
Beginning App
Development
with Flutter

Create Cross-Platform Mobile Apps
—
Rap Payne

Beginning App
Development with

Flutter
Create Cross-Platform

Mobile Apps

Rap Payne

Beginning App Development with Flutter: Create Cross-Platform

Mobile Apps

ISBN-13 (pbk): 978-1-4842-5180-5		 ISBN-13 (electronic): 978-1-4842-5181-2
https://doi.org/10.1007/978-1-4842-5181-2

Copyright © 2019 by Rap Payne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5180-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Rap Payne
Dallas, TX, USA

https://doi.org/10.1007/978-1-4842-5181-2

This book is dedicated to the men and women of
the Flutter Community. I’ve never seen a group
more devoted to the success of others. You’re an

inspiration and example to me.

Particular thanks to these members of the
community who’ve helped me with Flutter issues.

This Texan owes y’all!

Andrew “Red” Brogdon (Columbus, Ohio),

Brian Egan (Montana),

Emily Fortuna (San Francisco),

Frederik Schwieger (Düsseldorf, Germany),
Jeroen “Jay” Meijer (Rotterdam, Netherlands),

Martin Rybak (New York), Martin Jeret (Estonia),
Nash Ramdial (Trinidad), Nilay Yenner (San Francisco),

Norbert Kozsir (Karlsruhe, Germany), Pooja Bhaumik
(Bengaluru, India), Raouf Rahiche (Casablanca by way of
Algeria), Remi Rousselet (Paris), Rohan Tanaja (Berlin),

Scott Stoll (Cleveland, Ohio),

But especially Simon Lightfoot (London), who we all
call “The Flutter Whisperer” He taught me much of

what I know about Flutter.

v

“Rap has written a great starting guide full of information for those who are

new to developing multi-platform apps with Flutter.”

—Frederik Schwieger (Düsseldorf, Germany), Organizer of the

International Flutter Hackathon and creator of flutter school

“A great read! This covers everything a beginner might want to know,

and more. It explains not only what Flutter is but why it exists works the

way it does. It also provides great tips for common pitfalls along the way.

Definitely recommended.”

—Jeroen “Jay” Meijer (Rotterdam, Netherlands),

Leader of Flutter Community Github

“Rap’s book is a great book to get started with Flutter. It covers every

important topic to write your very first app but also contains valuable

information for more seasoned developers.”

—Norbert Kozsir (Karlsruhe, Germany)

Flutter Community Editor

“As a non-native English speaker, I’m totally impressed by the simplicity

of this book and how much I can read and understand without getting

bored.”

—Raouf Rahiche (Algeria) Flutter speaker,

developer, and instructor

Praise for Beginning App
Development with Flutter

vi

“As an early adopter and one of the original members of the Flutter

Community, Rap is one of the world’s foremost authorities on Flutter.

Where documentation is written for Engineers, by Engineers, Rap is a

human who (thankfully!) writes in an enjoyable style that can easily be

understood by other humans.”

—Scott Stoll (Cleveland, Ohio), Contributor to the Flutter

codebase and Co-founder of the Flutter Study Group

Praise for Beginning App Development with FlutterPraise for Beginning App Development with Flutter

vii

Part I: �Introduction to Flutter���1

Chapter 1: Hello Flutter��3

What is Flutter?��4

Why Flutter?���5

The other options���5

Native solutions���7

Conclusion���8

Chapter 2: Developing in Flutter��9

The Flutter toolchain��10

The Flutter SDK��10

IDEs��10

IDE DevTools���12

Emulators���13

Keeping the tools up to date���15

The Flutter development process��18

Scaffolding the app and files��18

Running your app���21

Conclusion���27

Table of Contents
About the Author���xvii

About the Technical Reviewer��xix

Who is this book for?��xxi

viii

Part II: �Foundational Flutter���29

Chapter 3: Everything Is Widgets��31

UI as code��33

Built-in Flutter widgets��35

Value widgets���36

Layout widgets���36

Navigation widgets��37

Other widgets���38

How to create your own stateless widgets��38

Widgets have keys��41

Passing a value into your widget��42

Stateless and Stateful widgets��45

So which one should I create?���45

Conclusion���46

Chapter 4: Value Widgets��47

The Text widget��47

The Icon widget���48

The Image widget��49

Embedded images��50

Network images���51

Sizing an image��51

Input widgets���54

Text fields���55

Putting the form widgets together���65

Form widget���65

Table of ContentsTable of Contents

ix

FormField widget��67

One big Form example���71

Conclusion���76

Chapter 5: Responding to Gestures���77

Meet the button family���78

RaisedButton��80

FlatButton and IconButton��81

FloatingActionButton��81

CupertinoButton���82

Dismissible���83

Custom gestures for your custom widgets��83

Step 1: Decide on your gestures and behaviors���84

Step 2: Create your custom widget��85

Step 3: Add a GestureDetector widget��86

Step 4: Associate your gesture with its behavior���87

Example 1: Reacting to a long press��87

Example 2: Pinching to add a new item���89

Example 3: Swiping left or right���90

What if there are two or more gestures happening at the same time?���������������92

Conclusion���92

Chapter 6: Laying Out Your Widgets��93

Laying out the whole scene���100

MaterialApp widget��100

The Scaffold widget��101

The AppBar widget���102

SafeArea widget���104

SnackBar widget��105

Table of ContentsTable of Contents

x

How Flutter decides on a widget’s size���106

The dreaded “unbounded height” error��107

Flutter’s layout algorithm���108

Putting widgets next to or below others��110

Your widgets will never fit!��113

What if there’s extra space left over?��113

mainAxisAlignment���113

crossAxisAlignment��115

Expanded widget��117

What if there’s not enough space?��121

The ListView widget���121

Container widget and the box model���124

Alignment and positioning within a Container��126

So how do you determine the size of a Container?��������������������������������������128

Special layout widgets���130

Stack widget���130

GridView widget���131

The Table widget��134

Conclusion���137

Chapter 7: Navigation and Routing��139

Stack navigation��140

Navigating forward and back���141

Get result after a scene is closed���143

Drawer navigation��144

The Drawer widget���146

Filling the drawer���148

Table of ContentsTable of Contents

xi

Tab Navigation���150

TabController��151

TabBarView���151

TabBar and Tabs���152

TabBar at the bottom��153

The Dialog widget��153

showDialog( ) and AlertDialog���154

Responses with a Dialog��155

Navigation methods can be combined���157

Chapter 8: Styling Your Widgets��159

Thinking in Flutter Styles���160

A word about colors���161

Styling Text���163

TextStyle���163

Custom fonts��165

Container decorations��168

Border���170

BorderRadius��172

BoxShape���173

Stacking widgets���176

Positioned widget���178

Card widget��180

Themes��181

Applying theme properties���183

Conclusion���186

Table of ContentsTable of Contents

xii

Chapter 9: Managing State��187

What is state?��187

What goes in a StatefulWidget?���189

The most important rule about state!��190

Passing state down��191

Lifting state back up��192

An example of state management���193

When should we use state?���198

Advanced state management��200

InheritedWidget��200

BLoC���200

ScopedModel��201

Hooks��201

Provider��202

Redux���202

Whoa! That’s a lot of packages!���203

Conclusion���203

Part III: �Above and Beyond��205

Chapter 10: Your Flutter App Can Work with Files����������������������������207

Including libraries in your Flutter app��208

Finding a library���208

Adding it to pubspec.yaml��210

Importing the library���210

Using the library���211

Futures, async, and await��211

Why would it wait?���212

How do we get the data from a Future?���213

Table of ContentsTable of Contents

xiii

await���214

async��215

Including a file with your app��216

Writing a file���218

And reading it!��219

Using JSON��220

Writing your app’s memory to JSON��221

Reading JSON into your app’s memory��222

Shared preferences��223

To write preferences���224

To read preferences��224

Conclusion���225

Chapter 11: Making RESTful API Calls with HTTP������������������������������227

What is an API call?���228

The flavors of API requests��228

Making an HTTP GET or DELETE request���230

Making an HTTP PUT, POST, or PATCH request���231

HTTP responses to widgets���232

Brute force – The easy way��233

FutureBuilder – The clean way���234

Strongly typed classes���238

Create a business class��238

Write a .fromJSON( ) method��239

Use .fromJSON( ) to hydrate the object���240

One big example��240

Setting up���242

Create the Flutter app���243

Table of ContentsTable of Contents

xiv

Making a strongly typed business class��243

PeopleList.dart���244

A GET request in Flutter��247

A DELETE request in Flutter��247

PeopleUpsert.dart���248

A POST and PUT request in Flutter���252

Conclusion���254

Chapter 12: Using Firebase with Flutter��255

Introducing Firebase��256

Cloud Firestore���257

Cloud Functions��258

Authentication��259

Setting up Firebase itself���259

(1) Creating a Firebase project���260

(2) �Creating the database���263

(3) �Creating an iOS app���267

(4) �Creating an Android app��273

(5) �Adding FlutterFire plugins���277

Using Firestore���278

To get a collection��279

To query��281

To upsert���281

To delete���282

Where to go from here���283

Table of ContentsTable of Contents

xv

Appendix A: Dart Language Overview���287

What is Dart?���287

Expected features – Dart Cheatsheet��288

Data types��288

Arrays/lists���289

Conditional expressions���289

Looping���290

Classes���290

Class constructors��291

Unexpected things about Dart���291

Type inference��292

final and const��292

Variables are initialized to null���293

String interpolation with $��294

Multiline strings��294

Spread operator��294

Map<foo, bar>���295

Functions are objects���295

Big arrow/Fat arrow���296

Named function parameters���296

Omitting “new” and “this.”���297

Class constructor parameter shorthand���298

Private class members��299

Mixins���299

The cascade operator (..)��300

No overloading���301

Named constructors���301

Index��303

Table of ContentsTable of Contents

xvii

About the Author

Rap Payne has focused on mobile development

since he started Agile Gadgets, a mobile

app development company, in 2003. He is a

consultant, trainer, and entrepreneur who

has written apps, mentored developers, and

taught software development classes for

Fortune 500 companies like Boeing, Walmart,

Coca-Cola, Wells Fargo, Honda, CVS, GE,

Chase, HP, Lockheed, ExxonMobil, Lowe’s,

Nike, J.C. Penney, USAA, and Walgreens;

government agencies like the NSA, the US Air Force, Navy, Army, NASA,

Britain’s GCHQ, and Canada’s postal service; and several provincial

governments, to name a few.

As a professional mentor and trainer, Rap has developed a talent for

communicating highly complex ideas in easy-to-understand ways. And

as a real-world developer, he understands the need to teach these topics

using practical and realistic examples and exercises.

xix

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experience in Security, Web/Mobile

development, Cloud, and IT Architecture.

His true IT passions are Security and Android.

He has been programming and teaching

how to program with Android, Perl, PHP, Java,

VB, Python, C/C++, and MySQL for more than

20 years.

He holds a Master of Science in Computing

Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research

Engineer, Chief Security Architect, Information Security Manager, PCI/

SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for

many years.

His technical skills include Security, Android, Cloud, Java, MySQL,

Drupal, Cobol, Perl, Web/Mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, django CMS, Jekyll, Scratch,

and so on.

He works as Chief Information Security Officer (CISO) for Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto

University). He holds four international patents (PKI, SIP, SAML, and Proxy

areas).

xxi

Who is this book for?

If you’re a developer with experience in some object-oriented language

like Java, C#, C++, or Objective-C and you want to create Android apps,

iOS apps, or web apps with Flutter, this book is for you. It is especially

important for you if you want to create an app that runs on multiple

platforms and if you are new to Flutter.

If you’ve got some experience already with Flutter, you’ll undoubtedly

learn something, but we’re not expecting that you have any prerequisite

knowledge or experience with Flutter. All of our chapters are written with

the assumption that everything in Flutter is completely new to you.

If you know anything about iOS development, Android development,

or web development, that will certainly help with understanding the topics

because there are lots of analogies in them for Flutter. The more you know

about those things, the better, especially JavaScript and React. But if you

know none of them, don’t fret. They’re by no means necessary.

Knowledge of the Dart language also will help. We’ve found that Dart

has got its unique features for sure, but it is extremely easy to pick up if

you understand object-oriented concepts. Heck, if you know Java or C#,

most code snippets are understandable without any explanation of the

language. Read a few and you’ll be writing your own in no time.

At the same time, there are some unique but very cool Dart features

that we consider best practices. We could have “simplified” the code

for Java devs by not using these best practices, but in the long run that’s

not doing you any favors. Instead, we go ahead and use them, but we do

explain those things in “Appendix A: Dart Language Overview.” In there,

we give you a cheat sheet with just enough detail to write code, followed

xxii

by a more in-depth explanation of the features that will be unexpected by

developers of other languages. Pay special attention to the section called

“Unexpected things about Dart.”

�What is covered?
This book teaches you how to create fully functioning and feature-rich

apps that run on iOS, Android, and the Web. We do this in three sections.

�Part I: Introduction to Flutter

	 1.	 Hello Flutter – We’re setting the stage for the

book. Giving you a feel for why you’re here. What

problems does Flutter solve? Why the boss would

choose Flutter vs. some other solution.

	 2.	 Developing in Flutter – Flutter has a unique set of

tools, but it isn’t always straightforward what each

tool does and how to use it. This chapter guides

you through the process of write-debug-test-run.

We get an understanding of the tooling including

installation and maintenance.

�Part II: Foundational Flutter

	 3.	 Everything Is Widgets – Widgets are super

important to Flutter since they’re the building

blocks of every Flutter app. We show why and

provide the motivation and basic tools to create

widgets. Topics include composition, UI as code,

widget types, keys, and stateless vs. stateful widgets.

Who is this book for?Who is this book for?

xxiii

	 4.	 Value Widgets – A deep dive into widgets that

hold a value, especially user-input fields. Topics

include the pubspec.yaml file; Text, Image, and Icon

widgets; and how to create forms in Flutter.

	 5.	 Responding to Gestures – How to make your

program do things in response to user actions like

taps, swiping, pinching, and the like. We’ll show you

the button family and the GestureDetector widget.

	 6.	 Laying Out Your Widgets – We’ll learn how to lay

out a view, controlling how widgets are placed

side by side and/or above and below, defining the

amount of space between widgets, and aligning

them vertically and horizontally.

	 7.	 Navigation and Routing – Navigation is making the

app hide one widget and show another in response

to user actions. This makes them feel like they’re

moving from one scene to another. We’ll cover stack

navigation, tab navigation, and drawer navigation.

	 8.	 Styling Your Widgets – Then we’ll look at how to

control each widget’s color, borders, decorations,

shapes, and other presentational characteristics. We

handled light styling as we introduced each widget

earlier, but this is where we answer all the questions

needed to get a real-world app looking good and

staying consistent throughout with themes.

	 9.	 Managing State – How to get data from one widget to

another and how to change that data. We cover how

to create StatefulWidgets and design them in the best

way. We also provide a high-level overview of tools to

handle real-world complex state management.

Who is this book for?Who is this book for?

xxiv

�Part III: Above and Beyond

	 10.	 Your Flutter App Can Work with Files – Using

libraries. Futures, async, await. Bundling files

with your app. Reading and writing a file. JSON

serialization.

	 11.	 Making RESTful API Calls with Ajax – How to read

from and write to an HTTP API server. This is where

we show how to make GET, POST, PUT, DELETE,

and PATCH requests.

	 12.	 Using Firebase with Flutter – We will show you a

real-world, robust cloud solution that works like

a dream with Flutter. No surprise that it is also a

Google offering.

�What is not covered and where can
I find it?
As importantly, you should know what not to expect in the book. We will

not give you a primer on the Dart programming language beyond the

aforementioned appendix. We simply didn’t think it was the best use

of your time and wanted to dive right into Flutter. If you feel you need a

primer later on, go here: https://dart.dev/guides/language/language-

tour followed by https://dart.dev/tutorials. We chose not to discuss

deploying to the app stores. The stores already do a fine job of explaining

how to submit an app. That, and the process, changes so frequently that

your definitive resource ought to be the stores themselves. You’ll find

Who is this book for?Who is this book for?

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/tutorials

xxv

instructions at https://developer.apple.com/ios/submit/ and here:

https://play.google.com/apps/publish. And we aren’t going to cover

certain advanced topics like device-specific development in iOS and

Android or adding Flutter to an existing iOS/Android project. This is a

beginner’s book and we didn’t want to overwhelm you. These and so many

other topics can be found on the Web by searching and through some of

the other resources we’ll point you to in the last chapter of book.

Who is this book for?Who is this book for?

https://developer.apple.com/ios/submit/
https://play.google.com/apps/publish

PART I

Introduction to Flutter

3© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_1

CHAPTER 1

Hello Flutter
Picture this in your mind’s eye. You are the superintelligent and capable

CEO of a new business. Obviously your mission is to maximize sales while

minimizing expenses. “Hmmm.”, you think. “I can really increase sales if I

make our products available on the Web.” So you ask your friends how to

create a web app and they say ...

“You need to hire a web developer. They should know HTML, CSS,

JavaScript, and probably some framework like React, Vue, or Angular.”

It’s expensive but you do it and your gamble pays off. Sales increase

markedly. Trying to keep on top of demand, you monitor social media and

engage your customers. You hear them say that this web app is great and

all but “We’d have been here earlier if you had an app in the App Store.”

So you talk to your team who, while being experts in the Web, are not iOS

developers. They tell you ...

“You need to hire an iOS expert. They should know iOS, Swift or

Objective-C, Xcode, macOS, and CocoaPods for development.”

Your research shows that this person is even more specialized and

therefore expensive than your web devs. But again, it seems to be the

right thing to do, so you bite the bullet and hire them. But even while this

app is being developed, you see that the feedback was not isolated to iOS

apps, but instead was looking at all mobile devices. And – oh, snap! – 85%

of devices worldwide run Android, not iOS. You bury your head in your

hands as you ponder whether or not you can afford to ignore 85% of your

potential customers. Your advisors tell you ...

4

“You need to hire an Android expert. They should know the Android

OS, Gradle, Android SDK, XML, Android Studio, and Java or Kotlin.”

“Really?!? Another developer?”, you say. “Yes. And one just as expensive

as your iOS developer,” they respond.

Isn’t there one person who can do all three things? Some way to share

the code between all of those environments? Then you could hire just one

person. In fact, they could write the code one time and deploy it to the Web,

to the App Store, and to the Google Play Store. One codebase to maintain.

One place to make improvements and upgrades. One place to squash bugs.

Ladies and gentlemen, allow me to introduce you to Flutter!

�What is Flutter?
Flutter is a set of tooling that allows us to create beautiful apps that run on

iOS, Android, the Web, and desktop.1

Flutter is ...

•	 Free (as in free beer. No cost)

•	 Open source (that’s the other sense of the word “free”)

•	 Backed by and originated at Google

•	 Being enhanced and maintained by a team of

developers at Google and hundreds of non-Google

contributors around the globe

•	 Currently being used by thousands of developers in

organizations across the world for production apps

•	 Fast because it compiles to truly native apps that don’t

use crutches like WebViews and JavaScript bridges

1�Desktop is coming soon. Flutter will work on Windows, macOS, Chromebooks,
and Linux.

Chapter 1 Hello Flutter

5

•	 Written one place and compiled to a web app for

billions of browsers, an iOS app for iPhones and iPads,

and an Android app for all of the rest of the phones and

tablets out there

�Why Flutter?
Google’s mission with Flutter is ...

To build a better way to develop for mobile

Notice what is not in that mission. There’s no mention of Android

(which is also owned by Google) nor of iOS nor of the Web. Flutter’s goal

is to create a better way to develop for all devices. In other words, Flutter

should be better to create iOS apps than Swift. It should be better to create

Android apps than Kotlin. It should be better to create web apps than

HTML/JavaScript. And if you get all of those things simultaneously with

one codebase, all the better.

The Flutter team has succeeded spectacularly with this mission.

As proof, Eric Seidel offers this example.2 The Google CRM team used

Flutter to build an internal Android app and did it three times faster than

with their traditional Android toolchain!

But it turns out that Flutter isn’t the only game in town for cross-

platform. You have other options.

�The other options
Cross-platform development comes in three general f lavors listed in

Table 1-1.

2�http://bit.ly/eric_seidel_flutter_keynote_video at 21:47 in.

Chapter 1 Hello Flutter

http://bit.ly/eric_seidel_flutter_keynote_video

6

If you have a captive audience, one where users value your app so

much that they’re willing to accept a poorer user experience, the cheapest

solution is to create a PWA. If your app is extremely naive and speed is

not expected to be an issue, a hybrid solution might be appropriate. But if

speed, smoothness, and sophisticated capability are important, you will

need to go with a native solution.

Table 1-1.  Cross-platform development categories

Some
technologies

Cons Pros

Progressive
Web Apps
(PWA)

HTML/CSS,

React, Angular,

Vue

Not a real app. Runs in a web

browser. Not available in app

stores. Hard to create a desktop

shortcut. Cannot access many

of the device’s resources like

accelerometer, compass, proximity

sensor, Bluetooth, NFC, and more

Easy to write

Hybrid PhoneGap,

Cordova,

Sencha, Ionic

Runs in a WebView so it can be

slow. Nearly impossible to share

code with the web app

Easier for web

devs to learn

because it

uses HTML and

JavaScript as

its language

and structure

Compile-
to-native
solutions

React Native,

NativeScript,

Flutter, Xamarin

Learning a framework may be

difficult. Mastering the toolchain

definitely is

Real apps that

can be found in

the stores and

run fast

Chapter 1 Hello Flutter

7

�Native solutions
As of today, there are four fairly popular compile-to-native solutions

(Table 1-2).

These are all decent options. All are free to develop in and are well-

tested, having many production applications created. All have been used

in large organizations.

But only one has an option to create a web application in addition to

the iOS and Android apps that will be deployed to the app stores – Flutter.

Flutter is the latest of these frameworks to be released. As such it has

a distinct advantage of observing those that had come before. The Flutter

team took note of what worked well with other frameworks and what

failed. In addition, Flutter added new innovations and ideas – all baked in

from the start rather than being bolted on as improvements are made.

Table 1-2.  Compile-to-native cross-platform frameworks

Xamarin NativeScript React Native
Flutter

Year introduced 2011 2014 2015 2018

Backed by Microsoft Telerik Facebook Google

Presentation
language

XAML and/or

xamarin.forms

Proprietary but

looks like XML

Proprietary but

looks like JSX

Dart

Procedural language C# JavaScript JavaScript Dart

Chapter 1 Hello Flutter

8

But I suspect that if you’ve bought this book, you don’t need much

convincing so I’ll stop. Suffice it to say that Flutter is amazing! It is easy to

write, elegant, well-designed – an absolute pleasure to code in.3

�Conclusion
Now, if you’re the kind of developer I hope you are, you’re chomping at the

bit to get your hands dirty writing some code! So let’s get to it. We’ll start by

installing and learning the Flutter development toolchain.

3�But if you do want to read more, here’s a deeper discussion of Flutter vs. some
other frameworks: http://bit.ly/2HC9Khm

Chapter 1 Hello Flutter

http://bit.ly/2HC9Khm

9© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_2

CHAPTER 2

Developing in Flutter
As we saw in the last chapter, Flutter enables us to create apps that run

on the Web, on desktop computers, and on mobile devices (which seems

to be the main draw). But wait a second, how exactly do we create these

apps? What editor should we use? What is needed in the Flutter project?

How do you compile the Dart source code? Do we need any other tools

to support the project? How do you get it into a browser or on a device in

order to test it out? Good questions, right?

Let’s answer those questions and more in this chapter. Let’s cover two

significant topics:

	 1.	 Tools needed – How to install and maintain them

	 2.	 The development process – How to create the app,

run it, and debug it

Caution  By its nature, cross-platform app development tooling
involves an awful lot of moving parts from various organizations, few of
whom consult with the others before making changes. And since we’re
dealing with boundary-pushing and young technology, changes happen
frequently. We’ve tried in this chapter to stick with timeless information
but even it is likely to become stale eventually. Please check with the
authors of these tools for the latest and greatest information.

10

�The Flutter toolchain
There is no end to the list of helpful tools that the development community

has produced. It is truly overwhelming. We’re making no attempt at covering

them all. We want to give you just enough for you to be proficient but not so

many that you’re overburdened. Forgive me if I’ve skipped your favorite.

�The Flutter SDK
The Flutter SDK is the only indispensable tool. It includes the Flutter

compiler, project creator, device manager, test runner, and tools that

diagnose – and even correct – problems with the Flutter configuration.

�Installing the flutter SDK

The installation instructions are found here: https://flutter.dev/docs/

get-started/install. Long story short – it will involve downloading the

latest zip file of tools and setting your PATH to point to the folder where

you unzipped them. The steps vary per operating system, but they’re very

plain on that web site.

Tip  This step seems very low level and sounds intimidating, but
after this step, things get easier and less error-prone. Don’t let it
discourage you.

�IDEs
In theory an IDE isn’t really needed. Flutter can be written using any

editor and then compiled and run using the flutter SDK that you installed

earlier. But in reality almost nobody ever does that. Why would they? The

following IDEs have Flutter support built right in!

Chapter 2 Developing in Flutter

https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install

11

�VS Code from Microsoft

VS Code is from Microsoft. Its official name is “Microsoft Visual Studio

Code,” but most of us just call it VS Code. Whatever you call it, please do

not confuse it with Microsoft’s other product called “Microsoft Visual

Studio.” They are not the same thing regardless of the similar names.

You can get VS Code here: https://code.visualstudio.com.

�Android Studio/IntelliJ from JetBrains

Android Studio and IntelliJ are essentially the same thing. They are built

from the same codebase and have the same features.

You can get Android Studio at https://developer.android.com/

studio and IntelliJ IDEA here: www.jetbrains.com/idea/download.

�Which IDE should I use?

Both VS Code and Android Studio/IntelliJ are free and open source. Both

run cross-platform on Windows, Mac, and Linux. Both are roughly equally

popular with Flutter developers,1 neither having a clear market advantage

over the other. You can’t go wrong with either one.

But if you must choose one, what we’ve found is that your background

may affect how you like the tools. Developers from the web development

world, those who use tech like HTML, CSS, JavaScript, NodeJS, React,

Angular, or Vue, strongly prefer VS Code. On the other hand, those

developers who came from a Java world, especially Android developers,

seem to lean toward Android Studio/IntelliJ.

The good news is that this is a very low-pressure choice. It is trivial to

switch editors – even while working on a given project. Start in one and see

1�A recent poll of Flutter devs by Andrew Brogdon (@redbrogdon) of the Flutter
team showed that 53% use VS Code, 30% use Android Studio, and 15% use
IntelliJ. See http://bit.ly/flutter_devtools_poll

Chapter 2 Developing in Flutter

https://code.visualstudio.com
https://developer.android.com/studio
https://developer.android.com/studio
http://www.jetbrains.com/idea/download
http://bit.ly/flutter_devtools_poll

12

how you like it. If you don’t, you can give the other a test drive for awhile.

Go back and forth a couple of times until you have a strong preference. It’s

really no big deal to switch.

�IDE DevTools
While those IDEs are great, they’re not built for Flutter exclusively;

they’re used for developing in other languages and frameworks as well.

So to improve the Flutter development f low, we should install the Flutter

DevTools. It adds in debugger support, lets you look at logs, connects

seamlessly with emulators, and a few more things.

Installing the DevTools is done from within each IDE. Within Android

Studio/IntelliJ, go to “Preferences ➤ Plugins” from the main menu

(Figure 2-1). In VS Code, go to “View ➤ Extensions” (Figure 2-2). The

Flutter devtools are simply called “Flutter” and a search will turn them up.

In either platform, hit the green “Install” button.

You may need to restart the IDE after you install.

Figure 2-1.  DevTools install in Android Studio

Figure 2-2.  DevTools install in VS Code

Chapter 2 Developing in Flutter

13

�Emulators
Once you’ve got the IDE and DevTools installed, you’re ready to compile

your app. But to run it, you need to get it on a device. An emulator – a

virtual device that runs on your laptop/desktop – makes it really easy to

run, test, debug, and show your app. You’ll probably want to test on both

iOS and Android, so you’ll need emulators for each. There are several

emulators available, but I’ll mention just a couple, Xcode’s iOS simulator

and AVD’s Android emulator.

�iOS simulator

If you don’t own a Mac, you won’t be running an iOS emulator or even

compiling for iOS for that matter.2 But if you do and you have Xcode

installed, you’re in luck; you have the iOS simulator already. To run it,

you open Xcode, then go to Xcode ➤ Open Developer Tool ➤ Simulator

(Figure 2-3). The simulator will start up, and from within it, you can select

any iOS device including iPhones and iPads.

2�<sarcasm>Thanks, Apple.</sarcasm>

Figure 2-3.  Opening the iOS Simulator from Xcode

Chapter 2 Developing in Flutter

14

�Android emulator

Just like there are tons of Android models, so are there tons of Android

emulators, but there are only two popular ways to interact with them:

Genymotion and AVD Manager. Genymotion is a for-profit company, so

when you visit their web site, they’ll do their level best to steer you toward

their paid version. That’s understandable. We’ll focus on AVD Manager

because it is totally free and more popular with Flutter devs.

AVD stands for “Android Virtual Device.” The AVD Manager is found in

Android Studio under Tools (Figure 2-4).

Once opened, you’ll see a list of your currently installed emulators. It

should start out empty at first. You’ll have the ability to install one or more

of the hundreds of Android device emulators available by hitting the “+

Create Virtual Device...” button at the bottom (Figure 2-5).

Figure 2-4.  Finding the AVD Manager in Android Studio

Chapter 2 Developing in Flutter

15

Hit it and you can choose from all kinds of devices or create one of

your own. You’ll only need to install a device once. After it’s installed, that

emulated device is usable from any IDE, whether IntelliJ/Android Studio

or VS Code. No need for a separate setup on VS Code.

�Keeping the tools up to date
Early on, cross-platform development with tools like Xamarin and React

Native was terribly difficult because of the sheer number of the tools involved

and the interdependencies between them. I’m still in therapy from the pain.

But because Flutter arrived on the scene later it can learn from others’

mistakes. The Flutter team, recognizing these pain points, gave us an

innovative tool to manage the rest of the toolchain. It will examine your

development machine, looking for all the tools you’ll need to develop

Flutter apps, the versions you have, the versions that are available, the

interdependencies between them, and then make a diagnosis of problems.

It will even prescribe a solution to those problems. Kind of sounds like a

doctor, right? Well, let me introduce you to flutter doctor!

Figure 2-5.  AVD Manager has a list of available devices. Click “+” to
add more

Chapter 2 Developing in Flutter

16

�flutter doctor

You’ll run flutter doctor from the command line. It checks all the tools in

your toolchain and reports back any problems it encounters. Here’s one

where Xcode needed some help:

$ flutter doctor

Doctor summary (to see all details, run flutter doctor -v):

[✓] �Flutter (Channel beta, vX.Y.Z, on Mac OS X X.Y.Z, locale

en-US)

[✓] �Android toolchain - develop for Android devices (SDK

version X.Y.Z)

[!] Xcode - develop for iOS and macOS (Xcode X.Y)

 ✘ Xcode requires additional components to be installed in
 order to run.

 Launch Xcode and install additional required components

 when prompted.

[✓] Android Studio (version X.Y)

[✓] VS Code (version X.Y.Z)

[!] Connected device

 ! No devices available

! Doctor found issues in 2 categories.

$

The “No devices available” error is common, and you can usually ignore

that one. It just means that at that moment no emulators were running.

Here’s an example of what we prefer to see – everything checks out:

$ flutter doctor

Doctor summary (to see all details, run flutter doctor -v):

[✓] �Flutter (Channel beta, vX.Y.Z, on Mac OS X X.Y.Z, locale

en-US)

Chapter 2 Developing in Flutter

17

[✓] �Android toolchain - develop for Android devices (SDK

version X.Y.Z)

[✓] Xcode - develop for iOS and macOS (Xcode X.Y)

[✓] Android Studio (version X.Y)

[✓] VS Code (version X.Y.Z)

[✓] Connected device (1 available)

• No issues found!

flutter doctor not only detects and reports problems but it usually

prescribes the fix for each. It will even tell you when it is time to upgrade

itself via “flutter upgrade.”

�flutter upgrade

Yes, the initial installation of the Flutter SDK was a little daunting but the

upgrade is a breeze. You’ll literally type two words, “flutter upgrade”:

$ flutter upgrade

Upgrading Flutter from /usr/local/bin/flutter...

From https://github.com/flutter/flutter

 2d2a1ff..a72edc2 beta -> origin/beta

 3932ffb..cc3ca9a dev -> origin/dev

 5a3a46a..a085635 master -> origin/master

 * [new branch] refactor -> origin/refactor

<snip>

* [new tag] v1.10.5 -> v1.10.5

Updating c382b8e..a72edc2

 11 files changed, 413 insertions(+), 302 deletions(-)

Building flutter tool...

Upgrading engine...

Downloading ios-deploy... 0.3s

Chapter 2 Developing in Flutter

18

Flutter X.Y.Z • channel beta • https://github.com/flutter/

flutter.git

Framework • revision a72e06 (23 hours ago) • 20XX-YY-ZZ

15:41:01 -0700

Engine • revision b863200c37

Tools • Dart X.Y.Z

Running flutter doctor...

Doctor summary (to see all details, run flutter doctor -v):

[✓] �Flutter (Channel beta, vX.Y.Z, on Mac OS X X.Y.Z, locale

en-US)

[✓] �Android toolchain - develop for Android devices (SDK

version X.Y.Z)

[✓] Xcode - develop for iOS and macOS (Xcode X.Y)

[✓] Android Studio (version X.Y)

[✓] VS Code (version X.Y.Z)

[✓] Connected device (1 available)

• No issues found!

Note that flutter doctor is automatically run as the last step, confirming

that all is well. Upgrading is a piece of cake.

�The Flutter development process
Now that we have all the tools installed and up to date, let’s create an app

and run it through the debugger.

�Scaffolding the app and files
Create a whole new Flutter app by running ...

$ flutter create my_app

Chapter 2 Developing in Flutter

19

This will create a subfolder under the current folder called my_app. It

will be full of ready-to-run Dart code.

Tip  The app name is case insensitive, so you should make it all
lowercase. Dashes are illegal characters, so you can’t use kebab-
casing. The recommended casing is lowercase_with_underscores.

�Anatomy of a Flutter project

It’s not critical that you know about all of the files and folders that are in

the project you just created. But if you’re curious, let’s quickly walk through

a newly created Flutter project shown in Figure 2-6.

Figure 2-6.  A fresh Flutter project made by flutter create

Chapter 2 Developing in Flutter

20

You’ll have these folders:

•	 android and ios – These are the platform-specific parts

of the project. For the most part, you won’t need to

touch these.

•	 lib – This is the home of all of your Dart source code.

You will build your app’s hierarchy here. This is where

you’ll spend nearly all of your time and attention.

•	 test – If you have unit tests (and you probably should

eventually), put them here.

And you’ll have these files:

•	 pubspec.yaml – This is essentially the project file for

Dart projects. This is where we set our project name,

description, dependencies and more. Be sure to read

the comments in here to get a better picture of what is

suggested and possible.

•	 .gitignore and README.md – These will be very

familiar to devs who use git and github for their source

code repository. Others won’t care.

•	 .metadata and .packages – These are important config

files which you’ll never open. But Flutter needs them.

Tip  There’s one more file you should be aware of: analysis-options.
yaml. Having this file is not required, but if you do, you’ll write better
code. This file signals the IDE to perform linting (aka static analysis)
on the code as you write it. With analysis-options.yaml, the IDE will
warn you when you don’t use best practices.

Rather than writing one from scratch, let me suggest that you start
with someone else’s. Here’s one that is very popular with the Flutter

Chapter 2 Developing in Flutter

21

community: https://github.com/flutter/plugins/blob/
master/analysis_options.yaml.

It is aggressive. If you want to turn off some of the rules, just delete
the lines or comment them out. An explanation of all of the linting
rules can be found here: http://dart-lang.github.io/
linter/lints/.

�Running your app
You now have a Flutter app created. Let’s go run it. There are multiple

ways of running your app. The most popular way is to hit the green “Play”

button in either Android Studio/IntelliJ or VS Code. You can also do it from

the command line using “flutter run”:

$ flutter run

Running "flutter pub get" in chapter_02_how_to_develop_in_

flutter... 0.5s

Launching lib/main.dart on iPhone X in debug mode...

Running Xcode build...

 ├─Assembling Flutter resources... 6.1s
 └─Compiling, linking and signing... 5.9s
Xcode build done. 13.8s

Syncing files to device iPhone X... 1,852ms

 �To hot reload changes while running, press "r". To hot

restart (and rebuild state), press "R".

An Observatory debugger and profiler on iPhone X is available

at: http://127.0.0.1:52550/8m0h8zacV58=/

For a more detailed help message, press "h". To detach, press

"d"; to quit, press "q".

Chapter 2 Developing in Flutter

https://github.com/flutter/plugins/blob/master/analysis_options.yaml
https://github.com/flutter/plugins/blob/master/analysis_options.yaml
http://dart-lang.github.io/linter/lints/
http://dart-lang.github.io/linter/lints/

22

But if you hit the green Play/Debug button in your IDE (Figure 2-7),

you’ll have the option of debugging your app by setting breakpoints and

stepping through the code using the developer tools (Figure 2-8).

Obviously you’ll need to run your app in a device of some kind. There

are several: the Chrome browser for a web app, emulators, or a physical

device that is tethered to your development machine via a cable. When

you click the Play/Debug button, you get to choose which device you want

to run at that moment. Notice that in the preceding screenshot of Android

Studio, there’s a dropdown menu with a list of available devices. In VS

Code, hit the Play button, and a menu immediately pops up with your

choices. With either IDE, you are in control.

Tip  You can check what devices are currently available to you by
running “flutter devices” from the command line.

$ flutter devices
3 connected devices:

Figure 2-7.  The Play and Debug buttons are at the top in Android
Studio

Figure 2-8.  The Play button is in the upper left in VS Code

Chapter 2 Developing in Flutter

23

Vivo XL3 • 55S...KF • android-arm64 • Android
8.0.0 (API 26)
Android SDK • emul...4 • android-x86 • Android 9
(API 28) (emulator)
iPhone X • E6...39A • ios • com.
apple...OS-12-1 (simulator)

The preceding sample output tells us that we have three devices.
The first and second are Android devices and the third runs iOS. The
first device is a tethered physical device. The second and third are
emulators.

No te that this command is different from the “flutter emulators”
command which tells you all possible emulators you could potentially
choose from. The flutter devices command tells you which devices
are currently available to run your app.

�Running it as a web app

Flutter considers your browser to be a device when you’re running as

a web app. So all that is needed to run as a web app is to enable the

Google Chrome web browser as a device. You can enable it with this

one-time command:

$ flutter config --enable-web

Setting "enable-web" value to "true".

From then on, when you get a list of devices on which to run your app,

“Chrome” will appear as one of them. Simply choose to run your app in

Chrome and the IDE will load your web app in it.

Chapter 2 Developing in Flutter

24

�Running it on a tethered device

There are times when you need to run your app on a physical device.

For example, I was developing a project that involved printing labels

to a physical printer connected by Bluetooth. Emulators don’t pair via

Bluetooth. To test the printing, I needed an actual physical device that was

already paired to my Bluetooth printer.

To tether a physical device to your development machine, you’ll use a

USB cable for most Android devices and a Lightning cable for most iPhones.

Tips  #1 When connecting an Android device, it will initially think
you’re trying to charge it or transfer photos. To let it know you’re
trying to debug, open the Developer Options screen on the device and
select “Enable USB debugging”.

#2 Many connection issues can be caused by an inferior USB cable.
Counterintuitively, not all USB cables are created equal. Switch to a
higher-quality cable if you still can’t connect after changing settings.

�Hot reloading

Once the app is running in your emulator/browser/physical device/

whatever, you’ll want to make changes to the source code and rerun.

Here’s the really cool thing: any time you save a change to the source code,

it is recompiled and the new version is loaded instantly. Your app picks up

where you left off – in the same spot, with the same state, and same data.

We call it “hot reloading,” and it makes the development cycle ridiculously

fast and frictionless.

Chapter 2 Developing in Flutter

25

�Debugging

Both IDEs have essentially the same debugging tools you’ve become

accustomed to in all IDEs. When you start your project running, the

debugging tools will appear.

In Android Studio the debug window opens, usually at the bottom of

the IDE. It has a tiny toolbar which looks like Figure 2-9.

The options are “step over,” “step into,” “force step into,” and “step out”

from left to right.

In VS Code the toolbar appears floating over your source code

(Figure 2-10).

Its options are “play/pause,” “step over,” “step into,” “step out,” “hot

reload,” “restart,” and “stop debugging.”

Figure 2-9.  The debugging toolbar in Android Studio

Figure 2-10.  The debugging toolbar in VS Code

Chapter 2 Developing in Flutter

26

Note  Flutter is pickier when you’re debugging than when running
for real in a device. This is a good thing because during debugging it
makes obvious certain errors that you should probably fix but aren’t
necessarily fatal. In the release version, it swallows those same
errors and (hopefully) allows our users to continue running our app.

One family of those errors is “runtime assertions.” You’ll know
you’re dealing with one of these when the debugger gives you an
error like this:

════════ Exception caught by gesture ════════

The following assertion was thrown while handling a
gesture:
setState() callback argument returned a Future.
The setState() method on _FooState#236 was called
with a closure or method that returned a Future.
Maybe it is marked as "async".
etc. etc. etc.

Your takeaway is this: when you see one of these, fix the problem. It’s
the right thing to do. But don’t be confused if you don’t see that same
problem after you’ve deployed it.

Chapter 2 Developing in Flutter

27

�Conclusion
Look, I know that this is a lot of stuff to absorb. The nature of cross-

platform development makes the tooling hairy. But the worst is behind

us. Once you’ve got the Flutter SDK and an IDE (VS Code/Android

Studio/IntelliJ IDEA) installed, that’s all you really need. And granted, the

DevTools and an emulator or two can really help. All that’s left is getting

some repetitions in for practice. You’re going to be great!

So now that we’ve seen the Flutter toolchain, let’s start creating

widgets!

Chapter 2 Developing in Flutter

PART II

Foundational Flutter

31© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_3

CHAPTER 3

Everything Is Widgets
Let’s pretend that you are an insanely talented Lego nerd and got offered

one of the few coveted jobs as a Lego Master Builder. Congrats! Let’s also

say that your first assignment is to build a six-foot-tall Thor made from

26,000 Legos (Figure 3-1).

Figure 3-1.  A Lego Thor. The author snapped this picture at a movie
theater once

32

How would you go about doing that? Ponder that for a minute. Go

ahead, we’ll wait.

Would you just start grabbing bricks and putting them together?

Probably not. Would you lay out the soles of Thor’s feet and build from the

bottom up? Again, no. Here’s my guess as to your common-sense strategy:

	 1.	 You’d get a vision of what you’re building. Figure the

whole thing out.

	 2.	 Realize that the entire project is too complex to

build at once.

	 3.	 Break the project into sections (legs, left arm,

right arm, torso, left sword, right sword, helmet,

cape, head).

	 4.	 Realize that each of them is still too complex.

	 5.	 For each section, you break it into sub-sections.

	 6.	 Repeat steps 4 and 5 until you’ve got simple enough

components that each is easy to understand, build,

and maintain – for you and for any teammates that

you may have.

	 7.	 Create each simple component.

	 8.	 Combine simple components to form the larger,

more complex components.

	 9.	 Repeat steps 7 and 8 until you’ve got your entire

project created.

This process has a name: componentization, and is exactly the thought

process we’ll go through with our Flutter projects.

Chapter 3 Everything Is Widgets

33

Componentization is not something new. In fact, it was proposed as far

back as 1968.1 But the technique has recently exploded in popularity thanks

to web frameworks like Angular, React, Vue, Polymer, and native web

components. Seems like all the cool kids are doing software components

these days. The idea of recursively breaking down the complex bits into

simpler bits is called decomposition. And the act of putting the written

pieces back together into larger components is called composition.

In the world of Flutter, these components are referred to as widgets.

Flutter people like to say “everything is widgets,” meaning that you and I will

be using the Google-provided widgets – the ones that ship with Flutter. We’ll

compose them together to create our own custom widgets. And our custom

widgets will be composed together to create more and more complex

custom widgets. This continues until you’ve got yourself a full-blown app.

In the world of Flutter, components are referred to as
widgets.

Every app can be thought of in two parts:

	 1.	 Behavior – What the software does. All of the

business logic goes here: the data reading, writing,

and processing.

	 2.	 Presentation – How the software looks. The user

interface. The buttons, textboxes, labels.

Only Flutter combines these into one language instead of two.

�UI as code
Other development frameworks have proven componentization to be

the way to go. The Flutter team has openly stated that they were heavily

1�http://bit.ly/componentHistory

Chapter 3 Everything Is Widgets

http://bit.ly/componentHistory

34

inspired by React2 which is based on componentization. In fact, all

framework makers seem to borrow heavily from one another. But Flutter is

unique in the way that the user interface is expressed. Developers use the

same Dart language to express an app’s graphical user interface as well as

the behavior (Table 3-1). We call this “UI as code.”

So how does this UI get created? Like many other frameworks and

languages, a flutter app starts with a main function. In Flutter, main will

call a function called runApp(). This runApp() receives one widget, the

root widget which can be named anything, but it should be a class that

extends a Flutter StatelessWidget. It looks like this:

// import the Dart package needed for all Flutter apps

import 'package:flutter/material.dart';

// Here is main calling runApp

void main() => runApp(RootWidget());

// And here is your root widget

class RootWidget extends StatelessWidget {

 @override

2�Source: https://flutter.dev/docs/resources/faq#does-flutter-come-with-
a-framework

Table 3-1.  Only Flutter uses the same language for

presentation and behavior

Framework Behavior expressed in ... UI expressed in ...

Xamarin C# XAML

React Native JavaScript JSX

NativeScript JavaScript XML

Flutter Dart Dart

Chapter 3 Everything Is Widgets

https://flutter.dev/docs/resources/faq#does-flutter-come-with-a-framework
https://flutter.dev/docs/resources/faq#does-flutter-come-with-a-framework

35

 Widget build(BuildContext context) {

 return Text("Hello world");

 }

}

And that’s all you need to create a “Hello world” in Flutter.

But wait ... what is this Text() thing? It’s a built-in Flutter widget. Since

these built-in widgets are so important, we need to take a look at them.

�Built-in Flutter widgets
Flutter’s foundational widgets are the building blocks of everything we

create and there are tons of them – about 160 at last count.3 This is a lot of

widgets for you and I to keep track. But if you mentally organize them, it

becomes much more manageable.

They fall into these major categories:

•	 Value widgets

•	 Layout widgets

•	 Navigation widgets

•	 Other widgets

Note T hese are not Flutter’s official list of categories. Their
14 categories are listed here: https://flutter.dev/docs/
development/ui/widgets. We just felt that reorganizing them
helps to keep them straight.

3�You can find a list of them all here: https://flutter.dev/docs/reference/
widgets

Chapter 3 Everything Is Widgets

https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/reference/widgets
https://flutter.dev/docs/reference/widgets

36

We’ll take a brief look at each of these categories with an example or

two, and then we’ll do some deep dives in later chapters. Let’s start with

value widgets.

�Value widgets
Certain widgets hold a value, maybe values that came from local storage,

a service on the Internet, or from the user themselves. These are used to

display values to the user and to get values from the user into the app.

The seminal example is the Text widget which displays a little bit of text.

Another is the Image widget which displays a .jpg, .png, or another picture.

Here are some more value widgets:

Checkbox

CircularProgressIndicator

Date & Time Pickers

DataTable

DropdownButton

FlatButton

FloatingActionButton

FlutterLogo

Form

FormField

Icon

IconButton

Image

LinearProgressIndicator

PopupMenuButton

Radio

RaisedButton

RawImage

RefreshIndicator

RichText

Slider

Switch

Text

TextField

Tooltip

We’ll explore value widgets in more detail in the next chapter.

�Layout widgets
Layout widgets give us tons of control in making our scene lay out

properly – placing widgets side by side or above and beneath, making

them scrollable, making them wrap, determining the space around widgets

so they don’t feel crowded, and so on:

Chapter 3 Everything Is Widgets

37

Align

AppBar

AspectRatio

Baseline

BottomSheet

ButtonBar

Card

Center

Column

ConstrainedBox

Container

CustomMultiChildLayout

Divider

Expanded

ExpansionPanel

FittedBox

Flow

FractionallySizedBox

GridView

IndexedStack

IntrinsicHeight

IntrinsicWidth

LayoutBuilder

LimitedBox

ListBody

ListTile

ListView

MediaQuery

NestedScrollview

OverflowBox

Padding

PageView

Placeholder

Row

Scaffold

Scrollable

Scrollbar

SingleChildScrollView

SizedBox

SizedOverflowBox

SliverAppBar

SnackBar

Stack

Table

Wrap

This is a huge topic which we’ve given its own chapter, Chapter 6,

“Laying Out Your Widgets.”

�Navigation widgets
When your app has multiple scenes (“screens,” “pages,” whatever you want

to call them), you’ll need some way to move between them. That’s where

Navigation widgets come in. These will control how your user sees one scene

and then moves to the next. Usually this is done when the user taps a button.

And sometimes the navigation button is located on a tab bar or in a drawer

that slides in from the left side of the screen. Here are some navigation widgets:

AlertDialog

BottomNavigationBar

Drawer

MaterialApp

Navigator

SimpleDialog

TabBar

TabBarView

We’ll learn how they work in Chapter 7, “Navigation and Routing.”

Chapter 3 Everything Is Widgets

38

�Other widgets
And no, not all widgets fall into these neat categories. Let’s lump the rest

into a miscellaneous category. Here are some miscellaneous widgets:

GestureDetector

Dismissible

Cupertino

Theme

Transitions

Transforms

Many of these miscellaneous widgets are covered throughout the book

where they fit naturally. GestureDetector is crucial enough that it gets its

own chapter, Chapter 5, “Responding to Gestures.”

�How to create your own stateless widgets
So we know that we will be composing these built-in widgets to form our

own custom widgets which will then be composed with other built-in

widgets to eventually form an app.

Widgets are masterfully designed because each widget is easy to

understand and therefore easy to maintain. Widgets are abstract from the

outside while being logical and predictable on the inside. They are a dream

to work with.

Every widget is a class that can have properties and methods. Every

widget can have a constructor with zero or more parameters. And

most importantly, every widget has a build method which receives a

BuildContext4 and returns a single Flutter widget. If you’re ever wondering

how a widget got to look the way it does, locate its build method:

4�Don’t get distracted by the BuildContext. It’s used by the framework and we do
occasionally refer to it, but we’ll save those examples later in the book. For now,
just think of it as part of the recipe to write a custom widget.

Chapter 3 Everything Is Widgets

39

class RootWidget extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Text('Hello world');

 }

}

In this hello world example which we repeated from earlier in the

chapter, we’re displaying a Text widget (Figure 3-2). A single inner widget

works but real-world apps will be a whole lot more complex. The root

widget could be composed of many other subwidgets:

class FancyHelloWidget extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("A fancier app"),

),

 body: Container(

 alignment: Alignment.center,

 child: Text("Hello world"),

),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.thumb_up),

 onPressed: () => {},

),

),

);

 }

}

Chapter 3 Everything Is Widgets

40

So as you can see, the build method is returning a single widget, a

MaterialApp, but it contains a Scaffold which contains three subwidgets:

an AppBar, a Container, and a FloatingActionButton (Figure 3-3). Each of

those in turn contains sub-subwidgets of their own.

Figure 3-2.  The app created by this simple widget

Chapter 3 Everything Is Widgets

41

App Bar

Text

Floating Action Button

Icon

Material App

Scaffold

Container

Text

Figure 3-3.  The widget tree from our example app above

This is how your build method will always work. It will return a single,

massive, nested expression. It is widgets inside widgets inside widgets that

enable you to create your own elaborate custom widget.

�Widgets have keys
You may hear about a virtual DOM when other developers talk about

Flutter. This comes from the world of React. (Remember that Flutter

borrowed heavily from React’s excellent architecture.) Well, strictly

speaking, Flutter doesn’t have a DOM, but it does maintain something

resembling it – the element tree. The element tree is a tiny copy of all the

widgets on the screen. Flutter maintains a current element tree and one

with batched changes applied.

You see, Flutter might be really slow if it applied every tiny change to

the screen and then tried to re-render it hundreds of times per second.

Instead, Flutter applies all of those changes to a copy of the element tree.

It then periodically “diffs” the current element tree with the modified one

and decides what truly needs to be re-rendered. It only re-renders those

parts that need it. This is much, much faster.

Chapter 3 Everything Is Widgets

42

But occasionally Flutter gets confused when matching the widgets

in the element trees. You’ll know to programmatically assign keys if your

data changes and widgets get drawn in the wrong location, the data isn’t

updated on the screen, or your scroll position isn’t preserved.

You don’t need to worry about keys most of the time. It is needed so

rarely that we’re going to be satisfied if you understand that ...

	 1.	 Keys exist and why Flutter may need them.

	 2.	 If your widgets aren’t being redrawn as you might

expect when data changes, keys may solve problems.

	 3.	 You have the opportunity to assign keys to certain

widgets.

If that’s not enough to satisfy you for now, the great Emily Fortuna has

recorded a super ten-minute video on keys.5

�Passing a value into your widget
Do you know what this formula means?

y = f(x)

Math majors will recognize this as reading “Y is a function of X.” It

concisely communicates that as X (the independent variable) changes, Y

(the dependent variable) will change in a predictable way. Flutter lives on

this idea, but in Flutter the formula reads like this:

Scene = f(Data)

In other words, as the data in your app changes, the screen will

change accordingly. And you, the developer, get to decide how that data is

presented as you write a build method in your widgets. It is a foundational

concept of Flutter.

5�You can find Emily’s video here: http://bit.ly/FlutterKeys

Chapter 3 Everything Is Widgets

http://bit.ly/FlutterKeys

43

Now how might that data change? There’s two ways:

	 1.	 The widget can be re-rendered with new data

passed from outside.

	 2.	 Data can be maintained within certain widgets.

Let’s talk about the first. To pass data into a widget, you’ll send it in as a

constructor parameter like this:

Widget build(BuildContext context) {

 return Person("Sarah"); // Passing "Sarah" into a widget

}

If a widget represents how to render a Person, it would be a very normal

thing to pass in a firstName, like we just did with “Sarah” earlier. If you do

that, you’ll need to write your widget’s constructor to receive that value:

class Person extends StatelessWidget {

 final String firstName;

 Person(this.firstName) {}

 Widget build(BuildContext context) {

 return Text('$firstName');

 }

}

This is Dart syntax. Note three things. First, you’ll list the input

parameter in the constructor (“this.firstName” in the preceding example).

Second, make sure you put “this.” in front of it. The “this.” matches it to a

class-level property rather than a parameter that is local to the constructor

function. And third, mark the corresponding class property as final.

You might want to pass in two or more properties like this:

Widget build(BuildContext context) {

 return Person("Sarah","Ali");

}

Chapter 3 Everything Is Widgets

44

Of course passing in two values means creating two final variables and

two constructor parameters to handle them:

class Person extends StatelessWidget {

 final String firstName;

 final String lastName;

 Person(this.firstName, this.lastName) {}

 Widget build(BuildContext context) {

 return Text('$firstName $lastName');

 }

}

As you can guess, these are matched positionally which can be easy

to mess up and not terribly flexible. A better practice is to have named

parameters:

Widget build(BuildContext context) {

 return Person(firstName:"Sarah", lastName:"Ali");

}

This reduces confusion for the other developers who use your widget.

Here’s how you’d write your widget to receive that value:

class Person extends StatelessWidget {

 final String firstName;

 final String lastName;

 Person({this.firstName, this.lastName}) {}

 Widget build(BuildContext context) {

 return Container(child: Text('$firstName $lastName'));

 }

}

Do you see the difference? It’s subtle. There are now curly braces

around the constructor parameters. This makes them optional and named.

Chapter 3 Everything Is Widgets

45

Tip N ote that in all three of the preceding examples, we are using
a Person class that might have been defined in the same dart file
where you’re using it. But a better practice is to create each class in
a separate dart file and import it into other dart files where it is used.

import 'Person.dart';

�Stateless and Stateful widgets
So far we’ve been going out of our way to create stateless widgets. So you

probably guessed that there’s also a stateful widget. You were right. A stateless

widget is one that doesn’t maintain its own state. A stateful widget does.

“State” in this context refers to data within the widget that can change

during its lifetime. Think about our Person widget from earlier. If it’s a

widget that just displays the person’s information, it should be stateless.

But if it is a person maintenance widget where we allow the user to change

the data by typing into a TextField, then we’d need a StatefulWidget.

There’s a whole chapter on stateful widgets later. If you just can’t wait

to know more about them, you can read Chapter 9, “Managing State,” later

in this book. Then come back here.

�So which one should I create?
The short answer is create a stateless widget. Never use a stateful widget

until you must. Assume all widgets you make will be stateless and start

them out that way. Refactor them into stateful widgets when you’re sure

you really do need state. But recognize that state can be avoided more

often than developers think. Avoid it when you can to make widgets

simpler and therefore easier to write, to maintain, and to extend. Your

team members will thank you for it.

Chapter 3 Everything Is Widgets

46

Note T here is actually a third type of widget, the InheritedWidget.
You set a value in your InheritedWidget and any descendent can
reach back up through the tree and ask for that data directly. It is
kind of an advanced topic, but Rémi Rousselet would have had my
head if I hadn’t mentioned it. You can read more about it in Chapter 9,
“Managing State,” or watch Emily Fortuna’s concise overview of
InheritedWidget here: http://bit.ly/inheritedWidget.

�Conclusion
So now we know that Flutter apps are all about widgets. You’ll compose

your own custom Stateless or Stateful widgets that have a build method

which will render a tree of built-in Flutter widgets. So clearly we need to

know about the built-in Flutter widgets which we’ll learn beginning in the

next chapter.

Chapter 3 Everything Is Widgets

http://bit.ly/inheritedWidget

47© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_4

CHAPTER 4

Value Widgets
We learned in the last chapter that everything is a widget. Everything

you create is a widget and everything that Flutter provides us is a widget.

Sure, there are exceptions to that, but it never hurts to think of it this way,

especially as you’re getting started in Flutter. In this chapter we’re going

to drill down into the most fundamental group of widgets that Flutter

provides us – the ones that hold a value. We’ll talk about the Text widget,

the Icon widget, and the Image widget, all of which display exactly what

their names imply. Then we’ll dive into the input widgets – ones designed

to get input from the user.

�The Text widget
If you want to display a string to the screen, the Text widget is what you’ll need.

Text('Hello world'),

Tip  If your Text is a literal, put the word const in front of it and the
widget will be created at compile time instead of runtime. Your apk/
ipa file will be slightly larger but they’ll run faster on the device. Well
worth it.

You have control over the Text’s size, font, weight, color, and more with

its style property. But we’ll cover that in Chapter 8, “Styling Your Widgets.”

48

�The Icon widget
Flutter comes with a rich set of built-in icons (Figure 4-1), from cameras to

people to cards to vehicles to arrows to batteries to Android/iOS devices.

A full list can be found here: https://api.flutter.dev/flutter/material/

Icons-class.html.

To place an icon, you use the Icon widget. No surprise there. You use

the Icons class to specify which one. This class has hundreds of static

values like Icons.phone_android and Icons.phone_iphone and Icons.cake.

Each points to a different icon like the ones pictured previously. Here’s

how you’d put a big red birthday cake (Figure 4-2) on your app:

Figure 4-1.  An assortment of Flutter’s built-in widgets in
random colors

Chapter 4 Value Widgets

https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html

49

Icon(

 Icons.cake,

 color: Colors.red,

 size: 200,

)

�The Image widget
Displaying images in Flutter is a bit more complex than Text or Icons.

It involves a few things:

	 1.	 Getting the image source – This could be an image

embedded in the app itself or fetched live from the

Internet. If the image will never change through the

life of your app like a logo or decorations, it should

be an embedded image.

	 2.	 Sizing it – Scaling it up or down to the right size and

shape.

Figure 4-2.  The red cake icon

Chapter 4 Value Widgets

50

�Embedded images
Embedded images are much faster but will increase your app’s install size.

To embed the image, put the image file in your project folder, probably in a

subfolder called images just to keep things straight. Something like assets/

images will do nicely.

Then edit pubspec.yaml. Add this to it:

flutter:

 assets:

 - assets/images/photo1.png

 - assets/images/photo2.jpg

Save the file and run “flutter pub get” from the command line to have

your project process the file.

Tip  The pubspec.yaml file holds all kinds of great information about
your project. It holds project metadata like the name, description,
repository location, and version number. It lists library dependencies
and fonts. It is the go-to location for other developers new to your
project. For any of you JavaScript developers, it is the package.json
file of your Dart project.

Then you’ll put the image in your custom widget by calling the asset()

constructor like this:

Image.asset('assets/images/photo1.jpg',),

Chapter 4 Value Widgets

51

�Network images
Network images are much more like what web developers might be

accustomed to. It is simply fetching an image over the Internet via

HTTP. You’ll use the network constructor and pass in a URL as a string.

Image.network(imageUrl),

As you’d expect, these are slower than embedded images because

there’s a delay while the request is being sent to a server over the Internet

and the image is being downloaded by your device. The advantage is that

these images are live; any image can be loaded dynamically by simply

changing the image URL.

�Sizing an image
Images are nearly always put in a container. Not that this is a requirement,

it’s just that I can’t imagine a real-world use case where it won’t be inside

another widget. The container has a say in the size that an image is

drawn. It would be an amazing coincidence if the Image’s natural size fit

its container’s size perfectly. Instead, Flutter’s layout engine will shrink

the image to fit its container, but not grow it. This fit is called BoxFit.

scaleDown, and it makes sense for the default behavior. But what other

options are available and how do we decide which to use? Table 4-1

provides your BoxFit options.

Chapter 4 Value Widgets

52

Photo courtesy of Eye for Ebony on Unsplash
So those are your options, but how do you choose? Figure 4-3 may help

you decide which fit to use in different situations.

Table 4-1.  BoxFit options

fill Stretch it so that both the width and the

height fit exactly. Distort the image

cover Shrink or grow until the space is filled.

The top/bottom or sides will be clipped

fitHeight Make the height fit exactly. Clip the width

or add extra space as needed

fitWidth Make the width fit. Clip the height or add

extra space as needed

contain Shrink until both the height and the width

fit. There will be extra space on the top/

bottom or sides

Chapter 4 Value Widgets

https://unsplash.com/@eyeforebony?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/black-woman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

53

Figure 4-3.  How to decide an image’s fit

Chapter 4 Value Widgets

54

To specify the fit, you’ll set the fit property.

Image.asset('assets/images/woman.jpg',

 fit: BoxFit.contain,),

�Input widgets
Many of us came from a web background where from the very beginning

there were HTML <form>s with <input>s and <select>s. All of these exist to

enable the user to get data into web apps, an activity we can’t live without

in mobile apps as well. Flutter provides widgets for entering data like we

have in the Web, but they don’t work the same way. They take much more

work to create and use. Sorry about that. But they are also safer and give us

much more control.

Part of the complication is that these widgets don’t maintain their own

state; you have to do it manually.

Another part of the complication is that input widgets are unaware of

each other. In other words, they don’t play well together until you group

them with a Form widget. We eventually need to focus on the Form widget.

But before we do, let’s study how to create text fields, checkboxes, radio

buttons, sliders, and dropdowns.

Caution  Input widgets are really tough to work with unless they
are used within a StatefulWidget because by nature, they change
state. Remember that we mentioned StatefulWidgets briefly in the
last chapter and we’re going to talk about them in depth in Chapter 9,
“Managing State.” But until then, please just take our word for it and
put them in a stateful widget for now.

Chapter 4 Value Widgets

55

�Text fields
If all you have is a single textbox, you probably want a TextField widget.

Here’s a simple example of the TextField widget with a Text label above it:

const Text('Search terms'),

TextField(

 onChanged: (String val) => _searchTerm = val,

),

That onChanged property is an event handler that fires after every

keystroke. It receives a single value – a String. This is the value that the user

is typing. In the preceding example, we’re setting a local variable called

_searchTerm to whatever the user types.

To provide an initial value with a TextField, you need the unnecessarily

complex TextInputController:

TextEditingController _controller =

 TextEditingController(text: "Initial value here");

Then tell your TextField about the controller

const Text('Search terms'),

TextField(

 controller: _controller,

 onChanged: (String val) => _searchTerm = val,

),

You can also use that _controller.text property to retrieve the value that

the user is typing into the box.

Did you notice the Text(‘Search terms’)? That is our lame attempt at

putting a label above the TextField. There’s a much, much better way.

Check this out ...

Chapter 4 Value Widgets

56

�Making your TextField fancy

There’s a ton of options to make your TextField more useful – not infinite

options, but lots. And they’re all available through the InputDecoration

widget (Figure 4-4):

return TextField(

 controller: _emailController,

 decoration: InputDecoration(

 labelText: 'Email',

 hintText: 'you@email.com',

 icon: Icon(Icons.contact_mail),

),

),

Table 4-2 presents some more InputDecoration options.

Figure 4-4.  A TextField with an InputDecoration

Table 4-2.  Input decoration options

Property Description

labelText Appears above the TextField. Tells the user what this TextField is for

hintText Light ghost text inside the TextField. Disappears as the user begins

typing

errorText Error message that appears below the TextField. Usually in red. It is set

automatically by validation (covered later), but you can set it manually

if you need to

(continued)

Chapter 4 Value Widgets

57

Tip  To make it a password box (Figure 4-5), set obscureText
property to true. As the user types, each character appears for a
second and is replaced by a dot.

return TextField(
 obscureText: true,
 decoration: InputDecoration(
 labelText: 'Password',
),
);

Figure 4-5.  A password box with obscureText

Property Description

prefixText Text in the TextField to the left of the stuff the user types in

suffixText Same as prefixText but to the far right

icon Draws an icon to the left of the entire TextField

prefixIcon Draws one inside the TextField to the left

suffixIcon Same as prefixIcon but to the far right

Table 4-2.  (continued)

Chapter 4 Value Widgets

58

Want a special soft keyboard? No problem. Just use the keyboardType

property. Results are shown in Figures 4-6 through 4-9.

return TextField(

 keyboardType: TextInputType.number,

);

Figure 4-6.  TextInputType.datetime

Figure 4-7.  TextInputType.email. Note the @ sign

Figure 4-8.  TextInputType.number

Chapter 4 Value Widgets

59

Tip  If you want to limit the type of text that is allowed to be entered,
you can do so with the TextInput’s inputFormatters property. It’s
actually an array so you can combine one or more of ...

•	 BlacklistingTextInputFormatter – Forbids certain characters
from being entered. They just don’t appear when the user
types.

•	 WhitelistingTextInputFormatter – Allows only these characters
to be entered. Anything outside this list doesn’t appear.

•	 LengthLimitingTextInputFormatter – Can’t type more than X
characters.

Those first two will allow you to use regular expressions to specify
patterns that you want (white list) or don’t want (black list). Here’s
an example:

return TextField(
 inputFormatters: [
 WhitelistingTextInputFormatter(RegExp('[0-9 -]')),
 LengthLimitingTextInputFormatter(16)
],

Figure 4-9.  TextInputType.phone

Chapter 4 Value Widgets

60

 decoration: InputDecoration(
 labelText: 'Credit Card',
),
);

In the WhitelistingTextInputFormatter, we’re only allowing numbers
0–9, a space, or a dash. Then the LengthLimitingTextInputFormatter
is keeping to a max of 16 characters.

�Checkboxes

Flutter checkboxes (Figure 4-10) have a boolean value property and an

onChanged method which fires after every change. Like all of the other

input widgets, the onChanged method receives the value that the user set.

Therefore, in the case of Checkboxes, that value is a bool.

Checkbox(

 value: true,

 onChanged: (bool val) => print(val)),

Tip A Flutter Switch (Figure 4-11) serves the same purpose as a
Checkbox – it is on or off. So the Switch widget has the same options
and works in the same way. It just looks different.

Figure 4-10.  A Flutter Checkbox widget

Chapter 4 Value Widgets

61

�Radio buttons

Of course the magic in a radio button is that if you select one, the others

in the same group are deselected. So obviously we need to group them

somehow. In Flutter, Radio widgets are grouped when you set the

groupValue property to the same local variable. This variable holds the

value of the one Radio that is currently turned on.

Each Radio also has its own value property, the value associated with

that particular widget whether it is selected or not. In the onChanged

method, you’ll set the groupValue variable to the radio’s value:

SearchType _searchType;

//Other code goes here

Radio<SearchType>(

 groupValue: _searchType,

 value: SearchType.anywhere,

 onChanged: (SearchType val) => _searchType = val),

const Text('Search anywhere'),

Radio<SearchType>(

 groupValue: _searchType,

 value: SearchType.text,

 onChanged: (SearchType val) => _searchType = val),

const Text('Search page text'),

Radio<SearchType>(

 groupValue: _searchType,

 value: SearchType.title,

 onChanged: (SearchType val) => _searchType = val),

const Text('Search page title'),

Figure 4-11.  A Flutter Switch widget

Chapter 4 Value Widgets

62

This simplified code would create something like Figure 4-12.

�Sliders

A slider is a handy affordance when you want your user to pick a numeric

value between an upper and lower limit (Figure 4-13).

To get one in Flutter, you’ll use the Slider widget which requires an

onChanged event and a value property, a double. It also has a min which

defaults to 0.0 and a max which defaults to 1.0. A range of zero to one is

rarely useful, so you’ll usually change that. It also has a label property

which is an indicator telling the user what value they’re choosing.

Figure 4-12.  Flutter Radio widgets

Figure 4-13.  A slider with the value of 25

Chapter 4 Value Widgets

63

Slider(

 label: _value.toString(),

 min: 0, max: 100,

 divisions: 100,

 value: _value,

 onChanged: (double val) => _value = val,

),

�Dropdowns

Dropdowns are great for picking one of a small number of things, like in an

enumeration. Let’s say we have an enum like this:

enum SearchType { web, image, news, shopping }

Where obviously we’re defining a “SearchType” as either “web,”

“image,” “news,” or “shopping.” If we wanted our user to choose from one

of those, we might present them with a DropdownButton widget that

might look like Figure 4-14 to start with.

Then, when they tap the dropdown, it looks like Figure 4-15.

Figure 4-14.  DropdownButton with nothing chosen

Chapter 4 Value Widgets

64

And when they tap one of the options, it is chosen (Figure 4-16).

To create that DropdownButton, our Flutter code might look like this:

SearchType _searchType = SearchType.web;

//Other code goes here

DropdownButton<SearchType>(

 value: _searchType,

 items: const <DropdownMenuItem<SearchType>>[

 DropdownMenuItem<SearchType>(

 child:Text('Web'),

 value: SearchType.web,

),

Figure 4-15.  DropdownButton expanded to show the choices

Figure 4-16.  DropdownButton with an option selected

Chapter 4 Value Widgets

65

 DropdownMenuItem<SearchType>(

 child:Text('Image'),

 value: SearchType.image,

),

 DropdownMenuItem<SearchType>(

 child:Text('News'),

 value: SearchType.news,

),

 DropdownMenuItem<SearchType>(

 child:Text('Shopping'),

 value: SearchType.shopping,

),

],

 onChanged: (SearchType val) => _searchType = val,

),

�Putting the form widgets together
It’s cool that we have all of these different types of fields that look good and

work great. But you will often want them to be grouped together so that

they can be somewhat controlled as a group. You’ll do this with a Form

widget.

�Form widget
As with HTML, you can live just fine without a Form widget. It is a

convenience widget with no visual component. That is to say you never

actually see it rendered on the device. Its only purpose is to wrap all of

its inputs, thereby grouping them – and their data – into a unit. It does so

using a key. Remember that we introduced keys in the last chapter and told

Chapter 4 Value Widgets

66

you that except in a few situations, keys can be ignored. This is one place

where keys are needed. If you decide to use a Form, you need a GlobalKey

of type FormState:

GlobalKey<FormState> _key = GlobalKey<FormState>();

You’ll set that key as a property to your form:

@override

Widget build(BuildContext context) {

 return Form(

 key: _key,

 autovalidate: true,

 child: // All the form fields will go here

);

}

At first glance, the Form doesn’t seem to change anything. But a closer

look reveals that we now have access to

•	 autovalidate: a bool. True means run validations as

soon as any field changes. False means you’ll run it

manually. (We’ll talk about validations in a few pages.)

•	 The key itself which we called _key in the preceding

example.

That _key has a currentState property which in turn has these methods:

	 1.	 save()– Saves all fields inside the form by calling

each’s onSaved

	 2.	 validate()– Runs each field’s validator function

	 3.	 reset()– Resets each field inside the form back to its

initialValue

Chapter 4 Value Widgets

67

Armed with all this, you can guess how the Form groups the fields

nested inside of it. When you call one of these three methods on

FormState, it iterates the inner fields and calls that method on each. One

call at the Form level fires them all.

But hang on a second! If _key.currentState.save() is calling a field’s

onSaved(), we need to provide an onSaved method. Same with validate()

calling the validator. But the TextField, Dropdown, Radio, Checkbox, and

Slider widgets themselves don’t have those methods. What do we do now?

We wrap each field in a FormField widget which does have those methods.

(And the rabbit hole gets deeper.)

�FormField widget
This widget’s entire purpose in life is to provide save, reset, and validator

event handlers to an inner widget. The FormField widget can wrap any

widget using a builder property:

FormField<String>(

 builder: (FormFieldState<String> state) {

 �return TextField(); // Any field widget like DropDownButton,

 // Radio, Checkbox, or Slider.

 },

 onSaved: (String initialValue) {

 // Push values to a repository or something here.

 },

 validator: (String val) {

 // Put validation logic here (further explained below).

 },

),

So we first wrap a FormField widget around each input widget, and

we do so in a method called builder. Then we can add the onSaved and

validator methods.

Chapter 4 Value Widgets

68

Tip  Treat a TextField differently. Instead of wrapping it, replace it with
a TextFormField widget if you use it inside a Form. This new widget is
easy to confuse with a TextField but it is different. Basically ...

TextFormField = TextField + FormField

The Flutter team knew that we’d routinely need a TextField widget
in combination with a FormField widget so they created the
TextFormField widget which has all of the properties of a TextField but
adds an onSaved, validator, and reset:

TextFormField(
 onSaved: (String val) {
 print('Search Term TextField: form saved $val');
 },
 validator: (String val) {
 // Put your validation logic here
 },
),

Now isn’t that nicer? Finally we catch a break in making things
easier. Checkboxes don’t have this feature. Nor do Radios nor
Dropdowns. None except TextFields.

Best practice: Text inputs without a Form should always be
a TextField. Text inputs inside a Form should always be a
TextFormField.

Chapter 4 Value Widgets

69

�onSaved

Please remember that your Form has a key which has a currentState which

has a save() method. Got all that? No? Not super clear? Let’s try it this way;

on a “Save” button press, you will write your code to call ...

_key.currentState.save();

... and it in turn invokes the onSaved method for each FormField that

has one.

�validator

Similarly, you probably guessed that you can call ...

_key.currentState.validate();

... and Flutter will call each FormField’s validator method. But there’s

more! If you set the Form’s autovalidate property to true, Flutter will

validate immediately as the user makes changes.

Each validator function will receive a value – the value to be validated –

and return a string. You’ll write it to return null if the input value is valid

and an actual string if it is invalid. That returned string is the error message

Flutter will show your user.

�Validate while typing

Remember that the way to perform instant validation is to set Form.

autovalidate to true and write a validator for your TextFormField:

return Form(

 autovalidate: true,

 child: Container(

 TextFormField(

 validator: (String val) {

Chapter 4 Value Widgets

70

 // Let's say that an empty value is invalid.

 if (val.isEmpty)

 return 'We need something to search for';

 return null;

 },

),

),

);

Obviously it makes no sense to validate a DropdownButton, Radio,

Checkbox, Switch, or Slider while typing because you don’t type into them.

But less obviously, it does not work with a TextField inside of a FormField.

It only works with a TextFormField. Strange, right?

Tip A gain, best practice is to use a TextFormField. But if you insist
on using a TextField inside a FormField, you can brute force set
errorText like this:

FormField<String>(
 builder: (FormFieldState<String> state) {
 return TextField(
 controller: _emailController,
 decoration: InputDecoration(
 �// This says if the value looks like an email

set errorText
 // to null. If not, display an error message.
 errorText:
 �RegExp(r'^[a-zA-Z0-9.]+@[a-zA-Z0-9]+\.

[a-zA-Z]+')
 .hasMatch(_emailController.text)
 ? null

Chapter 4 Value Widgets

71

 : "That's not an email address",
),
);
 },
),

�Validate only after submit attempt

There are times when you don’t want your code to validate until the user

has finished entering data. You should first set autovalidate to false. Then

call validate() in the button’s pressed event:

RaisedButton(

 child: const Text('Submit'),

 onPressed: () {

 // If every field passes validation, run their save methods.

 if (_key.currentState.validate()) {

 _key.currentState.save();

 print('Successfully saved the state.')

 }

 },

)

�One big Form example
I know, I know. This is pretty complex stuff. It might help to see these things

in context – how they all fit together. Below you’ll find a fully commented

example ... a big example. But as big as it is, it was originally much larger.

Please look at our online source code repository for the full example.

Hopefully they will help your understanding of how Form fields relate.

Chapter 4 Value Widgets

72

Let’s say that we wanted to create a scene for the user to submit a

Google-like web search. We’ll give them a TextFormField for the search

String, a DropdownButton with the type of search, a checkbox to enable/

disable safeSearch, and a button to submit:

enum SearchType { web, image, news, shopping }

// This is a stateful widget. Don't worry about how it or

// the setState() calls work until

// Chapter 9. For now, just focus on the Form itself.

class ProperForm extends StatefulWidget {

 @override

 _ProperFormState createState() => _ProperFormState();

}

class _ProperFormState extends State<ProperForm> {

 // A Map (aka. hash) to hold the data from the Form.

 final Map<String, dynamic> _searchForm = <String, dynamic>{

 'searchTerm': ",

 'searchType': SearchType.web,

 'safeSearchOn': true,

 };

 // The Flutter key to point to the Form

 final GlobalKey<FormState> _key = GlobalKey();

 @override

 Widget build(BuildContext context) {

 return Form(

 key: _key,

 // Make autovalidate true to validate on every keystroke. In

 // this case we only want to validate on submit.

 //autovalidate: true,

 child: Container(

Chapter 4 Value Widgets

73

 child: ListView(

 children: <Widget>[

 TextFormField(

 initialValue: _searchForm['searchTerm'],

 decoration: InputDecoration(

 labelText: 'Search terms',

),

 // On every keystroke, you can do something.

 onChanged: (String val) {

 setState(() => _searchForm['searchTerm'] = val);

 },

 // When the user submits, you could do something

 // for this field

 onSaved: (String val) { },

 //Called when we "validate()". The val is the String

 // in the text box.

 �//Note that it returns a String; null if validation passes

 // and an error message if it fails for some reason.

 validator: (String val) {

 if (val.isEmpty) {

 return 'We need something to search for';

 }

 return null;

 },

),

 FormField<SearchType>(

 builder: (FormFieldState<SearchType> state) {

 return DropdownButton<SearchType>(

 value: _searchForm['searchType'],

 items: const <DropdownMenuItem<SearchType>>[

 DropdownMenuItem<SearchType>(

Chapter 4 Value Widgets

74

 child: Text('Web'),

 value: SearchType.web,

),

 DropdownMenuItem<SearchType>(

 child: Text('Image'),

 value: SearchType.image,

),

 DropdownMenuItem<SearchType>(

 child: Text('News'),

 value: SearchType.news,

),

 DropdownMenuItem<SearchType>(

 child: Text('Shopping'),

 value: SearchType.shopping,

),

],

 onChanged: (SearchType val) {

 setState(() => _searchForm['searchType'] = val);

 },

);

 },

 onSaved: (SearchType initialValue) {},

),

 // Wrapping the Checkbox in a FormField so we can have an

 // onSaved and a validator

 FormField<bool>(

 //initialValue: false, // Ignored for Checkboxes

 builder: (FormFieldState<bool> state) {

 return Row(

 children: <Widget>[

 Checkbox(

Chapter 4 Value Widgets

75

 value: _searchForm['safeSearchOn'],

 // Every time it changes, you can do something.

 onChanged: (bool val) {

 setState(() => _searchForm['safeSearchOn'] = val);

 },

),

 const Text('Safesearch on'),

],

);

 },

 // When the user saves, this is run

 onSaved: (bool initialValue) {},

 // No need for validation because it is a checkbox. But

 // if you wanted it, put a validator function here.

),

 // This is the 'Submit' button

 RaisedButton(

 child: const Text('Submit'),

 onPressed: () {

 // If every field passes validation, let them through.

 // Remember, this calls the validator on all fields in

 // the form.

 if (_key.currentState.validate()) {

 // Similarly this calls onSaved() for all fields

 _key.currentState.save();

 // You'd save the data to a database or whatever here

 print('Successfully saved the state.');

 }

 },

)

],

Chapter 4 Value Widgets

76

),

),

);

 }

}

�Conclusion
It takes a while to understand Flutter forms. Please don’t be discouraged.

Look over the preceding example a couple more times and write a little

code. It begins to make sense very quickly. And while the topic of Forms

might have been a little intimidating to you, Images, Icons, and Text were

very straightforward, right?

In the next chapter, we’ll start to see our app come alive because we’re

going to learn about creating all the different kinds of buttons and making

them – or any widget for that matter – respond to taps and other gestures!

Chapter 4 Value Widgets

77© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_5

CHAPTER 5

Responding to
Gestures
We’ve made great progress so far! You now know what Flutter is all about.

You’re well-versed in how the development and debugging process works.

You know why we use widgets and are pretty darn familiar with the value

widgets from the last chapter. Heck, you can even create your own stateless

widgets. But we’re still missing a major fundamental feature: event

handling.

Let’s say you have a screen where the user chooses a product and puts

it in their cart. They’ll have to scroll up and down through a list of products

(Figure 5-1). The swipe up and down to scroll is a gesture. To choose a

product, they’ll tap on it. That’s a gesture. Then to put it in the cart, maybe

we’d have them swipe right. That’s a different gesture.

78

This chapter is all about handling those gestures. We’ll fit gestures into

two categories: gestures on built-in widgets and gestures on your custom

widgets. Let’s start with gesture on built-in widgets.

�Meet the button family
Some gestures are super easy because they’re pre-baked into certain

widgets. For instance, the creators of button widgets know their sole

Figure 5-1.  A shopping app

Chapter 5 Responding to Gestures

79

purpose in life is to be pressed and then to do something in response to

it. So all buttons come with a property called onPressed. To use it, you’ll

simply point it to a function to run when the user presses it:

Product _product;

// More code here

Widget foo() {

 return IconButton(

 icon: Icon(Icons.delete),

 onPressed: removeProduct // The callback must return void

);

}

// More code here

void removeProduct() {

 // Do something to remove the _product

}

Figure 5-2 shows the output.

You could think of a Button as the base class for all of the other

buttons. It isn’t really, but it wouldn’t hurt for you to think of all of the

others as a Button with some specialties. For instance, these are all widgets

that are specialized types of buttons (Figure 5-3).

Figure 5-2.  An IconButton

Chapter 5 Responding to Gestures

80

�RaisedButton
This one is simply a Button but appears like it’s floating above the page. It

has an elevation property to increase the simulated altitude above the page

(Figure 5-4):

RaisedButton(

 child: Text(text: "Go"),

 onPressed: () => print("You swiped the raised button");

 elevation: 5.0

)

Figure 5-3.  The button family

Chapter 5 Responding to Gestures

81

�FlatButton and IconButton
These are kind of the anti-RaisedButton. They just appear completely

flat. They are subtle, having simple text or an icon that don’t scream to be

pressed, like an UNDO button or BACK button.

�FloatingActionButton
This is that button you often see in the lower right of the screen. It is

usually round and is an unmistakable hint to the user on how to progress

to the next step in the workflow (Figure 5-5).

Figure 5-4.  Elevations

Chapter 5 Responding to Gestures

82

In Flutter, FABs are one of the three main parts of a scaffold. You’ll

usually see it included sort of like this:

Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(title: Text(_title)),

 body: OtherWidgetsHere(),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.check),

 onPressed: () => {},

),

);

}

�CupertinoButton
An iOS-style button. Looks great on iPhones, but it is kind of strange to

have an iOS feel on an Android device. If you use it, you must remember to

add this to the top of your dart file:

import 'package:flutter/cupertino.dart';

Figure 5-5.  Floating action button

Chapter 5 Responding to Gestures

83

�Dismissible
Buttons are all created for one purpose: to respond to a tap. Similarly, a

Dismissible is created for one purpose: to respond to a swipe. To use it, you’ll

usually build a list of widgets and will wrap each one with a Dismissible.

When you do, each widget in the list can then respond to the swipe gesture:

Dismissible(

 // Give it a blue background if swiped right and

 // a red background if swiped left

 background: Container(color: Colors.blue),

 secondaryBackground: Container(color: Colors.red),

 onDismissed: (direction) {

 print("You swiped $direction");

 },

 child: SomeWidget(),

);

Note that as the name suggests, this is used to dismiss a widget,

removing it from the view as you “swipe it away.” But what if I want to

swipe it but not dismiss it? This calls for a custom gesture.

�Custom gestures for your custom widgets
Why does the dismissible understand the swipe gesture? Why do the

buttons understand the onPressed gesture? Because the developers wrote

them in. Your custom widgets will need to have gestures programmed as

well. But since you’re the one writing them, you get to create your own

gestures. And you can create gestures that are way more interesting than

a simple press. You can have your widget respond to swipes, long presses,

double-presses, and pinch-to-zoom.

Chapter 5 Responding to Gestures

84

Tap aka press. Includes double-tapping (tap-tap)

LongPress Pressing on the screen for a longer time – like a second or two

Scale aka pinching or unpinching, when you separate your fingers

Drag aka swiping

Note: There’s also a Pan, which is similar enough to a Drag that we’re omitting for
simplicity.

Responding to custom gestures will require these steps:

	 1.	 Decide on your gestures and behaviors.

	 2.	 Create your custom widget as normal.

	 3.	 Add a GestureDetector widget.

	 4.	 Associate your gesture with its behavior.

�Step 1: Decide on your gestures and behaviors
This step is simple. Your UX expert might have already done it by the time

you get ahold of the design. You simply list out the gestures you want to

respond to and what they should do when that gesture is detected.

We’ll work through an example. Say our user sees a list of people

and has to choose the ones they like and the ones they don’t. Let’s have

the user swipe right on each thing they like and swipe left on the ones

they don’t. And let’s say that occasionally the user will want to add a new

person between two others. We’ll have them separate the two people with

their fingers – kind of like making room between them for the new item.

And lastly maybe we’ll have the user long press to delete the person.

Chapter 5 Responding to Gestures

85

Gesture Action

Swipe right Add them to the nice list

Swipe left Add them to the naughty list

Pinch (actually reverse-pinch) Insert a new person

Long press Delete that person

�Step 2: Create your custom widget
Write the Dart code like we’ve learned in our past chapters. Here’s a list

of people:

class ManagePeople extends StatelessWidget {

 List<Map> fetchPeople() {

 return [

 {"first":"Jim", "last":"Halpert"},

 {"first":"Kelly", "last":"Kapoor"},

 {"first":"Creed", "last":"Bratton"},

 {"first":"Dwight", "last":"Schrute"},

 {"first":"Andy", "last":"Bernard"},

 {"first":"Pam", "last":"Beasley"},

 {"first":"Jim", "last":"Halpert"},

 {"first":"Robert", "last":"California"},

 {"first":"David", "last":"Wallace"},

 {"first":"Ryan", "last":"Howard"},

];

 }

Chapter 5 Responding to Gestures

86

 @override

 Widget build(BuildContext context) {

 var _peopleObjects = fetchPeople();

 return ListView(

 children: _peopleObjects.map((person) =>

 Person(person:person)).toList(),

);

 }

}

�Step 3: Add a GestureDetector widget
The GestureDetector widget is different from most UX widgets – you can’t

see it. You either wrap a GestureDetector around some widget or nest it

in the child property; it’s flexible. Either way, it detects and handles the

gestures for that other widget. Since you can’t see it, it’s not bloated with

any properties other than child or methods other than build, just what

you’d expect. The events are where the action is!

return ListView(

 children: _peopleObjects

 .map((person) =>

 GestureDetector(child: Person(person: person))

).toList(),

);

Chapter 5 Responding to Gestures

87

�Step 4: Associate your gesture with its behavior
Last step, for each event that you designed in step 1, assign a method. Now

GestureDetector supports tons of events1 so they get really confusing.

We’ve boiled them down to the most useful ones here.

Gesture Event(s) to use

Tap (press) onTap

Double-tap onDoubleTap

Long press onLongPress

Side-to-side swipe onHorizontalDragUpdate, Start, End

Up-and-down swipe onVerticalDragUpdate, Start, End

Diagonal swipe onPanUpdate, Start, End

Pinch onScaleUpdate, Start, End

�Example 1: Reacting to a long press
A long press (Figure 5-6) will ignore simple taps but will fire when the user

presses for an extended time – like a second or two. Let’s say our UX people

decided that a long press will signal that our user wants to delete a user.

1�In addition to the events we’ve listed, many of these gestures have advanced
events for ∗Start, ∗End, ∗Cancel, ∗Up, and/or a ∗Down. These are a lot to take
in but can be useful, so go here to read up on all of them: http://bit.ly/
FlutterGestures

Chapter 5 Responding to Gestures

http://bit.ly/FlutterGestures
http://bit.ly/FlutterGestures

88

To make this happen, we’ll add the onLongPress event handler:

GestureDetector(

 child: Person(person: person),

 onLongPress: () {

 _people.remove(person);

 print("Deleted ${person['first']}");

 },

);

Figure 5-6.  A long press

Chapter 5 Responding to Gestures

89

�Example 2: Pinching to add a new item
Let’s say our UX expert suggested that users would want to add items to

the list and specify where in the list they want it inserted. To communicate

that, they will open the list by unpinching two items (Figure 5-7).

We want to detect if the user was pinching in or pinching out. A normal

pinch in should be ignored. But a pinch out – where they spread their

fingers out – means we’re adding a new person. Note that some event

handlers receive in an event object. This object holds information about

that particular event. In the case of a scale/pinch, it holds a property called

scale. If scale is greater than 1.0, this is a pinch out. Let’s say that if the user

pinches out twice the normal scale, we’ll assume they’re wanting to add a

new person to the list:

Figure 5-7.  Pinching

Chapter 5 Responding to Gestures

90

onScaleUpdate: (e) {

 if (e.scale > 2.0)

 addPerson(context);

},

�Example 3: Swiping left or right
Now our UX team has decided that if the user swipes right on a person in

our list, we should add them to the “nice” list, and if the user swipes left,

we’ll add them to the “naughty” list (Figure 5-8).

Figure 5-8.  Swiping

Chapter 5 Responding to Gestures

91

To detect a swipe, we’d look for a drag or a pan. A pan is called for when

we expect the user to be able to swipe diagonally. HorizontalDrags are only

for left and right; it ignores Y-direction. VerticalDrags are only for up and

down; it ignores any change in the X-direction. Since we only really care

about left swipe or right swipe, we’ll zero in on a HorizontalDrag gesture.

Our app can respond to any old swipe by using the

onHorizontalDragEnd event. In this case we also care about the direction

of the swipe; was it left to right or right to left? So we have to look at the

event object in each case. At the drag start, we save the X-position of where

the user’s finger was. Then with every pixel move, the drag update event

captures the current X-location. Finally, on drag end, we do a simple

calculation; if the end X-position is greater, we know it was a swipe right.

Otherwise, it was a swipe left:

double _swipeStartX;

String _swipeDirection;

return GestureDetector(

 child: Person(person: person),

 onHorizontalDragStart: (e) {

 _swipeStartX = e.globalPosition.dx;

 },

 onHorizontalDragUpdate: (e) {

 _swipeDirection =

 (e.globalPosition.dx > _swipeStartX) ? "Right" : "Left";

 },

 onHorizontalDragEnd: (e) {

 if (_swipeDirection == "Right")

 updatePerson(person, status: "nice");

 else

 updatePerson(person, status: "naughty");

 },

);

Chapter 5 Responding to Gestures

92

�What if there are two or more gestures
happening at the same time?
Let’s take an example. Our user is pinching-to-zoom. The user is touching

the screen, so it’s a Tap. But they’re also touching for a long time, so it’s

a LongPress. But each touch is moving, so it’s a Pan. But there are two of

them, so it’s a Scale. What do we respond to?

The GestureDetector puts all of these in a GestureArena. (I’m not

making this up!) The last gesture standing in the arena wins. If there are no

listeners for a gesture, it is ejected from the arena. At any time, a gesture

can quit. So in the pinch-to-zoom case, since there are two contacts and

they’re moving, each other gesture quits and exits the arena. The last one

standing is the Scale gesture. So it’s a scale.

Another example: Let’s say you have onVerticalDragEnd and

onHorizontalDragEnd handlers defined. When the user is finished swiping

in any direction, the number of pixels is counted, and if they’ve moved

more pixels horizontally than vertically, the onVerticalDragEnd exits the

GestureArena and the onHorizontalDragEnd handler runs.

�Conclusion
The bottom line is that Flutter gestures are intuitive. They work like the

average developer would expect them to, making it easy for us to code

and easy for our users to use. When triggered, all events will run on a

separate thread so it is totally okay to have them return an Async<> object.

Therefore, feel free to mark your event handling functions as async and fill

them full of awaits2.

2�For more information on Futures, async, and await, take a look at Chapter 10:
Your Flutter app can work with files.

Chapter 5 Responding to Gestures

93© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_6

CHAPTER 6

Laying Out Your
Widgets
Now that we’re familiar with some widgets that hold a value and how

to make them respond to gestures, we are ready to make them lay out

properly. In this chapter, we’re going to deal with the major techniques of

getting your widgets to appear on the screen in various relations to one

another and to manage the space between them. Notice that I said “major

techniques” not “all techniques.” This is because Flutter has dozens of

widgets for laying things out, many of which overlap in functionality with

others. This is great if you enjoy lots of choices, but the more choices you

have, the more complex a subject is.1 So to spare you the confusion, we’re

not going to cover 100% of the widgets or the options. Instead we’re going

to focus on the ones that will get the job done in the real world without

overwhelming you. We suggest that you learn the techniques in this

chapter to get you 90% of what you’ll ever need for layouts. Then, when

you run across a situation that you can’t solve with these techniques, you

can do some research or call for help.

1�See The Paradox of Choice at https://wikipedia.org/wiki/The_Paradox_of_
Choice

https://wikipedia.org/wiki/The_Paradox_of_Choice
https://wikipedia.org/wiki/The_Paradox_of_Choice

94

So to get us where we need to be, we really must know how to do five

things:

	 1.	 Layout the entire screen (aka scene)

This is where we’ll set the look and feel of the entire

app and create the structure of the scene like the

title, action button, and menus (Figure 6-1).

	 2.	 Position widgets above and below each other or
side by side

When designing any scene, we break it into widgets

and place them on the screen. For example, the

following scene (Figure 6-2) must be broken into

widgets. Since it is a scrolling list of people, we might

want a bunch of PersonCard widgets (Figure 6-3) on

the scene each above and below another. We’d do

that with a ListView.

Figure 6-1.  Title and menu appear at the top along with other things
like action buttons

Chapter 6 Laying Out Your Widgets

95

Figure 6-2.  A ListView can place widgets above and below each
other

Figure 6-3.  We might create a PersonCard widget

Chapter 6 Laying Out Your Widgets

96

Then in turn, each PersonCard widget should have

an image side by side with text (Figure 6-4). How do

you get the text next to the image? We’ll use a Row

widget. Also notice that the text is a series of data

about that person. How do you get the text above

and below? We’ll use a Column widget there.

	 3.	 Handle extra space in the scene

Hey, there’s extra space on the right side of each

Person. What if we wanted that space to be on the

left? Or what if we wanted to put some of that extra

space on the left of the image?

	 4.	 Handle situations when we run out of space and
overflow the scene

In the scene with all of the PersonCards, we

have more people than we have screen so we’ve

overflowed it. This normally throws an error, but

there are several ways to fix the situation. We’ll look

at the best way.

Figure 6-4.  Row widgets and Column widgets can be used to
place things

Chapter 6 Laying Out Your Widgets

97

	 5.	 Make finer adjustments in positioning

Our scene currently feels crowded. What can we do

to create a little elbow room (Figure 6-5)? Let’s make

it look a little more like in the figure:

Alright, so there’s our plan for the chapter. We’ll do a deep dive into

each of the five steps. But before we do, let’s take just a moment to see how

to debug our visual layout.

Tip U se visual debugging to see how Flutter is making its decisions
for your layout. Figure 6-6 is how your screen might look normally;
when you toggle debug painting, you’ll see Figure 6-7.

Figure 6-5.  Fine-tuned spacing

Chapter 6 Laying Out Your Widgets

98

Figure 6-6.  Without visual debugging turned on

Chapter 6 Laying Out Your Widgets

99

All visual boxes get a teal border. Padding, margin, and border are

colored in blue. Alignment/positioning is made obvious with yellow

arrows. The big green arrows show widgets that can scroll. Once you get

accustomed to them, these visual cues will help you see how Flutter thinks

so you can tune your layout.

To turn this feature on

•	 In VS Code open the command palette (cmd-shift-P or

control-shift-P) and type in “Toggle debug painting.”

Figure 6-7.  With visual debugging turned on

Chapter 6 Laying Out Your Widgets

100

•	 In Android Studio/IntelliJ go to View ➤ Tool Windows

➤ Flutter Inspector and hit the “Show debug paint”

button in the toolbar.

�Laying out the whole scene
Here’s a tip for you: Apps should never surprise their users.2 When apps

do things in the way that the user expects, they think the app is friendly,

simple, and easy. Users have been trained to see a status bar at the top

followed by a title bar. And while other screen affordances will vary based

on need, there are definite conventions. Flutter has widgets to make your

layouts feel ... well ... normal.

�MaterialApp widget
The MaterialApp widget creates the outer framework for your app. As

important as it is, the user never sees the MaterialApp because no parts of it

are technically visible. It wraps your entire app, giving you the opportunity

to give it a title so that when your OS moves the app into the background,

it’ll have a name. This is also where you’ll apply the default theme for your

app – fonts, sizes, colors, and so forth. We’ll get way more into themes in the

styles chapter. Stay tuned for that. MaterialApp is also the place to specify

routes, something we’ll talk much more about in the routing chapter.

Note T he “Material” in MaterialApp does indeed refer to Material
Design, which is kind of a Google/Android thing. But it is probably
misnamed because all apps, even iOS-focused apps, will have a
MaterialApp widget at its root. It does not give your app any more of
an Android feel or less of an iOS feel.

2�Don’t Make Me Think by Steve Krug is a great read on common-sense usability.

Chapter 6 Laying Out Your Widgets

101

Widget build(BuildContext context) {

 return MaterialApp(

 home: MainWidget(),

 title: "Ch 6 Layouts",

 theme: ThemeData(primarySwatch: Colors.deepPurple),

 routes: <String, WidgetBuilder>{

 '/scene1: (BuildContext ctx) => MyWidget1(),

 '/scene2: (BuildContext ctx) => MyWidget2(),

 '/scene3: (BuildContext ctx) => MyWidget3(),

 },

 debugShowCheckedModeBanner: false,

);

}

Finally, MaterialApp has a home property. Remember that your project

will have lots of custom widgets. You specify which one is the startup

widget by setting your MaterialApp’s home property. This widget will

be the root of your main scene and will therefore probably begin with a

Scaffold widget. “What’s a Scaffold widget,” you say? Glad you asked ...

�The Scaffold widget
Whereas the MaterialApp widget creates the outer invisible framework,

the Scaffold widget creates the inner visible framework.

Scaffold has one purpose in life: to lay out the visible structure of your

app to give it the predictable and therefore usable layout that so many

other apps have. It creates, among other things:

•	 An AppBar for the title

•	 A section for the body

•	 A navbar at the bottom or a navigation drawer to

the left

Chapter 6 Laying Out Your Widgets

102

•	 A floating action button

•	 A bottom sheet – a section that is usually collapsed but

can be slid up to reveal context-aware information for

the scene that the user is on at that moment

@override

Widget build(BuildContext context) {

 return Scaffold(

 appBar: MyAppBar(),

 drawer: MyNavigationDrawer(),

 body: TheRealContentOfThisPartOfTheApp(),

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.add),

 onPressed: () { /* Do things here */},

),

 bottomNavigationBar: MyBottomNavBar,

);

}

All parts of the Scaffold are optional. That kind of makes sense

because you don’t always want a floatingActionButton or a drawer or a

bottomNavigationBar. Our screen designs will dictate which parts we need

and which we don’t.

�The AppBar widget
To create a header bar at the top of the screen, use an AppBar widget

(Figure 6-8). This is strictly optional. But your users are totally going to

expect an AppBar for almost every app that isn’t a game. You’ll almost

Chapter 6 Laying Out Your Widgets

103

always have a title. And you may want to add an Icon at the start. An Icon is

the leading property:

return Scaffold(

 appBar: AppBar(

 leading: Icon(Icons.traffic),

 title: Text("My Cool App"),

),

 /* More stuff here. FAB, body, drawer, etc. */

);

One problem though. If you have the leading icon and also a

navigation drawer, then Flutter can’t use that space to display the

hamburger menu (Figure 6-9):

return Scaffold(

 appBar: AppBar(

 /* No leading this time. */

 title: Text("My Cool App"),

),

 /* More stuff here. FAB, body, drawer, etc. */

);

Figure 6-8.  The AppBar widget with a leading icon and a title

Chapter 6 Laying Out Your Widgets

104

If you have a navigation drawer, you’re probably going to want to omit

the leading icon.

�SafeArea widget
Device screens are seldom neat rectangles. They have rounded corners

and notches and status bars at the top. If we ignored those things, certain

parts of our app would be cut off or hidden. Don’t want that? You have

two choices, keep a huge database of all devices with their displayable

areas and have a ton of gnarly conditional renderings. Horrible! Or use the

SafeArea widget which in essence does that for you.

Simply wrap the SafeArea widget around all of your body content and

let it do the heavy lifting for you. Putting it inside the Scaffold but around

the body is a terrific place:

return Scaffold(

 drawer: LayoutDrawer(),

 body: SafeArea(

 child: MyNormalBody(),

),

Figure 6-9.  An AppBar without a leading icon is able to display a
hamburger menu icon

Chapter 6 Laying Out Your Widgets

105

 floatingActionButton: FloatingActionButton(

 child: Icon(Icons.next),

 onPressed: () {},

),

);

�SnackBar widget
Weird name, I know. Sounds like something delicious, but this widget

is really a standard way to alert your user to something. A SnackBar

(Figure 6-10) will appear at the bottom of your screen, occulting whatever

is already down there and will disappear after a short time. You get to

decide what the SnackBar says and you can even place a button on it for

the user to take action.

You can show a SnackBar in any scene you like as long as you do it in a

widget that is nested inside a Scaffold:

GestureDetector(

 child: PersonCard(person),

 onTap: () {

 String msg = '${person['name']['first']} deleted.';

Figure 6-10.  A SnackBar shows a message and optional actions

Chapter 6 Laying Out Your Widgets

106

 final SnackBar sb = SnackBar(

 content: Text(msg),

 duration: Duration(seconds: 5),

 action: SnackBarAction(

 textColor: Colors.white,

 label: "UNDO",

 onPressed: () {},

),

);

 Scaffold.of(context).showSnackBar(sb);

 }))

Note that you run the showSnackBar() method to bring the SnackBar

up. You are in control of the duration that it stays up. Finally, you can add

an action to the SnackBar if you want. Of course you may just want to bring

up a message only with no action. It’s up to you.

�How Flutter decides on a widget’s size
We all have constraints in life – rules and laws and boundaries we must

live by. If we don’t submit to those constraints, there are consequences.

Flutter widgets have constraints also and they have consequences. Just like

in real life, things will be easier on you if you learn the rules and how those

constraints work.

In Flutter, every widget on your device’s screen eventually has a

height and a width which it calls the “RenderBox.” Each widget also has

constraints: a minHeight, a minWidth, a maxHeight, and a maxWidth

which it calls the “BoxConstraints.”

Chapter 6 Laying Out Your Widgets

107

Note A ll of these measures are in units of pixels which is obviously
device-dependent. You iOS developers call them points, and Android
devs call them density-independent pixels.

As long as the widget’s RenderBox is completely within its

BoxConstraints, life is good. In other words, its height must be between

minHeight and maxHeight, and its width must be between the minWidth

and maxWidth. But the moment that a widget demands to be drawn outside

the constraints, bad things happen. Sometimes Flutter throws an exception,

and other times it does its best and just clips the widget or shrinks it.

�The dreaded “unbounded height” error
I guarantee that at some point in your career, you’re going to see Flutter

throw this error:

══╡ EXCEPTION CAUGHT BY RENDERING LIBRARY ╞═════════════
The following assertion was thrown during performLayout():

RenderFlex children have non-zero flex but incoming width

constraints are unbounded. When a row is in a parent that does

not provide a finite width constraint, for example if it is in

a horizontal scrollable, it will try to shrink-wrap its children

along the horizontal axis. Setting a flex on a child (e.g. using

Expanded) indicates that the child is to expand to fill the

remaining space in the horizontal direction. These two directives

are mutually exclusive. If a parent is to shrink-wrap its child,

the child cannot simultaneously expand to fit its parent.

It’s not the most developer-friendly error message, is it? Most of us

would have no hope of understanding the problem in our code with that

error message. Similar messages may say “Vertical viewport was given

unbounded height” error. Or “RenderViewport does not support returning

Chapter 6 Laying Out Your Widgets

108

intrinsic dimensions.” None of these are very helpful. If they were being

kind, they’d have said something like:

══╡ YOU'RE DOING IT WRONG ╞═════════════════════════
The ListView you're drawing wants to be infinitely tall and it

needs a parent widget that will keep it reasonably short. Maybe

tell it to be small by wrapping it with a LimitedBox widget?

Now wouldn’t that have been clearer? You’d understand the problem

and clearly know how to fix it.

Let me help you interpret what Flutter is trying to tell us; certain

widgets want to fill all of the available space that they can. In other words,

they’re greedy. They need a parent to constrain them. If they’re inside of a

parent who refuses to provide that constraint, Flutter freaks out because it

can’t understand what we developers are trying to do. To be blunt, this is

a symptom of the developer not really understanding how Flutter handles

layouts. So let me try to explain Flutter’s layout algorithm in hopes of

predicting and therefore avoiding snafus like the preceding example.

Note I f you don’t completely understand Flutter’s layout algorithm,
it isn’t the end of the world. You can still work with Flutter without
memorizing this section. But the better understanding you have of
this concept, the less frustrated you’ll be when you run across layout
problems in the real world. So try.

�Flutter’s layout algorithm
In your custom widget, you have a root widget at the top of your main

method. It has branches and branches of branches and on and on. Let’s

call this the widget tree (Figure 6-11). Flutter has to decide how big to make

each widget in the tree. It does so by asking each widget how big it would

prefer to be and asking its parent if that is okay.

Chapter 6 Laying Out Your Widgets

109

Flutter travels down the tree starting at the root. It reads the constraint

of the root widget. “What is the tallest you can be? And the widest?”

It remembers them and then looks for any children. For each child,

it communicates its BoxConstraints to them and then travels to the

grandchildren. It keeps doing this all the way to the end of every branch.

We call this the leaf level.

It then asks each leaf how big it would prefer to be. “What is your

favorite height? What is your favorite width?” It allows the leaf to be drawn

at its preferred size within the constraints of all of its ancestors. If the

preferred size is too big, Flutter clips it at runtime – something we really try

to avoid! If the preferred size is too small, Flutter pads it with extra space

until it fits.

It then goes back up a level and tries to fit those branches inside their

common parent which has its own constraints. And so on all the way back

up to the top.

AppBar

Text

FloatingActionButton

MaterialApp

Scaffold

ListView

Container

Row

PersonCard

Padding

Image

Column

Text TextText

Figure 6-11.  Every scene has a widget tree

Chapter 6 Laying Out Your Widgets

110

The result is that each child gets to be its favorite height and width –

as long as its parent allows it. And no parent has a final size until all of its

child do.

Tip A nother situation you’re going to come across is when you
have a widget whose RenderBox is larger than its BoxConstraints. In
other words, this single widget can’t fit inside its parent. The solution
for that problem is occasionally a FittedBox,3 a widget that shrinks
it’s child to fit. By default, you’ll get a centered widget that is scaled
down until it just fits both horizontally and vertically, but you have the
options to align it vertically/horizontally and to stretch it or clip top/
bottom or left/right.

So you can see how we’d get the “unbounded height” error. If we had a

child who tries to be as large as it can and it doesn’t have a parent to tell it

to stop, Flutter panics because it is now infinitely tall. To solve the problem,

that child simply needs a parent to tell it to stop growing. A LimiteBox()

widget’s main characteristic is to do exactly that; it tells a child just how big

it is allowed to get if the parent refuses to. And Flutter has a ton of widgets

to control size and position. For the rest of this chapter, we’re going to

study the most critical of those layout widgets – the ones you absolutely

must know. We’ll start with Row and Colum.

�Putting widgets next to or below others
Row and Column, as the names suggest, are made for laying out widgets

side by side (Row, Figure 6-12) or above and below (Column, Figure 6-13).

Other than how they lay out their children, they’re nearly identical.

3�For more details, see http://bit.ly/flutterFittedBox

Chapter 6 Laying Out Your Widgets

http://bit.ly/flutterFittedBox

111

Row(

 children: <Widget>[

 Widget(),

 Widget(),

 Widget(),

 Widget(),

],

),

Column(

 children: <Widget>[

 Widget(),

 Widget(),

W W W W

Cr
os

s
Ax

is

Main Axis

Figure 6-12.  A Row widget lays out side by side

W

W

W

W

Cross Axis

M
ai

n
Ax

is

Figure 6-13.  A Column widget lays out above and below

Chapter 6 Laying Out Your Widgets

112

 Widget(),

 Widget(),

],

),

Notice that they both have a children property which is an array of

Widgets. All widgets in the children array will be displayed in the order

you add them. You can even have rows inside columns and vice versa as

many levels deep as you like. In this way you can create nearly any layout

imaginable in any app.

Rows and columns will be your go-to layout widgets. Yes, there are

others, but these two are your first calls.

Note  Occasionally you’ll want two things above and below when
the device is in landscape and side by side when in portrait. So you
want them in a row at times and a column at others. This is when
you’ll use a Flex widget which can do both. It has an orientation
property that will be conditional:

Flex(
 direction:
 �MediaQuery.of(context).orientation ==

Orientation.landscape ?
 Axis.horizontal : Axis.vertical,
 children: <Widget>[
 SomeWidget(),
 SomeWidget(),
 SomeWidget(),
],
),

This doesn’t happen as often as you might think. Use it sparingly.

Chapter 6 Laying Out Your Widgets

113

�Your widgets will never fit!
It would be an overwhelming coincidence if the elements fit perfectly in a

scene. And if they ever fit perfectly, as soon as the app is run on a different

screen size or rotated from portrait to landscape, that will change. So we

need to handle two situations:

	 1.	 What if there’s extra space left over? (more screen

than pixels taken up by the widgets)

	 2.	 What if there’s not enough space? (too many widgets

in a given space)

These are both likely to happen simultaneously on different parts of

your scene. Let’s tackle leftover space first.

�What if there’s extra space left over?
This is an easy problem to solve. The only question you really need to

answer is how to distribute the extra room. How much space do you want

to allocate around each of the other widgets? You have several options. The

easiest and quickest is to use mainAxisAlignment and crossAxisAlignment.

�mainAxisAlignment
MainAxisAlignment is a property of the Row or Column (Figure 6-14). With

it you control how the extra space is allocated with respect to the widgets

along the main axis – vertical for columns and horizontal for rows:

child: Column(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: <Widget>[

 SubWidget(),

 SubWidget(),

Chapter 6 Laying Out Your Widgets

114

You have a few choices:

Figure 6-14.  mainAxisAlignment says how to distribute the extra
space along the main axis

Chapter 6 Laying Out Your Widgets

115

�crossAxisAlignment
crossAxisAlignment is also a property of the Row or Column; it decides

where to put the extra space if the widgets are of different heights in a row

or widths in a column (Figure 6-15). Your options are

Figure 6-15.  crossAxisAlignment says how to distribute extra space
along the cross axis

Chapter 6 Laying Out Your Widgets

116

There’s also one more: baseline. But it only makes sense in a row, and

it is much less frequently used.

Tip I f you want the children of a Column to all be the same
width but not necessarily the entire width of the screen, use the
IntrinsicWidth widget. With crossAxisAlignment.stretch, they all
stretch to the maximum width (Figure 6-16), but wrapped in an
IntrinsicWidth, they’ll all be the same size as the largest widget
(Figures 6-17 and 6-18).

child: IntrinsicWidth(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[...

Figure 6-16.  Without IntrinsicWidth, all members will stretch to the
entire width

Figure 6-17.  With IntrinsicWidth, they’ll only be as wide as the
widest member

Chapter 6 Laying Out Your Widgets

117

So you can see that as the width of the longest button increases,
so do they all.

�Expanded widget
mainAxisAlignment is awesome if the spacing is cut and dried – you want

equal spacing somehow. But what if you don’t want spacing at all? What

if you want the widgets to expand to fill the remaining space? Expanded

widget to the rescue (Figure 6-19).

Let’s take this code for an example:

Row(

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 SubWidget(),

 SubWidget(),

 SubWidget(),

 SubWidget(),

 SubWidget(),

 SubWidget(),

],

Figure 6-18.  With Intrinsic width and a wider member, all are made
wider

Figure 6-19.  This Row widget has lots of extra space

Chapter 6 Laying Out Your Widgets

118

When you wrap a Row/Column’s child in an Expanded widget

(Figure 6-20), it makes that child f lexible, meaning that if there is extra

space, it will stretch along the main axis to fill that space.

Here’s the same thing but with an Expanded() around the second

widget:

Row(

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 SubWidget(),

 Expanded(child: SubWidget()),

 SubWidget(),

 SubWidget(),

 SubWidget(),

 SubWidget(),

],

Note that the mainAxisAlignment now makes no difference because

there is no extra space. It’s all eaten up by the Expanded.

What if we add another Expanded? Let’s put one around the third and

fourth widgets also (Figure 6-21):

Row(

 children: <Widget>[

 SubWidget(),

 Expanded(child: SubWidget()),

 Expanded(child: SubWidget()),

 Expanded(child: SubWidget()),

Figure 6-20.  The second widget is wrapped in an Expanded

Chapter 6 Laying Out Your Widgets

119

 SubWidget(),

 SubWidget(),

],

Note that the second one is now smaller because the extra space is

shared with the third and fourth widgets, divided equally among them.

But wait! There’s more! We can control how much space each

Expanded gets. The Expanded has a property called the flex factor which is

an integer. When the Row/Column is laid out, the rigid elements are sized

first. Then the flexible ones are expanded according to their flex factor

(Figure 6-22). In the preceding examples, the Expandeds had the default

flex factor of 1 so they got an equal amount of space. But if we gave them

different flex factors, they’ll expand at different rates:

Row(

 children: <Widget>[

 SubWidget(),

 Expanded(flex: 1, child: SubWidget()),

 Expanded(flex: 3, child: SubWidget()),

 Expanded(flex: 2, child: SubWidget()),

 SubWidget(),

 SubWidget(),

],

Figure 6-21.  Expandeds will divide the free space among them

Chapter 6 Laying Out Your Widgets

120

Notice that the free space has still been allocated to the Expandeds but

in the proportions of 1, 3, and 2 instead of evenly. So the one with a flex

factor of 3 gets three times as much space as the one with a flex factor of 1.

Note E xpanded eats up all the free space. But if you want to use
Expandeds but you also want there to be some space between
certain children, use the Spacer or SizedBox widgets (Figure 6-23).
Spacers have a flex factor that plays well with all the other flex
factors along this axis. The SizedBox has height and width properties
for when you want to express its size in pixels:

Row(
 children: <Widget>[
 SubWidget(),
 Spacer(),
 Expanded(flex: 1, child: SubWidget()),
 Spacer(flex: 2),
 Expanded(flex: 3, child: SubWidget()),
 Expanded(flex: 2, child: SubWidget()),
 SubWidget(),
 SizedBox(width: 10,),
 SubWidget(),
],

Figure 6-22.  Expandeds have flex property to control how much
extra space each gets

Chapter 6 Laying Out Your Widgets

121

�What if there’s not enough space?
We’ve tackled the situations where there is too much space and how to

control where that extra space is allocated. But what if there is too little

space? Like we are trying to squeeze too many widgets into too small a row

or column? Unless you do something about it, Flutter will clip the widgets

which looks terrible and worse, may hide some widgets from the user.

So what do you do? You allow scrolling!

While it is possible to scroll in both directions, it creates some serious

usability issues. So we recommend that you stick to scrolling in one

direction only and that it usually be vertical scrolling. The easiest way to

scroll is with a ListView.

�The ListView widget
ListView has actually has four different ways to use it:

	 1.	 new ListView – Normal use. It has a children

property that takes a collection of static widgets.

	 2.	 ListView.builder – For dynamically creating children

from a list of items.

	 3.	 ListView.separated – Like builder but also puts a

widget ∗between∗ each item. Great for inserting ads

in the list periodically. Read more at http://bit.

ly/flutter_listview_separated.

Figure 6-23.  Spacer() and SizedBox() add free space back in but put
you in control as to where and how much

Chapter 6 Laying Out Your Widgets

http://bit.ly/flutter_listview_separated
http://bit.ly/flutter_listview_separated

122

	 4.	 ListView.custom – For rolling your own advanced

listviews. Read more at http://bit.ly/flutter_

listview_custom.

Let’s take a look at the first two options starting with the regular

ListView.

�Regular ListView: When you have a few widgets
to display

Generically, a ListView takes a small number of other widgets and makes

it scrollable. Why a “small number”? Because this is designed to be a static

list, one that you, the developer, simply types into the build() method

by hand. In fact, oftentimes the way you discover you’ll need a regular

ListView is when your column overflows. The fix is either to remove

children, resize the children, or simply change the Column to a ListView.

Columns and ListViews both have a children property:

Widget _build(BuildContext context) {

 return ListView(

 children: <Widget>[

 FirstWidget(),

 SecondWidget(),

 ThirdWidget(),

],

);

}

This version of ListView is great for a small number of widgets to

display, but where ListView really shines is when you want to display a

list of things – people, products, stores – anything you’d retrieve from

a database or Ajax service. For displaying an indeterminate number of

scrollable items, we’ll want the ListView.builder constructor.

Chapter 6 Laying Out Your Widgets

http://bit.ly/flutter_listview_custom
http://bit.ly/flutter_listview_custom

123

�ListView.builder: When you’re building widgets
from a list of objects

ListView’s alternative constructor, ListView.builder receives two

parameters, an itemCount and an ItemBuilder property that is a

function. This makes the ListView lazy-loaded. The itemBuilder function

dynamically creates children widgets on demand. As the user scrolls close

to the bottom of the list, itemBuilder creates new items to be scrolled into

view. And when we scroll something far enough off the screen, it is paged

out of memory and disposed of. Pretty cool.

Widget _build(BuildContext context) {

 return ListView.builder(

 scrollDirection: Axis.vertical,

 itemCount: _people.length,

 itemBuilder: (BuildContext context, int i) {

 return PersonCard(_peopleList[i]);

 },

);

}

The itemCount property is an integer that tells us how many things

we’re going to draw so we usually set it to the length of the array/collection

of things we’re scrolling through. The itemBuilder function receives two

parameters: the context and an integer which is 0 for the first item and

increments each time it is run.

We’ve covered laying out the scene including what to do if there is extra

space on the scene or there isn’t enough of it. So let’s cover the last of our

five topics, how to fine-tune the spacing and position of widgets. We’ll do

this by exploring the box model.

Chapter 6 Laying Out Your Widgets

124

�Container widget and the box model
Flutter has borrowed heavily from other technologies including HTML and

the Web which have the ideas of borders, padding, and margin. These are

collectively called the box model. They’re used to create pleasant-to-the-

eyes spacing around and between screen elements. It’s a battle-proven

concept that has worked great for the Web so why not borrow it for Flutter?

Let’s say that we have a sized image that we want framed so to speak

with a padding of 8, a margin of 10, and a border of 1. Flutter newcomers

might try this first:

Image.network(

 _peopleList[i]['picture']['thumbnail'],

 padding: 8.0,

 margin: 10.0,

 border: 1.0,

),

Content

Padding

Border

Margin

Figure 6-24.  The box model defines padding, border, and margin

Chapter 6 Laying Out Your Widgets

125

This would not work since Image widgets don’t have a padding,

margin, or borders. But you know what does? Containers!

Web developers often apply these things by wrapping elements in a

generic container called a <div> and then applying styles to create pleasant

spacing for our web pages.

Flutter doesn’t have a <div>, but it does have a div-like widget called

a Container which ... well ... contains other things. In fact, its entire life

purpose is to apply layout and styles to the things inside of it. An HTML

<div> can hold multiple things, but a Flutter Container only holds one

child. It has properties called padding, margin, and decoration. We’ll leave

decoration for the styles chapter, but padding and margin are awfully

handy for creating nice-looking spacing:

Container(

 padding: EdgeInsets.all(8.0),

 margin: EdgeInsets.all(10.0),

 decoration: BoxDecoration(border: Border.all(width: 1.0)),

 child: Image.network(thePicture),

 // Container has *lots* of other properties, many of which

 // we'll cover in the Styles chapter.

),

Tip  Margin and padding might have been easier to learn if they had
just allowed us to list four number values representing the four sides.
(They couldn’t make it easy, could they?) Instead, we use a helper
widget called EdgeInsets.

•	 EdgeInsets.all(8.0) – Same value applied to all four
sides evenly.

•	 EdgeInsets.symmetric(horizontal: 7.0, vertical: 5.0) – Top and
bottom are the same. Left and right are the same.

Chapter 6 Laying Out Your Widgets

126

•	 EdgeInsets.only(top: 20.0, bottom: 40.0, left: 10.0, right:
30.0) – Left, top, right bottom can all be different.

•	 EdgeInsets.fromLTRB(10.0, 20.0, 30.0, 40.0) – Same as the
preceding one but less typing.

Also note that if you want padding only – no other formatting – the
Padding widget is a shorthand.

Container(

 padding: EdgeInsets.all(5),

 child: Text("foo"),

),

Padding(

padding: EdgeInsets.all(5),

child: Text("foo"),

),

These two are equivalent.

�Alignment and positioning within a Container
When you place a small child widget in a large Container, there will be

more space in the Container than is needed by its child widget. That child

widget will be located in the top-left corner by default. You have the option

of positioning it with the alignment property:

Container(

 width: 150, height: 150,

 alignment: Alignment(1.0, -1.0),

 child: Image.network(

 _peopleList[i]['picture']['thumbnail'],

),

),

Chapter 6 Laying Out Your Widgets

127

Those alignment numbers represent the horizontal alignment (–1.0 is

far left, 0.0 is center, and 1.0 is far right) and the vertical alignment (–1.0 is

top, 0.0 is center, and 1.0 is bottom). See Figure 6-25.

But you will probably prefer to use English words rather than numbers

when you can:

Container(

 width: 150, height: 150,

 alignment: Alignment.centerLeft,

 child: Image.network(

 _peopleList[i]['picture']['thumbnail'],

),

),

Alignment can take on any of these values: topLeft, topCenter,

topRight, centerLeft, center, centerRight, bottomLeft, bottomCenter, and

bottomRight. Now, isn’t that easier to write and easier for your fellow devs

to read?

(-1, -1)

(-0.6, -0.3)

(0, -1) (1, -1)

(-1, 1) (0, 1) (1, 1)

(-1, 0)
(0, 0)

(0.5, 0.5)

(1, 0)

Figure 6-25.  Alignment coordinate system with 0,0 at the center

Chapter 6 Laying Out Your Widgets

128

Tip T he Align widget is a shorthand for specifying the alignment
and no other properties. The Center widget is merely a shorthand for
centering.

Container(

 alignment:

 Alignment.center,

 child: Text("foo"),

),

Align(

alignment:

Alignment.center,

child: Text("foo"),

),

Center(

child: Text("foo"),

),

These three are equivalent.

�So how do you determine the size
of a Container?
You may have noticed that I tried to slip width and height by you in that

last section. Yes, you can tell a Container you want it to have a particular

width and height, and it will comply when it is able. Width and height

both take a simple number that can range from zero to double.infinity.

The value double.infinity hints to be as large as its parent will allow.

Now, I know what you’re thinking. “Rap, what do you mean by ‘when

it is able’ and ‘hints’? Aren’t there any hard rules? I want Container sizes

to be predictable!” And I completely agree. A Container’s size is tough to

predict until you know its rules. So, how does it decide then?

Remember two things. First, a Container is built to contain a child, but

having a child is optional. 99% of the time it will have a child. The other 1%

of the time we use the Container to provide a background color or to create

spacing for its neighbors/siblings. Second, remember that Flutter determines

layout in two phases, down the render tree to determine Box Constraints and

then back up to determine RenderBox (aka “size,” remember?).

Chapter 6 Laying Out Your Widgets

129

We go top down:

•	 Flutter limits max size by passing Box Constraints down

into the Container from its parent.

•	 The Container is laid back as it tells its parent, “If my

neighbors need some space, go ahead and take it. I’ll be

as small as you need me to.”

•	 If height and/or width is set, it honors those up to its

max size as determined by its Box Constraints. Note

that it is not an error for you to list a size greater than

its Box Constraints, it just won’t grow any larger. This is

why you can use double.infinity without error.

Tip S etting height and width makes the Container super rigid; it
locks in a size. While this is handy when you want to fine-tune your
layout, the best practice is to avoid using them unless you have a
darn good reason. You generally want to allow widgets to decide their
own size.

Then we go bottom up:

•	 In the 1% of the time that it has no child, it consumes

all the remaining space up to its max Box Constraint.

•	 But most of the time, it has a child so the layout engine

looks at the child’s RenderBox.

•	 If the child’s RenderBox is bigger than my Box

Constraints, it clips the child which is a big, fat

problem. It’s not technically an error, but it looks bad.

So avoid it. When in debug mode, Flutter will draw

yellow and black stripes where it has overflowed so the

developer doesn’t miss it.

Chapter 6 Laying Out Your Widgets

130

•	 If the child’s RenderBox is within my Box Constraints,

there is leftover room so we look at the alignment

property. If alignment is not set, we put it in the upper-

left corner and make the container tight – it shrinks to

fit the child. Leftover room is just empty. If alignment

is set, it makes the container greedy. This sort of makes

sense when you think about it because how will it align

top/bottom/left/right if it doesn’t add space by growing?

•	 After all this, shrink as needed to honor the margins.

�Special layout widgets
Like we said at the top of the chapter, we’ve now covered the tools you’ll

need for 90% of your layout needs, but there are more. A few are worth a

glance just so you know what to look for should the situation come up.

These widgets are designed for very particular layout situations that, while

common, aren’t everyday but need specialized tools to make happen.

�Stack widget
This is for when you want to layer widgets so that they overlap one another.

You want to stack them in the Z-direction. With Stack, you’ll list some

number of widgets, and they’ll be displayed in that order one on top of

another. The last one will occult (hide) the previous one if they overlap

which will occult the one before that which will overlap the one before that

and so on.

I was really torn about where to cover the stack widget. On one hand,

it involves laying out a screen which fits much better in this chapter. But

on the other hand, Stacks excel in creating cards which is definitely a

styling concept and therefore fits better in the next chapter. We decided to

mention it here but really focus on it in later. So stay tuned for that.

Chapter 6 Laying Out Your Widgets

131

�GridView widget
Here’s another thing borrowed from HTML and the Web. GridView is for

displaying a list of widgets when you want them to appear in rows and

columns but don’t particularly care which rows and which columns – you

just want them to show up in a grid.

To use a GridView, you’ll set its children property to the list of widgets

you want to display and it will create the grid populating across and then

wrapping to the next row, resizing its space available until it just fits. And

here’s the greatest part, it automatically scrolls!

GridView has two constructors, GridView.extent() and GridView.count().

�GridView.extent()

Extent refers to the maximum width of the child. GridView will only let its

kids grow to that size. If they try to get bigger, it puts another element on

that row and shrinks them all until they just fit across the entire width. Take

a look at this example:

Widget build(BuildContext context) {

 return GridView.extent(

 maxCrossAxisExtent: 300.0,

 children:

 people.map<Widget>((dynamic person) =>

 PersonCard(person)).toList(),

);

}

Notice in Figures 6-26 and 6-27 how the containers resize to something

less than 300. GridView decides that it can fit two across in portrait

orientation. But when rotated, those two would have resized to something

bigger than 300 so it puts three on each row.

Chapter 6 Laying Out Your Widgets

132

�GridView.count()

With the count() constructor, you specify how many columns you want

regardless of orientation. GridView takes care of resizing its contents to fit.

In the following example, we’ve told GridView.count() that we want two

Figure 6-26.  GridView.extent() in portrait

Figure 6-27.  The same GridView.extent() in landscape mode

Chapter 6 Laying Out Your Widgets

133

columns regardless of the orientation and the GridView sizes its children

to fit exactly two across Figures 6-28 and 6-29:

Widget build(BuildContext context) {

 return GridView.count(

 crossAxisCount: 2,

 children:

 people.map<Widget>((dynamic person) =>

 PersonCard(person)).toList(),

);

}

Figure 6-28.  GridView.count() in portrait orientation

Chapter 6 Laying Out Your Widgets

134

GridView.extent() is probably more useful because when the device is

portrait, maybe you’ll have two columns, but when it goes landscape, you

can now fit three columns in and the contents can still fit.

�The Table widget
The GridView is great when displaying widgets in rows and columns that

wrap. The wrapping part means that you really don’t care what children

widgets end up in which row and column.

Rows and Columns are best when you do care in which row and

column the children exist. They’re rigid when you want them to be.

Unfortunately, the columns can’t talk to each other so they will often be

misaligned (Figures 6-30 and 6-31).

Figure 6-29.  The same GridView.count() in landscape orientation

ovals

orange blue Purple

rectangles

triangles

Figure 6-30.  Rows work but the columns are misaligned

Chapter 6 Laying Out Your Widgets

135

The Table widget fixes that problem. It is rigid like nested Rows and

Columns, but each row and column is aware of the others and lines up

nicely like GridView (Figure 6-32).

Every Table widget will have children, a List of TableRow widgets. And

each TableRow widget will have children, a List of widgets:

return Table(

 children: <TableRow>[

 TableRow(children: <Widget>[

 Text('Salesperson', style: bold,),

 Text('January', style: bold,),

orange blue Purple

ovals

rectangles

triangles

Figure 6-31.  Columns work but the rows are misaligned

orange blue Purple

ovals

rectangles

triangles

Figure 6-32.  A Table aligns the rows and columns

Chapter 6 Laying Out Your Widgets

136

 Text('February', style: bold,),

 Text('March', style: bold,),

]

),

 TableRow(children: <Widget>[

 Text('Dwight'),

 Text('3742'),

 Text('5573'),

 Text('4323'),

],),

 TableRow(children: <Widget>[

 Text('Phyllis'),

 Text('3823'),

 Text('4500'),

 Text('3277'),

],

),

],

);

The preceding code would produce Figure 6-33.

Figure 6-33.  A Table widget lines up rows and columns
simultaneously

Chapter 6 Laying Out Your Widgets

137

Caution A nyone coming from an HTML background knows that you
can lay out a page using HTML <table>s is possible but it is a bad
idea. <table>s are for data, not for layout. Well it’s the same thing in
Flutter. It is possible, but generally speaking, stay away from tables
for laying out a page. But if you have data, Tables are the right choice.

No matter what their contents, table columns are given equal portions

of the width unless you override it with the columnWidths property. The

following would give the first column 30% of the width and divide the

remaining 70% evenly across the remaining columns:

return Table(

 columnWidths: {0: FractionColumnWidth(0.3)},

 children: <TableRow>[...

How do you span columns? Like, for a table header for example.

Unfortunately, you don’t with Flutter Table – yet. Stay tuned, though. There

is a feature request for spanning columns.

�Conclusion
I know this was a long chapter. But layouts in Flutter are not only hugely

important but they’re also hugely complex because of the large number

of layout widgets and the way that they interact with one another. But

because understanding the algorithm can save you tons of hand-wringing

and head-scratching later on we thought it would be wise to cover it in

depth. We hope you’ll agree in the long run. After a couple more scans

through this chapter and working with the widgets, we’re convinced that

you’ll have Flutter layouts figured out.

Of course to have a complete app, you’ll need to create multiple scenes

and be able to navigate between them. And how do you do that? We’ll

cover that in the next chapter.

Chapter 6 Laying Out Your Widgets

139© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_7

CHAPTER 7

Navigation
and Routing
All apps have the concept of moving from one screen to another. The

user clicks the cart button, and we go to the card screen. The user clicks

“continue shopping” button, and we get to browse for more products

to buy. Some app developers call it routing. Others call it navigation.

Whatever you want to call it, this is one area that Flutter makes really easy

because there are only four ways of navigating:

•	 Stacks – Each widget is full screen. The user taps a

button to go through a predefined workflow. History

is maintained, and they can travel back one level by

hitting a back button.

•	 Drawers – Most of the screen shows a widget, but on

the left edge, a drawer is peeking out at the user. When

they press it or swipe it right, it slides out revealing a

menu of choices. Pressing one changes the widget in

the main part of the screen.

•	 Tabs – Some room is reserved for a set of tabs at the top

or the bottom of the screen. When you press on a tab,

we show the widget that corresponds to that tab.

140

•	 Dialogs – While these aren’t technically part of

navigation, they are a way to see another widget, so

we’ll allow it. Dialogs are modal (aka pop-up windows)

that stay until the user dismisses them.

Each of these methods depends on your app having a MaterialWidget

as its ancestor. Let’s drill into them starting with stack navigation.

�Stack navigation
If you’re an experienced developer, you’re familiar with queues and stacks.

If not, let me explain briefly. Let’s say you work in a kitchen. As plates are

cleaned, they’re stacked, right? Each plate is put on the top of the stack.

This is called pushing onto the stack. When it is time to serve some food,

you naturally take the last plate added, the one on top of the stack. This is

called popping off the top of the stack.

Flutter’s navigation works with stacks. When you want to send the user

to a new scene, you will push() a widget on the top of the stack and the

user sees that widget. Each time you push(), you’re making the stack of

scenes taller and taller. When you are ready for them to go back to where

they were before, you’ll pop() the last scene off the top of the stack, and

what is revealed? The previous scene.

With Flutter’s stack, you’ll typically predefine the scenes (aka routes)

and give each a name. This must be done at the MaterialApp level like so:

Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Shopping App',

 initialRoute: '/',

 routes: {

 '/': (BuildContext ctx) => LandingScene(),

 '/browse': (BuildContext ctx) => Browse(),

 '/product': (BuildContext ctx) => ViewProduct(),

Chapter 7 Navigation and Routing

141

 '/checkout: (BuildContext ctx) => Checkout(),

 },

);

}

Note that with routing, we no longer use the home property. Instead,

use the intialRoute property.

Tip I f your initialRoute is “/”, you can omit it altogether and Flutter
assumes it is “/”.

�Navigating forward and back
To navigate the user to a scene manually, you’ll Navigator.

pushNamed(context, route) and Navigator.pop(context).

To push a user to another route:

RaisedButton(

 child: const Text('Check out'),

 onPressed: () => Navigator.pushNamed(context, '/checkout),

),

Once they’re finished and want to go back:

RaisedButton(

 child: const Text('Go back'),

 onPressed: () => Navigator.pop(context),

),

But wait, there’s more! Notice that if you have a Scaffold, a back arrow

is automatically added to the appbar (Figure 7-1). When tapped, it works

to go back. And if your user is on Android, the ubiquitous Android back

button works also (Figure 7-2).

Chapter 7 Navigation and Routing

142

Tip T here is another flavor of routing that doesn’t use a predefined
routing table in your MaterialApp. Instead, you generate the route on
the fly:

Navigator.push<void>(context, MaterialPageRoute
<void>(builder: (BuildContext context) =>
SecondRoute());

As you can see, it’s quite a bit more complex. But it is popular if you
want custom transitions or just don’t want predefined routes.

Figure 7-1.  The back arrow in the appbar

Figure 7-2.  The Android back button works with stacks

Chapter 7 Navigation and Routing

143

�Get result after a scene is closed
With stack navigation, every pop() returns to its caller. Therefore, it is

possible to return a value from each scene. This isn’t extremely common,

but it can be super useful when you’re moving the user through a

workflow. Let’s say you have a section of your app that maintains a user

object. The user object is defined in MyUserWidget, and we provide one

button to modify the login credentials, another to modify the phone

number, and yet another to modify the Twitter handle. When the user taps

each button, we might push() them to a route where they change the data.

If so, we’ll need to return that changed data to the MyUserWidget. We’d

push() a little differently having a variable receive the returned value:

// The 'async' is needed here because we are 'await'ing below.

onPressed: () async {

 _user.twitterHandle =

 await Navigator.pushNamed(context, '/twitter');

},

Note  the await keyword implies that pushNamed() returns a Future.
Also note that any value returned from this route will be assigned to
_user.twitterHandle.

So how does this value get returned? In the pop() of course!

Navigator.pop<String>(context, twitterHandle);

Navigator.pop() is overloaded. If you add a second parameter, it will be

returned to the widget that called push() in the first place. In the preceding

example, twitterHandle will be returned.

Chapter 7 Navigation and Routing

144

Apps that are shallow work great with push() and pop(). But your

app may have a deep navigation tree with lots of choices. Apps like that

aren’t usually best served by having umpteen buttons to push() and pop().

Instead, they should have a navigation menu. Flutter provides us with two

types. Simpler apps can have tabs. More complex apps will have drawers.

Let’s look at drawers next.

�Drawer navigation
Drawers are great when we have a lot of navigation choices – too many

choices to fit in a tab. In a lot of responsive web sites, you’ll see a menu

across the top of the page with links to other pages on the site. Then when

the site is viewed on a small device or even a narrow browser, that menu is

replaced by a hamburger menu that, when clicked, will drop down a menu

filled with the same choices. Basically, this is the site responding to limited

screen real estate, providing menu choices that are hidden until the user

asks for them.

Since most phones already have limited screen real estate, you may opt

to put your menu choices in a drawer that doesn’t gobble up that precious

screen real estate until the user is ready to see them (Figure 7-3). When

he or she is ready, they’ll hit the now-familiar hamburger menu (that icon

with three lines) and the choices slide out from the left (Figure 7-4). When

the user chooses one, we’ll Navigator.push() them to a new route.

Chapter 7 Navigation and Routing

145

Figure 7-3.  A scene with the drawer closed

Chapter 7 Navigation and Routing

146

�The Drawer widget
You’ll need a Drawer widget, a built-in Flutter widget that has the ability to

slide out, slide in, and contain menu choices. When you use a drawer, you

always include it in a Scaffold’s drawer property, like this:

Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

Figure 7-4.  A scene with the drawer open

Chapter 7 Navigation and Routing

147

 title: const Text('Drawer Navigation'),

),

 body: const Text('DrawerNavigation'),

 drawer: Drawer(child: ListView(

 children: <Widget>[

 Text('Option 1'),

 Text('Option 2'),

 Text('Option 3'),

],

),),

);

}

Notice that when you have a drawer in your Scaffold, its hamburger icon

replaces the appbar’s back button. You can’t see both buttons simultaneously

unless you create your own buttons manually. So while drawer navigation

and stack navigation can work together, it can be kind of awkward if you’re not

careful. One example of them working really well together is to have a Drawer

at the topmost level, and then use stack navigation at all levels below that.

Tip D o you want a consistent drawer to be available across your
entire app? If so, we generally put a Scaffold on every scene and
include the drawer in it. Therefore, it is best to put your Drawer in its
own widget and include it:

return Scaffold(
 appBar: AppBar(
 title: const Text('Drawer Navigation'),
),
 body: const Text('DrawerNavigation'),
 drawer: MyDrawer(),
);

Chapter 7 Navigation and Routing

148

�Filling the drawer
Adding the drawer is easy. The trick is getting entries into the drawer and

then making them navigate to another widget. Note that Drawer has a

child property that accepts a single widget. To get multiple children in your

drawer, you will use a widget that supports them such as Column (doesn’t

scroll) or ListView (scrolls).

Whichever you choose, you’ll want to put something that is tappable

because to navigate, you’re going to call Navigator.push() or Navigator.

pushNamed() just like you did with stack navigation.

Tip T here’s a cool widget called a DrawerHeader that is built to
take up a large area at the top of the drawer. It is great for putting
your logo or other branding information to sort of remind the user
what app they are in. It is cosmetic only but it really does look cool.

return Drawer(

 child: ListView(

 children: <Widget>[

 DrawerHeader(

 child: Stack(

 children: <Widget>[

 Image.asset(

 'lib/assets/images/BrandLogo.jpg',

),

 Container(

 alignment: Alignment.bottomRight,

 child: Text(

 'My Brand',

 style: Theme.of(context).textTheme.display1,

)),

Chapter 7 Navigation and Routing

149

],

),

),

 ListTile(

 leading: const Icon(Icons.looks_one),

 title: const Text('Widget 1'),

 onTap: () {

 Navigator.pushNamed(context, '/widget1');

 },

),

 ListTile(

 leading: const Icon(Icons.looks_two),

 title: const Text('Widget 2'),

 onTap: () {

 Navigator.pushNamed(context, '/widget2');

 },

),

 ListTile(

 leading: const Icon(Icons.looks_3),

 title: const Text('Widget 3'),

 onTap: () {

 Navigator.pushNamed(context, '/widget3');

 },

),

],

),

);

Drawer navigation is great and all, but UX experts have a few problems

with it. They claim1 that it drastically reduces the usability of apps, making

your app less discoverable and more difficult. They say the problem is that

1�http://bit.ly/HamburgerNav

Chapter 7 Navigation and Routing

http://bit.ly/HamburgerNav

150

the options are hidden until the user asks for them. Their objection could

be resolved with an affordance that is always visible. Speaking of which ...

�Tab Navigation
As you would imagine, a tab system matches N tabs with N widgets. When the

user presses tab 1, they see widget 1 and so forth (Figure 7-5). The matching is

done with a TabBar widget, a TabBarView widget, and a TabBarController.

Figure 7-5.  A tabbar at the top and at the bottom

Chapter 7 Navigation and Routing

151

�TabController
The TabController is the least obvious part. Just know that you have to have

one or you get the error in Figure 7-6.

The easiest way to create one is to wrap everything in a

DefaultTabController() with a length property. Problem solved. This part is

pretty simple – so simple you may wonder why Flutter doesn’t create one

implicitly for you. If you were thinking that, you wouldn’t be wrong:

Widget build(BuildContext context) {

 return DefaultTabController(

 length: 3,

 child: Scaffold(

 ...

);

}

�TabBarView
Next you’ll want to add a TabBarView widget. This holds the widgets that

will eventually be shown when the user presses a tab, defining where they

Figure 7-6.  When you forget a TabController

Chapter 7 Navigation and Routing

152

will be shown. Usually this is the entire rest of the screen, but you have

the opportunity to put widgets above the TabBarView or below it or really

anywhere around it:

child: Scaffold(

 body: TabBarView(

 children: <Widget>[

 WidgetA(),

 WidgetB(),

 WidgetC(),

],

),

�TabBar and Tabs
Lastly we define the tabs themselves. Tabs can either hold text or an icon

or both. Here’s a TabBar with three tabs, each having both an icon and text:

child: Scaffold(

 appBar: AppBar(

 title: const Text('Tab Navigating'),

 bottom: TabBar(

 tabs: const <Widget>[

 Tab(icon: Icon(Icons.looks_one), child:Text('Show A')),

 Tab(icon: Icon(Icons.looks_two), child:Text('Show B')),

 Tab(icon: Icon(Icons.looks_3), child: Text('Show C')),

]),

...

Caution T here’s a one-to-one correspondence between each tab and
each TabBarView child; they are matched positionally. You must have
the same number of tabs as you do widgets inside the TabBarView.

Chapter 7 Navigation and Routing

153

�TabBar at the bottom
Note that previously we chose to put the TabBar in the appBar, which of

course appears at the top of the screen. But sometimes your design calls for

the tabs to appear at the bottom of the screen. That’s easy because the Scaffold

has a property called bottomNavigationBar and it is built to hold a TabBar:

child: Scaffold(

 ...

 bottomNavigationBar: Material(

 color: Theme.of(context).colorScheme.primary,

 child: TabBar(tabs: const <Widget>[

 Tab(icon: Icon(Icons.looks_one), child: Text('Show A')),

 Tab(icon: Icon(Icons.looks_two), child: Text('Show B')),

 Tab(icon: Icon(Icons.looks_3), child: Text('Show C')),

]),

),

),

Note T he TabBar has the normal appearance of light text on a
dark background. Thus, when you place the TabBar on top of a light
background, it may be difficult to see the text (light on light). To fix
this, wrap your TabBar in a Material widget with a darker background
color as we did earlier.

�The Dialog widget
Our last navigation category is arguably not a navigation category at all –

dialogs. In one sense, you’re showing another widget so ... navigation?

But in another sense, you’re basically showing a pop-up so ... not

navigation. ¯_(ツ)_/¯

Chapter 7 Navigation and Routing

154

Either way, dialogs are a common thing and we should cover them.

Since they don’t fit well anywhere else in the book, let’s pretend for the

moment that they are a navigation topic. Hey, work with me here.

�showDialog( ) and AlertDialog
showDialog() is a built-in Flutter method. You must supply a context and

a builder method that returns a Widget, usually either SimpleDialog or

AlertDialog. The AlertDialog has an actions parameter – a List of (typically)

FlatButtons that let the user dismiss the dialog (Figure 7-7).

RaisedButton(

 child: const Text('I am a button. Press me'),

 onPressed: () => showDialog<void>(

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 content: const Text('Press OK to continue'),

 actions: <Widget>[

 FlatButton(

 child: const Text('OK'),

 onPressed: () => Navigator.pop(context)),

],

);

Figure 7-7.  A simple AlertDialog

Chapter 7 Navigation and Routing

155

 },

),

),

This looks more complex than it needs to be. And this is the simplest

form! It gets more complex if you want to give the user choices.

�Responses with a Dialog
showDialog() returns a Future<T> which means that you can have it return

a value to its caller. Let’s pretend you want the user to respond with yes or

no (Figure 7-8).

You might create the dialog and handle the response like this:

RaisedButton(

 child: const Text('Get a response'),

 onPressed: () async {

 // The builder returns the user's choice here.

 // Since it is a Future<String>, we 'await' it to

 // convert it to a String

 String response = await showDialog<String>(

Figure 7-8.  AlertDialog that returns a value

Chapter 7 Navigation and Routing

156

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 content: const Text('Are you sure?'),

 actions: <Widget>[

 FlatButton(

 child: const Text('Yes'),

 // Return "Yes" when dismissed.

 onPressed: () => Navigator.pop(context, 'Yes')),

 FlatButton(

 child: const Text('No'),

 // Return "No" when dismissed.

 onPressed: () => Navigator.pop(context, 'No')),

],

);

 },

);

 // Do things with the response that we 'await'ed above.

 print(response);

 },

),

Tip A s the name suggests, the SimpleDialog widget is a simpler
version of the AlertDialog. It doesn’t have actions and has fewer
constructor parameters like titleTextStyle, contentTextStyle, and the
like. Use it mainly if you don’t need the user to respond to the prompt
but simply to inform.

Chapter 7 Navigation and Routing

157

�Navigation methods can be combined
While you can stack navigate to a widget with a drawer and from there

to a widget with a tab, you should be careful. The methods are not

incompatible, but, boy, they can get complex when mixed! For example,

if you stack navigate via push() to a widget with a drawer, the back button

in the appbar is no longer available. Android has a soft back button at the

bottom, but iOS does not. So the user is now stuck with no way to return.

Another example, a TabBarView has widgets, but these are hosted so

to speak so they should have no Scaffold. If you tried to navigate to that

same widget using either of the other two methods, you have no way to

get back ... no drawer to show and no back button to tap. Again, the user

is stuck.

We recommend sticking to just two different types and keeping the

levels consistent. For example, it is pretty common to have a tabbed

navigation experience for the user, and within each tab, you’ll work with

stack navigation. But get much more complex than that and you may get

your hands full.

Chapter 7 Navigation and Routing

159© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_8

CHAPTER 8

Styling Your Widgets
Styling your widgets isn’t entirely new to you. We’ve touched on some

minor styling features in prior chapters, and you’ve seen styling techniques

in our code samples. But this is the chapter where we’ll take a deep dive on

styling. Finally! We get to make our widgets look great in addition to merely

working great.

We covered layouts in Chapter 6, “Laying Out Your Widgets,” so we

know how to set the location and sizes of our widgets. That’s not styling.

Styling is the other stuff that affects the appearance of widgets. Things like:

•	 Colors

•	 Text appearance (fonts, weights, underlines, etc.)

•	 Borders (thicknesses, patterns, corner radii)

•	 Background images

•	 Applying shapes to a Container

We’ll discuss these along with a couple of Flutter widgets where there

is considerable overlap between layout and styling: Cards and Stacks.

Lastly, we’ll talk about the best practice of applying default styles en masse

using Themes.

But first a few words about the philosophy of styles in Flutter.

160

�Thinking in Flutter Styles
You’ve probably seen that Flutter has borrowed the best ideas from

Android, iOS development, and web development, especially from React

and the dynamicness of JavaScript. But it doesn’t copy their techniques

exactly. Flutter does things its own way, and it is a mistake to take the web

analogies too far. It’s to our benefit to grasp how Flutter is different.

First, Google has made Material Design1 very popular in Android

development and all across the Web. And while Flutter’s default look

conforms to Material Design, don’t let anyone tell you that you’re forced to

use it. That’s a popular but untrue misconception.

Second, Flutter’s styling is not CSS. Whereas CSS has certain

properties that are passed down to their children, Flutter styles are

not inherited. You cannot set a font family on your custom widget for

example, and have all of the Texts and TextFields and buttons beneath

it suddenly begin rendering with that font. To make that kind of thing

happen, it is possible to use Themes which we’ll show you how to do at

the end of this chapter.

Finally, Flutter, like Dart, is very verbose – it takes a lot of code to

express something you’d think should be simple. And unsurprisingly,

styling is no different. Just rest assured that some very smart people have

written Flutter and have darn good reasons for it being as wordy as it is,

safety and completeness being just two. It’s a fact of life. We just want you

to be aware and prepared for it.

1�Material Design is a set of guidelines for the look and feel of an app. Briefly, it tries
to make the UI resemble the physical world, specifically paper elements stacked
on top of one another. You can read more about it at https://material.io/

Chapter 8 Styling Your Widgets

https://material.io/

161

�A word about colors
Most Flutter styles are very narrowly applied; they only make sense for

certain tightly defined situations. On the other hand, colors are applied

nearly everywhere (Figure 8-1). Borders, text, backgrounds, icons, buttons,

and shadows all have colors. And they’re all specified in the same manner.

For example, here’s white Text in a red container with a yellow border, and

all of those widgets are colored identically with the syntax “color: Colors.

somethingOrOther”:

child: Container(

 child: Text(

 'Colors!',

 style: TextStyle(color: Colors.white,),

),

 decoration: BoxDecoration(

 color: Colors.red,

 border: Border.all(

 color: Colors.yellow,

)),

),

Chapter 8 Styling Your Widgets

162

And you see those colored blocks in the background? Those were

created like this:

List<Widget> _randomColors() {

 Random rnd = Random();

 return List.generate(25,

 (int i) => Container(

 color: Color.fromRGBO(

 rnd.nextInt(255), rnd.nextInt(255), rnd.nextInt(255), 1.0),

));

}

Figure 8-1.  Colors are everywhere in Flutter

Chapter 8 Styling Your Widgets

163

So you can create any of the 16+ million colors with Color.

fromRGBO(red, green, blue, opacity) where each of the three RGB colors is

a number between 0 and 255 and the opacity is 1.0 for fully opaque and 0.0

for fully transparent.

If you come from a web background, you might be more comfortable

creating colors using hex numbers. This works also:

color: Color(0xFFFF7F00),

Caution  Be careful. That hex number is actually “ARGB” where the
first two hexadecimal characters are the alpha channel. If you forget
it, like Color(0xFFF700), you’ll be painting it full transparent and you’ll
never see it. Just remember that if your colors don’t show up, take
that typical web hex number and put an “FF” in front of it.

�Styling Text
There are two topics regarding the appearance of Text: TextStyle and

Custom Fonts. We’ll deal with these in the following page or two but stay

tuned until the end of the chapter where we’ll be dealing with a better way

of setting those properties – Themes.

�TextStyle
Text widgets have a style property which takes a TextStyle object (Figure 8-2).

Chapter 8 Styling Your Widgets

164

Without TextStyle With TextStyle

Widget build(BuildContext ctx) {

return Scaffold(

body: Center(

child: Text("Hello world"),

),

);

}

Widget build(BuildContext ctx) {

return Scaffold(

body: Center(

child: Text(

"Hello world",

style: TextStyle(

color: Colors.blue,

decoration:

TextDecoration.lineThrough,

fontFamily: "Courier",

fontSize: 34.0,

fontStyle: FontStyle.italic,

fontWeight: FontWeight.bold,

),

),

),

);

}

Figure 8-2.  With and without style

Chapter 8 Styling Your Widgets

165

You’ll simply set the style property to an instance of a TextStyle widget

and set properties. TextStyle supports about 20 properties. Here are the

most useful:

•	 color – Any of the valid 16+ million colors

•	 decoration – TextDecoration.underline, overline,

strikethrough, none

•	 fontSize – A double. The number of pixels tall to make

the characters. Default size 14.0 pixels

•	 fontStyle – FontStyle.italic or normal

•	 fontWeight – FontWeight.w100-w900. Or bold (which is

w700) or normal (which is w400)

•	 fontFamily – A string

fontFamily is a bigger topic. There are some fonts that are built-in like

Courier, Times New Roman, serif, and a bunch more. How many more? It

depends on the type of device on which the app is running. Since we don’t

have control over the users’ devices, the best practice is for you to stick to

the default font family unless you install and use a custom font. Let’s talk

about how to do that.

�Custom fonts
Certain designers call for custom fonts when they design scenes. It turns

out with Flutter, using custom fonts is easy to implement, and they work

cross-platform. It involves three steps:

	 1.	 Download the custom font files which are in ttf,

woff, or woff2 format. These are customarily stored

in a root-level folder called fonts, but the name is up

to you (Figure 8-3).

Chapter 8 Styling Your Widgets

166

Tip Y ou can find some excellent and free fonts at http://fonts.
google.com. Search through them by type, see samples, and
download them easily.

	 1.	 Add the font files to the pubspec.yaml file under

flutter/fonts so that the compiler is notified to

bundle them in the installation file.

flutter:

 fonts:

 - family: MrDafoe

 fonts:

 - asset: fonts/MrDafoe-Regular.ttf

 - family: NanumBrushScript

 fonts:

 - asset: fonts/NanumBrushScript-Regular.ttf

	 2.	 Use the case-insensitive font name in the fontFamily

property of the TextStyle widget like we talked about

in the previous section:

Figure 8-3.  Fonts are usually stored in a folder called fonts

Chapter 8 Styling Your Widgets

http://fonts.google.com
http://fonts.google.com

167

Text(loremIpsums[0]), // Unstyled

Text(loremIpsums[1], �// Some, like Courier may be

built-in

 style: TextStyle(fontFamily: 'Courier'),),

Text(loremIpsums[2],

 style: TextStyle(fontFamily: 'NanumBrushScript'),),

Text(loremIpsums[3],

 style: TextStyle(fontFamily: 'MrDafoe'),),

The example above might look like Figure 8-4.

Figure 8-4.  Available fonts

Chapter 8 Styling Your Widgets

168

�Container decorations
How do you add borders to Text? You can’t. How about a background to an

Icon? Nope. They don’t have the capacity to have those decorations. But

you know what does? A Container. When you have styling problems like

these, the answer is almost always to wrap widgets in a Container and put

a decoration on the Container.

Containers have a catch-all styling property called decoration. Here’s

an example of how to put a shadow on a container:

child: Container(

 width: 300.0,

 height: 300.0,

 decoration: BoxDecoration(

 color: Colors.purple,

 boxShadow: [

 BoxShadow(

 offset: Offset.fromDirection(0.25*pi, 10.0),

 blurRadius: 10.0,

)

],

),

),

Figures 8-5 and 8-6 show boxes without and with shadows.

Chapter 8 Styling Your Widgets

169

And this is a terrific example of the wordiness with Flutter. In the Web,

this would have been done in 17 characters. But in Flutter we have to

remember that boxShadow is an array of BoxShadows, each of which has

an offset which takes a direction expressed in radians, a size expressed in

pixels, and the blur radius is in pixels also. Sheesh!

Blur radius may call for additional explanation. The blur radius is the

distance over which the shadow dissipates. It’s like putting a lampshade on

a lamp. Without a shade, the light is harsh and shadows are crisp. With a

lampshade, the light is softer and the shadows are also. The larger the blur

radius, the softer the shadow.

Figure 8-5.  Without a box shadow

Figure 8-6.  With a box shadow

Chapter 8 Styling Your Widgets

170

Caution Y ou cannot specify a color directly on a Container if you’re
also using a BoxDecoration. But don’t panic; BoxDecoration also has
a color property. Just move your Container’s color property into the
BoxDecoration for the same effect.

There are a number of other decorations available. Let’s look at the

most useful ones, border, borderRadius, and BoxShape.

�Border
Just like you used a BoxDecoration for shadows, you also use them to put

a border on a container. Here’s a red border with four different widths

(Figure 8-7):

decoration: BoxDecoration(

 color: Colors.purple,

 border: Border(

 top: BorderSide(

 width: 10,

 color: Colors.red,

),

 right: BorderSide(

 width: 20,

 color: Colors.red,

),

 bottom: BorderSide(

 width: 30,

 color: Colors.red,

),

Chapter 8 Styling Your Widgets

171

 left: BorderSide(

 width: 40,

 color: Colors.red,

),

),

),

Figure 8-7.  Borders with different widths

While it’s nice that Flutter allows us to have different widths and even

different colored borders, how often will you use that? Usually all four sides

will be uniform. So we commonly use the shorthand Border.all():

decoration: BoxDecoration(

 color: Colors.purple,

 border: Border.all(

 width: 10,

 color: Colors.red,

),

),

Much simpler. Yes, still verbose, but simpler.

Chapter 8 Styling Your Widgets

172

�BorderRadius
Rounded corners are a favorite look. You can make a Container rounded

even if it doesn’t have a border (Figure 8-8). You do this with BorderRadius:

decoration: BoxDecoration(

 color: Colors.purple,

 borderRadius: BorderRadius.only(

 topLeft: Radius.circular(20.0),

 topRight: Radius.circular(60.0),

),

),

Figure 8-8.  BorderRadius on two corners

We only gave it a topLeft and a topRight radius, but there is also a

bottomLeft and bottomRight property. And although we appreciate the

flexibility, it is not typical to use it. We ordinarily specify all four the same

(Figure 8-9):

decoration: BoxDecoration(

 color: Colors.purple,

 borderRadius: BorderRadius.all(

Chapter 8 Styling Your Widgets

173

 Radius.circular(20.0),

),

),

Figure 8-9.  BorderRadius on all four corners

�BoxShape
Your containers don’t have to always be rectangles. When you need it to

be another shape, you can make it so with BoxShape or CustomPainter.

BoxShape is much easier to use, but it only supports circles, as in Figure 8-10

(in addition to the default rectangle, of course):

Container(

 decoration: BoxDecoration(

 shape: BoxShape.circle,

 color: Colors.deepOrange,

),

),

Chapter 8 Styling Your Widgets

174

CustomPainter is way more complex, but it allows infinite shapes.

It would be distracting to get too deep into the details of CustomPainter

(Figure 8-11), but here’s a quick example, a Superman shield:

Container(

 child: CustomPaint(

 size: Size(200, 200),

 painter: SupermanShieldPainter(),

),

)

class SupermanShieldPainter extends CustomPainter {

 @override

 void paint(Canvas canvas, Size size) {

 canvas.drawPath(Path()

 ..moveTo(25, 0)

 ..lineTo(125, 0)

 ..lineTo(150,25)

 ..lineTo(75, 125)

 ..lineTo(0,25)

 ..lineTo(25,0),

 Paint()

 ..style=PaintingStyle.fill

Figure 8-10.  BoxShape.circle makes your Container round

Chapter 8 Styling Your Widgets

175

 ..color = Colors.red

);

 }

 @override

 �bool shouldRepaint(SupermanShieldPainter oldDelegate) => false;

}

Figure 8-11.  Using a CustomPainter

See? Quite a bit more involved. Note that your container is still a

rectangle. It’s just that the background is different. To dive deeper into

CustomPainter, take a look at https://api.flutter.dev/flutter/

widgets/CustomPaint-class.html.

Tip A ll of these decorations are applied to the decoration property,
but they also apply to a property called foregroundDecoration which,
as the name suggests, is applied on a layer above the container. The
same decorations apply there. But because they’re drawn on top of
the other things, you’ll want to keep in mind one more modification:
opacity. Colors can be made semi-transparent. The following would
create a red layer on top of a container that is 50% transparent:

foregroundDecoration: BoxDecoration(

 color:Colors.red.withOpacity(0.5),

),

Chapter 8 Styling Your Widgets

https://api.flutter.dev/flutter/widgets/CustomPaint-class.html
https://api.flutter.dev/flutter/widgets/CustomPaint-class.html

176

�Stacking widgets
If you ever want two or more things to occupy the same x- and y-position

on the screen, reach for the Stack widget. The stack widget enables us to

lay down a widget and then put another widget in front of it and another

one in front of that one and so on. Obviously the ones added later will have

a higher z-index, thereby “occulting” (hiding) the one behind it. Basically it

allows you to ... well ... stack the inner widgets.

Using a Stack, you can create some really cool layouts. In fact, Material

Cards rely on Stacks a lot because they embrace background images with

text on top of it. Maybe we want a card with a person’s profile pic with their

name and info superimposed on top (Figure 8-12).

Image for Figures 8-12 through 8-14 courtesy Hosein Hakimi on

Unsplash.com

Figure 8-12.  A Card with text on top of an image thanks to a Stack
widget

Chapter 8 Styling Your Widgets

http://unsplash.com

177

Here’s how we might accomplish that:

Card(

 child: Stack(

 children: <Widget>[

 Image.asset("6.jpg"),

 Column(

 children: <Widget>[

 Text(

 "Sandeep Patel",

 style: Theme.of(context).textTheme.display1

 .copyWith(color: Colors.white),

),

 Expanded(child: Container()),

 Text("Email: s.patel@us.com",

 style: Theme.of(context)].textTheme.body2

 .copyWith(color: Colors.white)),

 Text("Phone: +1 (555) 786-3512",

 style: Theme.of(context).textTheme.body2

 .copyWith(color: Colors.white)),

],

),

],

),

),

In the Stack, we placed an image first. Then on top of that, we added a

Column with text elements. Since the Column was added after the image,

it appears in front of the image.

Chapter 8 Styling Your Widgets

178

�Positioned widget
In our preceding example, the texts laid out decently because a Column

centers its children and the Expanded pushed the Texts to the top and

bottom. But if we just had everything directly in the Stack, it would look

like Figure 8-13.

Figure 8-13.  Without a Positioned widget everything bunches up in
the upper left

When you use a Stack, every widget inside it will try to stay in the top-

left corner. We can place those inner widgets in a Stack anywhere we want

by wrapping them in a Positioned widget.2

Card(

 child: Stack(

 children: <Widget>[

 Image.asset("6.jpg"),

 Positioned(

 top: 10, left: 10,

 child: Text("Sandeep Patel",

2�There are other techniques to position inside of a Stack such as Container, Align,
and Padding. But Position works great with Stack.

Chapter 8 Styling Your Widgets

179

 style: Theme.of(context).textTheme.display1

 .copyWith(color: Colors.white),

),

),

 Positioned(

 bottom: 30, right: 10,

 child: Text("Email: s.patel@us.com",

 style: Theme.of(context).textTheme.body2

 .copyWith(color: Colors.white)),

),

 Positioned(

 bottom: 10, right: 10,

 child: Text("Phone: +1 (555) 786-3512",

 style: Theme.of(context).textTheme.body2

 .copyWith(color: Colors.white)),

),

 Positioned(

 bottom: 0, left: 0, height: 100, width: 100,

 child: FlutterLogo(),

)

],

),

),

We threw in a FlutterLogo for good measure. It now looks like

Figure 8-14. Much nicer!

Chapter 8 Styling Your Widgets

180

The Positioned widget makes its child a fixed distance from one of the

four corners by specifying the top, bottom, left, and/or right positions.

�Card widget
You may have noticed that we used a Card widget in our preceding

example. A Card feels like the right thing to do in this situation, but it is by

no means required.

A Flutter Card widget was created to implement the Material Design

look and feel, having properties like color for the background color,

elevation for a drop shadow size, borderOnForeground for the border,

and margin for spacing around it. Granted, all of those could also be

accomplished with a Container. But if you want to do it with a standard

look and feel, a Card makes it easy:

Card(

 elevation: 20.0,

 child: Text("This is text in a card",

 style: Theme.of(context).textTheme.display3),

),

Figure 8-14.  Much nicer looking with a Positioned widget

Chapter 8 Styling Your Widgets

181

�Themes
I don’t know about you, but I love it when an app is well-planned, thought

out, and designed beforehand. If it isn’t, you can end up with this crazy

quilt of colors and fonts with an unpredictable, uneven use of italics,

bolding, and underlines. In short, you don’t want to recreate http://

lingscars.com.

A consistent use of styling creates a pleasant app that exudes quality.

And a great way of staying consistent is simply to stick to a Theme.

A Theme in Flutter is a grouping of styles in logically-defined
groups that can be applied together.

This way, not only does your app have a consistent look and feel

throughout, but you can easily change the theme in one (1!) place,

MaterialApp, and it propagates to all children:

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Ch 8 - Styling Text',

 theme: ThemeData(primarySwatch: Colors.yellow),

 home: HomeWidget(),

);

 }

}

Chapter 8 Styling Your Widgets

http://lingscars.com
http://lingscars.com

182

If you do nothing else with themes, you’re going to want to set the

primarySwatch color. In doing so, you’re actually setting all of the other

colors. By setting primarySwatch, these are all automatically set also:

accentColor backgroundColor bottomAppBarColor

buttonColor canvasColor cardColor

colorScheme cursorColor dialogBackgroundColor

disabledColor dividerColor errorColor

highlightColor hintColor indicatorColor

primaryColor primaryColorDark primaryColorLight

scaffoldBackgroundColor secondaryHeaderColor selectedRowColor

splashColor textSelectionColor textSelectionHandleColor

toggleableActiveColor unselectedWidgetColor

This is extremely efficient. One line of code sets all of these other things

to decent values. Of course if you have special requirements that call for

one of these colors to change (i.e., your users are scared of the color red),

then by all means change whatever you need. But you’re generally going to

want to use the defaults because each color is engineered to look good as a

set alongside the primaryColor and all of the others.

There are lots of settings besides color in your Theme, things like size

of tick marks in a slider, what kind of animations happen when navigating

from scene to scene, whether modal dialogs have sharp or rounded

corners, and so on. Just like with colors, feel free to change them if your

app calls for it, but it is awesome that we aren’t forced to deal with these

minutiae and can focus on building a cool app.

Explore all of the properties in your Theme here: https://docs.

flutter.io/flutter/material/ThemeData-class.html. It will take a

while. There’s a ton of options there. I’m just grateful that instead of having

to manage them all, we can just set primarySwatch and be done with it!

Chapter 8 Styling Your Widgets

https://docs.flutter.io/flutter/material/ThemeData/accentColor.html
https://docs.flutter.io/flutter/material/ThemeData/backgroundColor.html
https://docs.flutter.io/flutter/material/ThemeData/bottomAppBarColor.html
https://docs.flutter.io/flutter/material/ThemeData/buttonColor.html
https://docs.flutter.io/flutter/material/ThemeData/canvasColor.html
https://docs.flutter.io/flutter/material/ThemeData/cardColor.html
https://docs.flutter.io/flutter/material/ThemeData/colorScheme.html
https://docs.flutter.io/flutter/material/ThemeData/cursorColor.html
https://docs.flutter.io/flutter/material/ThemeData/dialogBackgroundColor.html
https://docs.flutter.io/flutter/material/ThemeData/disabledColor.html
https://docs.flutter.io/flutter/material/ThemeData/dividerColor.html
https://docs.flutter.io/flutter/material/ThemeData/errorColor.html
https://docs.flutter.io/flutter/material/ThemeData/highlightColor.html
https://docs.flutter.io/flutter/material/ThemeData/hintColor.html
https://docs.flutter.io/flutter/material/ThemeData/indicatorColor.html
https://docs.flutter.io/flutter/material/ThemeData/primaryColor.html
https://docs.flutter.io/flutter/material/ThemeData/primaryColorDark.html
https://docs.flutter.io/flutter/material/ThemeData/primaryColorLight.html
https://docs.flutter.io/flutter/material/ThemeData/scaffoldBackgroundColor.html
https://docs.flutter.io/flutter/material/ThemeData/secondaryHeaderColor.html
https://docs.flutter.io/flutter/material/ThemeData/selectedRowColor.html
https://docs.flutter.io/flutter/material/ThemeData/splashColor.html
https://docs.flutter.io/flutter/material/ThemeData/textSelectionColor.html
https://docs.flutter.io/flutter/material/ThemeData/textSelectionHandleColor.html
https://docs.flutter.io/flutter/material/ThemeData/toggleableActiveColor.html
https://docs.flutter.io/flutter/material/ThemeData/unselectedWidgetColor.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html

183

You’ll notice in that list that there’s a textTheme, an appBarTheme,

an InputDecorationTheme, a sliderTheme, and many more. Let’s talk

about these groupings for a second. Many types of thing in your app have a

default theme which collects style properties for that type. When you add a

widget of that type, it automatically gets the theme properties by default.

�Applying theme properties
Remember, you don’t have to do anything in order to use the themes on

almost every widget in your app. Nothing. In fact, that’s the whole idea

of setting a Theme and some of the underlying properties; your app just

absorbs them when they’re rendered. The theme becomes their default

look and feel.

But what if you want to overtly apply a theme? For instance, you

have a Text widget at the top of a scene and you want it to function as

a page heading. Or maybe below that somewhere you want a second-

level heading. Perhaps a sub-heading somewhere. How do you tell these

special Text widgets that they are supposed to be drawn in a special way?

Remember the style property?

Text widgets have a style property that takes a TextStyle object. But you

can access well-known text styles from the theme like so:

Text('title', style: Theme.of(context).textTheme.title),

Text('subtitle', style: Theme.of(context).textTheme.subtitle),

Text('headline', style: Theme.of(context).textTheme.headline),

Text('subhead', style: Theme.of(context).textTheme.subhead),

You have the Material textThemes in Table 8-1 to choose from.

Chapter 8 Styling Your Widgets

184

Figure 8-15 shows what they all look like.

Table 8-1.  Material theme text styles

Text theme
name

Description

body1 Most of the text you see. This will be the default style if you don’t

explicitly apply one

body2 Slightly thicker body text

button The default font on buttons, typically all caps and spread out a bit

caption For photo captions

display1 The smallest headline (aka headline4)

display2 The 3rd biggest headline (aka headline3)

display3 The 2nd biggest headline (aka headline2)

display4 The biggest headline (aka headline1)

headline Your go-to style for headlines (aka headline5)

subhead For subheadings. Usually right below a heading.

title (aka headline6)

subtitle For sub-subheadings. Usually right below a title

overline Rarely used. For introducing a headline

Chapter 8 Styling Your Widgets

185

Figure 8-15.  How the Material text styles look on a device

Chapter 8 Styling Your Widgets

186

Tip  When you want to apply a style from a theme but want to
change a few properties, use copyWith(). Here’s an example:

Text('Foo', style:

 Theme.of(context).textTheme.body2.copyWith(color:Colors.red),

),

You’re reaching up into a current style and making a copy of it but
altering one or two properties for this instance. This allows you to use
your slightly customized style while leaving the original unaltered.

�Conclusion
So you can see that the options for styling things in Flutter are near infinite.

Flutter styling resembles what you may have seen in CSS, but is by no

means the same. First, it is more verbose. And second, it doesn’t inherit.

Some people may resent these characteristics, but others will like the

cleanness that it creates.

Regardless of how you feel about that, you’ve got to be impressed

with the styling options that Flutter provides, especially when you think

about how they’re organized in Themes so we can present a consistent,

professional look and feel throughout our app.

Now, for the moment you’ve all been waiting for ... let’s learn how to

handle Stateful widgets!

Chapter 8 Styling Your Widgets

187© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_9

CHAPTER 9

Managing State
We kind of telegraphed this topic since the first chapter because we’ve

been writing classes that extend a StatelessWidget. Now if Flutter has a

StatelessWidget, then you’d think it also has a StatefulWidget. And you’d

be right.

But what exactly is a StatefulWidget? How does it differ from a stateless

one? When do we choose one vs. the other? What is the structure of a

StatefulWidget? Are there rules for using one? If the data changes, how do

you re-render it? Good questions, right? Well, be patient young Jedi and

we’ll answer all of those and more in this chapter.

�What is state?

State is widget data whose change requires a re-render.

—Rap Payne ;-)

StatelessWidgets might have data, but that data either doesn’t change or

doesn’t change how the screen looks while the widget is alive. Sure, it may

change when Flutter destroys and recreates the widget, but that doesn’t

count. To be state, it must change while the widget is active, and that

change requires a re-render in order to stay current.

188

Flutter gives us certain widgets that are stateful out of the box

 •  AppBar

 •  BottomNavigationBar

 •  Checkbox

 •  DefaultTabController

 •  Dismissible

 •  DrawerController

 •  DropdownButton

 •  EditableText

 •  Form

 •  FormField

 •  GlowingOverscrollIndicator

 •  Image

•  InputDecorator

•  MonthPicker

•  Navigator

•  ProgressIndicator

•  Radio

•  RefreshIndicator

•  Scaffold

•  Scrollbar

•  Slider

•  Switch

•  TextField

•  YearPicker

... and many more. These all have internal data that must be

maintained and monitored so that as the data changes, we re-render the

widget to reflect the said change.

Let’s take a simple example: a TextField widget. Yes, we’re talking

about the built-in widget that’s kind of like a textbox on the Web; the user

can type characters into it. You realize of course that as the user types, the

widget is keeping track of and displaying the stuff that they’re typing. That,

my friend, is state.

That’s great and all, but how do we write our own StatefulWidgets?

Read on!

Chapter 9 Managing State

https://docs.flutter.io/flutter/material/AppBar-class.html
https://docs.flutter.io/flutter/material/BottomNavigationBar-class.html
https://docs.flutter.io/flutter/material/Checkbox-class.html
https://docs.flutter.io/flutter/material/DefaultTabController-class.html
https://docs.flutter.io/flutter/widgets/Dismissible-class.html
https://docs.flutter.io/flutter/material/DrawerController-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/widgets/EditableText-class.html
https://docs.flutter.io/flutter/widgets/Form-class.html
https://docs.flutter.io/flutter/widgets/FormField-class.html
https://docs.flutter.io/flutter/widgets/GlowingOverscrollIndicator-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/material/InputDecorator-class.html
https://docs.flutter.io/flutter/material/MonthPicker-class.html
https://docs.flutter.io/flutter/widgets/Navigator-class.html
https://docs.flutter.io/flutter/material/ProgressIndicator-class.html
https://docs.flutter.io/flutter/material/Radio-class.html
https://docs.flutter.io/flutter/material/RefreshIndicator-class.html
https://docs.flutter.io/flutter/material/Scaffold-class.html
https://docs.flutter.io/flutter/material/Scrollbar-class.html
https://docs.flutter.io/flutter/material/Slider-class.html
https://docs.flutter.io/flutter/material/Switch-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/YearPicker-class.html

189

�What goes in a StatefulWidget?
Here’s the shape of a StatefulWidget:

class Foo extends StatefulWidget {

 @override

 _FooState createState() => _FooState();

}

class _FooState extends State<Foo> {

 //Private variables here are considered the 'state'

 @override

 Widget build(BuildContext context) {

 return someWidget;

 }

}

A stateful widget looks pretty complex, but once you get used to its

structure, it becomes second nature. We traditionally write it in one Dart

file, but it always consists of two classes: the widget class and a state class.

The widget class inherits from StatefulWidget and is public because it

is the thing that will be placed in other widgets.

The state class is always private because the current widget is the only

thing that will ever see this class. The state class is responsible to ...

	 1.	 Define and maintain the state data.

	 2.	 Define the build() method – It knows how to draw

the widget on screen.

	 3.	 Define any callback functions needed for data

gathering or event handling.

What does that leave for the widget class? Not much. The widget class

just kind of gets out of the way.

Chapter 9 Managing State

190

So then why separate them? There are two reasons. First, the single

responsibility principle1 (the SRP) suggests that we should have one thing

responsible for drawing the widget and another thing responsible for

dealing with data. That’s just good software design. Other frameworks

suggest that you separate UI from state management, but most don’t

enforce it. Flutter does.

Second is performance. Redrawing takes time. Recalculating state takes

time. When we separate them like this, we are giving the processor a chance

to handle these two things independently. Sometimes a redraw doesn’t need

to happen just because state changes. So we save the cycles of redrawing.

Also, when we redraw, Flutter creates and draws a whole new widget.

The old widget in memory is no longer needed so it is dereferenced and

eventually garbage collected. That’s awesome but state is still needed.

If Flutter retains that old state object, it can be reused instead of being

garbage collected and recreated. By separating these objects, Flutter

decouples them so they can each be handled in its own most efficient way.

It’s a brilliant design!

�The most important rule about state!
When you change any state value, you should do it ...

	 1.	 In the state class

	 2.	 Inside a function call to setState():

setState(() {

 // Make all changes to state variables here...

 _value = 42; // <-- ... Like this

});

1�https://en.wikipedia.org/wiki/Single_responsibility_principle

Chapter 9 Managing State

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

191

setState() takes a function which is run ... uh ... soon. The Flutter

subsystem batches changes and runs them all at a time that it decides is

optimal. This is extremely efficient because, among other reasons, it will

reduce the number of screen redraws.

setState() not only sets the variables in the most efficient and

controlled way, but it always forces a re-render of this widget to occur. It

invokes build() behind the scenes. The end result: When you change a

value, the widget redraws itself and your user sees the new version. Note

that if this widget has subwidgets inside of it (aka inner widgets), they’ll be

in the build() method, so a call to setState() actually redraws everything in

this widget including all of its subtrees.

If this causes you to panic for a second, please remember that

Flutter uses a virtual widget tree, so even though we are telling it to draw

everything, it is smart enough to know what parts of the screen don’t need

a refresh and it only technically redraws those parts that do need it. It is

superefficient!

�Passing state down
Okay, you got me. Technically, you can’t pass state from a host widget into

an inner widget because state only exists within a widget. But we definitely

want to pass data down. That data may be stateful data in the host widget,

and it may be moved to state in the inner widget.

But this is nothing new. We did it with stateless widgets. As a reminder,

you simply declare class-scoped final variables and supply their initial

values in constructor parameters.

But how is the passed value visible in the State class? Flutter provides

us an object called widget which represents the StatefulWidget. In other

words, if there is a variable called “x” in the StatefulWidget, it is visible in

the State class as “widget.x”:

Chapter 9 Managing State

192

class Foo extends StatefulWidget {

 final String passedIn;

 // Value passed in from its host

 ColorValueChanger({Key key, this.passedIn}) : super(key: key);

 _FooState createState() => new _FooState();

}

class _FooState extends State<Foo> {

 @override

 Widget build(BuildContext context) {

 return Text(widget.passedIn,);

 }

}

Now that we know how to pass data down from host widget to inner

widget, let’s go the other way and see how to pass data back up from the

inner widget to the host.

�Lifting state back up
And you got me again. You can’t pass state. But it gets worse. With Flutter,

you can’t pass anything up.

Flutter has one-way data flow. Period. Data can only flow down from a

host widget to an inner widget. We’ve been doing this for, what, about 200

pages now? But sometimes we need data to flow from an inner back up to

a host.

For instance, let’s say we have a Login.dart widget with username/

password textfields and a submit button. We’d place this Login in other

widgets provided that the user is not already logged in. The business logic

to log in must be in the Login widget itself. But when they successfully log

in, we really need to let the host widget – or even all widgets – know they

are now authenticated. The token needs to be passed back up. But how do

we do that when we can’t pass data (state) up to a host?

Chapter 9 Managing State

193

Here’s the trick. Don’t pass the data up. Pass the handler method

down! In Dart (as in JavaScript), functions are first-class objects. This

means that their references can be passed around like data. This also

means that you can pass a function from a host widget down into inner

widgets. Now that the inner widget has a handle to this function, it can

call it as if it were its own. But of course when the inner widget calls it, if

it passes a value into that function, the value is seen in the host where the

function is defined.

This technique is called lifting the state up (Figure 9-1).

Logged
out

User

Password

Host.dept

Login.dept Login.dept

Host.dept

_loggedIn=false
_loggedIn=true

(written host) (the original)

f(x) f(x)

f(x)

Running it in the
inner actually

invokes it
in the host

Pass a reference into
the inner widget

(A reference)

Figure 9-1.  Lifting state up

�An example of state management
We should probably look at some code to solidify these concepts. Let’s say

we have an app that allows its user to create a color by adjusting red, green,

and blue values on three sliders. These will mix the colors and show it in a

bigger circle (Figure 9-2).

Chapter 9 Managing State

194

Clearly the big circle needs to redraw as data changes so we must have

state. While we technically could have all of this in one big widget called

ColorMixer, we’ve learned in this book to decompose large widgets into

smaller, more specialized ones. Let’s extract the ColorCircle and use it for

the big circle and also for the favorite colors at the bottom. And since we’ve

got three sliders with labels, all doing the same thing we should probably

extract that also into a ColorValueChanger. So how about the layout in

Figure 9-3?

Figure 9-2.  An example stateful widget

Chapter 9 Managing State

195

The ColorMixer must be stateful:

import 'package:flutter/material.dart';

import 'ColorCircle.dart';

import 'ColorValueChanger.dart';

// The stateful widget

class ColorMixer extends StatefulWidget {

 ColorMixer({Key key}) : super(key: key);

 _ColorMixerState createState() => _ColorMixerState();

}

// The state object

class _ColorMixerState extends State<ColorMixer> {

 // These three variables are the 'state' of the widget

 int _red = 0;

 int _blue = 0;

 int _green = 0;

Color Mixer

Color Circle

Draws a circle
Given a size and
a color.

One of the
Sliders. We’ll
reuse it three

times.

Color Value Changer

Figure 9-3.  How we might lay out the widget tree

Chapter 9 Managing State

196

 @override

 Widget build(BuildContext context) {

 return Container(

 child: Column(

 children: <Widget>[

 // This widget uses the variables (aka state)

 ColorCircle(color: Color.fromRGBO(_red, _green, _blue, 1),

 radius: 200,),

 // These three pass the _setColor function down so that the

 // state *here* can be changed at lower levels. This is

 // called "lifting state up".

 ColorValueChanger(property: "Red", value:_red,

 onChanged: _setColor),

 ColorValueChanger(property: "Green", value:_green,

 onChanged: _setColor),

 ColorValueChanger(property: "Blue", value:_blue,

 onChanged: _setColor),

],

),

);

}

void _setColor(String property, int value) {

 setState(() {

 _red = (property == "Red") ? value : _red;

 _green = (property == "Green") ? value : _green;

 _blue = (property == "Blue") ? value : _blue;

 });

 }

}

Chapter 9 Managing State

197

Note that we’re passing 100% of what ColorCircle needs into it and

it doesn’t change throughout the life of ColorCircle. If ColorMixer’s state

changes, we simply call setState(), thereby re-rendering it ... including

ColorCircle. Thus, ColorCircle can be stateless.

In the same way, we pass an initial value into each ColorValueChanger,

and we pass a reference to the _setColor method. Remember, passing

a function down makes it available in the inner widget and therefore

executable. Although the inner widget executes it, the function actually

exists in the host widget!

Here’s how it would look in the inner ColorValueChanger widget:

 @override

 Widget build(BuildContext context) {

 return Container(

 child: Column(

 children: <Widget>[

 Text(property),

 Slider(

 min: 0,

 max: 255,

 value: _value.toDouble(),

 label: property,

 onChanged: _onChanged,

),

],

),

);

 }

 _onChanged(double value) {

 setState(() => _value = value.round());

 onChanged(property, value.round()); // Lifting state up

 }

Chapter 9 Managing State

198

�When should we use state?
But you know what? The very best way to avoid complex state is to avoid

having state at all. Just about every expert agrees that if you can avoid state

altogether, do. But it can be confusing as to when you need state and when

you don’t.

For example, the label on our color picker is data within the

component. Should that be state? No, of course not; it doesn’t change.

How about a loop counter on a for loop? Nope; it never affects anything in

the build() method, so it doesn’t need to be put in a setState(). See? State

can sometimes be simplified or eliminated.

Figure 9-4 provides a summary of how to decide.

Chapter 9 Managing State

199

Figure 9-4.  How you might go about deciding whether state should
actually be used in a widget

Chapter 9 Managing State

200

�Advanced state management
What we’ve looked at in this chapter would work as advertised even when

the widget tree gets infinitely deep. But please realize that as your app gets

bigger and bigger, state management become more and more complex.

When it gets too complex, you may be better served by using a more

advanced state management pattern. These patterns are not always easy to

learn, but at some point in your app’s growth, they become worth the effort

to master.

We wanted to keep this chapter digestible so we can’t go into details on

all of these technologies, but we also didn’t want to pretend the problem

doesn’t exist.

�InheritedWidget
This is a relatively simple solution, maybe too simple for most needs.

InheritedWidget2 is a built-in Flutter widget. Essentially it creates a small

set of global variables that are made available in a controlled way to all

descendants in its tree. Several of the other methods (ScopedModel,

Provider, Redux) are wrappers around InheritedWidget.

Pros: No library to install or keep track of.

Cons: There is some duplication between the InheritedWidget and the

underlying StatefulWidget. That’s a shame. Also the entire subtree is re-

rendered when any data changes.

�BLoC
BLoC is an acronym for Business Logic Component, and it’s less of a

solution than a design pattern. BLoC was created by Google so naturally; it

was embraced by the Flutter community.

2�https://docs.flutter.io/flutter/widgets/InheritedWidget-class.html

Chapter 9 Managing State

https://docs.flutter.io/flutter/widgets/InheritedWidget-class.html
https://docs.flutter.io/flutter/widgets/InheritedWidget-class.html

201

Pros: Lots of folks in the community can and will help you. It is a solid,

well-vetted pattern.

Cons: You have to write everything yourself; it’s neither built-in nor a

library. It can be hard to know where to inject a BLoC.

�ScopedModel
ScopedModel3 is a library “shamelessly borrowed” from the Fuchsia4

codebase by Brian Egan. (Hey, these are Brian’s words, not mine! He’s a

humble guy.) ScopedModel creates data models with the ability to register

listeners. Each model notifies its listeners when the data has changed so

they can update. Clever design.

Pros: Does its job of separating presentation and data very well.

Cons: There is talk of ScopedModel being combined with Google’s

flutter_provide5 which seems to be a more modern and simpler approach

to state management.

�Hooks
An implementation of React hooks by Rémi Rousselet of Paris called

flutter_hooks.6 You no longer use StatefulWidgets at all. Instead you inherit

from a HookWidget which is stateless (therefore simpler) but allows you to

create and access custom functions that read and write state values. It even

comes with some pre-baked hooks that you don’t have to write.

Pros: Greatly simplifies your formerly stateless widgets.

Cons: Learning curve. It isn’t obvious how they work and the rules for

use unless you’re already familiar with React hooks.

3�https://pub.dartlang.org/packages/scoped_model
4�https://fuchsia.googlesource.com/
5�https://pub.dartlang.org/packages/provide
6�https://pub.dartlang.org/documentation/flutter_hooks

Chapter 9 Managing State

https://pub.dartlang.org/packages/scoped_model
https://fuchsia.googlesource.com/
https://pub.dartlang.org/packages/provide
https://pub.dartlang.org/documentation/flutter_hooks
https://pub.dartlang.org/packages/scoped_model
https://fuchsia.googlesource.com/
https://pub.dartlang.org/packages/provide
https://pub.dartlang.org/documentation/flutter_hooks

202

�Provider
At the time of this writing, there’s some confusion between Provider,7

also written by Rémi Rousselet, and a similarly named one written by

Filip Hracek and the good folks at Google. Filip freely admits that Rémi’s

package “is more feature-ful”8 (sic).

Pros: A very robust and capable package that is comparatively

simple to use. In the near future, I expect this to become the go-to state

management library for developers who don’t already have a leaning

toward Redux and/or hooks because of prior experience with the React

ecosystem.

Cons: Not (yet) as popular as some of the others.

Note that there is a lot of confusion between this package and flutter-

provide created by Google because of the naming. The latter one, taken

from the Fuchsia codebase and open-sourced, may be combined with

ScopedModel and deprecated.

�Redux
Like a few others on this list, Redux is a library borrowed from other

technologies and ported to Dart. Redux has a deep history coming from the

world of React via Facebook. There are several implementations, but the

most popular is here: flutter_redux.9 Also written by the prolific Brian Egan.

Cons: Very steep learning curve.

Pros: Very performant. Very scalable. Many React developers already

know Redux.js. The learning curve flattens significantly for them.

7�https://pub.dartlang.org/packages/provider
8�https://github.com/google/flutter-provide/issues/3
9�https://pub.dartlang.org/packages/flutter_redux

Chapter 9 Managing State

https://pub.dartlang.org/packages/provider
https://github.com/google/flutter-provide/issues/3
https://pub.dartlang.org/packages/flutter_redux
https://pub.dartlang.org/packages/provider
https://github.com/google/flutter-provide/issues/3
https://pub.dartlang.org/packages/flutter_redux

203

�Whoa! That’s a lot of packages!
Confused yet? I don’t blame you. These packages all solve the same

problem in different ways, some similarly and others using wildly different

strategies. No one has any expectations that you’ll have anything more

than an awareness that there are tools out there. When you hear someone

say something like “Our state is getting messy. Maybe we should take

a look at BLoC or ScopedModel,” you’ll at least know that type of thing

they’re talking about. Then you can dig into the technologies to see which

you might want to use.

�Conclusion
There are clear times when a widget needs to maintain its own status via

the data that is contained within it. When we do, we call this state and

we call the widget a stateful widget. Stateful widgets are by their nature

more complex than stateless widgets so we try to avoid them if we can.

Additionally the more stateful widgets we have, the more state needs

to be passed around between the widgets. This can get very complex

very quickly so we look to tools and techniques like BLoC, Redux,

ScopedModel, and Provider to tame state.

Fortunately, this is as complex as fundamental Flutter gets. Not so

bad after all. Since we’ve covered everything that is needed to create a

Flutter app, this ends the section. In the remainder of the book, let’s turn to

additional, perhaps optional topics that will help you to create real-world

Flutter apps!

Chapter 9 Managing State

PART III

Above and Beyond

207© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_10

CHAPTER 10

Your Flutter App Can
Work with Files
At this point in our journey, you’ve learned how to create a Flutter app

and precisely control how it looks and lays out in any orientation and on

any device. That’s pretty cool! You know how to have it maintain data with

Form fields. But how do we get it to save that data? How do we get it to read

that data in the first place?

Your app’s data can only come from two places: from within the device

itself or by exchanging data with an external server. We’ll deal with external

servers in the next chapter. In this chapter, let’s learn to read and write data

from on-device storage options. But in order to get there by the end of the

chapter, we have to master certain prerequisite knowledge like working

with JSON and handling asynchronous activities. So here will be our plan

for the chapter:

•	 Including libraries in your Flutter app

•	 Bundling files in your app

•	 Futures, async, and await

•	 Reading/writing a local file

•	 Converting JSON

•	 Saving user preferences

208

�Including libraries in your Flutter app
Many talented developers have written some awesome tools that you and

I can use in our Flutter apps. These are usually referred to as libraries, and

all we have to do is (1) find one that we like, (2) add it to our pubspec.yaml

file, (3) import it in a dart file, and (4) use it in our code.

�Finding a library
Frankly, this is the hardest part because there’s no single place to search.

As lame as it sounds, your best bet is to Google it. Later in this chapter,

we’ll be reading and writing a file so let’s use that as an example. If you

Google for “Flutter read file,” every one of the top five results recommends

using a library called path_provider. So we Google for “Flutter path_

provider” and we end up at https://pub.dev/packages/path_provider,

as shown in Figure 10-1.

Chapter 10 Your Flutter App Can Work with Files

https://pub.dev/packages/path_provider

209

As you can see, the page gives us a version number (which we’ve

anonymized to X.Y.Z in the preceding screenshot), how to use the library,

and code samples plus more.

Figure 10-1.  path_provider 1.3.0 home page

Chapter 10 Your Flutter App Can Work with Files

210

�Adding it to pubspec.yaml
The Usage section tells you what you need to know to use it. There is no

download button and no installation. In fact, all you have to do for nearly

every Flutter/dart library is to just edit the pubspec.yaml file and add a line

to the dependencies section:

dependencies:

 flutter:

 sdk: flutter

 path_provider: ^X.Y.Z

Note the preceding carat (^). That says to the developer tools, “You

can use the latest version of the library as long as you don’t go above major

version X.” Some experienced Flutter developers think that it is risky to let

the dev tools decide which version of the library to use so they omit the

carat. Your choice.

As soon as you save your pubspec.yaml file, your dev tools may detect

the new library and go get it for you. If not, just run flutter pub get.

$ flutter pub get

Running "flutter pub get" in myProject... 0.7s

$

Now that it is downloaded, you can begin using it.

�Importing the library
Open any source code file where you’ll need the functionality of this

library and add an import statement to the top:

import 'package:flutter/material.dart';

import 'package:path_provider/path_provider.dart';

You’ll know what to import by reading the library’s documentation.

See? Easy.

Chapter 10 Your Flutter App Can Work with Files

211

�Using the library
How to use it depends heavily on the library and of course no two are alike.

The instructions and examples are found in the documentation again.

And the documentation for path_provider tells us to call a method called

getTemporaryDirectory() or getApplicationDocumentsDirectory() like this:

Directory documents = await getApplicationDocumentsDirectory();

File file = File('${documents.path}/$_filename');

“But wait,” you say, “What is this await thing?” Let’s talk about that next.

�Futures, async, and await
Flutter is written using Dart, and Dart is a single-threaded language. This

means that a Flutter app can only do one thing at a time, but it does not

mean that Flutter apps are forced to wait for slower processes.

Flutter apps use an event loop. This should come as no surprise since

Android has a main looper and iOS has a run loop (aka main loop). Heck,

even JavaScript devs are unimpressed since JavaScript itself has a … wait

for it … event loop. Yes, all the cool kids are using an event loop these days.

An event loop is a background infinite loop which periodically wakes

up and looks in the event queue for any tasks that need to run. If any exist,

the event loops put them onto the run stack if and only if the CPU is idle.

As your app is running instructions, they run serially –  one after

another. If an instruction is encountered that may potentially block the

main thread waiting on some resource, it is started and the “wait” part is

put on a separate queue.

Chapter 10 Your Flutter App Can Work with Files

212

�Why would it wait?
Certain things are slow compared to the CPU. Reading from a file is slow.

Writing to a file is even slower. Communicating via Ajax? Forget about it.

If we kept the waiting activity on the main thread, it would block all other

commands. What a waste!

The way this is handled in JavaScript, iOS, Android, and now Dart is this:

	 1.	 An activity that is well-known to be slow is started

up as normal.

	 2.	 The moment it begins waiting for something – disk,

HTTP request, whatever – it is moved away from the

CPU.

	 3.	 A listener of sorts is created. It monitors the activity

and raises an alert when it is finished waiting.

	 4.	 The reference to that listener is returned to the main

thread. This reference object is known as a Future.

	 5.	 The main thread continues chugging along its merry

way.

	 6.	 When the waiting activity is finally resolved, the

event loop sees it and runs an associated method

(aka. a callback function) on the main thread to

handle finishing up the slow event.

All you do is write the code to create the future and to handle futures

that are returned from other methods:

// Say goReadAFile() is slow and returns a Future

Future myFuture = goReadAFile();

Chapter 10 Your Flutter App Can Work with Files

213

In Dart you have the ability to specify the type of thing that Future will

give you eventually:

Type of future When it’s ready, I’ll have a ...

Future<String> ... string

Future<Foo> ... Foo

Future<Map<String,

dynamic>>

... Map whose keys are Strings and whose values

are dynamic

When we have that Future object, you may not have the data, but you

definitely have a promise to get that data in the Future. (See what they did

there?)

�How do we get the data from a Future?
You tell the Future what to do once the data is ready. Basically, you’re

responding to a “Yo, the data is ready” event and telling the Future what to

do by registering a function.

myFuture.then(myCallback);

The .then() function is how you register that callback function. The

callback should be written to handle the promised data. For example, if we

have a Future<Foo>, then our callback should have this signature:

void myCallback(Foo theIncomingData) {

 doSomethingWith(theIncomingData);

}

So if the Future will return a Person, your callback should receive a

Person. If the Future promises a String, your callback should receive a

String. And so forth.

Chapter 10 Your Flutter App Can Work with Files

214

Your callbacks should always return void because there’s no way that the

.then function can receive a returned value. This makes a ton of sense when

you think about it because remember that it is no longer running within the

main thread of your app so it has no way of merging back in. So how do you

get a value from the callback? Several methods, but the most understandable

is that you use a variable that is defined outside the callback:

class FooState extends State<FooComponent> {

 String _firstName; // <-- A variable known by the whole class

 Widget build(BuildContext context) {

 // return a widget

 }

 void _myCallback(String someVar) {

 _firstName = someVar; // �<-- Getting a value OUT of an

async callback

 }

}

Tacking a .then() onto your Future object can occasionally muddy up

your code. If you prefer, you can clean it up a bit with await.

�await
There’s another way to get the data which is more straightforward to read.

Instead of using .then(), you can await the data.

Foo theIncomingData = await somethingThatReturnsAFuture();

Awaiting pauses the running code to … well … wait for the Future to

resolve before it moves on to the next line. In the preceding example, the

“Foo” that you’re awaiting is returned and put into theIncomingData.

Simple.

Or maybe it isn’t that simple…

Chapter 10 Your Flutter App Can Work with Files

215

�async
Like it or not, when you use await inside a function, that function is now

in danger of blocking the main thread, so it must be marked as async. For

example, this function

Bar someFunction() {

 Foo theIncomingData = someFunction();

 return new Bar();

}

becomes this when we await

Future<Bar> someFunction() async {

 Foo theIncomingData = await somethingThatReturnsAFuture();

 return new Bar();

}

Note that when we added an await on that second line, we must mark

the function itself with async. The subtle thing is that when it is marked as

async, anything returned from that function is immediately wrapped in a

Future unless it is already one.

Are you sitting down? Check this out: whenever you choose to await a

future, the function must be marked as async, and therefore all who call it

must be awaited and they must be marked as async and so on. Eventually

you get to a high enough spot in the call chain that you’re not in a function

so you don’t have to mark it as async.

Maybe I spoke too soon when I said this is simpler.

Hint T he Flutter build() method cannot be async, but events like
onPress can. So try to steer your async activities into events to solve
this recursive async-await-async-await thing.

Chapter 10 Your Flutter App Can Work with Files

216

Here are your Futures takeaways:

	 1.	 Futures allow your Dart code to be asynchronous

–  it can handle slow-running processes in a separate

thread (kind of).

	 2.	 You can handle the callbacks of those things with

either a .then(callback) or by awaiting them.

	 3.	 If you await in a function, that function must be

marked as async.

If you’d like to do some more reading on Futures, here’s a thorough

coverage from the Dart team: www.dartlang.org/tutorials/language/

futures.

�Including a file with your app
The file you’re trying to read must exist (duh). Maybe we should just

manually create one.

It isn’t uncommon at all for developers to package up a flat file that

should be installed along with your app. It is great for initializations

of larger amounts of data – kind of like a mini database. It should look

familiar because this is the same technique we used to bundle images

with our app. All you’ll do is create the file in your IDE and reference it in

pubspec.yaml.

There are a dozen ways to add the file to your project. Use a command

prompt, right-click and choose “new” in your IDE, drag and drop in file

explorer, and so on. But in the end, it should be visible in your IDE.

It is common but not required to create it in a folder called assets

(Figure 10-2).

Chapter 10 Your Flutter App Can Work with Files

http://www.dartlang.org/tutorials/language/futures
http://www.dartlang.org/tutorials/language/futures

217

But even though it exists, the app is unaware of a file until we flag it in

pubspec.yaml. Put it in the assets section of pubspec.yaml and it will be

included with the .ipa/.apk for installation on devices:

To add assets to your app, add an assets section, like this:

assets:

 - assets/database.json

To read that file, you’ll use rootBundle.loadString() like this:

try {

 String data = await rootBundle.loadString('assets/db.json');

 debugPrint(data);

} catch (e) {

 print('Error: $e');

 rethrow;

}

rootBundle is part of services.dart, so make sure you import it.

import 'package:flutter/services.dart';

Figure 10-2.  “assets” folder

Chapter 10 Your Flutter App Can Work with Files

218

Tip I f the assets file is structured with keys and values, the
rootBundle.loadStructuredData(key, function) method may be a better
choice. It allows you to pass in the key you’re reading and a function
to process the data being read.

Since this data is written at compile time on the development machine,

it can’t be changed. But we can create a file in our app’s documents folder

that can be read and written. Let’s look at that next.

�Writing a file
Sometimes our users want to save values from one run to another. And

we can do that in a local file, one that exists on their device. To create

a file, you can simply write to it with myFile.writeAsString(theString).

But our app can’t just write to any location on the device. We have

to get a reference to a writeable directory which is exactly what the

path_provider library does. Remember that it has a method called

getApplicationDocumentsDirectory() which returns a Future<Directory>.

So if we await that call, we can get a directory and create a file in it:

// Get the documents directory

Directory documents = await getApplicationDocumentsDirectory();

// Write the file

try {

 File file = File('${documents.path}/$_filename');

 await file.writeAsString(_someText);

} catch (e) {

 _message = 'Error: $e';

}

Chapter 10 Your Flutter App Can Work with Files

219

Note T he Directory and File types are available in Dart’s io library.
Don’t forget to import it:

import 'dart:io';

�And reading it!
Reading any file is even simpler. We just use File.readAsString():

File file = File('${documents.path}/$_filename');

file.readAsString().then((String text) {

 setState(() {

 _text = text;

 _message = '$_filename has this text inside it: "$_text"';

 });

}).catchError((e) {

 setState(() {

 _errorStatus = true;

 _message = 'Error: $e';

 });

});

Note  We wanted to use the .then() method of the future here
instead of await because the build() method can’t be marked as
async. The .then() allows you to handle the future without the need
for async. Fortunately the File object also has a readAsStringSync()
method which is a blocking call and returns the text directly instead
of a Future.

Chapter 10 Your Flutter App Can Work with Files

220

try {

 File file = File('${documents.path}/$_filename');

 _text = file.readAsStringSync();

 // Modal success

 _message = '$_filename has this text inside it: "$_text"';

} catch (e) {

 _errorStatus = true;

 _message = 'Error: $e';

}

�Using JSON
When we write files, we’re taking something in our app’s memory and

saving it. Sure, sometimes what we write is just a single value, but very

often it is an object or many objects. Let’s say we had a list of persons.

Maybe the first person in the list is Phoebe Buffay and the second is Rachel

Green. If we’re going to save this list in a file, we’d have to designate it

as a list and specify the properties and values of each person. There are

unlimited ways of doing that, but the most popular one is JSON format:

{

 "people": [

 {

 "id": "7b5fa0b0-9760-11e9-805d-099f65ed4f55",

 "firstName": "Phoebe",

 "lastName": "Buffay",

 "occupation": "Massage Therapist"

 },

 {

 "id": "110ec58a-a0f2-4ac4-8393-c866d813b8d1",

 "firstName": "Rachel",

Chapter 10 Your Flutter App Can Work with Files

221

 "lastName": "Green",

 "occupation": "Coffee Waitress"

 }

]

}

Taking data in our app’s memory and putting it in that format is called

serializing the data. Going the other direction, reading data in JSON

format, unwrapping it, and loading it into our app’s memory is called

deserialization.

Dart has a built-in library called dart:convert with methods for

serializing and deserializing called json.encode() and json.decode(),

respectively.

�Writing your app’s memory to JSON
Say your app has an object that you want to store or transmit. To put that

data in JSON format, use json.encode(someMap):

Map<String, dynamic> jsonMap = {

 "id": _person.id,

 "firstName": _person.firstName,

 "lastName": _person.lastName,

 "occupation": _person.occupation,

};

try {

 String jsonString = json.encode(jsonMap)

 await file.writeAsString(jsonString);

} catch (e) {

 print("Problem saving! Error: $e");

}

Chapter 10 Your Flutter App Can Work with Files

222

Note A Dart Map is kind of like a JavaScript object; a set of key/
value pairs, usually dynamically typed. To get a value, you’d specify
a key in square brackets like in the following example. If you want to
serialize a strongly typed object, you can either convert it to a map
(easier) or implement a method called toJson() which returns a Map
(cleaner). toJson() is automatically invoked whenever json.encode is
called on an object.

�Reading JSON into your app’s memory
Now let’s say you’ve somehow gotten ahold of a string in JSON format and

you want to read that data into your app. How do you get that data out?

json.decode():

// jsonString contain serialized JSON data

Map<String, dynamic> personMap = json.decode(jsonString);

// "personMap" is now a Map whose keys are strings

print(personMap["firstName"]);

Person p = Person(

 id: personMap["id"],

 firstName: person ["firstName"],

 lastName: person ["lastName"],

 occupation: person ["occupation"]

);

Note  jsonEncode( ) is shorthand for json.encode( ). Similarly
jsonDecode( ) is shorthand for json.decode( ). It’s a stylistic preference.
Use whichever you prefer.

Chapter 10 Your Flutter App Can Work with Files

223

You may be thinking about using this technique to store a user’s

preferences. And sure, it’ll totally work. But if you want to save values

between runs of the app, there is a better way called shared preferences.

�Shared preferences
Most apps will save data locally between runs, settings like authentication

tokens, personal data, dark/light modes, sounds ... heck, anything that

would be a user preference. On iOS these things are called NSUserDefaults.

On Android, they are called SharedPreferences. And the Flutter team has

given us a great library called shared_preferences1 for reading and writing

these values in a cross-platform way. Now that you know how to include

libraries, it’ll be trivial for you to add shared_preferences to your pubspec.

yaml file to include it in your project and app.

To use it, you’ll need to instantiate a SharedPreferences object. But

since we’re dealing with reading from the file system, it needs to be

handled as a deferred activity. Fortunately the library provides a static

getInstance() method that returns a Future<SharedPreference>. I know all

that sounds confusing, but just remember that getting a reference to the

reader/writer is asynchronous. Handle it like this:

SharedPreferences prefs = await SharedPreferences.

getInstance();

See? That’s not so bad. But do note that it has to be awaited.

1�Read up on it at https://pub.dev/packages/shared_preferences

Chapter 10 Your Flutter App Can Work with Files

https://pub.dev/packages/shared_preferences

224

�To write preferences
To save to shared preferences, use the set methods:

prefs

 ..setString('organizationName', organizationName)

 ..setBool('isReady', true)

 ..setDouble('percentComplete', 12.5)

 ..setInt('numberOfTries', tries)

 ..setStringList('validValues', ['started','finished',

 'in process', 'approved']);

Each of these will save to the right incarnation of device-dependent

user preferences and return back a Future<bool>, the bool resolving to

true if it was successful and false if not. It is not a problem to ignore this

value if you want. Many developers do when they’re ignoring the extremely

rare exception.

�To read preferences
If writing is with set methods, then you’d assume reading is get methods

and you’d be correct:

String organizationName = prefs.getString('organizationName');

bool isReady = prefs.getBool('isReady');

double percentComplete = prefs.getDouble('percentComplete');

int numberOfTries = prefs.getInt('numberOfTries');

List<String> validValues = prefs.getStringList('validValues');

Chapter 10 Your Flutter App Can Work with Files

225

�Conclusion
As we said at the top of the chapter, we’re building up to exchanging data

with a server, which is a very complex topic. But what makes it complex

is that there are so many technologies and techniques involved: third-

party libraries, JSON serialization and deserialization, Futures, and

asynchronous reading and writing. But because we’ve handled those

topics in this chapter, what’s left won’t be so daunting.

Ready to learn about Ajax? Let’s do it!

Chapter 10 Your Flutter App Can Work with Files

227© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_11

CHAPTER 11

Making RESTful API
Calls with HTTP
Now we know how to create a Flutter app, use external libraries and

asynchronously read and write data in JSON format. That actually puts

us in a great position to go just one small step forward and exchange data

with an API server, something that is absolutely essential if we are going to

write real-world apps. Here’s what we need to know:

•	 What is an API call anyway?

•	 Making an HTTP GET or DELETE request.

•	 Making an HTTP POST, PUT, or PATCH request.

•	 Handling the response in the simplest way.

•	 Cleaner handling with FutureBuilder and

StreamBuilder.

•	 Cleaner handling with strongly typed objects.

That’ll be our plan for this chapter. That, and getting in some hands-

on practice with a web site that allows HTTP updates. And to make

sure everyone is on the same page (pun definitely intended), we should

probably start with what exactly an API is. Feel free to skim it or skip

altogether if you’re already familiar.

228

�What is an API call?
Your app already has the ability to read from a tiny, localized database.

But it cannot read from one that is located elsewhere. In other words, you

can’t just connect to the Google database and read or write records. Can’t

be done, not even if you have database credentials. I mean, think about

the security implications if everyone could connect from anywhere and

directly modify Google data. So what developers do instead is create and

run a server-side program to read and write in a controlled way and expose

that program on the Internet at a particular address with a particular

protocol, usually https.

To read this server-side data, any user can make http requests after

having sent their credentials in the form of username/password or better

yet, a unique and secret key called an API key.

There’s that term API again. It stands for Application Programming

Interface. It means different things in different situations, but its default

meaning has come to be any Internet address to which developers can

send http requests for the purpose of reading and writing data. There are

tons of publicly available APIs and many options for creating your own.

When an API responds, it returns with a stream of data that is almost

always in JSON1 format.

�The flavors of API requests
Communication with API servers is done in one of just a few flavors

(Table 11-1).

1�Read up on JSON here: https://json.org

Chapter 11 Making RESTful API Calls with HTTP

https://json.org

229

HEAD, CONNECT, OPTIONS, TRACE – For other types of requests.

Seldom used by typical apps. Read about them at http://bit.ly/

HTTPMethods if you want.

It is rare for developers to use anything other than GET, POST, PUT,

PATCH, and DELETE. They’re all done in Flutter by using one Dart library

which you’ll get by importing http.dart.

First, you’ll add the http package to the dependencies section of your

pubspec.yaml. When you add and run “flutter pub get,” the package will

be downloaded from https://pub.dev/packages/http.

import 'package:http/http.dart';

This will expose the http class which has methods corresponding to

each HTTP method. Now let’s look at sending requests using this library.

Table 11-1.  HTTP methods and descriptions

HTTP method Intent Notes

GET Reading records Like a database read, merely asking for

data from a server

DELETE Deleting records Delete the record pointed to by the

supplied ID. No data is returned

POST Inserting new records Create a new record even if there’s already

a record like this one

PUT Replacing existing

records

Clobber the existing record with this one.

Delete the old record completely and add

this one in its place

PATCH Updating existing

records

Keep the old record in place but update its

fields with the data from this request

Chapter 11 Making RESTful API Calls with HTTP

http://bit.ly/HTTPMethods
http://bit.ly/HTTPMethods
https://pub.dev/packages/http

230

�Making an HTTP GET or DELETE request
We’ll begin with GET and DELETE requests first because they are the

simplest; they never have a body.2 In fact, the only complexity is that HTTP

requests are done asynchronously. They return a Future which you either

need to handle with a .then() or await it. So maybe make your request like this:

String url = 'https://us.com/people/1234';

Response response = await get(url);

print(response.statusCode); // 200, we hope

Map<String, dynamic> person = json.decode(response.body);

print(person['first']);

print(person['last']);

print(person['imageUrl']);

print(person['email']);

or with a .then() like this:

get(url).then((Response res) {

 print(res.statusCode); // 200, we hope

 Map<String, dynamic> person = jsonDecode(res.body);

 print(person['first']);

 print(person['last']);

 print(person['imageUrl']);

 print(person['email']);

});

Delete requests are done in the same way. In fact, they are often

simpler because they often have no response values. The DELETE

2�This is hotly debated topic. While the HTTP spec is silent, RFC 2616 hints that a
body is ignored in a DELETE request but doesn’t explicitly forbid it. Some servers
will ignore the body. Other servers will ignore the entire request. While others
throw a 400 error. Either test it on your server or play it safe and omit the body.

Chapter 11 Making RESTful API Calls with HTTP

231

either succeeds and has no return value or fails with a 400- or 500-series

response:

Response response = await delete(url);

Caution W hen making HTTP requests of any type, you should
always encode the url before sending. This will help to ensure that
the url is valid and can also help with security, especially when taking
input from the user. Call Uri.encodeFull like this: 

String url = Uri.encodeFull('http://us.com/api/
ppl?query=Jo Ki'); 

For simplicity’s sake, we’re going to omit encoding in the examples.
But in the real world, always remember to do this.

�Making an HTTP PUT, POST, or PATCH
request
PUT, POST, and PATCH are very similar to GET and DELETE. The biggest

difference is that PUT, POST, and PATCH all require a body for the

request – usually a string with JSON-formatted keys and values:

String payload = '{"first":"Kamala", "last":"Khan", "id":374}';

Response response = await post(url, body:payload);

This response is unwrapped just as with GET and DELETE requests.

Chapter 11 Making RESTful API Calls with HTTP

232

Note W ith POST, PUT, and PATCH, we’re sending data from the
client to the server. It is prudent and sometimes required to also tell
the server how we’ve encoded that data. We’ll do that in an HTTP
header that we include in the request. Provide a key called “Content-
Type” with a value of “application/json”. And we’ll do that like so: 

Map<String, String> headers= {'Content-
Type':'application/json'}; 
Response res = await post(url, headers:headers,
body:payload); 

While we’re on the subject, there are many header variables that
you might find helpful like Accept, Accept-Encoding, Authorization,
Content-MD5, Cookie, Date, Host, If-Modified-Since, and others.
Read about them here: https://en.wikipedia.org/wiki/
List_of_HTTP_header_fields#Request_fields.

Making HTTP requests from an API wasn’t so bad, now was it?

Very quickly we’ve made our Flutter apps capable of making requests,

deserializing the response, and printing that to the debug console. But

Flutter is all about displaying that data in cool-looking widgets. So how do

we integrate the requests into widgets?

�HTTP responses to widgets
There’s a handful of ways to wait on the Future to resolve and then display

it. We’re going to simplify things by showing you only three, the brute force

way, FutureBuilder, and StreamBuilder. Brute force is obvious and easy to

understand, but I think you’ll like FutureBuilder/StreamBuilder because

they are cleaner and more elegant.

Chapter 11 Making RESTful API Calls with HTTP

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#Request_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#Request_fields

233

�Brute force – The easy way
You already have all the tools you need to display the data: you understand

Futures and you know how to tell the stateful widget to redraw itself with

new data – setState(). So it can be as simple as putting a setState() inside

the .then() or after the await:

String url = 'http://us.com/api/people/12345';

Response response = await get(url);

Map<String, dynamic> responseBody = json.decode(response.body);

String first = responseBody['first'];

String last = responseBody['last'];

String imageUrl = responseBody['profilePictureUrl'];

Widget card = Stack(

 children: <Widget>[

 Image.network(imageUrl,

 height: 300, width: 300, fit: BoxFit.cover),

 Text("$first $last"),

],

);

setState(() {

 _cardWidget = card;

});

And of course as long as your build method is displaying _cardWidget

somewhere, it will be rendered with proper data as soon as the Future is

resolved which only happens when the HTTP GET request returns data.

Piece of cake! But it isn’t the most elegant thing.

Chapter 11 Making RESTful API Calls with HTTP

234

�FutureBuilder – The clean way
A better solution may be the FutureBuilder widget. If you’re ever in a

spot where you have a Future that, when fulfilled, has data that must be

rendered in a Flutter widget look to FutureBuilder. Does this scenario

sound familiar? It should because it is the major reason we have Futures

in Flutter. The simple code example from earlier can be done much more

completely like this with a FutureBuilder:

FutureBuilder(

 future: get(url),

 builder: (BuildContext ctx, AsyncSnapshot<dynamic> snapshot) {

 if (snapshot.connectionState != ConnectionState.done) {

 return const CircularProgressIndicator();

 }

 if (snapshot.hasError) {

 return Text('Oh no! Error! ${snapshot.error}');

 }

 if (!snapshot.hasData) {

 return const Text('Nothing to show');

 }

 final Map<String, dynamic> responseBody =

 json.decode(snapshot.data.body);

 final int statusCode = snapshot.data.statusCode;

 if (statusCode > 299) {

 return Text('Server error: $statusCode');

 }

 String first = responseBody['first'];

 String last = responseBody['last'];

 String imageUrl = responseBody['profilePictureUrl'];

Chapter 11 Making RESTful API Calls with HTTP

235

 return Stack(

 children: <Widget>[

 Image.network(imageUrl,

 height: 300, width: 300, fit: BoxFit.cover),

 Text("$first $last"),

],

);

 },

);

There’s no need for a setState() since the FutureBuilder has access

to the Future itself so it knows when and how to redraw itself. In the

preceding example, you can see how it is capable of rendering something

different for each situation: a ProgressIndicator while we’re waiting on the

resolution of the Future, an error if something is wrong, a notification if the

Future has nothing in it, and of course the widget when the data arrives

successfully!

Caution A lways check snapshot.hasData and/or snapshot.hasError
before accessing snapshot.data. As of the time of writing,3 Flutter
does not throw if there’s an error. Instead, it swallows the error and
fails silently. 

Also be careful about the HTTP status code which can be found in
response.statusCode! If that number is in the 400s or 500s, you’ve
gotten a valid response from the server, but it is a problem and your
data will be null.

3�See https://github.com/flutter/flutter/issues/34545 for the proposed
changes.

Chapter 11 Making RESTful API Calls with HTTP

https://github.com/flutter/flutter/issues/34545

236

�StreamBuilder

What FutureBuilder does with futures, StreamBuilder does with streams.

These two classes are nearly identical, having the same format, using the

same shape of snapshots, and checking snapshot.hasErrors and snapshot.

hasData. But sometimes we’re not dealing with a single return of data as

with a future, we’re dealing with a stream of data that may hit us in spurts

or waves. When this is the situation, you’ll want to use a StreamBuilder

instead:

StreamBuilder(

 stream: anythingThatReturnsAStream(),

 builder: (BuildContext ctx, AsyncSnapshot<dynamic> snapshot) {

 // Everything below this is pretty much the

 // same as FutureBuilder but the data is a

 // collection of documents, each being a record

 if (snapshot.connectionState != ConnectionState.done) {

 return const CircularProgressIndicator();

 }

 if (snapshot.hasError) {

 return Text('Oh no! Error! ${snapshot.error}');

 }

 if (!snapshot.hasData) {

 return const Text('Nothing yet. Please wait ...');

 }

 return ListView.builder(

 itemCount: snapshot.data.documents.length,

 itemBuilder: (BuildContext context, int i) {

 String first = snapshot.data.documents[i]['first'];

Chapter 11 Making RESTful API Calls with HTTP

237

 String last = snapshot.data.documents[i]['last'];

 �String imageUrl = snapshot.data.documents[i]

['imageUrl'];

 return Stack(

 children: <Widget>[

 Image.network(imageUrl,

 height: 300, width: 300, fit: BoxFit.cover),

 Text("$first $last"),

],

),

 },

);

);

 },

);

Note W riting code like this, code that wakes up and updates itself
based on newly arriving data has a term: reactive programming.
Reactive programming happens when we make our app aware of
its external influences and tell it to react somehow. You may have
heard of reactive extensions like rxJava, rxJS, and rx.NET which
are libraries with classes and functions made for this style. Well,
there is one for Flutter unsurprisingly called rxDart. You can find it at
https://github.com/ReactiveX/rxdart.

Chapter 11 Making RESTful API Calls with HTTP

https://github.com/ReactiveX/rxdart

238

�Strongly typed classes
At this point, you now know how to make HTTP calls against an API, and

when you get a response, you know how to unwrap that data and use it.

This puts us in a great position to convert that data into a strongly typed

class using the typed deserialization pattern.4

Note T his is not required in order to make HTTP calls. It is merely
a cleaner way of processing the call and pulling it in to a structure
that is predictable. HTTP data is by nature unstructured. This is a
best practice used by many Flutter developers but is by no means
required. So if you don’t like it, feel free to skip it.

Typed deserialization happens in three simple steps:

	 1.	 Create the business class.

	 2.	 Write a .fromJSON() method and/or a

.fromJSONArray() method.

	 3.	 When reading from HTTP calls, use .fromJSON() to

hydrate the object.

�Create a business class
Let’s say we’re reading and writing data for people. We should create a

PERSON class:

class Person {

 // Constructor only needed b/c the name property is a

 // map of strings and needs to be initialized

4�The term “typed deserialization pattern” is one that I coined based on suggestions
from the Flutter community. You may not find others using it until it catches on.

Chapter 11 Making RESTful API Calls with HTTP

239

 Person() {

 name = <String, String>{};

 }

 String documentID;

 Map<String, String> name;

 String email;

 String imageUrl;

}

�Write a .fromJSON( ) method
This should be a static method that will return an instance of the business

class, Person in this case:

class Person {

 // More class code here

 static Person fromJson(String jsonString) {

 final Map<String, dynamic> data = jsonDecode(jsonString);

 return Person()

 ..name = data['name']

 ..email = data['email']

 ..imageUrl = data['imageUrl'];

 }

 // and more class code here maybe

}

Note the use of Dart’s cascade operators and omission of the new

operator. Both are best practices also.

Chapter 11 Making RESTful API Calls with HTTP

240

�Use .fromJSON( ) to hydrate the object
The word hydrate literally means “add water.” In this context, the data is

the water, and we’re creating a new Person object by adding the data to it.

You read data from an HTTP service using the .get() method and you pass

it into .fromJSON() like this:

// Make the HTTP call

final Response res = await get(url);

// Hydrate a Person object from the response body - a JSON

string

Person p = Person.fromJson(res.body);

See how clean and straightforward the code is?

I imagine that at this point, you’d like to exercise all of this newfound

knowledge. Let’s do that with a free API service next.

�One big example
A real API service will involve a database with exposed GET, POST,

DELETE, PUT, and/or PATCH endpoints which all require some hefty

setup on the server. You’re going to want to get there eventually, and we’ll

show you a fantastic permanent solution in the next chapter. But for now,

let’s make use of a demonstration-only site that costs nothing and is easy

to set up so we can build a Flutter app that uses API data.

Let’s build a people maintenance CRUD app (Figure 11-1).

Chapter 11 Making RESTful API Calls with HTTP

241

Figure 11-1.  An app to maintain records that reads and writes its
data from a RESTful API

This app will read a list of people from an HTTP web service that

conforms to REST principles which means among other things that it

supports the HTTP GET, POST, PUT, and DELETE methods we learned

earlier. In addition, all records will have a unique ID assigned to them on

the server as part of the creation of those records. We’ll create the preceding

pictured scene to show our list of people. We’ll also need another scene with

fields to enter the person’s name, email address, and the location of a photo.

Sound fun? Well it will be after we get the server set up. Let’s start with

that.

Chapter 11 Making RESTful API Calls with HTTP

242

�Setting up
We clearly need a server. So we’ll need to stand one up and install and

configure a database and a service that receives HTTP requests on port 80

and a bunch of other stuff. Either that or we can use someone else’s.

Introducing Pipedream!

Pipedream.com provides cloud-based workflows where even

inexperienced developers can easily create complex processes. Their

excellent service is also free for reasonable volumes of data and

processing. The good folks at Pipedream have created a workflow that

exposes a simple RESTful interface, allowing us to read and write data over

a public-facing RESTful API with very little effort and at no cost.

You can do all of this anonymously but we recommend that you

log into an account so you can revisit the data later. So open http://

pipedream.com in your browser. Create an account with a password.

Visit this link: http://bit.ly/pipedream_api. Hit the big “Fork”

button in the upper right. This will create your very own copy that you can

own and alter if you need to. At the top of the page you’ll see a URL. This is

the URL you’ll send requests to.

To test it out, get to a command line. Use the curl command to make

sure you’re set up.

$ curl https://en7btxnrlhxnijq.m.pipedream.net

If you get a response from the server that says “Success”, it is working

and you can move on.

Chapter 11 Making RESTful API Calls with HTTP

http://pipedream.com
http://pipedream.com
http://bit.ly/pipedream_api

243

�Create the Flutter app
Create a new Flutter app using flutter create. Open main.dart and find your

MaterialApp widget. Remove the “home” property and add this to it:

initialRoute: '/peopleList',

routes: <String, WidgetBuilder>{

 '/peopleList': (BuildContext ctx) => PeopleList(),

 '/peopleUpsert': (BuildContext ctx) => PeopleUpsert(),

},

Then make two new StatelessWidgets, one called “PeopleList.dart” and

the other called “PeopleUpsert.dart”. We’ll fill in their details in a minute.

But first, it may be a good idea to create a business class to represent a

Person object.

�Making a strongly typed business class
Since we’re working with Persons, it might be a good idea to create a

Person class to hold each person. This very optional best practice may help

us to avoid bugs serializing and deserializing the server data and give us a

centralized place to manage all of our Person-related logic:

import 'dart:convert';

class Person {

 // Constructor only needed b/c name is a map of strings

 // and needs to be initialized

 Person() {

 name = <String, String>{};

 }

 // The typed deserialization pattern for a single person

 static Person fromJson(String jsonString) {

Chapter 11 Making RESTful API Calls with HTTP

244

 final Map<String, dynamic> data = jsonDecode(jsonString);

 return Person()

 ..id = data['id']

 ..name = data['name']

 ..email = data['email']

 ..imageUrl = data['imageUrl'];

 }

 // The typed deserialization pattern for lists of people

 static List<Person> fromJsonArray(String jsonString) {

 final Iterable<dynamic> data = jsonDecode(jsonString);

 return data.map<Person>((dynamic d) => Person()

 ..id = d['id']

 ..name = {'first':d['first'], 'last':d['last']}

 ..email = d['email']

 ..imageUrl = d['imageUrl']).toList();

 }

 // The actual properties of a person

 int id;

 Map<String, String> name;

 String email;

 String imageUrl;

}

�PeopleList.dart
We’ll eventually read a list of people from the RESTful service and will

want to display their data. The PeopleList widget is responsible for

showing that list of people:

import 'package:flutter/material.dart';

import 'package:http/http.dart';

import 'Person.dart';

Chapter 11 Making RESTful API Calls with HTTP

245

import 'sensitiveConstants.dart';

class PeopleList extends StatefulWidget {

 @override

 _PeopleListState createState() => _PeopleListState();

}

class _PeopleListState extends State<PeopleList> {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(title: const Text('People'),),

 body: scaffoldBody,

 floatingActionButton: FloatingActionButton(

 // An Add button. When the user taps it, we send

 // them to PeopleUpsert with NO person object.

 child: Icon(Icons.add),

 onPressed: () {

 Navigator.pushNamed(context, '/peopleUpsert');

 },

),

);

 }

 // Note how we pull out details to make the widget more

 // abstract for you. We do the same with personWidget below.

 Widget get scaffoldBody {

 return FutureBuilder<dynamic>(

 future: fetchPeople(), // How we'll get the people

 builder: (BuildContext context, AsyncSnapshot snapshot) {

 if (snapshot.hasError) {

 return Text('Oh no! Error! ${snapshot.error}');

 }

Chapter 11 Making RESTful API Calls with HTTP

246

 if (!snapshot.hasData) {

 return const Text('No people found');

 }

 // Convert the JSON data to an array of Persons

 final List<Person> people =

 Person.fromJsonArray(snapshot.data.body);

 // Convert the list of persons to a list of widgets

 final List<Widget> personTiles = people

 �.map<Widget>((Person person) =>

personWidget(person))

 .toList();

 �// Display all the person tiles in a scrollable

GridView

 return GridView.extent(

 maxCrossAxisExtent: 300,

 children: personTiles,

);

 },

);

 }

 // Displaying a single person tile.

 Widget personWidget(Person person) {

 // Look in the github source for the details. The

 // important thing is that when the user taps a

 // person tile, we navigate them to PersonUpsert

 // and pass the person object in.

 }

}

Chapter 11 Making RESTful API Calls with HTTP

247

�A GET request in Flutter
Look back at getScaffoldBody() method. It has a FutureBuilder. The future

property points to a method called fetchPeople() which simply needs to

make a GET request to the URL that will respond with a JSON array of

Person records:

Future<dynamic> fetchPeople() {

 // pipedreamRESTUrl is the URL you made note of before

 final String url =

 '$pipedreamRESTUrl/people/?pipedream_response=1';

 return get(url);

}

The GET request is pretty simple once you get the Flutter infrastructure

created, huh? Of course when you make this call the first time, nothing

will appear since you haven’t created any persons yet. That’ll come soon

enough.

�A DELETE request in Flutter
Each person tile has a trashcan IconButton in the upper right. A tap on

it calls deletePerson(), receiving the person we want to get rid of. This

deletePerson() method should send an HTTP DELETE request, pointing to

that person by ID:

void deletePerson(Person person) {

 final String url =

 '$pipedreamRESTUrl/people/${person.id}?pipedream_response=1';

 delete(url).then((Response res) {

Chapter 11 Making RESTful API Calls with HTTP

248

 // Call setState() to rerender AFTER the person is gone

 setState(() {

 print('Status code: ${res.statusCode}');

 });

 });

}

Note that after the delete’s Future is resolved, we call setState() to force

the scene to re-render, thereby refreshing the list of Persons.

�PeopleUpsert.dart
We’ve taken care of reading people and deleting a person in PeopleList.

But adding a new person will require a form for the user to enter

information. Sharp readers will notice that an identical form is needed for

updating existing persons. To adhere to the DRY principle,5 let’s create one

form and reuse it for both adding and updating:

import 'package:flutter/material.dart';

import 'package:http/http.dart';

import 'Person.dart';

import 'sensitiveConstants.dart';

class PeopleUpsert extends StatefulWidget {

 @override

 _PeopleUpsertState createState() => _PeopleUpsertState();

}

class _PeopleUpsertState extends State<PeopleUpsert> {

 final GlobalKey<FormState> _key = GlobalKey<FormState>();

 Person person;

5�https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Chapter 11 Making RESTful API Calls with HTTP

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

249

 @override

 Widget build(BuildContext context) {

 // Get the 'current' person set during navigation. If

 // this person is null, we're adding a new person so

 // we should instantiate one. If this person is not null,

 // then we're updating that person.

 final Person _person =

 ModalRoute.of(context).settings.arguments;

 person = (_person == null) ? Person() : _person;

 return Scaffold(

 appBar: AppBar(

 title: Text(

 �(_person == null) ? 'Add a person' : 'Update a

person',

),

),

 body: _body,

 floatingActionButton: FloatingActionButton(

 onPressed: () {

 // Commit field data to the form key

 _key.currentState.save();

 // Save the person

 updatePersonToPipedream(person);

 // And go back to where we came from

 Navigator.pop<Person>(context, person);

 },

 child: Icon(Icons.save),

),

);

 }

Chapter 11 Making RESTful API Calls with HTTP

250

 Widget get _body {

 return Form(

 key: _key,

 child: Container(

 padding: const EdgeInsets.all(20),

 child: Column(

 children: <Widget>[

 TextFormField(

 initialValue: person.name['first'],

 �decoration:InputDecoration(labelText:'First name'),

 �onSaved: (String val) => person.

name['first']=val),

 TextFormField(

 initialValue: person.name['last'],

 �decoration: InputDecoration(labelText:'Last name'),

 �onSaved: (String val) => person.

name['last']=val),

 TextFormField(

 initialValue: person.email,

 decoration: InputDecoration(labelText:'Email'),

 onSaved: (String val) => person.email=val),

 TextFormField(

 initialValue: person.imageUrl,

 �decoration: InputDecoration(labelText:'Image URL'),

 onSaved: (String val) => person.imageUrl=val),

],

),

),

);

 }

}

Chapter 11 Making RESTful API Calls with HTTP

251

Figure 11-2.  If the user had tapped the “+” button, we’re adding

This will create one of pictures in either Figure 11-2 or 11-3.

Chapter 11 Making RESTful API Calls with HTTP

252

�A POST and PUT request in Flutter
When the user hits the FAB in the PeopleUpsert scene, they are committing

the data they entered and we call updatePersonToPipedream(). If it was an

Add operation, we want to make a POST call. If it was an Update operation,

we want to make a PUT call:

Figure 11-3.  If the user had tapped a person tile, we’re updating that
person

Chapter 11 Making RESTful API Calls with HTTP

253

void updatePersonToPipedream(Person person) {

 Future<Response> response;

 final String payload = """

 {

 "first":"${person.name['first']}",

 "last":"${person.name['last']}",

 "imageUrl":"${person.imageUrl}",

 "email":"${person.email}"

 }

 """;

 final Map<String, String> headers = <String, String>{

 'Content-type': 'application/json'

 };

 // If id is null, we're adding. If not, we're updating.

 if (person.id == null) {

 String url =

 '$pipedreamRESTUrl/people/?pipedream_response=1';

 response = post(url, headers: headers, body: payload);

 } else {

 String url =

 �'$pipedreamRESTUrl/people/${person.id}?pipedream_

response=1';

 response = put(url, headers: headers, body: payload);

 }

 response.then((Response res) {

 Navigator.pop(context, Person.fromJson(res.body));

 });

}

Chapter 11 Making RESTful API Calls with HTTP

254

�Conclusion
Not too shabby, huh? We went from knowing almost nothing about

reading and writing data via HTTP to a comprehensive example using

some fairly advanced techniques like the typed serialization pattern and

the FutureBuilder widget.

Unfortunately, though, our examples are using a temporary server-side

solution not fit for a production application. Would you be interested in a

robust, permanent server-side database that works seamlessly with Flutter

on iOS, Android, and the Web? Yes? Well then turn the page and let’s learn

about Google Firebase!

Chapter 11 Making RESTful API Calls with HTTP

255© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2_12

CHAPTER 12

Using Firebase
with Flutter
As an entrepreneur/mentor, I’ve been pitched a ton of great ideas for

business apps. Without exception every one that had any worth has

involved a server storing data. So if we care about the real-world use of

Flutter, it would be criminal to ignore talking to a production-ready server.

There are no shortage of server solutions out there like AWS from

Amazon, Microsoft Azure, IBM Cloud, Oracle Cloud Infrastructure,

Alibaba Cloud, and so many others. They’re all great. We chose to focus on

Firebase, not because it is head and shoulders better than the others but

because

	 1.	 Firebase and Flutter are both Google products, so

there are a few synergies.

	 2.	 Firebase is at least as good as, and in some ways

better than, the other options.

	 3.	 Firebase is (fairly) easy to set up and free for low

volumes – perfect for learning and testing.

256

	 4.	 Firebase has been getting a ton of attention in the

developer community lately. It is becoming the tech

that hiring managers and recruiters want to see on

your resume.

	 5.	 We had to pick one, so why not Firebase? ¯_(ツ)_/¯

If we are going to implement Firebase as a server to use with Flutter, we

need to make sure we understand these things:

•	 Firebase at a very high level

•	 How to set up a Firebase project

•	 How to make it work with our eventual iOS and

Android apps

•	 Integrating it in our Flutter app with authorization

•	 Reading Firestore data into our Flutter app

•	 Querying data in Flutter

•	 Changing data in Flutter

•	 Deleting data in Flutter

So that will be our game plan for this chapter. Let’s start with an intro to

Firebase itself.

�Introducing Firebase
Google Firebase is a set of server-side services and tools. If you use

Firebase, you don’t need to buy or rent your own server. No applying

security patches or updating software. No organizing backups. No

configuring of firewalls. No intrusion detection systems. No anti-malware

definition maintenance. No paying an ISP to connect to the Internet.

Basically, you’re trusting Google to handle all of the things you’d do with

Chapter 12 Using Firebase with Flutter

257

your own server. Of course a server exists, but you and I don’t have access

to the OS so we have neither the responsibility nor the ability to maintain

it. How freeing is that?

The list of things you cannot do with Firebase is small and not commonly

needed. But the list of what you can do is broad and very common. Firebase

is made up of over a dozen tools.1 Let’s glance at these three:

•	 Cloud Firestore – A database with an API to read and

write data

•	 Cloud Functions – Logic that is kicked off by an API call

•	 Authentication – Single sign-on to allow users to

securely log in to your app using their social accounts

or a username/password combination

Let’s discuss each very briefly and then extend last chapter’s example

Flutter app to read and write from Firestore.

�Cloud Firestore
We want a database that all apps can read from and write to. Firestore

provides a NoSQL database with storage and tools to access that data.

Being NoSQL it is highly flexible, maybe more flexible than you’re

comfortable with. If you’ve worked with MongoDB, Cassandra, or

CouchDB, then you know what we’re talking about here. The major

difference with Firestore is the fact that the database itself and its backend

engine are maintained by Google instead of by you and me. All we need to

do is access the data.

Firestore exposes API endpoints for the data. After your app identifies

itself to Firestore, it can read and write data at those endpoints. Kind of

sounds like the RESTful interface we discussed in the last chapter, right?

1�Read about all of them here: https://firebase.google.com/products

Chapter 12 Using Firebase with Flutter

https://firebase.google.com/products

258

Firestore does support an interface that has some features of REST, but it

is different enough that I wouldn’t categorize it as RESTful. Instead, we

use a Dart library that takes care of the heavy lifting of authenticating our

app and setting up private communications. We will call methods in that

library like Firestore.get(‘people’) or Firestore.set(‘categories’). This turns

out to be much more streamlined once we set it up. (But the setup isn’t

super simple.)

�Cloud Functions
Your app is almost certainly involved in processing data. Some of those

algorithms might be very, very complex. But the fact is that your users’

devices are probably more than capable of handling those things.

“So why not just process everything in my app? ”, you ask. Because

if it is on the device, the algorithms could be reverse-engineered by any

attacker who downloads your Flutter app. Any secret business processes

will be exposed and the logic could be tampered with. Any of your API keys

would be stored on your device and could be read. So we would rather not

put any sensitive data or processing on the device. Let’s put it on the server

where it’s out of reach.

And what about processes or data that require sharing between two or

more apps? You need a server for those things.

You want Cloud Functions for things like

•	 Consuming a third-party API

•	 Processing server-side files like spreadsheets

•	 Extracting, processing, transforming, and loading large

data sets

•	 Running a chatbot or chat application

•	 Image analysis like face detection or recognizing and

extracting text

Chapter 12 Using Firebase with Flutter

259

•	 Large image processing like blurring offensive images

•	 Text analysis like intent detection

•	 Machine learning and AI

•	 Ordering a product from an ecommerce store like

Walmart or Amazon

Cloud Functions are written in JavaScript and run on demand in a

Node environment on Google’s servers when certain triggers fire like

a record is added to Firestore or updated in Firestore, a user logs in, or

someone simply makes an Ajax request to a particular URL.

�Authentication
Firebase Authentication makes it (relatively) easy to add authentication to

your app. Sure, you could add usernames and passwords to your app by

brute force, but you’d have to worry about setting up the user tables and

writing the authentication logic and hashing the passwords and handling

forgotten passwords and all that. With Firebase Authentication, you get

all of that functionality along with authentication via Facebook, Github,

Twitter, and of course Google itself. Your users can choose to use their own

username/password combinations or even do two-factor authentication

by SMS message on their mobile devices.

�Setting up Firebase itself
All these features and more are available with Firebase. If you want to try

out Firebase, it is fun and free and a great learning experience. Besides, it’ll

give us an opportunity to try out our newly acquired Ajax knowledge in a

live read/write environment. We’ll let that be our goal over the next pages.

Chapter 12 Using Firebase with Flutter

260

First, you must have an account with Google. If you don’t have a

Google account, handwrite a letter to Google, place a stamp on it, and snail

mail it to “Google Inc., Mountain View, CA 94043.”2

Go ahead and sign in to your Google Account and visit http://

firebase.google.com to register an app with Firebase. Follow the

prompts. You won’t be committing to anything nor pay any money for the

basic account.

Over your career, you’ll probably be involved in multiple projects,

some for learning purposes, some for your side hustles, and maybe even

some for your main business. For this reason, Firebase allows users to have

multiple projects. We’ll create one to work with.

Caution T he following steps are current as of the time of writing,
but they can change. Take a look here for the most current steps:
https://firebase.google.com/docs/flutter/setup.

�(1) Creating a Firebase project
After logging in to Google, visit console.firebase.google.com and you’ll

see your console which will eventually feature a list of your projects. Click

the button to create a new project. Give the project a name like “Learning

Flutter” (Figure 12-1). Figure 12-2 shows the project is good to go.

2�Just kidding. Who doesn’t have a Google account?!? Go make one!

Chapter 12 Using Firebase with Flutter

http://firebase.google.com
http://firebase.google.com
https://firebase.google.com/docs/flutter/setup

261

Figure 12-1.  Adding a new project

Chapter 12 Using Firebase with Flutter

262

Now imagine that this project had a web interface and a database

backend and was being accessed by a Flutter app on iPhones and on

Androids. This would be one project with multiple apps. As with multiple

projects, Google allows each project to have multiple apps. Each app will

have its own settings since the environments all have different demands.

Before we’re finished, we’ll set up one each for iOS and Android. But first,

we should create our database and at least one collection (aka table).

Figure 12-2.  The confirmation that your project is ready to go

Chapter 12 Using Firebase with Flutter

263

�(2) Creating the database
Go back to your project’s dashboard. You’ll see a menu choice to

develop with a database. Go ahead and choose to create a new database

(Figure 12-3).

Figure 12-3.  First step in creating a Cloud Firestore database

Choose to start it out in test mode just so we can easily verify that our

code works. You’ll want to add rules in a real-world app which you can add

at any time. Hit “Next”.

This step is asking where the bulk of your users will be physically

located (Figure 12-4). It guesses based on your current location, and

honestly, any location will work fine. Just take the default and hit “Done”.

This creates the database.

Chapter 12 Using Firebase with Flutter

264

Tip T his is a NoSQL database which is different from traditional
relational databases like MySQL, SQL Server, Oracle, Informix, and the
like. First, the terminology is different (Table 12-1). 

Figure 12-4.  Pick the location closest to the bulk of your users

Chapter 12 Using Firebase with Flutter

265

A NoSQL database does have keys and values, but they do not have
a fixed structure. In other words, each document in a collection might
have different fields than others in that same collection. This is the
major difference between traditional databases and NoSQL databases
and is the toughest thing to get used to.

Now we’ll create a collection. Hit Start Collection and give it an id.

Then you’ll be able to add one or more documents (Figure 12-5).

Table 12-1.  How you refer to things in

different types of DB servers

Relational databases NoSQL databases

Tables Collections

Records/rows Documents

Columns Fields

Chapter 12 Using Firebase with Flutter

266

Figure 12-5.  Adding your first document to the collection

Chapter 12 Using Firebase with Flutter

267

You’ll now be able to see your lone document in the Cloud Firestore

viewer. From here, you can add documents, delete documents, and alter

documents.

It’s nice that we can maintain the database right from the Firebase

web site, but our goal is obviously to do that from our app. So we must

configure our iOS and Android apps to read from Cloud Firestore.

�(3) Creating an iOS app
On the overview page for your project, you should see buttons for creating

apps in your project (Figure 12-6).

Click the iOS button.

Provide a name for the app (Figure 12-7).

Figure 12-6.  Your options for creating Firestore apps

Chapter 12 Using Firebase with Flutter

268

Figure 12-7.  Giving your iOS app an ID and a nickname

After you register the app, you’ll see a view like Figure 12-8.

Chapter 12 Using Firebase with Flutter

269

Figure 12-8.  Firestore makes their auto-created config file available
for you to download

Chapter 12 Using Firebase with Flutter

270

Download GoogleService-info.plist and store it in the iOS/Runner/

Runner directory (Figure 12-8). You’ll know you’re in the right folder when

you see Info.plist. Don’t be distracted by the diagram they show you. It will

look different because they’re showing the Xcode version of a project, but

you’re working in a Flutter project.

Connecting to Firebase will be easier if we use certain tools provided

to us by Google. This means they need to be downloaded and installed

into our iOS/xcode project. iOS uses CocoaPods to manage dependencies.3

We should create a Podfile if we don’t already have one. Follow the

instructions next to add a Podfile and create the .xcworkspace file

(Figure 12-9).

3�Like npm/package.json for JavaScript apps, NuGet for .Net, RubyGems for Ruby
projects, and so on.

Chapter 12 Using Firebase with Flutter

271

Figure 12-9.  Google provides you the steps to create a Podfile and
.xcworkspace

Chapter 12 Using Firebase with Flutter

272

Figure 12-10.  Last step to create your iOS app – add initialization code

Copy this code in Figure 12-10 so your app reaches out to Firebase to

connect on startup. This is the firebase login logic.

Chapter 12 Using Firebase with Flutter

273

At this point, when your app runs, it knows which Firebase account

and project it is associated with. Only an app with this .plist file will

be able to connect to your app. Of course, when you compile the app

and distribute it to devices through the Apple App Store, they’ll all

be connecting to this one Firebase account. This is normal and to be

expected. Each user who runs it will check in with Firebase. You should see

activity in your Firebase console. Firebase is now listening for it and will

provide you with analytics data.

Since we’re creating a cross-platform app, we should probably also

do the same with Android. Remember, they’re completely different

environments so the steps will be different.

�(4) Creating an Android app
Remember where we chose iOS earlier? Now click the Android button

shown in Figure 12-11.

Figure 12-11.  This time choose to add an Android app

Although the steps are different, the application id or package name

should be the same. Enter it into the dialog (Figure 12-12).

Chapter 12 Using Firebase with Flutter

274

Figure 12-12.  Setting the package name and nickname for Android

That SHA-1 certificate is optional for most applications. You can leave

it blank for now but go back and generate the certificate if you need it for

Google Sign-in or phone number authentication.

Chapter 12 Using Firebase with Flutter

275

�Install the google-services.json file

Going through the next step, the wizard will create a google-services.json

file and will tell you where to save it (Figure 12-13).

Figure 12-13.  Generate the google-services.json file for Android

Chapter 12 Using Firebase with Flutter

276

This file has all kinds of important settings in it, especially the project

numbers and app ids that will tell your app where to ask for data from

Google Firestore. With all of this in a config file, you won’t have to hard-

code it in your app’s source code.

Note that it should be saved in the app folder at the same level as the

app-level build-gradle file. Speaking of which, our next step is to edit that

file.

�Adding to the gradle files

Android projects have Gradle files which manage libraries, much like

Podfiles do for iOS. There is a project-level Gradle file and an app-level

Gradle file. They are both confusingly named build.gradle (Figure 12-14).

Figure 12-14.  Make sure you know which build.gradle file to edit

Chapter 12 Using Firebase with Flutter

277

Add this classpath to the dependencies section of the project-level
build.gradle file, NOT the one under app:

buildscript {

 dependencies {

 (other things may be here already)

 classpath 'com.google.gms:google-services:X.Y.Z'

 }

}

Of course, use the latest version number instead of X.Y.Z like earlier.

Then add this implementation to the dependencies section of the app-
level build.gradle file:

dependencies {

 (other things will be here already)

 implementation 'com.google.firebase:firebase-core:X.Y.Z'

}

And add this apply plugin to the bottom of the same app-level build.

gradle file:

apply plugin: 'com.google.gms.google-services'

Tell the IDE to sync the gradle files. In Android Studio, you’ll see a

“Sync now” link. Go ahead and click it.

�(5) Adding FlutterFire plugins
Almost there! At this point we have the groundwork laid to use Firebase

with our app. We just have to add the Firebase plugins for Flutter and start

coding. It turns out that Google provides one common library for Firebase

itself and one library plugin for each Firebase product. We’ll need the

common library plugin and the Cloud Firestore plugin.

Chapter 12 Using Firebase with Flutter

278

The main Firebase plugin is called firebase_core. The plugin for

Firestore Cloud Storage is called cloud_firestore. Put these lines in the

dependencies section of your pubspec.yaml file and they’ll be installed for

you:

firebase_core: ^X.Y.Z # main dependency for Firebase Core

cloud_firestore: ^X.Y.Z # dependency for Firebase Cloud Storage

Of course if we use other Firestore products, we’ll need to add the

appropriate plugin, but we won’t have to re-do any of the other preceding

steps; once for the project is sufficient.

�Using Firestore
Yes, that was a lot of setup, but we’re finally ready to consume and

maintain data from the database. In order to make it easier on you to put

these Firestore HTTP calls in context, we’ll use the Person examples from

the last chapter, replacing the calls to our temporary/test server with calls

to Firestore. Refer back to them and to the code from our github repository

as you read through the next pages.

At the top of any Flutter dart file that makes Firestore HTTP calls, add

an import:

import 'package:cloud_firestore/cloud_firestore.dart';

This will expose an object called Firestore that you can use to get to

the database. In fact, Firestore.instance will point to your database as a

whole. And Firestore.instance.collection(‘Foo’) will point to the entire Foo

collection.

Chapter 12 Using Firebase with Flutter

279

Note E ven though Firestore calls are HTTP calls behind the scenes,
there is no need to enter API keys or create setups or post-processing
the data or much of the other heavy lifting needed to make normal
Ajax calls with Firestore. All of those tasks are abstracted away from
you with the inclusion of the libraries which depend on the google-
services.json and GoogleService-Info.plist files. As tedious as all that
setup was, you can now see the payoff.

�To get a collection
As long as you remember that Firestore.instance.collection(‘Foo’)

points to the Foo collection, getting that data is easy. You simply call the

.snapshots() method to trigger the request. A simple function like this

might encapsulate your GET request:

Stream<QuerySnapshot> fetchPeople() {

 return Firestore.instance

 .collection('people')

 .limit(100) // Just in case there's a lot of documents

 .snapshots();

}

Note that .snapshots() subscribes to a Stream of type QuerySnapshot.

And we know from the last chapter that Streams can be displayed and kept

up to date with a StreamBuilder widget. This is called reactive programming,

remember? Something like this might display that data in a grid:

Widget build(BuildContext context) {

 return StreamBuilder<QuerySnapshot>(

 stream: fetchPeople(),

 builder: (BuildContext ctx, AsyncSnapshot<dynamic> snapshot) {

Chapter 12 Using Firebase with Flutter

280

 if (snapshot.hasError) {

 return Text('Oh no! Error! ${snapshot.error}');

 }

 if (!snapshot.hasData) {

 return const Text('No people found');

 }

 // The magic! snapshot.data.documents holds your records

 final List<Widget> widgets = snapshot.data.documents

 .map<Widget>((DocumentSnapshot p) => Stack(

 children: <Widget>[

 Image.network(p['imageUrl'],

 height: 300, width: 300, fit: BoxFit.cover),

 Text('${p['name']['first']} ${p['name']['last']}',),

])).toList();

 return GridView.extent(

 maxCrossAxisExtent: 300,

 children: widgets,

);

 },

);

}

Tip I f you want to have a one-time read of the data without
subscribing, omit the .snapshot() and it will return a simple array
of Maps (aka array of objects). If you do that, you’ll want to use a
FutureBuilder instead of a StreamBuilder.

Chapter 12 Using Firebase with Flutter

281

�To query
Firestore does have a .where() function, but it is very limited compared

with a standard SQL where clause. Firestore’s .where() will allow you to

look for these kinds of things:

.where('name.first', isEqualTo: someText)

.where('name.first', isGreaterThanOrEqualTo:someText)

.where('name.first', isLessThanOrEqualTo: someText)

And unfortunately that’s about it. It does not support any fuzzy logic

like wildcards, “contains,” or “like.” If you need full-text searching, the

Firebase team recommends a third-party service like Algolia. See https://

firebase.google.com/docs/firestore/solutions/search for more

details.

�To upsert
The word “upsert” means that if the document exists, it is updated, but if it

does not exist, it is added. Firestore does both of these operations with the

setData method.

To update an existing document, read it like we did previously and

then pass its documentID to setData like so:

Firestore.instance

 .collection('people')

 .document(_person.documentID)

 .setData(<String, dynamic>{

 'name': person.name,

 'email': person.email,

 'imageUrl': person.imageUrl,

}).then<void>((dynamic doc) {

 print('Document updated: $doc');

Chapter 12 Using Firebase with Flutter

https://firebase.google.com/docs/firestore/solutions/search
https://firebase.google.com/docs/firestore/solutions/search

282

}).catchError((dynamic error) {

 print('Error! $error');

});

If you omit the documentID when calling setData, Firestore assumes

you want to add a new record:

Firestore.instance

 .collection('people')

 .document()

 .setData(<String, dynamic>{

 'name': person.name,

 'email': person.email,

 'imageUrl': person.imageUrl,

 }).then<void>((dynamic doc) {

 print('Document added: $doc');

 }).catchError((dynamic error) {

 print('Error! $error');

 });

Caution B e careful. It is easy to create duplicates by forgetting the
documentID when calling setData().

�To delete
Deleting is similarly simple:

Firestore.instance

 .collection('people')

 .document(personToDelete.documentID)

 .delete()

Chapter 12 Using Firebase with Flutter

283

 .catchError((dynamic error) {

 print('Error! $error');

 });

Obviously there is nothing returned from the delete so no need for a

.then().

�Where to go from here
Let’s take a second and look back at the journey we’ve taken together.

Since we began this book …

•	 You now understand how Flutter works and is

architected

•	 You can deftly handle the most useful built-in Flutter

widgets

•	 You can create custom widgets, both Stateless and

Stateful

•	 Your Flutter UX can be intuitive through layout widgets

•	 You can make them look beautiful with styles

•	 You’re able to navigate between scenes in a Flutter app

•	 You can handle asynchronous activities including

reading local data

•	 You can read and write data through an HTTP/RESTful

API

•	 You can persist data permanently in a robust, scalable

server

Chapter 12 Using Firebase with Flutter

284

Wow! That’s a ton of stuff! But there are tons more to learn. Heck, even

veterans should continue learning. Let me recommend some resources for

you to continue to explore and learn.

First, get involved in the Flutter community (of which I’m a member).

Start with their Slack channel at http://flutterStudyGroup.slack.com.

Read their articles at https://medium.com/flutter-community. And join

us via Zoom on Wednesdays for Hump Day Q & A at https://tinyurl.

com/humpdayqanda where you can talk live with Flutter devs literally

around the globe, ask questions, and even pair program to solve problems.

The top Flutter developers in the world hang out there, eager to help you

with your Flutter issues.

I also recommend that you subscribe to two free curated emails chock

full of Flutter articles, videos, tutorials, and more. Each is delivered freshly

baked to your inbox once a week. Flutter Weekly has a couple dozen

resources per newsletter. Subscribe here: http://bit.ly/subscribe_

to_flutter_weekly. Flutter Press Weekly is smaller each week because

it is more selective in the resources shared. You can subscribe to Flutter

Press Weekly at http://bit.ly/subscribe_to_flutter_press_weekly.

Reading these regularly will keep your finger on the pulse of the latest

developments in Flutter.

Google’s Flutter team also has some cool resources. A great place to

begin is the Flutter documentation at https://flutter.dev/docs. Parts

of it are awfully dry to read but is the definitive resource if you’re looking

up Flutter widgets and APIs. On the other end of the spectrum are their

videos, hugely entertaining and easy to digest. I recommend that you

subscribe at http://bit.ly/flutter_youtube_channel. If you see a

“Widget of the Week” video in there, click it immediately! They are one or

two minutes at most and will give you a functional understanding of the

widget in question faster than anything else. Google is resetting the bar for

documentation in their video channel.

Chapter 12 Using Firebase with Flutter

http://flutterstudygroup.slack.com
https://medium.com/flutter-community
https://tinyurl.com/humpdayqanda
https://tinyurl.com/humpdayqanda
http://bit.ly/subscribe_to_flutter_weekly
http://bit.ly/subscribe_to_flutter_weekly
http://bit.ly/subscribe_to_flutter_press_weekly
https://flutter.dev/docs
http://bit.ly/flutter_youtube_channel

285

I’ve been overwhelmed with the passion of the Flutter community! If

these three mega-resources don’t do it for you, there are tons and tons of

others out there for the asking. Get involved with your fellow Flutter devs,

and if you see me hanging out in one of them, please stop and say hello.

Thanks so much for reading!

Chapter 12 Using Firebase with Flutter

287© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2

APPENDIX A

�Dart Language
Overview
We use the Dart language when writing Flutter, but Dart isn’t very popular

(yet). Most developers jump right into Flutter with no prior knowledge of

the language. In case that’s you, we wanted to get you a little assistance.

In this appendix, we’re making no attempt to teach you everything about

Dart. Our goal here is to get you just enough Dart to be effective as you write

Flutter. So this appendix is brief and to the point. We are only dealing with

the things that would otherwise have slowed you down while writing Flutter.

An example of this is the rune data type. Super cool and innovative Dart

feature, but rarely used with Flutter so we omitted it. Please try to be tolerant

of us if we left out your favorite feature. We didn’t forget it. We just decided it

wasn’t as important as you thought it should be. Please forgive us.

�What is Dart?
Dart is a compiled, statically typed, object-oriented, procedural

programming language. It has a very mainstream structure much like

other OO languages, making it awfully easy to pick up for folks who have

experience with Java, C#, C++, or other OO, C-like languages. And it adds

some features that developers in those other languages would not expect

but are very cool nonetheless and make the language more than elegant.

https://doi.org/10.1007/978-1-4842-5181-2

288

In light of all that, we’ve organized this appendix in two sections:

•	 Expected features – A quick reference (aka a

“cheatsheet”) of mainstream features, the bare

minimum of what you’ll need to know for Flutter. You

should tear through this section at lightning speed.

•	 Unexpected features – These are things that might be

a surprise to developers who work in traditional OO

languages. Since Dart departs from tradition in these

areas, we thought it best to explain them briefly – very

briefly.

�Expected features – Dart Cheatsheet
This quick reference assumes that you’re an experienced OO developer

and ignores the stuff that would be painfully obvious to you. For a more in-

depth and detailed look at Dart, please visit https://dart.dev/guides/

language/language-tour.

�Data types
int x = 10; // Integers

double y = 2.0; // IEEE754 floating point numbers

bool z = true; // Booleans

String s = "hello"; // Strings

dynamic d; // Dynamic variables can change types

d = x; // at any time. Use sparingly!

d = y;

d = z;

Appendix A Dart Language Overview

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour

289

�Arrays/lists
// Square brackets means a list/array

// In Dart, arrays and lists are the same thing.

List<dynamic> list = [1, "two", 3];

// Optional angle brackets show the type - Dart supports Generics

// How to iterate a list

for (var d in list) {

 print(d);

}

// Another way to iterate a list

list.forEach((d) => print(d));

// Both of these would print "1", then "two", then "3"

�Conditional expressions
// Traditional if/else statement

int x = 10;

if (x < 100) {

 print('Yes');

} else {

 print('No');

}

// Would print "Yes"

// Dart also supports ternaries

String response = (x < 100) ? 'Yes' : 'No';

// If name is set, use it. Otherwise use 'No name given'

String name;

String res = name ?? 'No name given';

Appendix A Dart Language Overview

290

//the "Elvis" operator. If the object is non-null, evaluate

//the property. Prevents null exceptions from throwing.

print(name?.length);

�Looping
// A for loop

for (int i=1 ; i<10 ; i++) {

 print(i);

}

// Would print 1 thru 9

// A while loop

int i=1;

while(i<10) {

 print(i++);

}

// Would print 1 thru 9

�Classes
class Name {

 String first;

 String last;

 String suffix;

}

class Person {

 // Classes have properties

 int id;

Appendix A Dart Language Overview

291

 Name name; // Another class can be used as a type

 String email;

 String phone;

 // Classes have methods

 void save() {

 // Write to a database somehow.

 }

}

�Class constructors
class Person {

 Name name;

 // Typical constructor

 Person() {

 name = Name();

 name.first = "";

 name.last = "";

 }

}

�Unexpected things about Dart
The preceding Dart features were unsurprising to any experienced OO

developers, but Dart has some pretty cool features that are unique. We’ll

cover these next, but since they’re less familiar, let’s take just a sentence or

two for each and explain it briefly before giving you a code sample.

Appendix A Dart Language Overview

292

�Type inference
If I said “x=10.0”, what data type would you guess that x is? Double? And

how did you know? Because you looked to the right of the equal sign and

inferred its type based upon the value being assigned to it. Dart can do that

too. If you use the keyword var instead of a data type, Dart will infer what

type it is and assign that type:

var i = 10; // i is now defined as an int.

i = 12; // Works, because 12 is an int.

i = "twelve"; // No! "twelve" is a String and not an int.

var str = "ten"; // str is now defined as a String.

str = "a million"; // Yep, works great.

str = 1000000.0; // Nope! 1000000.0 is a double, not a string.

This is often confused with dynamic. Dynamic can hold any data type

and can change at runtime. Var is strongly and statically typed.

�final and const
final and const are Dart variable modifiers:

final int x = 10;

const double y = 2.0;

They both mean that once assigned, the value can’t change. But const

goes a little farther – the value is set at compile time and is therefore

embedded in the installation bundle.

final means that the variable can’t be reassigned. It does not mean that

it can’t change. For example, this is allowed:

final Employee e = Employee();

e.employer = "The Bluth Company";

Appendix A Dart Language Overview

293

e changed, but it wasn’t reassigned so that’s okay. This, however, is not

allowed:

const Employee e = Employee();

const is not allowed at all because this particular class has properties

that could potentially change at runtime. final marks a variable as

unchangeable, but const marks a value as unchangeable.

So in summary

•	 dynamic – Can store any data type. The data type can

change at any time.

•	 var – The data type is inferred from the value on the

right side of the “=”. The data type does not change.

•	 final – The variable, once set, cannot be reassigned.

•	 const – The value is set at compile time, not runtime.

�Variables are initialized to null
The default data type for most variables is null. The default return value of

a function is null:

int x;

double y;

bool z;

String s;

dynamic d;

All of the preceding data are null since they haven’t been assigned a

value yet.

Appendix A Dart Language Overview

294

�String interpolation with $
Interpolation saves devs from writing string concatenations. This …

String fullName = '$first $last, $suffix';

… is effectively the same thing as this …

String fullName = first + " " + last + ", " + suffix;

When the variable is part of a map or an object, the compiler can get

confused, so you should wrap the interpolation in curly braces.

String fullName = '${name['first']} ${name['last']}';

�Multiline strings
You can create multiline strings with three single or double quotes:

String introduction = """

Now the story of a wealthy family

who lost everything

And the one son who had no choice

but to keep them all together.

""";

�Spread operator
The “…” operator will spread out the elements of an array, flattening them.

This will be very familiar to JavaScript developers:

List fiveTo10 = [5, 6, 7, 8, 9, 10,];

// Spreading the inner array with "...":

List numbers = [1, 2, 3, 4, ...fiveTo10, 11, 12];

// numbers now has [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Appendix A Dart Language Overview

295

�Map<foo, bar>
Maps are like a hash or dictionary. They’re merely an object with a set of

key-value pairs. The keys and values can be of any type:

// You set the value of a Map with curly braces:

Map<String, dynamic> person = {

 "first": "George",

 "last": "Bluth",

 "dob": DateTime.parse("1972-07-16"),

 "email": "amazingGob@gmail.com",

};

// Angle brackets on a Map set the data types of the keys and

// values. They're not required but are a good practice

// You reference a map member with square brackets:

String introduction = person['first'] + " was born "+

person['dob'].toString();

�Functions are objects
Just like in JavaScript, functions are first-class objects. They can be passed

around like data, returned from a function, passed into a function as a

parameter, or set equal to a variable. You can do just about anything with a

function that you can do with an object in Java or C#:

Function sayHi = (String name) => print('Hello, ' + name);

// You can pass sayHi around like data; it's an object!

Function meToo = sayHi;

meToo("Tobias");

Appendix A Dart Language Overview

296

�Big arrow/Fat arrow
In the preceding example, we also saw the fat arrow syntax. When you

have a function that returns a value in one line of code, you can put that

returned value on the right side of a “=>” and the argument list on the left

side. These are all the same:

int triple(int val) {

 return val * 3;

}

Function triple = (int val) {

 return val * 3;

};

Function triple = (int val) => val * 3;

The fat arrow is just syntactic sugar, allowing devs to be more

expressive with less code.

�Named function parameters
Positional parameters are great, but it can be less error-prone (albeit more

typing) to have named parameters. Instead of calling a function like this:

sendEmail('ceo@bluthcompany.com','Popcorn in the breakroom');

You can call it like this:

sendEmail(subject:'Popcorn in the breakroom',

 toAddress:'ceo@bluthcompany.com');

Now the order of parameters is unimportant. Here is how you’d write

the function to use named parameters. Note the curly braces:

void sendEmail({String toAddress, String subject}) {

 // send the email here

}

Appendix A Dart Language Overview

297

Named parameters also work great with class constructors where they

are very commonly used in Flutter:

class Person {

 Name name;

 // Named parameters

 Person({String firstName, String lastName}) {

 name = Name()..first=firstName..last=lastName;

 }

}

�Omitting “new” and “this.”
In Dart, it is possible – and encouraged – to avoid the use of the new

keyword when instantiating a class:

// No. Avoid.

Person p = new Person();

// Yes

Person p = Person();

In the same way, inside of a class, the use of “this.” to refer to members

of the class is not only unneeded because it is assumed, but it is also

discouraged. The code is shorter and cleaner:

class Name {

 String first;

 String last;

 String suffix;

 String getFullName() {

 // No. Avoid "this.":

 String full=this.first+" "+this.last+", "+this.suffix;

Appendix A Dart Language Overview

298

 // Better.

 String full=first+" "+last+", "+suffix;

 return full;

 }

}

�Class constructor parameter shorthand
Merely a shorter way of writing your Dart classes which receive

parameters. When you write the constructor to receive “this.something”

and have a class-scoped property with the same name, the compiler writes

the assignments so you don’t have to:

class Person {

 String email;

 String phone;

 // The parameters are assigned to properties automatically

 // because the parameters say "this."

 Person(this.email, this.phone) {}

}

The preceding code is equivalent to

class Person {

 String email;

 String phone;

 Person(String email, String phone) {

 this.email = email;

 this.phone = phone;

 }

}

Appendix A Dart Language Overview

299

�Private class members
Dart does not use class visibility modifiers such as public, private,

protected, package, or friend like other OO languages. All members are

public by default. To make a class member private, put an underscore in

front of the name:

class Person {

 int id;

 String email;

 String phone;

 String _password;

 set password(String value) {

 _password = value;

 }

 String get hashedPassword {

 return sha512.convert(utf8.encode(_password)).toString();

 }

}

In that example, id, email, and phone are public. _password is private

because the first character in the name is “_”, the underscore character.

�Mixins
Mixins are baskets of properties and methods that can be added to any

class. They look like classes but cannot be instantiated:

mixin Employment {

 String employer;

 String businessPhone;

Appendix A Dart Language Overview

300

 void callBoss() {

 print('Calling my boss');

 }

}

A mixin is added to a class when it uses the “with” keyword:

class Employee extends Person with Employment {

 String position;

}

This Employee class now has employer and businessPhone properties

and a callBoss() method:

Employee e = Employee();

e.employer = "The Bluth Company";

e.callBoss(); // An employee can call its boss.

Dart, like Java and C#, only supports single inheritance. A class can only

extend one thing. But mixin members are added to a class so any class can

implement multiple mixins and a mixin can be used in multiple other classes.

�The cascade operator (..)
When you see two dots, it means “return this class, but before you do, do

something with a property or method.” We might do this

Person p = Person()..id=100..email='gob@bluth.com'..save();

which would be a more concise way of writing

Person p = Person();

p.id=100;

p.email='gob@bluth.com';

p.save();

Appendix A Dart Language Overview

301

�No overloading
Dart does not support overloading methods. This includes constructors.

�Named constructors
Since we can’t have overloaded constructors, Dart supports a different way

of doing essentially the same thing. They’re called named constructors and

they happen when you write a typical constructor, but you tack on a dot

and another name:

class Person {

 // Typical constructor

 Person() {

 name = Name()..first=""..last="";

 }

 // A named constructor

 Person.withName({String firstName, String lastName}) {

 name = Name()

 ..first = firstName

 ..last = lastName;

 }

 // Another named constructor

 Person.byId(int id) {

 // Maybe go fetch from a service by the provided id

 }

}

Appendix A Dart Language Overview

302

And to use these named constructors, do this:

Person p = Person();

// p would be a person with a blank first and last name

Person p1 = Person.withName(firstName:"Lindsay",lastName:"Fünke");

// p1 has a first name of "Lindsay" and a last name of "Funke"

Person p3 = Person.byId(100);

// p3 would be fetched based on the id of 100

Appendix A Dart Language Overview

303© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2

Index

A
AlertDialog, 154
Android

emulator, 14, 15
Android Studio, 11
Android Virtual Device (AVD)

manager, 14, 15
Anti-RaisedButton, 81
API call, 228
API requests, 228, 229
AppBar widget, 103, 104
async, 215
await, 214

B
BLoC, 200, 201
Boolean value

property, 60
BoxConstraints, 106
BoxFit options, 52
BoxFit.scaleDown, 51
Box model, 124
BoxShape, 173
build.gradle file, 276
Button widgets, 78

C
Cascade operator (..), 300
Class visibility modifiers, 299
Cloud firestore, 257, 258
Cloud functions, 258, 259
ColorCircle, 197
ColorMixer, 195
ColorValueChanger, 197
Column widget, 111
Compile-to-native cross-platform

frameworks, 7
Componentization, 34
Container

alignment property, 126, 127
<div>, 125
properties, 125
size, 128–130

crossAxisAlignment, 115, 117
Cross-platform development

categories, 6
CRUD app, API service, 241

DELETE request, 247
Flutter app, creation, 243
GET request, 247
PeopleList widget, 244–246
PeopleUpsert.dart, 248–252

https://doi.org/10.1007/978-1-4842-5181-2

304

Pipedream.com, 242
POST call, 252
PUT call, 252
strongly typed business

class, 243, 244
testing, 242

curl command, 242
CustomPainter, 174, 175

D
Dart

cascade operator (..), 300
class constructors, 291
classes, 290, 291
expected features

arrays/lists, 289
conditional

expressions, 289–290
data types, 288
looping, 290

Flutter, 211
mixins, 299
named constructors, 301, 302
overloading methods, 301
private class members, 299
unexpected features

big arrow/fat arrow, 296
class constructor, 298
final and const, 292–293
function parameters, 296–297
functions, 295
map, 295

multiline strings, 294
spread operator, 294
string interpolation, 294
type inference, 292
variables, 293

Debugging, 25
Development process

Flutter project, creation, 19, 20
running, app

debugging, 25
hot reloading, 24
play/debug button, 22
tethered device, 24
web app, 23

DevTools, 12
Dialog widget, 153
Dismissible, 83
Drawer navigation, 144–150
DropdownButton, 63–65
DRY principle, 248

E
Embedded images, 50
Event loop, 211
Expanded widget

example, 117, 118
flex factor, 119, 120

F
Firebase Authentication, 259
Firestore.instance.

collection(‘Foo’), 279

CRUD app, API service (cont.)

INDEX

305

FittedBox, 110
FlatButton, 81
Floating action button, 81, 82
Flutter app, 207

async, 215, 216
await, 214
code to create the

future, 212, 213
compile-to-native solutions, 7
cross-platform

development, 5, 6
Dart language, 211, 287
data from a Future, 213, 214
data with an external

server, 207
data within the device, 207
definition, 4
event loop, 211
finding a library, 208, 209
future, 211
Google CRM team, 5
importing the library, 210
including a file, 216
iOS apps, 5
memory to JSON, 221
pubspec.yaml, 210
reading a file, 219, 220
reading JSON, 222, 223
shared preferences, 223

to read preferences, 224
to write preferences, 224

using JSON, 220, 221
using the library, 211
writing a file, 218

Flutter checkbox widget, 60
Flutter DevTools, 12
Flutter doctor, 16, 17
Flutter radio widgets, 61, 62
Flutter SDK, 10
Flutter styles, 160, 162
Flutter Switch widget, 61
Flutter toolchain

emulators, 13
flutter doctor, 16
flutter upgrade, 17, 18
IDE DevTools, 12
IDEs (see IDEs)
SDK, installation, 10

Flutter upgrade, 17, 18
Flutter widgets

layout widgets, 36
navigation widgets, 37
value widgets, 36

fontFamily, 165
Form example, 71, 73, 74, 76
FormField widget, 67, 68

Form.autovalidate, 69, 71
save() method, 69
validator, 69

Form widget, 65–67
FutureBuilder, 234, 235

G
Genymotion, 14
Gesture

add a new item, 89
associate with behavior, 87

INDEX

306

custom widget, 85
GestureDetector widget, 86
long press, 87
pinching-to-zoom, 92
swiping, 90

GestureArena, 92
GestureDetector widget, 86, 87
Gestures and behaviors, 84
Google Firebase

adding FlutterFire
plugins, 277, 278

advantage, 255
create Android app

google-services.json file, 275
Gradle files, 276, 277
id or package name, 273
package name/nickname, 274
time, 273

creating database, 263, 267
creating iOS app, 267, 268, 272
creating project, 260–262
delete, 282, 283
Foo, 279, 280
Podfile.xcworkspace, 271
query, 281
server, 256
tools, 257

Cloud firestore, 257, 258
Cloud functions, 258, 259
firebase authentication, 259

upsert, 281, 282
GoogleService-info.plist, 270
google-services.json file, 275

Gradle files, 276, 277
GridView, 131

GridView.count(), 132–134
GridView.extent(), 131, 132

H
Hooks, 201
HTTP GET or DELETE request, 230
HTTP responses

brute force, 233
FutureBuilder, 234, 235
StreamBuilder, 236, 237

I
IconButton, 81
Icon widget, 48
IDEs

Android emulator, 14, 15
Android Studio and IntelliJ, 11
DevTools, 12
iOS simulator, 13
VS code, 11

Image sizing, 51
Image widget, 36, 49
InputDecoration widget, 56
IntelliJ, 11
Internet, 36
iOS simulator, 13

J
JSON, 220

Gesture (cont.)

INDEX

307

K
keyboardType property, 58
Kotlin, 5

L
Layout widgets, 36
Lifting state up, 193
ListView.builder, 121, 123
ListView.custom, 122
ListView.separated, 121

M
MainAxisAlignment, 113, 114
MaterialApp widget, 100, 101
Microsoft Visual Studio, 11
Mixins, 299

N
Navigation

dialog, 140
drawers, 139
stacks, 139
tabs, 139
widgets, 37

Network images, 51

O
Omitting “new” and “this.”, 297, 298
onChanged property, 55
onHorizontalDragEnd, 92

onPressed, 79
onVerticalDragEnd, 92

P, Q
PATCH request, 231
path_provider 1.3.0, 209
.plist file, 273
Positioned widget, 178–180
POST request, 231
Private class members

cascade operator (..), 300
Mixins, 299, 300
named constructors, 301
overloading, 301

pubspec.yaml, 210
PUT request, 231

R
RaisedButton, 80
React, 34
React Native, 15
Redux, 202
Row and column, widgets, 110, 112
Row widget, 111

S
SafeArea widget, 104, 105
Scaffold widget, 101, 102
ScopedModel, 201
showDialog(), 154
SimpleDialog, 154

INDEX

308

SizedBox(), 121
Slider, 62
SnackBar widget, 105, 106
.snapshots() method, 279
Spacer(), 121
Stacking widgets, 176, 177
Stack navigation, 140–144
StatefulWidget, 45, 130,

187, 189, 194
important rule about, 190, 191
lifting the state up, 192, 193
passing down, 191, 192
state management, 193–197
usage of stage, 198

StreamBuilder widget, 236, 237, 279
Strongly typed class

business class, 238
.fromJSON() method, 239, 240
typed deserialization, 238

Subwidgets, 39, 40

T, U
TabBarView, 151
TabBar widget, 150
TabController, 151
Table widget

columnWidths, 137
rows and columns, 134, 135
TableRow, 135, 136

Tab navigation, 150–153
TextField widget, 55, 188
TextStyle, 163–165
Text widget, 36, 39, 47

V
Value widgets, 36

W
.where() function, 281
Widget

BLoC, 200, 201
gestures, 83
inheritedWidget, 200
key, 41
passing value in, 42–44
provider, 202
Redux, 202
ScopedModel, 201
StatefulWidget, 189, 190
styling, 159
value, 36

Widgets, layout
entire screen, 94
extra space, 96
fine-tuned spacing, 97
ListView, 94, 95
PersonCard, 94–96
Row widget, 96
visual, 97–99
VS Code, 99

Widget’s size
layout

BoxConstraints, 109
branches, 108
LimiteBox(), 110

RenderBox, 106
unbounded height error, 107, 108

INDEX

309

Widgets style
border, 170, 171
BorderRadius, 172, 173
BoxShape, 173–175
Card widget, 180
colors, 161–163
container

decorations, 168–170
custom fonts, 165–167
fonts, 166, 167

positioned widget, 178–180
shadows, 168, 169
stacking widgets, 176, 177
TextStyle, 163–165
themes, 181–183

X, Y, Z
Xamarin, 15
.xcworkspace file, 270

INDEX

	Praise for Beginning App
Development with Flutter
	Table of Contents
	About the Author
	About the Technical Reviewer
	Who is this book for?
	Part I: Introduction to Flutter
	Chapter 1: Hello Flutter
	What is Flutter?
	Why Flutter?
	The other options
	Native solutions
	Conclusion

	Chapter 2: Developing in Flutter
	The Flutter toolchain
	The Flutter SDK
	Installing the flutter SDK

	IDEs
	VS Code from Microsoft
	Android Studio/IntelliJ from JetBrains
	Which IDE should I use?

	IDE DevTools
	Emulators
	iOS simulator
	Android emulator

	Keeping the tools up to date
	flutter doctor
	flutter upgrade

	The Flutter development process
	Scaffolding the app and files
	Anatomy of a Flutter project

	Running your app
	Running it as a web app
	Running it on a tethered device
	Hot reloading
	Debugging

	Conclusion

	Part II: Foundational Flutter
	Chapter 3: Everything Is Widgets
	UI as code
	Built-in Flutter widgets
	Value widgets
	Layout widgets
	Navigation widgets
	Other widgets
	How to create your own stateless widgets
	Widgets have keys
	Passing a value into your widget

	Stateless and Stateful widgets
	So which one should I create?

	Conclusion

	Chapter 4: Value Widgets
	The Text widget
	The Icon widget
	The Image widget
	Embedded images
	Network images
	Sizing an image

	Input widgets
	Text fields
	Making your TextField fancy
	Checkboxes
	Radio buttons
	Sliders
	Dropdowns

	Putting the form widgets together
	Form widget
	FormField widget
	onSaved
	validator
	Validate while typing
	Validate only after submit attempt

	One big Form example

	Conclusion

	Chapter 5: Responding to Gestures
	Meet the button family
	RaisedButton
	FlatButton and IconButton
	FloatingActionButton
	CupertinoButton

	Dismissible
	Custom gestures for your custom widgets
	Step 1: Decide on your gestures and behaviors
	Step 2: Create your custom widget
	Step 3: Add a GestureDetector widget
	Step 4: Associate your gesture with its behavior

	Example 1: Reacting to a long press
	Example 2: Pinching to add a new item
	Example 3: Swiping left or right
	What if there are two or more gestures happening at the same time?
	Conclusion

	Chapter 6: Laying Out Your Widgets
	Laying out the whole scene
	MaterialApp widget
	The Scaffold widget
	The AppBar widget
	SafeArea widget
	SnackBar widget

	How Flutter decides on a widget’s size
	The dreaded “unbounded height” error
	Flutter’s layout algorithm

	Putting widgets next to or below others
	Your widgets will never fit!
	What if there’s extra space left over?
	mainAxisAlignment
	crossAxisAlignment
	Expanded widget

	What if there’s not enough space?
	The ListView widget
	Regular ListView: When you have a few widgets to display
	ListView.builder: When you’re building widgets from a list of objects

	Container widget and the box model
	Alignment and positioning within a Container
	So how do you determine the size of a Container?

	Special layout widgets
	Stack widget
	GridView widget
	GridView.extent()
	GridView.count()

	The Table widget

	Conclusion

	Chapter 7: Navigation and Routing
	Stack navigation
	Navigating forward and back
	Get result after a scene is closed

	Drawer navigation
	The Drawer widget
	Filling the drawer

	Tab Navigation
	TabController
	TabBarView
	TabBar and Tabs
	TabBar at the bottom

	The Dialog widget
	showDialog() and AlertDialog
	Responses with a Dialog

	Navigation methods can be combined

	Chapter 8: Styling Your Widgets
	Thinking in Flutter Styles
	A word about colors
	Styling Text
	TextStyle
	Custom fonts

	Container decorations
	Border
	BorderRadius
	BoxShape

	Stacking widgets
	Positioned widget

	Card widget
	Themes
	Applying theme properties

	Conclusion

	Chapter 9: Managing State
	What is state?
	What goes in a StatefulWidget?
	The most important rule about state!
	Passing state down
	Lifting state back up
	An example of state management
	When should we use state?
	Advanced state management
	InheritedWidget
	BLoC
	ScopedModel
	Hooks
	Provider
	Redux
	Whoa! That’s a lot of packages!

	Conclusion

	Part III: Above and Beyond
	Chapter 10: Your Flutter App Can Work with Files
	Including libraries in your Flutter app
	Finding a library
	Adding it to pubspec.yaml
	Importing the library
	Using the library

	Futures, async, and await
	Why would it wait?
	How do we get the data from a Future?
	await
	async

	Including a file with your app
	Writing a file
	And reading it!

	Using JSON
	Writing your app’s memory to JSON
	Reading JSON into your app’s memory

	Shared preferences
	To write preferences
	To read preferences

	Conclusion

	Chapter 11: Making RESTful API Calls with HTTP
	What is an API call?
	The flavors of API requests
	Making an HTTP GET or DELETE request
	Making an HTTP PUT, POST, or PATCH request
	HTTP responses to widgets
	Brute force – The easy way
	FutureBuilder – The clean way
	StreamBuilder

	Strongly typed classes
	Create a business class
	Write a .fromJSON() method
	Use .fromJSON() to hydrate the object

	One big example
	Setting up
	Create the Flutter app
	Making a strongly typed business class
	PeopleList.dart
	A GET request in Flutter
	A DELETE request in Flutter
	PeopleUpsert.dart
	A POST and PUT request in Flutter

	Conclusion

	Chapter 12: Using Firebase with Flutter
	Introducing Firebase
	Cloud Firestore
	Cloud Functions
	Authentication

	Setting up Firebase itself
	(1) Creating a Firebase project
	(2) Creating the database
	(3) Creating an iOS app
	(4) Creating an Android app
	Install the google-services.json file
	Adding to the gradle files

	(5) Adding FlutterFire plugins

	Using Firestore
	To get a collection
	To query
	To upsert
	To delete

	Where to go from here

	Appendix A:
Dart Language Overview
	What is Dart?
	Expected features – Dart Cheatsheet
	Data types
	Arrays/lists
	Conditional expressions
	Looping

	Classes
	Class constructors

	Unexpected things about Dart
	Type inference
	final and const
	Variables are initialized to null
	String interpolation with $
	Multiline strings
	Spread operator
	Map<foo, bar>
	Functions are objects
	Big arrow/Fat arrow
	Named function parameters
	Omitting “new” and “this.”
	Class constructor parameter shorthand

	Private class members
	Mixins
	The cascade operator (..)
	No overloading
	Named constructors

	Index

