% of amount greater than $75 000

Print a detail line for each employee, listing employee number, taxable income
and tax payable. Print headings and column headings at the top of each page,
allowing for 45 detail lines per page. Print the total taxable income and total tax
payable at the end of the report.

5 Design an algorithm that will create a data validation edit report from an inventory
file. Each field on the inventory record is to be validated as follows:

Field Format

Stock number Numeric

Item number Numeric (1–5000)

Description Alphanumeric

Quantity on hand Numeric (500–999)

Quantity on order Numeric (500–999)

Price per unit Numeric (10–1000)

Inventory reorder level Numeric (50–500)

If a field is found to be in error, print a line in the data validation edit report show-
ing the stock number, the item number and an appropriate message, as indicated
in the diagram below. There may be multiple messages for the one record. Print
headings and column headings at the top of each page, allowing for 45 detail lines
per page.

Data validation edit report

Stock number Item number Message

00742 4003 Quantity on hand out of range

00853 5201 Quantity on order out of range

00932 1007 Price per unit not numeric

00932 1007 Reorder level not valid

188 Simple program design

6 Design an algorithm that will produce a list of successful applicants who have
applied at the local Riff Raff department store for credit. Each input record contains
the applicant’s name, employment status, years in current job (if any), years at
current residence, monthly wage, amount of non-mortgage debt, and number of
children.

Your program is to read the applicant’s file and determine whether or not each
applicant will be granted credit. The store grants credit to a person who has worked
in the same job for more than one year, as well as to someone who is employed
and has lived at the same location for at least two years. However, credit is denied
if a person owes more than two months’ wages in non-mortgage debt or has more
than six children.

Print a detail line for each applicant, listing the applicant’s name and whether or
not that applicant has been granted credit. Print headings and column headings at
the top of each page, allowing for 45 detail lines per page. Print the total number of
successful applicants at the end of the report.

7 Design an algorithm that will read a customer file and calculate the percentage dis-
count allowed on a customer’s purchase. Each input record contains the customer’s
number and name, the class code and the number of units purchased. For whole-
sale customers,the input record also contains the distance from the warehouse. The
class code contains either ‘R’ for retail customers or ‘W’ for wholesale customers.
The end-of-file is denoted by a customer number of 99999.

Your program is to read the customer file and determine the percentage
discount, if any, on a customer’s purchase, according to the following guidelines.
Retail customers do not receive any discount, nor do wholesale customers who
purchase fewer than 10 units. A 10% discount is given to wholesale customers
who purchase at least 10 but fewer than 30 units and are within 50 kilometres of
the distributor’s warehouse. If a wholesale customer purchases between 10 and 30
units but is more than 50 kilometres away, only a 5% discount is allowed. Wholesale
customers who purchase 30 or more units receive a 15% discount if they are within
50 kilometres of the warehouse, and a 10% discount if they are more than 50 kilo-
metres away.

Print a detail line for each customer, listing the customer’s number and name,
the class code, the number of units purchased and the percentage discount (if any)
to be applied.

Print headings and column headings at the top of each page, allowing for 45
detail lines per page.

8 The Tidy Phones Telephone Company’s charges file contains records for each call
made by its Metroville subscribers during a month. Each record on the file contains
the subscriber’s name and phone number, the phone number called, the distance
from Metroville of the number called (in kilometres) and the duration of the call (in
seconds).

Design a program that will read the Tidy Phones charges file and produce a
telephone charges report, as follows:

189Chapter 10: Communication between modules, cohesion and coupling

TIDY PHONES PAGE: XX

TELEPHONE CHARGES

SUBSCRIBER NAME SUBSCRIBER NUMBER PHONE NUMBER CALLED COST OF CALL

xxxx xxxxxxxxxx xxx-xxxx-xxxx 999.99

xxxx xxxxxxxxxx xxx-xxxx-xxxx 999.99

TOTAL REVENUE 9999.99

The cost of each call is calculated as follows:

Distance from Metroville Cost ($)/minute

less than 25 km 0.35

25 < km <75 0.65

75 < km < 300 1.00

300 < km < 1000 2.00

greater than 1000 km 3.00

Main headings and column headings are to be printed on the report, allowing
45 detail lines per page. The total revenue line is to be printed three lines after the
last detail line.

9 Design an algorithm that will produce a payroll register from an employee file. Each
input record contains the employee number, the hours worked that week and the
rate of pay.

Your program is to read the employee file and, for each employee number, to
retrieve the employee’s name from a table of employee numbers and names. The
table contains about 100 entries, and is in sequence of employee number, with the
number 9999 used as a sentinel to mark the end of the table. If the employee num-
ber cannot be found in the table, a message is to print on the report and no more
processing is to be performed for that record. The gross pay for each employee is
also to be calculated as hours worked multiplied by rate of pay.

Print a detail line for each employee, listing the employee’s number, name,
hours worked, rate of pay and gross pay. Print headings and column headings at
the top of each page, allowing for 45 detail lines per page. Print the total number
of employees and total gross pay at the end of the report.

10 The Mitre-11 hardware outlets require an inventory control program that is to
accept order details for an item, and generate a shipping list and a back order
list.

Design an interactive program that will conduct a dialogue on the screen for the
input values, and print two reports as required. The screen dialogue is to appear
as follows:

190 Simple program design

ENTER Item No. 99999

Quantity on hand 999

Order quantity 999

Order number 999999

If an item number does not have precisely five digits, an error message is to
appear on the screen. If the quantity on hand is sufficient to meet the order (order
quantity <= quantity on hand), one line is to be printed on the shipping list. If the
quantity on hand is insufficient to meet the order (order quantity > quantity on hand),
the order is to be filled partially by whatever stock is available. For this situation, one
line should appear on the shipping list with the appropriate number of units shipped
(quantity on hand) and a message ‘Order partially filled’. An entry for the balance of
the order (order quantity – quantity on hand) is to be printed on the back order list.

If the quantity on hand is zero, the message ‘Out of stock’ is to appear on the
shipping list, and an entry for the full order quantity is to be printed on the back
order list.

Your program is to continue to process inventory orders until a value of zero is
entered for the item number.

Report layouts for the shipping list and back order list are as follows:

MITRE-11 HARDWARE PAGE XX

INVENTORY CONTROL SHIPPING LIST

ORDER NO. ITEM NO. UNITS SHIPPED MESSAGE

999999 99999 999 —

999999 99999 999 —

MITRE-11 HARDWARE PAGE XX

INVENTORY CONTROL BACK ORDER LIST

ORDER NO. ITEM NO. BACK ORDER QTY

999999 99999 999

999999 99999 999

An introduction to
object-oriented

design

Objectives

• To introduce object-oriented design

• To define objects, classes, attributes, operations and information hiding

• To introduce public and private operations, accessors and mutators

• To list the steps required to create an object-oriented solution to a problem

Outline

11.1 Introduction to object-oriented design

11.2 Public and private access methods

11.3 Steps in creating an object-oriented solution

11.4 Programming examples using object-oriented design

Chapter summary

Programming problems

11

192 Simple program design

11.1 Introduction to object-oriented
design

In this book, program design has concentrated on what a program has to dot
and the organisation of the processes required to achieve the desired output.
In general, data has been considered only when it is required for input, out-
put or calculations in algorithms. This is said to be a procedural approach tol
program design.

This chapter introduces another style of programming called ‘object-
oriented design’. Object-oriented programming uses the same concepts as
procedural programming, but the primary focus is on the things (or objects)
that make up the program rather than on the processes involved. Object-
oriented programming still uses variables, modules and parameters, as well
as sequence, selection and repetition structures; however, some new concepts
and new terminology are also required.

Object-oriented design asks that you interact with the problem in much the
same way that you interact with your world; that is, that you treat the problem
as a set of separate objects that perform actions and relate to each other. An
object-oriented program is a set of interacting objects, each one responsible
for its own activities and data. When considering an object-oriented approach
to a problem, you must:

1 analyse the objects in the program and the tasks to be performed on those
objects, and

2 pass messages to objects identifying the actions to be performed.

What is an object?

There are many objects in the real world. For example, a milk jug is an object.
A milk jug can be large or small, and it can be made from a range of materials,
such as china, metal or plastic, so it is said to have a set of characteristics
such as ‘liquid capacity’ and ‘make’. There are also a number of tasks that a
milk jug can perform, such as ‘filling’ and ‘pouring’. The jug has a handle,
which could be considered a user-friendly interface. When you hold the
handle, you are ‘passing a message’ to the jug to indicate that an operation
such as ‘pouring’ is to be performed.

In object-oriented programming, the milk jug is known as an ‘object’
and the operations to be performed are known as ‘methods’. (In procedural
programming, methods are the same as procedures or modules.)

What is a class?

In object-oriented programming, the term ‘class’ is used to describe a group of
objects that share some common properties. For example, a milk jug, a water
jug and a wine jug could all be objects within the class Jug. All the jugs share
some common properties (they contain liquid and they have a handle) and
each jug is said to be an example or ‘instance’ of the class Jug.

193Chapter 11: An introduction to object-oriented design

Objects and classes

An object can be defined as a container for both a set of characteristics and
a set of operations that can be performed on its data. An object has the
following properties:

• It has an identity that is unique for the lifetime of the object.
• It has data in the form of a set of characteristics (attributes), each of which

has a value at any given point in time.
• It has a set of operations (methods) that can be performed on the data.
• It is an instance (example) of a class.

Consider another real-world object such as a car. Each car object has a unique
identity in the form of its licence number, and has a set of characteristics to
describe it – make, model, number of doors, body length, engine size, colour
and speed. Cars also have a set of operations or actions that they can perform
– accelerate, stop, brake and turn. A Ford Falcon could be an instance of the
class Car.

A class, then, is considered to be a category of obects. The class defines the
basic characteristics or attributes of its objects and the operations or methods
that can be performed on its objects. A class has the following properties:

• It has a unique name. In this book an initial capital letter is used for the
class name to identify it as a class, for example Jug and Car.

• It has data in the form of a set of characteristics or attributes, which it
passes on to each object within the class.

• It has a set of operations or methods, which it passes on to each object
within the class.

The process of creating objects from classes is called instantiation, and many
objects can be instantiated from a single class. Each object will contain the
same attributes, but not necessarily the same values in those attributes.

Attributes

Attributes are the set of properties or characteristics that describe a particular
object. Objects of the same class will have an identical set of attributes, each
with the same name and data type, but the attributes of one object may con-
tain different data values from those of another object. For example, a milk
jug and a wine jug may both have the attribute liquid capacity; however, the
values within that attribute may be different. Furthermore, those data values
may change at any point in an object’s lifetime.

Methods

Objects may receive messages from other objects, asking them to perform
services or operations. They may also need to perform services for themselves.
Thus, objects usually have a set of operations, called ‘methods’, which
perform these services. These methods include all the operations required
to be performed on an object, and are the same as modules in procedural
programming.

194 Simple program design

In pseudocode, the name of the method should be meaningful and
should describe the function of the operation, such as calculateWeeklyPay()
or validateStudentMark(). Convention dictates that empty parentheses are
included after the names of methods to clearly distinguish them from the
names of variables, and to correspond to many programming languages such
as Java and C++. Parameters passed to or from the methods may be enclosed
in the parentheses.

Inheritance

Object-oriented programming uses a concept called inheritance, which allows
a new object to inherit the same attributes and methods as an existing object.
For example, a cream jug may inherit the same attributes and operations as
milk jug, with some additional characteristics if required. Both objects can
access the same methods, such as fillJug() and pourContents().

Class diagram

Object-oriented programming requires classes, attributes and methods to be
represented in a class diagram. This is similar to the way in which a defining
diagram and hierarchy chart were required in procedural programming. A
class diagram consists of a rectangular box divided into three sections, with
the name of the class at the top, the attributes of the class in the middle and
the methods at the bottom.

Class name

attribute 1

attribute 2

method 1

method 2

method 3

Although this class diagram looks new, the attribute list is similar to the input
section of a defining diagram, and the method list is similar to the module
names in a hierarchy chart.

Let us look at the class named Car, represented by the following diagram,
which lists the name of the class, followed by its attributes and the set of
operations that the class can perform.

195Chapter 11: An introduction to object-oriented design

 Car

make

model

doors

bodyLength

engineSize

colour

speed

accelerate()

stop()

brake()

turn(direction)

Note that the class diagram for the class Car simply lists the attributes (data)
and methods (operations) for the class. It does not describe how or w when the
operations are to be performed.

The Ford and Toyota objects in the diagram below are instances of the Car
class. Many car objects can be instantiated from the single Car class. Each car
object will be able to access all the Car class operations, but the values in their
attributes may be different, and can change.

RVJ635 : Car SVU478 : Car

make = ‘Ford’

model = ‘Falcon’

doors = 4

bodyLength = 300

engineSize = 6

colour = ‘blue’

speed = 0

make = ‘Toyota’

model = ‘Corolla’

doors = 5

bodyLength = 200

engineSize = 4

colour = ‘red’

speed = 60

accelerate()

stop()

brake()

turn(direction)

accelerate()

stop()

brake()

turn(direction)

Car objects

As you can see from the examples given, object names, attributes and
operations should be assigned meaningful names.

Encapsulation and information hiding

In the real world, objects are often said to be encapsulated. The word
‘encapsulate’ means ‘to enclose together in a single indivisible unit’, as if in a
capsule. For example, when you turn the ignition key of a car, you expect the car
to start without really needing to know the intricate workings of the engine.

196 Simple program design

Similarly, in object-oriented programming, the way an object processes its
data is usually hidden from other modules or programs in the system. The
object’s internal processes and data can operate independently from the rest
of the system. This means that objects can be used in several places in one
system or across several systems, possibly at the same time, and the code
inside the object can easily be maintained without impacting on the rest
of the system. Conversely, changes to other parts of the system should not
directly affect the object.

In object-oriented design, each object can be regarded as a ‘black box’
whose internal workings are hidden from all other objects. This principle
of ‘information hiding’ simplifies the use of objects, because the rest of the
system does not need to know how they are structured or how they perform
their operations. Information hiding is achieved through encapsulation.

The goal of information hiding is to make the object as robust and
independent as possible. It ensures that attribute values cannot accidentally
be changed by other parts of the system, and carefully controls the interactions
that the object has with other objects.

Let us now look again at Example 10.1, which receives a fraction and
converts that fraction to a percentage.

EXAMPLE 11.1 Calculate percentage value
Design a class that will receive a fraction in the form of a numerator and a denominator,
convert that fraction to a percentage and printp the result. Your program is to use object-
oriented design techniques.

In earlier chapters, to define a problem you first considered the problem state-
ment and then converted the nouns to variables and the verbs to processes or
functions to create a defining diagram, like the one below:

Input Processing Output

numerator Get numerator, denominator percentage

denominator Convert fraction to percentage

Print percentage

Object-oriented design requires that a class diagram be produced instead of a
defining diagram. To create a class diagram, you need to consider the problem
statement, just as you did before. In object-oriented programming, the nouns
will become objects, and the verbs will become methods. (These methods cor-
respond to the processes in the defining diagram.) The words used to describe
the objects will become the attributes of the objects.

Using this guide, the input ‘fraction’ will become the class ‘Fraction’ and
the numerator and denominator will become the attributes of that class. The
methods will become setFraction(), convertFraction() and printPercentage().
The class diagram for the class Fraction will look like this:

197Chapter 11: An introduction to object-oriented design

Fraction

numerator

denominator

setFraction()

convertFraction()

printPercentage()

As for a defining diagram, the class diagram only shows what data and
methods the class will use. Let us now look again at Example 10.3, which
uses a record, and construct a class diagram for that object.

EXAMPLE 11.2 Calculate employee’s pay
A company requires a program to read an employee’s number, pay rate and the number
of hours worked in a week. The program is then to validate the pay rate field and the
hours worked field and, if they are valid, to computep the employee’s weekly pay and
then printp it and the input data.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 60 hours, and the maximum hourly rate is $25.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printedp and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate.
If more than 35 hours have been worked, payment for the overtime hours worked is
calculated at time-and-a-half.

In this example, the employee record will become the class Employee and
the fields on the employee record will become the attributes of the class. The
modules in the hierarchy chart for Example 10.3 will become the methods in
the following class diagram.

Employee

empNumber

payRate

hoursWorked

readEmployeeData()

validateInputFields()

calculateWeeklyPay()

printEmployeeDetails()

198 Simple program design

11.2 Public and private access methods

In object-oriented programming, it is necessary to consider whether the
attributes and operations of an object are to have private or public access.
This concept is called ‘visibility’.

Private access means that the attributes and methods are invisible to the
rest of the system. Usually the attributes of an object are specified as private
access, that is, the attributes can only be accessed by methods within that
class. Public attributes are not desirable as you do not want other methods or
programs to change the data in your object, as this could lead to undesirable
side effects.

The methods of an object are usually specified as public access, that is, the
operations are visible to other objects. When an operation has public access,
other objects can see the specifications of that operation, which is usually its
name, its parameters, if any, and its return value, if any. These specifications
define what the object can do and what information it requires to perform
the service; however, its implementation, or how it is going to perform the
service, remains hidden.

Within an object, there can also be private operations that are needed
to perform the internal actions in an object and which cannot be accessed
directly from outside the object.

To illustrate the concept of visibility, consider a bank account class called
BankAccount, which has an attribute called accountBalance and a number of
methods, as illustrated in the following BankAccount class diagram.

BankAccount

accountBalance

displayBalance()

deposit()

withdraw()

calculateInterest()

verifySufficientFunds()

First, the attribute accountBalance, like all attributes, must be private, as it is
essential that an operation in another object or program is not able to alter a
customer’s account balance.

Second, some of the operations of the BankAccount class must be public,
for example displayBalance(), deposit() and withdraw(), as these operations
help the BankAccount class to interact with external systems such as an ATM.
In pseudocode, these public operations will be preceded by a + (plus) sign in
the class diagram.

To display the current account balance, the public operation
displayBalance() may need the services of a calculateInterest() operation.
Similarly, the public operation withdraw() may need the services of a

199Chapter 11: An introduction to object-oriented design

verifySufficientFunds() operation to check that the account balance is
greater than the withdrawal amount. The calculateInterest() and
verifySufficientFunds() operations are not visible to the user at the ATM;
in fact, they are not visible to any objects outside the BankAccount class.
They are internal operations of each BankAccount class because external
objects do not require them, and therefore they should be declared as private.
In pseudocode, these private operations will be preceded by a – (minus) sign
in the class diagram.

Now let’s look at the BankAccount class diagram with the methods
specified as public or private.

BankAccount

–accountBalance

+displayBalance()

+deposit()

+withdraw()

–calculateInterest()

–verifySufficientFunds()

Let’s now at look again at Example 11.1 and provide the class diagram and
the public and private methods for the class Fraction, using pseudocode and
object-oriented design techniques. Note that the pseudocode for the methods
in this example is similar to the pseudocode for Example 10.1.

EXAMPLE 11.3 Calculate percentage value
Design a class that will receive a fraction in the form of a numerator and a
denominator, convert that fraction to a percentage and displayp y the result.
Your program is to use object-oriented design techniques.

A Class diagram
The class diagram for the class Fraction is as follows:

Fraction

–numerator

–denominator

+setFraction()

–convertFraction()

+displayPercentage()

200 Simple program design

B Methods for the Fraction class

class Fraction
numerator
denominator

setFraction (inNumerator, inDenominator)
numerator = inNumerator
denominator = inDenominator

END

displayPercentage()

convertFraction(percentage)
IF percentage NOT = 0 THEN

Output to screen, percentage, ‘%’
ELSE

Output to screen ‘invalid fraction’, numerator, denominator
ENDIF

END

convertFraction (percentage)
IF denominator NOT = 0

percentage = (numerator / denominator) * 100
ELSE

percentage = 0
ENDIF

END

The attributes numerator and denominator are private in this class. There
is no need to declare percentage as an attribute as it will be derived from the
other attributes.

There are two public methods in this class: setFraction() and
displayPercentage(). The method setFraction() is designed to receive two
external values, named inNumerator and inDenominator, which are passed
to the method as parameters. The method setFraction() will then assign these
external values to the private attributes numerator and denominator. In this
way, the data fields within the class remain private, and no outside object or
program can alter their values. In pseudocode, methods that assign external
values to the attributes of a class start with the word ‘set’.

The public method displayPercentage() will call the private method
convertFraction() and then print the percentage or an error message to the
screen. The method convertFraction() will convert the fraction to a percentage
and pass this value back to the calling module as a parameter. There is no
need for other objects to know how this is achieved.

201Chapter 11: An introduction to object-oriented design

Instantiating objects

Object-oriented programs create objects that are members of a class. Every
time an object is instantiated from a class, a special operation, or set of
instructions, known as a ‘constructor’ method is called or invoked. Constructors
are prewritten methods that have the same name as their class. When called,
the constructor will create an object at a particular memory location and then
assign initial values to the attributes of the new object. Default initial values
are usually zero for numeric data items, and spaces (blanks) for character
fields. The general pseudocode for instantiating a new object is:

Create object-name as new Class-name()

For example:

Create sedan as new Car()

The keyword ‘new’ refers to the creation of a new object, sedan, within the
class Car. When sedan is instantiated as a new Car object, the sedan object
will inherit the same attributes as car and will automatically have access to all
the methods in the Car class. By convention, class names start with an upper
case, or capital letter, such as Car, and object names are written in lower case,
such as sedan.

Constructors may:

• have no parameters, in which case a new object is assigned all the default
values for its attributes, for example Create sedan as new Car(), or

• have parameters that initialise the attributes with specific values, for
example Create sedan as new Car(Ford, Falcon, 4, 300, 6, blue, 0).

If you do not want to use a default constructor, you may write your own
constructor method as a list of statements that initialise the attributes, as
follows:

Car()
make = ‘’
model = ‘’
doors = 0
bodyLength = 0
engineSize = 0
colour = ‘’
speed = 0

END

A programmer-written constructor, as above, will have the same name as
its class and will replace the default constructor. Let us now use a default
constructor to create two new objects, called sedan and hatchback, from the
class Car. In pseudocode, the constructors can be written as:

Create sedan as new Car()
Create hatchback as new Car()

202 Simple program design

These statements not only create the two new objects, they also assign default
values to their attributes. All the attributes will now be visible to the object’s
methods, and all the methods for the class Car, such as accelerate(), stop() and
brake(), can now be accessed by the new objects. When a new object uses an
existing method from its class, it is written in pseudocode as the object name
followed by the name of the method, separated by a period or ‘dot operator’,
for example:

sedan.accelerate()

hatchback.accelerate()

Note that this notation can only be used to access public operations.

Accessors and mutators

Attributes are usually defined as having private access, so the values in the
attributes of an object should be available to all operations used by that object,
but hidden from external objects. For safety, only special public operations,
known as accessors and mutators, should allow external objects to access the
values in attributes.

Accessor operations pass attributes to external objects, but do not change
the values. By convention, accessor names start with the word ‘get’, for
example getFraction(). An accessor is simply a descriptive name for an
operation that retrieves or gets the value of an attribute.

Mutator operations enable external values to be passed to attributes. By
convention, mutator names start with the word ‘set’, for example setPayRate().
A mutator is simply a descriptive name for an operation that provides or sets
the value of an attribute.

Messages

Objects must be able to communicate and interact with other objects, and
this is achieved by the passing of messages. In most cases, a message is a
call made by one object to an operation in another object. The called object
takes responsibility for performing the services defined by that operation.
As mentioned previously, this call is written in pseudocode as the name of
the object followed by the name of the method, separated by a period or ‘dot
operator’, for example:

chequeAccount.displayBalance()

In this example, the chequeAccount object has called the method
displayBalance() to perform the service of displaying the balance of the
cheque account.

In order to produce the required services, the method may need to receive
information from the calling object. In some cases, the method may also
return a value to the caller. In pseudocode notation, these inputs and outputs
are received and sent as parameters enclosed in parentheses after the name
of the method, with the sent values first in the parameter list followed by the

203Chapter 11: An introduction to object-oriented design

returned values. For example, a message to a chequeAccount object request-
ing deposit services would take the form of the following call:

chequeAccount.deposit (amount, newBalance)

In this example, the chequeAccount object has called the method deposit()
and has passed the parameter ‘amount’ to it. The method deposit() will
deposit the amount, calculate the new cheque account balance and then
return this new balance in the parameter newBalance.

11.3 Steps in creating an object-oriented
solution

This chapter has introduced many new concepts and terms that are associated
with object-oriented design. These concepts will now be used to create
object-oriented solutions for some simple programs that use just one class.

There are three steps in creating an object-oriented solution for a problem
with just one class:

1 Identify the objects and their attributes, responsibilities and operations.
2 Design the algorithms for the operations or methods, using structured

design.
3 Develop a test or driver algorithm to test the solution.

To start an object-oriented design, read the problem definition carefully,
looking for nouns and noun phrases. These will become the objects and
the attributes of the objects in the program. To identify the operations, look
closely at the verbs that describe the actions performed by the nouns. It may
help to think about the responsibilities of the objects, and how these might
translate into operations. These attributes, responsibilities and operations can
then be represented in a class table that lists them horizontally, rather than
vertically as in earlier class diagrams.

A class table

Class Attributes Responsibilities Operations

class name attribute 1 operation1()

attribute 2 operation2()

… …

Let us look at some examples.

204 Simple program design

11.4 Programming examples using
object-oriented design

EXAMPLE 11.4 Process exam scores
Design a class that will receive four scores from a mathematics test, calculate the total
and average scores and display the total and average scores to the screen.

Step 1: Identify the objects and their attributes, responsibilities and
operations

To commence the design, as before, underline the nouns and noun phrases to
identify the objects and their attributes.

Design a class that will receive four scores from a mathematics test, calculate the total
and average scoresg and display the total and average scores to the screen.

In the example, it is apparent that a MathsTest class will be required with
attributes of the four scores. There is no need to make the total score or aver-
age score an attribute, because these values will be derived from the input
scores. The class table will now look like this:

Class Attributes Responsibilities Operations

MathsTest score1

score2

score3

score4

Now underline the verb and verb phrases to identify the responsibilities
and the operations that the class is required to perform.

Design a class that will receive four scores from a mathematics test, calculate the total
and average scores and displayp y the total and average scores to the screen.

The underlined verbs and verb phrases indicate that the processes or
responsibilities of the class are as follows: receive the four scores, calculate
the total score, calculate the average score and display the results. These
responsibilities can now be added to the class table:

Class Attributes Responsibilities Operations

MathsTest score1 Receive four scores

score2 Calculate total score

score3 Calculate average score

score4 Display final scores

205Chapter 11: An introduction to object-oriented design

Now that the responsibilities have been established, you need to create a
set of operations or methods to perform these responsibilities and to indicate
whether they will have public or private access.

First, you will need a public method to receive the scores, namely
setScores(). Because it will receive the scores from an external source, this
method will be a mutator method, so by convention it will start with the word
‘set’. You will also need a public method to display the final scores, namely
displayScores(). The calculations for the total and average scores are internal,
so the two methods for these operations can be private, as other objects do not
need to know how these scores are calculated.

These operations can now be added to the class table:

Class Attributes Responsibilities Operations

MathsTest score1 Receive four scores +setScores()

score2 Calculate total score +displayScores()

score3 Calculate average score -calculateTotalScore()

score4 Display final scores -calculateAverageScore()

Step 2: Design the algorithms for the operations, using structured
design

Class MathsTest
score1
score2
score3
score4

Public operations
An algorithm is required for each operation in the class table. The mutator
setScores() requires the scores to be passed to it from an external source in
the form of parameters. The values in these parameters will then be passed to
the attributes of the class MathsTest.

setScores(inScore1, inScore2, inScore3, inScore4)
score1 = inScore1
score2 = inScore2
score3 = inScore3
score4 = inScore4

END

The total and average scores will be displayed to the screen by the method
displayScores(), which calls the private methods calculateTotalScore() and
calculateAverageScore() respectively.

206 Simple program design

displayScores()
calculateTotalScore(totalScore)
calculateAverageScore(totalScore, averageScore)
Output to screen ‘Total Score is’, totalScore
Output to screen ‘Average Score is’, averageScore

END

Private operations
The private operation calculateTotalScore() will calculate the total score from
the input scores and then return this value in a parameter.

calculateTotalScore(totalScore)
totalScore = score1 + score2 + score3 + score4

END

The private operation calculateAverageScore() will receive the total score
as a parameter, use this value to calculate the average score and then return
this value in a parameter.

calculateAverageScore(totalScore, averageScore)
averageScore = totalScore / 4

END

Step 3: Develop a test or driver algorithm to test the solution
The problem definition stated that a class be designed, rather than a program.
This is a common task in object-oriented programming. Rather than develop
a mainline algorithm that might drive an entire program, an object-oriented
solution often requires a test (or driver) algorithm to test all the methods in
the class.

In the test algorithm, the MathsTest class will require a constructor to
create a mathsTest object and provide it with default values. This is achieved
by the following statement:

Create mathsTest1 as new MathsTest()

The empty parentheses indicate that default values will be assigned to
the object’s attributes. The MathsTest class can now be trialled using a test
algorithm called testMathsTest. This testMathsTest algorithm will simply test
that all the methods in the MathsTest class work correctly, as follows:

testMathsTest()
Create mathsTest1 as new MathsTest()
inScore1 = 20
inScore2 = 21
inScore3 = 22
inScore4 = 23
mathsTest1.setScores(inScore1, inScore2, inScore3, inScore4)
mathsTest1.displayScores()

END

207Chapter 11: An introduction to object-oriented design

This algorithm provides initial values for the maths test scores for the
object mathsTest1. These scores are then passed as parameters to the method
setScores(). The method displayScores is then called, which in turn calls cal-
culateTotalScore() and calculateAverageScore(). This test algorithm has now
tested all the methods and the expected output from this test is displayed:

Total Score is 86
Average Score is 21.5

EXAMPLE 11.5 Print student results
Design a class to manage student results in a subject. A unique student number iden-
tifies each student. During the course of the subject, each student completes three
assignments (representing 40% of the final mark, but each scored out of 100) and an
examination (also scored out of 100). The final mark is calculated by multiplying the sum
of the assignments by 0.133, and the examination score by 0.6 and then adding the
two products together.

The class should allow a user to receive a mark for an assignment or examination,
validate that mark, calculate the final mark and print the final mark along with the stu-
dent number for each student.

Step 1: Identify the objects and their attributes, responsibilities and
operations

To commence the design, underline the nouns and noun phrases to identify
the objects and their attributes.

Design a class to manage student results in a subject. A unique student numberq iden-
tifies each student. During the course of the subject, each student completes three
assignmentsg (representing 40% of the final mark, but each scored out of 100) and an
examination (also scored out of 100). The final mark is calculated by multiplying thek
sum of the assignments by 0.133 and the examination score by 0.6 and then adding
the two products together.

The class should allow a user to receive a mark for an assignment or examination,
validate that mark, calculate the final mark and print the final mark along with the stu-
dent number for each student.

In the example, it is apparent that a Student class will be needed,
with attributes of unique student number, three assignment marks and an
examination mark. There is no need to make the final mark an attribute,
because it can be derived from the other attributes. The class chart will now
look like this:

208 Simple program design

Class Attributes Responsibilities Operations

Student studentNumber

asstOne

asstTwo

asstThree

examMark

Now underline the verb and verb phrases to identify the responsibilities
and the operations that the object needs to perform.

Design a class to manage student resultsg in a subject. A unique student number iden-
tifies each student. During the course of the subject, each student completes three
assignments (representing 40% of the final mark but each scored out of 100) and an
examination (also scored out of 100). The final mark is calculated by multiplying the
sum of the assignments by 0.133 and the examination score by 0.6 and then adding
the two products together.

The class should allow a user to receive a mark for an assignment or examinationg ,
validate the mark, calculate the final mark and k print the final markp along with the studentk
number for each student.

The underlined verbs and verb phrases indicate that the processes or
responsibilities of the class are as follows: receive an assignment mark,
receive an exam mark, validate the mark, calculate the final mark and print
the final mark. These responsibilities can now be added to the class table:

Class Attributes Responsibilities Operations

Student studentNumber Receive assignment mark

asstOne Receive exam mark

asstTwo Validate mark

asstThree Calculate final mark

examMark Print final mark

Now that the responsibilities have been established, you need to create a
set of operations or methods to perform these responsibilities and to indicate
whether they will have public or private access.

First, you will need a public method to receive the assignment mark,
namely setAsstMark(). Because it will receive the mark from an external
source, this method will be a mutator method, so by convention, will start
with the word ‘set’. The method setAsstMark() requires two values when it is
called, namely the assignment number and the assignment mark.

209Chapter 11: An introduction to object-oriented design

Similarly, you will also need a public method to receive the examination
mark, namely setExamMark(), which requires an examination mark to be
provided when it is called. You also need a public method to print the final
mark, namely printFinalMark(). The operations to validate the mark and
calculate the final mark will be private as other objects do not need to know
how these marks are calculated.

These operations can now be added to the class table:

Class Attributes Responsibilities Operations

Student studentNumber Receive assignment mark +setAsstMark(asstNum, result)

asstOne Receive exam mark +setExamMark(result)

asstTwo Validate mark –validateMark()

asstThree Calculate final mark –calculateFinalMark()

examMark Print final mark +printFinalMark()

Step 2: Design the algorithms for the operations, using structured
design

Class Student
studentNumber
asstOne
asstTwo
asstThree
examMark

Public operations
An algorithm is required for each operation in the object table. The mutator
setAsstMark() requires two parameters to be passed to it: the assignment num-
ber (a number from 1 to 3) and the result for each assignment. The result will
be validated by the private method validateMark(), before the mark for that
assignment is recorded in the correct attribute.

setAsstMark(inAsstNum, inResult)
validateMark(inResult, validInput)
IF validInput THEN

CASE OF inAsstNum
1: asstOne = inResult
2: asstTwo = inResult
3: asstThree = inResult

OTHER
Print ‘Invalid Assignment number’, inAsstNum

ENDCASE
ENDIF

END

210 Simple program design

Similarly, the mutator setExamMark() will require the examination result
to be passed to it. This result will also be validated by validateMark() before
being used.

setExamMark(inResult)
validateMark(inResult, validInput)
IF validInput THEN

examMark = inResult
ENDIF

END

The results will be printed by the method printFinalMark(), which calls
the method calculateFinalMark() to calculate the final mark before printing.

printFinalMark()
calculateFinalMark(finalMark)
Print ‘Student’, studentNumber, ‘Final mark is’, finalMark

END

Private operations
The valid range for the assignment and examination results can be tested in
validateMark(), to ensure that no invalid marks are recorded in the attribute
values. This operation will return the parameter validInput, which indicates
if the input mark is valid.

validateMark(inResult, validInput)
Set validInput to true
IF (inResult < 0 OR inResult >100) THEN

Set validInput to false
Print ‘Input mark invalid’, inResult

ENDIF
END

The private method calculateFinalMark() will calculate the final mark and
return this value in a parameter.

calculateFinalMark(finalMark)
finalMark = (asstOne + asstTwo + asstThree) * 0.133
finalMark = finalMark + (examMark * 0.6)

END

Step 3: Develop a test or driver algorithm to test the solution
As in the previous example, the problem definition stated that a class be
designed, rather than a program, so a test algorithm called testStudent will be
developed to test all the methods in the Student class.

211Chapter 11: An introduction to object-oriented design

In the test algorithm, the Student class will require a constructor to create
a student object and initialise its attributes. All the attributes will be set to
zero; however the value of the studentNumber attribute will be passed as a
parameter to the constructor, so a special constructor will need to be written
to receive this parameter. This constructor will have the same name as its
class and will replace the default constructor, as follows:

Student(inStudentNumber)
studentNumber = inStudentNumber
asstOne = 0
asstTwo = 0
asstThree = 0
examMark = 0

END

The pseudocode to create a student object will now be:

Create student1 as new Student(studentNumber)

The Student class can now be trialled using a test algorithm called testStudent.
This testStudent algorithm will simply test that all the methods in the Student
class work correctly, as follows:

testStudent()
studentNumber = 111000
Create student1 as new Student(studentNumber)
asstNum = 1
result = 60
student1.setAsstMark(asstNum, result)
asstNum = 2
result = 65
student1.setAsstMark(asstNum, result)
asstNum = 3
result = 70
student1.setAsstMark(asstNum, result)
result = 80
student1.setExamMark(result)
student1.printFinalMark()
studentNumber = 222000
Create student2 as new Student(studentNumber)
result = 95
student2.setExamMark(result)
student2.printFinalMark()

END

212 Simple program design

This algorithm provides values for the three assignments and the exam
for the object student1, and a value for the exam only for the object student2.
The testStudent algorithm then tests all the methods in the Student class and
produces the following output:

Student 111000 Final mark is 74
Student 222000 Final Mark is 57

Chapter summary
Object-oriented design focuses on the objects that make up a program rather than on
the processes involved. Instead of breaking up the problem into functions, the problem
is broken up into the objects in the system, and the attributes and methods for each
object are then identified.

An object can be defined as a container for both a set of characteristics and a set
of operations that can be performed on the data. Objects encapsulate their data and
operations, and can be regarded as ‘black boxes’ for the purposes of large system
design. Objects are instantiated from classes and can inherit the same attributes and
methods as an existing object.

Operations that are accessible by external objects are described as having public
access, and operations that are internal to the object have private access.

The steps in designing an object-oriented solution for a simple programming
problem are:

1 Identify the classes and their attributes, responsibilities and operations.
2 Design the algorithms for the operations, using structured design.
3 Develop a test or driver algorithm to test the solution.

Programming problems

1 Use object-oriented design to design a class called Circle that will receive the diam-
eter of a circle, and calculate and display the circumference and the area of that
circle.
a Design the class table.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

2 Use object-oriented design to design a class called Rectangle that will receive the
length and breadth of a rectangle, validate the input data and calculate and display
the area of the rectangle.
a Design the class table.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

213Chapter 11: An introduction to object-oriented design

3 Use object-oriented design to design a class called Book that will receive the ISBN,
author, title and price of a book. Your class is to select and print the details of all
books with a price of more than $50.00.
a Design the class table.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

4 Use object-oriented design to design a class called MathsTest that will receive an
array of 30 mathematics scores from a Mathematics exam, calculate the class aver-
age from the scores and display the class average to the screen.
a Design the class table.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

5 A parts inventory record contains the following fields:
• part number (6 characters, 2 alpha and 4 numeric, e.g. AA1234)
• part description
• inventory balance.
Use object-oriented design to design a class called Inventory that will receive the
input record, validate the part number and print the details of all valid inventory
records that have an inventory balance equal to zero.
a Design the class table.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

6 Use object-oriented design to design a class called Employee that determines the
weekly salary for a company’s full-time employees. Each employee record con-
tains the employee’s number, name and hourly wage. Your class is to receive the
employee data, validate the hourly wage and calculate the weekly salary, assuming
all employees are paid for a 40 hour week. The hourly wage validation is to check
that hourly wage is less than $30.00 per week. If the wage is greater than $30.00
then it is to revert to $30.00.
a Design the class table.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

7 Use object-oriented design to design a class called PhoneBill that calculates and
prints the balance owed by each customer of a phone company during the billing
period. Your PhoneBill class is to receive the customer’s current balance and the
total time, in minutes, of phone calls during the billing period. The input time is to be
validated and the cost of calls is to be calculated at 25c per minute. Your class is to
print the input balance, the phone call time, the cost of the phone calls and the total
amount due.
a Design the class table.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

214 Simple program design

 8 Use object-oriented design to design a class to manage a share portfolio.
Shareholdings are identified by the company name, the number of shares pur-
chased, the date of the purchase, the cost per share and the current price per
share. You must be able to calculate the value of current shares, the profit or loss
made on the stock purchased and be able to sell the shares.
a Design the class table.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the class.

 9 Write an algorithm for a default constructor for the Share class in Problem 8.
 10 Use object-oriented design to design a class called LoanAccount that receives an

account number, an account name, the amount borrowed, the term of the loan
and the interest rate. The amount borrowed must be positive and less than or
equal to $100 000.00, the term must be less than 30 years and the interest rate
must be less than 15%. Your class is to validate the input data and print all the loan
information.
a Design the class table.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the class.

Object-oriented
design for more

than one class

Objectives

• To describe relationships between classes

• To introduce a simplified unified modelling language

• To introduce polymorphism and operation overriding in object-oriented
design

• To develop object-oriented solutions to problems using more than one class

Outline

12.1 Further object-oriented design

12.2 Steps in creating an object-oriented solution using more than one class

12.3 Programming examples using more than one class

Chapter summary

Programming problems

12

216 Simple program design

12.1 Further object-oriented design

Chapter 11 introduced some object-oriented design concepts and terminology,
and provided three steps to follow when designing an object-oriented solution
to a simple problem. This chapter introduces some more concepts and
terminology for problems that use more than one class, and provides an extra
step to follow when designing object-oriented solutions to these problems.

A major advantage of object-oriented programming languages is their
usefulness in constructing large programs; however, it would be very unusual
for a program to make use of only one class. In designing programs that use
more than one class, it is necessary to consider not only the individual class
design but also the relationships between the classes and therefore between
the objects that are instantiated from those classes.

Notations

Object-oriented design and object-oriented programming have taken some
time to mature as methodologies. A notation called UML (Unified Modelling
Language) has emerged from the work of Rumbaugh, Booch and Jacobsen.
The notation in this chapter is based on a simplified UML standard.

UML notation allows a programmer to represent graphically the
relationships between classes as well as between objects. This chapter will
introduce some of the UML graphical notation used to design classes and
their relationships.

Relationships between classes

When more than one class is used in a program, there can be three types of
relationships between the classes:

1 Two classes may be independent of each other but one class might use the
services the other provides. This relationship is called an association.

2 A class may be made up of other classes, or contain other classes that are
part of itself. This form of relationship is called either an aggregation or a
composition.

3 A class may inherit all the attributes and operations of a parent class, butt
is given a unique name, as well as its own additional attributes and opera-
tions. This form of relationship between a parent and child class is called
generalisation.

Examples will be used to expand these relationships further.

Association
An association between two classes is required when the classes need to
interact or communicate with each other for the program to achieve its
purpose. For example, a Car class and a Garage class are independent, although
a car may sometimes use garage services such as parking. As a result of this
association, objects that are instantiated from these two classes will be able

Car Garage
uses �

1..2 1

RVJ635 : Car

K18 : Garage

SUV478 : Car

217Chapter 12: Object-oriented design for more than one class

to communicate by passing or receiving messages. In some circumstances, a
garage object will be created without a car object, and vice versa.

Just as instances of classes are called objects, instances of associations
are called links. In a class diagram, a straight line and a small arrow indicate
the direction in which to read the description of the association, although
association allows communication in both directions. Classes that have an
association are able to communicate by passing messages; that is, one object
will make a call to an operation in another object. The numbers at each end
of the association show how many objects can have this association, when it
is instantiated.

The diagram above shows the association relationship between a Car class
and a Garage class. The numbers indicate that there is one garage object that
can be used by one or two car objects. Once an object is instantiated from each
of the classes, the UML diagram may look like this:

This association relationship can be described in two ways, namely, ‘Two car
objects use a garage object’, or, in the other direction, ‘A garage object is used
by 1 or 2 car objects’.

Aggregation and composition
Aggregation and composition are special forms of association in which
a whole class is made up of several part classes. For example, a major
department store may be made up of several departments, such as Electrical
Department, Manchester Department etc. These are whole–part associations:
one class is the whole that is made up of several parts. The class at the whole
end can have attributes and operations of its own, as well.

The mildest form of this association relationship is called aggregation,
in which the part or t component classes that make up the whole are able tot
exist without necessarily being part of the aggregation. In UML notation, an
open diamond positioned at the whole end of the association represents an
aggregation, as shown:

Manchester Department Clothing DepartmentElectrical Department

Mitsuko Department Store

Engine Steering assemblyChassis

Car

218 Simple program design

This diagram shows an aggregation relationship between the Mitsuko
Department Store and the departments that make it up, namely Manchester,
Electrical and Clothing.

The strongest form of association relationship is called a composition. Its
component classes can only exist during the lifetime of the container object
and cannot exist outside the composition. When the whole object is created,
all of the needed component objects are created. When the whole object is
destroyed, all of its component objects are also destroyed.

For example, a car is a composition of many parts, including an engine.
So, every object of the Car class needs to have an object of the Engine
class to be able to work effectively; however, an object of the Engine class
cannot fulfil all of its responsibilities outside its vehicle. In UML notation,
a filled diamond positioned at the whole end of the association represents a
composition relationship, as shown:

This diagram shows that an Engine, a Chassis and a Steering assembly can
only exist as part of a Car, and that any Car can only have one Engine, one
Chassis and one Steering assembly.

1 1 1

Vehicle

make
model

stop()
turn()
accelerate()

Car

trunkSize

openTrunk()

Bicycle

frameType

219Chapter 12: Object-oriented design for more than one class

Generalisation
Sometimes, one class shares features with another class, but has enough
differences to deserve its own identity. The first class then becomes a type of
the second class. For example, cars are a type of vehicle, just as bicycles and
buses are types of vehicles. Generalisation is a class hierarchy that lets us
group the shared attributes and operations into a top-level class, and then to
define one or more lower-level classes with extra or different attributes and
operations. The top-level class, also called the parent class or superclass, has
shared attributes and operations, and the child classes or subclasses, inherit
these, adding their own attributes and operations to make them distinct.

Let us look at an example that uses a Vehicle class as the parent class. The
Vehicle class has a set of attributes that are shared by all vehicles, such as make
and model. It also has a set of operations that are shared by all vehicles, such
as stop(), turn() and accelerate(). The Vehicle class may have two child classes
such as Car class and Bicycle class. The Car child class will inherit all thet
attributes and operations of the Vehicle superclass, but it may have additional
attributes that are particular to cars, such as trunkSize, and operations, such
as openTrunk(). Similarly, the Bicycle class will inherit all the attributes and
operations of the Vehicle superclass, but it may have an additional attribute
such as frameType. In UML notation an open-headed arrow positioned at the
parent class represents this generalisation relationship, as shown:

This diagram shows that Car and Bicycle are both types of Vehicle.
Generalisation notation is different from association notation in UML,
because it represents a type of class hierarchy instead of an association.

Polymorphism

Polymorphism, meaning many-shaped, refers to the use of the same method
name in different classes to perform a variety of purposes. Each method is
designed to work appropriately, based on the context in which it is used.
Using the Vehicle example, the car and bicycle objects inherit all the same

Vehicle

make
model

stop()
turn()
accelerate()

Car

trunkSize

accelerate()
openTrunk()

Bicycle

frameType

accelerate()

220 Simple program design

attributes and operations as a vehicle object; however, the operation to
accelerate() for a car is quite different from accelerate() for a bicycle. Both
objects need the operation accelerate(), but it is achieved in quite different
ways for objects of each type. The Car and the Bicycle classes will each need
to provide their own definition of accelerate() to be complete. This is an
example of polymorphism.

Operation overriding

Operation overriding occurs when a parent class provides an operation,g
but the inheriting child class defines its own version of that operation. In
the above example, both Car and Bicycle inherit an accelerate() operation
from their parent class Vehicle. The accelerate() operation in the Car object
is different from the accelerate() operation in the Bicycle object, although
it has the same name and purpose. Both operations are probably different
from the accelerate() operation in Vehicle. Therefore, whenever accelerate()
is called for by an object such as Car or Bicycle, the version of the operation
used by that particular object will be utilised. In other words, the operation
in a subclass will override the operation in the superclass. In pseudocode,
the operation can be written with the dot notation, such as car.accelerate() or
bicycle.accelerate().

Operation overloading

Operation overloading occurs when several operations in a single class haveg
the same name, but will act differently according to the number of parameters
that are passed to the operation when it is called. For example, a bicycle class
may have two versions of the stop() operation, such as stop(handbrake) and
stop(handbrake, footbrake). When a call is made to the operation stop(), the
number of arguments in the call is evaluated and the correct stop() operation
for the object is invoked.

221Chapter 12: Object-oriented design for more than one class

Scope of the data

As soon as an object is created, the data that an object needs is brought within
its scope. Attribute values are available to all the operations within the class
and are visible to each operation. For example, when a vehicle object is
created from the Vehicle class, values are available for its attributes (make and
model) and these attributes are visible to all its operations.

12.2 Steps in creating an
object-oriented solution using
more than one class

In Chapter 11 there were three steps to follow when considering an object-
oriented solution to a problem that uses only one class. For problems that use
more than one class, there are now four steps to follow to create an object-
oriented solution:

1 Identify the classes and their attributes, responsibilities and operations.
2 Determine the relationship between the objects of those classes.
3 Design the algorithms for the operations or methods, using structured

design.
4 Develop a test or driver algorithm to test the solution.

To start an object-oriented design, read the problem definition carefully,
looking for nouns and noun phrases. These will become the objects and
the attributes of the objects in the program. To identify the operations, look
closely at the verbs that describe the actions performed by the nouns. It may
help to think about the responsibilities of the objects, and how these might
translate into operations. These responsibilities can then be represented,
along with the other sections of a class diagram, in a class table, as follows:

A class table

Class Attributes Responsibilities Operations

class name attribute 1 operation1()

attribute 2 operation2()

… …

The relationships between the classes can also be represented using UML
notation. Let us now look at some examples.

222 Simple program design

12.3 Programming examples using
more than one class

EXAMPLE 12.1 Square and cube
Design a class named Square that will receive a value for the side of the square, validate
that value, and calculate and display the area of the square. You are then to design a
child class called Cube that will use the existing methods of its parent class to receive
and validate the side of the cube and create a new method to calculate and display the
volume of the cube.

Step 1: Identify the classes and their attributes, responsibilities
and operations

To commence the design, underline the nouns and noun phrases to identify
the objects and their attributes.

Design a class named Squareq that will receive a value for the side of the squareq , validate
that value, and calculate and display the area of the square. You are then to design a
child class called Cube that will use the existing methods of its parent class to receive
and validate the side of the cube and create a new method to calculate and display the
volume of the cube.

In this example, a Square class is required with an attribute called sideLength.
A Cube class is also required, which will inherit the same attribute, so there is
no need to list it again in the class table. There is no need to make the area of
the square or the volume of the cube an attribute, because these values will be
derived from the input side length. The class table will now look like this:

Class Attributes Responsibilities Operations

Square sideLength

Cube

Now underline the verb and verb phrases to identify the responsibilities
and the operations that the class is required to perform.

Design a class named Square that will receive a value for the side of the square, validate
that value,, and calculate and display the area of the squarep y q . You are then to design a
child class called Cube that will use the existing methods of its parent class to receive
and validate the side of the cube and create a new method to calculate and display thep y
volume of the cube.

The underlined verbs and verb phrases indicate that the processes or respon-
sibilities of the Square class are as follows: receive a side length value, vali-
date the side length value, calculate the area of the square and display the
result. For the Cube class, the first two operations will be inherited, so the
only new process will be to calculate and display the volume of the cube.
These responsibilities can now be added to the class table, as follows:

Square

–sideLength

+setSideLength()
+validateSideLength()
+calculateSquareArea()

Cube

+calculateCubeVolume()

223Chapter 12: Object-oriented design for more than one class

Class Attributes Responsibilities Operations

Square sideLength Receive side length

Validate side length

Calculate and display area

Cube Calculate and display volume

Now that the responsibilities have been established, you need to create a set
of operations or methods to perform these responsibilities and to indicate
whether they will have public or private access.

First, you will need a public method – setSidelength() – to receive the side
length. Because it will receive the side length from an external source, this
method will be a mutator method and will be used by both classes.

You will also need a public method to validate the input side length,
namely validateSideLength, which will also be used by both classes.

A method is required to calculate and display the area of the square, and
another method is required to calculate and display the volume of the cube.
These operations can now be added to the class table, as follows:

Class Attributes Responsibilities Operations

Square sideLength Receive side length +setSideLength()

Validate side length +validateSideLength()

Calculate and display area +calculateSquareArea()

Cube Calculate and display volume +calculateCubeVolume()

Step 2: Determine the relationship between the objects of those
classes

The class table indicates that there are two classes, a parent Square class and a
child Cube class. The following diagram shows a simplified UML notation:

224 Simple program design

Step 3: Design the algorithms for the operations, using structured
design

1 Square class
The mutator setSideLength() requires the side length to be passed to it in the
form of a parameter. The value in the parameter will then be passed to the
sideLength attribute.

setSideLength(inSidelength)
sideLength = inSideLength

END

The public operation calculateSquareArea() calls a method to validate the
side length and, if it is valid, calculates the area of the square and displays
the result.

calculateSquareArea()

validateSideLength(validInput)
IF validInput

squareArea = sideLength * sideLength
Display ‘Area of square of side’, sidelength, ‘is’, squareArea

ELSE
Display ‘Invalid input’, sidelength

ENDIF
END

The public operation validateSideLength() validates the sideLength attribute
and returns a parameter called validInput, which indicates if the side length
is valid.

validateSideLength(validInput)
validInput = true
IF sideLength NOT numeric THEN

validInput = false
ELSE

IF sideLength < 0 THEN
validInput = false

ENDIF
ENDIF

END

2 Cube class
The Cube class will inherit the existing attributes and operations of the Square
class. In addition, it requires a public operation calculateCubeVolume() that
calls the method validateSideLength() and, if valid, calculates and displays
the volume of the cube.

225Chapter 12: Object-oriented design for more than one class

calculateCubeVolume()

validateSideLength(validInput)
IF validInput

cubeVolume = sideLength * sideLength * sideLength
Display ‘Volume of cube of side’, sidelength, ‘is’, cubeVolume

ELSE
Display ‘Invalid input’, sidelength

ENDIF
END

Step 4: Develop a test or driver algorithm to test the solution
A test algorithm, called testSquareCube() will be written to test the operations
in both classes. In the test algorithm, the Square class will require a default
constructor to create a square object and initialise the attribute sideLength.
Similarly, the Cube class will require a constructor to create a cube object.
This is achieved by the following statements:

Create square1 as new Square()

Create cube1 as new Cube()

The two classes can now be trialled using a test algorithm called test-
SquareCube. This algorithm will simply test that all the methods in both
classes work correctly, as follows:

testSquareCube()

Create square1 as new Square()

Create cube1 as new Cube()

inSideLength = 5
square1.setSideLength(inSideLength)
square1.calculateSquareArea()

cube1.setSideLength(inSideLength)
cube1.calculateCubeVolume()

END

This algorithm provides an initial value for sideLength, which will be
used by the objects square1 and cube1. The test algorithm then tests the meth-
ods for both classes, with the expected output as follows:

Area of square of side 5 is 25
Volume of cube of side 5 is 125

EXAMPLE 12.2 Calculate employee’s pay
Design a parent class named Employee that will calculate the weekly pay for a com-
pany’s full-time employees. The class is to receive the employee’s number, name and
hourly pay rate; validate the pay rate (the pay rate must be numeric and less than or
equal to $30.00 per hour); and calculate the employee’s weekly pay, assuming that all
full-time employees work a 38 hour week.

226 Simple program design

You are then to design a child class called PartTimeEmployee that will use the exist-
ing attributes and methods of its parent class, Employee. The PartTimeEmployee class
will receive an extra input value for the number of hours worked, which it must validate
(number of hours worked must be valid and less than 38) and then use it to calculate
the employee’s weekly pay (pay rate times number of hours). For both classes, the
employee’s number, name and weekly pay are to be displayed.

Step 1: Identify the classes and their attributes, responsibilities
and operations

To commence the design, underline the nouns and noun phrases to identify
the objects and their attributes.

Design a parent class named Employeep y that will calculate the weekly payy p y for a com-
pany’s full-time employees. The class is to receive the employee’s number, name andp y ,
hourly pay ratey p y ; validate the pay rate (the pay rate must be numeric and less than or
equal to $30.00 per hour); and calculate the employee’s weekly payy p y, assuming that all
full-time employees work a 38 hour week.

You are then to design a child class called PartTimeEmployeep y that will use the exist-
ing attributes and methods of its parent class, Employee. The PartTimeEmployee class
will receive an extra input value for the number of hours worked, which it must validate
(number of hours worked must be valid and less than 38) and then use it to calculate
the employee’s weekly payy p y (pay rate times number of hours). For both classes, the
employee’s number, name and weekly pay are to be displayed.

In this example, an Employee class is required with attributes of employee
number, employee name and hourly pay rate. There is also a PartTimeEmployee
class, which will inherit these attributes, with an additional attribute of num-
ber of hours worked. The weekly pay is calculated by both classes and is an
important part of the output, so it will become an attribute of the Employee
class. The class table will now look like this:

Class Attributes Responsibilities Operations

Employee employeeNumber

employeeName

payRate

weeklyPay

PartTimeEmployee hoursWorked

Now underline the verb and verb phrases to identify the responsibilities
and the operations that the class is required to perform.

Design a parent class named Employee that will calculate the weekly payy p y for a com-
pany’s full-time employees. The class is to receive the employee’s number, name andp y ,
hourly pay ratey p y ; validate the pay ratep y (the pay rate must be numeric and less than or

227Chapter 12: Object-oriented design for more than one class

equal to $30.00 per hour); and calculate the employee’s weekly pay, assuming that all
full-time employees work a 38 hour week.

You are then to design a child class called PartTimeEmployee that will use the exist-
ing attributes and methods of its parent class, Employee. The PartTimeEmployee class
will receive an extra input value for the number of hours worked, which it must validate,
(number of hours worked must be valid and less than 38) and then use it to calculate
the employee’s weekly pay (pay rate times number of hours). For both classes, the
employee’s number, name and weekly pay are to be displayedp y .

The underlined verbs and verb phrases indicate that the responsibilities
of the Employee class are as follows: receive employee data, validate the
pay rate, calculate the weekly pay and display the complete employee data.
For the PartTimeEmployee class, the operations to validate the pay rate, and
display the employee data will be inherited. It will require new operations to
receive and validate the number of hours worked and calculate the weekly
pay. These responsibilities can now be added to the class table, as follows:

Class Attributes Responsibilities Operations

Employee employeeNumber Receive employee data

employeeName Validate pay rate

payRate Calculate weekly pay

weeklyPay Display employee data

PartTimeEmployee hoursWorked Receive employee data

Validate hours worked

Calculate weekly pay

Now that the responsibilities have been established, you need to create a
set of operations or methods to perform these responsibilities and to indicate
whether they will have public or private access.

First, both classes will need a public method to receive the employee
data, namely setEmployeeData(). The two methods will have the same name;
however, the method for the PartTimeEmployee class will receive an extra
parameter value for the number of hours worked.

The Employee class will need a public method to validate the input
pay rate, namely validatePayRate(), and the PartTimeEmployee class will
need a public method to validate the number of hours worked, namely
validateHoursWorked().

Both classes will need a public method to calculate the weekly pay,
namely calculateWeeklyPay(). The two methods will have the same name but
contain different calculations, depending on whether the employee object is
full-time or part-time.

The public method to display the complete employee data, namely dis-
playEmpData() will be used by both classes. These operations can now be
added to the class table, as follows:

Employee

–employeeNumber
–employeeName
–payRate
–weeklyPay

+setEmployeeData()
+validatePayRate()
+calculateWeeklyPay()
+displayEmpData()

PartTimeEmployee

–hoursWorked

+setEmployeeData()
+validateHoursWorked()
+calculateWeeklyPay()

228 Simple program design

Class Attributes Responsibilities Operations

Employee employeeNumber Receive employee data +setEmployeeData()

employeeName Validate pay rate +validatePayRate()

payRate Calculate weekly pay +calculateWeeklyPay()

weeklyPay Display employee data +displayEmpData()

PartTimeEmployee hoursWorked Receive employee data +setEmployeeData()

Validate hours worked +validateHoursWorked()

Calculate weekly pay +calculateWeeklyPay()

Step 2: Determine the relationship between the objects of those
classes

The class table indicates that there are two classes, a parent Employee class
and a child PartTimeEmployee class. The following diagram shows a simpli-
fied UML notation:

Step 3: Design the algorithms for the operations, using structured
design

1 Employee class
The mutator setEmployeeData() requires input values for employee number,
employee name and pay rate to be passed to it in the form of parameters. The
values in the parameters will then be passed to the appropriate attributes.

229Chapter 12: Object-oriented design for more than one class

setEmployeeData(inEmployeeNumber, inEmployeeName, inPayRate)
employeeNumber = inEmployeeNumber
employeeName = inEmployeeName
payRate = inPayRate

END

The public operation calculateWeeklyPay() calls the method validatePayRate()
to validate the input pay rate attribute and, if valid, to calculate the weekly
pay.

calculateWeeklyPay()

validatePayRate(validInput)
IF validInput

weeklyPay = payRate * 38
displayEmpData()

ELSE
Display ‘Invalid pay rate’, payRate

ENDIF
END

The public method, validatePayRate(), validates the payRate attribute and
returns the parameter validInput, which indicates if the pay rate attribute is
valid.

validatePayRate(validInput)
validInput = true
IF payRate NOT numeric THEN

validInput = false
ELSE

IF payRate > 30 THEN
validInput = false

ENDIF
ENDIF

END

The public method displayEmpData() is required to display the employee
data, including the weekly pay. Both classes will use this method.

displayEmpData()

Display employeeNumber, employeeName, weeklyPay
END

2 PartTimeEmployee class
The PartTimeEmployee class will inherit the existing attributes and opera-
tions of the Employee class. In addition, it requires the hoursWorked attribute
to be received and validated and then used in the calculation of the weekly
pay. This means that the method setEmployeeData() for this class will

230 Simple program design

require four parameters instead of three. This is an example of operation
overloading; that is, if the calling operation sends three parameters to the
method setEmployeeData(), the Employee class method will be called, but
if the calling operation sends four parameters, the PartTimeEmployee class
method will be called. The pseudocode for this mutator is as follows:

setEmployeeData(inEmployeeNumber, inEmployeeName, inPayRate,
inHoursWorked)

employeeNumber = inEmployeeNumber
employeeName = inEmployeeName
payRate = inPayRate
hoursWorked = inHoursWorked

END

Because the PartTimeEmployee class inherits all the operations of its par-
ent class, the mutator could also have been written with an ‘inherit’ pseudo-
code statement, to avoid the repetition of code, as follows:

setEmployeeData(inEmployeeNumber, inEmployeeName, inPayRate,
inHoursWorked)

inherits Employee’s setEmployeeData (inEmployeeNumber,
inEmployeeName, inPayRate)

hoursWorked = inHoursWorked
END

The public operation calculateWeeklyPay() calls the methods
validatePayRate() and validateHoursWorked() to validate the input attributes
and, if valid, calculates the weekly pay. This method has the same method
name as the calculateWeeklyPay() method for full-time employees and so is
an example of method overriding.

calculateWeeklyPay()

validatePayRate(validInput)
IF validInput

validateHoursWorked(validInput)
IF validInput

weeklyPay = payRate * hoursWorked
displayEmpdata()

ELSE
Display ‘Invalid hours worked’, hoursWorked

ENDIF
ELSE

Display ‘Invalid pay rate’, payRate
ENDIF

END

231Chapter 12: Object-oriented design for more than one class

The public method validateHoursWorked() validates the hoursWorked
attribute and returns the parameter validInput.

validateHoursWorked(validInput)
validInput = true
IF hoursWorked NOT numeric THEN

validInput = false
ELSE

IF hoursWorked > 38 THEN
validInput = false

ENDIF
ENDIF

END

Step 4: Develop a test or driver algorithm to test the solution
A test algorithm, called testEmployee() will be written to test the operations
in both classes. In the test algorithm, the Employee class will require
a constructor to create an employee object and initialise the attributes.
Similarly, the PartTimeEmployee class will require a constructor to create a
partTimeEmployee object. This is achieved by the following statements:

Create employee1 as new Employee()

Create partTimeEmployee1 as new PartTimeEmployee()

The two classes can now be trialled using a test algorithm called testEmployee.
This algorithm will simply test that all the methods in both classes work
correctly:

testEmployee()

Create employee1 as new Employee()

inEmployeeNumber = 2121
inEmployeeName = ‘Sam Jones’
inPayRate = 25
employee1.setEmployeeData(inEmployeeNumber, inEmployeeName,
 inPayRate)
employee1.calculateWeeklyPay()

Create partTimeEmployee1 as new PartTimeEmployee()

inEmployeeNumber = 3131
inEmployeeName = ‘Peter Smith’
inPayRate = 26
inHoursWorked = 30
partTimeEmployee1.setEmployeeData(inEmployeeNumber,
 inEmployeeName, inPayRate, inHoursWorked)
partTimeEmployee1.calculateWeeklyPay()

END

232 Simple program design

The above test algorithm tests the methods for both classes, with the expected
output as follows:

2121 Sam Jones $950.00
3131 Peter Smith $780.00

Data validation
The first two examples in this chapter have handled the validation of the
input data as a separate operation. However an object-oriented approach to
data validation places the validation of the data immediately after the data
has been received, that is, in the mutator method. Validating the input data
in the mutator ensures that only valid values will be passed to the attributes
of the class. This next example uses this approach.

EXAMPLE 12.3 Produce employee payslips
Design a Payroll class to manage the employee payroll for a large company. The Payroll
class is to read a file of employee timesheets and for each employee, call on the ser-
vices of a Payslip class to calculate that employee’s weekly pay and print a payslip.

The Payslip class is to receive the employee’s number, pay rate and the number of
hours worked in a week. The class is to validate the pay rate field and the hours worked
field and, if valid, compute the employee’s weekly pay and then print it and the input
data onto a payslip.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 45 hours, and the maximum hourly rate is $30.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printed and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 38 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

Step 1: Identify the classes and their attributes, responsibilities and
operations

To commence the design, underline the nouns and noun phrases to identify
the objects and their attributes.

Design a Payroll classy to manage the employee payroll for a large company. The
Payroll class is to read a file of employee timesheetsp y and for each employee, call on the
services of a Payslip class to calculate that employee’s weekly payy p y and print a payslipp y p.

The Payslip classy p is to receive the employee’s number, pay rate and the number of p y , p y
hours worked in a week. The class is to validate the pay rate field and the hours worked
field and, if valid, compute the employee’s weekly payy p y and then print it and the input
data onto a payslip.

233Chapter 12: Object-oriented design for more than one class

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 45 hours, and the maximum hourly rate is $30.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printed and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 38 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

In this example, the Payroll class requires an attribute of the employee
timesheets, and the Payslip class requires attributes of employee number, pay
rate and hours worked. The weekly pay is calculated by both classes and is
an important part of the output, so it will become an attribute of the Payslip
class. The class table will now look like this:

Class Attributes Responsibilities Operations

Payroll employeeTimesheets

Payslip empNumber

payRate

hoursWorked

weeklyPay

Now underline the verb and verb phrases to identify the responsibilities
and the operations that the class is required to perform.

Design a Payroll class to manage the employee payrollg p y p y for a large company. The
Payroll class is to read a file of employee timesheetsp y and for each employee, call on the
services of a Payslip class to calculate that employee’s weekly pay and print a payslip.

The Payslip class is to receive the employee’s number, pay rate and the number of p y , p y
hours worked in a week. The class is to validate the payp y rate field and the hours worked
field and, if valid, compute the employee’s weekly payp p y y p y and then print it and the input p p
data onto a payslipp y p.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 45 hours, and the maximum hourly rate is $30.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message is to be printed and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 38 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

The underlined verbs and verb phrases indicate that the responsibilities of
the Payroll class are to read the employee timesheets and manage the payroll
by calling on the services of the Payslip class.

234 Simple program design

For each employee, the Payslip class is to receive the employee data,
validate the pay rate, validate hours worked, calculate the weekly pay and
print a payslip. These responsibilities can now be added to the class table,
as follows:

Class Attributes Responsibilities Operations

Payroll employee timesheets Read employee data

Manage payroll

Payslip empNumber Receive employee data

payRate Validate pay rate

hoursWorked Validate hours worked

weeklyPay Calculate weekly pay

Print payslip

Now that the responsibilities have been established, you need to create a
set of operations or methods to perform these responsibilities and to indicate
whether they will have public or private access.

For the Payroll class, you will need public operations to read the employee
timesheets, namely readTimesheetFile(), and to manage the payroll, namely
runPayroll().

For the Payslip class, you will need a public method to receive the
employee number and receive and validate the pay rate and the hours worked
attributes. To do this, three mutators are required, namely setEmpNumber(),
setPayRate() and setHoursWorked(). The flag, validInput, reports on the valid-
ity of the input and is required in many operations, so it will also need to be
an attribute of the Payslip class.

Methods are also required to calculate the weekly pay, namely
calculateWeeklyPay() and to print the payslip, namely printPayslip(). These
operations can now be added to the class table, as follows:

Class Attributes Responsibilities Operations

Payroll employeeTimesheets Read employee timesheet +readTimesheetFile

Manage payroll +runPayroll

Payslip empNumber Receive employee data +setEmpNumber()

payRate Validate pay rate +setPayRate()

hoursWorked Validate hours worked +setHoursWorked()

weeklyPay Calculate weekly pay +calculateWeeklyPay()

validInput Print payslip +printPayslip()

Payroll

–employeeTimesheets

+readTimesheetFile()
+runPayroll()

Payslip

–empNumber
–payRate
–hoursWorked
–weeklyPay
–validInput

+setEmpNumber()
+setPayRate()
+setHoursWorked()
+calculateWeeklyPay()
+printPayslip()

uses �
1..*

235Chapter 12: Object-oriented design for more than one class

Step 2: Determine the relationship between the objects of
those classes

The class table developed from the problem statement has two classes. An
object from the Payroll class uses objects from the Payslip class. The diagram
below shows this in a simplified UML notation:

Step 3: Design the algorithms for the operations, using structured
design

1 Payslip class
The mutator setEmpNumber() requires the input employee number to be
passed to it in the form of a parameter. The mutators setPayRate() and
setHoursWorked() receive input data, validate it and report the validity in
the attribute validInput. In this way, only valid values are passed to the
attributes.

setEmpNumber(inEmpNumber)
empNumber = inEmpNumber

END

setPayRate(inPayRate)
IF inPayRate > 30 THEN

errorMessage = ‘Pay rate exceeds $30.00’
Print empNumber, inPayRate, errorMessage
validInput = false

ELSE
payRate = inPayRate

ENDIF
END

236 Simple program design

setHoursWorked(inHoursWorked)
IF inHoursWorked > 45 THEN

errorMessage = ‘Hours worked exceeds 45’
Print empNumber, inHoursWorked, errorMessage
validInput = false

ELSE
hoursWorked = inHoursWorked

ENDIF
END

A public operation calculateWeeklyPay() calculates the weekly pay.

calculateWeeklyPay()

IF validInput THEN
IF hoursWorked <= 38 THEN

weeklyPay = payRate * hoursWorked
ELSE

overtimeHours = hoursWorked – 38
overtimePay = overtimeHours * payRate * 1.5
weeklyPay = (payRate * 38) + overtimePay

ENDIF
ENDIF

END
The public method printPayslip() prints the employee data and weekly

pay onto the payslip.

printPayslip()

IF validInput THEN
Print empNumber, payRate, hoursWorked, weeklyPay

ENDIF
END

2 Payroll class
The Payroll class requires a public operation to read the employee timesheets,
which at this stage is just one statement, as follows:

readTimesheetFile
read empNumber, payRate, hoursWorked from employee timesheet

END

For each record on the employee timesheet file, the Payroll class calls
on the Payslip class to process that record. This call is made using a special
constructor called Payslip(), to create a payslip object and initialise it with
the input values from the employee timesheet file, which are passed to it as
parameters. This constructor will replace the default constructor and calls the
three Payslip mutators to receive and validate the input data, as follows:

237Chapter 12: Object-oriented design for more than one class

Payslip(inEmpNumber, inPayRate, inHoursWorked)
empNumber = ‘’
payRate = 0
hoursWorked = 0
weeklyPay = 0
validInput = true
setEmpNumber(inEmpNumber)
setPayRate(inPayRate)
setHoursWorked(inHoursWorked)

END

The pseudocode to create a payslip object and invoke the Payslip con-
structor will now be:

Create payslip as new Payslip(empNumber, payRate, hoursWorked)

The method to manage the payroll will call this constructor and looks just
like a mainline program, as follows:

runPayroll()
read empNumber, payRate, hoursWorked from employee timesheet
DOWHILE more records

Create payslip as new Payslip(empNumber, payRate, hoursWorked)
payslip.calculateWeeklyPay()

payslip.printPayslip()

read empNumber, payRate, hoursWorked from employee timesheet
ENDDO

END

Step 4: Develop a test or driver algorithm to test the solution
A test algorithm, called testPayslip() will be written to test the operations in
Payslip class, as follows:

testPayslip()

inEmpNumber = 1122
inPayRate = 20
inHoursWorked = 40
Create payslip as new Payslip(inEmpNumber, inPayRate, inHoursWorked)
payslip.calculateWeeklyPay()

payslip.printPayslip()

inEmpNumber = 1133
inPayRate = 25
inHoursWorked = 25
Create payslip as new Payslip(inEmpNumber, inPayRate, inHoursWorked)
payslip.calculateWeeklyPay()

payslip.printPayslip()

END

238 Simple program design

The expected output is two payslips, as follows:

Employee number Pay rate Hours worked Weekly pay

1122 20 40 $820.00

1133 25 25 $625.00

Chapter summary
When object-oriented design involves more than one class, it is important to understand
the relationships between the classes. An association relationship occurs when two
classes are independent of each other, but one class uses the services that the other
provides. An aggregation or composition relationship occurs when a class is made up
of other classes. The relationship between a parent class and a child class is called
generalisation.

Polymorphism refers to the same method name being used in different classes
to perform a variety of purposes. Operation overriding occurs when a parent class
provides an operation, but the inheriting class defines its own version of that operation.
Operation overloading occurs when several operations in a single class have the same
name, but will act differently according to the number of parameters that are passed to
the operation when it is called.

There are four steps to be followed when designing an object-oriented solution for
a programming problem that uses more than one class:

1 Identify the classes and their attributes, responsibilities and operations.
2 Determine the relationship between the objects of those classes.
3 Design the algorithms for the operations, using structured design.
4 Develop a test or driver algorithm to test the solution.

Programming problems
1 Use object-oriented design to design a parent class called Circle that will receive

the diameter of a circle, and calculate and display the circumference and the area of
that circle. Design a child class called Sphere that will use the existing methods of
its parent class and calculate and display the volume of the sphere.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

239Chapter 12: Object-oriented design for more than one class

2 Use object-oriented design to design a parent class called Rectangle that will
receive the length and breadth of a rectangle, validate the input data and calculate
and display the area of the rectangle. Design a child class called RectangularPrism
that will use the existing methods of its parent class and receive the height of the
rectangular prism and calculate and display its volume.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

3 Use object-oriented design to design a parent class called Book that will receive the
ISBN, author, title and price of a book, and select and print the details of all books
with a price of more than $50.00. Design a child class called TextBook that will use
the existing methods of its parent class and receive an extra data field called grade
that can be a number from 0 to 12. This class is to select and print details for all
textbooks for grades 3 to 6.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

4 Design a parent class called PhoneBill that calculates and prints the balance owed
by each customer of a phone company during the billing period. Your PhoneBill
class is to receive the customer’s current balance and the total time, in minutes, of
phone calls during the billing period. The input time is to be validated and the cost
of calls is to be calculated at 25c per minute. Your class is to print the input balance,
the phone call time, the cost of the phone calls and the total amount due.

Design a child class called MobilePhone that will use all the operations of its par-
ent class and will also receive an extra data field for the number of SMS messages
sent. This class is to print all input data and phone charges, including SMS charges
that are charged at 3c per message.
a Design the class table and UML diagram.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

5 Design a parent class called LoanAccount that receives an account number, an
account name, the amount borrowed, the term of the loan and the interest rate.
The amount borrowed must be positive and less than or equal to $100 000.00, the
term must be less than 30 years and the interest rate must be less than 15%. Your
class is to validate the input data and print all the loan information. Design a child
class called PersonalLoan that uses all the methods from its parent class; however,
the amount borrowed must be less than or equal to $10 000.00, the term must be
for less than 5 years, and the interest rate must be between 5% and 15%.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the class.

240 Simple program design

6 Design a class called Sales Commission that receives a sales figure and a commis-
sion rate. The class is to validate the commission rate, which must be less than 10%.
Two overloaded methods named calculateCommission() are to be created. The first
method receives one parameter, the sales figure and calculates the commission
to be 5% of the sales figure. The second method will receive two parameters,
sales figure and commission rate, and must multiply them together to calculate the
commission.
a Design the class table and UML diagram.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

7 Design a parent class called Square that will receive data for the height and width
of a square. Your class is to validate the input data and create a method called
calculateSurfaceArea() to calculate the surface area. Design a child class called
Cube, which has an additional attribute called depth, and create a method to
override the parent method, calculateSurfaceArea.
a Design the class table and UML diagram.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

8 A library needs a program to keep track of the current loans. Each book has
a title, an ISBN, an author, a publisher, a publication date, a call number and a
unique accession number. Library patrons have a unique user code, a name, street
address, and postcode, and an overdue balance that can be changed when a fine
is imposed or paid. This balance, as well as the user code and the patron’s name
and phone number can be printed. When a loan is made, the patron’s user code
and the loan item’s accession number are recorded, as well as the date borrowed
and the due date. When a loan is overdue, a fine of $1 per day is charged to the
borrower’s overdue balance.

Design a Book class and a BookLoan class that could be used by this
program.
a Design the class table and UML diagram.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

Object-oriented
design for

multiple classes

Objectives

• To expand an object-oriented solution to cater for multiple classes

• To introduce interface and GUI objects

Outline

13.1 Object-oriented design for multiple classes

13.2 Interface and GUI objects

Chapter summary

Programming problems

13

242 Simple program design

13.1 Object-oriented design for
multiple classes

A number of object-oriented concepts and terminology have already been
covered in the previous two chapters. This chapter develops a problem
that was encountered in Chapter 12 and extends it, step by step, to cater for
multiple classes. Two examples are provided, which illustrate the concept
of inheritance, in which one class inherits the attributes and operations of
another. Using inheritance:

1 saves time, because the Parent class contains attributes and methods that
already exist; and

2 reduces errors, because the Parent class methods have already been tested
and used.

The examples provided also illustrate how easy it is to extend and reuse code
from existing classes, thus demonstrating the suitability of object-oriented
design for larger systems.

EXAMPLE 13.1 Produce employee payslips
Design a Payroll class to manage the employee payroll of a large company. The Payroll
class is to read a file of employee timesheets and, for each employee, call on the ser-
vices of a Payslip class to calculate that employee’s weekly pay and print a payslip.

The Payslip class is to receive the employee’s number, the pay rate and the number
of hours worked in a week. The class is to validate the pay rate field and the hours
worked field and, if valid, compute the employee’s weekly pay and then print it and the
input data onto a payslip.

Validation: According to the company’s rules, the maximum number of hours an
employee can work per week is 45 hours, and the maximum hourly rate is $30.00 per
hour. If the hours worked field or the hourly rate field is out of range, the input data and
an appropriate message are to be printed and the employee’s weekly pay is not to be
calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 38 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

Design a child class to the Payslip class, called ProgrammerPayslip, to produce payslips
for employees who are computer programmers and are paid differently to the company’s
regular employees. Programmers are not paid overtime, but are entitled to a $50 bonus
for each week that the project on which they are working is running ahead of schedule.
The number of days ahead of or behind schedule is obtained from another existing
class called Project. An operation within the Project class, called getStatus(empNumber,
daysAhead), returns the number of days ahead of or behind schedule.

243Chapter 13: Object-oriented design for multiple classes

A field on the input employee timesheets indicates the employee type, which is ‘E’
for regular employees and ‘P’ for programmers.

The problem definition above is the same as for Example 12.3, with an
additional paragraph requesting that a child class called ProgrammerPayslip
be created.

A class table, a UML diagram and a set of operations have already been
developed for the original problem, so you can use these and extend them to
include the extra class. Note that the new paragraph also refers to an existing
class called Project. As this class already exists, its operations can be used
in this program as well as other programs that may need them. This is the
concept of reusability.

Step 1: Identify the classes and their attributes, responsibilities
and operations

The existing class table for this problem is as follows:

Class Attributes Responsibilities Operations

Payroll employeeTimesheets Read employee timesheet +readTimesheetFile

Manage payroll +runPayroll

Payslip empNumber Receive employee data +setEmpNumber()

payRate Validate pay rate +setPayRate()

hoursWorked Validate hours worked +setHoursWorked()

weeklyPay Calculate weekly pay +calculateWeeklyPay()

validInput Print payslip +printPayslip()

Now underline the nouns and verbs in the new part of the problem to
identify the objects, attributes, responsibilities and operations.

Design a child class to the Payslip class, called ProgrammerPayslip, to producep
payslipsp y p for employees who are computer programmers and are paid differently to the
company’s regular employees. Programmersg are not paid overtime, but are entitled
to a $50 bonus for each week that the project which they are working on is running
ahead of schedule. The number of days aheady of or behind schedule is obtained
from another existing class called Projectg j . An operation within the Project class called
getStatus(empNumber, daysAhead) receives the employee number and returns the
number of days ahead of or behind schedule.

A field on the input employee timesheets indicates the employee typep y yp , which is ‘E’
for regular employees and ‘P’ for programmers.

244 Simple program design

The ProgrammerPayslip class is a child class of the Payslip class, so it will
inherit its own copies of all attributes from the Payslip class. Programmers
receive a bonus, depending on the number of days the project is ahead of
schedule, so daysAhead will become an attribute of the ProgrammerPayslip
class.

The ProgrammerPayslip class will also have access to all the operations
of the Payslip class, with the additional requirement of calculating the bonus
before calculating the weekly pay. Two new operations are required, one to
calculate the bonus, calculateBonus(), and one to calculate the weekly pay,
calculateWeeklyPay(), which will override the operation of the same name in
the Payslip class.

The existing Project class can be considered a ‘black box’, charged with
the responsibility of informing an external object of the number of days
that the project is ahead of or behind schedule. This class and its operation
getStatus(empNumber, daysAhead) should also be listed.

The class table can now be extended by adding the new classes, their attri-
butes, responsibilities and operations.

Class Attributes Responsibilities Operations

Payroll employeeTimesheets Read employee timesheet +readTimesheetFile

Manage payroll +runPayroll

Payslip empNumber Receive employee data +setEmpNumber()

payRate Validate pay rate +setPayRate()

hoursWorked Validate hours worked +setHoursWorked()

weeklyPay Calculate weekly pay +calculateWeeklyPay()

validInput Print payslip +printPayslip()

ProgrammerPayslip daysAhead Calculate weekly pay +calculateWeeklyPay()

Calculate bonus -calculateBonus(bonus)

Project Supply days ahead +getStatus(empNumber,
daysAhead)

Step 2: Determine the relationship between the objects of those
classes

In this inheritance relationship, ProgrammerPayslip is a child class of
Payslip. This is reflected by the use of an open-headed arrow in the diagram
following.

Payroll

–employeeTimesheets

+readTimesheetFile()
+runPayroll()

Payslip

–empNumber
–payRate
–hoursWorked
–weeklyPay
–validInput

+setEmpNumber()
+setPayRate()
+setHoursWorked()
+calculateWeeklyPay()
+printPayslip()

ProgrammerPayslip

–daysAhead

+calculateWeeklyPay()
–calculateBonus(bonus)

uses �

245Chapter 13: Object-oriented design for multiple classes

Step 3: Design the algorithms for the operations, using structured
design

1 Payslip class
The Payslip class already exists with a set of attributes and operations, which
are listed as follows:

setEmpNumber(inEmpNumber)
empNumber = inEmpNumber

END

setPayRate(inPayRate)
IF inPayRate > 30 THEN

errorMessage = ‘Pay rate exceeds $30.00’
Print empNumber, inPayRate, errorMessage
validInput = false

ELSE
payRate = inPayRate

ENDIF
END

246 Simple program design

setHoursWorked(inHoursWorked)
IF inHoursWorked > 45 THEN

errorMessage = ‘Hours worked exceeds 45’
Print empNumber, inHoursWorked, errorMessage
validInput = false

ELSE
hoursWorked = inHoursWorked

ENDIF
END

calculateWeeklyPay()

IF validInput THEN
IF hoursWorked <= 38 THEN

weeklyPay = payRate * hoursWorked
ELSE

overtimeHours = hoursWorked – 38
overtimePay = overtimeHours * payRate * 1.5
weeklyPay = (payRate * 38) + overtimePay

ENDIF
ENDIF

END

printPayslip()

IF validInput THEN
Print empNumber, payRate, hoursWorked, weeklyPay

ENDIF
END

2 Project class
The Project class is already available in the system and is a ‘black box’, that
is, the internal workings of the class are unknown. Our program must create
a project object, as follows:

Create project as new Project()

and then call the operation getStatus(empNumber, daysAhead) to retrieve the
daysAhead attribute, as follows:

project.getStatus(empNumber, daysAhead)

3 ProgrammerPayslip class
Each programmerPayslip object inherits the attributes and operations from
the payslip object, but two new operations are required. The public method
calculateWeeklyPay() will call on the private method calculateBonus(bonus)
to calculate the bonus, which it will then use to calculate the weekly pay for
programmers. This method will override the method of the same name in the
Payslip class.

247Chapter 13: Object-oriented design for multiple classes

calculateWeeklyPay()

IF validInput THEN
calculateBonus(bonus)
weeklyPay = (payRate * 38) + bonus

ENDIF
END

The private operation calculateBonus(bonus) uses the daysAhead attribute
to calculate the programmer’s bonus, if any, and passes the bonus value to the
calling module.

calculateBonus(bonus)
IF daysAhead > 0 THEN

bonus = daysAhead / 7 * $50.00
ELSE

bonus = 0
ENDIF

END

4 Payroll class
For each record on the employee timesheet file, the Payroll class calls on
either the Payslip class or the ProgrammerPayslip class to process that record.
The particular call depends on the value of the employee type field in the
employee timesheets. If the employee type is ‘E’, a payslip object is created,
and if the employee type is ‘P’, a programmerPayslip object is created.

The public operation to read the employee timesheets must be changed to
include the employee type, as follows:

readTimesheetFile
Read empType, empNumber, payRate, hoursWorked from employee
 timesheet

END

The Payslip() constructor already exists, as follows:

Payslip(inEmpNumber, inPayRate, inHoursWorked)
empNumber = ‘’
payRate = 0
hoursWorked = 0
weeklyPay = 0
validInput = true
setEmpNumber(inEmpNumber)
setPayRate(inPayRate)
setHoursWorked(inHoursWorked)

END

248 Simple program design

The ProgrammerPayslip() constructor inherits this constructor and requires
an extra parameter to be passed to it, namely inDaysAhead, as follows:

ProgrammerPayslip (inEmpNumber, inPayRate, inHoursWorked, inDaysAhead)
Inherits Payslip (inEmpNumber, inPayRate, inHoursWorked)
IF validInput THEN

daysAhead = inDaysAhead
ENDIF

END

Note that a child class constructor must call the parent class constructor
before the child class constructor can operate. The pseudocode to create a
programmerPayslip object and invoke the ProgrammerPayslip() constructor
will now be:

Create programmerPayslip as new ProgrammerPayslip(empNumber, payRate,
 hoursWorked, daysAhead)

The method to manage the payroll will create a payslip or programmer-
Payslip object, depending on the value of the employee type on the employee
timesheet, and looks just like a mainline program, as follows:

runPayroll()
Create project as new Project()
read empType, empNumber, payRate, hoursWorked from timesheet
DOWHILE more records

IF empType = ‘E’ THEN
Create payslip as new Payslip(empNumber, payRate, hoursWorked)
payslip.calculateWeeklyPay()

payslip.printPayslip()

ELSE
IF empType = ‘P’ THEN

project.getStatus(empNumber, daysAhead)
Create programmerPayslip as new ProgrammerPayslip
 (empNumber, payRate, hoursWorked, daysAhead)
programmerPayslip.calculateWeeklyPay()

programmerPayslip.printPayslip()

ENDIF
ENDIF
read empType, empNumber, payRate, hoursWorked from timesheet

ENDDO
END

249Chapter 13: Object-oriented design for multiple classes

Step 4: Develop a test or driver algorithm to test the solution
A test algorithm, called testProgrammerPayslip(), will be written to test the
operations in the ProgrammerPayslip class, as follows:

testProgrammerPayslip()

inEmpNumber = 1122
inPayRate = 20
inHoursWorked = 38
inDaysAhead = 14
Create programmerPayslip1 as new ProgrammerPayslip(inEmpNumber,
 inPayRate, inHoursWorked, inDaysAhead)
programmerPayslip1.calculateWeeklyPay()

programmerPayslip1.printPayslip()

inEmpNumber = 1133
inPayRate = 25
inHoursWorked = 38
inDaysAhead = 0
Create programmerPayslip2 as new ProgrammerPayslip(inEmpNumber,
 inPayRate, inHoursWorked, inDaysAhead)
programmerPayslip2.calculateWeeklyPay()

programmerPayslip2.printPayslip()

END

The expected output is two programmer payslips, as follows:

Employee number Pay rate Hours worked Weekly pay

1122 20 38 $860.00

1133 25 38 $950.00

Let us now extend the problem further to include two more classes.

EXAMPLE 13.2 Produce employee payslips
Design a Payroll class to manage the employee payroll for a large company. The Payroll
class is to read a file of employee timesheets and for each employee, call on the ser-
vices of a Payslip class to calculate that employee’s weekly pay and print a payslip.

The Payslip class is to receive the employee’s number, pay rate and the number of
hours worked in a week. The class is to validate the pay rate field and the hours worked
field and, if valid, compute the employee’s weekly pay and then print it and the input
data onto a payslip.

250 Simple program design

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 45 hours, and the maximum hourly rate is $30.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printed and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 38 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

Design a child class to the Payslip class, called ProgrammerPayslip, to produce
payslips for employees who are computer programmers and are paid differently to the
company’s regular employees. Programmers are not paid overtime, but are entitled
to a $50 bonus for each week that the project on which they are working is running
ahead of schedule. The number of days ahead of or behind schedule is obtained
from another existing class called Project. An operation within the Project class called
getStatus(empNumber, daysAhead) returns the number of days ahead of or behind
schedule.

Design another child class to the Payslip class, called SalesPayslip, to produce
payslips for employees who are sales representatives and are paid differently to
the company’s regular employees. Sales representatives are not paid overtime, but
are entitled to a commission of $200.00 if their weekly sales exceed $19 999.99,
and $100.00 if their sales are in the range of $10 000.00 to $19 999.99. The weekly
sales figure is obtained from another existing class called Sales that is associated with
each sales representative. An operation within the Sales class called getSales(empNumber,
weeklySales) returns the weekly sales figure for that sales representative in dollars
and cents.

A field on the input employee timesheets indicates the employee type, which is ‘E’
for regular employees, ‘P’ for programmers and ‘S’ for sales representatives.

The problem definition above is the same as for Example 13.1, with an
additional paragraph requesting that a SalesPayslip child class be created.
Note that the new paragraph also refers to an existing class called Sales. As
this class already exists, its operations can be used in this program as well as
other programs, and illustrates the concept of reusability.

251Chapter 13: Object-oriented design for multiple classes

Step 1: Identify the classes and their attributes, responsibilities and
operations

The existing class table for this problem is as follows:

Class Attributes Responsibilities Operations

Payroll employeeTimesheets Read employee timesheet +readTimesheetFile

Manage payroll +runPayroll

Payslip empNumber Receive employee data +setEmpNumber()

payRate Validate pay rate +setPayRate()

hoursWorked Validate hours worked +setHoursWorked()

weeklyPay Calculate weekly pay +calculateWeeklyPay()

validInput Print payslip +printPayslip()

ProgrammerPayslip daysAhead Calculate weekly pay +calculateWeeklyPay()

Calculate bonus -calculateBonus(bonus)

Project Supply days ahead +getStatus(empNumber,
daysAhead)

Now underline the nouns and verbs in the new part of the problem to
identify the objects, attributes, responsibilities and operations.

Design another child class to the Payslip class, called SalesPayslip, to producep
payslipsp y p for employees who are sales representatives and are paid differently to the
company’s regular employees. Sales representativesp are not paid overtime, but are
entitled to a commission of $200.00 if their weekly sales exceed $19 999.99, and
$100.00 if their sales are in the range of $10 000.00 to $19 999.99. The weekly salesy
figureg is obtained from another existing class called Salesg that is associated with each
sales representative. An operation within the Sales class called getSales(empNumber,
weeklySales) returns the weekly sales figure for that sales representative in dollars
and cents.

The SalesPayslip class is a child class of the Payslip class so it will inherit
its own copies of all attributes from the Payslip class. Sales representatives
are paid a commission based on their weekly sales, so weeklySales will
become an attribute of the SalesPayslip class.

The SalesPayslip class will also have access to all the operations of the
Payslip class, with the additional requirement of calculating the commission
before calculating the weekly pay. Two new operations are required, one to
calculate the commission, calculateCommission(), and one to calculate the
weekly pay, calculateWeeklyPay(), which will override the operation of the
same name in the Payslip class.

252 Simple program design

The existing Sales class can be considered a ‘black box’, charged with
the responsibility of informing an external object of the weekly sales figure
for a sales representative. This class and its operation getSales(empNumber,
weeklySales) should also be listed.

We can now extend the class table, adding the new classes, their attributes,
responsibilities and operations.

Class Attributes Responsibilities Operations

Payroll employeeTimesheets Read employee timesheet +readTimesheetFile

Manage payroll +runPayroll

Payslip empNumber Receive employee data +setEmpNumber()

payRate Validate pay rate +setPayRate()

hoursWorked Validate hours worked +setHoursWorked()

weeklyPay Calculate weekly pay +calculateWeeklyPay()

validInput Print payslip +printPayslip()

ProgrammerPayslip daysAhead Calculate weekly pay +calculateWeeklyPay()

Calculate bonus -calculateBonus(bonus)

Project Supply days ahead +getStatus(empNumber,
daysAhead)

SalesPayslip weeklySales Calculate weekly pay +calculateWeeklyPay()

Calculate commission -calculateCommission
(commission)

Sales Supply weekly sales +getSales(empNumber,
weeklySales)

uses �

Payroll

–employeeTimesheets

+readTimesheetFile()
+runPayroll()

Payslip

–empNumber
–payRate
–hoursWorked
–weeklyPay
–validInput

+setEmpNumber()
+setPayRate()
+setHoursWorked()
+calculateWeeklyPay()
+printPayslip()

ProgrammerPayslip

–daysAhead

+calculateWeeklyPay()
–calculateBonus(bonus)

SalesPayslip

-weeklySales

+calculateWeeklyPay()
-calculateCommission(commission)

253Chapter 13: Object-oriented design for multiple classes

Step 3: Design the algorithms for the operations, using structured
design

1 Payslip and Project classes
The Payslip and Project classes already exist with a set of attributes and
operations, which were listed in Example 13.1.

2 Sales class
The Sales class is already available in the system and is a ‘black box’; that is,
the internal workings of the class are unknown. Our program must create a
sales object:

Create sales as new Sales()

and then call the operation getSales(empNumber, weeklySales) to retrieve the
weeklySales attribute, as follows:

sales.getSales(empNumber, weeklySales)

3 SalesPayslip class
Each salesPayslip object inherits the attributes and operations from the
payslip object, but two new operations are required. The public method

Step 2: Determine the relationship between the objects of those
classes

In this inheritance relationship, ProgrammerPayslip and SalesPayslip are both
child classes of Payslip. This is reflected by the use of open headed arrows in
the diagram following.

254 Simple program design

calculateWeeklyPay() will call on the private method calculateCommission
(commission) to calculate the commission, which it will then use to calcu-
late the weekly pay for sales representatives. This method will override the
method of the same name in the Payslip class.

calculateWeeklyPay()
IF validInput THEN

calculateCommission(commission)
weeklyPay = (payRate * 38) + commission

ENDIF
END

The private operation calculateCommission(commission) uses the weekly-
Sales attribute to calculate the commission, if any, for the sales representative
and passes the commission value to the calling module.

calculateCommission(commission)
IF weeklySales > $19,999.99 THEN

commission = $200.00
ELSE

IF weeklySales >= $10,000.00 THEN
commission = $100.00

ELSE
commission = 0

ENDIF
ENDIF

END

4 Payroll class
For each record on the employee timesheet file, the Payroll class calls on either
the Payslip class, the ProgrammerPayslip class or the SalesPayslip class to
process that record. The particular call depends on the value in the employee
type field on the employee timesheets. If the employee type is ‘E’, a payslip
object is created, if the employee type is ‘P’, then a programmerPayslip object
is created, and if the employee type is ‘S’, a salesPayslip object is created. The
Payslip() constructor already exists, as follows:

Payslip(inEmpNumber, inPayRate, inHoursWorked)
empNumber = ‘’
payRate = 0
hoursWorked = 0
weeklyPay = 0
validInput = true
setEmpNumber(inEmpNumber)
setPayRate(inPayRate)
setHoursWorked(inHoursWorked)

END

255Chapter 13: Object-oriented design for multiple classes

The SalesPayslip() constructor inherits the Payslip() constructor and requires
an extra parameter to be passed to it, namely inWeeklySales, as follows:

SalesPayslip (inEmpNumber, inPayRate, inHoursWorked, inWeeklySales)
Inherits Payslip (inEmpNumber, inPayRate, inHoursWorked)
IF validInput THEN

weeklySales = inWeeklySales
ENDIF

END

The pseudocode to create a salesPayslip object and invoke the SalesPayslip()
constructor will now be:

Create salesPayslip as new SalesPayslip(empNumber, payRate, hoursWorked,
 weeklySales)

The method to manage the payroll creates a payslip, a programmerPayslip
or a salesPayslip object, depending on the value of the employee type on the
employee timesheet, as follows:

runPayroll()
Create project as new Project()
Create sales as new Sales()
read empType, empNumber, payRate, hoursWorked from timesheet
DOWHILE more records

IF empType = ‘E’ THEN
Create payslip as new Payslip(empNumber, payRate, hoursWorked)
payslip.calculateWeeklyPay()
payslip.printPayslip()

ELSE
IF empType = ‘P’ THEN

project.getStatus(empNumber, daysAhead)
Create programmerPayslip as new ProgrammerPayslip

 (empNumber, payRate, hoursWorked, daysAhead)
programmerPayslip.calculateWeeklyPay()
programmerPayslip.printPayslip()

ELSE
IF empType = ‘S’ THEN

sales.getSales(empNumber, weeklySales)
Create salesPayslip as new SalesPayslip (empNumber,
 payRate, hoursWorked, weeklySales)
salesPayslip.calculateWeeklyPay()
salesPayslip.printPayslip()

ENDIF
ENDIF

ENDIF
read empType, empNumber, payRate, hoursWorked from timesheet

ENDDO
END

256 Simple program design

Step 4: Develop a test or driver algorithm to test the solution
A test algorithm, called testSalesPayslip() will be written to test the opera-
tions in the SalesPayslip class, as follows:

testSalesPayslip()
inEmpNumber = 1122
inPayRate = 20
inHoursWorked = 38
inWeeklySales = $20,000.00
Create salesPayslip1 as new SalesPayslip(inEmpNumber, inPayRate,

inHoursWorked, inWeeklySales)
salesPayslip1.calculateWeeklyPay()

salesPayslip1.printPayslip()

inEmpNumber = 1133
inPayRate = 25
inHoursWorked = 38
inWeeklySales = $5,000.00
Create salesPayslip2 as new SalesPayslip(inEmpNumber, inPayRate,

inHoursWorked, inWeeklySales)
salesPayslip2.calculateWeeklyPay()

salesPayslip2.printPayslip()

END

The expected output is two sales representative payslips, as follows:

Employee number Pay rate Hours worked Weekly pay

1122 20 38 $960.00

1133 25 38 $950.00

13.2 Interface and GUI objects

An interface is a device in a program that connects the user’s responses to
the computer’s actions. Many popular programming languages provide a
graphical user interface (GUI), which enables the programmer to select the
elements of the program’s user interface from a pre-existing range of options.
These languages are called ‘visual’ languages, and include Visual Basic,
Visual C and Visual J. Java also shares these features.

Interface design is a subset of program design, as it concentrates on one
aspect of the program’s performance and implementation. Good interfaces
make the program easy and comfortable to use, and combine elements of
psychology, aesthetic design and good programming techniques.

257Chapter 13: Object-oriented design for multiple classes

Interfaces are developed from predesigned classes available in the chosen
programming language. The user interface options may include windows,
buttons, menus, boxes to hold text, drop-down lists and many more. Once
they have been created, the interface elements can be tailored to suit the
needs of the program. While some of the programs that provide GUIs are not
strictly object oriented in their internal functioning, the interfaces usually are,
and object-oriented approaches should be used in their design.

Each user interface element provided in the visual languages is an object
with attributes and operations. The size, shape, colour, heading labels
and modality of a window or form object on a screen are attributes. The
programmer defines the values of these attributes when the code for the
program is written. The way the window behaves in response to events
that may come from the user, the program or the system is defined by the
operations that the programmer has chosen to use for that window.

EXAMPLE 13.3 Library locator interface
Consider a program that supplies users with the location of a book in a library, based
on its call number. The library stores materials from 000 to 250 on the ground level,
from 251 to 700 on the first level, and from 701 onwards on the second level. The user
will need to provide information to the program about the call number of the book he
or she is seeking.

In the algorithm, this menu may appear as a case or nested IF statement. In a visual
language, the inputs for these decision structures can be expressed in at least two
possible ways: the user can be asked to enter a choice using text, or to click on one
particular object on the screen that represents the option, such as a menu button, an
option box or radio buttons.

If a typed user input is chosen, the program will have to test for invalid inputs and
report them with error messages, because the user who types a call number into an
input area could potentially make an error. This option requires the designer to prepare
algorithms for error trapping and the programmer to write the corresponding code.
However, a specific location on the correct floor can be provided with fewer objects
populating the screen.

In the second approach, there is no invalid input possible. The mainline algorithm will
still be a complex decision structure that calls separate modules for each choice, but
that decision structure will be presented as a window containing objects that represent
the menu choices. The user will select an option that matches his or her requirements
and the correct location can be displayed.

To design the user interface, first plan the interface layout. This can be
done on paper or on screen, according to the tools that are available. Next,
using this first draft plan, create an interface object table that differs slightly
from the earlier object tables. Because the purpose here is interface design,

258 Simple program design

rather than program design, at this point you can ignore operations and con-
centrate on the appearance of the screen objects. The interface object table
will allow you to specify which objects are to appear and what the initial
values of some of their attributes will be. The interface object table for the
sample problem could begin like this:

Object Attributes Initial Value

Window Caption ‘Library Locater’

BackColor grey

Box 1 BackColor green

Button 1 Caption ‘000–005’

Button 2 Caption ‘006–120’

… … …

Box 2 BackColor yellow

… … …

Box 3 BackColor blue

… … …

Button n Caption ‘Quit’

This table becomes a reference for the programmer when development
commences. Using the interface object table to set the captions and back
colours, one possible interface could be:

259Chapter 13: Object-oriented design for multiple classes

Procedural algorithms that use repetition structures often need to test for
sentinel values. In the library locator example, the selection structure will
occur inside a loop that is terminated when the user selects the ‘Quit’ option.
Although the repetition algorithm will look like many procedural algorithms
with a sentinel value of ‘Quit’, the code that is produced will potentially
include no repetition structures. With thoughtful interface design, the user
does not have to type in a sentinel value to leave the program. The exit condi-
tion can be represented as one of the options on the screen.

Having gone to the trouble of designing the algorithm for a programmer to
implement, don’t overlook the interface design. The choice of interface design
can have a significant impact on the complexity of your algorithm and on the
way in which your algorithm is implemented in the programming language.

Chapter summary
Most object-oriented programs need more than one class. Classes can be related to
each other through association, by aggregation or composition or by inheritance. When
classes are related by inheritance, all subclasses or child classes inherit the attributes
and operations of the parent class and supplement them with their own attributes and
operations.

Polymorphism allows several operations to have the same name, but they achieve
their purposes by different methods. Using operation overriding, a child class may
substitute the parent class version of an operation with its own specific version.
With operation overloading, several operations of the same name may have different
numbers of parameters and different algorithms.

Interface design for visual programming languages uses object-oriented design
principles. Interface objects have operations and attributes. The choice of interface
design can reduce the complexity of both an algorithm and the resulting program.

Programming problems
1 Use object-oriented design to design a parent class called Circle that will receive

the diameter of a circle, and calculate and display the circumference and the area of
that circle. Design a child class called Sphere that will use the existing methods of
its parent class and calculate and display the volume of the sphere. Design another
child class called Cylinder that will receive an extra value for the height of the cylinder
and then use the existing methods of its parent class to calculate and display the
volume of a cylinder.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

260 Simple program design

2 Use object-oriented design to design a parent class called Book that will receive the
ISBN, author, title and price of a book, and select and print records for all books
with a price of more than $50.00. Design a child class called TextBook that will use
the existing methods of its parent class and receive an extra data field called grade
that can be a number from 0 to 12. This class is to select and print records of all
textbooks of grades 3 to 6. Design another child class called PictureBook that will
use the existing methods of its parent class and receive an extra data field called
age that can be a number from 0 to 5. This class is to select and print records of all
picture books for ages 3 to 4.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the solution.

3 Design a parent class called LoanAccount that receives an account number, an
account name, the amount borrowed, the term of the loan and the interest rate.
The amount borrowed must be positive and less than or equal to $100 000.00, the
term must be less than 30 years and the interest rate must be less than 15%. Your
class is to validate the input data and print all the loan information. Design a child
class called PersonalLoan that uses all the methods from its parent class; however,
the amount borrowed must be less than or equal to $10 000.00, the term must be
for less than 5 years and the interest rate must be between 5% and 15%. Design
another child class called InvestmentLoan that uses all the methods from its parent
class; however, the amount borrowed must be less than $500 000.00, the term
must be less than 10 years and the interest rate must be less than 18%.
a Design the class table and UML diagram.
b Write an algorithm for each operation.
c Write a test or driver algorithm to test the class.

4 A library needs a program to keep track of the current loans. Each book has a
title, an ISBN, an author, a publisher, publication date, call number and a unique
accession number. Library patrons have a unique user code, name, street address,
postcode and an overdue balance that can be changed when a fine is imposed
or paid. The balance, as well as the user code and the patron’s name and phone
number can be printed. When a loan is made, the patron’s user code, the loan item’s
accession number, the date borrowed and the due date are recorded. When a loan
is overdue, a fine of $1 per day is charged to the borrower’s overdue balance.

Design a Book class, a BookLoan class and a Patron class that could be used
by this program.
a Design the class table and UML diagram.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

5 The library loan system in the above problem needs to be able to accommodate
non-book loans, such as videos, tapes and magazines. Magazines have a title, an
ISSN rather than an ISBN, a volume and number, a publisher, publication date, call
number and a unique accession number. Videotapes have a title, a publisher, a
publication date, a call number and a unique accession number. Overdue non-book

261Chapter 13: Object-oriented design for multiple classes

loans are charged at $2 per day. Modify your solution design accordingly, including
the class diagram, class tables and algorithms where necessary.

6 Yummy Chocolates requires an object-oriented program for an online catalogue.
The catalogue is to display the details of the range of handmade chocolates. Each
chocolate product has a product code, a name, a picture and the price per 100
grams. Products can be added to the catalogue, deleted and modified.
a Design the class table and UML diagram.
b Write an algorithm for each operation in the table.
c Write a test or driver algorithm to test the solution.

7 Design the interface for a program that will prompt a user for his or her astrological
sign and display the current prediction for the user. Prepare the interface object table
and the interface layout.

8 Design an interface for the following problem. Design an algorithm that will prompt
for and receive your current cheque book balance, followed by a number of finan-
cial transactions. Each transaction consists of a transaction code and a transaction
amount. The transaction code can be a deposit (‘D’) or a cheque (‘C’). Your program
is to add each deposit transaction amount to the balance and subtract each cheque
transaction amount. After each transaction is processed, a new running balance
is to be displayed on the screen, with a warning message if the balance becomes
negative. When there are no more transactions, a ‘Q’ is to be entered for transaction
code to signify the end of the data. Your algorithm is then to display the initial and
final balances, as well as a count of the number of cheques and deposits processed.
Prepare the interface object table and the interface layout.

9 Design the screen interface for the following problem. The Mitre-11 hardware outlets
require an inventory control program that is to accept order details for an item and
then generate a shipping list and a back order list.

Design an interactive program that will conduct a dialogue on the screen for the
input values, and print two reports as required. The screen dialogue is to appear as
follows:

ENTER Item No. 99999

Quantity on hand 999

Order quantity 999

Order number 999999

If an item number does not have precisely five digits, an error message is to
appear on the screen. If the quantity on hand is sufficient to meet the order (order
quantity <= quantity on hand), one line is to be printed on the shipping list. If the
quantity on hand is insufficient to meet the order (order quantity > quantity on hand),
the order is to be filled partially by whatever stock is available. For this situation, one
line should appear on the shipping list with the appropriate number of units shipped
(quantity on hand) and a message ‘Order partially filled’. An entry for the balance of
the order (order quantity – quantity on hand) is to be printed on the back order list.

262 Simple program design

If the quantity on hand is zero, the message ‘Out of stock’ is to appear on the
shipping list, and an entry for the full order quantity is to be printed on the back
order list.

Your program is to continue to process inventory orders until a value of zero is
entered for the item number.

Report layouts for the shipping list and back order list are as follows:

MITRE-11 HARDWARE PAGE XX

INVENTORY CONTROL SHIPPING LIST

ORDER NO. ITEM NO. UNITS SHIPPED MESSAGE

999999 99999 999 —

999999 99999 999 —

MITRE-11 HARDWARE PAGE XX

INVENTORY CONTROL BACK ORDER LIST

ORDER NO. ITEM NO. BACK ORDER QTY

999999 99999 999

999999 99999 999

Prepare the interface object table and the interface layout. Explain how the inter-
face design may impact on the algorithm for this problem.

Appendix 1
Flowcharts

Outline

• Introduction to flowcharts and the three basic control structures

• Simple algorithms that use the sequence control structure

• Flowcharts and the selection control structure

• Simple algorithms that use the selection control structure

• The case structure expressed as a flowchart

• Flowcharts and the repetition control structure

• Simple algorithms that use the repetition control structure

• Further examples using flowcharts

• Flowcharts and modules

264 Simple program design

Introduction to flowcharts

This appendix introduces flowcharts as an alternative method of representing
algorithms. Flowcharts are popular because they graphically represent the
program logic by a series of standard geometric symbols and connecting
lines. Flowcharts are relatively easy to learn and are an intuitive method
of representing the flow of control in an algorithm. For simplicity, just six
standard flowchart symbols will be used to represent algorithms in this text.
These are:

Terminal symbol
The terminal symbol indicates the starting or stopping
point in the logic. Every flowchart should begin and end
with a terminal symbol.

Input/Output symbol
The input/output symbol represents an input or output
process in an algorithm, such as reading input or writing
output.

Process symbol
The process symbol represents any single process in
an algorithm, such as assigning a value or performing a
calculation. The flow of control is sequential.

Predefined process symbol
The predefined process symbol represents a module in an
algorithm – that is, a predefined process that has its own
flowchart.

Decision symbol
The decision symbol represents a decision in the logic
involving the comparison of two values. Alternative
paths are followed, depending on whether the decision
symbol is true or false.

Flowlines
Flowlines connect various symbols in a flowchart, and
contain an arrowhead only when the flow of control is
not from top to bottom or left to right.

In this appendix the three basic control structures, as set out in the
Structure Theorem in pseudocode, will be explained and illustrated using
flowcharts.

statement a

statement b

statement c

increment
page_count

Print
heading line

Read
customer

record

Set linecount
to zero

265Appendix 1: Flowcharts

The three basic control structures

1 Sequence

The sequence control structure is defined as the straightforward execution
of one processing step after another. A flowchart represents this control
structure as a series of process symbols, one beneath the other, with one
entrance and one exit.

The sequence control structure can be used to represent the first four basic
computer operations; namely, to receive information, put out information,
perform arithmetic, and assign values. For example, a typical sequence of
statements in a flowchart might read:

T F

statement a statement b

condition p?

T F

increment
part_time_count

increment
full_time_count

student
= part_time?

266 Simple program design

These instructions illustrate the sequence control structure as a
straightforward list of steps, written one after the other, in a top-to-bottom
fashion. Each instruction will be executed in the order in which it appears.

2 Selection

The selection control structure can be defined as the presentation of a
condition, and the choice between two actions depending on whether the
condition is true or false. This construct represents the decision-making
abilities of the computer, and is used to illustrate the fifth basic computer
operation; namely, to compare two variables and select one of two alternative
actions. A flowchart represents the selection control structure with a decision
symbol, with one line entering at the top, and two lines leaving it, following
the true path or false path, depending on the condition. These two lines then
join up at the end of the selection structure.

If condition p is true, the statement or statements in the true path will
be executed. If condition p is false, the statement or statements in the false
path will be executed. Both paths then join up to the flowline following the
selection control structure. A typical flowchart might look like this:

T

F

statement
block

condition p?

T

F

statement a

condition p?

267Appendix 1: Flowcharts

A variation of the selection control structure is the null ELSE structure,
which is used when a task is performed only if a particular condition is true.
The flowchart that represents the null ELSE construct has no processing in
the false path.

3 Repetition

The repetition control structure can be defined as the presentation of a set of
instructions to be performed repeatedly, as long as a condition is true. The
basic idea of repetitive code is that a block of statements is executed again
and again, until a terminating condition occurs. This construct represents
the sixth basic computer operation; namely, to repeat a group of actions. A
flowchart represents this structure as a decision symbol and one or more
process symbols to be performed while a condition is true. A flowline then
takes the flow of control back to the condition in the decision symbol, which
is tested before the process is repeated.

While condition p is true, the statements inside the process symbol will
be executed. The flowline then returns control upwards to retest condition p.
When condition p is false, control will pass out of the repetition structure
down the false path to the next statement. We will now look at a flowchart
that represents the repetition control structure:

Set
student_total

to zero

Read
student
record

Print
name and
address

increment
student_total

T

Fstudent_total
< 50?

268 Simple program design

Simple algorithms that use the sequence
control structure

The following examples are the same as those represented by pseudocode in
Chapter 3. In each example, the problem is defined and a solution algorithm
developed using a flowchart. For ease in defining the problem, the processing
verbs in each example have been underlined.

EXAMPLE 3.1 Add three numbers
A program is required to read three numbers, add them together and printp their total.

A Defining diagram

Input Processing Output

number1 Read three numbers total

number2 Add numbers together

number3 Print total number

Read
number1
number2
number3

Print
total

add numbers
to total

Start

Stop

269Appendix 1: Flowcharts

B Solution algorithm

EXAMPLE 3.2 Find average temperature
A program is required to promptp p the terminal operator for the maximum and minimum
temperature readings on a particular day, acceptp those readings as integers, and
calculate and displayp y to the screen the average temperature.

A Defining diagram

Input Processing Output

max_temp Prompt for temperatures average_temp

min_temp Get temperatures

Calculate average temperature

Display average temperature

Prompt for
max_temp,
min_temp

Get
max_temp,
min_temp

Output
average_temp

calculate
average_temp

Start

Stop

270 Simple program design

B Solution algorithm

EXAMPLE 3.3 Compute mowing time
A program is required to read from the screen the length and width of a rectangular
house block, and the length and width of the rectangular house that has been built on
the block. The algorithm should then computep and displayp y the mowing time required to
cut the grass around the house, at the rate of two square metres per minute.

A Defining diagram

Input Processing Output

block_length Prompt for block measurements mowing_time

block_width Get block measurements

house_length Prompt for house measurements

house_width Get house measurements

Calculate mowing area

Calculate mowing time

Prompt for
block_length
block_width

Get
block_length
block_width

calculate
block_area

Prompt for
house_length
house_width

Get
house_length
house_width

Output
mowing_time

mowing_area = block_
area – house_area

mowing_time =
mowing_area/2

Stop

Start

calculate
house_area

271Appendix 1: Flowcharts

B Solution algorithm

T F

service_charge
= $5.00

service_charge
= $2.00

account_
balance
< $300?$

T

F

increment
part_time_count

student_
attendance =

P/T?

272 Simple program design

Flowcharts and the selection control
structure

Each variation of the selection control structure developed in pseudocode in
Chapter 4 can be represented by a flowchart.

Simple IF statement

Simple selection occurs when a choice is made between two alternative paths,
depending on the result of a condition being true or false. This structure is
represented in a flowchart as follows:

Only one of the true or false paths will be followed, depending on the
result of the condition in the decision symbol.

Null ELSE statement

The null ELSE structure is a variation of the simple IF structure. It is used
when a task is performed only when a particular condition is true. If the
condition is false, no processing will take place, and the IF statement will be
bypassed. For example:

In this case, the part_time_count field will only be altered if the true path
is followed, that is, when the student’s attendance pattern is part-time.

T

F

increment
female_part_
time_count

student =
P/T AND
gender

?= F???

273Appendix 1: Flowcharts

Combined IF statement

A combined IF statement is one that contains multiple conditions in the
decision symbol, each connected with the logical operators AND or OR. If the
connector AND is used to combine the conditions, then both conditions must
be true for the combined condition to be true. For example:

In this case, each student record will undergo two tests. Only those
students who are female and whose attendance pattern is part-time will be
selected, and the variable female_part_time_count will be incremented. If
either condition is found to be false, the counter will remain unchanged.

Nested IF statement

The nested IF statement is used when a field is being tested for various
values, with a different action to be taken for each value. In a flowchart, this
is represented by a series of decision symbols, as follows.

T F

increment
counter_A

record_
code = ‘A’?

T F

increment
counter_B

record_
code = ‘B’?

T F

increment
counter_C

increment
error_counter

record_
code = ‘C’?

274 Simple program design

Simple algorithms that use the selection
control structure

The following examples are the same as those represented by pseudocode in
Chapter 4. In each example, the problem is defined and a solution algorithm
developed using a flowchart. For ease in defining the problem, the processing
verbs in each example have been underlined.

EXAMPLE 4.1 Read three characters
Design an algorithm that will promptp p a terminal operator for three characters, acceptp
those characters as input, sort them into ascending sequence and outputp them to the
screen.

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

T F

swap
char_1, char_2

char_1 >
char_2?

T F

swap
char_2, char_3

char_2 >
char_3?

T F

swap
char_1, char_2

char_1 >
char_2?

Prompt for
char_1,
char_2,
char_3

Get
char_1,
char_2,
char_3

Start

Output
char_1,
char_2,
char_3

Stop

275Appendix 1: Flowcharts

B Solution algorithm

276 Simple program design

EXAMPLE 4.2 Process customer record
A program is required to read a customer’s name, a purchase amount and a tax code.
The tax code has been validated and will be one of the following:

0 tax exempt (0%)
1 state sales tax only (3%)
2 federal and state sales tax (5%)
3 special sales tax (7%)

The program must then compute the sales tax and the total amount due, and print
the customer’s name, purchase amount, sales tax and total amount due.

A Defining diagram

Input Processing Output

cust_name Read customer details cust_name

purch_amt Compute sales tax purch_amt

tax_code Compute total amount sales_tax

Print customer details total_amt

T F

sales_tax = 0

tax_code = 0?

T F

sales_tax =
purch_amt x

0.03

tax_code = 1?

T F

sales_tax =
purch_amt x

0.05

sales_tax =
purch_amt x

0.07

total_amt =
purch_amt +

sales_tax

tax_code = 2?

Read
cust_name
purch_amt
tax_code

Print
customer

details

Stop

Start

277Appendix 1: Flowcharts

B Solution algorithm

278 Simple program design

EXAMPLE 4.3 Calculate employee’s pay
A program is required by a company to read an employee’s number, pay rate and the
number of hours worked in a week. The program is then to validate the pay rate field
and the hours worked field and, if valid, computep the employee’s weekly pay and then
printp it and the input data.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 60 hours, and the maximum hourly rate is $25.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printedp and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 35 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

A Defining diagram

Input Processing Output

emp_no Read employee details emp_no

pay_rate Validate input fields pay_rate

hrs_worked Calculate employee pay hrs_worked

Print employee details emp_weekly_pay

error_message

B Solution algorithm
The solution to this problem will require a series of decision symbols. First,
the variables pay_rate and hrs_worked must be validated, and if either is
found to be out of range, an appropriate message should be printed.

The employee’s weekly pay is only to be calculated if the variables
pay_rate and hrs_worked are valid, so another variable valid_input_fields
will be used to indicate to the program whether or not these input fields are
valid.

valid_input_
fields = true

error_message
= blank

T F

valid_input_fields
= false,

print error message

pay_rate
> $25.00?

T F

valid_input_fields
= false,

print error message

hrs_worked
> 60?

T F

T F

valid_input_
fields = true?

hours_worked
� 35?

Read
employee details

Start

Print
employee details

Stop

calculate
weekly pay

calculate overtime
and weekly pay

279Appendix 1: Flowcharts

statement_bstatement_a statement_dstatement_c

case
of

variable

value
1

value
2

value
3

value
4

280 Simple program design

The case structure expressed as a
flowchart

The case control structure is another way of expressing a nested IF statement.
It is not really an additional control structure, but one that extends the basic
selection control structure to be a choice between multiple values. It is
expressed in a flowchart by a decision symbol with a number of paths leading
from it, depending on the value of the variable, as follows:

Let us now look again at Example 4.2. The solution algorithm for this
example was earlier expressed as a nested IF statement. However, it could
equally have been expressed as a CASE statement.

EXAMPLE 4.4 Process customer record
A program is required to read a customer’s name, a purchase amount and a tax code.
The tax code has been validated and will be one of the following:

0 tax exempt (0%)
1 state sales tax only (3%)
2 federal and state sales tax (5%)
3 special sales tax (7%)

The program must then compute the sales tax and the total amount due, and print
the customer’s name, purchase amount, sales tax and total amount due.

A Defining diagram

Input Processing Output

cust_name Read customer details cust_name

purch_amt Calculate sales tax purch_amt

tax_code Calculate total amount sales_tax

Print customer details total_amt

tax_code?

Read
customer

details

Start

sales_tax =
purchase_amt x

0.03
sales_tax = 0

sales_tax =
purchase_amt x

0.07

sales_tax =
purchase_amt x

0.05

0 1 2 3

total_amt =
purch_amt +

sales_tax

Print
customer

details

Stop

281Appendix 1: Flowcharts

B Solution algorithm

T

F

statement a

condition p?

282 Simple program design

Flowcharts and the repetition control
structure

In Chapter 5 the DOWHILE construct was introduced as the pseudocode
representation of a repetition loop. This can be represented in a flowchart as
follows:

As the DOWHILE loop is a leading decision loop, the following processing
takes place:

1 The logical condition p is tested.
2 If condition p is found to be true, the statements that follow the true path

will be executed once. Control then returns upwards to the retesting of
condition p.

3 If condition p is still true, the statements that follow the true path will be
executed again, and so the repetition process continues until the condition
is found to be false.

4 If condition p is found to be false, control will follow the false path.

There are two important considerations about which a programmer must
be aware before designing a DOWHILE loop.

• The testing of the condition is at the beginning of the loop. This means that
the programmer may need to perform some initial processing to set up the
condition adequately before it can be tested.

• The only way to terminate the loop is to render the DOWHILE condition
false. This means that the programmer must set up some process within
the repeated processing symbols that will eventually change the condition
so that the condition becomes false. Failure to do this results in an endless
loop.

283Appendix 1: Flowcharts

Simple algorithms that use the repetition
control structure

The following examples are the same as those represented by pseudocode in
Chapter 5. In each example, the problem is defined and a solution algorithm
developed using a flowchart. For ease in defining the problem, the processing
verbs in each example have been underlined.

EXAMPLE 5.1 Fahrenheit–Celsius conversion
Every day, a weather station receives 15 temperatures expressed in degrees Fahrenheit.
A program is to be written that will acceptp each Fahrenheit temperature, convert it to
Celsius and displayp y the converted temperature to the screen. After 15 temperatures
have been processed, the words ‘All temperatures processed’ are to be displayedp y on
the screen.

A Defining diagram

Input Processing Output

f_temp Get Fahrenheit temperatures c_temp

(15 temperatures) Convert temperatures (15 temperatures)

Display Celsius temperatures

Display screen message

In this example, the programmer will need:

• a DOWHILE structure to repeat the necessary processing
• a counter, called temperature_count, initialised to zero, that will control

the 15 repetitions.

Set
temperature_count

to zero

Prompt for
f_temp

Display
‘All temperatures

processed’
message

Get
f_temp

calculate
c_temp

Display
c_temp

increment
temperature_count

by 1

T

F
temperature_countpp _

< 15?

Start

Stop

284 Simple program design

B Solution algorithm

285Appendix 1: Flowcharts

EXAMPLE 5.2 Print examination scores
A program is required to read and printp a series of names and exam scores for students
enrolled in a mathematics course. The class average is to be calculated and printedp at
the end of the report. Scores can range from 0 to 100. The last record contains a blank
name and a score of 999 and is not to be included in the calculations.

A Defining diagram

Input Processing Output

name Read student details name

exam_score Print student details exam_score

Calculate average score average_score

Print average score

The following requirements will need to be considered:

• a DOWHILE structure to control the reading of exam scores, until it reaches
a score of 999

• an accumulator for total scores, namely total_score
• an accumulator for the total students, namely total_students.

Set
total_score

to zero

Set
total_students

to zero

Read
student
details

Read
student
details

Print
average
score

Print
student
details

increment
total_students

add
exam_score

to
total_score

calculate
average
score

T

T

F

F

exam_score
NOT = 999?

total_students
NOT = 0?

Start

Stop

286 Simple program design

B Solution algorithm

287Appendix 1: Flowcharts

EXAMPLE 5.3 Process student enrolments
A program is required that will read a file of student records, and only select and printp
the records of those students enrolled in a course unit named Programming I. Each
student record contains student number, name, address, postcode, gender and course
unit number. The course unit number for Programming I is 18500. Three totals are to be
printedp at the end of the report: total females enrolled in the course, total males enrolled
in the course, and total students enrolled in the course.

A Defining diagram

Input Processing Output

student_record Read student records selected student records

• student_no Select student records total_females_enrolled

• name Print selected records total_males_enrolled

• address Compute total females enrolled total_students_enrolled

• postcode Compute total males enrolled

• gender Compute total students enrolled

• course_unit Print totals

The following requirements will need to be considered:

• a DOWHILE structure to perform the repetition
• decision symbols to select the required students
• accumulators for the three total fields.

Read
student
record

increment
total_females_

enrolled

increment
total_males_

enrolled

Set
all totals
to zero

Read
student
record

Print
totals

Print
student
details

increment
total_students_

enrolled

T

T

F

FT

F

more
records?

course_unit
= 18500?

student =
female?

Start

Stop

288 Simple program design

B Solution algorithm

289Appendix 1: Flowcharts

EXAMPLE 5.4 Process inventory items
A program is required to read a series of inventory records that contain an item number,
an item description and a stock figure. The last record in the file has an item number of
zero. The program is to producep a low stock items report, by printingp g only those records
that have a stock figure of less than 20 items. A heading is to be printedp at the top of
the report and a total low stock item count printedp at the end.

A Defining diagram

Input Processing Output

inventory record Read inventory records heading

• item_number Select low stock items selected records

• item_description Print low stock records • item_number

• stock_figure Print total low stock items • item_description

• stock_figure

total_low_stock_items

The following requirements will need to be considered:

• a DOWHILE structure to perform the repetition
• a decision symbol to select stock figures of less than 20
• an accumulator for total_low_stock_items.

Read
inventory

record

Set total_
low_stock_items

to zero

Read
inventory

record

Print
heading

Print
total_low_

stock_items

Print
details

increment
total_low_stock_

items

T

T

F

F

item_number
> 0?

stock_figure
< 20?

Start

Stop

290 Simple program design

B Solution algorithm

291Appendix 1: Flowcharts

Further examples using flowcharts

The following examples are the same as those represented by pseudocode
in Chapters 6 and 7. In each example, the problem is defined and a solution
algorithm developed using a flowchart.

EXAMPLE 6.1 Process number pairs
Design an algorithm that will promptp p for and receive pairs of numbers from an operator
at a terminal and displayp y their sum, product and average on the screen. If the calculated
sum is over 200, an asterisk is to be displayedp y beside the sum. The program is to ter-
minate when a pair of zero values is entered.

A Defining diagram

Input Processing Output

number1 Prompt for numbers sum

number2 Get numbers product

Calculate sum average

Calculate product ‘*’

Calculate average

Display sum, product, average

Display ‘*’

B Control structures required

1 A DOWHILE loop to control the repetition
2 A decision symbol to determine if an asterisk is to be displayed

Prompt
and get

number1,
number2

sum = zero

Prompt
and get

number1,
number2

Display results ‘*’ Display results

sum =
number1 +
number2

product =
number1 x
number2

average =
sum/2

F

T

FT

number1
AND number2

= 0?

sum > 200?

Start

Stop

292 Simple program design

C Solution algorithm

293Appendix 1: Flowcharts

EXAMPLE 6.2 Print student records
A file of student records consists of ‘S’ records and ‘U’ records. An ‘S’ record contains
the student’s number, name, age, gender, address and attendance pattern: full-time
(F/T) or part-time (P/T). A ‘U’ record contains the number and name of the unit or units
in which the student has enrolled. There may be more than one ‘U’ record for each ‘S’
record. Design a solution algorithm that will read the file of student records and printp
only the student’s number, name and address on a ‘STUDENT LIST’.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records selected student records

• name Select ‘S’ records • number

• address Print selected records • name

• age • address

• gender

• attendance_pattern

‘U’ records

B Control structures required

1 A DOWHILE loop to control the repetition
2 A decision symbol to select ‘S’ records

Print heading

Read
student
record

Print
student
details

T

F

FT

more
records?

record = ‘S’?

Start

Stop

Read
student
record

294 Simple program design

C Solution algorithm

295Appendix 1: Flowcharts

EXAMPLE 6.3 Print selected students
Design a solution algorithm that will read the same student file as in Example 6.2, and
producep a report of all female students who are enrolled part-time. The report is to be
headed ‘FEMALE PART-TIME STUDENTS’ and is to show the student’s number, name,
address and age.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records selected student records

• name Select female P/T students • number

• address Print selected records • name

• age • address

• gender • age

• attendance_pattern

‘U’ records

B Control structures required

1 A DOWHILE loop to control the repetition
2 Decision symbols to select ‘S’, female and part-time (P/T) students

Print
student
details

FT

Read
student
record

Print heading

Read
student
record

T

F

FT

more
records?

record = ‘S’?

student
= P/T & female?

Start

Stop

296 Simple program design

C Solution algorithm

297Appendix 1: Flowcharts

EXAMPLE 6.4 Print and total selected students
Design a solution algorithm that will read the same student file as in Example 6.3 and
producep the same ‘FEMALE PART-TIME STUDENTS’ report. In addition, at the end of
the report you are to printp the number of students who have been selected and listed,
and the total number of students on the file.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records selected student records

• name Select female P/T students • number

• address Print selected records • name

• age Compute total students • address

• sex Compute total selected students • age

• attendance_pattern Print totals total_students

‘U’ records total_selected_students

B Control structures required

1 A DOWHILE loop to control the repetition
2 Decision symbols to select ‘S’, female and P/T students
3 Accumulators for total_selected_students and total_students

Print heading

Read
student
record

Print total_
students

Print total_
selected_
students

T

F

FT

more
records?

record = ‘S’?

Start

Stop

total_students,
total_selected
students = 0

Print
student
details

FT

Read
student
record

student
= P/T & female?

increment
total_selected_

students

increment
total_

students

298 Simple program design

C Solution algorithm

299Appendix 1: Flowcharts

EXAMPLE 6.5 Print student report
Design an algorithm that will read the same student file as in Example 6.4 and, for each
student, printp the name, number and attendance pattern from the ‘S’ records (student
records) and the unit number and unit name from the ‘U’ records (enrolled units records)
as follows.

 STUDENT REPORT

Student name ...

Student number ...

Attendance ...

Enrolled units

... ...

... ...

At the end of the report, print the total number of students enrolled.

A Defining diagram

Input Processing Output

‘S’ records Print heading Heading line

• number Read student records detail lines

• name Print ‘S’ record details • name

• attendance_pattern Print ‘U’ record details • number

‘U’ records Compute total students • attendance_pattern

• unit_number Print total students • unit_number

• unit_name • unit_name

total_students

B Control structures required

1 A DOWHILE loop to control the repetition
2 Decision symbols to select ‘S’ or ‘U’ records
3 An accumulator for total_students

FT

Print heading

Read student
record

Print total_
students

T

F

FT

more
records?

record = ‘S’?

record = ‘U’?

Start

Stop

increment
total_students

total_students
= zero

Print
student
details

Read
student
record

Print
unit

details

Print
error message

300 Simple program design

C Solution algorithm

301Appendix 1: Flowcharts

EXAMPLE 6.6 Produce sales report
Design a program that will read a file of sales records and producep a sales report. Each
record in the file contains a customer’s number and name, a sales amount and a tax
code. The tax code is to be applied to the sales amount to determine the sales tax due
for that sale, as follows:

Tax code Sales tax

0 tax exempt

1 3%

2 5%

The report is to print a heading ‘SALES REPORT’, and detail lines listing the cus-
tomer number, name, sales amount, sales tax and the total amount owing.

A Defining diagram

Input Processing Output

sales record Print heading Heading line

• customer_number Read sales records detail lines

• name Calculate sales tax • customer_number

• sales_amt Calculate total amount • name

• tax_code Print customer details • sales_amt

• sales_tax

• total_amount

B Control structures required

1 A DOWHILE loop to control the repetition
2 A case structure to calculate the sales_tax

Assume that the tax_code field has been validated and will only contain a
value of 0, 1 or 2.

Print heading

Read
sales
record

T

Fmore
records?

tax code?

Start

Stop

sales_tax =
sales_amt × 0.03sales_tax = 0 sales_tax =

sales_amt × 0.05

0 1 2

total_amt =
sales_amt +

sales_tax

Print
sales

details

Read
sales
record

302 Simple program design

C Solution algorithm

303Appendix 1: Flowcharts

EXAMPLE 6.7 Student test results
Design a solution algorithm that will read a file of student test results and producep a
student test grades report. Each test record contains the student number, name and
test score (out of 50). The program is to calculate for each student the test score as a
percentage and to printp the student’s number, name, test score (out of 50) and letter
grade on the report. The letter grade is determined as follows:

A = 90–100%
B = 80–89%
C = 70–79%
D = 60–69%
F = 0–59%

A Defining diagram

Input Processing Output

Student test records Print heading Heading line

• student_number Read student records student details

• name Calculate test percentage • student_number

• test_score Calculate letter grade • name

Print student details • test_score

• grade

B Control structures required
1 A DOWHILE loop to control the repetition
2 Decision symbols to calculate the grade

T F

grade ‘A’

percentage
� 90?

T F

grade ‘B’

percentage
� 80?

T F

grade ‘C’

percentage
� 70?

T F

grade ‘D’ grade ‘F’

percentage
� 60?

Print heading

Read
student
record

Print
student details

Read
student
record

T

Fmore
records?

Start

Stoppercentage =
score x 2

304 Simple program design

 C Solution algorithm

305Appendix 1: Flowcharts

EXAMPLE 6.8 Gas supply billing
The Domestic Gas Supply Company records its customers’ gas usage figures on a
customer usage file. Each record on the file contains the customer’s number, name and
address, and their gas usage expressed in cubic metres. Design a solution algorithm
that will read the customer usage file, calculate the amount owing for gas usage for
each customer, and printp a report listing each customer’s number, name, address, gas
usage and the amount owing.

The company bills its customers according to the following rate: if the customer’s
usage is 60 cubic metres or less, a rate of $2.00 per cubic metre is applied; if the
customer’s usage is more than 60 cubic metres, then a rate of $1.75 per cubic metre
is applied for the first 60 cubic metres and $1.50 per cubic metre for the remaining
usage.

At the end of the report, print the total number of customers and the total amount
owing to the company.

A Defining diagram

Input Processing Output

customer usage records Print heading Heading line

• customer_number Read usage records customer details

• name Calculate amount owing • customer_number

• address Print customer details • name

• gas_usage Compute total customers • address

Compute total amount owing • gas_usage

Print totals • amount_owing

total_customers

total_amount_owing

B Control structures required

1 A DOWHILE loop to control the repetition
2 A decision symbol to calculate the amount_owing
3 Accumulators for total_customers and total_amount_owing

Print heading

Read
customer

record

T

Fmore
records?

usage
� 60?

Start

Stop

total_customers,
total_amount

= zero

calculate amount_
owing

calculate amount_
owing

T F

increment
total_customers

add amount_owing
to total_amount

Print
customer

details

Read
customer

record

Print
total_customers

Print
total_amount

306 Simple program design

C Solution algorithm

307Appendix 1: Flowcharts

EXAMPLE 7.6 Process exam scores
Design a program that will promptp p for and receive 18 examination scores from a math-
ematics test, calculate the class average, and displayp y all the scores and the average
score to the screen.

A Defining diagram

Input Processing Output

18 exam scores Prompt for scores 18 exam scores

Get scores average_score

Calculate average score

Display scores

Display average score

B Control structures required

1 An array to store the exam scores – that is, ‘scores’
2 An index to identify each element in the array
3 A DO loop to accept the scores
4 Another DO loop to display the scores to the screen

Prompt and get
scores (I)

T

T

I � 18?

I � 18?

Start

Stop

total_score
= zero

I = 1

add scores (I) to
total_score

Display
scores (I)

Display
average_score

calculate
average

I = 1

I = I + 1

I = I + 1

F

F

308 Simple program design

C Solution algorithm

309Appendix 1: Flowcharts

EXAMPLE 7.7 Process integer array
Design an algorithm that will read an array of 100 integer values, calculate the average
integer value, and count the number of integers in the array that are greater than the
average integer value. The algorithm is to displayp y the average integer value and the
count of integers greater than the average.

A Defining diagram

Input Processing Output

100 integer values Read integer values average

Calculate integer average integer_count

Calculate integer count

Display integer average

Display integer count

B Control structures required

1 An array of integer values – ‘numbers’
2 A DO loop to calculate the average of the integers
3 A DO loop to count the number of integers greater than the average

increment
integer_count

T F

T

T

I � 100?

number (I)
> average?

Start

Stop

integer_total,
integer_count

= zero

I = 1

add number (I) to
integer_total

Display average,
integer_count

calculate
average

I = 1

I � 100?

I = I + 1

I = I + 1

F

F

310 Simple program design

C Solution algorithm

311Appendix 1: Flowcharts

EXAMPLE 7.8 Validate sales number
Design an algorithm that will read a file of sales transactions and validate the sales
numbers on each record. As each sales record is read, the sales number on the record
is to be verified against an array of 35 sales numbers. Any sales number not found in
the array is to be flaggedgg as an error.

A Defining diagram

Input Processing Output

sales records Read sales records error_message

• sales_number Validate sales numbers

Print error message

B Control structures required

1 A previously initialised array of sales numbers – ‘sales_numbers’
2 A DOWHILE loop to read the sales file
3 A DOWHILE loop to perform a linear search of the array for the sales

number
4 A variable element_found that will stop the search when the sales number

is found

T F

sales_num
= sales (I)?

T F

F

T

element
NOT found?

T F

I � 35
AND NOT element_

found?

Read
sales record

Read
sales record

Print
error_message

T

Fmore
records?

Start

Stopelement_found = F

I = 1

element_found?

I = I + 1element_found = T

312 Simple program design

C Solution algorithm

313Appendix 1: Flowcharts

EXAMPLE 7.9 Calculate freight charge
Design an algorithm that will read an input weight for an item to be shipped, search an
array of shipping weights and retrieve a corresponding freight charge. In this algorithm,
two paired arrays, each containing six elements, have been established and initialised.
The array, shipping_weights, contains a range of shipping weights in grams, and the
array, freight_charges, contains a corresponding array of freight charges in dollars, as
follows.

Shipping weights (grams) Freight charges

1–100 3.00

101–500 5.00

501–1000 7.50

1001–3000 12.00

3001–5000 16.00

5001–9999 35.00

A Defining diagram

Input Processing Output

entry weight Prompt for entry weight freight_charge

Get entry weight error_message

Search shipping weights array

Compute freight charge

Display freight charge

B Control structures required

1 Two arrays, ‘shipping_weights’ and ‘freight_charges’, already initialised
2 A DOWHILE loop to search the shipping_weights array and hence retrieve

the freight charge
3 A variable element_found that will stop the search when the entry weight

is found

T F

weights (I)
< weight?

T F

F

T

element
NOT found?

T F

I � 6
AND NOT element_

found?

Display
error message

Display
freight

Start

Stop

element_found = F

I = 1

element_found?

element_found = TI = I + 1

Prompt and
get weight

freight =
freights (I)

314 Simple program design

C Solution algorithm

Process_three_
characters

Sort_three_
characters

315Appendix 1: Flowcharts

Flowcharts and modules

When designing a modular solution to a problem, using a flowchart, the
predefined process symbol is used to designate a process or module. This
keeps flowcharts simple, because, as in pseudocode, the main flowchart
contains the name of the process, or module, and each process has its own
separate flowchart.

Let’s now look at the examples from Chapter 8, to see how flowcharts that
contain modules are drawn.

EXAMPLE 8.1 process three characters
Design a solution algorithm that will promptp p a terminal operator for three characters,
acceptp those characters as input, sort them into ascending sequence and outputp them
to the screen. The algorithm is to continue to read characters until ‘XXX’ is entered.

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

B Hierarchy chart

C Solution algorithm using a predefined process symbol
The flowchart solution consists of two flowcharts: a main flowchart called
Process_three_characters and a process flowchart called Sort_three_charac-
ters. When the main flowchart wants to pass control to its process module,
it simply names that process in a predefined process symbol. Control then
passes to the process flowchart, and when the processing in that flowchart is
complete, the module will pass control back to the main flowchart. The solu-
tion flowchart is simple and easy to read.

Process_three_characters

Prompt
for

characters

Get
characters

Output
characters

Prompt
for

characters

Get
characters

Fcharacters
NOT = xxx?

Start

StopSort_
three_

characters

swap
char_1,
char_2

FT char_1
>

char_2?

Sort_three_characters

swap
char_1,
char_2

FT char_1
>

char_2?

swap
char_2,
char_3

FT char_2
>

char_3?

Start

Stop

T

316 Simple program design

Process_
three_

characters

Read_
three_

characters

Print_
three_

characters

Sort_
three_

characters

317Appendix 1: Flowcharts

EXAMPLE 8.2 Process three characters
Design a solution algorithm that will promptp p a terminal operator for three characters,
acceptp those characters as input, sort them into ascending sequence and outputp them
to the screen. The algorithm is to continue to read characters until ‘XXX’ is entered.

A Defining diagram

Input Processing Output

char_1 Prompt for characters char_1

char_2 Accept three characters char_2

char_3 Sort three characters char_3

Output three characters

B Hierarchy chart

Process_three_characters

F

T

characters
NOT = ‘xxx’?

Start

Stop

Read_
three_

characters

Sort_
three_

characters

Print_
three_

characters

Read_
three_

characters

Print_three_characters

Start

Stop

Output
characters

Read_three_characters

Start

Stop

Prompt
for

characters

Get
characters

Example 8.2 continued next page

318 Simple program design

C Solution algorithm
There are four modules in this algorithm, a mainline module and three subor-
dinate modules, which will be represented by a flowchart, as follows:

swap
char_1,
char_2

FT char_1
>

char_2?

swap
char_1,
char_2

FT char_1
>

char_2?

swap
char_2,
char_3

FT char_2
>

char_3?

Start

Stop

Example 8.2 continued from previous page

319Appendix 1: Flowcharts

Sort_three_characters

Bill_gas_
customers

Print_customer_
details

Perform_initial_
processing

Print_gas_totals
Calculate_

amount_owing

320 Simple program design

EXAMPLE 8.3 Gas supply billing
The Domestic Gas Supply Company records its customers’ gas usage figures on a
customer usage file. Each record on the file contains the customer’s number, name,
address, and gas usage expressed in cubic metres. Design a solution algorithm that
will read the customer usage file, calculate the amount owing for gas usage for each
customer, and printp a report listing each customer’s number, name, address, gas usage
and the amount owing.

The company bills its customers according to the following rate: if the customer’s
usage is 60 cubic metres or less, a rate of $2.00 per cubic metre is applied; if the
customer’s usage is more than 60 cubic metres, then a rate of $1.75 per cubic metre
is applied for the first 60 cubic metres and $1.50 per cubic metre for the remaining
usage.

At the end of the report, print the total number of customers and the total amount
owing to the company.

A Defining diagram

Input Processing Output

customer usage records Print heading Heading line

• customer_number Read usage records customer details

• name Calculate amount owing • customer_number

• address Print customer details • name

• gas_usage Compute total customers • address

Compute total amount owing • gas_usage

Print totals • amount_owing

total_customers

total_amount_owing

B Hierarchy chart

Bill_gas_customers

Read customer
record

Read customer
record

Stop

Start

more records?
F

Calculate_
amount_owing

Perform_initial_
processing

Print_customer_
details

Print_gas_totals

T

Print heading

total_customers, total_
amount = zero

Stop

Start

Perform_initial_processing

Example 8.3 continued next page

321Appendix 1: Flowcharts

C Solution algorithm

Print customer
details

increment total_
customers

Stop

Start

Print_customer_details

Start

Stop

Print total_
customers, total_

amount

Print_gas_totals

calculate amount_
owing

calculate amount_
owing

add amount_owing to
total_amount

Stop

Start

usage <= 60?
T F

Calculate_amount_owing

Example 8.3 continued from previous page

322 Simple program design

Compute_
employee_pay

Calculate_
employee_pay

Read_employee
_details

Print_employee
_details

Validate_input_
fields

323Appendix 1: Flowcharts

EXAMPLE 8.4 Calculate employee’s pay
A company requires a program to read an employee’s number, pay rate and the number
of hours worked in a week. The program is then to validate the pay rate field and the
hours worked field and, if valid, computep the employee’s weekly pay and then printp it
and the input data.

Validation: According to the company’s rules, the maximum hours an employee can
work per week is 60 hours, and the maximum hourly rate is $25.00 per hour. If the hours
worked field or the hourly rate field is out of range, the input data and an appropriate
message are to be printedp and the employee’s weekly pay is not to be calculated.

Weekly pay calculationy p y : Weekly pay is calculated as hours worked times pay rate. If
more than 35 hours are worked, payment for the overtime hours worked is calculated
at time-and-a-half.

A Define the problem

Input Processing Output

emp_no Read employee details emp_no

pay_rate Validate input fields pay_rate

hrs_worked Calculate employee pay hrs_worked

Print employee details emp_weekly_pay

error_message

B Hierarchy chart

Compute_employee_pay

Stop

Start

more records?
F

Validate_ input_
 fields

Read_ employee
_ details

T

Calculate_ employee_
pay

fields valid?
T F

Example 8.4 continued next page

Print_ employee_
details

Read_
employee_

details

324 Simple program design

C Solution algorithm

Validate_input_fields

Start

valid_ input_ fields
= T

valid_ input_ fields
= F

pay_rate > $25?
T F

Print error
message

valid_ input_ fields
= F

hours_
worked
> 60

T F

Print error
message

Stop

calculate weekly pay
calculate weekly +

overtime pay

Stop

Start

hours_worked
<= 35?

T F

Calculate_employee_pay

Start

Stop

Read employee
record

Read_employee_details

Start

Stop

Print employee
details

Print_employee_details

Example 8.4 continued from previous page

325Appendix 1: Flowcharts

Appendix 2
Special algorithms

Outline

• Sorting algorithms

• Dynamic data structures

327Appendix 2: Special algorithms

This appendix contains a number of algorithms that are not included in the
body of the book but may be required at some time in your career.

The first section contains three sorting algorithms: bubble sort, insertion
sort and selection sort. The second section introduces three dynamic data
structures – queues, stacks and linked lists – and provides algorithms to
manipulate them.

Sorting algorithms

Bubble sort algorithms

This algorithm sorts an integer array into ascending order using a bubble sort
method.

On each pass, the algorithm compares each pair of adjacent items in the
array. If the pair is out of order, they are switched; otherwise they remain in
the original order. So, at the end of the first pass, the largest element in the
array will have bubbled to the last position in the array.

The next pass will work only with the remaining elements, and will move
the next largest element to the second-last position in the array and so on.

In the algorithm:

Array = array to be sorted

number_of_elements = number of elements in the array
elements_switched = flag to record if the elements have been switched in
the current pass
temp = temporary area for holding an array element that is being
switched
I = index for outer loop
J = index for inner loop.

Assume that the contents of Array and number_of_elements have already
been established.

328 Simple program design

Bubble_sort_algorithm
set I to number_of_elements
set elements_switched to true
DOWHILE (elements_switched AND I ≥ 2)

set J to 1
set elements_switched to false
DOWHILE J <= I – 1

IF Array (J) > Array (J + 1) THEN
temp = Array (J)
Array (J) = Array (J + 1)
Array (J + 1) = temp
elements_switched = true

ENDIF
J = J + 1

ENDDO
I = I – 1

ENDDO
END

Insertion sort algorithm

This algorithm sorts an integer array into ascending order using an insertion
sort method.

In the algorithm, the array is scanned until an out-of-order element is
found. The scan is then temporarily halted while a backward scan is made
to find the correct position to insert the out-of-order element. Elements
bypassed during this backward scan are moved up one position to make room
for the element being inserted. This method of sorting is more efficient than
the bubble sort.

In the algorithm:

 Array = array to be sorted
 number_of_elements = number of elements in the array
 temp = temporary area for holding an array element while correct position

is being searched
 I = current position of the element
 J = index for inner loop.

Assume that the contents of Array and number_of_elements have been
established.

329Appendix 2: Special algorithms

Insertion_sort_algorithm
set I to 1
DOWHILE I <= (number_of_elements – 1)

IF Array (I) > Array (I + 1) THEN
temp = Array (I + 1)
J = I
DOWHILE (J ≥ 1 AND Array (J) > temp)

Array (J + 1) = Array (J)
J = J – 1

ENDDO
Array (J + 1) = temp

ENDIF
I = I + 1

ENDDO
END

Selection sort algorithm

This algorithm sorts an integer array into ascending sequence using a
selection sort method.

On the first pass the algorithm finds the smallest element in the array and
moves it to the first position in the array by switching it with the element
originally in that position. Each successive pass moves one more element into
position. After the number of passes is one number less than the number of
elements in the array, the array will be in order.

In the algorithm:

Array = array being sorted
number_of_elements = number of elements in the array
smallest_element = area for holding the smallest element found in that
pass
current_smallest_position = the value of the current position in which to
place the smallest element
I = index for outer loop
J = index for inner loop.

Assume that the contents of Array and number_of_elements have been
established.

330 Simple program design

Selection_sort_algorithm
Set current_smallest_position to 1
DOWHILE current_smallest_position <= (number_of_elements – 1)

Set I to current_smallest_position
smallest_element = Array (I)
Set J = I + 1
DOWHILE J <= number_of_elements

IF Array (J) < smallest_element THEN
I = J
smallest_element = Array (J)

ENDIF
J = J + 1

ENDDO
Array (I) = Array (current_smallest_position)
Array (current_smallest_position) = smallest_element
Add 1 to current_smallest_position

ENDDO
END

Dynamic data structures

An array is called a static data structure, because in common programming
languages the maximum number of elements must be specified when the
array is declared. A dynamic data structure is one in which the number of
elements can expand or contract as the problem requires. The elements in
these data structures are called nodes.

In building dynamic data structures, pointers are used to create new
nodes, and link nodes dispose of those no longer needed. A pointer is a
variable whose memory cell contains the address in memory where a data
item resides. Therefore, a pointer provides an indirect reference to a data
item.

This section covers several examples of dynamic data structures, including
queues, stacks and linked lists. Algorithms that manipulate these structures
are also provided.

Queues

A queue is a data structure holding data items that are processed on a first-in-
first-out basis, like a line of people going through a cafeteria: the first one in
the line is the first to reach the cash register and get out of the line.

There are two operations that can be performed on a queue: a node can be
added to the end of a queue, and a node can be removed from the head of a
queue.

Some programming languages do not support the notion of dynamic data
structures, and so do not provide a pointer type. In such cases, the easiest way
of representing a queue in an algorithm is by declaring it to be an array.

331Appendix 2: Special algorithms

The effect of a pointer is then achieved by using an integer variable to
hold the subscript of the array element representing the node that is currently
being operated on. Pointers are required to locate the position of the head of
the queue and the tail of the queue, as these must be known. Most queues
are designed so that the head of the queue wraps around to the tail when
required.

Names used in the algorithms are:

Queue = queue to be manipulated
max_size = maximum number of items in the queue
queue_counter = current number of items in the queue
queue_head = position of the head of the queue
queue_tail = position at which the next item will be inserted in the queue.

The pseudocode to add an item and to delete an item from a queue is:

Add_item_to_tail_of_queue
IF (queue_tail = queue_head AND queue_counter > 0) THEN

Print error message (‘queue overflow’)
ELSE

Queue (queue_tail) = new item
queue_tail = queue_tail + 1
IF queue_tail > max_size THEN

queue_tail = 1
ENDIF
queue_counter = queue_counter + 1

ENDIF
END

Remove_item_from_head_of_queue
IF queue_counter = 0 THEN

Print error message (‘queue is empty’)
ELSE

required value = Queue (queue_head)
queue_head = queue_head + 1
IF queue_head > max_size THEN

queue_head = 1
ENDIF
queue_counter = queue_counter – 1

ENDIF
END

It is not necessary to alter the data item that is ‘removed’ from the queue,
because it will simply be overwritten if its place is required.

Stacks

A stack is a data structure holding data items that are processed on a last-in-
first-out basis, like a stack of trays in a cafeteria: when a tray is required, it

 ‘A’ ‘B’ ‘C’ ‘D’ Null

First Current

332 Simple program design

is removed from the top of the stack, and when one is added to the stack, it
is also placed on the top. These operations on stack data structures are often
called ‘pop’ (for removing the top element) and ‘push’ (for adding a new
element to the stack).

Once again, the easiest way of representing this stack in an algorithm is by
declaring it to be an array.

In the algorithms:

 Stack = stack to be manipulated
 max_size = the maximum size of the stack
 top_of_stack = the position of the top of the stack.

Add_item_to_top_of_stack (Push)
IF top_of_stack NOT = max_size THEN

top_of_stack = top_of_stack + 1
Stack (top_of_stack) = new item

ELSE
Print error message (‘stack overflow’)

ENDIF
END

Remove_item_from_top_of_stack (Pop)
IF top_of_stack NOT = zero THEN

value required = Stack (top_of_stack)
top_of_stack = top_of_stack – 1

ELSE
Print error message (‘stack underflow’)

ENDIF
END

Once again, it is not necessary to alter the data item that is ‘removed’ from
the stack, as it will be overwritten when the next item is added.

Linked lists

A (linear) linked list is a data structure holding a series of elements or cells
that contain both a data item and a pointer to the next element in the list. A
linked list can be illustrated as follows:

In the diagram, the pointer called ‘First’ points to the first cell in the list
and the pointer called ‘Current’ points to the current cell in the list. The
pointer in the last cell is labelled ‘Null’, as it indicates the end of the list. Null
does not point to a data value.

333Appendix 2: Special algorithms

The advantage of such a data structure is that the elements in the list may
be added or deleted by manipulating the pointers rather than by physically
moving the data. The data structure thus can be maintained in a logical
sequence, without that logical sequence being physically implemented.

Again, where the programming language does not support a pointer
type, the easiest way of representing a linked list is by using a technique of
‘parallel arrays’, as described in chapter 7. Here, one array holds the items
in the list and the other array holds, at corresponding positions, the ‘link’
to the (logically) next item – that is, the value of the subscript of the next
item. An integer variable is needed to hold the subscript of the ‘first’ item (in
logical order), and some convention must be adopted whereby an impossible
subscript value is understood to be a Null pointer.

Names used in the algorithms are:

 Items = an array holding the list values
 Links = an array holding subscripts of the next items
 first = the subscript of the first item in the list
 current = the subscript of the list item currently being operated on
 last = the subscript of the item ‘previous’ to the ‘current’ item
 continue = a Boolean variable set to true to indicate that the search for a

value is to continue.

Pseudocode examples that manipulate a singly linked linear list follow:

1 Traverse a list, printing its value

Traverse_and_print
current = first
DOWHILE current NOT = Null

Print items (current)
current = Links (current)

ENDDO
END

2 Search a list for a particular value (‘value’)

Search_list_for_value
current = first
continue = true
DOWHILE (continue AND current NOT = Null)

IF items (current) NOT = value THEN
last = current
current = Links (current)

ELSE
continue = false

ENDIF
ENDDO

END

Note that continue will still be true if the value was not in the list, in which
case current will be Null.

334 Simple program design

3 Remove a designated value from the list. (This algorithm follows on from
the one above, where the value was located.)

Remove_value_from_list
IF NOT continue THEN (i.e. the value was found on the list)

IF current = first THEN
first = Links (current)

ELSE
Links (last) = Links (current)

ENDIF
ENDIF

END

In practice, the position of the space just freed would be recorded for later
use. This would require the definition of an integer variable ‘free’ to hold the
subscript of the first element of free space. Then, after a remove operation, the
free list would be updated with the statements:

 Links (current) = free
 free = current

More complex linked structures, such as binary trees and graphs, and the
algorithms to manipulate them are beyond the present scope of this book.
They may be found in more advanced programming texts and introductory
Computer Science texts.

Appendix 3
Translating pseudocode into
computer languages: quick

reference chart

Outline

BASIC/VB/VBA

PASCAL/DELPHI

C/C++

336 Simple program design

Ps
eu

do
co

de
VB

, V
BA

Pa
sc

al
/D

el
ph

i
C+

+

Da
ta

 ty
pe

s
In

te
ge

r
Fl

oa
tin

g
Po

in
t

B o
ol

ea
n

Ch
ar

ac
te

r
St

rin
g

In
te

ge
r,

Lo
ng

Si
ng

le
, D

ou
bl

e
Bo

ol
ea

n
Ch

ar
 (V

B.
Ne

t o
nl

y)yy
st

rin
g

In
te

ge
r

Si
ng

le
, D

ou
bl

e
B o

ol
ea

n
Ch

ar
st

rin
g

in
t,

lo
ng

flo
at

, d
ou

bl
e

bo
ol

ch
ar

st
rin

g

M
od

ul
e

de
cl

ar
at

io
n

Na
m

e

st
at

em
en

t/s
EN

D

SU
B

Na
m

e(
pa

ra
m

et
er

s
if

an
y)yy

st
at

em
en

t/s
EN

D
SU

B

FU
NC

TI
ON

Na
m

e(
pa

ra
m

et
er

s
if

an
y)

 A
S

yy
da

ta
ty

pe

st
at

em
en

t/s
Na

m
e

=
 re

tu
rn

Va
lu

e
EN

D
FU

NC
TI

ON

PR
OC

ED
UR

E
Na

m
e(

pa
ra

m
et

er
s

if
an

y)
;

yy
BE

GI
N st

at
em

en
t/s

;
EN

D;

FU
NC

TI
ON

Na
m

e(
pa

ra
m

et
er

s
if

an
y)

:
yy

da
ta

ty
pe

;
BE

GI
N st

at
em

en
t/s

;
Na

m
e

:=
e

re
tu

rn
Va

lu
e;

or
RE

SU
LT

 :=
re

tu
rn

Va
lu

e;
EN

D;

vo
id

Na
m

e(
pa

ra
m

et
er

s
if

an
y)yy

{ st
at

em
en

t/s
;

}; da
ta

ty
pe

Na
m

e(
pa

ra
m

et
er

s
if

an
y)yy

{
st

at
em

en
t/s

;
re

tu
rn

va
lu

e;
};

Va
ria

bl
e

de
cl

ar
at

io
n

DI
M

va
ria

bl
eN

am
e

AS
da

ta
ty

pe
VA

R
va

ria
bl

eN
am

e1
, …

: d
at

at
yp

e;
da

ta
ty

pe
va

ria
bl

eN
am

e1
, .

..;

Co
ns

ta
nt

 d
ec

la
ra

tio
n

CO
NS

TN
AM

E
=

E

va
lu

e
CO

NS
T

CO
NS

TN
AM

E
AS

da
ta

ty
pe

=

e
va

lu
e

CO
NS

T
CO

NS
TN

AM
E

=
E

va
lu

e;
co

ns
td

at
at

yp
e

CO
NS

TN
AM

E
=

E
va

lu
e;

337Appendix 3: Translating pseudocode into computer languages: quick reference chart

Ps
eu

do
co

de
VB

, V
BA

Pa
sc

al
/D

el
ph

i
C+

+

Co
nd

iti
on

al
 o

pe
ra

to
rs

op
er

an
d

=
op

er
an

d
op

er
an

d
NO

T
=

op
er

an
d

op
er

an
d

<
d

op
er

an
d

op
er

an
d

>
op

er
an

d
op

er
an

d
<

=
op

er
an

d
op

er
an

d
>

=
op

er
an

d

op
er

an
d

=
d

op
er

an
d

op
er

an
d

<
>

op
er

an
d

op
er

an
d

<
d

op
er

an
d

op
er

an
d

>
op

er
an

d
op

er
an

d
<

=
op

er
an

d
op

er
an

d
>

=
op

er
an

d

(o
pe

ra
nd

=
op

er
an

d)dd
(o

pe
ra

nd
<

>
op

er
an

d)dd
(o

pe
ra

nd
<

op
er

an
d)dd

(o
pe

ra
nd

>
op

er
an

d)dd
(o

pe
ra

nd
<

=
op

er
an

d)dd
(o

pe
ra

nd
>

=
op

er
an

d)dd

(o
pe

ra
nd

=
 =

op
er

an
d)dd

(o
pe

ra
nd

!=
op

er
an

d)dd
(o

pe
ra

nd
<

op
er

an
d)dd

(o
pe

ra
nd

>
op

er
an

d)dd
(o

pe
ra

nd
<

=
op

er
an

d)dd
(o

pe
ra

nd
>

=
op

er
an

d)dd

Lo
gi

ca
l o

pe
ra

to
rs

op
er

an
d

AN
D

op
er

an
d

op
er

an
d

OR
op

er
an

d
op

er
an

d
NO

T
op

er
an

d

op
er

an
d

AN
D

op
er

an
d

op
er

an
d

OR
op

er
an

d
NO

T
(o

pe
ra

nd
)dd

(o
pe

ra
nd

AN
D

op
er

an
d)dd

(o
pe

ra
nd

OR
op

er
an

d)dd
NO

T
(o

pe
ra

nd
)dd

(o
pe

ra
nd

&
&

op
er

an
d)dd

(o
pe

ra
nd

||
d

op
er

an
d)dd

! (
op

er
an

d)dd

IF
 (c

on
di

tio
n)

 T
HE

N
n

Tr
ue

 s
ta

te
m

en
t/s

bl

oc
k

EL
SE

Fa
ls

e
st

at
em

en
t/s

bl
oc

k
EN

DI
F

IF
(c

on
di

tio
n)n

 T
HE

N
Tr

ue
 s

ta
te

m
en

t/s
 b

lo
ck

EL

SE
Fa

ls
e

st
at

em
en

t/s
 b

lo
ck

EN
DI

F

IF
(c

on
di

tio
n)n

TH
EN

BE
GI

N
Tr

ue
 s

ta
te

m
en

t/s
 b

lo
ck

;kk
EN

D

EL
SE

BE
GI

N
Fa

ls
e

st
at

em
en

t/s
 b

lo
ck

;kk
EN

D;

if
(c

on
di

tio
n)n

{
Tr

ue
 s

ta
te

m
en

t/s
 b

lo
ck

;kk

} el
se

{ Fa
ls

e
st

at
em

en
t/s

 b
lo

ck
;kk

};

338 Simple program design

Ps
eu

do
co

de
VB

, V
BA

Pa
sc

al
/D

el
ph

i
C+

+

CA
SE

 O
F

si
ng

le
_v

ar
ia

bl
e

va
lu

e_
1

: s
ta

te
m

en
tb

lo
ck

_1
va

lu
e_

2
: s

ta
te

m
en

t
bl

oc
k_

2
… va

lu
e_

n
:s

ta
te

m
en

tt
bl

oc
k_

n

… va
lu

e_
ot

he
r:

st
at

em
en

tt
bl

oc
k_

ot
he

r
EN

DC
AS

E

SE
LE

CT
 C

AS
E

si
ng

le
_v

ar
ia

bl
e

CA
SE

va
lu

e_
1

:s
ta

te
m

en
t b

lo
ck

_1
CA

SE
va

lu
e_

2
:s

ta
te

m
en

t b
lo

ck
_2

CA
SE

va
lu

e_
n

:s
ta

te
m

en
t b

lo
ck

_n
CA

SE
 E

LS
E

:s
ta

te
m

en
tb

lo
ck

_o
th

er
EN

D
SE

LE
CT

CA
SE

si
ng

le
_v

ar
ia

bl
e

OF
va

lu
e_

1
: s

ta
te

m
en

t b
lo

ck
_1

;
va

lu
e_

2
: s

ta
te

m
en

t b
lo

ck
_2

;22
… va

lu
e_

n
: s

ta
te

m
en

t b
lo

ck
_n

;

EL
SE

st
at

em
en

t b
lo

ck
_o

th
er

;rr
EN

D;

sw
itc

h
(s

in
gl

e_
va

ria
bl

e)e
{

ca
se

va
lu

e_
1:

st
at

em
en

t/s
;

tt

br
ea

k;

ca
se

va
lu

e_
2:22

st
at

em
en

t/
s;

nn

br
ea

k;

… ca
se

va
lu

e_
n:

st
at

em
en

t/
s;

br
ea

k;

de
fa

ul
t:

st
at

em
en

t/s
;

};

DO
W

HI
LE

(c
on

di
tio

n)n
st

at
em

en
t/s

EN
DD

O

DO
 W

HI
LE

(c
on

di
tio

n)n
st

at
em

en
t/s

LO
OP

or W
HI

LE
(c

on
di

tio
n)n

st
at

em
en

t/s
W

EN
D

W
HI

LE
(c

on
di

tio
n)n

DO
BE

GI
N

st
at

em
en

t/s
;

EN
D;

w
hi

le
(c

on
di

tio
n)n

{
st

at
em

en
t/s

;

};

339Appendix 3: Translating pseudocode into computer languages: quick reference chart

Ps
eu

do
co

de
VB

, V
BA

Pa
sc

al
/D

el
ph

i
C+

+

DO st
at

em
en

t/s

W
HI

LE
(c

on
di

tio
n)n

DO
st

at
em

en
t/s

LO
OP

W
HI

LE
(c

on
di

tio
n)n

RE
PE

AT st
at

em
en

t/s
;

UN
TI

L
NO

T
(c

on
di

tio
n)

;
n

do {
st

at
em

en
t/s

;

} w
hi

le
(c

on
di

tio
n)

;
n

RE
PE

AT
st

at
em

en
t/s

UN

TI
L

(c
on

di
tio

n)n

DO
st

at
em

en
t/s

LO
OP

UN
TI

L
(c

on
di

tio
n)n

RE
PE

AT st
at

em
en

t/s
;

UN
TI

L
(c

on
di

tio
n)

;
n

do {
st

at
em

en
t/s

;

}w
hi

le
!(c

on
di

tio
n)

;
n

DO
co

un
te

r=r
be

gi
n

TO
en

d
st

at
em

en
t/s

EN
DD

O

FO
R

co
un

te
r=r

be
gi

n
TO

en
d

st
at

em
en

t/s
NE

XT
co

un
te

r

FO
R

co
un

te
r:

=
be

gi
n

TO
en

d
DO

BE
GI

N
st

at
em

en
t/

s;
EN

D;

fo
r(

co
un

te
r=r

be
gi

n;
 c

ou
nt

er
<

=
r

en
d;dd

co
un

te
r+

+
rr

)
{

st
at

em
en

t/s
;

};

Re
co

rd
 s

tr
uc

tu
re

s
r e

co
rd

Na
m

e
fie

ld
na

m
e1

fie
ld

na
m

e2

… fie
ld

na
m

eN

TY
PE

re
co

rd
Na

m
eT

yp
e

fie
ld

1
AS

da
ta

ty
pe

fie
ld

2
AS

da
ta

ty
pe

… fie

ld
N

AS
da

ta
ty

pe
EN

D
TY

PE

TY
PE

re
co

rd
Na

m
e

=
e

RE
CO

RD
fie

ld
1:

da
ta

ty
pe

;
fie

ld
2:

da
ta

ty
pe

;

… fie
ld

N:NN
da

ta
ty

pe
;

EN
D;

st
ru

ct
re

co
rd

Na
m

eT
yp

e
{

da
ta

ty
pe

fie
ld

1;

da
ta

ty
pe

fie
ld

2;22

… da
ta

ty
pe

fie
ld

N;NN

};

340 Simple program design

Ps
eu

do
co

de
VB

, V
BA

Pa
sc

al
/D

el
ph

i
C+

+

Se
qu

en
tia

l F
ile

s
–

Re
ad

in
g

In
iti

al
pr

oc
es

si
ng

RE
AD

va
ria

bl
eN

am
e

DO
W

HI
LE

 N
OT

 E
OF

… RE
AD

va
ria

bl
eN

am
e

EN
DD

O
Fi

na
lp

ro
ce

ss
in

g

OP
EN

“
N

so
ur

ce
fil

e”
FO

R
IN

PU
T

AS
fil

eN
o

… DO
 W

HI
LE

 N
OT

 E
OF

(fi
le

No
)o

IN

PU
T

#f
ile

No
, f

ie
ld

1,

fie
ld

2,
…

22
,fi

el
dN

…
LO

OP
…

.
CL

OS
E

#f
ile

No

No
te

: Y
ou

 c
an

’t
do

 a
 p

rim
in

g
re

ad
 a

s
VB

us
es

 a
 re

ad
 a

he
ad

 m
et

ho
d.

Pr
og

ra
m

Na
m

e(
In

pu
t,

Ou
tp

ut
, f

ile
Ha

nd
le

)e
VA

R
fil

eH
an

dl
e

:
e

TE
XT

FI
LE

;
… BE

GI
N AS

SI
GN

FI
LE

(fi
le

Ha
nd

le
,“

so
ur

ce
fil

e”
);

RE
SE

T
(fi

le
Ha

nd
le

);
{

e
Op

en
 fo

r
Re

ad
in

g}
W

HI
LE

 N
OT

(E
OF

(fi
le

Ha
nd

le
)) e

DO
BE

GI
N

…

RE
AD

LN
(fi

le
Ha

nd
le

,
va

ria
bl

e)
;

e
EN

D;

… CL
OS

EF
IL

E(
fil

eH
an

dl
e)

;
e

EN
D.

#i
nc

lu
de

<
fs

tr
ea

m
.h

>
… ifs

tr
ea

m
in

Fi
le

Ha
nd

le
;

… in
Fi

le
Ha

nd
le

.o
pe

n(
“s

ou
rc

ef
ile

”)
;

… in
Fi

le
Ha

nd
le

>
>

e

va
ria

bl
eN

am
e;

w
hi

le
(!i

nF
ile

Ha
nd

le
.e

of
())

{
… in

Fi
le

Ha
nd

le
>

>
e

va
ria

bl
eN

am
e;

}; in
Fi

le
Ha

nd
le

.c
lo

se
();

Se
qu

en
tia

l f
ile

s
–

W
rit

in
g

W
RI

TE
 v

ar
ia

bl
eN

am
e

OP
EN

“s
ou

rc
ef

ile
”

FO
R

OU
TP

UT
 A

S
fil

eN
o

… OU

TP
UT

 #
fil

eN
o,

 fi
el

d1
, f

ie
ld

2,
…

,fi
el

dN …
CL

OS
E

#f
ile

No

Pr
og

ra
m

Na
m

e(
In

pu
t,

Ou
tp

ut
, f

ile
Ha

nd
le

)e
VA

R
fil

eH
an

dl
e

: T
EX

TF
IL

E;
… BE

GI
N AS

SI
GN

FI
LE

(fi
le

Ha
nd

le
,“

so
ur

ce
fil

e”
);

RE
W

RI
TE

 (f
ile

Ha
nd

le
);

{O
pe

n
fo

r
e

W
rit

in
g} W
RI

TE
LN

(fi
le

Ha
nd

le
,v

ar
ia

bl
e

or
va

lu
e)

;
e … CL

OS
EF

IL
E(

fil
eH

an
dl

e)
;

e
EN

D.

#i
nc

lu
de

<
fs

tr
ea

m
.h

>
… of

st
re

am
ou

tF
ile

Ha
nd

le
;

… ou
tF

ile
Ha

nd
le

.o
pe

n(
“s

ou
rc

ef
ile

”)
;

…

ou
tF

ile
Ha

n
dl

e<
<

va
ria

bl
eN

am
e<

<
“”

;

…

ou
tF

ile
Ha

nd
le

.c
lo

se
();

341Appendix 3: Translating pseudocode into computer languages: quick reference chart

Ps
eu

do
co

de
VB

, V
BA

Pa
sc

al
/D

el
ph

i
C+

+

De
cl

ar
in

g
ar

ra
ys

On
e-

di
m

en
si

on
al

SE

T
ar

ra
yN

am
e

(
e

m
ax

Nu
m

El
em

en
ts

)s
DI

M
ar

ra
yN

am
e

(
e

be
gi

n
TO

en
d)

dd

AS
da

ta
ty

pe

VA
R

ar
ra

yN
am

e
:

e
AR

RA
Y[

be
gi

n
..

n
en

d]

dd
OF

da
ta

ty
pe

;

da
ta

ty
pe

 a
rr

ay
Na

m
e

[m
ax

Nu
m

El
em

en
ts

]; s

De
cl

ar
in

g
ar

ra
ys

Tw
o-

di
m

en
si

on
al

SE

T
ar

ra
yN

am
e

(
e

ro
w

,
ww

co
lu

m
n)n

DI
M

ar
ra

yN
am

e
(

e
be

gi
n

TO
m

ax
ro

w
,

ww
be

gi
n

TO
m

ax
co

lu
m

n)n
AS

da
ta

ty
pe

VA
R

ar
ra

yN
am

e
:

e
AR

RA
Y[

be
gi

n
..

n
m

ax
ro

w
,

ww
be

gi
n

..
n

m
ax

co
lu

m
n]n

OF
da

ta
ty

pe
;

da
ta

ty
pe

ar
ra

yN
am

e
[

e
ro

w
][

ww
co

lu
m

ns
];s

Pr
oc

es
si

ng
 A

rr
ay

 E
le

m
en

ts
As

si
gn

in
g

a
va

lu
e

ar
ra

yN
am

e
(

e
in

de
x)

 =

xx
va

lu
e

Re
ad

in
g

a
Va

lu
e

va
ria

bl
eN

am
e

=
e

ar
ra

yN
am

e
(in

de
x)xx

ar
ra

yN
am

e
(

e
in

de
x)

 =
xx

va
lu

e

va
ria

bl
eN

am
e

=
e

ar
ra

yN
am

e
(in

de
x)xx

ar
ra

yN
am

e
[

e
in

de
x]

 :=
xx

va
lu

e;

va
ria

bl
eN

am
e

:=
e

ar
ra

yN
am

e
[

e
in

de
x]

;
xx

ar
ra

yN
am

e
[

e
in

de
x]

 =
xx

va
lu

e;

va
ria

bl
eN

am
e

=

e
ar

ra
yN

am
e

[
e

in
de

x]
;

xx

Th
is

 c
ha

rt
 is

 s
up

pl
ie

d
co

ur
te

sy
 o

f V
ic

to
r

Co
ck

re
ll,

 C
ur

tin
 U

ni
ve

rs
ity

, W
es

te
rn

 A
us

tr
al

ia

342

Glossary

actual parameter
A parameter that is passed to a subordinate module in a particular call.

accessor
A descriptive name for an operation that retrieves or ‘gets’ the value of an
attribute.

algorithm
A set of detailed, unambiguous and ordered instructions developed to describe
the processes necessary to produce the desired output from given input.

array
A data structure made up of a number of variables that all have the same data
type and are accessed by the same name.

attribute
A characteristic or property of an object.

audit report
A detailed list of all transactions that occurred during the life of the
program.

binary search
A search that involves halving the number of elements to search for each time
the logic is executed, until an element is found or its absence is detected.

Boolean variable
A variable that can contain only one of two possible values: true or false.

CASE control structure
A structure that extends the basic selection control structure from a choice
between two values to a choice from multiple values.

class
A template or pattern that defines the basic attributes, relationships and
operations available to its objects.

cohesion
A measure of the internal strength of a module – that is, how closely the
elements or statements of a module are associated with each other. The higher
the cohesion, the better the module.

343Glossary

constant
A data item with a name and a value that remain the same during the
execution of a program.

constructor
A set of instructions that creates an object and initialises its attributes.

control structures
The Structure Theorem states that it is possible to write any program using
only three basic control structures:

1 Sequence: the straightforward execution of one processing step after
another.

2 Selection: the presentation of a condition, and the choice between two
actions, depending on whether the condition is true or false.

3 Repetition: the presentation of a set of instructions to be performed
repeatedly, as long as a condition is true.

counted repetition
A loop in an algorithm where the exact number of loop iterations is known
in advance.

coupling
A measure of the extent of information interchange between modules. The
fewer the connections between modules, the more loosely they are coupled.
The looser the coupling, the better the module.

data-driven design
A design methodology based on the idea that the data in a program is more
stable than the processes involved.

data structure
A collection of elementary data items.

data type
A set of values and a set of operations that can be performed on those
values.

defining diagram
A diagram that arranges the input, output and processing components of
a problem into separate columns. It is constructed when the programmer
defines the problem.

desk checking
A method of manually tracing through the logic of a program with some
chosen test data.

direct access file
A file where data is stored and retrieved randomly, using a key or index.

344

dynamic data structure
A structure in which the number of elements can expand or contract as the
problem requires.

elementary data item
One containing a single variable that is always treated as a unit.

error report
A detailed list of the errors that occurred during the life of the program.

event-driven design
A design methodology based on the idea that an event can cause a program to
change from one known state to another.

file
A collection of related records.

flowchart
A graphical representation of program logic, using a series of standard
geometric symbols and lines.

formal parameter
A parameter that appears when a subordinate module is defined.

functional decomposition
The division of a problem into separate tasks or functions as the first step
towards designing the solution algorithm. Each function will be dedicated to
the performance of a single specific task.

global data
Data that is known to the whole program.

graphical user interface (GUI)
An interface that enables the programmer to select the program’s interface
from a pre-existing range of options.

hierarchy chart
A diagram that shows the name of each module in the solution algorithm and
its hierarchical relationship to the other modules.

information hiding
A term used in object-oriented design whereby the structure of the data and
the performance of its operations are ‘hidden’ from the user.

instantiation
The process of creating objects from classes. Each object will contain the same
attributes, but not necessarily the same values in those attributes.

interface
A device in a program connecting a user’s responses with the program’s
actions.

intermodule communication
The flow of information or data between modules.

Glossary

345Glossary

leading decision loop
A loop in an algorithm in which the condition is tested before any statements
are executed.

linear search
A search that involves looking at the elements one by one until an element is
found or the end of the input is reached.

linked list
A data structure that holds a series of elements containing both a data item
and a pointer to the next item in the list.

literal
A constant whose name is the written representation of its value.

local data
Data that is defined within the module in which it will be referenced and is
not known outside that module.

mainline
The controlling module of a solution algorithm, which ties all the modules
together and coordinates their activity.

master file
A file that contains permanent and semipermanent information about the
data entities it contains.

modular design
Grouping tasks together because they all perform the same function. Modular
design is directly connected to top-down development, as the tasks into
which you divide the problem will actually form the future modules of the
program.

module
A section of an algorithm that is dedicated to the performance of a single task
or function.

multidimensional array
An array constructed in such a way that two or more subscripts are required
to locate an element in the array.

mutator
A descriptive name for an operation that provides or ‘sets’ the value of an
attribute.

object
A container for a set of data, and the operations that need to be performed on
that data.

object-oriented design
A methodology that views the system as a collection of interacting objects,
rather than functions, whose internal structure is hidden from the user.

346

operation
A set of services that an object can perform. Public operations are those
producing services requested by other objects. Private operations are those
performing internal operations in an object and cannot be accessed directly
from outside the object.

operation overriding
A term used in object-oriented design to refer to the situation in which a
parent class provides an operation, but the inheriting child class defines its
own version of that operation.

overloading
A term used in object-oriented design to refer to operations in a single class
that have the same name.

paired arrays
Two arrays that contain the same number of elements and whose elements
correspond in the same position.

parameter
A variable, literal or constant, that is used to communicate between the
modules of a program.

• Data parameters contain the actual variables or data items that will be
passed between modules.

• Status parameters act as program flags and should contain just one of two
values: true or false.

pointer
A variable whose memory cell contains the address in memory where a data
item resides.

polymorphism
A term used in object-oriented design to refer to the use of operations of the
same name for a variety of purposes.

priming read
A statement that appears immediately before the DOWHILE condition in a
solution algorithm.

private access
The attributes and methods that are invisible to the rest of the system. In a
class diagram a minus sign is used in front of the name.

public access
Operations that are visible to other objects. Other objects can see the
specifications of that operation. In a class diagram a plus sign is used in front
of the name.

procedure-driven design
A design methodology based on the idea that the most important feature of a
program is its processes or functions.

Glossary

347Glossary

pseudocode
A subset of English that has been formalised and abbreviated to look like a
high-level computer language. Keywords and indentation are used to signify
particular control structures.

queue
A data structure holding data items that are processed on a first-in-first-out
basis.

record
A collection of data items or fields that all bear some relationship to each
other.

reference parameter
A parameter whose reference address is passed to a subordinate module and
thus can be modified.

scope of a variable
The portion of a program in which a variable has been defined and can be
referred to; that is, a list of all the modules in which that variable can be
referenced.

sentinel
A special record placed at the end of valid data to signify the end of that data.
It is also known as a trailer record.

sequential file
A file where the data is stored and retrieved sequentially.

sequential file update
An update of a sequential master file, using a sequential file of update
transactions.

side effect
An event that occurs when a subordinate module alters the value of a global
variable inside that module.

stack
A data structure holding data items that are processed on a last-in-first-out
basis.

string
A collection of characters.

Structure Theorem
The Structure Theorem states that it is possible to write any computer
program by using only three basic control structures. These control structures
are simple sequence, selection and repetition.

structured programming
A method of writing programs so that each instruction obeys the Structure
Theorem. Structured programming also incorporates top-down development
and modular design.

348

top-down design
The division of a problem into separate tasks as the first step towards
designing the solution algorithm. The programmer develops an algorithm
that incorporates the major tasks first, and only considers the more detailed
steps when all the major tasks have been completed.

trailing decision loop
A loop in an algorithm in which the condition is tested at the end of the loop,
after the statements in the loop have been executed once.

transaction file
A file that contains transactions designed to update a master file.

value parameter
A parameter whose value is passed to a subordinate module, but which
cannot be modified.

variable
A collection of memory cells that store a particular data item.

visibility
A term used in object-oriented design to refer to the public or private nature
of an operation. An operation is visible if it can interact with the rest of the
program.

Glossary

Index

accessor operations 202
actual parameters 161–2
aggregation 217–18
algorithms

balance line 148–52
bubble sort 327–8
coding into a specific programming

language 3
definition 6–7
desk checking 3, 24, 26–32, 73, 117
insertion sort 328–9
that manipulate arrays 89
and outline development 3
and repetition control structure

283–90
and selection control structure

274–9
selection sort 329–30
and sequence control structure

268–72
sorting 327–30
special 326–34
testing for correctness 3
using selection 40–7
see also solution algorithms

algorithms, simple
that manipulate arrays 89–91
repetition control structure 283–90
selection control structure 274–9
sequence control structure 268–72

AND operators 38
arithmetic 13
array(s) 9

binary search 95–6
definition 9, 88
initialising the elements of an 92–4
linear search 95

load initial values 92
loading constant values 92
loading two-dimensional 102–3
operations on 89
paired 94

processing 89–91
programming examples 97–101
searching 94–6, 103–4
simple algorithms that manipulate

89
two-dimensional 101–4
of variable size 93
writing out the contents 96, 104

association 216–17
attributes 193
audit report 147

balance line algorithm 148–52
Boolean 8

variables 45–7
bubble sort algorithms 327–8

case control structure 48–50
expressed as a flowchart 280–1

CASE OF 48
character 8
classes

diagram 194–5
and object-oriented solution 221
classes and objects 193

multiple, object-oriented design for
242–56

programming examples 222–38
relationships between 216–19

cohesion
coincidental 175–6
communicational 178
functional 179
levels, summary of 179–80
logical 176
module 174–80
procedural 177–8
sequential 178–9
temporal 176–7

cohesion levels 148–9
coincidental cohesion 175–6
common coupling 180–1

communicational cohesion 178
composition 217–18
computer languages

and pseudocode 7, 13
visual 256

computer operations, 12–14
constant values, arrays and loading 91
constants 7–8
constructors 201
control break

multiple-level 141–5
single-level 137–40

control coupling 182–3
counted loop 67–8
counted repetition 67–9
coupling

common 180–1
control 182–3
data 184
external 181–2
levels, summary of 184–5
module 180–5
stamp 183

data
coupling 184
global 160
local 160
parameters 165
scope of the 221
structure, internal 88
structures 8–9
structures, dynamic 330–4
test, selecting 26
types 8–9
validation 9, 232

data-driven program design 4–5
defining diagram 2, 19, 73, 194235
design, object-oriented 188–93, 203–7,

213–16, 232
desk checking 3, 24, 26–32, 73, 117
DO loop 89
DOWHILE

loop 17, 55, 64–5, 89, 92, 102–3,
104, 282

and pseudocode 14, 16–17, 92
repeat a set of instructions a known

number of times 56–7
repeat a set of instructions an

unknown number of times 58–63
structure 64
structure, repetition using 55–63

dynamic data structures 330–4

elementary data items 8
ELSE statement 39

null 272
encapsulation 195–6
ENDCASE 48
ENDDO 14, 16, 17, 55
ENDIF statement 39
end-of-file marker (EOF) 60
error report 147
event-driven program design 4
external coupling 181–2

file
master 146
transaction 146
update, sequential 146–52

files 8, 9
flowcharts 7, 264, 291–314

basic control structures 265–8
case structure 280–1
and modules 315–25
and repetition control structure 282
and selection control structure

272–4
formal parameters 161–2
functional cohesion 179
functional decomposition 110

generalisation 219
global data 160
graphical user interface (GUI) objects

256–9

hierarchy charts 3, 134, 135, 138, 142,
149, 194

and modularisation 114–15, 117,
134

and parameters 165

IF statement
combined 37–8, 273
nested 38–40, 273–4
and selection control statement

36–8
simple 36, 272

information, receiving and output of
12–13

information hiding 195–6
inheritance 194
initial values, arrays and loading 92

Index350

351

input 19, 73
insertion sort algorithms 328–9
instantiation 193, 201–2
integer 8
interface 256–9
internal data structure 88

leading decision loop 55
linked lists 332–4
literals 7–8
local data 160
logical cohesion 176

master file 146
meaningful names 15
memory location, assigning a value

13–14
messages 202–3
modular design 5, 110

benefits 111
top-down 110, 116

modularisation 110–13,
definition 110
and hierarchy charts 114–15,

117mainline routine 111, 117
process 110–11, 117
steps in 116–17,

module cohesion 174–80
module coupling 180–5
modules

communication between 160–5
and flowcharts 315–25
programming examples using

118–29
multiple classes

object-oriented design with 242–56
programming examples with 222–

38
multiple-level control break 141–5
mutator operations 202

nested IF statements 38–40,
linear 38–9
non-linear 39–40

NOT operator 38
notations 216
null ELSE statement 272

and selection control statement 36

object-oriented
programs and data validation 232
solution 203, 221

versus procedural programming
5–6

object-oriented design 192–6, 216–21
for more than one class 215–40
for multiple classes 242–56
notations 216
operation overloading 220
operation overriding 220
polymorphism 219–20
programming examples 204–12
public and private access methods

198–203
relationships between classes

216–19
scope of the data 221

objects 193
instantiating 201–2

operation overloading 220
operation overriding 220
operations 192, 193–6, 198–9, 202,

203, 219–20, 242
OR operators 38
order of operations 13
outline development 3
output 19, 73
overloading 220

paired arrays 94
parameters

actual 161–2
data 165
formal 161–2
function of 161
and hierarchy charts 165
passing 161
programming examples 165–74
reference 162
status 165
value 162

polymorphism 219–20
problem(s)

complex 110
defining the 2, 19–22, 73
programming 116

procedural cohesion 177–8
procedural versus object-oriented

programming 5–6
procedure-driven program design 4
processing 19, 73
program data 7–9
program design

data-driven 4–5

Index

event-driven 4
examples using parameters 165–74
methodology 4–5, 110
modular 5, 110, 111
object-oriented 192–6, 215–40
procedural approach 192
procedure-driven 4
top-down development 5, 110, 116

program development 2–4
program documentation 3–4
program structure 134
program testing 3
programmer-designed test data 3
programming, procedural versus

object-oriented 5–6
programming examples

using arrays 97–101
using modules 118–29
using more than one class 222–38
using parameters 165–74

pseudocode 7, 12–17, 23, 25, 36, 38,
40, 48–9, 55, 63, 73, 89, 92, 95, 104,
111, 117, 134, 137, 161, 175, 176–8,
181–3, 199, 202, 220, 272, 282, 331,
333

case structure 48–50
how to write 12–14

queues 330–1

real 8
record 8
reference parameters 162
REPEAT...UNTIL structure 64–7
repetition

counted 67–9
using DOWHILE structure 55–63
using the REPEAT...UNTIL structure

64–7
repetition control structure 267–8

definition 16–17
and flowcharts 282
and simple algorithms 283–90

report
audit 147
error 147
generation with page break 135–7

selection control structure 266–7
algorithms using 40–7
combined selection 37–8
definition 16, 36
and flow charts 272–4

nested selection 38–40
and simple algorithms 274–9
simple selection 36

selection sort algorithms 329–30
sentinel 58, 60
sequence control structure

definition 15–16
and flow charts 265–6
and simple algorithms 268–72

sequential cohesion 178–9
sequential file update 146–52
sequential update logic 147
side effects and modules 160
single-level control break 137–40
solution algorithms 6, 15, 136–7, 139–

40, 143–5, 149–52
checking 25–32
designing 23–5
eight programming models 73–84

sorting algorithm 327–30
stacks 331–2
stamp coupling 183
status parameters 165
stepwise refinement 110
string 9
structure charts 114–15
structure theorem 15–17
system concepts 146–7

temporal cohesion 176–7
top-down development 5, 110, 116
trailing decision loop 64–5
trailor record 58, 60
transaction file 146
two-dimensional arrays 101–5

loading 102–3
searching 103–4
writing out the contents 105

Unified Modelling Language (UML)
216

value parameters 162
values

constant 91
initial 92

variable location, assigning a value
13–14

variables 7–8
scope of 160

visibility 198
visual languages 256–7

Index352

	00_Robertson_TXT - Australian Imprint.pdf
	01_Robertson_TXT.pdf
	02_Robertson_TXT.pdf
	03_Robertson_TXT.pdf
	04_Robertson_TXT.pdf
	05_Robertson_TXT.pdf
	06_Robertson_TXT.pdf
	07_Robertson_TXT.pdf
	08_Robertson_TXT.pdf
	09_Robertson_TXT.pdf
	10_Robertson_TXT.pdf
	11_Robertson_TXT.pdf
	12_Robertson_TXT.pdf
	13_Robertson_TXT.pdf
	99_Robertson_APP1.pdf
	99_Robertson_APP2.pdf
	99_Robertson_APP3.pdf
	99_Robertson_GLS.pdf
	99_Robertson_IND.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

