Beginning App
Development
with Flutter

Create Cross-Platform Mobile Apps

Rap Payne

ApPress’

Beginning App
Development with
Flutter

Rap Payne

Apress’

Beginning App Development with Flutter: Create Cross-Platform
Mobile Apps

Rap Payne
Dallas, TX, USA

ISBN-13 (pbk): 978-1-4842-5180-5 ISBN-13 (electronic): 978-1-4842-5181-2
https://doi.org/10.1007/978-1-4842-5181-2

Copyright © 2019 by Rap Payne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5180-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5181-2

This book is dedicated to the men and women of
the Flutter Community. I've never seen a group
more devoted to the success of others. You're an

inspiration and example to me.

Particular thanks to these members of the
community who’ve helped me with Flutter issues.
This Texan owes y all!

Andrew “Red” Brogdon (Columbus, Ohio),
Brian Egan (Montana),
Emily Fortuna (San Francisco),

Frederik Schwieger (Diisseldorf, Germany),

Jeroen “Jay” Meijer (Rotterdam, Netherlands),
Martin Rybak (New York), Martin Jeret (Estonia),
Nash Ramdial (Trinidad), Nilay Yenner (San Francisco),
Norbert Kozsir (Karlsruhe, Germany), Pooja Bhaumik
(Bengaluru, India), Raouf Rahiche (Casablanca by way of
Algeria), Remi Rousselet (Paris), Rohan Tanaja (Berlin),
Scott Stoll (Cleveland, Ohio),

But especially Simon Lightfoot (London), who we all
call “The Flutter Whisperer” He taught me much of
what I know about Flutter.

Praise for Beginning App
Development with Flutter

“Rap has written a great starting guide full of information for those who are
new to developing multi-platform apps with Flutter”

—Frederik Schwieger (Diisseldorf, Germany), Organizer of the
International Flutter Hackathon and creator of flutter school

“A great read! This covers everything a beginner might want to know,
and more. It explains not only what Flutter is but why it exists works the
way it does. It also provides great tips for common pitfalls along the way.
Definitely recommended.”

—Jeroen “Jay” Meijer (Rotterdam, Netherlands),
Leader of Flutter Community Github

“Rap’s book is a great book to get started with Flutter. It covers every
important topic to write your very first app but also contains valuable
information for more seasoned developers.”

—Norbert Kozsir (Karlsruhe, Germany)
Flutter Community Editor

“As a non-native English speaker, I'm totally impressed by the simplicity
of this book and how much I can read and understand without getting
bored”
—Raouf Rahiche (Algeria) Flutter speaker,
developer, and instructor

PRAISE FOR BEGINNING APP DEVELOPMENT WITH FLUTTER

“As an early adopter and one of the original members of the Flutter
Community, Rap is one of the world’s foremost authorities on Flutter.
Where documentation is written for Engineers, by Engineers, Rap is a
human who (thankfully!) writes in an enjoyable style that can easily be
understood by other humans.”

—Scott Stoll (Cleveland, Ohio), Contributor to the Flutter
codebase and Co-founder of the Flutter Study Group

Table of Contents

About the AULNOLc.coirremeiirrenerirrsssssr s enss s annnsssssssnnsnsens XVii
About the Technical REVIEWETcvrsrrmmsssssnmssssssssssssssssnnssssssssnssssnnnns Xix
Who iS this DOOK fOr?......cccciimmemmeiiimmmnnssmmmensssssmsnnssssssnnssssnssnnssssnsnnnnssns XXi

Part I: Introduction to Flutter.........ccccomrmmmensnmmmesssnmmssssnenssnsnena 1

Chapter 1: Hello FIUtter........occcciuninnmmmmmnsssennmmssssssnssssssssnssssssnsssssssssnssnnss 3
What is FIUHEI? ..o s 4
WRY FIULEEI? ...t s p e e e e 5
The other OPlIONS ... —————————— 5
NaLiVe SOIULIONScoveerreerireere e 7
0] T 11T (0] o 8

Chapter 2: Developing in Flutter.........ccccccmmmnnnemnmnnsssnnnmmnsssssnmsssssssnnns 9
The Flutter t00IChaiNnccvveiirir 10

The FIUHEr SDK......cciiirriiiinire e sesees 10
IDES ..o 10
IDE DEVTOOIS ...t s 12
EMUIALONS ...t 13
Keeping the tools up 10 date........cccvvvrveriernininiere s 15
The Flutter development ProCeSSccverirvrnnnninses s ses 18
Scaffolding the app and files........cccvvrrrirrnrnirie e 18
RUNNING YOUT QPP .t sn e s s sn e s s 21
0] T 1T (0] o 27

vii

TABLE OF CONTENTS

Part 1I: Foundational FIutter..........ccccvummmmessmsmmnssmnssssssnnnnnnnnes 29

Chapter 3: Everything Is Widgetsccccusmmmmmssnnnnmmssssnnnmsssssnsssssssnnnns 31
0T o0 O 33
Built-in Flutter Widgets ..o e ssesnens 35
ValUE WILGEES. ... e e 36
LayouUt WIQELS......vceeerreerrneresesrsese s e s 36
Navigation WIdgetsccovvrnenninnn e 37
L0 LR TCT 1T =] 38
How to create your own stateless Widgets........ccvvvvvrrirvrvnsenccvcen s 38

Widgets have KBYS........ccucvvrniririirrin e s e s se s s 41
Passing a value into your widget.........cccocvvrrininnnnninsrrr e 42
Stateless and Stateful Widgets ... 45
So which one should | create? ... 45
[0 0 e 11 46

Chapter 4: Value Widgets.........ccccummmmmmmmmmmmmmmmmmmssssssssmssmsssssssssssssnns 47
The TeXt WIQEL......cuccerrererere s nnnnns 47
The 1CON WIAGETocvvcerere e s 48
The IMage WILQELcccererrererierere s se s s s a e e e sa e e e e s ene s 49

EMDEdded iMAgES.....ccvvererrrrrrrerierersrseressessssessessessessssessessessssessessessesessesaesaes 50
NEtWOIK IMAQGES .e.vevreererrerrrrirseresessssesessessesessessessessssessessesssssssessesaesassessesaes 51
SiZING AN IMAQE .. vecerererre e ae s aese e aenne s 51
INPUL WIAGETS ..o s 54
TEXE FIRIUS ..o ——— 55
Putting the form widgets together ... 65
FOrm Widgetcce vt 65

viii

TABLE OF CONTENTS

FormField Widget........ccccuviririninrrr s 67
0ne big FOrm eXamplecccccvvereverrenseneresessessesessssessesessesessessessessssessessenes 71
(00411 11 TR 76
Chapter 5: Responding t0 GESTUIresScccurmrmsssmsesssnsssssnsssssnnssssnnssnns 77
Meet the button family.........cooooeeereee e 78
RAISEUBULLON ... s 80
FlatButton and ICONBULION.........cccoereecrrcereer s 81
FloatingActionButton ... 81
CupertinOBULLON........ccccvir e e 82
DiSMISSIDIE.....c e s 83
Custom gestures for your custom Widgetscccvrriinininnnnsnsniennesensenennns 83
Step 1: Decide on your gestures and behaviors.........c.cccvvvnvniniennsensenens 84
Step 2: Create your custom Widgetccoovernrenerienesssessnesesese e 85
Step 3: Add a GestureDetector Widget..........ccccriervinrninnnnsnene s 86
Step 4: Associate your gesture with its behaviorccccoeevvininiviiniennn, 87
Example 1: Reacting to @ I0ng Press.......covvenrnnesnsessnesssesessssessssesesssessssesenns 87
Example 2: Pinching to add @ new item.........cocecvvvirievnrnrnene e senenaens 89
Example 3: Swiping left o Fight.......cccovvrininnnrrrer e sessesesaens 90
What if there are two or more gestures happening at the same time? 92
[0 0 e 11 92
Chapter 6: Laying Out Your Widgetsccorrmmssmmmmmmsssnnnnmssssnsnssssssnnnnss 93
Laying out the WHOIE SCENEcccccevreriricernerrrese e 100
MaterialApp WIdgETccovveiriiiernr e 100
The Scaffold WIdget..........ccovvrrererisernsesse s 101
The AppBar WIdget ..o 102
SafEArea Wi get.......ccocvreeernrerrnesrre s 104
SNACKBar WIdgelccoveervierrcreresers s 105

ix

TABLE OF CONTENTS

How Flutter decides on a Widget’s Sizeccccvvvvrveneniensnse s e sesenens 106
The dreaded “unbounded height” error.........cccccevvrininnnnninsn e 107
Flutter’s layout algorithm ... 108

Putting widgets next to or below Others.........ccccvirivvrsninie s 110

Your widgets Will never fit! ... 113

What if there’s extra space Ieft OVer? ... 113
MAINAXISAIIGNMENT.......cooiereere e 113
CrOSSAXISAIIGNMENL........cceeerrecrrereree s 115
Expanded WIdget..........ccoveermrenernnrneseseser s s s sesnenens 117

What if there’s not enough SPACE?cccceveernreneneserese s 121
The ListView WIgetcccvvernrermrenmrnsesessesessse s sessssessssesessesenns 121

Container widget and the box modelcococvvvevricnncnnes e 124
Alignment and positioning within a Container..........c.cccccvvvvrinienniesennsennn, 126
So how do you determine the size of a Container?.......c..cccevvrvrivvniniennn, 128

Special [ayout WIdgetS.......ccovvrvrierenrrrsere s s sessesnens 130
R3] 2 e QR [0 [R 130
GrAdVIEW WIAQELeerererccire e 131
The Table WIdgetcovvririrnrrrrrr e e naens 134

(00411 11 T 137

Chapter 7: Navigation and Routing.......cc.ceceumrmsssmnnnmsssssnnsssssssssnsssssnns 139

StACK NAVIGALIONc.eeeeeeeeeerceree e 140
Navigating forward and backcoverreennsesresre s 141
Get result after @ SCENE iS ClOSEU..........ccoverereererrrrcrer e 143

Drawer NAVIgation..........ccoveeeerenernsesenese s seenes 144
The Drawer WIdget.......ccccovveerernenereserssesese s senns 146
Filling the drawer ... 148

TABLE OF CONTENTS

Tab Navigation ... 150
TADCONTIOIIE ... 151
TaDBANVIBW......c.criccrerce e 151
TabBar and TabScccvererrirnere s 152
TabBar at the bottom ... 153

The Dialog WIdget......ccccceviriiriirre s se e sne e 153
showDialog() and AlertDialog.........cccocvvrveneririerse s 154
Responses With @ Dialogccccevercerverinnererrersee e 155

Navigation methods can be combined...........cccovvririnnnsniniensnrn e 157

Chapter 8: Styling Your Widgetsccccussummmmmssssnnnnmssssnnssssssssnnnssssnnns 159

Thinking in FIUTEEr STYIESccoveeererereserese s 160

A WOrd aDOUL COIOIS ... 161

SEYING TEXL...veteerere e s r e e sae e e nne e 163
TEXESIYIC .t ae 163
CUSTOM FONTS ... s 165

Container deCorations..........c.covrrieneserinnnsssse s 168
BOFOBT ...t 170
BOrderRadiUs..........cvererererrieiscri s s 172
31006 1= L S 173

StaCKiNG WIAGELSvevveverererrrrerrerere s sere s ses e s s e s s ssessesassesesaesaessssessessens 176
Positioned WIidget.........ccooerrvrie e 178

(02T (0 IR0 o T O 180

TRBIMES ... s e e e s e e nnn e 181
Applying theme properties ... 183

L] 0 e 11 o SR 186

TABLE OF CONTENTS

Chapter 9: Managing Stateccccuurmmmmmmssssnmmmsssssnnmsssssnnsesssssssnessssnns 187
What iS STAE? ... s 187
What goes in a StatefulWidget?..........ccccnnncncnncnc e 189
The most important rule about state! ..., 190
Passing state dOWN.........cccvviininin 191
Lifting state DacK UDcccvvererrrrire s 192
An example of state managementccccovrininrn i —— 193
When should We USe STate? ... 198
Advanced state management ... ————- 200

InheritedWidget ... 200
BLOGovcveeetsrsrssnsssss e e e e e 200
SCOPEAMOUEL.........eeeereerecr s e 201
(010 TR 201
101170 TR 202
2= T R 202
Whoa! That’s a lot of packages! ... 203
L] 0 (e 11 o 203

Part lll: Above and Beyondcccusssmeemmmnnnnsssssssnsannnnnnns 209

Chapter 10: Your Flutter App Can Work with Filesccccuusennnrsssanns 207
Including libraries in your FIULter app.....c.ccccvveernenmninsennsesneses s 208
FiNding @ lIDrarycoeevveneneserssessesesssessse s ssssessssenens 208
Adding it to PUDSPEC.YAMI......covicerierr e 210
Importing the lIbrary ... ——— 210
USING the [IDrary ... s 211
Futures, async, and awaitc.ccveevrevnrnieniennnnnsese s s nns 211
Why Would it WaIt?ccocviriernrsre s s snens 212

How do we get the data from @ FUuture?..........coocevvieenncnnncsneserssesenneens 213

xii

TABLE OF CONTENTS

U) T 214
ASYNIC et ee st s st e e s s e e e R A e R e e e e naenRe e e an 215
Including a file with your app.......ccccvvrrnininnsns s 216
WHEING @ fil..ccciececiccr s 218
And reading ith........ccovcici e —————————— 219
USING JSON ..o 220
Writing your app’s memory t0 JSONccoooreernnnneserese e 221
Reading JSON into your app’s MEMOIYcccevererrenerensesessesessenesensesessenens 222
Shared PrefereNCES..... .o e e 223
To Write PrefernCeS......cccvvrerirrsrerer e 224
To read PreferenCeS.... .o 224
0] T (1 SO ST 225

Chapter 11: Making RESTful API Calls with HTTP..........ccusseeenenssnnnnnn227

What is an APICAll? ..o 228
The flavors of APl reqUESESccccverrinine s 228
Making an HTTP GET or DELETE requestcccvvrirnnnnnneniennsensesessssessessens 230
Making an HTTP PUT, POST, or PATCH request.......c.cccvvvvnirinnsnnniennsensenenns 231
HTTP responses t0 WidgetS........ccvurnennnnennsesnsssss e s sessssessenes 232
Brute force — The @aSy Wayccuevvrererresernsmsrnsesssssessssessssesessssessssessssenens 233
FutureBuilder — The Clean Way.........c.ccoveeernnernsesesissesssesssesessesesessessssenens 234
Strongly tyPed ClASSES.....cievvrirvriererir s nnens 238
Create @ buSINESS ClaSS........covrmrmmmnisirinss s 238
Write @ .fromJSON() Methodcoeevncnneneres e 239
Use .fromJSON() to hydrate the object........cccccrvvrvririnncncnre e, 240
0N€ DIG BXAMPIE c..evereerererrr s sre e e saesr e e s e eaesae e e e naesnens 240
T T o 242
Create the FIULEEr apP.......cccvvrrererrrrere s s e s se s saesaes 243

xiii

TABLE OF CONTENTS

Making a strongly typed business Class.........ccccuvvrerininnnnininsenseesensenens 243
PeopleList.dart.........c.ccovvininininn s 244

A GET request in FIUHEE ..ot serese s se e se e ses e snesnens 247

A DELETE request in FIUHEr.......cccvvvvrvrne e 247
PeopleUpsert.dart..........ccoevrvrinnenirinsie s 248

A POST and PUT request in FIULEErcccvvvverereeserrenrere s sessessesnens 252
(00411 11 R 254
Chapter 12: Using Firebase with Flutter........c..cccenmnnsnnnnnssssnnnnnsssnnns 255
INtroducing FIr@DASEcoveeeeeeereecrer e s 256
L0 0T I] (0] R 257
Cloud FUNCLIONSc.ccueeceeeeeecreeese e 258
AULNENTICALION ... e 259
Setting up Firebase itSelf ... 259
(1) Creating a Firebase Project..........couevrrereresernsesessesesesessse s 260

(2) Creating the databasecooererererernenresere s 263

(3) Creating @n i0S @PP.....ccouccrerrererererrnseresseserrese e s e s e saeseenes 267

(4) Creating an ANAroid @PPcocoerererersmrersesersesersssesessesessssessssesessessssenessnnes 273

(5) Adding FlutterFire plUginscccoceveererrererenerrnseressesesesesessesesesessesesenss 277

UL Tl =T (] - S 278
To get @ COIIECLIONcceeveerrererce e s 279

LT 181 S 281

TO UPSEH...ece 281

LT (=] S 282
Where 10 g0 from NEre ... 283

Xiv

TABLE OF CONTENTS

Appendix A: Dart Language OVervieWccccsesssssssssssssssssssssssssnsssss 287
WRHAL IS DAY ... 287
Expected features — Dart Cheatsheet ... 288

DAta TYPES ..oveerere e ———————— 288
ArrayS/lists ..o 289
Conditional eXPreSSiONScccuererrrrnresiennsnse s snes 289
(0100 o OSSPSR 290
L LTS 290
Class CONSIFUCTONS.......coeeererereresesese s neenis 291
Unexpected things about Dart..........c.cccovverncnnneseniese s 291
TYPE INFEIBNCE ... e e 292
final and CONST........ovecereer e 292
Variables are initialized t0 NUIIccovvvrrerresrresre s 293
String interpolation With $..........cccovvviinrsn s 294
MUIIING STFNGS....cuecerrecrrererese e 294
Spread OPErator.........ccocrvrerie s ————— 294
Map<f00, Dar> ... ———————— 295
FUNCLIONS @re ODJECLScceeereeerieereree e 295
Big @rroW/Fat @rTOWccovenerenncrenesesene s sese s ses e se e sessesessenens 296
Named function parameters........ccococvvrininnininns e 296
Omitting “new” and “this.” ... 297
Class constructor parameter shorthand.............ccoevvnirininnnnnnnesnsensennn, 298
Private Class MEMDErS........ccccvverncrnirre s 299
MIXINS ... 299
The €ascade OPErator (..)...c.ocovrrerererererseressesesrese s senns 300
o0 o o] o SRS 301
Named CONSIIUCTIONScoveeereeresereree e 301

T P, | | K. 1

About the Author

Rap Payne has focused on mobile development
since he started Agile Gadgets, a mobile

app development company, in 2003. He is a
consultant, trainer, and entrepreneur who
has written apps, mentored developers, and
taught software development classes for
Fortune 500 companies like Boeing, Walmart,
Coca-Cola, Wells Fargo, Honda, CVS, GE,
Chase, HP, Lockheed, ExxonMobil, Lowe’s,
Nike, J.C. Penney, USAA, and Walgreens;
government agencies like the NSA, the US Air Force, Navy, Army, NASA,

Britain’s GCHQ, and Canada’s postal service; and several provincial
governments, to name a few.

As a professional mentor and trainer, Rap has developed a talent for
communicating highly complex ideas in easy-to-understand ways. And
as areal-world developer, he understands the need to teach these topics
using practical and realistic examples and exercises.

xvii

About the Technical Reviewer

Massimo Nardone has more than 22 years
of experience in Security, Web/Mobile
development, Cloud, and IT Architecture.
His true IT passions are Security and Android.

He has been programming and teaching
how to program with Android, Perl, PHP, Java,
VB, Python, C/C++, and MySQL for more than
20 years.

He holds a Master of Science in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research
Engineer, Chief Security Architect, Information Security Manager, PCI/
SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for
many years.

His technical skills include Security, Android, Cloud, Java, MySQL,
Drupal, Cobol, Perl, Web/Mobile development, MongoDB, D3, Joomla,
Couchbase, C/C++, WebGL, Python, Pro Rails, django CMS, Jekyll, Scratch,
and so on.

He works as Chief Information Security Officer (CISO) for Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of Technology (Aalto
University). He holds four international patents (PKI, SIP, SAML, and Proxy
areas).

Xix

Who is this book for?

If you're a developer with experience in some object-oriented language
like Java, C#, C++, or Objective-C and you want to create Android apps,
iOS apps, or web apps with Flutter, this book is for you. It is especially
important for you if you want to create an app that runs on multiple
platforms and if you are new to Flutter.

If you've got some experience already with Flutter, you'll undoubtedly
learn something, but we’re not expecting that you have any prerequisite
knowledge or experience with Flutter. All of our chapters are written with
the assumption that everything in Flutter is completely new to you.

If you know anything about iOS development, Android development,
or web development, that will certainly help with understanding the topics
because there are lots of analogies in them for Flutter. The more you know
about those things, the better, especially JavaScript and React. But if you
know none of them, don't fret. They’re by no means necessary.

Knowledge of the Dart language also will help. We’ve found that Dart
has got its unique features for sure, but it is extremely easy to pick up if
you understand object-oriented concepts. Heck, if you know Java or C#,
most code snippets are understandable without any explanation of the
language. Read a few and you’ll be writing your own in no time.

At the same time, there are some unique but very cool Dart features
that we consider best practices. We could have “simplified” the code
for Java devs by not using these best practices, but in the long run that’s
not doing you any favors. Instead, we go ahead and use them, but we do
explain those things in “Appendix A: Dart Language Overview.” In there,
we give you a cheat sheet with just enough detail to write code, followed

WHO IS THIS BOOK FOR?

by a more in-depth explanation of the features that will be unexpected by
developers of other languages. Pay special attention to the section called
“Unexpected things about Dart.”

What is covered?

This book teaches you how to create fully functioning and feature-rich
apps that run on iOS, Android, and the Web. We do this in three sections.

Part I: Introduction to Flutter

1. Hello Flutter - We're setting the stage for the
book. Giving you a feel for why you're here. What
problems does Flutter solve? Why the boss would
choose Flutter vs. some other solution.

2. Developing in Flutter - Flutter has a unique set of
tools, but it isn’t always straightforward what each
tool does and how to use it. This chapter guides
you through the process of write-debug-test-run.
We get an understanding of the tooling including
installation and maintenance.

Part ll: Foundational Flutter

3. Everything Is Widgets - Widgets are super
important to Flutter since they're the building
blocks of every Flutter app. We show why and
provide the motivation and basic tools to create
widgets. Topics include composition, UI as code,
widget types, keys, and stateless vs. stateful widgets.

xxii

WHO IS THIS BOOK FOR?

Value Widgets - A deep dive into widgets that

hold a value, especially user-input fields. Topics
include the pubspec.yaml file; Text, Image, and Icon
widgets; and how to create forms in Flutter.

Responding to Gestures - How to make your
program do things in response to user actions like
taps, swiping, pinching, and the like. We’ll show you
the button family and the GestureDetector widget.

Laying Out Your Widgets - We'll learn how to lay
out a view, controlling how widgets are placed
side by side and/or above and below, defining the
amount of space between widgets, and aligning
them vertically and horizontally.

Navigation and Routing - Navigation is making the
app hide one widget and show another in response
to user actions. This makes them feel like they're
moving from one scene to another. We'll cover stack

navigation, tab navigation, and drawer navigation.

Styling Your Widgets - Then we’ll look at how to
control each widget’s color, borders, decorations,
shapes, and other presentational characteristics. We
handled light styling as we introduced each widget
earlier, but this is where we answer all the questions
needed to get a real-world app looking good and
staying consistent throughout with themes.

Managing State - How to get data from one widget to
another and how to change that data. We cover how
to create Stateful Widgets and design them in the best
way. We also provide a high-level overview of tools to
handle real-world complex state management.

xxiii

WHO IS THIS BOOK FOR?
Part lll: Above and Beyond

10. Your Flutter App Can Work with Files - Using
libraries. Futures, async, await. Bundling files
with your app. Reading and writing a file. JSON
serialization.

11. Making RESTful API Calls with Ajax - How to read
from and write to an HTTP API server. This is where
we show how to make GET, POST, PUT, DELETE,
and PATCH requests.

12. Using Firebase with Flutter - We will show you a
real-world, robust cloud solution that works like
a dream with Flutter. No surprise that it is also a
Google offering.

What is not covered and where can
| find it?

As importantly, you should know what not to expect in the book. We will
not give you a primer on the Dart programming language beyond the
aforementioned appendix. We simply didn’t think it was the best use

of your time and wanted to dive right into Flutter. If you feel you need a
primer later on, go here: https://dart.dev/guides/language/language-
tour followed by https://dart.dev/tutorials. We chose not to discuss
deploying to the app stores. The stores already do a fine job of explaining
how to submit an app. That, and the process, changes so frequently that
your definitive resource ought to be the stores themselves. You'll find

XXiv

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/tutorials

WHO IS THIS BOOK FOR?

instructions at https://developer.apple.com/ios/submit/ and here:
https://play.google.com/apps/publish. And we aren’t going to cover
certain advanced topics like device-specific development in iOS and
Android or adding Flutter to an existing iOS/Android project. This is a
beginner’s book and we didn’t want to overwhelm you. These and so many
other topics can be found on the Web by searching and through some of
the other resources we’ll point you to in the last chapter of book.

https://developer.apple.com/ios/submit/
https://play.google.com/apps/publish

PART |

Introduction to Flutter

CHAPTER 1

Hello Flutter

Picture this in your mind’s eye. You are the superintelligent and capable
CEO of a new business. Obviously your mission is to maximize sales while
minimizing expenses. “Hmmm_., you think. “I can really increase sales if I
make our products available on the Web.” So you ask your friends how to
create a web app and they say ...

“You need to hire a web developer. They should know HTML, CSS,
JavaScript, and probably some framework like React, Vue, or Angular”

It’s expensive but you do it and your gamble pays off. Sales increase
markedly. Trying to keep on top of demand, you monitor social media and
engage your customers. You hear them say that this web app is great and
all but “We’d have been here earlier if you had an app in the App Store.”
So you talk to your team who, while being experts in the Web, are not iOS
developers. They tell you ...

“You need to hire an iOS expert. They should know iOS, Swift or
Objective-C, Xcode, macOS, and CocoaPods for development.”

Your research shows that this person is even more specialized and
therefore expensive than your web devs. But again, it seems to be the
right thing to do, so you bite the bullet and hire them. But even while this
app is being developed, you see that the feedback was not isolated to iOS
apps, but instead was looking at all mobile devices. And - oh, snap! - 85%
of devices worldwide run Android, not iOS. You bury your head in your
hands as you ponder whether or not you can afford to ignore 85% of your
potential customers. Your advisors tell you ...

© Rap Payne 2019 3
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_1

CHAPTER 1 HELLO FLUTTER

“You need to hire an Android expert. They should know the Android
0S, Gradle, Android SDK, XML, Android Studio, and Java or Kotlin.”

“Really?!? Another developer?’, you say. “Yes. And one just as expensive
as your iOS developer,” they respond.

Isn’t there one person who can do all three things? Some way to share
the code between all of those environments? Then you could hire just one
person. In fact, they could write the code one time and deploy it to the Web,
to the App Store, and to the Google Play Store. One codebase to maintain.
One place to make improvements and upgrades. One place to squash bugs.

Ladies and gentlemen, allow me to introduce you to Flutter!

What is Flutter?

Flutter is a set of tooling that allows us to create beautiful apps that run on
i0S, Android, the Web, and desktop.!
Flutter is ...

o Free (asin free beer. No cost)
e Open source (that’s the other sense of the word “free”)
o Backed by and originated at Google

o Being enhanced and maintained by a team of
developers at Google and hundreds of non-Google
contributors around the globe

e Currently being used by thousands of developers in
organizations across the world for production apps

o Fast because it compiles to truly native apps that don'’t
use crutches like WebViews and JavaScript bridges

"Desktop is coming soon. Flutter will work on Windows, macOS, Chromebooks,
and Linux.

CHAPTER 1 HELLO FLUTTER

e Written one place and compiled to a web app for
billions of browsers, an i0S app for iPhones and iPads,
and an Android app for all of the rest of the phones and
tablets out there

Why Flutter?

Google’s mission with Flutter is ...

To build a better way to develop for mobile

Notice what is not in that mission. There’s no mention of Android
(which is also owned by Google) nor of iOS nor of the Web. Flutter’s goal
is to create a better way to develop for all devices. In other words, Flutter
should be better to create iOS apps than Swift. It should be better to create
Android apps than Kotlin. It should be better to create web apps than
HTML/JavaScript. And if you get all of those things simultaneously with
one codebase, all the better.

The Flutter team has succeeded spectacularly with this mission.

As proof, Eric Seidel offers this example.? The Google CRM team used
Flutter to build an internal Android app and did it three times faster than
with their traditional Android toolchain!

But it turns out that Flutter isn’t the only game in town for cross-
platform. You have other options.

The other options

Cross-platform development comes in three general flavors listed in
Table 1-1.

*http://bit.ly/eric_seidel flutter keynote video at21:47in.

http://bit.ly/eric_seidel_flutter_keynote_video

CHAPTER 1 HELLO FLUTTER

Table 1-1. Cross-platform development categories

Some Cons Pros
technologies

Progressive HTML/CSS, Not a real app. Runs in a web Easy to write
Web Apps React, Angular, browser. Not available in app
(PWA) Vue stores. Hard to create a desktop

shortcut. Cannot access many

of the device’s resources like
accelerometer, compass, proximity
sensor, Bluetooth, NFC, and more

Hybrid PhoneGap, Runs in a WebView so it can be Easier for web
Cordova, slow. Nearly impossible to share devs to learn
Sencha, lonic code with the web app because it
uses HTML and
JavaScript as
its language

and structure

Compile- React Native, Learning a framework may be Real apps that

to-native NativeScript, difficult. Mastering the toolchain can be found in

solutions Flutter, Xamarin definitely is the stores and
run fast

If you have a captive audience, one where users value your app so
much that they're willing to accept a poorer user experience, the cheapest
solution is to create a PWA. If your app is extremely naive and speed is
not expected to be an issue, a hybrid solution might be appropriate. But if
speed, smoothness, and sophisticated capability are important, you will
need to go with a native solution.

CHAPTER 1 HELLO FLUTTER

Native solutions

As of today, there are four fairly popular compile-to-native solutions
(Table 1-2).

Table 1-2. Compile-to-native cross-platform frameworks

VN

Xamarin NativeScript ~ React Native Flutter
Year introduced 2011 2014 2015 2018
Backed by Microsoft Telerik Facebook Google
Presentation XAML and/or Proprietary but Proprietary but Dart
language xamarin.forms looks like XML looks like JSX
Procedural language C# JavaScript JavaScript Dart

These are all decent options. All are free to develop in and are well-
tested, having many production applications created. All have been used
in large organizations.

But only one has an option to create a web application in addition to
the i0S and Android apps that will be deployed to the app stores - Flutter.

Flutter is the latest of these frameworks to be released. As such it has
a distinct advantage of observing those that had come before. The Flutter
team took note of what worked well with other frameworks and what
failed. In addition, Flutter added new innovations and ideas - all baked in
from the start rather than being bolted on as improvements are made.

CHAPTER 1 HELLO FLUTTER

But I suspect that if you've bought this book, you don’t need much
convincing so I'll stop. Suffice it to say that Flutter is amazing! It is easy to
write, elegant, well-designed - an absolute pleasure to code in.?

Conclusion

Now, if you're the kind of developer I hope you are, you're chomping at the
bit to get your hands dirty writing some code! So let’s get to it. We'll start by
installing and learning the Flutter development toolchain.

3But if you do want to read more, here’s a deeper discussion of Flutter vs. some
other frameworks: http://bit.1ly/2HC9Khm

http://bit.ly/2HC9Khm

CHAPTER 2

Developing in Flutter

As we saw in the last chapter, Flutter enables us to create apps that run
on the Web, on desktop computers, and on mobile devices (which seems
to be the main draw). But wait a second, how exactly do we create these
apps? What editor should we use? What is needed in the Flutter project?
How do you compile the Dart source code? Do we need any other tools
to support the project? How do you get it into a browser or on a device in
order to test it out? Good questions, right?

Let’s answer those questions and more in this chapter. Let’s cover two
significant topics:

1. Tools needed - How to install and maintain them

2. The development process - How to create the app,
run it, and debug it

Caution By its nature, cross-platform app development tooling
involves an awful lot of moving parts from various organizations, few of
whom consult with the others before making changes. And since we’re
dealing with boundary-pushing and young technology, changes happen
frequently. We’ve tried in this chapter to stick with timeless information
but even it is likely to become stale eventually. Please check with the
authors of these tools for the latest and greatest information.

© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_2

CHAPTER 2 DEVELOPING IN FLUTTER

The Flutter toolchain

There is no end to the list of helpful tools that the development community
has produced. It is truly overwhelming. We're making no attempt at covering
them all. We want to give you just enough for you to be proficient but not so
many that you're overburdened. Forgive me if I've skipped your favorite.

The Flutter SDK

The Flutter SDK is the only indispensable tool. It includes the Flutter
compiler, project creator, device manager, test runner, and tools that
diagnose - and even correct - problems with the Flutter configuration.

Installing the flutter SDK

The installation instructions are found here: https://flutter.dev/docs/
get-started/install. Long story short - it will involve downloading the
latest zip file of tools and setting your PATH to point to the folder where
you unzipped them. The steps vary per operating system, but they’re very
plain on that web site.

Tip This step seems very low level and sounds intimidating, but
after this step, things get easier and less error-prone. Don’t let it
discourage you.

IDEs

In theory an IDE isn’t really needed. Flutter can be written using any
editor and then compiled and run using the flutter SDK that you installed
earlier. But in reality almost nobody ever does that. Why would they? The
following IDEs have Flutter support built right in!

10

https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install

CHAPTER 2 DEVELOPING IN FLUTTER

VS Code from Microsoft

VS Code is from Microsoft. Its official name is “Microsoft Visual Studio

Code,” but most of us just call it VS Code. Whatever you call it, please do

not confuse it with Microsoft’s other product called “Microsoft Visual

Studio” They are not the same thing regardless of the similar names.
You can get VS Code here: https://code.visualstudio.com.

Android Studio/IntelliJ from JetBrains

Android Studio and IntelliJ are essentially the same thing. They are built
from the same codebase and have the same features.

You can get Android Studio at https://developer.android.com/
studio and Intelli] IDEA here: www. jetbrains.com/idea/download.

Which IDE should | use?

Both VS Code and Android Studio/Intelli] are free and open source. Both
run cross-platform on Windows, Mac, and Linux. Both are roughly equally
popular with Flutter developers,' neither having a clear market advantage
over the other. You can’t go wrong with either one.

But if you must choose one, what we've found is that your background
may affect how you like the tools. Developers from the web development
world, those who use tech like HTML, CSS, JavaScript, Node]JS, React,
Angular, or Vue, strongly prefer VS Code. On the other hand, those
developers who came from a Java world, especially Android developers,
seem to lean toward Android Studio/Intelli].

The good news is that this is a very low-pressure choice. It is trivial to
switch editors - even while working on a given project. Start in one and see

!A recent poll of Flutter devs by Andrew Brogdon (@redbrogdon) of the Flutter
team showed that 53% use VS Code, 30% use Android Studio, and 15% use
Intelli]. See http://bit.1ly/flutter devtools poll

11

https://code.visualstudio.com
https://developer.android.com/studio
https://developer.android.com/studio
http://www.jetbrains.com/idea/download
http://bit.ly/flutter_devtools_poll

CHAPTER 2 DEVELOPING IN FLUTTER

how you like it. If you don’t, you can give the other a test drive for awhile.
Go back and forth a couple of times until you have a strong preference. It’s
really no big deal to switch.

IDE DevTools

While those IDEs are great, they're not built for Flutter exclusively;
they’'re used for developing in other languages and frameworks as well.
So to improve the Flutter development flow, we should install the Flutter
DevTools. It adds in debugger support, lets you look at logs, connects
seamlessly with emulators, and a few more things.

Installing the DevTools is done from within each IDE. Within Android
Studio/Intelli], go to “Preferences » Plugins” from the main menu
(Figure 2-1). In VS Code, go to “View » Extensions” (Figure 2-2). The
Flutter devtools are simply called “Flutter” and a search will turn them up.

In either platform, hit the green “Install” button.

LANGUAGES
Flutter

[#1 Install
wdrddrdy 2683094 downloads

Figure 2-1. DevTools install in Android Studio

Flutter <

Dart Code | 4> 3129710 % e kK

y
v 4 5 Flutter support and debugger for Visual Studio Code.,
\ o

Figure 2-2. DevTools install in VS Code

You may need to restart the IDE after you install.

12

CHAPTER 2 DEVELOPING IN FLUTTER

Emulators

Once you've got the IDE and DevTools installed, you're ready to compile
your app. But to run it, you need to get it on a device. An emulator - a
virtual device that runs on your laptop/desktop - makes it really easy to
run, test, debug, and show your app. You'll probably want to test on both
iOS and Android, so you'll need emulators for each. There are several
emulators available, but I'll mention just a couple, Xcode’s iOS simulator
and AVD’s Android emulator.

i0S simulator

If you don’t own a Mac, you won'’t be running an iOS emulator or even
compiling for iOS for that matter.? But if you do and you have Xcode
installed, you're in luck; you have the iOS simulator already. To run it,
you open Xcode, then go to Xcode » Open Developer Tool » Simulator
(Figure 2-3). The simulator will start up, and from within it, you can select
any iOS device including iPhones and iPads.

& FTC™ File Edit View Find Navigate Editor Product

Open Developer Tool > |

¥ Simulator

Figure 2-3. Opening the iOS Simulator from Xcode

2<sarcasm>Thanks, Apple.</sarcasm>

13

CHAPTER 2 DEVELOPING IN FLUTTER

Android emulator

Just like there are tons of Android models, so are there tons of Android
emulators, but there are only two popular ways to interact with them:
Genymotion and AVD Manager. Genymotion is a for-profit company, so
when you visit their web site, they’ll do their level best to steer you toward
their paid version. That’s understandable. We'll focus on AVD Manager
because it is totally free and more popular with Flutter devs.

AVD stands for “Android Virtual Device.” The AVD Manager is found in
Android Studio under Tools (Figure 2-4).

nnalyze Refactor Build Run

VCS Window Help

Figure 2-4. Finding the AVD Manager in Android Studio

Once opened, you'll see a list of your currently installed emulators. It
should start out empty at first. You'll have the ability to install one or more
of the hundreds of Android device emulators available by hitting the “+
Create Virtual Device..” button at the bottom (Figure 2-5).

14

CHAPTER 2 DEVELOPING IN FLUTTER

®0e® Android Virtual Device Manager

) Your Virtual Devices

M Android Studio

Type | Name Play Store |Re.. APl [Tar.. CPUfABI Siz... Actions

E'D flutter emulator .. 28 ... xBB6 [A

E'D Nexus 5X AP| 28 x86 ans| 228 .. x86 b S

(D rixel2aPi28 B v 28 .. x86 .. > £ v
? + Create Virtual Device... S

a o

Figure 2-5. AVD Manager has a list of available devices. Click “+” to
add more

Hit it and you can choose from all kinds of devices or create one of
your own. You'll only need to install a device once. After it’s installed, that
emulated device is usable from any IDE, whether Intelli]/Android Studio
or VS Code. No need for a separate setup on VS Code.

Keeping the tools up to date

Early on, cross-platform development with tools like Xamarin and React
Native was terribly difficult because of the sheer number of the tools involved
and the interdependencies between them. I'm still in therapy from the pain.

But because Flutter arrived on the scene later it can learn from others’
mistakes. The Flutter team, recognizing these pain points, gave us an
innovative tool to manage the rest of the toolchain. It will examine your
development machine, looking for all the tools you'll need to develop
Flutter apps, the versions you have, the versions that are available, the
interdependencies between them, and then make a diagnosis of problems.
It will even prescribe a solution to those problems. Kind of sounds like a
doctor, right? Well, let me introduce you to flutter doctor!

15

CHAPTER 2 DEVELOPING IN FLUTTER

flutter doctor

You'll run flutter doctor from the command line. It checks all the tools in
your toolchain and reports back any problems it encounters. Here’s one
where Xcode needed some help:

$ flutter doctor
Doctor summary (to see all details, run flutter doctor -v):

[v] Flutter (Channel beta, vX.Y.Z, on Mac 0S X X.Y.Z, locale
en-US)
[v'] Android toolchain - develop for Android devices (SDK
version X.Y.Z)
[!] Xcode - develop for iOS and macOS (Xcode X.Y)
X Xcode requires additional components to be installed in
order to run.
Launch Xcode and install additional required components
when prompted.
[v'] Android Studio (version X.Y)
[v] VS Code (version X.Y.Z)
[!] Connected device
! No devices available

I Doctor found issues in 2 categories.

$

The “No devices available” error is common, and you can usually ignore
that one. It just means that at that moment no emulators were running.

Here’s an example of what we prefer to see - everything checks out:

$ flutter doctor
Doctor summary (to see all details, run flutter doctor -v):

[v] Flutter (Channel beta, vX.Y.Z, on Mac 0S X X.Y.Z, locale
en-US)

16

CHAPTER 2 DEVELOPING IN FLUTTER

[v] Android toolchain - develop for Android devices (SDK
version X.Y.Z)
] Xcode - develop for i0S and macOS (Xcode X.Y)
V'] Android Studio (version X.Y)
v'] VS Code (version X.Y.Z)
] Connected device (1 available)

N

— /oo

e No issues found!

flutter doctor not only detects and reports problems but it usually
prescribes the fix for each. It will even tell you when it is time to upgrade
itself via “flutter upgrade.”

flutter upgrade

Yes, the initial installation of the Flutter SDK was a little daunting but the
upgrade is a breeze. You'll literally type two words, “flutter upgrade”:

$ flutter upgrade
Upgrading Flutter from /usr/local/bin/flutter...
From https://github.com/flutter/flutter

2d2a1ff..a72edc2 beta -> origin/beta
3932ffb..cc3ca9a dev -> origin/dev
5a3a46a..a085635 master -> origin/master

* [new branch] refactor -> origin/refactor

<snip>

* [new tag] v1.10.5 -> v1.10.5

Updating c382b8e..a72edc2
11 files changed, 413 insertions(+), 302 deletions(-)
Building flutter tool...

Upgrading engine...
Downloading ios-deploy... 0.3s

17

CHAPTER 2 DEVELOPING IN FLUTTER

Flutter X.Y.Z e channel beta e https://github.com/flutter/
flutter.git

Framework e revision a72e06 (23 hours ago) e 20XX-YY-ZZ
15:41:01 -0700

Engine e revision b863200c37

Tools e Dart X.Y.Z

Running flutter doctor...

Doctor summary (to see all details, run flutter doctor -v):

[v] Flutter (Channel beta, vX.Y.Z, on Mac 0S X X.Y.Z, locale
en-US)

[v] Android toolchain - develop for Android devices (SDK

version X.Y.Z)

Xcode - develop for iOS and macOS (Xcode X.Y)

Android Studio (version X.Y)

VS Code (version X.Y.Z)

Connected device (1 available)

AN

v/
v/

— /oo

]
]
]
]

e No issues found!

Note that flutter doctor is automatically run as the last step, confirming
that all is well. Upgrading is a piece of cake.

The Flutter development process

Now that we have all the tools installed and up to date, let’s create an app
and run it through the debugger.

Scaffolding the app and files

Create a whole new Flutter app by running ...

$ flutter create my app

18

CHAPTER 2 DEVELOPING IN FLUTTER

This will create a subfolder under the current folder called my_app. It
will be full of ready-to-run Dart code.

Tip The app name is case insensitive, so you should make it all
lowercase. Dashes are illegal characters, so you can’t use kebab-
casing. The recommended casing is lowercase_with_underscores.

Anatomy of a Flutter project

It’s not critical that you know about all of the files and folders that are in

the project you just created. But if you're curious, let’s quickly walk through
a newly created Flutter project shown in Figure 2-6.

® ® & chapter_02_how_to_develop_in_flutter
+ chapter_02_how_to_develop_in_flutter)

Project ~ o - O —

= android [chapter_02_how_to_develop_it
- [lios
lib
= Main.dart
test
.gitignore
.metadata
.packages
= chapter_02_how_to_develop_in_flutter.im
= pubspec.lock
1] pubspec.yaml
= README.md

Figure 2-6. A fresh Flutter project made by flutter create

19

CHAPTER 2

DEVELOPING IN FLUTTER

You'll have these folders:

android and ios - These are the platform-specific parts
of the project. For the most part, you won’t need to
touch these.

lib - This is the home of all of your Dart source code.
You will build your app’s hierarchy here. This is where
you'll spend nearly all of your time and attention.

test - If you have unit tests (and you probably should
eventually), put them here.

And you'll have these files:

pubspec.yaml - This is essentially the project file for
Dart projects. This is where we set our project name,
description, dependencies and more. Be sure to read
the comments in here to get a better picture of what is
suggested and possible.

.gitignore and README.md - These will be very
familiar to devs who use git and github for their source
code repository. Others won't care.

.metadata and .packages - These are important config
files which you'll never open. But Flutter needs them.

Tip There’s one more file you should be aware of: analysis-options.
yaml. Having this file is not required, but if you do, you’ll write better
code. This file signals the IDE to perform linting (aka static analysis)
on the code as you write it. With analysis-options.yaml, the IDE will
warn you when you don’t use best practices.

Rather than writing one from scratch, let me suggest that you start
with someone else’s. Here’s one that is very popular with the Flutter

20

CHAPTER 2 DEVELOPING IN FLUTTER

community: https://github.com/flutter/plugins/blob/
master/analysis options.yaml.

It is aggressive. If you want to turn off some of the rules, just delete
the lines or comment them out. An explanation of all of the linting
rules can be found here: http://dart-lang.github.io/
linter/lints/.

Running your app

You now have a Flutter app created. Let’s go run it. There are multiple
ways of running your app. The most popular way is to hit the green “Play”
button in either Android Studio/IntelliJ or VS Code. You can also do it from
the command line using “flutter run”:

$ flutter run

Running "flutter pub get" in chapter 02 how_to develop in_
flutter... 0.5s
Launching lib/main.dart on iPhone X in debug mode...

Running Xcode build...

—Assembling Flutter resources... 6.1s

L—Compiling, linking and signing... 5.9s
Xcode build done. 13.8s
Syncing files to device iPhone X... 1,852ms

To hot reload changes while running, press "r". To hot
restart (and rebuild state), press "R".
An Observatory debugger and profiler on iPhone X is available
at: http://127.0.0.1:52550/8m0h8zacV58=/
For a more detailed help message, press "h". To detach, press

"d"; to quit, press "q".

21

https://github.com/flutter/plugins/blob/master/analysis_options.yaml
https://github.com/flutter/plugins/blob/master/analysis_options.yaml
http://dart-lang.github.io/linter/lints/
http://dart-lang.github.io/linter/lints/

CHAPTER 2 DEVELOPING IN FLUTTER

But if you hit the green Play/Debug button in your IDE (Figure 2-7),
you’ll have the option of debugging your app by setting breakpoints and
stepping through the code using the developer tools (Figure 2-8).

_ iPhone X ~ maindart v P £

-

Figure 2-7. The Play and Debug buttons are at the top in Android
Studio

0 ®

DEBUG > No Configurations 4 %

. WIARDIADI EO

Figure 2-8. The Play button is in the upper left in VS Code

Obviously you'll need to run your app in a device of some kind. There
are several: the Chrome browser for a web app, emulators, or a physical
device that is tethered to your development machine via a cable. When
you click the Play/Debug button, you get to choose which device you want
to run at that moment. Notice that in the preceding screenshot of Android
Studio, there’s a dropdown menu with a list of available devices. In VS
Code, hit the Play button, and a menu immediately pops up with your
choices. With either IDE, you are in control.

Tip You can check what devices are currently available to you by
running “flutter devices” from the command line.

$ flutter devices
3 connected devices:

22

CHAPTER 2 DEVELOPING IN FLUTTER

Vivo XL3 e 55S5...KF e« android-arm64 e Android
8.0.0 (API 26)

Android SDK e emul...4 e android-x86 e Android 9
(APT 28) (emulator)

iPhone X e E6...39A ¢ ios e com.
apple...0S-12-1 (simulator)

The preceding sample output tells us that we have three devices.
The first and second are Android devices and the third runs i0S. The
first device is a tethered physical device. The second and third are
emulators.

Note that this command is different from the “flutter emulators”
command which tells you all possible emulators you could potentially
choose from. The flutter devices command tells you which devices
are currently available to run your app.

Running it as a web app

Flutter considers your browser to be a device when you're running as
a web app. So all that is needed to run as a web app is to enable the
Google Chrome web browser as a device. You can enable it with this
one-time command:

$ flutter config --enable-web
Setting "enable-web" value to "true".

From then on, when you get a list of devices on which to run your app,
“Chrome” will appear as one of them. Simply choose to run your app in
Chrome and the IDE will load your web app in it.

23

CHAPTER 2 DEVELOPING IN FLUTTER

Running it on a tethered device

There are times when you need to run your app on a physical device.
For example, I was developing a project that involved printing labels
to a physical printer connected by Bluetooth. Emulators don’t pair via
Bluetooth. To test the printing, I needed an actual physical device that was
already paired to my Bluetooth printer.

To tether a physical device to your development machine, you'll use a
USB cable for most Android devices and a Lightning cable for most iPhones.

Tips #1 When connecting an Android device, it will initially think
you’re trying to charge it or transfer photos. To let it know you're
trying to debug, open the Developer Options screen on the device and
select “Enable USB debugging”.

#2 Many connection issues can be caused by an inferior USB cable.
Counterintuitively, not all USB cables are created equal. Switch to a
higher-quality cable if you still can’t connect after changing settings.

Hot reloading

Once the app is running in your emulator/browser/physical device/
whatever, you'll want to make changes to the source code and rerun.
Here’s the really cool thing: any time you save a change to the source code,
itis recompiled and the new version is loaded instantly. Your app picks up
where you left off - in the same spot, with the same state, and same data.
We call it “hot reloading,” and it makes the development cycle ridiculously

fast and frictionless.

24

CHAPTER 2 DEVELOPING IN FLUTTER

Debugging

Both IDEs have essentially the same debugging tools you've become
accustomed to in all IDEs. When you start your project running, the
debugging tools will appear.

In Android Studio the debug window opens, usually at the bottom of
the IDE. It has a tiny toolbar which looks like Figure 2-9.

. main.dart
~EE R SN AR BT
‘ames -+* ©= Variables

Figure 2-9. The debugging toolbar in Android Studio

” u ”

The options are “step over,” “step into,” “force step into,” and “step out
from left to right.

In VS Code the toolbar appears floating over your source code
(Figure 2-10).

i | DL 1m

Figure 2-10. The debugging toolbar in VS Code

” u ” «u

Its options are “play/pause,” “step over,

” «u

step into,” “step out,” “hot

reload,” “restart,” and “stop debugging.”

25

CHAPTER 2 DEVELOPING IN FLUTTER

Note Flutter is pickier when you’re debugging than when running
for real in a device. This is a good thing because during debugging it
makes obvious certain errors that you should probably fix but aren’t
necessarily fatal. In the release version, it swallows those same
errors and (hopefully) allows our users to continue running our app.

One family of those errors is “runtime assertions.” You’ll know
you’re dealing with one of these when the debugger gives you an
error like this:

Exception caught by gesture

The following assertion was thrown while handling a
gesture:

setState() callback argument returned a Future.

The setState() method on FooState#236 was called
with a closure or method that returned a Future.
Maybe it is marked as "async".

etc. etc. etc.

Your takeaway is this: when you see one of these, fix the problem. It's
the right thing to do. But don’t be confused if you don’t see that same
problem after you’ve deployed it.

26

CHAPTER 2 DEVELOPING IN FLUTTER

Conclusion

Look, I know that this is a lot of stuff to absorb. The nature of cross-
platform development makes the tooling hairy. But the worst is behind
us. Once you've got the Flutter SDK and an IDE (VS Code/Android
Studio/Intelli] IDEA) installed, that’s all you really need. And granted, the
DevTools and an emulator or two can really help. All that’s left is getting
some repetitions in for practice. You're going to be great!

So now that we've seen the Flutter toolchain, let’s start creating

widgets!

27

PART Il

Foundational Flutter

CHAPTER 3

Everything Is Widgets

Let’s pretend that you are an insanely talented Lego nerd and got offered
one of the few coveted jobs as a Lego Master Builder. Congrats! Let’s also
say that your first assignment is to build a six-foot-tall Thor made from
26,000 Legos (Figure 3-1).

Figure 3-1. A Lego Thor. The author snapped this picture at a movie
theater once
© Rap Payne 2019 31

R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_3

CHAPTER 3 EVERYTHING IS WIDGETS

How would you go about doing that? Ponder that for a minute. Go
ahead, we'll wait.

Would you just start grabbing bricks and putting them together?
Probably not. Would you lay out the soles of Thor’s feet and build from the
bottom up? Again, no. Here’s my guess as to your common-sense strategy:

1. You'd get a vision of what you're building. Figure the
whole thing out.

2. Realize that the entire project is too complex to
build at once.

3. Break the project into sections (legs, left arm,
right arm, torso, left sword, right sword, helmet,
cape, head).

4. Realize that each of them is still too complex.
5. For each section, you break it into sub-sections.

6. Repeat steps 4 and 5 until you've got simple enough
components that each is easy to understand, build,
and maintain - for you and for any teammates that
you may have.

7. Create each simple component.

8. Combine simple components to form the larger,
more complex components.

9. Repeat steps 7 and 8 until you've got your entire
project created.

This process has a name: componentization, and is exactly the thought
process we'll go through with our Flutter projects.

32

CHAPTER 3 EVERYTHING IS WIDGETS

Componentization is not something new. In fact, it was proposed as far
back as 1968.' But the technique has recently exploded in popularity thanks
to web frameworks like Angular, React, Vue, Polymer, and native web
components. Seems like all the cool kids are doing software components
these days. The idea of recursively breaking down the complex bits into
simpler bits is called decomposition. And the act of putting the written
pieces back together into larger components is called composition.

In the world of Flutter, these components are referred to as widgets.
Flutter people like to say “everything is widgets,” meaning that you and I will
be using the Google-provided widgets - the ones that ship with Flutter. We’ll
compose them together to create our own custom widgets. And our custom
widgets will be composed together to create more and more complex
custom widgets. This continues until you've got yourself a full-blown app.

In the world of Flutter, components are referred to as
widgets.

Every app can be thought of in two parts:

1. Behavior - What the software does. All of the
business logic goes here: the data reading, writing,
and processing.

2. Presentation - How the software looks. The user
interface. The buttons, textboxes, labels.

Only Flutter combines these into one language instead of two.

Ul as code

Other development frameworks have proven componentization to be
the way to go. The Flutter team has openly stated that they were heavily

'http://bit.ly/componentHistory

33

http://bit.ly/componentHistory

CHAPTER 3 EVERYTHING IS WIDGETS

inspired by React® which is based on componentization. In fact, all
framework makers seem to borrow heavily from one another. But Flutter is
unique in the way that the user interface is expressed. Developers use the
same Dart language to express an app’s graphical user interface as well as
the behavior (Table 3-1). We call this “UI as code.”

Table 3-1. Only Flutter uses the same language for
presentation and behavior

Framework Behavior expressed in... Ul expressed in ...

Xamarin C# XAML
React Native ~ JavaScript JSX
NativeScript ~ JavaScript XML
Flutter Dart Dart

So how does this Ul get created? Like many other frameworks and
languages, a flutter app starts with a main function. In Flutter, main will
call a function called runApp(). This runApp() receives one widget, the
root widget which can be named anything, but it should be a class that
extends a Flutter StatelessWidget. It looks like this:

// import the Dart package needed for all Flutter apps
import 'package:flutter/material.dart’;

// Here is main calling runApp
void main() => runApp(RootWidget());

// And here is your root widget
class RootWidget extends StatelessWidget {
@override

2Source: https://flutter.dev/docs/resources/fag#does-flutter-come-with-
a-framework

34

https://flutter.dev/docs/resources/faq#does-flutter-come-with-a-framework
https://flutter.dev/docs/resources/faq#does-flutter-come-with-a-framework

CHAPTER 3 EVERYTHING IS WIDGETS

Widget build(BuildContext context) {
return Text("Hello world");

}
}

And that’s all you need to create a “Hello world” in Flutter.
But wait ... what is this Text() thing? It’s a built-in Flutter widget. Since
these built-in widgets are so important, we need to take a look at them.

Built-in Flutter widgets

Flutter’s foundational widgets are the building blocks of everything we
create and there are tons of them - about 160 at last count.® This is a lot of
widgets for you and I to keep track. But if you mentally organize them, it
becomes much more manageable.

They fall into these major categories:

e Value widgets
o Layout widgets
o Navigation widgets

e Other widgets

Note These are not Flutter’s official list of categories. Their

14 categories are listed here: https://flutter.dev/docs/
development/ui/widgets. We just felt that reorganizing them
helps to keep them straight.

%You can find a list of them all here: https://flutter.dev/docs/reference/
widgets

35

https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/reference/widgets
https://flutter.dev/docs/reference/widgets

CHAPTER 3 EVERYTHING IS WIDGETS

We'll take a brief look at each of these categories with an example or
two, and then we'll do some deep dives in later chapters. Let’s start with
value widgets.

Value widgets

Certain widgets hold a value, maybe values that came from local storage,

a service on the Internet, or from the user themselves. These are used to

display values to the user and to get values from the user into the app.

The seminal example is the Text widget which displays a little bit of text.

Another is the Image widget which displays a .jpg, .png, or another picture.
Here are some more value widgets:

Checkbox FormField Refreshindicator
CircularProgressindicator Icon RichText

Date & Time Pickers IconButton Slider

DataTable Image Switch
DropdownButton LinearProgressindicator Text

FlatButton PopupMenuButton TextField
FloatingActionButton Radio Tooltip
FlutterLogo RaisedButton

Form Rawlmage

We'll explore value widgets in more detail in the next chapter.

Layout widgets

Layout widgets give us tons of control in making our scene lay out

properly - placing widgets side by side or above and beneath, making
them scrollable, making them wrap, determining the space around widgets
so they don't feel crowded, and so on:

36

CHAPTER 3 EVERYTHING IS WIDGETS

Align FittedBox Padding

AppBar Flow PageView
AspectRatio FractionallySizedBox Placeholder
Baseline GridView Row

BottomSheet IndexedStack Scaffold
ButtonBar IntrinsicHeight Scrollable

Card IntrinsicWidth Scrollbar

Center LayoutBuilder SingleChildScrollView
Column LimitedBox SizedBox
ConstrainedBox ListBody SizedOverflowBox
Container ListTile SliverAppBar
CustomMultiChildLayout ListView SnackBar

Divider MediaQuery Stack

Expanded NestedScrollview Table
ExpansionPanel OverflowBox Wrap

This is a huge topic which we’ve given its own chapter, Chapter 6,
“Laying Out Your Widgets.”

Navigation widgets

When your app has multiple scenes (“screens,” “pages,” whatever you want

to call them), you'll need some way to move between them. That’s where
Navigation widgets come in. These will control how your user sees one scene
and then moves to the next. Usually this is done when the user taps a button.
And sometimes the navigation button is located on a tab bar or in a drawer
that slides in from the left side of the screen. Here are some navigation widgets:

AlertDialog MaterialApp TabBar
BottomNavigationBar Navigator TabBarView
Drawer SimpleDialog

We'll learn how they work in Chapter 7, “Navigation and Routing.”

37

CHAPTER 3 EVERYTHING IS WIDGETS

Other widgets

And no, not all widgets fall into these neat categories. Let’s lump the rest
into a miscellaneous category. Here are some miscellaneous widgets:

GestureDetector Cupertino Transitions
Dismissible Theme Transforms

Many of these miscellaneous widgets are covered throughout the book
where they fit naturally. GestureDetector is crucial enough that it gets its
own chapter, Chapter 5, “Responding to Gestures.”

How to create your own stateless widgets

So we know that we will be composing these built-in widgets to form our
own custom widgets which will then be composed with other built-in
widgets to eventually form an app.

Widgets are masterfully designed because each widget is easy to
understand and therefore easy to maintain. Widgets are abstract from the
outside while being logical and predictable on the inside. They are a dream
to work with.

Every widget is a class that can have properties and methods. Every
widget can have a constructor with zero or more parameters. And
most importantly, every widget has a build method which receives a
BuildContext* and returns a single Flutter widget. If you're ever wondering
how a widget got to look the way it does, locate its build method:

‘Don’t get distracted by the BuildContext. It’s used by the framework and we do
occasionally refer to it, but we’ll save those examples later in the book. For now,
just think of it as part of the recipe to write a custom widget.

38

CHAPTER 3 EVERYTHING IS WIDGETS

class RootWidget extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Text('Hello world');
}
}

In this hello world example which we repeated from earlier in the
chapter, we're displaying a Text widget (Figure 3-2). A single inner widget
works but real-world apps will be a whole lot more complex. The root
widget could be composed of many other subwidgets:

class FancyHelloWidget extends StatelessWidget {
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(
title: Text("A fancier app"),
))
body: Container(
alignment: Alignment.center,
child: Text("Hello world"),
)J
floatingActionButton: FloatingActionButton(
child: Icon(Icons.thumb up),
onPressed: () => {},

)5
)s
);

39

CHAPTER 3 EVERYTHING IS WIDGETS

313 240 &

A fancier app

Hello world

Figure 3-2. The app created by this simple widget

So as you can see, the build method is returning a single widget, a
MaterialApp, but it contains a Scaffold which contains three subwidgets:
an AppBar, a Container, and a FloatingActionButton (Figure 3-3). Each of
those in turn contains sub-subwidgets of their own.

40

CHAPTER 3 EVERYTHING IS WIDGETS

Material App
Scaffold
|
App Bar Container Floating Action Button
Text Text Icon

Figure 3-3. The widget tree from our example app above

This is how your build method will always work. It will return a single,
massive, nested expression. It is widgets inside widgets inside widgets that
enable you to create your own elaborate custom widget.

Widgets have keys

You may hear about a virtual DOM when other developers talk about
Flutter. This comes from the world of React. (Remember that Flutter
borrowed heavily from React’s excellent architecture.) Well, strictly
speaking, Flutter doesn’t have a DOM, but it does maintain something
resembling it - the element tree. The element tree is a tiny copy of all the
widgets on the screen. Flutter maintains a current element tree and one
with batched changes applied.

You see, Flutter might be really slow if it applied every tiny change to
the screen and then tried to re-render it hundreds of times per second.
Instead, Flutter applies all of those changes to a copy of the element tree.
It then periodically “diffs” the current element tree with the modified one
and decides what truly needs to be re-rendered. It only re-renders those
parts that need it. This is much, much faster.

41

CHAPTER 3 EVERYTHING IS WIDGETS

But occasionally Flutter gets confused when matching the widgets
in the element trees. You'll know to programmatically assign keys if your
data changes and widgets get drawn in the wrong location, the data isn’t
updated on the screen, or your scroll position isn’t preserved.

You don’t need to worry about keys most of the time. It is needed so
rarely that we're going to be satisfied if you understand that ...

1. Keys exist and why Flutter may need them.

2. Ifyour widgets aren’t being redrawn as you might
expect when data changes, keys may solve problems.

3. You have the opportunity to assign keys to certain
widgets.

If that’s not enough to satisfy you for now, the great Emily Fortuna has
recorded a super ten-minute video on keys.®

Passing a value into your widget

Do you know what this formula means?

y = f(x)

Math majors will recognize this as reading “Y is a function of X.” It
concisely communicates that as X (the independent variable) changes, Y
(the dependent variable) will change in a predictable way. Flutter lives on
this idea, but in Flutter the formula reads like this:

Scene = f(Data)

In other words, as the data in your app changes, the screen will
change accordingly. And you, the developer, get to decide how that data is
presented as you write a build method in your widgets. It is a foundational
concept of Flutter.

You can find Emily’s video here: http://bit.ly/FlutterKeys

42

http://bit.ly/FlutterKeys

CHAPTER 3 EVERYTHING IS WIDGETS

Now how might that data change? There’s two ways:

1. The widget can be re-rendered with new data
passed from outside.

2. Data can be maintained within certain widgets.

Let’s talk about the first. To pass data into a widget, you'll send it in as a
constructor parameter like this:

Widget build(BuildContext context) {
return Person("Sarah"); // Passing "Sarah" into a widget

}

If a widget represents how to render a Person, it would be a very normal
thing to pass in a firstName, like we just did with “Sarah” earlier. If you do
that, you'll need to write your widget’s constructor to receive that value:

class Person extends StatelessWidget {
final String firstName;
Person(this.firstName) {}
Widget build(BuildContext context) {
return Text('$firstName');
}
}

This is Dart syntax. Note three things. First, you'll list the input
parameter in the constructor (“this.firstName” in the preceding example).
Second, make sure you put “this.” in front of it. The “this.” matches it to a
class-level property rather than a parameter that is local to the constructor
function. And third, mark the corresponding class property as final.

You might want to pass in two or more properties like this:

Widget build(BuildContext context) {
return Person("Sarah","Ali");

}

43

CHAPTER 3 EVERYTHING IS WIDGETS

Of course passing in two values means creating two final variables and
two constructor parameters to handle them:

class Person extends StatelessWidget {
final String firstName;
final String lastName;
Person(this.firstName, this.lastName) {}
Widget build(BuildContext context) {

return Text('$firstName $lastName');

}

}

As you can guess, these are matched positionally which can be easy
to mess up and not terribly flexible. A better practice is to have named

parameters:

Widget build(BuildContext context) {
return Person(firstName:"Sarah", lastName:"Ali");

}

This reduces confusion for the other developers who use your widget.
Here’s how you'd write your widget to receive that value:

class Person extends StatelessWidget {
final String firstName;
final String lastName;
Person({this.firstName, this.lastName}) {}
Widget build(BuildContext context) {
return Container(child: Text('$firstName $lastName'));
}
}

Do you see the difference? It’s subtle. There are now curly braces
around the constructor parameters. This makes them optional and named.

44

CHAPTER 3 EVERYTHING IS WIDGETS

Tip Note that in all three of the preceding examples, we are using
a Person class that might have been defined in the same dart file
where you’re using it. But a better practice is to create each class in
a separate dart file and import it into other dart files where it is used.

import 'Person.dart';

Stateless and Stateful widgets

So far we’ve been going out of our way to create stateless widgets. So you

probably guessed that there’s also a stateful widget. You were right. A stateless
widget is one that doesn’t maintain its own state. A stateful widget does.

“State” in this context refers to data within the widget that can change
during its lifetime. Think about our Person widget from earlier. If it’s a
widget that just displays the person’s information, it should be stateless.
Butifitis a person maintenance widget where we allow the user to change
the data by typing into a TextField, then we’d need a Stateful Widget.

There’s a whole chapter on stateful widgets later. If you just can’t wait
to know more about them, you can read Chapter 9, “Managing State,” later
in this book. Then come back here.

So which one should | create?

The short answer is create a stateless widget. Never use a stateful widget
until you must. Assume all widgets you make will be stateless and start
them out that way. Refactor them into stateful widgets when you’re sure
you really do need state. But recognize that state can be avoided more
often than developers think. Avoid it when you can to make widgets
simpler and therefore easier to write, to maintain, and to extend. Your
team members will thank you for it.

45

CHAPTER 3 EVERYTHING IS WIDGETS

Note There is actually a third type of widget, the InheritedWidget.
You set a value in your InheritedWidget and any descendent can
reach back up through the tree and ask for that data directly. It is
kind of an advanced topic, but Rémi Rousselet would have had my
head if | hadn’t mentioned it. You can read more about it in Chapter 9,
“Managing State,” or watch Emily Fortuna’s concise overview of
InheritedWidget here: http://bit.ly/inheritedWidget.

Conclusion

So now we know that Flutter apps are all about widgets. You'll compose
your own custom Stateless or Stateful widgets that have a build method
which will render a tree of built-in Flutter widgets. So clearly we need to
know about the built-in Flutter widgets which we’ll learn beginning in the
next chapter.

46

http://bit.ly/inheritedWidget

CHAPTER 4

Value Widgets

We learned in the last chapter that everything is a widget. Everything

you create is a widget and everything that Flutter provides us is a widget.
Sure, there are exceptions to that, but it never hurts to think of it this way,
especially as you're getting started in Flutter. In this chapter we’re going
to drill down into the most fundamental group of widgets that Flutter
provides us - the ones that hold a value. We'll talk about the Text widget,
the Icon widget, and the Image widget, all of which display exactly what
their names imply. Then we’ll dive into the input widgets - ones designed
to get input from the user.

The Text widget

If you want to display a string to the screen, the Text widget is what you'll need.

Text('Hello world'),

Tip If your Text is a literal, put the word const in front of it and the
widget will be created at compile time instead of runtime. Your apk/
ipa file will be slightly larger but they’ll run faster on the device. Well
worth it.

You have control over the Text’s size, font, weight, color, and more with
its style property. But we'll cover that in Chapter 8, “Styling Your Widgets.”
© Rap Payne 2019 47

R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_4

CHAPTER 4 VALUE WIDGETS

The Icon widget

Flutter comes with a rich set of built-in icons (Figure 4-1), from cameras to
people to cards to vehicles to arrows to batteries to Android/iOS devices.
A full list can be found here: https://api.flutter.dev/flutter/material/
Icons-class.html.

DDEV&
-JOREREA L

DY
cge] © @
9P =
w8

Figure 4-1. An assortment of Flutter’s built-in widgets in
random colors

E
] ¢
O
=i

To place an icon, you use the Icon widget. No surprise there. You use
the Icons class to specify which one. This class has hundreds of static
values like Icons.phone_android and Icons.phone_iphone and Icons.cake.
Each points to a different icon like the ones pictured previously. Here’s
how you'd put a big red birthday cake (Figure 4-2) on your app:

48

https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html

CHAPTER 4 VALUE WIDGETS

Icon(
Icons.cake,
color: Colors.red,
size: 200,

)

Figure 4-2. The red cake icon

The Image widget

Displaying images in Flutter is a bit more complex than Text or Icons.
It involves a few things:

1. Getting the image source - This could be an image
embedded in the app itself or fetched live from the
Internet. If the image will never change through the
life of your app like a logo or decorations, it should
be an embedded image.

2. Sizing it - Scaling it up or down to the right size and
shape.

49

CHAPTER 4 VALUE WIDGETS

Embedded images

Embedded images are much faster but will increase your app’s install size.
To embed the image, put the image file in your project folder, probably in a
subfolder called images just to keep things straight. Something like assets/
images will do nicely.

Then edit pubspec.yaml. Add this to it:

flutter:
assets:

- assets/images/photol.png

- assets/images/photo2.jpg

Save the file and run “flutter pub get” from the command line to have
your project process the file.

Tip The pubspec.yaml file holds all kinds of great information about
your project. It holds project metadata like the name, description,
repository location, and version number. It lists library dependencies
and fonts. It is the go-to location for other developers new to your
project. For any of you JavaScript developers, it is the package.json
file of your Dart project.

Then you'll put the image in your custom widget by calling the asset()
constructor like this:

Image.asset('assets/images/photo1.jpg",),

50

CHAPTER 4 VALUE WIDGETS

Network images

Network images are much more like what web developers might be
accustomed to. It is simply fetching an image over the Internet via
HTTP. You'll use the network constructor and pass in a URL as a string.

Image.network(imageUrl),

Asyou’d expect, these are slower than embedded images because
there’s a delay while the request is being sent to a server over the Internet
and the image is being downloaded by your device. The advantage is that
these images are live; any image can be loaded dynamically by simply
changing the image URL.

Sizing an image

Images are nearly always put in a container. Not that this is a requirement,
it's just that I can’t imagine a real-world use case where it won’t be inside
another widget. The container has a say in the size that an image is
drawn. It would be an amazing coincidence if the Image’s natural size fit
its container’s size perfectly. Instead, Flutter’s layout engine will shrink
the image to fit its container, but not grow it. This fit is called BoxFit.
scaleDown, and it makes sense for the default behavior. But what other
options are available and how do we decide which to use? Table 4-1
provides your BoxFit options.

51

CHAPTER 4 VALUE WIDGETS

Table 4-1. BoxFit options

fill Stretch it so that both the width and the
height fit exactly. Distort the image

cover Shrink or grow until the space is filled.
The top/bottom or sides will be clipped

fitHeight Make the height fit exactly. Clip the width
or add extra space as needed

fitWidth Make the width fit. Clip the height or add
extra space as needed

contain Shrink until both the height and the width
fit. There will be extra space on the top/
bottom or sides

Photo courtesy of Eye for Ebony on Unsplash
So those are your options, but how do you choose? Figure 4-3 may help
you decide which fit to use in different situations.

52

https://unsplash.com/@eyeforebony?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/black-woman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

CHAPTER 4 VALUE WIDGETS

Do you need the image to fill the entire
container or can there be space around it?

/ \

Space around it is okay Fill the container

l

Fill all the width or all the height?

l l

Fill the width Fill the height

v
Whichever fills first

contain

¥
Stretch the image or cut parts off?

{

Stretch it

Cut parts off

Figure 4-3. How to decide an image’s fit

53

CHAPTER 4 VALUE WIDGETS
To specify the fit, you'll set the fit property.

Image.asset('assets/images/woman.jpg",
fit: BoxFit.contain,),

Input widgets

Many of us came from a web background where from the very beginning
there were HTML <form>s with <input>s and <select>s. All of these exist to
enable the user to get data into web apps, an activity we can’t live without
in mobile apps as well. Flutter provides widgets for entering data like we
have in the Web, but they don’t work the same way. They take much more
work to create and use. Sorry about that. But they are also safer and give us
much more control.

Part of the complication is that these widgets don’t maintain their own
state; you have to do it manually.

Another part of the complication is that input widgets are unaware of
each other. In other words, they don’t play well together until you group
them with a Form widget. We eventually need to focus on the Form widget.
But before we do, let’s study how to create text fields, checkboxes, radio
buttons, sliders, and dropdowns.

Caution Input widgets are really tough to work with unless they
are used within a StatefulWidget because by nature, they change
state. Remember that we mentioned StatefulWidgets briefly in the
last chapter and we’re going to talk about them in depth in Chapter 9,
“Managing State.” But until then, please just take our word for it and
put them in a stateful widget for now.

54

CHAPTER 4 VALUE WIDGETS

Text fields

If all you have is a single textbox, you probably want a TextField widget.
Here’s a simple example of the TextField widget with a Text label above it:

const Text('Search terms'),
TextField(
onChanged: (String val) => _searchTerm = val,

)5

That onChanged property is an event handler that fires after every
keystroke. It receives a single value - a String. This is the value that the user
is typing. In the preceding example, we're setting a local variable called
_searchTerm to whatever the user types.

To provide an initial value with a TextField, you need the unnecessarily
complex TextInputController:

TextEditingController _controller =
TextEditingController(text: "Initial value here");

Then tell your TextField about the controller

const Text('Search terms'),
TextField(
controller: controller,
onChanged: (String val) => _searchTerm = val,

)

You can also use that _controller.text property to retrieve the value that
the user is typing into the box.

Did you notice the Text(‘Search terms’)? That is our lame attempt at
putting a label above the TextField. There’s a much, much better way.
Check this out ...

55

CHAPTER 4 VALUE WIDGETS

Making your TextField fancy

There’s a ton of options to make your TextField more useful - not infinite
options, but lots. And they’re all available through the InputDecoration
widget (Figure 4-4):

return TextField(
controller: emailController,
decoration: InputDecoration(
labelText: 'Email’,
hintText: 'you@email.com',
icon: Icon(Icons.contact mail),

)s
)

Email
-
I you@email.com

Figure 4-4. A TextField with an InputDecoration

Table 4-2 presents some more InputDecoration options.

Table 4-2. Input decoration options

Property Description

labelText ~ Appears above the TextField. Tells the user what this TextField is for

hintText Light ghost text inside the TextField. Disappears as the user begins
typing

errorfext Error message that appears below the TextField. Usually in red. It is set
automatically by validation (covered later), but you can set it manually
if you need to

(continued)

56

CHAPTER 4 VALUE WIDGETS

Table 4-2. (continued)

Property Description

prefixText ~ Text in the TextField to the left of the stuff the user types in
suffixText ~ Same as prefixText but to the far right

icon Draws an icon to the left of the entire TextField

prefixicon Draws one inside the TextField to the left

suffixicon ~ Same as prefixicon but to the far right

Tip To make it a password box (Figure 4-5), set obscureText
property to true. As the user types, each character appears for a
second and is replaced by a dot.

return TextField(
obscureText: true,
decoration: InputDecoration(
labelText: 'Password',

)5
)5

Password

Ssssssssnnns

Figure 4-5. A password box with obscureText

57

CHAPTER 4 VALUE WIDGETS

Want a special soft keyboard? No problem. Just use the keyboardType
property. Results are shown in Figures 4-6 through 4-9.

return TextField(
keyboardType: TextInputType.number,

)5

1 2 3 =
4 5 6 —
8 9 €3
/i 0 o
Figure 4-6. TextInputType.datetime
gwertyuiop

asdf gh j kI
$ z x ¢cvbnmg@

7123 @ © . @

Figure 4-7. TextInputType.email. Note the @ sign

1 2 3 -
4 5 6 -
7 8 9 @

0 /]

L

Figure 4-8. TextInputType.number

58

CHAPTER 4 VALUE WIDGETS

I

e e o
o
[

(< e

+

Figure 4-9. TextIlnputType.phone

Tip If you want to limit the type of text that is allowed to be entered,
you can do so with the Textinput’s inputFormatters property. It’s
actually an array so you can combine one or more of ...

¢ BlacklistingTextinputFormatter — Forbids certain characters
from being entered. They just don’t appear when the user
types.

¢ WhitelistingTextinputFormatter — Allows only these characters
to be entered. Anything outside this list doesn’t appear.

e | engthLimitingTextinputFormatter — Can’t type more than X
characters.

Those first two will allow you to use regular expressions to specify
patterns that you want (white list) or don’t want (black list). Here’s
an example:

return TextField(
inputFormatters: [
WhitelistingTextInputFormatter(RegExp('[0-9 -]")),
LengthLimitingTextInputFormatter(16)

1,

59

CHAPTER 4 VALUE WIDGETS

decoration: InputDecoration(
labelText: 'Credit Card',

)5
)5

In the WhitelistingTextinputFormatter, we’re only allowing numbers
0-9, a space, or a dash. Then the LengthLimitingTextinputFormatter
is keeping to a max of 16 characters.

Checkboxes

Flutter checkboxes (Figure 4-10) have a boolean value property and an
onChanged method which fires after every change. Like all of the other
input widgets, the onChanged method receives the value that the user set.
Therefore, in the case of Checkboxes, that value is a bool.

Checkbox (
value: true,
onChanged: (bool val) => print(val)),

I Safesearch on I

Figure 4-10. A Flutter Checkbox widget

Tip A Flutter Switch (Figure 4-11) serves the same purpose as a
Checkbox — it is on or off. So the Switch widget has the same options
and works in the same way. It just looks different.

60

CHAPTER 4 VALUE WIDGETS

I § . Safesearch on I

Figure 4-11. A Flutter Switch widget

Radio buttons

Of course the magic in a radio button is that if you select one, the others
in the same group are deselected. So obviously we need to group them
somehow. In Flutter, Radio widgets are grouped when you set the
groupValue property to the same local variable. This variable holds the
value of the one Radio that is currently turned on.

Each Radio also has its own value property, the value associated with
that particular widget whether it is selected or not. In the onChanged
method, you'll set the groupValue variable to the radio’s value:

SearchType _searchType;
//0ther code goes here
Radio<SearchType>(
groupValue: _searchType,
value: SearchType.anywhere,
onChanged: (SearchType val) => searchType
const Text('Search anywhere'),

val),

Radio<SearchType>(

groupValue: _searchType,

value: SearchType.text,

onChanged: (SearchType val) => searchType
const Text('Search page text'),
Radio<SearchType>(

groupValue: _searchType,

value: SearchType.title,

val),

onChanged: (SearchType val) => searchType
const Text('Search page title'),

val),

61

CHAPTER 4 VALUE WIDGETS

This simplified code would create something like Figure 4-12.

Terms appearing ...

@® Search anywhere
(O search page text

O Search page title

Figure 4-12. Flutter Radio widgets

Sliders

A slider is a handy affordance when you want your user to pick a numeric
value between an upper and lower limit (Figure 4-13).

Number of res

Figure 4-13. A slider with the value of 25

To get one in Flutter, you'll use the Slider widget which requires an
onChanged event and a value property, a double. It also has a min which
defaults to 0.0 and a max which defaults to 1.0. A range of zero to one is
rarely useful, so you'll usually change that. It also has a label property
which is an indicator telling the user what value they’re choosing.

62

CHAPTER 4 VALUE WIDGETS

Slider(
label: value.toString(),
min: 0, max: 100,
divisions: 100,
value: value,
onChanged: (double val) => value = val,

)
Dropdowns

Dropdowns are great for picking one of a small number of things, like in an
enumeration. Let’s say we have an enum like this:

enum SearchType { web, image, news, shopping }

Where obviously we're defining a “SearchType” as either “web,”

” «

“image,” “news,” or “shopping.” If we wanted our user to choose from one
of those, we might present them with a DropdownButton widget that
might look like Figure 4-14 to start with.

M c-fnnnnrn O

Figure 4-14. DropdownButton with nothing chosen

Then, when they tap the dropdown, it looks like Figure 4-15.

63

CHAPTER 4 VALUE WIDGETS

Web
Image
News

Shopping

Figure 4-15. DropdownButton expanded to show the choices

And when they tap one of the options, it is chosen (Figure 4-16).

Shopping ~

L B S S T

Figure 4-16. DropdownButton with an option selected

To create that DropdownButton, our Flutter code might look like this:

SearchType searchType = SearchType.web;
//0ther code goes here
DropdownButton<SearchType>(
value: _searchType,
items: const <DropdownMenuItem<SearchType>>[
DropdownMenuItem<SearchType> (
child:Text('Web"),
value: SearchType.web,

)s

64

1,

DropdownMenuItem<SearchType>(
child:Text('Image'),
value: SearchType.image,
)s
DropdownMenuItem<SearchType> (
child:Text('News'),
value: SearchType.news,
)5
DropdownMenuItem<SearchType> (
child:Text('Shopping"),
value: SearchType.shopping,
)s

CHAPTER 4

onChanged: (SearchType val) => _searchType = val,

)

Putting the form widgets together

It’s cool that we have all of these different types of fields that look good and
work great. But you will often want them to be grouped together so that

VALUE WIDGETS

they can be somewhat controlled as a group. You'll do this with a Form

widget.

Form widget

As with HTML, you can live just fine without a Form widget. It is a

convenience widget with no visual component. That is to say you never

actually see it rendered on the device. Its only purpose is to wrap all of

its inputs, thereby grouping them - and their data - into a unit. It does so

using a key. Remember that we introduced keys in the last chapter and told

65

CHAPTER 4 VALUE WIDGETS

you that except in a few situations, keys can be ignored. This is one place
where keys are needed. If you decide to use a Form, you need a GlobalKey
of type FormState:

GlobalKey<FormState> key = GlobalKey<FormState>();
You'll set that key as a property to your form:

@override
Widget build(BuildContext context) {
return Form(
key: key,
autovalidate: true,
child: // All the form fields will go here
);
}

At first glance, the Form doesn’t seem to change anything. But a closer
look reveals that we now have access to

o autovalidate: a bool. True means run validations as
soon as any field changes. False means you'll run it
manually. (We'll talk about validations in a few pages.)

o The key itself which we called _key in the preceding
example.

That _key has a currentState property which in turn has these methods:

1. save()- Saves all fields inside the form by calling
each’s onSaved

2. validate()- Runs each field’s validator function

3. reset()- Resets each field inside the form back to its
initialValue

66

CHAPTER 4 VALUE WIDGETS

Armed with all this, you can guess how the Form groups the fields
nested inside of it. When you call one of these three methods on
FormState, it iterates the inner fields and calls that method on each. One
call at the Form level fires them all.

But hang on a second! If _key.currentState.save() is calling a field’s
onSaved(), we need to provide an onSaved method. Same with validate()
calling the validator. But the TextField, Dropdown, Radio, Checkbox, and
Slider widgets themselves don’t have those methods. What do we do now?
We wrap each field in a FormField widget which does have those methods.
(And the rabbit hole gets deeper.)

FormField widget

This widget’s entire purpose in life is to provide save, reset, and validator
event handlers to an inner widget. The FormField widget can wrap any
widget using a builder property:

FormField<String>(
builder: (FormFieldState<String> state) {
return TextField(); // Any field widget like DropDownButton,
// Radio, Checkbox, or Slider.
}J
onSaved: (String initialValue) {
// Push values to a repository or something here.
})
validator: (String val) {
// Put validation logic here (further explained below).
})
))

So we first wrap a FormField widget around each input widget, and
we do so in a method called builder. Then we can add the onSaved and
validator methods.

67

CHAPTER 4 VALUE WIDGETS

Tip Treat a TextField differently. Instead of wrapping it, replace it with
a TextFormField widget if you use it inside a Form. This new widget is
easy to confuse with a TextField but it is different. Basically ...

TextFormField = TextField + FormField

The Flutter team knew that we’d routinely need a TextField widget

in combination with a FormField widget so they created the
TextFormField widget which has all of the properties of a TextField but
adds an onSaved, validator, and reset:

TextFormField(
onSaved: (String val) {
print('Search Term TextField: form saved $val');
b
validator: (String val) {
// Put your validation logic here

}s
)

Now isn’t that nicer? Finally we catch a break in making things
easier. Checkboxes don’t have this feature. Nor do Radios nor
Dropdowns. None except TextFields.

Best practice: Text inputs without a Form should always be
a TextField. Text inputs inside a Form should always be a
TextFormField.

68

CHAPTER 4 VALUE WIDGETS

onSaved

Please remember that your Form has a key which has a currentState which
has a save() method. Got all that? No? Not super clear? Let’s try it this way;
on a “Save” button press, you will write your code to call ...

_key.currentState.save();

... and it in turn invokes the onSaved method for each FormField that
has one.

validator
Similarly, you probably guessed that you can call ...
_key.currentState.validate();

... and Flutter will call each FormField’s validator method. But there’s
more! If you set the Form’s autovalidate property to true, Flutter will
validate immediately as the user makes changes.

Each validator function will receive a value - the value to be validated -
and return a string. You'll write it to return null if the input value is valid
and an actual string if it is invalid. That returned string is the error message
Flutter will show your user.

Validate while typing

Remember that the way to perform instant validation is to set Form.
autovalidate to true and write a validator for your TextFormField:

return Form(
autovalidate: true,
child: Container(
TextFormField(
validator: (String val) {

69

CHAPTER 4 VALUE WIDGETS

// Let's say that an empty value is invalid.
if (val.isEmpty)

return 'We need something to search for';
return null;

b
))
)J
)5

Obviously it makes no sense to validate a DropdownButton, Radio,
Checkbox, Switch, or Slider while typing because you don’t type into them.
But less obviously, it does not work with a TextField inside of a FormField.
It only works with a TextFormField. Strange, right?

Tip Again, best practice is to use a TextFormField. But if you insist
on using a TextField inside a FormField, you can brute force set
errorText like this:

FormField<String>(
builder: (FormFieldState<String> state) {
return TextField(
controller: emailController,
decoration: InputDecoration(
// This says if the value looks like an email
set errorText
// to null. If not, display an error message.
errorfext:
RegExp(r'~[a-zA-Z0-9.]+@[a-zA-Z0-9]+\.
[a-ZA-Z]+")
.hasMatch(_emailController.text)
? null

70

CHAPTER 4 VALUE WIDGETS

"That's not an email address",

)s
);
b
)s

Validate only after submit attempt

There are times when you don’t want your code to validate until the user
has finished entering data. You should first set autovalidate to false. Then
call validate() in the button’s pressed event:

RaisedButton(
child: const Text('Submit'),
onPressed: () {
// If every field passes validation, run their save methods.
if (_key.currentState.validate()) {
_key.currentState.save();
print('Successfully saved the state.')

}
1
)

One big Form example

I know, I know. This is pretty complex stuff. It might help to see these things
in context - how they all fit together. Below you'll find a fully commented
example ... a big example. But as big as it is, it was originally much larger.
Please look at our online source code repository for the full example.
Hopefully they will help your understanding of how Form fields relate.

71

CHAPTER 4 VALUE WIDGETS

Let’s say that we wanted to create a scene for the user to submit a
Google-like web search. We'll give them a TextFormPField for the search
String, a DropdownButton with the type of search, a checkbox to enable/
disable safeSearch, and a button to submit:

enum SearchType { web, image, news, shopping }

// This is a stateful widget. Don't worry about how it or
// the setState() calls work until

// Chapter 9. For now, just focus on the Form itself.
class ProperForm extends StatefulWidget {

@override

_ProperFormState createState() => ProperFormState();

}

class _ProperFormState extends State<ProperForm»> {

// A Map (aka. hash) to hold the data from the Form.

final Map<String, dynamic> searchForm = <String, dynamic>{
'searchTerm': ",
'searchType': SearchType.web,

'safeSearchOn': true,
}s

// The Flutter key to point to the Form
final GlobalKey<FormState> key = GlobalKey();

@override
Widget build(BuildContext context) {
return Form(
key: key,
// Make autovalidate true to validate on every keystroke. In
// this case we only want to validate on submit.
//autovalidate: true,
child: Container(

72

CHAPTER 4 VALUE WIDGETS

child: ListView(
children: <Widget>[
TextFormField(
initialValue: _searchForm['searchTerm'],
decoration: InputDecoration(
labelText: 'Search terms',
)
// On every keystroke, you can do something.
onChanged: (String val) {
setState(() => _searchForm['searchTerm'] = val);
}s
// When the user submits, you could do something
// for this field
onSaved: (String val) { },
//Called when we "validate()". The val is the String
// in the text box.
//Note that it returns a String; null if validation passes
// and an error message if it fails for some reason.
validator: (String val) {
if (val.isEmpty) {
return 'We need something to search for';
}
return null;
}s
)

FormField<SearchType>(
builder: (FormFieldState<SearchType> state) {
return DropdownButton<SearchType>(
value: searchForm['searchType'],
items: const <DropdownMenuItem<SearchType>>[
DropdownMenuItem<SearchType> (

73

CHAPTER 4 VALUE WIDGETS

child: Text('Web'),
value: SearchType.web,
))
DropdownMenuItem<SearchType> (
child: Text('Image'),
value: SearchType.image,
)J
DropdownMenuItem<SearchType> (
child: Text('News'),
value: SearchType.news,
)J
DropdownMenuItem<SearchType>(
child: Text('Shopping'),
value: SearchType.shopping,
))
])
onChanged: (SearchType val) {
setState(() => _searchForm['searchType'] = val);
}J
);
}s
onSaved: (SearchType initialValue) {},
)
// Wrapping the Checkbox in a FormField so we can have an
// onSaved and a validator
FormField<bools(
//initialValue: false, // Ignored for Checkboxes
builder: (FormFieldState<booly state) {
return Row(
children: <Widget>[
Checkbox (

74

CHAPTER 4 VALUE WIDGETS

value: searchForm['safeSearchOn'],
// Every time it changes, you can do something.
onChanged: (bool val) {
setState(() => _searchForm['safeSearchOn'] = val);
})
)J
const Text('Safesearch on'),
])
)5
}’
// When the user saves, this is run
onSaved: (bool initialvalue) {},
// No need for validation because it is a checkbox. But
// if you wanted it, put a validator function here.

)s

// This is the 'Submit' button
RaisedButton(
child: const Text('Submit'),
onPressed: () {
// If every field passes validation, let them through.
// Remember, this calls the validator on all fields in
// the form.
if (_key.currentState.validate()) {
// Similarly this calls onSaved() for all fields
_key.currentState.save();
// You'd save the data to a database or whatever here
print('Successfully saved the state.');
}
1
)
1,

75

CHAPTER 4 VALUE WIDGETS

)5
))
)5
}

}

Conclusion

It takes a while to understand Flutter forms. Please don’t be discouraged.
Look over the preceding example a couple more times and write a little
code. It begins to make sense very quickly. And while the topic of Forms
might have been a little intimidating to you, Images, Icons, and Text were
very straightforward, right?

In the next chapter, we’ll start to see our app come alive because we're
going to learn about creating all the different kinds of buttons and making
them - or any widget for that matter - respond to taps and other gestures!

76

CHAPTER 5

Responding to
Gestures

We've made great progress so far! You now know what Flutter is all about.
You're well-versed in how the development and debugging process works.
You know why we use widgets and are pretty darn familiar with the value
widgets from the last chapter. Heck, you can even create your own stateless
widgets. But we're still missing a major fundamental feature: event
handling.

Let’s say you have a screen where the user chooses a product and puts
itin their cart. They’ll have to scroll up and down through a list of products
(Figure 5-1). The swipe up and down to scroll is a gesture. To choose a
product, they’ll tap on it. That’s a gesture. Then to put it in the cart, maybe
we’d have them swipe right. That’s a different gesture.

© Rap Payne 2019 77
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_5

CHAPTER5 RESPONDING TO GESTURES

Figure 5-1. A shopping app

This chapter is all about handling those gestures. We'll fit gestures into
two categories: gestures on built-in widgets and gestures on your custom
widgets. Let’s start with gesture on built-in widgets.

Meet the button family

Some gestures are super easy because they're pre-baked into certain
widgets. For instance, the creators of button widgets know their sole

78

CHAPTER 5 RESPONDING TO GESTURES

purpose in life is to be pressed and then to do something in response to
it. So all buttons come with a property called onPressed. To use it, you'll
simply point it to a function to run when the user presses it:

Product product;
// More code here
Widget foo() {
return IconButton(
icon: Icon(Icons.delete),
onPressed: removeProduct // The callback must return void
);
}
// More code here
void removeProduct() {
// Do something to remove the _product

}

Figure 5-2 shows the output.

Figure 5-2. An IconButton

You could think of a Button as the base class for all of the other
buttons. It isn’t really, but it wouldn’t hurt for you to think of all of the
others as a Button with some specialties. For instance, these are all widgets
that are specialized types of buttons (Figure 5-3).

79

CHAPTER5 RESPONDING TO GESTURES

e — RaisedButton
FlatButton
FlatButton
IconButton

FloatingActionButton

CupertinoButton

CupertinoButton

Figure 5-3. The button family

RaisedButton

This one is simply a Button but appears like it’s floating above the page. It
has an elevation property to increase the simulated altitude above the page
(Figure 5-4):

RaisedButton(
child: Text(text: "Go"),
onPressed: () => print("You swiped the raised button");
elevation: 5.0

80

CHAPTER5 RESPONDING TO GESTURES

elevation: 0.0
elevation: 1.0
elevation: 2.0
elevation: 4.0

elevation: 8.0

Figure 5-4. Elevations

FlatButton and IconButton

These are kind of the anti-RaisedButton. They just appear completely
flat. They are subtle, having simple text or an icon that don’t scream to be
pressed, like an UNDO button or BACK button.

FloatingActionButton

This is that button you often see in the lower right of the screen. It is
usually round and is an unmistakable hint to the user on how to progress
to the next step in the workflow (Figure 5-5).

81

CHAPTER5 RESPONDING TO GESTURES

Figure 5-5. Floating action button

In Flutter, FABs are one of the three main parts of a scaffold. You'll
usually see it included sort of like this:

Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: Text(title)),
body: OtherWidgetsHere(),
floatingActionButton: FloatingActionButton(
child: Icon(Icons.check),
onPressed: () => {},

)s
)5
}

CupertinoButton

An iOS-style button. Looks great on iPhones, but it is kind of strange to
have an iOS feel on an Android device. If you use it, you must remember to
add this to the top of your dart file:

import 'package:flutter/cupertino.dart’;

82

CHAPTER5 RESPONDING TO GESTURES

Dismissible

Buttons are all created for one purpose: to respond to a tap. Similarly, a
Dismissible is created for one purpose: to respond to a swipe. To use it, you'll
usually build a list of widgets and will wrap each one with a Dismissible.
When you do, each widget in the list can then respond to the swipe gesture:

Dismissible(
// Give it a blue background if swiped right and
// a red background if swiped left
background: Container(color: Colors.blue),
secondaryBackground: Container(color: Colors.red),
onDismissed: (direction) {
print("You swiped $direction”);
})
child: SomeWidget(),
)

Note that as the name suggests, this is used to dismiss a widget,
removing it from the view as you “swipe it away.” But what if I want to
swipe it but not dismiss it? This calls for a custom gesture.

Custom gestures for your custom widgets

Why does the dismissible understand the swipe gesture? Why do the
buttons understand the onPressed gesture? Because the developers wrote
them in. Your custom widgets will need to have gestures programmed as
well. But since you're the one writing them, you get to create your own
gestures. And you can create gestures that are way more interesting than
a simple press. You can have your widget respond to swipes, long presses,
double-presses, and pinch-to-zoom.

83

CHAPTER5 RESPONDING TO GESTURES

Tap aka press. Includes double-tapping (tap-tap)

LongPress Pressing on the screen for a longer time — like a second or two
Scale aka pinching or unpinching, when you separate your fingers

Drag aka swiping

Note: There’s also a Pan, which is similar enough to a Drag that we’re omitting for
simplicity.

Responding to custom gestures will require these steps:
1. Decide on your gestures and behaviors.
2. Create your custom widget as normal.
3. Add a GestureDetector widget.

4. Associate your gesture with its behavior.

Step 1: Decide on your gestures and behaviors

This step is simple. Your UX expert might have already done it by the time
you get ahold of the design. You simply list out the gestures you want to
respond to and what they should do when that gesture is detected.

We'll work through an example. Say our user sees a list of people
and has to choose the ones they like and the ones they don’t. Let’s have
the user swipe right on each thing they like and swipe left on the ones
they don’t. And let’s say that occasionally the user will want to add a new
person between two others. We’ll have them separate the two people with
their fingers - kind of like making room between them for the new item.
And lastly maybe we’ll have the user long press to delete the person.

84

CHAPTER5 RESPONDING TO GESTURES

Gesture Action
Swipe right Add them to the nice list
Swipe left Add them to the naughty list

Pinch (actually reverse-pinch) Insert a new person

Long press Delete that person

Step 2: Create your custom widget

Write the Dart code like we've learned in our past chapters. Here’s a list
of people:

class ManagePeople extends StatelessWidget {
List<Map> fetchPeople() {
return [

{"first":"Jim", "last":"Halpert"},
{"first":"Kelly", "last":"Kapoor"},
{"first":"Creed", "last":"Bratton"},
{"first":"Dwight", "last":"Schrute"},
{"first":"Andy", "last":"Bernard"},
{"first":"Pam", "last":"Beasley"},
{"first":"Jim", "last":"Halpert"},
{"first":"Robert", "last":"California"},
{"first":"David", "last":"Wallace"},
{"first":"Ryan", "last":"Howard"},

85

CHAPTER5 RESPONDING TO GESTURES

@override
Widget build(BuildContext context) {
var _peopleObjects = fetchPeople();
return ListView(
children: peopleObjects.map((person) =>
Person(person:person)).tolList(),
);
}
}

Step 3: Add a GestureDetector widget

The GestureDetector widget is different from most UX widgets - you can'’t
see it. You either wrap a GestureDetector around some widget or nest it
in the child property; it’s flexible. Either way, it detects and handles the
gestures for that other widget. Since you can’t see it, it’s not bloated with
any properties other than child or methods other than build, just what

you’d expect. The events are where the action is!

return ListView(
children: peopleObjects
.map((person) =>
GestureDetector(child: Person(person: person))
).tolList(),

)5

86

CHAPTER 5 RESPONDING TO GESTURES

Step 4: Associate your gesture with its behavior

Last step, for each event that you designed in step 1, assign a method. Now

GestureDetector supports tons of events' so they get really confusing.

We've boiled them down to the most useful ones here.

Gesture Event(s) to use
Tap (press) onTap
Double-tap onDoubleTap
Long press onLongPress

Side-to-side swipe
Up-and-down swipe
Diagonal swipe
Pinch

onHorizontalDragUpdate, Start, End
onVerticalDragUpdate, Start, End
onPanUpdate, Start, End
onScaleUpdate, Start, End

Example 1: Reacting to a long press

A long press (Figure 5-6) will ignore simple taps but will fire when the user

presses for an extended time - like a second or two. Let’s say our UX people

decided that a long press will signal that our user wants to delete a user.

'In addition to the events we've listed, many of these gestures have advanced
events for *Start, *End, «Cancel, *Up, and/or a xDown. These are a lot to take
in but can be useful, so go here to read up on all of them: http://bit.1ly/

FlutterGestures

87

http://bit.ly/FlutterGestures
http://bit.ly/FlutterGestures

CHAPTER5 RESPONDING TO GESTURES

Figure 5-6. A long press

To make this happen, we’ll add the onLongPress event handler:

GestureDetector (
child: Person(person: person),
onLongPress: () {
_people.remove(person);
print("Deleted ${person['first']}");
})
);

88

CHAPTER 5 RESPONDING TO GESTURES

Example 2: Pinching to add a new item

Let’s say our UX expert suggested that users would want to add items to
the list and specify where in the list they want it inserted. To communicate
that, they will open the list by unpinching two items (Figure 5-7).

Figure 5-7. Pinching

We want to detect if the user was pinching in or pinching out. A normal
pinch in should be ignored. But a pinch out - where they spread their
fingers out - means we're adding a new person. Note that some event
handlers receive in an event object. This object holds information about
that particular event. In the case of a scale/pinch, it holds a property called
scale. If scale is greater than 1.0, this is a pinch out. Let’s say that if the user
pinches out twice the normal scale, we’ll assume they’'re wanting to add a
new person to the list:

89

CHAPTER5 RESPONDING TO GESTURES

onScaleUpdate: (e) {
if (e.scale » 2.0)
addPerson(context);

1

Example 3: Swiping left or right

Now our UX team has decided that if the user swipes right on a person in
our list, we should add them to the “nice” list, and if the user swipes left,
we'll add them to the “naughty” list (Figure 5-8).

Figure 5-8. Swiping

90

CHAPTER5 RESPONDING TO GESTURES

To detect a swipe, we’d look for a drag or a pan. A pan is called for when
we expect the user to be able to swipe diagonally. HorizontalDrags are only
for left and right; it ignores Y-direction. VerticalDrags are only for up and
down; it ignores any change in the X-direction. Since we only really care
about left swipe or right swipe, we’ll zero in on a HorizontalDrag gesture.

Our app can respond to any old swipe by using the
onHorizontalDragEnd event. In this case we also care about the direction
of the swipe; was it left to right or right to left? So we have to look at the
event object in each case. At the drag start, we save the X-position of where
the user’s finger was. Then with every pixel move, the drag update event
captures the current X-location. Finally, on drag end, we do a simple
calculation; if the end X-position is greater, we know it was a swipe right.
Otherwise, it was a swipe left:

double swipeStartX;
String swipeDirection;
return GestureDetector(
child: Person(person: person),
onHorizontalDragStart: (e) {
_swipeStartX = e.globalPosition.dx;

1
onHorizontalDragUpdate: (e) {
_swipeDirection =
(e.globalPosition.dx > _swipeStartX) ? "Right" : "Left";
}s

onHorizontalDragEnd: (e) {
if (_swipeDirection == "Right")
updatePerson(person, status: "nice");
else
updatePerson(person, status: "naughty");
})
)

91

CHAPTER5 RESPONDING TO GESTURES

What if there are two or more gestures
happening at the same time?

Let’s take an example. Our user is pinching-to-zoom. The user is touching
the screen, so it’s a Tap. But they’re also touching for a long time, so it’s

a LongPress. But each touch is moving, so it’s a Pan. But there are two of
them, so it’s a Scale. What do we respond to?

The GestureDetector puts all of these in a GestureArena. (I'm not
making this up!) The last gesture standing in the arena wins. If there are no
listeners for a gesture, it is ejected from the arena. At any time, a gesture
can quit. So in the pinch-to-zoom case, since there are two contacts and
they’re moving, each other gesture quits and exits the arena. The last one
standing is the Scale gesture. So it’s a scale.

Another example: Let’s say you have onVerticalDragEnd and
onHorizontalDragEnd handlers defined. When the user is finished swiping
in any direction, the number of pixels is counted, and if they've moved
more pixels horizontally than vertically, the onVerticalDragEnd exits the
GestureArena and the onHorizontalDragEnd handler runs.

Conclusion

The bottom line is that Flutter gestures are intuitive. They work like the
average developer would expect them to, making it easy for us to code
and easy for our users to use. When triggered, all events will run on a
separate thread so it is totally okay to have them return an Async<> object.
Therefore, feel free to mark your event handling functions as async and fill
them full of awaits?®.

2For more information on Futures, async, and await, take a look at Chapter 10:
Your Flutter app can work with files.

92

CHAPTER 6

Laying Out Your
Widgets

Now that we're familiar with some widgets that hold a value and how

to make them respond to gestures, we are ready to make them lay out
properly. In this chapter, we're going to deal with the major techniques of
getting your widgets to appear on the screen in various relations to one
another and to manage the space between them. Notice that I said “major
techniques” not “all techniques.” This is because Flutter has dozens of
widgets for laying things out, many of which overlap in functionality with
others. This is great if you enjoy lots of choices, but the more choices you
have, the more complex a subject is.! So to spare you the confusion, we're
not going to cover 100% of the widgets or the options. Instead we’re going
to focus on the ones that will get the job done in the real world without
overwhelming you. We suggest that you learn the techniques in this
chapter to get you 90% of what you'll ever need for layouts. Then, when
you run across a situation that you can’t solve with these techniques, you
can do some research or call for help.

!See The Paradox of Choice at https://wikipedia.org/wiki/The_Paradox_of_
Choice

© Rap Payne 2019 93
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_6

https://wikipedia.org/wiki/The_Paradox_of_Choice
https://wikipedia.org/wiki/The_Paradox_of_Choice

CHAPTER6 LAYING OUT YOUR WIDGETS

So to get us where we need to be, we really must know how to do five

things:

1.

Layout the entire screen (aka scene)

This is where we'll set the look and feel of the entire
app and create the structure of the scene like the
title, action button, and menus (Figure 6-1).

Ch 5: Layouts

Figure 6-1. Title and menu appear at the top along with other things
like action buttons

94

Position widgets above and below each other or
side by side

When designing any scene, we break it into widgets
and place them on the screen. For example, the
following scene (Figure 6-2) must be broken into
widgets. Since it is a scrolling list of people, we might
want a bunch of PersonCard widgets (Figure 6-3) on
the scene each above and below another. We’d do
that with a ListView.

CHAPTER6 LAYING OUT YOUR WIDGETS

Ch 5: Layouts

[Email: pinja.rantala@example.com
Cell: 044-394-65-46
Yair Klinkert
Email: yair.klinkert@example.com
Cell: (803)-502-6222
Kristen Stanley
Email: kristen stanley@example.com
Cell: 0466-636-184
Chloé Renaud
il: chloé.renaud@example.com
Cell: (851)-478-2753
Brian Smith
: brian_smith@example.com
Cell: 081-404-5744
Steve Meunier
il: steve.meunier@axample.com
Cell: (436)-534-7263
Isaiah Tucker
: isaiah.tucker@example . com
Cell: (457)-577-2162
Hildegart Israel
: hildegart.isragl@example.com
Cell: 0175-0215028
Hilla Lampo
il: hilla.lampo@example.com
Cell: 040-765-96-83
Hilda Kessel
Email: hilda. kessel@example.com
Cell: 0170-6571647
Alcibiades Jesus
alciblades.jesus@example.com
Cell: (00) 4522-4769
oVl Lallsass
il: 5 ,¥la Lalhsasa@example.com
Cell: 0980-965-4348
Harper Lavoie
il: harper.lavoie@example.com
Cell: 125-437-5574
Branddc Gomes
: branddo.gomes@example.com
Cell: (18) 7505-1920
Sofie Poulsen

il: sofie.poulsen@example.com
Cell: 53378840
Magdalena Basten
PP

il: magd

Figure 6-2. A ListView can place widgets above and below each
other

Hildegart Israel
Email: hildegart.israel@example.com
Cell: 0175-0215028

Alcibiades Jesus
Email: alcibiades.jesus@example.com

Cell: (00) 4522-4769

Figure 6-3. We might create a PersonCard widget

95

CHAPTER6 LAYING OUT YOUR WIDGETS

Then in turn, each PersonCard widget should have
an image side by side with text (Figure 6-4). How do
you get the text next to the image? We'll use a Row
widget. Also notice that the text is a series of data
about that person. How do you get the text above
and below? We'll use a Column widget there.

& Hildegart Israel
Email: hildegart.israel@example.com

Cell: 0175-0215028

Figure 6-4. Row widgets and Column widgets can be used to
place things

3. Handle extra space in the scene

Hey, there’s extra space on the right side of each
Person. What if we wanted that space to be on the
left? Or what if we wanted to put some of that extra
space on the left of the image?

4. Handle situations when we run out of space and
overflow the scene

In the scene with all of the PersonCards, we

have more people than we have screen so we've
overflowed it. This normally throws an error, but
there are several ways to fix the situation. We'll look
at the best way.

96

CHAPTER 6 LAYING OUT YOUR WIDGETS

5. Make finer adjustments in positioning

Our scene currently feels crowded. What can we do
to create a little elbow room (Figure 6-5)? Let’s make
it look a little more like in the figure:

- A Cell: (436)-534-7263
'

Isaiah Tucker
* Email: isaiah.tucker@example.com
p< » Cell: (457)-577-2162
r“ Hildegart Israel

Fmail: hildenaart ierasl@eayamnle com

Figure 6-5. Fine-tuned spacing

Alright, so there’s our plan for the chapter. We’ll do a deep dive into
each of the five steps. But before we do, let’s take just a moment to see how
to debug our visual layout.

Tip Use visual debugging to see how Flutter is making its decisions
for your layout. Figure 6-6 is how your screen might look normally;
when you toggle debug painting, you’ll see Figure 6-7.

97

CHAPTER6 LAYING OUT YOUR WIDGETS

My Cool App

Joona Joki
Email: joona.joki@example.com
Cell: 042-980-32-24

Naomi Perrin
Email: naomi.perrin@example.com
Cell: 06-66-53-70-79

Anastasia Fabre
Email: anastasia.fabre@example.com
Cell: (585)-932-2220

Pinja Rantala
Email: pinja.rantala@example.com
Cell: 044-394-65-46

Yair Klinkert
Email: yair.klinkert@example.com
Cell: (803)-502-6222

Kristen Stanley
Email: kristen.stanley@example com
Cell: 0466-636-184

Chicé Renaud
Email: chloé.renaud@example.com
Cell: (851)-478-2753

)

Brian Smith
Email: brian.smith@example.com
Cell: 081-404-5744

Steve Meunier
Email: steve.meunier@example.com
Cell: (436)-534-7263

Isaiah Tucker
Email: isaiah.tucker@example.com
Cell: (457)-577-2162

Hildegart Israel
Email: hildegart.isragl@example.com
Cell: 0175-0215028

Hilla Lampo
Email: hilla.lampo@example.com
Cell;

K2
2
o,
U
w
a
K)‘
il
k!
o

Figure 6-6. Without visual debugging turned on

98

CHAPTER6 LAYING OUT YOUR WIDGETS

Joona Joki
Jjoona com

ell: 042-980-32-24

ety Loyl
il 5e 15 L jsl@example.com
ell: 0939-503-4823

Naomi Perrin

com

Ecll: 06-66-53-70-79

Anastasia Fabre

com

Cell: (585)-932-2220

Pinja Rantala
pinja.rant .com
Cell: 044-394-65-46

Yair Klinkert
klinkert@exar com
Cell: (803)-502-6222

Kristen Stanley
ilkristen.stanley@example.com
Cell: 0466-636-184

Chioé Renaud
T & —

Cell: (851)-478-2753
Brian Smith

- =

com

ICell: 081-404-5744

Steve Meunier

com

Cell: (436)-534-7263

Isaiah Tucker
ildisaiah.tUgker @exampld.com
ICell: (A67NG77-2

el

Hildegart

ildegart.
Cell: 0195-0215028
#a Lampo

Figure 6-7. With visual debugging turned on

All visual boxes get a teal border. Padding, margin, and border are
colored in blue. Alignment/positioning is made obvious with yellow
arrows. The big green arrows show widgets that can scroll. Once you get
accustomed to them, these visual cues will help you see how Flutter thinks
s0 you can tune your layout.

To turn this feature on

e InVS Code open the command palette (cmd-shift-P or
control-shift-P) and type in “Toggle debug painting.”

99

CHAPTER 6 LAYING OUT YOUR WIDGETS

e In Android Studio/Intelli] go to View » Tool Windows
» Flutter Inspector and hit the “Show debug paint”
button in the toolbar.

Laying out the whole scene

Here’s a tip for you: Apps should never surprise their users.2 When apps
do things in the way that the user expects, they think the app is friendly,
simple, and easy. Users have been trained to see a status bar at the top
followed by a title bar. And while other screen affordances will vary based
on need, there are definite conventions. Flutter has widgets to make your
layouts feel ... well ... normal.

MaterialApp widget

The Material App widget creates the outer framework for your app. As
important as it is, the user never sees the Material App because no parts of it
are technically visible. It wraps your entire app, giving you the opportunity
to give it a title so that when your OS moves the app into the background,
it'll have a name. This is also where you'll apply the default theme for your
app - fonts, sizes, colors, and so forth. We’ll get way more into themes in the
styles chapter. Stay tuned for that. Material App is also the place to specify
routes, something we’ll talk much more about in the routing chapter.

Note The “Material” in MaterialApp does indeed refer to Material
Design, which is kind of a Google/Android thing. But it is probably
misnamed because all apps, even i0S-focused apps, will have a
MaterialApp widget at its root. It does not give your app any more of
an Android feel or less of an i0S feel.

2Don’t Make Me Think by Steve Krug is a great read on common-sense usability.

100

CHAPTER 6 LAYING OUT YOUR WIDGETS

Widget build(BuildContext context) {
return MaterialApp(
home: MainWidget(),
title: "Ch 6 Layouts",
theme: ThemeData(primarySwatch: Colors.deepPurple),
routes: <String, WidgetBuilder>{
"/scenel: (BuildContext ctx) => MyWidget1(),
"/scene2: (BuildContext ctx) => MyWidget2(),
"/scene3: (BuildContext ctx) => MyWidget3(),
})
debugShowCheckedModeBanner: false,
);
}

Finally, Material App has a home property. Remember that your project
will have lots of custom widgets. You specify which one is the startup
widget by setting your Material App’s home property. This widget will
be the root of your main scene and will therefore probably begin with a
Scaffold widget. “What'’s a Scaffold widget,” you say? Glad you asked ...

The Scaffold widget

Whereas the Material App widget creates the outer invisible framework,
the Scaffold widget creates the inner visible framework.

Scaffold has one purpose in life: to lay out the visible structure of your
app to give it the predictable and therefore usable layout that so many
other apps have. It creates, among other things:

e An AppBar for the title
e Asection for the body

e A navbar at the bottom or a navigation drawer to
the left

101

CHAPTER6 LAYING OUT YOUR WIDGETS

o Afloating action button

e Abottom sheet - a section that is usually collapsed but
can be slid up to reveal context-aware information for
the scene that the user is on at that moment

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: MyAppBar(),
drawer: MyNavigationDrawer(),
body: TheRealContentOfThisPartOfTheApp(),
floatingActionButton: FloatingActionButton(
child: Icon(Icons.add),
onPressed: () { /* Do things here x/},
)
bottomNavigationBar: MyBottomNavBar,
)
}

All parts of the Scaffold are optional. That kind of makes sense
because you don’t always want a floatingActionButton or a drawer or a
bottomNavigationBar. Our screen designs will dictate which parts we need
and which we don’t.

The AppBar widget

To create a header bar at the top of the screen, use an AppBar widget
(Figure 6-8). This is strictly optional. But your users are totally going to
expect an AppBar for almost every app that isn’t a game. You'll almost

102

CHAPTER 6 LAYING OUT YOUR WIDGETS

always have a title. And you may want to add an Icon at the start. An Icon is
the leading property:

return Scaffold(
appBar: AppBar(
leading: Icon(Icons.traffic),
title: Text("My Cool App"),
)J
/% More stuff here. FAB, body, drawer, etc. x/
);

My Cool App

Figure 6-8. The AppBar widget with a leading icon and a title

One problem though. If you have the leading icon and also a
navigation drawer, then Flutter can’t use that space to display the
hamburger menu (Figure 6-9):

return Scaffold(

appBar: AppBar(
/% No leading this time. x/
title: Text("My Cool App"),

)5
/% More stuff here. FAB, body, drawer, etc. x/

)5

103

CHAPTER6 LAYING OUT YOUR WIDGETS

My Cool App

Figure 6-9. An AppBar without a leading icon is able to display a
hamburger menu icon

If you have a navigation drawer, you're probably going to want to omit
the leading icon.

SafeArea widget

Device screens are seldom neat rectangles. They have rounded corners
and notches and status bars at the top. If we ignored those things, certain
parts of our app would be cut off or hidden. Don’t want that? You have
two choices, keep a huge database of all devices with their displayable
areas and have a ton of gnarly conditional renderings. Horrible! Or use the
SafeArea widget which in essence does that for you.

Simply wrap the SafeArea widget around all of your body content and
let it do the heavy lifting for you. Putting it inside the Scaffold but around
the body is a terrific place:

return Scaffold(
drawer: LayoutDrawer(),
body: SafeArea(
child: MyNormalBody(),

)s

104

CHAPTER 6 LAYING OUT YOUR WIDGETS

floatingActionButton: FloatingActionButton(
child: Icon(Icons.next),
onPressed: () {},
))
)

SnackBar widget

Weird name, I know. Sounds like something delicious, but this widget

is really a standard way to alert your user to something. A SnackBar
(Figure 6-10) will appear at the bottom of your screen, occulting whatever
is already down there and will disappear after a short time. You get to
decide what the SnackBar says and you can even place a button on it for

the user to take action.

risten.stanley@example ;
.com chloé.renaud@exar i n
Cell: 0466-636-184 Cell: (851)-478-

Brian Smith Steve Meunier... |

kristen deleted. UNDO

Figure 6-10. A SnackBar shows a message and optional actions

You can show a SnackBar in any scene you like as long asyou doitina
widget that is nested inside a Scaffold:

GestureDetector (
child: PersonCard(person),
onTap: () {

String msg = '${person['name’]['first']} deleted.’;

105

CHAPTER6 LAYING OUT YOUR WIDGETS

final SnackBar sb = SnackBar(
content: Text(msg),
duration: Duration(seconds: 5),
action: SnackBarAction(
textColor: Colors.white,
label: "UNDO",
onPressed: () {},
)5
)5
Scaffold.of(context).showSnackBar(sb);
1)

Note that you run the showSnackBar() method to bring the SnackBar
up. You are in control of the duration that it stays up. Finally, you can add
an action to the SnackBar if you want. Of course you may just want to bring
up a message only with no action. It’s up to you.

How Flutter decides on a widget’s size

We all have constraints in life - rules and laws and boundaries we must
live by. If we don’t submit to those constraints, there are consequences.
Flutter widgets have constraints also and they have consequences. Just like
in real life, things will be easier on you if you learn the rules and how those
constraints work.

In Flutter, every widget on your device’s screen eventually has a
height and a width which it calls the “RenderBox.” Each widget also has
constraints: a minHeight, a minWidth, a maxHeight, and a maxWidth
which it calls the “BoxConstraints.”

106

CHAPTER 6 LAYING OUT YOUR WIDGETS

Note All of these measures are in units of pixels which is obviously
device-dependent. You iOS developers call them points, and Android
devs call them density-independent pixels.

As long as the widget’s RenderBox is completely within its
BoxConstraints, life is good. In other words, its height must be between
minHeight and maxHeight, and its width must be between the minWidth
and maxWidth. But the moment that a widget demands to be drawn outside
the constraints, bad things happen. Sometimes Flutter throws an exception,
and other times it does its best and just clips the widget or shrinks it.

The dreaded “unbounded height” error

I guarantee that at some point in your career, you're going to see Flutter
throw this error:

=| EXCEPTION CAUGHT BY RENDERING LIBRARY :
The following assertion was thrown during performLayout():
RenderFlex children have non-zero flex but incoming width

constraints are unbounded. When a row is in a parent that does
not provide a finite width constraint, for example if it is in

a horizontal scrollable, it will try to shrink-wrap its children
along the horizontal axis. Setting a flex on a child (e.g. using
Expanded) indicates that the child is to expand to fill the
remaining space in the horizontal direction. These two directives
are mutually exclusive. If a parent is to shrink-wrap its child,
the child cannot simultaneously expand to fit its parent.

It's not the most developer-friendly error message, is it? Most of us
would have no hope of understanding the problem in our code with that
error message. Similar messages may say “Vertical viewport was given
unbounded height” error. Or “RenderViewport does not support returning

107

CHAPTER6 LAYING OUT YOUR WIDGETS

intrinsic dimensions.” None of these are very helpful. If they were being
kind, they’'d have said something like:

= YOU'RE DOING IT WRONG |
The ListView you're drawing wants to be infinitely tall and it
needs a parent widget that will keep it reasonably short. Maybe
tell it to be small by wrapping it with a LimitedBox widget?

Now wouldn’t that have been clearer? You'd understand the problem
and clearly know how to fix it.

Let me help you interpret what Flutter is trying to tell us; certain
widgets want to fill all of the available space that they can. In other words,
they’re greedy. They need a parent to constrain them. If they're inside of a
parent who refuses to provide that constraint, Flutter freaks out because it
can’t understand what we developers are trying to do. To be blunt, this is
a symptom of the developer not really understanding how Flutter handles
layouts. So let me try to explain Flutter’s layout algorithm in hopes of
predicting and therefore avoiding snafus like the preceding example.

Note If you don’t completely understand Flutter’s layout algorithm,
it isn’t the end of the world. You can still work with Flutter without
memorizing this section. But the better understanding you have of
this concept, the less frustrated you’ll be when you run across layout
problems in the real world. So try.

Flutter’s layout algorithm

In your custom widget, you have a root widget at the top of your main
method. It has branches and branches of branches and on and on. Let’s
call this the widget tree (Figure 6-11). Flutter has to decide how big to make
each widget in the tree. It does so by asking each widget how big it would
prefer to be and asking its parent if that is okay.

108

CHAPTER6 LAYING OUT YOUR WIDGETS

MaterialApp

Scaffold

PersonCard II

AppBar | FloatingActionButton

| | |
| mage | oq] [Tow | [Tox |

Figure 6-11. Every scene has a widget tree

Flutter travels down the tree starting at the root. It reads the constraint

of the root widget. “What is the tallest you can be? And the widest?”

It remembers them and then looks for any children. For each child,

it communicates its BoxConstraints to them and then travels to the
grandchildren. It keeps doing this all the way to the end of every branch.
We call this the leaf level.

It then asks each leaf how big it would prefer to be. “What is your
favorite height? What is your favorite width?” It allows the leaf to be drawn
at its preferred size within the constraints of all of its ancestors. If the
preferred size is too big, Flutter clips it at runtime - something we really try
to avoid! If the preferred size is too small, Flutter pads it with extra space
until it fits.

It then goes back up a level and tries to fit those branches inside their
common parent which has its own constraints. And so on all the way back

up to the top.

109

CHAPTER 6 LAYING OUT YOUR WIDGETS

The result is that each child gets to be its favorite height and width -
as long as its parent allows it. And no parent has a final size until all of its
child do.

Tip Another situation you’re going to come across is when you
have a widget whose RenderBox is larger than its BoxConstraints. In
other words, this single widget can’t fit inside its parent. The solution
for that problem is occasionally a FittedBox,® a widget that shrinks
it’s child to fit. By default, you’ll get a centered widget that is scaled
down until it just fits both horizontally and vertically, but you have the
options to align it vertically/horizontally and to stretch it or clip top/
bottom or left/right.

So you can see how we’d get the “unbounded height” error. If we had a
child who tries to be as large as it can and it doesn’t have a parent to tell it
to stop, Flutter panics because it is now infinitely tall. To solve the problem,
that child simply needs a parent to tell it to stop growing. A LimiteBox()
widget’s main characteristic is to do exactly that; it tells a child just how big
itis allowed to get if the parent refuses to. And Flutter has a ton of widgets
to control size and position. For the rest of this chapter, we're going to
study the most critical of those layout widgets - the ones you absolutely
must know. We'll start with Row and Colum.

Putting widgets next to or below others

Row and Column, as the names suggest, are made for laying out widgets
side by side (Row, Figure 6-12) or above and below (Column, Figure 6-13).
Other than how they lay out their children, they’re nearly identical.

For more details, see http://bit.ly/flutterFittedBox

110

http://bit.ly/flutterFittedBox

CHAPTER6 LAYING OUT YOUR WIDGETS

Main Axis

[®® ® ®

Figure 6-12. A Row widget lays out side by side

Cross Axis

Row(
children: <Widget>[
Widget(),
Widget(),
Widget(),
Widget(),
]J
))

Cross Axis

Main Axis

B

Figure 6-13. A Column widget lays out above and below

Column(
children: <Widget>[
Widget(),
Widget(),

111

CHAPTER6 LAYING OUT YOUR WIDGETS

Widget(),
Widget(),
])
)J

Notice that they both have a children property which is an array of
Widgets. All widgets in the children array will be displayed in the order
you add them. You can even have rows inside columns and vice versa as
many levels deep as you like. In this way you can create nearly any layout
imaginable in any app.

Rows and columns will be your go-to layout widgets. Yes, there are
others, but these two are your first calls.

Note Occasionally you’ll want two things above and below when
the device is in landscape and side by side when in portrait. So you
want them in a row at times and a column at others. This is when
you’ll use a Flex widget which can do both. It has an orientation
property that will be conditional:

Flex(
direction:
MediaQuery.of(context).orientation ==
Orientation.landscape ?
Axis.horizontal : Axis.vertical,
children: <Widget>[
SomeWidget(),
SomeWidget(),
SomeWidget(),

1,
),

This doesn’t happen as often as you might think. Use it sparingly.

112

CHAPTER 6 LAYING OUT YOUR WIDGETS

Your widgets will never fit!

It would be an overwhelming coincidence if the elements fit perfectly in a
scene. And if they ever fit perfectly, as soon as the app is run on a different
screen size or rotated from portrait to landscape, that will change. So we
need to handle two situations:

1. What if there’s extra space left over? (more screen
than pixels taken up by the widgets)

2. What if there’s not enough space? (too many widgets

in a given space)

These are both likely to happen simultaneously on different parts of
your scene. Let’s tackle leftover space first.

What if there’s extra space left over?

This is an easy problem to solve. The only question you really need to
answer is how to distribute the extra room. How much space do you want
to allocate around each of the other widgets? You have several options. The
easiest and quickest is to use mainAxisAlignment and crossAxisAlignment.

mainAxisAlignment

MainAxisAlignment is a property of the Row or Column (Figure 6-14). With
it you control how the extra space is allocated with respect to the widgets
along the main axis - vertical for columns and horizontal for rows:

child: Column(
mainAxisAlignment: MainAxisAlignment.spaceEvenly,
children: <Widget>[
SubWidget(),
SubWidget(),

113

CHAPTER6 LAYING OUT YOUR WIDGETS

You have a few choices:

start end center spaceBetween spaceEvenly spaceAround

No space Same butat Same but All Same but Same but

between the end. we put remaining someis the the

them. All space space is saved for spaces at

bunched up before the divided before the the ends get

at the start. firstand between firstand half as

The default. after the each child after the much as the
last widget last spaces

between

Figure 6-14. mainAxisAlignment says how to distribute the extra
space along the main axis

114

CHAPTER6 LAYING OUT YOUR WIDGETS

crossAxisAlignment

crossAxisAlignment is also a property of the Row or Column; it decides
where to put the extra space if the widgets are of different heights in a row
or widths in a column (Figure 6-15). Your options are

start end center stretch
Align themleft Align them Center them Make them all the full width in a
inacolumnor rightina column or full height in arow
top inarow column or

bottomina

row

Figure 6-15. crossAxisAlignment says how to distribute extra space
along the cross axis

115

CHAPTER6 LAYING OUT YOUR WIDGETS

There’s also one more: baseline. But it only makes sense in a row, and
itis much less frequently used.

Tip If you want the children of a Column to all be the same
width but not necessarily the entire width of the screen, use the
IntrinsicWidth widget. With crossAxisAlignment.stretch, they all
stretch to the maximum width (Figure 6-16), but wrapped in an
IntrinsicWidth, they’ll all be the same size as the largest widget
(Figures 6-17 and 6-18).

child: IntrinsicWidth(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
crossAxisAlignment: CrossAxisAlignment.stretch,
children: <Widget>[...

This i3 o superdarsy Bution

Figure 6-16. Without IntrinsicWidth, all members will stretch to the
entire width

Figure 6-17. With IntrinsicWidth, they’ll only be as wide as the
widest member

116

CHAPTER 6 LAYING OUT YOUR WIDGETS

Figure 6-18. With Intrinsic width and a wider member, all are made
wider

So you can see that as the width of the longest button increases,
so do they all.

Expanded widget

mainAxisAlignment is awesome if the spacing is cut and dried - you want
equal spacing somehow. But what if you don’t want spacing at all? What
if you want the widgets to expand to fill the remaining space? Expanded
widget to the rescue (Figure 6-19).

Let’s take this code for an example:

Row(
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget>[
SubWidget(),
SubWidget(),
SubWidget(),
SubWidget(),
SubWidget(),
SubWidget(),

1,

Tl

Figure 6-19. This Row widget has lots of extra space

117

CHAPTER6 LAYING OUT YOUR WIDGETS

When you wrap a Row/Column’s child in an Expanded widget
(Figure 6-20), it makes that child flexible, meaning that if there is extra
space, it will stretch along the main axis to fill that space.

Here's the same thing but with an Expanded() around the second
widget:

Row(
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget>[
SubWidget(),
Expanded(child: SubWidget()),
SubWidget(),
SubWidget(),
SubWidget(),
SubWidget(),

1

Figure 6-20. The second widget is wrapped in an Expanded

Note that the mainAxisAlignment now makes no difference because
there is no extra space. It’s all eaten up by the Expanded.

What if we add another Expanded? Let’s put one around the third and
fourth widgets also (Figure 6-21):

Row(
children: <Widget>[
SubWidget(),
Expanded(child: SubWidget()),
Expanded(child: SubWidget()),
Expanded(child: SubWidget()),

118

CHAPTER 6 LAYING OUT YOUR WIDGETS

SubWidget(),
SubWidget(),

1,

Figure 6-21. Expandeds will divide the free space among them

Note that the second one is now smaller because the extra space is
shared with the third and fourth widgets, divided equally among them.

But wait! There’s more! We can control how much space each
Expanded gets. The Expanded has a property called the flex factor which is
an integer. When the Row/Column is laid out, the rigid elements are sized
first. Then the flexible ones are expanded according to their flex factor
(Figure 6-22). In the preceding examples, the Expandeds had the default
flex factor of 1 so they got an equal amount of space. But if we gave them
different flex factors, they’ll expand at different rates:

Row(

children: <Widget>[
SubWidget(),
Expanded(flex: 1, child: SubWidget()),
Expanded(flex: 3, child: SubWidget()),
Expanded(flex: 2, child: SubWidget()),
SubWidget(),
SubWidget(),

119

CHAPTER6 LAYING OUT YOUR WIDGETS

Figure 6-22. Expandeds have flex property to control how much
extra space each gets

Notice that the free space has still been allocated to the Expandeds but
in the proportions of 1, 3, and 2 instead of evenly. So the one with a flex
factor of 3 gets three times as much space as the one with a flex factor of 1.

Note Expanded eats up all the free space. But if you want to use
Expandeds but you also want there to be some space between
certain children, use the Spacer or SizedBox widgets (Figure 6-23).
Spacers have a flex factor that plays well with all the other flex
factors along this axis. The SizedBox has height and width properties
for when you want to express its size in pixels:

Row (
children: <Widget>[

SubWidget(),
Spacer(),
Expanded(flex: 1, child: SubWidget()),
Spacer(flex: 2),
Expanded(flex: 3, child: SubWidget()),
Expanded(flex: 2, child: SubWidget()),
SubWidget(),
SizedBox(width: 10,),
SubWidget(),

120

CHAPTER 6 LAYING OUT YOUR WIDGETS

Figure 6-23. Spacer() and SizedBox() add free space back in but put
you in control as to where and how much

What if there’s not enough space?

We've tackled the situations where there is too much space and how to
control where that extra space is allocated. But what if there is too little
space? Like we are trying to squeeze too many widgets into too small a row
or column? Unless you do something about it, Flutter will clip the widgets
which looks terrible and worse, may hide some widgets from the user.

So what do you do? You allow scrolling!

While it is possible to scroll in both directions, it creates some serious
usability issues. So we recommend that you stick to scrolling in one
direction only and that it usually be vertical scrolling. The easiest way to
scroll is with a ListView.

The ListView widget

ListView has actually has four different ways to use it:

1. new ListView - Normal use. It has a children
property that takes a collection of static widgets.

2. ListView.builder - For dynamically creating children
from a list of items.

3. ListView.separated - Like builder but also puts a
widget xbetweenx each item. Great for inserting ads
in the list periodically. Read more at http://bit.
ly/flutter_listview separated.

121

http://bit.ly/flutter_listview_separated
http://bit.ly/flutter_listview_separated

CHAPTER6 LAYING OUT YOUR WIDGETS

4. ListView.custom - For rolling your own advanced
listviews. Read more at http://bit.ly/flutter_
listview custom.

Let’s take a look at the first two options starting with the regular
ListView.

Regular ListView: When you have a few widgets
to display

Generically, a ListView takes a small number of other widgets and makes
it scrollable. Why a “small number”? Because this is designed to be a static
list, one that you, the developer, simply types into the build() method

by hand. In fact, oftentimes the way you discover you'll need a regular
ListView is when your column overflows. The fix is either to remove
children, resize the children, or simply change the Column to a ListView.
Columns and ListViews both have a children property:

Widget build(BuildContext context) {
return ListView(
children: <Widget>[
FirstWidget(),
SecondWidget(),
Thirdwidget(),
])
);
}

This version of ListView is great for a small number of widgets to
display, but where ListView really shines is when you want to display a
list of things - people, products, stores - anything you'd retrieve from
a database or Ajax service. For displaying an indeterminate number of
scrollable items, we’ll want the ListView.builder constructor.

122

http://bit.ly/flutter_listview_custom
http://bit.ly/flutter_listview_custom

CHAPTER 6 LAYING OUT YOUR WIDGETS

ListView.builder: When you’re building widgets
from a list of objects

ListView’s alternative constructor, ListView.builder receives two
parameters, an itemCount and an ItemBuilder property that is a

function. This makes the ListView lazy-loaded. The itemBuilder function
dynamically creates children widgets on demand. As the user scrolls close
to the bottom of the list, itemBuilder creates new items to be scrolled into
view. And when we scroll something far enough off the screen, it is paged
out of memory and disposed of. Pretty cool.

Widget build(BuildContext context) {
return ListView.builder(
scrollDirection: Axis.vertical,
itemCount: _people.length,
itemBuilder: (BuildContext context, int i) {
return PersonCard(_peoplelist[i]);

}s
)5
}

The itemCount property is an integer that tells us how many things
we're going to draw so we usually set it to the length of the array/collection
of things we’re scrolling through. The itemBuilder function receives two
parameters: the context and an integer which is 0 for the first item and
increments each time it is run.

We've covered laying out the scene including what to do if there is extra
space on the scene or there isn’t enough of it. So let’s cover the last of our
five topics, how to fine-tune the spacing and position of widgets. We’'ll do
this by exploring the box model.

123

CHAPTER6 LAYING OUT YOUR WIDGETS

Container widget and the box model

Flutter has borrowed heavily from other technologies including HTML and
the Web which have the ideas of borders, padding, and margin. These are
collectively called the box model. They’re used to create pleasant-to-the-
eyes spacing around and between screen elements. It’s a battle-proven
concept that has worked great for the Web so why not borrow it for Flutter?

Padding

Content

Figure 6-24. The box model defines padding, border, and margin

Let’s say that we have a sized image that we want framed so to speak
with a padding of 8, a margin of 10, and a border of 1. Flutter newcomers
might try this first:

Image.network(
_peopleList[i]['picture"']['thumbnail'],
padding: 8.0,
margin: 10.0,
border: 1.0,

)

124

CHAPTER 6 LAYING OUT YOUR WIDGETS

This would not work since Image widgets don’t have a padding,
margin, or borders. But you know what does? Containers!

Web developers often apply these things by wrapping elements in a
generic container called a <div> and then applying styles to create pleasant
spacing for our web pages.

Flutter doesn’t have a <div>, but it does have a div-like widget called
a Container which ... well ... contains other things. In fact, its entire life
purpose is to apply layout and styles to the things inside of it. An HTML
<div> can hold multiple things, but a Flutter Container only holds one
child. It has properties called padding, margin, and decoration. We'll leave
decoration for the styles chapter, but padding and margin are awfully
handy for creating nice-looking spacing:

Container(
padding: EdgeInsets.all(8.0),
margin: EdgeInsets.all(10.0),
decoration: BoxDecoration(border: Border.all(width: 1.0)),
child: Image.network(thePicture),
// Container has xlotsx of other properties, many of which
// we'll cover in the Styles chapter.

)

Tip Margin and padding might have been easier to learn if they had
just allowed us to list four number values representing the four sides.
(They couldn’t make it easy, could they?) Instead, we use a helper
widget called Edgelnsets.

¢ Edgelnsets.all(8.0) — Same value applied to all four
sides evenly.

¢ Edgelnsets.symmetric(horizontal: 7.0, vertical: 5.0) — Top and
bottom are the same. Left and right are the same.

125

CHAPTER6 LAYING OUT YOUR WIDGETS

¢ Edgelnsets.only(top: 20.0, bottom: 40.0, left: 10.0, right:
30.0) — Left, top, right bottom can all be different.

e Edgelnsets.fromLTRB(10.0, 20.0, 30.0, 40.0) — Same as the
preceding one but less typing.

Also note that if you want padding only — no other formatting — the
Padding widget is a shorthand.

Container(Padding(

padding: EdgeInsets.all(s), padding: EdgeInsets.all(s),
child: Text("foo"), child: Text("foo"),

)5)5

These two are equivalent.

Alignment and positioning within a Container

When you place a small child widget in a large Container, there will be
more space in the Container than is needed by its child widget. That child
widget will be located in the top-left corner by default. You have the option
of positioning it with the alignment property:

Container(
width: 150, height: 150,
alignment: Alignment(1.0, -1.0),
child: Image.network(
_peopleList[i]['picture']["thumbnail'],
)J
)J

126

CHAPTER 6 LAYING OUT YOUR WIDGETS

Those alignment numbers represent the horizontal alignment (-1.0 is
far left, 0.0 is center, and 1.0 is far right) and the vertical alignment (-1.0 is
top, 0.0 is center, and 1.0 is bottom). See Figure 6-25.

(-1,-1) (0,-1) (1,-1)

.(-0.6, -0.3)
1,0 : (1,0
0,0

¢ (0.5,0.5)

(-1,1) 0,1) (1,1)

Figure 6-25. Alignment coordinate system with 0,0 at the center

But you will probably prefer to use English words rather than numbers
when you can:

Container(
width: 150, height: 150,
alignment: Alignment.centerlLeft,
child: Image.network(
_peopleList[i]['picture"]['thumbnail'],
)
))

Alignment can take on any of these values: topLeft, topCenter,
topRight, centerLeft, center, centerRight, bottomLeft, bottomCenter, and
bottomRight. Now, isn’t that easier to write and easier for your fellow devs
to read?

127

CHAPTER6 LAYING OUT YOUR WIDGETS

Tip The Align widget is a shorthand for specifying the alignment
and no other properties. The Center widget is merely a shorthand for
centering.

Container(Align(Center(

alignment: alignment: child: Text("foo"),
Alignment.center, Alignment.center,),

child: Text("foo"), child: Text("foo"),

)5)

These three are equivalent.

So how do you determine the size
of a Container?

You may have noticed that I tried to slip width and height by you in that
last section. Yes, you can tell a Container you want it to have a particular
width and height, and it will comply when it is able. Width and height
both take a simple number that can range from zero to double.infinity.
The value double.infinity hints to be as large as its parent will allow.

Now, I know what you're thinking. “Rap, what do you mean by ‘when
itis able’ and ‘hints’? Aren’t there any hard rules? I want Container sizes
to be predictable!” And I completely agree. A Container’s size is tough to
predict until you know its rules. So, how does it decide then?

Remember two things. First, a Container is built to contain a child, but
having a child is optional. 99% of the time it will have a child. The other 1%
of the time we use the Container to provide a background color or to create
spacing for its neighbors/siblings. Second, remember that Flutter determines
layout in two phases, down the render tree to determine Box Constraints and
then back up to determine RenderBox (aka “size,” remember?).

128

CHAPTER 6 LAYING OUT YOUR WIDGETS

We go top down:

Flutter limits max size by passing Box Constraints down
into the Container from its parent.

The Container is laid back as it tells its parent, “If my
neighbors need some space, go ahead and take it. I'll be
as small as you need me to.”

If height and/or width is set, it honors those up to its
max size as determined by its Box Constraints. Note
that it is not an error for you to list a size greater than
its Box Constraints, it just won’t grow any larger. This is
why you can use double.infinity without error.

Tip Setting height and width makes the Container super rigid; it
locks in a size. While this is handy when you want to fine-tune your
layout, the best practice is to avoid using them unless you have a
darn good reason. You generally want to allow widgets to decide their
own size.

Then we go bottom up:

In the 1% of the time that it has no child, it consumes
all the remaining space up to its max Box Constraint.

But most of the time, it has a child so the layout engine
looks at the child’s RenderBox.

If the child’s RenderBox is bigger than my Box
Constraints, it clips the child which is a big, fat
problem. It’s not technically an error, but it looks bad.
So avoid it. When in debug mode, Flutter will draw
yellow and black stripes where it has overflowed so the
developer doesn’t miss it.

129

CHAPTER6 LAYING OUT YOUR WIDGETS

e Ifthe child’s RenderBox is within my Box Constraints,
there is leftover room so we look at the alignment
property. If alignment is not set, we put it in the upper-
left corner and make the container tight - it shrinks to
fit the child. Leftover room is just empty. If alignment
is set, it makes the container greedy. This sort of makes
sense when you think about it because how will it align
top/bottom/left/right if it doesn’t add space by growing?

o After all this, shrink as needed to honor the margins.

Special layout widgets

Like we said at the top of the chapter, we’ve now covered the tools you'll
need for 90% of your layout needs, but there are more. A few are worth a
glance just so you know what to look for should the situation come up.
These widgets are designed for very particular layout situations that, while
common, aren’t everyday but need specialized tools to make happen.

Stack widget

This is for when you want to layer widgets so that they overlap one another.
You want to stack them in the Z-direction. With Stack, you’ll list some
number of widgets, and they’ll be displayed in that order one on top of
another. The last one will occult (hide) the previous one if they overlap
which will occult the one before that which will overlap the one before that
and so on.

I'was really torn about where to cover the stack widget. On one hand,
it involves laying out a screen which fits much better in this chapter. But
on the other hand, Stacks excel in creating cards which is definitely a
styling concept and therefore fits better in the next chapter. We decided to
mention it here but really focus on it in later. So stay tuned for that.

130

CHAPTER 6 LAYING OUT YOUR WIDGETS

GridView widget

Here’s another thing borrowed from HTML and the Web. GridView is for
displaying a list of widgets when you want them to appear in rows and
columns but don’t particularly care which rows and which columns - you
just want them to show up in a grid.

To use a GridView, you'll set its children property to the list of widgets
you want to display and it will create the grid populating across and then
wrapping to the next row, resizing its space available until it just fits. And
here’s the greatest part, it automatically scrolls!

GridView has two constructors, GridView.extent() and GridView.count().

GridView.extent()

Extent refers to the maximum width of the child. GridView will only let its
kids grow to that size. If they try to get bigger, it puts another element on
that row and shrinks them all until they just fit across the entire width. Take
a look at this example:

Widget build(BuildContext context) {
return GridView.extent(
maxCrossAxisExtent: 300.0,
children:
people.map<Widget>((dynamic person) =>
PersonCard(person)).tolList(),
);
}

Notice in Figures 6-26 and 6-27 how the containers resize to something
less than 300. GridView decides that it can fit two across in portrait
orientation. But when rotated, those two would have resized to something
bigger than 300 so it puts three on each row.

131

CHAPTER6 LAYING OUT YOUR WIDGETS

Figure 6-27. The same GridView.extent() in landscape mode

GridView.count()

With the count() constructor, you specify how many columns you want
regardless of orientation. GridView takes care of resizing its contents to fit.
In the following example, we've told GridView.count() that we want two

132

CHAPTER 6 LAYING OUT YOUR WIDGETS

columns regardless of the orientation and the GridView sizes its children

to fit exactly two across Figures 6-28 and 6-29:

Widget build(BuildContext context) {
return GridView.count(
crossAxisCount: 2,
children:
people.map<Widget>((dynamic person) =>
PersonCard(person)).tolList(),
);

Figure 6-28. GridView.count() in portrait orientation

133

CHAPTER6 LAYING OUT YOUR WIDGETS

Ch 5: Layouts

Figure 6-29. The same GridView.count() in landscape orientation

GridView.extent() is probably more useful because when the device is
portrait, maybe you’ll have two columns, but when it goes landscape, you
can now fit three columns in and the contents can still fit.

The Table widget

The GridView is great when displaying widgets in rows and columns that
wrap. The wrapping part means that you really don’t care what children
widgets end up in which row and column.

Rows and Columns are best when you do care in which row and
column the children exist. They’re rigid when you want them to be.
Unfortunately, the columns can’t talk to each other so they will often be
misaligned (Figures 6-30 and 6-31).

orange blue Purple

=00

[

rectangles

triangles

AAA

Figure 6-30. Rows work but the columns are misaligned

134

CHAPTER6 LAYING OUT YOUR WIDGETS

orange blue Purple
ovals ED O
rectangles A AI:l
triangles A

Figure 6-31. Columns work but the rows are misaligned

The Table widget fixes that problem. It is rigid like nested Rows and
Columns, but each row and column is aware of the others and lines up
nicely like GridView (Figure 6-32).

orange blue Purple

i ON

LIl |

rectangles

triangles

A A N

Figure 6-32. A Table aligns the rows and columns

Every Table widget will have children, a List of TableRow widgets. And
each TableRow widget will have children, a List of widgets:

return Table(
children: <TableRow>[
TableRow(children: <Widget>[
Text('Salesperson', style: bold,),
Text('January', style: bold,),

135

CHAPTER6 LAYING OUT YOUR WIDGETS

Text('February', style: bold,),
Text('March', style: bold,),
]

)
TableRow(children: <Widget>[

Text('Dwight"),
Text('3742"),
Text('5573"),
Text('4323"),

]’)J

TableRow(children: <Widget>[
Text('Phyllis"),
Text('3823"),
Text('4500"),
Text('3277"),

)5
1,
);

The preceding code would produce Figure 6-33.

My Cool App

January February
3742 5573
3823 4500

Figure 6-33. A Table widget lines up rows and columns
simultaneously

136

CHAPTER 6 LAYING OUT YOUR WIDGETS

Caution Anyone coming from an HTML background knows that you
can lay out a page using HTML <table>s is possible but it is a bad
idea. <table>s are for data, not for layout. Well it’s the same thing in
Flutter. It is possible, but generally speaking, stay away from tables
for laying out a page. But if you have data, Tables are the right choice.

No matter what their contents, table columns are given equal portions
of the width unless you override it with the columnWidths property. The
following would give the first column 30% of the width and divide the
remaining 70% evenly across the remaining columns:

return Table(
columnWidths: {0: FractionColumnWidth(0.3)},
children: <TableRow>[...

How do you span columns? Like, for a table header for example.
Unfortunately, you don’t with Flutter Table - yet. Stay tuned, though. There

is a feature request for spanning columns.

Conclusion

I know this was a long chapter. But layouts in Flutter are not only hugely
important but they're also hugely complex because of the large number
of layout widgets and the way that they interact with one another. But
because understanding the algorithm can save you tons of hand-wringing
and head-scratching later on we thought it would be wise to cover it in
depth. We hope you'll agree in the long run. After a couple more scans
through this chapter and working with the widgets, we're convinced that
you’ll have Flutter layouts figured out.

Of course to have a complete app, you'll need to create multiple scenes
and be able to navigate between them. And how do you do that? We'll
cover that in the next chapter.

137

CHAPTER 7

Navigation
and Routing

All apps have the concept of moving from one screen to another. The
user clicks the cart button, and we go to the card screen. The user clicks
“continue shopping” button, and we get to browse for more products
to buy. Some app developers call it routing. Others call it navigation.

Whatever you want to call it, this is one area that Flutter makes really easy

because there are only four ways of navigating:

o Stacks - Each widget is full screen. The user taps a
button to go through a predefined workflow. History
is maintained, and they can travel back one level by
hitting a back button.

o Drawers - Most of the screen shows a widget, but on
the left edge, a drawer is peeking out at the user. When
they press it or swipe it right, it slides out revealing a
menu of choices. Pressing one changes the widget in
the main part of the screen.

o Tabs - Some room is reserved for a set of tabs at the top
or the bottom of the screen. When you press on a tab,
we show the widget that corresponds to that tab.

© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_7

139

CHAPTER 7 NAVIGATION AND ROUTING

o Dialogs - While these aren’t technically part of
navigation, they are a way to see another widget, so
we’ll allow it. Dialogs are modal (aka pop-up windows)
that stay until the user dismisses them.

Each of these methods depends on your app having a MaterialWidget
as its ancestor. Let’s drill into them starting with stack navigation.

Stack navigation

If you're an experienced developer, you're familiar with queues and stacks.
If not, let me explain briefly. Let’s say you work in a kitchen. As plates are
cleaned, they're stacked, right? Each plate is put on the top of the stack.
This is called pushing onto the stack. When it is time to serve some food,
you naturally take the last plate added, the one on top of the stack. This is
called popping off the top of the stack.

Flutter’s navigation works with stacks. When you want to send the user
to a new scene, you will push() a widget on the top of the stack and the
user sees that widget. Each time you push(), you're making the stack of
scenes taller and taller. When you are ready for them to go back to where
they were before, you'll pop() the last scene off the top of the stack, and
what is revealed? The previous scene.

With Flutter’s stack, you'll typically predefine the scenes (aka routes)
and give each a name. This must be done at the MaterialApp level like so:

Widget build(BuildContext context) {
return MaterialApp(

title: 'Shopping App',

initialRoute: '/',

routes: {
"/': (BuildContext ctx) => LandingScene(),
"/browse': (BuildContext ctx) => Browse(),
"/product': (BuildContext ctx) => ViewProduct(),

140

CHAPTER 7 NAVIGATION AND ROUTING

"/checkout: (BuildContext ctx) => Checkout(),
b
);
}

Note that with routing, we no longer use the home property. Instead,
use the intialRoute property.

Tip If your initialRoute is “/”, you can omit it altogether and Flutter
assumes itis “/”.

Navigating forward and back

To navigate the user to a scene manually, you'll Navigator.
pushNamed(context, route) and Navigator.pop(context).
To push a user to another route:

RaisedButton(
child: const Text('Check out'),
onPressed: () => Navigator.pushNamed(context, '/checkout),

)

Once they're finished and want to go back:

RaisedButton(
child: const Text('Go back'),
onPressed: () => Navigator.pop(context),

)

But wait, there’s more! Notice that if you have a Scaffold, a back arrow
is automatically added to the appbar (Figure 7-1). When tapped, it works
to go back. And if your user is on Android, the ubiquitous Android back
button works also (Figure 7-2).

141

CHAPTER 7 NAVIGATION AND ROUTING

817 & &

€& Stack Navigation

Figure 7-1. The back arrow in the appbar

Figure 7-2. The Android back button works with stacks

Tip There is another flavor of routing that doesn’t use a predefined

routing table in your MaterialApp. Instead, you generate the route on
the fly:

Navigator.push<void>(context, MaterialPageRoute
<voidy(builder: (BuildContext context) =>
SecondRoute());

As you can see, it’s quite a bit more complex. But it is popular if you
want custom transitions or just don’t want predefined routes.

142

CHAPTER 7 NAVIGATION AND ROUTING

Get result after a scene is closed

With stack navigation, every pop() returns to its caller. Therefore, it is
possible to return a value from each scene. This isn’t extremely common,
but it can be super useful when you're moving the user through a
workflow. Let’s say you have a section of your app that maintains a user
object. The user object is defined in MyUserWidget, and we provide one
button to modify the login credentials, another to modify the phone
number, and yet another to modify the Twitter handle. When the user taps
each button, we might push() them to a route where they change the data.
If so, we'll need to return that changed data to the MyUserWidget. We'd
push() alittle differently having a variable receive the returned value:

// The 'async' is needed here because we are 'await'ing below.
onPressed: () async {
_user.twitterHandle =
await Navigator.pushNamed(context, '/twitter');

1

Note the await keyword implies that pushNamed() returns a Future.
Also note that any value returned from this route will be assigned to
_user.twitterHandle.

So how does this value get returned? In the pop() of course!
Navigator.pop<String>(context, twitterHandle);

Navigator.pop() is overloaded. If you add a second parameter, it will be
returned to the widget that called push() in the first place. In the preceding
example, twitterHandle will be returned.

143

CHAPTER 7 NAVIGATION AND ROUTING

Apps that are shallow work great with push() and pop(). But your
app may have a deep navigation tree with lots of choices. Apps like that
aren’t usually best served by having umpteen buttons to push() and pop().
Instead, they should have a navigation menu. Flutter provides us with two
types. Simpler apps can have tabs. More complex apps will have drawers.
Let’s look at drawers next.

Drawer navigation

Drawers are great when we have a lot of navigation choices - too many
choices to fit in a tab. In a lot of responsive web sites, you'll see a menu
across the top of the page with links to other pages on the site. Then when
the site is viewed on a small device or even a narrow browser, that menu is
replaced by a hamburger menu that, when clicked, will drop down a menu
filled with the same choices. Basically, this is the site responding to limited
screen real estate, providing menu choices that are hidden until the user
asks for them.

Since most phones already have limited screen real estate, you may opt
to put your menu choices in a drawer that doesn’t gobble up that precious
screen real estate until the user is ready to see them (Figure 7-3). When
he or she is ready, they’ll hit the now-familiar hamburger menu (that icon
with three lines) and the choices slide out from the left (Figure 7-4). When
the user chooses one, we’ll Navigator.push() them to a new route.

144

CHAPTER 7 NAVIGATION AND ROUTING

1143 ¢ &

= Drawer Navigation

Drawer Navigation

Figure 7-3. A scene with the drawer closed

145

CHAPTER 7 NAVIGATION AND ROUTING

My Brand

Figure 7-4. A scene with the drawer open

The Drawer widget

You'll need a Drawer widget, a built-in Flutter widget that has the ability to
slide out, slide in, and contain menu choices. When you use a drawer, you
always include it in a Scaffold’s drawer property, like this:

Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(

146

CHAPTER 7 NAVIGATION AND ROUTING

title: const Text('Drawer Navigation'),
)
body: const Text('DrawerNavigation'),
drawer: Drawer(child: ListView(
children: <Widget>[
Text('Option 1'),
Text('Option 2"),
Text('Option 3'),

)s)s
)5
}

Notice that when you have a drawer in your Scaffold, its hamburger icon
replaces the appbar’s back button. You can’t see both buttons simultaneously
unless you create your own buttons manually. So while drawer navigation
and stack navigation can work together, it can be kind of awkward if you're not
careful. One example of them working really well together is to have a Drawer
at the topmost level, and then use stack navigation at all levels below that.

Tip Do you want a consistent drawer to be available across your
entire app? If so, we generally put a Scaffold on every scene and
include the drawer in it. Therefore, it is best to put your Drawer in its
own widget and include it:

return Scaffold(
appBar: AppBar(
title: const Text('Drawer Navigation'),
)5
body: const Text('DrawerNavigation'),
drawer: MyDrawer(),

)5

147

CHAPTER 7 NAVIGATION AND ROUTING

Filling the drawer

Adding the drawer is easy. The trick is getting entries into the drawer and
then making them navigate to another widget. Note that Drawer has a
child property that accepts a single widget. To get multiple children in your
drawer, you will use a widget that supports them such as Column (doesn’t
scroll) or ListView (scrolls).

Whichever you choose, you'll want to put something that is tappable
because to navigate, you're going to call Navigator.push() or Navigator.
pushNamed() just like you did with stack navigation.

Tip There’s a cool widget called a DrawerHeader that is built to
take up a large area at the top of the drawer. It is great for putting
your logo or other branding information to sort of remind the user
what app they are in. It is cosmetic only but it really does look cool.

return Drawer (
child: ListView(
children: <Widget>[
DrawerHeader (
child: Stack(
children: <Widget>[
Image.asset(
'lib/assets/images/BrandLogo.jpg",
)J
Container(
alignment: Alignment.bottomRight,
child: Text(
'My Brand',
style: Theme.of(context).textTheme.display1,
))s

148

CHAPTER 7 NAVIGATION AND ROUTING

]J
))
)5
ListTile(
leading: const Icon(Icons.looks one),
title: const Text('Widget 1'),
onTap: () {
Navigator.pushNamed(context, '/widget1');
}J
)
ListTile(
leading: const Icon(Icons.looks two),
title: const Text('Widget 2'),
onTap: () {
Navigator.pushNamed(context, '/widget2');
}’
)
ListTile(
leading: const Icon(Icons.looks 3),
title: const Text('Widget 3'),
onTap: () {
Navigator.pushNamed(context, '/widget3');
}’
)

Drawer navigation is great and all, but UX experts have a few problems
with it. They claim® that it drastically reduces the usability of apps, making

your app less discoverable and more difficult. They say the problem is that

'http://bit.ly/HamburgerNav

149

http://bit.ly/HamburgerNav

CHAPTER 7 NAVIGATION AND ROUTING

the options are hidden until the user asks for them. Their objection could
be resolved with an affordance that is always visible. Speaking of which ...

Tab Navigation

Asyouwould imagine, a tab system matches N tabs with N widgets. When the
user presses tab 1, they see widget 1 and so forth (Figure 7-5). The matching is
done with a TabBar widget, a TabBarView widget, and a TabBarController.

925 ¢ &
& Tab Navigating
1] 2]

Show A Show B

I'm widget A

Figure 7-5. A tabbar at the top and at the bottom

150

CHAPTER 7 NAVIGATION AND ROUTING

TabGController

The TabController is the least obvious part. Just know that you have to have
one or you get the error in Figure 7-6.

8:40
No TabController for TabBar.

When creating a TabBar, you must either provide an explicit
TabController using the "controller" property, or you must
ensure that there is a DefaultTabController above the TabBar.
In this case, there was neither an explicit controller nor a
default controller.

Figure 7-6. When you forget a TabController

The easiest way to create one is to wrap everything in a
DefaultTabController() with a length property. Problem solved. This part is
pretty simple - so simple you may wonder why Flutter doesn’t create one
implicitly for you. If you were thinking that, you wouldn’t be wrong:

Widget build(BuildContext context) {
return DefaultTabController(
length: 3,
child: Scaffold(

)5
}

TabBarView

Next you'll want to add a TabBarView widget. This holds the widgets that
will eventually be shown when the user presses a tab, defining where they

151

CHAPTER 7 NAVIGATION AND ROUTING

will be shown. Usually this is the entire rest of the screen, but you have
the opportunity to put widgets above the TabBarView or below it or really
anywhere around it:

child: Scaffold(
body: TabBarView(
children: <Widget>[
WidgetA(),
WidgetB(),
WidgetC(),
1,
))

TabBar and Tabs

Lastly we define the tabs themselves. Tabs can either hold text or an icon
or both. Here’s a TabBar with three tabs, each having both an icon and text:

child: Scaffold(
appBar: AppBar(
title: const Text('Tab Navigating'),
bottom: TabBar(
tabs: const <Widget>[
Tab(icon: Icon(Icons.looks one), child:Text('Show A")),
Tab(icon: Icon(Icons.looks two), child:Text('Show B')),
Tab(icon: Icon(Icons.looks 3), child: Text('Show C")),

D,

Caution There’s a one-to-one correspondence between each tab and
each TabBarView child; they are matched positionally. You must have
the same number of tabs as you do widgets inside the TabBarView.

152

CHAPTER 7 NAVIGATION AND ROUTING

TabBar at the bottom

Note that previously we chose to put the TabBar in the appBar, which of
course appears at the top of the screen. But sometimes your design calls for
the tabs to appear at the bottom of the screen. That’s easy because the Scaffold
has a property called bottomNavigationBar and it is built to hold a TabBar:

child: Scaffold(

bottomNavigationBar: Material(
color: Theme.of(context).colorScheme.primary,
child: TabBar(tabs: const <Widget>[
Tab(icon: Icon(Icons.looks one), child: Text('Show A')),
Tab(icon: Icon(Icons.looks two), child: Text('Show B')),
Tab(icon: Icon(Icons.looks 3), child: Text('Show C')),

D
)
)

Note The TabBar has the normal appearance of light text on a

dark background. Thus, when you place the TabBar on top of a light
background, it may be difficult to see the text (light on light). To fix
this, wrap your TabBar in a Material widget with a darker background
color as we did earlier.

The Dialog widget

Our last navigation category is arguably not a navigation category at all -
dialogs. In one sense, you're showing another widget so ... navigation?
But in another sense, you're basically showing a pop-up so ... not
navigation. "_(*)_/~

153

CHAPTER 7 NAVIGATION AND ROUTING

Either way, dialogs are a common thing and we should cover them.
Since they don’t fit well anywhere else in the book, let’s pretend for the
moment that they are a navigation topic. Hey, work with me here.

showDialog() and AlertDialog

showDialog() is a built-in Flutter method. You must supply a context and

a builder method that returns a Widget, usually either SimpleDialog or
AlertDialog. The AlertDialog has an actions parameter - a List of (typically)
FlatButtons that let the user dismiss the dialog (Figure 7-7).

Press OK to continue

Figure 7-7. A simple AlertDialog

RaisedButton(
child: const Text('I am a button. Press me'),
onPressed: () => showDialog<void>(
context: context,
builder: (BuildContext context) {
return AlertDialog(
content: const Text('Press OK to continue'),
actions: <Widget>[
FlatButton(
child: const Text('OK'),
onPressed: () => Navigator.pop(context)),

)5

154

CHAPTER 7 NAVIGATION AND ROUTING

1
)
)

This looks more complex than it needs to be. And this is the simplest
form! It gets more complex if you want to give the user choices.

Responses with a Dialog

showDialog() returns a Future<T> which means that you can have it return
avalue to its caller. Let’s pretend you want the user to respond with yes or

no (Figure 7-8).

| am the dialog title

You are about to do something that
needs confirmation. Are you sure?

Figure 7-8. AlertDialog that returns a value

You might create the dialog and handle the response like this:

RaisedButton(
child: const Text('Get a response'),
onPressed: () async {
// The builder returns the user's choice here.
// Since it is a Future<String>, we 'await' it to
// convert it to a String
String response = await showDialog<String>(

155

CHAPTER 7 NAVIGATION AND ROUTING

context: context,
builder: (BuildContext context) {
return AlertDialog(
content: const Text('Are you sure?'),
actions: <Widget>[
FlatButton(
child: const Text('Yes'),
// Return "Yes" when dismissed.
onPressed: () => Navigator.pop(context, 'Yes')),
FlatButton(
child: const Text('No'),
// Return "No" when dismissed.
onPressed: () => Navigator.pop(context, 'No')),
]J
);
1
);
// Do things with the response that we 'await'ed above.
print(response);
}J
))

Tip As the name suggests, the SimpleDialog widget is a simpler
version of the AlertDialog. It doesn’t have actions and has fewer
constructor parameters like titleTextStyle, contentTextStyle, and the
like. Use it mainly if you don’t need the user to respond to the prompt
but simply to inform.

156

CHAPTER 7 NAVIGATION AND ROUTING

Navigation methods can be combined

While you can stack navigate to a widget with a drawer and from there

to a widget with a tab, you should be careful. The methods are not
incompatible, but, boy, they can get complex when mixed! For example,
if you stack navigate via push() to a widget with a drawer, the back button
in the appbar is no longer available. Android has a soft back button at the
bottom, but iOS does not. So the user is now stuck with no way to return.
Another example, a TabBarView has widgets, but these are hosted so

to speak so they should have no Scaffold. If you tried to navigate to that
same widget using either of the other two methods, you have no way to
get back ... no drawer to show and no back button to tap. Again, the user
is stuck.

We recommend sticking to just two different types and keeping the
levels consistent. For example, it is pretty common to have a tabbed
navigation experience for the user, and within each tab, you'll work with
stack navigation. But get much more complex than that and you may get
your hands full.

157

CHAPTER 8

Styling Your Widgets

Styling your widgets isn’t entirely new to you. We’ve touched on some
minor styling features in prior chapters, and you've seen styling techniques
in our code samples. But this is the chapter where we'll take a deep dive on
styling. Finally! We get to make our widgets look great in addition to merely
working great.

We covered layouts in Chapter 6, “Laying Out Your Widgets,” so we
know how to set the location and sizes of our widgets. That’s not styling.
Styling is the other stuff that affects the appearance of widgets. Things like:

e Colors

Text appearance (fonts, weights, underlines, etc.)

e Borders (thicknesses, patterns, corner radii)
e Background images
e Applying shapes to a Container

We'll discuss these along with a couple of Flutter widgets where there
is considerable overlap between layout and styling: Cards and Stacks.
Lastly, we'll talk about the best practice of applying default styles en masse
using Themes.

But first a few words about the philosophy of styles in Flutter.

© Rap Payne 2019 159
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_8

CHAPTER 8 STYLING YOUR WIDGETS

Thinking in Flutter Styles

You've probably seen that Flutter has borrowed the best ideas from
Android, i0S development, and web development, especially from React
and the dynamicness of JavaScript. But it doesn’t copy their techniques
exactly. Flutter does things its own way, and it is a mistake to take the web
analogies too far. It’s to our benefit to grasp how Flutter is different.

First, Google has made Material Design' very popular in Android
development and all across the Web. And while Flutter’s default look
conforms to Material Design, don’t let anyone tell you that you're forced to
use it. That’s a popular but untrue misconception.

Second, Flutter’s styling is not CSS. Whereas CSS has certain
properties that are passed down to their children, Flutter styles are
not inherited. You cannot set a font family on your custom widget for
example, and have all of the Texts and TextFields and buttons beneath
it suddenly begin rendering with that font. To make that kind of thing
happen, it is possible to use Themes which we’ll show you how to do at
the end of this chapter.

Finally, Flutter, like Dart, is very verbose - it takes a lot of code to
express something you'd think should be simple. And unsurprisingly,
styling is no different. Just rest assured that some very smart people have
written Flutter and have darn good reasons for it being as wordy as it is,
safety and completeness being just two. It’s a fact of life. We just want you
to be aware and prepared for it.

"Material Design is a set of guidelines for the look and feel of an app. Briefly, it tries
to make the Ul resemble the physical world, specifically paper elements stacked
on top of one another. You can read more about it at https://material.io/

160

https://material.io/

CHAPTER 8 STYLING YOUR WIDGETS

A word about colors

Most Flutter styles are very narrowly applied; they only make sense for
certain tightly defined situations. On the other hand, colors are applied
nearly everywhere (Figure 8-1). Borders, text, backgrounds, icons, buttons,
and shadows all have colors. And they’re all specified in the same manner.
For example, here’s white Text in a red container with a yellow border, and
all of those widgets are colored identically with the syntax “color: Colors.
somethingOrOther”:

child: Container(
child: Text(
"Colors!',
style: TextStyle(color: Colors.white,),
))
decoration: BoxDecoration(
color: Colors.red,
border: Border.all(
color: Colors.yellow,
))’
)J

161

CHAPTER 8 STYLING YOUR WIDGETS

200 o d

Chapter 8 - Styling

C
Cotors
|

Figure 8-1. Colors are everywhere in Flutter

And you see those colored blocks in the background? Those were
created like this:

List<Widget> randomColors() {
Random rnd = Random();
return List.generate(25,
(int i) => Container(
color: Color.fromRGBO(
rnd.nextInt(255), rnd.nextInt(255), rnd.nextInt(255), 1.0),
));

162

CHAPTER 8 STYLING YOUR WIDGETS

So you can create any of the 16+ million colors with Color.
fromRGBO(red, green, blue, opacity) where each of the three RGB colors is
anumber between 0 and 255 and the opacity is 1.0 for fully opaque and 0.0
for fully transparent.

If you come from a web background, you might be more comfortable
creating colors using hex numbers. This works also:

color: Color(0xFFFF7F00),

Caution Be careful. That hex number is actually “ARGB” where the
first two hexadecimal characters are the alpha channel. If you forget
it, like Color(OxFFF700), you’ll be painting it full transparent and you'll
never see it. Just remember that if your colors don’t show up, take
that typical web hex number and put an “FF” in front of it.

Styling Text

There are two topics regarding the appearance of Text: TextStyle and
Custom Fonts. We'll deal with these in the following page or two but stay
tuned until the end of the chapter where we’ll be dealing with a better way
of setting those properties - Themes.

TextStyle

Text widgets have a style property which takes a TextStyle object (Figure 8-2).

163

CHAPTER 8 STYLING YOUR WIDGETS

\Without TextStyle

Widget build(BuildContext ctx) {
return Scaffold(
body: Center (
child: Text ("Hello world"),
),
)i
}

With TextStyle

Widget build(BuildContext ctx) {
return Scaffold(
body: Center (
child: Text (
"Hello world",

style: TextStyle(
color: Colors.blue,
decoration:

TextDecoration.lineThrough,

fontFamily: "Courier",
fontSize: 34.0,
fontStyle: FontStyle.italic,

fontWeight:
)

FontWeight.bold,

Hedldo—worid

Figure 8-2. With and without style

164

CHAPTER 8 STYLING YOUR WIDGETS

You'll simply set the style property to an instance of a TextStyle widget

and set properties. TextStyle supports about 20 properties. Here are the

most useful:

color - Any of the valid 16+ million colors

decoration - TextDecoration.underline, overline,
strikethrough, none

fontSize - A double. The number of pixels tall to make
the characters. Default size 14.0 pixels

fontStyle - FontStyle.italic or normal

fontWeight - FontWeight.w100-w900. Or bold (which is
w700) or normal (which is w400)

fontFamily - A string

fontFamily is a bigger topic. There are some fonts that are built-in like

Courier, Times New Roman, serif, and a bunch more. How many more? It

depends on the type of device on which the app is running. Since we don’t

have control over the users’ devices, the best practice is for you to stick to

the default font family unless you install and use a custom font. Let’s talk
about how to do that.

Custom fonts

Certain designers call for custom fonts when they design scenes. It turns

out with Flutter, using custom fonts is easy to implement, and they work

cross-platform. It involves three steps:

1.

Download the custom font files which are in ttf,
woff, or woff2 format. These are customarily stored
in a root-level folder called fonts, but the name is up
to you (Figure 8-3).

165

CHAPTER 8 STYLING YOUR WIDGETS

TSP —
b idea
¢ android
b build
4 fonts
A MrDafoe-Regular.ttf
A NanumBrushScript-Regular.ttf
b ios
b lib

B kAt

Figure 8-3. Fonts are usually stored in a folder called fonts

Tip You can find some excellent and free fonts at http://fonts.
google.com. Search through them by type, see samples, and
download them easily.

1. Add the font files to the pubspec.yaml file under
flutter/fonts so that the compiler is notified to
bundle them in the installation file.

flutter:
fonts:
- family: MrDafoe
fonts:
- asset: fonts/MrDafoe-Regular.ttf
- family: NanumBrushScript
fonts:
- asset: fonts/NanumBrushScript-Regular.ttf

2. Use the case-insensitive font name in the fontFamily
property of the TextStyle widget like we talked about
in the previous section:

166

http://fonts.google.com
http://fonts.google.com

CHAPTER 8 STYLING YOUR WIDGETS

Text(loremIpsums[0]), // Unstyled
Text(loremIpsums[1], // Some, like Courier may be
built-in

style: TextStyle(fontFamily: 'Courier'),),
Text(loremIpsums[2],

style: TextStyle(fontFamily: 'NanumBrushScript'),),
Text(loremIpsums[3],

style: TextStyle(fontFamily: 'MrDafoe'),),

The example above might look like Figure 8-4.

Lorem ipsum doler sit amet, consectetur adipiscing elit. Et
quidem, inquit, vehementer errat; Magna laus. Ratio quidem
vestra sic cogit. Dat enim intervalla et relaxat. Summum
enim bonum exposuit vacuitatem doloris; Duo Reges:
constructio interrete.

Idem adhuc; Non
igitur bene. Eam tum
adesse, cum dolor
omnis absit:; Inde
igitur, inquit,
ordiendum est. Quis
hoc dicit? Quibus ego
vehementer assentior.
Miki enim satis est ipsis von satis
Boviuim incoluimis acies: wisera caecitas

Sevupulum inguaim, abeunti; Sin aliud

quid voles postea Bawm fum adesse cum

dolor owwis absit; Collatio :g'.-l:ur ista te
wikil iwvat

L TR W A Y SN

Figure 8-4. Available fonts
167

CHAPTER 8 STYLING YOUR WIDGETS

Container decorations

How do you add borders to Text? You can’t. How about a background to an
Icon? Nope. They don’t have the capacity to have those decorations. But
you know what does? A Container. When you have styling problems like
these, the answer is almost always to wrap widgets in a Container and put
a decoration on the Container.

Containers have a catch-all styling property called decoration. Here’s
an example of how to put a shadow on a container:

child: Container(
width: 300.0,
height: 300.0,
decoration: BoxDecoration(
color: Colors.purple,
boxShadow: [
BoxShadow(
offset: Offset.fromDirection(0.25xpi, 10.0),
blurRadius: 10.0,

)
])
))
))

Figures 8-5 and 8-6 show boxes without and with shadows.

168

CHAPTER 8 STYLING YOUR WIDGETS

Figure 8-5. Without a box shadow

Figure 8-6. With a box shadow

And this is a terrific example of the wordiness with Flutter. In the Web,
this would have been done in 17 characters. But in Flutter we have to
remember that boxShadow is an array of BoxShadows, each of which has
an offset which takes a direction expressed in radians, a size expressed in
pixels, and the blur radius is in pixels also. Sheesh!

Blur radius may call for additional explanation. The blur radius is the
distance over which the shadow dissipates. It’s like putting a lampshade on
a lamp. Without a shade, the light is harsh and shadows are crisp. With a
lampshade, the light is softer and the shadows are also. The larger the blur
radius, the softer the shadow.

169

CHAPTER 8 STYLING YOUR WIDGETS

Caution You cannot specify a color directly on a Container if you're
also using a BoxDecoration. But don’t panic; BoxDecoration also has
a color property. Just move your Container’s color property into the
BoxDecoration for the same effect.

There are a number of other decorations available. Let’s look at the
most useful ones, border, borderRadius, and BoxShape.

Border

Just like you used a BoxDecoration for shadows, you also use them to put
a border on a container. Here’s a red border with four different widths
(Figure 8-7):

decoration: BoxDecoration(
color: Colors.purple,
border: Border(
top: BorderSide(
width: 10,
color: Colors.red,
)5
right: BorderSide(
width: 20,
color: Colors.red,
)5
bottom: BorderSide(
width: 30,
color: Colors.red,

)s

170

CHAPTER 8 STYLING YOUR WIDGETS

left: BorderSide(
width: 40,
color: Colors.red,
)5
)J
)J

Figure 8-7. Borders with different widths

While it’s nice that Flutter allows us to have different widths and even
different colored borders, how often will you use that? Usually all four sides
will be uniform. So we commonly use the shorthand Border.all():

decoration: BoxDecoration(
color: Colors.purple,
border: Border.all(
width: 10,
color: Colors.red,
))
)5

Much simpler. Yes, still verbose, but simpler.

171

CHAPTER 8 STYLING YOUR WIDGETS

BorderRadius

Rounded corners are a favorite look. You can make a Container rounded
even if it doesn’t have a border (Figure 8-8). You do this with BorderRadius:

decoration: BoxDecoration(
color: Colors.purple,
borderRadius: BorderRadius.only(
topLeft: Radius.circular(20.0),
topRight: Radius.circular(60.0),
))
)J

Figure 8-8. BorderRadius on two corners

We only gave it a topLeft and a topRight radius, but there is also a
bottomLeft and bottomRight property. And although we appreciate the
flexibility, it is not typical to use it. We ordinarily specify all four the same
(Figure 8-9):

decoration: BoxDecoration(
color: Colors.purple,
borderRadius: BorderRadius.all(

172

CHAPTER 8 STYLING YOUR WIDGETS

Radius.circular(20.0),
)5
)5

Figure 8-9. BorderRadius on all four corners

BoxShape

Your containers don’t have to always be rectangles. When you need it to

be another shape, you can make it so with BoxShape or CustomPainter.
BoxShape is much easier to use, but it only supports circles, as in Figure 8-10
(in addition to the default rectangle, of course):

Container(
decoration: BoxDecoration(
shape: BoxShape.circle,
color: Colors.deepOrange,
))
)J

173

CHAPTER 8 STYLING YOUR WIDGETS

Figure 8-10. BoxShape.circle makes your Container round

CustomPainter is way more complex, but it allows infinite shapes.
It would be distracting to get too deep into the details of CustomPainter
(Figure 8-11), but here’s a quick example, a Superman shield:

Container(
child: CustomPaint(
size: Size(200, 200),
painter: SupermanShieldPainter(),
)5
)

class SupermanShieldPainter extends CustomPainter {
@override
void paint(Canvas canvas, Size size) {
canvas.drawPath(Path()
..moveTo(25, 0)
..lineTo(125, 0)
..lineTo(150,25)
..1lineTo(75, 125)
..lineTo(0,25)
..lineTo(25,0),
Paint()
..style=PaintingStyle.fill

174

CHAPTER 8 STYLING YOUR WIDGETS

..color = Colors.red
)5
}
@override
bool shouldRepaint(SupermanShieldPainter oldDelegate) => false;

}

Figure 8-11. Using a CustomPainter

See? Quite a bit more involved. Note that your container is still a
rectangle. It’s just that the background is different. To dive deeper into
CustomPainter, take a look at https://api.flutter.dev/flutter/
widgets/CustomPaint-class.html.

Tip All of these decorations are applied to the decoration property,
but they also apply to a property called foregroundDecoration which,
as the name suggests, is applied on a layer above the container. The
same decorations apply there. But because they’re drawn on top of
the other things, you’ll want to keep in mind one more modification:
opacity. Colors can be made semi-transparent. The following would
create a red layer on top of a container that is 50% transparent:

foregroundDecoration: BoxDecoration(
color:Colors.red.withOpacity(0.5),

)

175

https://api.flutter.dev/flutter/widgets/CustomPaint-class.html
https://api.flutter.dev/flutter/widgets/CustomPaint-class.html

CHAPTER 8 STYLING YOUR WIDGETS

Stacking widgets

If you ever want two or more things to occupy the same x- and y-position
on the screen, reach for the Stack widget. The stack widget enables us to
lay down a widget and then put another widget in front of it and another
one in front of that one and so on. Obviously the ones added later will have
a higher z-index, thereby “occulting” (hiding) the one behind it. Basically it
allows you to ... well ... stack the inner widgets.

Using a Stack, you can create some really cool layouts. In fact, Material
Cards rely on Stacks a lot because they embrace background images with
text on top of it. Maybe we want a card with a person’s profile pic with their
name and info superimposed on top (Figure 8-12).

Sandeep Patel

Email: s.patel@us.com
Phone: +1 (555) 786-3512

Figure 8-12. A Card with text on top of an image thanks to a Stack
widget

Image for Figures 8-12 through 8-14 courtesy Hosein Hakimi on
Unsplash.com

176

http://unsplash.com

CHAPTER 8 STYLING YOUR WIDGETS

Here’s how we might accomplish that:

Card(
child: Stack(
children: <Widget>[
Image.asset("6.jpg"),
Column(
children: <Widget>[
Text(
"Sandeep Patel",
style: Theme.of(context).textTheme.display1
.copyWith(color: Colors.white),
)J
Expanded(child: Container()),
Text("Email: s.patel@us.com",
style: Theme.of(context)].textTheme.body2
.copyWith(color: Colors.white)),
Text("Phone: +1 (555) 786-3512",
style: Theme.of(context).textTheme.body2
.copyWith(color: Colors.white)),

])
)
1,
)J
)J

In the Stack, we placed an image first. Then on top of that, we added a
Column with text elements. Since the Column was added after the image,

it appears in front of the image.

177

CHAPTER 8 STYLING YOUR WIDGETS

Positioned widget

In our preceding example, the texts laid out decently because a Column
centers its children and the Expanded pushed the Texts to the top and
bottom. But if we just had everything directly in the Stack, it would look
like Figure 8-13.

Sarideep Patel

Figure 8-13. Without a Positioned widget everything bunches up in
the upper left

When you use a Stack, every widget inside it will try to stay in the top-
left corner. We can place those inner widgets in a Stack anywhere we want
by wrapping them in a Positioned widget.?

Card(
child: Stack(
children: <Widget>[
Image.asset("6.jpg"),
Positioned(
top: 10, left: 10,
child: Text("Sandeep Patel”,

2There are other techniques to position inside of a Stack such as Container, Align,
and Padding. But Position works great with Stack.

178

CHAPTER 8 STYLING YOUR WIDGETS

style: Theme.of(context).textTheme.display1
.copyWith(color: Colors.white),

)5
)s

Positioned(
bottom: 30, right: 10,
child: Text("Email: s.patel@us.com",
style: Theme.of(context).textTheme.body2
.copyWith(color: Colors.white)),
)
Positioned(
bottom: 10, right: 10,
child: Text("Phone: +1 (555) 786-3512",
style: Theme.of(context).textTheme.body2
.copyWith(color: Colors.white)),
)5
Positioned(
bottom: 0, left: 0, height: 100, width: 100,
child: Flutterlogo(),
)
1,
))
)J

We threw in a FlutterLogo for good measure. It now looks like
Figure 8-14. Much nicer!

179

CHAPTER 8 STYLING YOUR WIDGETS

Sandeep Patel

5
2

Emall: s.patel@us.com
Phone: +1 (555) 786-3512

Figure 8-14. Much nicer looking with a Positioned widget

The Positioned widget makes its child a fixed distance from one of the
four corners by specifying the top, bottom, left, and/or right positions.

Card widget

You may have noticed that we used a Card widget in our preceding
example. A Card feels like the right thing to do in this situation, but it is by
no means required.

A Flutter Card widget was created to implement the Material Design
look and feel, having properties like color for the background color,
elevation for a drop shadow size, borderOnForeground for the border,
and margin for spacing around it. Granted, all of those could also be
accomplished with a Container. But if you want to do it with a standard
look and feel, a Card makes it easy:

Card(
elevation: 20.0,
child: Text("This is text in a card",
style: Theme.of(context).textTheme.display3),

)

180

CHAPTER 8 STYLING YOUR WIDGETS

Themes

I don’t know about you, but I love it when an app is well-planned, thought
out, and designed beforehand. If it isn’t, you can end up with this crazy
quilt of colors and fonts with an unpredictable, uneven use of italics,
bolding, and underlines. In short, you don’t want to recreate http://
lingscars.com.

A consistent use of styling creates a pleasant app that exudes quality.
And a great way of staying consistent is simply to stick to a Theme.

A Theme in Flutter is a grouping of styles in logically-defined
groups that can be applied together.

This way, not only does your app have a consistent look and feel
throughout, but you can easily change the theme in one (1!) place,
MaterialApp, and it propagates to all children:

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Ch 8 - Styling Text',
theme: ThemeData(primarySwatch: Colors.yellow),
home: HomeWidget(),
);
}
}

181

http://lingscars.com
http://lingscars.com

CHAPTER 8 STYLING YOUR WIDGETS

If you do nothing else with themes, you're going to want to set the
primarySwatch color. In doing so, you're actually setting all of the other
colors. By setting primarySwatch, these are all automatically set also:

accentColor backgroundColor bottomAppBarColor
buttonColor canvasColor cardColor
colorScheme cursorColor dialogBackgroundColor
disabledColor dividerColor errorColor
highlightColor hintColor indicatorColor
primaryColor primaryColorDark primaryColorLight

scaffoldBackgroundColor ~ secondaryHeaderColor selectedRowColor
splashColor textSelectionColor textSelectionHandleColor

toggleableActiveColor unselectedWidgetColor

This is extremely efficient. One line of code sets all of these other things
to decent values. Of course if you have special requirements that call for
one of these colors to change (i.e., your users are scared of the color red),
then by all means change whatever you need. But you're generally going to
want to use the defaults because each color is engineered to look good as a
set alongside the primaryColor and all of the others.

There are lots of settings besides color in your Theme, things like size
of tick marks in a slider, what kind of animations happen when navigating
from scene to scene, whether modal dialogs have sharp or rounded
corners, and so on. Just like with colors, feel free to change them if your
app calls for it, but it is awesome that we aren’t forced to deal with these
minutiae and can focus on building a cool app.

Explore all of the properties in your Theme here: https://docs.
flutter.io/flutter/material/ThemeData-class.html. It will take a
while. There’s a ton of options there. I'm just grateful that instead of having
to manage them all, we can just set primarySwatch and be done with it!

182

https://docs.flutter.io/flutter/material/ThemeData/accentColor.html
https://docs.flutter.io/flutter/material/ThemeData/backgroundColor.html
https://docs.flutter.io/flutter/material/ThemeData/bottomAppBarColor.html
https://docs.flutter.io/flutter/material/ThemeData/buttonColor.html
https://docs.flutter.io/flutter/material/ThemeData/canvasColor.html
https://docs.flutter.io/flutter/material/ThemeData/cardColor.html
https://docs.flutter.io/flutter/material/ThemeData/colorScheme.html
https://docs.flutter.io/flutter/material/ThemeData/cursorColor.html
https://docs.flutter.io/flutter/material/ThemeData/dialogBackgroundColor.html
https://docs.flutter.io/flutter/material/ThemeData/disabledColor.html
https://docs.flutter.io/flutter/material/ThemeData/dividerColor.html
https://docs.flutter.io/flutter/material/ThemeData/errorColor.html
https://docs.flutter.io/flutter/material/ThemeData/highlightColor.html
https://docs.flutter.io/flutter/material/ThemeData/hintColor.html
https://docs.flutter.io/flutter/material/ThemeData/indicatorColor.html
https://docs.flutter.io/flutter/material/ThemeData/primaryColor.html
https://docs.flutter.io/flutter/material/ThemeData/primaryColorDark.html
https://docs.flutter.io/flutter/material/ThemeData/primaryColorLight.html
https://docs.flutter.io/flutter/material/ThemeData/scaffoldBackgroundColor.html
https://docs.flutter.io/flutter/material/ThemeData/secondaryHeaderColor.html
https://docs.flutter.io/flutter/material/ThemeData/selectedRowColor.html
https://docs.flutter.io/flutter/material/ThemeData/splashColor.html
https://docs.flutter.io/flutter/material/ThemeData/textSelectionColor.html
https://docs.flutter.io/flutter/material/ThemeData/textSelectionHandleColor.html
https://docs.flutter.io/flutter/material/ThemeData/toggleableActiveColor.html
https://docs.flutter.io/flutter/material/ThemeData/unselectedWidgetColor.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html

CHAPTER 8 STYLING YOUR WIDGETS

You'll notice in that list that there’s a textTheme, an appBarTheme,
an InputDecorationTheme, a sliderTheme, and many more. Let’s talk
about these groupings for a second. Many types of thing in your app have a
default theme which collects style properties for that type. When you add a
widget of that type, it automatically gets the theme properties by default.

Applying theme properties

Remember, you don’t have to do anything in order to use the themes on
almost every widget in your app. Nothing. In fact, that’s the whole idea
of setting a Theme and some of the underlying properties; your app just
absorbs them when they’re rendered. The theme becomes their default
look and feel.

But what if you want to overtly apply a theme? For instance, you
have a Text widget at the top of a scene and you want it to function as
a page heading. Or maybe below that somewhere you want a second-
level heading. Perhaps a sub-heading somewhere. How do you tell these
special Text widgets that they are supposed to be drawn in a special way?
Remember the style property?

Text widgets have a style property that takes a TextStyle object. But you
can access well-known text styles from the theme like so:

Text('title', style: Theme.of(context).textTheme.title),
Text('subtitle', style: Theme.of(context).textTheme.subtitle),
Text('headline', style: Theme.of(context).textTheme.headline),
Text('subhead', style: Theme.of(context).textTheme.subhead),

You have the Material textThemes in Table 8-1 to choose from.

183

CHAPTER 8 STYLING YOUR WIDGETS

Table 8-1. Material theme text styles

Text theme Description

name

body1 Most of the text you see. This will be the default style if you don’t
explicitly apply one

body2 Slightly thicker body text

button The default font on buttons, typically all caps and spread out a bit

caption For photo captions

display1 The smallest headline (aka headline4)

display2 The 3rd biggest headline (aka headline3)

display3 The 2nd biggest headline (aka headline2)

display4 The biggest headline (aka headline1)

headline Your go-to style for headlines (aka headlineb)

subhead For subheadings. Usually right below a heading.

title (aka headline6)

subtitle For sub-subheadings. Usually right below a title

overline Rarely used. For introducing a headline

Figure 8-15 shows what they all look like.

184

CHAPTER 8 STYLING YOUR WIDGETS

924 0 &
Chapter 8 - Styling

C C C

Figure 8-15. How the Material text styles look on a device

185

CHAPTER 8 STYLING YOUR WIDGETS

Tip When you want to apply a style from a theme but want to
change a few properties, use copyWith(). Here’s an example:

Text('Foo', style:
Theme.of(context).textTheme.body2.copyWith(color:Colors.red),
)5

You're reaching up into a current style and making a copy of it but
altering one or two properties for this instance. This allows you to use
your slightly customized style while leaving the original unaltered.

Conclusion

So you can see that the options for styling things in Flutter are near infinite.
Flutter styling resembles what you may have seen in CSS, but is by no
means the same. First, it is more verbose. And second, it doesn’t inherit.
Some people may resent these characteristics, but others will like the
cleanness that it creates.

Regardless of how you feel about that, you've got to be impressed
with the styling options that Flutter provides, especially when you think
about how they’re organized in Themes so we can present a consistent,
professional look and feel throughout our app.

Now, for the moment you've all been waiting for ... let’s learn how to
handle Stateful widgets!

186

CHAPTER 9

Managing State

We kind of telegraphed this topic since the first chapter because we've
been writing classes that extend a StatelessWidget. Now if Flutter has a
StatelessWidget, then you'd think it also has a StatefulWidget. And you'd
be right.

But what exactly is a StatefulWidget? How does it differ from a stateless
one? When do we choose one vs. the other? What is the structure of a
StatefulWidget? Are there rules for using one? If the data changes, how do
you re-render it? Good questions, right? Well, be patient young Jedi and
we'll answer all of those and more in this chapter.

What is state?

State is widget data whose change requires a re-render.

—Rap Payne ;-)

StatelessWidgets might have data, but that data either doesn’t change or
doesn’t change how the screen looks while the widget is alive. Sure, it may
change when Flutter destroys and recreates the widget, but that doesn’t
count. To be state, it must change while the widget is active, and that
change requires a re-render in order to stay current.

© Rap Payne 2019 187
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_9

CHAPTER9 MANAGING STATE

Flutter gives us certain widgets that are stateful out of the box

AppBar

e BottomNavigationBar
e Checkbox

e DefaultTabController
e Dismissible

e DrawerController

e DropdownButton

e EditableText

e Form

e FormField

¢ GlowingQverscrollindicator
e |mage

InputDecorator
MonthPicker
Navigator
Progressindicator
Radio
Refreshlindicator
Scaffold
Scrollbar

Slider

Switch
TextField
YearPicker

... and many more. These all have internal data that must be

maintained and monitored so that as the data changes, we re-render the

widget to reflect the said change.

Let’s take a simple example: a TextField widget. Yes, we're talking
about the built-in widget that’s kind of like a textbox on the Web; the user
can type characters into it. You realize of course that as the user types, the

widget is keeping track of and displaying the stuff that they’re typing. That,

my friend, is state.

That’s great and all, but how do we write our own StatefulWidgets?

Read on!

188

https://docs.flutter.io/flutter/material/AppBar-class.html
https://docs.flutter.io/flutter/material/BottomNavigationBar-class.html
https://docs.flutter.io/flutter/material/Checkbox-class.html
https://docs.flutter.io/flutter/material/DefaultTabController-class.html
https://docs.flutter.io/flutter/widgets/Dismissible-class.html
https://docs.flutter.io/flutter/material/DrawerController-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/widgets/EditableText-class.html
https://docs.flutter.io/flutter/widgets/Form-class.html
https://docs.flutter.io/flutter/widgets/FormField-class.html
https://docs.flutter.io/flutter/widgets/GlowingOverscrollIndicator-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/material/InputDecorator-class.html
https://docs.flutter.io/flutter/material/MonthPicker-class.html
https://docs.flutter.io/flutter/widgets/Navigator-class.html
https://docs.flutter.io/flutter/material/ProgressIndicator-class.html
https://docs.flutter.io/flutter/material/Radio-class.html
https://docs.flutter.io/flutter/material/RefreshIndicator-class.html
https://docs.flutter.io/flutter/material/Scaffold-class.html
https://docs.flutter.io/flutter/material/Scrollbar-class.html
https://docs.flutter.io/flutter/material/Slider-class.html
https://docs.flutter.io/flutter/material/Switch-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/YearPicker-class.html

CHAPTER9 MANAGING STATE

What goes in a StatefulWidget?

Here’s the shape of a StatefulWidget:

class Foo extends StatefulWidget {
@override
_FooState createState() => FooState();
}
class FooState extends State<Foo> {
//Private variables here are considered the 'state'
@override
Widget build(BuildContext context) {
return someWidget;
}
}

A stateful widget looks pretty complex, but once you get used to its
structure, it becomes second nature. We traditionally write it in one Dart
file, but it always consists of two classes: the widget class and a state class.

The widget class inherits from StatefulWidget and is public because it
is the thing that will be placed in other widgets.

The state class is always private because the current widget is the only
thing that will ever see this class. The state class is responsible to ...

1. Define and maintain the state data.

2. Define the build() method - It knows how to draw
the widget on screen.

3. Define any callback functions needed for data
gathering or event handling.

What does that leave for the widget class? Not much. The widget class
just kind of gets out of the way.

189

CHAPTER9 MANAGING STATE

So then why separate them? There are two reasons. First, the single
responsibility principle' (the SRP) suggests that we should have one thing
responsible for drawing the widget and another thing responsible for
dealing with data. That’s just good software design. Other frameworks
suggest that you separate Ul from state management, but most don'’t
enforce it. Flutter does.

Second is performance. Redrawing takes time. Recalculating state takes
time. When we separate them like this, we are giving the processor a chance
to handle these two things independently. Sometimes a redraw doesn’t need
to happen just because state changes. So we save the cycles of redrawing.

Also, when we redraw, Flutter creates and draws a whole new widget.
The old widget in memory is no longer needed so it is dereferenced and
eventually garbage collected. That’s awesome but state is still needed.

If Flutter retains that old state object, it can be reused instead of being
garbage collected and recreated. By separating these objects, Flutter
decouples them so they can each be handled in its own most efficient way.
It’s a brilliant design!

The most important rule about state!

When you change any state value, you should do it ...
1. Inthe state class

2. Inside a function call to setState():

setState(() {
// Make all changes to state variables here...
_value = 42; // <-- ... Like this

};

'https://en.wikipedia.org/wiki/Single responsibility principle

190

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

CHAPTER9 MANAGING STATE

setState() takes a function which is run ... uh ... soon. The Flutter
subsystem batches changes and runs them all at a time that it decides is
optimal. This is extremely efficient because, among other reasons, it will
reduce the number of screen redraws.

setState() not only sets the variables in the most efficient and
controlled way, but it always forces a re-render of this widget to occur. It
invokes build() behind the scenes. The end result: When you change a
value, the widget redraws itself and your user sees the new version. Note
that if this widget has subwidgets inside of it (aka inner widgets), they’ll be
in the build() method, so a call to setState() actually redraws everything in
this widget including all of its subtrees.

If this causes you to panic for a second, please remember that
Flutter uses a virtual widget tree, so even though we are telling it to draw
everything, it is smart enough to know what parts of the screen don’t need
arefresh and it only technically redraws those parts that do need it. It is
superefficient!

Passing state down

Okay, you got me. Technically, you can’t pass state from a host widget into
an inner widget because state only exists within a widget. But we definitely
want to pass data down. That data may be stateful data in the host widget,
and it may be moved to state in the inner widget.

But this is nothing new. We did it with stateless widgets. As a reminder,
you simply declare class-scoped final variables and supply their initial
values in constructor parameters.

But how is the passed value visible in the State class? Flutter provides
us an object called widget which represents the Stateful Widget. In other
words, if there is a variable called “x” in the StatefulWidget, it is visible in
the State class as “widget.x”:

191

CHAPTER9 MANAGING STATE

class Foo extends StatefulWidget {
final String passedIn;
// Value passed in from its host
ColorValueChanger({Key key, this.passedIn}) : super(key: key);
_FooState createState() => new FooState();

}

class FooState extends State<Foo> {
@override
Widget build(BuildContext context) {
return Text(widget.passedIn,);
}
}

Now that we know how to pass data down from host widget to inner
widget, let’s go the other way and see how to pass data back up from the
inner widget to the host.

Lifting state back up

And you got me again. You can’t pass state. But it gets worse. With Flutter,
you can'’t pass anything up.

Flutter has one-way data flow. Period. Data can only flow down from a
host widget to an inner widget. We've been doing this for, what, about 200
pages now? But sometimes we need data to flow from an inner back up to
a host.

For instance, let’s say we have a Login.dart widget with username/
password textfields and a submit button. We’d place this Login in other
widgets provided that the user is not already logged in. The business logic
to log in must be in the Login widget itself. But when they successfully log
in, we really need to let the host widget - or even all widgets - know they
are now authenticated. The token needs to be passed back up. But how do
we do that when we can’t pass data (state) up to a host?

192

CHAPTER9 MANAGING STATE

Here’s the trick. Don’t pass the data up. Pass the handler method
down! In Dart (as in JavaScript), functions are first-class objects. This
means that their references can be passed around like data. This also
means that you can pass a function from a host widget down into inner
widgets. Now that the inner widget has a handle to this function, it can
call it as if it were its own. But of course when the inner widget calls it, if
it passes a value into that function, the value is seen in the host where the
function is defined.

This technique is called lifting the state up (Figure 9-1).

Host.dept

Host.dept

_loggedin=true
_loggedin=false

(written host) (the original)

I T <
f(x)
_) Running it in the
@ Loggte ‘ inner actually
Login.dept Login.dept invokes it
User in the host
Password)
[©)
f(x)
(A reference)

Pass a reference into
the inner widget

Figure 9-1. Lifting state up

An example of state management

We should probably look at some code to solidify these concepts. Let’s say
we have an app that allows its user to create a color by adjusting red, green,
and blue values on three sliders. These will mix the colors and show it in a
bigger circle (Figure 9-2).

193

CHAPTER9 MANAGING STATE

43 O 6

Calor Mixer

Your favorite colors

Figure 9-2. An example stateful widget

Clearly the big circle needs to redraw as data changes so we must have
state. While we technically could have all of this in one big widget called
ColorMixer, we've learned in this book to decompose large widgets into
smaller, more specialized ones. Let’s extract the ColorCircle and use it for
the big circle and also for the favorite colors at the bottom. And since we've
got three sliders with labels, all doing the same thing we should probably
extract that also into a ColorValueChanger. So how about the layout in

Figure 9-3?

194

CHAPTER9 MANAGING STATE

One of the
Sliders. We’ll
reuse it three
times.

Color Value Changer

Draws a circle
Given a size and
a color.

Figure 9-3. How we might lay out the widget tree

The ColorMixer must be stateful:

import 'package:flutter/material.dart’;

import 'ColorCircle.dart’;

import 'ColorValueChanger.dart';

// The stateful widget

class ColorMixer extends StatefulWidget {
ColorMixer({Key key}) : super(key: key);
_ColorMixerState createState() => ColorMixerState();
}

// The state object

class _ColorMixerState extends State<ColorMixer> {

// These three variables are the 'state' of the widget
int red = 0;

int _blue = 0;

int _green = 0;

195

CHAPTER9 MANAGING STATE

@override
Widget build(BuildContext context) {
return Container(
child: Column(
children: <Widget>[
// This widget uses the variables (aka state)

ColorCircle(color: Color.fromRGBO(red, green, blue, 1),

radius: 200,),

// These three pass the _setColor function down so that the
// state *here* can be changed at lower levels. This is

// called "lifting state up".
ColorValueChanger(property: "Red", value: red,
onChanged: setColor),
ColorValueChanger(property: "Green", value: green,
onChanged: setColor),
ColorValueChanger(property: "Blue", value: blue,
onChanged: _setColor),

I,
))
)5
}
void _setColor(String property, int value) {
setState(() {
_red = (property == "Red") ? value : red;
_green = (property == "Green") ? value : green;
_blue = (property == "Blue") ? value : blue;
1
}
}

196

CHAPTER9 MANAGING STATE

Note that we’re passing 100% of what ColorCircle needs into it and
it doesn’t change throughout the life of ColorCircle. If ColorMixer’s state
changes, we simply call setState(), thereby re-rendering it ... including
ColorCircle. Thus, ColorCircle can be stateless.

In the same way, we pass an initial value into each ColorValueChanger,
and we pass a reference to the _setColor method. Remember, passing
a function down makes it available in the inner widget and therefore
executable. Although the inner widget executes it, the function actually
exists in the host widget!

Here’s how it would look in the inner ColorValueChanger widget:

@override

Widget build(BuildContext context) {
return Container(

child: Column(
children: <Widget>[
Text(property),
Slider(
min: 0,
max: 255,
value: value.toDouble(),
label: property,
onChanged: _onChanged,
))
]J
)5
)5

}

_onChanged(double value) {
setState(() => value = value.round());
onChanged(property, value.round()); // Lifting state up

}

197

CHAPTER9 MANAGING STATE

When should we use state?

But you know what? The very best way to avoid complex state is to avoid
having state at all. Just about every expert agrees that if you can avoid state
altogether, do. But it can be confusing as to when you need state and when
you don'’t.

For example, the label on our color picker is data within the
component. Should that be state? No, of course not; it doesn’t change.
How about a loop counter on a for loop? Nope; it never affects anything in
the build() method, so it doesn’t need to be put in a setState(). See? State
can sometimes be simplified or eliminated.

Figure 9-4 provides a summary of how to decide.

198

CHAPTER9 MANAGING STATE

Hmm. | wonder if
this data is state?

Does it change?

Not state.
Putitina
constant or final

Mot state here.
It's state in the
ancestor and passed
down in our constructg

Does is change
in this widget or a
higher one?

Do we need
o re-render if the
data changes?,

Make it a private

Mot state.
Calculate it in the
buikd() method
before displaying it

Okay, | guess it's
state in this widget.

Figure 9-4. How you might go about deciding whether state should
actually be used in a widget

199

CHAPTER9 MANAGING STATE

Advanced state management

What we've looked at in this chapter would work as advertised even when
the widget tree gets infinitely deep. But please realize that as your app gets
bigger and bigger, state management become more and more complex.
When it gets too complex, you may be better served by using a more
advanced state management pattern. These patterns are not always easy to
learn, but at some point in your app’s growth, they become worth the effort
to master.

We wanted to keep this chapter digestible so we can’t go into details on
all of these technologies, but we also didn’t want to pretend the problem
doesn’t exist.

InheritedWidget

This is a relatively simple solution, maybe too simple for most needs.
InheritedWidget?® is a built-in Flutter widget. Essentially it creates a small

set of global variables that are made available in a controlled way to all
descendants in its tree. Several of the other methods (ScopedModel,
Provider, Redux) are wrappers around InheritedWidget.

Pros: No library to install or keep track of.

Cons: There is some duplication between the InheritedWidget and the
underlying StatefulWidget. That’s a shame. Also the entire subtree is re-
rendered when any data changes.

BLoC

BLoC is an acronym for Business Logic Component, and it’s less of a
solution than a design pattern. BLoC was created by Google so naturally; it
was embraced by the Flutter community.

*https://docs.flutter.io/flutter/widgets/InheritedwWidget-class.html

200

https://docs.flutter.io/flutter/widgets/InheritedWidget-class.html
https://docs.flutter.io/flutter/widgets/InheritedWidget-class.html

CHAPTER9 MANAGING STATE

Pros: Lots of folks in the community can and will help you. It is a solid,
well-vetted pattern.

Cons: You have to write everything yourself; it’s neither built-in nor a
library. It can be hard to know where to inject a BLoC.

ScopedModel

ScopedModel® is a library “shamelessly borrowed” from the Fuchsia*
codebase by Brian Egan. (Hey, these are Brian’s words, not mine! He’s a
humble guy.) ScopedModel creates data models with the ability to register
listeners. Each model notifies its listeners when the data has changed so
they can update. Clever design.

Pros: Does its job of separating presentation and data very well.

Cons: There is talk of ScopedModel being combined with Google’s
flutter provide® which seems to be a more modern and simpler approach

to state management.

Hooks

An implementation of React hooks by Rémi Rousselet of Paris called
flutter hooks.® You no longer use StatefulWidgets at all. Instead you inherit
from a HookWidget which is stateless (therefore simpler) but allows you to
create and access custom functions that read and write state values. It even
comes with some pre-baked hooks that you don’t have to write.

Pros: Greatly simplifies your formerly stateless widgets.

Cons: Learning curve. It isn’t obvious how they work and the rules for
use unless you're already familiar with React hooks.

Shttps://pub.dartlang.org/packages/scoped model
*https://fuchsia.googlesource.com/
*https://pub.dartlang.org/packages/provide
Shttps://pub.dartlang.org/documentation/flutter_hooks

201

https://pub.dartlang.org/packages/scoped_model
https://fuchsia.googlesource.com/
https://pub.dartlang.org/packages/provide
https://pub.dartlang.org/documentation/flutter_hooks
https://pub.dartlang.org/packages/scoped_model
https://fuchsia.googlesource.com/
https://pub.dartlang.org/packages/provide
https://pub.dartlang.org/documentation/flutter_hooks

CHAPTER9 MANAGING STATE

Provider

At the time of this writing, there’s some confusion between Provider,’
also written by Rémi Rousselet, and a similarly named one written by
Filip Hracek and the good folks at Google. Filip freely admits that Rémi’s

package “is more feature-ful”® (sic).

Pros: A very robust and capable package that is comparatively
simple to use. In the near future, I expect this to become the go-to state
management library for developers who don’t already have a leaning
toward Redux and/or hooks because of prior experience with the React
ecosystem.

Cons: Not (yet) as popular as some of the others.

Note that there is a lot of confusion between this package and flutter-
provide created by Google because of the naming. The latter one, taken
from the Fuchsia codebase and open-sourced, may be combined with
ScopedModel and deprecated.

Redux

Like a few others on this list, Redux is a library borrowed from other
technologies and ported to Dart. Redux has a deep history coming from the
world of React via Facebook. There are several implementations, but the
most popular is here: flutter redux.? Also written by the prolific Brian Egan.
Cons: Very steep learning curve.
Pros: Very performant. Very scalable. Many React developers already
know Redux.js. The learning curve flattens significantly for them.

"https://pub.dartlang.org/packages/provider
®https://github.com/google/flutter-provide/issues/3
*https://pub.dartlang.org/packages/flutter_ redux

202

https://pub.dartlang.org/packages/provider
https://github.com/google/flutter-provide/issues/3
https://pub.dartlang.org/packages/flutter_redux
https://pub.dartlang.org/packages/provider
https://github.com/google/flutter-provide/issues/3
https://pub.dartlang.org/packages/flutter_redux

CHAPTER9 MANAGING STATE

Whoa! That’s a lot of packages!

Confused yet? I don’t blame you. These packages all solve the same
problem in different ways, some similarly and others using wildly different
strategies. No one has any expectations that you'll have anything more
than an awareness that there are tools out there. When you hear someone
say something like “Our state is getting messy. Maybe we should take
alook at BLoC or ScopedModel,” you'll at least know that type of thing
they're talking about. Then you can dig into the technologies to see which
you might want to use.

Conclusion

There are clear times when a widget needs to maintain its own status via
the data that is contained within it. When we do, we call this state and
we call the widget a stateful widget. Stateful widgets are by their nature
more complex than stateless widgets so we try to avoid them if we can.
Additionally the more stateful widgets we have, the more state needs

to be passed around between the widgets. This can get very complex
very quickly so we look to tools and techniques like BLoC, Redux,
ScopedModel, and Provider to tame state.

Fortunately, this is as complex as fundamental Flutter gets. Not so
bad after all. Since we've covered everything that is needed to create a
Flutter app, this ends the section. In the remainder of the book, let’s turn to
additional, perhaps optional topics that will help you to create real-world
Flutter apps!

203

PART Il

Above and Beyond

CHAPTER 10

Your Flutter App Can
Work with Files

At this point in our journey, you've learned how to create a Flutter app

and precisely control how it looks and lays out in any orientation and on
any device. That’s pretty cool! You know how to have it maintain data with
Form fields. But how do we get it to save that data? How do we get it to read
that data in the first place?

Your app’s data can only come from two places: from within the device
itself or by exchanging data with an external server. We'll deal with external
servers in the next chapter. In this chapter, let’s learn to read and write data
from on-device storage options. But in order to get there by the end of the
chapter, we have to master certain prerequisite knowledge like working
with JSON and handling asynchronous activities. So here will be our plan
for the chapter:

e Including libraries in your Flutter app
o Bundling files in your app
o Futures, async, and await
o Reading/writing a local file
o Converting JSON
e Saving user preferences
© Rap Payne 2019 207

R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_10

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Including libraries in your Flutter app

Many talented developers have written some awesome tools that you and

I can use in our Flutter apps. These are usually referred to as libraries, and
all we have to do is (1) find one that we like, (2) add it to our pubspec.yaml
file, (3) import it in a dart file, and (4) use it in our code.

Finding a library

Frankly, this is the hardest part because there’s no single place to search.
As lame as it sounds, your best bet is to Google it. Later in this chapter,
we'll be reading and writing a file so let’s use that as an example. If you
Google for “Flutter read file,” every one of the top five results recommends
using a library called path_provider. So we Google for “Flutter path_
provider” and we end up at https://pub.dev/packages/path_provider,
as shown in Figure 10-1.

208

https://pub.dev/packages/path_provider

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

e0® path_provider | Flutter Package X =+

c A & pub.dev/packages/path_provider P AL ® =

i |§.‘.rL.|b.Cf(—3“.«r n d: Flutter Web & Server

path_provider X.Y.Z

Fublished May 8 20XX FLUTTER

READMEmd CHANGELOG.md Example Instaling Versions (i00]
. About
path—prOVIder Flutter plugin for getting commonly

used locations on the Android & i0S
m file systemg, such as the temp and
app data directories.

A Flutter plugin for finding ly used | ions on the filesy 1. Supports i0S and Homepage
Android. Repository (GitHub)

View/report issues

AP| reference
Usage

Author

To use this plugin, add path_provider asa dependency in your pubspec.yaml file. & Q Flutter Team

Uploader
Example &< zarah@google.com
& Q goderbauer@google.com
jacksona |
Directory tempDir = await getTemporaryDirectory(); E: Jpckson@google.com
String tempPath = tempDir.path; 2!\ s caca.Con

Figure 10-1. path_provider 1.3.0 home page

As you can see, the page gives us a version number (which we've
anonymized to X.Y.Z in the preceding screenshot), how to use the library,

and code samples plus more.

209

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Adding it to pubspec.yaml

The Usage section tells you what you need to know to use it. There is no
download button and no installation. In fact, all you have to do for nearly
every Flutter/dart library is to just edit the pubspec.yaml file and add a line
to the dependencies section:

dependencies:
flutter:
sdk: flutter
path _provider: "X.Y.Z

Note the preceding carat (2). That says to the developer tools, “You
can use the latest version of the library as long as you don’t go above major
version X.” Some experienced Flutter developers think that it is risky to let
the dev tools decide which version of the library to use so they omit the
carat. Your choice.

As soon as you save your pubspec.yaml file, your dev tools may detect
the new library and go get it for you. If not, just run flutter pub get.

$ flutter pub get
Running "flutter pub get" in myProject... 0.7s
$

Now that it is downloaded, you can begin using it.

Importing the library

Open any source code file where you'll need the functionality of this
library and add an import statement to the top:

import 'package:flutter/material.dart’;
import 'package:path provider/path provider.dart’;

You'll know what to import by reading the library’s documentation.
See? Easy.

210

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Using the library

How to use it depends heavily on the library and of course no two are alike.
The instructions and examples are found in the documentation again.

And the documentation for path_provider tells us to call a method called
getTemporaryDirectory() or getApplicationDocumentsDirectory() like this:

Directory documents = await getApplicationDocumentsDirectory();
File file = File('${documents.path}/$ filename");

“But wait,” you say, “What is this await thing?” Let’s talk about that next.

Futures, async, and await

Flutter is written using Dart, and Dart is a single-threaded language. This
means that a Flutter app can only do one thing at a time, but it does not
mean that Flutter apps are forced to wait for slower processes.

Flutter apps use an event loop. This should come as no surprise since
Android has a main looper and iOS has a run loop (aka main loop). Heck,
even JavaScript devs are unimpressed since JavaScript itself has a ... wait
forit... eventloop. Yes, all the cool kids are using an event loop these days.

An event loop is a background infinite loop which periodically wakes
up and looks in the event queue for any tasks that need to run. If any exist,
the event loops put them onto the run stack if and only if the CPU is idle.

As your app is running instructions, they run serially - one after
another. If an instruction is encountered that may potentially block the
main thread waiting on some resource, it is started and the “wait” part is
put on a separate queue.

211

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Why would it wait?

Certain things are slow compared to the CPU. Reading from a file is slow.
Writing to a file is even slower. Communicating via Ajax? Forget about it.
If we kept the waiting activity on the main thread, it would block all other
commands. What a waste!

The way this is handled in JavaScript, iOS, Android, and now Dart is this:

1. An activity that is well-known to be slow is started
up as normal.

2. The moment it begins waiting for something - disk,
HTTP request, whatever - it is moved away from the
CPU.

3. Alistener of sorts is created. It monitors the activity
and raises an alert when it is finished waiting.

4. The reference to that listener is returned to the main
thread. This reference object is known as a Future.

5. The main thread continues chugging along its merry
way.

6. When the waiting activity is finally resolved, the
event loop sees it and runs an associated method
(aka. a callback function) on the main thread to
handle finishing up the slow event.

All you do is write the code to create the future and to handle futures
that are returned from other methods:

// Say goReadAFile() is slow and returns a Future
Future myFuture = goReadAFile();

212

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

In Dart you have the ability to specify the type of thing that Future will
give you eventually:

Type of future When it’s ready, I'll have a ...

Future<String> ... string

Future<Foo> ... Foo

Future<Map<String, ... Map whose keys are Strings and whose values
dynamic>> are dynamic

When we have that Future object, you may not have the data, but you
definitely have a promise to get that data in the Future. (See what they did
there?)

How do we get the data from a Future?

You tell the Future what to do once the data is ready. Basically, you're
responding to a “Yo, the data is ready” event and telling the Future what to
do by registering a function.

myFuture.then(myCallback);

The .then() function is how you register that callback function. The
callback should be written to handle the promised data. For example, if we
have a Future<Foo>, then our callback should have this signature:

void myCallback(Foo theIncomingData) {
doSomethingWith(theIncomingData);

}

So if the Future will return a Person, your callback should receive a
Person. If the Future promises a String, your callback should receive a
String. And so forth.

213

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Your callbacks should always return void because there’s no way that the
.then function can receive a returned value. This makes a ton of sense when
you think about it because remember that it is no longer running within the
main thread of your app so it has no way of merging back in. So how do you
get a value from the callback? Several methods, but the most understandable
is that you use a variable that is defined outside the callback:

class FooState extends State<FooComponent> {
String firstName; // <-- A variable known by the whole class
Widget build(BuildContext context) {
// return a widget
}
void _myCallback(String someVar) {
_firstName = someVar; // <-- Getting a value OUT of an
async callback

Tacking a .then() onto your Future object can occasionally muddy up
your code. If you prefer, you can clean it up a bit with await.

await

There’s another way to get the data which is more straightforward to read.
Instead of using .then(), you can await the data.

Foo theIncomingData = await somethingThatReturnsAFuture();

Awaiting pauses the running code to ... well ... wait for the Future to
resolve before it moves on to the next line. In the preceding example, the
“Foo” that you're awaiting is returned and put into theIncomingData.
Simple.

Or maybe it isn’t that simple...

214

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

async

Like it or not, when you use await inside a function, that function is now
in danger of blocking the main thread, so it must be marked as async. For
example, this function

Bar someFunction() {
Foo theIncomingData = someFunction();
return new Bar();

}

becomes this when we await

Future<Bar> someFunction() async {
Foo theIncomingData = await somethingThatReturnsAFuture();
return new Bar();

}

Note that when we added an await on that second line, we must mark
the function itself with async. The subtle thing is that when it is marked as
async, anything returned from that function is immediately wrapped in a
Future unless it is already one.

Are you sitting down? Check this out: whenever you choose to await a
future, the function must be marked as async, and therefore all who call it
must be awaited and they must be marked as async and so on. Eventually
you get to a high enough spot in the call chain that you're not in a function
so you don’t have to mark it as async.

Maybe I spoke too soon when I said this is simpler.

Hint The Flutter build() method cannot be async, but events like
onPress can. So try to steer your async activities into events to solve
this recursive async-await-async-await thing.

215

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Here are your Futures takeaways:

1. Futures allow your Dart code to be asynchronous
- it can handle slow-running processes in a separate
thread (kind of).

2. You can handle the callbacks of those things with
either a .then(callback) or by awaiting them.

3. Ifyou await in a function, that function must be
marked as async.

If you'd like to do some more reading on Futures, here’s a thorough
coverage from the Dart team: www.dartlang.org/tutorials/language/
futures.

Including a file with your app

The file you're trying to read must exist (duh). Maybe we should just
manually create one.

It isn’t uncommon at all for developers to package up a flat file that
should be installed along with your app. It is great for initializations
of larger amounts of data - kind of like a mini database. It should look
familiar because this is the same technique we used to bundle images
with our app. All you'll do is create the file in your IDE and reference it in
pubspec.yaml.

There are a dozen ways to add the file to your project. Use a command
prompt, right-click and choose “new” in your IDE, drag and drop in file
explorer, and so on. But in the end, it should be visible in your IDE.

It is common but not required to create it in a folder called assets
(Figure 10-2).

216

http://www.dartlang.org/tutorials/language/futures
http://www.dartlang.org/tutorials/language/futures

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

v diiaiuiu

4 assets

.} database.json
> build

> oS

4 lilk

Figure 10-2. ‘assets” folder

But even though it exists, the app is unaware of a file until we flag it in
pubspec.yaml. Put it in the assets section of pubspec.yaml and it will be
included with the .ipa/.apk for installation on devices:

To add assets to your app, add an assets section, like this:
assets:
- assets/database.json

To read that file, you'll use rootBundle.loadString() like this:

try {
String data = await rootBundle.loadString('assets/db.json");
debugPrint(data);
} catch (e) {
print('Error: $e');
rethrow;

}

rootBundle is part of services.dart, so make sure you import it.

import 'package:flutter/services.dart’;

217

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Tip If the assets file is structured with keys and values, the
rootBundle.loadStructuredData(key, function) method may be a better
choice. It allows you to pass in the key you’re reading and a function
to process the data being read.

Since this data is written at compile time on the development machine,
it can’t be changed. But we can create a file in our app’s documents folder
that can be read and written. Let’s look at that next.

Writing a file

Sometimes our users want to save values from one run to another. And
we can do that in a local file, one that exists on their device. To create

a file, you can simply write to it with myFile.writeAsString(theString).

But our app can’t just write to any location on the device. We have

to get a reference to a writeable directory which is exactly what the
path_provider library does. Remember that it has a method called
getApplicationDocumentsDirectory() which returns a Future<Directory>.
So if we await that call, we can get a directory and create a file in it:

// Get the documents directory
Directory documents = await getApplicationDocumentsDirectory();
// Write the file
try {
File file = File('${documents.path}/$ filename");
await file.writeAsString(someText);
} catch (e) {
_message = 'Error: $e';

}

218

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Note The Directory and File types are available in Dart’s io library.
Don’t forget to import it:

import 'dart:io’;

And reading it!

Reading any file is even simpler. We just use File.readAsString():

File file = File('${documents.path}/$ filename');
file.readAsString().then((String text) {
setState(() {
_text = text;
_message = '$_filename has this text inside it: "$ text"';
1;
}).catchError((e) {
setState(() {
_errorStatus = true;
_message = 'Error: $e';
1;
D;

Note We wanted to use the .then() method of the future here
instead of await because the build() method can’t be marked as
async. The .then() allows you to handle the future without the need
for async. Fortunately the File object also has a readAsStringSync()
method which is a blocking call and returns the text directly instead
of a Future.

219

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

try {
File file = File('${documents.path}/$ filename');

_text = file.readAsStringSync();

// Modal success

_message = '$_filename has this text inside it: "$ text"’';
} catch (e) {

_errorStatus = true;

_message = 'Error: $e’;

}

Using JSON

When we write files, we're taking something in our app’s memory and
saving it. Sure, sometimes what we write is just a single value, but very
often it is an object or many objects. Let’s say we had a list of persons.
Maybe the first person in the list is Phoebe Buffay and the second is Rachel
Green. If we're going to save this list in a file, we’d have to designate it

as a list and specify the properties and values of each person. There are
unlimited ways of doing that, but the most popular one is JSON format:

{
"people": [
{
"id": "7b5fa0b0-9760-11e9-805d-099f65ed4f55",
"firstName": "Phoebe",
"lastName": "Buffay",
"occupation”: "Massage Therapist"

"id": "110ec58a-a0f2-4ac4-8393-c866d813b8d1",
"firstName": "Rachel",

220

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

"lastName": "Green",
"occupation": "Coffee Waitress"
}
]
}

Taking data in our app’s memory and putting it in that format is called
serializing the data. Going the other direction, reading data in JSON
format, unwrapping it, and loading it into our app’s memory is called
deserialization.

Dart has a built-in library called dart:convert with methods for
serializing and deserializing called json.encode() and json.decode(),
respectively.

Writing your app’s memory to JSON

Say your app has an object that you want to store or transmit. To put that
data in JSON format, use json.encode(someMap):

Map<String, dynamic> jsonMap = {
"id": _person.id,
"firstName": person.firstName,
"lastName": _person.lastName,
"occupation": person.occupation,
};
try {
String jsonString = json.encode(jsonMap)
await file.writeAsString(jsonString);
} catch (e) {
print("Problem saving! Error: $e");

}

221

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Note A Dart Map is kind of like a JavaScript object; a set of key/
value pairs, usually dynamically typed. To get a value, you’d specify
a key in square brackets like in the following example. If you want to
serialize a strongly typed object, you can either convert it to a map
(easier) or implement a method called toJson() which returns a Map
(cleaner). todson() is automatically invoked whenever json.encode is
called on an object.

Reading JSON into your app’s memory

Now let’s say you've somehow gotten ahold of a string in JSON format and
you want to read that data into your app. How do you get that data out?
json.decode():

// jsonString contain serialized JSON data
Map<String, dynamic> personMap = json.decode(jsonString);
// "personMap" is now a Map whose keys are strings
print(personMap["firstName"]);

Person p = Person(

id: personMap["id"],

firstName: person ["firstName"],

lastName: person ["lastName"],

occupation: person ["occupation”]

)5

Note jsonEncode() is shorthand for json.encode(). Similarly
jsonDecode() is shorthand for json.decode(). It’s a stylistic preference.
Use whichever you prefer.

222

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

You may be thinking about using this technique to store a user’s
preferences. And sure, it'll totally work. But if you want to save values
between runs of the app, there is a better way called shared preferences.

Shared preferences

Most apps will save data locally between runs, settings like authentication
tokens, personal data, dark/light modes, sounds ... heck, anything that
would be a user preference. On iOS these things are called NSUserDefaults.
On Android, they are called SharedPreferences. And the Flutter team has
given us a great library called shared_preferences' for reading and writing
these values in a cross-platform way. Now that you know how to include
libraries, it'll be trivial for you to add shared_preferences to your pubspec.
yaml file to include it in your project and app.

To use it, you'll need to instantiate a SharedPreferences object. But
since we're dealing with reading from the file system, it needs to be
handled as a deferred activity. Fortunately the library provides a static
getInstance() method that returns a Future<SharedPreference>. I know all
that sounds confusing, but just remember that getting a reference to the
reader/writer is asynchronous. Handle it like this:

SharedPreferences prefs = await SharedPreferences.
getInstance();

See? That’s not so bad. But do note that it has to be awaited.

'Read up onitat https://pub.dev/packages/shared preferences

223

https://pub.dev/packages/shared_preferences

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

To write preferences

To save to shared preferences, use the set methods:

prefs
..setString('organizationName', organizationName)
..setBool('isReady', true)
..setDouble('percentComplete', 12.5)
..setInt('numberOfTries', tries)
..setStringlist('validvalues', ['started','finished’,
"in process', 'approved']);

Each of these will save to the right incarnation of device-dependent
user preferences and return back a Future<bool>, the bool resolving to
true if it was successful and false if not. It is not a problem to ignore this
value if you want. Many developers do when they’re ignoring the extremely
rare exception.

To read preferences

If writing is with set methods, then you'd assume reading is get methods
and you’d be correct:

String organizationName = prefs.getString('organizationName');
bool isReady = prefs.getBool('isReady');

double percentComplete = prefs.getDouble('percentComplete');
int numberOfTries = prefs.getInt('numberOfTries');
List<String> validValues = prefs.getStringlist('validValues');

224

CHAPTER 10 YOUR FLUTTER APP CAN WORK WITH FILES

Conclusion

As we said at the top of the chapter, we're building up to exchanging data
with a server, which is a very complex topic. But what makes it complex
is that there are so many technologies and techniques involved: third-
party libraries, JSON serialization and deserialization, Futures, and
asynchronous reading and writing. But because we’ve handled those
topics in this chapter, what’s left won’t be so daunting.

Ready to learn about Ajax? Let’s do it!

225

CHAPTER 11

Making RESTful API
Calls with HTTP

Now we know how to create a Flutter app, use external libraries and
asynchronously read and write data in JSON format. That actually puts

us in a great position to go just one small step forward and exchange data
with an API server, something that is absolutely essential if we are going to
write real-world apps. Here’s what we need to know:

e Whatis an API call anyway?

o Making an HTTP GET or DELETE request.

e Making an HTTP POST, PUT, or PATCH request.
e Handling the response in the simplest way.

e Cleaner handling with FutureBuilder and
StreamBuilder.

e C(Cleaner handling with strongly typed objects.

That'll be our plan for this chapter. That, and getting in some hands-
on practice with a web site that allows HTTP updates. And to make
sure everyone is on the same page (pun definitely intended), we should
probably start with what exactly an API is. Feel free to skim it or skip
altogether if you're already familiar.

© Rap Payne 2019 227
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_11

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

What is an APl call?

Your app already has the ability to read from a tiny, localized database.
But it cannot read from one that is located elsewhere. In other words, you
can’tjust connect to the Google database and read or write records. Can’t
be done, not even if you have database credentials. I mean, think about
the security implications if everyone could connect from anywhere and
directly modify Google data. So what developers do instead is create and
run a server-side program to read and write in a controlled way and expose
that program on the Internet at a particular address with a particular
protocol, usually https.

To read this server-side data, any user can make http requests after
having sent their credentials in the form of username/password or better
yet, a unique and secret key called an API key.

There’s that term API again. It stands for Application Programming
Interface. It means different things in different situations, but its default
meaning has come to be any Internet address to which developers can
send http requests for the purpose of reading and writing data. There are
tons of publicly available APIs and many options for creating your own.

When an API responds, it returns with a stream of data that is almost
always in JSON' format.

The flavors of API requests

Communication with API servers is done in one of just a few flavors
(Table 11-1).

'Read up on JSON here: https://json.org

228

https://json.org

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Table 11-1. HTTP methods and descriptions

HTTP method Intent Notes

GET Reading records Like a database read, merely asking for
data from a server

DELETE Deleting records Delete the record pointed to by the
supplied ID. No data is returned

POST Inserting new records ~ Create a new record even if there’s already
a record like this one

PUT Replacing existing Clobber the existing record with this one.

records Delete the old record completely and add

this one in its place

PATCH Updating existing Keep the old record in place but update its
records fields with the data from this request

HEAD, CONNECT, OPTIONS, TRACE - For other types of requests.
Seldom used by typical apps. Read about them at http://bit.1ly/
HTTPMethods if you want.

It is rare for developers to use anything other than GET, POST, PUT,
PATCH, and DELETE. They're all done in Flutter by using one Dart library
which you’ll get by importing http.dart.

First, you'll add the http package to the dependencies section of your
pubspec.yaml. When you add and run “flutter pub get,” the package will
be downloaded from https://pub.dev/packages/http.

import 'package:http/http.dart’;

This will expose the http class which has methods corresponding to
each HTTP method. Now let’s look at sending requests using this library.

229

http://bit.ly/HTTPMethods
http://bit.ly/HTTPMethods
https://pub.dev/packages/http

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Making an HTTP GET or DELETE request

We'll begin with GET and DELETE requests first because they are the
simplest; they never have a body.? In fact, the only complexity is that HTTP
requests are done asynchronously. They return a Future which you either
need to handle with a .then() or await it. So maybe make your request like this:

String url = 'https://us.com/people/1234";

Response response = await get(url);
print(response.statusCode); // 200, we hope

Map<String, dynamic> person = json.decode(response.body);
print(person['first']);

print(person['last']);

print(person['imageUrl']);

print(person['email']);

or with a .then() like this:

get(url).then((Response res) {
print(res.statusCode); // 200, we hope
Map<String, dynamic> person = jsonDecode(res.body);
print(person['first']);
print(person['last']);
print(person['imageUrl']);
print(person['email']);

};

Delete requests are done in the same way. In fact, they are often
simpler because they often have no response values. The DELETE

This is hotly debated topic. While the HTTP spec is silent, RFC 2616 hints that a
body is ignored in a DELETE request but doesn’t explicitly forbid it. Some servers
will ignore the body. Other servers will ignore the entire request. While others
throw a 400 error. Either test it on your server or play it safe and omit the body.

230

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

either succeeds and has no return value or fails with a 400- or 500-series
response:

Response response = await delete(url);

Caution When making HTTP requests of any type, you should
always encode the url before sending. This will help to ensure that
the url is valid and can also help with security, especially when taking
input from the user. Call Uri.encodeFull like this:

String url = Uri.encodeFull('http://us.com/api/
ppl?query=Jo Ki');

For simplicity’s sake, we’re going to omit encoding in the examples.
But in the real world, always remember to do this.

Making an HTTP PUT, POST, or PATCH
request

PUT, POST, and PATCH are very similar to GET and DELETE. The biggest
difference is that PUT, POST, and PATCH all require a body for the
request - usually a string with JSON-formatted keys and values:

String payload = '{"first":"Kamala", "last":"Khan", "id":374}"';
Response response = await post(url, body:payload);

This response is unwrapped just as with GET and DELETE requests.

231

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Note With POST, PUT, and PATCH, we’re sending data from the
client to the server. It is prudent and sometimes required to also tell
the server how we’ve encoded that data. We’ll do that in an HTTP
header that we include in the request. Provide a key called “Content-
Type” with a value of “application/json”. And we’ll do that like so:

Map<String, String> headers= {'Content-
Type':'application/json'};

Response res = await post(url, headers:headers,
body:payload);

While we’re on the subject, there are many header variables that
you might find helpful like Accept, Accept-Encoding, Authorization,
Content-MD5, Cookie, Date, Host, If-Modified-Since, and others.
Read about them here: https://en.wikipedia.org/wiki/
List of HTTP header fields#Request fields.

Making HTTP requests from an API wasn’t so bad, now was it?
Very quickly we’ve made our Flutter apps capable of making requests,
deserializing the response, and printing that to the debug console. But
Flutter is all about displaying that data in cool-looking widgets. So how do
we integrate the requests into widgets?

HTTP responses to widgets

There’s a handful of ways to wait on the Future to resolve and then display
it. We're going to simplify things by showing you only three, the brute force
way, FutureBuilder, and StreamBuilder. Brute force is obvious and easy to
understand, but I think you'll like FutureBuilder/StreamBuilder because
they are cleaner and more elegant.

232

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#Request_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#Request_fields

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Brute force — The easy way

You already have all the tools you need to display the data: you understand
Futures and you know how to tell the stateful widget to redraw itself with
new data - setState(). So it can be as simple as putting a setState() inside
the .then() or after the await:

String url = 'http://us.com/api/people/12345";
Response response = await get(url);
Map<String, dynamic> responseBody = json.decode(response.body);
String first = responseBody['first'];
String last = responseBody['last'];
String imageUrl = responseBody['profilePictureUrl’];
Widget card = Stack(
children: <Widget>[
Image.network(imageUrl,
height: 300, width: 300, fit: BoxFit.cover),
Text("$first $last"),
])
)
setState(() {
_cardWidget = card;

};

And of course as long as your build method is displaying _cardWidget
somewhere, it will be rendered with proper data as soon as the Future is
resolved which only happens when the HTTP GET request returns data.
Piece of cake! But it isn’t the most elegant thing.

233

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

FutureBuilder — The clean way

A better solution may be the FutureBuilder widget. If you're ever in a
spot where you have a Future that, when fulfilled, has data that must be
rendered in a Flutter widget look to FutureBuilder. Does this scenario
sound familiar? It should because it is the major reason we have Futures
in Flutter. The simple code example from earlier can be done much more
completely like this with a FutureBuilder:

FutureBuilder(
future: get(url),
builder: (BuildContext ctx, AsyncSnapshot<dynamic> snapshot) {

if (snapshot.connectionState != ConnectionState.done) {
return const CircularProgressIndicator();

}

if (snapshot.hasError) {
return Text('Oh no! Error! ${snapshot.error}');

}

if (!snapshot.hasData) {
return const Text('Nothing to show');

}

final Map<String, dynamic> responseBody =

json.decode(snapshot.data.body);

final int statusCode = snapshot.data.statusCode;

if (statusCode > 299) {
return Text('Server error: $statusCode’);

}

String first = responseBody['first'];

String last = responseBody['last'];

String imageUrl = responseBody['profilePictureUrl’];

234

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

return Stack(
children: <Widget>[
Image.network(imageUrl,
height: 300, width: 300, fit: BoxFit.cover),
Text("$first $last"),
1
);
})
);

There’s no need for a setState() since the FutureBuilder has access
to the Future itself so it knows when and how to redraw itself. In the
preceding example, you can see how it is capable of rendering something
different for each situation: a ProgressIndicator while we’re waiting on the
resolution of the Future, an error if something is wrong, a notification if the
Future has nothing in it, and of course the widget when the data arrives
successfully!

Caution Always check snapshot.hasData and/or snapshot.hasError
before accessing snapshot.data. As of the time of writing,? Flutter
does not throw if there’s an error. Instead, it swallows the error and
fails silently.

Also be careful about the HTTP status code which can be found in
response.statusCode! If that number is in the 400s or 500s, you’ve
gotten a valid response from the server, but it is a problem and your
data will be null.

See https://github.com/flutter/flutter/issues/34545 for the proposed
changes.

235

https://github.com/flutter/flutter/issues/34545

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

StreamBuilder

What FutureBuilder does with futures, StreamBuilder does with streams.
These two classes are nearly identical, having the same format, using the
same shape of snapshots, and checking snapshot.hasErrors and snapshot.
hasData. But sometimes we're not dealing with a single return of data as
with a future, we're dealing with a stream of data that may hit us in spurts
or waves. When this is the situation, you'll want to use a StreamBuilder
instead:

StreamBuilder(
stream: anythingThatReturnsAStream(),
builder: (BuildContext ctx, AsyncSnapshot<dynamic> snapshot) {
// Everything below this is pretty much the
// same as FutureBuilder but the data is a
// collection of documents, each being a record
if (snapshot.connectionState != ConnectionState.done) {
return const CircularProgressIndicator();
}
if (snapshot.hasError) {
return Text('Oh no! Error! ${snapshot.error}');
}
if (!snapshot.hasData) {
return const Text('Nothing yet. Please wait ...');
}
return ListView.builder(
itemCount: snapshot.data.documents.length,
itemBuilder: (BuildContext context, int i) {
String first = snapshot.data.documents[i]['first'];

236

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

String last = snapshot.data.documents[i]['last'];
String imageUrl = snapshot.data.documents[i]
['imageUrl'];
return Stack(
children: <Widget>[
Image.network(imageUrl,
height: 300, width: 300, fit: BoxFit.cover),
Text("$first $last"),

]J
)’
b
)5
)5
IR
)5

Note Writing code like this, code that wakes up and updates itself
based on newly arriving data has a term: reactive programming.
Reactive programming happens when we make our app aware of
its external influences and tell it to react somehow. You may have
heard of reactive extensions like rxJava, rxJS, and rx.NET which

are libraries with classes and functions made for this style. Well,
there is one for Flutter unsurprisingly called rxDart. You can find it at
https://github.com/ReactiveX/rxdart.

237

https://github.com/ReactiveX/rxdart

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Strongly typed classes

At this point, you now know how to make HTTP calls against an API, and
when you get a response, you know how to unwrap that data and use it.
This puts us in a great position to convert that data into a strongly typed
class using the typed deserialization pattern.*

Note This is not required in order to make HTTP calls. It is merely
a cleaner way of processing the call and pulling it in to a structure
that is predictable. HTTP data is by nature unstructured. This is a
best practice used by many Flutter developers but is by no means
required. So if you don’t like it, feel free to skip it.

Typed deserialization happens in three simple steps:
1. Create the business class.

2. Write a .fromJSON() method and/or a
fromJSONArray() method.

3. When reading from HTTP calls, use .fromJSON() to
hydrate the object.

Create a business class

Let’s say we're reading and writing data for people. We should create a
PERSON class:

class Person {
// Constructor only needed b/c the name property is a
// map of strings and needs to be initialized

“The term “typed deserialization pattern” is one that I coined based on suggestions
from the Flutter community. You may not find others using it until it catches on.

238

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Person() {

name = <String, String>{};
}
String documentID;
Map<String, String> name;
String email;
String imageUrl;

Write a .fromJSON() method

This should be a static method that will return an instance of the business

class, Person in this case:

class Person {
// More class code here
static Person fromJson(String jsonString) {
final Map<String, dynamic> data = jsonDecode(jsonString);
return Person()
..name = data['name’]
..email = data['email']
..imageUrl = data['imageUrl'];
}

// and more class code here maybe

}

Note the use of Dart’s cascade operators and omission of the new
operator. Both are best practices also.

239

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Use .fromJSON() to hydrate the object

The word hydrate literally means “add water.” In this context, the data is
the water, and we’re creating a new Person object by adding the data to it.
You read data from an HTTP service using the .get() method and you pass
it into .fromJSON() like this:

// Make the HTTP call

final Response res = await get(url);

// Hydrate a Person object from the response body - a JSON
string

Person p = Person.fromJson(res.body);

See how clean and straightforward the code is?
Iimagine that at this point, you'd like to exercise all of this newfound
knowledge. Let’s do that with a free API service next.

One big example

A real API service will involve a database with exposed GET, POST,
DELETE, PUT, and/or PATCH endpoints which all require some hefty
setup on the server. You're going to want to get there eventually, and we'll
show you a fantastic permanent solution in the next chapter. But for now,
let’s make use of a demonstration-only site that costs nothing and is easy
to set up so we can build a Flutter app that uses API data.

Let’s build a people maintenance CRUD app (Figure 11-1).

240

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

/

mantis@guardians

mon

Figure 11-1. An app to maintain records that reads and writes its
data from a RESTful API

This app will read a list of people from an HTTP web service that
conforms to REST principles which means among other things that it
supports the HTTP GET, POST, PUT, and DELETE methods we learned
earlier. In addition, all records will have a unique ID assigned to them on
the server as part of the creation of those records. We'll create the preceding
pictured scene to show our list of people. We'll also need another scene with
fields to enter the person’s name, email address, and the location of a photo.

Sound fun? Well it will be after we get the server set up. Let’s start with
that.

241

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Setting up

We clearly need a server. So we'll need to stand one up and install and
configure a database and a service that receives HTTP requests on port 80
and a bunch of other stuff. Either that or we can use someone else’s.

Introducing Pipedream!

Pipedream.com provides cloud-based workflows where even
inexperienced developers can easily create complex processes. Their
excellent service is also free for reasonable volumes of data and
processing. The good folks at Pipedream have created a workflow that
exposes a simple RESTful interface, allowing us to read and write data over
a public-facing RESTful API with very little effort and at no cost.

You can do all of this anonymously but we recommend that you
log into an account so you can revisit the data later. So open http://
pipedream.comin your browser. Create an account with a password.

Visit this link: http://bit.ly/pipedream_api. Hit the big “Fork”
button in the upper right. This will create your very own copy that you can
own and alter if you need to. At the top of the page you'll see a URL. This is
the URL you'll send requests to.

(_}S.) Source: Webhook | https://en7btxnrlhxnijq.m.pipedream.net é’

To test it out, get to a command line. Use the curl command to make
sure you're set up.

$ curl https://en7btxnrlhxnijq.m.pipedream.net

If you get a response from the server that says “Success”, it is working

and you Can move on.

242

http://pipedream.com
http://pipedream.com
http://bit.ly/pipedream_api

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Create the Flutter app

Create a new Flutter app using flutter create. Open main.dart and find your
Material App widget. Remove the “home” property and add this to it:

initialRoute: '/peoplelist',

routes: <String, WidgetBuilder>{
"/peopleList': (BuildContext ctx) => PeoplelList(),
'/peopleUpsert': (BuildContext ctx) => PeopleUpsert(),

}s

Then make two new StatelessWidgets, one called “PeopleList.dart” and
the other called “PeopleUpsert.dart”. We'll fill in their details in a minute.
But first, it may be a good idea to create a business class to represent a
Person object.

Making a strongly typed business class

Since we're working with Persons, it might be a good idea to create a
Person class to hold each person. This very optional best practice may help
us to avoid bugs serializing and deserializing the server data and give us a
centralized place to manage all of our Person-related logic:

import ‘'dart:convert’;
class Person {
// Constructor only needed b/c name is a map of strings
// and needs to be initialized
Person() {
name = <String, String>{};
}
// The typed deserialization pattern for a single person
static Person fromJson(String jsonString) {

243

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

final Map<String, dynamic> data = jsonDecode(jsonString);
return Person()
..id = data['id"]
..name = data['name’]
..email = data['email']
..imageUrl = data['imageUrl'];
}
// The typed deserialization pattern for lists of people
static List<Person> fromJsonArray(String jsonString) {
final Iterable<dynamic> data = jsonDecode(jsonString);
return data.map<Person>((dynamic d) => Person()
..id = d['id"]
..name = {'first':d['first'], 'last':d['last']}
..email = d['email’]
..imageUrl = d['imageUrl']).tolList();
}
// The actual properties of a person
int id;
Map<String, String> name;
String email;
String imageUrl;

PeopleList.dart

We'll eventually read a list of people from the RESTful service and will
want to display their data. The PeopleList widget is responsible for
showing that list of people:

import 'package:flutter/material.dart’;
import 'package:http/http.dart’;
import 'Person.dart’;

244

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

import 'sensitiveConstants.dart’;
class Peoplelist extends StatefulWidget {
@override
_PeoplelistState createState() => PeoplelistState();
}
class PeoplelListState extends State<Peoplelist> {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: const Text('People'),),
body: scaffoldBody,
floatingActionButton: FloatingActionButton(
// An Add button. When the user taps it, we send
// them to PeopleUpsert with NO person object.
child: Icon(Icons.add),
onPressed: () {
Navigator.pushNamed(context, '/peopleUpsert');

})
)s
)5
}
// Note how we pull out details to make the widget more
// abstract for you. We do the same with personWidget below.
Widget get scaffoldBody {
return FutureBuilder<dynamic>(
future: fetchPeople(), // How we'll get the people
builder: (BuildContext context, AsyncSnapshot snapshot) {
if (snapshot.hasError) {
return Text('Oh no! Error! ${snapshot.error}');

}

245

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

if (!snapshot.hasData) {
return const Text('No people found');
}
// Convert the JSON data to an array of Persons
final List<Person> people =
Person.fromJsonArray(snapshot.data.body);
// Convert the list of persons to a list of widgets
final List<Widget> personTiles = people
.map<Widget>((Person person) =>
personWidget(person))
.tolist();
// Display all the person tiles in a scrollable
GridView
return GridView.extent(
maxCrossAxisExtent: 300,
children: personTiles,
)
}s
)s
}
// Displaying a single person tile.
Widget personWidget(Person person) {
// Look in the github source for the details. The
// important thing is that when the user taps a
// person tile, we navigate them to PersonUpsert
// and pass the person object in.

246

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

A GET request in Flutter

Look back at getScaffoldBody() method. It has a FutureBuilder. The future
property points to a method called fetchPeople() which simply needs to
make a GET request to the URL that will respond with a JSON array of
Person records:

Future<dynamic> fetchPeople() {
// pipedreamRESTUrl is the URL you made note of before
final String url =
"$pipedreamRESTUrl/people/?pipedream_response=1';
return get(url);
}

The GET request is pretty simple once you get the Flutter infrastructure
created, huh? Of course when you make this call the first time, nothing
will appear since you haven’t created any persons yet. That'll come soon
enough.

A DELETE request in Flutter

Each person tile has a trashcan IconButton in the upper right. A tap on

it calls deletePerson(), receiving the person we want to get rid of. This
deletePerson() method should send an HTTP DELETE request, pointing to
that person by ID:

void deletePerson(Person person) {
final String url =
"$pipedreamRESTUrl/people/${person.id}?pipedream response=1";
delete(url).then((Response res) {

247

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

// Call setState() to rerender AFTER the person is gone
setState(() {
print('Status code: ${res.statusCode}');

};
};
}

Note that after the delete’s Future is resolved, we call setState() to force
the scene to re-render, thereby refreshing the list of Persons.

PeopleUpsert.dart

We've taken care of reading people and deleting a person in PeopleList.
But adding a new person will require a form for the user to enter
information. Sharp readers will notice that an identical form is needed for
updating existing persons. To adhere to the DRY principle,® let’s create one
form and reuse it for both adding and updating:

import 'package:flutter/material.dart’;

import 'package:http/http.dart’;

import 'Person.dart’;

import 'sensitiveConstants.dart’;

class PeopleUpsert extends StatefulWidget {
@override
_PeopleUpsertState createState() => PeopleUpsertState();

}

class PeopleUpsertState extends State<PeopleUpsert> {
final GlobalKey<FormState> key = GlobalKey<FormState>();
Person person;

Shttps://en.wikipedia.org/wiki/Don%27t_repeat_yourself

248

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

@override
Widget build(BuildContext context) {
// Get the 'current' person set during navigation. If
// this person is null, we're adding a new person so
// we should instantiate one. If this person is not null,
// then we're updating that person.
final Person _person =
ModalRoute.of(context).settings.arguments;
person = (_person == null) ? Person() : _person;
return Scaffold(
appBar: AppBar(
title: Text(
(_person == null) ? 'Add a person' : 'Update a
person',

))
)s
body: _body,
floatingActionButton: FloatingActionButton(
onPressed: () {
// Commit field data to the form key
_key.currentState.save();
// Save the person
updatePersonToPipedream(person);
// And go back to where we came from
Navigator.pop<Person>(context, person);
}’
child: Icon(Icons.save),
)s
)s
}

249

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Widget get _body {
return Form(
key: key,
child: Container(
padding: const EdgeInsets.all(20),
child: Column(
children: <Widget>[

TextFormField(
initialvValue: person.name['first'],
decoration:InputDecoration(labelText: 'First name'),
onSaved: (String val) => person.
name['first']=val),

TextFormField(
initialValue: person.name['last'],
decoration: InputDecoration(labelText:'Last name'),
onSaved: (String val) => person.
name['last']=val),

TextFormField(
initialValue: person.email,
decoration: InputDecoration(labelText:'Email'),
onSaved: (String val) => person.email=val),

TextFormField(
initialValue: person.imageUrl,
decoration: InputDecoration(labelText:'Image URL'),
onSaved: (String val) => person.imageUrl=val),

]J
)J
)5
)5
}
}

250

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

This will create one of pictures in either Figure 11-2 or 11-3.

Figure 11-2. Ifthe user had tapped the “+” button, we're adding

251

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

€< Update a person
Donnld.
Blake

odinson@guardians.com

https://us.com/images/thorfpng

5

ql W? e“ r-: t y-’.

asdf gh j kI
6z x ¢ vbnm@
723, @

Figure 11-3. Ifthe user had tapped a person tile, we're updating that
person

A POST and PUT request in Flutter

When the user hits the FAB in the PeopleUpsert scene, they are committing
the data they entered and we call updatePersonToPipedream(). If it was an
Add operation, we want to make a POST call. If it was an Update operation,

we want to make a PUT call:

252

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

void updatePersonToPipedream(Person person) {
Future<Response> response;

final String payload =

{
"first":"${person.name[' first']}",
"last":"${person.name['last']}",
"imageUrl":"${person.imageUrl}",
"email":"${person.email}"

}

nnn,
)

final Map<String, String> headers = <String, String>{
"Content-type': 'application/json'
};
// If id is null, we're adding. If not, we're updating.
if (person.id == null) {
String url =
"$pipedreamRESTUrl/people/?pipedream response=1";
response = post(url, headers: headers, body: payload);
} else {
String url =
"$pipedreamRESTUr1l/people/${person.id}?pipedream
response=1';
response = put(url, headers: headers, body: payload);
}
response.then((Response res) {
Navigator.pop(context, Person.fromJson(res.body));
1;
}

253

CHAPTER 11 MAKING RESTFUL API CALLS WITH HTTP

Conclusion

Not too shabby, huh? We went from knowing almost nothing about
reading and writing data via HTTP to a comprehensive example using
some fairly advanced techniques like the typed serialization pattern and
the FutureBuilder widget.

Unfortunately, though, our examples are using a temporary server-side
solution not fit for a production application. Would you be interested in a
robust, permanent server-side database that works seamlessly with Flutter
on iOS, Android, and the Web? Yes? Well then turn the page and let’s learn
about Google Firebase!

254

CHAPTER 12

Using Firebase
with Flutter

As an entrepreneur/mentor, I've been pitched a ton of great ideas for
business apps. Without exception every one that had any worth has
involved a server storing data. So if we care about the real-world use of
Flutter, it would be criminal to ignore talking to a production-ready server.
There are no shortage of server solutions out there like AWS from
Amazon, Microsoft Azure, IBM Cloud, Oracle Cloud Infrastructure,
Alibaba Cloud, and so many others. They're all great. We chose to focus on
Firebase, not because it is head and shoulders better than the others but

because

1. Firebase and Flutter are both Google products, so
there are a few synergies.

2. Firebase is at least as good as, and in some ways
better than, the other options.

3. Firebase is (fairly) easy to set up and free for low
volumes - perfect for learning and testing.

© Rap Payne 2019 255
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_12

CHAPTER 12 USING FIREBASE WITH FLUTTER

4. Firebase has been getting a ton of attention in the
developer community lately. It is becoming the tech
that hiring managers and recruiters want to see on

your resume.
5. We had to pick one, so why not Firebase? "\ _(*/)_/~

If we are going to implement Firebase as a server to use with Flutter, we
need to make sure we understand these things:

o Firebase at a very high level
o How to set up a Firebase project

¢ How to make it work with our eventual iOS and
Android apps

o Integrating it in our Flutter app with authorization
o Reading Firestore data into our Flutter app

e Querying data in Flutter

o Changing data in Flutter

o Deleting data in Flutter

So that will be our game plan for this chapter. Let’s start with an intro to
Firebase itself.

Introducing Firebase

Google Firebase is a set of server-side services and tools. If you use
Firebase, you don’t need to buy or rent your own server. No applying
security patches or updating software. No organizing backups. No
configuring of firewalls. No intrusion detection systems. No anti-malware
definition maintenance. No paying an ISP to connect to the Internet.
Basically, you're trusting Google to handle all of the things you'd do with

256

CHAPTER 12 USING FIREBASE WITH FLUTTER

your own server. Of course a server exists, but you and I don’t have access
to the OS so we have neither the responsibility nor the ability to maintain
it. How freeing is that?

The list of things you cannot do with Firebase is small and not commonly
needed. But the list of what you can do is broad and very common. Firebase
is made up of over a dozen tools.! Let’s glance at these three:

e Cloud Firestore - A database with an API to read and
write data

e Cloud Functions - Logic that is kicked off by an API call

o Authentication - Single sign-on to allow users to
securely log in to your app using their social accounts
or a username/password combination

Let’s discuss each very briefly and then extend last chapter’s example
Flutter app to read and write from Firestore.

Cloud Firestore

We want a database that all apps can read from and write to. Firestore
provides a NoSQL database with storage and tools to access that data.
Being NoSQL it is highly flexible, maybe more flexible than you're
comfortable with. If you've worked with MongoDB, Cassandra, or
CouchDB, then you know what we're talking about here. The major
difference with Firestore is the fact that the database itself and its backend
engine are maintained by Google instead of by you and me. All we need to
do is access the data.

Firestore exposes API endpoints for the data. After your app identifies
itself to Firestore, it can read and write data at those endpoints. Kind of
sounds like the RESTful interface we discussed in the last chapter, right?

'Read about all of them here: https://firebase.google.com/products

257

https://firebase.google.com/products

CHAPTER 12 USING FIREBASE WITH FLUTTER

Firestore does support an interface that has some features of REST, but it
is different enough that I wouldn'’t categorize it as RESTful. Instead, we
use a Dart library that takes care of the heavy lifting of authenticating our
app and setting up private communications. We will call methods in that
library like Firestore.get(‘people’) or Firestore.set(‘categories’). This turns
out to be much more streamlined once we set it up. (But the setup isn’t
super simple.)

Cloud Functions

Your app is almost certainly involved in processing data. Some of those
algorithms might be very, very complex. But the fact is that your users’
devices are probably more than capable of handling those things.

“So why not just process everything in my app? ”, you ask. Because
ifitis on the device, the algorithms could be reverse-engineered by any
attacker who downloads your Flutter app. Any secret business processes
will be exposed and the logic could be tampered with. Any of your API keys
would be stored on your device and could be read. So we would rather not
put any sensitive data or processing on the device. Let’s put it on the server
where it’s out of reach.

And what about processes or data that require sharing between two or
more apps? You need a server for those things.

You want Cloud Functions for things like

e Consuming a third-party API
e Processing server-side files like spreadsheets

o Extracting, processing, transforming, and loading large
data sets

e Running a chatbot or chat application

o Image analysis like face detection or recognizing and
extracting text

258

CHAPTER 12 USING FIREBASE WITH FLUTTER

o Large image processing like blurring offensive images
o Text analysis like intent detection
e Machine learning and Al

e Ordering a product from an ecommerce store like

Walmart or Amazon

Cloud Functions are written in JavaScript and run on demand in a
Node environment on Google’s servers when certain triggers fire like
arecord is added to Firestore or updated in Firestore, a user logs in, or
someone simply makes an Ajax request to a particular URL.

Authentication

Firebase Authentication makes it (relatively) easy to add authentication to
your app. Sure, you could add usernames and passwords to your app by
brute force, but you'd have to worry about setting up the user tables and
writing the authentication logic and hashing the passwords and handling
forgotten passwords and all that. With Firebase Authentication, you get

all of that functionality along with authentication via Facebook, Github,
Twitter, and of course Google itself. Your users can choose to use their own
username/password combinations or even do two-factor authentication
by SMS message on their mobile devices.

Setting up Firebase itself

All these features and more are available with Firebase. If you want to try
out Firebase, it is fun and free and a great learning experience. Besides, it'll
give us an opportunity to try out our newly acquired Ajax knowledge in a
live read/write environment. We'll let that be our goal over the next pages.

259

CHAPTER 12 USING FIREBASE WITH FLUTTER

First, you must have an account with Google. If you don’t have a
Google account, handwrite a letter to Google, place a stamp on it, and snail
mail it to “Google Inc., Mountain View, CA 94043.

Go ahead and sign in to your Google Account and visit http://
firebase.google.com to register an app with Firebase. Follow the
prompts. You won'’t be committing to anything nor pay any money for the
basic account.

Over your career, you'll probably be involved in multiple projects,
some for learning purposes, some for your side hustles, and maybe even
some for your main business. For this reason, Firebase allows users to have
multiple projects. We'll create one to work with.

Caution The following steps are current as of the time of writing,
but they can change. Take a look here for the most current steps:
https://firebase.google.com/docs/flutter/setup.

(1) Creating a Firebase project

After logging in to Google, visit console.firebase.google.com and you'll
see your console which will eventually feature a list of your projects. Click
the button to create a new project. Give the project a name like “Learning
Flutter” (Figure 12-1). Figure 12-2 shows the project is good to go.

Just kidding. Who doesn’t have a Google account?!? Go make one!

260

http://firebase.google.com
http://firebase.google.com
https://firebase.google.com/docs/flutter/setup

CHAPTER 12 USING FIREBASE WITH FLUTTER

Add a project

Project name = 405 4 <)>
== 1

Tip: Projects span apps

Learning Flutter across platforms (@

ProjectID (®

learning-flutter-e3d0a »°

Analytics location ®

United States »*

Use the default settings for sharing Google Analytics for Firebase data

Share your Analytics data with all Firebase features

Share your Analytics data with Google to improve Google Products and Services
Share your Analytics data with Google to enable technical support

Share your Analytics data with Google to enable Benchmarking

Share your Analytics data with Google Account Specialists

| accept the controller-controller terms. This is required when sharing

Analytics data to improve Google Products and Services. Learn more

. | agree that | am using Firebase services in my app and | agree to the

applicable terms.

Cancel Create project

Figure 12-1. Adding a new project

261

CHAPTER 12 USING FIREBASE WITH FLUTTER

Learning Flutter

0 Your new project is ready

Figure 12-2. The confirmation that your project is ready to go

Now imagine that this project had a web interface and a database
backend and was being accessed by a Flutter app on iPhones and on
Androids. This would be one project with multiple apps. As with multiple
projects, Google allows each project to have multiple apps. Each app will
have its own settings since the environments all have different demands.
Before we're finished, we’ll set up one each for iOS and Android. But first,
we should create our database and at least one collection (aka table).

262

CHAPTER 12 USING FIREBASE WITH FLUTTER

(2) Creating the database

Go back to your project’s dashboard. You'll see a menu choice to
develop with a database. Go ahead and choose to create a new database
(Figure 12-3).

Create database

° Secure rules for Cloud Firestore 2 Set Cloud Firestore location

After you define your data structure, you will need to write rules to secure your data.
Learn more [4

O Start in locked mode

Make your database private by
denying all reads and writes

rules_version = '2';
service cloud.firestore {
match /databases/{database}/documents {

@ Start in test mode match /{document=**} {
Get set up quickly by allowing all allow read, write;
reads and writes to your database }

}

@ Anyone with your database reference will be
able to read or write to your database

Enabling Cloud Firestore will prevent you from using Cloud Datastore with this project,
Cancel
notably from the associated App Engine app

A A

Figure 12-3. First step in creating a Cloud Firestore database

Choose to start it out in test mode just so we can easily verify that our
code works. You'll want to add rules in a real-world app which you can add
at any time. Hit “Next”.

This step is asking where the bulk of your users will be physically
located (Figure 12-4). It guesses based on your current location, and
honestly, any location will work fine. Just take the default and hit “Done”.
This creates the database.

263

CHAPTER 12 USING FIREBASE WITH FLUTTER

Create database

0 Secure rules for Cloud Firestore o Set Cloud Firestore location

Your location setting is where your Cloud Firestore data will be stored.

A After you set this location, you cannot change it later. Also, this location setting will be
the location for your default Cloud Storage bucket.

Learn more
Cloud Firestore location
namS5 (us-central) -
Enabling Cloud Firestore will prevent you from using Cloud Datastore with this project, Cancel
notably from the associated App Engine app
A Fi

Figure 12-4. Pick the location closest to the bulk of your users

Tip This is a NoSQL database which is different from traditional
relational databases like MySQL, SQL Server, Oracle, Informix, and the
like. First, the terminology is different (Table 12-1).

264

CHAPTER 12 USING FIREBASE WITH FLUTTER

Table 12-1. How you refer to things in
different types of DB servers

Relational databases NoSQL databases

Tables Collections
Records/rows Documents
Columns Fields

A NoSQL database does have keys and values, but they do not have

a fixed structure. In other words, each document in a collection might
have different fields than others in that same collection. This is the
major difference between traditional databases and NoSQL databases
and is the toughest thing to get used to.

Now we'll create a collection. Hit Start Collection and give it an id.
Then you'll be able to add one or more documents (Figure 12-5).

265

CHAPTER 12 USING FIREBASE WITH FLUTTER

Start a collection

° Give the collection an ID

o Add its first document

Document parent path

/people
Document ID
Auto-1D
Field Type Value
i email = string chief@hawkins.c @
Field Type
‘-~ name map (-]
Field Type Value
first = string ~ Jim ()
Field Type Value
last = string ¥ Hopper °
Field Type Value
r imageUrl = string ~ | chiefHopper.png| (=]
i-- @) Add field

[

Cancel Save

Figure 12-5. Adding your first document to the collection

266

CHAPTER 12 USING FIREBASE WITH FLUTTER

You'll now be able to see your lone document in the Cloud Firestore
viewer. From here, you can add documents, delete documents, and alter
documents.

It’s nice that we can maintain the database right from the Firebase
web site, but our goal is obviously to do that from our app. So we must
configure our iOS and Android apps to read from Cloud Firestore.

(3) Creating an iOS app

On the overview page for your project, you should see buttons for creating
apps in your project (Figure 12-6).

000 «

Add an app to get started

Figure 12-6. Your options for creating Firestore apps

Click the iOS button.
Provide a name for the app (Figure 12-7).

267

CHAPTER 12 USING FIREBASE WITH FLUTTER

Add an iOS app

Q -

Register app

i0OS bundle ID @

com.us.learningflutter

App nickname (optional) ®

Learning Flutter|

App Store ID (optional) @

123456789

Register app

Figure 12-7. Giving your iOS app an ID and a nickname

After you register the app, you'll see a view like Figure 12-8.

268

CHAPTER 12 USING FIREBASE WITH FLUTTER

Add an iOS app

00

Download config file

Instructions for Xcode below | C++

¥ Download GoogleService-Info.plist

Move the GoogleService-Info.plist file you just downloaded into the root
of your Xcode project and add it to all targets.

BRE QAo = o
v @ MyApplication

¥ | MyApplication
. AppDelegate.swift

ik

1

. ViewController.swift

+. Main.storyboard

Assets.xcassets

GoogleService- *. LaunchScreen.storyboard
Info.plist

. Info.plist

h GoogleService-Info.plist

b 550 Dradunte

Figure 12-8. Firestore makes their auto-created config file available
for you to download

269

CHAPTER 12 USING FIREBASE WITH FLUTTER

Download GoogleService-info.plist and store it in the iOS/Runner/
Runner directory (Figure 12-8). You'll know you're in the right folder when
you see Info.plist. Don’t be distracted by the diagram they show you. It will
look different because they’re showing the Xcode version of a project, but
you're working in a Flutter project.

Connecting to Firebase will be easier if we use certain tools provided
to us by Google. This means they need to be downloaded and installed
into our i0S/xcode project. iOS uses CocoaPods to manage dependencies.?
We should create a Podfile if we don’t already have one. Follow the
instructions next to add a Podfile and create the .xcworkspace file
(Figure 12-9).

3Like npm/package.json for JavaScript apps, NuGet for .Net, RubyGems for Ruby
projects, and so on.

270

CHAPTER 12 USING FIREBASE WITH FLUTTER

Add aniOS app

000

Add Firebase SDK

Instructions for CocoaPods | Download ZIP C++

Google services use CocoaPods [to install and manage dependencies.
Open a terminal window and navigate to the location of the Xcode
project for your app.

Create a Podfile if you don't have one:

$ pod init D

Open your Podfile and add:
$ pod 'Firebase/Core' |_[:|

Includes Analytics by default (@

Save the file and run:

$ pod install |_D

This creates an .xcworkspace file for your app. Use this file for all future

development on your application.
Previous

Figure 12-9. Google provides you the steps to create a Podfile and
.xcworkspace

271

CHAPTER 12 USING FIREBASE WITH FLUTTER

Copy this code in Figure 12-10 so your app reaches out to Firebase to
connect on startup. This is the firebase login logic.

Add an iOS app

0000 -

Add initialization code

To connect Firebase when your app starts up, add the initialization code
below to your main AppDelegate class.

@) swift (O Objective-C

import UIKit
import Firebase 0

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegat

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Boo:
FirebaseApp.configure() 0
return true

Figure 12-10. Last step to create your iOS app - add initialization code
272

CHAPTER 12 USING FIREBASE WITH FLUTTER

At this point, when your app runs, it knows which Firebase account
and project it is associated with. Only an app with this .plist file will
be able to connect to your app. Of course, when you compile the app
and distribute it to devices through the Apple App Store, they’ll all
be connecting to this one Firebase account. This is normal and to be
expected. Each user who runs it will check in with Firebase. You should see
activity in your Firebase console. Firebase is now listening for it and will
provide you with analytics data.

Since we're creating a cross-platform app, we should probably also
do the same with Android. Remember, they're completely different
environments so the steps will be different.

(4) Creating an Android app

Remember where we chose iOS earlier? Now click the Android button

shown in Figure 12-11.

000 «

Add an app to get started

Figure 12-11. This time choose to add an Android app

Although the steps are different, the application id or package name
should be the same. Enter it into the dialog (Figure 12-12).

273

CHAPTER 12 USING FIREBASE WITH FLUTTER

Add an Android app

Q-

Register app

‘ Android package name (@

com.us.learningflutter

App nickname (optional) ®

Learning Flutter

Debug signing certificate SHA-1 (optional) @

00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00

Required for Dynamic Links, Invites, and Google Sign-In or phone number support in
Auth. Edit SHA-1s in Settings.

Register app
i

Figure 12-12. Setting the package name and nickname for Android

That SHA-1 certificate is optional for most applications. You can leave
it blank for now but go back and generate the certificate if you need it for
Google Sign-in or phone number authentication.

274

CHAPTER 12 USING FIREBASE WITH FLUTTER

Install the google-services.json file

Going through the next step, the wizard will create a google-services.json
file and will tell you where to save it (Figure 12-13).

Add an Android app

Register app Download Add Firebase Run your app
config file SDK to verify
installation

Instructions for Android Studio below | C#+

i Download google-services.json
Switch to the Project view in Android -‘4“4"

Studio to see your project root directory.

[2 MyApplication (~/ Deskio
» [J.gradle
» [.idea
v Ciapp
» Ebuild

[libs
Move the google-services.json file you just » M ._:rc

downloaded into your Android app module root [5] .gitignore
directory. [aapp.imi

(& build.gradle
‘

rlgoogle-services.json
google-services.json

«l 7 Structure m

proguard-rules.pro
» Clgradle

& (!ures
-

Previous m

Figure 12-13. Generate the google-services.json file for Android

275

CHAPTER 12 USING FIREBASE WITH FLUTTER

This file has all kinds of important settings in it, especially the project
numbers and app ids that will tell your app where to ask for data from
Google Firestore. With all of this in a config file, you won’t have to hard-
code it in your app’s source code.

Note that it should be saved in the app folder at the same level as the
app-level build-gradle file. Speaking of which, our next step is to edit that
file.

Adding to the gradle files

Android projects have Gradle files which manage libraries, much like
Podfiles do for iOS. There is a project-level Gradle file and an app-level
Gradle file. They are both confusingly named build.gradle (Figure 12-14).

4 android
b .gradle
4 app
b src
(& build.gradle
{} google-services.json
> gradle
(& build.gradle

Figure 12-14. Make sure you know which build.gradle file to edit

276

CHAPTER 12 USING FIREBASE WITH FLUTTER

Add this classpath to the dependencies section of the project-level
build.gradle file, NOT the one under app:

buildscript {
dependencies {
(other things may be here already)
classpath 'com.google.gms:google-services:X.Y.Z'

Of course, use the latest version number instead of X.Y.Z like earlier.
Then add this implementation to the dependencies section of the app-
level build.gradle file:

dependencies {
(other things will be here already)
implementation 'com.google.firebase:firebase-core:X.Y.Z'

And add this apply plugin to the bottom of the same app-level build.
gradle file:

apply plugin: 'com.google.gms.google-services'

Tell the IDE to sync the gradle files. In Android Studio, you'll see a
“Sync now” link. Go ahead and click it.

(5) Adding FlutterFire plugins

Almost there! At this point we have the groundwork laid to use Firebase
with our app. We just have to add the Firebase plugins for Flutter and start
coding. It turns out that Google provides one common library for Firebase
itself and one library plugin for each Firebase product. We'll need the
common library plugin and the Cloud Firestore plugin.

277

CHAPTER 12 USING FIREBASE WITH FLUTTER

The main Firebase plugin is called firebase_core. The plugin for
Firestore Cloud Storage is called cloud_firestore. Put these lines in the
dependencies section of your pubspec.yaml file and they’ll be installed for
you:

firebase core: *X.Y.Z # main dependency for Firebase Core
cloud firestore: "X.Y.Z # dependency for Firebase Cloud Storage

Of course if we use other Firestore products, we'll need to add the
appropriate plugin, but we won’t have to re-do any of the other preceding
steps; once for the project is sufficient.

Using Firestore

Yes, that was a lot of setup, but we're finally ready to consume and
maintain data from the database. In order to make it easier on you to put
these Firestore HTTP calls in context, we'll use the Person examples from
the last chapter, replacing the calls to our temporary/test server with calls
to Firestore. Refer back to them and to the code from our github repository
as you read through the next pages.

At the top of any Flutter dart file that makes Firestore HTTP calls, add
an import:

import 'package:cloud firestore/cloud firestore.dart’;

This will expose an object called Firestore that you can use to get to
the database. In fact, Firestore.instance will point to your database as a
whole. And Firestore.instance.collection(‘Foo’) will point to the entire Foo
collection.

278

CHAPTER 12 USING FIREBASE WITH FLUTTER

Note Even though Firestore calls are HTTP calls behind the scenes,
there is no need to enter API keys or create setups or post-processing
the data or much of the other heavy lifting needed to make normal
Ajax calls with Firestore. All of those tasks are abstracted away from
you with the inclusion of the libraries which depend on the google-
services.json and GoogleService-Info.plist files. As tedious as all that
setup was, you can now see the payoff.

To get a collection

As long as you remember that Firestore.instance.collection(‘Foo’)
points to the Foo collection, getting that data is easy. You simply call the
.snapshots() method to trigger the request. A simple function like this
might encapsulate your GET request:

Stream<QuerySnapshot> fetchPeople() {
return Firestore.instance
.collection('people")
.1limit(1200) // Just in case there's a lot of documents
.snapshots();

Note that .snapshots() subscribes to a Stream of type QuerySnapshot.
And we know from the last chapter that Streams can be displayed and kept
up to date with a StreamBuilder widget. This is called reactive programming,
remember? Something like this might display that data in a grid:

Widget build(BuildContext context) {
return StreamBuilder<QuerySnapshot>(
stream: fetchPeople(),
builder: (BuildContext ctx, AsyncSnapshot<dynamic> snapshot) {

279

CHAPTER 12 USING FIREBASE WITH FLUTTER

if (snapshot.hasError) {
return Text('Oh no! Error! ${snapshot.error}');
}
if (!snapshot.hasData) {
return const Text('No people found');
}
// The magic! snapshot.data.documents holds your records
final List<Widget> widgets = snapshot.data.documents
.map<Widget>((DocumentSnapshot p) => Stack(
children: <Widget>[
Image.network(p['imageUrl'],
height: 300, width: 300, fit: BoxFit.cover),
Text('${p['name']['first']} ${p['name']['last']}",),
1)) .toList();
return GridView.extent(
maxCrossAxisExtent: 300,
children: widgets,
)s
})
)
}

Tip If you want to have a one-time read of the data without
subscribing, omit the .snapshot() and it will return a simple array
of Maps (aka array of objects). If you do that, you’ll want to use a
FutureBuilder instead of a StreamBuilder.

280

CHAPTER 12 USING FIREBASE WITH FLUTTER

To query

Firestore does have a .where() function, but it is very limited compared
with a standard SQL where clause. Firestore’s .where() will allow you to
look for these kinds of things:

.where('name.first', isEqualTo: someText)
.where('name.first', isGreaterThanOrEqualTo:someText)
.where('name.first', islLessThanOrEqualTo: someText)

And unfortunately that’s about it. It does not support any fuzzy logic
like wildcards, “contains,” or “like.” If you need full-text searching, the
Firebase team recommends a third-party service like Algolia. See https://
firebase.google.com/docs/firestore/solutions/search for more
details.

To upsert

The word “upsert” means that if the document exists, it is updated, but if it
does not exist, it is added. Firestore does both of these operations with the
setData method.

To update an existing document, read it like we did previously and
then pass its documentID to setData like so:

Firestore.instance
.collection('people")
.document(_person.documentID)
.setData(<String, dynamic>{

'name’: person.name,
‘email’: person.email,
‘imageUrl': person.imageUrl,

}).then<void>((dynamic doc) {

print('Document updated: $doc');

281

https://firebase.google.com/docs/firestore/solutions/search
https://firebase.google.com/docs/firestore/solutions/search

CHAPTER 12 USING FIREBASE WITH FLUTTER

}).catchError((dynamic error) {
print('Error! $error');

};

If you omit the documentID when calling setData, Firestore assumes
you want to add a new record:

Firestore.instance
.collection('people")
.document()

.setData(<String, dynamic>{
"name': person.name,
‘email’: person.email,
‘imageUrl': person.imageUrl,
}) . then<void> ((dynamic doc) {
print('Document added: $doc');
}).catchError((dynamic error) {
print('Error! $error');

};

Caution Be careful. It is easy to create duplicates by forgetting the
documentID when calling setData().

To delete

Deleting is similarly simple:

Firestore.instance
.collection('people")
.document (personToDelete.documentID)
.delete()

282

CHAPTER 12 USING FIREBASE WITH FLUTTER

.catchError((dynamic error) {
print('Error! $error');

};

Obviously there is nothing returned from the delete so no need for a

.then().

Where to go from here

Let’s take a second and look back at the journey we've taken together.

Since we began this book ...

You now understand how Flutter works and is
architected

You can deftly handle the most useful built-in Flutter
widgets

You can create custom widgets, both Stateless and
Stateful

Your Flutter UX can be intuitive through layout widgets
You can make them look beautiful with styles
You're able to navigate between scenes in a Flutter app

You can handle asynchronous activities including
reading local data

You can read and write data through an HTTP/RESTful
API

You can persist data permanently in a robust, scalable

server

283

CHAPTER 12 USING FIREBASE WITH FLUTTER

Wow! That’s a ton of stuff! But there are tons more to learn. Heck, even
veterans should continue learning. Let me recommend some resources for
you to continue to explore and learn.

First, get involved in the Flutter community (of which I'm a member).
Start with their Slack channel at http://flutterStudyGroup.slack.com.
Read their articles at https://medium.com/flutter-community. And join
us via Zoom on Wednesdays for Hump Day Q & A athttps://tinyurl.
com/humpdayganda where you can talk live with Flutter devs literally
around the globe, ask questions, and even pair program to solve problems.
The top Flutter developers in the world hang out there, eager to help you
with your Flutter issues.

I also recommend that you subscribe to two free curated emails chock
full of Flutter articles, videos, tutorials, and more. Each is delivered freshly
baked to your inbox once a week. Flutter Weekly has a couple dozen
resources per newsletter. Subscribe here: http://bit.ly/subscribe
to flutter weekly. Flutter Press Weekly is smaller each week because
itis more selective in the resources shared. You can subscribe to Flutter
Press Weekly athttp://bit.ly/subscribe_to flutter press weekly.
Reading these regularly will keep your finger on the pulse of the latest
developments in Flutter.

Google’s Flutter team also has some cool resources. A great place to
begin is the Flutter documentation at https://flutter.dev/docs. Parts
of it are awfully dry to read but is the definitive resource if you're looking
up Flutter widgets and APIs. On the other end of the spectrum are their
videos, hugely entertaining and easy to digest. I recommend that you
subscribe athttp://bit.ly/flutter_youtube_channel.Ifyou see a
“Widget of the Week” video in there, click it immediately! They are one or
two minutes at most and will give you a functional understanding of the
widget in question faster than anything else. Google is resetting the bar for

documentation in their video channel.

284

http://flutterstudygroup.slack.com
https://medium.com/flutter-community
https://tinyurl.com/humpdayqanda
https://tinyurl.com/humpdayqanda
http://bit.ly/subscribe_to_flutter_weekly
http://bit.ly/subscribe_to_flutter_weekly
http://bit.ly/subscribe_to_flutter_press_weekly
https://flutter.dev/docs
http://bit.ly/flutter_youtube_channel

CHAPTER 12 USING FIREBASE WITH FLUTTER

I've been overwhelmed with the passion of the Flutter community! If
these three mega-resources don’t do it for you, there are tons and tons of
others out there for the asking. Get involved with your fellow Flutter devs,
and if you see me hanging out in one of them, please stop and say hello.
Thanks so much for reading!

285

APPENDIX A

Dart Language
Overview

We use the Dart language when writing Flutter, but Dart isn’t very popular
(yet). Most developers jump right into Flutter with no prior knowledge of
the language. In case that’s you, we wanted to get you a little assistance.

In this appendix, we're making no attempt to teach you everything about
Dart. Our goal here is to get you just enough Dart to be effective as you write
Flutter. So this appendix is brief and to the point. We are only dealing with
the things that would otherwise have slowed you down while writing Flutter.
An example of this is the rune data type. Super cool and innovative Dart
feature, but rarely used with Flutter so we omitted it. Please try to be tolerant
of us if we left out your favorite feature. We didn’t forget it. We just decided it
wasn’t as important as you thought it should be. Please forgive us.

What is Dart?

Dart is a compiled, statically typed, object-oriented, procedural
programming language. It has a very mainstream structure much like
other OO languages, making it awfully easy to pick up for folks who have
experience with Java, C#, C++, or other OO, C-like languages. And it adds
some features that developers in those other languages would not expect
but are very cool nonetheless and make the language more than elegant.

© Rap Payne 2019 287
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2

https://doi.org/10.1007/978-1-4842-5181-2

APPENDIXA DART LANGUAGE OVERVIEW

In light of all that, we’ve organized this appendix in two sections:

o Expected features - A quick reference (aka a
“cheatsheet”) of mainstream features, the bare
minimum of what you'll need to know for Flutter. You
should tear through this section at lightning speed.

¢ Unexpected features - These are things that might be
a surprise to developers who work in traditional OO
languages. Since Dart departs from tradition in these
areas, we thought it best to explain them briefly - very
briefly.

Expected features — Dart Cheatsheet

This quick reference assumes that you're an experienced OO developer

and ignores the stuff that would be painfully obvious to you. For a more in-
depth and detailed look at Dart, please visit https://dart.dev/guides/
language/language-tour.

Data types

int x = 10; // Integers

double y = 2.0; // IEEE754 floating point numbers
bool z = true; // Booleans

String s = "hello"; // Strings

dynamic d; // Dynamic variables can change types
d = x; // at any time. Use sparingly!

d=y;

d = z;

288

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour

APPENDIXA DART LANGUAGE OVERVIEW

Arrays/lists

// Square brackets means a list/array

// In Dart, arrays and lists are the same thing.

List<dynamic> list = [1, "two", 3];

// Optional angle brackets show the type - Dart supports Generics

// How to iterate a list
for (var d in list) {
print(d);
}
// Another way to iterate a list
list.forkach((d) => print(d));
// Both of these would print "1", then "two", then "3"

Conditional expressions

// Traditional if/else statement
int x = 10;
if (x < 100) {
print('Yes');
} else {
print('No");
}
// Would print "Yes"

// Dart also supports ternaries
String response = (x < 100) ? 'Yes' : 'No';

// If name is set, use it. Otherwise use 'No name given'
String name;
String res = name ?? 'No name given';

289

APPENDIXA DART LANGUAGE OVERVIEW

//the "Elvis" operator. If the object is non-null, evaluate
//the property. Prevents null exceptions from throwing.
print(name?.length);

Looping

// A for loop

for (int i=1 ; i<10 ; i++) {
print(i);

}

// Would print 1 thru 9

// A while loop

int i=1;

while(i<10) {
print(i++);

}

// Would print 1 thru 9

Classes

class Name {
String first;
String last;
String suffix;
}
class Person {
// Classes have properties
int id;

290

APPENDIXA DART LANGUAGE OVERVIEW

Name name; // Another class can be used as a type
String email;
String phone;
// Classes have methods
void save() {
// Write to a database somehow.

Class constructors

class Person {
Name name;
// Typical constructor
Person() {
name = Name();

name.first = "";

name.last = "";

Unexpected things about Dart

The preceding Dart features were unsurprising to any experienced OO
developers, but Dart has some pretty cool features that are unique. We'll
cover these next, but since they're less familiar, let’s take just a sentence or
two for each and explain it briefly before giving you a code sample.

291

APPENDIXA DART LANGUAGE OVERVIEW

Type inference

If T said “x=10.0", what data type would you guess that x is? Double? And
how did you know? Because you looked to the right of the equal sign and
inferred its type based upon the value being assigned to it. Dart can do that
too. If you use the keyword var instead of a data type, Dart will infer what
type it is and assign that type:

var i = 10; // i is now defined as an int.

i=12; // Works, because 12 is an int.

i = "twelve"; // No! "twelve" is a String and not an int.
var str = "ten"; // str is now defined as a String.

str = "a million"; // Yep, works great.
str = 1000000.0; // Nope! 1000000.0 is a double, not a string.

This is often confused with dynamic. Dynamic can hold any data type
and can change at runtime. Var is strongly and statically typed.

final and const

final and const are Dart variable modifiers:

final int x = 10;
const double y = 2.0;

They both mean that once assigned, the value can’t change. But const
goes a little farther - the value is set at compile time and is therefore
embedded in the installation bundle.

final means that the variable can’t be reassigned. It does not mean that
it can’t change. For example, this is allowed:

final Employee e = Employee();
e.employer = "The Bluth Company";

292

APPENDIXA DART LANGUAGE OVERVIEW

e changed, but it wasn’t reassigned so that’s okay. This, however, is not
allowed:

const Employee e = Employee();

const is not allowed at all because this particular class has properties
that could potentially change at runtime. final marks a variable as
unchangeable, but const marks a value as unchangeable.

So in summary

e dynamic - Can store any data type. The data type can
change at any time.

o var - The data type is inferred from the value on the
right side of the “=". The data type does not change.

o final - The variable, once set, cannot be reassigned.

o const - The value is set at compile time, not runtime.

Variables are initialized to null

The default data type for most variables is null. The default return value of
a function is null:

int x;
double y;
bool z;
String s;
dynamic d;

All of the preceding data are null since they haven’t been assigned a
value yet.

293

APPENDIXA DART LANGUAGE OVERVIEW

String interpolation with $

Interpolation saves devs from writing string concatenations. This ...
String fullName = '$first $last, $suffix’;

... is effectively the same thing as this ...

String fullName = first + + last + ", " + suffix;

When the variable is part of a map or an object, the compiler can get
confused, so you should wrap the interpolation in curly braces.

String fullName = '${name['first']} ${name['last']}’';

Multiline strings

You can create multiline strings with three single or double quotes:

String introduction =
Now the story of a wealthy family
who lost everything

And the one son who had no choice
but to keep them all together.

[TRTRTIN
)

Spread operator

The “...” operator will spread out the elements of an array, flattening them.
This will be very familiar to JavaScript developers:

List fiveTo10 = [5, 6, 7, 8, 9, 10,];
// Spreading the inner array with "...":
List numbers = [1, 2, 3, 4, ...fiveTo10, 11, 12];

// numbers now has [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

294

APPENDIXA DART LANGUAGE OVERVIEW

Map<foo, bar>

Maps are like a hash or dictionary. They’re merely an object with a set of
key-value pairs. The keys and values can be of any type:

// You set the value of a Map with curly braces:
Map<String, dynamic> person = {
"first": "George",
"last": "Bluth",
"dob": DateTime.parse("1972-07-16"),
"email": "amazingGob@gmail.com",
};
// Angle brackets on a Map set the data types of the keys and
// values. They're not required but are a good practice

// You reference a map member with square brackets:
String introduction = person['first'] + "
person['dob'].toString();

was born "+

Functions are objects

Just like in JavaScript, functions are first-class objects. They can be passed
around like data, returned from a function, passed into a function as a
parameter, or set equal to a variable. You can do just about anything with a
function that you can do with an object in Java or C#:

Function sayHi = (String name) => print('Hello, ' + name);
// You can pass sayHi around like data; it's an object!
Function meToo = sayHi;

meToo("Tobias");

295

APPENDIXA DART LANGUAGE OVERVIEW

Big arrow/Fat arrow

In the preceding example, we also saw the fat arrow syntax. When you
have a function that returns a value in one line of code, you can put that
returned value on the right side of a “=>” and the argument list on the left
side. These are all the same:

int triple(int val) {
return val * 3;

}
Function triple = (int val) {

return val * 3;
15

Function triple = (int val) => val * 3;

The fat arrow is just syntactic sugar, allowing devs to be more
expressive with less code.

Named function parameters

Positional parameters are great, but it can be less error-prone (albeit more
typing) to have named parameters. Instead of calling a function like this:

sendEmail('ceo@bluthcompany.com','Popcorn in the breakroom');
You can call it like this:

sendEmail(subject: 'Popcorn in the breakroom',
toAddress: 'ceo@bluthcompany.com');

Now the order of parameters is unimportant. Here is how you'd write
the function to use named parameters. Note the curly braces:

void sendEmail({String toAddress, String subject}) {
// send the email here

296

APPENDIXA DART LANGUAGE OVERVIEW

Named parameters also work great with class constructors where they
are very commonly used in Flutter:

class Person {
Name name;
// Named parameters
Person({String firstName, String lastName}) {
name = Name()..first=firstName..last=lastName;

Omitting “new” and “this.”

In Dart, it is possible - and encouraged - to avoid the use of the new
keyword when instantiating a class:

// No. Avoid.

Person p = new Person();
// Yes

Person p = Person();

In the same way, inside of a class, the use of “this.” to refer to members
of the class is not only unneeded because it is assumed, but it is also
discouraged. The code is shorter and cleaner:

class Name {
String first;
String last;
String suffix;
String getFullName() {
// No. Avoid "this.":
String full=this.first+" "+this.last+", "+this.suffix;

297

APPENDIXA DART LANGUAGE OVERVIEW

// Better.
String full=first+" "+last+", "+suffix;
return full;
}
}

Class constructor parameter shorthand

Merely a shorter way of writing your Dart classes which receive
parameters. When you write the constructor to receive “this.something”
and have a class-scoped property with the same name, the compiler writes
the assignments so you don’t have to:

class Person {
String email;
String phone;
// The parameters are assigned to properties automatically
// because the parameters say "this."
Person(this.email, this.phone) {}

The preceding code is equivalent to

class Person {
String email;
String phone;
Person(String email, String phone) {
this.email = email;
this.phone = phone;
}
}

298

APPENDIXA DART LANGUAGE OVERVIEW

Private class members

Dart does not use class visibility modifiers such as public, private,
protected, package, or friend like other OO languages. All members are
public by default. To make a class member private, put an underscore in

front of the name:

class Person {
int id;
String email;
String phone;
String password;

set password(String value) {
_password = value;
}
String get hashedPassword {
return sha512.convert(utf8.encode(password)).toString();

}
}

In that example, id, email, and phone are public. _password is private

u-n

because the first character in the name is “_", the underscore character.

Mixins
Mixins are baskets of properties and methods that can be added to any

class. They look like classes but cannot be instantiated:

mixin Employment {
String employer;
String businessPhone;

299

APPENDIXA DART LANGUAGE OVERVIEW

void callBoss() {
print('Calling my boss');
}
}

A mixin is added to a class when it uses the “with” keyword:

class Employee extends Person with Employment {
String position;

}

This Employee class now has employer and businessPhone properties
and a callBoss() method:

Employee e = Employee();
e.employer = "The Bluth Company";
e.callBoss(); // An employee can call its boss.

Dart, like Java and C#, only supports single inheritance. A class can only
extend one thing. But mixin members are added to a class so any class can
implement multiple mixins and a mixin can be used in multiple other classes.

The cascade operator (..)

When you see two dots, it means “return this class, but before you do, do
something with a property or method.” We might do this

Person p = Person()..id=100..email="gob@bluth.com'..save();
which would be a more concise way of writing

Person p = Person();
p.1d=100;
p.email="gob@bluth.com';
p.save();

300

APPENDIXA DART LANGUAGE OVERVIEW

No overloading

Dart does not support overloading methods. This includes constructors.

Named constructors

Since we can’t have overloaded constructors, Dart supports a different way
of doing essentially the same thing. They're called named constructors and
they happen when you write a typical constructor, but you tack on a dot

and another name:

class Person {
// Typical constructor
Person() {
name = Name()..first=""..last="";
}
// A named constructor
Person.withName({String firstName, String lastName}) {
name = Name()
..first = firstName
..last = lastName;
}
// Another named constructor
Person.byId(int id) {
// Maybe go fetch from a service by the provided id

}
}

301

APPENDIXA DART LANGUAGE OVERVIEW
And to use these named constructors, do this:

Person p = Person();
// p would be a person with a blank first and last name

Person p1 = Person.withName(firstName:"Lindsay",lastName:"Fiinke");
// p1l has a first name of "Lindsay" and a last name of "Funke"

Person p3 = Person.byId(100);
// p3 would be fetched based on the id of 100

302

Index

A

AlertDialog, 154
Android
emulator, 14, 15
Android Studio, 11
Android Virtual Device (AVD)
manager, 14, 15
Anti-RaisedButton, 81
API call, 228
API requests, 228, 229
AppBar widget, 103, 104
async, 215
await, 214

B

BLoC, 200, 201
Boolean value
property, 60
BoxConstraints, 106
BoxFit options, 52
BoxFit.scaleDown, 51
Box model, 124
BoxShape, 173
build.gradle file, 276
Button widgets, 78

C

Cascade operator (..), 300
Class visibility modifiers, 299
Cloud firestore, 257, 258
Cloud functions, 258, 259
ColorCircle, 197
ColorMixer, 195
ColorValueChanger, 197
Column widget, 111
Compile-to-native cross-platform
frameworks, 7
Componentization, 34
Container
alignment property, 126, 127
<div>, 125
properties, 125
size, 128-130
crossAxisAlignment, 115, 117
Cross-platform development
categories, 6
CRUD app, API service, 241
DELETE request, 247
Flutter app, creation, 243
GET request, 247
PeopleList widget, 244-246
PeopleUpsert.dart, 248-252

© Rap Payne 2019 303
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2

https://doi.org/10.1007/978-1-4842-5181-2

INDEX

CRUD app, API service (cont.) multiline strings, 294
Pipedream.com, 242 spread operator, 294
POST call, 252 string interpolation, 294
PUT call, 252 type inference, 292
strongly typed business variables, 293
class, 243, 244 Debugging, 25
testing, 242 Development process
curl command, 242 Flutter project, creation, 19, 20
CustomPainter, 174, 175 running, app

debugging, 25
hot reloading, 24

D play/debug button, 22
Dart tethered device, 24
cascade operator (..), 300 web app, 23
class constructors, 291 DevTools, 12
classes, 290, 291 Dialog widget, 153
expected features Dismissible, 83
arrays/lists, 289 Drawer navigation, 144-150
conditional DropdownButton, 63-65
expressions, 289-290 DRY principle, 248

data types, 288
looping, 290

Flutter, 211 E

mixins, 299 Embedded images, 50
named constructors, 301, 302 Event loop, 211
overloading methods, 301 Expanded widget
private class members, 299 example, 117,118
unexpected features flex factor, 119, 120

big arrow/fat arrow, 296
class constructor, 298

final and const, 292-293 F

function parameters, 296-297 Firebase Authentication, 259
functions, 295 Firestore.instance.

map, 295 collection(‘Foo’), 279

304

FittedBox, 110
FlatButton, 81
Floating action button, 81, 82
Flutter app, 207
async, 215, 216
await, 214
code to create the
future, 212, 213
compile-to-native solutions, 7
cross-platform
development, 5, 6
Dart language, 211, 287
data from a Future, 213, 214
data with an external
server, 207
data within the device, 207
definition, 4
event loop, 211
finding a library, 208, 209
future, 211
Google CRM team, 5
importing the library, 210
including a file, 216
iOS apps, 5
memory to JSON, 221
pubspec.yaml, 210
reading a file, 219, 220
reading JSON, 222, 223
shared preferences, 223
to read preferences, 224
to write preferences, 224
using JSON, 220, 221
using the library, 211
writing a file, 218

INDEX

Flutter checkbox widget, 60
Flutter DevTools, 12

Flutter doctor, 16, 17
Flutter radio widgets, 61, 62
Flutter SDK, 10

Flutter styles, 160, 162
Flutter Switch widget, 61
Flutter toolchain

emulators, 13

flutter doctor, 16

flutter upgrade, 17, 18

IDE DevTools, 12

IDEs (see IDEs)

SDK, installation, 10
Flutter upgrade, 17, 18
Flutter widgets

layout widgets, 36

navigation widgets, 37

value widgets, 36
fontFamily, 165
Form example, 71, 73, 74, 76
FormField widget, 67, 68

Form.autovalidate, 69, 71

save() method, 69

validator, 69
Form widget, 65-67
FutureBuilder, 234, 235

G

Genymotion, 14

Gesture
add a new item, 89
associate with behavior, 87

305

INDEX

Gesture (cont.)
custom widget, 85
GestureDetector widget, 86
long press, 87
pinching-to-zoom, 92
swiping, 90
GestureArena, 92
GestureDetector widget, 86, 87
Gestures and behaviors, 84
Google Firebase
adding FlutterFire
plugins, 277, 278
advantage, 255
create Android app
google-services.json file, 275
Gradle files, 276, 277
id or package name, 273

package name/nickname, 274

time, 273
creating database, 263, 267
creating iOS app, 267, 268, 272
creating project, 260-262
delete, 282, 283
Foo, 279, 280
Podfile.xcworkspace, 271
query, 281
server, 256
tools, 257
Cloud firestore, 257, 258
Cloud functions, 258, 259
firebase authentication, 259
upsert, 281, 282
GoogleService-info.plist, 270
google-services.json file, 275

306

Gradle files, 276, 277

GridView, 131
GridView.count(), 132-134
GridView.extent(), 131, 132

H

Hooks, 201
HTTP GET or DELETE request, 230
HTTP responses
brute force, 233
FutureBuilder, 234, 235
StreamBuilder, 236, 237

IconButton, 81
Icon widget, 48
IDEs
Android emulator, 14, 15
Android Studio and Intelli], 11
DevTools, 12
iOS simulator, 13
VS code, 11
Image sizing, 51
Image widget, 36, 49
InputDecoration widget, 56
Intelli], 11
Internet, 36
iOS simulator, 13

J

JSON, 220

K

keyboardType property, 58
Kotlin, 5

L

Layout widgets, 36
Lifting state up, 193
ListView.builder, 121, 123
ListView.custom, 122
ListView.separated, 121

MainAxisAlignment, 113, 114
Material App widget, 100, 101
Microsoft Visual Studio, 11
Mixins, 299

N

Navigation
dialog, 140
drawers, 139
stacks, 139
tabs, 139
widgets, 37
Network images, 51

O

Omitting “new” and “this.; 297, 298
onChanged property, 55
onHorizontalDragEnd, 92

INDEX

onPressed, 79
onVerticalDragEnd, 92

P,Q

PATCH request, 231
path_provider 1.3.0, 209
.plist file, 273
Positioned widget, 178-180
POST request, 231
Private class members
cascade operator (..), 300
Mixins, 299, 300
named constructors, 301
overloading, 301
pubspec.yaml, 210
PUT request, 231

R

RaisedButton, 80

React, 34

React Native, 15

Redux, 202

Row and column, widgets, 110, 112
Row widget, 111

S

SafeArea widget, 104, 105
Scaffold widget, 101, 102
ScopedModel, 201
showDialog(), 154
SimpleDialog, 154

307

INDEX

SizedBox(), 121 \Y/
Slider, 62

SnackBar widget, 105, 106
.snapshots() method, 279

Value widgets, 36

Spacer(), 121 W

Stacking widgets, 176, 177 .where() function, 281
Stack navigation, 140-144 Widget
StatefulWidget, 45, 130, BLoC, 200, 201

187, 189, 194

important rule about, 190, 191

lifting the state up, 192, 193

passing down, 191, 192

state management, 193-197

usage of stage, 198
StreamBuilder widget, 236, 237, 279
Strongly typed class

business class, 238

fromJSON() method, 239, 240

typed deserialization, 238
Subwidgets, 39, 40

T, U

TabBarView, 151

TabBar widget, 150

TabController, 151

Table widget
columnWidths, 137
rows and columns, 134, 135
TableRow, 135, 136

Tab navigation, 150-153

TextField widget, 55, 188

TextStyle, 163-165

Text widget, 36, 39, 47

308

gestures, 83
inheritedWidget, 200
key, 41

passing value in, 42-44
provider, 202

Redux, 202
ScopedModel, 201
StatefulWidget, 189, 190
styling, 159

value, 36

Widgets, layout

entire screen, 94

extra space, 96
fine-tuned spacing, 97
ListView, 94, 95
PersonCard, 94-96
Row widget, 96

visual, 97-99

VS Code, 99

Widget's size

layout
BoxConstraints, 109
branches, 108
LimiteBox(), 110
RenderBox, 106

unbounded height error, 107, 108

INDEX

Widgets style positioned widget, 178-180
border, 170, 171 shadows, 168, 169
BorderRadius, 172, 173 stacking widgets, 176, 177
BoxShape, 173-175 TextStyle, 163-165
Card widget, 180 themes, 181-183
colors, 161-163
container

decorations, 168-170 X, Ys y4
custom fonts, 165-167 Xamarin, 15
fonts, 166, 167 xcworkspace file, 270

309

	Praise for Beginning App
Development with Flutter
	Table of Contents
	About the Author
	About the Technical Reviewer
	Who is this book for?
	Part I: Introduction to Flutter
	Chapter 1: Hello Flutter
	What is Flutter?
	Why Flutter?
	The other options
	Native solutions
	Conclusion

	Chapter 2: Developing in Flutter
	The Flutter toolchain
	The Flutter SDK
	Installing the flutter SDK

	IDEs
	VS Code from Microsoft
	Android Studio/IntelliJ from JetBrains
	Which IDE should I use?

	IDE DevTools
	Emulators
	iOS simulator
	Android emulator

	Keeping the tools up to date
	flutter doctor
	flutter upgrade

	The Flutter development process
	Scaffolding the app and files
	Anatomy of a Flutter project

	Running your app
	Running it as a web app
	Running it on a tethered device
	Hot reloading
	Debugging

	Conclusion

	Part II: Foundational Flutter
	Chapter 3: Everything Is Widgets
	UI as code
	Built-in Flutter widgets
	Value widgets
	Layout widgets
	Navigation widgets
	Other widgets
	How to create your own stateless widgets
	Widgets have keys
	Passing a value into your widget

	Stateless and Stateful widgets
	So which one should I create?

	Conclusion

	Chapter 4: Value Widgets
	The Text widget
	The Icon widget
	The Image widget
	Embedded images
	Network images
	Sizing an image

	Input widgets
	Text fields
	Making your TextField fancy
	Checkboxes
	Radio buttons
	Sliders
	Dropdowns

	Putting the form widgets together
	Form widget
	FormField widget
	onSaved
	validator
	Validate while typing
	Validate only after submit attempt

	One big Form example

	Conclusion

	Chapter 5: Responding to Gestures
	Meet the button family
	RaisedButton
	FlatButton and IconButton
	FloatingActionButton
	CupertinoButton

	Dismissible
	Custom gestures for your custom widgets
	Step 1: Decide on your gestures and behaviors
	Step 2: Create your custom widget
	Step 3: Add a GestureDetector widget
	Step 4: Associate your gesture with its behavior

	Example 1: Reacting to a long press
	Example 2: Pinching to add a new item
	Example 3: Swiping left or right
	What if there are two or more gestures happening at the same time?
	Conclusion

	Chapter 6: Laying Out Your Widgets
	Laying out the whole scene
	MaterialApp widget
	The Scaffold widget
	The AppBar widget
	SafeArea widget
	SnackBar widget

	How Flutter decides on a widget’s size
	The dreaded “unbounded height” error
	Flutter’s layout algorithm

	Putting widgets next to or below others
	Your widgets will never fit!
	What if there’s extra space left over?
	mainAxisAlignment
	crossAxisAlignment
	Expanded widget

	What if there’s not enough space?
	The ListView widget
	Regular ListView: When you have a few widgets to display
	ListView.builder: When you’re building widgets from a list of objects

	Container widget and the box model
	Alignment and positioning within a Container
	So how do you determine the size of a Container?

	Special layout widgets
	Stack widget
	GridView widget
	GridView.extent()
	GridView.count()

	The Table widget

	Conclusion

	Chapter 7: Navigation and Routing
	Stack navigation
	Navigating forward and back
	Get result after a scene is closed

	Drawer navigation
	The Drawer widget
	Filling the drawer

	Tab Navigation
	TabController
	TabBarView
	TabBar and Tabs
	TabBar at the bottom

	The Dialog widget
	showDialog() and AlertDialog
	Responses with a Dialog

	Navigation methods can be combined

	Chapter 8: Styling Your Widgets
	Thinking in Flutter Styles
	A word about colors
	Styling Text
	TextStyle
	Custom fonts

	Container decorations
	Border
	BorderRadius
	BoxShape

	Stacking widgets
	Positioned widget

	Card widget
	Themes
	Applying theme properties

	Conclusion

	Chapter 9: Managing State
	What is state?
	What goes in a StatefulWidget?
	The most important rule about state!
	Passing state down
	Lifting state back up
	An example of state management
	When should we use state?
	Advanced state management
	InheritedWidget
	BLoC
	ScopedModel
	Hooks
	Provider
	Redux
	Whoa! That’s a lot of packages!

	Conclusion

	Part III: Above and Beyond
	Chapter 10: Your Flutter App Can Work with Files
	Including libraries in your Flutter app
	Finding a library
	Adding it to pubspec.yaml
	Importing the library
	Using the library

	Futures, async, and await
	Why would it wait?
	How do we get the data from a Future?
	await
	async

	Including a file with your app
	Writing a file
	And reading it!

	Using JSON
	Writing your app’s memory to JSON
	Reading JSON into your app’s memory

	Shared preferences
	To write preferences
	To read preferences

	Conclusion

	Chapter 11: Making RESTful API Calls with HTTP
	What is an API call?
	The flavors of API requests
	Making an HTTP GET or DELETE request
	Making an HTTP PUT, POST, or PATCH request
	HTTP responses to widgets
	Brute force – The easy way
	FutureBuilder – The clean way
	StreamBuilder

	Strongly typed classes
	Create a business class
	Write a .fromJSON() method
	Use .fromJSON() to hydrate the object

	One big example
	Setting up
	Create the Flutter app
	Making a strongly typed business class
	PeopleList.dart
	A GET request in Flutter
	A DELETE request in Flutter
	PeopleUpsert.dart
	A POST and PUT request in Flutter

	Conclusion

	Chapter 12: Using Firebase with Flutter
	Introducing Firebase
	Cloud Firestore
	Cloud Functions
	Authentication

	Setting up Firebase itself
	(1) Creating a Firebase project
	(2) Creating the database
	(3) Creating an iOS app
	(4) Creating an Android app
	Install the google-services.json file
	Adding to the gradle files

	(5) Adding FlutterFire plugins

	Using Firestore
	To get a collection
	To query
	To upsert
	To delete

	Where to go from here

	Appendix A:
Dart Language Overview
	What is Dart?
	Expected features – Dart Cheatsheet
	Data types
	Arrays/lists
	Conditional expressions
	Looping

	Classes
	Class constructors

	Unexpected things about Dart
	Type inference
	final and const
	Variables are initialized to null
	String interpolation with $
	Multiline strings
	Spread operator
	Map<foo, bar>
	Functions are objects
	Big arrow/Fat arrow
	Named function parameters
	Omitting “new” and “this.”
	Class constructor parameter shorthand

	Private class members
	Mixins
	The cascade operator (..)
	No overloading
	Named constructors

	Index

