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Preface

This book introduces you to the theory of relational databases, focusing on the application of that theory
to the design of computer languages that properly embrace it. The book is intended for those studying
relational databases as part of a degree course in Information Technology (IT). Relational database
theory, originally proposed by Edgar F. Codd in 1969, is a topic in Computer Science. Codd’s seminal
paper (1970) was entitled A Relational Model of Data for Large Shared Data Banks (reference [5] in
Appendix A).

An introductory course on relational databases offered by a university’s Computer Science (or similarly
named) department is typically broadly divided into a theory component and what we might call an
“industrial” component. The “industrial” component typically teaches the language, SQL (Structured
Query Language), that is widely used in the industry for database purposes, and it might also teach
other topics of current significance in the industry. Although this book is only about the theory, I hope

it will be interesting and helpful to you even if your course’s main thrust is industrial.

In the companion book SQL: A Comparative Survey I show how the concepts covered in this book are
treated in SQL, along with historical notes explaining how and when the treatments in question arose in
the official version of that language. (Aside: SQL doesn’t officially stand for anything, though it is usually
assumed to stand for Structured Query Language. And the standard pronunciation is “ess-cue-ell’, not
“sequel’, so a DBMS that supports it is an SQL DBMS, not a SQL DBMS.)

The book is directly based on a course of nine lectures that was delivered annually from 2004 to 2011
to undergraduates at the University of Warwick, England, as part of a 14-lecture module entitled
Fundamentals of Relational Databases. The remaining five lectures of that module were on SQL. We
encouraged the students to compare and contrast SQL with what they had learned in the theory part. We
explained that study of the theory, and an example of a computer language based on that theory, should:

enable them to understand the technology that is based on it, and how to use that
technology (even if it is only loosely based on the theory, as is the case with SQL systems);
« provide a basis for evaluating and criticizing the current state of the art;

o illustrate of some of the generally accepted principles of good computer language design;

« equip those who might be motivated in their future careers to bring about change for the

better in the database industry.
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Examples and exercises in this book all use a language, Tutorial D, invented by the author and C.J. Date
for the express purpose of teaching the subject matter at hand. Implementations of Tutorial D, which is
described in reference [12], are available as free software on the Web. The one we use at the University
of Warwick is called Rel, made by Dave Voorhis of the University of Derby. Rel is freely available at
http://dbappbuilder.sourceforge.net/Rel.html.

This book is accompanied by Exercises in Relational Database Theory, in which the exercises given at
the end of each chapter (except the last) are copied and a few further exercises have been added. Sample
solutions to all the exercises are provided and the reader is strongly recommended to study these solutions

(preferably after attempting the exercises!).

The book consists of eight chapters and two appendixes, as follows.

Chapter 1, Introduction, is based on my first lecture and gives a broad overview of what a database is,
what a relational database is, what a database management system (DBMS) is, what a DBMS is expected
to do, and how a relational DBMS does those things.

In Chapter 2, Values, Types, Variables, Operators, based on my second lecture, we look at the four
fundamental concepts on which most computer languages are based. We acquire some useful terminology
to help us talk about these concepts in a precise way, and we begin to see how the concepts apply to

relational database languages in particular.

Relational database theory is based very closely on logic. Fortunately, perhaps, in-depth knowledge
and understanding of logic are not needed. Chapter 3, Predicates and Propositions, based on my
third lecture, teaches just enough of that subject for our present purposes, without using too much

formal notation.

Chapter 4, Relational Algebra—The Foundation, based on material from lectures 4 and 5, describes
the set of operators that is commonly accepted as forming a suitable basis for writing a special kind of
expression that is used for various purposes in connection with a relational database—notably, queries

and constraints.

Chapter 5, Building on The Foundation, describes additional operators that are defined in Tutorial D
(lectures 5-6) to illustrate some of the additional kinds of things that are needed in a relational database

language for practical purposes.
Chapter 6, Constraints and Updating, based on lecture 7, describes the operators that are typically used

for updating relational databases, and the methods by which database integrity rules are expressed to a

relational DBMS, declaratively, as constraints.
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The final two chapters address various issues in relational database design. Chapter 7, Database
Design I: Projection-Join Normalization, based on lectures 8 and 9, deals with one particularly important
issue that has been the subject of much research over the years. Chapter 8, Database Design II: Other
Issues, discusses some other common issues that are not so well researched. These are not dealt with in

my lectures but they sometimes arise in the annual course work assigned to our students.

Note to Teachers

Over the years since 1970 there have been many books covering relational database theory. I have aimed

for several distinguishing features in this one, namely:

1. Focusing, in the first six chapters, on the application of the theory in a computer language.
(Choosing a language, for that purpose, that I co-designed myself might seem a little self-
serving on my part. I would plead guilty to any such charge, but really there was no choice.)

2. Emphasizing the difference between relations per se and relation variables (“relvars”). Failure
to do this in the past has resulted in all sorts of confusion.

3. Emphasizing the connection between the operators of the relational algebra and those of the
first order predicate calculus.

4. Spurning Codd’s distinction (and SQLs) between primary keys and alternate keys. As Codd
himself originally pointed out, the choice of primary key is arbitrary.

5. In Chapter 7, on projection-join normalization, omitting details of normal forms that were
defined in the early days but no longer seem useful, leaving just 6NE 5NF, and BCNE 2NF
and 3NF are subsumed by the simpler BCNE 4NF by the simpler 5NF. 1NE not being a
projection-join normal form, is dealt with (sort of) in Chapter 8. Domain-key normal form
(DKNE) serves little purpose in practice and is not mentioned at all.

6. Also in Chapter 7, to study the normal forms in reverse order to that in which they are
normally presented. I put 6NF first because it is the simplest and also the most extreme.
More important to me was to deal with 5NF and join dependencies before BCNF and
functional dependencies (though I do leave to the end discussion of those pathological cases
where BCNF is satisfied but not 5NF).

7. In Chapters 7 and 8, taking care to include the integrity constraints that are needed in
connection with each of the design choices under discussion; and, in Chapter 7, using those
constraints to draw a clear distinction between decomposition as a genuine design choice

and decomposition to correct design errors.
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Topics that might reasonably be expected but are not covered include:

o relational calculus (after all, it is only a matter of notation)

o the so-called problem of “missing information” and approaches to that problem that involve
major departures from the theory

o views (apart from a brief mention) and view updating (too controversial)

« DBMS implementation issues, performance and optimization, concurrency

o database topics that are not particular to relational databases—for example, security

and authorization
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Fourth Edition Revisions

1. The Tutorial D examples and definitions have been revised where necessary to conform
with Version 2 of that language. The revisions affect the operators EXTEND, SUMMARIZE,
RENAME, UPDATE, GROUP, UNGROUP, WRAP, and UNWRAP, and also the WITH
construct. The companion book Exercises on Relational Database Theory has been
similarly revised and a few small changes were also needed in the other companion book,
SQL: A Comparative Survey.

2. Appendix A of the first edition, dealing with differences between Version 1 and Version 2
of Tutorial D, clearly became surplus to requirements and has been dropped. In any case,

both grammars are available at www.thethirdmanifesto.com.

3. Appendix B of previous editions becomes Appendix A, to which reference [8] has been added.

4. Chapter 7 has been revised to deal with a significant recent advance in the theory of normal
forms given in reference [8].

5. The end notes of previous editions have been eliminated. In most cases their text has been

incorporated into the main body.
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1 Introduction

1.1 Introduction

This chapter gives a very broad overview of

« what a database is

« what a relational database is, in particular

« what a database management system (DBMY) is
o what a DBMS does

o how a relational DBMS does what a DBMS does

We start to familiarise ourselves with terminology and notation used in the remainder of the book, and

we get a brief introduction to each topic that is covered in more detail in later sections.

1.2 What Is a Database?

You will find many definitions of this term if you look around the literature and the Web. At one time (in

2008), Wikipedia [1] offered this: “A structured collection of records or data.” I prefer to elaborate a little:

A database is an organized, machine-readable collection of symbols, to be interpreted as a true account
of some enterprise. A database is machine-updatable too, and so must also be a collection of variables.
A database is typically available to a community of users, with possibly varying requirements.

The organized, machine-readable collection of symbols is what you “see” if you “look at” a database at a
particular point in time. It is to be interpreted as a true account of the enterprise at that point in time.
Of course it might happen to be incorrect, incomplete or inaccurate, so perhaps it is better to say that

the account is believed to be true.

The alternative view of a database as a collection of variables reflects the fact that the account of the
enterprise has to change from time to time, depending on the frequency of change in the details we

choose to include in that account.

The suitability of a particular kind of database (such as relational, or object-oriented) might depend
to some extent on the requirements of its user(s). When E.E. Codd developed his theory of relational
databases (first published in 1969), he sought an approach that would satisfy the widest possible ranges of
users and uses. Thus, when designing a relational database we do so without trying to anticipate specific
uses to which it might be put, without building in biases that would favour particular applications. That
is perhaps the distinguishing feature of the relational approach, and you should bear it in mind as we

explore some of its ramifications.
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13 “Organized Collection of Symbols”

For example, the table in Figure 1.1 shows an organized collection of symbols.

Studentld Name Courseld
S1 Anne 1
S1 Anne 2
S2 Boris 1
S3 Cindy a3

Figure 1.1: An Organized Collection of Symbols

Can you guess what this tabular arrangement of symbols might be trying to tell us? What might it mean,
for symbols to appear in the same row? In the same column? In what way might the meaning of the

symbols in the very first row (shown in blue) differ from the meaning of those below them?

Do you intuitively guess that the symbols below the first row in the first column are all student
identifiers, those in the second column names of students, and those in the third course identifiers? Do
you guess that student SI’s name is Anne? And that Anne is enrolled on courses C1 and C2? And that
Cindy is enrolled on neither of those two courses? If so, what features of the organization of the symbols

led you to those guesses?

Remember those features. In an informal way they form the foundation of relational theory. Each of them
has a formal counterpart in relational theory, and those formal counterparts are the only constituents

of the organized structure that is a relational database.

1.4 “To Be Interpreted as a True Account”

For example (from Figure 1.1):

Studentld Name Courseld

Perhaps those green symbols, organized as they are with respect to the blue ones, are to be understood

to mean:

“Student S1, named Anne, is enrolled on course C1”
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An Introduction to Relational Database Theory Introduction

An important thing to note here is that only certain symbols from the sentence in quotes appear in the
table—S1, Anne, and C1. None of the other words appear in the table. The symbols in the top row of
the table (presumably column headings, though we haven't actually been told that) might help us to
guess “student”, “named”, and “course”, but nothing in the table hints at “enrolled” And even if those
assumed column headings had been A, B and C, or X, Y and Z, the given interpretation might still be

the intended one.

Now, we can take the sentence “Student S1, named Anne, is enrolled on course C1” and replace
each of S1, Anne, and C1 by the corresponding symbols taken from some other row in the table, such
as S2, Boris, and C1. In so doing, we are applying exactly the same mode of interpretation to each row.
If that is indeed how the table is meant to be interpreted, then we can conclude that the following

sentences are all true:

Student S1, named Anne, is enrolled on course C1.
Student S1, named Anne, is enrolled on course C2.
Student S2, named Boris, is enrolled on course C1.
Student S3, named Cindy, is enrolled on course C3.
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In Chapter 3, “Predicates and Propositions”, we shall see exactly how such interpretations can be
systematically formalized. In Chapter 4, “Relational Algebra—The Foundation”, and Chapter 5, “Building
on The Foundation”, we shall see how they help us to formulate correct queries to derive useful information

from a relational database.

1.5 “Collection of Variables”

Now look at Figure 1.2, a slight revision of Figure 1.1.

ENROLMENT

Studentld Name Courseld
S1 Anne @

S1 Anne 2

S2 Boris @

S3 Cindy a3

S4 Devinder @

Figure 1.2: A variable, showing its current value
We have added the name, ENROLMENT, above the table, and we have added an extra row.

ENROLMENT is a variable. Perhaps the table we saw earlier was once its value. If so, it (the variable) has
been updated since then—the row for S4 has been added. Our interpretation of Figure 1.1 now has to

be revised to include the sentence represented by that additional row:

Student S1, named Anne, is enrolled on course C1.
Student S1, named Anne, is enrolled on course C2.
Student S2, named Boris, is enrolled on course C1.
Student S3, named Cindy, is enrolled on course C3.
Student S4, named Devinder, is enrolled on course C1.

Notice that in English we can join all these sentences together to form a single sentence, using conjunctions
like “and”, “or”, “because” and so on. If we join them using “and” in particular, we get a single sentence
that is logically equivalent to the given set of sentences in the sense that it is true if each one of them
is true (and false if any one of them is false). A database, then, can be thought of as a representation of
an account of the enterprise expressed as a single sentence! (But it's more usual to think in terms of a

collection of individual sentences.)
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We might also be able to conclude that the following sentences (for example) are false:

Student S2, named Boris, is enrolled on course C2.
Student S2, named Beth, is enrolled on course C1.

Whenever the variable is updated, the set of true sentences represented by its value changes in some way.
Updates usually reflect perceived changes in the enterprise, affecting our beliefs about it and therefore

our account of it.

1.6 What Is a Relational Database?

A relational database is one whose symbols are organized into a collection of relations. Figure 1.3 confirms
that the examples we have already seen are in fact relations, depicted in tabular form. Indeed, according

to Figure 1.2, the relation depicted in Figure 1.3 is the current value of the variable ENROLMENT .

Studentld Name Courseld
S1 Anne @
S1 Anne 2
S2 Boris @
S3 Cindy a3
S4 Devinder C1

Figure 1.3: A relation, shown in tabular form

Happily, the visual (tabular) representation we have been using thus far is suited particularly well to
relational databases: so much so that many people use the word table as an alternative to relation. The
language SQL in particular uses that term, so in the context of relational theory it is convenient and
judicious to stick with relation for the theoretical construct, allowing SQLs deviations from relational

theory to be noted as differences between tables and relations.

Relation is a formal term in mathematics—in particular, in the logical foundation of mathematics. It
appeals to the notion of relationships between things. Most mathematical texts focus on relations involving
things taken in pairs but our example shows a relation involving things taken three at a time and, as
we shall see, relations in general can relate any number of things (and, as we shall see, the number in

question can even be less than two, making the term relation seem somewhat inappropriate).
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An Introduction to Relational Database Theory Introduction

Relational database theory is built around the concept of a relation. Our study of the theory will include:

o The “anatomy” of a relation.

» Relational algebra: a set of mathematical operators that operate on relations and yield
relations as results.

« Relation variables: their creation and destruction, and operators for updating them.

+ Relational comparison operators, allowing consistency rules to be expressed as constraints

(commonly called integrity constraints) on the variables constituting the database.

And we will see how these, and other constructs, can form the basis of a database language (specifically,

a relational database language).

1.7 “Relation” Not Equal to “Table”

“Table”, here, refers to pictures of the kind shown in Figures 1.1, 1.2, and 1.3. The terms relation and table
are not synonymous. For one thing, although every relation can be depicted as a table, not every table
is a representation of (i.e., denotes) some relation. For another, several different tables can all represent

the same relation. Consider Figure 1.4, for example.
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Name Studentld Courseld (Actually, there are

Devinder S4 C1 two very special
relations which
Cindy s3 a cannot sensibly

be depicted in
tabular form. You
Boris S2 ci will encounter these
two in Chapter 4.)

Anne S1 C1

Anne S1 2

Figure 1.4: Same relation as Figure 1.3

The table in Figure 1.4 is different from the one in Figure 1.3, but it represents the same relation. I
have changed the order of the columns and the order of the rows, each green row in Figure 1.4 has
the same symbols for each column heading as some row in Figure 1.3 and each row in Figure 1.3 has
a corresponding row, derived in that way, in Figure 1.4. What I am trying to illustrate is the principle
that the relation represented by a table does not depend on the order in which we place the rows or the
columns in that table. It follows that several different tables can all denote the same relation, because
we can simply change the left-to-right order in which the columns are shown and/or the top-to-bottom

order in which the rows are shown and yet still be depicting the same relation.

What does it mean to say that the order of columns and the order of rows doesn’t matter? We will find
out the answer to this question when we later study the typical operators that are defined for operating on
relations (e.g., to compute results of queries against the database) and relation variables (e.g., to update
the database). None of these operators will depend on the notion of some row or some column being

the first or last, or immediately before or after some other column or row.

We can also observe that not every table depicts a relation. Such tables can easily be obtained just by
deleting the blue rows (the column headings) from each of Figures 1.1 to 1.4. Figure 1.5 shows another

table that does not depict any relation.

A B A
1 2 3
4 5
6 7 8
9 9 ?
1 2 3

Figure 1.5: Not a relation

The various reasons why this table cannot be depicting a relation should become apparent to you by the

time you reach the end of this chapter.
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1.8 Anatomy of a Relation

Figure 1.6 shows the terminology we use to refer to parts of the structure of a relation.

the heading

attribute

name

Namve Studentld Courseld
( Devinder S4 C1
the body—this
one has 5 tuples. Cindy S3 c3 n-tuple, or
5 is the Ao o1 o :luili_t;l:re
cardinality of ,
the relation. Boris S2 C1 degree of the
\ relation.
Anne S1 C2

attribute values

Figure 1.6: Anatomy of a relation

Because of the distinction I have noted between the terms relation and table, we prefer not to use the
terminology of tables for the anatomical parts of a relation. We use instead the terms proposed by

E.F. Codd, the researcher who first proposed relational theory as a basis for database technology, in 1969.

Try to get used to these terms. You might not find them very intuitive. Their counterparts in the tabular

representation might help:

o relation : table
o (m-)tuple : row
o attribute : column

Also (as shown in Figure 1.6):
The degree is the number of attributes.

The cardinality is the number of tuples.
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The heading is the set of attributes (note set, because the attributes are not ordered in any way and no

attribute appears more than once).

The body is the set of tuples (again, note set—the tuples are not ordered and no tuple appears more

than once).
An attribute has an attribute name, and no two have the same name.

Each attribute has an attribute value in each tuple.

1.9 What Is a DBMS?

A database management system (DBMS) is exactly what its name suggests—a piece of software for
managing databases and providing access to them. But be warned!—in the industry the term database
is commonly used to refer to a DBMS, especially in promotional literature. You are strongly discouraged

from adopting such sloppy practice (if such a system is a database, what are the things it manages?)

A DBMS responds to commands given by application programs, custom-written or general-purpose,

executing on behalf of users. Commands are written in the database language of the DBMS (e.g., SQL).

Responses include completion codes, messages and results of queries.
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In order to support multiple concurrent users a DBMS normally operates as a server. Its immediate users
are thus those application programs, running as clients of this server, typically (though not necessarily)
on behalf of end users. Thus, some kind of communication protocol is needed for the transmission of
commands and responses between client and server. Before submitting commands to the server a client
application program must first establish a connection to it, thus initiating a session, which typically lasts
until the client explicitly asks for it to be terminated. That is all you need to know about client-server

architecture as far as this book is concerned.

This book is concerned with relational DBMSs and relational databases in particular, and soon we will
be looking at the components we expect to find in a relational DBMS. Before that we need to briefly

review what is expected of a DBMS in general.

1.10  What Is a Database Language?

To repeat, the commands given to a DBMS by an application are written in the database language of
the DBMS. The term data sublanguage is sometimes used instead of database language. The sub- prefix
refers to the fact that application programs are sometimes written in some more general-purpose
programming language (the “host” language), in which the database language commands are embedded
in some prescribed style. Sometimes the embedding style is such that the embedded statements are
unrecognized by the host language compiler or interpreter, and some special preprocessor is used to

replace the embedded statements by, for example, CALL statements in the host language.

A query is an expression that, when evaluated, yields some result derived from the database. Queries are
what make databases useful. Note that a query is not of itself a command (though some texts, curiously,
use the term query for commands as well as genuine queries, including commands that update the
database!). The DBMS might support some kind of command to evaluate a given query and make the
result available for access, also using DBMS commands, by the application program. The application
program might execute such commands in order to display a query result (usually in tabular form) in

a window.

1.11 What Does a DBMS Do?

In response to requests from application programs, we expect a DBMS to be able, for example, to

 create and destroy variables in the database

« take note of integrity rules (constraints)

« take note of authorisations (who is allowed to do what, to what)
« update variables (honouring constraints and authorisations)

 provide results of queries

To amplify some of the terms just used:
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The requests take the form of commands written in the database language supported by the DBMS.

The variables are the constituents of the database, like the ENROLMENT variable we looked at earlier.
Such variables are both persistent and global. A persistent variable is one that ceases to exist only when its
destruction is explicitly requested by some user. A global variable is one that exists independently of the
application programs that use it, distinguishing it from a local variable, declared within the application
program and automatically destroyed when the program unit (“block”) in which it is declared finishes

its execution.

Constraints (sometimes called integrity constraints) are rules governing permissible values, and
permissible combinations of values, of the variables. For example, it might be possible to tell the DBMS
that no student’s assessment score can be less than zero. A database that violates a constraint is, by
definition, incorrect—it represents an account that is in some respect false. A database that satisfies all

its constraints is said to be consistent, even though it cannot in general be guaranteed to be correct.

In the sense that constraints are for integrity, authorisations are for security. Some of the data in a
database might represent sensitive information whose accessibility is restricted to certain privileged users
only. Similarly, it might be desired to allow some users to access certain parts of the database without

also being able to update those parts.

Note the three parts of an authorisation: who, what, and to what. “Who” is a user of the database; “what”
is one of the operations that are available for operating on the variables in the database; “to what” is one

of those variables.

In the remaining sections of this chapter you will see examples of how a relational DBMS does these

things. Unless otherwise stated, the examples use commands written in Tutorial D.

1.12  Creating and Destroying Variables

Example 1.1 shows a command to create the variable shown in Figure 1.2:

Example 1.1: Creating a database variable.

VAR ENROLMENT BASE RELATION
{ StudentId SID ,
Name CHAR ,
Courseld CID }
KEY { StudentId, CourselId } ;
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Explanation 1.1:

VAR is a key word, indicating that a variable is to be created.
ENROLMENT is the variable’s name.

BASE is a key word indicating that the variable is to be part of the database, thus both persistent

and global. If BASE were omitted, then the command would result in creation of alocal variable.

The text from RELATION to the closing brace specifies the declared type of the variable, meaning
that every value ever assigned to ENROLMENT must be a value of that type.

The declared type of ENROLMENT is a relation type, indicated by the key word RELATION
and a heading specification. Thus, every value ever assigned to ENROLMENT must be a relation
of that type. A heading specification consists of a list of attribute names, each followed by a
type name, the entire list being enclosed in braces. Thus, each attribute of the heading also has
a declared type. The type names SID and CID (for student ids and course ids) refer to user-
defined types. User-defined types have to be defined by some user of the DBMS before they
can be referred to. The type name CHAR (character strings), by contrast, is a built-in type: it is

provided by the DBMS itself, is available to all users, and cannot be destroyed.
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Chapter 2, “Values, Types, Variables, Operators”, deals with types in more detail, and shows
you how to define types such as SID and CID.

KEY indicates that the variable is subject to a certain kind of constraint, in this case declaring
that no two tuples in the relation assigned to ENROLMENT can ever have the same combination
of attribute values for StudentIdand CourseId (i.e., we cannot enrol the same student on
the same course more than once, so to speak). We will learn more about constraints in general

and key constraints in particular in Chapter 6.
Destruction of ENROLMENT is the simple matter shown in Example 1.2,

Example 1.2: Destroying a variable.

DROP VAR ENROLMENT ;

After execution of this command the variable no longer exists and any attempt to reference it is in error.

1.13  Taking Note of Integrity Rules

For example, suppose the university has a rule to the effect that there can never be more than 20,000

enrolments altogether. Example 1.3 shows how to declare the corresponding constraint in Tutorial D.

Example 1.3: Declaring an integrity constraint.

CONSTRAINT MAX ENROLMENTS
COUNT ( ENROLMENT ) < 20000 ;

Explanation 1.3:

o CONSTRAINT is the key word indicating that a constraint is being declared.

+ MAX ENROLMENTS is the name of the constraint.

« COUNT ( ENROLMENT ) is a Tutorial D expression yielding the cardinality (see the
earlier section, “Anatomy of a Relation”) of the current value of ENROLMENT.

« COUNT (ENROLMENT) < 20000 is a truth-valued expression, yielding true if the
cardinality is less than or equal to 20000, otherwise yielding false. (Note regarding Rel:

Because the symbol < is normally unavailable on keyboards, Rel accepts <= in its place.)
The declaration tells the DBMS that the database is inconsistent if the value of MAX ENROLMENTS is
ever false, and that the DBMS is therefore to reject any attempt to update the database that, if accepted,

would bring about that situation.

Example 1.4 shows how to retract a constraint that ceases to be applicable.
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Example 1.4: Retracting an integrity constraint.

DROP CONSTRAINT MAX ENROLMENTS ;

1.14  Taking Note of Authorisations

Tutorial D does not include any commands for creating and destroying permissions, because security
and authorization, though important, are not specifically relational database issues. If Tutorial D did
include such commands, we might reasonably expect them to look like those shown in Example 1.5,

which are meant to be self-explanatory.

Example 1.5: Creating permissions

PERMISSION U9 ENROLMENT FOR User9 TO READ ENROLMENT ;
PERMISSION U8 ENROLMENT FOR User8 TO UPDATE ENROLMENT ;

Note the syntactic consistency with commands we have already seen: a key word indicating the kind of
thing being created or destroyed, followed by the name of the thing, followed in turn by the specification
of the thing. (C.J. Date, co-designer of Tutorial D, makes a slightly different suggestion for granting

permissions in his Introduction to Database Systems, 8th edition, on page 506.)

How do you rate computer languages you are already acquainted with, for syntactic consistency? For
example, the database language SQL has been noted to suffer from several syntactic inconsistencies (as

well as—much more seriously—several harmful deviations from relational database theory).

By now you can predict the command, consistent with Example 1.5 and shown in Example 1.6, to be

used to retract a permission previously granted.

Example 1.6: Retracting a permission

DROP PERMISSION U9 ENROLMENT ;
In case you are familiar with SQLs GRANT and REVOKE statements that are used for such purposes,
you might like to give some thought to the advantages and disadvantages of using specific names for

permissions. SQL doesn’t use them—in an SQL REVOKE statement you have to repeat the details of the

permission you are withdrawing.
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1.15  Updating Variables

The usual way of updating a variable in computer languages is by assignment. For example, if X is an
integer variable, the assignment X := X + 1 updates X such that its value immediately after execution
of the assignment is one more than its value was immediately beforehand. The expression on the right

of := denotes the source for the assignment and the variable name on the left denotes the target.

When the target is a relation variable—as it always is when it is part of a relational database—the
source must be a relation. You will learn how to write expressions that denote relations in Chapters 2,
4 and 5, but in any case assignment, though it should be available (it isn’t in SQL), is not the usual way
of applying updates to a relational database. This is because there is very often only a small amount of
difference, in a manner of speaking, between the “old” value and the “new” value and it is usually much

more convenient to be able to express the update in terms of that small difference.

The differential update operators expected in a relational DBMS are usually called INSERT, DELETE,
and UPDATE, and those are the names used in Tutorial D (also in SQL). Take a look at DELETE first
(Example 1.8).

Example 1.8: Updating by deletion

DELETE ENROLMENT WHERE StudentId = SID ( 'S4' ) ;
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Explanation 1.8:

Informally, Example 1.8 deletes all the tuples for student S4 and can be interpreted as
meaning “student S4 is no longer enrolled on any courses”. More formally, it assigns to the
variable ENROLMENT the relation whose body consists of those tuples in the current value
of ENROLMENT that fail to satisfy the condition given in the WHERE clause—thus, every
tuple in which the value of the Studentld attribute is not the student identifier S4.
StudentId = SID ( 'S4' ) isa conditional expression. Because it follows the key
word WHERE here, it is in fact a WHERE condition, also known as a restriction condition.

The expression SID ( 'S4' ) will be explained in Chapter 2, when we study types.

Next, in Example 1.9, we look at UPDATE.

Example 1.9: Updating by replacement

UPDATE ENROLMENT WHERE StudentId = SID ( 'S1' )

{ Name := 'Ann' } ;

Note that UPDATE uses a WHERE clause, just like DELETE. The WHERE clause is followed by a list

of assignments—in Example 1.9 just one assignment—but these are assignments to attributes, not

assignments to variables.

Explanation 1.9:

Informally, Example 1.9 updates each ENROLMENT tuple for student S1, changing its Name
value to 'Ann"'. More formally, it assigns to the variable ENROLMENT the relation that is
identical to the current value in all respects except that the value for the attribute Name, in
the tuples whose StudentId value is the student identifier S1, becomes the string 'Ann'
in each case. (I would have written “except possibly” had I not known that the existing
Name value in those tuples is ' Anne' in each case. In some circumstances no change takes
place as a result of executing an UPDATE, and the same applies to DELETE and INSERT.)
Name := 'Ann' isan attribute assignment. An attribute assignment sets the value of the

target attribute to the specified value, in each tuple that satisfies the WHERE condition.

Finally, Example 1.10 illustrates the use of INSERT.

Example 1.10: Updating by insertion

INSERT ENROLMENT
RELATION {
TUPLE { StudentId SID ( 'S4' ) ,
Name 'Devinder' ,

CourselId CID ( 'Cc1'" ) } 1}
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Explanation 1.10:

« Informally, Example 1.10 adds a tuple to ENROLMENT indicating that student S4, still
called Devinder, is now enrolled on course C1. More formally, it assigns to the variable
ENROLMENT the relation consisting of every tuple in the current value of ENROLMENT
and every tuple (there is only one in this particular example) in the relation denoted by the
expression following the word ENROLMENT.

« The expression beginning with the key word TUPLE and ending at the penultimate
closing brace denotes the tuple consisting of the three indicated attribute values:

SID ( 'S4' ) for the attribute StudentId, 'Devinder' for the attribute Name,
and CID ( 'C1l' ) for the attribute CourseId.

 The expression beginning with the key word RELATION and ending at the final closing
brace denotes the relation whose body consists of that single tuple. Such expressions are

fully explained in Chapter 2, “Values, Types, Variables, Operators”.

Example 1.8 has no effect on the database in the case where the current value of ENROLMENT has no
tuples for student S4.

Example 1.9 has no effect on the database in the case where the current value of ENROLMENT has no
tuples for student S1.
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Example 1.10 has no effect on the database in the case where the current value of ENROLMENT already

contains the tuple representing the enrolment of student S4, named Devinder, on course CI. It also
has no effect on the database if the cardinality of the current value of ENROLMENT is 20,000 and the
constraint MAX ENROLMENTS (Example 1.3) is in effect. In this case, and possibly in the first case too,

an error message results.

1.16

Providing Results of Queries

Expressing queries in Tutorial D is the (big) subject of Chapters 4 and 5. Here I present just a simple

example to give you the flavour of things to come in those chapters. Example 1.11 is a query expressing

the question, who is enrolled on course C1?

Example 1.11: A query in Tutorial D

ENROLMENT WHERE CourseId = CID('C1l")
{ StudentId, Name }

Note carefully that Example 1.11 is not a command. It is just an expression, denoting a value—in this case,

a relation. In a relational database language the result of a query is always another relation! Figure 1.7

shows the result of Example 1.11 in the usual tabular form.

Studentld Name
S1 Anne
S2 Boris
S4 Devinder

Figure 1.7: Result of query in Example 1.11

Explanation 1.11:

WHERE is the key word identifying the Tutorial D operator of that name. This operator
operates on a given relation and yields a relation. Certain operators, including this one, that
operate on relations and yield relations together constitute the relational algebra, covered in
detail in Chapter 4.

CourseId = CID('Cl') qualifies WHERE, specifying that just the tuples for course C1
are required.

{ StudentId, Name } specifies that from the result of the previous operation
(WHERE) just the StudentId and Name attributes are required.

The overall result is a relation formed from the current value of ENROLMENT by discarding certain

tuples and a certain attribute.
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EXERCISE

Consider the table shown in Figure 1.5, repeated here for convenience:

A B A
1 2 3
4 5
6 7 8
9 9 ?
1 2 3

Give three reasons why it cannot possibly represent a relation. By the way, this table is supported by SQL,

and the three reasons represent some of SQLs serious and far-reaching deviations from relational theory.
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2 Values, Types,
Variables, Operators

2.1 Introduction

In this chapter we look at the four fundamental concepts on which most computer languages are based.
We acquire some useful terminology to help us talk about these concepts in a precise way, and we begin
to see how the concepts apply to relational database languages in particular. It is quite possible that you
are already very familiar with these concepts—indeed, if you have done any computer programming they
cannot be totally new to you—but I urge you to study the chapter carefully anyway, as not everybody
uses exactly the same terminology (and not everybody is as careful about their use of terminology as
we need to be in the present context). And in any case I also define some special terms, introduced
by C.J. Date and myself in the 1990s, which have perhaps not yet achieved wide usage—for example,

selector and possrep.

I wrote “most computer languages” because some languages dispense with variables. Database languages
typically do not dispense with variables because it seems to be the very nature of what we call a database
that it varies over time in keeping with changes in the enterprise. Money changes hands, employees
come and go, get salary rises, change jobs, and so on. A language that supports variables is said to be an
imperative language (and one that does not is a functional language). The term “imperative” appeals to
the notion of commands that such a language needs for purposes such as updating variables. A command
is an instruction, written in some computer language, to tell the system to do something. The terms
statement (very commonly) and imperative (rarely) are used instead of command. In this book I use
statement quite frequently, bowing to common usage, but I really prefer command because it is more
appropriate; also, in normal discourse statement refers to a sentence of the very important kind described

in Chapter 3 and does not instruct anybody to do anything.

2.2 Anatomy of A Command

Figure 2.1 shows a simple command—the assignment, Y := X + I1—dissected into its component

parts. The annotations show the terms we use for those components.
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An invocation (of +),

Example: Yy :=

denoting a value

A variable name A literal (denoting

(denoting a variable) a value)

An operator name (denoting

A variable reference a read-only operator)

(denoting its current value)

An operator name (denoting

X and 1 denote arguments to the invocation of +
an update operator)

Y and X+1 denote arguments to the invocation of :=

Figure 2.1: Some terminology

It is important to distinguish carefully between the concepts and the language constructs that
represent (denote) those concepts. It is the distinction between what is written and what it means—syntax

and semantics.

Each annotated component in Figure 1 is an example of a certain language construct. The annotation
shows the term used for the language construct and also the term for the concept it denotes. Honouring
this distinction at all times can lead to laborious prose. Furthermore, we don't always have distinct
terms for the language construct and the corresponding concept. For example, there is no single-word
term for an expression denoting an argument. We can write “argument expression” when we need to be
absolutely clear and there is any danger of ambiguity, but normally we would just say, for example, that
X+1 is an argument to that invocation of the operator “: =" shown in Figure 2.1. (The real argument is

the result of evaluating X+1.)

The update operator “:=" is known as assignment. The command Y := X+1 is an invocation of
assignment, often referred to as just an assignment. The effect of that assignment is to evaluate the
expression X+1, yielding some numerical result  and then to assign r to the variable Y. Subsequent

references to Y therefore yield r (until some command is given to assign something else to Y).

Note the two operands of the assignment: Y is the target, X+1 the source. The terms target and source here
are names for the parameters of the operator. In the example, the argument expression Y is substituted
for the parameter target and the argument expression X+1 is substituted for the parameter source.
We say that target is subject to update, meaning that any argument expression substituted for it must
denote a variable. The other parameter, source, is not subject to update, so any argument expression
substituted must denote a value, not a variable. Y denotes a variable and X+1 denotes a value. When
the assignment is evaluated (or, as we sometimes say of commands, executed), the variable denoted by
Y becomes the argument substituted for target, and the current value of X+1 becomes the argument

substituted for source.
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Whereasthe Yin Y := X + 1 denotes a variable, as I have explained, the XinY := X + 1 does
not, as I am about to explain. So now lets analyse the expression X+1. It is an invocation of the read-only
operator +, which has two parameters, perhaps named a and b. Neither a nor b is subject to update. A
read-only operator is one that has no parameter that is subject to update. Evaluation of an invocation
of a read-only operator yields a value and updates nothing. The arguments to the invocation, in this
example denoted by the expressions X and 1, are the values denoted by those two expressions. 1 is a
literal, denoting the numerical value that it always denotes; X is a variable reference, denoting the value

currently assigned to X.

A literal is an expression that denotes a value and does not contain any variable references. But we do
not use that term for all such expressions: for example, the expression 1+2, denoting the number 3, is

not a literal. I defer a precise definition of literal to later in the present chapter.
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2.3 Important Distinctions

The following very important distinctions emerge from the previous section and should be firmly

taken on board:

« Syntax versus semantics

o Value versus variable

 Variable versus variable reference

« Update operator versus read-only operator
o Operator versus invocation

o Parameter versus argument

o Parameter subject to update versus parameter not subject to update
Each of these distinctions is illustrated in Figure 2.1, as follows:

 Value versus variable: Y denotes a variable, X denotes the value currently assigned to the
variable X. 1 denotes a value. Although X and Y are both symbols referencing variables,
what they denote depends in the context in which those references appear. Y appears as
an update target and thus denotes the variable of that name, whereas X appears where an
expression denoting a value is expected and that position denotes the current value of the
referenced variable. Note that variables, by definition, are subject to change (in value) from
time to time. A value, by contrast, exists independently of time and space and is not subject
to change.

« Update operator versus read-only operator: “:=" (assignment) is an update operator;

“+” (addition) is a read-only operator. An update operator has at least one parameter that is
subject to update; a read-only operator doesn’t. A read-only operator, when invoked, yields a
value; an update operator doesn't.

« Operator versus invocation: “+” is an operator; the expression X+1 denotes an invocation
of “+”.

o Parameter versus argument: The expressions X and 1 denote arguments to the invocation
of +; the operator + is defined to have two parameters. When an operator is invoked, an
argument must be substituted for each of its defined parameters. The term argument strictly
refers to the value or variable denoted by the argument expression but is often used to refer
to the expression itself.

o Parameter subject to update versus parameter not subject to update: The first parameter
of “:=" (the one representing the target) is subject to update, so a variable must be
substituted for it when “:=" is invoked (and an expression denoting a variable must appear
in the corresponding position in the expression denoting the invocation); the second
parameter of “: =" and both parameters of + are not subject to update, so values must be
substituted for them in invocations (and expressions denoting values must appear in the

corresponding positions in the expressions denoting the invocations).
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24 A Closer Look at a Read-Only Operator (+)

A read-only operator is what mathematicians call a function, and a function turns out to be just a special
case of a relation! Because it is a relation, a function can be depicted in tabular form. Figure 2.2 is a

picture of part of the function represented by the read-only operator +.

a b c
1 2 3
2 3 5
2 1 3

and so on (ad infinitum)

Figure 2.2: The operator + as a relation (part)

The relation shown in Figure 2.2 represents the predicate a + b = c. The relation attributes a and b can
be considered as the parameters of the operator +. Each tuple maps a pair of values substituted for a
and b to the result of their addition, which is substituted for c. The relation is a function because each
unique <a,b> pair maps to exactly one ¢ value—no two tuples with the same a value also have the same

b value, so, given an a and a b, so to speak, we know the (only) resulting c.

Notice how the relational perception of an operator neutralises the distinction between arguments and

result. This relation could also represent the predicate c—b = g, or c—a = b.

You can imagine the invocation 1+2 as singling out the tuple with a=1 and b=2 (there is only one such

tuple) and yielding the ¢ value (3) in that tuple.

This particular relation is concerned only with numbers—its domain of discourse, some would say.
Mathematicians, perceiving + as a function mapping pairs of numbers (<a,b>) to numbers (c), call the
(<a,b>) number-pairs the domain of the function and the numbers (¢) its range. Computer scientists,
perceiving + as an operator, say that its parameters a and b are of type number, as is the result, ¢ (the

type of the result is also referred to as the type of the operator).

2.5 Read-only Operators in Tutorial D

In computer languages we distinguish between operators that are defined as part of the language and
operators that may be defined by uses of the language. Those defined as part of the language are called

built-in, or system-defined, operators whereas those defined by users are called user-defined operators.
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A complete grammar for Tutorial D does not yet exist and the incomplete one that does exist does not
give a complete list of built-in operators. It mentions a few particular ones that have been devised for
certain special purposes and adds “..plus the usual possibilities”, leaving it to the implementation to decide
what the usual possibilities are. In this book the matter of whether an operator used in my examples is
built-in or user-defined is immaterial, except of course for those operators which an implementation is

explicitly required to provide as built-in.

User-defined operator definition in Tutorial D is illustrated in Example 2.1, which defines an operator
named HIGHER OF to give the value of whichever is the higher of two given integers. For example, the

invocation HIGHER OF (3, 4) yields the integer 4.

Example 2.1: A User-Defined Operator

OPERATOR HIGHER OF ( A INTEGER, B INTEGER ) RETURNS INTEGER ;
IF A > B THEN RETURN A ;
ELSE RETURN B ;
END IF ;
END OPERATOR ;

/
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Explanation 2.1:

+ OPERATOR HIGHER_OF announces that an operator is being defined and its name is
HIGHER OF. There might be other operators, also named HIGHER OF, in which case they
are distinguished from one another by the types of their parameters. The name combined
with the parameter definitions is called the signature of the operator. Here the signature is
HIGHER OF (A INTEGER,B INTEGER), which would distinguish it from
HIGHER OF (A RATIONAL,B RATIONAL) if that operator were also defined.

« A INTEGER, B INTEGER specifies two parameters, named A and B and both of
declared type INTEGER. (Although I have included parameter names in the signature, they
do not normally have any significance in distinguishing one operator from another. That is
because parameter names are not normally used in invocations, the connections between
argument expressions and their corresponding parameters being established by position
rather than by use of names.)

« RETURNS INTEGER specifies that the value resulting from every invocation of
HIGHER OF shall be of type INTEGER (which is thus the declared type of HIGHER OF).

« IF .. END IF ; isa single command (specifically, an IF statement) constituting
the program code that implements HIGHER OF. The programming language part of
Tutorial D, intended for writing implementation code for operators and applications, is
really beyond the scope of this book, but if you are reasonably familiar with programming
languages in general you should have no trouble understanding Tutorial D, which is
deliberately both simple and conventional.

The IF statement contains further commands within itself...

« IF A > B THEN RETURN A ...suchas RETURN A here, which is executed only
when the given IF condition, A > B, evaluates to TRUE (i.e., is satisfied by the arguments
substituted for A and B in an invocation of HIGHER OF). The RETURN statement
terminates the execution of an invocation and causes the result of evaluating the given
expression, A, to be the result of the invocation.

« ELSE RETURN B specifies the statement to be executed when the given IF condition is
not satisfied.

o END IF marks the end of the IF statement.

« END OPERATOR marks the end of the program code and in fact the end of the

operator definition.
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Notes concerning Rel:

Rel provides as built-in all the Tutorial D operators used in this book except where

explicitly stated to the contrary.

Rel supports Tutorial D user-defined operators.

Rel additionally supports user-defined operators with program code written in

Java™ (the language in which Rel itself is implemented), indicated by the key word

FOREIGN. Examples of such operators are provided in the download package for Rel.

Here are two of them (as provided at the time of writing in Version 3.15, in the file

OperatorsChar.d, which you can load and execute in Dbrowser):

OPERATOR SUBSTRING (s CHAR, beginindex INTEGER, endindex

INTEGER) RETURNS CHAR Java FOREIGN

// Substring, 0 based

return new ValueCharacter (s.stringValue () .substring/(
(int)beginindex.longValue (),
(int)endindex.longValue())) ;

END OPERATOR;

OPERATOR SUBSTRING (s CHAR, index INTEGER) RETURNS CHAR Java
FOREIGN
// Substring, 0 based
return new ValueCharacter(s.stringValue () .substring

(int) index.longValue()));
END OPERATOR;

Noticethatthese two operatorsarebothnamed SUBSTRING, the firsthaving three parameters,
the second two. Thus, Rel can tell which one is being invoked by a particular expression of the
form SUBSTRING ( ... ) according to the number of arguments to the invocation (and in fact
according to the declared types of the expressions denoting those arguments). The first, when
invoked, yields the string that starts at the given beginindex position within the given string
s,and ends at the given endindex position, where 0 is the position of the first character in s.
The second yields the string that starts at the given index position in s and ends
at the end of s. Hence, SUBSTRING ('database',2,4) = 'tab' and
SUBSTRING ('database',4) = 'base'.

I do not offer an explanation of the Java™ code used in these examples, that being beyond

the scope of this book.
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2.6 What Is a Type?

A type is a named set of values. Much of the relational database literature, especially the earlier literature,
uses the term domain for this concept, because that was the term E.E Codd used. Nowadays we prefer type
because that is the term most commonly used for the concept in computer science. Codd’s term domain

derived from the fact that he used it exclusively to refer to the declared type of an attribute of a relation.

For example, there might be a type named WEEKDAY whose values constitute the set { Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }. For another
example, type INTEGER is commonly available in computer languages, its values being all the integers
in some range, such as -(2**) to 2%*-1. Terms such as Monday and -1 are literals. Monday denotes a
certain value of type WEEKDAY and -7 denotes a certain value of type INTEGER. It is essential that every

value that can be operated on in a computer language can be denoted by some literal in that language.

In any computer language that supports types (as most of them do), some types are built-in (provided
as part of the language). In some languages the only supported types are the built-in ones, but the trend

in modern languages has been towards inclusion of support for user-defined types too.
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The built-in types of Tutorial D are:

o CHARACTER or, synonymously, CHAR, for character strings.

o INTEGER or, synonymously, INT, for integers.

o RATIONAL for rational numbers, denoted by numeric literals that include a decimal point,
suchas 3.25, 1.0, 0.0, -7.935.

« TUPLE types and RELATION types as described later in this Chapter.

« BOOLEAN, or, synonymously, BOOL, for the truth values, TRUE and FALSE.

2.7 What Is a Type Used For?

In general, a type is used for constraining the values that are permitted to be used for some purpose. In

particular, for constraining:

o the values that can be assigned to a variable
o the values that can be substituted for a parameter
« the values that an operator can yield when invoked

o the values that can appear for a given attribute of a relation

In each of the above cases, the type used for the purpose in question is the declared type of the variable,
parameter, operator, or attribute, respectively. As a consequence, every expression denoting a value has
a declared type too, whether that expression be a literal, a reference to a variable, parameter, or attribute
or an invocation of an operator. Most importantly, these uses for types enable a processor such as a
compiler or a DBMS to detect errors at “compile-time”—by mere inspection of a given script—that would
otherwise arise, and cause much more inconvenience, at run-time (when the script is executed). Thus,

support for types is deemed essential for the development of robust application programs.

2.8 The Type of a Relation

Now, if every value is of some type, and a relation, as we have previously observed, is a value, then we
need to understand to what type a given relation belongs, and we need a name for that type. Here again

(Figure 2.3) is our running example of a relation:

Studentld Name Courseld
S1 Anne 1
S1 Anne 2
S2 Boris (@
S3 Cindy (e}
S4 Devinder Ci1

Figure 2.3: Enrolments again
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At this stage it is perhaps tempting to conclude that relations are all of the same type, which we might
as well call RELATION, just as all integers are of type INTEGER. However, it turns out to be much
more appropriate, as we shall see, to consider relations of the same heading to be of the same type and
relations of different headings to be of different types. But all the types whose values are relations have

that very fact—that their values are relations—in common, and we call them relation types.

If relation types are distinguished by their headings, it is clear that a relation type name must include a
specification of its heading. In Tutorial D, therefore, the type name for the relation shown in Figure 2.3

can be written as

RELATION { StudentId SID, Name NAME, CourseId CID }
or, equivalently (for recall that there is no ordering to the elements of a set),

RELATION { Name NAME, StudentId SID, CourseId CID }
(and so on). Note the braces, { }. Tutorial D always uses braces to enclose an enumeration of the
elements of set. In fact, { StudentId SID, Name NAME, CourseId CID } denotes a set
of attributes, each consisting of an attribute name followed by a type name. SID is the declared type of

the attribute StudentId, NAME that of Name, and CID that of CourseId.

RELATION { StudentId SID, Name NAME, CourseId CID } mightin fact be the
declared type of a relation variable ENROLMENT, and that variable might be part of some database.

Clearly, there is in theory an infinite number of relation types, because there is no limit to the degree of

a relation. (Recall that the degree of a relation is the number of its attributes.)

Here are some more relation types:

RELATION { StudentId SID, Courseld CID }
RELATION { a INTEGER, b INTEGER, c¢ INTEGER }
RELATION { n INTEGER, w WEEKDAY }

RELATION { }

That last one looks a bit special! It does indeed merit special attention. We will have more to say

about it later.

Relation types have other things in common about them, even though they are different types. We can
see already, for example, that every relation type is defined by a set of attributes (the empty set in one
particular case). Of particular interest are the read-only operators defined for operating on relations of

all types. These operators are described in Chapter 4.
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29 Relation Literals

In Section 2.6, What Is a Type?, we noted the essential need to be able to denote every value that can be
operated on in a computer language by some literal in that language. We have also noted that a relation,

such as the one shown in Figure 2.3, is a value. What might a literal look like that denotes that value?

Well, we might try something like what is shown in Example 2.2, in which the key word RELATION
is followed by a list of expressions denoting tuples—each one a putative tuple literal, in fact—enclosed

in braces.

Example 2.2: A Relation Literal (not good enough!)

RELATION {

TUPLE { StudentId S1, CourselId Cl, Name Anne },
TUPLE { StudentId S1, CourselId C2, Name Anne 1},
TUPLE { StudentId S2, CourselId Cl, Name Boris 1},
TUPLE { StudentId S3, CourselId C3, Name Cindy },
TUPLE { StudentId S4, CourselId Cl, Name Devinder}

}
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But of course it is not reasonable to expect a computer language to recognise symbols such as
S1,C1, and Boris. We need a proper way of writing literals for those student identifiers, course

identifiers, and names.

Recall the declared types of the attributes: SID, NAME, CID. These are necessarily user-defined types,

for it would not be reasonable to expect them to be built-in.

Suppose that values of type SID are represented by character strings (values of type CHAR). CHAR might
well be a built-in type, and is indeed built-in in Tutorial D and Rel. Suppose further that character strings
are denoted by text in quotes, like this: ' S1"', as indeed they are in most computer languages. Then a
literal for the student identifier S1 mightbe: SID ( 'S1' ).Thisliteral is an invocation of the operator
whose name happens to be the same as that of the type for student identifiers, SID. This operator has
a single parameter whose declared type, CHAR, is that of the representation (character strings) chosen
for student identifiers. In this invocation the CHAR literal 'S1' denotes the argument corresponding

to that parameter. The result of the invocation is not a character string but a value of type SID.

We call the operator SID a selector, because it can be used to “select” any value of type SID. Now, it
is very likely that not every character string can validly represent a student identifier. Perhaps student
identifiers must each be the letter S, followed by a maximum of four numeric digits. In that case we can
expect the operator SID, when it is invoked, to check that the given string conforms to this rule—and
raise an error if it doesn’t. That is one good reason why type SID might be chosen in preference to type

CHAR for student identifiers.

By the way, you can think of theliteral ' S1 ' as “selecting” a CHAR value. Every CHAR value can be denoted
by a sequence of characters enclosed in quotes, and every sequence of characters enclosed in quotes does

denote a CHAR value; so this syntax for literals does satisfy the requirements for being a selector.

In Example 2.2 we tried to write a relation literal by specifying a set of tuple literals, and we tried to write
a tuple literal by specifying a set of attribute values. Now that you know how to specify those attribute
values properly, you can easily see that the correct way of writing the first of those tuple literals, arising

from the foregoing discussion, is like this:

TUPLE { StudentId SID('S1l'), CourseId CID('Cl'),
Name NAME ('Anne') }

The literals for course identifiers and names assume that those, too, are represented by character strings.

Perhaps a course identifier must be the letter “C” followed by numeric digits, and perhaps a name must

be an upper-case letter followed by lower-case letters, possibly with imbedded hyphens or spaces.
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From that tuple literal it is easy to see how to write the complete relation literal (Example 2.3) in Tutorial D.

Example 2.3: A Relation Literal (correct version)

RELATION {

TUPLE { StudentId SID('Sl'), CourselId CID('C1l'"),
Name NAME ('Anne') },

TUPLE { StudentId SID('S1l'), CourselId CID('C2'"),
Name NAME ('Anne') },

TUPLE { StudentId SID('S2'), CourseId CID('C1l'"),
Name NAME ('Boris')},

TUPLE { StudentId SID('S3'), CourseIlId CID('C3"),
Name NAME ('Cindy') },

TUPLE { StudentId SID('S4'), CourselId CID('C1l'"),
Name NAME ('Devinder') }

Note that the relation literal given in Example 2.3 is an invocation of a certain relation selector—the
specific selector for relations of that specific type. Similarly, a tuple literal is an invocation of a certain
tuple selector. An invocation of a selector is not necessarily a literal. The relation selector takes a list of
tuple expressions, each of which might be a literal but is not required to be one. Similarly, the tuple selector
takes a list of attribute name/attribute value pairs, each of which might use a literal for the value but is not

required to use one—any expression of the same type as the declared type of the attribute can be used.

A note concerning abbreviations in Tutorial D: The abbreviations REL and TUP can be used in
place of the key words RELATION and TUPLE. Other abbreviations such as INT for INTEGER,
CHAR for CHARACTER, and BOOL for BOOLEAN are also available

Now I can return to a small matter I deferred from Section 2.2, the definition of literal. As already stated,
a literal is an expression that contains no variable references. We can now add that it is, specifically, an
invocation of a selector. The invocation can be explicit, as in the relation and tuple literals we have looked
at, and as in the SID, CID, and NAME literals contained in those tuple literals. It can also be implicit, as
in the case of, for example, ' Cindy "', denoting a value of the system-defined type CHAR and 1, denoting
a value of the system-defined type INTEGER. Because these types are system-defined, the language can

include special syntax for invoking their selectors, for which it doesn’t necessarily need to provide names.

CHAR literals in Rel:

Rel allows CHAR literals to be enclosed either in quotes, as already shown, or in double-quotes, like this:
"S1"Thus, "S1" and 'S1' both denote the same CHAR value. This makes it easier to write CHAR literals
for values that include quotes. Tutorial D officially uses only single quotes for CHAR literals.
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2.10  Types and Representations

According to the authors of reference [4]:

“A major purpose of type systems is to avoid embarrassing questions about representations,

and to forbid situations in which these questions might come up”

Consider again the invocation SID ('S1"), a literal of type SID. Recall that SID is an operator that,
when invoked with a suitable character string, returns a value of type SID; also that every value of type
SID can be denoted by some invocation of the operator SID. I have explained that we call such an

operator a selector (for values of the type in question).

The parameters of a selector correspond to components of what we call a possible representation (possrep
for short). I will explain why we use the word “possible” here in just a moment. First, I want to show
how a type is defined in Tutorial D, using a single command. In the case of type SID, whose values are
“possibly represented” by simple character strings, the possrep consists of a single component of type
CHAR. I have also suggested that a character string representing a student identifier might have to be
of a particular format, such as the letter “S” followed by a digit sequence of limited length; and that the
format in question would be enforced by the selector. The Tutorial D type definition shown in Example

2.4 specifies the appropriate possrep and expresses the suggested format as a constraint.
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Example 2.4: A Type Definition

TYPE SID POSSREP SID { C CHAR
CONSTRAINT LENGTH(C) <= 5
AND
STARTS WITH(C, 'S')
AND
IS DIGITS(SUBSTRING(C,1)))
}
INIT SID('S1'");

Explanation 2.4:

o« TYPE SID announces that a type named SID is being defined to the system.

o POSSREP SID announces that what follows, in braces, specifies a possible representation
for values of the type. It means that the operators defined for type SID behave as if values
of type SID were represented that way, regardless of how they are physically represented
“under the covers”. That is why we use the word “possible’—the values might possibly be
represented internally that way (but they don’t have to be and we don't even know if they
are). In this case the name of that possrep is the same as the type name, SID (as it would be
if we omitted the name). (Tutorial D allows more than one possrep to be given for the same
type, but such complications are beyond the scope of this book. I do not deal with types in
any depth. It is sufficient for present purposes just to understand how they exist, what they
are for, and how to use them.)

o C CHAR defines the first and only component of the possrep, naming it C and specifying
CHAR as its declared type. This definition causes an operator, THE C, to come into
existence. THE C takes a value, s, of type SID and returns the value of the C component of
s under the possible representation SID.

o CONSTRAINT announces that the expression following it (up to but excluding the closing
brace) is a condition that must be satisfied by all possrep values that do indeed represent
values of type SID. Note that the expression itself uses the logical connective AND, with
its usual meaning, to connect three expressions, two of which are comparisons and each of

which is a truth-valued expression—one that, when evaluated, yields either TRUE or FALSE.

The operators LENGTH, STARTS WITH, SUBSTRING, and IS DIGITS, invoked in
the constraint expression, are not defined as built-in operators in Tutorial D. I am assuming
their existence as user-defined operators. Happily, their definitions are contained in the file
OperatorsChar.d included in the download package for Rel.

« LENGTH(C) <= 5 expresses a rule to the effect that the total length of a value for the C

possrep component must never exceed 5.
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« STARTS_WITH(C, ‘S) returns TRUE if and only if the string given as the first operand
starts with the string given as the second operand—in this case the string consisting of just
the capital letter ‘S’

o SUBSTRING(C, 1) denotes the string consisting of the whole of the value of the C possrep
component apart from the first character. This is given as the argument to an invocation of
IS DIGITS, which takes a string and yields TRUE if every character in the given string is
a numeric digit, otherwise FALSE.

o INIT SID(’S1’) specifies an example value for the type, just to confirm that values exist
for the type being defined.

2.11 What Is a Variable?

Example 2.5 shows a variable declaration in Tutorial D.

Example 2.5: A Variable Declaration

VAR SN SID INIT SID ( 'S1' ) ;
Note that a variable is declared by means of a VAR statement.

Explanation 2.5:

o VAR SN announces that what follows defines a variable named SN.

o SID, immediately following SN, specifies the declared type of this variable, indicating that
only values of type SID can be assigned to SN.

o INIT specifies that what follows is an expression whose value is to be immediately assigned
to SN. You already know what SID ( 'S1' ) denotes (see Section 2.9). The value
specified in an INIT clause is commonly called the initial value of the variable in question.
It remains that value until it is replaced by subsequent invocation of an update operator

such as assignment.

A variable is a container or holder for a value. To answer the question posed in the section heading, we

can now see that a variable:
o has a name;

 has a declared type, namely the type of the values it can legally hold;

o always “has” a value (of its declared type).
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The name and declared type remain the same throughout the existence of the variable, but its value can
change from time to time, which is of course why it is called a variable. Although the value can change
from time to time, the value must always be a value of the declared type of the variable—in Example 2.5

a value of type SID.

The variable SN is an example of a scalar variable in Tutorial D. Such variables are for use only as local
variables in computer programs, such as an application program or the code implementing a user-defined
operator. Of more interest in the context of relational databases are relation variables, known for short
and from here onwards as relvars. Unlike scalar variables, relvars can appear as persistent objects in the
database—in fact, these are the only variables permitted as persistent objects in the database. Example

2.6 shows a relvar declaration in Tutorial D.

Example 2.6: A Relvar Declaration

VAR ENROLMENT BASE RELATION { StudentId SID,
Name NAME,
CourselId CID }
KEY { StudentId, CourseId } ;
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Explanation 2.6:

« VAR ENROLMENT announces that what follows defines a variable named ENROLMENT.

o BASE, immediately following ENROLMENT, specifies that the variable is to be a persistent
object in the database.

o« RELATION { .. } specifies the declared type of the variable.

« KEY { StudentId, CourseId } specifies a certain very important kind of
constraint that Tutorial D requires to be specified for all base relvars. Keys are covered in
detail in Chapter 5. This one specifies that at no time can two distinct tuples appear in the
current value of ENROLMENT, having the same values for StudentId and also the same
values for CourseId. In enterprise terms, no two enrolments can involve the same student

and the same course.

No INIT specification is given in Example 2.6. In the absence of an INIT specification in a Tutorial D
relvar declaration the relvar is initialised to the empty relation of its declared type.
2.12  Updating a Variable
A value is assigned to a variable by invoking some update operator. The simplest and most general of such
operators is the assignment operator itself—“: =” in Tutorial D (and some other languages). Example 2.7
shows a simple invocation of assignment to “update” the variable SN.

Example 2.7: A Simple Assignment

SN := SID ( 's2' ) ;
If that assignment is given some time after the declaration shown in Example 2.5, then the effect will
indeed be to change the value of the variable SN. It is changed from being the student identifier S1 to

the student identifier S2. Here SID ( 'S2"' ) is the source for the assignment and SN is the target.

The source does not have to be a literal, of course, as Example 2.8 demonstrates.

Example 2.8: Assignment Source Not a Literal

SN := SID ( LEFT ( THE C (sN), 1 ) [ '5'" )
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Explanation 2.8:

« THE_C (SN) denotes the value of the C component of the current value of SN under the

possrep (SID) declared for type SID. LEFT ( THE C (SN), 1 ) therefore denotes
the leftmost character of that string, which will of course be the letter S.

| | is the concatenation operator for strings. LEFT ( THE C (SN), 1 ) []| '5'
concatenates the letter S with the digit 5 to produce the string ' S5'. In Example 2.7 this
string is then operated on by the SID selector to yield the corresponding value of type SID,
which is assigned to SN. Note that the term, SN, is used on both sides of the assignment. On
the left it denotes the variable itself, the target. On the right, where it appears as part of the

source, it denotes the current value of SN.

Example 2.9 is an invocation of a hypothetical update operator other than assignment—probably a user-

defined operator. As with assignment, the invocation takes the form of a command.

Example 2.9: Invocation of a user-defined update operator

CALL SET DIGITS ( SN , 23 ) ;

Explanation 2.9:

CALL announces that an update operator invocation follows. The effect of that invocation is
also the effect of the CALT statement.

SET DIGITS ( SN , 23 ), letusassume, has the same effect as

SN := SID ( SUBSTRING ( THE C (SN), O, 1 ) || '23';

(which is almost identical to Example 2.8). Note that SN in the invocation of SET DIGITS
is an argument substituted for a parameter that is defined for update, so here stands for the

variable itself and not for its current value.

Tutorial D additionally allows certain special kinds of expression to appear as update targets. Such

expressions are called pseudovariables—they are not real variables but they can be treated as if they were.

A pseudovariable takes the form of an invocation of a read-only operator in which one of the operands

is a reference to a variable (or pseudovariable) that is to be updated.

Example 2.10: Assignment to a pseudovariable

THE C ( SN ) := 'S2' ;
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Explanation 2.10:

« THE C ( SN ) denotes the C possrep component of the current value of the variable SN.
However, because the invocation of THE C appears in a target position here, that value is to
be replaced by the value denoted by the expression on the right-hand side of the assignment.

o 'S2' isaliteral of type CHAR, the declared type of the C possrep component defined for
type SID.

« The entire statement is equivalent to the regular assignment
SN := SID ( 's2' ) ;

—not a very compelling example of pseudovariable updating, perhaps, but such shorthands
are very useful when updating variables of more complicated types, having very many possrep

components. Counterparts typically exist in object-oriented programming languages, in

connection with object classes.
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2.13  Conclusion

I conclude this chapter by reminding you of the important distinctions I drew to your attention at its

beginning. I repeat them here, with illustrative examples to remind you:

 syntax and semantics (expressions and their meaning)
An expression (syntax) denotes either a value or a variable.

o values and variables
A value such as the integer 3, the character string ' London', or the relation
RELATION { TUPLE { A 3, B 'London' } } issomething that existsindependently
of time or space and is not subject to change. A variable is subject to change (in value only), by
invocation of update operators. A variable reference, such as the expression X, denotes either
the variable of that name or its current value, depending on the context in which it appears.

« values and representations of values
The character string value denoted by ' S1' is a possible representation of the student identifier
S1, a value of type SID denoted by SID ('S1"').

 types and representations
POSSREP { C CHAR } defines a possible representation for all values of type SID.

« read-only operators and update operators

“+” is a read-only operator because, when it is invoked, it returns a value. “:=” is an update
operator because, when it is invoked, it has the effect of replacing the current value of a variable
(i.e., updating the variable by changing its value)—and does not return a value.

« operators and invocations
SID is an operator. Its signature is SID (C CHAR). SID('S1l"') denotes an invocation of

SID. Similarly, “+” is an operator, with signature + (A RATIONAL, B RATIONAL), and
x+vy denotes an invocation of “+”.

« parameters and arguments
C CHAR is a parameter (and in fact the only parameter) of the operator SID. 'S1"' denotes
the argument substituted for C CHAR in the invocation SID ('S1"'). Similarly, x and y
denote the arguments substituted for A RATIONAL and B RATIONAL, respectively, in the

invocation x+y.
You can now test your understanding of these distinctions by carrying out the first set of accompanying

exercises (which also include some revision material for Chapter 1). In the second set you can start to

explore Tutorial D in action, using Rel.
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EXERCISES

Complete sentences 1-10 below, choosing your fillings from the following:
=, :=, 1=, argument, arguments, body, bodies, BOOLEAN, cardinality, CHAR, CID, degree, denoted,
expressions, false, heading, headings, INTEGER, list, lists, literal, literals, operator, operators, parameter,

parameters, read-only, set, sets, SID, true, type, types, update, variable, variables.

In 1-5, consider the expression X = 1 OR Y = 2.

1. In the given expression, = and OR are ___ whereas X and Y are ______ references.
2. Xand 1 denote _____ to an invocation of

3. The value by the given expressionis of _ BOOLEAN.

4. land 2 areboth___ of _  INTEGER.

5. The operators used in the given expression are _____ operators.

In 6-10, consider the expression RELATION { X SID, Y CID } { }.

6. It denotes a relation whose _ is zero and whose ______is two.

7. It is a relation

8. The declared typeof Yis .

9. In general, the heading of a relation is a possibly empty ___ of attributes and its body is a
possibly empty __ of tuples.

10. Ttis___ that the assignment RV __ RELATION { X SID, Y CID } { }
islegalifthe _  of RVis { Y CID, X SID }, that it is legal if the

ofRVis { A SID, B CID }, that it is legal if the ___ of

RVis { X CID, Y SID },and___ thatitislegalifthe _ of RVis

{ X CHAR, Y CHAR }.

Getting Started with Rel

After you have downloaded and installed Rel from http://dbappbuilder.sourceforge.net/Rel.html,

work through the following exercises. From number 7 onwards they involve constructs introduced in
Chapter 4. You might prefer to wait until you have studied that chapter but on the other hand a little

hands-on experience might help you to understand that chapter when you come to it.

1. Start up Rel’s DBrowser. DBrowser is the general-purpose client application provided by Rel
for evaluating Tutorial D expressions and executing Tutorial D statements entered by the user.
2. Familiarise yourself with the way of working and the things you can do in Rel. You should

be looking at a window something like this (which was obtained in Windows Vista):
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it Rel - DBrowser - — c L @M
File Tools Help

Lacation: [local:d:\Rel-version-3\05252 |
“local:d Rel-version-3C5252 |

E\esr.{ Save as HTML | Save sstext | Copyto Input | [#] Enhanced [ ] Suppress'Ok! [v] Autoclear

Relversion 0.3.12 Alpha

Copyright (<) 2004 - 2008 by

Dave Vaorhis and Armchair Airlines Computer Services Inc

AllRights Reserved

Faorfurther information, please see hitp:idbappbuilder.sourceforge.net
Rel is running on Hugh-PC

Persistence provided by Oracle Berkeley DB Java Edition version 3.3.62
Rel comes with ABSOLUTELY MO WARRAMNTY; for details, type

This is free software, and you are welcome to redistribute it
under certain conditions

For details, type:

Ta view the catalog, type:

Ok

warranty FROM TUPLE FROM sys Version

redistribution FROM TUFPLE FROM sys Version

sys.Catalog

i

= | clear | Load | Save || Save histary | [17] Copy to output [7] wrap Backup |

Run (F5)

Ok

+ Note the layout of the window: a lower pane into which you can type statements to be
executed, an upper pane in which results are displayed, and the movable horizontal bar
between the panes.

o Note the A and V¥ at the left-hand end of the horizontal bar, allowing you to let one or the
other pane occupy the whole window for a while.

o See what is available on the Tools menu and perhaps choose your preferred font.

» Note the < and > to the left of the menu on the input (lower) pane. These are greyed out
initially but after you have executed a couple of statements you will be able to use them to
recall previously executed statements to the input pane.

» Note the toolbars on both panes. As you do the exercises, decide which options suit you
best. Note that you can save the contents of either pane into a local file, and that you can
load the contents of a local file into the input area.

« Note the check boxes on the right of the toolbars. They are fairly self-explanatory, apart
from “Enhanced”, which we will examine later.

o The box at the top of the upper pane, labelled “Location:”, identifies the directory containing
the database you are working with. You can switch to another directory by clicking on the
little button to the right of the box, labelled with three dots (...).

56

Download free eBooks at bookboon.com



An Introduction to Relational Database Theory Values, Types, Variables, Operators

3. Type the following into the lower pane:
output 2+2 ;

Execute what you have typed, either by clicking on Evaluate (F5) shown at the bottom of the window
or by pressing F5.

Now delete the semicolon and try executing what remains. (If necessary, use the < button on the lower

pane to recall the statement.) You will see how Rel handles errors.

Now strike out the word output and do not put back the semicolon. What happens when you execute

that? (i.e., just 2+2).

You have now learned:

o that in Rel (as in Tutorial D) every executable command (or statement) is terminated by a
semicolon;

« that Rel allows you to obtain the result of evaluating an expression by using an output statement;

o that Rel treats an attempt to “execute” an expression x as shorthand for the statement
output x ; — the absence of the semicolon signals to Rel that you are using this

convenient shorthand.

ant to do”?

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie
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4. This exercise is merely to alert you to a certain awkwardness in Rel that has no real
importance but might cause you to waste a lot of time if you are not warned about it. It’s the
same as Step 3 except that instead of 2+2 you type 2+2 . 0. Look closely at what happens. It

doesn’t work!

Rel, like some other languages, treats INTEGER and RATTONAL as distinct types. If you want to
do arithmetic on rational numbers, both operands must be rational numbers. Literals denoting
rational numbers are distinguished from those denoting integers by the presence of a decimal
point, and Rel follows the convention in the English-speaking community of using a full stop for

this purpose (as opposed to the comma that is used throughout most of Europe, for example).
Now try this: 1/2 (i.e., the integer 1 divided by the integer 2). And then this: 1.0/2.0.

You have now learned that (a) the operands of dyadic arithmetic operators in Rel must be of the
same type, and (b) the type of the result of an invocation of such an operator is always of the
same type as the operands. Tutorial D is silent on such issues, because they are orthogonal to
what Tutorial D is really intended for (teaching relational theory). But every implementation

of Tutorial D has to address them somehow.

Fortunately, arithmetic is orthogonal to relational theory and there is no need for us to be
bothered by Rel’s behaviour here. You have possibly already learned that the same problems
do not arise in SQL, where 1/2,1/2.0and 1.0/2.0 are all equivalent, in spite of the fact
that INTEGER and REAL (SQLs counterpart of Tutorial D’s RATIONAL) are also distinct
types in SQL.

5. Now try the following compound statement:
begin ;
VAR x integer init (0) ;
X = x + 1 ;
output x ;

end ;

Why do we have to write output x ; in full here, instead of just x?
Now write the fourth line in uppercase: OUTPUT X ; What happens?

Try OUTPUT x ; instead. What have you learned about Rel’s rules concerning case sensitivity?
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6. Now you can start investigating Rel’s support for relations (though not relational databases
yet). First, see how Rel displays a relation (i.e., the result of evaluating a relation expression)
in its upper pane. Rel supports two styles of presentation, depending on whether the

“Enhanced” option is checked.

With “Enhanced” unchecked (it is usually checked to start with), get Rel to evaluate the following

relation expression (a literal which we shall call enrolment):

RELATION {

TUPLE { StudentId 'Sl', CourselId 'Cl', Name 'Anne' },
TUPLE { StudentId 'S1l', CourselId 'C2', Name 'Anne' 1},
TUPLE { StudentId 'S2', Courseld 'Cl', Name 'Boris' 1},
TUPLE { StudentId 'S3', CourseIlId 'C3', Name 'Cindy' 1},
TUPLE { StudentId 'S4', CourseId 'Cl', Name 'Devinder' }
}

See Section 2.9. Look closely at the output. Is it identical to the input?

Next, without altering the contents of the lower pane, turn “Enhanced” back on. Note the effect

on the display in the output pane.

Now delete all the tuple expressions, leaving just RELATION { }. What happens when Rel

tries to evaluate that?
Now use < to recall the original RELATION expression to the input pane and re-evaluate it
with “Enhanced” off. Use copy-and-paste to copy the result to the input pane, then delete all

the TUPLE expressions, to leave this:

RELATION {StudentId CHARACTER, Courseld CHARACTER,
Name CHARACTER} { }

Study the result of that in the output pane, first with “Enhanced” off, then with it on.
What conclusions do you draw from all this, about Rel and Tutorial D?
From now on you can run with “Enhanced” either on or off, according to your own preference.

Next, enter the following literal, perhaps by using the < button to recall enrolment and

editing it:
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RELATION {

TUPLE { StudentId 'S1l', CourselId 'Cl', Name 'Anne' 1},
TUPLE { StudentId 'Sl1l', CourseId 'Cl', Name 'Anne' }
}

Before you press Evaluate (F5), think about what you expect to happen. Does the result meet

your expectation? How do you explain it?

Use < again to recall the enrolment literal. Insert the word WITH at the beginning, add AS

enrolment : enrolment at the end, to give:

WITH ( enrolment :=
RELATION {

TUPLE { StudentId 'Sl', CourseId 'Cl', Name 'Anne' },
TUPLE { StudentId 'S1l', CourselId 'C2', Name 'Anne' 1},
TUPLE { StudentId 'S2', CourselId 'Cl', Name 'Boris' 1},
TUPLE { StudentId 'S3', CourseIlId 'C3', Name 'Cindy' 1},
TUPLE { StudentId 'S4', CourselId 'Cl', Name 'Devinder' }

} ) : enrolment

and evaluate that.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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How do you understand what you have just done? (WITH isn't described in the book. In case
you aren't clear, try thisin Rel: WITH ( four := 2+2, eight := four+four ) :

eight + four. Note carefully that the introduced names, four and eight, are local only.)

By inspection of enrolment only, write down all the cases you can find of two students such

that there is at least one course they are both enrolled on.

. For this exercise you will need to continue using < to recall your previous command (now
including the definition of the introduced name enrolment) and overtype as necessary.
Use enrolment to investigate the relational operator known as projection (see Chapter 4,
Section 4.6). The projection of a given relation over a specified subset of its attributes yields
another relation. In Tutorial D a projection is specified by writing a list of attribute names,
enclosed in braces { } and separated by commas, after the operand relation. The key words

ALL BUT can optionally precede the list of attribute names, inside the braces.

How many distinct projections can be obtained from enrolment? Obtain as many of these

as you wish, trying both the “inclusion” method and the “exclusion” method using ALL. BUT.

. Still using enrolment, investigate the relational operator known as rename (see Chapter
4, Section 4.5). The renaming of a given relation returns that relation with one or more of
its attributes renamed. In Tutorial D a renaming is specified by writing RENAME { old

AS new, ... |} after the operand relation.
At the moment you should have this in your input pane:

WITH ( enrolment :=
RELATION {

TUPLE { StudentId 'Sl', CourseId 'Cl', Name 'Anne' },
TUPLE { StudentId 'S1l', CourselId 'C2', Name 'Anne' 1},
TUPLE { StudentId 'S2', Courseld 'Cl', Name 'Boris' },
TUPLE { StudentId 'S3', CourselId 'C3', Name 'Cindy' 1},
TUPLE { StudentId 'S4', CourselId 'Cl', Name 'Devinder' }

} ) : enrolment
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Replace the single word (enrolment) that follows the colon by a renaming of enrolment
such that the result has attribute name SID1 instead of StudentId, N1 instead of Name,
and is otherwise the same as enrolment itself. Replace the : that ends the WITH specification
by E1 := and add : E1 at the end. The result should look like this:

WITH ( enrolment :=

RELATION {
TUPLE { StudentId 'S1l', CourseId 'Cl', Name 'Anne' },
TUPLE { StudentId 'Sl', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourselId 'Cl', Name 'Boris' },
TUPLE { StudentId 'S3', CourselId 'C3', Name 'Cindy' 1},
TUPLE { StudentId 'S4', CourselId 'Cl', Name 'Devinder' }

} , E1 := <your renaming of enrolment, as specified> )

E1l

Evaluate that to check that you wrote the renaming correctly.

Now replace the : by , E1 := and this time add a similar renaming of enrolment, using
SID2 and N2 instead of SID1 and N1 for the new attribute names, and add : E1 JOIN
E2 at the end. You are investigating the operator called JOIN (see Chapter 4, Section 4.4).

How do you interpret the result? How many tuples does it contain? Replace the key word JOIN
by COMPOSE (see Chapter 5, Section 5.2). How do you interpret this result? How many tuples
are there now? How do you account for the difference?

Add WHERE NOT ( SID1 = SID2 ) to end of the expression you evaluated in Step 9
(see Chapter 4, Section 4.7). Examine the result closely. Now place parentheses around E1

COMPOSE E2 and evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT ( SID1 = SID2 ) by { SID1 }.Do

you get the same results this time? If not, why not?
What does all this tell you about operator precedence rules in Tutorial D?

Why was it probably a good idea to add that WHERE invocation? Did it completely solve the

problem? If not, can you think of a better solution?

What connection, if any, do you see between this exercise and Exercise 62
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11. Load the file OperatorsChar.d, provided in the Scripts subdirectory of the Rel program
directory, and execute it. Now you have the operators used in Example 2.4, among others.
Give appropriate type definitions for types NAME and CID. Notice that the operator
TO UPPER_CASE is available for converting a given string to its upper-case counterpart.
You might like to try using this operator to define a constraint for type NAME to ensure that

all names begin with a capital letter.

12. Close Rel by clicking on File/Exit.
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3 Predicates and Propositions

3.1 Introduction

In Chapter 1 I defined a database to be “...an organised, machine-readable collection of symbols, to be

interpreted as a true account of some enterprise’” I also gave this example (extracted from Figure 1.1):

Studentld Name Courseld

I suggested that those green symbols, organised as they are with respect to the blue ones, might be

understood to mean:
“Student S1, named Anne, is enrolled on course C1”

In this chapter I explain exactly how such an interpretation can be justified. In fact, I describe the general
method under which data organized in the form of relations is to be interpreted—to yield information, as
some people say. This method of interpretation is firmly based in the science of logic. Relational database
theory is based very directly on logic. Predicates and propositions are the fundamental concepts that

logic deals with.

Fortunately, we need to understand only the few basic principles on which logic is founded. You may
well already have a good grasp of the principles in question, but even if you do, please do not skip this
chapter. For one thing, the textbooks on logic do not all use exactly the same terminology and I have
chosen the terms and definitions that seem most suitable for the purpose at hand. For another, I do of
course concentrate on the points that are particularly relevant to relational theory; you need to know

which points those are and to understand exactly why they are so relevant.

3.2 What Is a Predicate?

Predicates, one might say, are what logic is all about. And yet the textbooks do not speak with one voice
when it comes to pinning down exactly what the term refers to! I choose the definition that appears to
me to fit best, so to speak, with relational database theory. We start by looking again at that possible
interpretation of the symbols S1, Anne, and C1, placed the way they are in Figure 1.1:

“Student S1, named Anne, is enrolled on course C1”
This is a sentence. Sentences are what human beings typically use to communicate with each other, using

language. We express our interpretations of the data using sentences in human language and we use

relations to organize the data to be interpreted. Logic bridges the gap between relations and sentences.
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Our example sentence can be recast into two simpler sentences, “Student S1 is named Anne” and “Student

S1 is enrolled on course C1”, Let’s focus on the second:

Example 3.1: A simple sentence

“Student S1 is enrolled on course C1”

The symbols S1 and C1 appear both in this sentence and in the data whose meaning it expresses. Because
they each designate, or refer to, a particular thing—S1 a particular student, C1 a particular course—they
are called designators. The word Anne is another designator, referring to a particular forename. “An
Introduction to Relational Database Theory” is also a designator, referring to a particular book, and so

is, for example, -7, referring to a particular number.

Now, suppose we replace S1 and C1 in Example 3.1 by another pair of symbols, taken from the same

columns of Figure 1.1 but a different row. Then we might obtain

Example 3.2:

“Student S3 is enrolled on course C3”
A pattern is clearly emerging. For every row in Figure 1.1, considering just the columns headed
Studentld and Courseld, we can obtain a sentence in the form of Examples 3.1 and 3.2. The words
“Student...is enrolled on course...” appear in that order in each case and in each case the gaps indicated
by...—sometimes called placeholders—are replaced by appropriate designators. If we now replace each
placeholder by the name given in the heading of the column from which the appropriate designator is
to be drawn, we obtain this:

Example 3.3:

“Student StudentId is enrolled on course Courseld”
Example 3.3 succinctly expresses the way in which the named columns in each row of Figure 1.1 are

probably to be interpreted. And we now know that those names, StudentId and Courseld, in the column

headings are the names of two of the attributes of the relation that Figure 1.1 depicts in tabular form.

Now, the sentences in Examples 3.1 and 3.2 are in fact statements. They state something of which it can

be said, “That is true”, or “That is not true”, or “I believe that”, or “I don’t believe that”.
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Not all sentences are statements. A good informal test, in English, to determine whether a sentence
is a statement is to place “Is it true that” in front of it. If the result is a grammatical English question,
then the original sentence is indeed a statement; otherwise it is not. Here are some sentences that are

not statements:

o “Let’s all get drunk”
o “Will you marry me?”
o “Please pass me the salt”

o “If music be the food of love, play on”

They each fail the test. In fact one of them is a question itself and the other three are imperatives, but we
have no need of such sentences in our interpretation of relations because we seek only information, in
the form of statements—statements that we are prepared to believe are statements of fact; in other words,
statements we believe to be frue. We do not expect a database to be interpreted as asking questions or

giving orders. We expect it to be stating facts (or at least what are believed to be facts).

As an aside, I must own up to the fact that some sentences that would be accepted as statements in

English don't really pass the test as they stand. Here are two cases in point, from Shakespeare:

o “O for a muse of fire that would ascend the highest heaven of invention.”

o “To be or not to be—that is the question.”
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The first appears to lack a verb, but we know that “O for a..” is a poetical way of expressing a wish for
something on the part of the speaker, so we can paraphrase it fairly accurately by replacing “O” by “I
wish’, and the sentence thus revised passes the test. In the second case we have only to delete the word
“that”, whose presence serves only for emphasis (and scansion, of course!), and alter the punctuation

slightly: “It is true that ‘to be or not to be?’ is the question.”

Now, a statement is a sentence that is declarative in form: it declares something that is supposed to be
true. Example 3.3, “Student Studentld is enrolled on course Courseld”, is not a statement—it does not pass
the test. It does, however, have the grammatical form of a statement. We can say that, like a statement, it
is declarative in form. And we know that we have only to replace those italicised symbols (about which
more anon) by appropriate designators, such as S1 and C1, to make it into a statement. Now I can say

exactly what are meant by the terms predicate and proposition, starting with predicate.

A sentence that is in declarative form has a certain meaning, hopefully agreed upon by all who might
read or hear it. That meaning is what logicians call a predicate. We can therefore say that such a sentence
denotes a certain predicate. It is important to bear the distinction between the sentences and the predicates

they denote firmly in mind. For consider the following sentences:

o 1isless than 2
e 1 est moins que 2
o« 1<2

They are written in three different languages but they all have exactly the same meaning—they denote

the same predicate. Here are some more declarative sentences:

« Ilove you.
Here the designators are the pronouns, “I” and “you”. In isolation they designate nothing but
in an appropriate context they do, if we know who the speaker is and to whom the sentence
is spoken.

 The present king of France is bald
This is a popular example used by logicians when they want to discuss problems concerning
designators. Here we have something—“The present king of France”—that looks like a
designator but in fact, at the time of writing, designates nothing because France has no king.
At various times in the past, however, France has had a king. As far as relational databases are
concerned, problems to do with designation are addressed by types (see Chapter 2) and database

constraints (Chapter 5).

e 2+2=5
. x<y
e a+b=c

These three are sentences written in mathematical notation. The first is a statement but the

other two are not—they contain italicised symbols that designate nothing.
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« Student s is enrolled on course c.
This is identical to Example 3.3, except that s replaces Studentld and c replaces Courseld. It
will suit our present purposes to regard this and Example 3.3 as denoting distinct predicates,
though not all textbooks on logic take this stance (and not all are even clear on the matter).
s P(xy)
This kind of notation is commonly used by logicians as denoting a predicate without stating
which particular predicate is being denoted. Notice that the symbol P, standing for what would
be written in roman for a particular predicate, is italicised. For example, if we replace P by
the “less than” symbol, <, we obtain <(x,y), which might be just another way of denoting the

same predicate as x < y.

Up to now I have been very careful to maintain that clear distinction between the sentences and the
predicates denoted by those sentences. However, it is often very convenient to refer to the sentences
themselves as predicates, just to avoid excessive repetition of “denoted by”, and I will do so frequently

from now on in this book—starting right now.

Consider again, then, the predicate “Student StudentId is enrolled on course Courseld” (Example 3.3).
Instead of designators for student and course it has symbols Studentld and Courseld, neither of which
designates anything in particular. They are usually called variables, but note very carefully that they are
not variables in the sense of that term as defined in Chapter 2. Logic does not deal with that kind of
variable, so no confusion arises in texts dealing with logic alone, but in this book we have to deal with
both kinds of variable. For that reason I prefer the alternative term, parameter, for variables appearing
in predicates—but we shall see later that although a parameter is a variable, not all variables appearing

in predicates are parameters (so I will occasionally have to revert to the term variable).

Special adjectives are used to indicate the number of parameters in a predicate. In general these take the
form of a number suffixed by “-adic”. Thus a 5-adic predicate has five parameters, a 0-adic predicate none
at all, and an n-adic predicate has n parameters. For the lower numbers the appropriate prefix derived
from Greek is often used instead: monadic, dyadic, triadic, tetradic, and so on, though we switch to

Latin with niladic for 0-adic.

Some of the predicates I have shown you contain one or more parameters; others do not. Those that
contain no parameters are, as already noted, statements. The predicate denoted by a statement is a very
important special case: what logicians call a proposition. Now, recall that test used to determine whether
a sentence in English is in fact a statement—can it be prefixed by “Is it true that” to yield a grammatical
question in English? A proposition, then, being denoted by a sentence p that passes that test, is something

that is either true or false, depending on the correct answer to the question, “Is it true that p?”
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3.3 Substitution and Instantiation

If a predicate has n parameters (n>0) and we replace one of those parameters by a designator, we obtain

a predicate with n-1 parameters. For example, in the dyadic predicate
a<b

if we replace b by 10 we obtain the monadic predicate
a<10

We say that the designator 10 is substituted for the parameter b. If the designator is being substituted
for a parameter that appears more than once in the sentence denoting the predicate, then of course that

same designator must be substituted for each such appearance. For example, in the triadic predicate
a<bandb<c
if we substitute 10 for b we obtain the dyadic predicate

a<l0and10< ¢
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If we substitute designators for all of the parameters, we obtain a niladic predicate—a proposition. For

example, if we substitute 5 for a and 15 for ¢ in the dyadic predicate above, we obtain
5<10and 10 < 15

which happens to denote a true proposition. The act of substituting designators for all the parameters of a
predicate is sometimes referred to as instantiation—a term that is especially useful in the interpretation of
relations. We can say, then, that the proposition 5 < 10 is an instantiation of the predicate a < 10. It is also
an instantiation of the predicates 5 < b, a < b and x < y. (Some textbooks use the term full instantiation,
regarding substitution of some but not all of the parameters as “partial” instantiation. Personally, I find

the notion of a “partial instance” (of a kind) rather weird!)

According to our stance of regarding a proposition as a special case of a predicate, we must also accept
the strange-looking notion that 5 < 10 is an instantiation—the only possible instantiation—of itself!
Such quirky observations are not often found in textbooks on logic, but they often turn out to be more
important than might appear at first sight when it comes to designing computer languages, as we shall

eventually see.

Extension and Intension

Now, given some predicate p, we can consider all the possible instantiations of p. Each is either a true
proposition or a false one. The true instantiations of p, taken collectively, are referred to as the extension
of p. This concept will prove to be very important to us in the database context. Also important is the
intension of a predicate. Loosely speaking this is just its meaning, but note that predicates that differ
only in the names of their parameters—for example, a < b and x < y, have the same intension, and this
gives meaning in turn to their instantiations. The same term, intension, is also used for the meaning
of a designator. Thus, although 5 < 10 and 10 < 5 are both instantiations of a < b, their meanings are
obviously different (as are their truth values). Intension is important with regard to our interpretation

of a relation, but the relation itself tells us nothing about what its tuples might mean.

34 How a Relation Represents an Extension

In Chapters 1 and 2 the word “set” appears many times, without definition but intended to be precise. For
example, the heading of a relation is described as a set of attributes, its body a set of tuples. I assume you
are somewhat familiar with the concept of a set and in any case this book does not include a complete
account of the mathematical theory of sets. The theory of sets arose out of predicate logic (in the 19th
century); the theory of relations arose out of the theory of sets; and the theory of relational databases

arose out of the theory of relations. The remainder of this section explains these connections.
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A setisa collection of distinct objects, termed its elements. Each element appears exactly once—there is no
sense in which the same element can appear more than once in a given set. Anything can be an element
of some set. Even a set can be an element of a set, though we can run into trouble, as the philosopher

Bertrand Russell famously observed, if we consider the possibility of a set being one of its own elements.

Mathematicians recognize two distinct methods of defining (or denoting) a set. These methods relate
to the terms extension and intension that we have just met, and are indeed called extensional definition

and intensional definition. We are interested in both methods.

An extensional definition simply enumerates the elements. In mathematical notation the elements are
denoted by a list of designators enclosed in braces. The order in which the designators are written is
insignificant. The same element can be designated more than once in the list but the “extra” designations

signify nothing. Thus, the following extensional definitions all denote the same set:

Example 3.4: extensional definitions of a set

{2,3,5}
{523}
{2,53,2,2,5}

You have seen several extensional definitions already, in Chapter 2. For example, in Tutorial D names
for relation types, such as RELATION { StudentId SID, CourseId CID } and RELATION
{ a INTEGER, b INTEGER, c INTEGER },theword RELATION is followed by an extensional
definition for a heading, in which each element is an attribute, designated by an attribute name paired

with a type name.

The empty set is often denoted in mathematical texts by the symbol @ (one of several graphemes for the
Greek letter phi) but Tutorial D uses its extensional definition, { }, as in the type name RELATION
{ } mentioned in Chapter 2.

Tutorial D also allows the body of a relation to be denoted by an extensional definition, as in Example

2.3 in Chapter 2, repeated here for convenience:

RELATION {
TUPLE { StudentId SID('S1l'), CourseId CID('Cl'),
Name NAME ('Anne') },
TUPLE { StudentId SID('S1l'), CourseId CID('C2'),
Name NAME ('Anne') },
TUPLE { StudentId SID('S2'), CourseId CID('Cl'"),
Name NAME ('Boris')},
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TUPLE { StudentId SID('S3'), CourseId CID('C3'"),
Name NAME ('Cindy') },

TUPLE { StudentId SID('S4'), CourseId CID('Cl'"),
Name NAME ('Devinder') }

Each element of the body is denoted by a tuple literal consisting of the word TUPLE followed by an
extensional definition for the tuple itself. Each element of the tuple is denoted by an attribute name

paired with a literal denoting some value of the declared type of that attribute.

An intensional definition for a set specifies a rule or property. The set being defined consists of every
object that obeys the specified rule or has the specified property. For example, we have the set of all
dogs, whose elements are all and only those objects that have the property of being a dog, and the set
of all numbers from 1 to 10, whose elements are precisely those numbers 7 that obey the rule “n is
between 1 and 10, inclusive”. Of course we could equally well say that the set of all dogs is the set whose
elements are all and only those objects that obey the rule “x is a dog”, and the set of all numbers from
1 to 10 is the set whose elements are precisely those numbers that have the property of being between

1 and 10, inclusive.
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It should come as no surprise, now, to learn that the rule or property is actually some expression denoting
a predicate. In fact, the mathematical notation for writing an intensional definition, sometimes called
set-builder notation, consists of an expression specifying the parameters of a predicate and the predicate

itself. Example 3.5 gives some intensional definitions using this notation.

Example 3.5: intensional set definitions

{x:xisadog}

{ n: nis an integer and 1<n<10 }

{p:pisprime and p<7 }

{x:0<x<9 and x = 1 + 2" for some integer n, where n=0

{q:qisprime and g<7 }

In set-builder notation, the braces indicate that a set is being defined. The colon can be pronounced
“such that”. The elements of the set being defined, also known as its members, are all and only those
objects that satisfy the given predicate, sometimes referred to as a membership predicate for that set. The

last three definitions in Example 3.5 all define the same set, that being the set defined in Example 3.4.

Each of the definitions in Example 3.5 uses a monadic predicate, with parameter name x, #, p, x again,
and g, respectively. (The n appearing in the penultimate example is not a parameter, as will be explained
shortly.) The sets denoted by these examples are not relations, nor are they bodies of relations. The
elements of { 2, 3, 5 }, for example, are all numbers, and the body of a relation consists of tuples, not
numbers. We are very close to pinning down a method of interpreting a relation but we haven't quite
got there yet. The light should dawn when we look at set-builder notation using predicates with more

than one parameter, such as those in Example 3.6.

Example 3.6: more intensional definitions

{<a,b>:a<b}
{<x,pz>:x+y=2}
{ <Studentld, Courseld> : Student StudentId is enrolled on course Courseld }

The example { <a, b>: a < b } can be read as “the set consisting of pairs of a and b such that a is less
than b”. A pair is a tuple: a 2-tuple, to be precise. The body of a relation is a set of tuples. The tuples of
the body of a relation all have the same heading. The expression <a, b> can be thought of as specifying
the names of the attributes of a heading. The objects <a, b> that satisfy a < b are all tuples consisting of

an a value and a b value.

Download free eBooks at bookboon.com



We need to be clear, now, about that important term satisfies:

An object x satisfies monadic predicate P if and only if substitution of x for the sole
parameter of P, thus instantiating P, yields a true proposition.
An n-tuple t satisfies n-adic predicate P if and only if substituting each element of t for the

corresponding parameter of P, thus instantiating P, yields a true proposition

And now we need to be clear about that correspondence between tuple elements and parameters.

In mathematics, notation such as <1, 2>, using angle brackets, is often used to denote a tuple. Using
this to instantiate the predicate a < b relies on an ordering of the parameters a and b, without which
we would not know whether <1, 2> is to be interpreted as 1<2 or, instead, 2<1. In relational databases
we sometimes deal with relations of quite high degree, when reliance on some specific ordering would
give rise to difficulty that is avoided by the use of attribute names. Thus, in Tutorial D, the tuple literals
TUPLE {a 1, b 2}and TUPLE {b 2, a 1} both denote the tuple <1, 2> in the present
context (and might instead denote <2, 1> in some other context). Whereas <1, 2> can represent an
instantiation of any dyadic predicate, TUPLE {a 1, b 2} can represent an instantiation only of a

predicate whose parameters are named a and b.

Now, with monadic predicates the problem of matching designators to the right parameters obviously
doesn't arise, there being only one parameter to choose from. When considering whether the object
named Rover satisfies the predicate “x is a dog’, there is only the parameter x for which Rover can be
substituted. Although the intensional definition could be written as { <x> : x is a dog } instead of as
shown in Example 3.5, the mathematician might have little or no cause to include those angle brackets.
However, as we shall see in the next chapter, uniformity is of the essence in a computer language, and
a computer language treating relations of degree 1 differently from the others would be needlessly
complicated and inconvenient to use. Thus, we revise the intensional definitions given in example 3.5

as shown in Example 3.7.

Example 3.7: revision of Example 3.5

{<x>:xisadog}

{ <n>: nis an integer and 1<n<10 }

{ <p>:pis prime and p<7 }

{ <x>:0<x<9 and x = 1 + 2" for some integer n }

{ <g>:qis prime and g<7 }

The set-builder expressions in Example 3.7 all define sets of tuples—1-tuples, to be precise. Now we can’t
be so sure that the last three all denote the same set. The mathematician might say that they do, the set
being {<2>, <3>, <5> } in each case, where the elements are “ordered” 1-tuples. But in relational database
theory they do not: the tuples TUPLE { p 2 },TUPLE { x 2 }and TUPLE { g 2 } are
three different tuples.
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We can usefully extend the definitions of satisfies (of tuples and predicates) to cover cases where the

tuple has more elements than the predicate has parameters:

A tuple t satisfies n-adic predicate P if and only if instantiating P by substituting a
corresponding element of t for each of its parameters yields a true proposition.

For example, we can now say that TUPLE { a 1, b 2, c 3 } satisfies the predicate a < b. It
also satisfies ¢ > b, b < 4, and, for that matter, the niladic predicate 4 < 5 (but not 5 < 4—why not?). Note

that under this definition a tuple that satisfies P must have at least as many elements as P has parameters.

Confining our attention to tuples as the objects that might or might not satisfy predicates entails absolutely

no loss of generality. In fact, it might even be considered to gain something, for consider Example 3.8.

Example 3.8: intensional definitions using niladic predicates

{<>:2<1}

{ < > : Student S1 is enrolled on course C1 }
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The first defines the empty set, { }, because there is no 0-tuple that satisfies the given predicate. (There
is only one 0-tuple, < >. It is denoted by the literal TUPLE { } in Tutorial D.) Assuming that student
S1 is indeed enrolled on course C1, the second denotes the singleton set { < > }, this being the body of
the relation RELATION { TUPLE { } }—more about this strange-looking relation in Chapter 4.
The mathematician has little use for it, to be sure, but computer languages that fail to recognize special

limiting cases tend to give rise to occasional but needless disappointment.

Now, at last, we can answer the question implied by the title of this section. Quite simply:

A relation represents the extension of some n-adic predicate P by having a body
consisting of every n-tuple that satisfies P.

Finally, and most importantly, note that the extension of a predicate can vary from time to time. Indeed,
relational databases are expected to consist of variables—relvars, in fact—whose assigned values do
change from time to time; and yet the predicate whose extension is represented by the value assigned to
such a relvar remains constant over time. Thus, we can and do speak of the predicate for a relvar (and

note in passing that it might be quite useful for such predicates to be recorded in the system catalogue).

35 Deriving Predicates from Predicates

We have already seen one method by which a predicate can be derived from a given predicate, namely,
substitution. And we have begun to see the relevance of substitution in the context of relational databases.
There are two other general methods, both also relevant in this context. One is by use of the logical
connectives of the propositional calculus, such as those denoted in many computer languages, including
Tutorial D, by AND, OR, and NOT. The other is by quantification.

Why are ways of deriving predicates from predicates important to us? Well, the next chapter describes
a set of operators for deriving relations from relations. This set of operators—the relational algebra—is
arguably the most important component of the machinery we use to work with a relational database. If
relations r1 and r2 represent predicates pI and p2 and we can derive relation r3 from r1 and r2, then r3
represents some predicate p3 that can be derived from p1 and p2. Moreover, the definitions of the relational
operators we use to derive 73, as we shall see in Chapter 4, tell us how to derive p3. Therefore, if we know
pl and p2, which tell us how to interpret I and 2, we will know how to interpret r3. Conversely, if we

can express p3 in terms of p1 and p2, then we can work out how to express 73 in terms of r1 and r2.
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Logical Connectives

In human languages such as English we can connect two sentences together such that the result is itself a
sentence. The connecting word is called a conjunction. For example, in “It’s raining and I'm wet through”,

the conjunction “and” connects the sentences “It’s raining” and “I'm wet through”. Other examples:

It's raining but I have my umbrella with me. (“but”)
I have my umbrella with me because it’s raining. (“because”)
I shall have my umbrella with me if it rains. (“if”)

I shan’t have my umbrella with me unless it rains. (“unless”)

Since we use sentences to denote predicates it is easy to see that a sentence formed from two sentences
in this way can denote a predicate formed from two predicates. And the meaning of the predicate thus
formed can be derived from the meaning of the two constituent predicates and the meaning of the

conjunction that connects the sentences.

Many of the so-called logical connectives of the propositional calculus correspond approximately to
conjunctions in human languages such as English. AND and OR are obvious examples. But some of
them—for example, NOT—just modify a single predicate and thus don’t really do any connecting as such.
To add to the possible confusion, the abstract noun used to refer to one of them in particular—AND—is
called conjunction. The correspondence between logical connectives and conjunctions in human language
is approximate because the meaning of a logical connective is always the same, regardless of the context
in which it is used. Consider, for example, the English sentence, “You pay me by Tuesday or I'll sue” If
that “or” were the logical connective, then the sentence is true when either you do pay me by Tuesday
or I sue you; so you could pay me on Monday and I might still sue you. But this particular use of “or”
would normally be taken to mean that either you pay me by Tuesday and I don’t sue you, or you do not

pay me by Tuesday and I do sue you—the so-called “exclusive or”.

Negation (NOT)

In English, given a statement, s, we can derive the statement “It is not true that s” This denotes the
negation of the proposition p denoted by s. Negation is usually denoted in formal treatments by the
symbol —: the negation of p is written as —p. If p is true, then its negation is false; and if p is false, then

its negation is true. It follows that = -p has the same truth value as p.
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The definition of a logical connective is usually presented as a truth table, in which the letters T and F

stand for TRUE and FALSE, respectively. The truth table for negation is shown in Figure 3.1.

-p
F
F T

Figure 3.1: The Truth Table for Negation

As we have seen, a proposition is a special case of a predicate, namely, a predicate with no parameters
(a niladic predicate). Negation can be applied to other predicates too, the result always being a predicate
with the same parameters as the predicate to which it is applied. Of course, a predicate with parameters
has no truth value; therefore neither does its negation. However, the truth table for negation tells us

that if tuple ¢ satisfies predicate p, then t does not satisty —p; and, conversely, if ¢ fails to satisfy p, then
t satisfies —p.
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Consider the negation, “Student Studentld is not enrolled on course Courseld” Assuming the truth
expressed by the ENROLMENT relation depicted in Figure 1.2 of Chapter 1, we can see that the tuple
TUPLE { StudentId SID('S1l'), CourseId CID('Cl"') } fails to satisfy this predicate.

Here, by contrast, as some that do satisfy it:

TUPLE { StudentId SID('S1l'), CourseId CID('C3') }
(No tuple in ENROLMENT shows student S1 as being enrolled on course C3)

TUPLE { StudentId SID('S2'), CourseId CID('C97') }
(No tuple in ENROLMENT shows S1 as being enrolled on C97 and in fact there is currently no

such course, though C97 is a valid course identifier)

TUPLE { StudentId SID('S98'), CourselId CID('C97') }
(No tuple in ENROLMENT shows S98 as being enrolled on C97 and in fact there is currently
no such student, though S98 is a valid student identifier)

In Tutorial D, as previously noted, negation is denoted by the key word NOT. For example, the expression

NOT (x = 5) evaluatesto TRUE for all values of x except 5, when it evaluates to FALSE.

You will have realised by now that the cardinality of a relation representing the extension of “Student
Studentld is not enrolled on course Courseld” is likely to be very high indeed—almost certainly too
high to be manageable using a computer. In Chapter 4 you will see that a relational DBMS’s support
for relations representing negated predicates is subject to a certain restriction, addressing this problem.
But you may also be thinking that relations for negated predicates such as the example at hand would
be of little use in practice, in which case you will agree, when you see the restriction I am referring to,

that it is of little or no import.

Conjunction (AND)

In English, two sentences may be connected by the conjunction, “and”, yielding a single sentence. For
example, “Come in and make yourself at home”, where the conjunction connects two imperatives,
meaning that the person being spoken to is being enjoined to do both of those things. When the
sentences being connected are statements, denoting propositions, the result is a single statement, denoting
a single proposition. For example: “It's raining and I'm wet through” If it really is raining, and I
really am wet through, then that is a true statement; otherwise—either it's not raining, or I'm not wet
through—it is a false statement. That example illustrates the logical connective AND, usually denoted in
formal treatments by the symbol A. The connection of two propositions in this particular way is called
conjunction. Unfortunately, as previously noted, there are other conjunctions in English whose use does
not denote logical conjunction (for example, “or”). There are also other conjunctions that do denote

logical conjunction (for example, “but”).
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The conjunction of propositions p and g is true if and only if p is true and g is true, as shown in Figure 3.2,

the truth table for conjunction.

P | 4 | pAq
T | T T
T F F
F T F
F F F

Figure 3.2: The Truth Table for AND

As we have seen, a proposition is a special case of a predicate, namely, a predicate with no parameters
(a niladic predicate). Conjunction can be applied to other predicates too, the result being a predicate.
Again, a predicate with parameters has no truth value; therefore neither does its conjunction with some
other predicate. However, the truth table for conjunction tells us that if tuple ¢I satisfies predicate p1
and tuple ¢2 satisfies predicate p2, then tuple t3, consisting of every element that is an element of either
t1 or t2 (or both) satisfies pIAp2; conversely, if either t1 fails to satisfy pI or 2 fails to satisfy p2 then
t3 fails to satisfy pIAp2.

Consider the conjunction “Student Studentld is enrolled on course Courseld and student Studentld is
called Name”. The predicates being connected are “Student StudentId is enrolled on course Courseld”
and “Student StudentId is called Name”. We connect two dyadic predicates to form a triadic one—it has

only three parameters because the parameter Studentld is common to both of the dyadic predicates.

“Student Studentld is enrolled on course Courseld and student Studentld is called Name” is of course
the intended predicate for the ENROLMENT relvar of Figure 1.2 in Chapter 1. Figure 1.2 tells us that
TUPLE { StudentId SID('Sl1l'), Name NAME ('Anne'), CourseId CID('Cl') }
satisfies that predicate. That being the case, the truth table for conjunction allows us to conclude that it
also satisfies both “Student Studentld is enrolled on course Courseld” and “Student Studentld is called
Name”, for if it failed to satisfy either, then the instantiation of their conjunction under that tuple must
be false according to that truth table.

Disjunction (OR)

As previously noted, there are plenty of other words (conjunctions) for connecting sentences, and they do
not all denote conjunction. For example, “or” is such a word and it denotes disjunction, usually denoted

in formal treatments by the symbol V.

The disjunction of propositions p and g is true if either p is true, or g is true, or both are true; otherwise

(neither p nor g is true) false. The truth table for disjunction is shown in Figure 3.3.
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m | m | HS
m |4 |m (4|9
m |4 H

Figure 3.3: The Truth Table for Disjunction

The definition I have given for disjunction is surely intuitive and obvious. But note that, having previously
defined negation and conjunction (in equally intuitive and obvious ways), I could now define disjunction

in terms of those two, like this:
pva=-(-pA-q)

We can use a truth table (Figure 3.4) to prove this equivalence:

P | a | =p | =9 |-~pA=q| =(=pA-q)
T | T F F F T
T | F F T F T
FlT | 7 F F T
FlF | T T T F

Figure 3.4: Disjunction in Terms of Negation and Conjunction

We used the truth tables for negation and conjunction to obtain the second, third, and fourth columns.

As you can see, the final column is the same as in Figure 3.3.

Like conjunction, disjunction can be applied to predicates in general as well as propositions. Consider
the disjunction “Student StudentId is enrolled on course Courseld or student Studentld is called Name”.
The predicates being connected are once again “Student StudentId is enrolled on course Courseld” and
“Student Studentld is called Name”. Because the first row of the truth table is the same as the first row
of the truth table for conjunction, and because the conjunction of these two predicates is the agreed
predicate for ENROLMENT, we can conclude that every tuple in ENROLMENT satisfies their disjunction
too. However many other tuples, notin ENROLMENT, also satisfy it. For example, TUPLE {StudentId
SID('S1'"), Name NAME ('Eve'), CourseId CID('C1l')} satisfies it because it satisfies
“Student Studentld is enrolled on course Courseld” (student S1 isn’t called Eve but she is enrolled on
course C1). For another example, TUPLE {StudentId SID('S1'), Name NAME ('Anne'),
CourseId CID('C97"') } satisfies it because it satisfies “Student Studentld is called Name” (student

S1 isn’t enrolled on course C97—in fact, as it happens there is no such course—but she is called Anne.
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You will have realised by now that the cardinality of a relation representing the extension of “Student
Studentld is enrolled on course Courseld or student Studentld is called Name” is likely to be very high
indeed—almost certainly too high to be manageable using a computer. In Chapter 4 you will see that
a relational DBMS’s support for relations representing disjunctive predicates is subject to a certain
restriction, addressing this problem. As with negation, you may also be thinking that relations for
disjunctive predicates such as the example at hand would be of little use in practice, in which case you

will agree again, when you see the restriction I am referring to, that it is of little or no import.

Conditionals

Consider the sentences shown in Example 3.9.

Example 3.9: conditional sentences

(i)  If you ask me nicely, then I will marry you.
(ii) I will marry you only if you ask me nicely

(iii) I will marry you if and only if you ask me nicely.
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Each denotes a predicate derived from two predicates using a connective of a general kind called
conditional. Sentence (i) illustrates use of logical implication, usually denoted in formal treatments by
the symbol —. Sentence (i) denotes a true proposition in all situations except when the question is asked

nicely but results in refusal. In general, p — g (“if p then g”) is true except when p is true and q is false.

P | a4 |p—q
T | T | T
T | F F
FlT | 7
F | F T

Figure 3.5: The Truth Table for Logical Implication

As an exercise, you might like to work out the truth table for the expression —p V q. You should find that

the final column is identical to the final column of Figure 3.5, confirming the equivalence
p—=q=-pVq

Sentence (ii) of Example 3.9 is merely another way of saying, “If I marry you, then you will have asked
me nicely” Sentence (iii) illustrates use of the biconditional, also known as equivalence, usually denoted
in formal treatments by the symbol <>. It is true whenever the truth values of “I will marry you” and
“You ask me nicely” are identical —either both TRUE or both FALSE; otherwise it is FALSE. It should be
clear, then, that p <> g is equivalent to (p — g) A (9 — p), as confirmed by the truth table in Figure 3.6.

P | a |p—a|q=>p| (p—>q) A(qg—p)
T | T T T T
T | F F T F
F LT T F F
F | F T T T

Figure3.6:p <> q=(p —>q) A (Q—p)

As you can see, the final column indicates TRUE exactly when the first two columns indicate the same

truth value.

Quantification

Our final method of deriving a predicate from a predicate does not correspond to anything in propositional

calculus and in fact is what distinguishes the predicate calculus from propositional calculus.
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To quantify something is to state its quantity, to say how many of it there are. Consider the following

sentences:

x has been president of the USA.
44 people have been president of the USA.

The first denotes a monadic predicate, the second a niladic one (and is either true or false, depending, as it
happens, on when it is uttered—for example, it became true in January 2009). The second sentence is in a
sense derived from the first by stating how many x’s there are such that x has been president of the USA.
Quantification doesn’t have to be numerically precise. Here are some further examples:

At least 40 people have been president of the USA.

Between 40 and 50 people have been president of the USA.

Nobody has been president of the USA.
That last one is precise, of course. It happens to be a false statement, from which it follows that its negation,

It is not the case that nobody has been president of the USA.

is a true one. But this uses a “double negative” and is just an awkward way of stating

At least one person has been president of the USA.

There is a person x such that x has been president of the USA.

This is derived from “x has been president of the USA” by existential quantification. Like substitution,
quantification reduces the number of parameters: one of the parameters of a given n-adic predicate is

quantified and the result is an (n-1)-adic predicate.

Note carefully that the symbol x, denoting a variable, appears twice in that last formulation, and yet it is
not a parameter. The x in the predicate “x has been president of the USA” is a parameter, of course. As
such it is also referred to sometimes as a free variable, when it is then said to be bound, by quantification,

in “There is a person x such that x has been president of the USA”.
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Existential quantification is denoted in formal treatments by the symbol 3 (“there exists”), as in

3 x : x has been president of the USA.
As before, the colon can be pronounced “such that”.
Having seen how existential quantification can be expressed in along-winded way using a double negative,
now see what happens when we apply a double negative to an existentially quantified predicate, as in
the sentence

It is not the case that somebody doesn’t know who is the current president of the USA.

This would be expressed formally as

=(3x : =(x knows who is the current president of the USA))

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

85 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

“It is not the case that there exists a person x such that it is not the case that x knows who is the current
president of the USA” You have perhaps worked out by now that all we are saying is, “Everybody
knows who is the current president of the USA” Here we are using universal quantification—stating
that something is true of everything that is under consideration. Universal quantification is denoted in

formal treatments by the symbol V (“for all”), as in

Vx : x knows who is the current president of the USA

(The colon here clearly cannot be pronounced “such that” but is kept for symmetry with existential

quantification.)

That concludes my digression into predicate logic to explain how relations are supposed to be interpreted.
In the next chapter I show how the operators of the relational algebra are used to derive relations from
relations, relating these to the methods I have described for deriving predicates from predicates. You

might like to try the exercises that follow before moving on to that chapter.

EXERCISES

Consider again the relation shown as the current value of ENROLMENT in Figure 1.2, repeated here

for convenience:

Studentld Name Courseld
S1 Anne @
S1 Anne 2
S2 Boris @
S3 Cindy a3
S4 Devinder C1
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For each of the following propositions, state whether it is true or false, basing your conclusions on

this relation:

There exists a course Courseld such that some student named Anne is enrolled on Courseld.
Every student with Studentld S1 who is enrolled on some course is named Anne.

Every student who is enrolled on course C4 is named Anne.

Some student who is enrolled on course C4 is named Anne.

There are exactly 5 students who are enrolled on some course.

A A o e

It is not the case that there is no course on which no student who is enrolled on some

course but is not named Boris is not enrolled.

N

There are exactly 10 pairs of StudentIds (SIDI, SID2) such that there is some course on

which student SID1I is enrolled and student SID2 is enrolled.

8. There are exactly 3 pairs of StudentIds (SID1, SID2) such that there is some course on which
student SIDI is enrolled and student SID2 is enrolled.

9. If a student named Eve is enrolled on course C1, then student S1 is named Adam.

10. If student S1 is named Anne, then S1 is enrolled on course C2.
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4 Relational Algebra—
The Foundation

4.1 Introduction

This chapter introduces you to relational operators. A relational operator is an operator that takes one
or more relations as operands and produces a relation as a result. The relational operators described in
this chapter constitute a basic set that is considered to be sufficient for relational completeness. Such a set
of operators is called a relational algebra. My use of the word “basic” suggests that this set of operators
would be necessary, as well as sufficient, for relational completeness. That will do as a working assumption

for now, but we shall eventually see that there is actually a tiny element of superfluity.

Sometimes that term, relational algebra, is used with the definite article: the relational algebra, even
though several minor variations exist in the literature. Indeed, the term relational completeness is
sometimes defined with reference to “the” relational algebra—a language is deemed relationally complete
if it supports, directly or indirectly, all of the operators of “that” algebra. Suffice it here to say that the
operators described in this chapter meet the criteria for constituting a complete relational algebra, and

their manifestation in Tutorial D makes that language relationally complete.

We start by looking at a particularly important relational operator, named JOIN (see Section 4.4 JOIN
and AND for details). Consider the relations depicted in Figure 4.1, the current values of relvars named
IS CALLED and T S_ENROLLED_ ON.

IS_CALLED IS_ENROLLED_ON
Studentld Name Studentld Courseld
S1 Anne S1 C1

S2 Boris S1 C2

S3 Cindy S2 C1

S4 Devinder S3 C3

S5 Boris S4 C1

Figure 4.1: IS_CALLED and IS_ENROLLED_ON

Download free eBooks at bookboon.com



Notice that nearly all of the data shown Figure 4.1 appears also in Chapter 1, Figure 1.2, the current
value of the variable ENROLMENT. In fact, the relation that is the current value of ENROLMENT can
easily be derived from the current values of IS CALLED and IS ENROLLED ON by invoking JOIN,

as shown in Example 4.1.

Example 4.1: Joining IS_CALLED and IS_ENROLLED_ON
IS_CALLED JOIN IS_ENROLLED_ON
This is an example of a relational expression. Relational expressions in Tutorial D include:
« invocations of the relation selector, RELATION, defined in Chapter 2;
« invocations of relational operators;
« names of relation variables such as IS CALLED and IS ENROLLED_ON; and
+ the names TABLE DEE and TABLE DUV, defined later in the present chapter.

Note that operands of relational operators are denoted by relational expressions.

Figure 4.2 shows the result of evaluating IS CALLED JOIN IS ENROLLED ON. You can see that

it depicts exactly the same relation as the current value of ENROLMENT shown in Figure 1.2.

Studentld Name Courseld
S1 Anne @
S1 Anne 2
S2 Boris @
S3 Cindy a3
S4 Devinder 1

Figure 4.2: The result of joining IS_CALLED with IS_ENROLLED_ON

The predicate for ENROLMENT is “Student Studentld is called Name and is enrolled on course
Courseld”. The predicate for IS CALLED is “Student Studentld is called Name” and the predicate for
IS _ENROLLED_ON is “Student Studentld is enrolled on course Courseld”. Notice that the predicate for
ENROLMENT is the conjunction (AND) of the predicates for IS CALLED and IS ENROLLED ON. In
general, if pI and p2 are predicates represented by relations r1 and r2, respectively, then the Tutorial D
expression r1 JOIN r2 denotes the relation corresponding to the conjunction pI AND p2 (written as

pIap2 in mathematical notation).
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By studying this little example you might be able to work out for yourself how JOIN works, in general,
before I explain it in detail. If you try that exercise, there are a couple of points of difference you should

take careful note of in Figures 4.1 and 4.2:

a) The only fact depicted in Figure 4.1 but not in Figure 4.2 is that student S5 is called Boris.
Student S5 doesn’t appear in Figure 4.2 because that student isn't enrolled on any courses at
all. Therefore there is no course identifier—no value of type CID—that satisfies the predicate
“Student S5 is called Boris and is enrolled on course Courseld”.

b) In Figure 4.1 the fact that student S1 is called Anne is shown just once, whereas in Figure

4.2 it is shown twice.

JOIN is an operator that, when invoked, operates on two relations and returns a relation. A relational
operator is one that, when invoked, operates on one or more given relations and returns a relation. A
relational algebra is a set of such operators—in mathematical parlance it (the algebra) is closed over
relations. The term closure refers to the property of a set of operators whereby the results are of the same
type as the operands. For example, the familiar operators of arithmetic—*“+”, “-”, and so on—are closed
over numbers. This chapter and the next describe the set of relational operators defined for Tutorial D,
giving for each one the notation used in Tutorial D for invoking it. The ones described in this chapter
are just those needed for relational completeness. In Chapter 5, “Building on The Foundation”, I describe
some further operators defined in Tutorial D to illustrate some of the additional kinds of things that are

needed to make a relational database language more useful for practical purposes.

The aforementioned property of closure allows us to write relational expressions of arbitrary complexity,
because an invocation of a relational operator, denoting, as it does, a relation, can be used to denote
an argument to another invocation. Thus, invocations can be nested inside each other to any degree of
complexity. (Recall that the operators of arithmetic allow us to write numerical expressions of arbitrary

complexity in similar fashion.)

In Chapter 3 we saw how a relation might represent the extension of some predicate. We also saw the
various ways in which predicates can be derived from predicates, using logical connectives and quantifiers.
For each such method we will discover a corresponding relational operator that can be used to derive the
relation representing the extension of a predicate derived by that method, just as I have shown for JOIN

in Example 4.1.
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4.2 Relations and Predicates

Recall from Chapter 3 how a relation represents the extension of a predicate:

A relation represents the extension of some n-adic predicate P by having a body
consisting of every n-tuple that satisfies P.

The current value of IS CALLED shown in Figure 4.1 tells us that the extension of “Student Studentld
is called Name” is (currently) the set {Student S1 is called Anne, Student S2 is called Boris, Student S3
is called Cindy, Student S4 is called Devinder, Student S5 is called Boris}, each element of which is an
instantiation of the predicate that happens to be true. From the given definition it follows that every other
instantiation of that predicate is false and therefore does not appear in its extension. The assumption
that the body of a relation consists of every tuple that satisfies the relation’s predicate is called the closed
world assumption. This assumption underpins the operators of the relational algebra. Under the open
world assumption, every tuple that’s in the relation does represent a true proposition but it is possible for
tuples that satisfy the predicate not to appear in the relation. It would not be possible to devise relational

operators based on that assumption, for unless every instantiation of the predicate were false it would

be an arbitrary choice as to which tuples, if any, are to be included.
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4.3 Relational Operators and Logical Operators

The operators of the relational algebra are nearly all relational counterparts of the logical connectives
AND, OR, and NOT, and existential quantification. Each relational operator, when invoked, yields
a relation, which can be interpreted as the extension of some predicate. Because relations are used to
represent predicates, it makes sense for relational operators to be counterparts of logical operators.
Example 4.1 illustrates the use of JOIN as the relational counterpart of the logical operator AND to give

us the relation representing the predicate

Student StudentId is called Name AND Studentld is enrolled on course Courseld.
where the predicates for IS CALLED and IS _ENROLLED_ON are connected by AND.
We will meet other examples, enabling us to obtain relations representing predicates such as

« Student Studentld is enrolled on some course.
Here the predicate for IS ENROLLED_ON is subject to existential quantification on Courseld.

« Student StudentId is enrolled on course Courseld AND Studentld is NOT called Devinder.
Here the predicate for IS ENROLLED_ON is connected by AND to the negation of the monadic
predicate formed by substituting Devinder for Name in the predicate for IS CALLED.

o Student Studentld is NOT enrolled on any course OR Studentld is called Boris.
Here the negation of the predicate resulting from existential quantification of the predicate for
IS_ENROLLED is connected by OR to the predicate formed by substituting Boris for Name
in the predicate for IS CALLED.

and more. Descriptions of relational operators now follow, starting with JOIN. In most cases the section
heading shows the logical operator to which the given relational operator corresponds. You will see that

in at least one case, AND, we have several distinct relational operators and I will explain why this is so.

44 JOIN and AND

Figure 4.3 shows how Example 4.1 “works”. I have changed the order of the columns in the IS CALLED
table (you know that makes no difference) in order to place side by side the attributes that are both
named StudentId. The upward arrows show which bits of the relational expression correspond to

which bits of the predicate.

The arrows connecting rows in the tables show which combinations of operand tuples represent true
instantiations of the predicate. Note how a tuple on the left matches a tuple on the right if and only if
the two tuples have the same StudentId value. This concept of matching tuples is at play in several
of the other operators too. Tuples ¢I and 2 are said to match, or be matching, if and only if, for each
common attribute ¢, they have the same value for ¢, where a common attribute is one that has the same
name in both tI and 2.
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Studentld is called Name AND
T

IS_CALLED JOIN
Name Studentld

Anne S1 >
Boris S2 \
Cindy S3 \
Devinder S4 \
Boris S5 \

Figure 4.3: Joining IS_CALLED with IS_ENROLLED_ON

Studentld is enrolled on Courseld.

IS_ENROLLED_ON

Studentld Courseld
S1 C1
S1 Cc2
S2 C1
S3 C3
S4 C1

Common attributes have to be of the same type as well as having the same name. For consider, if that

were not the case in our JOIN example—suppose, for example, that StudentIdin IS CALLED were
of type SID and StudentIdin IS ENROLLED ON were of type CHAR—then:

a) What would be the type, SID or CHAR, of the single StudentId attribute in the result of

the JOIN?

b) How could the DBMS determine whether a given pair of tuples match on StudentId? To

be comparable at all, the operands of equals comparison must be of the same type.

Note very carefully that the result does have only one StudentId attribute, even though the

corresponding parameter appears twice in the predicate. Multiple appearances of the same parameter

in a predicate are always taken to stand for the same thing. Here, if we substitute S1 for one of the

StudentIds, then we must also substitute S1 for the other. That is why we have only one StudentId

in the resulting relation. StudentId is a common attribute of r1 and r2. In general, there can be any

number of common attributes; and there can even be no common attributes at all.

Definition of JOIN

Here is a formal definition of our first relational operator, JOIN:

Let s =r7 JOIN r2. Then:

The heading Hs of s is the union of the headings of r7 and r2, which must be a heading
(otherwise, r1 JOIN r2 is undefined).
The body of s consists of those tuples having heading Hs that can be formed by taking the
union of t7 and t2, where t1 is a tuple of r7 and t2 is a tuple of r2.

If both r1 and r2 have an attribute of the same name but not the same type, then the union of their
headings is not a heading and r7 JOIN r2 is undefined.
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We can take the union of two headings because headings are sets. In particular, a heading is a set of
attribute name/type pairs. If two headings have different types for some attribute of the same name, then
their union is a set (of course) but is not a heading—because a heading cannot have more than one type

paired with the same name.

We can take the union of two tuples because tuples are sets. In particular, a tuple is a set of attribute
name/value pairs. If two tuples have different values for some common attribute, then their union is a
set (of course) but is not a tuple—because a tuple cannot have more than one value paired with the

same name.
Note that if either operand is empty (its body is the empty set), then so is the result.

Interesting properties of JOIN

JOIN is both commutative and associative. Commutativity (of a dyadic operator) means that the order
of operands is insignificant. That is to say, rI JOIN r2 is equivalent to 72 JOIN rl. Associativity means
that (rI JOIN r2) JOIN r3 is equivalent to r1 JOIN (r2 JOIN r3)—if we wish to join three or more
relations together, then we can join them in any order, so to speak. Of course it is no mere coincidence

that logical AND is also both commutative and associative.
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Properties such as these not only save us a certain amount of thinking when formulating expressions; they
also help the optimizer to find alternative formulations that might perform better than a straightforward
implementation of the one written. Tutorial D takes further advantage of these properties by supporting
an alternative syntax for invoking JOIN, using prefix notation instead of the infix notation I have already
shown you. In prefix notation the operator name is followed by a list of argument expressions in braces.

When the operator is associative, we can have any number of arguments:

JOIN {rl, r2, ... }

When there is just one argument, 1, the result is 71. I hope you are wondering what happens if there are
no arguments at all—asking if JOIN { } is defined. Well, it is!—but I have to defer the explanation

until later, for a reason you will understand when I do so.

As well as being commutative and associative, JOIN is idempotent. Let r be any relation. Then r JOINr=r.
A dyadic operator is idempotent if, when its operands are the same value, it yields that value. Again, it

is no mere coincidence that logical AND is idempotent: pAp always has the same truth value as p.

There is one further interesting property of JOIN, described later, in Section 4.6 of this chapter.

Two special cases of JOIN

There are two extreme cases concerning common attributes: the case when all attributes are common

to both operands and the case where none of them are.

If all attributes of r1 and 72 are common, then the body of r1 JOIN r2 is the set-theory intersection of
the body of rI and the body of r2. For that reason their join is sometimes called intersection. In fact,
Tutorial D allows you to use the key word INTERSECT in place of JOIN in this special case only. If you
do so, you are in effect telling the system that you expect the operands to have all attributes in common,

and you might be grateful if the system rejects your invocation (at compile time) when they don't.

If no attributes of I and r2 are common, then every pair of tuples, tI from rI and ¢2 from r2, is such
that their union is a tuple and so appears in the body of r1 JOIN r2. In mathematical terms we have the
same combinations of tuples as would appear in the Cartesian product of the two bodies (the analogy
is a little loose, because in the Cartesian product the paired elements remain as a pair, whereas JOIN
combines them to form a single tuple). For that reason their join is sometimes called their product and
Tutorial D allows you use the key word TIMES in place of JOIN in this special case only. If you do so,
you are in effect telling the system that you expect the operands to have no attributes in common, and

you might be grateful if the system rejects your invocation (at compile time) when they don't.
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Now, sometimes, when joining relations, we want attributes al of r1 and a2 of r2 to be used for determining
matching tuples even though al and a2 do not have the same name. Conversely, we sometimes want
common attributes not to take part in the matching process. In such cases we cannot simply take the
result of r1 JOIN r2. We have to somehow “change” some attribute names before we do the join; and

that brings me to the next operator, RENAME.

4.5 RENAME

Although I offer no logical counterpart for RENAME, consider that one predicate can be derived from
another predicate simply by changing one or more of its parameter names. For example, from the
predicate for IS CALLED, “Student Studentld is called Name”, we could derive the different predicate
“Student Sid is called Name”. Those two predicates have identical extensions and in fact have identical
intensions too; but they aren’t represented by exactly the same relations, these being the two relations

depicted in Figure 4.4.

Studentld Name Sid Name
S1 Anne S1 Anne
S2 Boris S2 Boris
S3 Cindy S3 Cindy
S4 Devinder S4 Devinder
S5 Boris S5 Boris

Figure 4.4: Relations differing only in an attribute name

The one on the left is the current value of IS CALLED. The one on the right is the same relation except
that the attribute name Sid is used in place of StudentId. In some circumstances we might want
to derive the relation on the right from the one on the left and use the result in some operation such
as a JOIN. That's what the RENAME operator is for, and Example 4.2 shows how to use it to obtain the

relation on the right.

Example 4.2: Renaming an attribute

IS CALLED RENAME { StudentId AS Sid }

The expression enclosed in braces—which is not a relational expression—is called a renaming. In general

there can be any number of renamings, separated by commas.
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Definition of RENAME

Let s=r RENAME { al AS b1, ...,anAS bn }.Then:

The heading of s is the heading of r except that the attribute named ai, of type ti, is
replaced by an attribute named bj, also of type ti (0<i<n).

The body of s consists of the tuples of r except that in each tuple attribute aj with value v
is replaced by attribute bi by value v.

Obviously, the result must be such that no two attributes have the same name; otherwise, it wouldn’t
be a relation. Note that when more than one attribute is being renamed, the renamings are considered
to take place simultaneously, so to speak. Thus, the example R RENAME { A AS B, B AS A }
swaps the names of those two attributes.

Syntax note

When describing syntax we use the convenient term commalist for a list of items separated by
commas. Thus we can say that an invocation of RENAME consists of a relation expression followed
by the key word itself, followed in turn by a renaming commalist enclosed in braces.

In Tutorial D, wherever the syntax requires a commalist, that commalist is permitted to be empty.
Thus, for example, R RENAME { } is a legal expression. (Its value is equal to R.)
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Please do not confuse the RENAME operator with one that might be used for changing the name of an
attribute of a relvar. That might be a very useful tool for database designers but in this chapter we are
dealing only with read-only operators that yield relations. None of them has any effect on the database’s

contents or definition.

Unfortunately, E.E. Codd did not foresee the need for a RENAME operator and so it is missing from some

accounts of relational algebra that you may come across.

Using RENAME in combination with JOIN

Suppose we wish to discover pairs of students who have the same name. The result must be a relation with
three attributes: two for the student identifiers and one for the name those two students share. All the
data we need for that ternary relation is in the binary relvar IS CALLED. The predicate for IS CALLED
is “Student Studentld is called Name”. What might be a predicate for our desired result? Obviously we
cannot just connect “Student StudentId is called Name” to itself using AND, because multiple appearances
of the same parameter must all represent the same value. So we must use two different parameter names
for the two student identifiers. Example 4.3 shows a suitable predicate, followed by a relational expression

that uses RENAME (twice) and JOIN to denote the required relation.

Example 4.3: Renaming and joining

Student SidI is called Name and so is student Sid2

( IS CALLED RENAME { StudentId AS Sidl } ) JOIN
( IS CALLED RENAME { StudentId AS Sid2 } )

Note that Name is the only common attribute for the JOIN. Now you can begin to see how relational
operators can be used to construct expressions of unlimited complexity. Unfortunately, though, the result

obtained from this expression, shown in Figure 4.5, isn't entirely satisfactory.

Sid1 Name Sid2
S1 Anne S1
S2 Boris S2
S2 Boris S5
S5 Boris S2
S5 Boris S5
S3 Cindy S3
S4 Devinder S4

Figure 4.5: Result of Example 4.3
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You didn’t really want to be told that Anne has the same name as herself, nor that students S5 and S2
share the same name (Boris) as well as students S2 and S5 sharing that name! We need to look at some

more operators before we can begin to address those little problems. The next one is called projection.

4.6 Projection and Existential Quantification

Suppose we need to obtain the student identifiers of all the students who are enrolled on some course.
Even though that result perhaps isn’t very interesting in itself, we might need it as part of some more
interesting query. The relation we require would represent the predicate derived from the predicate for
IS ENROLLED ON by existential quantification of Courseld:

Student Studentld is enrolled on some course.
or, more formally

There exists a course Courseld such that student Studentld is enrolled on Courseld.
Example 4.4 shows how to obtain the relation representing this predicate, using projection.

Example 4.4: Projection

Student Studentld is enrolled on some course.
IS ENROLLED ON { StudentId }

Points to note:

« Like RENAME, projection is monadic (it operates on just a single relation, in this case the
current value of IS ENROLLED_ ON).

o Tutorial D uses no key word for projection. You just write a commalist of attribute names
(a list of one in the example), enclosed in braces, after the expression denoting the single
relation operand.

o The braces indicate that the order of attribute names in the given list is insignificant. Indeed,
here it denotes a set (in the example, a set with just one element).

o The attributes named in braces are exactly those that remain if we remove the parameters
that are existentially quantified in the predicate. Sometimes it is more convenient to name
the attributes to be excluded rather than the remaining ones. With this in mind, Tutorial D
supports an alternative formulation, using ALL BUT. Thus Example 4.4 could have been
expressed like this instead:

IS ENROLLED ON { ALL BUT CourselId }
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The result is shown in Figure 4.6.

Studentld

S1
S2
S3
S4

Figure 4.6: Result of Example 4.4

Points to note:

o The degree is one, that being the number of attributes specified in the projection.

o Every StudentId value in the result is a StudentId value that appears in the operand
relation, IS ENROLLED ON (and no other StudentId value appears in the result).

o No StudentId value appears more than once in the result, even though S1 appears twice
in the operand. The body of a relation is a set and there is no sense in which the same

element can appear more than once in a set.
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Definition of projection

Lets=r{al,...,an}

=r{ALL BUTMbI,...,bm}
where the sets { al,...,an } and { b7, ..., bm} are disjoint subsets of the heading of r, whose union
contains every attribute of r.

Then:

The heading of s is the subset of the heading of r given by { a7, ..., an }.
The body of s consists of each tuple that can be formed from a tuple of r by removing
from it the attributes named b7, ..., bm.

Note that the cardinality of s can be less than that of » but cannot be more than that of . Now look at
Figure 4.7, showing the result of

( ( IS _CALLED RENAME { StudentId AS Sidl } ) JOIN
( IS CALLED RENAME { StudentId AS Sid2 } ) ) { ALL BUT Name }

Sid1 Sid2
S1 S1
S2 S2
S2 S5
S5 S2
S5 S5
S3 S3
S4 S4

Figure 4.7: A projection of the relation shown in Figure 4.5

As you can see, the figure shows pairs of student identifiers that identify pairs of students having the
same name. Its predicate is “Student SidI has the same name as student Sid2”. There is something I want
to say about this predicate although it amounts to something of a digression at this point. Because it is
true that every student has the same name as himself or herself, we say that the relation for this predicate
is reflexive. Because it is also true that if student x has the same name as student y, then student y has
the same name as student x, we say that the relation for this predicate is symmetric. In general, binary
relations with attributes of the same type are said to be recursive. Clearly a relation that is reflexive
must be recursive, for if x and y denote the same thing, they must be of the same type. A relation that
is symmetric must also be recursive, for otherwise it would not be possible to interchange x and y (if x

is a student id and y is a course id, for example).
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How ENROLMENT was split

Our current examples, IS CALLED and IS _ENROLLED ON, when joined yield the current value of

ENROLMENT, as we have already seen. Now, we cannot exactly reverse that process—obtain the current

values of IS CALLED and IS ENROLLED ON from ENROLMENT—but we can, by using projection,

obtain the current value of IS ENROLLED ON, and we can obtain a subset of the current value of

IS CALLED (student S5 would be missing).

Suppose we have only ENROLMENT, but we suddenly realize that we need to record the names of students,

such as student S5, who aren’t yet enrolled on any courses. We decide to address that problem by using

the two relvars, IS CALLED and IS ENROLLED ON, in place of ENROLMENT. Example 4.5 shows

one way of achieving that redesign in Tutorial D, using projection and a certain useful shortcut you can

use in relvar declarations. (You may wish to return to Chapter 2, Section 2.11, to refresh your memory

on relvar declarations in Tutorial D.)

Example 4.5: Splitting ENROLMENT

VAR IS CALLED BASE
INIT (ENROLMENT { StudentId, Name })
KEY { StudentId } ;

VAR IS_ENROLLED_ON BASE
INIT (ENROLMENT { StudentId, Courseld 1})

KEY { StudentId, Courseld } ;

DROP VAR ENROLMENT ;

Explanation 4.5:

VAR IS_CALLED BASE announces that what follows defines a database relvar named

IS CALLED.

INIT (ENROLMENT { StudentId, Name }) specifies that the variable is to

be immediately assigned the result of projecting the current value of ENROLMENT over
StudentId and Name. It also implies that the declared type of the specified expression,
ENROLMENT { StudentId, Name 1}, is the declared type of the variable. This is the
useful shortcut I mentioned—when INIT is used there is no need to spell out the type.
KEY { StudentId } specifies a constraint to the effect that no two distinct tuples
having the same StudentId value can ever appear simultaneously in IS CALLED. (In
Tutorial D the KEY specification must come after the type specification, including the type
implicitly specified by INIT.)
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« VAR IS_ENROLLED_ON up to the next semicolon is a similar relvar declaration for
IS _ENROLLED_ON. The KEY specification, KEY { StudentId, CourseIld
}, specifies a constraint to the effect that no two distinct tuples having the same
StudentId value and the same CourseId value can ever appear simultaneously in
IS ENROLLED ON. It is superfluous, really, because those are the only two attributes and
it is never possible for the same tuple to appear more than once in the body of a relation, by
definition. However, Tutorial D requires at least one KEY specification to be included in a
relvar declaration.

« DROP VAR ENROLMENT destroys the variable we have no further use for.

Of course, our revised database does not yet include any information about student S5, named Boris, but
that information wasn’t present in ENROLMENT—and nor could it have been, until S5 became enrolled
on something. Now, however, we can record S5’s name immediately, by adding the appropriate tuple to

IS CALLED.
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Two special cases of projection

In Tutorial D syntax, wherever a commalist of items is required it is permissible for that list to be empty
unless it is explicitly stated to the contrary. At the time of writing there are no exceptions; therefore the

following two expressions must both be legal:

r { ALL BUT }
r{ }

where r denotes a relation.

The first should come as no surprise—it obviously results in r itself—but the second does surprise most
students at first, for it appears to denote a relation with no attributes at all—a relation of degree zero.
And indeed it does, and indeed there are such relations!—but only two. The two relations have been
given the pet names TABLE DEE and TABLE DUM and these names, which were proposed by the
present author in a journal article published in 1988, are available in Tutorial D, which allows them to

be abbreviated to just DEE and DUM.

TABLE DEE isa name for the relation RELATION { TUPLE { } }—therelation of degree zeroand
cardinality one. There is only one tuple of degree zero, so that has to be the only tuple of TABLE DEE.
Clearly there cannot be a relation of degree zero and cardinality greater than one, for then we would
have the same tuple appearing more than once in the body of a relation and that, as we have seen, cannot
be. So TABLE DUM must be the empty relation of degree zero: RELATION { } { } (thefirst { }
specifies the empty heading, the second the empty body).

A predicate represented by a relation of degree zero is niladic (has no parameters). In other words, it
must be a proposition, p. If TABLE DEE represents p, then p is true; otherwise TABLE DUM represents
p and p is false. People often ask, “What purpose can relations of degree zero possibly serve? They seem
to be of little or no value” The answer is that they represent answers to queries of the form “Is it true
that...?” or “Are there any...?” where the answer is just “yes” or “no”. For example, “Is it true that student

S1 is enrolled on course C3?”, and “Are there any students enrolled on course C1?”

Now that you have met TABLE DEE I can show you one more interesting property of JOIN. If r is,
as usual, a relation, what is the result of r JOIN TABLE DEE? Even if an answer springs to mind
immediately I suggest you work this out for yourself from the definition of JOIN—and perhaps verify

your conclusion using Rel.

If a value i exists such that whenever i is one of the operands of a dyadic operator the result of invoking
that operator is the other operand, then i is said to be an identity value under that operator. Think of
the number 0 under addition, for example, and the number 1 under multiplication. TABLE DEE is the

identity value under JOIN.
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Now, consider an operator that is commutative and associative, as are numerical addition and relational
JOIN. As we have seen, a language can support n-adic versions of such operators: we can take the sum
of any number of numbers and we can take the join of any number of relations—even just one or none
at all. The sum of just one number is that number and the join of just one relation is that relation. The
sum of no numbers is zero, because zero is the identity value under addition. The join of no relations
is TABLE DEE.

So far I have shown you relational counterparts of AND and existential quantification. Eventually you
will see counterparts of OR and NOT too but we haven't finished with AND yet, for JOIN turns out not
to be suitable for certain common special cases of AND. The next operator addresses one of those cases

and is called restriction.

4.7 Restriction and AND

Here is a predicate that we can derive from the predicate for IS CALLED by substitution of one of

its parameters:

Student Studentld is called Boris.

The relation representing that can be obtained quite easily using JOIN and projection, noting that the

given predicate is equivalent to the more elaborate

There exists a name Name such that student Studentld is called Name and Name is Boris.

Again the only parameter is Studentld, because Name is quantified. The relation is denoted by the
expression shown in Example 4.6.

Example 4.6: JOIN and projection

( IS CALLED JOIN RELATION { TUPLE { Name NAME ( 'Boris' ) } } )

{ StudentId }

Restriction, invoked using the key word WHERE, gives us an alternative and perhaps more intuitive

formulation for the first line of Example 4.6, shown in Example 4.7.

Example 4.7: Restriction
( IS CALLED WHERE Name = NAME ( 'Boris' ) )
Here the word WHERE is preceded by a relational expression and followed by a condition,

Name = NAME ( 'Boris' ). Each tuple of the specified relation is tested to see if it satisfies the

given condition. Those that do satisfy it, and only those tuples, appear in the result.
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Notice that the expression Name = NAME ( 'Boris' ) isnot one that can be evaluated outside
of the context in which it appears. Its evaluation depends on the existence of a tuple to provide the value
of the attribute Name. We shall refer to such expressions as open expressions. Unsurprisingly, we shall
refer to expressions that can be evaluated independently of their context as closed expressions. We shall

soon see that restriction isn’t the only context in which open expressions can appear.

Of course the WHERE condition doesn’t have to be an open expression; but if it is closed, then its value
is independent of the tuples of the operand relation and is therefore the same for each tuple. As a
consequence, the result of a restriction whose condition is a closed expression is either the input relation

(the WHERE condition evaluates to TRUE) or empty (it evaluates to FALSE).

Now, the reason why the example at hand can be formulated using JOIN instead of WHERE lies in the
fact that the restriction condition is, very specifically, an “equals” comparison of an attribute with a
literal. The literal in question can be “wrapped up’, so to speak, as a relation literal that can be used as
an operand of JOIN. If the condition is less restrictive, the required relation literal might be far too large
to be written down. Suppose, for example, that we wish to find all the students whose names begin with
the letter “B”. Then we have to replace the relation literal in Example 4.6 by one that includes a tuple
literal for every value of type NAME that begins with the letter “B”. That is out of the question. But, using
the STARTS WITH operator from Rel’s OperatorsChar.d (recall that we used this operator in the
definition of type SID in Chapter 2), the task becomes very easy using WHERE, as shown in Example 4.8.

Example 4.8: A more useful restriction

IS CALLED WHERE STARTS WITH(THE C(Name), 'B')

Definition of restriction

Let s = r WHERE ¢, where c is a possibly open truth-valued expression denoting a condition on
attributes of r. Then:

The heading of s is the heading of r.
The body of s consists of those tuples of r for which the condition ¢ evaluates to TRUE.

So the body of s is a subset of the body of r. Note that the result of r WHERE TRUE is r and that of
r WHERE FALSE is the empty relation of the same type as r. In fact, whenever the specified condition
c is a closed expression the result of r WHERE ¢ is empty when ¢ evaluates to FALSE and is otherwise

equal to . So closed expressions are rarely useful and in practice c is nearly always an open expression.
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Now let us return to Example 4.3, finding pairs of students who have the same name. It was annoying

to find those tuples that pair students with themselves. Now we know how those can be eliminated:

( ( IS CALLED RENAME { StudentId AS Sidl } )
JOIN
( IS CALLED RENAME { StudentId AS Sid2 } )
WHERE NOT (Sidl = Ssid2) ) { Ssidl, sid2 }

which yields the relation shown in Figure 4.8.

Sid1 Sid2
S2 S5
S5 S2

Figure 4.8: An improvement on Figure 4.7
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If we are still annoyed by seeing two different students paired together twice, we might be able to address

that problem too, if a comparison operator such as “less than” is available on values of type SID:

( ( IS CALLED RENAME { StudentId AS Sidl } )
JOIN
( IS CALLED RENAME { StudentId AS Sid2 } )
WHERE Sidl < Sid2 ) { Sidl, Ssid2 }

Assuming that the value SID ('S2") precedes SID ('S5"') in the ordering defined for values of type
SID, this would yield the singleton relation shown in Figure 4.9.

Sid1 Sid2
S2 S5

Figure 4.9: A further improvement on Figure 4.7

Now please look again at Example 4.8. It involves computation of the first letter of every student’s name,
for testing in the WHERE condition. Sometimes we wish to use such computations to obtain values that
are to appear as attribute values in some relation. Suppose, for a rather unreal example, that we wish
to obtain a relation showing not only the student identifier and name of each student, but also the first
letters of their names. Then we will need our next operator, also related to AND, called extension (a slightly

unfortunate name, perhaps—not to be confused with extensions of predicates as defined in Chapter 3!).

4.8 Extension and AND

Consider, then, the predicate

Student Studentld is called Name and Name begins with the letter Initial.
We have AND connecting the predicate for IS CALLED with “Name begins with the letter Initial”. As
with Example 4.8, it is not feasible to write down a relational literal representing “Name begins with the
letter Initial”, so we cannot feasibly use JOIN.
Here is a Tutorial D formulation using extension:

EXTEND IS CALLED : { Initial := FirstLetter ( Name ) }
Here FirstLetter ( Name ) is an open expression—the expression needs to be evaluated
against a tuple that provides an attribute value for Name. The expression is evaluated for each tuple ¢ of

IS CALLED, yielding the tuple formed by “extending” t by the attribute Initial having the value

of that open expression.
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The result is the relation shown in Figure 4.10.

Studentld Name Initial
S1 Anne A
S2 Boris B
S3 Cindy C
S4 Devinder D
S5 Boris B

Figure 4.10: An extension of IS_CALLED

The construct Initial := FirstLetter ( Name ) is called an “extend addition”. In general,
there can be any number of extend additions, including none at all (in which case the invocation returns
its input relation). The extend additions are considered to be evaluated in order from left to right, so
that a subsequent extend addition may use an open expression that refers to an attribute “added” by an

earlier one.

Definition of extension

Let s=EXTENDr: {a:=exp }

where relation r does not have an attribute named a and exp is a possibly open expression. Then:
Let T be the declared type of exp and let Hr be the heading of r. The heading of s is Hr
UNION {aT}.
The body of s consists of tuples formed from those of r by adding the attribute a of type T
with value exp.

EXTENDr: { al :=exp-1,...,an:=exp-n }, where n > 0, is equivalent to

EXTEND (... (EXTENDr:{al:=exp-1} .. ) : {an:=exp-n})

Points to note:

o In the special case where the commalist of extend additions is empty, the input relation is
returned. In other words, EXTEND r:{} =r.

o If ai (0<i<n) is identical to the name of some attribute of r, then that attribute is effectively
replaced (in which case “extension” is something of a misnomer!).

o The cardinality of s is equal to the cardinality of r. The degree of s the degree of r plus one
for each ai that is not identical to the name of some attribute of r.

o Ifaclosed expression is used in an extend addition, then it will have the same value for each

tuple of the input relation.
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Now we have finished with AND and we can move to OR, where the corresponding relational operator
is UNION.

49 UNION and OR

Recall that the relational expression IS CALLED JOIN IS ENROLLED ON gave us a relation
representing the extension of the conjunctive predicate “Student Studentld is called Name and is enrolled
on course Courseld”. Now consider the disjunctive predicate “Student Studentld is called Name or is
enrolled on course Courseld”, the same as before except that the logical connective OR is used instead
of AND.

Recall also that the truth table for AND (Figure 3.2) enabled us to determine which tuples, derived from
those of IS CALLED and IS _ENROLLED ON, satisfy that conjunctive predicate and thus constitute
the body of their join. Unfortunately, the truth table for OR (Figure 3.3) tells us that it’s not so easy to
discover all the tuples that satisfy the disjunctive predicate.

Let’s think about the extension of “Student Studentld is called Name or is enrolled on course Courseld”.
Here is a true instantiation that we can determine by examination of the current values of IS CALLED

and IS ENROLLED on:

Student S1 is called Anne or is enrolled on course Cl1.

/
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So TUPLE {StudentId SID('S1l'), Name NAME ('Anne'), CourseId CID('C1l')}

clearly appears in the body of the corresponding relation. But the following instantiations are also true:

a) Student S1 is called Anne or is enrolled on course C3.

b) Student S1 is called Jane or is enrolled on course CI.

¢) Student S1 is called Anne or is enrolled on course C4751.

d) Student S1 is called Xdfrtghyuz or is enrolled on course Cl1.

In case (a) the first disjunct, “Student S1 is called Anne’, is true and the second is false. A similar remark
applies to case (c), even though, as it happens, course C4751 doesn't even exist—the corresponding
tuple appears in the relation because CID ('C4751 ") does denote a value of type CID (and S1’s name
is Anne). Cases (b) and (d) connect true statements about enrolments with false ones about names. In
(d), though we can perhaps be 100% certain that nobody has ever been called Xdfrtghyuz, I am assuming
that NAME ('Xdfrtghyuz') is a value of type NAME (it would be difficult to define the type in such

a way as to exclude such possibilities).

You can see, then, that the extension of the disjunctive predicate contains an inordinately large number
of instantiations compared with the extension of the much more restrictive conjunctive predicate. In
practical terms, the corresponding relation is too big, would take too much time to be computed, and in
any case isn’t very useful. For those reasons, Codd deliberately excluded a general relational counterpart
of OR from his relational algebra. However, noting that some disjunctive predicates do not suffer from this

problem, he did include a dyadic operator, UNION, to give relations representing just those special cases.

Codd noted that the relation for a predicate of the form p OR g is computable—the problem just
described does not arise—if p and g have exactly the same set of parameters and the relations for p and
q are computable. His UNION operator, therefore, requires its relation operands to be of the same type

(i.e., to have the same heading).
Consider, then, the predicate

Student Studentld is called Devinder OR student Studentld is enrolled on course C1.
The two disjuncts both have just the one parameter, Studentld. The first disjunct is derived from the
predicate for IS CALLED by substituting a value for the Name parameter (thus binding it); the second
is derived from the predicate for IS ENROLLED_ ON by similarly binding the Courseld parameter.

Although the expression IS CALLED UNION IS ENROLLED ON is illegal in Tutorial D, for the

reason I have given, the expression given in Example 4.9 is legal.
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Example 4.9: A legal invocation of UNION

( IS CALLED WHERE Name = NAME ('Devinder') ) { StudentId }
UNION
( IS_ENROLLED_ON WHERE CourseId = CID ('Cl') ) { StudentId }

The binding of Name is achieved in two steps. First we use restriction (WHERE) to restrict it to exactly
one value by equals comparison; then we “project it away”. We dispose of Courseld in similar fashion.
The resulting relation is shown in Figure 4.11. You can verify it for yourself by checking whether each

of the students S1, S2 and S4 is either called Devinder or enrolled on course Cl1.

Studentld

S1

S2

S4

Figure 4.11: Result of Example 4.9

Definition of UNION

Let s =r7 UNION r2
where r1 and r2 are relations of the same type.

Then:

The heading of s is the common heading of r7 and r2.

The body of s consists of each tuple that is either a tuple of r1 or a tuple of r2.

Points to note:

o The cardinality of s is no less than the cardinality of the larger operand and no greater than
the sum of the operand cardinalities. So, assuming the operands are computable, the result
must be computable.

o Like JOIN, UNION is commutative. It is no mere coincidence that OR is also commutative.

o Also like JOIN, UNION is associative. It is no mere coincidence that OR is also associative.
Because UNION is associative, we can define an n-adic version:

UNION { ri1, r2, .. }
where UNION { r } = r.
o Also like JOIN, UNION is idempotent: r UNION r = 1.
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o Unlike JOIN, UNION does not have a single identity value. The normal set-theory union
operator does have an identity value, namely, the empty set. But relations have headings and
there is no single heading that can be the heading of a relation that, when unioned with any
relation 7, yields . However, we can note that if re is the empty relation of the same type as
1, then r UNION re = r. For that reason, Tutorial D, for what it’s worth, does allow you to
take the union of no relations at all, so long as you specify the heading of the desired result.
For example:

UNION { x CHAR, y INTEGER, z SID } { }

If the key word UNION is replaced by RELATION, that would yield the same result of course.

Now you may well ask, what is the point of being able to take the union of no relations? Well, experience
shows that it is a mistake in a computer language to legislate against support for empty operands when
the operation in question has a mathematically respectable definition. Sometimes scripts in a desired
language are generated for us by special-purpose software; legislating against something that is definable
but apparently pointless sometimes turns out to be inconvenient for the developers of the generating
software. I know of several cases in SQL, for example, where that kind of concern has arisen. In particular,
standard SQL has no counterparts of TABLE DEE and TABLE DUM, nor does it allow one to express

unions and joins with no operands.

There remains one logical operator that I have not given you a relational counterpart of yet: negation.
We shall see that, as with OR, we have to restrict ourselves to certain special cases involving negation,

and these cases are addressed by a dyadic operator that goes by the strange name semidifference.

410 Semidifference and NOT

Consider the negation of the predicate for IS CALLED: “Student Studentld is NOT called Name.” We
run into the same problem as that one we encountered with disjunction, for its extension includes
instantiations such as “Student S1 is not called Jane”, “Student S97431 is not called Anne”, “Student
S1 is not called Xdfrtghyuz”, and so on, ad infinitum (“almost™). The term unsafe is sometimes used
in connection with predicates such as these, where the corresponding relation is likely to be of such
inordinately high cardinality as to be not computable in practice. It is no coincidence that both negation

and disjunction are unsafe in general: recall that pVq is equivalent to =(-pA-¢).

So, when exactly can we “safely” use negation? Here is one example:

Studentld is called Devinder AND Studentld is NOT enrolled on C1.
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Here we use AND to connect two predicates that have the same parameter—the same restriction as the
one we needed for disjunction. In this case, though, the second is negated. In Tutorial D we can obtain
the relation representing this predicate by using an operator named MINUS, as shown in Example 4.10.
MINUS is a relational counterpart of set difference and is subject to exactly the same restriction as UNION

concerning the types of its operands.

Example 4.10: A legal invocation of MINUS

( IS CALLED WHERE Name = NAME ('Devinder') ) { StudentId }
MINUS
( IS ENROLLED ON WHERE CourseId = CID ('Cl') ) { StudentId }

In general rI MINUS r2 returns the relation whose heading is that of both operands and whose body
consists of those tuples of r1 that do not appear in the body of 2. MINUS was the operator proposed
by Codd for dealing with negation, but it turned out that we can do better than that. In fact, we don't
actually need that restriction on the operand types, if we base the operator on the concept of matching

tuples, as we did with JOIN, instead of basing it on identical tuples in particular.
Consider the predicate

Student Studentld is called Name and Studentld is not enrolled on any course.
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The first conjunct is the predicate for IS CALLED. The second is clearly derivable from the predicate
for IS ENROLLED ON but we should write it a little more formally to see how it is derived:

There does not exist a course Courseld such that student Studentld is enrolled on Courseld.

We can discover whether a given StudentId value satisfies this monadic predicate by looking to see if
there is a tuple with that StudentId value in the current value of IS _ENROLLED ON. That means that
for each tuple in the current value of IS CALLED we can test to see if the student referred to is enrolled
on anything by looking to see if that tuple has a matching tuple in IS ENROLLED_ ON. Instead of
taking the difference between certain projections to satisfy the requirement of MINUS for operands of
the same type, we can take the semidifference between IS CALLED and IS ENROLLED_ON (in that
order). Tutorial D uses the more intuitive name NOT MATCHING for this operator, as illustrated in

Example 4.11.

Example 4.11: Semidifference (students not on any courses)

IS CALLED NOT MATCHING IS ENROLLED ON

Figure 4.12 shows the result of Example 4.11.

Studentld | Name

S5 Boris

Figure 4.12: Result of Example 4.11

Definition of NOT MATCHING

Let s=r1 NOT MATCHING r2
where r1 and r2 are relations such that r7 JOIN r2 is defined.

Then:

The heading of s is the heading of r1.
The body of s consists of each tuple of r1 that has no matching tuple in r2.

Points to note:

o The body of the result is, as with restriction, a subset of that of the first operand. It follows
that if 71 is empty, then so is s.

o IfrI and r2 have no common attributes, then s is equal to rI in the case where 72 is empty
and is otherwise empty (note that tuples having no common attributes are matching tuples
under the definition of that term given in Chapter 4, Section 4.4 JOIN and AND).

o Where rI MINUS r2 is defined, it is equivalent to r1 NOT MATCHING r2. So we can clearly
dispense with MINUS without sacrificing completeness. As an exercise, you might like to
check whether an algebra that, like Codd’s, includes MINUS instead of NOT MATCHING

also does not thereby sacrifice completeness.
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It’s a natural question to ask whether MATCHING is also supported. In fact it is, but because its inclusion
in the language is not essential for relational completeness I defer discussion of it to the next chapter.
In a nutshell, rI MATCHING r2 yields the relation whose body consists of just those tuples of rI that

have at least one matching tuple in r2.

411  Concluding Remarks

I have described the following relational operators:

¢« JOIN

¢ RENAME

e projection

o restriction (WHERE)

¢ EXTEND

¢ UNION

o semidifference (NOT MATCHING)

I have claimed that these meet the criterion for completeness of a relational algebra for computational
purposes. I justify this claim by showing that they include relational counterparts of logical AND, OR,
NOT, and existential quantification, with agreed limitations on OR and NOT in the interests of “safety”.
I have left slightly open the question of whether the chosen set is necessary for completeness, as well as

being sufficient for it. Let me address that point now.

Why do we have three different counterparts of AND? Well, it is true that if our purpose were mathematical
only we could use JOIN for restrictions and extensions too, but that would entail the use of operand
relations representing operators like “<” and “+”, and these tend to be as inordinately large as those that
prohibit us from having unrestricted relational counterparts for disjunction and negation. For consider,
the relation for “<” of integers includes a tuple for every pair <a,b> of integers such that a<b is true,
and the relation for plus includes a tuple for every triple <a,b,c> such that a+b=c is true. Restriction and

extension allow us to use invocations of operators in open expressions.

That said, there is actually one operator in my list that could be dispensed with without sacrificing
completeness—one whose definition I could have given in terms of others in my list. Ileave it as an exercise
for the reader to discover which one that is and write a definition for it using the other operators. In any
case, the inclusion of this superfluous operator—and we do have good reason to include it—reminds us
all that we don’t always want an algebra to be pared to the theoretical minimum in terms of its number
of operators. In propositional logic, for example, the psychological reasons for including both AND and
OR, even though either can be defined in terms of the other along with NOT, are, most would agree,

overwhelming.

I have laid the foundation. In the next chapter I build on that foundation.
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EXERCISES

1.

Recall that r1 TIMES r2 requires r1 and r2 to have no common attributes, in which case it is
equivalent to rI JOIN r2. Why would it be a bad idea to require TIMES to be used in place

of JOIN in such cases?

Given the following relvars:

VAR Cust BASE RELATION {C# CHAR, Discount RATIONAL} KEY {C#};

VAR Orders BASE RELATION {O# CHAR, C# CHAR, Date DATE} KEY {O#};

VAR OrderItem BASE RELATION {O# CHAR, P# CHAR, Qty INTEGER }
KEY {O#, P#};

VAR Product BASE RELATION {P# CHAR, Unit price RATIONAL}
KEY {P#};

The price of an order item can be calculated by the formula:

CAST AS RATIONAL(Qty)*Unit price* (1.0-(Discount/100.0))
Write down a relation expression to yield a relation with attributes O#, P#, and PRICE, giving

the price of each order item.

Given:

VAR Exam Marks BASE RELATION { StudentId SID,
Courseld CID,
Mark INTEGER}
KEY { StudentId, CourseId };

Write down a relational expression to give, for each pair of students sitting the same exam, the
absolute value of the difference between their marks. Assume you can write ABS (x) to obtain

the absolute value of x.

State the value of

a) rNOT MATCHING TABLE DEE

b) rNOT MATCHING TABLE DUM

c¢) rNOT MATCHING r

d) (rNOT MATCHING r)NOT MATCHING r
e) rNOT MATCHING (r NOT MATCHING r)

Is NOT MATCHING associative? Is it commutative?
(Repeated from the body of the chapter) Which operator, in the list given in Section 4.11,

Concluding Remarks, can be dispensed with without sacrificing relational completeness?

How can it be defined in terms of the other operators?
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6. (Repeated from the body of the chapter) Investigate the completeness of an algebra that
includes MINUS in place of NOT MATCHING by attempting to define NOT MATCHING in
terms of MINUS and the other operators.

7. The chapter briefly mentions the operator MATCHING but defers its detailed description to
Chapter 5. Before you read that chapter, define rI MATCHING r2 in terms of the operators
described in Chapter 4.

Working with a Database in Rel

1. Start up Rel.
2. Figure 4.13 shows the supplier-and-parts database from Chris Date’s Introduction to
Database Systems (8th edition), as shown on the inside back cover of that book (except that

the attribute names there are in upper case).

I I I I 1 [ I I 1
" ] | S# | Sname | Status | City | SP | S# | P# | oty | "
I ! i I f=—t— |
| | s1 | smith | 20 | London | | s1 | 21 | 300 | |
| | s2 | Jones | 10 | paris | | s1 | 22 | 200 | |
| | s3 | Blake | 30 | paris | | s1 | 23 | 400 | |
| | s4 | clark | 20 | London | | s1 | 24 | 200 | |
| | s5 | Adams | 30 | Athens | | s1 | 25 | 100 | |
I | | ' | s1 ] ®6 | 100 | |
|| | s2 | »1 | 300 | |
I | T T T T | s2 | p2 | 400 |
" P | P# | Pname | Color | Weight | City | | S3 | P2 | 200 | "
| = | | | || se | ez | 200 | |
| | P1 | Nut | Red | 12.0 | London | | s4 | 24 | 300 | |
" | P2 | Bolt | Green | 17.0 | Paris | | sS4 | P5 | 400 | "
| | P3 | screw | Blue | 17.0 | 0slo | | ' ' )
" | P4 | Screw | Red | 14.0 | London | "
" | P5 | Cam | Blue | 12.0 | Paris | "
" | P6 | Cog | Red | 19.0 | London | "
L ] ] | ] |

Figure 4.13: The suppliers-and-parts database

Execute a Tutorial D VAR statement for each of S, P and SP. Use INTEGER as the declared
type for STATUS and QTY, RATIONAL for WEIGHT, and CHAR for all the other attributes.
Feel free to use lower case or mixed case to suit your own taste for attribute and relvar names,

but do not otherwise change any of the given names.
Tutorial D requiresatleast one key constraint tobe specified for each relvar. Onekeyforeachfor S,

Pand SPisshownbyunderliningtherelevantattributenamesin thetable. No otherkeyconstraints

are needed.
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“Populate” (as they say) each relvar with the values shown in Date’s tables. There are several

ways of achieving this. Choose whichever you prefer from the following:

a) Include an INIT ( ... ) specification in the VAR statement, after the heading
and before the KEY specification. Inside the parens, write a RELATION { ... }
expression, using a TUPLE expression for each required tuple, as in the enrolment literal
used in the Rel exercises for Chapter 2.

b) Execute the VAR statement without an INIT ( ... ) specification. The implied
initial value is the empty relation of the appropriate type. You can see this by asking Rel
for the current value of the relvar. For example, to get the current value of S, just type S
into the lower pane and click Run (F5).

Now use an assignment statement of the form
varname := relation-expression

to populate the relvar. Check that Rel has indeed assigned the correct value to it.

¢) Use Rel INSERT statements to populate the relvar piecemeal, perhaps one tuple at
a time. Having typed in the first INSERT statement. Here is the general form of an
INSERT statement to insert a single tuple:
INSERT varname RELATION { TUPLE { ... } }
Note that the source operand is still a relation, not just a tuple, hence the need to enclose

the TUPLE expression inside RELATION { }.

3. Informally, we refer to S as suppliers, P as parts and SP as shipments. Predicates for these
relvars are:
S: Supplier $# is named Sname, has status Status and is located in city City.
P: Part P# is named Pname, is coloured Color, weighs Weight and is located in city City.
SP: Supplier S# ships part P# in quantities of Qty.
What, then, is the predicate for the expression S JOIN SP JOIN P? What do you expect
to be the result of that expression? What is its degree? Does Rel give the result you expected?
Explain what you see.

4. Attempt to insert a tuple into SP with supplier number S1, part number P1 and quantity
100. Explain the result of your attempt.

5. Get Rel to evaluate each of the following expressions. For each one, write down the
corresponding predicate and also give an informal interpretation of the query in the style of

those given in Exercise 6 below.

a) SP WHERE P# = 'P2'

b) S { ALL BUT Status }

c) SP { S#, Oty }

d) P NOT MATCHING ( SP WHERE S# = 'S2' )
e) S MATCHING ( SP WHERE P# = 'P2' )
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f) s { City } UNION P { City }

g) S { City } MINUS P { City }

h) ( ( S RENAME { City AS SC } ) { SC } ) JOIN
( ( P RENAME { City AS PC } ) { PC } )

6. Write Tutorial D expressions for the following queries and get Rel to evaluate them:
a) Get all shipments.
b) Get supplier numbers for suppliers who supply part P1.
c) Get suppliers with status in the range 15 to 25 inclusive.
d) Get part numbers for parts supplied by a supplier in Paris.
e) Get part numbers for parts not supplied by any supplier in Paris.
f) Get city names for cities in which at least two suppliers are located.
g) Get all pairs of part numbers such that some supplier supplies both of the indicated parts.
h) Get supplier numbers for suppliers with a status lower than that of supplier SI.
i) Get supplier-number/part-number pairs such that the indicated supplier does not

supply the indicated part.
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5 Building on The Foundation

5.1 Introduction

The relational operators described in Chapter 4 constitute a relationally complete set; but for practical
purposes we need more. This chapter describes additional operators, defined for Tutorial D, which have

been suggested as desirable by various people over the years. The additional relational operators are all

defined in terms of those defined in Chapter 4.

The relvars IS CALLED and IS _ENROLLED ON have been sufficient for illustrative purposes so far

but now we need to extend our example database slightly, as shown in Figure 5.1.

COURSE
Courseld Title
C1 Database
C2 HCl
c3 Op systems
(@ Programming
EXAM_MARK
Studentld | Courseld Mark
S1 1 85
S1 2 49
S2 Ci1 49
S3 a 66
S4 C1 93

Figure 5.1: Current values of relvars COURSE and EXAM_MARK

The predicate for COURSE is “Course Courseld is entitled Title.” The predicate for EXAM MARK is “Student

Studentld sat the exam for course Courseld and scored Mark marks for that exam.” The Tutorial D

definitions for these relvars are

VAR COURSE BASE RELATION ({

VAR EXAM MARK BASE RELATION

KEY

KEY

{

{

CourseId CID, Title CHAR }

Courseld };

{ StudentId SID, CourseId CID,
Mark INTEGER }

StudentIld,

CourselId };
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We start with a couple of simple operators, based on ones already described in Chapter 4, that provide
convenient shorthands (so called because what they express can be expressed more laboriously, and

perhaps less clearly, without the use of the additional relational operators).

5.2 Semijoin and Composition

Consider the predicate, “At least one student sat the exam for Course Courseld, entitled Title’—more
precisely: “There exist a student StudentId and a mark Mark such that StudentId sat the exam and scored

Mark marks for course Courseld and Courseld is entitled Title”

The relation currently representing this predicate can be derived from the join of COURSE and
EXAM MARK by “projecting away” the attributes corresponding to those quantified parameters,
Studentld and Mark:

( COURSE JOIN EXAM MARK ) { ALL BUT StudentId, Mark }
or, equivalently,
COURSE JOIN ( EXAM_MARK { ALL BUT StudentId, Mark } )

In either case the JOIN is indicated for us by the “and” in the expanded version of the predicate and
the projection is indicated by the quantification. However, looking at the short form of the predicate we
may more intuitively think of its relation as consisting of just those tuples of COURSE that have at least
one matching tuple in EXAM MARK. Now we may recall from Chapter 4 that we can find all the tuples
of COURSE that do not have a matching tuple in EXAM MARK by using semidifference:

COURSE NOT MATCHING EXAM MARK
and I indicated briefly that Tutorial D also allows you to omit the word NOT, with the obvious effect:
COURSE MATCHING EXAM MARK

MATCHING, without the NOT, is Tutorial D’s operator name for semijoin, so called because a semijoin
can be perceived, very loosely, as being “half a join”. We join two relations but in the result retain only
the attributes of the first operand (by excluding the non-common attributes of the second). That result
is shown in Figure 5.2. It contains every tuple of COURSE apart from the tuple for course C4, whose

exam no student sat.

Courseld Title

@ Database
2 HCI

a Op systems

Figure 5.2: COURSE MATCHING EXAM_MARK
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Now, perhaps, you can see why somebody once chose “semidiftference” for the operator of that name,
even though it can hardly be characterized as “half a difference”: the name “semijoin” had already entered

the jargon. (No, there isn’t a semiunion!)

Definition of MATCHING

r1 MATCHING r2, where r1 and r2 are relations such that r7 JOIN r2 is defined, is equivalent to
(r1JOIN r2){ri-attrs}
where ri-attrs is a commalist containing all and only the attribute names of r1.

Points to note (compare with those given for NOT MATCHING in Chapter 4):

o Recall that JOIN is not defined for all pairs of relations. If rI and r2 have attributes of the
same name but different types, then 71 JOIN r2 is not defined. A similar proviso applies to
MATCHING and several other dyadic operators.

o The body of the result is, as with restriction, a subset of that of the first operand. It follows
that if 71 is empty, then so is the result.

o IfrI and r2 have no common attributes, then the result is empty in the case where r2 is
empty and is otherwise equal to rI (recall that tuples having no common attributes are
considered to be matching tuples).

o As the definition shows, semijoin is not needed as a primitive operator. As explained in
Chapter 4, we could have chosen difference in place of semidifference as our primitive
operator to support logical negation, but we preferred semidifference for its more general
availability. Had we chosen difference instead, then our descriptions of NOT MATCHING
and MATCHING could have appeared, neatly, side by side in the present chapter.

There is another operator, advocated by some people as being useful enough to warrant its inclusion,

that is based, like semijoin, on JOIN and projection. It is called composition.

Consider the predicate “Student Studentld scored Mark marks in the exam for a course entitled Title”
The corresponding relation must have attributes StudentId, Mark, and Tit1le. The first two would

clearly be derived from EXAM MARK, the third from COURSE.

Notice the indefinite article in that predicate: “a course”, not “the course”. Here we can replace the word
“a” by “some” without changing our meaning at all, indicating that existential quantification is lurking
under the covers, so to speak, in our informal predicate. We can bring that quantification out into the
open, as I did with the example I used for semijoin: “There exists a course Courseld such that Courseld

is entitled Title and student Studentld sat the exam for Courseld, scoring Mark marks”
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The relation representing this predicate can be derived from the join of COURSE and EXAM MARK by

“projecting away” Courseld (which happens to be the only common attribute):

( COURSE JOIN EXAM MARK )

{ ALL BUT CourseId }

Composition gives us a shorthand that saves us from having to write that projection when its purpose

is to exclude all and only the common attributes of the two operand relations. In Tutorial D, therefore,

we can achieve the same effect more conveniently by

COURSE COMPOSE EXAM MARK

The result is shown in Figure 5.3.

Title Studentld Mark
Database S1 85
HCI S1 49
Op systems S1 85
Database S2 49
Op Systems S3 66
Database S4 93

Figure 5.3: COURSE COMPOSE EXAM_MARK
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Definition of COMPOSE

r1 COMPOSE r2, where r1 and r2 are relations such that r7 JOIN r2 is defined, is equivalent to
(r7 JOINr2){ALL BUT common-attrs}

where common-attrs is a commalist containing all and only the names of the attributes common
torl andr2.

Points to note:

o rl COMPOSE r2is clearly equivalent to r1 JOIN r2 in the case where rI and r2 have no
common attributes.

o The case where rI and 2 have identical headings is worth looking at. I invite the reader to
study that case and find out what happens.

o Like JOIN, COMPOSE is commutative—that’s clear, but is it also associative? Again, I leave
that question as an exercise for the reader—can you find an example where (r1 COMPOSE
r2) COMPOSE r3 does not yield the same result as rI COMPOSE (2 COMPOSE r3)?

In case you are wondering if COMPOSE really is useful enough to be worth including in a computer
language, and therefore to be worthy of inclusion in textbooks like this one, an important part of the
motivation for its inclusion in Tutorial D was a desire to illustrate the extensibility of a well-designed
language. Adding new operators increases a language’s complexity, to be sure, but that added complexity
can be compensated for if the new operators are not only useful but can be easily defined and taught in

terms of what the user already knows.

The term composition as used here comes from mathematics, where it is used of functions. The explanation

is not important for our purposes but I give it here for those that may be interested.

A function is a special kind of binary relation, usually described as a mapping that connects each
element of a set, known as the domain of the function, to exactly one element of another set (possibly
the same set), known as the range of the function. Our relvar COURSE is in fact a function—or rather,
its value at any point in time is a function—mapping each element of a certain set of course identifiers
to exactly one element of a certain set of titles. Similarly, EXAM MARK maps each element of a certain
set of <student identifier, course identifier> pairs to exactly one element of a certain set of marks out
of 100. EXAM MARK also maps <student identifier, mark> pairs to course identifiers, but that mapping
is not a function because it is possible for the same <student identifier, mark> pair to be connected to

several distinct course identifiers, the pair <S1, 85> being a case in point.
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In mathematics, the composition of two functions f and g is defined in the case where the range of
g is the domain of f. Thus, if g(x) denotes the element of g’s range to which its domain element x is
connected, then f(g(x)) denotes the element of f’s range to which the element g(x) (of f’s domain) maps.
The composition of f and g is thus a function whose domain is the domain of g and whose range is a
subset of the range of f. The set that is the range of ¢ and the domain of fin a sense “disappears” in the

process of deriving the composition from the two participating functions.

Well, just as a function is a special kind of relation, we can regard composition of functions as a special
case of composition of relations. In COURSE COMPOSE EXAM MARK we map <student identifier,
mark> pairs to course titles via their mapping to course identifiers, losing those course identifiers in the

process. (But note that the mapping here is many-to-many, not, as in functions, many-to-one.)

Notice, by the way, that if two courses happened to have the same title, and a student who sat the exam
for both of those courses scored the same mark in each case, then that fact would be represented by
just one tuple in the result of COURSE COMPOSE EXAM MARK. We cannot safely deduce from that
result the total number of exams taken by students, unless course titles are unique as well as course
identifiers—unless, that is, COURSE represents a function mapping titles to identifiers as well as one
mapping identifiers to functions. It seems that care needs to be taken over cases of relation composition

that do not in fact represent function composition—one might easily misinterpret the result.
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Next, we look at a group of operators that, when invoked, operate on relations but do not return
relations: aggregate operators. With these added to our “tool box” we can then proceed to define

further useful shorthands.

53 Aggregate Operators

An aggregate operator is one defined to operate on a relation and return a value obtained by aggregation
over all the tuples of the operand. For example, simply to count the tuples in the body of EXAM MARK
(i.e., obtain its cardinality) we can invoke the aggregate operator COUNT, as shown in Example 5.1.

Example 5.1: Counting the tuples in EXAM_MARK

COUNT ( EXAM MARK )
According to Figure 5.1, the result of COUNT ( EXAM MARK ) is 6. The argument to an invocation of
COUNT is a relation and so in Tutorial D can be denoted by any legal relational expression. Example 5.2
gives the number of students who have scored more than 50 in at least one exam.

Example 5.2: Using relational operators with COUNT

COUNT ( ( EXAM MARK WHERE Mark > 50 ) {StudentId} )

Note the projection over StudentId. Without that, the expression would yield the (possibly higher)

number of students’ exam scripts scoring more than 50.
Now take a look at Example 5.3.

Example 5.3: Aggregate operator SUM

SUM ( EXAM MARK WHERE StudentId = SID ( 'S1' ), Mark )

Note the second operand, Mark, being the name of an attribute of the relation denoted by the first
operand. Each tuple of the first operand provides a value for this attribute and the result of the invocation
is the sum of those values. The result in this example is 219, the sum of the scores obtained by student

S1. Note that both appearances of the score 85 in S1’s marks are counted.

Example 5.4: MAX and MIN

MAX ( EXAM MARK WHERE StudentId
MIN ( EXAM MARK WHERE StudentId

SID ( 'sSl' ), Mark )
SID ( 'Sl1l' ), Mark )
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Two more aggregate operators are illustrated in Example 5.4. MAX returns the highest value found for

the specified attribute in the given relation and MIN returns the lowest.

Points to note:

Some aggregations can be thought of in terms of repeated invocation of some dyadic
operator, which I shall call the basis operator. In the case of SUM, for example, the basis
operator is addition. Because addition is commutative and associative, we could define an
n-adic form of the operator, just as we did in Chapter 4 for operators such as JOIN and
UNION. If we call this operator ADD, then we would have, for example, ADD (1,4,1,5)
= ((1+4)+1)+5. But those operands, 1, 4, 1, and 5, can be given in any order (thanks,
in this case, to the commutativity and associativity of +), and that lack of any significance
to the ordering is what allows us to define aggregate operators for relations. The lack of

an ordering to the tuples of a relation militates against defining aggregate operators whose
results vary according to the order in which the operands are presented. Consider string
concatenation, for example. We can concatenate any number of strings together to form a
single string, but the result depends on the order in which the input strings are presented.
The basis operators for MAX and MIN might reasonably be called HIGHER and LOWER,
respectively, where HIGHER (x,y) returns x unless y>x, in which case it returns y, and
LOWER (x,y) returns x unless y<x, in which case it returns y. You can confirm for yourself
that HIGHER and LOWER are commutative and associative.

If the relation operand is empty, then the result of aggregation can be defined only if the
basis operator has an identity value, defined thus: if a value i exists such that whenever i is
one of the operands of a dyadic operator the result of invoking that operator is the other
operand, then i is said to be an identity value under that operator. In the case of SUM, the
basis operator is addition, whose identity value is zero. In the cases of MAX and MIN, the
type of the result is the type of the attribute given as the second operand. The identity value
of the basis operator depends on that type. If the type has a defined least value, min, such
that min>v is FALSE for all values v of that type, then min is the identity under HIGHER. If
a least value is not defined, then there is no identity value under HIGHER, and MAX of the
empty relation is undefined for attributes of that type. Similarly, MIN (ra) is defined only
when a greatest value is defined for the type of attribute a.

The examples shown use a simple attribute name as the second operand, and Version 1 of
Tutorial D in fact requires that operand to be a simple attribute name. In general, however,
the second operand in invocations of SUM, MAX, and MIN should be allowed to be any
expression of an appropriate type (obviously a numeric type in the case of SUM). Version 2
of Tutorial D does indeed allow this.
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o The simple attribute names used in my examples are cases of open expressions, as defined
in Chapter 4, Section 4.7. As in other places where open expressions are permitted, closed
expressions are also permitted—allowing us to sagely observe, for example, that SUM (1,1) is

equivalent to COUNT (r).

Several other aggregate operators are defined in Tutorial D. Here are some that we can now deal

with summarily:

AVG ( 1, x ) is equivalent to SUM (7, x ) / COUNT ( r ) and is therefore undefined in the case

where r is empty. As an exercise, the reader might like to consider whether there can be a basis

operator for AVG.
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AND (1, ¢)and OR (1, ¢ ), where ¢ (a condition) is of type BOOLEAN, are named after their basis
operators—recall that logical AND and OR are commutative and associative, with identity values
TRUE and FALSE, respectively. Thus, aggregate AND returns TRUE if and only if ¢ evaluates to
TRUE for every tuple of r; and aggregate OR returns TRUE if and only if ¢ evaluates to TRUE
for some tuple of . In some languages the names ALL and SOME (or ANY) are used in place
of AND and OR. (Indeed, Rel allows ALL and ANY to be used as synonyms for AND and OR.)
Some people find it counterintuitive that aggregate AND on an empty relation returns TRUE
but this is of course a logical necessity: to say that ¢ is TRUE for every tuple in r is the same

as saying there does not exist a tuple in r for which ¢ is FALSE.

Now, suppose we want to find out how many students sat each exam. Do we have to go to the lengths
illustrated in Example 5.5? I have used Rel’s explicit OUTPUT statements in that example to emphasise
that it involves four distinct queries, one for each course. That would be very tiresome if we had a very

large number of courses to consider, impossible if we didn’t even know all the course ids.

Example 5.5: Number of students who sat each exam

OUTPUT COUNT ( EXAM MARK WHERE CourseId = CID ( 'Cl' ) );
OUTPUT COUNT ( EXAM MARK WHERE CourseId = CID ( 'C2' ) );
OUTPUT COUNT ( EXAM MARK WHERE CourselId = CID ( 'C3' ) );
OUTPUT COUNT ( EXAM MARK WHERE CourseId = CID ( 'C4' ) );

Shouldn’t we be able to use just a single query to obtain the desired result, which is shown in Figure 5.4?
After all, I have claimed that the operators described in Chapter 4 make Tutorial D relationally complete,
so we should, if we support counting at all, be able to obtain the relation representing the predicate, “n

students sat the exam for course Courseld’.

Courseld n
1 3
2 1
(@] 1
C4 0

Figure 5.4: How many sat each exam

The answer is that we can indeed obtain that relation using a single query and the next section starts

to show you the way.
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54 Relations within a Relation

Have a look at Figure 5.5. The figure itself is a two-column table, with a two-column table appearing
in every cell of its second column {“second” because columns of tables do necessarily appear in some
order, unlike attributes of relations}. The table depicts a relation—let’s call it C ER—whose attribute
named ExamResult is of a certain relation type, namely, RELATION { StudentId SID, Mark
INTEGER }.

Courseld ExamResult
C1
Studentld | Mark
S1 85
S2 49
S4 93
C2
Studentld | Mark
S1 49
C3
Studentld | Mark
S3 66
C4

Studentld | Mark

Figure 5.5: Relations within a relation

Perhaps you have already noticed that the information represented by the table in Figure 5.5 is exactly the
same as that represented by the tables in Figure 5.1, but in a different form. That being the case, we should
be able to use relational operators to derive the relation C_ER from the current values of COURSE and

EXAM MARK. In fact it can be done using operators I have already described, as shown in Example 5.6.

Example 5.6: Obtaining C_ER from COURSE and EXAM_MARK

EXTEND COURSE{CourseId}
{ ExamResult := RELATION { TUPLE { CourseId CourseId } }
COMPOSE EXZ—\M_MARK }

Download free eBooks at bookboon.com



Explanation 5.6

o The open expression on which the attribute ExamResult is defined denotes a relation, so
the declared type of ExamResult is a relation type.

o TUPLE { Courseld CourseId } isan open expression, evaluated for each tuple
in turn of the relation denoted by COURSE { CourseId}. It denotes the tuple of degree
1 the value of whose only attribute, CourseId, is the value of the attribute of that name
in the current tuple of COURSE { CourseId}. In case you are puzzled by the consecutive
appearances of CourseId, recall that each component of a TUPLE expression is an
attribute name followed by an expression denoting the value for that attribute.

« RELATION { TUPLE { CourseId CourseId } } denotes the relation whose
body consists of just that tuple.

e RELATION { TUPLE { CourselId CourselId } } COMPOSE EXAM MARK
denotes the relation whose body consists of projections over StudentId and Mark of
the tuples of EXAM MARK that match TUPLE { CourseId CourseId }. Recall
that r1 COMPOSE r2 denotes the join of 71 and 2 projected over all but the common
attributes—here there is a single common attribute, CourseId.

o The value for the attribute ExamResult in the tuple for a given CourseId value ci,
considering the method by which it is derived, is referred to as the image relation within the
relation EXAM MARK for the tuple TUPLE { CourseId ci }.In general, iftis a tuple

and r is a relation, the image relation (or just image) of ¢ in r is given by
RELATION { ¢t } COMPOSE r

The values for attribute ExamResult in C_ER have sometimes been referred to informally as nested
relations, being “relations within a relation’, so to speak. Because those attribute values are relations, we
can use aggregate operators on them. With that hint you should now be able to see how to obtain the

result shown in Figure 5.4—how many students sat each exam.

5.5 Using Aggregate Operators with Nested Relations

Example 5.7 uses the aggregate operator COUNT on the relation values for attribute ExamResult to

obtain the number of students who sat each exam.

Example 5.7: How many students sat each exam

WITH (
EXTEND COURSE{CourseId}
{ ExamResult := RELATION { TUPLE { Courseld CourseId } }
COMPOSE EXAM MARK }
AS C ER )
EXTEND C ER : { n := COUNT ( ExamResult ) }

{ ALL BUT ExamResult }
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To avoid an indigestible surfeit of parentheses we use WITH to define the name C_ER I have been using
in the text. Then we use extension to obtain the student counts as values for attribute n, followed by
projection to eliminate the nested relations we no longer need. Similarly, we could obtain the total marks
for each exam by including an extend addition such as TotalMarks := SUM(ExamResult,
Mark), but if we need the average mark for each exam we will have to avoid zero-divides by excluding
those which no students sat. We can do that by homing in on just those CourseId values that appear in

EXAM MARK, as shown in Example 5.8, the significant difference from Example 5.7 being shown in bold.

Example 5.8: Average mark per exam

WITH
( C ER2 :=
EXTEND EXAM MARK{CourseId}
{ ExamResult := RELATION { TUPLE { CourseId CourseId } }

COMPOSE EXAM MARK } )
EXTEND C _ERZ
{ AvgMark := AVG(ExamResult, Mark) }
{ ALL BUT ExamResult }

ant to do”?
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Now, the expressions in Examples 5.7 and 5.8 are somewhat cumbersome and have much in common.
They both use composition within extension to operate in a join-like fashion on two relations to produce
a relation with a relation-valued attribute, ExamResult; and they both use extension on that relation
to obtain results of aggregation on the nested relations, followed by projection to eliminate those nested
relations. This commonality is captured in the definition of an operator named SUMMARI ZE, providing

useful shorthands for expressions such as the ones in Examples 5.7 and 5.8.

5.6 SUMMARIZE

Example 5.9 uses SUMMARIZE to give the same result as Example 5.7.

Example 5.9: How many students sat each exam, using SUMMARIZE

SUMMARIZE EXAM MARK PER ( COURSE { Courseld } )
{ n := COUNT ( ) }

Explanation 5.9

+ EXAM MARK PER ( COURSE { CourseId } ) effectively gives C ER but without
specifying the attribute name for the attribute whose values are the nested relations. The
missing attribute name doesn’t matter because this intermediate result is never seen by a user.

o« COUNT ( ) representsan invocation of the aggregate operator COUNT, where the
relation operand is implied—for each tuple of the PER relation (viz., Course projected
over CourseId), it is the relation obtained as a value for ExamResult in Example 5.7.

e n := COUNT ( ) isasummarize addition, similar to an extend addition except
that the expression on the right-hand side of := must be one that entails aggregation, thus
obtaining a single attribute value from the implied relation operand. Tutorial D allows a

o commalist of summarize additions to be specified.

o As usual, that commalist is permitted to be empty. If { } had been specified instead

of { n := COUNT ( ) 1}, then the expression would have been equivalent to just
COURSE { CourseId }.
e SUMMARIZE .. : { n :=COUNT ( ) } extends the result of EXAM MARK

PER ( COURSE { CourseId } ) asin Example 5.7. The fact that the nested
relations do not appear as values for an attribute obviates the need for projection to exclude
that attribute.

« In this example EXAM MARK is the SUMMARIZE operand; COURSE { CourseId } is
the PER relation.

The expression COUNT ( ) (a kind of open expression) is called a summary. If we had wanted the
total mark for each exam we would use the summary SUM ( mark )—again, the relation operand of
the aggregate operator of the same name is omitted. Summaries are permitted only within invocations
of SUMMARIZE, as shown.
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In Tutorial D SUMMARI ZE comes in two varieties. The variety used in Example 5.9 is called SUMMARI ZE
PER.

Definition of SUMMARIZE PER

SUMMARIZE r1 PER(r2): { al :=suml, ..., an :=sumn }, where:

- rland r2 are relations such that r7 JOIN r2 is defined,
al, ..., an are attribute names not used in the heading of r7, and
suml, ..., sumn are summaries

is equivalent to

EXTEND r2:{ al := xsuml, ..., an := xsumn }

where each of xsum1, ..., xsumn is an aggregate operator invocation such that:

its relation operand is given by
(RELATION{ TUPLE {b1b1,...,bmbm}} COMPOSE r1},
where b7, ..., bm are the attributes of r2

the aggregate operator and the remaining operands, if any, are as specified in the

corresponding summaries sumi, ..., sumn.
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We can also use SUMMARIZE PER to obtain the result of Example 5.8, the average mark for each
exam, as shown in Example 5.10. As in Example 5.8, we must restrict ourselves to the CourseId values

appearing in EXAM MARK.

Example 5.10: Average mark for each exam, using SUMMARIZE ... PER ...

SUMMARIZE EXAM MARK PER ( EXAM MARK { CourseId } )
{ AvgMark := AVG ( mark ) }

Here the relation being summarized is the same as the relation providing the PER values. That is very
commonly the case in practice, sufficiently so to perhaps warrant a further shorthand, and Tutorial D

does in fact provide one in the form of SUMMARIZE ... BY ..., as illustrated in Example 5.11.

Example 5.11: Average mark for each exam, using SUMMARIZE ... BY ...

SUMMARIZE EXAM MARK BY { CourselId }
{ AvgMark := AVG ( mark ) }

In case the shorthands offered by SUMMARIZE .. BY .. hardly seem worth the addition to the
language, consider that the SUMMARIZE operand can be a relation expression of any complexity. To be
sure, writing it out twice is not much of a problem these days, thanks to copy-and-paste, but reading
it twice and noticing the special case might be rather burdensome, both for human and computer (for
Example 5.10 is likely to take significantly longer than Example 5.11 to compute unless the DBMS can
notice that the PER operand in 5.10 is a projection of the SUMMARI ZE operand).

Definition of SUMMARIZE .. BY

SUMMARIZE r1BY { bl,...,bm } :{al:=suml,...,an:=sumn}
where r1 is a relation and b7, ..., bm are names of attributes of r1, is equivalent to
SUMMARIZE rl PER ( r1 { bl,...,bm } )
{ al:=suml,...,an:=sumn}

There remain just two more relational operators defined in Tutorial D. They both deal with nested
relations and they come as a pair, GROUP and UNGROUP.

57 GROUP and UNGROUP

Example 5.8 includes the following expression, yielding an intermediate result named C_ER2:
EXTEND EXAM MARK{CourseId}:

{ ExamResult := RELATION { TUPLE { CourseId CourselId } }
COMPOSE EXAM MARK }
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Figure 5.6 shows the result. It differs from the C_ER of Figure 5.5 only in the absence of a tuple for

course C4, whose exam nobody sat.

Courseld ExamResult
C1
Studentld | Mark
S1 85
S2 49
S4 93
C2
Studentld | Mark
S1 49
C3

Studentld | Mark

S3 66

Figure 5.6: Intermediate result C_ER2 from Example 5.8

Tutorial D has a shorthand for the expression producing the relation shown in Figure 5.6. This shorthand

uses a relational operator named GROUP and is illustrated in Example 5.12.

Example 5.12: Use of GROUP

EXAM MARK GROUP { StudentId, Mark } AS ExamResult

Loosely speaking, Example 5.12 “groups” the StudentId/Mark combinations for each CourseId
value, the result being a relation that becomes the value of the attribute ExamResult in the tuple for
that CourseId value replacing the now redundant attributes StudentId and Mark. Somewhat less
loosely, Example 5.12 pairs each CourseId value appearing in EXAM MARK with its image relation in
EXAM MARK.(That is still a little loose, however. Recall that in general we speak of the image relation of
a given tuple, not a given attribute value, in a given relation. Strictly speaking, then, for each CourseId
value appearing in EXAM MARK we take the tuple f consisting of just that attribute value and extend ¢
with its image relation in EXAM MARK.)

The specification { StudentId, Mark } AS ExamResult is called a grouping.
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Notice that Example 5.12, using GROUP, mentions EXAM MARK only once, whereas Example 5.8
mentions it twice. Notice also that the first step in Example 5.8 is a projection of EXAM MARK over
{CourseId}. That projection is implied in Example 5.12, CourseId being the only attribute of
EXAM MARK that is not mentioned in the grouping for ExamResult.

Now, recall that in Tutorial D, wherever a commalist of attribute names is required, as in projection for
example, that commalist can be preceded by the key words ALL BUT to indicate the attributes of the
operand relation that are not to appear in the result. The following expression is therefore equivalent to
Example 5.12:

EXAM MARK GROUP { ALL BUT CourselId } AS ExamResult

In case you are at all familiar with SQL I should now draw your attention to the fact that SQL has a
counterpart of the ALL BUT method of specifying a grouping. This is its GROUP BY clause. In SQL,
Example 5.12 would be expressed as

FROM EXAM MARK GROUP BY Courseld
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but this is only a fragment and cannot appear as a complete expression. The complete expression in
which the fragment appears cannot refer to the presumed column containing the nested tables because,
as you can see, that column has no name. However, SQL does allow you to operate on those nested tables
by aggregation, using constructs similar to those used for that purpose in invocations of Tutorial D’s

SUMMARIZE operator.

Definition of GROUP

rGROUP { al } ASg, where:

ris a relation such that the projection r { al } is defined, and
g is an attribute name not appearing in the heading of r { ALL BUT al}

is equivalent to
( EXTEND r : { g := RELATION { ¢t } COMPOSE r } )
{ ALL BUTal}

where t = TUPLE { al al, ..., an an }, where al, ..., an are the attributes of r { al }.

The inverse operator of GROUP is UNGROUP. Example 5.13 shows how to get back (so to speak) to
EXAM MARK, given C_ER2 as the relation depicted in Figure 5.6.

Example 5.13: Use of UNGROUP

C _ERZ UNGROUP ExamResult

As you can see from Figures 5.4 and 5.1, ungrouping C_ER on ExamResult effectively replaces that
attribute by its own attributes, Student Id and Mark, the tuples of the result being obtained from each

tuple of C_ER2 by joining its CourseId value with each tuple in turn of the ExamResult value.

In Example 5.13, the cardinality of the result is equal to the sum of the cardinalities of the ExamResult
relations. A similar observation applies if we replace the operand C_ER2 by the relation C_ER shown
in Figure 5.5, because the extra tuple for course C4 contributes no tuples to the ungrouping result.
Exercise for the reader: Is it always the case that the cardinality of an ungrouping is equal to the sum of

the cardinalities of the relations the operand relation is being ungrouped on?
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Definition of UNGROUP

The definition of UNGROUP uses an aggregate operator, UNION, that is not mentioned in Section 5.3
because its second operand is required to be a relation typed attribute. Recall from that chapter that
UNION is commutative and associative, allowing us to defined the n-adic version, UNION { rl, ..., rn }.
The existence of that n-adic version allows us to define a corresponding aggregate operator. In UNION

( 1, x ) the second operand, whose declared type must be a relation type, provides the relations 71, ...

rn for an equivalent invocation of the n-adic operator. Here, then, is the definition of UNGROUP:

As with GROUP, Version 1 of Tutorial D allows the second operand to be a commalist, thus allowing

more than one relation-valued attribute to be specified in a single invocation. Version 2 allows just a

r UNGROUP g, where:

ris a relation, a is an attribute of r, and the declared type ta of a is a relation type
no attribute of ta has an attribute name used in the heading of r, except perhaps a itself.

is equivalent to
UNION ( EXTEND r : { x := RELATION { t } TIMES a },
X )

where x is an attribute name arbitrarily chosen and t = TUPLE {b1b],...,bnbn}, where b1, ..., bn
are the attributes of {ALL BUT a}.

single attribute and you are advised against using more than one attribute with Version 1.

Points to note:

The invocation of TIMES used in the extend addition effectively extends the (relation) value

of a in each tuple of r with the other attribute values of the same tuple. The resulting relation

is the value of the attribute x by which that tuple of r is extended.
The aggregate union of all the x values is the result of the invocation of UNGROUP.
Although UNGROUP is the inverse operator for GROUP, GROUP is not the inverse of

UNGROUP. In other words, although r = (r GROUP { al } AS g ) UNGROUP g in general, it is
not necessarily the case that s = (s UNGROUP g ) GROUP { al } AS g, where al specifies the

attributes of the relation-valued attribute g. Some tuples in s might have an empty relation as
the value for g, whereas an invocation of GROUP can never give rise to such empty relations.

Also, several distinct tuples might appear in s that differ only in their g values, in which case

those tuples will be “condensed” into a single tuple in the grouping.
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5.8 WRAP and UNWRAP

It is occasionally convenient to be able to collect together certain attribute values in each tuple of a
relation to form a single attribute value that is itself a tuple, replacing the collected values. Example 5.14
shows how this effect can be achieved, laboriously, using EXTEND and projection on a relvar named
CONTACT INFO.

Example 5.14: Collecting attribute values together

CONTACT INFO WRAP { House, Street, City, Zip } AS Address
Assuming that is assigned to a relvar CONTACT INFO WRAPPED:
CONTACT INFO WRAPPED UNWRAP Address

The repetitions of the attribute names involved suggest a shorthand for this purpose and in Tutorial D it
appears as the relational operator WRAP, which is accompanied in the language by its inverse, UNWRAP.
In Example 5.15 WRAP is used to collect together the components of people’s postal addresses to form
the tuple-valued attribute Address, and UNWRAP is used to reverse the process.

Example 5.15: Use of WRAP and UNWRAP

CONTACT INFO WRAP { House, Street, City, Zip } AS Address
Assuming that is assigned to a relvar CONTACT INFO WRAPPED:
CONTACT INFO WRAPPED UNWRAP ( Address )
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Definitions of WRAP and UNWRAP

r WRAP { al } AS w, where:

is equivalent to

where t = TUPLE { bl bl, ..., bn bn }, where b1, ..., bn are the attributes of r { al }.

r UNWRAP a, where:

is equivalent to

where b1, ..., bn are the attributes of ta.

ris a relation such that the projection r { al } is defined, and

w is an attribute name not used in the heading of r

EXTEND r : { w := ¢t } ) { ALL BUTal}

ris a relation, a is an attribute of r, and the declared type ta of a is a tuple type
no attribute of ta has an attribute name used in the heading of r, except perhaps a itself.

( EXTEND r : { bl :=blFROMg, ..., bl :=bn FROMa } )
{ ALL BUT a }

An expression of the form a FROM ¢1 is called attribute extraction, defined in Section 5.10. It denotes

the value of attribute a of tuple ¢1.

You have now met nearly all of the relational operators of Tutorial D Version 1 (there are a couple more

that have been deliberately omitted as beyond the scope of an introduction to the subject). Here they

are again, in categories monadic, dyadic, and n-adic according to their number of relation operands.

Monadic:

Dyadic:

n-adic:

RENAME, projection, WHERE (restriction), EXTEND, SUMMARIZE ... BY, GROUP,
UNGROUP, WRAP, UNWRAP

JOIN, UNION, INTERSECT, NOT MATCHING (semidifference), MINUS (difference),
MATCHING (semijoin), COMPOSE, SUMMARIZE ... PER

JOIN{ ... }, UNION { ... }, INTERSECT { ... }

There remain to be described various non-relational operators that involve tuples or relations and are

defined in Tutorial D, being deemed useful additional ingredients of a relational database language.
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5.9 Relation Comparison

The operators described in this section are especially useful for defining database constraints, as described

in Chapter 6, but they can be useful in queries too.

You are familiar with comparisons: dyadic, truth-valued or Boolean operators whose operands are of the
same type. For example, comparisons of the form x = y, where x and y are expressions of the same type,
are available for all types in Tutorial D, as you would surely expect. However, some computer languages

do not support “=” for all the types they recognize, and some do not support it correctly!—i.e., in the

strict sense that is needed for relational databases.

A Note on Equality

In Tutorial D, the literals TRUE and FALSE denote the only two values of the type named BOOLEAN,
commonly called truth values. The comparison x = y yields TRUE if the expressions x and y denote
the same value; otherwise (they denote different values) it yields FALSE. That is the strict sense I just
mentioned. As a consequence, if an expression w contains one or more appearances of x and we obtain
expression w’ from w by replacing every appearance of x by y, then w = w’ has the same truth value as
x = y. Some languages, such as COBOL and SQL, deviate somewhat from this strict definition of equality.
In particular, those two languages both allow two character strings to “compare equal” if they differ only
in their numbers of trailing blanks—for example, the strings 'this' and 'this '. Such treatment
is disastrous in a relational database language because the DBMS relies on the strict sense of “=” for the

definition and implementation of so many of the operators described in this book.

Suppose, for example, that in the current value of IS CALLED one of the two Borises had his
name recorded with a trailing blank, and Tutorial D’s definition of “=” were the same as SQLs and
COBOLs. What then would be the result of the projection IS CALLED{Name}? It can't include
both of TUPLE {Name NAME ('Boris')} and TUPLE{Name NAME ('Boris ')}, for those
two tuples would be deemed equal and thus cannot both appear in the same relation. And if only one
of them can appear, which one? In fact, does it have to be either of them? Couldn’t TUPLE { Name
NAME ('Boris '}), with two trailing blanks, appear instead? Similar questions arise in connection

with Example 4.3 in Chapter 4, where Name is the common attribute for an invocation of JOIN.

A language that allows the declared type of an attribute to be one for which “=” is not supported
(for example, SQL) is relationally incomplete. If, for example, relation r has such an attribute, a, then
no projection of r that includes a can be defined. One such projection is the identity projection,

r{ALL BUT}, and if that is undefined it is difficult to see how even the expression r can be defined!
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It follows in particular from the foregoing discussion that Tutorial D’s support of x = y allows x and y to
denote relations (of the same type). Tutorial D also supports relation comparisons of the form rI < r2

(“r1 is a subset of r2”) and its inverse, r1 2 r2 (“rl is a superset of r2”).

Definitions of relation comparison

Let r7 and r2 be relations having the same heading. Then:
r1 < r2is true if every tuple of r1 is also a tuple of r2, otherwise false.
r1 2 r2is equivalenttor2 < ri1
r1 =r2isequivalenttor? < r2aNDr2 C r1

Note carefully that the symbols < and 2 are often referred to “subset of or equal to” and “superset of or
equal to”, respectively. The words “or equal to” are added for clarity only—they are redundant because
by definition every set is a subset of itself. Note that only one relation comparison operator needs to be

taken as primitive, either < or 2, for the other two can than be defined in terms of it.

REL Alert

Because the mathematical symbols < and 2 are unlikely to be easily available on your keyboard, Rel allows
you to use the combinations <= and >=, respectively, in their places. These combinations are also used for
“less than or equal to” and “greater than or equal to’; so you have to read Rel expressions carefully to avoid
confusion. There is no ambiguity, because there are no types in Tutorial D for which both “less than” and
“subset of” are defined.
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The alert reader will have noticed that the definitions of relation comparisons tacitly depend on a definition
of tuple equality. To determine whether tuple t appears in the bodies of both 71 and r2 the system must

know how to evaluate 1 = t2 where t1 and 2 are tuples.

Definition of tuple equality

Let t7 and t2 be tuples having the same heading. Then:
t1 = t2is true if for every attribute a of t7, a FROM t1 = a FROM t2; otherwise it is false.

The expression a FROM t1 is an example of “attribute extraction”, as already mentioned in connection
with the relational operator UNWRAP in Section 5.8. Just as relation equality depends on tuple equality,
tuple equality in turn depends on equality being defined for all types. In fact the definition is recursive,

because the declared type of an attribute can be a tuple type or a relation type.

Now, consider the relation comparison

r { } = TABLE DUM

which is clearly defined for all relations 7. Did you see immediately that it evaluates to TRUE if and
only if r is empty? For if r is empty, then so is every projection of r, and if r is not empty, then nor is
any projection of . TABLE DUM, recall, is Tutorial D’s pet name for the empty relation of degree zero.
Well, recognizing that taking a projection and comparing the result with an empty relation might strike
some people as a long-winded and not very obvious way of testing a relation for being empty, Tutorial D

provides the shorthand

IS _EMPTY (r)

as being equivalent to that comparison (and also to COUNT(r)=0, of course).

Uses for Relation Comparisons

AsThave already suggested, relation comparisons are mostly used in the definition of database constraints.
Their use for that purpose is described in the next chapter. Here I give just one example of the use of

relational comparison in a query.

Suppose we wish to discover which students have taken the exam for every course on which they are

enrolled. In that case we need the relation representing the predicate

For every course Courseld on which student Studentld, who is called Name, is enrolled, there

exists a mark Mark such that Studentld scored Mark on the exam for Courseld.
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That predicate has just two parameters, Studentld and Name. The other variables, Courseld and Mark are
both quantified and therefore bound. Mark is existentially quantified, suggesting the use of projection
on EXAM MARK, but Courseld is universally quantified. I havent given you a relational operator
corresponding to universal quantification and in fact Tutorial D doesn’t have one. (It did, once, but the
operator in question, named DIVIDEBRY, turned out to be somewhat troublesome and difficult to use
and is now deprecated.) However, universal quantification can be expressed, albeit in an unpleasantly
roundabout way, using existential quantification and negation. The students who have sat the exam for
every course they are enrolled on are exactly those students for whom there does not exist a course, on
which they are enrolled, whose exam they have not sat. The double negation used in that sentence shows

up in Example 5.16 as two invocations of NOT MATCHING.

Example 5.16: Students who have taken the exam for every course they are enrolled on

IS CALLED NOT MATCHING (IS ENROLLED ON NOT MATCHING EXAM MARK)

Explanation 5.16:

« IS_ENROLLED ON NOT MATCHING EXAM MARK gives the relation consisting
of those tuples of IS ENROLLED ON that have no matching tuple in EXAM MARK. In
other words, those tuples that satisfy the predicate “Student StudentId is enrolled on course
Courseld and there does not exist a mark Mark such that Studentld scored Mark in the exam
for Courseld” The projection representing the existential quantification of Mark here is
not explicitly given in Example 5.16 but is implicit in the use of NOT MATCHING: IS
ENROLLED ON NOT MATCHING EXAM MARK is equivalent to IS ENROLLED ON
MINUS (EXAM MARK{ALL BUT Mark}), where the projection does appear explicitly.
« IS CALLED NOT MATCHING ( IS ENROLLED ON NOT MATCHING
EXAM MARK ) gives the relation consisting of those tuples of IS CALLED that have
no matching tuple in the relation representing enrolments for which there is no matching
exam result. Those tuples are precisely the ones that satisfy our predicate. Note that a tuple
for student S5, who is enrolled on no courses at all, correctly appears in the result. That’s

because there does not exist a course for which S5 is enrolled but has not taken the exam.

But if you find double negation a bit much to get your head around, you might prefer the alternative

given in Example 5.17.

Example 5.17: Alternative solution to Example 5.16 using <

IS CALLED WHERE

IS ENROLLED ON COMPOSE RELATION {TUPLE {StudentId StudentId}}

-

( EXAM MARK COMPOSE RELATION {TUPLE {StudentId StudentId}} )
{ALL BUT Mark}
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Explanation 5.17:

+ IS_CALLED WHERE announces clearly that the result of our query is a relation whose
body is a subset of that of IS CALLED; in other words, we are looking for just those
students that have the particular property defined in the WHERE condition.

o The particular property defined in the WHERE condition is such that the entire query
translates roughly to students whose every enrolment is on a course for which they took
the exam.

o The relations being compared in the WHERE condition are the image relations of
IS CALLED tuplesin IS ENROLLED ON and EXAM MARK minus the Mark attribute.
The commonality between the somewhat cumbersome expressions denoting those image
relations suggests that some shorthand embracing that commonality would be both feasible
and useful. The commonality is the invocation of COMPOSE with a singleton relation
consisting of a tuple derived from the relation operand of WHERE. Under a suggestion from
Chris Date in references [10] and [11] the fragment r COMPOSE RELATION {TUPLE
{StudentId StudentId}} isreduced to just !'r (where !! is the double exclamation
mark, sometimes pronounced “bang bang”), like this:

IS CALLED WHERE !!IS ENROLLED ON < ! (EXAM MARK{ALL BUT Mark})
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5.10  Other Operators on Relations and Tuples

We close this chapter with brief descriptions of other operators defined in Tutorial D that operate on

relations or tuples.

Tuple Membership Test

Let r be a relation and let t be a tuple of the same heading as r. Then
t €r

is defined to yield TRUE if the body of r contains tuple ¢, otherwise FALSE.

REL Alert

Because the mathematical symbol € is unlikely to be easily available on your keyboard, Rel allows you to use
the key word IN in its place.

Tuple Extraction

Let r be a relation of cardinality one (a “singleton relation”). Then
TUPLE FROM r

is defined to yield the single tuple contained in the body of r. For example,
TUPLE FROM COURSE WHERE Courseld = CID('C1l")

yielding TUPLE { CourseId CID('Cl'), Title 'Database' }.

Attribute Value Extraction (previously mentioned in Section 5.8)
Let t be a tuple with an attribute named a. Then
a FROM t
is defined to yield the value of the attribute a in tuple t. For example,
Title FROM TUPLE FROM COURSE WHERE CourseId = CID('C1l")
yielding the CHAR value 'Database’.
Tuple Counterparts of Relational Operators

Let t1 and t2 be tuples. Then the following are defined, with obvious semantics in each case and in each

case yielding a tuple:

o tuple rename:
t] RENAME { al AS bl, ...,an AS bn }

« tuple projection:
t1 { [ALL BUT] al,...an}

Download free eBooks at bookboon.com



tuple extension:

EXTEND t1 : { al :=expl, ..., al :=expn }

tuple compose:
t1 COMPOSE #2

tuple union:
t1 UNION ¢2

tuple wrap:
tl WRAP {al,..,an } ASa

tuple unwrap:
t1 UNWRAP a

EXERCISES

1.

(Repeated from the body of the chapter) What can you say about the result of rI COMPOSE
r2 when r1 and r2 have identical headings? For example, what is the result of IS CALLED
COMPOSE IS CALLED?

(Repeated from the body of the chapter) Is COMPOSE associative? In other words, is

( r1 COMPOSE r2 ) COMPOSE r3 equivalent to 71 COMPOSE ( r2 COMPOSE r3 )? If so,

prove it; if not, show why.

3. What can you say about the result of I MATCHING ( ¥2 MATCHING rl )?

(Repeated from the body of the chapter) Does the aggregate operator AVG have a basis
operator? If so, define it.
Suppose an aggregate operator PRODUCT is defined, with arithmetic multiplication as its
basis operator. What is the result of PRODUCT (x) if r is empty?
(Repeated from the body of the chapter) Is it always the case that the cardinality of an
ungrouping is equal to the sum of the cardinalities of the relations being ungrouped on?
Write Tutorial D expressions for the following queries and get Rel to evaluate them:
a) Get the total number of parts supplied by supplier SI.
b) Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.
c) Get part numbers for parts supplied by all suppliers in London.
d) Get supplier numbers and names for suppliers who supply all the purple parts.
e) Get all pairs of supplier numbers, Sx and Sy say, such that Sx and Sy supply exactly the
same set of parts each.
f) Write a truth-valued expression to determine whether all supplier names are unique in S.
g) Write a truth-valued expression to determine whether all part numbers appearing in SP

also appear in P.

Download free eBooks at bookboon.com



An Introduction to Relational Database Theory Constraints and Updating

6 Constraints and Updating

6.1 Introduction

You have already met constraints, in type definitions (Chapter 2), where they are used to define the
set of values constituting a type. The major part of this chapter is about database constraints. Database
constraints express the integrity rules that apply to the database. They express these rules to the DBMS. By

enforcing them, the DBMS ensures that the database is at all times consistent with respect to those rules.

In Chapter 1, Example 1.3, you saw a simple example of a database constraint declaration expressed in
Tutorial D, repeated here as Example 6.1 (though now referencing IS ENROLLED_ ON rather than
ENROLMENT).

Example 6.1: Declaring an integrity constraint

CONSTRAINT MAX ENROLMENTS
COUNT ( IS ENROLLED ON ) 2> 20000 ;

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.
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The first line tells the DBMS that a constraint named MAX ENROLMENTS is being declared. The second
line gives the expression to be evaluated whenever the DBMS decides to check that constraint. This
particular constraint expresses a rule to the effect that there can never be more than 20000 enrolments
altogether. It is perhaps an unrealistic rule and it was chosen in Chapter 1 for its simplicity. Now that
you have learned the operators described in Chapters 4 and 5 you have all the equipment you need to
express more complicated constraints and more typical ones. This chapter explains how to use those

operators for that purpose.

Now, if a database is currently consistent with its declared constraints, then there is clearly no need for
the DBMS to test its consistency again until either some new constraint is declared to the DBMS, or,
more likely, the database is updated. For that reason, it is also appropriate in this chapter to deal with
methods of updating the database, for it is not a bad idea to think about which kinds of constraints

might be violated by which kinds of updating operations, as we shall see.

6.2 A Closer Look at Constraints and Consistency

A constraint is defined by a truth-valued expression, such as a comparison. A database constraint
is defined by a truth-valued expression that references the database. To be precise, the expression
defines a condition that must be satisfied by the database at all times. We have previously used
such terminology in connection with tuples—in relational restriction for example, which yields
a relation containing just those tuples of a given relation that satisfy the given condition. We can
justify the use of the terminology in connection with database constraints by considering the
database value (or “state”, as it is sometimes called) at any particular point in time to be a tuple.
The attributes of this tuple take their names and declared types from the variables constituting the
database and their values are the values of those variables. Taking this view, the database itself is
a tuple variable and every successful update operation conceptually assigns a tuple value to that
variable, even if it actually assigns just one relation value to one relation variable, leaving the other

relvars unchanged.

When Are Constraints Checked?

What do we really mean when we say that the DBMS must ensure that the database is consistent at all times?
Internally, the DBMS might have to perform several disk writes to complete what is perceived by the user
as a single update operation, but intermediate states arising during this process are visible to nobody (or
should be so—certain commercially available systems that call themselves DBMSs nevertheless do allow
such intermediate states to be visible). Because those intermediate states are invisible, we can state that
if the database is guaranteed to be consistent immediately following completion of each single statement
that updates it, then it will be consistent whenever it is visible. We say therefore that, conceptually at least,
constraints are checked at all statement boundaries, and only at statement boundaries—we don't care about
the consistency of intermediate states arising during the DBMS’s processing of a statement because those

states aren't visible to us in any case.
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To clarify “all statement boundaries’, first, note that this includes statements that are contained inside
other statements, such as IF ... THEN ... ELSE ... constructs for example. Secondly, the conceptual
checking need not take place at all for a statement that does no updating, but no harm is done to our

model if we think of constraints as being checked at every statement boundary.

In Tutorial D, as in many computer languages, a statement boundary is denoted by a semicolon, so we
can usefully think of constraints as being effectively checked at every semicolon. If all the constraints are
satisfied, then the updates brought about by the statement just completed are accepted and made visible;
on the other hand, if some constraint is not satisfied, then the updates are rejected and the database

reverts to the value it had immediately after the most recent successful statement execution.

Declared Constraints and The Database Constraint

We can usually expect a database to be subject to quite a few separately declared constraints. To say that
the database must satisfy all of the conditions specified by these constraints is equivalent to saying that
it must satisfy the single condition that is the conjunction of those individually specified conditions—the
condition formed by connecting them all together using logical AND. We can conveniently refer to
the resulting condition as the database constraint. Now we can state the principle governing correct
maintenance of database integrity by the DBMS quite succinctly: the database constraint is guaranteed

to be satisfied at every statement boundary.

6.3 Expressing Constraint Conditions
Use of Relational Operators

The condition for a database constraint must reference the database and therefore must mention at least
one variable in that database. In the case of relational databases, that means that at least one relvar must
be mentioned. Moreover, as the condition is specified by a single expression (a truth-valued expression),
it must use relational operators if it involves more than one relvar and, as we shall soon see, is likely to

use them even when it involves just one relvar.

However, a relation isn't a truth value, so we need some of the non-relational operators described in
Chapter 5, in addition to the relational operators, to express conditions for declared constraints. In
particular, the expression itself must denote an invocation of some truth-valued operator. In Example 6.1
that operator is “<”. No relational operators are used in that example, because the only relation we need to
operate on is the one that is the value of the relvar IS ENROLLED ON when the constraint is checked.

The aggregate operator COUNT operates on that relation to give its cardinality, an integer.
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Use of COUNT and IS_EMPTY

It turns out that if the database language is relationally complete and also supports COUNT, along with
the usual numerical comparison operators, then it can also be regarded as complete for the purpose of
expressing constraints (so long as the support for COUNT is orthogonal, such that an invocation of it can
appear wherever an integer literal would be permitted). Furthermore, every constraint can be expressed
as a single comparison, one of whose operands is an invocation of COUNT. It seems, then, that the only
operators we need in addition to those required for relational completeness are ones that we would surely
have anyway for use in queries. However, requiring every constraint to be expressed as a comparison
involving COUNT would not be very kind to users of our language. We need to explore the possibilities

for more convenient ways of expressing common kinds of constraint.

o™
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One particular kind of comparison involving COUNT is an expression of the form COUNT (r) =0, where
r denotes a relation. This is effectively a test for emptiness on r. If r is empty, then there does not exist
a tuple that satisfies the predicate for r. If, on the other hand, there does exist at least one such tuple,
then it is a tuple that in a manner of speaking breaks the rule expressed by the constraint. So, if we can
write a relational expression denoting the relation whose body consists of all the tuples representing
counterexamples to the rule in question, then we can enforce that rule by requiring the cardinality of that
relation to be zero. And that method of expressing a constraint turns out to be sufficient for any constraint
that might be required, including even Example 6.1. But first look at Example 6.2 for an illustration of
the idea. It enforces a rule to the effect that every student sitting an exam must be enrolled on the

relevant course.

Example 6.2: Testing for absence of counterexamples

CONSTRAINT Must be enrolled to take exam
COUNT ( EXAM_MARK NOT MATCHING IS_ENROLLED_ON y = 0 ;

The expression EXAM MARK NOT MATCHING IS ENROLLED ON denotes the relation whose
body consists of those tuples of EXAM MARK that have no matching tuple (on the common attributes
StudentId and CourseId)in IS ENROLLED ON, and we don’t want there ever to be any such
tuples. But counting all the tuples in a relation and then seeing if the result is zero is a rather heavy-
handed way of expressing what to a logician is nothing more than an existence test, negated. That is

why Tutorial D provides the shorthand IS EMPTY (r) for COUNT (r) =0, as shown in Example 6.3.

Example 6.3: Use of IS_EMPTY

CONSTRAINT Must be enrolled to take exam alternativel
IS EMPTY ( EXAM MARK NOT MATCHING IS ENROLLED ON ) ;

In case you are now wondering how the constraint in Example 6.1 can be expressed as a single invocation
of IS EMPTY, and thus questioning my claim that every constraint that can be expressed according to
the theory can be expressed as a test for zero cardinality, Example 6.4 shows you one way of doing it,

but note carefully that the expression still involves COUNT.

Example 6.4: MAX_ENROLMENTS expressed as an invocation of IS_EMPTY

CONSTRAINT MAX ENROLMENTS alternativel
IS EMPTY ( RELATION { TUPLE { N COUNT (IS ENROLLED ON) } 1}
WHERE N > 20000 ) ;

And here, of course, it is the invocation of IS EMPTY that is significantly more “heavy-handed” than

the simple comparison used in Example 6.1—all I have done, in fact, is to bury that comparison as a

restriction condition in a somewhat contrived relational expression.
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Explanation 6.4

+ RELATION { TUPLE { N COUNT(IS_ENROLLED ON) } } denotes the relation
of heading { N INTEGER } in whose single tuple the value of the attribute N is the
number of tuples in the current value of IS ENROLLED ON.

« WHERE N > 20000 operates on that singleton relation to yield the empty relation of
heading { N INTEGER } ifand onlyif TUPLE { N COUNT (IS ENROLLED ON)

} fails to satisfy the condition N > 20000. Thus, the result is empty only when the

number of enrolments is in fact no greater than the maximum allowed.

As this example shows, any value of any type can be “converted” to a tuple of degree one by invocation of
the tuple selector, and the resulting tuple can be “converted” to a relation of cardinality one by invocation

of the relation selector. The technique quite often turns out to be useful.

Now, knowing that a language is relationally complete gives us a clear understanding of one very important
aspect of its expressive power, but for the full picture we need to know what built-in types it supports
in addition to relation types and BOOLEAN, and what operators are available for operating on values
of those types. If we can assume the availability of IS EMPTY, which operates on a relation to yield a
truth value, then we have a theoretically satisfying notion of completeness for expressing constraints. If
the language is relationally complete, then every constraint can be expressed in the form IS EMPTY (r)

and the expressive power of the language for defining constraints depends on what additional types are
available to be declared types of relation attributes. However, it turns out that in Tutorial D anything
that can be expressed in the form IS EMPTY (r) can be expressed in several other ways too, as I am
about to describe, and it is a moot point which of these several methods the theoretician might consider

to be the most satisfying.

Use of Relation Comparisons

Relational comparisons are described in Chapter 5, Section 5.9. It turns out that every constraint that
can be expressed using IS EMPTY can be expressed as a single comparison of the form r1 < r2, where
rl and r2 are relations, which is true if and only if the body of 1 is a subset of that of r2. Example 6.5
shows how “C” provides an alternative way of expressing the constraint declared in Example 6.2, requiring

every student who taking an exam to be enrolled on the relevant course.

Example 6.5: Use of =

CONSTRAINT Must be enrolled to take exam alternativel
EXAM MARK { StudentId, Courseld } <
IS ENROLLED ON { StudentId, CourselId } ;
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This might be considered to be clearer than Example 6.3 but it needs to name the common attributes in
the projections needed to obtain relations of the same type for the comparison (though in this particular
example the projection of IS ENROLLED ON is the identity projection, over the entire heading, and

so can be omitted).

In case you are wondering how Example 6.1 might be expressed using <, Example 6.6 shows one rather
straightforward way of doing it, as well as perhaps giving a compelling reason why we might prefer not

to be compelled to express every constraint in the form r1 < r2.

Example 6.6: MAX_ENROLMENTS expressed as a relation comparison

CONSTRAINT MAX ENROLMENTS REV1
RELATION { TUPLE { N COUNT (IS ENROLLED ON) } } WHERE N > 20000
€ RELATION { N INTEGER } { 1} ;
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Explanation 6.6

 The explanation of the first line is as in Example 6.4. The resulting relation is the first
operand of an invocation of “<”.

e RELATION { N INTEGER } { } isthe second operand, denoting the empty relation
of the same type as as the first operand. Of course, to be a subset of an empty relation is the
same as to be (i.e., be equal to) that empty relation, so the invocation of “C” yields TRUE if

and only if the first operand is in fact that empty relation.

<

Obviously, wherever we can use “” we could instead use “2”, from the equivalence of rI < r2 and
r2 2 r2. Moreover, the given explanation of Example 6.6 clearly shows that “=” comparison can be used
to express every constraint that can be expressed in the form IS EMPTY (r) (which could also be
written as r = r WHERE FALSE). But the availability of “=” comparisons on values of all types, including
relations in particular, is surely required for relational completeness. Under that assumption we could

argue that relational completeness is all that is theoretically needed for complete support for constraints.

Now, I claimed that every constraint can be expressed as a single comparison of the form r1 < r2. You
might be wondering how equality of relations can be expressed using a single invocation of “”. Clearly,
rl =r2is equivalent to rI £ r2 AND r2 C r1, but that expression is an invocation of AND, not “C”. Example

6.7 shows one way of doing it with a single invocation of “=”.

Example 6.7: Relation equality using a single invocation of “<”

( (#I MINUS 72 ) UNION (r2MINUS7/) ) { } CRELATION { } { }

Explanation 6.7

o Recall: 1 MINUS r2 is equivalent to rI NOT MATCHING r2 but requires r1 and r2 to be
relations of the same type.

e« ( ( rl MINUS r2 ) UNION ( r2 MINUS rl ) ) yields the relation whose
body consists of every tuple of 71 that is not also a tuple of 72 and every tuple of 2 that is
not also a tuple of r1. This is sometimes called the symmetric difference of r1 and r2 (and a
relational language might well provide a dyadic operator as a shorthand for expressing it).
Note that the symmetric difference of sets A and B is the empty set if and only if A=B (i.e.,
they are one and the same set).

» Noting that a projection of relation r is empty if and only if r itself is empty, we can test
the symmetric difference for being empty by taking its projection over no attributes and
testing that projection for being a subset of the empty relation of degree zero (recall that in

Tutorial D you can use the name TABLE_DUM for this relation if you prefer).
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To prove that every expression of the form IS EMPTY (r) is equivalent to some expression of the form
r1  r2 I merely note that IS EMPTY (r) is equivalenttor & ( r WHERE FALSE ).Andasrl 12
is equivalent to IS EMPTY (r1 MINUS r2) it is clear that a language can support either IS EMPTY
or just one of our three relation comparison operators with equal expressive power. That gives four
choices, so far, for the operator that allows us to express any theoretically expressible constraint as a

single invocation of that operator on one or two relations. There are more!

Use of Truth-Valued Aggregate Operators

Our relvar EXAM MARK really ought to be subject to a constraint requiring every value for the Mark
attribute to lie in the range 0 to 100. That is easy enough to express using IS EMPTY, as Example 6.8
shows, but many people would prefer to say that every mark shall lie within the required range instead

of saying that no mark shall lie outside it.

Example 6.8: Restricting exam marks to between 0 and 100

CONSTRAINT Marks between 0 and 100
IS EMPTY ( EXAM MARK WHERE Mark 2> 0 OR Mark < 100 ) ;

In Chapter 5 you met the aggregate operator AND, named after its own basis operator. AND (r,c) , where
r is a relation and c is a condition, is true if and only if every tuple of r satisfies c¢. (In Rel ALL is a
synonym for aggregate AND. You might find ALL (r,¢) more intuitive than AND (r,c) .) Use of aggregate
AND allows many constraints to be expressed more succinctly and more clearly than use of any of the
other methods we have met so far, as Example 6.9 shows in the case of our constraint on exam marks.
Note, however, that this example depends on an enhancement in Version 2 of Tutorial D, as described

in Chapter 5, Section 5.3, Aggregate Operators.

Example 6.9: Restricting exam marks to between 0 and 100 using aggregate AND as
supported in Version 2 of Tutorial D

CONSTRAINT Marks between 0 and 100 using AND
AND ( EXAM MARK, Mark > 0 AND Mark < 100 ) ;

To show that aggregate AND is in fact yet another candidate for our single additional operator, and that
in fact every constraint can be expressed as an invocation of that operator, I note the equivalence of
IS _EMPTY (r) and AND (r, FALSE) . No tuple satisfies the condition FALSE, so AND (r, FALSE) is

false whenever r contains at least one tuple and is true only when r is empty.
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We have aggregate OR to0, so, recalling from Chapter 2 that “for all x, p(x)” is equivalent to “there does
not exist x such that NOT(p(x))”, we can note that AND (1, ¢) is equivalent to NOT (OR (r, NOT (c) ) ) , from
which it follows that AND (r, FALSE) is equivalent to NOT (OR (1, TRUE) ) . Finally, as OR (r, TRUE)
is false only when r is empty, we can note that OR (, TRUE) is equivalent to NOT (IS EMPTY (r) ).

Faced with such a plethora of choice for general methods of expressing constraints, Tutorial D does not
arbitrate in favour of any of the noted candidates, allowing the user to choose freely from among them
whichever is deemed most suitable for each particular purpose. The availability of logical connectives
gives the user the further freedom to decide how best to arrange the database constraint into declared
constraints, individually named and formulated. Sadly, we cannot say the same for the commercially
available DBMSs at the time of writing (2014), for we are not aware of any widely available SQL
implementation that supports any of the noted candidates for use in constraints: they don't support
the international standard’s CREATE ASSERTION statement, which would be SQLs counterpart of
Tutorial D’s CONSTRAINT statement, and they don’t permit table expressions to appear inside SQLs
so-called “table constraints” Typically, the SQL user is restricted to certain special-purpose shorthands

of the kinds described in the next section.
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6.4 Useful Shorthands for Expressing Constraints

In Chapter 5 I showed how a relational database language can be extended by defining new relational
operators— “shorthands”—in terms of the existing ones. If the existing language is relationally complete,
then such extensions do not increase the language’s expressive power—there is no need for that—but,
judiciously chosen, they do make some problems easier to solve by providing shorthands that are not
only convenient but, by raising the level of abstraction, might also be easier to understand than the
longhands on which they are defined. In Chapter 5 I illustrated this point by showing you the handful
of such operators that have been “judiciously chosen” for Tutorial D, these having been proposed
by various writers over the years. Unfortunately, very little in the way of useful shorthands has been
proposed for use in constraints; and what little there is is subject to a certain amount of controversy. Yet
the requirement for shorthands seems to be compelling, not just for the convenience of users but also

for performance, as I will now explain.

Suppose that we require every constraint to be expressed using an expression of the form IS EMPTY (r).
Then consider a simple constraint such as the one to make sure every exam mark is in the range of 0 to
100 and assume it is expressed as shown in either of Examples 6.8 and 6.9. Suppose that a certain update
statement is used to add a single tuple to EXAM MARK. Whether IS EMPTY or aggregate AND is chosen
for the constraint declaration, a naive evaluation would involve the system in examining each existing
EXAM MARK tuple as well as the one being added. But the existing tuples are all known to satisfy the
condition Mark > 0 AND Mark < 100, for if one of them didn’t the database would have been
visibly inconsistent at the previous statement boundary. If the system could somehow work out that it
is sufficient just to check incoming tuples, then simple update operations would be executed very much
more quickly. But such optimizations involve sophisticated expression analysis. While we rightly expect
industrial-strength DBMSs to attempt such optimizations, their degree of success is likely to be limited
in practice. When we can identify a certain class of constraints that lend themselves to more efficient
methods of evaluation, one way of guaranteeing that the system will adopt those more efficient methods
is to provide an alternative way of expressing the constraint, applicable only to constraints of that class.
If that alternative method is easier for the user to write, and perhaps clearer for the reader too, then the

addition to the language can be justified even though it is theoretically redundant.

I will now describe some of the special classes of constraint that have been identified and the shorthands
typically used for expressing them, but please note carefully that with just one exception (key constraints)
these shorthands are not available in Tutorial D. For one thing, they are somewhat controversial but,
more importantly, many people have been beguiled by the impoverished state of the existing commercial
technology into believing that the term “constraint’, as used in the present context, applies only to what

can be expressed using the available shorthands.
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Tuple Constraints

The shorthand described in this section is actually frowned upon by many people, the present writer
included. I describe it because in most SQL implementations it is the only way of expressing constraints

other than key constraints and foreign key constraints.

Consider a constraint whose condition can be expressed as AND(r, c), equivalently as
IS _EMPTY (r WHERE NOT (c) ), where r is a relvar name (i.e., not an invocation of a relational
operator) and the condition ¢ is an open expression that contains no relvar references. Then ¢ can be
evaluated against each tuple of r without any need to access the database beyond what is needed to obtain
the tuples of 7. Such a constraint is called a tuple constraint and the constraint on exam marks expressed

in Examples 6.8 and 6.9 is an example.

A typical shorthand for expressing a tuple constraint is to allow the condition c to be written inside the
definition of the relvar r to which it applies. The shorthand is fairly obvious and intuitive. Example 6.10
shows the form it would be likely to take in Tutorial D in the extremely unlikely event that the language

were ever extended to support the construct.

Example 6.10: Shorthand for a tuple constraint (not allowed in Tutorial D)

VAR EXAM MARK BASE RELATION { StudentId SID, CourselId CID,
Mark INTEGER }
KEY { StudentId, CourseId }
CONSTRAINT Mark in range Mark > 0 AND Mark < 100 ;

As with regular constraint declarations, naming the constraint allows it to be dropped when it is no

longer needed.

Now, suppose that not all exams are marked out of 100. Instead, each course has its own maximum mark
recorded in the COURSE relvar as a value for the attribute MaxExamMark. In that case the required
constraint, which is set as one of the exercises for this chapter, isn't a tuple constraint because access
to another relvar is needed to evaluate it against a given tuple of EXAM MARK. But, as we have already
noted, condition ¢ specified for a tuple constraint expressed in the manner of Example 6.10, inside the
definition of relvar r, is equivalent to IS EMPTY (r WHERE NOT (c) ). It might seem unreasonable
if the language allowed some condition to appear as a WHERE condition but not as the condition for a
constraint declared inside a relvar definition. If ¢ is permitted to include explicit relvar references, then
the performance advantages to be gained by recognition of tuple constraints (where, by definition, c does
not include any such references) will accrue only if the DBMS’s optimizer is capable of recognizing the
cases where ¢ does not reference any relvars. That should not be a problem for an industrial strength
DBMS. Tutorial D does not support this kind of shorthand because the convenience gains are slight

and, for teaching purposes at least, it is thought better practice to write such constraints out in full.
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Keys

In Tutorial D every relvar declaration must include at least one key specification. In Example 6.10 it is
KEY { StudentId, CourseId }.A key for relvar ris a set of attributes of r (i.e., a subset of r’s
heading) such that at no time does r contain more than one tuple having any given collection of values
for those attributes. Thus, KEY { StudentId, CourseId }, included in the relvar declaration
for EXAM MARK, specifies a constraint reflecting an integrity rule to the effect that no student can obtain
more than one mark for the same exam. Similarly, KEY { StudentId }, included in the relvar
declaration for IS CALLED, ensures that no student ever has more than one name as far as the database

is concerned. The constraint implied by declaration of a key is called, unsurprisingly, a key constraint.

To show that KEY { K} included in the declaration for relvar r is indeed a shorthand, I note that the
constraint could also be expressed as COUNT (r) = COUNT (r{K}). If the projection of r over the
attributes K has the same cardinality as r itself, then each tuple in the projection has exactly one matching
tuple in r; otherwise, its cardinality is less than that of r itself and at least one tuple in the projection

matches more than one tuple in 7.

Now, the constraint expressed by KEY { K} for relvar r captures what is referred to as the uniqueness
property of a key. A moment’s thought reveals that every superset of K that is a subset of the heading of
r must also satisfy this uniqueness property. It is clearly important, when specifying a key, not to include
any superfluous attributes. By definition, then, a key has also a property of irreducibility: we cannot take

any attribute away from a key such that what is left is also a key.

A formal definition for key now follows. It uses the term heading to refer to a set of attribute names only,
rather than name/type pairs. The projection operator it uses is tuple projection, as defined in Chapter
5, Section 5.10. The definition starts by defining the useful term superkey, referring to a subset of the

relevant relvar’s heading that is a superset of some key for that relvar.

Definitions for superkey and key

Let K be a subset of the heading of relvar r. Then K is superkey for r if and only if, at all
times, if tuples t7 and t2 both appear in the body of r, and the projection t1{k} is equal to
the projection t2{K}, then t7 = t2 (i.e., they are the same tuple).

Kis a key for rif and only if (a) K is a superkey for r and (b) no proper subset of K is a
superkey for r.

A superkey satisfies the uniqueness property but not necessarily the irreducibility property. A key satisfies
both properties. A proper superkey is a superkey that isn’t a key.
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Note that a relvar can have more than one key. For example, a relvar representing a company’s employees
might have an attribute Emp# representing employee numbers and an attribute Nat Ins# representing
national insurance numbers. Each of those attributes on its own satisfies the uniqueness property for keys,
so the relvar declaration would include KEY {Emp#} KEY {NatIns#}.Don't make the common
mistake of writing KEY {Emp#, NatIns#} instead! That would mean that employee numbers in
combination with national insurance numbers satisfy the uniqueness property, which indeed they do,
but that is a weaker constraint, allowing two employees to have the same employee number so long as
they have different national insurance numbers (or the same national insurance number so long as they

have different employee numbers).

Two special cases of keys are worth noting. The first is where the key is the entire heading, as is the
case with our relvar IS ENROLLED_ON. The constraint implied by such a key is such that, were it not
enforced, the relvar could at some point in time contain two or more identical tuples—but in that case
the value assigned to the relvar would not even be a relation! For that reason the fact that Tutorial D
requires at least one key to be explicitly specified for each relvar has proved somewhat controversial.
Perhaps omission of keys should imply KEY { ALL BUT }. An implication of KEY { ALL BUT } is
that no other key can possibly exist for the relvar it applies to. Exercise for the reader: Why is this so?
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The second special case is where the key is the empty set. In this case the corresponding key constraint is
equivalentto COUNT (r) = COUNT (r{ }).Asprojection of r over no attributes yields either TABLE DEE
(when r is not empty) or TABLE DUM (when it is), it follows that KEY { } specified for relvar r means
that  can never contain more than one tuple. An implication of KEY { } is that no other key can possibly

exist for the relvar it applies to. Exercise for the reader: Why is this so?

Foreign Keys

A constraint of the form IS _EMPTY (rl NOT MATCHING r2) is called a foreign key constraint if and
only if r1 and r2 are both relvar references, or relvar references appearing as operands of RENAME,
and the common attributes of r1 and r2 constitute a key of r2. In r1, the set of common attributes in
question is called a foreign key and r1 is the referencing relvar of the foreign key; r2 is the referenced relvar.
Example 6.3, IS_EMPTY ( EXAM MARK NOT MATCHING IS _ENROLLED ON ), satisfies those
restrictions and is therefore a foreign key constraint: { StudentId, CourseId} isa foreign key in

the referencing relvar EXAM MARK and the referenced relvar of that foreign key is IS ENROLLED ON.

Such constraints are very common in practice and their terminology that I have described is very widely
used. SQL includes a special shorthand for such constraints. In fact, most SQL implementations require
this shorthand to be used for expressing foreign key constraints. If Tutorial D had a counterpart of
SQLs shorthand, then the constraint in Example 6.3 could be expressed, inside the declaration of relvar

EXAM MARK, in the following manner:
FOREIGN KEY {Student Id, Course Id} REFERENCES IS ENROLLED ON

An invocation of RENAME is needed as the referenced “relvar” in the case where the attribute names of

the relevant key do not correspond to those of the referencing relvar.

Tutorial D does not support such shorthands, for the following reasons:

1. The requirement for the common attributes to constitute a key of the referenced relvar
seems overly restrictive.

2. The requirement for both operands to be simple relvar references (possibly subject to some
attribute renaming) also seems overly restrictive.

3. The shorthand isn’t much of a shorthand in any case—in the example given it is actually
longer than the longhand, as you can see, though the extra length is partly a consequence of
having to name the common attributes—you might prefer to write, for example,

EXAM MARK{Student Id, Course Id} C
IS ENROLLED ON{Student Id, Course Id}
for greater clarity.

4. The shorthand is arguably no clearer than the longhand—and might even be thought rather
arcane—but, as I have already indicated, the terminology of foreign keys is widely used and
understood in the database community. Indeed, I use it myself in the discussion of updating

relvars that now follows.
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If the restrictions were lifted, then such a shorthand might be considered—but in that case the key words

FOREIGN KEY would no longer be appropriate.

6.5 Updating Relvars

Recall, from Chapter 1, my view of a database as representing a true account of some enterprise. The
verb “to update” is used of databases because it refers to the action of bringing the database up to date
in line with changes in the state of the enterprise, when the account the database represents would
otherwise be incomplete or untruthful. But the database consists of variables (relvars in the case of
relational databases), so to update the database is to update one or more of its variables. In computer
languages the general method of updating a variable is called assignment, commonly expressed using
the symbol :=, as in, for example, x := x + 1. The expression on the right-hand side denotes the
value that is to become the value of the variable whose name appears on the left-hand side. The value

of the expression on the right is termed the source, the variable on the left the target.

It is normal for assignment to be available in a computer language for variables of all types supported
by that language, and Tutorial D does indeed allow you to update relvars that way, as illustrated in

Example 6.11.

Example 6.11: Enrolling a student on a course using assignment

IS_ENROLLED_ON i= IS_ENROLLED_ON UNION
RELATION { TUPLE { StudentId SID('S3'"),
CourseId('C2") } } ;

However, although assignment is theoretically sufficient for updating purposes, it is usually more
convenient to use a shorthand expressing the difference between the current value of the target relvar
and the new value. Sometimes, as in Example 6.11, that difference is just the addition of one or more
tuples to the existing set; sometimes it is just changes to some of the attribute values of some of the
existing tuples; and sometimes it is just removal of some of the existing tuples. Shorthands for those
three particular cases have been referred to as INSERT, UPDATE, and DELETE, respectively, since time
immemorial—in other words, even before the advent of relational databases, though of course before
that advent the targets of the updates were files, not relvars or SQL tables, and files were collections of

records, not sets of tuples.
Do not confuse relational update operators with the read-only operators described in Chapters 4 and 5,
which don’t update anything. Conversely, update operators do not return values when they are invoked

and therefore cannot be used for query purposes.

Descriptions of the Tutorial D versions of those update operators now follow.
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INSERT

Loosely speaking, INSERT adds tuples to a relvar, retaining all the existing tuples. Example 6.12 shows
how INSERT would be used to the same effect as that of Example 6.11.

Example 6.12: Enrolling a student on a course using INSERT

INSERT IS ENROLLED ON RELATION { TUPLE { StudentId SID('S3'"),
CourseId('C2") } 1} ;

As you can see, “IS ENROLLED ON := IS ENROLLED ON UNION” in Example 6.11 has been
replaced by “INSERT IS ENROLLED_ ON” We avoid the repeated mention of IS ENROLLED ON
because, as I have already stated, INSERT implicitly “retains all the existing tuples”, those being the ones

contained in the first operand of the UNION invocation in Example 6.11.

“I studied
English for 16 P
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

166 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/EOT

In general, INSERT rv r, where rv is a relvar name and r denotes a relation, is equivalent to
rv :=rv UNION r, implying that rv and r, now referred to as the target and source, respectively, of the
INSERT statement, must have identical headings. It is normal practice to require r and the current value
of rv to have no tuples in common (i.e., their bodies to be disjoint), such that the operation fails on an
attempt, loosely speaking, to insert a tuple that already exists in the target. The reason for this normal
practice lies in the checking of key constraints. Every relvar is subject to at least one key constraint,
even when the key in question is the entire heading, as is the case with IS ENROLLED ON. When
processing an INSERT statement, the DBMS knows that the current value of the target relvar satisfies all
the key constraints, so only the tuples of the source need their key values to be checked for uniqueness.
If it encounters a tuple whose key value matches that of an existing tuple or another tuple in the source,
the INSERT fails and the value of v does not change. Having discovered a clash on key values, most
systems do not bother to check to see if in fact the clashing tuples are identical, even when the key value

is in fact the entire tuple!

It is easy to imagine, therefore, that Example 6.11, though equivalent to Example 6.12 in its effect, will
take very much longer to execute when the current value of IS ENROLLED ON is of high cardinality.
Internally, the DBMS is very likely to execute a relvar assignment by first deleting all the existing tuples,
then inserting into the now empty target the tuples of the relation denoted by the expression on the

right-hand side of the assignment.

Remarks similar to those on key constraints apply also to other constraints that can be expressed as a
condition to be satisfied by all the tuples of a relvar (i.e., by AND (rv,c) where rvisarelvar name), including
tuple constraints in particular. (Recall that not all such constraints are tuple constraints under the usual
definition of that term.) The tuple constraint of Example 6.10 is an obvious case, but consider also foreign
key constraints. Suppose we have the constraint condition IS EMPTY ( IS ENROLLED ON NOT
MATCHING IS CALLED ) AND IS EMPTY (IS ENROLLED ON NOT MATCHING COURSE ),
effectively defining { StudentId } to be a foreign key in IS ENROLLED ON, referencing
IS CALLEDand { CourseId } in the same relvar to be a foreign key referencing COURSE. Then
the DBMS, executing Example 6.12, need only check that student identifier S3 appears in some tuple of
the current value of IS CALLED and course identifier C2 appears in some tuple of the current value
of COURSE. The existing tuples of IS ENROLLED_ ON are all guaranteed to satisfy that constraint
and therefore do not need to be reexamined. A DBMS faced with the Tutorial D method of expressing
foreign key constraints might find it quite a challenge to determine that it is only necessary to check the
source for the INSERT, a simple task for SQL systems that demand such constraints to be expressed
using FOREIGN KEY syntax.
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The source for an INSERT can be any expression denoting a relation with heading that of the target. In
practice the source is very commonly a relation literal, for the obvious reason that the “new information”
being added to the database is indeed new and cannot be derived from the existing value of the database.
It is also quite commonly a relation consisting of a single tuple, in which case the syntax for expressing the
source for the INSERT appears rather heavy-handed. It would not be unreasonable to provide a “single
tuple insert” operator in addition to the “multiple tuple insert” of Tutorial D but such conveniences can
muddy the waters for teaching purposes and we prefer to emphasize the point that a relational DBMS

must allow more than one tuple to be inserted in a single statement.

Example 6.13 illustrates the convenience of allowing any relation expression to be the source for an
INSERT. It assumes that all the exam scripts submitted by students have been marked and it has been

decided to record marks of zero for students who failed to turn up for an exam they should have sat.

Example 6.13: Awarding zero marks to students who failed to take the exam

INSERT EXAM MARK EXTEND ( IS_ENROLLED_ON NOT MATCHING
EXAM MARK ) : { Mark := 0 };

UPDATE

(It is regrettable that the key word UPDATE has become so widely accepted as the name of just one

particular operator for updating relational databases. Please don’t shoot the messenger!)

Loosely speaking, UPDATE changes some of the attribute values of some existing tuples of its target
relvar. Thus, although some tuples disappear from the target and others arrive in it, so to speak, the
cardinality of the relvar does not change. Suppose the exam board for course C2 decides that the exam

has been marked too harshly and everybody’s mark is to be increased by 5. Example 6.14 shows how.

Example 6.14: Adding 5 to all the marks for course C2

UPDATE EXAM MARK WHERE CourseId = CID('C2")
{ Mark := Mark + 5 } ;

The syntax is self-explanatory. The WHERE specification is optional. It defaults to WHERE TRUE, meaning
that the specified changes are to be applied to all existing tuples in the target relvar. The expression
Mark := Mark + 5 is an attribute assign. When several attribute assigns are needed they are

separated by commas.
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Aswith INSERT, various optimizations are available to the DBMS when it comes to checking constraints.
For example, only the tuples satisfying the WHERE condition need to be examined, after application of
the attribute assigns, to see if they satisfy those constraints that can be checked “a tuple at a time”, as
discussed in the section on INSERT. Moreover, of those constraints the DBMS need only consider the
ones that involve attributes whose names appear as attribute assign targets in the UPDATE statement. In
Example 6.14 no key or foreign key constraints need to be checked, because Mark is the only attribute
assign target and that attribute does not appear in the only key for EXAM MARK, nor is it a common
attribute for any foreign key constraint. But Mark is involved in the constraint to ensure that all marks
are in the range 0 to 100. If any student has already scored 96 or more in the exam for course C2, the

exam board might have to revise its upgrade policy for that exam!

That an UPDATE invocation is indeed shorthand for some assignment is illustrated by Example 6.15,

which is equivalent to Example 6.14.

Example 6.15: Adding 5 to all the marks for course C2, the hard way

EXAM MARK := EXAM MARK WHERE NOT ( CourseId = CID('C2'") )
UNION
EXTEND ( ( EXAM MARK WHERE CourseId = CID('C2'") )
RENAME { Mark AS Xmark } )
{ Mark := Xmark + 5 } { ALL BUT Xmark } ;
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You can easily see that, compared with INSERT, UPDATE offers quite generous shorthands! Note how
the first operand of the UNION invocation preserves, so to speak, the unaffected tuples of EXAM MARK.

DELETE

Loosely speaking, DELETE removes some existing tuples from its target relvar. Suppose the university

decides that course C3 is to be withdrawn. Example 6.16 shows how.

Example 6.16: Withdrawing course C3, using DELETE

DELETE COURSE WHERE CourseId = CID('C3'") ;

Still speaking loosely, every tuple that satisfies the given WHERE condition is deleted and tuples that do

not satisfy it remain.

Now, it might seem that, as the only tuples remaining in the target are ones that are already known to
satisfy all constraints on the target that can be checked “a tuple at a time”, there is no need for the DBMS
to check such constraints at all when executing a DELETE statement. But we have been assuming that
{ CourseId } in IS ENROLLED ON is a foreign key referencing COURSE. If any students are
recorded as being currently enrolled on course C3, then the DELETE statement in Example 6.16 must fail,

for then the result of IS ENROLLED ON NOT MATCHING COURSE would not be empty as required.
Tutorial D also supports a second form of DELETE, where the tuples to be deleted are specified by a
relation expression. For example, suppose the INSERT shown in Example 6.12 turned out to be a mistake
by an end-user of Rel’s Dbrowser. Then the user could simply recall the INSERT statement and replace

the word INSERT by DELETE:

DELETE IS_ENROLLED_ON RELATION { TUPLE { StudentId SID('S3'),
CourseId('C2') } } ;

So Example 6.16 is actually shorthand for

DELETE COURSE COURSE WHERE CourseId = CID('C3'") ;
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Of course, if there are any students recorded as enrolled on a course that is being withdrawn, then those
records are surely obsolete. To update the database to reflect the real world change and also ensure that it
satisfies the foreign key constraint involving IS ENROLLED ON and COURSE, we clearly need to delete
all the enrolments on C3 as well as deleting the course itself. We can do that by taking care to delete the
enrolments first (a course is allowed to exist with no enrolments) and then delete the course. But there’s
a better solution, avoiding the need for care over the order of events, and having other advantages too.

It is called multiple assignment.

Multiple Assignment

Example 6.17 shows how to delete course C3 and all its current enrolments at a single stroke.

Example 6.17: Withdrawing course C3 and deleting any enrolments on C3

DELETE COURSE WHERE CourseId = CID('C3') ,
DELETE IS ENROLLED ON WHERE CourseId = CID('C3') ;

It might appear at first glance to consist of two DELETE statements, the first of which you would expect
to fail by violating a (foreign key) constraint. On closer inspection you should notice that it is in fact a
single statement, there being only one semicolon. The first invocation of DELETE ends in a comma, not
a semicolon. Now recall that only semicolons denote statement boundaries, and statement boundaries
are the points at which the database is required to be consistent with the database constraint. It is not
required to be consistent at a point indicated by a mere comma—for at such a point any inconsistency

arising would be “visible” only to the DBMS and not to any user.

Separating invocations of update operators—called assigns—by commas to form a single statement is
Tutorial D’s method of expressing multiple assignment. It is important to realize that the individual
assigns are considered to be executed concurrently, in parallel, regardless of the order in which they are
written. This implies that all sources must be evaluated before any assigns are executed. Example 6.18,

containing two statements but three assigns, illustrates this point using simple assigns to integer variables.

Example 6.18: A consequence of simultaneity

X = 1;
= X + 1,
Y := X + 1 ;

The first statement assigns 1 to the variable X. The result of the second statement is then to assign 2 to
both variables, X and Y. If we replace the comma by a semicolon, then instead the result of executing

what now becomes three statements would be to assign 2 to X and 3 to Y.
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Multiple assignment is more than a mere convenience in certain circumstances. Sometimes a problem

arises to which it is the only solution, as shown in the following scenario.

Consider the business of taking purchase orders and delivering the purchased items to customers. Each
purchase item belongs to a particular delivery and each delivery consists of one or more items. Deliveries
are identified by reference numbers. A delivery reference number is attached to each item to identify
the delivery it belongs to. The delivery reference number of an item must be that of a known planned
or completed delivery and every delivery must contain at least one item—consider the consequences if
either of those constraints was not in force. So we have the constraint IS EMPTY ( DELIVERY NOT
MATCHING DELIVERY ITEM ) AND IS EMPTY ( DELIVERY ITEM NOT MATCHING
DELIVERY ). Without multiple assignment we cannot insert a tuple ¢ into DELIVERY unless some
tuple tt, matching ¢, exists in DELIVERY ITEM, but tuple tf cannot possibly existin DELIVERY ITEM
because if it did it would violate the condition IS _EMPTY ( DELIVERY ITEM NOT MATCHING
DELIVERY ). With multiple assignment we can resolve the apparent impasse by inserting into both
relvars simultaneously. Similarly, if a delivery is cancelled we need to delete all the relevant tuples from

both DELIVERY and DELIVERY ITEM simultaneously.
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Transactions

Although multiple assignment is the recommended method of ensuring a database’s consistency and
completeness, commercial DBMSs at the time of writing do not support it. Instead, they allow several
update statements to be batched together to form a transaction, whereby the effects of each individual
update statement are visible to the user who submits them to the DBMS, but are not visible to other users
until the transaction is committed—if indeed it is ever committed, for the user also has the option to cancel
the transaction, thus undoing all the updates submitted up to the point of cancellation. Typically, the
database is permitted to be inconsistent with its declared constraints until the transaction is committed.
In SQL, for example, the user may specify that the checking of certain specified constraints be deferred

until either (a) that deferment request is cancelled or (b) the transaction is committed.

Tutorial D supports transactions but does not support the deferring of constraint checking. Thus, developers
of applications and user-defined operators are able to use program code that assumes that the database is
consistent whenever that code is executed. Transactions are now just a convenience, whereby the database,
though always consistent, might sometimes be incomplete—though this incomplete state is visible only to

the user owning the transaction. The following statements constitute Tutorial D’s support for transactions:

o BEGIN TRANSACTION is self-explanatory, but note that transactions can be “nested”—a
transaction can be started within an existing transaction.

o COMMIT commits the updates of the most recently started transaction and ends that
transaction, but those updates become visible to other users only if the transaction in
question is an outermost one (i.e., not nested inside another transaction).

o ROLLBACK cancels the updates of the most recently started transaction and ends that
transaction. The cancelled updates include any resulting from some nested transaction that

has been committed.
I have now described everything needed for definition, manipulation, and maintaining the integrity of a

relational database. Just one more topic needs to be addressed to complete the account of the foundational

theory for such databases: database design.
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EXERCISES

1. (Repeated from the body of the chapter).
a) An implication of KEY { ALL BUT } is that no other key can possibly exist for the
relvar it applies to. Why is this so?
b) An implication of KEY { } isthat no other key can possibly exist for the relvar it
applies to. Why is this so?

2. Suppose the relvar definition for COURSE is extended to include an attribute
MaxExamMark, whose value in each tuple is the maximum mark obtainable for that
course’s exam. {StudentId, CourseId} isa foreign key in EXAM MARK, referencing
IS _ENROLLED_ON. A constraint is needed to ensure that no student is awarded a mark
greater than the relevant maximum.

a) Write a Tutorial D CONSTRAINT statement to address this requirement, where the
constraint condition is an invocation of IS EMPTY.
b) Complete the following statement to make it equivalent to the one you wrote for part (a):
CONSTRAINT ... AND(EXAM MARK, ... ) ;

3. Now suppose that instead of there being a recorded maximum mark of each exam the
maximum score for each question in each exam is recorded in the following relvar:
VAR EXAM QUESTION BASE RELATION { CourselId CID,
Question# INTEGER, MaxMark INTEGER }
KEY { CourseId, Question# } ;

For each course, the exam questions are supposed to be numbered sequentially, starting at 1.

a) Write a Tutorial D CONSTRAINT statement to address this requirement.

b) Suppose the questions are subdivided into parts, a, b, ¢ and so on, up to a maximum of
six parts, and maximum marks are given for each part rather than for each question.
Again, the parts for each question must be “numbered” sequentially, starting at a. Write a
Tutorial D CONSTRAINT statement to address this requirement.

c) Devise shorthands, in the style of Tutorial D, for expressing constraints of the kinds

found in your solutions to a. and b.

4. Using Rel, with the suppliers-and-parts database set up for the Rel exercises given at the end
of Chapter 4, write Tutorial D integrity constraints to express the following requirements:
a) Every shipment tuple must have a supplier number matching that of some supplier tuple.
b) Every shipment tuple must have a part number matching that of some part tuple.
c) All London suppliers must have status 20.
d) No two suppliers can be located in the same city.
e) At most one supplier can be located in Athens at any one time.
f) There must exist at least one London supplier.
g) The average supplier status must be at least 10.

h) Every London supplier must be capable of supplying part P2.

Download free eBooks at bookboon.com



7 Database Design I
Projection-Join Normalization

7.1 Introduction

Relational database design takes a statement of requirements and produces a database definition to
address those requirements. The definition consists of a collection of relvar and constraint definitions.

As Chris Date puts it in [9] under the heading logical database design:

Ideally, the goal is to produce a design that’s independent of all considerations having to do
with either physical implementation or specific applications—the latter objective being desirable
for the good reason that it’s generally not the case that all uses to which the database will be

put are known at design time.

The production and format of a precise and complete requirements statement are beyond the scope of
this book. Suffice it here just to say that the statement usually takes the form of a collection of “business
rules” and/or some kind of “entity/relationship model” presented in some agreed notation. Business rules
are expressed in this chapter for some examples, in an intuitive and somewhat informal style thought to
be good enough for the purpose at hand. The fact is, though, that even when the requirements are 100%
clear there are usually some design choices to be made: in other words, there can be several significantly

different designs to implement any given requirement statement.

What common kinds of alternative might the designer encounter and in each case what considerations
should guide the designer in arriving at the preferred choice? In this book I describe and discuss several
common alternatives under the headings Projection-join Normalization (this chapter), Group-Ungroup
and Wrap-Unwrap Normalization, Restriction-Union Normalization, Surrogate Keys, and Representing
“Entity Subtypes”. The reader should be warned, though, that relational database theory has very little
science to offer regarding database design, and what little science it does offer is almost entirely within the
first of these topics, projection-join normalization, to which the rest of this chapter is devoted. For the others,

described in Chapter 8, we can do no more than make note of the choices and suggest some guidelines.

7.2 Avoiding Redundancy

A common issue in database design concerns redundancy—recording the same information more than
once. For example, redundancy is exhibited in this book’s very first example of a relation: Figure 1.2 in
Chapter 1, where the information that student S1’s name is Anne is recorded twice. The explanation
accompanying this figure indicates that the relation is the current value of a relvar named ENROLMENT,
so we can safely conclude that the possibility of redundancy is a consequence of the database design—a

student’s name is recorded as many times as that student has concurrent enrolments.
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As a rule of thumb we assume that redundancy is normally to be avoided. Intuitively it seems untidy
and possibly inefficient to record the same fact more than once. Stating S1’s name repeatedly for
each course she is enrolled on obviously entails more work than stating it just once. What’s more, we
have to be certain she is given the same name, spelled the same way, every time, and making sure of
that entails more work too. In Chapter 4, Figure 4.1 shows an alternative design involving the two
relvars, IS CALLED and IS ENROLLED_ ON. In that preferred design the redundant repetitions of
students’ names are avoided: each name is recorded just once, in IS CALLED. In the same chapter,
Section 4.4 JOIN and AND, I showed that the relation denoted by the expression IS CALLED JOIN
IS ENROLLED ON is the very one shown in Figure 1.2. Later in the same chapter, Section 4.6
Projection and Existential Quantification, Example 4.5, I showed how we can use projection to
decompose ENROLMENT into those two relvars, IS CALLEDand IS ENROLLED ON. (Please ignore,
for the moment, the fact that Figure 4.1 actually includes some information—that student S5 is called
Boris—not represented in Figure 1.2, rendering the designs not exactly equivalent. I'll come back to this
point later.) Each projection gives us (a) the heading for one of those relvars, and (b) the initial value for
the same relvar. So, we have two designs—Ilet’s call them Design A and Design B—that are equivalent
in the following sense: if Design A (single relvar) is chosen, then the current value for Design B can
always be obtained using projection, whereas if Design B is chosen, then the current value for Design
A can always be obtained using JOIN. Projection-join normalization concerns design choices of that

particular kind.

When something can be expressed in two or more equivalent ways, we sometimes have reason to prefer
just one of those ways. For example, the fraction expressing “two thirds” is normally written as % in
preference to, say, 6. The term normal form refers to such preferences (canonical form means the same

thing, but normal form is the term conventionally used in the relational database context).

Various normal forms have been defined for relvars. When a proposed relational database design includes
a relvar that does not satisfy a certain normal form, normalization is the process by which that relvar
can be replaced by one or more different relvars that do satisfy that normal form and still meet the
original requirements. Projection-join normalization is a process whereby normal forms are obtained
using projections, such that joins can be used to reverse the process. We need to understand in what
circumstances we can indeed use projections for this purpose, in what circumstances it is advantageous
to do so, and in what circumstances it might be better not to do so. We turn to these issues in the

next section.
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7.3 Join Dependencies

A given relvar r can be decomposed into two or more relvars to yield an equivalent design only when r
is subject to a special kind of constraint called a join dependency. Figure 7.1 depicts the current value of a
relvar, WIFE OF HENRY VIIT thatis subjectto such a constraint. (Students of English history during
the period of the Tudor dynasty, 1485-1603, are traditionally taught the mnemonic, “divorced, beheaded,
died, divorced, beheaded, survived” by which to remember what became of each of King Henry VIII’s

Six wives.)

WIFE_OF_HENRY_VIII

Wife# FirstName LastName Fate

1 Catherine of Aragon divorced
2 Anne Boleyn beheaded
3 Jane Seymour died

4 Anne of Cleves divorced
5 Catherine Howard beheaded
6 Catherine Parr survived

Figure 7.1: Example to illustrate join dependency
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Note first of all that this design does not exhibit redundancy. The example is given merely to
introduce you to the concept of join dependency, using a simple case to illustrate it. The predicate for
WIFE OF HENRY VIITis“The firstname of Henry VIII's wife number Wife# is FirstName and her last
name is LastName and Fate is what became of her” The appearances of the word “and” in this predicate

indicate that it is “decomposable” into two or more simpler predicates. For example:

1. “The first name of Henry VIII's wife number Wife# is FirstName.

2. “The last name of Henry VIIT’s wife number Wife# is LastName and Fate is what became
of her”

The relations corresponding to predicates 1 and 2 are shown, in Figure 7.2, as the current values of

relvars W_FN (wives’ first names) and W LN F (wives’ last names and fates), respectively.

W_FN W_LN_F

Wife# FirstName Wife# LastName Fate

1 Catherine 1 of Aragon divorced
2 Anne 2 Boleyn beheaded
3 Jane 3 Seymour died

4 Anne 4 of Cleves divorced
5 Catherine 5 Howard beheaded
6 Catherine 6 Parr survived

Figure 7.2: A decomposition of WIFE_OF_HENRY_VIII

Note that

e« W FN = WIFE OF HENRY VIII {Wife#, FirstName}
« W IN F = WIFE OF HENRY VIII {Wife#, LastName, Fate}
« WIFE OF HENRY VIII = W FN JOIN W LN F

The constraint determining that WIFE OF HENRY VIII can be decomposed and subsequently
recomposed in these ways is a join dependency. The join dependency can be defined as shown in

Example 7.1,

Example 7.1: A constraint condition expressing a join dependency

WIFE OF HENRY VIII = WIFE OF HENRY VIII {Wife#, FirstName}
JOIN
WIFE OF HENRY VIII {Wife#, LastName, Fate}

178
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but, as we shall see, that constraint is actually implied by the KEY specification given in the relvar
definition forWIFE OF HENRY VIIT andsodoesnotneed tobe spelled outagain. A join dependency,
commonly abbreviated JD, is any condition that can be expressed in this form, denoting that a given
relvar is at all times equal in value to the join of two or more projections of its current value. Using the

conventional notation for join dependencies we can write the one in Example 7.1 as follows:
* { { Wife#, FirstName }, { Wife#, LastName, Fate } }

For convenience, I shall refer to the components of a JD—{ Wife#, FirstName } and { Wife#,
LastName, Fate }in this example—as projections, and the number of projections as the degree of
the JD. This one is of degree 2 and is therefore called a binary JD. The symbol * is often used in textbooks
for the join operator. Because the operands of a JD are projections they are indicated by lists of attribute
names enclosed in braces; those operands are in turn enclosed in braces because in general a join
dependency can involve any number of projections and, thanks to the commutativity and associativity

of the join operator, the order in which those projections are written is insignificant.

Note that the formulation shown for one of the JDs to which WIFE OF HENRY VIIT issubject makes
no mention of that relvar. Whenever we mention a JD it must be clear from the context to which relvar it
applies. We normally do that by stating whether the given JD holds in that relvar. The JD in our example
does indeed hold in WIFE OF HENRY VIII. By contrast, the JD

* { { Wife#, FirstName }, { LastName, Fate } }

for example, does not hold in that relvar, because the following tuple, among several others, appears in

the join of those two projections but does not appear in the current value of WIFE OF HENRY VIII:

TUPLE { Wife# 2, FirstName 'Anne',

LastName 'Parr', Fate 'survived' }

Note that in the projection over { LastName, Fate } we lose the information that Seymour is the last
name of wife number 3, for example. Conversely, in the join we “gain” the misinformation represented
by those tuples that do not appear in WIFE _OF HENRY VIII.To putit more accurately, the predicate
for WIFE OF HENRY VIII does not apply to the result of this join, so the information represented

is different too. (Exercise for the reader: what predicate does apply to it?)

Note that a JD cannot possibly hold in its applicable relvar, r, unless each attribute of r appears in at least
one of the projections. If that is not the case, then the join of those projections does not have the same

heading as r and therefore cannot be equal to r.
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You have probably noticed that W LN _F, in whose predicate the word “and” still appears, can be further
decomposed. I'll come back to this point in a moment. W_FN, however, cannot be further decomposed.
We say that relvar W_EN is an irreducible relvar. We also say that relvar W _FN is in sixth normal form
(6NF), whereas W LN F is not in 6NF and nor is WIFE OF HENRY VIII. You are right in guessing
from the name, sixth normal form, that other normal forms have been identified, at least five of which
are identified by numbers. In fact several others have been defined around the idea of eliminating certain
JDs, varying according to exactly which particular kinds of JD they eliminate. Fortunately, some of them
can now safely be regarded as preliminary ideas by researchers, later subsumed by more general and
more useful definitions. Nowadays it is sufficient to study just three “JD-eliminating” normal forms. In
this book I refer to them as projection-join normal forms, but please note that the term projection-join
normal form (PJ/NF) is used by some writers—including its originator, Fagin [13]—to refer specifically

to just one of these three (namely, 5NF).

As it happens, 6NF is the strongest projection-join normal form that can be defined, because the only
JDs that can hold in a 6NF relvar are ones that cannot be eliminated at all. 6NF is also perhaps the

easiest to understand because the class of JDs eliminated by it is simple to define, as I will now show.
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Trivial and Nontrivial JDs

6NF doesn't eliminate all JDs. Take W_FN, for example. The following JDs, among others, all hold

inwW_FN:
e * { { Wife#, FirstName }, { Wife# } }
e * { { Wife#, FirstName }, { FirstName } }
e * { { Wife#, FirstName }, { } }
e * { { Wife#, FirstName } }

That last one is a unary JD. Exactly one unary JD holds in every relvar, namely the one whose projection
includes all the attributes. It is of no importance, of course. We admit it as a JD simply to avoid a needless

complication in the definition of that term.

In each of the JDs shown above, one of the projections is the identity projection (i.e., over all the attributes
of the applicable relvar). A moments thought should convince you that a JD involving the identity
projection cannot fail to hold in its applicable relvar. To spell it out, though, in general, if 72 is a projection
of r1, then r1 JOIN r2 is equal to rI; for every tuple of 72 is by definition a subset of some tuple of rI and
therefore matches at least one tuple of r1. Moreover, every tuple 2 of 2, when joined with a tuple ¢1 of
rl, yields that tuple t1. We say, therefore, that a JD that includes the identity projection of its applicable

relvar is trivial. The classification of JDs into trivial and nontrivial ones enables us easily to define 6NF:

Relvar r is in sixth normal form (6NF) if and only if every join dependency that holds in r is trivial.

We will now complete the decomposition of WIFE OF HENRY VIITI into relvars that are all in 6NE

Then we will be able to think about the relative advantages and disadvantages of the two designs.

Further Decomposition of WIFE_OF HENRY VIII

The JD * { { Wife#, LastName }, { Wife#, Fate } } holds in W LN F and is nontrivial.

W LN F can therefore be decomposed as shown in Figure 7.3.

W_LN W_F

Wife# LastName Wife# Fate

1 of Aragon 1 divorced
2 Boleyn 2 beheaded
3 Seymour 3 died

4 of Cleves 4 divorced
5 Howard 5 beheaded
6 Parr 6 survived

Figure 7.3: Further decomposition of WIFE_OF_HENRY_VIII
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AlthoughIdecomposed WIFE OF HENRY VIIT intwo stages,Icouldofcoursehavedoneitinasingle
step. Had I done so, I might have been looking at the following single JD—a ternary JD (having three
projections) that holds in WIFE OF HENRY VIII—in place of the two that governed my previous

two stages:

* { { Wife#, FirstName }, { Wife#, LastName },{ Wife#, Fate } }

Now W LNandW_F are both, like W FN, in 6NE By contrast, WIFE_OF HENRY VIIT isnotin 6NFE
Might it be better to decompose it into those 6NF relvars? We must examine the two designs in detail

to assess the situation and come to a decision.

Assessment of 6NF decomposition

So far we have shown only the structural aspects of two equivalent designs to be considered. Design A

is the single relvar design; Design B uses the three 6NF relvars, W FN, and W LN, and W _F.
Here are the relvar definitions for the two designs:

Design A

VAR WIFE OF HENRY VIII BASE RELATION { Wife# INTEGER,
FirstName CHAR,
LastName CHAR,

Fate CHAR }

KEY { Wife# } ;

Design B

VAR W _FN BASE RELATION { Wife# INTEGER,
FirstName CHAR }
KEY { Wife# } ;

VAR W _LN BASE RELATION { Wife# INTEGER,
LastName CHAR }
KEY { Wife# } ;

VAR W _F BASE RELATION { Wife# INTEGER,

Fate CHAR }
KEY { Wife# } ;
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To assess these alternative designs we need to consider also the constraints that must be applied to those
relvars to complete the designs. Assuming that Design A is correct, we can infer some of the requirements,

which I express as the following business rules:

BR1: Every wife has a wife number.

BR2: No two distinct wives have the same wife number.
BR3: Every wife has a first name.

BR4: Every wife has a last name.

BR5: Every wife has a fate.

BRI, BR3, BR4, and BR5 are implied by the very structure of relvar WIFE OF HENRY VIITI,because
every tuple in the body of a relation has exactly one value for every attribute of that relation, by definition.
BR2 is implied by the specification KEY { Wife# }.But these business rules are not reflected in the
relvar definitions of Design B, apart from BR1. As things stand, the keys defined for the three relvars
prevent any wife from having more than one first name, last name, or fate, but it is possible for a wife
to have a wife number but no first name, or no last name, or no fate. So the “exactly one” stipulations
of BR3, BR4, and BR5 are not met. As for BR2, all we can say is that no two wives with first names
have the same wife number, nor do any two wives with last names, nor do any two wives with fates. To
enforce the given business rules we need a constraint to the effect that every wife number appearing in
any one of those three relvars appears in the other two as well. In Tutorial D we could express that as

shown in Example 7.2.
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Example 7.2: Enforcing BRs 1 to 5 in Design B

CONSTRAINT BRs 1 to 5
W FN { Wife# } = W LN { Wife# } AND
W LN { Wife# } = W F { Wife# } AND
W FEN { Wife# } = W F { Wife# } ;

(Any one of those three conjuncts can of course be omitted as implied by the other two.) It is this
constraint—however it is expressed—that makes Design B significantly more complex than Design A. (It
gives rise to a performance challenge for the DBMS, too. That could perhaps be addressed by provision of
some suitable shorthand but note that in SQL systems, which process foreign key constraints efficiently,
we would need no less than six foreign key definitions, two for each relvar.) There are also unpleasant
implications for certain kinds of update in Design B. To “insert a new wife” or “delete a wife” we need
multiple assignment on all three relvars. That’s not available in existing commercial DBMSs (in 2009)
but the alternative solutions typically provided are no less complicated in their implementation. (Foreign
keys are discussed in Chapter 6, Section 6.4, under the heading Foreign Keys. Multiple assignment is
described in Section 6.5 of that chapter, under the heading Multiple Assignment.)

It seems there is little to commend Design B for the particular example at hand, apart, perhaps, from
the fact that an update affecting just one of the three relvars will not interfere with other users’ access

to the other two while that update is in process.

Now, the foregoing analysis assumes that Design A and Design B are both correct. But imagine the
database existing during the lifetime of King Henry VIII, the designer having chosen Design A. Anne
Boleyn has lost her head and the king has just married Jane Seymour, which wife must now be added
to the database. What value is to be given for the attribute Fate? “To be determined, perhaps? Or the
empty character string? In either case, the predicate I gave for WIFE OF HENRY VIIT,including the

words “and Fate is what happened to her”, is no longer applicable. Nor is business rule BR5.

Perhaps a separate relvar for recording the wives’ fates, where known, would be a good idea after
all, allowing us to record Jane Seymour’s wife number, first name, and last name without recording
anything regarding the fate of her marriage. Suddenly I am touching on one of the most difficult and
controversial issues surrounding relational database theory and practice: the so-called problem of
“missing information”, addressed in SQL by the introduction of an innocent-looking little thing that
actually undermines the very foundations of relational theory by allowing this thing—called NULL—to
appear in place of an attribute value (NULL is not a value and consequently gives rise to some very
strange phenomena when it appears in place of a value). Further discussion of NULL is beyond the scope
of the present book but is dealt with in detail in its companion book SQL: A Comparative Survey. Here
we assume that a correct design obviates the need to worry about “what to put when there is nothing
to put” by not requiring anything to be put! But even then there are choices to consider and these are

discussed in Chapter 8, Section 8.4, Representing “Entity Subtypes”.
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Returning to the subject of projection-join normalization, I have explained 6NF and noted that relvar
WIFE OF HENRY VIIT isnotin 6NF but, assuming itis a correct design for the given requirements,
is very likely to be preferred to a 6NF design. Although certain nontrivial join dependencies hold in it,
it exhibits no redundancy. By contrast, ENROLMENT does exhibit redundancy as already noted (Anne’s
name is recorded more than once) and you have already seen how decomposition, into IS CALLED
with attributes StudentId and Name and IS ENROLLED_ ON with attributes StudentId and
CourseId, addresses that problem. Because this decomposition was available to us, we can conclude

that the two projections by which it was achieved constitute a JD that holds in ENROLMENT:

* { { StudentId, Name }, { StudentId, CourseId } }

If decomposition is desirable for ENROLMENT but not for WIFE OF HENRY VIII, then there
must be some difference in kind between the JD that holds in ENROLMENT and those that hold in
WIFE OF HENRY VIII.Itis this difference that allows us to define a projection-join normal form
that is not as strong as 6NF but is much more desirable, in general, than 6NE. You won't be surprised to
hear that it is called fifth normal form (5NF).

7.4 Fifth Normal Form

WIFE OF HENRY VIIT isin5NE Soare IS CALLED and IS ENROLLED_ ON, but ENROLMENT
is not. What is special about that ternary JD that holds in WIFE OF HENRY VIII? Here it is again,

with its distinguishing feature shown in bold:

* { { Wife#, FirstName }, { Wife#, LastName }, { Wife#, Fate} }

There are two significant points to be made about the attribute Wife#:

a) It appears in each projection of the JD.
b) {Wife# }isakey of WIFE OF HENRY VIIT (in fact the only key).

By contrast, consider * { { StudentId, Name }, { StudentId, CourseId } }, the JD holding in
ENROLMENT. Although its projections have an attribute, StudentId, in common, that common
attribute does not constitute a key of ENROLMENT, and that is what gives rise to the redundancy in this
particular case. Although student identifier S1 is always paired with the same name, Anne, that pairing
can appear in several different tuples in the current value of ENROLMENT. By contrast, the pairing of a
particular wife number with a particular first name, last name, or fate, cannot possibly appear in several
different tuples of WIFE_OF HENRY VIII,because itisnoteven possible for the same wife number to
appear in more than one tuple, thanks to the constraint implied by the specification KEY { Wife# }.

These observations, among others, lead us to a definition for fifth normal form.
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Relvar ris in fifth normal form (5NF) if and only if every join dependency that holds in r is
implied by the keys of r.

WIFE OF HENRY VIIT satisfies this definition because every JD that holds in it is one in which every
projection either includes its only key, {Wi fe#}, or is redundant. (A projection is redundant if all of its
attributes are included in one of the other projections. For example, every trivial JD contains at least
one redundant projection. You can verify for yourself that if a redundant projection is removed from
a JD that holds, then the resulting JD also holds.) In other words, given the complete relvar definition
for WIFE OF HENRY VIIT in Tutorial D, thus knowing only its attributes and its single key, we can

write down every JD that holds in it:

o *{{Wife#, FirstName}, {Wife#, LastName }, {Wife#, Fate}}
o *{{Wife#, FirstName, LastName },{Wife#, Fate}}
o *{{Wife#, FirstName, Fate },{Wife#, LastName }, {Fate}}

e ...and so on

(The third one listed above includes a redundant projection, {Fate}.)
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For convenience in the discussion that follows, I use the following terms:

« rogue JD for a JD that does not satisfy the condition given in the foregoing definition of 5NF
o 5NF relvar for a relvar that is in 5NF

o non-5NF relvar for a relvar that is not in 5NF

Now, a 5NF relvar is guaranteed never to exhibit redundancy of the kind that can be eliminated by
projection-join normalization. Contrary to what I wrote here in the first edition of this book, non-5NF
relvars do exist that are redundancy-free (i.e., do not exhibit redundancy), but the discovery of such
relvars didn’t come about until after 2009 when the first edition was written. For present purposes, let
us assume, albeit falsely, that 5NF is both sufficient and necessary for avoiding such redundancy. It
is generally held that we should aim for designs consisting exclusively of 5NF relvars, because of an
overarching need to avoid redundancy. In any case, if there appear to be good reasons for not going to
that extreme, the designer should be well aware of the potential costs involved in violating 5NE. Let us
therefore have a closer look at the non-5NF relvar ENROLMENT to discover the problems caused by the

redundancy it exhibits. Here is a relvar definition for it:

VAR ENROLMENT BASE RELATION { StudentId SID,
Name NAME,
Courseld CID }
KEY { StudentId, CourseId } ;

We can infer from this definition that a student, enrolled on a course, has exactly one name in connection
with that enrolment. But actually there is a business rule to the effect that every student has exactly
one name, regardless of enrolments. Student S1 is always called Anne. That rule is exactly what the
JD * {{ StudentId, Name }, { StudentId, Courseld } } really means, and we cannot infer that
JD from the relvar definition—the attributes and key—alone. To show that we can infer it from the
given business rules, consider what happens if S1’s name is recorded as Anne for course C1 but Ann
(without the “€”) for course C2. In that case the tuples TUPLE { StudentId SID('S1'), Name
NAME ('Anne') }and TUPLE { StudentId SID('S1'), Name NAME ('Ann') } both
appear in the projection ENROLMENT { StudentId, Name} and therefore the following tuples both

appear in the join of that projection with ENROLMENT { StudentId, CourseId}:

TUPLE { StudentId SID('S1l'), Name NAME ('Anne'),
CourseId CID('C1l'") }

TUPLE { StudentId SID('S1l'), Name NAME ('Ann'),
CourseId CID('C1l'") }
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But the second of those does not appear in ENROLMENT. Therefore the constraint defined by that JD
does not hold after all and the business rule it would express is violated. To enforce that business rule

we need to define an appropriate constraint. Following Example 7.1 we could write, in Tutorial D,

CONSTRAINT JD in ENROLMENT
ENROLMENT = JOIN { ENROLMENT {StudentId, Name},
ENROLMENT {StudentId, CourseId} } ;

or, less directly,

CONSTRAINT JD_in_ENROLMENT
COUNT (ENROLMENT {StudentId, Name} =
COUNT (ENROLMENT {StudentId} ;

meaning that there are as many distinct <StudentId, Name> pairs appearing in ENROLMENT as
there are distinct StudentId values, which implies that no StudentId value is paired with more

than one Name value.

Now, look at the database design for the decomposition into IS CALLED and IS ENROLLED ON.

First, its structural part:

VAR IS_CALLED BASE RELATION { StudentId SID,
Name NAME }
KEY { StudentId } ;

VAR IS_ENROLLED_ON BASE RELATION { StudentId SID,
CourselId CID }
KEY { StudentId, CourselId } ;

We must check the business rules that (presumably) led to the single relvar design, with its constraint
JD _in ENROLMENT, to determine what additional constraints need to be included in the new design.

Here are those business rules:

BR1: An enrolment is uniquely identified by a student identifier and a course identifier.
BR2: A student enrolled on a course has exactly one name for that enrolment.
BR3: All enrolments for the same student have the same name for that student.

BR4: Every student whose name is recorded is enrolled on at least one course.
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Now, how does our proposed new design address those business rules?

BRI is implied by KEY { StudentId, Courseld } in the declaration for
IS _ENROLLED_ON (and is in any case implied by the heading of that relvar, there being
no non-key attributes).
For BR2 we need an additional constraint to ensure that at no time does any tuple in
IS ENROLLED_ON fail to match some tuple in IS CALLED. That’s a foreign key
constraint on StudentIdin IS ENROLLED ON, which we might express in
Tutorial D as
CONSTRAINT Student must have a name

IS EMPTY ( IS ENROLLED ON NOT MATCHING IS CALLED ) ;
For BR3 we need to consider the join of IS CALLED and IS ENROLLED_ON. Thanks
to the key constraint expressed by KEY { StudentId } in the declaration for
IS _CALLED, that join is always “many-to-one’, as opposed to “many-to-many”, because no
tuple in IS _ENROLLED_ ON can possibly match more than one tuple in IS _CALLED. So
the new design does already enforce BR3.
For BR4 we need a constraint similar to that for BR2 but “in the other direction”, so to
speak, to ensure that at no time does any tuple in IS CALLED fail to match some tuple in
IS ENROLLED ON:

CONSTRAINT Student must be enrolled on some course

IS EMPTY ( IS CALLED NOT MATCHING IS ENROLLED ON ) ;

(This is not a foreign key constraint. Why not?)

The constraints for BR2 and BR4 together imply that at all times the set of Student Id values appearing
in IS CALLED must be equal to the set of StudentId values appearing in IS ENROLLED ON, so

we could address those two constraints quite simply like this:

CONSTRAINT Being enrolled equivalent to having a name
IS CALLED { StudentId } = IS ENROLLED ON { StudentId } ;

Such a constraint is called an equality dependency.
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As we have already seen, equality dependencies are a bit of a challenge for the DBMS and in most
commercial DBMSs existing in 2009 it cannot even be expressed. However, in those same DBMSs the
JD constraint required for ENROLMENT cannot be expressed either, so neither of the designs is fully
implementable in the current technology! (Workarounds for SQL databases, using triggered procedures,
are described in depth in reference [14].) If we can express both of those constraints, then, on the
evidence so far, there doesn’t seem to be a lot to choose between the two designs and our decision is
more likely to be based on how well the DBMS supports multiple assignments; if we can’t express the
constraints, then the stated requirements cannot be met and we will have to compromise (and perhaps
rely on application code to maintain integrity). But efficacy of constraint checking isn’t the only criterion
to guide our choice. What if, for example, student S1’s name is incorrectly recorded as “Ann” and needs
to be corrected to “Anne”? In the unnormalized design that correction will entail updates to several
tuples in ENROLMENT, whereas in the 5NF design just one tuple in IS CALLED is affected. On the
other hand, a query to give the names of all the students enrolled on course C1 is simpler to express
(and might run faster) in the unnormalized design. A frequent complaint about rigorous application of
5NF is that the decomposition causes too many joins to have to be used in queries. Advocates of 5SNF
respond by pointing out that the query to find the names of all the students is simpler to express (and

might run faster) in the 5NF design!
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It does seem that the 5NF design has a certain aesthetic appeal, giving a structure that is reduced to simpler
terms and is thus in a sense more flexible. Also, an abiding motivation for the relational approach is that
in principle the database designer need not anticipate the kinds of queries that will be presented to the
DBMS. A 5NF design “levels the playing field” in keeping with that principle. Moreover, the discussion
so far has been based on the assumption that the single relvar design, from which we inferred those

business rules, is correct, an assumption we might well question.

In particular, we might question BR4: “Every student whose name is recorded is enrolled on at least one
course”. Does the university really require every student to be always enrolled on at least one course,
even during the annual long vacation? What harm comes if that rule is relaxed? In that case the single
relvar design becomes incorrect—and in any case we still need that complex and difficult constraint to
express the JD. With the 5NF design the difficult equality dependency becomes replaced by a simple
foreign key constraint to address BR2 and BR3.

Now, if 5NF is indeed a goal to be earnestly pursued, then some questions arise. How does the designer
discover that a relvar under consideration is not in 5SNF? How do we spot the rogue JDs—the nontrivial
ones that do not arise simply as a consequence of keys? Well, there is an algorithm, given by Fagin (see
the annotation for reference [13] in Appendix A) for determining whether a given JD is implied by the
keys of the relvar to which it pertains, but as I mentioned earlier, some 30 years after the publication of
reference [13] 5NF was discovered to be “too strong” for the purpose at hand. The details are in reference
[8], which defines “Essential Tuple Normal Form” (ETNF). ETNF is both sufficient and necessary for
the purpose at hand. Its definition is too complicated to be repeated here but happily it turns out to be
easier to test for than 5NE, as we shall eventually see (the test depends on Boyce-Codd Normal Form,
which is defined in Section 7.8).

Tests on JDs are all very well, but how can we determine the nontrivial JDs that hold in a proposed
relvar? You have to examine the business rules and that’s not always an easy task. However, a certain
special kind of JD has been identified such that when it holds in a given relvar # r is not in ETNF (and
therefore not in 5NF). Not all ETNF-violating JDs are of this kind, but in practice most of them are. If
we can eliminate such JDs we stand a reasonable chance of achieving ETNF by that action alone and
any remaining rogue JDs should be quite easy to detect. A useful theory has been developed around this

special kind of JD, making it possible to mechanize certain important aspects of relational database design.

This special kind of JD is one that is a direct consequence of another kind of constraint to which a relvar
might be subject, called a functional dependency. There now follows a comparatively long dissertation on
the concept—functional dependence—that surrounds functional dependencies, and, arising from that
concept, keys. You need a good grasp of these topics before we can return to this special class of JD and

discover the normal form that arises from it.
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7.5 Functional Dependencies

Here again is the rogue JD that holds in ENROLMENT:
* { { StudentId, Name }, { StudentId, CourselId } }
Note the following points of significance:

1. Itis a binary JD.

2. One of its two projections involves every attribute of a key of the relvar in which it holds.

3. The other projection, {StudentId, Name}, does not involve every attribute of that key (if
it did, the JD would not be a rogue JD).

4. The relvar, IS CALLED, arising from that other projection has a key that is a proper subset
of its heading. (Strictly speaking a heading is a set of <attribute name, type name> pairs, but
it is common practice to use the term to refer to a set of unaccompanied attribute names

when no confusion can arise.)
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Consider this last point. We can tell by inspection that it must hold, because otherwise IS CALLED
would represent a many-to-many mapping between student identifiers and names: the same student
could have several names and several students could have the same name, in which case {StudentId,
CourseId} would not be a key of IS ENROLLED ON. We can also tell that the proper subset in
question must be {Student Id}. If instead it were {Name}, then again it would be possible for the same
combination of StudentIdand CourseId values to appear in more than one tuple of ENROLMENT,
violating its given key constraint. So, in both designs we can say that no StudentId value appears
in combination with more than one Name value in the relvar whose heading contains both of those
attributes. In one of those relvars, ENROLMENT, the same combination can appear more than once; in
the other, IS CALLED, it cannot. The condition concerning student identifiers and names that holds

in both of these relvars is called a functional dependency, denoted thus:

{ StudentId } — { Name }

The arrow in this notation is often pronounced “determines’, so the whole expression can be pronounced
“StudentId determines Name”—and so it does: given a student identifier we can determine the name
that goes with it because there is only one such name. However, we shall soon see that “determines”

doesn’t always work so well and sometimes we have to fall back on just “arrow”.

The reader with a mathematical bent will recognize that the set of <StudentId, Name> pairs
constituting the body of the projection of ENROLMENT over those two attributes is a function, which
justifies the chosen term, functional dependency. By convention and henceforth in this chapter we
abbreviate it to FD. The FD { StudentId } — { Name } is said to hold in ENROLMENT, also in
IS CALLED. Equivalently, we say that relvars ENROLMENT and IS CALLED each satisfy that FD.

Note that the left-hand side and right-hand side of an FD are both enclosed in braces, signifying that
the enclosed elements constitute a set. The set on the left is called the determinant, that on the right the
dependant. The term dependant is also used for each element of the right-hand side. For an example where
more than one dependant appears on the right we need go no further than WIFE OF HENRY VIII,
in which the FD

{ Wife# } — { FirstName, LastName, Fate }
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holds. Wi fe# determines each of FirstName, LastName, and Fate, so there are three FDs having
the same determinant. Our notation allows them to be expressed as a single FD. A similar observation
does not apply to the determinant. consider EXAM MARK, for example, (Chapter 5, Figure 5.1). Its relvar

definition is

VAR EXAM MARK BASE RELATION { StudentId SID,
CourseId CID
Mark INTEGER '}
KEY { StudentId, CourseId } ;

So the following FD holds in EXAM MARK:

{ StudentId, CourseId } — { Mark }

Now we see why the pronunciation “arrow” is safer in general than “determines”. The pronunciation
“StudentId, CourseIddetermines Mark” doesn’t work so well, but nor does making the verb plural
to match its subject: “StudentId, CourseId determine Mark” The latter pronunciation might lead
the listener to conclude, incorrectly, that StudentId determines Mark and CourseId determines
Mark. For each pairing of a Student Id value witha CourseIdvaluein EXAM MARK there is exactly
one mark, but the same student can obtain different marks for different courses and the same course
can have different marks for different students. So neither of the FDs { StudentId} — { Mark } and
{ CourseId} > {Mark } holds in EXAM MARK.

In the following formal definition for FD, note the parallels with the definition of superkey given in

Chapter 6, Section 6.4 under the heading Keys. It uses both relational projection and tuple projection

Definition of FD

Let A and B be subsets of the heading of relvar r. Then the FD A — B holds in r if and only
if, at all times, if tuples t7 and t2 both appear in the body of the projection {AUB}, and the
projection t1{A} is equal to the projection t2{A}, then t1 = t2 (they are the same tuple)

Given a set of FDs assumed to hold in relvar r, we can infer further FDs that must also hold in r. The
inference rules used for this purpose are known as Armstrong’s Axioms because they first appeared in
a paper by Armstrong [2]. One way of expressing these rules is as follows. Let A, B, and C be arbitrary
subsets of the heading of r. Then we have the following theorems (using the symbols “U” and “-” for set

union and set difference, respectively):
1. Reflexivity: If B is a subset of A, then A — B

2. Augmentation: If A — B, then AUC—=BUC
3. Transitivity: f A — Band B— C, then A — C
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From these three we can derive:

Self-determination: A — A

Decomposition: If A — B and C is a subset of B, then A — Cand A — B-C
Union: If A - Band A — C, then A -=BUC

Composition: f A — Band C— D, then AUC—=BUD

N e

All of these except the first and fourth can be seen as special cases of
8. Unification: If A — Band C — D, then AU (C—B) - BUD

Given a relvar r and a set S of FDs assumed to hold in r, theorems 1 and 8 alone are sufficient to determine

all the FDs in r that are implied by S. That set of FDs is called the closure of S, written as S*.
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Interesting Special Cases of FDs

In the following discussions, to save repetition, all FDs mentioned are assumed to hold in relvar r
unless otherwise stated, and the symbol C refers to the set of all the FDs that hold in 7. Now, in general
C contains FDs that are redundant in the sense that they are implied under the given inference rules
by other FDs in C. For example, C might contain {a} — {b}, in which case it must also contain {a} —
{a, b}. We say that if SI and S2 are sets of FDs and every FD in S2 is implied by those in SI, then SI is a
cover for S2. We are interested in finding proper subsets S of C where S is a cover for C and there is no
proper subset of S that is also a cover for C. In that case, to enforce all the FDs in C it is sufficient for the
DBMS just to enforce those in S—the others will all be enforced “automatically’, as a logical consequence.
Consideration of the special classes of FD that now follow helps us to find such sets. Most of the terms

defined for these special classes are used conventionally in the literature, but I add some of my own.

Empty dependants

Because the determinant and dependant of an FD are both sets, we have to consider the possibility of
either or both being the empty set, { }. Theorem 5, Reflexivity, tells us that for every subset A of the
heading of , A — { } holds in 7. In particular {} — {} holds in r. If we eliminate from C all the FDs

having empty dependants, then the resulting subset is clearly a cover for C.

Empty determinants

Much more interesting is the case, { } — B, where B is nonempty. This FD is satisfied only when each
attribute a of B is such that a has the same value in each tuple of r—in other words, a is constant in r. If
you need to be convinced of this fact, check it using the formal definition for FD given earlier. When A
is the empty set, t1{A} and t2{A} are both the 0-tuple. It follows that every tuple of r has the same value
(the 0-tuple) for the determinant of the FD and must therefore have the same value for the dependant.

Note that if some FD in C has an empty determinant and we eliminate from C all the FDs having empty

determinants, then the resulting subset is not in general a cover for C.

Left-irreducible FDs

A — Bis aleft-irreducible FD if and only if there is no proper subset A’ of A such that A’— B also holds.
Conversely, if there is such a proper subset, then it is left-reducible. If we eliminate from C all those that
are left-reducible, then from the resulting subset S we can recover C by application of Theorem 2, Left

Augmentation. Thus, S is a cover for C.

Right-irreducible FDs

A — Bis aright-irreducible FD if and only if B contains at most one attribute. If B contains more than
one attribute, then the FD is right-reducible. If we eliminate from C all those that are right-reducible, then

from the resulting subset S we can recover C by application of Theorem 6, Union. Thus, S is a cover for C.
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Right-extendible FDs

A — B is a right-extendible FD if and only if there is some proper superset B’ of B such that A — B’
also holds. If we eliminate from C all those that are right-extendible, then from the resulting subset S

we can recover C by application of Theorem 3, Decomposition. Thus, S is a cover for C.

Overlapping FDs

The FD A — B is overlapping if A N B (where “N” denotes set intersection) is nonempty; otherwise it
is non-overlapping. If we eliminate from C all those that are overlapping, then from the resulting subset

S we can recover C by application of Theorem 6, Union. Thus, S is a cover for C.

Trivial FDs

The FD A — B is trivial if B is a subset of A; otherwise it is nontrivial. Note that if B is empty, then
A — B is trivial but non-overlapping. If we eliminate from C all those that are trivial, then from the
resulting subset S we can recover C by application of Theorem 5, Reflexivity. (Note that this elimination

subsumes the elimination of FDs with empty dependants.) Thus, S is a cover for C.

Interesting Cases of Sets of FDs

We are interested in sets S of FDs, where no proper subset of S is a cover for the closure S* of S. In general

there can be many such subsets of S, of which two kinds are particularly useful.

Irreducible covers

A set S of FDs is irreducible if and only if it satisfies the following three conditions:

1. Every FD is S is right-irreducible.
2. Every FD is § is left-irreducible.

3. No proper subset of S is a cover for the closure S* of S.

If S does satisfy those three conditions, then it is an irreducible cover for S*. Note that condition 3
implies that S contains no overlapping FDs, no trivial ones, and none that are implied by others under
Theorem 4, Transitivity. Some texts—[3], for example—use the term nonredundant for sets that satisfy

condition 3 but do not necessarily satisfy conditions 1 and 2.

Minimal covers

Let SI be an irreducible cover for S*. Let the set S2 be derived from SI as follows. Wherever two or
more FDs in SI have the same determinant A, replace those FDs by the single FD A — B, where B is
the union of the dependants of those FDs. Then S2 is a minimal cover for S*. (Alert: some texts use this

term for irreducible covers.)
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For example, the set { { StudentId } — { Name } } is both an irreducible cover and a minimal
cover for all the FDs that hold in ENROLMENT. Note in particular that the FD { StudentId,
CourseId } — { Name } follows, under Theorem 8, Unification, from { StudentId } — { Name }

(given) and { CourseId} — { CourseId } (self-determination).

7.6 Keys

You might wish to read again the material under the heading Keys in Chapter 6, Section 6.4, which

gives the following definitions:

Definitions for superkey and key
Let K be a subset of the heading of relvar r. Then Kis superkey for r if and only if, at all times, if tuples t1
and t2 both appear in the body of r, and the projection t7{K} is equal to the projection t2{K}, then t1 = t2

(i.e., they are the same tuple).

Kis a key for rif and only if (a) K is a superkey for r and (b) no proper subset of K is a superkey for r.
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Appealing to FDs we can now give rather more concise definitions:

Let K be a subset of the heading H of relvar r. Then:

Kis a superkey of r if and only if FD K — H holds in r
Kis a key of r if and only if FD K — H is left-irreducible and holds in r

When a key is declared to the DBMS, only its uniqueness property is subsequently checked and
maintained. Its irreducibility has to be the database designer’s responsibility, for at any time r might
be assigned a value that satisfies a putative key constraint implied by some proper subset of the
declared key. For example, it is probably not a design error if at some point in time no two tuples in
IS _ENROLLED_ ON have the same CourseId value, even though the real world situation reflected by
that state is perhaps a little surprising (no more than one student on any of the courses). On the other
hand, it definitely would be a design error to include Mark along with StudentId and CourseId
in the declared key for EXAM MARK, allowing the same student to score several different marks in the

Same €xam.

It must be emphasized that a key is a set of attributes, not an attribute per se. EXAM MARK has just one
key, consisting of two attributes, StudentIdand CourseId.Itisa common error to misunderstand
the definition and refer to the attributes constituting the key as if each one were itself a key. In general
a relvar can have several keys. For example, employees are identified in the company by their employee
number but the database might record their national insurance number too, in some relvar that therefore
has at least two keys, perhaps {Employee#} and {NatIns#}. Note the braces. Even though those two
keys are both singleton sets, to omit the braces would (a) be sloppy and (b) perhaps foster the common

misunderstanding I mentioned. On the other hand, the term “key attribute” is acceptable and useful.

Chapter 6 draws attention to two special cases of keys: the entire heading as a key, and the empty set
as a key. Now you can see how the significance of the empty key arises from that of FDs having empty

determinants.

7.7 The Role of FDs and Keys in Optimization

This section is a digression, inserted here to show you that database design is not the only area in which
the theory of functional dependence is applicable. I take the opportunity to mention one other important
application of the theory. It concerns optimization that a relational DBMS is expected to undertake in the

interests of efficient evaluation of relational expressions, a process commonly called query optimization.
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Just as the value assigned to a variable, by definition, varies from time to time, so also, as a consequence,
does the relation denoted by a relational expression that references one or more relvars. Therefore our
definition of “key” can be generalized to apply to relational expressions as well as to relvars. For example,
given that { StudentId, CourselId}is a key of EXAM MARK, we can conclude (for example) that
{ StudentId } is a key of (for example) EXAM MARK WHERE CourseId = CID('C1l'").
Constraining CourseId values to be constant in the result of that expression means that the FD {} —
{ CourseId } holds in it, because application of Theorem 8, Unification, to { } = { CourseId}and
{StudentId,CourselId}—{Mark}yields{StudentId}—{Mark,CourseId}.A subsequent
projection over just StudentId and Mark (likely to be given because the constant CourseId value
is known) can be performed efficiently just by dropping the CourseId attribute with no need to incur
the overhead of detecting redundant duplicate tuples—there cannot be any—and eliminating them. If

the DBMS can detect projections that preserve at least one key of the operand, then it can evaluate those

projections more efficiently.
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Now consider the expression EXAM MARK JOIN COURSE. Because { CourseId } is a key of
COURSE and CourseId is a common attribute for the join, there cannot be more than one matching
tuple in COURSE for any given tuple of EXAM MARK. When the DBMS, evaluating this join, discovers
a matching COURSE tuple for a given EXAM MARK tuple, it doesn’t need to look for another one:
thanks to its knowledge of keys, derived from its application of FD theory, it knows there cannot be
one—and looking for something that doesn’t exist usually takes rather longer than looking for and

finding something that does!

That completes the discussion of functional dependence and we can now return to projection-join
normalization, that special class of JDs that are implied by FDs. In so doing we will discover the normal
form that arises from it, called Boyce-Codd normal form after Raymond F. Boyce and E.F. Codd who
jointly first defined it, in [6].

7.8 Boyce-Codd Normal Form (BCNF)

Boyce-Codd normal form (BCNF) is important because (a) in practice, relvars that are in BCNF but
not in 5NF are few and far between, and (b) we have a procedure for deriving, from a relvar that is not
in BCNE an equivalent set of relvars that are in BCNF, and that procedure can be automated (there is

no known procedure for guaranteeing 5NF). BCNF is defined as follows.

Relvar r is in Boyce-Codd normal form (BCNF) if and only if and only if every functional
dependency that is implied by the keys of r.

Equivalently:

Relvar r is in Boyce-Codd normal form (BCNF) if and only if the determinant of every
nontrivial functional dependency that holds in r is a superkey of r.

That second definition effectively gives us a convenient test for an FD that isn't implied by keys. (The
word nontrivial is needed here because all trivial FDs hold and don't all have superkeys as determinants.

A trivial FD is “implied by keys” simply because it holds by virtue of itself alone.)

Recall that an FD A — B is trivial if and only if B is a subset of A. To test for BCNF it is sufficient to
consider just the left-irreducible, non-overlapping FDs, whose determinants must then be not merely
superkeys, but keys of r. For convenience, I use the term rogue FD for a left-irreducible, non-overlapping

ED that holds in r but whose determinant is not a key of .

I introduced the subject of functional dependence by showing the special kind of JD from which a
corresponding FD can be derived. In practice the database designer will be looking for FDs that cause
BCNF to be violated. When such an FD is discovered, the designer needs to be able to derive the

corresponding JD to determine the decomposition needed to rectify the situation.
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Let A, B and C be subsets of the heading of relvar r such that every attribute of r appears in at least
one of those subsets and the FD A — B holds in . Then, thanks to a theorem due to Heath [15], we
can conclude that the JD *{AUB, AUC} holds in . Heath’s theorem applies to relations, not relvars. It
effectively states that as a consequence of the FD A — B holding in the current value of r, that value
is equal to the join of its projections on AUB and AUC. As that FD must hold in every value that r can
take, we can conclude that the relvar itself is indeed subject to the JD *{AUB, AUC}.

Use of Heath’s theorem is advocated in many texts for determining decompositions to yield relvars that

are all in BCNE. In particular, if the following conditions on A, B, and C all hold, then r is not in BCNF:

« Every attribute of r is an element of exactly one of A, B, and C.
o Aisnotakeyofr

* B is nonempty.

o The FD A — B is nontrivial and left-irreducible.

In that case A — B is a rogue FD in r and a decomposition of r into relvars s with heading AUB and ¢
with heading AUC can be considered. If that decomposition is taken, then A — B holds in s rather than

r and, because A is a key of s, is no longer a rogue FD.

For example, consider ENROLMENT again. Then A = {StudentId}, B={Name}, and C={CourseId},
giving us the decomposition we adopted into IS CALLED with heading {StudentId, Name} and
IS ENROLLED ON with heading {StudentId, CourseId}. In this case the two relvars resulting
from the decomposition are both in BCNE, but it does not follow in general that s and ¢ are in BCNF,
for there might be other rogue FDs in r, propagated in s or t and remaining as rogues. In any case, when
there is more than one rogue FD in r, decomposition into s and ¢ is not always a well-advised step to
take towards a design in which each relvar is in BCNE, as you will see in the next section, Dependency

preservation.

It is easy to see that ENROLMENT is not in BCNE. The determinant, { StudentId }, of the only FD in
its minimal cover of FDs is a proper subkey and therefore by definition not a superkey of ENROLMENT.
Such FDs formed a basis for the definition, by Codd, of second normal form (2NF). Relvars in 2NF are not
necessarily in BCNF but it was thought that decomposition to “just 2NF” might be a useful first step in a
procedure to derive a complete BCNF design. Codd also defined third normal form (3NF), which covered
some additional rogue FDs not covered by 2NE 3NF was at one time thought to eliminate all cases of
redundancy arising from FDs but Boyce showed that conclusion to be incorrect—hence the eventual arrival
of BCNE Some texts still advance 2NF and 3NF as useful steps on the way to BCNF but the rationale

for that escapes the present author and this book shall have no more to say about those normal forms.
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Dependency preservation

Consider relvar SCDF with attributes S (for student), C (for course), D (for department), and F (for
faculty). Throughout the following discussion relvar names reflect the relevant attribute names in similar
fashion, allowing a relvar’s heading to be inferred from its name for convenience. Assume that the set
{{c} — {D}, {D} — {F}} is a minimal cover for the FDs in SCDF. Then {S,C} is a key of SCDF (exercise:
prove that) and SCDF is clearly not in BCNE. If we apply Heath’s theorem to the FD {C} — {D}, we will
decompose SCDF into relvars CD and SCF with keys {C} and {S,C}, respectively. CD is in BCNF but
SCF is not. Applying Heath’s theorem to the rogue FD in SCF, we obtain relvars CF and SC, both in
BCNE. We now have three relvars, all in BCNE, but no relvar whose heading includes both D and F. As
a consequence, the constraint represented by the FD {D} — {F} cannot be expressed as a constraint on
a single relvar in this BCNF design—the FD has been “lost” in the decomposition. On the other hand,
if instead we start by applying Heath’s theorem to the FD {D} — {F}, then the resulting relvars are DF
and SCD with keys {D} and {S,C}, respectively. The FDs of the given cover are both “preserved” in this
decomposition, {D} — {F} in DF and {C} — {D} in SCD. DF is in BCNF but SCD is not. Applying Heath’s
theorem to the rogue FD in SCD, we obtain relvars CD and SC, both in BCNE This time, both of the

original FDs are preserved in the decomposition.
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A conclusion from the foregoing observations is that if repeated application of Heath’s theorem is the
procedure adopted for achieving BCNF designs, then sometimes one has to take care of the order in which
binary decompositions are taken if one wishes to avoid needlessly complex constraints. The problem is
neatly avoided, where possible, in the following procedure (a simplification of one given by Date in [9],
Chapter 12), which guarantees to preserve all FDs but in some comparatively rare cases yields relvars

that are still not in BCNE Let r be a relvar and let S be a minimal cover for the FDs that hold in r. Then:

1. Initialize D to the empty set.

2. For each FD X — Y in §, form the relvar XY with heading XUY and replace D by the union
of D and {XY}.

3. If no relvar in D includes in its heading some key of r, then let K be a relvar whose heading
consists of the attributes of some key of 1, arbitrarily chosen, and replace D by the union of
D and {K}.

Under Date’s procedure each FD in S is guaranteed to be preserved in some relvar in D. However, there
might be some relvars in D that are still not in BCNF—we will come to the circumstances in which these

can arise later. To derive a complete BCNF design from D we must add the following step:

4. If D contains any relvars that do not satisfy BCNE, then:

a) Let T be any one of those relvars, let H be the heading of T, and let X — Y be a rogue
FDin T.

b) Replace T in D by two relvars, T° resulting from the projection of T over XUY and
T” resulting from the projection of T over H-Y (an application of Heath’s Theorem).
Superkeys of T that do not contain any attribute of Y are superkeys of 7" and X is a
superkey of T".

c) Declare constraints as needed to compensate for any lost FDs.

d) Repeat Step 4.

All of the relvars produced by this algorithm are guaranteed to be in BCNE, but unfortunately they
are not guaranteed to be in 5NF or even ETNF—we will look at some examples later in this chapter
(Section 7.9, JDs Not Arising from FDs).

One could also work from an irreducible cover instead of a minimal one. In an irreducible cover every
FD has exactly one attribute on the right-hand side (the dependant). Thus, if we work from an irreducible
cover, every resulting relvar that is in 5NF will also be in 6NE. As the discipline of projection-join
normalization sometimes leads the designer to question the given assumptions (such as requiring every
student to be enrolled on at least one course), perhaps that approach should be considered: start with
an irreducible cover and add Step 5, as follows, noting, however, that this one does not obviously lend

itself to mechanization.
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5. If certain relvars in D have some key in common, consider joining some of them together

with a view to eliminating constraints needed to express equality dependencies.

For example, application of Date’s procedure, as stated, to WIFE OF HENRY VIII would result in
no change: the relvar is already in BCNF (and, as it happens, 5NF). Applying it to an irreducible cover
instead of a minimal cover would yield the three relvars shown in Design B, discussed in the section
following Figure 7.3, headed Assessment of 6NF Decomposition. Application of the suggested Step 6
might indicate combining W FNand W LNasW FN LN but keeping W F separate.

Now we must look at the circumstances under which Step 4 is needed, and why an FD is inevitably lost

in that step.

FD Loss Sometimes Inevitable

Consider the relvar WXYZ with attributes W, X, Y, and Z. Assume that {{W,x} — {Y,z}, {Y} = {X}} isa
minimal cover for WXYZ. Then {W,X} and {W,Y} are both keys of WXYZ (exercise: prove that claim), and
WXYZ is not in BCNF because the determinant {Y} is not a superkey. Date’s procedure (Steps 1 to 3)
yields the BCNF relvar XY with key {Y} but retains the non-BCNF relvar WXYZ. In Step 4 we decompose
WXYZ into WXZ and XY, now both in BCNE, but then we lose the FD {W,x} — {Y}. We will need to
declare a constraint to the effect that {W,X} is a key of WXZ JOIN XY.

For a realistic example exhibiting this phenomenon, consider payments made against bank accounts
by use of debit cards. Payments are identified within a particular account by transaction numbers, so
payments by debit card might be recorded in a relvar with attributes Account#, Transaction#,
Card#, Payee, and Amount. {Account#, Transaction#} is a key for this relvar but so is
{Transaction#, Card#} because we have {Card#} — {Account#}. (There might be several

distinct cards for the same account: for example, if it is a joint account.)

In general, if A, B, C, and D are subsets of the heading of relvar r and FDs A4B—C4D and C—B hold
in r, then A4B and A4C are both keys of . If each attribute of r appears in exactly one of A, B, C, and

D, A and B are each nonempty, and either C or D is nonempty, then
a) C, a proper subkey, is the determinant of a nontrivial FD and r is therefore not in BCNE.

b) Steps 1 to 3 will not result in a BCNF decomposition of .
¢) The nontrivial FD AUB—CUD is lost in the decomposition resulting from Step 5.
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One might even question the claim that Steps 1 to 4 guarantee to preserve FDs. Consider the relvar SCF
with attributes S, C, and F, standing for student, course, and faculty as before. This time, however we
have the FD {S} — {F} in addition to {C} — {F}. Our minimal cover is therefore {{S} — {F}, {C} —= {F}},
from which we can conclude that {S,C} — {F} holds in SCF and {S,C} is a key of SCF (exercise:
prove this). Application of Step 2 yields relvars SF and CF and Step 4 yields SC. Have we lost the FD
{s,C} — {F}, which, although not present in the given minimal cover, is a consequence of that cover?
In one sense, no, because it holds in JOIN{SF, CF, SC}, but the fact remains that the decomposition
allows a student to be enrolled on a course offered by a faculty other than the student’s faculty unless
some constraint is declared to make that impossible. With relvar SCF that was not possible. If we
consider UNION{JOIN{SC,SF}, JOIN{SC,CF}} we can discover a sense in which that FD has indeed
been lost, for that can yield a relation in which it does not hold. As with the 6NF decomposition of
WIFE OF HENRY VIII we have a situation where a constraint implied by the very structure of a

relvar has to be stated explicitly when a decomposition is taken.

EXPERIENCE THE PO\
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Another point about the BCNF decomposition of SCF is that if the single relvar design is a correct
implementation of the requirements, then we still have redundancy after the decomposition! For on

that assumption of correctness we can infer the following business rules:

BR1: A student can be enrolled on several courses.
BR2: Several students can be enrolled on a course.
BR3: At least one student is enrolled on every course.
BR4: Every student is enrolled on at least one course.
BR5: Every student belongs to exactly one faculty.
BR6: Every course is offered by exactly one faculty.

BR7: Students can only be enrolled on courses offered by their own faculty.
Normalizing to BCNF will yield the design shown in Example 7.3.

Example 7.3: Decomposing SCF into SF, CF, and SC

VAR SF BASE RELATION { S SID,
F CHAR }
KEY { S } ;

VAR CF BASE RELATION {

Q

CID,
CHAR }
KEY { C } ;

]

VAR SC BASE RELATION { S SID,
C CID }
KEY { S, C } ;

CONSTRAINT Only known students can be enrolled
IS EMPTY ( SC NOT MATCHING SF ) ;

CONSTRAINT Only known courses can be enrolled on
IS EMPTY ( SC NOT MATCHING CF ) ;

CONSTRAINT Every Student Enrolled
IS EMPTY ( SF NOT MATCHING SC ) ;

CONSTRAINT At least one student on each course
IS EMPTY ( CF NOT MATCHING SC ) ;
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CONSTRAINT Same Faculty for Student and Course
IS EMPTY ( JOIN { SC, SF RENAME ( F AS Sfac ),
CF RENAME ( F AS Cfac ) }
WHERE NOT ( Cfac = Sfac ) ) ;

But we can obtain a student’s faculty from SC JOIN CF,so SF is completely redundant and the design

can be simplified as shown in Example 7.4.

Example 7.4: Decomposing SCF into just CF and SC

VAR CF BASE RELATION { C CID,
CHAR }
KEY { C } ;

T

VAR SC BASE RELATION { S SID,
C CID }
KEY { S, C } ;

CONSTRAINT Only known courses can be enrolled on
IS EMPTY ( SC NOT MATCHING CF ) ;

CONSTRAINT At least one student on each course
IS EMPTY ( CF NOT MATCHING SC ) ;

CONSTRAINT FD student id determines faculty
COUNT ( ( CF JOIN sC ) { s } ) =
COUNT ( ( CF JOIN sC ) { s, F } ) ;

Alternatively, we can obtain the faculty offering a course from SF JOIN SC, allowing us to eliminate

CF, as shown in Example 7.5.

Example 7.5: Decomposing SCF into just SF and SC

VAR SF BASE RELATION { S SID,
CHAR }
KEY { S } >

r

VAR SC BASE RELATION { S SID,
C CID }
KEY { S, C } ;
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CONSTRAINT Only known students can be enrolled
IS EMPTY ( SC NOT MATCHING SF ) ;

CONSTRAINT Every Student Enrolled
IS EMPTY ( SF NOT MATCHING SC ) ;

CONSTRAINT FD course id determines faculty
COUNT ( ( SF JOIN SC ) { C } ) =
COUNT ( ( CF JOIN SC ) { C, F } ) >

So, if those business rules are really correct, then we have a choice of BCNF designs, one of which
(Example 7.3) involves redundancy (though not redundancy resulting from FDs) and the other two
of which appear to be equal in merit (and significantly less complicated than Example 7.3). But rules
BR3 and BR4 are surely open to question. If BR3 is correct but BR4 is not—it is possible, after all, for
a student to exist who isn’t enrolled on any course—then we can choose between Example 7.3, without
the constraint Every Student Enrolled, and Example 7.4. If BR4 is correct but BR3 is not—it
is possible, after all, for a course to exist on which no student is enrolled—then we can choose between
Example 7.3, dropping At least one student on each course, and Example 7.5. But if
BR3 and BR4 are both incorrect, then we have to go for the simplification of Example 7.3 shown in

Example 7.6.
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Example 7.6: Simplification of Example 7.3, relaxing some constraints

VAR declarations as in Example 7.3
CONSTRAINT Only known students can be enrolled
IS EMPTY ( SC NOT MATCHING SF ) ;
CONSTRAINT Only known courses can be enrolled on
IS EMPTY ( SC NOT MATCHING CF ) ;
CONSTRAINT Same Faculty for Student and Course
IS EMPTY ( JOIN { SC, SF RENAME ( F AS Sfac ),
CF RENAME ( F AS Cfac ) }
WHERE NOT ( Cfac = Sfac ) )

Of course, Example 7.6 still involves some of the redundancy exhibited in Example 7.3. If a student is
enrolled on some courses, then the faculty offering those courses must be that student’s faculty; and if
some students are enrolled on a course, then the faculty offering that course must be the faculty of those

students. If we wish to avoid such redundancy, then the constraints become simpler as Example 7.7 shows.

Example 7.7: Complication of Example 7.6, avoiding redundancy

VAR declarations as in Example 7.3

CONSTRAINT SF only for students not enrolled
IS EMPTY ( SEF MATCHING SC ) ;

CONSTRAINT SC only for courses nobody enrolled on
IS EMPTY ( CF MATCHING SC ) ;

But with that design we cannot even express the constraint requiring students to be enrolled only on
courses offered by their own faculty. Moreover, updating becomes complicated. When a student gets
enrolled on their very first course we have to use multiple assignment to delete a tuple from SF at the
same time as adding one to SC. Similarly, when a course gets its very first enrolment we have to use
multiple assignment to delete a tuple from CF at the same time as adding one to SC. And we have to
reverse those processes when a student disengages from their only remaining course, and when a course

loses its last student.

It seems that redundancy is not something to be avoided at all costs. Sometimes “all costs” do outweigh the
advantages, as would surely be our judgment in the case of Example 7.7. Also, consider how the chosen
design might affect the confidence that users have in the correctness of the database. With Example 7.6
one can be pretty sure of no student/course mismatches on faculty—they could arise only when a student’s
faculty or a course’s faculty is incorrectly recorded in SF or CF. However, redundancy arising from join
dependencies does appear to be worth avoiding, in general, so long as the DBMS lets you declare all the
constraints that are needed. If it doesn't, then perhaps somebody should be complaining—after all, BCNF

and its ramifications have been well understood for over 30 years at the time of writing.
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One little topic remains to be covered before we can leave this chapter: join dependencies that do not
arise from FDs. We haven’t seen any of those yet. There are some, and these are the JDs that can cause
a BCNF relvar not to satisfy ETNF (and 5NF).

7.9 JDs Not Arising from FDs

JDs that do not arise from FDs arise most commonly in “all key” relvars—relvars whose only key consists
of the entire heading, such as IS ENROLLED_ON, for example. A minimal FD cover for such a relvar
is the empty set. For if A, B, and C are subsets of the heading of relvar r and { A — B } (a set consisting
of just one FD) is a minimal cover for #, then AUC must be a key of r and B is nonempty by definition

of minimal cover. If B is nonempty, then AUC is a proper subset of the heading and r is not “all key”.
Clearly, an all-key relvar must be in BCNFE. Now consider Example 7.8

Example 7.8: SCT: a relvar in BCNF but not in 5NF

VAR SCT BASE RELATION { S SID,
C CID,
T CHAR }
KEY { ALL BUT } ;

Predicate: Student S studies topic T on course C.

The minimal FD cover for SCT is empty—no right-irreducible FD holds in SCT whose determinant
consists of two of those three attributes. Yet the JD *{{S,C}, {C,T}} holds in SCT on the assumption (let
us assume it is safe) that a student enrolled on a course is studying every topic covered by that course. In
other words, if student sI is shown by some tuple in SCT to be studying topic ¢ on course c1, and student
s2 is shown by some tuple in SCT to be studying topic 2 on course c1, then a tuple showing student s1
to be studying £2 on course cI must also appear in SCT—otherwise the constraint implied by the given
JD would not be satisfied. A decomposition into relvars SC and CT (with attributes as indicated by the
relvar names, as before) is clearly indicated. SCT is in BCNF but not 5NF. SC and CT are both in 5NE.

Observations similar to those made in connection with decompositions indicated by FDs apply here
too. If the decomposition into SC and CT really is required to be equivalent to SCT, then every course
that covers at least one topic must have at least one student on it, and every course on which at least one
student is enrolled must cover at least one topic. A constraint with condition equivalent to SC{C} = CT{C}
needs to be declared. But the putative business rule giving rise to a requirement for such a constraint
is questionable. Can't a course exist before any students are enrolled on it? Does every course have to
be subdivided into topics? The decomposition allows enrolments and coverage of topics to be recorded

independently of each other—which seems intuitively sensible in any case.
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Now, when BCNF was first introduced it was known that relvars like SCT existed that are in BCNF and
yet exhibit redundancy that can be avoided by taking projections. It was some time later that these cases
were carefully studied, the concept of JD was formulated as a generalization of FD, and even stronger
normal forms were defined to fill the remaining gaps left by BCNE. As 2NF and 3NF have already been
mentioned as concepts previously essayed but later superseded (by BCNF), you must be wondering
about the apparent numerical gap between 3NF and 5NE. Well, SCT is in fact in violation of 4NF as well
as 5NE Observe that the JD *{{S,C}, {C,S}} that causes SCT to violate 5NF is a binary JD in particular.
It is because that JD is binary that SCT violates 4NF. 4NF was originally defined, not in terms of JDs
in general, but in terms of a kind of dependency called multi-valued dependency (MVD), of which a
functional dependency is a special case. However, it turns out that every MVD is equivalent to a certain
binary JD, so we no longer really need to study MVDs—the interested reader can easily find out about
them in the literature. Suffice it here just to mention that 4NF is weaker than ETNF and therefore does

not guarantee to avoid redundancy.

It follows from the definition of 4NF that any relvar that is in 4NF but not 5NF must be subject to a
nonredundant JD of degree greater than two (where a JD is redundant if and only if at least one of its
projections is redundant). Moreover, that JD must be such that it's not merely a consequence of two
or more binary JDs, unlike the nontrivial ternary JD we noted in WIFE _OF HENRY VIII. A relvar
subject to such a JD cannot be decomposed into 5NF relvars by a succession of two-way decompositions—
again, unlike WIFE OF HENRY VIII, which we decomposed in two stages. The study of such relvars
eventually led to 4NF being subsumed by 5NF (and much later by ETNF). We must now complete the
story of projection-join normalization by showing that such JDs (let’s call them irreducible non-binary

JDs), and therefore such relvars, do indeed exist.

Irreducible non-binary JDs

Here again is the definition I gave earlier for fifth normal form:

Relvar r is in fifth normal form (5NF) if and only if every join dependency that holds in r
is implied by the keys of r.

We can retrospectively define 4NF just by inserting the word “binary” immediately before “join” in
the definition of 5NE The JD *{{S,C}, {C,T}} holds in SCT and it is intuitively clear that, given that the
only key of SCT is the entire heading, we cannot deduce from that fact alone that this JD holds (as is
confirmed by application of the algorithm given under reference [13] in Appendix A).

To discover a case of “4NF but not 5NF”, we need to find a relvar that is subject to an irreducible non-

binary JD. Well, consider Example 7.9, a relvar used by the university library to record which books are

recommended by which lecturers for which topics on which courses.
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Example 7.9: LBTC: a relvar to illustrate irreducible JDs

VAR LBTCS BASE RELATION { L LID,
B ISBN,
T CHAR,
C CID }
KEY { ALL BUT } ;

Predicate: Lecturer L recommends book B for topic T on course C.

The minimal FD cover for LBTC is empty—no right-irreducible FD holds in LBTC whose determinant

consists of three of those four attributes.
Suppose a business rule is applicable, stating that if

o alecturer recommends a certain book at all, and
o the book covers a certain topic, and

o the lecturer in question teaches that topic on a certain course,

then it follows that that lecturer recommends that book for that topic on that course. In that case the
ternary JD *{{L,B},{B,T},{L,T,C}} holds in LBTC, but no nontrivial binary JD holds in it: LBTC is in
4NF but not in 5NF, and a three-way decomposition into LB, BT and LTC is indicated.
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Note the difference in kind between the ternary JD *{{L,B},{B,T},{L,T,C}} and the one we found holding
in WIFE_OF HENRY VIII:

* { {Wife#, FirstName}, {Wife#, LastName}, {Wife#, Fate} }

First, note that application of Fagin’s algorithm shows that this JD is “implied by the keys” of WIFE OF
HENRY VIITI and so does not give rise to a violation of 5NF. Secondly, we can take the union of any
two of those projections to form a nontrivial binary JD that also holds in WIFE OF HENRY VIII,

for example:

* { { Wife#, FirstName }, { Wife#, LastName, Fate } }

Now, the JD *{{L,B},{B,T}{L,T,C}} in LBTC arose from a certain assumed business rule. Variations on
that assumption lead to different JDs, necessitating different decompositions. For example, the business

rule might instead state that if

o alecturer recommends a certain book at all, and
 the book covers a certain topic, and

o the topic is included in a certain course,

then it follows that that lecturer recommends that book for that topic on that course. In that case the

ternary JD *{{L,B},{B,T},{T,C}} holds in LBTC and a decomposition into LB, BT, and TC is indicated.

Or perhaps the business rule states, more strongly, that if

o alecturer recommends a certain book at all, and
 the book covers a certain topic, and
o the topic is included in a certain course, and

o the lecturer teaches on that course,
then it follows that that lecturer recommends that book for that topic on that course. In that case the
quaternary JD *{{L,B},{B,T},{T,C},{L,C}} holds in LBTC (even though no ternary JD holds) and a

decomposition into LB, BT, TC, and LC is indicated.

Or perhaps the quinary JD *{{L,B},{B,T},{L,T},{T,C},{L,C}} holds, requiring the lecturer not only to

teach the relevant course but also to teach the relevant topic (though not necessarily on that course).

Download free eBooks at bookboon.com



Finally, what if the rule, albeit quite unreasonable, were that if a book covers a certain topic and that
topic is included in a certain course, then it can be assumed that every lecturer recommends that book
for that topic on that course. Then the JD is *{{L},{B,T,C}} and the join is in fact a Cartesian product—
we might call the JD a “times dependency”. We are led to the observation, interesting from a theoretical
point of view, that even a binary relvar can be subject to a nontrivial join dependency. Suppose, for
example, that a certain insurance company offers a product that insures its policy holders for driving in
every country in the European Union. Then we don't need a relvar that pairs every policy holder with

every EU member state!

Why ETNF is preferred

Considering the large number of JDs that might need to be examined in connection with relvars of
even quite small degree, we can be grateful to the science offered by functional dependency analysis for
giving us ways of getting to grips with the vast majority of them. It seems that when a BCNF design is
achieved, no algorithmic procedure has yet been devised to yield a further decomposition that guarantees
5NE But what about ETNF? It turns out that, although, as I stated earlier, the definition of ETNF is too
complicated for this book, there is in fact a simple test for it, an equivalent definition that reference [8]
calls a “syntactic characterization”. At last we have covered all the material that is needed to understand

this definition, so here it is:

Relvar r is in essential tuple normal form (ETNF) if and only if r is in BCNF and some
component of every nontrivial join dependency that holds in ris a superkey of r.

As you can see, it is somewhat similar to the second definition I gave for BCNF:

Relvar r is in Boyce-Codd normal form (BCNF) if and only if the determinant of every
nontrivial functional dependency that holds in ris a superkey of r.

Recall that under Heath’s theorem, if A, B and C are subsets of the heading of relvar r such that every
attribute of r appears in at least one of those subsets, then the FD A — B holding in r implies that the JD
*{AUB, AUC} holds in 7. If A is a superkey of r, then that FD satisfies BCNF and that JD satisfies ETNE.

By the way, it is also shown in [8] that if A4B is a superkey of r and JD *{AUB, AUC} holds, then FD
A — B holds. In other words, if we extend Heath’s theorem to include a statement of the superkeys of
the projections mentioned in the JD, then the converse also holds. Most textbooks tell you, correctly,

that the converse of Heath’s theorem as stated does not hold.

ETNF doesn’t guarantee 5NF, but we don’t need 5NF for avoiding the kind of redundancy in question
here. ETNF is sufficient (and necessary!). To obtain an ETNF decomposition of a given relvar we apply
the procedure for obtaining BCNF relvars and then look for nontrivial JDs that are not implied by FDs.
If we find one in which no component is a superkey, then we have an ETNF violation on our hands and

decompose accordingly, repeating the process until all relvars are in ETNF.
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Isn’t there a INF to precede 2NF?

I have described, or at least mentioned, projection-join normal forms numbered from 2 to 6 that, among
others, have been defined over the years, but surely the numbering doesn't start at two? What happened
to first normal form, 1NF? That NF has indeed been defined but it is not a projection-join normal form

and so does not belong in this chapter. It is discussed in the first section of Chapter 8.

EXERCISES

1. (Repeated from the body of the chapter). The predicate for WIFE OF HENRY VIII
is “The first name of the Wife#-th wife of Henry VIII is FirstName and her last name
is LastName and Fate is what happened to her” Write an appropriate predicate for the
following expression:

WIFE OF HENRY VIII { Wife#, FirstName }
JOIN
WIFE OF HENRY VIII { LastName, Fate }
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. Consider the following declarations:
VAR Cl1 EXAM MARK BASE
INIT ( EXAM MARK WHERE CourselId = CID('C1l'") )
KEY { StudentId } ;
CONSTRAINT Cl only
AND ( Cl EXAM MARK, CourselId = CID('Cl'") )
a) Explain why C1 EXAM MARK is not in BCNE
b) Assume that similar relvars are defined for every course, except that this time there are
no CourseId attributes. Describe how a query could be expressed to give the course
identifier and mark for every exam taken by student SI.
. In Section 7.5 of the chapter, under the heading Functional Dependencies, eight theorems
are given concerning FDs. Taking the first three as axioms, prove theorems 4 to 8.
. (Repeated from the body of the chapter). Consider relvar SCDF with attributes S (for
student), C (for course), D (for department), and F (for faculty). Assuming that the set
{{c} — {D}, {D} — {F}} is a minimal cover for the FDs in SCDF, prove that {S,C} is a key of
SCDEF.
. (Repeated from the body of the chapter). Assume that {{W,x} — {Y,Z}, {Y} = {X}} isa
minimal FD cover for the FDs in relvar WXYZ. Prove that {W,X} and {W,Y} are both keys of
WXYZ.
. The heading of relvar R1 consists of attributes named a, b, ¢, d, e, £, g, and h. The
following set of FDs is a cover for those that hold in R1:

FD1: {a,b} — {c}
FD2: {a,p} — {d}
FD3: {b} = {e}
FD4: {c} = {£}
FD5: {g} — {n}
FDeé: {d} = {b, e}

a) Describe the single change required to derive an irreducible cover from the given set.

b) Describe the single change required to derive a minimal cover from your answer to a.

c) Explain why R1 is not in Boyce-Codd normal form (BCNF).

d) Decompose R1 into an equivalent set of BCNF relvars. Name your relvars R2, R3,
and so on and for each one list its attribute names and state its key(s). For example:
R3{c,d,e} KEY{d} KEY{c,e} if you think this relvar with those two keys is part

of the solution.
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7. Write a complete Tutorial D definition for the database concerning payments made against
bank accounts, described in Section 7.8, Boyce-Codd Normal Form (BCNF). Include any
other kinds of transaction you can think of in addition to those mentioned in Section 7.8—
for example, you might wish to include payments into the accounts as well as payments out.
Include also relvars to record details of accounts, customers, and debit cards. Write down
business rules, in the style adopted in the chapter, stating the assumptions on which your
design is based.

8. Based on your experiences with Exercise 7, suggest enhancements to Tutorial D to make it
easier to express any constraints you declared that struck you as being of a common enough
kind to warrant an additional shorthand.

9. (For students familiar with SQL). Consider the following SQL definitions:

CREATE TABLE SF ( StudentId CHAR(4),
Faculty VARCHAR(50),
PRIMARY KEY ( StudentId )
UNIQUE ( StudentId, Faculty ) ;
CREATE TABLE CF ( Courseld CHAR(4),
Faculty VARCHAR (50),
PRIMARY KEY ( CourseId )
UNIQUE ( Courseld, Faculty );
CREATE TABLE SCF ( StudentId CHAR (4),
CourseId CHAR(4),
Faculty VARCHAR (50),
PRIMARY KEY ( StudentId, CourselId ),
FOREIGN KEY ( StudentId, Faculty )
REFERENCES SF ( StudentId, Faculty ),
FOREIGN KEY ( Courseld, Faculty )
REFERENCES CF ( Courseld, Faculty ) ;
a) What problem was the designer solving here?
b) What possible problem remains in this solution?

c) Describe and comment on the particular features of SQL that make this solution possible.
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8 Database Design Il: Other Issues

8.1 Group-Ungroup and Wrap-Unwrap Normalization
Preliminary remarks

I should make it clear right away that to most people the term “normalization”, in the context of databases,
means projection-join normalization specifically. But the term does seem to be equally appropriate in
connection with other kinds of design choice, hence my decision to use it in the first two sections of

this chapter.

I promised a discussion of 1NF in this section. It is here, but later.

360°
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Some examples in this chapter refer to the relvars COURSE and EXAM MARK introduced at the beginning

of Chapter 5. Their current values are repeated here in Figure 8.1.

COURSE EXAM_MARK
Courseld Title Studentld Courseld Mark
@ Database S1 C1 85
c2 HCl S1 c2 49
a Op systems S1 a 85
c4 Programming S2 1 49

S3 c3 66
S4 C1 93

Figure 8.1: Current values of relvars COURSE and EXAM_MARK
And here again are the relvar definitions for COURSE and EXAM MARK:

VAR COURSE BASE RELATION { CourselId CID, Title CHAR }
KEY { CourseId };
VAR EXAM MARK BASE RELATION { StudentId SID, CourseId CID,
Mark INTEGER }
KEY { StudentId, CourselId };

Group-ungroup normalization

In Chapter 5, Example 5.12 illustrates the Tutorial D operator GROUP. The expression EXAM MARK
GROUP { StudentId, Mark } AS ExamResult, operating on the current value of EXAM

MARK, yields the relation shown in Figure 5.6, repeated here as Figure 8.2 for convenience:
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Courseld ExamResult
C1
Studentld | Mark
S1 85
S2 49
S4 93
Cc2
Studentld | Mark
S1 49
C3
Studentld | Mark
S3 66

Figure 8.2: A relation derived from EXAM_MARK by grouping

Recall also that we can reverse the process by use of UNGROUP. Thus, a relvar defined as in Example 8.1
might be considered as a valid alternative to EXAM MARK, but note the constraints needed to make the

“grouped” design genuinely equivalent.

Example 8.1: Alternative design for exam marks, using a relation-valued attribute

VAR C_ER BASE
INIT ( EXAM_MARK GROUP {StudentId, Mark} AS ExamResult )
KEY { CourselId } ;

CONSTRAINT At least one mark per course
IS EMPTY ( C ER WHERE IS EMPTY (ExamResult ) )

CONSTRAINT At most one mark per student per course
IS EMPTY ( C ER WHERE COUNT (ExamResult{StudentId}) <
COUNT (ExamResult) );

CONSTRAINT Courseld foreign key
IS EMPTY ( C_ER NOT MATCHING COURSE ) ;

CONSTRAINT StudentId foreign key
IS EMPTY ( ( C_ER UNGROUP ExamResult )
NOT MATCHING IS CALLED ) ;

(The definition of relvar C_ER above is able to omit the type specification because in Tutorial D the
declared type of a variable can be omitted when an INIT specification is included. The declared type

of the variable is then that of the specified expression.)

Download free eBooks at bookboon.com



An Introduction to Relational Database Theory Database Design Il: Other Issues

The first of those two constraints reflects the fact that EXAM MARK by itself cannot accommodate a
course for which nobody sat the exam. It would probably make better sense to disregard that putative
requirement and drop the constraint. The second constraint is a key constraint on the attribute values for
ExamResult, alogical consequence of KEY { StudentId, CourseId } specified for EXAM MARK.
The KEY shorthand could be considered for relation-valued attributes of relvars but it is not included in
Tutorial D, one reason being that such a design is in general contraindicated and should be discouraged.

Here are some points against it:

1. The particular grouping chosen is arbitrary. Why not group on { CourseId, Mark } instead?

2. The constraints are more complicated, even if we drop the one requiring ExamResult
values to be nonempty.

3. Updating can be particularly awkward. Consider how to write a Tutorial D UPDATE
statement to change student S1’s mark in course C1. Consider how to write an INSERT
statement to record that mark in the first place.

4. The playing field for queries, as with non-5NF relvars, is not level. True, some aggregation
queries are slightly simplified (try obtaining the average exam mark for each course), but
many others become quite complex unless a preliminary invocation of UNGROUP is injected

(try obtaining all of student S1’s exam marks).
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In short, the asymmetric structure illustrated in Example 8.1 leads to asymmetric queries, asymmetric

constraints, and asymmetric updates.

Now, C_ER is in 5NE as you can easily verify, and it exhibits no redundancy. But see, in Figure 8.3,
what happens if we apply a similar treatment to our original non-5NF relvar, ENROLMENT, having the
attribute Name in place of EXAM MARK’s Mark, giving the relvar C_ES with relation-valued attribute
EnrolledStudents.

Courseld EnrolledStudents
C1

Studentld Name

S1 Anne

S2 Boris

S4 Devinder

Cc2
Studentld | Name
S1 Anne

C3
Studentld | Name
S3 Cindy

Figure 8.3: C_ES, derived from ENROLMENT by grouping

C_ES is in 5NF but exhibits exactly the same redundancy that ENROLMENT exhibits: in the current

value of C_ES, student S1’s name is recorded twice.

For these reasons, perhaps a group-ungroup normal form (GUNF?) could be usefully defined: relvar r
is in GUNF if and only if no attribute of r is relation valued; but as far as the present author is aware no
such definition is to be found in the literature (apart from this book). Codd proposed a normal form that
he called first normal form (INF), and he included a requirement for INF in his definitions for 2NF,
3NE and subsequently BCNE. Under INF as he defined it, relation-valued attributes were “outlawed”;
that is to say, a relvar having such an attribute was not in INE. However, certain examples do exist where

to avoid a relation valued attribute we have to resort to artifice.

Consider, for example, the relvar, in the catalog, to record the keys of all the relvars in the database. The

straightforward definition, shown in Example 8.2, involves a relation-valued attribute.

Example 8.2: Catalog relvar to record keys of relvars, not in GUNF

VAR RELVAR KEYS BASE RELATION { RelvarName NAME,
Key RELATION { Attr NAME } }
KEY { ALL BUT } ;
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We cannot obtain an equivalent design by ungrouping, because a relvar can have several keys—recall that
a key can have several attributes and note that the same attribute might appear in several keys. A tuple
appearing in the ungrouping, simply pairing relvar name r with attribute name a tells, us only that a is
a member of some key of 7 A truly equivalent design in GUNF is unachievable. The best we can do is
probably as shown in Example 8.3, where we have to introduce an extra attribute. Moreover, this design

does not admit relvars with empty keys (specified by KEY { })—those would have to be represented by

a separate relvar in the catalog.

Example 8.3: Catalog relvar to record keys of relvars, in GUNF

VAR RELVAR KEYS GUNF BASE RELATION { RelvarName NAME,
KeyNumber INTEGER,
KeyAttr NAME }
KEY { ALL BUT } ;

Having to number the keys of each relvar is artificial and burdensome. Most of the noted disadvantages
of relation-valued attributes are not so relevant here because we expect catalog relvars to be maintained
by the DBMS. The natural, non-GUNF design of Example 8.2 is probably preferable.

Now, Codd’s definition of 1NF attempted similarly to outlaw attributes of certain other types too, because
relation types are not the only types that, if used for attributes of relvars, give rise to the problems

identified with relation types, as we shall now see.

Wrap-unwrap normalization

Instead of defining C_ES with its relation-valued attribute EnrolledStudents, derived from
ENROLMENT using GROUP, we could apply WRAP to derive the relvar C_EST, as shown in Example 8.4.

Example 8.4: Alternative design for enrolments, using a tuple-typed attribute

VAR C EST BASE

INIT ( ENROLMENT WRAP {StudentId, Name} AS SIDName )
KEY { CourseId } ;

CONSTRAINT At most one name per student
COUNT ( C_EST UNWRAP SIDName { StudentId, Name } ) =
COUNT ( C_EST UNWRAP SIDName { StudentId } ) ;
CONSTRAINT Courseld foreign key
IS EMPTY ( C_EST NOT MATCHING COURSE ) ;
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LikeC_ER,C_ESTisin 5NFand yetstill exhibits the same redundancy as ENROLMENT. Codd’s definition
of INF precluded tuple-typed attributes too. Perhaps a “wrap-unwrap” normal form (WUNF?) could be
usefully defined along similar lines to the GUNF previously mooted. But even outlawing relation and
tuple types wasn’t sufficient for the purpose at hand. A similar effect can be obtained with user-defined

types, as Example 8.5 shows.

Example 8.5: Alternative design for enrolments, using a user-defined type

TYPE NamedStudent POSSREP { StudentId SID, Name NAME } ;
VAR C_ESUDT BASE RELATION { CourselId CID,
SIDName NamedStudent }

KEY { CourseId } ;

CONSTRAINT At most one name per student

WITH ( X := EXTEND C_ESUDT
{ StudentId := THE StudentId(SIDName) ),
Name := THE Name (SIDName) }

)
COUNT ( X { StudentId } ) = COUNT ( X { StudentId, Name } ) ;

CONSTRAINT CourselId foreign key
IS EMPTY ( C _ESUDT NOT MATCHING COURSE ) ;

Codd attempted to preclude the use of such types in his definition of 1NE but unfortunately this
definition appealed to an unclear notion of atomicity. To be in 1NF, a relvar’s attributes all had to be of
types consisting of “atomic” values only. However, he did not give a clear definition of what it means
for a value to be atomic and we now believe the notion has no absolute meaning. Suffice it just to say
that the relational database designer should generally avoid futile attempts, such as those shown in this
section, to obtain 5NF without achieving the elimination of redundancy that 5NF is supposed to achieve.
In particular, stick, where possible, to GUNF and WUNE
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8.2 Restriction-Union Normalization

If we take two restrictions of relation , say r WHERE cI and r WHERE c2, and every tuple of r satisfies the
combined condition cI OR c¢2, then we have obtained a decomposition of r into two relations, rI and 2,
such that r can be reconstituted by taking the union, rI UNION r2. If r is in fact a relvar and cI and c2 are
such that at all times r must be equal to (r WHERE cI) UNION (r WHERE c2), then a design using rI and
r2 in place of r can be considered. However, having taken note of such possibilities, we must add right
away that such decomposition, sometimes referred to as “horizontal decomposition” (appealing to our
normal tabular depiction of relations), is usually contraindicated. For one thing, the restriction conditions
cI and c2 now have to become declared constraints on relvars rI and r2, respectively. For another, if it
is possible for some tuple of r to satisfy both conditions, then that tuple must appear in both rI and r2,

in which case the proposed decomposition introduces redundancy where there was none to start with.

For an example, consider a horizontal decomposition of EXAM MARK such that we have a separate relvar
for each course. Then our design would have to include the following components for course C1 and

similar components for each other course, as shown in Example 8.6.

o™
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Example 8.6: Separate exam marks relvars for each course

VAR Cl_EXAM_MARK BASE
INIT ( EXAM_MARK WHERE CourseId = CID('C1l'") )
KEY { StudentId } ;

CONSTRAINT Cl only
AND ( Cl EXAM MARK, CourseId = CID('Cl') ) ;

(likewise for all the other courses)

That constraint, C1 only,notonlyensuresthateverytupleinC1 EXAM MARK subsequently satisfies at
all times the restriction condition by which it was originally derived; it also means that C1 EXAM MARK
is not in BCNF! (Exercise for the reader: why is that so?) Now, the designer adopting such a decomposition
might be tempted to dispense with the redundant attribute CourseId in C1 EXAM MARK and all
the other similarly derived course-specific relvars. In that case, CourseId values as such appear
nowhere in the relvars for recording exam marks. How, now, can we express the query to give the course
identifier and mark for every exam taken by student S1, for example? (Exercise for the reader.) And how
can we express a constraint to the effect that each exam mark tuple must relate to one of the tuples in

IS ENROLLED_ ON? (Answer: We can't.)

Although a small amount of research has been undertaken into the issues raised by horizontal
decomposition, no particular restriction-union normal form has been defined and generally accepted
as being useful. Suffice it, here, to say that any design involving two or more relvars with identical
headings—or headings such that one can be derived from the other by invocation of RENAME—should
be treated with suspicion and the possibility of combining those two relvars should be considered. The

combination process might involve the use of EXTEND as well as UNION, as shown in Example 8.7.

Example 8.7: Reconstituting EXAM_MARK

VAR EXAM MARK BASE

INIT ( EXTEND Cl EXAM MARK : { CourseId := ( CID('Cl'") }
UNION
EXTEND C2 EXAM MARK : { CourseId := ( CID('C2') }
UNION

)

8.3 Surrogate Keys

Example 8.8 derives from the author’s personal experience as a tutor for a certain distance learning

establishment.
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Example 8.8: Test paper marks

VAR MAX MARK BASE RELATION { CourselId CID,
Year INTEGER,
TMA# INTEGER,
Question# INTEGER,
Max INTEGER }
KEY { CourselId, Year, TMA#, Question# } ;

VAR STUD MARK BASE RELATION { StudentId SID,
Courseld CID,
Year INTEGER,
TMA# INTEGER,
Question# INTEGER,
Mark INTEGER '}
KEY { StudentId, CourselId, Year, TMA#, Question# } ;

CONSTRAINT FK referencing MAX MARK
IS EMPTY ( STUD MARK NOT MATCHING MAX MARK ) ;

CONSTRAINT Marks no greater than max
IS EMPTY ( ( STUD MARK JOIN MAX MARK )
WHERE Mark > Max ) ;

The abbreviation TMA stands for tutor-marked assignment. Each year, for each course being presented,
a certain number of TMAs are devised as test papers for students. A tutor is assigned to each student and
one of the tutors” duties is to mark their students’ TMA submissions. I imagine Example 8.8 as a possible
design underpinning the process I, as a tutor, have to follow when I do the marking. MAX MARK gives
the score out of which each question must be marked. STUD MARK gives each student’s mark for

each question.

Now, some designers would worry about the repetition of attributes CourseId, Year, TMA#, and
Question# in the two relvars of Example 8.8, these attributes constituting the foreign key defined
by the constraint FK referencing MAX MARK. (In the actual scenario from which this example
was derived the situation is exacerbated because questions are divided into separately marked parts and
subparts, adding two more attributes to both keys.) Somehow it would seem more efficient if MAX MARK
had a key consisting of just one attribute, and then STUD MARK’s foreign key would in turn consist of
a single attribute corresponding to that singleton key in MAX MARK.
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Example 8.9: Test paper marks, using a surrogate key

VAR MAX MARK BASE RELATION { QuestionId QID,

CourseId CID,
Year INTEGER,
TMA# INTEGER,
Question# INTEGER,
Max INTEGER }

KEY { CourseId, Year, TMA#, Question# }

KEY { QuestionId }

14

VAR STUD MARK BASE RELATION { QuestionId QID,
StudentId SID,

Mark INTEGER }
KEY { QuestionId, StudentId }

4

CONSTRAINT FK referencing MAX MARK
IS EMPTY ( STUD MARK NOT MATCHING MAX MARK )

.
4

CONSTRAINT Marks no greater than max
IS EMPTY ( ( STUD MARK JOIN MAX MARK )
WHERE Mark > Max )

’
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The singleton key of MAX MARK is called, slightly inappropriately, a surrogate key. (A surrogate is a
person or thing taking the place of another. The key in question here must clearly sit alongside, not in place
of, the one that must be specified in any case—a point sometimes overlooked by advocates of surrogate
keys. The thing that really “take[s] the place of another” is the foreign key attribute of STUD MARK.)

Now, it might well be the case that the performance characteristics of the DBMS are such that the design
in Example 8.9 speeds up most of the anticipated tasks in maintaining and using the database. But in
general the technique should be viewed circumspectly, taking into account the following considerations,

possibly negating those perceived performance gains:

« Example 8.9 involves an extra key constraint.

« Many queries on STUD MARK need a join with MAX MARK in Example 8.9, not needed in
Example 8.8.

« The values for the compound key of MAX MARK arise in the real world. Those for the
surrogate key have to be “magicked” from somewhere. That process probably has to be
automated, thus incurring overhead not present in Example 8.8. (Some commercial DBMSs
do provide facilities for such automation.)

« When a tuple is added to STUD MARK in Example 8.9, how is the required value for
QuestionId to be determined? Don’t we have to search MAX MARK for the CourseId,
Year, TMA#, and Question# values, all of which must be to hand, to obtain the

corresponding QuestionId value?

The best advice concerning use of surrogate keys might well be: if in doubt, don't use them (and if not

in doubt, reconsider!).

8.4 Representing “Entity Subtypes”

Practitioners of Entity-Relationship modelling, sometimes used as a preliminary stage in database design,
make a distinction between real world entities and the relationships among those entities. Entities are
classified into “types’, but an entity type is not a type in the sense used elsewhere in this book. For
example, the tuples of IS CALLED and COURSE might be considered to represent “student entities”
(entities of type “student”) and “course entities” (entities of type “course”), respectively, whereas those
of IS ENROLLED ON represent relationships between certain student entities and certain course
entities. An entity subtype arises when some entities of a given type ET, but not all, are perceived to
have something in common that merits the subset consisting of those particular entities being identified

as an entity type in its own right, this being a subtype of ET.
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For example, consider payments debited from a bank account. Each can be identified by an account
number and a transaction number and includes an amount of money to be debited from the account
in question and some identification of the payee. Some payments are made by cheque; these, and only
these, have a cheque number in addition to the information common to all payments. Others are made
under direct debit arrangements; these, and only these, have additional information concerning the
arrangement under which they are made. Yet others are made using a debit card; these, and only these,

include a debit card number (for there can be more than one debit card for a joint account). And so on.

The designer of the database where payments against bank accounts are to be recorded is faced with

the following choice:

Option 1: Have separate relvars for each payment type, each with attributes for what are
common to all payments.

Option 2: Have just one relvar for the common attributes and separate relvars for the
different payment types, each with attributes sufficient to identify the transaction,

plus attributes for the data unique to its own payment type.
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If Option 1 is adopted, then a “disjointness” constraint is needed to ensure that no account number/
transaction number combination appears in more than one participating relvar. In the example at hand,
the situation is further complicated by the fact that for a debit card payment the demands of BCNF
mean that the relevant account number must be stored in a separate relvar, as mentioned in Chapter 7,
Section 7.8, under the heading FD Loss Sometimes Inevitable. (Recall that a payment by debit card is
identified by a transaction number and a debit card number, the account number being implied by the

debit card number.)

If Option 2 is adopted, then we need a foreign key constraint on each “subtype” relvar to ensure that
every payment of the type in question is indeed in connection with a transaction recorded in the “parent”
relvar. We will also need a disjointness constraint on the subtype relvars, and a constraint to ensure that

for each tuple in the parent relvar there is a matching tuple in one of the subtype relvars.

It seems, then, that on the evidence so far Option 1 might be preferable for being less complicated. And
that brings me back, for the last time, to WIFE_OF HENRY VIII. The suggested decomposition into
W_FN_LN with attributes Wi fe#, FirstName, and LastName, and W_F with attributes Wi fe # and
Fate can be seen as an implementation of Option 2. Option 1 could be used instead, where W_F is
replaced by a relvar with the same heading as the original WIFE OF HENRY VII. Now, if Option 1
is chosen, then only the current wife’s marriage is missing a Fate value. In that case no more than one
tuple can ever appear in W_FN LN and the empty set, not {Wife#}, is the only key of that relvar. Thus
both of the examples discussed in this section—bank account debits and King Henry’s wives—show that
when several relvars can be perceived as representing subtypes of some common entity type, they do
not necessarily have a key in common, contrary to what is stated in some texts on this subject. In the

first example, payments by debit card show that they don’t even have to have a superkey in common.

The choice between Option 1 and Option 2 might be influenced by updating issues. The situation is
somewhat similar to that described in connection with Example 7.7 in Chapter 7. With Option 1 a
multiple assignment is needed to update both relvars simultaneously when the king’s current marriage
is terminated; with Option 2 one merely adds a tuple to W_F. That particular issue doesn’t arise with the

bank account example if we can assume that a payment never changes its type.
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Appendix A: References and
Bibliography

In addition to the books and papers referenced in the body of the book I include three textbooks ([3],

[7], and [14]) that I have chosen from my own collection.

[1] http://en.wikipedia.org/wiki/Database

The article that caused me to reference Wikipedia in Chapter 1 has been significantly revised
and no longer includes the text I cited. The article should be treated with caution. For example,
in case it still refers to “Date’s Information Principle”, please note that the principle in question

actually originates from E.F. Codd.

(2] W.W. Armstrong: “Dependency Structures of Data Base Relationships”, Proc. IFIP Congress,
Stockholm, Sweden (1974).

(3] Paolo Atzeni and Valeria De Antonellis: Relational Database Theory. Redwood City, Ca.: The
Benjamin/Cummings Publishing Company, Inc. (1993).
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The Preface begins, “This book presents a systematic treatment of the formal theory of the
relational model of data” Here you will find many of the topics of the present book—and some

more—treated formally. You will need a good grounding in logic. Plenty of exercises. 386 pages.

LucaCardelliand Peter Wegner: “On Understanding Types, Data Abstraction,and Polymorphism”,
ACM Comp. Surv. 17, No. 4 (December 1985).

E.E. Codd. “A Relational Model of Data for Large Shared Data Banks’, CACM 13, no. 6 (June
1970). Republished in “Milestones of Research”, CACM 25, No. 1 (January 1982).

Usually cited as the seminal paper that first introduced the relation model of data. Actually,

Codd originally published his idea a year earlier, in an IBM research report.

E.F Codd: “Recent Investigations into Relational Data Base Systems”, Proc. IFIP Congress,
Stockholm, Sweden (1974) and elsewhere.

Thomas M. Connelly and Carolyn E. Begg: Database Systems, A Practical Approach to Design,
Implementation, and Management (3rdedition). Harlow, England: Pearson Education Limited (2002).

A massive tome and a popular recommendation for the serious student or practictioner. 1236

pages.

Hugh Darwen, C.]. Date, and Ronald Fagin. “A Normal Form for Preventing Redundant Tuples in
Relational Databases”, Proc. 15th International Conference on Database Theory, Berlin, Germany
(March 26th-29th, 2012).

A PDF copy is available at www.edbt.org/Proceedings/2012-Berlin/papers/icdt/a02-Darwen.pdf.
The paper describes a normal form—Essential Tuple Normal Form (ETNF)—that is weaker than
5NF but nevertheless sufficient, and in fact necessary, for avoiding the kind of redundancy that can
arise from join dependencies. As a matter of fact this paper arose during the drafting of Chapter

7, when I came across the problem mentioned in the annotation to reference [10] below.

C.J. Date: An Introduction to Database Systems (8th edition). Reading, Mass: Addison-Wesley
(2004).

Perhaps the best known book on the subject, by the best known author. A sine qua non for all
database professionals in industry or academe. 983 pages. (But beware of its definition of 5SNE which
is not quite correct. For one thing, it fails to take account of JDs containing redundant projections,
but more significantly, as noted in reference [8], it actually defines a slightly weaker NF than 5NE
though still stronger than reference [8]’s ETNF and thus still sufficient but not necessary.)
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[14]

[15]

C.J. Date: The Relational Database Dictionary (extended edition). Berkeley, Ca.: Apress (2008).

Aninvaluable booklet for quick reference. (But again, beware of its definition of 5NE Its condition

(a) propagates the error of [9] and its condition (b) is also erroneous.)

C.J. Date and Hugh Darwen: Database Explorations: Essays on The Third Manifesto and Related
Topics. Bloomington, IN: Trafford Publishing (2010). See http://www.trafford.com/Bookstore.

C.J. Date and Hugh Darwen: Databases, Types, and The Relational Model: The Third Manifesto
(3rd edition). Reading, Mass: Addison-Wesley (2007).

Related material, including a complete grammar for Tutorial D, can be found at

www.thethirdmanifesto.com.

Ronald Fagin: “Normal forms and relational database operators’, Proc. 1979 ACM-SIGMOD
(ed. PA. Bernstein) 153-160. Available at

http://www.almaden.ibm.com/cs/people/fagin/sigmod79.pdf

Here, slightly paraphrased, is the algorithm referred to in Chapter 7, Section 7.4, for determining
whether a given JD is implied by the keys of the applicable relvar.

Given a relvar R, a set S of keys {K1, ..., Kn} of R, and a JD *{P1, ..., Pm}: Initialize set T as
{P1, ..., Pm}. Apply the following rule until it can no longer be applied: If Ki is a subset of the
intersection of Y and Z for some i (1<i<n) and for distinct member Y and Z of T, then replace Y
and Z in T by the set that is the union of Y and Z (so the number of members of T decreases by
one). If, when the algorithm terminates, some member of T contains every attribute of R, then
the algorithm succeeds and the given JD is implied by the keys of R; otherwise the algorithm
fails and the given JD is not implied by the keys of R.

Lex de Haan and Toon Koppelaars: Applied Mathematics for Database Professionals. Berkeley,
Ca.: Apress (2007).

An “interestingly different” book on the theory and practice of relational databases that I
personally recommend. The book includes an excellent treatise on the design of procedural
methods for overcoming the deficiencies, in the area of integrity checking, of current SQL

implementations. These deficiencies are mentioned in Chapters 6 and 7of the present book.

L.]. Heath: “Unacceptable File Operations in a Relational Database”, Proc. 1971 ACM SIGFIDET
Workshop on Data Description, Access, and Control, San Diego, Calif. (November 1971).
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