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Foreword

The term “database” has long since become part of people’s everyday vocabulary, for 
managers and clerks as well as students of most subjects. They use it to describe a logi-
cally organized collection of electronically stored data that can be directly searched and 
viewed. However, they are generally more than happy to leave the whys and hows of its 
inner workings to the experts.

Users of databases are rarely aware of the immaterial and concrete business values 
contained in any individual database. This applies as much to a car importer’s spare parts 
inventory as to the IT solution containing all customer depots at a bank or the patient 
information system of a hospital. Yet failure of these systems, or even cumulative errors, 
can threaten the very existence of the respective company or institution. For that rea-
son, it is important for a much larger audience than just the “database specialists” to be 
well-informed about what is going on. Anyone involved with databases should under-
stand what these tools are effectively able to do and which conditions must be created 
and maintained for them to do so.

Probably the most important aspect concerning databases involves (a) the distinction 
between their administration and the data stored in them (user data) and (b) the economic 
magnitude of these two areas. Database administration consists of various technical and 
administrative factors, from computers, database systems, and additional storage to the 
experts setting up and maintaining all these components—the aforementioned database 
specialists. It is crucial to keep in mind that the administration is by far the smaller part 
of standard database operation, constituting only about a quarter of the entire efforts.

Most of the work and expenses concerning databases lie in gathering, maintaining, 
and utilizing the user data. This includes the labor costs for all employees who enter data 
into the database, revise it, retrieve information from the database, or create files using 
this information. In the above examples, this means warehouse employees, bank tellers, 
or hospital personnel in a wide variety of fields—usually for several years.

In order to be able to properly evaluate the importance of the tasks connected with 
data maintenance and utilization on the one hand and database administration on the 
other hand, it is vital to understand and internalize this difference in the effort required 
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for each of them. Database administration starts with the design of the database, which 
already touches on many specialized topics such as determining the consistency checks 
for data manipulation or regulating data redundancies, which are as undesirable on the 
logical level as they are essential on the storage level. The development of database solu-
tions is always targeted at their later use, so ill-considered decisions in the development 
process may have a permanent impact on everyday operations. Finding ideal solutions, 
such as the golden mean between too strict and too flexible when determining consist-
ency conditions, may require some experience. Unduly strict conditions will interfere 
with regular operations, while excessively lax rules will entail a need for repeated expen-
sive data repairs.

To avoid such issues, it is invaluable that anyone concerned with database develop-
ment and operation, whether in management or as a database specialist, gain systematic 
insight into this field of computer sciences. The table of contents gives an overview of 
the wide variety of topics covered in this book. The title already shows that, in addition 
to an in-depth explanation of the field of conventional databases (relational model, SQL), 
the book also provides highly educational information about current advancements and 
related fields, the keywords being “NoSQL” or “post-relational” and “Big Data.” I am 
confident that the newest edition of this book will, once again, be well received by both 
students and professionals—its authors are quite familiar with both groups.

Carl August Zehnder
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Preface

It is remarkable how stable some concepts are in the field of databases. Information 
technology is generally known to be subject to rapid development, bringing forth new 
technologies at an unbelievable pace. However, this is only superficially the case. Many 
aspects of computer science do not essentially change at all. This includes not only the 
basics, such as the functional principles of universal computing machines, processors, 
compilers, operating systems, databases and information systems, and distributed sys-
tems, but also computer language technologies such as C, TCP/IP, or HTML, which are 
decades old but in many ways provide a stable fundament of the global, earth-spanning 
information system known as the World Wide Web. Likewise, the SQL language has 
been in use for over four decades and will remain so in the foreseeable future. The the-
ory of relational database systems was initiated in the 1970s by Codd (relation model 
and normal forms), Chen (entity and relationship model) and Chamberlin and Boyce 
(SEQUEL). However, these technologies have a major impact on the practice of data 
management today. Especially, with the Big Data revolution and the widespread use of 
data science methods for decision support, relational databases, and the use of SQL for 
data analysis are actually becoming more important. Even though sophisticated statistics 
and machine learning are enhancing the possibilities for knowledge extraction from data, 
many if not most data analyses for decision support rely on descriptive statistics using 
SQL for grouped aggregation. In that sense, although SQL database technology is quite 
mature, it is more relevant today than ever.

Nevertheless, a lot has changed in the area of database systems lately over the years. 
Especially the developments in the Big Data ecosystem brought new technologies into 
the world of databases, to which we pay enough attention to. The nonrelational database 
technologies, which are finding more and more fields of application under the generic 
term NoSQL, differ not only superficially from the classical relational databases, but 
also in the underlying principles. Relational databases were developed in the twentieth 
century with the purpose of enabling tightly organized, operational forms of data man-
agement, which provided stability but limited flexibility. In contrast, the NoSQL data-
base movement emerged in the beginning of the current century, focusing on horizontal 
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partitioning and schema flexibility, and with the goal of solving the Big Data problems 
of volume, variety, and velocity, especially in Web-scale data systems. This has far-
reaching consequences and has led to a new approach in data management, which devi-
ates significantly from the previous theories on the basic concept of databases: the way 
data is modeled, how data is queried and manipulated, how data consistency is handled, 
and the system architecture. This is why we compare these two worlds, SQL and NoSQL 
databases, from different perspectives in all chapters.

We have also launched a website called sql-nosql.org, where we share teaching and 
tutoring materials such as slides, tutorials for SQL and Cypher, case studies, a work-
bench for MySQL and Neo4j, so that language training can be done either with SQL or 
with Cypher, the graph-oriented query language of the NoSQL database Neo4j.

At this point, we would like to thank Anja Kreutel for her great effort and success 
in translating the eighth edition of the German textbook to English. We also thank 
Alexander Denzler and Marcel Wehrle for the development of the workbench for rela-
tional and graph-oriented databases. For the redesign of the graphics, we were able to 
win Thomas Riediker and we thank him for his tireless efforts. He has succeeded in giv-
ing the pictures a modern style and an individual touch. For the further development 
of the tutorials and case studies, which are available on the website sql-nosql.org, we 
thank the computer science students Andreas Waldis, Bettina Willi, Markus Ineichen, 
and Simon Studer for their contributions to the tutorial in Cypher and to the case study 
Travelblitz with OpenOffice Base and with Neo4J. For the feedback on the manuscript 
we thank Alexander Denzler, Daniel Fasel, Konrad Marfurt, and Thomas Olnhoff, for 
their willingness to contribute to the quality of our work with their hints. A big thank you 
goes to Sybille Thelen, Dorothea Glaunsinger, and Hermann Engesser of Springer, who 
have supported us with patience and expertise.

February 2019	 Andreas Meier
Michael Kaufmann

http://sql-nosql.org
http://sql-nosql.org
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1.1	� Information Systems and Databases

The evolution from an industrial to an information and knowledge society is represented 
by the assessment of information as a factor in production. The following characteristics 
distinguish information from material goods: 

•	 Representation: Information is specified by data (signs, signals, messages, or lan-
guage elements).

•	 Processing: Information can be transmitted, stored, categorized, found, or converted 
into other representation formats using algorithms and data structures (calculation 
rules).

•	 Combination: Information can be freely combined. The origin of individual parts 
cannot be traced. Manipulation is possible at any point.

•	 Age: Information is not subject to physical aging processes.
•	 Original: Information can be copied without limit and does not distinguish between 

original and copy.
•	 Vagueness: Information is unclear, i.e., often imprecise and of differing 

validities (quality).
•	 Medium: Information does not require a fixed medium and is, therefore, independent 

of location.

These properties clearly show that digital goods (information, software, multime-
dia, etc.), i.e., data, are vastly different from material goods in both handling and eco-
nomic or legal evaluation. A good example is the loss in value that physical products 
often experience when they are used—the shared use of information, on the other hand, 
may increase its value. Another difference lies in the potentially high production costs 
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for material goods, while information can be multiplied easily and at significantly lower 
costs (with only computing power and a storage medium). This causes difficulties in 
determining property rights and ownership, even though digital watermarks and other 
privacy and security measures are available.

Considering data as the basis of information as a production factor in a company has 
significant consequences: 

•	 Basis for decision-making: Data allows well-informed decisions, making it vital for 
all organizational functions.

•	 Quality level: Data can be available from different sources; information quality 
depends on the availability, correctness, and completeness of the data.

•	 Need for investments: Data gathering, storage, and processing cause work and 
expenses.

•	 Degree of integration: Fields and holders of duties within any organization are con-
nected by informational relations, meaning that the fulfillment of said duties largely 
depends on the degree of data integration.

Once data is viewed as a factor in production, it has to be planned, governed, monitored, 
and controlled. This makes it necessary to see data management as a task for the exec-
utive level, inducing a major change within the company: In addition to the technical 
function of operating the information and communication infrastructure (production), 
planning and design of data flows (application portfolio) are crucial.

As shown in Fig. 1.1, an information system enables users to store and connect infor-
mation interactively, to ask questions, and to obtain answers. Depending on the type 
of information system, acceptable questions may be limited. There are, however, open 

Information System

Communication network 
or WWW

Software system
with

� User guidance

� Dialog design

� Query language

� Manipulation
language

� Research help

� Access permissions

� Data protection

Request

Response

User
Knowledge base

Database

Method database

Fig. 1.1   Architecture and components of information systems
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information systems and online platforms in the World Wide Web that use search engines 
to process arbitrary queries.

The computer-based information system in Fig. 1.1 is connected to a communication 
network/the World Wide Web in order to allow for online research and global informa-
tion exchange in addition to company-specific analyses. Any information system of a 
certain size uses database technologies to avoid the necessity to redevelop data manage-
ment and analysis every time it is used.

Database management systems are software for application-independently describ-
ing, storing, and querying data. All database management systems contain a storage and 
a management component. The storage component includes all data stored in an organ-
ized form plus their description. The management component contains a query and data 
manipulation language for evaluating and editing the data and information. This compo-
nent does not only serve as the user interface, but also manages access and editing per-
missions for users.

SQL databases (SQL = Structured Query Language, cf., Sect. 1.2) are the most com-
mon in practical use. However, providing real-time web-based services referencing het-
erogeneous data sets is especially challenging (Sect. 1.3 on Big Data) and calls for new 
solutions such as NoSQL approaches (Sect. 1.4). When deciding whether to use rela-
tional or nonrelational technologies, the pros and cons have to be considered carefully—
in some use cases, it may even be ideal to combine different technologies (cf., operating 
a web shop in Sect. 5.6). Depending on the database architecture of choice, data manage-
ment within the company must be established and developed with the support of quali-
fied experts (Sect. 1.5). References for further reading are listed in Sect. 1.6.

1.2	� SQL Databases

1.2.1	� Relational Model

One of the simplest and most intuitive ways to collect and present data is in a table. Most 
tabular data sets can be read and understood without additional explanations.

To collect information about employees, a table structure as shown in Fig. 1.2 can 
be used. The all-capitalized table name EMPLOYEE refers to the entire table, while the 
individual columns are given the desired attribute names as headers; in this example, the 
employee number “E#,” the employeeʼs name “Name,” and their city of residence “City.”

An attribute assigns a specific data value from a predefined value range called domain 
as a property to each entry in the table. In the EMPLOYEE table, the attribute E# allows 
individual employees to be uniquely identified, making it the key of the table. To mark 
key attributes more clearly, they are italicized in the table headers throughout this book. 
The attribute City is used to label the respective places of residence and the attribute 
Name for the names of the respective employees (Fig. 1.3).

1.2  SQL Databases
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The required information of the employees can now easily be entered row by row. 
In the columns, values may appear more than once. In our example, Kent is listed as 
the place of residence of two employees. This is an important fact, telling us that both 
employee Murphy and employee Bell live in Kent. In our EMPLOYEE table, not only 
cities, but also employee names may exist multiple times. For this reason, the aforemen-
tioned key attribute E# is required to uniquely identify each employee in the table.

u Identification key  The identification key or just key of a table is one attribute or a min-
imal combination of attributes whose values uniquely identify the records (called rows or 
tuples) within the table.

E# Name City

EMPLOYEE

Table name

Attribute

Key attribute

Fig. 1.2   Table structure for an EMPLOYEE table

E# Name Ort

EMPLOYEE
Column

E19

E4

E1

E7

Stewart

Bell

Murphy

Howard

Stow

Kent

Kent

Cleveland

Data value Record
(row or tuple)

Fig. 1.3   EMPLOYEE table with manifestations



5

This short definition lets us infer two important properties of keys: 

•	 Uniqueness: Each key value uniquely identifies one record within the table, i.e., dif-
ferent tuples must not have identical keys.

•	 Minimality: If the key is a combination of attributes, this combination must be mini-
mal, i.e., no attribute can be removed from the combination without eliminating the 
unique identification.

The requirements of uniqueness and minimality fully characterize an identification key.
Instead of a natural attribute or a combination of natural attributes, an artificial attrib-

ute can be introduced into the table as key. The employee number E# in our example is 
an artificial attribute, as it is not a natural characteristic of the employees.

While we are hesitant to include artificial keys or numbers as identifying attributes, 
especially when the information in question is personal, natural keys often result in 
issues with uniqueness and/or privacy. For example, if a key is constructed from parts 
of the name and the date of birth, it may not necessarily be unique. Moreover, natural or 
intelligent keys divulge information about the respective person, potentially infringing on 
their privacy.

Due to these considerations, artificial keys should be defined application-independent 
and without semantics (meaning, informational value). As soon as any information can 
be deduced from the data values of a key, there is room for interpretation. Additionally, it 
is quite possible that the originally well-defined principle behind the key values changes 
or is lost over time.

u Table definition  To summarize, a table or relation is a set of tuples presented in tabu-
lar form and meeting the following requirements: 

•	 Table name: A table has a unique table name.
•	 Attribute name: All attribute names are unique within a table and label one spe-

cific column with the required property.
•	 No column order: The number of attributes is not set, and the order of the col-

umns within the table does not matter.
•	 No row order: The number of tuples is not set, and the order of the rows within 

the table does not matter.
•	 Identification key: One attribute or a combination of attributes uniquely identifies 

the tuples within the table and is declared the identification key.

According to this definition, the relational model considers each table as a set of unor-
dered tuples.

u Relational model  The relational model represents both data and relationships 
between data as tables. Mathematically speaking, any relation R is simply a subset of a 

1.2  SQL Databases
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Cartesian product of domains: R ⊆ D1 × D2 × … × Dn with Di as the domain of the i-th 
attribute/property. Any tuple r is, therefore, a set of specific data values or manifesta-
tions, r = (d1, d2, …, dn). Please note that this definition means that any tuple may only 
exist once within any table, i.e., R = {r1, r2, …, rm}.

The relational model is based on the work of Edgar Frank Codd from the early 1970s. 
This was the foundation for the first relational database systems, created in research 
facilities and supporting SQL or similar database languages. Today, their sophisticated 
successors are firmly established in many practical uses.

1.2.2	� Structured Query Language (SQL)

As explained, the relational model presents information in tabular form, where each table 
is a set of tuples (or records) of the same type. Seeing all the data as sets makes it pos-
sible to offer query and manipulation options based on sets.

The result of a selective operation, for example, is a set, i.e., each search result is 
returned by the database management system as a table. If no tuples of the scanned table 
show the respective properties, the user gets a blank results table. Manipulation opera-
tions similarly target sets and affect an entire table or individual table sections.

The primary query and data manipulation language for tables is called Structured 
Query Language, usually shortened to SQL (see Fig. 1.4). It was standardized by 
ANSI (American National Standards Institute) and ISO (International Organization for 
Standardization)1.

SQL is a descriptive language, as the statements describe the desired result instead of 
the necessary computing steps. SQL queries follow a basic pattern as illustrated by the 
query in Fig. 1.4:

“SELECT the attribute Name FROM the EMPLOYEE table WHERE the city is 
Kent.”

A SELECT-FROM-WHERE query can apply to one or several tables and always gen-
erates a table as a result. In our example, the query would yield a results table with the 
names Bell and Murphy, as desired.

The set-based method offers users a major advantage, since a single SQL query can 
trigger multiple actions within the database management system. It is not necessary for 
users to program all searches themselves.

Relational query and data manipulation languages are descriptive. Users get the 
desired results by merely setting the requested properties in the SELECT expres-
sion. They do not have to provide the procedure for computing the required records.  

1ANSI is the national standards organization of the US. The national standardization organizations 
are part of ISO.
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The database management system takes on this task, processes the query or manipulation 
with its own search and access methods, and generates the results table.

With procedural database languages, on the other hand, the methods for retrieving the 
requested information must be programmed by the user. In this case, each query yields 
only one record, not a set of tuples.

With its descriptive query formula, SQL requires only the specification of the desired 
selection conditions in the WHERE clause, while procedural languages require the user 
to specify an algorithm for finding the individual records. As an example, let us take a 
look at a query language for hierarchical databases (see Fig. 1.5): For our initial oper-
ation, we use GET_FIRST to search for the first record that meets our search criteria. 
Next, we access all other corresponding records individually with the command GET_
NEXT until we reach the end of the file or a new hierarchy level within the database.

Overall, we can conclude that procedural database management languages use record-
based or navigating commands to manipulate collections of data, requiring some experi-
ence and knowledge of the databaseʼs inner structure from the users. Occasional users 
basically cannot independently access and use the contents of a database. Unlike proce-
dural languages, relational query and manipulation languages do not require the specifi-
cation of access paths, processing procedures, or navigational routes, which significantly 
reduces the development effort for database utilization.

If database queries and analyses are to be done by company departments and end 
users instead of IT, the descriptive approach is extremely useful. Research on descriptive 

E# Name City

EMPLOYEE

E19 Stewart Stow
E4 Bell Kent
E1 Murphy Kent
E7 Howard Cleveland

Example query:
“Select the names of the employees living in Kent.”

Formulation with SQL:
SELECT Name
FROM  EMPLOYEE
WHERE  City = ‘Kent’

Results table:

Name

Bell
Murphy

Fig. 1.4   Formulating a query in SQL

1.2  SQL Databases
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database interfaces has shown that even occasional users have a high probability of suc-
cessfully executing the desired analyses using descriptive language elements. Figure 1.5 
also illustrates the similarities between SQL and natural language. In fact, there are mod-
ern relational database management systems that can be accessed with natural language.

1.2.3	� Relational Database Management System

Databases are used in the development and operation of information systems in order to 
store data centrally, permanently, and in a structured manner.

As shown in Fig. 1.6, relational database management systems are integrated sys-
tems for the consistent management of tables. They offer service functionalities and the 
descriptive language SQL for data description, selection, and manipulation.

Every relational database management system consists of a storage and a manage-
ment component. The storage component stores both data and the relationships between 
pieces of information in tables. In addition to tables with user data from various applica-
tions, it contains the predefined system tables necessary for database operation. These 
contain descriptive information and can be queried but not manipulated by users.

The management componentʼs most important part is the relational data definition, 
selection, and manipulation language SQL. This component also contains service func-
tions for data restoration after errors, for data protection, and for backup.

Relational database management systems are common bases for businessesʼ informa-
tion systems and can be defined as follows:

Natural language:

“Select the names of the employees living in Kent.”

Descriptive language:

SELECT Name
FROM  EMPLOYEE
WHERE  City = ‘Kent’

Procedural language:

get first EMPLOYEE
 search argument (City = ‘Kent’)
while status = 0 do
begin
 print (Name)
 get next EMPLOYEE
  search argument (City = ‘Kent’)
end

Fig. 1.5   The difference between descriptive and procedural languages



9

u Relational database management system  Relational database management systems 
(RDBMS) have the following properties:

•	 Model: The database model follows the relational model, i.e., all data and data 
relations are represented in tables. Dependencies between attribute values of tuples 
or multiple instances of data can be discovered (cf., normal forms in Sect. 2.3.1).

•	 Schema: The definitions of tables and attributes are stored in the relational data-
base schema. The schema further contains the definition of the identification keys 
and rules for integrity assurance.

•	 Language: The database system includes SQL for data definition, selection, and 
manipulation. The language component is descriptive and facilitates analyses and 
programming tasks for users.

•	 Architecture: The system ensures extensive data independence, i.e., data and 
applications are mostly segregated. This independence is reached by separating the 
actual storage component from the user side using the management component. 
Ideally, physical changes to relational databases are possible without the need to 
adjust related applications.

•	 Multi-user operation: The system supports multi-user operation (Sect. 4.1), i.e., 
several users can query or manipulate the same database at the same time. The 
RDBMS ensures that parallel transactions in one database do not interfere with 
each other or, worse, with the correctness of data (Sect. 4.2).

•	 Consistency assurance: The database management system provides tools for 
ensuring data integrity, i.e., the correct and uncompromised storage of data.

•	 Data security and data protection: The database management system pro-
vides mechanisms to protect data from destruction, loss, or unauthorized access 
(Sect. 3.8).

�

�
�

�

� Data and relationships in tables

� Metadata in system tables

� Query and manipulation language SQL

� Special functions (recovery, reorganization,
security, data protection, etc.) with SQL

+

Relational Database System

Fig. 1.6   Basic structure of a relational database management system

1.2  SQL Databases
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NoSQL database management systems meet these criteria only partially (Sect. 1.4.3 and 
Chaps. 4 and 7). For this reason, most corporations, organizations, and especially SMEs 
(small and medium enterprises) rely heavily on relational database management systems. 
However, for spread-out web applications or applications handling Big Data, relational 
database technology must be augmented with NoSQL technology in order to ensure 
uninterrupted global access to these services.

1.3	� Big Data

The term Big Data is used to label large volumes of data that push the limits of conven-
tional software. This data is usually unstructured (Sect. 5.1) and may originate from a 
wide variety of sources: social media postings, e-mails, electronic archives with multi-
media content, search engine queries, document repositories of content management sys-
tems, sensor data of various kinds, rate developments at stock exchanges, traffic flow 
data and satellite images, smart meters in household appliances, order, purchase, and 
payment processes in online stores, e-health applications, monitoring systems, etc.

There is no binding definition for Big Data yet, but most data specialists will agree 
on three v’s: volume (extensive amounts of data), variety (multiple formats, structured, 
semi-structured, and unstructured data, Fig. 1.7), and velocity (high-speed and real-time 
processing). Gartner Group’s IT glossary offers the following definition:

Multimedia

Text Graphics Image Audio Video

�  Continuous text
�  Structured text
 Collection of�

  texts
�  Tags, etc.

�  City map
�  Road map
�  Technical
 drawing
�  3D graphics,

�  Photograph
�  Satellite image
�  X-ray image,
 etc.

�  Language
�  Music
�  Sounds
�  Animal sounds
�  Synthetic

sounds, etc.

�  Film
�  Animation
�  Ads
�  Phone 
 conference, etc.

 etc.

Fig. 1.7   Variety of sources for Big Data
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Big Data
‘Big data is high-volume, high-velocity and high-variety information assets that 
demand cost-effective, innovative forms of information processing for enhanced 
insight and decision making.’2

With this definition, Gartner Group positions Big Data as information assets for com-
panies. It is, indeed, vital for companies and organizations to generate decision-relevant 
knowledge in order to survive. In addition to internal information systems, they increas-
ingly utilize the numerous resources available online to better anticipate economic, eco-
logic, and social developments on the markets.

Big Data is a challenge faced by not only for-profit companies in digital markets, but 
also governments, public authorities, NGOs (nongovernmental organizations), and NPOs 
(nonprofit organizations).

A good example are programs to create smart cities or ubiquitous cities, i.e., to use 
Big Data technologies in cities and urban agglomerations for sustainable development 
of social and ecologic aspects of human living spaces. They include projects facilitating 
mobility, the use of intelligent systems for water and energy supply, the promotion of 
social networks, expansion of political participation, encouragement of entrepreneurship, 
protection of the environment, and an increase of security and quality of life.

All use of Big Data applications requires successful management of the three v's men-
tioned above: 

•	 Volume: There are massive amounts of data involved, ranging from tera to zet-
tabytes (megabyte = 106 bytes, gigabyte = 109 bytes, terabyte = 1012 bytes, peta-
byte = 1015 bytes, exabyte = 1018 bytes, zettabyte = 1021 bytes).

•	 Variety: Big Data involves storing structured, semi-structured, and unstructured mul-
timedia data (text, graphics, images, audio, and video;  Fig. 1.7).

•	 Velocity: Applications must be able to process and analyze data streams (Sect. 5.1) in 
real-time as the data is gathered.

	 As in the Gartner Groupʼs definition, Big Data can be considered an information 
asset, which is why sometimes another V is added:

•	 Value: Big Data applications are meant to increase the enterprise value, so invest-
ments in personnel and technical infrastructure are made where they will bring lever-
age or added value can be generated.

	 There are numerous open source solutions for NoSQL databases, and the technologies 
do not require expensive hardware, while they also offer good scalability. Specialized 
personnel, however, is lacking, since the data scientist profession (Sect. 1.5) is only 

2Gartner Group, IT glossary—big data; http://www.gartner.com/it-glossary/big-data/, retrieved 
February 11, 2015

1.3  Big Data

http://www.gartner.com/it-glossary/big-data/
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just emerging, and professional education in this sector is still in its pilot phase or 
only under discussion.

	 To complete our consideration of the concept of Big Data we will look at another V:
•	 Veracity: Since much data is vague or inaccurate, specific algorithms evaluating the 

validity and assessing result quality are needed. Large amounts of data do not auto-
matically mean better analyses.

	 Veracity is an important factor in Big Data, where the available data is of variable 
quality, which has to be taken into consideration in analyses. Aside from statisti-
cal methods, there are fuzzy methods of soft computing which assign a truth value 
between 0 (false) and 1(true) to any result or statement (fuzzy databases in Sect. 6.8).

1.4	� NoSQL Databases

1.4.1	� Graph-based Model

NoSQL databases support various database models (Sect. 1.4.3 and Fig. 1.11). We 
picked out graph databases as an example to look at and discuss their characteristics.

u Property graph  Property graphs consists of nodes (concepts, objects) and directed 
edges (relationships) connecting the nodes. Both nodes and edges are given a label and 
can have properties. Properties are given as attribute-value pairs following the pattern 
(attribute: value) with the names of attributes and the respective values.

A graph abstractly presents the nodes and edges with their properties. Figure 1.8 shows 
part of a movie collection as an example. It contains the nodes MOVIE with attributes 
Title and Year (of release), GENRE with the respective Type (e.g., crime, mystery, com-
edy, drama, thriller, Western, science fiction, documentary, etc.), ACTOR with Name and 
Year of Birth, and DIRECTOR with Name and Nationality.

The example uses three directed edges: The edge ACTED_IN shows which artist 
from the ACTOR node starred in which film from the MOVIE node. This edge also has a 
property, the Role of the actor in the movie. The other two edges, HAS and DIRECTED_
BY, go from the MOVIE node to the GENRE and DIRECTOR node, respectively.

In the manifestation level, i.e., the graph database, the property graph contains the 
concrete values (Fig. 1.9 in Sect. 1.4.2).

The property graph model for databases is formally based on graph theory. Depending 
on their maturity, relevant software products may offer algorithms to calculate the fol-
lowing traits: 

•	 Connectivity: A graph is connected when every node in the graph is connected to 
every other node by at least one path.

•	 Shortest path: The shortest path between two nodes of a graph is the one with the 
least edges.
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•	 Nearest neighbor: In graphs with weighted edges (e.g., by distance or time in a trans-
port network), the nearest neighbors of a node can be determined by finding the mini-
mal intervals (shortest route in terms of distance or time).

•	 Matching: Matching in graph theory means finding a set of edges that have no com-
mon nodes.

MOVIE
Title
Year

DIRECTOR
Name

Nationality

ACTOR
Name

Year of birth

GENRE
Type

ACTED_IN
Role

HAS

DIRECTED_BY

Fig. 1.8   Section of a property graph on movies

Name:     Keanu Reeves
Year of Birth: 1964

Title:  Man of Tai Chi
Year:  2013

Title:  The Matrix
Year:  1999

AC
TE
D_
IN

Role
: D

on
ak

a M
ar

k
ACTED_IN

Role: Neo

D
IR
E
C
T
E
D
_B

Y

MOVIE MOVIE

ACTOR

Fig. 1.9   Section of a graph database on movies

1.4  NoSQL Databases
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These graph characteristics are significant in many kinds of applications. Finding the 
shortest path or the nearest neighbor, for example, is of great importance in calculating 
travel or transport routes. The algorithms listed can also sort and analyze relationships in 
social networks by path length (Sect. 2.4).

1.4.2	� Graph Query Language Cypher

Cypher is a declarative query language for extracting patterns from graph databases. 
Users define their query by specifying nodes and edges. The database management sys-
tem then calculates all patterns meeting the criteria by analyzing the possible paths (con-
nections between nodes via edges). In other words, the user declares the structure of the 
desired pattern, and the database management systemʼs algorithms traverse all necessary 
connections (paths) and assemble the results.

As described in Sect. 1.4.1, the data model of a graph database consists of nodes 
(concepts, objects) and directed edges (relationships between nodes). In addition to 
their name, both nodes and edges can have a set of properties (see the Property Graph in 
Sect. 1.4.1). These properties are represented by attribute-value pairs.

Figure 1.9 shows a segment of a graph database on movies and actors. To keep things 
simple, only two types of node are shown: ACTOR and MOVIE. ACTOR nodes contain 
two attribute-value pairs, specifically (Name: FirstName LastName) and (YearOfBirth: 
Year).

The segment in Fig. 1.9 includes different types of edges: The ACTED_IN relation-
ship represents which actors starred in which movies. Edges can also have properties if 
attribute-value pairs are added to them. For the ACTED_IN relationship, the respective 
roles of the actors in the movies are listed. For example, Keanu Reeves was cast as the 
hacker Neo in ‘The Matrix.’

Nodes can be connected by multiple relationship edges. The movie ‘Man of Tai Chi’ 
and actor Keanu Reeves are linked not only by the actorʼs role (ACTED_IN), but also by 
the director position (DIRECTED_BY). The diagram therefore shows that Keanu Reeves 
both directed the movie ‘Man of Tai Chi’ and starred in it as Donaka Mark.

If we want to analyze this graph database on movies, we can use Cypher. It uses the 
following basic query elements: 

• MATCH:	� Specification of nodes and edges, as well as declaration of search patterns.
• WHERE:	� Conditions for filtering results.
• RETURN: � Specification of the desired search result, aggregated if necessary

For instance, the Cypher query for the year the movie ‘The Matrix’ was released would be:

MATCH	� (m: Movie {Title: “The Matrix”})
RETURN � m.Year
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The query sends out the variable m for the movie ‘The Matrix’ to return the movieʼs year 
of release by m.Year. In Cypher, parentheses always indicate nodes, i.e., (m: Movie) 
declares the control variable m for the MOVIE node. In addition to control variables, 
individual attribute-value pairs can be included in curly brackets. Since we are specifi-
cally interested in the movie ‘The Matrix’, we can add {Title: “The Matrix”} to the node 
(m: Movie).

Queries regarding the relationships within the graph database are a bit more compli-
cated. Relationships between two arbitrary nodes (a) and (b) are expressed in Cypher 
by the arrow symbol “- > ”, i.e., the path from (a) to (b) is declared as “(a)- > (b)”. If the 
specific relationship between (a) and (b) is of importance, the edge [r] can be inserted 
in the middle of the arrow. The square brackets represent edges, and r is our variable for 
relationships.

Now, if we want to find out who played Neo in ‘The Matrix’, we use the following 
query to analyze the ACTED_IN path between ACTOR and MOVIE:

MATCH	� (a: Actor)-[: Acted_In {Role: “Neo”}]- >
		�  (: Movie {Title: “The Matrix”}])
RETURN � a.Name

Cypher will return the result Keanu Reeves.
For a list of movie titles (m), actor names (a), and respective roles (r), the query 

would have to be:

MATCH	� (a: Actor)-[r: Acted_In] - >  (m: Movie)
RETURN	� m.Title, a.Name, r.Role

Since our example graph database only contains one actor and two movies, the result 
would be the movie ‘Man of Tai Chi’ with actor Keanu Reeves in the role of Donaka 
Mark and the movie ‘The Matrix’ with Keanu Reeves as Neo.

In real life, however, such a graph database of actors, movies, and roles has count-
less entries. A manageable query would, therefore, have to remain limited, e.g., to actor 
Keanu Reeves, and would then look like this:

MATCH	� (a: Actor)-[r: Acted_In] - > (m: Movie)
WHERE	� (a.Name = “Keanu Reeves”)
RETURN � m.Title, a.Name, r.Role

Similar to SQL, Cypher uses declarative queries where the user specifies the desired 
properties of the result pattern (Cypher) or results table (SQL), and the respective data-
base management system then calculates the results. However, analyzing relationship 
networks, using recursive search strategies, or analyzing graph properties are hardly pos-
sible with SQL.

1.4  NoSQL Databases
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1.4.3	� NoSQL Database Management System

Before Ted Coddʼs introduction of the relational model, nonrelational databases such as 
hierarchical or network-like databases existed. After the development of relational data-
base management systems, nonrelational models were still used in technical or scientific 
applications. For instance, running CAD (computer-aided design) systems for structural 
or machine components on relational technology is rather difficult. Splitting technical 
objects across a multitude of tables proved problematic, as geometric, topological, and 
graphical manipulations all had to be executed in real time.

The advent of the internet and numerous web-based applications has provided quite a 
boost to the relevance of nonrelational data concepts versus relational ones, as managing 
Big Data applications with relational database technology is difficult to impossible.

While ‘nonrelational’ would be a better description than NoSQL, the latter has become 
established with database researchers and providers on the market over the last few years.

u NoSQL  The term NoSQL is now used for any nonrelational data management 
approaches meeting two criteria: 

•	 Firstly: The data is not stored in tables.
•	 Secondly: The database language is not SQL.

NoSQL is also sometimes interpreted as ‘Not only SQL’ to express that other technolo-
gies besides relational data technology are used in massively distributed web applica-
tions. NoSQL technologies are especially necessary if the web service requires high 
availability. Section 5.6 discusses the example of an online shop that uses various 
NoSQL technologies in addition to a relational database (Fig. 5.13).

The basic structure of an NoSQL database management system is shown in Fig. 1.10. 
NoSQL database management systems mostly use a massively distributed storage archi-
tecture. The actual data is stored in key-value pairs, columns or column families, docu-
ment stores, or graphs (Fig. 1.11 and Chap. 7). In order to ensure high availability and 
avoid outages in NoSQL database systems, various redundancy concepts (cf., “consistent 
hashing” in Sect. 5.2.3) are supported.

The massively distributed and replicated architecture also enables parallel analyses 
( “MapReduce” in Sect. 5.4). Especially analyses of large volume of data or the search 
for specific information can be significantly accelerated with distributed computing pro-
cesses. In the map/reduce method, subtasks are delegated to various computer nodes and 
simple key-value pairs are extracted (map), then the partial results are aggregated and 
returned (reduce).

There are also multiple consistency models or massively distributed computing 
networks (Sect. 4.3). Strong consistency means that the NoSQL database manage-
ment system ensures full consistency at all times. Systems with weak consistency 
tolerate that changes will be copied to replicated nodes with a delay, resulting in 
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temporary inconsistencies. Further differentiation is possible, e.g., consistency by quo-
rum (Sect. 4.3.2).

The following definition of NoSQL databases is guided by the web-based NoSQL 
Archive3:

� Data in columns, documents, or graphs

� Distributed data replicas

� Parallel execution

� Weak to strong consistency

NoSQL Database System

Fig. 1.10   Basic structure of a NoSQL database management system

Key-value store Document store Graph database

Customer profile

<Value = Order>

Shopping cart
Item 1

Item 2

Item 3

Document A
Document B

Document C
Document D

Document E
MOVIE

DIRECTOR

ACTOR

DIRECTED_BY

ACTED_IN

Fig. 1.11   Three different NoSQL databases

1.4  NoSQL Databases

3NoSQL Archive; http://nosql-database.org/, retrieved February 17, 2015

http://nosql-database.org/
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u NoSQL database system  Web-based storage systems are considered NoSQL database 
systems if they meet the following requirements: 

•	 Model: The underlying database model is not relational.
•	 At least three Vs: The database system includes a large amount of data (volume), 

flexible data structures (variety), and real-time processing (velocity).
•	 Schema: The database management system is not bound by a fixed database 

schema.
•	 Architecture: The database architecture supports massively distributed web appli-

cations and horizontal scaling.
•	 Replication: The database management system supports data replication.
•	 Consistency assurance: According to the CAP theorem (Sect. 4.3.1), consistency 

may be ensured with a delay to prioritize high availability and partition tolerance.

The researchers and operators of the NoSQL Archive list more than 225 NoSQL data-
base products on their website, most of them open source. However, the multitude of 
solutions indicates that the market for NoSQL products is not yet completely secure. 
Moreover, implementation of suitable NoSQL technologies requires specialists who 
know not only the underlying concepts, but also the various architectural approaches and 
tools.

Figure 1.11 shows three different NoSQL database management systems.
Key-value stores (Sect. 7.2) are the simplest version. Data is stored as an identifica-

tion key <key = “key”> and a list of values <value = “value 1”, “value 2”, …> . A good 
example is an online store with session management and shopping basket. The session 
ID is the identification key; the individual items from the basket are stored as values in 
addition to the customer profile.

In document stores (Sect. 7.4), records are managed as documents within the NoSQL 
database. These documents are structured text files, e.g., in JSON or XML format, which 
can be searched for by a unique key or attributes within the documents. Unlike key-value 
stores, documents have some structure; however, it is schema free, i.e., the structures of 
individual records (documents) can vary.

The third example revisits the graph database on movies and actors discussed in the 
previous sections (for more details on graph databases, see also Sect. 7.6).

1.5	� Organization of Data Management

Many companies and organizations view their data as a vital resource, increasingly 
joining in public information gathering in addition to maintaining their own data. The 
continuous global increase and growth of information providers and their 24/7 services 
reinforce the importance of web-based data pools.
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The necessity for current information based in the real world has a direct impact on the 
conception of the field of IT. In many places, specific positions for data management have 
been created for a more targeted approach to data-related tasks and obligations. Pro-active 
data management deals both strategically with information gathering and utilization and 
operatively with the efficient provision and analysis of current and consistent data.

Development and operation of data management incur high costs, while the return is 
initially hard to measure. Flexible data architecture, noncontradictory and easy-to-under-
stand data description, clean and consistent databases, effective security concepts, cur-
rent information readiness, and other factors involved are hard to assess and include in 
profitability considerations. Only the realization of the dataʼs importance and longevity 
makes the necessary investments worthwhile for the company.

For better comprehension of the term data management, we will look at the four 
subfields: data architecture, data governance, data technology, and data utiliza-
tion. Figure 1.12 illustrates the objectives and tools of these four fields within data 
management.

Employees in data architecture analyze, categorize, and structure the company data 
with a sophisticated methodology. In addition to the assessment of data and informa-
tion requirements, the major data classes and their relationships with each other must be 

Tasks

Data architecture

Data administration

Data technology

�  Creation and maintenance of the
 company-wide data architecture
�  Definition of data protection rules

Data utilization

Tools

�  Data analysis and design methodology
�  Tools for computer-based
 information modeling

�  Management of data and methods
 using standardization guidelines
 and international standards
�  Consultation for developers and
 end users

� Data dictionary systems
� Tools for cross-reference and 
 usage lists

�  Installation, reorganization, and
 safe-keeping of data content
�  Definition of the distribution concept
 incl. replication
�  Disaster prevention and recovery

� Various database system services
�  Tools for performance optimization
�  Monitoring systems
�  Tools for recovery/restart

�  Data analysis and interpretation
�  Knowledge generation
�  Formulation of predictions
�  Pattern detection

�  Analysis tools
�  Report generators
�  Data mining tools
�  Visualization methods for
 multi-dimensional data

Fig. 1.12   The four cornerstones of data management

1.5  Organization of Data Management
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documented in data models of varying specificity. These models, created from abstrac-
tion of reality and matched to each other, form the foundation of the data architecture.

Data governance aims for a unified coverage of data descriptions and formats as well 
as the respective responsibilities in order to ensure a cross-application use of the long-
lived company data. Todayʼs tendency towards decentralized data storage on intelligent 
workplace computers or distributed department machines is leading to a growing respon-
sibility of data governance experts for maintaining data and assigning permissions.

Data technology specialists install, monitor, and reorganize databases and are in 
charge of their multilayer security. Their field, also known as database technology or 
database administration, further includes technology management and the need for the 
integration of new extensions and constant updates and improvements of existing tools 
and methods.

The fourth column of data management, data utilization, enables the actual, profitable 
application of business data. A specialized team of data scientists (see job profile below) 
conducts business analytics, providing and reporting on data analyses to management. 
They also support individual departments, e.g., marketing, sales, customer service, etc., 
in generating specific relevant insights from Big Data.

Based on the characterization of data-related tasks and obligations, data management 
can be defined as:

u Data management  Data management includes all operational, organizational, and 
technical aspects of data architecture, data governance, and data technology that support 
company-wide data storage, maintenance, and utilization, as well as business analytics.

Over the past years, new specializations have evolved in the data management field, most 
importantly: 

•	 Data architects: Data architects are in charge of a companiesʼ entire data architec-
ture. They decide where and how data has to be accessible in the respective business 
model and collaborate with database specialists on questions of data distribution, rep-
lication, or fragmentation.

•	 Database specialists: Database specialists are experts on database and system tech-
nology and manage the physical implementation of the data architecture. They decide 
which database management systems (SQL and/or NoSQL) to use for which applica-
tion architecture components. Moreover, they are responsible for designing a distribu-
tion concept and for archiving, reorganizing, and restoring existing data.

•	 Data scientists: Data scientists are business analytics experts. They handle data anal-
ysis and interpretation, extracting previously unknown facts from data (knowledge 
generation) and providing prognoses for future business developments. Data scientists 
use methods and tools from data mining (pattern recognition), statistics, and visuali-
zation of multidimensional connections between data.
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The conceptualization proposed above for both data management and the occupational 
profiles involved contains technical, organizational, and operational aspects. However, 
that does not mean that all roles within data architecture, data governance, data technol-
ogy, and data utilization must be consolidated into one unit within the structure of a com-
pany or organization.

1.6	� Further Reading

The wide range of literature on the subject of databases shows the importance of this 
field of IT. Some books describe not only relational, but also distributed, object-ori-
ented, or knowledge-based database management systems. Well-known works include 
Connolly and Begg (2014), Hoffer et al. (2012), and Date (2004). The textbook by 
Ullman (1982) follows a rather theoretical approach, Silberschatz et al. (2010) is quite 
informative, and for a comprehensive overview, turn to Elmasri and Navathe (2015) or 
Garcia-Molina et al. (2014). Gardarin and Valduriez (1989) offer an introduction to rela-
tional database technology and knowledge bases.

German works of note in the field of databases include Lang and Lockemann (1995), 
Schlageter and Stucky (1983), Wedekind (1981), and Zehnder (2005). The textbooks by 
Saake et al. (2013), Kemper and Eickler (2013), and Vossen (2008) explore the founda-
tions and extensions of database systems. Our definition of databases is based on the 
work of Claus and Schwill (2001).

As for Big Data, the market has been flooded with books over the recent years; how-
ever, most of them merely give a superficial description of the subject. Two short intro-
ductions by Celko (2014) and Sadalage and Fowler (2013) explain the terminology and 
present the most influential NoSQL database approaches. The work of Redmond and 
Wilson (2012) provides concrete descriptions of seven database management systems for 
a more in-depth technical understanding.

There are also some German publications on the topic of Big Data. The book by Edlich 
et al. (2011) offers an introduction to NoSQL database technologies and presents various 
products for key-value store, document store, column store, and graph databases, respec-
tively. Freiknecht (2014) describes Hadoop, a popular framework for scalable and distributed 
systems, including its components for data storage (HBase) and data warehousing (Hive). 
The volume compiled by Fasel and Meier (2016) provides an overview over the develop-
ment of Big Data in business environments—introducing the major NoSQL databases, pre-
senting use cases, discussing legal aspects, and giving practical implementation advice.

For technical information on operational aspects of data management, we recommend 
Dippold et al. (2005). Biethahn et al. (2000) dedicate several chapters of their volume on 
data and development management to data architecture and governance. Heinrich and 
Lehner (2005) and Österle et al. (1991) touch on some facets of data management in 
their books on information management, while Meierʼs (1994) article defines the goals 
and tasks of data management from a practical perspective. Meier and Johner (1991) and 
Ortner et al. (1990) also handle some aspects of data governance.

1.6 � Further Reading
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References



25© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019 
A. Meier and M. Kaufmann, SQL & NoSQL Databases, 
https://doi.org/10.1007/978-3-658-24549-8_2

2.1	� From Data Analysis to Database

Data models provide a structured and formal description of the data and data relation-
ships required for an information system. When data is needed for IT projects, such as 
the information about employees, departments, and projects in Fig. 2.1, the necessary 
data categories and their relationships with each other can be defined. The definition 
of those data categories, called entity sets, and the determination of relationship sets is 
at this point done without considering the kind of database management system (SQL 
or NoSQL) to be used for entering, storing, and maintaining the data later. This is to 
ensure that the data and data relationships will remain stable from the usersʼ perspective 
throughout the development and expansion of information systems.

It takes three steps to set up a database for describing a section of the real world: data 
analysis, designing a conceptual data model (here: entity-relationship model), and con-
verting it into a relational or nonrelational database schema.

The goal of data analysis (see point 1 in Fig. 2.1) is to find, in cooperation with the 
user, the data required for the information system and their relationships to each other 
including the quantity structure. This is vital for an early determination of the system 
boundaries. The requirement analysis is prepared in an iterative process, based on inter-
views, demand analyses, questionnaires, form compilations, etc. It contains at least a ver-
bal task description with clearly formulated objectives and a list of relevant pieces of 
information (see the example in Fig. 2.1). The written description of data connections 
can be complemented by graphical illustrations or a summarizing example. It is impera-
tive that the data analysis puts the facts necessary for the later development of a database 
in the language of the users.

Step 2 in Fig. 2.1 shows the conception of the entity-relationship model, which con-
tains both the required entity sets and the relevant relationship sets. Our model depicts 

Data Modeling 2
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the entity sets as rectangles and the relationship sets as rhombi. Based on the data analy-
sis from step 1, the main entity sets are DEPARTMENT, EMPLOYEE, and PROJECT1. 
To record which departments the employees are working in and which projects they 
are part of, the relationship sets SUBORDINATE and INVOLVED are established and 
graphically connected to the respective entity sets. The entity-relationship model, there-
fore, allows for the structuring and graphic representation of the facts gathered during 
data analysis. However, it should be noted that the identification of entity and relation-
ship sets, as well as the definition of the relevant attributes is not always a simple, clear-
cut process. Rather, this design step requires quite some experience and practice from the 
data architect.

Next, the entity-relationship model is converted into a relational database schema 
(Fig. 2.1, 3a) or a graph-oriented database schema (Fig. 2.1, 3b). A database schema is 
the formal description of the database objects using either tables or nodes and edges.

Since relational database management systems allow only tables as objects, both the 
entity and the relationship sets must be expressed as tables. For this reason, there is one 
entity set table each for the entity sets DEPARTMENT, EMPLOYEE, and PROJECT in 
Fig. 2.1, step 3a. In order to represent the relationships in tables as well, separate tables 
have to be defined for each relationship set. In our example, this results in the tables 
SUBORDINATE and INVOLVED. Such relationship set tables always contain the keys 
of the entity sets affected by the relationship as foreign keys and potentially additional 
attributes of the relationship.

In step 3b of Fig. 2.1, we see the depiction of an equivalent graph database. Each 
entity set corresponds to a node in the graph, so we have the nodes DEPARTMENT, 
EMPLOYEE, and PROJECT. The relationship sets SUBORDINATE and INVOLVED 
from the entity-relationship model are converted into edges in the graph-based model. 
The relationship set SUBORDINATE becomes a directed edge from the DEPARTMENT 
node to the EMPLOYEE node and is named HAS_AS_SUBORDINATE. Similarly, a 
directed edge with the name IS_INVOLVED is drawn from the EMPLOYEE node to the 
PROJECT node.

This is only a rough sketch of the process of data analysis, development of an entity-
relationship model, and definition of a relational or graph-based database schema. The 
core insight is that a database design should be developed based on an entity-relationship 
model. This allows for the gathering and discussion of data modeling factors with the 
users, independently of any specific database system. Only in the next design step is the 
most suitable database schema determined and mapped out. Both for relational and for 
graph-oriented databases, there are clearly defined mapping rules (Sects. 2.3.2 and 2.4.2, 
respectively).

1The names of entity and relationship sets are spelled in capital letters, analogous to table, node, 
and edge names.
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1. Data analysis
Order no. 112
Date: 07/14/2015

Goal For project monitoring purposes, employees, work, and project
times should periodically be logged per department.

1.   Employees report to departments, with each employee being assigned
  to exactly one department.

2.    Each project is centrally assigned a unique project number.

3.    Employees can work on multiple projects simultaneously; the respective
  percentages of their time are logged.

4.   ...

DEPARTMENT

EMPLOYEE PROJECT

2.   Entity-relationship
 model

SUBORDINATE

INVOLVED

Entity sets

Relationship sets

3a. Relational model 3b. Graph-based model
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Fig. 2.1   The three steps necessary for data modeling

2.1 � From Data Analysis to Database
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Section 2.2 explores the entity-relationship model in more detail, including the 
methods of generalization and aggregation. Section 2.3 discusses modeling aspects for 
relational databases, and Sect. 2.4 for graph databases; both explain the respective map-
ping rules for entity and relationship sets, as well as generalization and aggregation. 
Section 2.5 illustrates the necessity to develop a ubiquitous data architecture within an 
organization. A formula for the analysis, modeling, and database steps is provided in 
Sect. 2.6, and a short literature review can be found in Sect. 2.7.

2.2	� The Entity-Relationship Model

2.2.1	� Entities and Relationships

An entity is a specific object in the real world or our imagination that is distinct from all 
others. This can be an individual, an item, an abstract concept, or an event. Entities of the 
same type are combined into entity sets and are further characterized by attributes. These 
attributes are property categories of the entity and/or the entity set, such as size, name, 
weight, etc.

For each entity set, an identification key, i.e., one attribute or a specific combina-
tion of attributes, is set as unique. In addition to uniqueness, it also has to meet the cri-
terion of the minimal combination of attributes for identification keys as described in 
Sect. 1.2.1.

In Fig. 2.2, an individual employee is characterized as an entity by their concrete 
attributes. If, in the course of internal project monitoring, all employees are to be listed 
with their names and address data, an entity set EMPLOYEE is created. An artificial 

Entity:        Employee Murphy, lives on

Entity set:     Set of all employees with the attributes

Identi�cation key: Employee number as an arti�cial key

Representation in the entity-relationship model

E#

Name

City

Street

EMPLOYEE

Fig. 2.2   EMPLOYEE entity set
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employee number in addition to the attributes Name, Street, and City allows for the 
unique identification of the individual employees (entities) within the staff (entity set).

Besides the entity sets themselves, the relationships between them are of interest and 
can form sets of their own. Similar to entity sets, relationship sets can be characterized 
by attributes.

Figure 2.3 presents the statement “Employee Murphy does 70% of her work on pro-
ject P17” as a concrete example of an employee-project relationship. The respective rela-
tionship set INVOLVED is to list all project participations of the employees. It contains a 
concatenated key constructed from the foreign keys employee number and project num-
ber. This combination of attributes ensures the unique identification of each project par-
ticipation by an employee. Along with the concatenated key, the relationship set receives 
its own attribute named “Percentage” specifying the percentage of working hours that 
employees allot to each project they are involved in.

In general, relationships can be understood as associations in two directions: The 
relationship set INVOLVED can be interpreted from the perspective of the EMPLOYEE 
entity set as ‘one employee can participate in multiple projects’; from the entity set 
PROJECT as ‘one project is handled by multiple employees’.

2.2.2	� Association Types

The association of an entity set ES_1 to another entity set ES_2 is the meaning of the 
relationship in that direction. As an example, the relationship DEPARTMENT_HEAD 
in Fig. 2.4 has two associations: On one hand, each department has one employee in the 

Relationship:      Employee Murphy spends 70 % of their time
          working on project P17

Relationship set:   Set of all employee project involvements
          with the attributes Employee number, Project
          number, and Percentage

Identification key: Concatenated key consisting of employee
          number and project number

Representation in the entity-relationship model

E#

Percentage

P#

EMPLOYEE PROJECTINVOLVED

Relationship:      Employee Murphy spends 70 % of their time
          working on project P17

Relationship set:   Set of all employee project involvements
          with the attributes Employee number, Project
          number, and Percentage

Identification key: Concatenated key consisting of employee
          number and project number

Representation in the entity-relationship model

E#

Percentage

P#

EMPLOYEE PROJECTINVOLVED

Fig. 2.3   INVOLVED relationship between employees and projects

2.2  The Entity-Relationship Model
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role of department head, on the other hand, some employees could fill the role of depart-
ment head for a specific department.

Each association from an entity set ES_1 to an entity set ES_2 can be weighted by an 
association type. The association type from ES_1 to ES_2 indicates how many entities of 
the associated entity set ES_2 can be assigned to a specific entity from ES_12. The main 
distinction is between single, conditional, multiple, and multiple-conditional association 
types.

u Unique association (type 1)  In unique, or type 1, associations, each entity from the 
entity set ES_1 is assigned exactly one entity from the entity set EM_2. For example, our 
data analysis showed that each employee is subordinate to exactly one department, i.e., 
matrix management is not permitted. The SUBORDINATE relationship from employees 
to departments in Fig. 2.4 is, therefore, a unique/type 1 association.

u Conditional association (type c)  A type c association means that each entity from the 
entity set ES_1 is assigned zero or one, i.e., maximum one, entity from the entity set 
ES_2. The relationship is optional, so the association type is conditional. An example of 
a conditional association is the relationship DEPARTMENT_HEAD (Fig. 2.4), since not 
every employee can have the role of a department head.

DEPARTMENT

EMPLOYEE INVOLVED

SUBORDINATEDEPARTMENT_HEAD

PROJECT

Association types:
Type 1:   “exactly one”
Type c:  “none or one”
Type m:  “one or

Type mc:  “none, one, or

c 1

1 m

m mc

Example for department heads:
Typ c:   “Each employee may or may not be a department head.”
Typ 1:  “Each department has exactly one department head.”

multiple”

multiple”

Fig. 2.4   Entity-relationship model with association types

2It is common in database literature to note the association type from ES_1 to ES_2 next to the 
associated entity set, i.e., ES_2.
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u Multiple association (type m)  In multiple, or type m, associations, each entity from 
the entity set ES_1 is assigned one or more entities from the entity set EM_2. This asso-
ciation type is often called complex, since one entity from ES_1 can be related to an 
arbitrary number of entities from ES_2. An example for the multiple association type 
in Fig. 2.4 is the INVOLVED relationship from projects to employees: Each project can 
involve multiple employees, but must be handled by at least one.

u Multiple-conditional association (type mc)  Each entity from the entity set ES_1 is 
assigned zero, one, or multiple entities from the entity set ES_2. Multiple-conditional 
associations differ from multiple associations in that not every entity from ES_1 must 
have a relationship to any entity in ES_2. In analogy to that type, they are also called 
conditional-complex. We will exemplify this with the INVOLVED relationship in Fig. 2.4 
as well, but this time from the employeesʼ perspective: While not every employee has to 
participate in projects, there are some employees involved in multiple projects.

The association types provide information about the cardinality of the relationship. As 
we have seen, each relationship contains two association types. The cardinality of a 
relationship between the entity sets ES_1 and ES_2 is, therefore, a pair of association 
types of the form:

Cardinality: � = (association type from ES_1 to ES_2, association type from ES_2 to 
ES_1)3

For example, the pair (mc,m) of association types between EMPLOYEE and PROJECT 
indicates that the INVOLVED relationship is (multiple-conditional, multiple).

Figure 2.5 shows all 16 possible combinations of association types. The first quad-
rant contains four options of unique-unique relationships (case B1 in Fig. 2.5). They are 
characterized by the cardinalities (1,1), (1,c), (c,1), and (c,c). For case B2, the unique-
complex relationships, also called hierarchical relationships, there are eight possible 
combinations. The complex-complex or network-like relationships (case B3) comprise 
the four cases (m,m), (m,mc), (mc,m), and (mc,mc).

Instead of the association types, minimum and maximum thresholds can be set if 
deemed more practical. For instance, instead of the multiple association type from pro-
jects to employees, a range of (MIN,MAX): = (3,8) could be set. The lower threshold 
defines that at least three employees must be involved in a project, while the maximum 
threshold limits the number of participating employees to eight.

3The character combination “: = ” stands for “is defined by.”

2.2  The Entity-Relationship Model
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2.2.3	� Generalization and Aggregation

Generalization is an abstraction process in which entities or entity sets are subsumed 
under a superordinate entity set. The dependent entity sets or subsets within a generali-
zation hierarchy can, vice versa, be interpreted as specializations. The generalization of 
entity sets can result in various constellations: 

•	 Overlapping entity subsets: The specialized entity sets overlap with each other. 
As an example, if the entity set EMPLOYEE has two subsets PHOTO_CLUB and 
SPORTS_CLUB, the club members are consequently considered employees. 
However, employees can be active in both the companyʼs photography and sports 
club, i.e., the entity subsets PHOTO_CLUB and SPORTS_CLUB overlap.

•	 Overlapping-complete entity subsets: The specialization entity sets overlap with 
each other and completely cover the generalized entity set. If we add a CHESS_
CLUB entity subset to the PHOTO_CLUB and SPORTS_CLUB and assume that 
every employee joins at least one of these clubs when starting work at the company, 
we obtain an overlapping complete constellation. Every employee is a member of at 
least one of the three clubs, but they can also be in two or all three clubs.

•	 Disjoint entity subsets: The entity sets in the specialization are disjoint, i.e., mutually 
exclusive. To illustrate this, we will once again use the EMPLOYEE entity set, but 
this time with the specializations MANAGEMENT_POSITION and SPECIALIST. 
Since employees cannot at the same time hold a leading position and pursue a spe-
cialization, the two entity subsets are disjoint.

A1
A2 1 c m mc

1

c

m

mc

(1,1) (1,c) (1,m) (1,mc)

(c,1) (c,c) (c,m) (c,mc)

(m,1) (m,c) (m,m) (m,mc)

(mc,1) (mc,c) (mc,m) (mc,mc)

B1 B2

B2 B3

Bj := (A1, A2)  Cardinalities of relationships with the association types A1 and A2

B1:  unique-unique relationships
B2:  unique-complex relationships
B3:  complex-complex relationships

Fig. 2.5   Overview of the possible cardinalities of relationships
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•	 Disjoint-complete entity subsets: The specialization entity sets are disjoint, but 
together completely cover the generalized entity set. As a result, there must be a 
subentity in the specialization for each entity in the superordinate entity set and 
vice versa. For example, take the entity set EMPLOYEE with a third specialization 
TRAINEE in addition to the MANAGEMENT_POSITION and SPECIALIST sub-
sets, where every employee is either part of management, a technical specialist, or a 
trainee.

Generalization hierarchies are represented by specific forked connection symbols 
marked “overlapping incomplete,” “overlapping complete,” “disjoint incomplete,” or 
“disjoint complete.”

Figure 2.6 shows the entity set EMPLOYEE as a disjoint and complete generalization 
of MANAGEMENT_POSITION, SPECIALIST, and TRAINEE. All dependent entities 
of the entity subsets, such as team leader or department head in MANAGEMENT_
POSITION, are also part of EMPLOYEE, since the respective association type is 
1. Generalization is, therefore, often called an is-a relationship: A team leader is a(n) 
employee, just as a department head is a(n) employee. In disjoint complete generaliza-
tion hierarchies, the reverse association is also of type 1, i.e., every employee is part of 
exactly one entity subset.

Another important relationship structure beside generalization is aggregation, the 
combination of entities into a superordinate total by capturing their structural character-
istics in a relationship set.

To model the holding structure of a corporation, as shown in Fig. 2.7, a relation-
ship set CORPORATION_STRUCTURE is used. It describes the relationship network 

EMPLOYEE

MANAGEMENT_
POSITION

SPECIALIST TRAINEE

1

c cc

Eyample for employee categorization:
“Each employee is either part of management, a specialist, or a
trainee.”

disjoint
complete

Fig. 2.6   Generalization, illustrated by EMPLOYEE

2.2  The Entity-Relationship Model
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of the entity set COMPANY with itself. Each company ID from the COMPANY entity 
set is used in CORPORATION_STRUCTURE as a foreign key twice, once as ID for 
superordinate and once for subordinate company holdings (Figs. 2.21 and 2.36). 
CORPORATION_STRUCTURE can also contain additional relationship attributes such 
as shares.

In general, aggregation describes the structured merging of entities in what is called 
a part-of structure. In CORPORATION_STRUCTURE, each company can be part of 
a corporate group. Since CORPORATION_STRUCTURE in our example is defined as 
a network, the association types of both superordinate and subordinate parts must be 
multiple-conditional.

The two abstraction processes of generalization and aggregation are major struc-
turing elements4 in data modeling. In the entity-relationship model, they can be repre-
sented by specific graphic symbols or as special boxes. For instance, the aggregation 
in Fig. 2.7 could also be represented by a generalized entity set CORPORATION 
implicitly encompassing the entity set COMPANY and the relationship set 
CORPORATION_STRUCTURE.

PART-OF structures do not have to be networks, but can also be hierarchic. Figure 2.8 
shows an ITEM_LIST as illustration: Each item can be composed of multiple subi-
tems, while on the other hand, each subitem points to exactly one superordinate item 
(Figs. 2.22 and 2.37).

The entity-relationship model is very important for computer-based data mod-
eling tools, as it is supported by many CASE (computer-aided software engineering) 
tools to some extent. Depending on the quality of these tools, both generalization and 

COMPANY

CORPORATION_
STRUCTURE

mc mc

Example for a corporate structure:
Type mc:    “Each company may have multiple superordinate and/or

subordinate companies.”

“Company
consists of...”

“Subsidiary is
dependent on...”

Fig. 2.7   Network-like aggregation, illustrated by CORPORATION_STRUCTURE

4Object-oriented and object-relational database management systems support generalization and 
aggregation as structuring concepts (Chap. 6).
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aggregation can be described in separate design steps, on top of entity and relationship 
sets. Only then can the entity-relationship model be converted, in part automatically, into 
a database schema. Since this is not always a one-on-one mapping, it is up to the data 
architect to make the appropriate decisions. Sections 2.3.2 and 2.4.2 provide some sim-
ple mapping rules to help convert an entity-relationship model into a relational or graph 
database.

2.3	� Implementation in the Relational Model

2.3.1	� Dependencies and Normal Forms

The study of the relational model has spawned a new database theory that describes for-
mal aspects precisely. One of the major fields within this theory is the normal forms, 
which are used to discover and study dependencies within tables in order to avoid redun-
dant information and resulting anomalies.

u About Attribute Redundancy  An attribute in a table is redundant if individual values 
of this attribute can be omitted without a loss of information.

To give an example, the following table DEPARTMENT_EMPLOYEE contains 
employee number, name, street, and city for each employee, plus their department num-
ber and department name.

For every employee of department A6, the table in Fig. 2.9 lists the department name 
Finances. If we assume that each department consists of multiple employees, similar rep-
etitions would occur for all departments. We can say that the DepartmentName attribute 

ITEM

ITEM_LIST

“Item list
consists of...”

“Subitem is

c mc

part of...”

Example for an item list:
Type mc:    “Each item may consist of multiple Subitems.”
Type c:   “Each Subitem is dependent on exactly one superordinate item.”

Fig. 2.8   Hierarchical aggregation, illustrated by ITEM_LIST

2.3 � Implementation in the Relational Model
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is redundant, since the same value is listed in the table multiple times. It would be prefer-
able to store the name going with each department number in a separate table for future 
reference instead of redundantly carrying it along for each employee.

Tables with redundant information can lead to database anomalies, which can take 
one of three forms: If, for organizational reasons, a new department A9, labeled market-
ing, is to be defined in the DEPARTMENT_EMPLOYEE table from Fig. 2.9, but there 
are no employees assigned to that department yet, there is no way of adding it. This is 
an insertion anomaly—no new table rows can be inserted without a unique employee 
number.

Deletion anomalies occur if the removal of some data results in the inadvertent loss of 
other data. For example, if we were to delete all employees from the DEPARTMENT_
EMPLOYEE table, we would also lose the department numbers and names.

The last kind are update anomalies (or modification anomalies): If the name of 
department A3 were to be changed from IT to Data Processing, each of the departmentʼs 
employees would have to be edited individually, meaning that although only one detail is 
changed, the DEPARTMENT_EMPLOYEE table has to be adjusted in multiple places. 
This inconvenient situation is what we call an update anomaly.

The following paragraphs discuss normal forms, which help to avoid redundancies 
and anomalies. Figure 2.10 gives an overview over the various normal forms and their 
definition. Below, we will take a closer look at different kinds of dependencies and give 
some practical examples.

As can be seen in Fig. 2.10, the normal forms progressively limit acceptable tables. 
For instance, a table or entire database schema in the third normal form must meet all 

DEPARTMENT_EMPLOYEE

E19

E1

E7

E4

Stewart

Murphy

Howard

Bell

E Main Street

Morris Road

Lorain Avenue

S Water Street

Stow

Kent

Cleveland

Kent

D6

D3

D5

D6

Accounting

IT

HR

Accounting

E# Name Street City D# DepartmentName

Fig. 2.9   Redundant and anomaly-prone table
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requirements of the first and second normal forms, plus there must not be any transitive 
dependencies between nonkey attributes.

It is important to note that not all normal forms are equally relevant. Usually only the 
first three normal forms are used, since multivalued and join dependencies rarely occur 
in practice and corresponding use cases are hard to come by. We will, therefore, only 
take a quick look at the fourth and fifth normal forms.

Understanding the normal forms helps to make sense of the mapping rules from an 
entity-relationship model to a relational model (Sect. 2.3.2). In fact, we will see that with 
a properly defined entity-relationship model and consistent application of the relevant 
mapping rules, the normal forms will always be met. Simply put, by creating an entity-
relationship model and using mapping rules to map it onto a relational database schema, 
we can mostly forgo checking the normal forms for each individual design step.

First normal form (1NF)

Second normal form (2NF)

Third normal form (3NF)

Boyce-Codd normal form (BCNF)

Fourth normal form (4NF)

Fifth normal form
(5NF)

All attribute values are atomic (no repetitive groups permitted)

Nonkey attributes are fully dependent on the key

No transitive dependencies

Only dependecies on key permitted

No multivalued dependencies

Only trivial join
dependency

Table in arbitrary (unnormalized) form

Fig. 2.10   Overview of normal forms and their definitions

2.3  Implementation in the Relational Model
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Functional dependencies
The first normal form is the basis for all other normal forms and is defined as follows:

u First normal form (1NF)  A table is in the first normal form when the domains of the 
attributes are atomic. The first normal form requires that each attribute get its values 
from an unstructured domain, and there must be no sets, lists, or repetitive groups within 
the individual attributes.

The table PROJECT_PARTICIPANT in Fig. 2.11 is not yet normalized, since each 
employee tuple contains multiple numbers of projects the employee is involved in. 
The unnormalized table can be converted to the first normal form by simply creat-
ing a separate tuple for each project participation. This conversion of the PROJECT_
PARTICIPANT table to 1NF requires the key of the table to be expanded, since we need 
both the employee and the project number to uniquely identify each tuple. It is common 
(but not required) with concatenated keys to put the key parts next to each other at the 
beginning of the table.

Paradoxically, using the first normal form leaves us with a table full of redundan-
cies—in our example in Fig. 2.11, both the names and addresses of the employees are 
redundantly repeated for each project involvement. This is where the second normal 
form comes into play:

u Second normal form (2NF)  A table is in the second normal form when, in addition 
to the requirements of the first normal form, each nonkey attribute is fully functionally 
dependent on each key.

An attribute B is functionally dependent on an attribute A if for each value of A, there is 
exactly one value of B (written as A- > B). A functional dependency of B on A, therefore, 
requires that each value of A uniquely identifies one value of B. As was seen before, it is 
a property of identification keys that all nonkey attributes are uniquely dependent on the 
key, so for an identification key K and an attribute B in one table, there is a functional 
dependency K- > B.

For concatenated keys, this functional dependency must become a full functional 
dependency: An attribute B is fully functionally dependent on a concatenated key con-
sisting of K1 and K2 (written as (K1,K2)- > B) if B is functionally dependent on the 
entire key, but not its parts, i.e., full functional dependency means that only the entire 
concatenated key uniquely identifies the nonkey attributes. While the functional depend-
ency (K1,K2)- > B must apply, neither K1- > B nor K2- > B are allowed. Full functional 
dependency of an attribute from a key prohibits a functional dependency of the attribute 
from any part of the key.

The PROJECT_PARTICIPANT table in 1NF in Fig. 2.11 contains the concatenated 
key (E#,P#), i.e., it must be tested for full functional dependency. For the names and 
addresses of the project participants, the functional dependencies (E#,P#)- > Name and 
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(E#,P#)- > City apply. However, while each combination of employee and project number 
uniquely identifies one name or place of residence, the project numbers have absolutely 
no bearing on this information, it is already defined by the employee numbers alone. 
Both the Name and the City attribute are, therefore,  functionally dependent on a part of 
the key, because E#- > Name and E#- > City. This violates the definition of full functional 

PROJECT_EMPLOYEE (unnormalized)

E7

E1

Howard

Murphy

Cleveland

Kent

[P1, P9]

[P7, P11, P9]

E# Name City P#

PROJECT EMPLOYEE (first normal form)

E7 P1 Howard Cleveland

E7 P9 Howard Cleveland

E# P# Name City

E1 P7 Murphy Kent

E1 P11 Murphy Kent

E1 P9 Murphy Kent

INVOLVED (2NF)

E7 P1

E7 P9

E# P#

E1 P7

E1 P11

E1 P9

EMPLOYEE (2NF)

E7 Howard Cleveland

E1 Murphy Kent

E# Name City

Fig. 2.11   Tables in first and second normal forms
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dependency, i.e., the PROJECT_PARTICIPANT table is not yet in the second normal 
form.

If a table with a concatenated key is not in 2NF, it has to be split into subtables. The 
attributes that are dependent on a part of the key are transferred to a separate table along 
with that key part, while the concatenated key and potential other relationship attributes 
remain in the original table.

In our example from Fig. 2.11, this results in the tables EMPLOYEE and PROJECT_
INVOLVEMENT, both of which fulfill both the first and the second normal forms. The 
EMPLOYEE table does not have a concatenated key, and the requirements of the second 
normal form are obviously met. The PROJECT_INVOLVEMENT table has no nonkey 
attributes, which saves us the need to check for 2NF here as well.

Transitive dependencies
In Fig. 2.12, we return to the DEPARTMENT_EMPLOYEE table from earlier, which 
contains department information in addition to the employee details. We can immedi-
ately tell that the table is in both first and second normal form—since there is no concat-
enated key, we do not even have to check for full functional dependency. However, the 
DepartmentName attribute is still redundant. This can be fixed using the third normal 
form.

u Third normal form (3NF)  A table is in the third normal form when, in addition to the 
requirements of the second form, no nonkey attribute is transitively dependent on any key 
attribute.

Again, we use a dependency to define a normal form: In transitive dependencies, an 
attribute is indirectly functionally dependent on another attribute. For instance, the attrib-
ute DepartmentName in our table is functionally dependent on the employee number via 
the department number. We can see functional dependency between the employee num-
ber and the department number, as well as between department number and department 
name. These two functional dependencies E#- > D# and D#- > DepartmentName can be 
merged to form a transitive dependency E#- > DepartmentName.

In general, given two functional dependencies A- > B and B- > C with a common 
attribute B, the merged dependency A- > C will also be functional—if A uniquely iden-
tifies the values of B, and B uniquely identifies the values of C, C inherits the depend-
ency on A, i.e., the dependency A- > C is definitely functional. It is called transitive if 
apart from the functional dependencies A- > B and B- > C, A is not also functionally 
dependent on B. This gives us the following definition for transitive dependency: An 
attribute C is transitively dependent on A if B is functionally dependent on A, C is func-
tionally dependent on B, and A is not functionally dependent on B.

Since the DepartmentName attribute in the example DEPARTMENT_EMPLOYEE 
table in Fig. 2.12 is transitively dependent on the E# attribute, the table is by definition 
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not in the third normal form. The transitive dependency can be removed by splitting off 
the redundant DepartmentName attribute and putting it in a separate DEPARTMENT 
table with the department numbers. The department number also stays in the remaining 
EMPLOYEE table as a foreign key with the role SUBORDINATE (see attribute “D#_
Sub”). The relationship between employees and departments is, therefore, still ensured.

DEPARTMENT EMPLOYEE  (in second normal form)

E19 Stewart E Main Street Stow D6 Accounting

E1 Murphy Morris Road Kent D3 IT

E7 Howard Lorain Avenue Cleveland D5 HR

E4 Bell S Water Street Kent D6 Accounting

E# Name Street City D# DepartmentName

E# DepartmentNameD#

Transitive dependency:

it is not true:
D#�E#

EMPLOYEE (in third normal form)

E19 Stewart E Main Street Stow D6

E1 Murphy Morris Road Kent D3

E7 Howard Lorain Ave Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City D#_Sub

DEPARTMENT (3NF)

D3 IT

D5 HR

D6 Accounting

D# DepartmentName

Fig. 2.12   Transitive dependency and the third normal form

2.3  Implementation in the Relational Model
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Multivalued dependencies
The second and third normal forms allow us to eliminate redundancies within the nonkey 
attributes. However, checking for redundancies must not stop there, since concatenated 
keys can also exist redundantly.

This should at most require a modification of the third normal form, which is called 
Boyce-Codd normal form or BCNF after the authors of the major works on it. It is used 
when there are multiple overlapping candidate keys in one table. Such tables, even when 
they are in 3NF, may conflict with BCNF. In this case, the table has to be split due to 
the candidate keys. For more detailed information, see the literature recommendations in 
Sect. 2.7.

Another normal form results from studying multivalued dependencies between indi-
vidual key attributes. Although these play only a small role in practice, Fig. 2.13 gives 
a simple example to quickly illustrate the issue. The original table METHOD is unnor-
malized, since there may be multiple authors and terms listed next to each method. For 
instance, the structogram method contains the authors Nassi and Shneiderman while also 
giving multiple values (sequence, iteration, and branching) for the Term attribute.

We convert the unnormalized table to the first normal form by breaking up the sets 
{Nassi, Shneiderman} and {sequence, iteration, branching}. The new table consists of 
only key attributes, i.e., it is not only in 1NF, but also in second and third normal forms. 
Yet, despite being in 3NF, the table still shows redundant information. For instance, 
we can see that for each structogram author the three terms sequence, iteration, and 
branching are listed, while reversely, for each of the terms, both the authors Nassi and 
Shneiderman are given. We are, therefore, dealing with paired multivalued dependencies, 
which have to be eliminated.

For a table with the attributes A, B, and C, multivalued dependencies are defined as 
follows: An attribute C is multivaluedly dependent on an attribute A (written as A- > ->C) 
if any combination of a specific value of A with an arbitrary value of B results in an iden-
tical set of values of C.

For our example from Fig. 2.13, this shows that the Term attribute is multivaluedly 
dependent on the Method attribute, i.e., Method- > ->Term. Combining structogram with 
the author Nassi returns the same set {sequence, iteration, branching} as combining it 
with the author Shneiderman. There is also a multivalued dependency between the attrib-
utes Author and Method in the direction Method- > ->Author: By combining a specific 
method such as the structogram with an arbitrary term, e.g., sequence, we obtain the 
authors Nassi and Shneiderman, the same result as for the combinations of structogram 
with the terms iteration or branching.

Multivalued dependencies within a table can cause redundancies and anomalies, so 
they are eliminated with the help of the fourth normal form:

u Fourth normal form (4NF)  The fourth normal form does not permit multiple true and 
distinct multivalued dependencies within one table.
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Our METHOD table therefore has to be split into two subtables, METHODOLOGIST 
and METHODOLOGY. The former relates methods and authors, the latter methods and 
terms. Both are free of redundancies and adhere to the fourth normal form.

Join dependencies
It is entirely possible for some information to be lost when tables are split into subtables. 
To avoid this, there are criteria to ensure lossless table splitting, i.e., the full preservation 
of all information via the subtables.

METHOD (unnormalized)

structogram {Nassi, Shneiderman} {sequence,
iteration,
branching}

data model {Chen}

Method Author Term

{entity set,
relationship set}

METHOD (in third normal form)

structogram Nassi sequence

Method Author Term

structogram Nassi iteration
structogram Nassi branching
structogram Shneiderman sequence
structogram Shneiderman iteration
structogram Shneiderman branching
data model Chen entity set
data model Chen relationship set

METHODOLOGIST (4NF)

structogram Nassi

Methode Autor

structogram Shneiderman
data model Chen

structogram sequence

Methode Begriff

structogram iteration
structogram branching

METHODOLOGY (4NF)

data model entity 
data model relationship set

Fig. 2.13   Table with multivalued dependencies

2.3  Implementation in the Relational Model
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Figure 2.14 shows an improper splitting of the table PURCHASE in the subta-
bles BUYER and WINE. The PURCHASE table contains the wine purchases made by 
Stewart, Murphy, Howard, and Bell. Combining the subtables derived from it, BUYER 
and WINE, via the shared attribute Variety returns the INCORRECT PURCHASE 
table. The information in this table clashes with the original table, since it is indicated 
that Murphy and Bell have the same taste in wines and both bought the 1996 as well 

PURCHASE

Stewart Chardonnay 2003

Buyer Variety Vintage

Murphy Cabernet 1999
Howard Riesling 2001
Bell Cabernet 1996

BUYER

Stewart Chardonnay

Buyer Variety

Murphy Cabernet
Howard Riesling
Bell Cabernet

Chardonnay 2003

Variety Vintage

Cabernet 1999
Riesling 2001
Cabernet 1996

WINE

INCORRECT PURCHASE

Stewart Chardonnay 2003

Buyer Variety Vintage

Murphy Cabernet 1999

Howard Riesling 2001

Bell Cabernet 1996

Murphy Cabernet 1996

Bell Cabernet 1999

Segment (projection) of
the PURCHASE table
on the attributes Buyer
and Variety

Segment (Projection) of
the PURCHASE table

on the attributes Variety
and Vintage

Combination (join) of the BUYER table
and the WINE table via the shared

attribute Vintage

Fig. 2.14   Improper splitting of a PURCHASE table
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as the 1999 Cabernet (the erroneous entries for Murphy and Bell are marked in bold in 
Fig. 2.14).

The BUYER table is split off from the PURCHASE table by reducing the original 
table to the attributes Buyer and Variety. The required project operator is a filter operator 
that vertically splits tables into subtables (Fig. 3.3 and Sect. 3.2.3). The WINE table is 
similarly created by projecting the PURCHASE table onto the two attributes Variety and 
Vintage. Besides splitting tables into subtables (projection), we can also merge subtables 
into tables (join operator). Our example in Fig. 2.14 shows how the BUYER and WINE 
tables can be combined via the shared Variety attribute by complementing all tuples of 
the BUYER table with the corresponding entries from the WINE table. This gives us 
the joined table INCORRECT PURCHASE (for more information on joins, see Fig. 3.3 
and Sect. 3.2.3), which lists all purchases made by Stewart, Murphy, Howard, and Bell. 
However, it also contains two purchases that were never actually made—(Murphy, 
Cabernet, 1996) and (Bell, Cabernet, 1999). Such conflicts can be avoided with the fifth 
normal form and better knowledge of join dependencies.

u Fifth normal form (5NF)  A table is in the fifth normal form if it can be arbitrarily split 
by project operators and then reconstructed into the original table with join operators. 
This property is commonly called lossless join dependency. A table is therefore in 5NF 
when it meets the criterion of lossless join dependency.

The fifth normal form, often called project-join normal form or PJNF, defines how to 
split a table without issue and, if required, reassemble it without information conflicts. 
Splitting is done with a project operator and reconstruction with a join operator.

To avoid incorrect information after reconstruction, a table must be checked for join 
dependencies: A table R with the attributes A, B, and C has join dependency if the pro-
jected subtables R1(A,B) and R2(B,C), when joined via the shared attribute B, result 
in the original table R. This process is termed a lossless join. As illustrated above, the 
PURCHASE table from Fig. 2.14 is not join dependent and, therefore, not in 5NF.

Figure 2.15 first shows the same table in fourth normal form. Since it does not meet 
the criterion of join dependency, it has to be converted to the fifth normal form. This is 
done by creating three subtables from it with the respective projection: BUYER, WINE, 
and PREFERENCE. A quick test shows that merging those three tables does, indeed, 
reconstruct the original PURCHASE table. First, the BUYER and WINE tables are com-
bined via the Variety attribute, then another join adds the PREFERENCE table via the 
Vintage attribute in order to receive the original PURCHASE table.

This discussion certainly invites the question of whether it is possible to use a syn-
thetic approach to database design instead of splitting rules and normal forms (analytical 
approach). There are, indeed, algorithms that enable the merging of subtables into tables 
in the third or a higher normal form. Such merging rules allow building database sche-
mas based on a set of dependencies. They formally enable database design to be either 
top-down (analytical) or bottom-up (synthetic). Unfortunately, very few CASE tools 

2.3  Implementation in the Relational Model



46 2  Data Modeling

support both methods; database architects should, therefore, check the accuracy of their 
database designs manually.

2.3.2	� Mapping Rules for Relational Databases

This section discusses how to map the entity-relationship model onto a relational data-
base schema, i.e., how entity and relationship sets can be represented in tables.

A database schema is the description of a database, i.e., the specification of the data-
base structures and the associated integrity constraints. A relational database schema 
contains definitions of the tables, the attributes, and the primary keys. Integrity con-
straints set limits for the domains, the dependencies between tables (referential integrity 
as described in Sect. 2.3.3), and for the actual data.

PURCHASE (in fourth normal form)

Stewart Chardonnay 2003

Buyer Variety Vintage

Murphy Cabernet 1999
Howard Riesling 2001
Bell Cabernet 1996

BUYER (5NF)

Stewart Chardonnay

Buyer Variety

Murphy Cabernet
Howard Riesling
Bell Cabernet

Chardonnay 2003

Variety Vintage

Cabernet 1999
Riesling 2001
Cabernet 1996

WINE (5NF)

Stewart 2003

Buyer Vintage

Murphy 1999
Howard 2001
Bell 1996

PREFERENCE (5NF)

Fig. 2.15   Tables in fifth normal form
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There are two rules of major importance in mapping an entity-relationship model onto 
a relational database schema (Fig. 2.16):

u Rule R1 (entity sets)  Each entity set has to be defined as a separate table with a 
unique primary key. The primary key can be either the key of the respective entity set or 
one selected candidate key. The entity setʼs remaining attributes are converted into cor-
responding attributes within the table.

By definition, a table requires a unique primary key (Sect. 1.2.1). It is possible that there 
are multiple candidate keys in a table, all of which meet the requirement of uniqueness 
and minimality. In such cases, it is up to the data architects which candidate key they 
would like to use as the primary key.

u Rule R2 (relationship sets)  Each relationship set can be defined as a separate table; 
the identification keys of the corresponding entity sets must be included in this table as 

DEPARTMENT

EMPLOYEE INVOLVED

SUBORDINATEDEPARTMENT_HEAD

PROJECT

c 1

1 m

m mc

RULE R1

DEPARTMENT

D# DepartmentName

PROJECT

P# Content

EMPLOYEE

E# Name Street City

RULE R2

DEPARTMENT_HEAD

D# E#

INVOLVED

E# P# Percentage

SUBORDINATE

E# D#

Fig. 2.16   Mapping entity and relationship sets onto tables
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foreign keys. The primary key of the relationship set table can be a concatenated key 
made from the foreign keys or another candidate key, e.g., an artificial key. Other attrib-
utes of the relationship set are listed in the table as further attributes.

The term foreign key describes an attribute within a table that is used as an identification 
key in at least one other table (possibly also within this one). Identification keys can be 
reused in other tables to create the desired relationships between tables.

Figure 2.16 shows how rules R1 and R2 are applied to a concrete example: Each of 
the entity sets DEPARTMENT, EMPLOYEE, and PROJECT is mapped onto a corre-
sponding table DEPARTMENT, EMPLOYEE, and PROJECT. Similarly, tables are 
defined for each of the relationship sets DEPARTMENT_HEAD, SUBORDINATE, and 
INVOLVED. The DEPARTMENT_HEAD, and SUBORDINATE tables use the depart-
ment numbers and the employee numbers as foreign keys, while the INVOLVED table 
takes the identification keys from the EMPLOYEE and PROJECT tables and list the 
Percentage attribute as another characteristic of the relationship.

Since each department has exactly one department head, the department number D# 
suffices as identification key for the DEPARTMENT_HEAD table. Likewise, E# can be 
the identification key of the SUBORDINATE table because each employee belongs to 
exactly one department.

In contrast, the INVOLVED table requires the foreign keys employee number and 
project number to be used as a concatenated key, since one employee can work on multi-
ple projects and each project can involve multiple employees.

The use of rules R1 and R2 alone does not necessarily result in an ideal relational 
database schema as this approach may lead to a high number of individual tables. For 
instance, it seems doubtful whether it is really necessary to define a separate table for 
the role of department head in our example from Fig. 2.16. As shown in the next sec-
tion, the DEPARTMENT_HEAD table is, indeed, not required under mapping rule R5. 
The department head role would instead be integrated as an additional attribute in the 
DEPARTMENT table, listing the employee number of the respective head for each 
department.

Mapping rules for relationship sets
Based on the cardinality of relationships, we can define three mapping rules for represent-
ing relationship sets from the entity-relationship model as tables in a corresponding rela-
tional database schema. In order to avoid an unnecessarily large number of tables, rule R3 
expressly limits which relationship sets always and in any case require separate tables:

u Rule R3 (network-like relationship sets)  Every complex-complex relationship set must 
be defined as a separate table which contains at least the identification keys of the asso-
ciated entity sets as foreign keys. The primary key of a relationship set table is either a 
concatenated key from the foreign keys or another candidate key. Any further character-
istics of the relationship set become attributes in the table.
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This rule requires that the relationship set INVOLVED from Fig. 2.17 has to be a sepa-
rate table with a primary key, which in our case is the concatenated key expressing the 
foreign key relationships to the tables EMPLOYEE and PROJECT. The Percentage 
attribute describes the share of the project involvement in the employeeʼs workload.

Under rule R2, we could define a separate table for the SUBORDINATE relation-
ship set with the two foreign keys department number and employee number. This would 
be useful if we were supporting matrix management and planning to get rid of unique 
subordination with the association type 1, since this would result in a complex-complex 
relationship between DEPARTMENT and EMPLOYEE. However, if we are convinced 
that there will be no matrix management in the foreseeable future, we can apply rule R4 
for the unique-complex relationship:

u Rule R4 (hierarchical relationship sets)  Unique-complex relationship sets can be rep-
resented without a separate relationship set table by the tables of the two associated 
entity sets. The unique association (i.e., association type 1 or c) allows for the primary 
key of the referenced table to simply be included in the referencing table as a foreign key 
with an appropriate role name.

Following rule R4, we forgo a separate SUBORDINATE table in Fig. 2.18. Instead of 
the additional relationship set table, we add the foreign key D#_Subordination to the 
EMPLOYEE table to list the appropriate department number for each employee. The 
foreign key relationship is defined by an attribute created from the carried over identifi-
cation key D# and the role name Subordination.

For unique-complex relationships, including the foreign key can uniquely identify 
the relationship. In Fig. 2.18, the department number is taken over into the EMPLOYEE 

RULE R3

PROJECT

P# Content

EMPLOYEE

E# Name Street City

INVOLVED

E# P# Percentage

EMPLOYEE INVOLVED PROJECT
m mc

Foreign key relationships

Fig. 2.17   Mapping rule for complex-complex relationship sets
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table as a foreign key according to rule R4. If, reversely, the employee numbers were 
listed in the DEPARTMENT table, we would have to repeat the department name for 
each employee of a department. Such unnecessary and redundant information is 
unwanted and goes against the theory of the normal forms (in this case: conflict with the 
second normal form, see Sect. 2.3.1).

u Rule R5 (unique-unique relationship sets)  Unique-unique relationship sets can 
be represented without a separate table by the tables of the two associated entity sets. 
Again, an identification key from the referenced table can be included in the referencing 
table along with a role name.

Here, too, it is relevant which of the tables we take the foreign key from: Type 1 associa-
tions are preferable, so the foreign key with its role name can be included in each tuple 
of the referencing table (avoidance of NULL values, see also Sect. 3.6).

In Fig. 2.19, the employee numbers of the department heads are added to the 
DEPARTMENT table, i.e., the DEPARTMENT_HEAD relationship set is represented by 
the M#_DepartmentHead attribute. Each entry in this referencing attribute with the role 
“DepartmentHead” shows who leads the respective department.

If we included the department numbers in the EMPLOYEE table instead, we would 
have to list NULL values for most employees and could only enter the respective depart-
ment number for the few employees actually leading a department. Since NULL values 
often cause problems in practice, they should be avoided whenever possible, so it is better 
to have the “DepartmentHead” role in the DEPARTMENT table. For (1,c) and (c,1) rela-
tionships, we can, therefore, completely prevent NULL values in the foreign keys, while 
for (c,c) relationships, we should choose the option resulting in the fewest NULL values.

RULE R4

DEPARTMENT SUBORDINATE EMPLOYEE
1 m

Foreign key relationship

DEPARTMENT

D# DepartmentName

EMPLOYEE

E# Name City D#_Sub

Fig. 2.18   Mapping rule for unique-complex relationship sets
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Mapping rules for generalization and aggregation
If there are generalization hierarchies or aggregation structures within an entity-rela-
tionship model, they have to be mapped onto the relational database schema as well. 
Although these special kinds of relationships have the known association types, the cor-
responding mapping rules are different from those discussed above.

u Rule R6 (generalization)  Each entity set of a generalization hierarchy requires a sepa-
rate table; the primary key of the superordinate table becomes the primary key of all 
subordinate tables as well.

Since the relational model does not directly support the relationship structure of a gen-
eralization, the characteristics of such a relationship hierarchy have to be modeled 
indirectly. No matter whether a generalization is overlapping-incomplete, overlapping-
complete, disjoint-incomplete, or disjoint-complete, the identification keys of the special-
ization must always match those of the superordinate table. Overlapping specializations 
do not require any special check rules, while disjointness has to be reproduced in the 
relational model. One way to do this is including an attribute Category in the superor-
dinate table. This attribute mimics class creation and shows which specialization the 
respective tuple belongs to. On top of that, it must be ensured for any disjoint-complete 
generalization that there is exactly one entry in a specialization table for each entry in the 
superordinate table and vice versa.

Figure 2.20 shows a generalization of employee information. Rule R6 results in the 
tables EMPLOYEE, MANAGEMENT_POSITION, SPECIALIST, and TRAINEE. The 
tables depending on the EMPLOYEE table must use the same identification key, E#. To 
avoid individual employees falling into multiple categories simultaneously, we introduce 

RULE R5

DEPARTMENT DEPARTMENT_
HEAD

EMPLOYEE
c 1

Foreign key relationship

DEPARTMENT

D# DepartmentName

EMPLOYEE

E# Name CityE#_DepHead

Fig. 2.19   Mapping rule for unique-unique relationship sets

2.3  Implementation in the Relational Model
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the Category attribute, which can have the values “Management Position,” “Specialist,” 
or “Trainee.” This attribute ensures the disjoint characteristic of the generalization hierar-
chy (Sect. 2.3), which means that the individual entity sets in the specialization must not 
overlap. The property of completeness cannot be explicitly represented in the database 
schema and requires a special integrity constraint.

u Rule R7 (aggregation)  If the cardinality of a relationship in an aggregation is com-
plex-complex, separate tables must be defined for both the entity set and the relationship 
set. In such cases, the relationship set table contains the identification key of the associ-
ated entity set table twice with corresponding role names to form a concatenated key. For 
unique-complex relationships (hierarchical structure), the entity set and the relationship 
set can be combined in a single table.

In the example in Fig. 2.21, the CORPORATION_STRUCTURE has a cardinality of 
(mc,mc), which means that under rule R7, two tables COMPANY and CORPORATION_
STRUCTURE have to be defined. The CORPORATION_STRUCTURE relationship 
set table shows which companies are direct subsidiaries of a company group and which 

RULE R6

EMPLOYEE

MANAGEMENT_
POSITION

SPECIALIST TRAINEE

1

c cc

disjoint
complete

DEPARTMENT_EMPLOYEE

E# Name Street City Category

POSITION
MANAGEMENT_

E# Position

SPECIALIST

E# Field

TRAINEE

E# Year

Fig. 2.20   Generalization represented by tables
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are the directly superordinate group of a certain part of the corporation using the iden-
tification keys in each tuple. In addition to the two foreign keys, the CORPORATION_
STRUCTURE table contains a Share attribute.

Figure 2.22 illustrates a hierarchical aggregation structure: The ITEM table catalogs 
the individual components with their material properties, the ITEM_LIST table defines 
the hierarchical relationship structure within the separate assembly groups. Item A7, for 
instance, consists of two subitems, A9 and A11, while A11 itself is made from the parts 
A3 and A4.

If the ITEM_LIST is tree-shaped, i.e., each subitem belongs to exactly one super-
ordinate item, the ITEM and ITEM_LIST tables could be merged into a single ITEM_
STRUCTURE table, where the item number of the uniquely superordinate item is listed 
along with the properties of each item.

RULE R7

“Company
consists of...”

“Subsidiary is

COMPANY

CORPORATION_
STRUCTURE

mc mc

dependent on...”

Ex. company structure:

C8

C3C5

C2

30 % 70 %

20 %

COMPANY

F5 Alpha Cincinnati

F3 Beta Toledo

C# Name Headquarters

F8 Delta Cleveland

F2 Omega Youngstown

CORPORATION STRUCTURE

F5 F8

C#_Group C#_Subsidiary

F3 F8

F8 F2

Shares

30 %

70 %

20 %

Fig. 2.21   Network-like corporation structure represented by tables

2.3  Implementation in the Relational Model
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2.3.3	� Structural Integrity Constraints

Integrity or consistency of data means that stored data does not contradict itself. A data-
base has integrity/consistency if the stored data is free of errors and accurately represents 
the anticipated informational value. Data integrity is impaired if there are ambiguities or 
conflicting records. For example, a consistent EMPLOYEE table requires that the names 
of employees, streets, and cities really exist and are correctly assigned.

RULE R7

ITEM

ITEM_
LIST

c mc

ITEM

I7 Unit LR Combo

I9 Assembly L Wood

I# Name Material

I11 Assembly R Alloy

I3 Part L Iron

I3 Part R Copper

Ex. item list:

I7

I3

I11I9

I4

ITEM_LIST

I7 I9

I#_Super I#_Sub

I7 I11

I11 I3

I11 I4

“Item list
consists of...”

“Subitem is
part of...”

Fig. 2.22   Hierarchical item list represented by tables
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Structural integrity constraints are rules to ensure integrity that can be represented 
within the database schema itself. For relational databases, they include the following: 

•	 Uniqueness constraint: Each table has an identification key (attribute or combination 
of attributes) that uniquely identifies each tuple within the table.

•	 Domain constraint: The attributes in a table can only take on values from a prede-
fined domain.

•	 Referential integrity constraint: Each value of a foreign key must actually exist as a 
key value in the referenced table.

The uniqueness constraint requires a set key for each table. If there are multiple candi-
date keys within one table, one of them has to be declared the primary key to fulfill the 
uniqueness constraint. The uniqueness of the primary keys themselves is checked by the 
DBMS.

The domain constraint, however, cannot be fully achieved by the DBMS—while the 
domains for individual table columns can be specified, those specifications cover only 
a small part of the validation rules. Defining a domain is not enough when it comes to 
verifying city or street names; for instance, a “CHARACTER (20)” limit does not have 
any bearing on meaningful street or city names. To what extent the contents of a table are 
validated is at the usersʼ discretion.

A significant help with the domain constraint comes in the form of enumerated types, 
where all possible values of an attribute are entered into a list. Examples of enumer-
ated types are the property categories (attributes) Profession = {Programmer, Analyst, 
Organizer} or YearOfBirth = {1950…1990}. This type of validation rule is supported by 
most modern database management systems.

Another major class of validation rules is tied to the term referential integrity. A 
relational database fulfills the referential integrity constraint if each value of a foreign 
key exists as a value of the referenced primary key. This is illustrated in Fig. 2.23: The 
DEPARTMENT table has the department number D# as its primary key, which is carried 
over into the EMPLOYEE table as a foreign key under the D#_Subordination attribute 
in order to determine which department each employee belongs to. The foreign-primary 
key relationship has referential integrity if all department numbers listed in the foreign 
key in the EMPLOYEE table are also present in the primary key of the DEPARTMENT 
table. In the example in Fig. 2.23, no subordination conflicts with the referential integrity 
constraint.

However, if we were to try to enter a new tuple “M20, Mahoney, Market Ave S, 
Canton, D7,” the DBMS would reject our insert operation if it supports referential integ-
rity. The value D7 is declared invalid, because it is not listed in the referenced table 
DEPARTMENT.

Apart from insertion issues, the protection of referential integrity affects other data-
base operations as well. If, for example, a user tries to delete a tuple that is referenced by 
other tuples in separate tables, the system can react in one of various ways:

2.3  Implementation in the Relational Model
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u Restricted delete  If a system follows the rule of restricted delete, a deletion opera-
tion is not carried out while the tuple to be deleted is referenced by at least one tuple 
in another table. If we attempted to delete the “D6, Accounting” tuple from the 
DEPARTMENT table in Fig. 2.23, this operation would be denied under the restrictive 
delete rule because the employees Stewart and Bell are listed as subordinate to depart-
ment D6.

As an alternative to restricted delete, the specifications of the EMPLOYEE and 
DEPARTMENT tables can call for cascade delete:

u Cascade delete  This approach means that on deletion of a tuple, all dependent tuples 
are removed as well. In our example in Fig. 2.23, cascade delete would mean that if we 
deleted the tuple (D6, Accounting), the two tuples (E19, Stewart, E Main Street, Stow, 
D6) and (E4, Bell, S Water Street, Kent, D6) would be removed from the EMPLOYEE 
table.

EMPLOYEE

E19 Stewart E Main Street Stow D6

E1 Murphy Morris Road Kent D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City D#_Sub

DEPARTMENT

D3 IT

D5 HR

D6 Accounting

D# DepartmentName

Referenced table

Foreign key

Primary key

Fig. 2.23   Ensuring referential integrity
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Another deletion rule supporting referential integrity allows for referenced foreign keys 
to be set to “unknown” during deletion operations. This third deletion rule option is 
described in more detail in Sect. 3.7 on integrity constraints, after the discussion on han-
dling NULL values in Sect. 3.6. Lastly, manipulation operations can be subject to restric-
tions that help ensure referential integrity at all times.

2.4	� Implementation in the Graph Model

2.4.1	� Graph Properties

Graph theory is a complex subject matter vital to many fields of use where it is necessary 
to analyze or optimize network-like structures. Use cases range from computer networks, 
transport systems, work robots, power distribution grids, or electronic relays over social 
networks to economic areas such as CORPORATION_STRUCTUREs, workflows, cus-
tomer management, logistics, process management, etc.

In graph theory, a graph is defined by the sets of its nodes (or vertices) and edges plus 
assignments between these sets.

u Undirected graph  An undirected graph G = (V,E) consists of a vertex set V and an 
edge set E, with each edge being assigned two (potentially identical) vertices.

Graph databases are often founded on the model of directed weighted graphs. However, 
we are not yet concerned with the type and characteristics of the vertices and edges, but 
rather the general abstract model of an undirected graph. This level of abstraction is suf-
ficient to examine various properties of network structures, such as: 

•	 How many edges have to be passed over to get from one node to another one?
•	 Is there a path between two nodes?
•	 Is it possible to traverse the edges of a graph visiting each vertex once?
•	 Can the graph be drawn two-dimensionally without any edges crossing each other?

These fundamental questions can be answered using graph theory and have practical 
applications in a wide variety of fields.

u Connected graph  A graph is connected if there are paths between any two vertices.

One of the oldest graph problems illustrates how powerful graph theory can be:

The Königsberg bridge decision problem (Eulerian cycles)
In 1736, the mathematician Leonhard Euler discovered, based on the seven bridges in 
the town of Königsberg (now Kaliningrad), that a path traversing each edge of a graph 
exactly once can only exist if each vertex has an even degree.

2.4 � Implementation in the Graph Model
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u Degree of a vertex  The degree of a vertex is the number of edges incident to it, i.e., 
originating from it.

The decision problem for an Eulerian cycle is, therefore, easily answered: A graph G is 
Eulerian, if it is connected and each node has an even degree.

Figure 2.24 shows a street map with 13 bridges. The nodes represent districts, the 
edges connecting bridges between them. Every vertex in this example has an even 
degree, which means that there has to be a Eulerian cycle—but how do we find it?

Fleuryʼs algorithm from 1883 offers simple step-by-step instructions:

u Fleuryʼs algorithm
1.	 Choose any node as the starting vertex.
2.	 Choose any (nonmarked) incidental edge and mark it (e.g., with sequential num-

bers or letters).
3.	 Take the end node as the new starting vertex.
4.	 Repeat from step (2).

In the graph on the left-hand side of Fig. 2.24, this algorithm was used to find a Eulerian 
cycle. There is, of course, more than one possible solution, and the path does not nec-
essarily have to be a cycle. When does a Eulerian path end at the starting point? The 
answer can be found by analyzing the degrees of the vertices in Fig. 2.24 in more detail.

This relatively simple example by Euler clearly shows how graph theory can be used 
to find solutions to various problems. Given any connected graph of arbitrary complexity, 
we can say that if all its vertices are of an even degree, there is at least one Eulerian cycle.

While Eulerʼs bridge problem looks at edges, the Hamiltonian path problem questions 
whether all vertices of a graph can be visited exactly once. Despite the similarity of the 
questions, the Hamiltonian path problem requires more complex algorithms.5

Fig. 2.24   A Eulerian cycle for crossing 13 bridges

5It is NP-complete, i.e., it belongs to the class of problems that can be nondeterministically solved 
in polynomial time.
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Dijkstraʼs algorithm for finding shortest paths
In 1959, Edsger W. Dijkstra published a three-page article describing an algorithm 
for calculating the shortest paths within a network. This algorithm, commonly called 
Dijkstraʼs algorithm, requires a weighted graph (edges weighted, e.g., as distances in 
meters or minutes) and an initial node from which the shortest path to any other vertex in 
the network is then determined.

u Weighted graph  Weighted graphs are graphs whose vertices or edges have properties 
assigned to them.

As an example, Fig. 2.25 shows an edge-weighted graph representing a small sub-
way network, with the stops as nodes and the connections between stops as edges. The 
weights of the edges are the distances between the stops, given in kilometers.

u Weight of a graph  The weight of a graph is the sum of all weights within the graph, 
i.e., all node or edge weights.

Fig. 2.25   Iterative procedure for creating the set Sk(v)

2.4  Implementation in the Graph Model
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This definition also applies to partial graphs, trees, or paths as subsets of a weighted 
graph. Of interest is generally the search for partial graphs with maximum or minimum 
weight. In the subway example of Fig. 2.25, we are looking for the smallest weight 
between the stations v0 and v7, i.e., the shortest path from stop v0 to stop v7.

Dijkstraʼs approach to this problem was to follow the edges indicating the shortest 
distance from the initial node. Given an undirected graph G = (V,E) with positive edge 
weights and an initial vertex vi, we look at the nodes vj neighboring this vertex and calcu-
late the set Sk(v). We select the neighboring vertex vj closest to vi and add it to the set Sk(v).

For the subway example in Fig. 2.25, we start at station v0 (initial node) and our desti-
nation is stop v7. To initialize, we establish the set Sk(v) as S0: = {v0}. The first step S1(v) 
is to inspect all edges connected to v0, i.e., v2, v3, and v4. By selecting the edge with the 
shortest distance to vj (with j = 2, 3, and 4), we obtain the following set: S1 = {v0,v3}. We 
proceed in the same manner and examine all edges incident to S1(v), i.e., v2, v4, v1, and 
v6. Since the shortest distance is between v0 and v2, we add the vertex v2 to our set S2(v) 
and obtain S2 = {v0,v3,v2}. Similarly, the next step results in S3 = {v0,v3,v2,v5}.

In step S4(v), we can select either vertex v1 or vertex v6, since the paths to both from 
v0 are 5 km long. We settle on v1 and obtain S4 = {v0,v3,v2,v5,v1}. In the same manner, 
we construct the subsequent sets S5 = {v0,v3,v2,v5,v1,v6} and S6 = {v0,v3,v2,v5,v1,v6,v4} 
and finally S7 = {v0,v3,v2,v5,v1,v6,v4,v7} with the destination node v7.

The initial node v0 is now connected to the destination v7 by the constructed set S7(v), 
and the corresponding route is the shortest possible path. It is 7 km long—1 km from v0 
to v3, 4 km from v3 to v6, and 2 km from v6 to v7. Since our solution contains all verti-
ces (or subway stops) in the network, the shortest paths from v0 to all stations vi with 
i = 1,..,7 can be extrapolated from it.

Figure 2.26 illustrates how Dijkstraʼs algorithm creates a solution tree (compare the 
bold connections starting from the initial node v0 to the tree structure). Each node in the 
tree is annotated with the previous vertex (pre_v) and the total distance from the start 
(dist). In v5, for instance, v2 is entered as the previous node and 4 (3 + 1) as the total dis-
tance in kilometers from v0 to v5.

We can now derive Dijkstraʼs algorithm for positively weighted graphs, assigning 
‘Previous vertex’ and ‘distance’ (total distance from the initial node) attributes to each 
vertex.

The algorithm can be expressed as follows:

u Dijkstraʼs algorithm
1.	 Initialization: Set the distance in the initial node to 0 and in all other nodes to infi-

nite. Define the set S0: = {pre_v: initial node, dist: 0}.
2.	 Iterate Sk while there are still unvisited vertices and expand the set Sk in each step 

as described below:
2a.	 Calculate the sum of the respective edge weights for each neighboring vertex 

of the current node.
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2b.	 Select the neighboring vertex with the smallest sum.
2c.	 If the sum of the edge weights for that node is smaller than the distance value 

stored for it, set the current node as the previous vertex (pre_v) for it and enter 
the new distance in Sk.

It becomes obvious that with this algorithm, the edges traversed are always those with 
the shortest distance from the current node. Other edges and nodes are considered only 
when all shorter paths have already been included. This method ensures that when a 
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Fig. 2.26   Shortest subway route from stop v0 to stop v7
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specific vertex is reached, there can be no shorter path to it left (greedy algorithm6). The 
iterative procedure is repeated until either the distance from initial to destination node 
has been determined or all distances from the initial node to all other vertices have been 
calculated.

Where is the nearest post office?
A typical use case of graph theory is the search for the nearest post office. In a city with 
multiple post offices (or clubs, restaurants, movie theaters, etc.), an internet user wants 
to find the nearest one. Which one is closest to their current location? This is a common 
example for searches where the answer depends on the userʼs location, i.e., location-
based services.

Given n points (post offices) in the Euclidian plane, i.e., a set M = {P1,P2,…,Pn}, the 
task is to find the point from M closest to a query point q (location of the user). The 
quickest and easiest way to do that is to split the city into zones:

u Voronoi diagram  A Voronoi diagram divides a plane with a set M = {P1,P2,…,Pn} of 
n points into equivalence classes by assigning each point Pi its corresponding Voronoi 
cell Vi.

With Voronoi diagrams, the search for the nearest post office can be simplified to deter-
mining the Voronoi cell containing the query location (point location). All points within a 
Voronoi cell Vi are equivalent in that they are closer to the post office Pi than to any other 
post offices.

u Voronoi cell  For a set M = {P1,P2,…,Pn} of points, the Voronoi cell of a point Pi is the 
set of all points in the Euclidian plane which are closer to Pi than to Pj for all j ≠ i.

The construction of a Voronoi cell for a point Pi is rather simple: Take the perpendicular 
bisectors of the connections to the neighboring points Pj and determine the half-spaces 
H(Pi,Pj) enclosing the point Pi (Fig. 2.27). The intersection of all half-spaces of Pi forms 
the Voronoi cell Vi.

Calculating Voronoi diagrams can be complicated, especially if there is a large num-
ber of post offices in a large city or urban agglomeration, but there are algorithms that 
can reduce the computing effort. One method is the Divide et Impera (Latin for divide 
and rule) approach, in which the problem is repeatedly split into subproblems (Divide) 
until they are small enough to be easily solved (Impera).

In 1975, Michael Ian Shamos and Dan Hoey proposed an algorithm based on Divide 
et Impera, which splits the set M = {P1,P2,…,Pn} in order to recursively obtain the 

6In each step, greedy algorithms select the locally optimal subsequent conditions according to the 
relevant metric.
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Voronoi diagram VD(M) from the subdiagrams VD(M1) and VD(M2). The major step 
in this idea is proving that it is possible to merge the two partial solutions VD(M1) and 
VD(M2) in linear time.

Figure 2.28 shows the method for merging two subproblems: Given a dividing line 
T, let the part of the plane to the right of T be T+ and the part to the left of T be T−. The 
dividing line itself is constructed step-by-step from the convex boundaries of M1 and M2. 
Since the Voronoi cells are convex, the merger between VD(M1) and VD(M2) requires a 
linear effort.

Voronoi diagrams were named after Russian-Ukrainian mathematician Georgy 
Feodosevich Voronoy, who generalized them for n-dimensional space in 1908. Voronoi 
diagrams can also be calculated with the help of a graph dual to it: Combining the cent-
ers of all Voronoi cells in a diagram yields a Delaunay triangulation as presented by 
Russian mathematician Boris Nikolaevich Delone in 1934. Because Voronoi diagrams 
and Delaunay triangulations are dual to each other, all properties of a Voronoi diagram 
apply to its dual Delaunay graph and vice versa.

Both Voronoi diagrams and Delaunay triangulations are important tools for problem 
resolution in numerous scientific fields. In IT, they are used for associative searches, cluster 
computing, planning, simulation, and robotic collision avoidance systems, among others.

Analyzing relationships in social networks
Graph theory can also be used to analyze the relationships between members of a com-
munity. A social network in this context is a community or group of web users in regular 

Fig. 2.27   Construction of a Voronoi cell using half-spaces

2.4  Implementation in the Graph Model
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social interaction. The group of members determines participation and the needs or inter-
ests pursued by the community.

Every social network and each individual member has a reputation. Empirical social 
research uses sociometry to try to understand the relationships between members of a 
social network. Graph theory, with its various metrics and indices, is a valuable tool for 
sociologic network analyses.

u Sociogram  A sociogram is a graph representing the relationships within a social 
group or network. The nodes are individual members, the edges show how members view 
each other.

Indices for the analysis of sociograms refer to the relative position of individual people 
and the relationships between members. The most important metrics are: 

•	 Degree: The degree (or degree centrality) indicates the number of connections from 
one member to others, i.e., degree centrality equals the degree of the node. The number 
of outgoing edges determines the vertexʼ outdegree, the sum of the incoming edges is 
its indegree. Members with a high degree (called stars) stand out, even though degree 
centrality is not necessarily representative of the personʼs position or influence.

•	 Betweenness: Betweenness centrality is the number of times a node lies on the short-
est path (geodesic distance) between pairs of other members. This measurement takes 
into account not only the direct, but also the indirect relationships within the social 
network. For instance, it is possible to calculate through whom most of the informa-
tion in the network is exchanged.

Fig. 2.28   Dividing line T between two Voronoi diagrams VD(M1) and VD(M2)
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•	 Closeness: Closeness centrality is an indicator showing the number of edges connect-
ing a person to all other members of the network. It is usually calculated by determin-
ing and then averaging the shortest paths to all other members.

•	 Density: The density of a network is the ratio between the number of existing rela-
tionships and the maximum possible number of relationships. It is expressed as a dec-
imal value between 0 (no relationships at all) and 1 (all members are interconnected).

•	 Clique: Cliques are groups of at least three members, all of whom have mutual 
relationships with each other, i.e., each member of a clique interacts with all other 
members.

Figure 2.29 shows a sociogram of a middle school class, with arrows indicating positive 
sympathies between students. The lighter nodes represent girls, the darker ones boys. An 
arrow directed from v5 to v11 indicates that girl #5 finds her fellow student #11 likeable. 
If girl #11 is friendly with #5 as well, the edge is represented by a double-pointed arrow 
in the graph.

The sociogram as a directed graph makes it obvious that only a few boys and girls get a 
lot of sympathies. For example, girl #11 (vertex v11) has five incoming edges, boy #7 (v7) 
even six. The most popular students definitely stand out clearly in the sociogram graph.

u Adjacency matrix  An adjacency matrix represents a graph in matrix format and indi-
cates which vertices are connected, i.e., adjacent, to which edges. A connected graph of 
the n-th degree will yield an n x n matrix.

A sociogram can, therefore, be depicted both as a graph and as a matrix, which can then 
be sorted as needed. At the bottom of Fig. 2.29, we can see the adjacency matrix (who 
is connected to whom) for the student sociogram. Both representations are equivalent, 
although the rows and columns of the adjacency matrix were partially sorted. It becomes 
clear that with students at this age, boys mainly show sympathies for fellow boys (top 
left quadrant) and girls for fellow girls (bottom right quadrant). Cluster analysis high-
lights this behavior.

A quick look at the sociogram graph and/or the adjacency matrix shows that only one 
girl (bottom left quadrant) and one boy (top right quadrant) were brave enough to show 
sympathies for a student of the other sex. For instance, while girl v10 proclaims her sym-
pathy for boy v7, this is not reciprocated.

The interpretation of sociograms has become a wide and varied field of use. The pro-
cess is especially helpful in analyzing both individual properties and aspects of group 
dynamics: 

•	 Star: A star in a sociogram is a group member attracting an extraordinary number of 
positive views (arrows). This characteristic is assigned based on the degree of the node.

•	 Isolate: Members that receive no positive sympathies within a group are called iso-
lates. Boy v1 and girl v4, among others, are examples of isolates in Fig. 2.29.

2.4  Implementation in the Graph Model
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•	 Ghost: Ghosts are group members that attract neither positive nor negative views 
within their group. The term describes how they are barely noticed within the 
community.

•	 Mutual Choice: Bilateral sympathies are an important factor within communi-
ties: The more mutually appreciative relationships exist, the better the social cli-
mate within the group. Negative relationships, on the other hand, can impede a 
communityʼs ability to evolve.
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Fig. 2.29   Sociogram of a middle school class as a graph and as an adjacency matrix
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•	 Chain: A chain is formed when one member nominates another member, who nomi-
nates another member, and so on. Chains can lead to stars.

•	 Island: Islands are pairs or small subsets of members that are mostly separate from 
the rest of the community.

•	 Triad: Three group members all assessing each other in mutually positive or negative 
relationships form a triad. If this structure occurs for more than three members, it is 
called a circle.

Figure 2.30 shows all possible patterns of triads. Balanced triads (see the left column 
in Fig. 2.30) are those where all three members hold positive views of each other (case 
B1) or with one positive and two negative mutual assessments (cases B2, B3, and B4). 
In case B2, for instance, members A and B hold sympathies for each other, while both 
have issues with member C, who in turn likes neither A nor B.

The right-hand column of Fig. 2.30 shows the unbalanced triads U1 through U4. 
Cases U1 through U3 each show two positive pair relationships, which are overshad-
owed by the third and negative mutual assessment. In U1, A likes both member B and 
member C (and vice versa), but B and C do not get along. The icy relationship between 
B and C could put a strain on the connection between A and B and/or A and C.

For communities around famous people, it is common to simply use numbers to char-
acterize the closeness to that person. For instance, we could introduce the fictional Zadeh 
number (ZN) for Lotfi Zadeh, the founding father of fuzzy logic (see Fuzzy Databases in 
Sect. 6.8), to indicate how close a fuzzy logic researcher is to the point of origin of the 
community. Zadeh himself is assigned the Zadeh number 0, researchers who co-authored 
works with him are assigned 1, researchers who published with them get 2, and so forth. 
The first generation would consist of Zadehʼs students Kosko and Pedrycz (ZN = 1), who 
co-wrote material with Lotfi Zadeh. The second generation would include, among others, 
Cudré-Mauroux, Meier, and Portmann (ZZ = 2), who published a research paper with 
their colleague Pedrycz. Fasel and Kaufmann would then be part of the third generation 
(ZZ = 3), and so on. Examples of such numbers exist in various communities; actors, for 
instance, may be assigned a Bacon number indicating whether they worked directly or 
indirectly on a movie with Kevin Bacon (Bacon number 0).

Graphs or high-performance graph algorithms are commonly used in software appli-
cations by employing the methods of linear algebra. If the graph is undirected, there is a 
symmetrical adjacency matrix. Based on the degrees of the nodes, the respective trees of 
a graph and various other properties can be deduced. It is possible, for example, to evalu-
ate the relative importance of a node, which is widely used in linking to websites on the 
internet (page ranking).

In order to determine the reachability of vertices, the n powers of an adjacency matrix 
are added together (with the identity matrix as the zeroth power). The result is a matrix 
showing the number of steps needed to reach each node from each other node.

2.4  Implementation in the Graph Model
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2.4.2	� Mapping Rules for Graph Databases

Parallel to the mapping rules R1 to R7 for deriving tables from an entity-relationship 
model, this section presents the rules G1 to G7 for graph databases. The objective is to 
convert entity and relationship sets into nodes and edges of a graph.

Figure 2.31 once again shows the previously used project management entity-rela-
tionship model (Figs. 2.4 and 2.16). The first mapping rule, G1, concerns the conversion 
of entity sets into nodes:
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u Rule G1 (entity sets)  Each entity set has to be defined as an individual vertex in the 
graph database. The attributes of each entity set are made into properties of the respec-
tive vertex.

The center of Fig. 2.31 shows how the entity sets DEPARTMENT, EMPLOYEE, and 
PROJECT are mapped onto corresponding nodes of the graph database, with the attrib-
utes attached to the nodes (attributed vertices).
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Fig. 2.31   Mapping entity and relationship sets onto graphs
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Rule G2 governs the mapping of relationship sets onto edges:

u Rule G2 (relationship sets)  Each relationship set can be defined as an undirected 
edge within the graph database. The attributes of each relationship set are assigned to the 
respective edge (attributed edges).

Applying rule G2 to the relationship sets DEPARTMENT_HEAD, SUBORDINATE, 
and INVOLVED gives us the following constellation of edges: DEPARTMENT_
HEAD and SUBORDINATE between vertices D (for DEPARTMENT), and E (for 
EMPLOYEE) and INVOLVED between vertices E and P (PROJECT).

Relationship sets can also be represented as directed edges. In the next mapping rules, 
G3 (for network-like relationships), G4 (hierarchical relationships), and G5 (unique-
unique relationships), we will focus on directed edge constellations. They are used to 
highlight one specific association of a relationship or the direction of the corresponding 
edge.

Mapping rules for relationship sets
First, we will look at complex-complex or network-like relationships. Figure 2.32 illus-
trates rule G3, which applies to these constellations.

u Rule G3 (network-like relationship sets)  Any complex-complex relationship set can 
be represented by two directed edges where the associations of the relationship provide 
the names of the edges, and the respective association types are noted at the arrowheads. 
One or both edges can have attributes of the corresponding relationship set attached.
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Fig. 2.32   Mapping rule for network-like relationship sets
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In Fig. 2.32, rule G3 is applied to the project participation relationship set, resulting in 
the network-like relationship set INVOLVED being represented by the two edges IS_
INVOLVED and INVOLVES. The former goes from the employees (E) to the projects 
(P) and has the attribute Percentage, i.e., the workload of the individual employees from 
their assigned projects. Since not necessarily all employees work on projects, the asso-
ciation type ‘mc’ is noted at the arrowhead. The INVOLVES edge leads from the pro-
jects (P) to the employees (E) and has the association type ‘m’. As an alternative to the 
two directed edges, a double arrow could be drawn between the M and P vertices, for 
instance with the name INVOLVED and the attribute Percentage.

It is also possible to define individual nodes for network-like relationship sets, if 
desired. Compared to the relational model, the graph model allows for a broader variety 
of options for representing entity and relationship sets: undirected graph, directed graph, 
relationship sets as edges, relationship sets as nodes, etc. Rules G3, G4, and G5, how-
ever, strongly suggest using directed edges for relationship sets. This serves to keep the 
definition of the graph database as simple and easy to understand as possible, so that 
infrequent users can intuitively use descriptive query languages for graphs.

u Rule G4 (hierarchical relationship sets)  Unique-complex relationship sets can be 
defined as directed edges between vertices in the direction from the root node to the leaf 
node and with the multiple association type (m or mc) noted at the arrowhead.

Figure 2.33 shows the hierarchical subordination of employees of a department. The 
directed edge HAS_AS_SUBORDINATE goes from the root node D (DEPARTMENT) 

DEPARTMENT SUBORDINATE EMPLOYEEm1

RULE G4

D

E

m

HAS_AS_SUBORDINATE

Fig. 2.33   Mapping rule for hierarchical relationship sets
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to the leaf node E (EMPLOYEE). The association type at the arrowhead is m, since 
each department includes multiple employees. Alternatively, the edge could be 
IS_SUBORDINATE and lead from the employees to the department; however, that 
would have to have the association type 1, since each employee works in exactly one 
department.

This leaves us with the case of unique-unique relationship sets:

u Rule G5 (unique-unique relationship sets)  Every unique-unique relationship set can 
be represented as a directed edge between the respective vertices. The direction of the 
edge should be chosen so that the association type at the arrowhead is unique, if possible.

For instance, Fig. 2.34 illustrates the definition of department heads: The relationship set 
DEPARTMENT_HEAD becomes the directed edge HAS_AS_DEPARTMENT_HEAD 
leading from the DEPARTMENT node (D) to the EMPLOYEE node (E). The arrowhead 
is annotated with ‘1’, since each department has exactly one department head. Of course, 
it would also be possible to use the reverse direction from employees to departments as 
an alternative, where the edge would be IS_DEPARTMENT_HEAD and the association 
type ‘c’ would be noted at the arrowhead.

The graph-based model is highly flexible and offers lots of options, since it is not 
limited by normal forms. However, users can use this freedom too lavishly, which may 
result in overly complex, potentially redundant graph constellations. The mapping rules 
presented for entity sets (G1), relationship sets (G2, G3, G4, and G5), generalization 
(G6), and aggregation (G7) are guidelines that may be ignored based on the individual 
use case.
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Fig. 2.34   Mapping rule for unique-unique relationship sets
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Mapping rules for generalization and aggregation
Below, we will see how to map generalization hierarchies and aggregation networks or 
hierarchies onto graphs.

u Rule G6 (generalization)  The superordinate entity set of a generalization becomes a 
double node, the entity subsets become normal vertices. The generalization hierarchy is 
then complemented by specialization edges.

Figure 2.35 shows the employeesʼ specializations as management, technical specialists, 
or trainees. The vertex E is depicted as a double node, representing the superordinate 
entity set EMPLOYEE. The entity subsets MP (short for MANAGEMENT_POSITION), 
S (SPECIALIST), and T (TRAINEE) become nodes, with three edges going from E 
to the MP, S, and T nodes, respectively. The edges are named IS_MANAGEMENT_
POSITION, IS_SPECIALIST, and IS_TRAINEE.

The graph-based model can represent generalization hierarchies quite elegantly, since 
the entity sets  involved become nodes, and the IS_A relationships become edges. Unlike 
in the relational model, it is not necessary to introduce artificial attributes (see the Category 
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Fig. 2.35   Generalization as a tree-shaped partial graph
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attribute in Sect. 2.3.2). We also do not need to define a primary key for the double node 
and use it as the primary key in the subnodes.

u Rule G7 (aggregation)  For network-like or hierarchical aggregation structures, entity 
sets are represented by nodes, and relationship sets are represented by edges with the 
association type mc noted at the arrowhead. Entity set attributes are attached to the 
nodes; relationship set properties are attached to the edges.

In Fig. 2.36, we see a multicompany CORPORATION_STRUCTURE: The entity set 
COMPANY becomes the node COMPANY, the relationship set CORPORATION_
STRUCTURE becomes the directed edge IS_SUBSIDIARY with mc noted at the arrow-
head. The association type mc shows that each company may hold shares of multiple 
subsidiaries. The attributes of entity and relationship set are converted into properties of 
the node and the edge, respectively.

Mapping rule G7 can also be used to map hierarchical aggregation structures. For 
example, Fig. 2.37 contains the ITEM_LIST previously discussed in Sects. 2.2.3 and 
2.3.2. The entity set ITEM is represented as the vertex ITEM, the relationship set ITEM_
LIST becomes the directed edge CONSISTS_OF. The properties of items and ITEM_
LIST are assigned to the vertex and the edge, respectively.

It should have become clear that both generalization hierarchies and aggrega-
tion structures (networks, trees) can be stored in a graph database in a simple manner. 
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Compared to relational databases, graph databases have the undeniable advantage 
of allowing the management of various structures such as networks, trees, or chain 
sequences directly within partial graphs.

2.4.3	� Structural Integrity Constraints

Structural integrity constraints exist for both relational databases (Sect. 2.3.3) and graph 
databases. For graph databases, this means that the graph properties are secured by the 
database management system itself. Major integrity constraints are: 

•	 Uniqueness constraint: Each vertex and each edge can be uniquely identified within 
the graph. Path expressions (Chap. 3) can be used to navigate to individual edges or 
nodes.

•	 Domain constraint: The attributes of both vertices and edges belong to the specified 
data types, i.e., they come from well-defined domains.

•	 Connectivity: A graph is connected if there is a path between any two vertices within 
the graph. The graph database ensures connectivity for graphs and partial graphs.

•	 Tree structures: Special graphs, such as trees, can be managed by the graph data-
base. It ensures that the tree structure is kept intact in case of changes to nodes or 
edges.
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•	 Duality: Given a planar graph7 G = (V,E), its dual graph G* = (V*,E*) is constructed 
by placing a vertex in the dual graph G* for each area of the graph G, then connecting 
those vertices V* to get the edges E*. Two nodes in G* are connected the by the same 
number of edges, as the corresponding areas in G have shared edges. A graph data-
base can translate a planar graph G into its dual graph G* and vice versa.

Connectivity, tree structures, and duality concepts are important properties of graph the-
ory. If there is duality, it can be concluded that true statements from a graph translate into 
true statements of its dual graph and vice versa. This major mathematical tenet is applied 
in computer science by moving problems to dual space where it is easier to find solu-
tion options. If properties can be derived in dual space, they are also valid in the original 
space.

To give a short example: To solve the post office problem (Sect. 2.4.1), it was neces-
sary to construct a Voronoi cell for each post office by intersecting the half-spaces of the 
perpendicular bisectors created on the connections between neighboring post offices. In 
dual space, where straight lines in the plane are converted into points, the intersection of 
half-spaces can be simplified into a problem of determining the convex hull of a point 
set8. Thanks to existing efficient algorithms for calculating convex hulls, the half-space 
intersection is thus easily solved.

2.5	� Enterprise-Wide Data Architecture

Multiple studies have shown that future users demand complex functions and sophisti-
cated procedures during the definition and creation of information systems but consider 
the validity of the data (Sect. 1.5) much more important when actually using the systems. 
Data architects are, therefore, advised to answer the following questions first: What data 
is to be gathered by the company itself and what will be obtained from external data sup-
pliers? How can the stored data be classified and structured according to national and 
international conditions? Who is in charge of maintaining and servicing the geographi-
cally distributed data? What are the relevant obligations regarding data protection and 
data security in international contexts? Which rights and duties apply to data exchange 
and disclosure? Those aspects confirm the importance of data architecture for companies 
and put the appropriate data models in the spotlight.

Due to excessive user demands, analysis and design efforts are nowadays often lim-
ited to specific extra features or at best individual fields of use. With SQL and NoSQL 

7Graphs in the Euclidean plane that have no intersecting edges are called planar graphs.
8Kevin Brown utilized dual spaces in his 1979 dissertation on “Geometric Transformations for Fast 
Geometric Algorithms”; the approach to Voronoi cell construction presented here was proposed by 
him.
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databases, this means a risk of a multitude of stored data only being defined ad hoc or for 
a local use case. This leads to an unchecked inflation of SQL and NoSQL databases with 
overlapping and ambiguous data, resulting in utter data chaos. Cross-application analy-
ses are impossible or extremely complicated.

Enterprise-wide data architecture helps to avoid this, since it defines the most impor-
tant entity and relationship sets from a long-term company perspective. It is meant to 
be superordinate to individual business units and local data views in order to promote a 
comprehensive view of the companyʼs overarching structures. This data architecture and 
the data models derived from it form the basis of a well-aligned development of informa-
tion systems.

Figure 2.38 gives a schematic overview of the connection between cross-department 
and application-specific data models. An enterprise-wide data architecture describes 
the data classes required within the company and their relationships with each other. 
Individual business unit data models are developed on this basis and lead to concep-
tual database schemas for each application. In practice, such detailing steps cannot be 
executed strictly top-down, simply because there is not enough time. Especially during 
changes to existing information systems and the development of new applications, the 
conceptual database schemas are instead adjusted to the partially available business unit 
data models and the enterprise-wide data architecture bottom-up, thereby adapting them 
to the long-term company development step by step.

In addition to the business unit data models that every company has to develop for 
themselves, there are industry data model software products available for purchase. 
Using such standardization efforts not only reduces the work required to integrate newly 
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purchased application software, but also facilitates the exchange of information across 
corporate divisions and companies.

As an example, we will look at a limited enterprise-wide data architecture 
including the entity sets PARTNER, RESOURCE, PRODUCT, CONTRACT, and 
BUSINESS_CASE. 

•	 PARTNER: This includes all natural and legal persons the company has an interest 
in and about whom information is required to do business. The entity set PARTNER 
specifically encompasses customers, employees, suppliers, shareholders, government 
authorities, institutions, and companies.

•	 RESOURCE: This describes raw materials, metals, foreign currencies, securities, 
or real estate that are offered on the market and purchased, traded, or refined by the 
company. This entity set can include both material and immaterial goods; a consulting 
company, for instance, might acquire specific techniques and expertise (Fig. 2.39).

•	 PRODUCT: This set defines the products or services offered by the company. This, 
too, may consist of material and/or immaterial goods, depending on the industry. 
Unlike the entity set RESOURCE, PRODUCT characterizes the company-specific 
development and manufacturing of goods or services.

•	 CONTRACT: This is a legally binding agreement. This entity set comprises insur-
ance, management, and financing agreements, as well as trade, consulting, license, 
and sales contracts.

PARTNER
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BUSINESS_CASE

RESOURCE PRODUCT

Development
and production

Procurement
and sales

HR and
administration

Enterprise-wide
data architecture

Refinements in various
areas of business

Fig. 2.39   Data-oriented view of business units
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•	 BUSINESS_CASE: This is a single step within contract fulfillment that is relevant 
for business, one event. This may be, for example, a single payment, one booking, one 
invoice, or one delivery. The entity set BUSINESS_CASE consists of the movements 
between the other entity sets listed above.

In addition to the generalized entity sets PARTNER, RESOURCE, PRODUCT, 
CONTRACT, and BUSINESS_CASE, the most relevant relationships between them 
from the companyʼs point of view must be defined. For instance, it can be determined 
which raw materials are obtained from which partners (supply chain management), who 
manufactures which company products, or which conditions in a contract apply to which 
partners and goods.

However, such a bare-bone schematic of an enterprise-wide data architecture is 
nowhere near enough of a basis to design or develop information systems. Rather, the 
entity sets and their relationships must be refined step by step, based on individual busi-
ness units or specific use cases. It is vital in this data-oriented approach that any reali-
zation of an application-specific data model must comply with the enterprise-wide data 
architecture. Only then can information systems be developed orderly and in line with 
the companyʼs long-term goals.

2.6	� Formula for Database Design

This section condenses our knowledge of data modeling into a formulaic action plan. 
Figure 2.40 shows the ten design steps that are taken to a certain extent depending on 
the project development phase. Practical experience tells us to start by working out the 
data analysis with a rudimentary entity-relationship model in the preliminary study. In 
the rough or detailed concept, the analysis steps are refined; an SQL, NoSQL, or com-
bined database is created, and the database is tested for consistency and implementation 
aspects.

The development steps can be characterized as follows: First, as part of data analy-
sis, the relevant information must be written into a list. This list can be amended and 
refined throughout the remaining steps based on input from future users, since the design 
process is highly iterative. Step 2 is the definition of entity and relationship sets and the 
determination of their identification keys and attribute categories. The resulting entity-
relationship model is completed by entering the various association types. In step 3, 
generalization hierarchies and aggregation structures in particular can be marked. The 
fourth step is a comparison and alignment of the entity-relationship model with the 
enterprise-wide data architecture to ensure a coordinated and long-term goal-oriented 
development of information systems.

In step 5, we map the entity-relationship model onto an SQL and/or NoSQL database 
using the mapping rules R1 through R7 and/or G1 through G7 for entity sets, relation-
ship sets, generalization, and aggregation. Step 6 is another refinement of the database 

2.6 � Formula for Database Design
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design by formulating integrity constraints. These include structural integrity constraints 
and other validation rules to be implemented with the system in order to ensure that 
programmers do not have to check consistency individually all the time. In step 7, the 
database design is checked for completeness based on various specifically developed 
important use cases (see Unified Modeling Language9) prototypically realized with 
descriptive query languages.

In step 8, the access paths for the main application functions are determined. The 
most common attributes for future database access have to be analyzed and displayed in 
an access matrix. Step 9 consists of setting the actual quantity structure and defining the 
physical data structure. Finally, the physical distribution of data and the selection of pos-
sible replication options make up step 10. When using NoSQL databases, designers have 
to consider here whether availability and partition tolerance should take priority over 
strong consistency or not, among other aspects (see also the CAP theorem in Sect. 5.3).

The formula illustrated in Fig. 2.40 focuses largely on data aspects. Apart from 
the data itself, functions also play a major role in the creation of information systems.  
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9Unified Modeling Language, UML for short, is an ISO-standardized modeling language for the 
specification, creation, and documentation of software. It allows for easy mapping of an entity-
relationship model onto a class diagram and vice versa.
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The last years have seen the development of a number of CASE (computer-aided soft-
ware engineering) tools that support not only database but also function design. Readers 
interested in the methods of application programming can find additional information in 
the works listed in the next section.

2.7	� Further Reading

The entity-relationship model became widely known due to the works of Senko and 
Chen (Chen 1976). Since 1979, there have regularly been international conferences on 
the subject, where additions and refinements to the entity-relationship model are pro-
posed and discussed.

Many CASE tools employ the entity-relationship model for data modeling; however, 
they lack a common usage of graphic symbols to represent entity sets, relationship sets, 
or association types, as shown in studies by Balzert (1993), Olle et al. (1988), and Martin 
(1990). Tsichritzis and Lochovsky (1982) provide an overview of other logical data 
models.

Blaha and Rumbaugh (2004), Booch (2006), and Coad and Yourdon (1991) dis-
cuss object-oriented design. Ferstl and Sinz (1991) are among the German-speaking 
authors proposing an object-oriented approach to the development of information sys-
tems. Balzert (2004) combines methodical aspects for object-oriented analysis by Coad, 
Booch, and Rumbaugh. A comparison of object-oriented analysis methods can be found 
in Steinʼs 1994 work, and Vetter (1998) also promotes an object-oriented approach to 
data modeling. Hitz et al. (2005) offer an introduction to Unified Modeling Language 
(UML) especially for software development.

Smith and Smith (1977) established the concepts of generalization and aggregation 
in the database field. These structural concepts have long been known, especially in the 
area of knowledge-based systems, e.g., for the description of semantical networks, see 
Findler (1979).

Research into normal forms gave the database field an actual database theory (Fagin 
1979). Major works with a theoretical perspective have been published by Maier (1983), 
Ullman (1982, 1988), and Paredaens et al. (1989). Dutka and Hanson (1989) provide a 
concise and easily understandable summary presentation of normal forms. The works of 
Date (2004), Elmasri and Navathe (2015), Kemper and Eickler (2013), and Silberschatz 
et al. (2010) dedicate a substantial portion of their content to normalization.

There are several pieces of basic literature on graph theory: Diestel (2006) presents 
the most important methods and even looks at the Robertson-Seymour theorem10 that 
has a fundamental impact on graph theory. Turau (2009) offers an algorithmic approach 

10The Robertson-Seymour theorem, or graph minor theorem, states that the finite graphs form a 
well-quasi-ordering due to the graph minor relationship.

2.7 � Further Reading
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to graph theory, while Tittmann (2011) gives an application-oriented introduction to 
the subject. Works on graph theory in English have been published by Marcus (2008) 
and van Steen (2010), among others; the latter provides some interesting utilization 
options for the theory, e.g., computer networks, optimization issues, and social networks. 
Brüderlin and Meier (2001) show the basics of computer graphics and computational 
geometry.

Dijkstra (1959) published his algorithm in the journal Numerische Mathematik. 
Aurenhammer (1991) gives an overview over Voronoi diagrams and basic geometric 
data structures, whereas Liebling and Pournin (2012) compare Voronoi diagrams and 
Delaunay triangulations to Siamese twins. Brown (1979) discusses geometric transfor-
mations and algorithms in his dissertation and Shamos (1975) wrote his on computa-
tional geometry; the recursive algorithm for creating Voronoi diagrams described in 
Sect. 2.4.1 was published by Shamos and Hoey (1975).

Issues of enterprise-wide data architecture are discussed in Dippold et al. (2005), 
Meier et al. (1991), and Scheer (1997). The functions and responsibilities of data mod-
eling and data administration are described by Meier and Johner (1991) and Ortner et al. 
(1990).
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3.1	� Interacting with Databases

Successful database operation requires a database language meeting the different user 
requirements. Relational query and manipulation languages have the advantage that one 
and the same language can be used to create databases, assign user permissions, and 
change or analyze table contents. Graph-based languages provide predefined routines for 
solving graph problems, e.g., finding the shortest path.

The database administrator uses a database language to manage the data descriptions 
for the company, such as tables and attributes. It is usually helpful if they have a data 
dictionary system (see glossary definition) to support them. In cooperation with the data 
architect, the system administrator ensures that the description data is consistently man-
aged and kept up to date and in adherence with the enterprise-wide data architecture. 
Using a suitable CASE1 tool may prove beneficial here. In addition to governing data 
formats, the database administrator also sets permissions to restrict both access to data 
to individual tables or even specific attributes and certain operations, such as deleting or 
modifying tables, to a limited group of users.

Database specialists define, install, and monitor databases, using system tables spe-
cifically geared towards this purpose. These tables make up the system catalog con-
taining all necessary database descriptions and statistics throughout the database 
management system’s runtime. Database specialists can use predefined queries on the 
system information to get a picture of the current state of all databases without having 
to deal with the actual tables with user data in detail. For data protection reasons, they 
should only have access to data during operations under special circumstances, e.g., for 
troubleshooting (Fig. 3.1).

Database Languages 3

1CASE = computer-aided software engineering.

https://doi.org/10.1007/978-3-658-24549-8_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-24549-8_3&domain=pdf
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Application programmers use database languages to run analyses on or apply changes 
to databases. Since relational query and data manipulation languages are set-based, pro-
grammers require a cursor concept (Sect. 3.5.1) to integrate database access into their 
software development. This enables them to work through a set of tuples record by 
record in a program. The database language can be embedded into the developed soft-
ware via APIs. Programmers can also use relational languages to test their applications, 
including checking their test databases and providing prototypes to future users.

The final user group of database languages are infrequent users and, most importantly, 
data analysts, or data scientists, who need them for their everyday analysis requirements. 
Data analysts are experts on the targeted interpretation of database contents with the help 
of a database language. Users from the various technical departments who have limited 
IT skills, but need information regarding specific issues, request a database analysis with 
an appropriate query phrasing from the data analyst.

This shows how various user groups can use relational database languages to fulfill 
their work requirements, with data analysts using the same language as application pro-
grammers, database administrators, and data architects. Database applications and analy-
ses, as well as technical tasks for securing and reorganizing databases can all be realized 
in just one language. This means that less training is needed and facilitates the exchange 
of experiences between user groups.

Data architects Database
specialists

Uniformly define tables
and formats
Describe data

Install, check, and
safeguard tables

Assign user permissions

Query, manipulate, or
delete tables

Query, analyze, and
manipulate tables

Application
programmers

Data analysts

Fig. 3.1   SQL as an example for database language use
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3.2	� Relational Algebra

3.2.1	� Overview of Operators

The majority of today’s commercially used database management systems are still based 
on SQL or its derivatives, i.e., languages working with tables and operations on tables. 
Relational algebra provides the formal framework for the relational database languages. 
It defines a number of algebraic operators that always apply to relations. Although most 
modern relational database languages do not use these operators directly, they are only 
considered relationally complete languages in terms of the relational model if the origi-
nal potential of relational algebra is retained.

Below, we will give an overview of the operators used in relational algebra, divided into 
set operators and relational operators, on two sample relations R and S. Operators work 
on either one or two tables and always output a new relation. This consistency (algebraic 
property) allows for the combination of multiple operators and their effects on relations.

Set operators match the known set operations (Fig. 3.2 and Sect. 3.2.2). This group 
consists of set union with the symbol ∪, set intersection ∩, set difference \, and the 
Cartesian product ×. Two relations R and S that are union-compatible can be combined 
(R∪S), intersected (R∩S), or subtracted (R\S). The Cartesian product of two relations R 
and S (R×S) can be defined without conditions. These set operations result in a new set 
of tuples, i.e., a new relation.

Set operators

R

S

R ∪ S

R

S

R

S

R \ S

Set union of two
relations R and S

Set intersection of two
relations R and S

Set difference of two
relations R and S

Cartesian product of two 
relations R and S

R ∩ S

R × S

R

S

Fig. 3.2   Set union, set intersection, set difference, and Cartesian product of relations

3.2  Relational Algebra
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The relational operators shown in Fig. 3.3 were defined by Ted Codd specifically for 
relations and are discussed in detail in Sect. 3.2.3. The project operator, represented by 
Greek letter π (pi), can be used to reduce relations to subsets. For instance, the expres-
sion πA(R) forms a subset of the relation R based on a set A of attributes. An expression 
σF(R) with the select operator σ (Greek letter sigma) takes a range of tuples from the 
relation R based on a selection criterion, or formula, F. The join operator, symbol |×|, 
conjoins two relations into a new one. For instance, the two relations R and S can be 
combined by an operation R|×|PS with P specifying the applicable join condition, or join 
predicate. Lastly, a divide operation R÷S, with the divide operator represented by the 
symbol ÷, calculates a new table by dividing the relation R by the relation S.

The following two sections provide a more detailed explanation of the set and rela-
tional operators of relational algebra with illustrative examples.

Relation operators

Projection of a relation R on
a set M of attributes

R

πM (R)

R

σF (R)

Selection from a relation
R using a formula F

R

R |X|P S
Join of two relations
R and S with the 
join predicate P

R S

R ÷ S

Division of a relation R
by a subrelation S

S

Fig. 3.3   Projection, selection, join, and division of relations
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3.2.2	� Set Operators

Since every relation is a set of records (tuples), multiple relations can be correlated using 
set theory. However, it is only possible to form a set union, set intersection, or set differ-
ence of two relations if they are union-compatible.

u Union compatibility  Two relations are union-compatible if they meet both of the fol-
lowing criteria: Both relations have the same number of attributes and the data formats of 
the corresponding attribute categories are identical.

Figure 3.4 shows an example: For each of two company clubs a table has been defined 
from an employee file, containing employee numbers, last names, and street names. 
The two tables SPORTS_CLUB and PHOTO_CLUB are union-compatible: They have 
the same number of attributes, with values from the same employee file and therefore 
defined from the same range.

In general, two union-compatible relations R and S are combined by a set union 
R∪S, where all entries from R and all entries from S are entered into the resulting table. 
Identical records are automatically unified, since a distinction between tuples with identi-
cal attribute values in the resulting set R∪S is not possible.

The CLUB_MEMBERS table (Fig. 3.5) is a set union of the tables SPORTS_CLUB 
and PHOTO_CLUB. Each result tuple exists in the SPORTS_CLUB table, the PHOTO_
CLUB table, or both. Club member Howard is only listed once in the result table, since 
duplicate results are not permitted in the unified set.

SPORTS_CLUB

E1 Murphy Murray Road Kent

E7 Howard Lorain Avenue Cleveland

E19 Stewart E Main Street Stow

E# Name Street City

PHOTO_CLUB

E4 Bell S Water Street Kent

E7 Howard Lorain Avenue Cleveland

E# Name Street City

Fig. 3.4   Union-compatible tables SPORTS_CLUB and PHOTO_CLUB

3.2  Relational Algebra
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The other set operators are defined similarly: The set intersection R∩S of two union-
compatible relations R and S holds only those entries found in both R and S. In our table 
excerpt, only employee Howard is an active member of both the SPORTS_CLUB and 
the PHOTO club.

The resulting set SPORTS_CLUB∩PHOTO_CLUB is a singleton, since exactly one 
person has both memberships.

Union-compatible relations can also be subtracted from each other: The set difference 
R\S is calculated by removing all entries from R that also exist in S. In our example, a 
subtraction SPORTS_CLUB\PHOTO_CLUB would result in a relation containing only 
the members Murphy and Stewart. Howard would be eliminated, since they are also a 
member of the PHOTO_CLUB. The set difference operator, therefore, allows us to find 
all members of the sport club who are not also part of the photo club.

The basic relationship between the set intersection operator and the set difference 
operator can be expressed as a formula:

The determination of set intersections is, therefore, based on the calculation of set differ-
ences, as can be seen in our example with the sports and photography club members.

The last remaining set operator is the Cartesian product of two arbitrary relations R 
and S that do not need to be union-compatible. The Cartesian product R × S of two rela-
tions R and S is the set of all possible combinations of tuples from R with tuples from S.

To illustrate this, Fig. 3.6 shows a table COMPETITION containing a combination 
of members of (SPORTS_CLUB\PHOTO_CLUB) × PHOTO_CLUB, i.e., all possible 
combinations of sports club members (who are not also members of the photo club) and 
photo club members. It shows a typical competition constellation for the two clubs. Of 
course, Howard as a member of both clubs cannot compete against themselves and enters 
on the photography club side due to the set difference SPORTS_CLUB\PHOTO_CLUB.

This operation is called a Cartesian product because all respective entries of the origi-
nal tables are multiplied with those of the other. For two arbitrary relations R and S with 
m and n entries, respectively, the Cartesian product R × S has m times n tuples.

R ∩ S=R\(R\S).

CLUB_MEMBERS = SPORTS_CLUB ∪ PHOTO_CLUB

E1 Murphy Murray Road Kent

E7 Howard Lorain Avenue Cleveland

E19 Stewart E Main Street Stow

E# Name Street City

E4 Bell S Water Street Kent

Fig. 3.5   Set union of the two tables SPORTS_CLUB and PHOTO_CLUB
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3.2.3	� Relational Operators

The relation-based operators complement the set operators. For relation-based operators, 
just like for the Cartesian product, the relations involved do not have to be union-com-
patible. A projection πa(R) with the project operator π forms a subrelation of the relation 
R based on the attribute names defined by a. For instance, given a relation R with the 
attributes (A,B,C,D), the expression πA,C(R) reduces R to the attributes A and C. The 
attribute names in a projection do not have to be in order; e.g., R′: = πC,A(R) means a 
projection of R = (A,B,C,D) onto R′ = (C,A).

The first example in Fig. 3.7, πCity(EMPLOYEE), lists all places of residence from 
the EMPLOYEE table in a single-column table without any repetitions. Example two, 
πSub,Name(EMPLOYEE), results in a subtable with all department numbers and names of 
the respective employees.

The select operator σ in an expression σF(R) extracts a selection of tuples from the 
relation R based on the formula F. F consists of a number of attribute names and/or value 
constants connected by relational operators, such as <, >, or =, or by logical operators, 
e.g., AND, OR, or NOT; σF(R), therefore, includes all tuples from R that meet the selec-
tion condition F.

This is illustrated by the examples for selection of tuples from the EMPLOYEE table 
in Fig. 3.8: In the first example, all employees meeting the condition ‘City = Kentʼ, 
i.e., living in Kent, are selected. Example two with the condition ‘Sub = D6ʼ picks out 
only those employees working in department D6. The third and last example com-
bines the two previous selection conditions with a logical connective, using the formula 
‘City = Kent AND Sub = D6ʼ. This results in a singleton relation, since only employee 
Bell lives in Kent and works in department D6.

Of course, the operators of relational algebra as described above can also be com-
bined with each other. For instance, if we first do a selection for employees of depart-
ment D6 by σSub=D6(EMPLOYEE), then project on the City attribute using the operator 
πCity(σSub=D6(EMPLOYEE)), we obtain a result table with the two towns of Stow and 
Kent.

COMPETITION = (SPORTS_CLUB\PHOTO_CLUB) × PHOTO_CLUB

E1 Murphy Murray Road Kent

E1 Murphy Murray Road Kent

E19 Stewart E Main Street Stow

E# Name Street City

E19 Stewart E Main Street Stow

E4 Bell S Water Street Kent

E7 Howard Lorain Avenue Cleveland

E4 Bell S Water Street Kent

E# Name Street City

E7 Howard Lorain Avenue Cleveland

Fig. 3.6   COMPETITION relation as an example of Cartesian products

3.2  Relational Algebra
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EMPLOYEE

E19 Stewart E Main Street Stow D6

E1 Murphy Murray Road Kent D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City Sub

πCity (EMPLOYEE)

Stow

Kent

Cleveland

City

πSub,Name (EMPLOYEE)

D6 Stewart

D3 Murphy

D5 Howard

D6 Bell

Sub Name

Fig. 3.7   Sample projection on EMPLOYEE

σCity=Kent (EMPLOYEE)

E1 Murphy Murray Road Kent D3

E4 Bell S Water Street Kent D6

E# Name Street City Sub

σSub=D6(EMPLOYEE)

E19 Stewart E Main Street Stow D6

E4 Bell S Water Street Kent D6

E# Name Street City Sub

σCity=Kent AND Sub=D6(EMPLOYEE)

E4 Bell S Water Street Kent D6

E# Name Street City Sub

Fig. 3.8   Examples of selection operations
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Next is the join operator, which merges two relations into a single one. The join 
R|×|PS of the two relations R and S by the predicate P is a combination of all tuples 
from R with all tuples from S where each meets the join predicate P. The join predicate 
contains one attribute from R and one from S. Those two attributes are correlated by a 
relational operator (<, >, or =) so that the relations R and S can be combined. If the join 
predicate P uses the relational operator =, the result is called an equi–join.

The join operator often causes misunderstandings which may lead to wrong or 
unwanted results. This is mostly due to the predicate for the combination of the two 
tables being left out or ill-defined.

For example, Fig. 3.9 shows two join operations with and without a defined join pred-
icate. By specifying EMPLOYEE |×|Sub=D#DEPARTMENT, we join the EMPLOYEE 
and DEPARTMENT tables by expanding the employee information with their respective 
departments.

Should we forget to define a join predicate in the example in Fig. 3.9 and simply 
specify EMPLOYEE × DEPARTMENT, we obtain the Cartesian product of the two 
tables EMPLOYEE and DEPARTMENT. This is a rather meaningless combination of 
the two tables, since all employees are juxtaposed with all departments, resulting in 
combinations of employees with departments they are not actually part of (see also the 
COMPETITION table in Fig. 3.6).

As is shown by the examples in Fig. 3.9, the join operator | × | with the join predicate 
P is merely a limited Cartesian product.

In fact, a join of two tables R and S without a defined join predicate P expresses the 
Cartesian product of the R and S tables, i.e., for an empty predicate P = {},

Using a join predicate as the selection condition in a select operation yields

This general formula demonstrates that each join can be expressed using first a Cartesian 
product and second a selection.

Referring to the example in Fig. 3.9, we can calculate the intended join EMPLOYEE 
|×|Sub=D# DEPARTMENT with the following two steps: First we generate the Cartesian 
product of the two tables EMPLOYEE and DEPARTMENT. Then all entries of the 
preliminary result table meeting the join predicate Sub = D# are determined using the 
selection σSub=D#(EMPLOYEE × DEPARTMENT). This gives us the same tuples as cal-
culating the join EMPLOYEE |×|Sub=D# DEPARTMENT directly (tuples marked in yel-
low in Fig. 3.9).

A division of the relation R by the relation S is only possible if S is contained within 
R as a subrelation. The divide operator R÷S calculates a subrelation R′ from R, which 
has the property that all possible combinations of the tuples r′ from R′ with the tuples 
s from S are part of the relation R, i.e., the Cartesian product R′ × S must be contained 
within R.

R|×|P = {} S = R× S

R|×|P S= σP(R× S).

3.2  Relational Algebra
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Table R in Fig. 3.10 shows which employees work on which projects. Assuming we 
want to determine who works on all projects from S, i.e., projects P2 and P4, we first 
define the table S with the project numbers P2 and P4. S is obviously contained in R, so 
we can calculate the division R′: = R÷S. The result of this division is the table R′ with 
the two employees E1 and E4. A quick check shows that E1 and E4 do, indeed, work 
on both P2 and P4, since the table R contains the tuples (E1,P2), (E1,P4), (E4,P2), and 
(E4,P4).

EMPLOYEE

E19 Stewart E Main Street Stow D6

E1 Murphy Murray Road Kent D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City Sub

DEPARTMENT

D3 IT

D5 HR

D6 Accounting

D# DepartmentName

EMPLOYEE |×| Sub=D# DEPARTMENT

E19 Stewart E Main Street Stow D6

E1 Murphy Murray Road Kent D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City Sub

D6 Accounting

D3 IT

D5 HR

D# DepartmentName

D6 Accounting

EMPLOYEE × DEPARTMENT

E# Name Street City Sub D# DepartmentName

E19 Stewart E Main Street Stow D6 D3 IT

E19 Stewart E Main Street Stow D6 D5 HR

E19 Stewart E Main Street Stow D6 D6 Accounting

E1 Murphy Murray Road Kent D3 D3 IT

E1 Murphy Murray Road Kent D3 D5 HR

E1 Murphy Murray Road Kent D3 D6 Accounting

E7 Howard Lorain Avenue Cleveland D5 D3 IT

E7 Howard Lorain Avenue Cleveland D5 D5 HR

E7 Howard Lorain Avenue Cleveland D5 D6 Accounting

E4 Bell S Water Street Kent D6 D3 IT

E4 Bell S Water Street Kent D6 D5 HR

E4 Bell S Water Street Kent D6 D6 Accounting

Fig. 3.9   Join of two tables with and without a join predicate
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A divide operation can also be expressed through project and set difference operators 
and a Cartesian product, which makes the divide operator the third substitutable operator 
in relational algebra besides the set intersection and the join operator.

In summary, set union, set difference, Cartesian product, projection, and selection 
make up the minimal set of operators that renders relational algebra fully functional: Set 
intersection, join, and division can all be expressed using these five operators of rela-
tional algebra, although sometimes circuitously.

The operators of relational algebra are not only theoretically significant, but also have 
a firm place in practical applications. They are used in the language interfaces of rela-
tional database systems for the purpose of optimization (Sect. 5.3.2) as well as in the 
construction of database computers: The operators of relational algebra and their deriva-
tives do not have to be realized in software—they can be implemented directly in hard-
ware components.

3.3	� Relationally Complete Languages

Languages are relationally complete if they are at least equivalent to relational algebra, 
i.e., all operations that can be executed on data with relational algebra must also be sup-
ported by relationally complete languages.

Relational algebra is the orientation point for the commonly used languages of rela-
tional database systems. We already mentioned SQL (Structured Query Language), 
which can be seen as a direct implementation of relational algebra (Sect. 3.3.1). QBE 
(Query by Example) is a language in which the actual queries and manipulations are exe-
cuted via sample graphics (Sect. 3.3.2). It also supports user-friendly table handling with 
graphic elements.

R: Table of employees
and projects they are
assigned to

P1

P2

P4

P1

E# P#

P2

P4

E1

E1

E1

E2

E2

E4

E4 P2

S: Project combination

P2

P4

P#

R’ := R ÷ S

E1

E4

E#

All employees working
on projects P2 and P4

Fig. 3.10   Example of a divide operation

3.3  Relationally Complete Languages
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SQL and QBE are equally as powerful as relational algebra and are, therefore, con-
sidered relationally complete languages. With respect to database languages, relationally 
complete means that they can represent the operators of relational algebra.

u Completeness criterion  A database language is considered relationally complete if it 
enables at least the set operators set union, set difference, and Cartesian product, as well 
as the relation operators projection and selection.

This is the most important criterion for assessing a language’s suitability for relational 
contexts. Not every language working with tables is relationally complete. If it is not 
possible to combine multiple tables via their shared attributes; the language is not equiv-
alent to relational algebra and can, therefore, not be considered relationally complete.

Relational algebra is the foundation for the query part of relational database lan-
guages. Of course, it is also necessary to be able to not only analyze but also manipu-
late tables or individual parts. Manipulation operations include, among others, insertion, 
deletion, or changes to tuple sets. Relationally complete languages, therefore, need the 
following functions in order to be practically useful: 

•	 It must be possible to define tables and attributes.
•	 Insert, change, and delete operations must be possible.
•	 Aggregate functions such as addition, maximum and minimum determination, or 

average calculation should be included.
•	 Formatting and printing tables by various criteria must be possible, e.g., including 

sorting orders and control breaks for table visualization.
•	 Languages for relational databases must include elements for assigning user permis-

sions and for protecting the databases (Sect. 3.8).
•	 Arithmetic expressions and calculations should preferably be supported.
•	 Multi-user access should be supported (transaction principle, Chap. 4) and commands 

for data security should be included.

The definition of relational algebra has given us the formal framework for relational 
database languages. However, this formal language is not used in practice per se; rather, 
it has been a long-standing approach to try and make relational database languages as 
user-friendly as possible. Since the algebraic operators in their pure form are beyond 
most database users, they are represented by more accessible language elements. The 
following sections will give examples of SQL and QBE in order to illustrate this.

3.3.1	� SQL

In the 1970s, the language SEQUEL (Structured English QUEry Language) was created 
for IBM’s System R, one of the first working relational database systems. The concept 



97

behind SEQUEL was to create a relationally complete query language based on English 
words such as ‘select,ʼ ‘from,ʼ ‘where,ʼ ‘count,ʼ ‘group by,ʼ etc., rather than mathemat-
ical symbols. A derivative of that language named SQL (Structured Query Language) 
was later standardized first by ANSI and then internationally by ISO. For years, SQL has 
been the leading language for database queries and interactions.

As described in Sect. 1.2.2, the basic structure of SQL looks like this:

SELECT selected attributes  (Output)

FROM tables to be searched (Input)

WHERE selection condition (Processing)

The SELECT clause corresponds to the project operator of relational algebra, in 
that it defines a list of attributes. In SQL, the equivalent of the project operator 
πSub,Name(EMPLOYEE) as shown in Fig. 3.7 is simply

SELECT Sub, Name

FROM EMPLOYEE

The FROM clause lists all tables to be used. For instance, the Cartesian product of 
EMPLOYEE and DEPARTMENT is expressed in SQL as

SELECT E#, Name, Street, City, Sub, D#, Department_Name

FROM EMPLOYEE, DEPARTMENT

This command generates the cross-product table in Fig. 3.9, similar to the equivalent 
operators EMPLOYEE| × |P={}DEPARTMENT and EMPLOYEE × DEPARTMENT.

By setting the join predicate ‘Sub = D#ʼ in the WHERE clause, we obtain the equi-
join of the EMPLOYEE and DEPARTMENT tables in SQL notation:

SELECT E#,Name,Street,City,Sub,D#,Department_Name

FROM EMPLOYEE, DEPARTMENT

WHERE Sub = D#

Qualified selections can be expressed by separate statements in the WHERE clause, con-
nected by the logical operators AND or OR. The SQL command for the selection of 
employees σCity=Kent AND Sub=D6(EMPLOYEE) as shown in Fig. 3.8 would be

SELECT *

FROM EMPLOYEE

WHERE City = ̍Kentˈ AND Sub = ̍D6ˈ

3.3  Relationally Complete Languages
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An asterisk (*) in the SELECT clause means that all attributes in the table are 
selected, i.e., the result table contains all the attributes E#, Name, Street, City, and Sub 
(Subordinate). The WHERE clause contains the desired selection predicate. Executing 
the above query would, therefore, give us all information about the employee Bell from 
Kent working in department D6.

In addition to the common operators of relational algebra, SQL also contains built-in 
features that can be used in the SELECT clause. These include the aggregate functions, 
which calculate a scalar value based on a set, namely COUNT for counting, SUM for 
totaling, AVG for calculating the average, MAX for determining the maximum, and MIN 
for finding the minimum value.

For example, we can count all employees working in department D6. The correspond-
ing SQL command would be

SELECT COUNT (E#)

FROM EMPLOYEE

WHERE Sub = ̍D6ˈ

The result is a singleton table with the single value 2, referring to the two department 
employees Stewart and Bell from our table excerpt.

SQL provides the CREATE TABLE command for defining a new table. The 
EMPLOYEE table would be specified as follows:

CREATE TABLE EMPLOYEE

 (E# CHAR(6) NOT NULL,

Name VARCHAR(20),

).

The opposite command, DROP TABLE, is used to delete table definitions. It is important 
to note that this command also eliminates all table contents and assigned user permis-
sions (Sect. 3.8).

Once a table has been defined, the following command can be used to insert new 
tuples:

INSERT INTO EMPLOYEE

VALUES (ˈE20ˈ, ˈMahoneyˈ, ˈMarket Ave Sˈ, ˈCantonˈ, ˈD6ˈ)

Existing tables can be manipulated using UPDATE statements:

UPDATE EMPLOYEE

SET  City  =  ˈClevelandˈ
WHERE City  =  ˈCuyahoga Heightsˈ
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This example replaces the value Cuyahoga Heights for the City attribute with the new 
name Cleveland in all matching tuples of the EMPLOYEE table. The UPDATE manipu-
lation operation is set-based and can edit a multi-element set of tuples.

Entire tables or parts of tables can be eliminated with the help of DELETE 
statements:

DELETE FROM EMPLOYEE

WHERE City  =  ˈClevelandˈ

DELETE statements usually affect sets of tuples if the selection predicate applies to mul-
tiple entries in the table. Where referential integrity (Sect. 3.7) is concerned, deletions 
can also impact dependent tables.

A tutorial for SQL can be found on the website accompanying this book, www.sql-
nosql.org. The short introduction given here covers only a small part of the existing 
standards; modern SQL offers many extensions, e.g., for programming, security, object-
orientation, and analysis.

3.3.2	� QBE

The language Query by Example, acronym QBE, is database language that allows users 
to create and execute their analysis needs directly within the table using interactive 
examples.

For instance, users are provided a graphic visualization of the EMPLOYEE table and 
the attributes it contains:

 EMPLOYEE | E# | Name | Street | City | Sub

 ----------------------------------------------

          |    |      |        |      |.

They can use this outline for selections by inserting display commands (P.), variables, or 
constants. To list the employee names and the department numbers, the outline must be 
filled in as follows:

 EMPLOYEE | E# | Name | Street | City | Sub

 ----------------------------------------------

          |    | P.   |        |      | P.

The “P.” (short for print) command orders all data values of the respective column to be 
displayed. It allows projections on individual attributes of a table.

If the user wants to have all attributes in the table selected, they can enter the display 
command directly under the table name:

3.3  Relationally Complete Languages
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 EMPLOYEE | E# | Name | Street | City | Sub

 ----------------------------------------------

 P.       |    |      |        |      |.

Queries with added selection conditions can also be expressed, e.g., if the user wants to 
retrieve the names of all employees living in Kent and working in department D6. To do 
so, they enter the constant Kent in the City column and D6 in the Sub column:

EMPLOYEE | E# | Name | Street | City | Sub

 -------------------------------------------------

         |    | P.   |        |ˈKentˈ|ˈD6ˈ

Entering selection conditions in the same row always equals an AND connective. For an 
OR connection, two lines are needed, as shown below:

 EMPLOYEE | E# | Name | Street | City | Sub

 -------------------------------------------------

          |    | P.   |        |ˈKentˈ|
          |    | P.   |        |      |ˈD6ˈ

This query is equivalent to a selection of all employees who either live in Kent or work 
in department D6, i.e., the result table can also be determined with the following expres-
sion from relational algebra:

QBE queries can not only use constants, but also variables. The latter are always intro-
duced with an underscore (_), followed by a string of characters. Variables are needed 
for join operations, among other purposes. If the user wants to obtain the names and 
addresses of the employees in the IT department, the QBE query looks like this:

 EMPLOYEE | E# | Name | Street | City | Sub

 -------------------------------------------------

          |    | P.   | P.     | P.   |_D

 DEPARTMENT | D# | Department_Name

 -------------------------------------------------

            | _D | ˈITˈ 

The join of the two tables EMPLOYEE and DEPARTMENT is formed via the _D vari-
able, which represents the previously used join predicate Sub = D#.

In order to add a new employee (E2, Kelly, Market Ave S, Canton, D6) to the 
EMPLOYEE table, the user enters the insertion command “I.” in the column with the 
table name and fill in the table row with the data to be entered:

πName

(

σCity=KentORSub=D6
(EMPLOYEE)

)
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 EMPLOYEE | E# | Name | Street        | City    | Sub

 ----------------------------------------------------

I.        |ˈE2ˈ|ˈKellyˈ|ˈMarket Ave Sˈ|ˈCantonˈ |ˈA6ˈ

Users can edit or remove a set of tuples by entering the “U.” (update) or “D.” (delete) 
commands in the respective tables or columns.

For example, entries of people living in Kent can be removed from the EMPLOYEE 
table as follows:

 EMPLOYEE | E# | Name | Street | City | Sub

 -------------------------------------------------

 D.       |    |      |        |ˈKentˈ|

As indicated by the name, Query by Example, unlike SQL, cannot be used to define 
tables or assign and manage user permissions. QBE is limited to the query and manipula-
tion part, but is relationally complete, just like SQL.

The use of QBE in practice has shown that QBE instructions for complex queries 
are generally harder to read than equivalent statements in SQL, which is why especially 
analysis specialists prefer SQL for their sophisticated queries.

Although the QBE syntax presented here is an almost archaic example, the basic prin-
ciple of querying database tables by entering parameters directly into a graphic represen-
tation of the table is still relevant today. Desktop databases for office automation (both 
commercial and open source solutions) as well as some database clients offer GUIs that 
provide end users with a QBE interface in which they can query data according to the 
principles described above. An example can be found in the Travelblitz case study with 
OpenOffice Base available on the website accompanying this book, www.sql-nosql.org.

3.4	� Graph-based Languages

Graph-based database languages were first developed towards the end of the 1980s. The 
interest in high-performance graph query languages has grown with the rise of the inter-
net and social media, which produce more and more graph-structured data.

Graph databases (Sect. 7.6) store data in graph structures and provides options for 
data manipulation on a graph transformation level. As described in Sect. 1.4.1, graph 
databases consist of property graphs with nodes and edges, with each graph storing a set 
of key-value pairs as properties. Graph-based database languages build on that principle 
and enable the use of a computer language to interact with graph structures in databases 
and program the processing of those structures.

Like relational languages, graph-based languages are set-based. They work with 
graphs, which can be defined as sets of vertices and edges or paths. Graph-based lan-
guages allow for filtering data by predicates, similar to relational languages; this filtering 

3.4  Graph-based Languages
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is called a conjunctive query. Filtering a graph returns a subset of nodes and/or edges 
of the graph, which form a partial graph. The underlying principle is called subgraph 
matching, the task of finding a partial graph matching certain specifications within a 
graph. Graph-based languages also offer features for aggregating sets of nodes in the 
graph into scalar values, e.g., counts, sums, or minimums.

Unlike relational languages, graph-based languages offer additional analysis mecha-
nisms for paths within graphs. An area of special interest is the search for patterns 
directly in the paths of a graph, which can be done with dedicated language elements. A 
regular path query allows to describe path patterns in a graph with regular expressions 
in order to find matching records in the database (see the Cypher tutorial on www.sql-
nosql.org for more information).

Figure 3.11 illustrates this using an entity-relationship model of item parts. It shows 
a recursive relationship, where parts (e.g., product parts) can potentially have multiple 
subparts and at the same time also potentially be a subpart to another, superordinate part. 
If we want to query all subparts contained in a part both directly and indirectly, a simple 
join is not sufficient. We have to recursively go through all subparts of subparts, etc., in 
order to obtain a complete list.

For a long time, this kind of query could not even be defined in SQL. Only with the 
SQL:1999 standard did recursive queries become possible via common table expressions 
(CTEs); however; their formulation is still highly complicated. Defining the query for all 
direct and indirect subparts with a (recursive) SQL statement is rather cumbersome:

with recursive

rpath (partID, hasPartId, length) – CTE definition

as (

select partID, hasPartId, 1 – Initialization

from part

union all

select r.partID, p.hasPartId, r.length + 1

from part p

join rpath r –– Recursive join of CTE

on (r.hasPartId  =  p.partID)
)

Fig. 3.11   Recursive relationship as entity-relationship model and as graph with node and edge 
types

http://www.sql-nosql.org
http://www.sql-nosql.org
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select

distinct path.partID, path.hasPartId, path.length

from path –– Selection via recursive defined CTE

This query returns a list of all subparts for a part, plus the degree of nesting, i.e., the 
length of the path within the tree from the part to any (potentially indirect) subpart.

A regular path query in a graph-based language allows for simplified filtering of 
path patterns with regular expressions. For instance, the regular expression HAS* using 
a Kleene star (*) defines the set of all possible concatenations of connections with the 
edge type HAS (called the Kleene hull). This makes defining a query for all indirectly 
connected vertices in a graph-based language much easier. The example below uses the 
graph-based language Cypher to declare the same query for all direct and indirect sub-
parts as the SQL example above, but in only two lines:

MATCH path  =  (p:Part)  < -[:HAS*]- (has:Part)
RETURN p.partID, has.partID, LENGTH(path)

To summarize, the main advantage of graph-based languages is the strong alignment of 
their linguistic constructs on graphs, which allows for a significantly more direct lin-
guistic definition of the processing of graph-structured data. The following section will 
provide more detailed information on the graph-based language Cypher as a specific 
example.

3.4.1	� Cypher

The graph database Neo4J2 (see also the Cypher tutorial and Travelblitz case study with 
Neo4J on www.sql-nosql.org) uses the language Cypher to support a language inter-
face for the scripting of database interactions. Cypher is based on a pattern matching 
mechanism.

Similar to SQL, Cypher has language commands for data queries and data manipula-
tion (data manipulation language, DML); however, the schema definition in Cypher is 
done implicitly, i.e., node and edge types are defined by inserting instances of them into 
the database as actual specific nodes and edges.

The data definition language (DDL) of Cypher can only describe indexes, unique 
constraints (Sect. 3.7), and statistics. Cypher does not include any direct linguistic ele-
ments for security mechanisms, for which relational languages have statements, such as 
GRANT and REVOKE (Sect. 3.8).

3.4  Graph-based Languages
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Below, we will take a closer look at the Cypher language; all examples refer to the 
Northwind Data Set3.

As described in Sect. 1.4.2, Cypher has three basic commands: 

•	 MATCH for defining search patterns
•	 WHERE for conditions to filter the results
•	 RETURN for outputting properties, vertices, relationships, or paths.

The RETURN clause can output either vertices or property tables. The following exam-
ples returns the node with the product name Chocolade:

MATCH (p:Product)

WHERE p.productName  =  ˈChocoladeˈ
RETURN p

The return of entire nodes is similar to ‘SELECT *ʼ in SQL. Cypher can also return 
properties as attribute values of nodes and edges in the form of tables:

MATCH (p:Product)

WHERE p.unitPrice  >  55

RETURN p.productName, p.unitPrice

ORDER BY p.unitPrice

This query includes a selection, a projection, and a sorting. The MATCH clause defines 
a pattern matching filtering the graph for the node of the ‘Productʼ type; the WHERE 
clause selects all products with a price greater than 55; and the RETURN clause projects 
those nodes on the properties product name and price, with the ORDER BY clause sort-
ing the products by price.

The Cartesian product of two nodes can be generated in Cypher with the following 
syntax:

MATCH (p:Product), (c:Category)

RETURN p.productName, c.categoryName

This command lists all possible combination of product names and category names. 
However, joins of nodes, i.e., selections on the Cartesian product, are executed graph-
based by matching path patterns by edge types:

MATCH (p:Product) -[:PART_OF]- >  (c:Category)

RETURN p.productName, c.categoryName

3http://neo4j.com/developer/guide-importing-data-and-etl/.

http://neo4j.com/developer/guide-importing-data-and-etl/
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For each product, this query lists the category it belongs to, by only considering those prod-
uct and category nodes connected by edges of the PART_OF type. This equals the inner 
join of the ‘Productʼ node type with the ‘Categoryʼ node type via the edge type PART_OF.

There are node types where only a subset of the nodes has an edge of a specific edge 
type. For instance, not every employee has subordinates, i.e., only a subset of the nodes 
of the ‘Employeeʼ type has an incoming REPORTS_TO type edge.

So, what if the user wants to generate a list of all employees along with the num-
ber of subordinates for each employee, even if that number is zero? A MATCH 
(e:Employee) < -[:REPORTS_TO]-(sub) query would only return those employees who 
actually have subordinates, i.e., where the number is greater than zero:

MATCH (e:Employee)  < -[:REPORTS_TO]-(sub)

RETURN e.employeeID, count(sub.employeeID)

An OPTIONAL MATCH clause allows to list all employees including those without 
subordinates:

MATCH (e:Employee)

OPTIONAL MATCH (e) < -[:REPORTS_TO]-(sub)

RETURN e.employeeID, count(sub.employeeID)

Like SQL, Cypher has operators, embedded features, and aggregate functions. The fol-
lowing query returns the full first name and the last name initial for each employee, 
along with the number of subordinates:

MATCH (e:Employee)

OPTIONAL MATCH (e) < -[:REPORTS_TO]-(sub)

RETURN

 e.firstName  +   ̎ ̎
  +  left(e.lastName, 1)  + ̎.̎ as name,
 count(sub.employeeID)

The operator + can be used on ‘textʼ type data values to string them together. The embed-
ded features LEFT returns the first n characters of a text. Finally, the aggregate ‘Countʼ 
determines the number of nodes for a data value combination in the RETURN statement 
that exist in the set from the MATCH statement.

MATCH (e:Employee)

OPTIONAL MATCH (e) < -[:REPORTS_TO]-(sub)

RETURN

 e.firstName  +   ̎ ̎
  +  left(e.lastName, 1)  +  .̎ as name,
 collect(sub.employeeID)

3.4  Graph-based Languages
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Unlike in SQL, aggregates in Cypher do not require a GROUP BY clause. Additional 
aggregates, similar to SQL, are total (sum), minimum (min), and maximum (max). A 
useful nonatomic aggregate is ‘collect,ʼ which generates an array from existing values. 
The expression above, for example, lists all employees with their first name and their last 
name initial, as well as a list of the employee numbers of their subordinates (which may 
be empty).

Schema definition in Cypher, unlike in SQL, is done implicitly, i.e., abstract data 
classes (metadata) such as node and edge types or attributes are created by using them 
in the insertion of concrete data values. The following example inserts new data into the 
database:

CREATE

 (p:Product {

 productName:ˈSQL & NoSQL Databasesˈ,
 year:2016})

 -[:PUBLISHER]->

 (o:Organization {

 name:ˈSpringerViewegˈ})

This expression warrants a deeper analysis because multiple things happen implicitly 
here. Two new nodes are created and connected, one for the product SQL and NoSQL 
Databases and one for the publisher Springer Vieweg. This involves the implicit genera-
tion of the new node type “Organization” that did not exist before. Those nodes are given 
data values in the form of attribute-value pairs entered into the nodes. Both the attributes 
“year” and “name” did not exist before and are, therefore, added to the schema implic-
itly; in SQL, this would require a CREATE TABLE and an ALTER TABLE command. 
Additionally, an edge with the type “PUBLISHER” is created between the nodes of the 
book and of the publisher, adding not only the edge itself, but also that edge type to the 
database schema.

SET clauses are used to change data values matching a specific pattern. The expres-
sion in the following example sets a new price for the product “Chocolade”:

MATCH (p:Product)

WHERE p.productName  =  ˈChocoladeˈ
SET p.unitPrice  =  13.75

With DELETE, it is possible to eliminate nodes and edges as specified. Since graph data-
bases ensure referential integrity (Sect. 3.7), vertices can only be deleted if they have no 
edges attached. Before being able to remove a node, the user, therefore, has to delete all 
incoming and outgoing edges.

Below is an expression that first recognizes all edges connected to the product 
“Tunnbröd,” then eliminates those edges, and finally deletes the node of the product 
itself.
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MATCH

 ()-[r1]- > (p:Product),

 (p)-[r2]- > ()

WHERE p.productName  =  ˈTunnbrödˈ
DELETE r1, r2, p

In addition to the data manipulation we know from SQL, Cypher also supports opera-
tions on paths within the graph. In the following example, an edge of the type BASKET 
is generated for all product pairs that have been ordered together. This edge shows that 
those two products have been included in at least one order together. Once that is done, 
the shortest connection between any two products through shared orders can be deter-
mined with a shortestPath function:

MATCH

 (p1:Product) < –(o:Order)– > (p2:Product)

CREATE

 p1-[:BASKET{order:o.orderID}]- > p2,

 p2-[:BASKET{order:o.orderID}]- > p1;

MATCH path =
 shortestPath(

 (p1:Product)-[b:BASKET*]- > (p2:Product))

RETURN

 p1.productName, p2.productName, LENGTH(path),

 EXTRACT(r in RELATIONSHIPS(path)| r.order)

In addition to the names of the two products, the RETURN clause also contains the 
length of the shortest path between them and a list of the order numbers indirectly con-
necting them.

It should be noted here that, while Cypher offers some functions for analyzing paths 
within graphs (including the Kleene hull for edge types), it does not support the full 
range of Kleene algebra for paths in graphs, as required in the theory of graph-based lan-
guages. Nevertheless, Cypher is a language well suited for practical use.

3.5	� Embedded Languages

Relational query and manipulation languages can not only be used interactively as inde-
pendent languages, but also be embedded in an actual programming language (host 
language). However, embedding a relational language in a programming environment 
requires some provisions, which are discussed in this section.

The concept of embedded languages will be explained using SQL as an example. In 
order for a program to be able to read a table using a SELECT statement, it is necessary 
that it can pass from one tuple to the next, which requires a cursor concept.

3.5  Embedded Languages
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3.5.1	� Cursor Concept

A CURSOR is a pointer that can go through a set of tuples in a sequence set by the 
database system. Since conventional programs cannot process an entire table in one step, 
cursors enable a row-by-row procedure. For the selection of a table, a CURSOR must be 
defined in the program as follows:

DECLARE cursor-name CURSOR FOR  < SELECT-statement > 

This allows us to process the individual records in a table, i.e., tuple by tuple. If neces-
sary, it is also possible to modify some or all data values of the current tuple. If the table 
has to be processed in a specific sequence, the above declaration must be amended by an 
ORDER BY clause.

Multiple CURSORs can be used within one program for navigation reasons. They 
have to be declared and then activated and deactivated by OPEN and CLOSE commands. 
The actual access to a table and the transmission of data values into the corresponding 
program variables happens via a FETCH command. The tapes of the variables addressed 
in the programming language must match the formats of the respective table fields. The 
FETCH command is phrased as

FETCH cursor-name INTO host-variable {,host-variable}

Each FETCH statement moves the CURSOR forward by one tuple, either according to 
the physical structure of the table or following the ORDER BY clause where given. If no 
further tuples are found, a corresponding status code is returned to the program.

Cursor concepts allow the embedding of set-oriented query and manipulation lan-
guages into a procedural host language. For instance, the same linguistic constructs in 
SQL can be used either interactively (ad hoc) or embedded (via a programming lan-
guage). This has additional advantages for testing embedded programming sections, 
since the test tables can be analyzed and checked with interactive SQL at any point.

3.5.2	� Stored Procedures and Stored Functions

From SQL:1999 onwards, SQL standards offers the possibility to embed SQL in inter-
nal database procedures and functions. Since those are stored in the data dictionary on 
the database server, they are called stored procedures or, if they return values, stored 
functions. Such linguistic elements enable the procedural processing of record sets via 
CURSORs and the use of branches and loops. The procedural linguistic elements of SQL 
were only standardized long after the language’s introduction, so many vendors devel-
oped separate proprietary formats. Procedural programming with SQL is, therefore, 
largely product-specific.
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The following example of a stored function calculates first quartile4 of all employee 
salaries:

CREATE FUNCTION SalaryQuartile()

RETURNS INTEGER DETERMINISTIC

BEGIN

 DECLARE cnt int;

 DECLARE i int;

 DECLARE tmpSalary int;

 DECLARE employeeCursor CURSOR FOR

 SELECT Salary

 FROM Employee

 ORDER BY Salary ASC;

 SELECT COUNT(*)/4 INTO cnt FROM Employee;

 SET i : =  0;
 OPEN employeeCursor;

 employeeLoop: LOOP

 FETCH employeeCursor INTO tmpSalary;

 SET i : =  i  +  1;
 IF i  >= cnt THEN
 LEAVE employeeLoop;

 END IF;

 END LOOP;

 RETURN tmpSalary;

This function opens a cursor on the employee table sorted by salary (low to high), 
loops through each row, and returns the value of the Salary column from the row where 
COUNT(*)/4 iterations of the loop have been run. This value is the first quartile, i.e., the 
value separating the lowest 25% of values in the set. The result of the function can then 
be selected with the statement.

Select SalaryQuartile();

3.5.3	� JDBC

SQL can also be embedded in Java. Similarly to the cursor concept, Java offers the 
ResultSet class, which works as a pointer to the elements of a result set and enables 
the iterative processing of records. The Java Database Connectivity (JDBC) Standard 
achieved a unified interface between the Java language and a wide variety of SQL-based 
databases. Most SQL databases support JDBC and offer the necessary driver libraries.

4Quartiles of ranked data sets are the points between the quarters of the set.

3.5  Embedded Languages
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The example below shows a Java class which imports data from an SQL database 
using an SQL expression and then processes the data:

Public class HelloJDBC {

 public static void main(String[] args) {

 try {

 Class.forName( ̎com.mysql.jdbc.Driver ̎);
 Connection connection =
 DriverManager.getConnection(

 ̎jdbc:mysql://127.0.0.1:3306/ma ̎,
 ̎root ̎,
 ̎ ̎);
 Statement statement =
 connection.createStatement();

 ResultSet resultset =
 statement.executeQuery(

 ̎SELECT * FROM EMPLOYEE ̎);
 while (resultset.next()) {

 System.out.println(

 resultset.getString( ̎Name ̎));
 }

 } catch (Exception e) {}

 }

}

This simple code snippet passes the names of all employees on to the console. However, 
it would also be possible to further process the data in multiple ways using SQL within 
the host language Java. Four main classes are especially relevant here: Connection, 
DriverManager, Statement, and ResultSet. Objects of the Connection class form a con-
nection to the database. They are instantiated by the DriverManager class via the static 
method getConnection, where the access codes are also defined. The various SQL 
expressions can be embedded into objects of the Statement class. The method executeQ-
uery of the Connection class then returns a ResultSet object containing a set of records as 
the result of the executed SQL statement. Like a CURSOR, objects of the ResultSet class 
allow the iterative, record-based processing of the result tuples.

3.5.4	� Embedding Graph-based Languages

All previous examples of embedded database languages used SQL; however, since 
graph-based languages are also set-based, they can be embedded into host languages fol-
lowing the same concept using a cursor concept.
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The following example shows a Java application using embedded Cypher code to 
access data in a Neo4J database and returns all product names to the screen.

try (

 Transaction t  =  db.beginTx();
 Result result  =  db.execute(
 ̎MATCH p:Product RETURN p.productName ̎))
{

 while (result.hasNext()) {

 Map < String,Object >  node  =  result.next();
 for (Entry < String,Object >  property:

 node.entrySet()){

 System.out.println(property.getValue());

 }

 }

}

As with JDBC, the execution of an embedded Cypher statement returns a result set, 
which can then be processed further via a loop.

3.6	� Handling NULL Values

The work with databases regularly entails situations where individual data values for 
tables are not (yet) known. For instance, it may be necessary to enter a new employee 
in the EMPLOYEE table before their full address is available. In such cases, instead of 
entering meaningless or maybe even wrong filler values, it is advisable to use NULL val-
ues as placeholders.

u NULL values  A NULL value represents an as yet unknown data value within a table 
column.

NULL values, represented as “?”, must not be confused with the number 0 (zero) or the 
value “Blank” (space). These two values express specific situations in relational data-
bases, while NULL values are merely placeholders (unknown).

Figure 3.12 shows the EMPLOYEE table with NULL values for the attributes Street 
and City. Of course, not all attribute categories may contain NULL values, otherwise 
conflicts are unavoidable. Primary keys must not contain NULL values by definition; in 
our example, that applies to the employee number E#. For the foreign key “Sub”, the 
database architect can make that decision at their discretion and based on their practical 
experience.

3.6  Handling NULL Values
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Working with NULL values can be somewhat problematic, since they form a new 
information content UNKNOWN (?) in addition to TRUE (1) and FALSE (0). We, there-
fore, have to leave behind the classical binary logic in which any statement is either 
true or false. Truth tables for logical connectives such as AND, OR, or NOT can also 
be derived for three truth values. As shown in Fig. 3.13, combinations including NULL 
values again return NULL values, which may lead to counter-intuitive results, as in the 
example in Fig. 3.12.

The query in Fig. 3.12, which selects all employees from the EMPLOYEE table who 
either live in Kent or not in Kent, returns a result table containing only a subset of the 
employees in the original table, since the places of residence of some employees are 
unknown (and, therefore, not true). This clearly goes against the conventional logical 
assumption that a union of the subset “employees living in Kent” with its complement 
“employees NOT living in Kent” should result in the total set of all employees.

Sentential logic with the values TRUE, FALSE, and UNKNOWN is commonly 
called three-valued logic for the three truth values a statement can take. This logic is 
less known and poses a special challenge for users of relational databases, since anal-
yses of tables with NULL values are hard to interpret. In practice, NULL values are, 
therefore, largely avoided. Sometimes, DEFAULT values are used instead. For instance, 
the company address could be used to replace the yet unknown private addresses in the 

SELECT *
FROM  EMPLOYEE
WHERE  City = ‘Kent’

UNION
SELECT  *
FROM  EMPLOYEE
WHERE  NOT City = ‘Kent’

EMPLOYEE

E19 Stewart E Main Street Stow D6

E1 Murphy ? ? D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell ? ? D6

E# Name Street City Sub

RESULTS_TABLE

E19 Stewart E Main Street Stow D6

E7 Howard Lorain Avenue Cleveland D5

E# Name Street City Sub

Fig. 3.12   Unexpected results from working with NULL values
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EMPLOYEE table from our example. The function COALESCE (X, Y) replaces all 
X attributes with a NULL value with the value Y. If NULL values have to be allowed, 
attributes can be checked for unknown values with specific relation operators, IS NULL 
or IS NOT NULL, in order to avoid unexpected side effects.

Foreign keys are usually not supposed to take NULL values; however, there is an 
exception for foreign keys under a certain rule of referential integrity. For instance, the 
deletion rule for the referenced table DEPARTMENT can specify whether or not exist-
ing foreign key references should be set to NULL. The referential integrity constraint 
“set NULL” declares that foreign key values are set to NULL if their referenced tuple 
is deleted. For example, deleting the tuple (D6, Accounting) from the DEPARTMENT 
table in Fig. 3.12 with the integrity rule “set NULL” results in NULL values for the for-
eign keys of employees Stewart and Bell in the EMPLOYEE table. This constraint com-
plements the rules for restricted and cascading delete described in Sect. 2.3.3. For more 
information, see also Sect. 3.7.

Graph-based languages can also have NULL values and corresponding functions. 
Cypher is also based on three-valued logic and can handle NULL values with IS NULL 
and COALESCE, similar to SQL.

3.7	� Integrity Constraints

The integrity of a database is a vital characteristic that must be supported by the DBMS. 
The respective rules applying to all insert or update operations are called integrity con-
straints. For reasons of efficiency, those rules are not specified individually in each pro-
gram, but rather overall in the database schema. Integrity constraints are divided into 
declarative and procedural rules.

Declarative integrity constraints are defined during the generation of a new table 
in the CREATE TABLE statement using the data definition language. In the example 
in Fig. 3.14, the primary key for the DEPARTMENT table is specified as an integrity 
constraint with PRIMARY KEY. Primary and foreign key of the EMPLOYEE table are 
defined similarly.

Fig. 3.13   Truth tables for three-valued logic

3.7  Integrity Constraints
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The various types of declarative integrity constraints are: 

•	 Primary key definition: PRIMARY KEY defines a unique primary key for a table. 
Primary keys must, by definition, not contain any NULL values.

•	 Foreign key definition: FOREIGN KEY can be used to specify a foreign key, which 
relates to another table in the REFERENCES clause.

•	 Uniqueness: The uniqueness of an attribute can be determined by the UNIQUE con-
straint. Unlike primary keys, unique attributes may contain NULL values.

•	 No NULL values: The NOT NULL constraint dictates that the respective attrib-
ute must not contain any NULL values. For instance, the attribute Name in the 
EMPLOYEE table in Fig. 3.14 is set to NOT NULL, because there must be a name 
for every employee.

•	 Check constraint: Such rules can be declared with the CHECK command and apply 
to every tuple in the table. For example, the CHECK Salary > 30.000 statement in the 

DEPARTMENT

D3 IT

D5 HR

D6 Accounting

D# DepartmentName

CREATE TABLE DEPARTMENT
 (D#     CHAR(2),
  DepartmentName VARCHAR(10),

PRIMARY KEY (D#))

Primary key

EMPLOYEE

E19 Stewart E Main Street Stow D6

E1 Murphy Murray Road Kent D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City D#_Sub

Reference

Secondary
key

CREATE TABLE EMPLOYEE
 (E#     CHAR(6),
  Name    CHAR(20) NOT NULL,
  Street    CHAR(30),
  City     CHAR(25),
  D#_Sub    CHAR(2),

PRIMARY KEY (E#),
  FOREIGN KEY (D#),
   REFERENCES DEPARTMENT (D#)
   ON DELETE RESTRICT)

Primary key definition
Secondary key definition
Restrictive delete

Fig. 3.14   Definition of declarative integrity constraints
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STAFF table in Fig. 3.14 ensures that the annual salary of each employee is at least 
USD 30,000.

•	 Set to NULL for changes or deletions: ON UPDATE SET NULL or ON DELETE 
SET NULL declare for dependent tables that the foreign key value of a dependent 
tuple is set to NULL when the corresponding tuple in the referenced table is modified 
or removed (Sect. 2.3.3).

•	 Restricted changes or deletion: If ON UPDATE RESTRICT or ON DELETE 
RESTRICT is set, tuples cannot be manipulated or deleted while there are still 
dependent tuples referencing them (Sect. 2.3.3).

•	 Cascading changes or deletion: ON UPDATE CASCADE or ON DELETE 
CASCADE define that the modification or removal of a reference tuple is extended to 
all dependent tuples (Sect. 2.3.3).

In Fig. 3.14, a restrictive deletion rule has been specified for the two tables 
DEPARTMENT and EMPLOYEE. This ensures that individual departments can only be 
removed if they have no dependent employee tuples left.

The command

DELETE FROM Department WHERE D#  =  ˈD6ˈ

would, therefore, return an error message, since the employees Stewart and Bell are 
listed under the accounting department.

Apart from delete operations, declarative integrity constraints can also affect insert 
and update operations. For instance, the insert operation

INSERT INTO EMPLOYEE

VALUES (ˈE20ˈ,ˈKellyˈ,ˈMarket Ave Sˈ,ˈCantonˈ,ˈD7ˈ)

will also return an error message: Department D7 is not yet listed in the referenced table 
DEPARTMENT, but due to the foreign key constraint, the DBMS checks whether the 
key D7 exists in the referenced table before the insertion.

Declarative, or static, integrity constraints can be defined during table generation 
(CREATE TABLE statement). On the other hand, procedural, or dynamic, integrity con-
straints compare database states before and after a change, i.e., they can only be checked 
during runtime. The triggers are an alternative to declarative integrity constraints because 
they initiate a sequence of procedural branches via instructions. Triggers are mostly 
defined by a trigger name, a database operation, and a list of subsequent actions:

CREATE TRIGGER NoCuts –– trigger name

BEFORE UPDATE ON Employee –– database operation

FOR EACH ROW BEGIN –– subsequent action

IF NEW.Salary  <  OLD.Salary

3.7  Integrity Constraints
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THEN set NEW.Salary  =  OLD.Salary
END IF;

END

The example above shows a situation where employeesʼ salaries must not be cut, so 
before updating the EMPLOYEE table, the trigger checks whether the new salary is 
lower than the old one. If that is the case, the integrity constraint is violated and the new 
salary is reset to the original value from before the update. This is a very basic example 
meant to illustrate the core concept. In a production environment, the user would also be 
notified.

Working with triggers can be tricky, since individual triggers may prompt other trig-
gers, which raises the issue of terminating all subsequent actions. In most commercial 
database systems, the simultaneous activation of multiple triggers is prohibited to ensure 
a clear action sequence and the proper termination of triggers.

The only integrity constraint that can be explicitly defined in the graph-based lan-
guage Cypher is the (declarative) condition that the value of an attribute for a node type 
must be unique. For instance, the following expression determines that the product name 
for nodes of the Product type has to be unique:

CREATE CONSTRAINT ON (p:Product)

ASSERT p.productName IS UNIQUE;

However, the Neo4j graph database, for which Cypher offers the language interface, 
implicitly checks all data for referential integrity, i.e., neither primary nor foreign keys 
have to be declared explicitly. Neo4j’s database management system ensures that edges 
refer to existing nodes in all cases. Nodes can, therefore, only be deleted if there are no 
edges connected to them (Sect. 3.4.1).

3.8	� Data Protection Issues

Data protection is the prevention of unauthorized access to and use of data. Protective 
measures include procedures for the positive identification of a person or for the assign-
ment of user permissions for specific data access as well as cryptographic methods for 
confidential data storage and transmission.

In contrast, data security means the hardware and software solutions that help to pro-
tect data from falsification, destruction, and loss. Security measures for database backup 
and recovery are discussed in Chap. 4.

The relational model facilitates the implementation of reliable restrictions to ensure 
data protection. A major data protection mechanism in relational databases is to provide 
users with only those tables and table sections they need for their work. This is done 
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with table views, each of which is based on either one or multiple physical tables and is 
defined using a SELECT statement:

CREATE VIEW view-name AS <SELECT-statement>

Figure 3.15 shows two example views based on the STAFF table. The EMPLOYEE 
view shows all attributes except for the salary information. The view GROUP_A shows 
only those employees with their respective salaries who earn between USD 80,000 and 
100,000 p.a. Other views can be defined similarly, e.g., to allow HR to access confiden-
tial data per salary group.

The two examples in Fig. 3.15 demonstrate important protection methods. On the one 
hand, tables can be limited for specific user groups by projection on only certain attrib-
utes; on the other hand, access control can also be value-based, e.g., for salary ranges, 
via corresponding view definitions in the WHERE clause.

As in tables, it is possible to formulate queries on views; however, manipulation oper-
ations cannot always be defined uniquely. If a view is defined as a join of multiple tables, 
change operations may be denied by the database system under certain circumstances.

3.8  Data Protection Issues

STAFF

E19 Stewart Stow 88,000 D6

E1 Murphy Kent 59,000 D3

E7 Howard Cleveland 100,000 D5

E4 Bell Kent 76,000 D6

E# Name City Salary Sub

CREATE VIEW
EMPLOYEE AS
SELECT E#, Name, City, Sub
FROM  STAFF

E19 Stewart Stow D6

E1 Murphy Kent D3

E7 Howard Cleveland D5

E4 Bell Kent D6

E# Name City Sub

E19 Stewart 88,000 D6

E7 Howard 100,000 D5

E# Name Salary Sub

CREATE VIEW
GROUP_A AS
SELECT E#, Name, Salary, Sub
FROM  EMPLOYEE
WHERE  Salary BETWEEN 80,000

AND 100,000

Fig. 3.15   Definition of views as part of data protection
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u Updateable view  Updateable views allow for insert, delete, and update operations. 
The following criteria determine whether a view is updateable: 

•	 The view contains content from only one table (no joins allowed).
•	 That base table has a primary key.
•	 The defining SQL expression contains no operations that affect the number of rows 

in the result set (e.g., aggregate, group by, distinct, etc.).

It is important to note that different views of a single table with the included data are not 
managed redundantly to the base table; rather, merely the definitions of the views are 
stored. Only when the view is queried with a SELECT statement are the corresponding 
result tables generated from the view’s base tables with the permitted data values.

Effective data protection takes more than just limiting access to table contents by 
views. It also has to be possible to set user specific authorizations for table functions. In 
SQL, user privileges can be managed with the commands GRANT and REVOKE.

Permissions are assigned with GRANT and can be removed with REVOKE.

GRANT  < privilege >  ON  < table >  TO  < user>

REVOKE  < privilege >  ON  < table >  FROM  < user > 

GRANT changes the privilege list so that the affected users are permitted to execute 
read, insert, or delete operations on certain tables or views. Such granted authorizations 
can be taken back with REVOKE.

For example, it is possible to grant only reading privileges for the EMPLOYEE view 
from Fig. 3.15:

GRANT SELECT ON EMPLOYEE TO PUBLIC

Instead of listing specific users, this example uses PUBLIC to assign reading privileges 
to all users so they can look at the limited EMPLOYEE view of the base table.

For a more selective assignment of permissions, individual user can be specified. 
For instance, it is possible to authorize only a certain HR employee with the user ID 
ID37.289 to make changes to the GROUP_A view from Fig. 3.15:

GRANT UPDATE ON GROUP_A TO ID37.289

WITH GRANT OPTION

User ID37.289 can now modify the GROUP_A view and, thanks to the GRANT 
OPTION, even assign this authorization or a limited reading privilege to others and take 
it back. This concept allows us to define and manage dependencies between privileges.

Unlike SQL, Cypher does not offer any linguistic elements for permission manage-
ment on the level of abstract data types (node or edge types). Neo4j explicitly does not 
support access constraints on the data level. While there is user authentication involving 
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usernames and passwords, access is granted to each user for the entire database. Security 
mechanisms can only be set on the network level for individual database servers. It is 
also possible to program specific authorization rules for Neo4j servers in Java, but this 
requires specific programming knowledge and is nowhere near as user-friendly as the 
linguistic security mechanisms of SQL.

The complexity of managing the assignment and removal of permissions when giving 
end users access to a relational query and manipulation language is not to be underes-
timated, even if the data administrators can use GRANT and REVOKE commands. In 
reality, daily changes and the monitoring of user authorizations require additional man-
agement tools. Internal or external controlling instances and authorities may also demand 
special measures to constantly ensure the proper handling of especially sensitive data 
(see also the legal data protection obligations for your jurisdiction).

SQL injection
A major aspect for the security of databases connected to the internet is the prevention of 
SQL injections. Since websites are often coded and connected to a database on the server 
side, the respective server scripts usually generate SQL code to create an interface with 
the database (Sect. 3.5). Where this generated SQL code contains parameters that can 
be modified by users (e.g., in forms or as part of URLs), it is possible that sensitive data 
from the database is exposed or manipulated.

To illustrate, imagine an online store that displays the customer’s stored payment 
methods after log-in. The page showing the payment methods has the URL

http://example.net/payment?uid=117

A Java servlet runs in the background, getting the credit card information (card number 
and name) from the database for the page to display as a table with HTML.

ResultSet resultset =
 statement.executeQuery(

 ̎SELECT creditcardnumber, name FROM PAYMENT ̎ +
 ̎WHERE uid  =  ̎ + request.getParameter( ̎uid ̎));
while (resultset.next()) {

 out.println( ̎< tr > <td > ̎ +
 resultset.getString( ̎creditcardnumber ̎) +
 ̎</td >   < td > ̎ +
 resultset.getString( ̎name ̎)  +  ̎</td > </tr > ̎
}

This involves the dynamic generation of an SQL query on the PAYMENT table using 
the customer’s identification number (uid) as the selection parameter. This code genera-
tion is vulnerable to SQL injection. By extending the uid parameter in the URL as shown 
below, users can access the credit card information of all customers:

3.8  Data Protection Issues
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http://example.net/payment?uid=117%20OR%201=1

With this GET parameter, the servlet described above generates the following SQL code:

SELECT creditcardnumber, name

FROM PAYMENT

WHERE uid  =  117 OR 1 = 1;

The additional SQL code “OR 1 = 1”, the SQL injection, effectively disables the user 
identification filter in the generated query, since 1 = 1 is always correct and an OR state-
ment is true even if only one of the conditions is true. The webpage in this simple exam-
ple would, therefore, expose highly sensitive information with the SQL injection.

SQL injections are a substantial security issue, and hackers have repeatedly man-
aged to breach even high-profile websites with this technique. There are several options 
to protect websites from SQL injections: On the one hand, it is becoming increasingly 
common to use NoSQL databases such as MongoDB or CouchDB in web development, 
where the lack of SQL interfaces naturally removes any vulnerability against SQL injec-
tions. If SQL databases are still used in web environments, the SQL code generation 
can be transferred to strictly standardized stored functions on the database (Sect. 3.5.2). 
In the example above, such a function could accept only a purely numerical user ID as 
input in order to return the credit card information. Injecting this function with the text 
“OR 1 = 1” would result in an error message.

In summary, SQL databases provide comprehensive security mechanisms based 
on the CREATE VIEW, GRANT, and REVOKE commands that no NoSQL database 
comes close to achieving. However, within the larger context of web-based information 
systems, these control mechanisms can be defeated by SQL injections. In such cases, 
NoSQL databases with their more direct APIs can offer better protection.

3.9	� Further Reading

The early works of Codd (1970) describe both the relational model and relational alge-
bra. Further deliberations on relational algebra and relational calculus can be found in 
leading works by Date (2004), Elmasri and Navathe (2006), and Maier (1983), while 
Ullman (1982) demonstrates the equivalence of the two.

SQL emerged from the research of Astrahan et al. (1976) for the relational database 
system System R; QBE was also developed in the 1970 s by Zloof (1977).

The database handbook of Lockemann and Schmidt (1993) gives an overview of 
various query and manipulation languages in German. Linguistic aspects are the focus 
of German works by Saake et al. (2007), Kemper and Eickler (2013), and Lang and 
Lockemann (1995).
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There are multiple German textbooks on SQL, e.g., Beaulieu (2006), Kuhlmann and 
Müllmerstadt (2004), Panny and Taudes (2000), and Sauer (2002).

Darwen and Date (1997) discuss the standard of SQL; Pistor (1993) focuses on the 
object-oriented concepts of the SQL standard in his German article. The comprehen-
sive work of Melton and Simon (2002) describes SQL:1999, while the German book by 
Türker (2003) examines both the SQL:1999 and SQL:2003 standards.

Regarding the field of graph-based languages, there are no international standards yet. 
Wood (2015) provides an overview of graph-based languages. The work of He and Singh 
(2010) describes GraphQL, a language based on a graph algebra and equally powerful as 
relational algebra. The only book on the commercial language Cypher so far is that by 
Panzarino (2014). Additional sources regarding Cypher can be found on the website of 
the developing company Neo4j.
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4.1	� Multi-User Operation

The terms consistency and integrity of a database describe a state in which the stored 
data does not contradict itself. Integrity constraints (Sects. 2.4.3 and 3.7) are to ensure 
that data consistency is maintained for all insert and update operations.

One potential difficulty arises when multiple users simultaneously access a data-
base and modify contained data. This can cause conflicts involving blocking each other 
(deadlocks) or even consistency violations. Depending on the use case, breaches of con-
sistency rules are absolutely unacceptable. A classic example is posting transactions in 
banking, where the principles of double-entry bookkeeping must always be observed and 
must not be violated (Sect. 4.2.2).

Transaction management systems ensure that consistent database states are only 
changed to other consistent database states. These systems follow an all-or-none rule to 
prevent transactions from executing partial changes to the database. Either all requested 
changes are applied, or the database is not modified at all. Pessimistic or optimistic con-
currency control methods are used to guarantee that the database remains in a consistent 
state at any time.

However, with comprehensive web applications, it has been shown that striving for 
full consistency is not always desirable. This is due to the CAP theorem, which states 
that any database can, at most, have two out of three: consistency, availability, or parti-
tion tolerance. Therefore, if the focus is on availability and partition tolerance, temporar-
ily inconsistent database states are unavoidable.

Section 4.2 will explain the classic concept of transactions, which is based on ato-
micity, consistency, isolation, and durability and is known as the ACID principle for 
short. Section 4.3 will discuss the abovementioned CAP theorem and the light version 
for ensuring consistency known as BASE (basically available, soft-state, eventually 
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consistent), which allows for replicated computer nodes to temporarily hold different 
data versions and only be updated with a delay. Section 4.4 compares the ACID and 
BASE approaches, and Sect. 4.5 contains literature for further reading.

4.2	� Transaction Concept

4.2.1	� ACID

Ensuring the integrity of data is a major requirement for many database applications. The 
transaction management of a database system allows conflict-free simultaneous work by 
multiple users. Changes to the database are only applied and become visible if all integ-
rity constraints as defined by the users are fulfilled.

The term transaction describes database operations bound by integrity rules, which 
update database states while maintaining consistency. More specifically, a transaction is 
a sequence of operations that has to be atomic, consistent, isolated, and durable.

•	 Atomicity (A): Transactions are either applied in full or not at all, leaving no trace of 
their effects in the database. The intermediate states created by the individual opera-
tions within a transaction are not visible to other concurrent transactions. A transac-
tion can, therefore, be seen as a unit for the resettability of incomplete transactions 
(Sect. 4.2.5).

•	 Consistency (C): During the transaction, integrity constraints may be temporar-
ily violated; however, at the end of the transaction, all of them must be met again. A 
transaction, therefore, always results in moving the database from one consistent state 
into another and ensures the integrity of data. It is considered a unit for maintaining 
consistency.

•	 Isolation (I): The concept of isolation requires that parallel transactions generate the 
same results as transactions in single-user environments. Isolating individual transac-
tions from transactions executed simultaneously protects them from unwanted side 
effects. This makes transactions a unit for serializability.

•	 Durability (D): Database states must remain valid and be maintained until they are 
changed by a transaction. In the case of software errors, system crashes, or errors on 
external storage media, durability retains the effects of a correctly completed transac-
tion. In relation to the reboot and recovery procedures of databases, transactions can 
be considered a unit for recovery (Sect. 4.2.5).

These four principles, atomicity (A), consistency (C), isolation (I), and durability (D), 
describe the ACID concept of transactions, which is the basis of several database sys-
tems and guarantees that all users can only make changes that lead from one consistent 
database state to another. Inconsistent interim states remain invisible externally and are 
rolled back in the case of errors.
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To declare a series of operations as one transaction, they should be marked with 
BEGIN TRANSACTION and END_OF_TRANSACTION1. The start and end of a trans-
action indicate to the database system which operations form a unit and must be pro-
tected by the ACID concept.

The SQL statement COMMIT applies the changes from the transaction. They remain 
until changed by another successfully completed transaction. In the case of an error 
during the transaction, the entire transaction can be undone with the SQL command 
ROLLBACK.

The SQL standard allows for the degree of consistency enforced by the database sys-
tem to be configured by setting an isolation level with the following expression:

SET TRANSACTION ISOLATION LEVEL  < isolation level>

There are four isolation levels: READ UNCOMMITTED (no consistency enforce-
ment), READ COMMITTED (only applied changes can be read by other transac-
tions), REPEATABLE READ (read queries give the same result repeatedly), and 
SERIALIZABLE (full serializable ACID consistency enforced).

4.2.2	� Serializability

A major aspect in the definition of operation systems and programming languages is the 
coordination or synchronization of active processes and the mutual exclusion of simulta-
neous processes. For database systems, too, concurrent accesses to the same data objects 
must be serialized in order for database users to be able to work independently of each 
other.

u Concept of serializability  A system of simultaneous transactions is synchronized cor-
rectly if there is a serial execution creating the same database state.

The principle of serializability ensures that the results in the database are identi-
cal, whether the transactions are executed one after the other or in parallel. The focus 
in defining conditions for serializability is on the READ and WRITE operations within 
each transaction, i.e., the operations which read and write records in the database.

Banking provides typical examples of concurrent transactions. The basic integrity 
constraint for posting transactions is that debit and credit have to be balanced. Figure 4.1 
shows two simultaneously running posting transactions with their READ and WRITE 
operations in chronological order. Neither transaction on its own changes the total 

1In the SQL standard, transactions are implicitly started by SQL statements and concluded by 
COMMIT. Alternatively, they can be initiated explicitly with START TRANSACTION.

4.2  Transaction Concept
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amount of the accounts a, b, and c. The transaction TRX_1 credits account a with 100 
units of currency and, at the same time, debits account b with 100 units of currency. The 
posting transaction TRX_2 similarly credits account b and debits account c for 200 cur-
rency units each. Both transactions, therefore, fulfill the integrity constraint of bookkeep-
ing, since the ledgers are balanced.

However, if both transactions are executed simultaneously, a conflict arises: The trans-
action TRX_1 misses the credit b: = b + 2002 done by TRX_2, since this change is not 
immediately written back, and reads a “wrong” value for account b. After both transac-
tions are finished, account a holds the original amount + 100 units (a + 100), the amount 
in account b is reduced by 100 units (b − 100), and c holds 200 units less (c − 200). Due 
to the Transaction TRX_1 missing the b + 200 step for account b and not calculating the 
amount accordingly, the total credits and debits are not balanced and the integrity con-
straint is violated.

Fig. 4.1   Conflicting posting transactions

2The notation b: = b + 200 means that the current balance of account b is increased by 200 currency 
units.
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Potential conflicts can be discovered beforehand. To do so, those READ and WRITE 
operations affecting a certain object, i.e., a single data value, a record, a table, or some-
times even an entire database, are filtered from all transactions. The granularity (rela-
tive size) of the object decides how well the transactions picked can be synchronized. 
The larger the granularity, the smaller the degree of transaction synchronization and vice 
versa. All READ and WRITE operations from different transactions that apply to a spe-
cific object are, therefore, listed in the log of the object x, short LOG(x). The LOG(x) of 
object x contains, in chronological order, all READ and WRITE operations accessing the 
object.

In our example of the concurrent posting transactions TRX_1 and TRX_2, the objects 
in question are the accounts a, b, and c. As shown in Fig. 4.2, the log for object b, for 
instance, contains four entries (Fig. 4.1). First, TRX_2 reads the value of b, then TRX_1 
reads the same value, before TRX_2 gets to write back the modified value of b. The last 
log entry is caused by TRX_1 when it overwrites the value from TRX_2 with its own 
modified value for b. Assessing the logs is an easy way to analyze conflicts between con-
curring transactions. A precedence graph represents the transactions as nodes and possi-
ble READ_WRITE or WRITE_WRITE conflicts as directed edges (arched arrows). For 
any one object, WRITE operations following READs or WRITEs can lead to conflicts, 
while multiple READ operations are generally not a conflict risk. The precedence graph 
does, therefore, not include any READ_READ edges.

Figure 4.2 shows not only the log of object b for the posting transactions TRX_1 and 
TRX_2, but also the corresponding precedence graph. Starting from the TRX_1 node, 
a READ on object b is followed by a WRITE on it by TRX_2, visualized as a directed 
edge from the TRX_1 node to the TRX_2 node. According to the log, a WRITE_WRITE 
edge goes from the TRX_2 node to the TRX_1 node, since the WRITE operation by 
TRX_2 is succeeded by another WRITE on the same object by TRX_1. The precedence 
graph is, therefore, cyclical, in that there is a directed path from a node that leads back 

Log

LOG(b)

TRX_2:READ

TRX_1:READ

TRX_2:WRITE

TRX_1:WRITE

Precedence graph for
data value b

TRX_2

TRX_1

READ_WRITE
edge

WRITE_WRITE
edge

READ_WRITE edge:  “TRX_1:READ” is followed by “TRX_2:WRITE”
WRITE_WRITE edge:  “TRX_2:WRITE” is followed by “TRX_1:WRITE”

Fig. 4.2   Analyzing a log using a precedence graph
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to the same node. This cyclical dependency between the transactions TRX_1 and TRX_2 
shows that they are not serializable.

u Serializability condition  A set of transactions is serializable if the corresponding 
precedence graphs contain no cycles.

The serializability condition states that multiple transactions have to yield the same 
results in a multi-user environment as in a single-user environment. In order to ensure 
serializability, pessimistic methods prevent any concurrent transaction runs that would 
lead to conflicts, while optimistic methods accept the chance of conflicts and fix them 
retroactively by rolling back the respective transactions.

4.2.3	� Pessimistic Methods

Transactions can secure themselves from interferences by others by using locks to pre-
vent additional accesses to the objects they need to read or update. Exclusive locks let 
only one transaction access the affected object, while concurring transactions that require 
access to the same object are rejected or queued. If such a lock is placed on an object, all 
other transactions that need this object have to wait until the object is released again.

The locking protocol defines how locks are set and released. If locks are cleared too 
early or without proper care, nonserializable sequences can arise. It is also necessary to 
prevent multiple transactions from blocking each other and creating a deadlock.

The exclusive locking of objects requires the operations LOCK and UNLOCK. Every 
object has to be locked before a transaction can access it. While an object x is blocked 
by a LOCK(x), no other transaction can read or update it. Only after the lock on object x 
has been released by UNLOCK(x) can another transaction place a new lock on it.

Normally, locks follow a well-defined protocol and cannot be requested or released 
arbitrarily.

u Two-phase locking protocol  Two-phase locking (2PL) prevents a transaction from 
requesting an additional LOCK after the first UNLOCK.

Transactions under this locking protocol are always executed in two phases: During the 
expanding phase, all locks are requested and placed; during the shrinking phase, the 
locks are released one by one. This means that during the expanding phase of a transac-
tion with 2PL, LOCKs can only be placed, gradually or all at once, but never released. 
UNLOCK operations are only allowed during the shrinking phase, again individually or 
in total at the end of the transaction. Two-phase locking effectively prohibits an intermix 
of creating and releasing locks.

Figure 4.3 shows a possible 2PL protocol for the posting transaction TRX_1. During 
the expanding phase, first account a is locked, then account b, before both accounts are 
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released again in the same order. It would also be possible to have both locks in this 
example created right at the beginning of the transaction instead of one after the other. 
Similarly, they could both be released at once at the end of the transaction, rather than 
progressively.

However, requesting the locks on the objects a and b one by one during the expanding 
phase and releasing them individually during the shrinking phase increases the degree of 
synchronization for TRX_1. If both locks were set at the beginning and only lifted at the 
end of the transaction, concurring transactions would have to wait the entire processing 
time of TRX_1 for the release of objects a and b.

Overall, two-phase locking ensures the serializability of simultaneous transactions.
Pessimistic concurrency control: With the help of two-phase locking, any set of con-

curring transactions is serializable. Due to the strict separation of expanding and shrink-
ing phases, the 2PL protocol prevents any cyclical dependencies in all precedence graphs 
from the start; the concurring transactions remain free of conflict. In the case of the two 
posting transactions TRX_1 and TRX_2, this means that with properly planned locking 
and unlocking, they can be synchronized without any violation of the integrity constraint.

Figure 4.4 shows how such a conflict-free parallel run of TRX_1 and TRX_2 can be 
achieved. LOCKs and UNLOCKs are set according to 2PL rules, so that, for instance, 
account b is locked by TRX_2 and can only be unlocked during the transactionʼs shrink-
ing phase, while TRX_1 has to wait to get its own lock on b. Once TRX_2 releases 

BEGIN_OF_TRX_1

LOCK(a)
READ(a)
a := a + 100
WRITE(a)

LOCK(b)
READ(b)

UNLOCK(a)
b := b - 100
WRITE(b)

UNLOCK(b)

END_OF_TRX_2 Time

LOCK(a) UNLOCK(b)

LOCK(b) UNLOCK(a)

Locks

Fig. 4.3   Sample two-phase locking protocol for the transaction TRX_1
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account b via UNLOCK(b), TRX_1 requests access to and a lock on b. In this run, 
TRX_1 reads the correct value for b, i.e., b + 200. The two transactions TRX_1 and 
TRX_2 can, therefore, be executed simultaneously.

2PL causes a slight delay in the transaction TRX_1, but after both transactions are fin-
ished, integrity is retained. The value of account a has increased by 100 units (a + 100), 
as has the value of account b (b + 100), while the value of account c has been reduced by 
200 units (c − 200). The total amount across all three accounts has, therefore, remained 
the same.

A comparison between the LOG(b) from Fig. 4.4 and the previously discussed log 
from Fig. 4.2 shows a major difference: It is now strictly one read (TRX_2: READ) and 
one write (TRX_2: WRITE) by TRX_2 before TRX_1 gets access to account b and can 
also read (TRX_1: READ) and write (TRX_1: WRITE) on it. The corresponding prec-
edence graph contains neither READ_WRITE nor WRITE_WRITE edges between the 
nodes TRX_1 and TRX_2, i.e., it is free of cycles. The two posting transactions, there-
fore, fulfill the integrity constraint.

In many database applications, the demand for high serializability prohibits the use of 
entire databases or tables as locking units. Consequently, it is common to define smaller 

Time

BEGIN_OF_TRX_1 BEGIN_OF_TRX_2

LOCK(a)
READ(a) LOCK(b)

READ(b)

a := a + 100
WRITE(a) b := b + 200

END_OF_TRX_1 END_OF_TRX_2

WRITE(b)

UNLOCK(c)

c := c - 200
WRITE(c)

UNLOCK(b)

LOCK(c)
READ(c)

b := b - 100

WRITE(b)

UNLOCK(b)

LOCK(b)
READ(b)

UNLOCK(a)

LOG(b)

TRX_2:READ

TRX_2:WRITE

TRX_1:READ

TRX_1:WRITE

Fig. 4.4   Conflict-free posting transactions
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locking units, such as database excerpts, parts of tables, tuples, or even individual data 
values. Ideally, locking units are defined in a way that allows for hierarchical dependen-
cies in lock management. For instance, if a set of tuples is locked by a specific transac-
tion, the superordinate locking units such as the containing table or database must not 
be completely blocked by other transactions during the lockʼs validity. When an object 
is put under an exclusive lock, locking hierarchies can be used to automatically evaluate 
and mark superordinate objects accordingly.

Various locking modes are also important. The most basic classification of locks is the 
dichotomy of read-locks and write-locks. Read-locks (or shared locks) grant read-only 
access for the object to a transaction, while write-locks (or exclusive locks) permit read 
and write access to the object.

Time stamps that allow for strictly ordered object access according to the age of the 
transactions are another pessimistic method ensuring serializability. Such time tracking 
methods allow to keep the chronological order of the individual operations within the 
transactions and, therefore, avoid conflicts.

4.2.4	� Optimistic Methods

Optimistic methods are based on the assumption that conflicts between concurring trans-
actions will be rare occurrences. No locks are set initially in order to increase the degree 
of synchronization and reduce wait times. Before transactions can conclude successfully, 
they are validated retroactively.

Transactions with optimistic concurrency control have three parts: a read phase, a val-
idation phase, and a write phase. During the read phase, all required objects are read, 
saved to a separate transaction workspace, and processed there, without any preventative 
locks being placed. After processing, the validation phase is used to check whether the 
applied changes conflict with any other transactions. The goal is to check currently active 
transactions for compatibility and absence of conflicts. If two transactions block each 
other, the transaction currently in the validation phase is deferred. In the case of success-
ful validation, all changes from the workspace are entered into the database during the 
write phase.

The use of transaction-specific workspaces increases concurrency in optimistic meth-
ods, since reading transactions do not impede each other. Checks are only necessary 
before writing back changes. This means that the read phases of multiple transactions 
can run simultaneously without any objects being locked. Instead, the validity of the 
objects in the workspace, i.e., whether they still match the current state of the database, 
must be confirmed in the validation phase.

For the sake of simplicity, we will assume that validation phases of different transac-
tions do not overlap. To ensure this, the time the transaction enters the validation phase 
is marked. This allows for both the start times of validation phases and the transactions 
themselves to be sorted chronologically. Once a transaction enters the validation phase, it 
is checked for serializability.

4.2  Transaction Concept
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The procedure to do so in optimistic concurrency control is as follows: Let TRX_t 
be the transaction to be validated and TRX_1 to TRX_k be all concurrent transactions 
that have already been validated during the read phase of TRX_t. All other transactions 
can be ignored, since they are handled in strict chronological order. All objects read by 
TRX_t must be validated, since they could have been modified by any of the critical 
transactions TRX_1 to TRX_k in the meantime. The set of objects read by TRX_t is 
labeled READ_SET(TRX_t), and the set of objects written by the critical transactions 
is labeled WRITE_SET(TRX_1,…,TRX_k). This gives us the following serializability 
condition:

u Optimistic concurrency control  In order for the transaction TRX_t to be serializ-
able in optimistic concurrency control, the sets READ_ SET(TRX_t) and WRITE_
SET(TRX_1,…,TRX_k) must be disjoint.

For a more practical example, we will revisit the two posting transactions TRX_1 and 
TRX_2 from Fig. 4.1, with the assumption that TRX_2 was validated before TRX_1. To 
assess whether TRX_1 is serializable in this scenario, we compare the objects read by 
TRX_1 and those written by TRX_2 (Fig. 4.5) to see that object b is part of both sets, 
i.e., READ_SET(TRX_1) and WRITE_SET(TRX_2) overlap, thereby violating the seri-
alizability condition. The posting transaction TRX_1 has to be rolled back and restarted.

Optimistic methods can be improved by preventatively ensuring the disjointness of 
the sets READ_SET and WRITE_SET, using the validation phase of a transaction 
TRX_t to check whether it will modify any objects that have already been read by other 
transactions. This assessment method limits the validation effort to transactions that actu-
ally make changes to database contents.

a

c

b

READ_SET(TRX_1) WRITE_SET(TRX_2)

Fig. 4.5   Serializability condition for TRX_1 not met
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4.2.5	� Troubleshooting

Various errors can occur during database operation and will normally be mitigated or 
corrected by the database system itself. Some error cases, such as integrity violations or 
deadlocks have already been mentioned in the sections on concurrency control. Other 
issues may be caused by operating systems or hardware, for instance when data remains 
unreadable after a save error on an external medium.

The restoration of a correct database state after an error is called recovery. It is 
essential for recovery to know where an error occurred: in an application, in the database 
software, or in the hardware. In the case of integrity violations or after an application 
program “crashes”, it is sufficient to roll back and then repeat one or several transactions. 
With severe errors, it may be necessary to retrieve earlier saves from backup archives and 
restore the database state by partial transaction reruns.

In order to roll back transactions, the database system requires certain information. 
Usually, a copy of an object (called before image) is written to a log file3 before the 
object is modified. In addition to the objectʼs old values, the file also contains markers 
signaling beginning and end of the transaction. In order for the log file to be used effi-
ciently in the case of errors, checkpoints are set either based on commands in the appli-
cation program or for certain system events. A system-wide checkpoint contains a list 
of the transactions active up until that time. If a restart is needed, the database system 
merely has to find the latest checkpoint and reset the unfinished transaction, e.g., with 
the SQL command ROLLBACK.

This procedure is illustrated in Fig. 4.6: After system failure, the log file must be read 
backwards until the last checkpoint. Of special interest are those transactions that had not 
been able to indicate their correct conclusion with an EOT (end of transaction) marker, 
such as the transactions TRX_2 and TRX_5 in our example. For them, the previous data-
base state must be restored with the help of the log file (undo). For TRX_5, the file must 
be read back until the BOT (beginning of transaction) marker in order to retrieve the 
transactionʼs before image. Regardless of the type of checkpoint, the newest state (after 
image) must be restored for at least TRX_4 (redo).

The recovery of a database after a defect in an external storage medium requires a 
backup of the database and an inventory of all updates since the creation of the backup 
copy. Backups are usually made before and after the end-of-day processing, since they 
are quite time-consuming. During the day, changes are recorded in the log file, with the 
most up-to-date state for each object being listed.

Securing databases requires a clear-cut disaster prevention procedure on the part of 
the responsible database specialists. Backup copies are usually stored in generations, 
physically separate, and sometimes redundant. The creation of backup files and the 

3This log file is not to be confused with the log from Sect. 4.2.2.

4.2  Transaction Concept
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removal of old versions must be fully documented. In the case of errors or for disaster 
drills, the task is to restore current data from backup files and logged changes within a 
reasonable timeframe.

4.3	� Consistency in Massive Distributed Data

4.3.1	� BASE and the CAP Theorem

It has become clear in practice that for large and distributed data storage systems, con-
sistency cannot always be the primary goal; sometimes availability and partition toler-
ance take priority.

In relational database systems, transactions at the highest isolation level are always 
atomic, consistent, isolated, and durable (ACID, Sect. 4.2.1). Web-based applications, on 
the other hand, are geared towards high availability and the ability to continue work-
ing if a computer node or a network connection fails. Such partition tolerant systems 
use replicated computer nodes and a softer consistency requirement called BASE (basi-
cally available, soft state, eventually consistent). This allows replicated computer nodes 
to temporarily hold diverging data versions and only be updated with a delay.

During a symposium in 2000, Eric Brewer of the University of California, Berkeley, 
presented the hypothesis that the three properties of consistency, availability, and parti-
tion tolerance cannot exist simultaneously in a massive distributed computer system.

BOT: Begin of Transaction
EOT: End of Transaction

TRX_1BOT EOT

TRX_3BOT EOT

TRX_4BOT EOT

TRX_5BOT

TRX_2BOT

TRX_6BOT EOT

�
Time

Checkpoint
�

System
crash

Fig. 4.6   Restart of a database system after an error
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•	 Consistency (C): When a transaction changes data in a distributed database with rep-
licated nodes, all reading transactions receive the current state, no matter from which 
node they access the database.

•	 Availability (A): Running applications operate continuously and have acceptable 
response times.

•	 Partition tolerance (P): Failures of individual nodes or connections between nodes 
in a replicated computer network do not impact the system as a whole, and nodes can 
be added or removed at any time without having to stop operation.

This hypothesis was later proven by researchers at MIT in Boston and established as the 
CAP theorem.

u CAP theorem  The CAP theorem states that in any massive distributed data manage-
ment system, only two of the three properties consistency, availability, and partition tol-
erance can be ensured.

In short, massive distributed systems can have a combination of either consistency and 
availability (CA), consistency and partition tolerance (CP), or availability and partition 
tolerance (AP), but it is impossible to have all three at once (Fig. 4.7).

Use cases of the CAP theorem may include:

•	 Stock exchange systems requiring consistency and availability (CA), which are 
achieved by using relational database systems following the ACID principle.

•	 Country-wide networks of ATMs, which still require consistency, but also partition tol-
erance, while somewhat long response times are acceptable (CP); distributed and rep-
licated relational or NoSQL systems supporting CP are best suited for this scenario.

•	 The domain name system (DNS)  internet service is used to resolve URLs into 
numerical IP addresses in TCP/IP (transmission control protocol/internet protocol) 
communication and must, therefore, always be available and partition tolerant (AP), 
which is a task that requires NoSQL data management systems, since a relational 
database system cannot provide global availability and partition tolerance.

C A C

P

A

P

Consistency

Availability
&

Consistency

Partition tolerance
&

Availability

Partition tolerance
&

Fig. 4.7   The three possible combinations under the CAP theorem
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4.3.2	� Nuanced Consistency Settings

Ideally, there would be only one approach to ensuring consistency in a distributed sys-
tem. Whenever a change is made, all reading transactions see the change and are certain 
to get the current state. For instance, if a hotel chain offers online reservation via their 
website, any bookings are immediately recognized by all reading transactions and double 
bookings are prevented.

However, the CAP theorem has taught us that in networks of replicated computer 
nodes, only two out of three corresponding properties can be achieved at any time. 
International hotel chains commonly focus on AP, meaning they require high availability 
and partition tolerance. In exchange, they accept that bookings are made according to the 
BASE principle. There are other possible refinements that can be configured based on 
the following parameters:

•	 N = number of replicated nodes or number of copies in the cluster
•	 R = number of copies to be read (successful read)
•	 W = number of copies to be written (successful write)

With these three parameters N, R, and W, it is possible to formulate four basic options 
for nuanced consistency control. Figure 4.8 gives an overview of those variants for a 

Eventual consistency: W + R ≤ N Consistency by writes: W = N

Consistency by reads: R= N Consistency by quorum: W + R > N
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Fig. 4.8   Ensuring consistency in replicated systems
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sample case of three replicated nodes (N = 3). Initially, all nodes hold the object version 
A, before some nodes are subsequently overwritten with the new version B. The issue 
at hand is how reading programs can identify current versions if writing programs make 
modifications.

The first option is formulated as W + R≤N. In the example in Fig. 4.8 (top left) the 
parameters are set to N = 3, W = 1, and R = 2; W = 1 means that at least one node must 
be written successfully, while R2 requires at least two nodes to be read successfully. In 
the node accessed by the writing program, the old version A is replaced with the new 
version B. In the worst case scenario, the reading program accesses the other two nodes 
and receives the old version A from both of them. This option is, therefore, an example 
for eventual consistency.

One alternative is “consistency by writes”, in which W must match the number of rep-
licated nodes, i.e., W = N (Fig. 4.8, top right). Successful write operations replace ver-
sion A with the new version B in all three nodes. When a reading program accesses any 
node, it will always get the current version B.

Option three is called “consistency by reads”, since the number of reads equals the 
number of nodes (Fig. 4.8, bottom left). The new version B is only written on one node, 
so the consultation of all three nodes by a reading operation returns both the current ver-
sion B and the old version A. When a transaction receives multiple read results, such as 
versions A and B in this case, it has to establish the chronological order of the results, 
i.e., whether it is A before B (A < B) or B before A (B < A), in order to determine which 
is the newest. This is done with the help of vector clocks (Sect. 4.3.3).

The fourth and final case is “consistency by quorum” with the formula W + R>N 
(Fig. 4.8, bottom right). In our example, both parameters W and R are set to two, i.e., 
W = 2 and R = 2. This requires two nodes to be written and two nodes to be read suc-
cessfully. The read operation once again definitely returns both versions A and B so that 
the chronological order must be determined using vector clocks.

4.3.3	� Vector Clocks for the Serialization of Distributed Events

In distributed systems, various events may occur at different times due to concurring pro-
cesses. Vector clocks can be used to bring some order into these events. They are not 
time-keeping tools, but counting algorithms allowing for a partial chronological ordering 
of events in concurrent processes.

Below, we will look at concurrent processes in a distributed system. A vector clock is 
a vector with k components or counters Ci with i = 1…k, where k equals the number of 
processes. Each process Pi, therefore, has a vector clock Vi = [C1,…,Ck] with k counters.

A vector clock works along the following steps:

•	 Initially, all vector clocks are set to zero, i.e., Vi = [0,0,…,0] for all processes Pi and 
counters Ck.

4.3  Consistency in Massive Distributed Data
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•	 In each interprocess message, the sender includes its own vector clock for the 
recipient.

•	 When a process receives a message, it increments its own counter Ci in its vector by 
one, i.e., Ci = Ci + 1. It also merges its own updated vector Vi with the received vector 
W component by component by keeping the higher of two corresponding counter val-
ues, i.e., Vi[j] = max(Vi[j],W[j]) for all j = 1…k.

Figure 4.9 shows a possible scenario with three concurrent processes P1, P2, and P3.
Process P3 includes the three events B, D, and E in chronological order. It increments 

its own counter C3 in its vector clock by one for each event, resulting in the vector clocks 
[0,0,1] for event B, [0,0,2] for event D, and [0,0,3] for event E.

In process P1, event A occurs first and the processʼ counter C1 is raised by one in 
its vector clock V1, which is then [1,0,0]. Next, P1 sends a message M1 to process P2, 
including its current vector clock V1. Event C in process P2 first updates the processʼ 
own vector clock V2 to [0,1,0] before merging it with the newly received vector clock 
V1 = [1,0,0] into [1,1,0].

Similar mergers are executed for the messages M2 and M3. First, the processesʼ vector 
clocks V2/V1 are incremented by one in the processʼ own counter, then the maximum of 
the two vector clocks to be merged is determined and included. This results in the vector 
clocks V2 = [1,2,3] (since [1,2,3] = max([1,2,0], [0,0,3])) for event F and V1 = [3,2,3] for 
event G.

Process P1

Process P3

Process P2

Event A
[1,0,0]

Event G
[2,2,3]

Event C
[1,1,0]

Event F
[1,2,3]

Event B
[0,0,1]

Event D
[0,0,2]

Event E
[0,0,3]

N
1 w

ith [1,0,0] N 3 
w

ith
 [1

,2
,3

]

N 2 
w

ith
 [0

,0
,3

]

Fig. 4.9   Vector clocks showing causalities
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Causality can be established between two events in a distributed system: Event X hap-
pened before event Z if the vector clock V(X) = [X1,X2,…,Xk] of X is less than the vec-
tor clock V(Y) = [Y1,Y2,…,Yk] of Y. In other words:

u Causality principle cased on vector clocks  Event X happened before Event Y (or 
X < Y) if Xi < Yi for all i = 1…k and if there is at least one j where Xj < Yj.

In Fig. 4.9, it is clear that event B took place before event D, since the corresponding 
vector clocks [0,0,1] and [0,0,2] meet the abovementioned condition.

Comparing the events F and G, we can also see from their vector clocks [1,2,3] and 
[2,2,3] that F happened before G. The first counter of the vector clock V(F) is less than 
the first counter of V(G), and the other components are identical, and [1,2,3] < [2,2,3] in 
the vector clocks means a causality F < G.

Now assume two fictional vector clocks V(S) = [3,1,1] for an event S and 
V(T) = [1,1,2] for an event T. These two vector clocks are not comparable, since nei-
ther S < T nor T < S is true. The two events are concurrent, and no causality can be 
established.

Vector clocks are especially suitable for massive distributed and replicated computer 
structures. Since actual time clocks are hard to synchronize in global networks, vector 
clocks are used instead, Including as many components as there are replicas.

During the distribution of replicas, vector clocks allow us to determine which version 
is the newer and, therefore, more current one. For the two options “consistency by reads” 
and “consistency by quorum” in Sect. 4.3.2, read operations returned both the versions A 
and B. If these two versions have vector clocks, the causality condition described above 
can be applied to conclude that A < B, i.e., B is the newer version.

4.4	� Comparing ACID and BASE

There are some major differences between the ACID (atomicity, consistency, isolation, 
durability) and BASE (basically available, soft state, eventually consistent) approaches, 
as summarized in Fig. 4.10.

Relational database systems are strictly based on ACID, meaning that consistency is 
ensured at any time in both centralized and distributed systems. Distributed relational 
database systems require a coordinating program that implements all changes to table 
contents in full and creates a consistent database state. In the case of errors, the coordi-
nating program makes sure that the distributed database is not affected in any way and 
the transaction can be restarted.

NoSQL systems support ensuring consistency in various ways. Generally, changes in 
massive distributed data storage systems are written on the source node and replicated to 
all other nodes. However, this replication may come with a slight delay, so it is possible 
for nodes to not have the current database state available when accessed by user queries. 

4.4  Comparing ACID and BASE
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Individual nodes in the computer network are usually accessible (basically available), but 
may not have been properly updated yet (eventually consistent), i.e., they may be in a 
soft state.

Relational database systems commonly use pessimistic concurrency control proce-
dures which require locks to be placed and released according to the two-phase locking 
protocol (Sect. 4.2.3) for the operations of a transaction. If database applications execute 
disproportionately fewer changes than queries, optimistic methods (Sect. 4.2.4) may be 
deployed. If conflicts arise, the respective transactions must be restarted.

Massive distributed data management systems focused on availability and partition 
tolerance can only provide consistent states with a delay according to the CAP theorem. 
Moreover, placing and removing locks on replicated nodes would take an exorbitant 
effort. Most NoSQL systems, therefore, use optimistic concurrency control.

In terms of availability, relational database systems are on par with their alternatives 
up to a certain amount of data and distribution. Big Data applications, however, are gen-
erally based on NoSQL systems that offer high availability in addition to either partition 
tolerance or consistency.

All relational database systems require the explicit specification of tables, attributes, 
domains, keys, and other integrity constraints, which are then stored in the system cata-
log. Rules for referential integrity must be defined in the database schema (Sect. 3.8). 
Queries and changes using SQL rely on that information and cannot be executed without 
it. Most NoSQL systems do not have an explicit database schema, since changes can 
happen at any time in the semistructured or unstructured data.

Some NoSQL systems allow for more nuanced settings on how to ensure consistency, 
resulting in some fuzzy lines between ACID and BASE, as illustrated in Sect. 4.3.2.

ACID BASE

Consistency is the top priority
(strong consistency)

Mostly pessimistic concurrency
control methods with locking
protocols

Availability is ensured for
moderate volumes of data

Some integrity restraints (e.g.,
referential integrity) are ensured
by the database schema

Consistency is ensured only
eventually (weak consistency)

Mostly optimistic concurrency
control methods with nuanced
setting options

High availability and partition
tolerance for massive distributed
data storage

Some integrity restraints (e.g.,
referential integrity) are ensured
by the database schema

Fig. 4.10   Comparing ACID and BASE
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4.5	� Further Reading

Gray and Reuter (1993), Weikum (1988), and Weikum and Vossen (2002) provide 
detailed explanations of transaction concepts. The term ACID was first introduced 
by Härder and Reuter (1983). 2PL was defined by Eswaran et al. (1976) at the IBM 
Research Lab in San Jose. Bernstein et al. (1987) describe multi-user operation and 
recovery procedures, while the dissertation of Schaarschmidt (2001) presents concepts 
and languages for database backups. Another dissertation, this one by Störl (2001), is 
concerned with backup and recovery in database systems. Reuter (1981) explains trou-
bleshooting procedures for database systems, and both Castano et al. (1994) and Basta 
and Zgola (2011) discuss various methods for securing databases.

In 2000, Eric Brewer held a keynote presentation at the Symposium on Principles of 
Distributed Computing, which is credited as the first introduction of the CAP theorem 
(Brewer 2000). The theorem was proven 2 years later by Seth Gilbert and Nancy Lynch 
at MIT (Gilbert and Lynch 2002). Werner Vogels of Amazon.com described the many 
facets of consistency in the CACM (Communications of the Association for Computing 
Machinery) journal and coined the term “eventually consistent” (Vogels 2009). The 
nuanced consistency settings from Sect. 4.3.2 are based on the key-value store Riak and 
were compiled from the NoSQL database book by Redmond and Wilson (2012) and the 
manufacturerʼs information on Riak (2014). The approach of using quorums in distrib-
uted systems is based on the work of Gifford (1979), among others.
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5.1	� Processing of Homogeneous and Heterogeneous Data

Throughout the 1950s and 1960s, file systems were kept on secondary-storage media 
(tapes, drum memories, magnetic disks), before database systems became available on 
the market in the 1970s. Those file systems allowed for random, or direct, access to the 
external storage, i.e., specific records could be selected by using an address, without the 
entirety of records needing to be checked first. The access address was determined via an 
index or a hash function (Sect. 5.2.2).

The mainframe computers running these file systems were largely used for technical 
and scientific applications (computing numbers). With the emergence of database sys-
tems, computers also took over in business contexts (computing numbers and text) and 
became the backbone of administrative and commercial applications, since database sys-
tems support consistency in multi-user operation (ACID, Sect. 4.2.1). Today, many infor-
mation systems are still based on the relational database technology that replaced most 
of the previously used hierarchic or network-like database systems.

Relational database systems use only tables to store and handle data. A table is a set 
of records that can flexibly process structured data.

Structured data strictly adheres to a well-defined data structure with a focus on the 
following properties:

•	 Schema: The structure of the data must be communicated to the database system by 
specifying a schema (see the SQL command CREATE TABLE in Chap. 3). In addi-
tion to table formalization, integrity constraints are also stored in the schema (cf., e.g., 
the definition of referential integrity and the establishment of appropriate processing 
rules, Sect. 3.7).

System Architecture 5

https://doi.org/10.1007/978-3-658-24549-8_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-24549-8_5&domain=pdf
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•	 Data types: The relational database schema guarantees that for each use of the data-
base, the data manifestations always have the set data types (e.g., CHARACTER, 
INTEGER, DATE, TIMESTAMP, etc.; see also the SQL tutorial at www.sql–nosql.
org). To do so, the database system consults the system tables (schema information) 
at every SQL invocation. Special focus is on authorization and data protection rules, 
which are checked via the system catalog (see VIEW concept and privilege assign-
ment via GRANT and REVOKE in Sect. 3.8, as well as the SQL tutorial at www.sql-
nosql.org).

Relational databases, therefore, mostly process structured and formatted data. In order to 
meet specific requirements in the fields of office automation, technology, and web appli-
cations (among others), SQL has been extended by data types and functions for alpha-
betical strings (CHARACTER VARYING), bit sequences (BIT VARYING, BINARY 
LARGE OBJECT), and text fragments (CHARACTER LARGE OBJECT) (see the SQL 
tutorial at www.sql-nosql.org). The integration of XML (eXtensible Markup Language) 
is also supported. These additions resulted in the definition of semistructured and 
unstructured data.

Semistructured data is defined as follows:

•	 They consist of a set of data objects whose structure and content is subject to continu-
ous changes.

•	 Data objects are either atomic or composed of other data objects (complex objects).
•	 Atomic data objects contain data values of a specified data type.

Data management systems for semistructured data work without a fixed database 
schema, since structure and content change constantly. A possible use case is con-
tent management systems for websites which can flexibly store and process webpages 
and multimedia objects. Such systems require extended relational database technology 
(Chap. 6), XML databases, or NoSQL databases (Chap. 7).

A data stream is a continuous flow of digital data with a variable data rate (records 
per unit of time). Data within a data stream is sorted chronologically and often given 
a timestamp. Besides audio and video data streams, this can also be a series of meas-
urements which are analyzed with the help of analysis languages or specific algorithms 
(language analysis, text analysis, pattern recognition, etc.). Unlike structured and semis-
tructured data, data streams can only be analyzed sequentially.

Figure 5.1 shows a simple use case for data streams. The setting is a multi-item 
English auction via an electronic bidding platform. At this auction, bidding starts at a set 
minimum. Participants can make multiple bids that have to be higher than the previous 
highest bid. Since electronic auctions have no physical location, time and duration of 
the auction are set in advance. The bidder who makes the highest bid during the set time 
wins the auction.

http://www.sql%e2%80%93nosql.org
http://www.sql%e2%80%93nosql.org
http://www.sql-nosql.org
http://www.sql-nosql.org
http://www.sql-nosql.org
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Any AUCTION can be seen as a relationship set between the two entity sets OBJECT 
and BIDDER. The corresponding foreign keys O# and B# are complemented by a times-
tamp and the sum offered (e.g., in USD) per bid. The data stream is used to show bidders 
the current standing bids during the auction. After the auction is over, the highest bids 
are made public, and the winners of the individual items are notified. The data stream 
can then be used for additional purposes, for instance bidding behavior analyses or dis-
closure in the case of legal contestation.

Unstructured data are digital data without any fixed structure. This includes multime-
dia data such as continuous text, music files, satellite imagery, or audio/video recordings. 
Unstructured data are often transmitted to a computer via digital sensors, for example 
in the data streams explained above, which can sequentially transport structured and/or 
unstructured data.

The processing of unstructured data or data streams calls for specially adapted soft-
ware packages. NoSQL databases or specific data stream management systems are used 
to fulfill the requirements of Big Data processing.

The next sections discuss several architectural aspects of SQL and NoSQL databases. 
Section 5.2 focuses on relational database technology. It shows how set-oriented que-
ries can be processed and optimized in SQL. Section 5.3 is about an important paral-
lelization method called MapReduce and explains how queries on massive distributed 
NoSQL databases can be executed efficiently. In Sect. 5.4, we look at storage and access 
structures that are used in both SQL and NoSQL databases, albeit in different forms. 

OBJECT BIDDERAUCTION

Timestamp in
hh:mm:ss

Object
number

Bidder
number

Bid in
USD

11:50:43
11:51:09
11:51:27
...

O7
O3
O3
...

B18
B43
B79
...

250
1300
1320
...

Timestamp O# B# Bid

Fig. 5.1   Processing a data stream

5.1  Processing of Homogeneous and Heterogeneous Data
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The three kinds discussed there are tree structures, address determination (hashing/con-
sistent hashing), and multidimensional data structures. Section 5.5 provides an example 
of a layered architecture with well-defined software layers, and Sect. 5.6 discusses why 
many web-based application systems use relational and nonrelational data storage simul-
taneously. Sources and literature for further reading are listed in Sect. 5.7.

5.2	� Storage and Access Structures

Storage and access structures for relational and nonrelational database systems should 
be designed to manage data in secondary storage as efficiently as possible. For large 
amounts of data, the structures used in main storage cannot simply be reproduced on the 
background memory. Instead, it is necessary to optimize the storage and access struc-
tures in order to enable reading and writing contents on external storage media with as 
few accesses as possible.

5.2.1	� Indexes and Tree Structures

An index of an attribute is an access structure that efficiently provides, in a specific 
order for each attribute value, the internal addresses of all records containing that attrib-
ute value. It is similar to the index of a book, where each entry—listed in alphabetical 
order—is followed by the numbers of the pages containing it.

For an example, we shall look at an index of the Name attribute for the EMPLOYEE 
table. This index, which remains invisible to standard users, can be constructed with the 
following SQL command:

CREATE INDEX IX1 ON EMPLOYEE(NAME);

For each name in the EMPLOYEE table, sorted alphabetically, either the identification 
key E# or the internal address of the employee tuple is recorded. The database system 
uses this index of employee names for corresponding queries or when executing a join. 
In this case, the Name attribute is the access key.

Tree structures can be used to store records or access keys and to index attributes in 
order to increase efficiency. For large amounts of data, the root, internal, and leaf nodes 
of the tree are not assigned individual keys and records, but rather entire data pages. In 
order to find a specific record, the tree then has to be searched.

With central memory management, the database system usually uses binary trees in 
the background in which the root node and each internal node has two subtrees. Such 
trees cannot be used unlimitedly for storing access keys or records for extensive data-
bases, since their height grows exponentially for larger amounts of data; large trees, how-
ever, are impractical for searching and reading data content on external storage media, 
since they require too many page accesses.
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The height of a tree, i.e., the distance between the root node and the leaves, is an indi-
cator for the number of accesses required on external storage media. To keep the number 
of external accesses as low as possible, it is common to make the storage tree structures 
for database systems grow in width instead of height. One of the most important of these 
tree structures is the B-tree (Fig. 5.2).

E19 Stewart Stow D6

E1 Murphy Kent D3

E7 Howard Cleveland D5

E4 Bell Kent D6

E# Name City Sub

Development
of a B-tree

E1 E4 E7 E19

Insert:
E3

Tree B1

E1 E3 E7 E19

Tree B2

E1 E2 E3 E7 E9 E18  E19

Split
into
subtrees

Insert:
E9, E18, E2, E24

Tree B3

M1 M2 M3

Tree B4

E1 E2 E3 E19 E24 E26E7 E9 E15

E# < E4 E4 < E# < E18 E# > E18

E4

E4

E4 E18
Insert:

E26, E15

Fig. 5.2   B-tree with dynamic changes

5.2  Storage and Access Structures
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A B-tree is a tree whose root node and internal nodes generally have more than two 
subtrees. The data pages represented by the individual internal and leaf nodes should not 
be empty, but ideally filled with key values or entire records. They are, therefore, usually 
required to be filled at least halfway with records or keys (except for the page associated 
with the root node).

u B-tree  A tree is a B-tree of the n-th order if

•	 it is fully balanced (the paths from the root to each leaf have the same length) and
•	 each node (except for the root node) has at least n and at the most 2*n entries in its 

data page.

That second condition also means that, since every node except the root node has at least 
n entries, each node has at least n subtrees. On the other hand, each node has a maximum 
of 2*n entries, i.e., no node of a B-tree can have more than 2*n subtrees.

Assume, for instance, that the key E# from the EMPLOYEE table is to be stored in a 
B-tree of the order n = 2 as an access structure, which results in the tree shown in Fig. 5.2.

Nodes and leaves of the tree cannot contain more than four entries due to the order 
2. Apart from the keys, we will assume that the pages for the nodes and leaves hold not 
only key values, but also pointers to the data pages containing the actual records. This 
means that the tree in Fig. 5.2 represents an access tree, not the data management for the 
records in the EMPLOYEE table.

In our example, the root node of the B-tree contains the four keys E1, E4, E7, and 
E19 in numerical order. When the new key E3 is added, the root node must be split 
because it cannot hold any more entries. The split is done in a way that produces a bal-
anced tree. The key E4 is declared the new root node, since it is in between two equal 
halves of the remaining key set. The left subtree is formed of key values that meet the 
condition “E# lower than E4” (in this case, E1 and E3), the right subtree consists of key 
values where “E# higher than E4” (i.e., E7 and E19). Additional keys can be inserted in 
the same way, while the tree retains a fixed height.

The database system searches for individual keys top-down, e.g., if the candidate key 
E15 is requested from the B-tree B4 in Fig. 5.2, it checks against the entries in the root 
node. Since E15 lies between the keys E4 and E18, it selects the corresponding subtree 
(in this case, only one leaf node) and continues the search until it finds the entry in the 
leaf node. In this simple example, the search for E15 requires only two page accesses, 
one for the root node and one for the leaf node.

The height of a B-tree determines the access times for keys as well as the data associ-
ated with a (search) key. The access times can be reduced by increasing the branching 
factor of the B-tree.

Another option is a leaf-oriented B-tree (commonly called B + tree), where the actual 
records are never stored in internal nodes but only in leaf nodes. The internal roots con-
tain only key entries in order to keep the tree as low as possible.
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5.2.2	� Hashing Methods

Key hashing or simply hashing is an address determination procedure that is at the core 
of any distributed data and access structures. Hash functions map a set of keys on a set of 
addresses forming a contiguous address space.

A simple hash function assigns a number between 1 and n to each key of a record as 
its address. This address is interpreted as a relative page number, with each page holding 
a set number of key values with or without their respective records.

Hash functions must meet the following requirements:

•	 It must be possible to follow the transformation rule with simple calculations and 
few resources.

•	 The assigned addresses must be distributed evenly across the address space.
•	 The probability of assignment collisions, i.e., the use of identical addresses for multi-

ple keys, must be the same for all key values.

There is a wide variety of hash functions, each of which has its pros and cons. One of the 
simplest and best-known algorithms is the division method.

u The division method of hashing  Each key is interpreted as an integer by using bit 
representation. The hash function H for a key k and a prime number p is given by the 
formula

H(k): = k mod p.
The integer “k mod p”—the remainder from the division of the key value k by the prime 

number p—is used as a relative address or page number. In the division method, the choice 
of the prime number p determines the memory use and the uniformity of distribution.

Figure 5.3 shows the EMPLOYEE table and how it can be mapped to different pages 
with the division method of hashing.

In this example, each page can hold four key values. The prime number chosen for 
p is 5. Each key value is now divided by 5, with the remaining integer determining the 
page number.

Inserting the key E14 causes problems, since the corresponding page is already full. 
The key E14 is placed in an overflow area. A link from page 4 to the overflow area main-
tains the affiliation of the key with the co-set on page 4.

There are multiple methods for handling overflows. Instead of an overflow area, addi-
tional hash functions can be applied to the extra keys. Quickly growing key ranges or 
complex delete operations often cause difficulties in overflow handling. In order to miti-
gate these issues, dynamic hashing methods have been developed.

Such dynamic hash functions are designed to keep memory use independent from 
the growth of keys. Overflow areas or comprehensive redistribution of addresses are 
mostly rendered unnecessary. The existing address space for a dynamic hash function 
can be extended either by a specific choice of hashing algorithm or by the use of a page 

5.2  Storage and Access Structures
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assignment table kept in the main memory, without the need to reload all keys or records 
already stored.

5.2.3	� Consistent Hashing

Consistent hashing functions belong to the family of distributed address calculations (see 
hashing methods in the previous section). A storage address or hash value is calculated 
from a set of keys in order to store the corresponding record.

In Big Data applications, the key-value pairs are assigned to different nodes in the 
computer network. Based on the keys (e.g., term or day), their values (e.g., frequencies) 
are stored in the corresponding node. The important part is that with consistent hashing, 
address calculation is used for both the node addresses and the storage addresses of the 
objects (key-value).
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E1 Murphy Kent D3

E7 Howard Cleveland D5

E4 Bell Kent D6

E# Name City Sub

Hash function:
k mod 5

Insert: E19 E1 E4E7
k mod 5: 4 1 42

Page 0 Page 4Page 3Page 2Page 1

E1 E7 E19
E4

Insert: E3 E9 E2E18
k mod 5: 3 4 23

Page 0 Page 4Page 3Page 2Page 1

E1 E7
E2

E19
E4
E9

E24

E24
4

E3
E18

Insert: M26 M15 M22M14
k mod 5: 1 0 24

Page 0 Page 4Page 3Page 2Page 1

E1
E26

E7
E2
E22

M20
0

E3
E18

E15
E20 M19

M4
M9
E14

E19
E4
E9

E24

Overflow area

Fig. 5.3   Hash function using the division method
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Figure 5.4 provides a schematic representation of consistent hashing. The address 
space of 0 to 2x key values is arranged in a circle; then a hash function is selected to run 
the following calculations:

•	 Calculation of node addresses: The nodesʼ network addresses are mapped to storage 
addresses using the selected hash function, then entered on the ring.

•	 Calculation of object addresses: The keys of the key-value pairs are transformed 
into addresses with the hashing algorithm, and the objects are entered on the ring.

The key-value pairs are stored on their respective storage nodes according to a simple 
assignment rule: The objects are assigned to the next node (clockwise) and managed there.

Figure 5.4 shows an address space with three nodes and eight objects (key-value 
pairs). The positioning of the nodes and objects results from the calculated addresses. 
According to the assignment rule, objects O58, O1, and O7 are stored on node K1; objects 
O15 and O18 on node K2; and the remaining three objects on node K3.

The strengths of consistent hashing best come out in flexible computer structures, 
where nodes may be added or removed at any time. Such changes only affect objects 
directly next to the respective nodes on the ring, making it unnecessary to recalculate 
and reassign the addresses for a large number of key-value pairs with each change in the 
computer network.

Figure 5.5 illustrates two changes: Node K2 is removed and a new node K4 is added. 
After the local adjustments, object O18, which was originally stored in node K2, is now 
stored in node K3. The remaining object O15 is transferred to the newly added node K4 
according to the assignment rule.

Address space 0 ... 2 x

Node K¹
O58
O1
O7

Node K²
O15
O18

Node K³
O37
O39
O45

O1

O7

O15

O18

O37

O39

O45

O58

Fig. 5.4   Ring with objects assigned to nodes
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Consistent hashing can also be used for replicated computer networks. The desired 
copies of the objects are simply given a version number and entered on the ring. This 
increases partition tolerance and the availability of the overall system.

Another option is the introduction of virtual nodes in order to spread the objects 
across nodes more evenly. In this method, the nodesʼ network addresses are also 
assigned version numbers in order to be represented on the ring.

Consistent hashing functions are used in many NoSQL systems, especially in imple-
mentations of key-value store systems.

5.2.4	� Multidimensional Data Structures

Multidimensional data structures support access to records with multiple access key val-
ues. The combination of all those access keys is called a multidimensional key. A multi-
dimensional key is always unique, but does not have to be minimal.

A data structure that supports such multidimensional keys is called a multidimensional 
data structure. For instance, an EMPLOYEE table with the two key parts Employee Number 
and Year of Birth can be seen as a two-dimensional data structure. The employee number 
forms one part of the two-dimensional key, but remains unique in itself. The Year attribute is 
the second part and serves as an additional access key, without having to be unique.

Unlike tree structures, multidimensional data structures are designed so that no one 
key part controls the storage order of the physical records. A multidimensional data 
structure is called symmetrical if it permits access with multiple access keys without 
favoring a certain key or key combination. For the sample EMPLOYEE table, both key 
parts, Employee Number and Year of Birth, should be equally efficient in supporting 
access for a specific query.

One of the most important multidimensional data structures is the grid file, or bucket grid.

Address space 0 ... 2 x

Node K¹
O58
O1
O7

Node K²
O15
O18
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O39

O45
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O15
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Node K³
O37
O39
O45
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Fig. 5.5   Dynamic changes in the computer network
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u Grid file  A grid file is a multidimensional data structure with the following properties:

•	 It supports access with a multidimensional access key symmetrically, i.e., no key 
dimension is dominant.

•	 It enables reading any record with only two page accesses, one on the grid index, 
the second on the data page itself.

A grid file consists of a grid index and a file containing the data pages. The grid index 
is a multidimensional space with each dimension representing a part of the multidimen-
sional access key. When records are inserted, the index is partitioned into cells, alter-
nating between the dimensions. Accordingly, the example in Fig. 5.6 alternates between 

E19 Stewart 1958

E1 Murphy 1967

E7 Howard 1963

E4 Bell 1956

E# Name YearDevelopment of a grid file

E#

E#

Year

E1,1967

E7,1963

E4,1956

E19,1958

File G1

Insert:
E3,1962

Year

E3,1962
Split at
1960

File G2

Insert:
E9,1952
E18,1969
E2,1953
E24,1964

Year

E#

Split at
M15

File G3

E18,1969

E24,1964

E2,1953
E9,1952

Insert:
E26,1952
E15,1953

Year

E#

Split at
1955

File G4

E26,1958

E15,1953

Fig. 5.6   Dynamic partitioning of a grid index
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Employee Number and Year of Birth for the two-dimensional access key. The resulting 
division limits are called the scales of the grid index.

One cell of the grid index corresponds to one data page and contains at least n and at 
the most 2*n entries, n being the number of dimensions of the grid file. Empty cells must 
be combined with other cells so that the associated data pages can have the minimum 
number of entries. In our example, data pages can hold no more than four entries (n = 2).

Since the grid index is generally large, it has to be stored in secondary memory along 
with the records. The set of scales, however, is small and can be held in the main mem-
ory. The procedure for accessing a specific record is, therefore, as follows: The system 
searches the scales with the k key values of the k-dimensional grid file and determines 
the interval in which each individual part of the search key is located. These intervals 
describe a cell of the grid index, which can then be accessed directly. Each index cell 
contains the number of the data page with the associated records, so that one more 
access, to the data page of the previously identified cell, is sufficient to find whether or 
not there is a record matching the search key.

The two-disk-access maximum, i.e., no more than two accesses to secondary memory, 
is guaranteed for the search for any record. The first access is to the appropriate cell of 
the grid index, the second to the associated data page. As an example, the employee with 
number E18, born in 1969, is searched in the grid file G4 from Fig. 5.6: The employee 
number E18 is located in the scale interval E15 to E30, i.e., in the right half of the grid 
file. The year 1969 can be found between the scales 1960 and 1970, or in the top half. 
With those scales, the database system finds the address of the data page in the grid 
index with its first access. The second access, to the respective data page, leads to the 
requested records with the access keys (E18, 1969) and (E24, 1964).

A k-dimensional grid file supports queries for individual records or record areas. 
Point queries can be used to find a specific record with k access keys. It is also possible 
to formulate partial queries specifying only a part of the key. With a range query, on the 
other hand, users can examine a range for each of the k key parts. All records whose key 
parts are in the defined range are returned. Again, it is possible to only specify and ana-
lyze a range for part of the keys (partial range query).

The search for the record (E18, 1969) described above is a typical example of a point 
query. If only the employeeʼs year of birth is known, the key part 1969 is specified 
for a partial point query. A search for all employees born between 1960 and 1969, for 
instance, would be a (partial) range query. In the example in Fig. 5.6, this query targets 
the upper half of grid index G4, so only those two data pages have to be searched. This 
indexation method allows for the results of range and partial range queries in grid files to 
be found without the need to sift through the entire file.

In recent years, various multidimensional data structures efficiently supporting mul-
tiple access keys symmetrically have been researched and described. The market range 
of multidimensional data structures for SQL and NoSQL databases is still very limited, 
but web-based searches are increasing the demand for such storage structures. Especially 
geographic information systems must be able to handle both topological and geometrical 
queries efficiently.



155

5.3	� Translation and Optimization of Relational Queries

5.3.1	� Creation of Query Trees

The user interfaces of relational database systems are set-oriented, since entire tables or 
views are provided for the users. When a relational query and data manipulation language 
is used, the database system has to translate and optimize the respective commands. It is 
vital that neither the calculation nor the optimization of the query tree require user actions.

u Query tree  Query trees graphically visualize relational queries with the equivalent 
expressions of relational algebra. The leaves of a query tree are the tables used in the 
query; root and internal nodes contain the algebraic operators.

Figure 5.7 illustrates a query tree using SQL and the previously introduced EMPLOYEE 
and DEPARTMENT tables. Those tables are queried for a list of cities where the IT 
department members live:

SELECT City

FROM EMPLOYEE, DEPARTMENT

WHERE Sub = D# AND Department_Name = ’IT’

This query can also be expressed algebraically by a series of operators:
TABLE: = π City (σ Department_Name=IT
(EMPLOYEE|X| Sub=D# DEPARTMENT))
This expression first calculates a join of the EMPLOYEE and the DEPARTMENT 

tables via the shared department number. Next, those employees working in the depart-
ment with the name IT are selected for an intermediate result, and finally, the requested 
cities are returned with the help of a projection. Figure 5.7 shows this expression of alge-
braic operators represented in the corresponding query tree.

This query tree can be interpreted as follows: The leaf nodes are the two tables 
EMPLOYEE and DEPARTMENT used in the query. They are first combined in one 
internal node (join operator), then reduced to those entries with the department name IT 
in a second internal node (select operator). The root node represents the projection gen-
erating the results table with the requested cities.

Root and internal nodes of query trees refer to either one or two subtrees. If the opera-
tor forming a node works with one table, it is called a unary operator; if it affects two 
tables, it is a binary operator. Unary operators, which can only manipulate one table, are 
the project and select operators (Figs. 3.2 and 3.3). Binary operators involving two tables 
as operands are the set union, set intersection, set difference, Cartesian product, join, and 
divide operators.

Creating a query tree is the first step in translating and executing a relational database 
query. The tables and attributes specified by the user must be available in the system 

5.3  Translation and Optimization of Relational Queries
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tables before any further processing takes place. The query tree is, therefore, used to 
check both the query syntax and the userʼs access permissions. Additional security meas-
ures, such as value-dependent data protection, can only be assessed during the runtime.

The second step after this access and integrity control is selection and optimization of 
access paths; the actual code generation or interpretative execution of the query is step 
three. With code generation, an access module is stored in a module library for later use; 
alternatively, an interpreter can take over dynamic control to execute the command.

5.3.2	� Optimization by Algebraic Transformation

As demonstrated in Chap. 3, the individual operators of relational algebra can also be 
combined. If such combined expressions generate the same result despite a different 
order of operators, they are called equivalent expressions. Equivalent expressions allow 

EMPLOYEE

E19 Stewart E Main Street Stow D6

E1 Murphy Murray Road Kent D3

E7 Howard Lorain Avenue Cleveland D5

E4 Bell S Water Street Kent D6

E# Name Street City Sub

DEPARTMENT

D3 IT

D5 HR

D6 Accounting

A# DepartmentName

SELECT City
FROM  EMPLOYEE, DEPARTMENT
WHERE  Sub = D# AND

DepartmentName = ‘IT’

SQL query

Query tree πCity

DEPARTMENTEMPLOYEE

σDepartmentName=IT

|×|Sub=D#

Root node

Internal node

Leaf node

Fig. 5.7   Query tree of a qualified query on two tables
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for database queries to be optimized with algebraic transformations without affecting the 
result. By thus reducing the computational expense, they form an important part of the 
optimization component of a relational database system.

The huge impact of the sequence of operators on the computational expense can be 
illustrated with the example query from the previous section: The expression

TABLE: = π City
(σ Department_Name = IT
(EMPLOYEE |X| Sub=D# DEPARTMENT))
can be substituted with the following equivalent expression, as shown in Fig. 5.8:
TABLE: = π City
(π Sub,City (EMPLOYEE)
|x| Sub=D#
π D# (σ Department_Name=IT (DEPARTMENT)))
Here, the first step is the selection (σ Department_Name = IT) on the DEPARTMENT table, 

since only the IT department is relevant to the query. Next are two projection operations: 
one (π Sub,City) on the EMPLOYEE table, another (π D#) on the intermediate table with 
the IT department from step one. Only now is the join operation (|x|Sub=D#) via the depart-
ment number executed, before the final projection (πCity) on the cities is done. While the 
end result is the same, the computational expense is significantly lower this way.

SELECT City
FROM  EMPLOYEE, DEPARTMENT
WHERE  Sub = D# AND

DepartmentName = ‘IT’

Example query

Optimized
query tree

πCity

DEPARTMENT

EMPLOYEE
σDepartmentName=IT

|×|Sub=D#

πSub,City πD#

Fig. 5.8   Algebraically optimized query tree
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It is generally advisable to position projection and selection operators in the query 
tree as close to the leaves as possible to obtain only small intermediate results before 
calculating the time-intensive and, therefore, expensive join operators. A successful 
transformation of a query tree with such a strategy is called algebraic optimization; the 
following principles apply:

•	 Multiple selections on one table can be merged into one so the selection predicate 
only has to be validated once.

•	 Selections should be made as early as possible to keep intermediate results small. 
To this end, the selection operators should be placed as close to the leaves (i.e., the 
source tables) as possible.

•	 Projections should also be run as early as possible, but never before selections. 
Projection operations reduce the number of columns and often also the tuples.

•	 Join operators should be calculated near the root node of the query tree, since they 
require a great deal of computational expense.

In addition to algebraic optimization, the use of efficient storage and access struc-
tures (Sect. 5.2) can also achieve significant gains in processing relational queries. For 
instance, database systems will improve selection and join operators based on the size 
of the affected tables, sorting orders, index structures, etc. At the same time, an effective 
model for estimating access costs is vital to decide between multiple possible processing 
sequences.

Cost formulas are necessary to calculate the computational expense of different data-
base queries, such as sequential searches within a table, searches via index structures, 
the sorting of tables or subtables, the use of index structures regarding join attributes, 
or computations of equi-joins across multiple tables. Those cost formulas involve the 
number of accesses to physical pages and creates a weighted gauge for input and output 
operations as well as CPU (central processing unit) usage. Depending on the computer 
configuration, the formula may be heavily influenced by access times for external storage 
media, caches, and main memories, as well as the internal processing power.

5.3.3	� Calculation of Join Operators

A relational database system must provide various algorithms that can execute the opera-
tions of relational algebra and relational calculus. The selection of tuples from multiple 
tables is significantly more expensive than a selection from one table. The following sec-
tion will, therefore, discuss the different join strategies, even though casual users will 
hardly be able to influence the calculation options.

Implementing a join operation on two tables aims to compare each tuple of one 
table with all tuples of the other table concerning the join predicate and, when there is 
a match, insert the two tuples into the results table as a combined tuple. Regarding the 
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calculation of equi-joins, there are two basic join strategies: nested join and sort-merge 
join.

u Nested join  For a nested join between a table R with an attribute A and a table S with 
an attribute B, each tuple in R is compared to each tuple in S to check whether the join 
predicate R.A = S.B is fulfilled. If R has n tuples and S has m tuples, this requires n 
times m comparisons.

The algorithm for a nested join calculates the Cartesian product and simultaneously 
checks whether the join predicate is met. Since we compare all tuples of R in an outer 
loop with all tuples of S from an inner loop, the expense is quadratic. It can be reduced if 
an index (Sect. 5.2.1 exists for attribute A and/or attribute B.

Figure 5.9 illustrates a heavily simplified algorithm for a nested join of employee 
and department information from the established example tables. OUTER_LOOP and 
INNER_LOOP are clearly visible and show how the algorithm compares all tuples of the 
EMPLOYEE table to all tuples of the DEPARTMENT table.

For the join operation in Fig. 5.9, there is an index for the D# attribute, since it is 
the primary key1 of the DEPARTMENT table. The database system uses the index 
structure for the department number by not going through the entire DEPARTMENT 
table tuple by tuple for each iteration of the inner loop, but rather accessing tuples 

NESTED_JOIN (Sub,D#):
 OUTER_LOOP (EMPLOYEE)
  READ (Sub)
   INNER_LOOP (DEPARTMENT )
    READ (D#)
    IF Sub=D#
    THEN OUTPUT (E#, Name,
    City, Sub, D#, DepartmentName)
   END INNER_LOOP
 END OUTER_LOOP
END NESTED_JOIN

Nested join Sub D#

D6

D3

D5

D6

D6

D5

D3

Example

Fig. 5.9   Computing a join with nesting

1The database system automatically generates index structures for each primary key; advanced 
index structures are used for concatenated keys.
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directly via the index. Ideally, there is also an index for the Sub (subordinate) attribute 
of the EMPLOYEE table for the database system to use for optimization. This exam-
ple illustrates the importance of the selection of suitable index structures by database 
administrators.

A more efficient algorithm than a nested join is available if the tuples of tables R and 
S are already sorted physically into ascending or descending order by the attributes A 
and B of the join predicate, respectively. This may require an internal sort before the 
actual join operation in order to bring both of the tables into matching order. The compu-
tation of the join then merely requires going through the tables for ascending or descend-
ing attribute values of the join predicate and simultaneously comparing the values of A 
and B. This strategy is characterized as follows:

u Sort-merge join  A sort-merge join requires the tables R and S with the join predicate 
R.A = S.B to be sorted by the attribute values for A of R and B of S, respectively. The 
algorithm computes the join by making comparisons in the sorting order. If the attrib-
utes A and B are uniquely defined (e.g., as primary and foreign key), the computational 
expense is linear.

Figure 5.10 shows a basic algorithm for a sort-merge join. First, both tables are sorted 
by the attributes used in the join predicate; then the algorithm goes through them in the 
sorting order and runs the comparisons R.A = S.B. Generally, the attributes A and B can 
have a complex relationship, i.e., attribute values can appear multiple times in both col-
umn R.A and column S.B. In that case, there may be multiple join-compatible tuples 
from S for any one tuple from R and vice versa. For such attribute values, the respective 
tuples from R and S must, therefore, be combined via a nested partial join.

SORT_MERGE_JOIN (Sub,D#):
 SORT (EMPLOYEE) ON (Sub)
 SORT (DEPARTMENT ) ON (D#)
 WHILE
  i_SCAN (EMPLOYEE) AND
  j_SCAN (DEPARTMENT ) DO
  IF Sub=D#
  THEN OUTPUT (E#, Name,
  City, Sub, D#, DepartmentName)
 END WHILE
END SORT_MERGE_JOIN

Sort-merge join Sub D#

D6

D5

D3

D3

D6

D6

D5

Example

i j

Fig. 5.10   Going through tables in sorting order



161

In the query of the EMPLOYEE and DEPARTMENT tables, the sort-merge join is 
linearly dependent on the occurrences of the tuples, since D# is a key attribute. The algo-
rithm only has to go through both tables once to compute the join.

Database systems are generally unable to select a suitable join strategy—or any other 
access strategy—a priori. Unlike algebraic optimization, this decision hinges on the cur-
rent content state of the database. It is, therefore, vital that the statistical information 
contained in the system tables is regularly updated, either automatically at set intervals 
or manually by database specialists.

5.4	� Parallel Processing with MapReduce

Analyses of large amounts of data require a division of tasks utilizing parallelism in 
order to produce results within a reasonable time. The MapReduce method can be used 
for both computer networks and mainframes; the following section discusses the first, 
distributed option.

In a distributed computer network, often consisting of cheap, horizontally scaled com-
ponents, computing processes can be distributed more easily than data sets. Therefore, 
the MapReduce method has gained widespread acceptance for web-based search and 
analysis tasks. It employs parallel processing to generate and sort simple data extracts 
before outputting the results:

•	 Map phase: Subtasks are distributed between various nodes of the computer network 
to use parallelism. On the individual nodes, simple key-value pairs are extracted based 
on a query and then sorted (e.g., via hashing) and output as intermediate results.

•	 Reduce phase: In this phase, the abovementioned intermediate results are consoli-
dated for each key or key range and output as the final result, which consists of a list 
of keys with the associated aggregated value instances.

Figure 5.11 shows a simple example of a MapReduce procedure. Documents or websites 
are to be searched for the terms algorithm, database, NoSQL, key, SQL, and distribution. 
The requested result is the frequency of each term.

The Map phase consists of the two parallel mapping functions M1 and M2. M1 gener-
ates a list of key-value pairs, with the search terms as key and their frequencies as value. 
M2 simultaneously executes a similar search on another computer node with different 
documents or websites. The preliminary results are then sorted alphabetically with the 
help of a hashing algorithm. For the upper part, the first letters A to N of the keys (search 
terms) are the sorting criterion; in the lower part, it is the letters O-Z.

The Reduce phase in Fig. 5.11 combines the intermediate results. The Reduce func-
tion R1 adds up the frequencies for the terms starting with A to N; R2 does the same for 
those starting with O to Z. The result, sorted by frequency of the search terms, are one 
list with NoSQL (4), database (3), and algorithm (1), and a second list with SQL (3), 
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162 5  System Architecture

distribution (2), and key (1). The final result combines these two lists and sorts them by 
frequency.

The MapReduce method is based on common functional programming languages 
such as LISP (LISt Processing), where the map() function calculates a modified list for 
all elements of an original list as an intermediate result. The reduce() function aggre-
gates individual results and reduces them into an output value.

MapReduce has been improved and patented by Google developers for huge amounts 
of semistructured and unstructured data. However, the function is also available in many 
open-source tools. The procedure plays an important role in NoSQL databases (Chap. 7), 
where various manufacturers use the approach for retrieving database entries. Due to its 
use of parallelism, the MapReduce method is not only useful for data analysis, but also 
for load distribution, data transfer, distributed searches, categorizations, and monitoring.

5.5	� Layered Architecture

It is considered a vital rule for the system architecture of database systems that future 
changes or expansions must be locally limitable. Similarly to the implementation of 
operating systems or other software components, fully independent system layers that 
communicate via defined interfaces are introduced into relational and nonrelational data-
base systems.

NoSQL
Algorithm

SQL

NoSQL
Distribution

SQL Database
NoSQL Key

Algorithm 1

NoSQL 2

Distribution 2

Database 3

NoSQL 2

Key 1

SQL 2

M2

Hashing A to N

Hashing O to Z

Algorithm 1

NoSQL 2

Database 3

NoSQL 2

SQL 1

Distribution 2

Key 1

SQL 2

R1

R2

NoSQL 4

Database 3

Algorithm 1

SQL 3

Distribution 2

Key 1SQL Database
NoSQL 

Database

SQL 1

M1
Distribution

Fig. 5.11   Determining the frequencies of search terms with MapReduce
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Figure 5.12 gives an overview of the five layers of system architecture based on rela-
tional database technology. The section below further shows how those layers corre-
spond to the major features described in Chap. 4 and the previous sections of Chap. 5.

u Layer 1: Set-oriented Interface  The first layer is used to describe data structures, 
provide set operations, define access conditions, and check integrity constraints (see 
Sect. 4.2). Either during early translation and generation of access module or during 
runtime, it is necessary to check syntax, resolve names, and select access paths. There is 
room for considerable optimization in the selection of access paths.

Layer Objects Operators

1

End user

Query translation,
access optimization

2 Transaction and
cursor management

3 Access path and
record management

4 Cache processing with
insertion policy

5 File management

Storage medium

Tables or
views

Relational algebra,
relational calculus

Tuples
Search and
navigation

Internal records
(B-tree, hashing,
grid file)

Record insertion,
structure changes

Segments,
pages

Page provision
and release

Files,
blocks

Reads and writes
on blocks

Traces,
cylinder

Channel commands

Fig. 5.12   Five-layer model for relational database systems
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u Layer 2: Record-oriented Interface  The second layer converts logical records and 
access paths into physical structures. A cursor concept allows for navigating or process-
ing records according to the physical storage order, positioning specific records within 
a table, or providing records sorted by value. Transaction management, as described in 
Sect. 4.2, must be used to ensure that the consistency of the database is maintained and 
no deadlocks arise between various user requests.

u Layer 3: Storage and access structures  The third layer implements physical records 
and access paths on pages. The number of page formats is limited, but in addition to tree 
structures and hashing methods, multidimensional data structures should be supported in 
the future. These common storage structures are designed for efficient access to external 
storage media. Physical clustering and multidimensional access paths can also be used to 
achieve further optimization in record and access path management.

u Layer 4: Page assignment  For reasons of efficiency and to support the implementa-
tion of recovery procedures, the fourth layer divides the linear address space into seg-
ments with identical page limits. The file management provides pages in a cache on 
request. On the other hand, pages can be inserted into or substituted within the cache 
with insertion or replacement policies. There is not only the direct assignment of pages 
to blocks, but also indirect assignment, such as caching methods which allow for multi-
ple pages to be inserted into the database cache atomically.

u Layer 5: Memory allocation  The fifth layer realizes memory allocation structures 
and provides block-based file management for the layer above. The hardware properties 
remain hidden from the file and block-oriented operations. The file management usually 
supports dynamically growing files with definable block sizes. Ideally, it should also be 
possible to cluster blocks and input and output multiple blocks with only one operation.

5.6	� Use of Different Storage Structures

Many web-based applications use different data storage systems to fit their various 
services. Using just one database technology, e.g., relational databases, is no longer 
enough. The wide range of requirements regarding consistency, availability, and partition 
tolerance demand a mix of storage systems, especially due to the CAP theorem.

Figure 5.13 shows a schematic representation of an online store. In order to guarantee 
high availability and partition tolerance, session management and shopping carts utilize 
key-value stores (Chap. 6). Orders are saved to a document store (Chap. 7) and custom-
ers and accounts are managed in a relational database system.

Performance management is a vital part of successfully running an online store. Web 
analytics are used to store key performance indicators (KPIs) of content and visitors in a 
data warehouse (Chap. 6). Specialized tools such as data mining and predictive business 
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analysis allow for regular assessments of business goals and the success of campaigns 
and other actions. Since analyses on a multidimensional data cube are time-consuming, 
the cube is kept in-memory.

Social media integration for the webshop is a good idea for many reasons. Products 
and services can be promoted and customersʼ reactions can be evaluated; in the case of 
problems or dissatisfaction, good communication and appropriate measures can avoid or 
mitigate possible negative impacts. Following blogs and relevant discussion threads on 
social networks can also help to discover and recognize important trends or innovation 
in the industry. Graph databases (Sect. 7.6) are the logical choice for the analysis of rela-
tionships between individual target groups.

The services needed for the online store and the integration of heterogeneous SQL 
and NoSQL databases can be realized with the REST (Representational State Transfer) 
architecture. It consists of five elements:

•	 Resource identification: Web resources are identified using a Uniform Resource 
Identifier (URI). Such resources can, for instance, be websites, files, services, or 
e-mail addresses. URIs have up to five parts: scheme (type of URI or protocol), author-
ity (provider or server), path, optional query (information to identify a resource), and 
optional fragment (reference within a resource). An example would be http://eShop.
com/customers/12345.

•	 Linking: Resources are connected via hyperlinks, i.e., electronic references. 
Hyperlinks or simply links are cross-references in hypertext documents that point to 
a location within the document itself or to another electronic document. An HTML 
hyperlink looks like this: <a href=http://eShop.com>Browse our online store for con-
temporary literature </a> .

Web store

Session mgmt
Shopping cart

Order
management

Customer &
account mgmt

Business
analytics

Social
media

Key-value
store

Document
store

Relational
database

InMemory
database

Graph
database

Fig. 5.13   Use of SQL and NoSQL databases in an online store

5.6  Use of Different Storage Structures

http://eShop.com/customers/12345
http://eShop.com/customers/12345
http://www.eshop.com%3ebrowse/
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•	 Standard methods: Any resource on the web can be manipulated with a set of meth-
ods. The standard methods of HTTP (HyperText Transfer Protocol), such as GET 
(request a resource from a server), POST (send data to a server), and DELETE (delete 
a resource), allow for a unified interface. This ensures that other web services can 
communicate with all resources at any time.

•	 Representations: Servers based on REST must be able to provide various representa-
tions of resources, depending on application and requirements. Besides the standard 
HTML (HyperText Markup Language) format, resources are often provided in XML 
(eXtensible Markup Language).

•	 Statelessness: Neither applications nor servers exchange state information between 
messages. This improves the scalability of services, e.g., load distribution on multiple 
computer nodes (cf., the MapReduce method).

REST offers a template for the development of distributed applications with heterogene-
ous SQL and NoSQL components. It ensures horizontal scalability in the case business 
volumes increase or new services become necessary.

5.7	� Further Reading

Some works exclusively discuss the architecture of database systems or even limit it 
down to individual levels of the layer architecture. Härder (1978) and Härder and Rahm 
(2001) present basic principles for the implementation of relational database systems 
(layer model). Lockemann and Schmidt (1993) also spotlight certain aspects of data 
architecture. Maier (1983), Paredaens et al. (1989), and Ullman (1982) consider the theo-
retical side of optimization issues.

The standard literature on NoSQL by Celko (2014), Edlich et al. (2011), and Sadalage 
and Fowler (2013) explains the cornerstones of Big Data and NoSQL, specifically giving 
an introduction to the MapReduce procedure, the CAP theorem, and to some extent con-
sistent hashing. The book by Redmond and Wilson (2012) provides an insightful exposi-
tion of the basics of SQL and NoSQL databases by example of seven specific systems.

In 2010, Google Inc. received a US patent for the MapReduce method for parallel 
processing of large amounts of data on massive distributed computers. Researchers Dean 
and Ghemawat (2004) of Google Inc. introduced the procedure at a symposium on oper-
ating systems in San Francisco.

Wiederhold (1983) discusses memory structures for database systems. The B-tree was 
introduced by Bayer (1992), hash functions are described by Maurer and Lewis (1975), 
and the grid file can be found in Nievergelt et al. (1984). Hash functions are used for 
multiple purposes in computer science and business IT. Consistent hashing, which places 
the address space for hash addresses on a circle, was developed mainly for Big Data and 
especially key-value stores. For example, Amazon uses this technique in their key-value 
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store Dynamo (DeCandia et al. 2007). MIT researchers Karger et al. (1997) wrote a fun-
damental paper on consistent hashing and distributed protocols.

The Representational State Transfer or REST paradigm is an architecture proposal for 
the development of web services. It was put forward by the World Wide Web Consortium 
(W3C 2014) and is currently used as the basis of most web-based applications. An in-
depth work on the subject was published by Tilkov (2011).
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6.1	� The Limits of SQL—and Beyond

Relational database technology and especially SQL-based databases came to dominate 
the market in the 1980s and 1990s. Today, SQL databases are still the de facto stand-
ard for most database applications in organizations and companies. This time-tested 
and widely supported technology will in all likelihood continue to be used for the next 
decades. Nevertheless, the future of databases needs to be discussed. Keywords here are 
NoSQL databases, graph databases, and distributed database systems, as well as tem-
poral, deductive, semantic, object-oriented, fuzzy, and versioned database systems, etc. 
What is behind all these terms? This chapter explains some postrelational concepts and 
shows methods and trends, remaining subjective in its choice of topics. NoSQL data-
bases are described in Chap. 7.

The classic relational model and the corresponding SQL-based database systems 
admittedly show some disadvantages stemming on the one hand from extended require-
ments in new areas of application, on the other hand from the functional limits of SQL. 
Relational database technology can be applied in a variety of fields and can be seen as 
the all-rounder among database models. There are, however, niches and scenarios in 
which SQL-based databases, being transaction and consistency-oriented, are a hindrance, 
for example when high performance processing of large amounts of data is required. 
In those cases, the use of specialized tools that are more efficient for the given niche 
is advisable, even if an SQL database could theoretically be used. Furthermore, there 
are applications in which SQL and its basis, relational algebra, are simply not sufficient. 
SQL is a relationally complete language, but it is not Turing complete. There are calcu-
lable problems that cannot be solved with relational operations. A major part of this cat-
egory is the class of recursive problems, such as network analysis with cycles.

Postrelational Databases 6
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SQL remains the most important and most popular database language. Today, there 
is a wide choice of commercial products with enhanced database functionality, some of 
them open source. It is often not easy for professionals to orientate in the variety of pos-
sibilities. Often, the required effort and the economic benefit of a changeover are not 
clear. Many companies, therefore, still require a considerable amount of mental work to 
future-proof their application architecture concepts and choose the appropriate product. 
In a nutshell, concise architecture concepts and migration strategies for the use of postre-
lational database technologies are still lacking.

In this chapter and in the next, we present a selection of problem cases and possible 
solutions. Some demands not covered by purely relational databases can be met by indi-
vidual enhancements of relational database systems, others have to be approached with 
fundamentally new concepts and methods. Both of these trends are summarized under 
postrelational database systems. We also consider NoSQL postrelational, but cover it in 
a separate chapter.

6.2	� Federated Databases

Noncentralized or federated databases are used where data is to be stored, maintained, 
and processed in different places. A database is distributed if the data content is stored 
on separate computers. Copying all contained data redundantly onto several computers 
for load balancing is called replication. Fragmentation means that for an increased data 
volume the data is effectively partitioned into smaller parts, so-called fragments, and 
split between several computers. Fragments are also often called partitions or shards, 
the concept of fragmentation is then accordingly termed partitioning or sharding. A dis-
tributed database is federated if several physical data fragments are kept on separate 
computers, but can be accessed by one single logical database schema. The users of a 
federated database only have to deal with the logical view of the data and can ignore the 
physical fragments. The database system itself performs the database operations locally 
or, if necessary, split between several computers.

A simple example of a federated database is shown in Fig. 6.1. Splitting the 
EMPLOYEE and DEPARTMENT tables into different physical fragments is an impor-
tant task for the database administrators, not the users. According to our example, the 
departments IT and HR are geographically based in Cleveland, the accounting depart-
ment in Cincinnati. Fragment F1 as a partial table of the EMPLOYEE table includes 
only employees of the IT and the HR departments. Similarly, fragment F2 from the 
initial DEPARTMENT table shows those departments that are based in Cleveland. 
Fragments F3 and F4 contain the employees and departments in Cincinnati, respectively.

If a table is split horizontally, keeping the original structure of table rows, the result is 
called horizontal fragments. The individual fragments should not overlap, but combine to 
form the original table.
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Instead of being split horizontally, a table can also be divided into vertical fragments 
by combining several columns along with the identification key, segmenting the tuples. 
One example is the EMPLOYEE table, where certain parts like salary, qualifications, 
development potential, etc., would be kept in a vertical fragment restricted to the HR 
department for confidentiality reasons. The remaining information could be made acces-
sible for the individual departments in another fragment. Hybrid forms between horizon-
tal and vertical fragments are also possible.

One important task of a federated database system is guaranteeing local autonomy. 
Users can autonomously work with their local data, even if certain computer nodes in the 
network are unavailable1.

E19 Stewart Stow D6

E1 Murphy Kent D3

E7 Howard Cleveland D5

E4 Bell Kent D6

E# Name City Sub

EMPLOYEE DEPARTMENT

D3 IT

D5 HR

D6 Accounting

D# DepartmentName

Information for the IT and HR
to be managed at the Cleveland site:

CREATE FRAGMENT F1 AS
SELECT *
FROM  EMPLOYEE
WHERE  Sub IN (D3,D5)

CREATE FRAGMENT F2 AS
SELECT *
FROM  DEPARTMENT
WHERE  D# IN (D3,D5)

E1 Murphy Kent D3

E7 Howard Cleveland D5

E# Name City Sub

F1 in Cleveland F2 in Cleveland

A3 IT

D5 HR

D# DepartmentName

E# Name City Sub

F3 in Cincinnati F4 in Cincinnati

D# DepartmentName

departments is

Fig. 6.1   Horizontal fragmentation of the EMPLOYEE and DEPARTMENT tables

6.2  Federated Databases

1Periodically extracted parts of tables (called snapshots) improve local autonomy.
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Apart from local autonomy, the principle of noncentralized processing is of impor-
tance. This means the database system can handle queries locally in the different network 
nodes. For noncentralized applications like these, which demand data from different 
fragments, the database system has to allow for remote access to read and update tables. 
In order to achieve this, it has to provide a distributed transaction and recovery concept. 
These concepts demand special protection mechanisms for distributed databases.

The internal processing strategy for distributed database queries is vital here, as the 
example of querying for employees and department names in Fig. 6.2 illustrates. The 
query can be formulated in normal SQL without specifying the fragment. The task of 
the database system is to determine the optimal calculation strategy for this noncentral-
ized query. Both the EMPLOYEE and the DEPARTMENT table are fragmented between 
Cleveland and Cincinnati. Therefore, certain calculations are executed locally and syn-
chronously. Each node organizes the join between the EMPLOYEE and DEPARTMENT 

Stewart Accounting

Murphy IT

Howard HR

Bell Accounting

Name DepartmentName

SELECT Name, DepartmentName
FROM  EMPLOYEE, DEPARTMENT
WHERE  Sub = D#

F1
EMPLOYEE

F2
DEPARTMENT

F3
EMPLOYEE

F4
DEPARTMENT

CLEVELAND ∪  CINCINNATI

CLEVELAND:=
π Name, DepartmentName

CINCINNATI:=
π Name, DepartmentName

|×| Sub = D#

π Name, Sub π D#, DepName

|×| Sub = D#

π Name, Sub π D#, DepName

Fig. 6.2   Optimized query tree for a distributed join strategy
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fragments independently from the other. After these partial calculations, the final result is 
formed by a set union of the partial results.

For further optimization, the single nodes make projections on the requested attributes 
Name and Department Name. Then, the join operations on the reduced table fragments 
are calculated separately in Cleveland and Cincinnati. Finally, the preliminary results are 
reduced once more by projecting them on the requested names and department names 
before a set union is formed.

In calculating noncentralized queries, union and join operations are typically evalu-
ated late in the process. This supports high parallelism in processing and improves 
performance on noncentralized queries. The maxim of optimization is to put the join 
operations in the query tree close to the root node, while selections and projections 
should be placed near the leaves of the query tree.

u Federated database system  A federated database system fulfils the following conditions:

•	 It supports a single logical database schema and several physical fragments on 
locally distributed computers.

•	 It guarantees transparency regarding to the distribution of databases, so ad hoc 
queries and application tools do not have to take into account the physical distribu-
tion of the data, i.e., the partitioning.

•	 It ensures local autonomy, i.e., it allows working locally on its noncentralized data, 
even if single computer nodes are not available.

•	 It guarantees the consistency of the distributed databases and internally optimizes 
the distributed queries and manipulations with a coordination program2.

The first prototypes of distributed database systems were developed in the early 1980s. 
Today, relational databases fulfilling the aforementioned demands only partially are avail-
able. Moreover, the conflict between partition tolerance and schema integration remains, 
so that many distributed databases, especially NoSQL databases (Chap. 7), either offer no 
schema federation, like key-value stores, column family stores, or document stores, or do 
not support the fragmentation of their data content, like graph databases.

6.3	� Temporal Databases

Todayʼs relational database systems are designed to manage information relevant to the 
present (current information) in tables. For users to query and analyze a relational data-
bases across time, they need to individually manage and update the information relating 
to the past or future. This is because the database system does not directly support them 
saving, querying, or analyzing time-related information.

2In distributed SQL expressions, the two-phase commit protocol guarantees consistency.

6.3  Temporal Databases
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Time is understood as a one-dimensional physical quantity whose values are totally 
ordered so that any two values in the timeline can be compared using the order relations 
“less than” and “greater than”. Not only date and time, such as “April 1, 2016, 2.00 pm” 
are relevant information, but also durations in the form of time intervals. One example 
is the age of an employee, determined by a number of years. It is important to note that 
a given time can be interpreted as either an instant (a point in time) or a time period, 
depending on the view of the user.

Temporal databases are designed to relate data values, individual tuples, or whole 
tables to the time axis. The time specification itself has different meanings for an object 
in the database, because valid time can either be understood as an instant when a cer-
tain event takes place, or as a period if the respective data values are valid throughout a 
period of time. For instance, the address of an employee is valid until it is next changed.

Another kind of time specification is the transaction time, recording the instant when 
a certain object is entered into, changed in, or deleted from the database. The database 
system usually manages the different transaction times itself with the help of a journal, 
which is why time will always be used in the sense of valid time in the following.

In order to record valid times as points in time, most relational database systems 
today already support two data types: DATE is used for dates in the form year, month, 
and day, TIME for the time of the day in hours, minutes, and seconds. To give a period 
of time, no special data type has to be chosen; integers and decimals are sufficient. This 
makes it possible to run calculations on dates and times. One example is the employ-
ees table shown in Fig. 6.3, in which Date of Birth and Start Date have been added to 
the attribute categories. These attributes are time-related, and the system can, therefore, 

SELECT E#, Name
FROM  EMPLOYEE
WHERE  YEARS(StartDate - DateofBirth) <= 20

EMPLOYEE

E19 Stewart 02/19/1948 Stow

E1 Murphy 07/09/1958 Kent

E7 Howard 03/28/1969 Cleveland

E# Name DateOfBirth City

E4 Bell 12/06/1952 Kent

10/01/1979 Clerk

07/01/1984 Analyst

01/01/1988 Head of HR

StartDate Position

04/15/1978 Internal auditor

Find all employees who started working for the company
before age 20:

E7 Howard

E# Name

Fig. 6.3   EMPLOYEE table with data type DATE
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be queried for a list of all employees who started working for the company before their 
20th birthday.

The EMPLOYEE table still offers a snapshot of the current data. Therefore, it is not 
possible to query into the past nor the future, because there is no information regard-
ing the valid time of the data values. If, for instance, the role of employee Howard is 
changed, the existing data value will be overwritten, and the new role considered as 
current. However, there is no information as to from and until when employee Howard 
worked in a specific role.

Two attributes are commonly used to express the validity of an entity: The “Valid 
From” time indicates the point in time when a tuple or a data value became or becomes 
valid. The attribute “Valid To” indicates the end of a period of validity by giving the 
corresponding instant. Instead of both the VALID_FROM and VALID_TO times, on 
the timeline the VALID_FROM instant may be sufficient. The VALID_TO instants are 
defined implicitly by the following VALID_FROM instants, as the validity intervals of 
any one entity cannot overlap.

The temporal table TEMP_EMPLOYEE shown in Fig. 6.4 lists all validity statements 
in the attribute VALID_FROM for the employee tuple M1 (Murphy). This attribute must 
be included in the key so that not only current, but also past and future states can be 
identified uniquely.

TEMP_EMPLOYEE  (excerpt)

E1 07/01/1984 Cleveland

E1 09/13/1986 Kent

E1 05/04/1987 Kent

E# VALID_FROM City

E1

Murphy

Murphy

Murphy

Name

Murphy04/01/1989 Cleveland

07/01/1984 Programmer

07/01/1984 Programmer

07/01/1984 Programmer-analyst

StartDate Position

07/01/1984 Analyst

Find the position held by employee Murphy on 01/01/1988.

SELECT Position
FROM  TEMP_EMPLOYEE A
WHERE  A.E# = ‘E1’ AND

A.VALID_FROM =

(SELECT MAX(VALID_FROM)
  FROM  TEMP_EMPLOYEE B
   WHERE  B.E# = ‘E1’  AND

B.VALID_FROM <= ‘01/01/1988’

Programmer-analyst

Position

original SQL:

SELECT Position
FROM  TEMP_EMPLOYEE
WHERE  E# = ‘E1’ AND

VALID_AT = ‘01/01/1988’

temporal SQL:

Fig. 6.4   Excerpt from a temporal table TEMP_EMPLOYEE

6.3  Temporal Databases
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The four tuples can be interpreted as follows: Employee Murphy used to live in 
Cleveland from July 1, 1984 to September 12, 1986, then in Kent until March 31, 1989, 
and has lived in Cleveland again since April 1, 1989. From the day they started work-
ing for the company until May 3, 1987, they worked as a programmer, between May 4, 
1987 and March 31, 1989 as a programmer-analyst, and since April 1, 1989, they have 
been working as an analyst. The table TEMP_EMPLOYEE is indeed temporal, as it 
shows not only current states, but also information about data values related to the past. 
Specifically, it can answer queries that do not only concern current instants or periods.

For instance, it is possible in Fig. 6.4 to determine the role employee Murphy had 
on January 1st 1988. Instead of the original SQL expression of a nested query with the 
MAX function (Sect. 3.3.1 and SQL tutorial), a language directly supporting temporal 
queries is conceivable. The keyword VALID_AT determines the time for which all valid 
entries are to be queried.

Temporal database system  A temporal database management system (TDBMS)

•	 supports the time axis as valid time by ordering attribute values or tuples by time and
•	 contains temporal language elements for queries into future, present, and past.

In the field of temporal databases there are several language models facilitating work 
with time-related information. Especially the operators of relational algebra and rela-
tional calculus have to be expanded in order to enable a join of temporal tables. The rules 
of referential integrity also need to be adapted and interpreted as relating to time. Even 
though these kinds of methods and corresponding language extensions have already 
proven themselves in R&D, very few database systems today support temporal concepts. 
The SQL standard also supports temporal databases.

6.4	� Multidimensional Databases

Operative databases and applications are focused on a clearly defined, function-oriented 
performance area. Transactions aim to provide data for business handling as quickly 
and precisely as possible. This kind of business activity is often called online transac-
tion processing or OLTP. Since the operative data has to be overwritten daily, users lose 
important information for decision-making. Furthermore, these databases were designed 
primarily for day-to-day business, not for analysis and evaluation. Recent years have, 
therefore, seen the development of specialized databases and applications for data analy-
sis and decision support, in addition to transaction-oriented databases. This process is 
termed online analytical processing or OLAP.

At the core of OLAP is a multidimensional database, where all decision-relevant 
information can be stored according to various analysis dimensions (data cube). Such 
databases can become rather large, as they contain decision-making factors from 
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multiple points in time. Sales figures, for instance, can be stored and analyzed in a multi-
dimensional database by quarter, region, or product.

This is demonstrated in Fig. 6.5, which also illustrates the concept of a multidimen-
sional database. It shows the three analysis dimensions product, region, and time. The 
term dimension describes the axes of the data cube. The design of the dimensions is 
important, since analyses are executed along these axes. The order of the dimensions 
does not matter, every user can and should analyze the data from their own perspective. 
Product managers, for instance, prioritize the product dimension; salespeople prefer sales 
figures to be sorted by region.

The dimensions themselves can be structured further. The product dimension can con-
tain product groups; the time dimension could cover not only quarters, but also days, 
weeks, and months. A dimension, therefore, also describes the desired aggregation levels 
valid for the data cube.

From a logical point of view, in a multidimensional database or a data cube it is nec-
essary to specify not only the dimensions, but also the indicators3. An indicator is a key 
figure or parameter needed for decision support. These key figures are aggregated by 

Region dimension

West East North South

Sales indicator:

e.g. 30 pieces for: keyboard, east, Q1/2005

30

Product
dimension

Hard drive

Mouse

Screen

Keyboard

Tim
e dim

ension

Q1/2005

Q2/2005

Q3/2005

Q4/2005

Fig. 6.5   Data cube with different analysis dimensions

6.4  Multidimensional Databases

3Indicators are often also called facts, see also Sect. 6.7 on facts and rules of knowledge databases.
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analysis and grouped according to the dimension values. Indicators can relate to quanti-
tative as well as qualitative characteristics of the business. Apart from financial key fig-
ures, meaningful indicators concern the market and sales, customer base and customer 
fluctuation, business processes, innovation potential, and know-how of the employees. 
Indicators, in addition to dimensions, are the basis for the managementʼs decision sup-
port, internal and external reporting, and a computer-based performance measurement 
system.

The main characteristic of a star schema is the classification of data as either indica-
tor data or dimension data. Both groups are shown as tables in Fig. 6.6. The indicator 
table is at the center, the descriptive dimension tables are placed around it; one table per 
dimension. The dimension tables are attached to the indicator table forming a star-like 
structure.

Should one or more dimensions be structured, the respective dimension table could 
have other dimension tables attached to it. The resulting structure is a snowflake schema 
showing aggregation levels of the individual dimensions. In Fig. 6.6, for instance, the 
time dimension table for the first quarter of 2005 could have another dimension table 
attached, listing the calendar days from January to March 2005. Should the dimension 
month be necessary for analysis, a month dimension table would be defined and con-
nected to the day dimension table.

The classic relational model can be used for the implementation of a multidimen-
sional database. Figure 6.7 shows how indicator and dimension tables of a star schema 
are implemented. The indicator table is represented by the relation F_SALES, which has 
a multidimensional key. This concatenated key needs to contain the keys for the dimen-
sion tables D_PRODUCT, D_REGION, and D_TIME. In order to determine sales lead 

Mouse

Keyboard

Product

West

East

Region

Q1/2005

Q2/2005

Time

Product

Region

Time

Sales

Indicator table

Dimension tables

Fig. 6.6   Star schema for a multidimensional database
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Mahoneyʼs revenue on Apple devices in the first quarter of 2005, it is necessary to for-
mulate a complicated join of all involved indicator and dimension tables (see SQL state-
ment in Fig. 6.7).

A relational database system reaches its limits when faced with extensive multidimen-
sional databases. Formulating queries with a star schema is also complicated and prone 
to error. There are multiple other disadvantages when working with the classic rela-
tional model and conventional SQL. In order to aggregate several levels, a star schema 
has to be expanded into a snowflake schema, and the resulting physical tables further 
impair the response time behavior. If users of a multidimensional database want to query 
more details for deeper analysis (drill-down) or analyze further aggregation levels (roll-
up), conventional SQL will be of no use. Moreover, extracting or rotating parts of the 
data cube, as commonly done for analysis, requires specific software or even hardware. 
Because of these shortcomings, some providers of database products have decided to add 
appropriate tools for these purposes to their software range. In addition, the SQL stand-
ard has been extended on the language level in order to simplify the formulation of cube 
operations, including aggregations.

Find the Apple sales for the 1. quarter of 2005 by sales lead Mahoney.

SELECT SUM(Revenue)
FROM  D_PRODUCT D1, D_REGION D2, D_TIME D3, F_SALES F
WHERE  D1.P# = F.P# AND

D2.R# = F.R# AND
D3.T# = F.T# AND
D1.Supplier = ‘Apple’ AND
D2.SalesLead = ‘Mahoney’ AND
D3.Year = 2005 AND
D3.Quarter = 1

D_TIME

T1 2005

T# Year

1

Quarter

D_PRODUCT

P2 Keyboard

P# ProductName

Apple

Supplier

P2 R2

P# R#

T1

T#

30

Quantity

160,000

Revenue

F_SALES

R2 East

R# Name

Mahoney

SalesLead

D_REGION

Fig. 6.7   Implementation of a star schema using the relational model

6.4  Multidimensional Databases
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u Multidimensional database system  A multidimensional database management sys-
tem (MDBMS) supports a data cube with the following functionality:

•	 For the design, several dimension tables with arbitrary aggregation levels can be 
defined, especially for the time dimension.

•	 The analysis language offers functions for drill-down and roll-up.
•	 Slicing, dicing, and rotation of data cubes are supported.

Multidimensional databases are often the core of data warehouses. Unlike multidimen-
sional databases alone, a data warehouse as a distributed information system combines 
mechanisms for integration, historicization, and analysis of data across several applica-
tions of a company, along with processes for decision-support and the management and 
development of data flows within the organization.

6.5	� Data Warehouse

The more and more easily digital data is available, the greater the need to analyze this 
data for decision support. The management of a company is supposed to base their deci-
sions on facts that can be gathered from the analysis of the available data. This process 
is called business intelligence. Due to heterogeneity, volatility, and fragmentation of 
the data, cross-application data analysis is often complex: Data is stored heterogene-
ously in several databases in an organization. Additionally, often only the current ver-
sion is available. In the source systems, data from one larger subject area, like customers 
or contracts, is rarely available in one place, but has to be gathered, or integrated, via 
various interfaces. Furthermore, this data distributed among many databases needs to 
be sorted into timelines for various subject areas, each spanning several years. Business 
Intelligence, therefore, makes three demands on the data to be analyzed:

•	 Integration of heterogeneous data
•	 Historicization of current and volatile data
•	 Complete availability of data on certain subject areas.

The three previously introduced postrelational database systems basically cover one of 
those demands each: The integration of data can be carried out with federated database 
systems with a central logical schema, historicization of data is possible with temporal 
databases, and multidimensional databases can provide data on various subject areas 
(dimensions) for analysis.

As relational database technology has become so wide-spread in practice, the proper-
ties of distributed, temporal, and multidimensional databases can be simulated quite well 
with regular multidimensional databases and some software enhancements. The concept 
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of data warehousing implements these aspects of federated, temporal, and multidimen-
sional database systems using conventional technologies.

In addition to those three aspects, however, there is the demand of decision support. 
Organizations need to analyze data as timelines, so that the complete data on any subject 
area is available in one place. However, as data in larger organizations is spread among 
a number of databases, a concept4 to prepare it for analysis and utilization is necessary.

Data warehouse  A data warehouse or DWH is a distributed information system with 
the following properties:

•	 Integrated: Data from various sources and applications (source systems) is periodi-
cally integrated5 and filed in a uniform schema.

•	 Read only: Data in the data warehouse is not changed once it is written.
•	 Historicized: Thanks to a time axis, data can be evaluated for different points in 

time.
•	 Analysis-oriented: All data on different subject areas like customers, contracts, or 

products is fully available in one place.
•	 Decision support: The information in data cubes serves as a basis for management 

decisions.

A data warehouse offers parts of the functionalities of federated, temporal, and multi-
dimensional databases. Additionally, there are programmable loading scripts as well as 
specific analysis and aggregation functions. Based on distributed and heterogeneous data 
sources, business-relevant facts need to be available in such a way that they can effi-
ciently and effectively be used for decision support and management purposes.

Data warehouses can integrate various internal and external data sets (data sources). 
The aim is to be able to store and analyze, for various business purposes, a consistent 
and historicized set of data on the information scattered across the company. To this end, 
data from many sources is integrated into the data warehouse via interfaces and stored 
there, often for years. Building on this, data analyses can be carried out to be presented 
to decision-makers and used in business processes. Furthermore, business intelligence as 
a process has to be controlled by management.

The individual steps of data warehousing are summarized in the following paragraphs 
(Fig. 6.8).

The data of an organization is distributed across several source systems, for instance 
web platforms, accounting (enterprise resource planning, ERP), and customer databases 
(customer relationship management, CRM). In order to analyze and relate this data, it 
needs to be integrated.

4For more information, look up the KDD (knowledge discovery in databases) process.
5See the ETL (extract, transform, and load) process below.

6.5  Data Warehouse
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For this integration of the data, an ETL (extract, transform, load) process is necessary. 
The corresponding interfaces usually transfer data in the evening or on weekends, when 
the IT system is not needed by the users. High performance systems today feature con-
tinuous loading processes, feeding data 24/7 (trickle feed). When updating a data ware-
house, periodicity is taken into account, so users can see how up-to-date their evaluation 
data is. The more frequently the interfaces load data into the data warehouse, the more 
up-to-date is the evaluation data. The aim of this integration is historicization, i.e., the 
creation of a timeline in one logically central storage location. The core of a data ware-
house (Core DWH) is often modeled in second or third normal form. Historicization is 
achieved using validity statements (valid_from, valid_to) in additional columns of the 
tables, as described in Sect. 6.3 on temporal databases. In order to make the evaluation 
data sorted by subject available for OLAP analysis, individual subject areas are loaded 
into data marts, which are often realized multidimensionally with star schemas.

The data warehouse exclusively serves for the analysis of data. The dimension of time 
is an important part of such data collections, allowing for more meaningful statistical 
results. Periodic reporting produces lists of key performance indicators. Data mining 
tools like classification, selection, prognosis, and knowledge acquisition use data from 
the data warehouse in order to, for instance, analyze customer or purchasing behavior 
and utilize the results for optimization purposes. In order for the data to generate value, 
the insights including the results of the analysis need to be communicated to the deci-
sion-makers and stakeholders. The respective analyses or corresponding graphics are 
made available using a range of interfaces of business intelligence tools (BI tools) or 
graphical user interfaces (GUI) for office automation and customer relationship manage-
ment. Decision-makers can utilize the analysis results from data warehousing in business 
processes as well as in strategy, marketing, and sales.

M
an

ag
em

en
t

Utilization

Presentation

Analysis

Integration

Data

Strategy Marketing Sales

BI tools Office CRM GUI

Reporting Selection Prognosis

Interfaces Core DWH Data marts

Web ERP CRM DB

Fig. 6.8   Data warehouse in the context of business intelligence processes
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6.6	� Object-Relational Databases

In order to store information on books in a relational database, several tables need to be 
defined, three of which are shown in Fig. 6.9. In the BOOK table, every book has the 
attributes Title and Publisher added.

Since a book can have more than one author and, reversely, an author can have pub-
lished multiple books, every author involved is listed in an additional AUTHOR table.

The attribute Name is not fully functionally dependent on the combined key of the 
Author and Book Number, which is why the table is neither in the second nor any 

BOOK

B1 Relational Databases Springer Vieweg

B2 Computer graphics for engineers McGraw Hill

B# Title Publisher

AUTHOR

A1 Miller

A1 Miller

A2 Lewis

A# Name

B1

B2

B2

B#

KEYWORD

K1 B1 80

K2 B1 20

K# B# Weighting

Database

Relational model

Term

K3 B2 80

K4 B2 20

Computer graphics

Computer geometry

PART_OF (BOOK)

Find  the title of the book by author Miller where one
term is weighted at more than 50%.

SELECT Title
FROM  BOOK, AUTHOR,
    KEYWORD
WHERE  Name = ‘Miller‘ AND

Weighting > 50 AND
BOOK.B# = AUTHOR.B# AND
BOOK.B# = KEYWORD.B#

with SQL:

SELECT Title
FROM  BOOK-(AUTHOR,
    KEYWORD)
WHERE  Name = ‘Miller‘ AND

Weighting > 50

with implicit join:

Results table

Relational Databases

Title

Fig. 6.9   Query of a structured object with and without implicit join operator
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higher normal form. The same holds true for the KEYWORD table, because there is a 
complex-complex relationship between books and their keywords. Weighting is a typi-
cal relationship attribute, Label, however, is not fully functionally dependent on the 
Keyword Number and Book Number key. For proper normalization, the management 
of books would, therefore, require several tables, since in addition to the relationship 
tables AUTHOR and KEYWORD, separate tables for the attributes Author and Keyword 
would be necessary. A relational database would certainly also include information on 
the publisher in a separate PUBLISHER table, ideally complemented by a table for the 
relationship between BOOK and PUBLISHER.

Splitting the information about a book between different tables has its disadvantages 
and is hardly understandable from the point of view of the users, who want to find the 
attributes of a certain book well-structured in a single table. The relational query and 
data manipulation language should serve to manage the book information using sim-
ple operators. There are also performance disadvantages if the database system has to 
search various tables and calculate time-consuming join operators in order to find a 
certain book. To mitigate these problems, extensions to the relational model have been 
suggested.

A first extension of the relational database technology is to explicitly declare struc-
tural properties to the database system, for instance by assigning surrogates. A surro-
gate is a permanent, invariant key value defined by the system, which uniquely identifies 
every tuple in the database. Surrogates, as invariant values, can be used to define system-
controlled relationships even in different places within a relational database. They sup-
port referential integrity as well as generalization and aggregation structures.

In the BOOK table in Fig. 6.9, the book number B# is defined as a surrogate. This 
number is used again in the dependent tables AUTHOR and KEYWORD under the indi-
cation PART_OF(BOOK) (see rule 7 for aggregation in Sect. 2.3.2). Because of this ref-
erence, the database system explicitly recognizes the structural properties of the book, 
author, and keyword information and is able to use them in database queries, given that 
the query and manipulation language is extended accordingly. An example for this is the 
implicit hierarchical join operator in the FROM clause that connects the partial tables 
AUTHOR and KEYWORD belonging to the BOOK table. It is not necessary to state the 
join predicates in the WHERE clause, as those are already known to the database system 
through the explicit definition of the PART_OF structure.

Storage structures can be implemented more efficiently by introducing to the data-
base system a PART_OF or analogously an IS_A structure (Sect. 2.2.3). This means that 
the logical view of the three tables BOOK, AUTHOR, and KEYWORD is kept, while 
the book information is physically stored as structured objects6 so that a single database 
access makes it possible to find a book. The regular view of the tables is kept, and the 
individual tables of the aggregation can be queried as before.

6Research literature also calls them “complex objects”.
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Another possibility for the management of structured information is giving up the first 
normal form7 and allowing tables as attributes. Figure 6.10 illustrates this with an exam-
ple presenting information on books, authors, and keywords in a table. This also shows 
an object-relational approach, managing a book as one object in the single table BOOK_
OBJECT. An object-relational database system can explicitly incorporate structural prop-
erties and offer operators for objects and parts of objects.

A database system is structurally object-relational if it supports structured object 
types as shown in Fig. 6.10. In addition to object identification, structure description, 
and the availability of generic operators (methods like implicit join, etc.), a fully object-
relational database system should support the definition of new object types (classes) 
and methods. Users should be able to determine the methods necessary for an individual 
object type themselves. They should also be able to rely on the support of inherited prop-
erties so that they do not have to define all new object types and methods from scratch, 
but can draw on already existing concepts.

Object-relational database systems make it possible to treat structured objects as units 
and use fitting generic operators with them. The formation of classes using PART_OF 
and IS_A structures is allowed and supported by methods for saving, querying, and 
manipulating.

u Object-relational database system  An object-relational database management system 
(ORDBMS) can be described as follows:

•	 It allows the definition of object types (often called classes in reference to object-
oriented programming), which themselves can consist of other object types.

•	 Every database object can be structured and identified through surrogates.

BOOK_OBJECT

B1 Relational... Springer Vieweg A1 K1

K2

B2 Computer... McGraw Hill A1 K3

A2 K4

B# Title Publisher A# K#Name

Miller

Miller

Lewis

Autor

Database

Relational  model

Comp. graphics

Comp. geometry

Term

80

20

50

50

Wgt.

Keyword

Fig. 6.10   BOOK_OBJECT table with attributes of the relation type

7The NF2 model (NF2 = non first normal form) supports nested tables.
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•	 It supports generic operators (methods) affecting objects or parts of objects, 
while their internal representation remains invisible from the outside (data 
encapsulation).

•	 Properties of objects can be inherited. This property inheritance includes the struc-
ture and the related operators.

The SQL standard has for some years been supporting certain object-relational enhance-
ments: object identifications (surrogates); predefined data types for set, list, and field; 
general abstract data types with the possibility of encapsulation; parametrizable 
types; type and table hierarchies with multiple inheritance; and user-defined functions 
(methods).

Object-relational mapping
Most modern programming languages are object-oriented; at the same time, the majority 
of the database systems used are relational. Instead of migrating to object-relational or 
even object-oriented databases, which would be rather costly, objects and relations can 
be mapped to each other during software development if relational data is accessed with 
object-oriented languages. This concept of object-relational mapping (ORM) is illus-
trated in Fig. 6.11. In this example, there is a relational database management system 
(RDBMS) with a table AUTHOR, a table BOOK, and a relationship table AUTHORED, 
since there is a complex-complex relationship (Sect. 2.2.2) between books and authors. 

Object-oriented (classes)

Author Book

AUTHOR BOOK

AUTHORED

M
apping 

Relational (tables)

OOP

RDBMS

O
R

M

Fig. 6.11   Object-relational mapping
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The data in those tables is to be used directly as classes in software development in a 
project with object-oriented programming (OOP).

An ORM software can automatically map classes to tables, so for the developers it 
seems as if they are working with object-oriented classes, even though the data is saved 
in database tables in the background. The programming objects in the main memory are 
thus persistently written, i.e., saved to permanent memory.

In Fig. 6.11, the ORM software provides the two classes Author and Book for 
the tables AUTHOR and BOOK. For each line in the table, there is one object as an 
instance of the respective class. The relationship table AUTHORED is not shown as a 
class: object-orientation allows for the use of nonatomic object references; thus, the set 
of books the author has written is saved in a vector field books[] in the Author object, 
the group of authors responsible for a book are shown in the field authors[] in the 
Book object.

The use of ORM is simple. The ORM software automatically derives the correspond-
ing classes based on existing database tables. Records from these tables can then be used 
as objects in software development. ORM is, therefore, one possible way towards object-
orientation with which the underlying relational database technology can be retained.

6.7	� Knowledge Databases

Knowledge databases or deductive databases cannot only manage the actual data—
called facts—but also rules, which are used to deduct new table contents or facts.

The EMPLOYEE table in Fig. 6.12 is limited to the names of the employees for sim-
plicity. It is possible to define facts or statements on the information in the table, in this 
case on the employees. Generally, facts are statements that unconditionally take the 
truth value TRUE. For instance, it is true that Howard is an employee. This is expressed 
by the fact “is_employee (Howard)”. For the employeesʼ direct supervisors, a new 
SUPERVISOR table can be created, showing the names of the direct supervisors and 
the employees reporting to them as a pair per tuple. Accordingly, facts “is_supervisor_of 
(A,B)” are formulated to express that “A is a direct supervisor of B”.

The job hierarchy is illustrated in a tree in Fig. 6.13. Looking for the direct supervisor 
of employee Murphy, the SQL query analyzes the SUPERVISOR table and finds super-
visor Howard. Using a logic query language (inspired by Prolog) yields the same result.

Besides actual facts, it is possible to define rules for the deduction of unknown table 
contents. In the relational model, this is called a derived relation or deduced relation. 
Simple examples of a derived relation and the corresponding derivation rule are given 
in Fig. 6.14. It shows how the supervisorʼs supervisor for every employee can be found. 
This may, for instance, come in useful for large companies or businesses with remote 
branches in the case when the direct supervisor of an employee is absent and the next 
higher level needs to be contacted via e-mail.

6.7  Knowledge Databases
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Job hierarchy:

Stewart

Howard

Murphy Bell

Find employee Murphy’s direct supervisor.

SELECT Name_SuV
FROM  SUPERVISOR
WHERE  Name_Emp = ‘Murphy’

SQL query: Question:

? - is_supervisor_of ( X,Murphy )

Howard

Name_SuV

Results table Result

Howard

Fig. 6.13   Analyzing tables and facts

EMPLOYEE

Stewart

Murphy

Name

Howard

Bell

SUPERVISOR

Bell

Howard

Name_SuV

Howard

Stewart

Murphy

Name_Emp

Bell

Facts about employees:

is_employee  (Stewart)
is_employee  (Murphy)
is_employee  (Howard)
is_employee  (Bell)

Facts about supervisors:

is_supervisor_of (Bell, Stewart)
is_supervisor_of (Howard, Murphy)
is_supervisor_of (Howard, Bell)

Fig. 6.12   Comparison of tables and facts
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The definition of a derived relation corresponds to the definition of a view. In the 
given example, such a view with the name SUPERIOR is used to determine the next-but-
one supervisor of any employee, formed by a join of the SUPERVISOR table with itself. 
A derivation rule can be defined for this view. The rule “is_superior_of (X,Y)” results 
from there being a Z where X is the direct supervisor of Z and Z in turn is the direct 
supervisor of Y. This expresses that X is the next-but-one supervisor of Y, because Z is 
between them.

A database equipped with facts and rules automatically becomes a method or knowl-
edge base, as it does not only contain obvious facts like “Howard is an employee” or 
“Howard is the direct supervisor of Murphy and Bell”, but also derived findings like 
“Howard is superior supervisor of Stewart”. In order to find superior supervisors, the 
view SUPERIOR defined in Fig. 6.14 is used. The SQL query of this view results in a 
table with the information that there is only one relationship with a superior supervisor, 
specifically employee Stewart and their superior supervisor Howard. Applying the cor-
responding derivation rule “is_superior_of” yields the same result.

Job hierarchy:

Find all pairs of employee and superior.

CREATE VIEW SUPERIOR AS
SELECT X.Name_SuV, Y.Name_Emp
FROM  SUPERVISOR X, SUPERVISOR Y
WHERE X.Name_Emp = Y.Name_SuV

Derived table Rule:

is_superior_of (X,Y)
 IF  is_supervisor_of (X,Z) AND
  is_supervisor_of (Z,Y)

Howard

Name_SuV

Results table Result

Howard, Stewart

SELECT *
FROM  SUPERIOR

SQL query: Question:

? - is_superior_of (X,Y)

Stewart

Name_Emp

Stewart

Howard

Murphy Bell

Fig. 6.14   Derivation of new information

6.7  Knowledge Databases
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A deductive database as a vessel for facts and rules also supports the principle of 
recursion, making it possible to draw an unlimited amount of correct conclusions due 
to the rules included in the deductive database. Any true statement always leads to new 
statements.

The principle of recursion can refer to either the objects in the database or the 
derivation rules. Objects defined as recursive are structures that themselves consist 
of structures and, similar to the abstraction concepts of generalization and aggrega-
tion, can be understood as hierarchical or network-like object structures. Furthermore, 
statements can be determined recursively; in the company hierarchy example all direct 
and indirect supervisor relationships can be derived from the facts “is_employee” and 
“is_supervisor_of”.

The calculation process which derives all transitively dependent tuples from a table 
forms the transitive closure of the table. This operator does not belong to the original 
operators of relational algebra; rather, the transitive closure is a natural extension of the 
relational operators. It cannot be formed with a fixed number of calculation steps, but 
only by several relational join, projection, and union operators, whose number depends 
on the content of the table in question.

These explanations can be condensed into the following definition:

Knowledge database systems  A knowledge database management system (KDBMS) 
supports deductive databases or knowledge bases if

•	 it contains not only data, i.e., facts, but also rules;
•	 the derivation component allows for further facts to be derived from facts and rules; 

and
•	 it supports recursion, which, among other things, allows to calculate the transitive 

closure of a table.

An expert system is an information system that provides specialist knowledge and con-
clusions for a certain limited field of application. Important components are a knowledge 
base with facts and rules, and a derivation component for the derivation of new findings. 
The fields of databases, programming languages, and artificial intelligence will increas-
ingly influence each other and in the future provide efficient problem-solving processes 
for practical application.

6.8	� Fuzzy Databases

Conventional database systems assume attribute values to be precise, certain, and crisp, 
and queries deliver clear results:
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•	 The attribute values in the databases are precise, i.e., they are unambiguous. The first 
normal form demands attribute values to be atomic and come from a well-defined 
domain. Vague attribute values, such as “2 or 3 or 4 days” or “roughly 3 days” for the 
delivery delay of supplier, are not permitted.

•	 The attribute values saved in a relational database are certain, i.e., the individual 
values are known and, therefore, true. An exception are NULL values, i.e., attribute 
values that are not known or not yet known. Apart from that, database systems do 
not offer modeling components for existing uncertainties. Probability distributions 
for attribute values are, therefore, impossible; expressing whether or not an attribute 
value corresponds to the true value remains difficult.

•	 Queries to the database are crisp. They always have a binary character, i.e., a query 
value specified in the query must either be identical or not identical with the attrib-
ute values. Querying a database with a query value “more or less” identical with the 
stored attribute values is not allowed.

In recent years, discoveries from the field of fuzzy logic have been applied to data mod-
eling and databases. Permitting incomplete or vague information opens a wider field of 
application. Most of these works are theoretical; however, some research groups are try-
ing to demonstrate the usefulness of fuzzy database models and database systems with 
implementations.

The approach shown here is based on the context model to define classes of data sets 
in the relational database schema. There are crisp and fuzzy classification methods. For a 
crisp classification, database objects are binarily assigned to a class, i.e., the membership 
function of an object to a class is 0 for “not included” or 1 for “included.” A conventional 
process would, therefore, group a customer either into the class “Customers with revenue 
problems” or into the class “Customers to expand business with.” A fuzzy process, how-
ever, allows for membership function values between 0 and 1. A customer can belong in 
the “Customers with revenue problems” class with a value of 0.3 and at the same time in 
the “Customers to expand business with” class with a value of 0.7. A fuzzy classification, 
therefore, allows for a more differentiated interpretation of class membership: Database 
objects can be distinguished between border and core objects, additionally database 
objects can belong to two or more different classes at the same time.

In the fuzzy-relational database model with contexts, context model for short, every 
attribute Aj defined on a domain D(Aj) has a context assigned. A context K(Aj) is a parti-
tion of D(Aj) into equivalence classes. A relational database schema with contexts, there-
fore, consists of a set of attributes A = (A1,…,An) and another set of associated contexts 
K = (K1(A1),…,Kn(An)).

For the assessment of customers, revenue and loyalty are used as an example. 
Additionally, those qualifying attributes are split into two equivalence classes each. The 
associated attributes and contexts for the customer relationship management are:

6.8  Fuzzy Databases
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•	 Revenue in dollar per month: The domain for revenue in dollars is defined as 
[0…1000]. Two equivalence classes [0…499] for small revenues and [500…1000] for 
large revenues are also created.

•	 Customer loyalty: The domain {bad, weak, good, great} supplies the values for the 
Customer loyalty attribute. It is split further into the equivalence classes {bad, weak} 
for negative loyalty and {good, great} for positive loyalty.

The suggested attributes with their equivalence classes show an example of a numeric 
and a qualitative attribute each. The respective contexts are:

•	 K(revenue) = {[0…499], [500…1000] }
•	 K(loyalty) = {{bad, weak}, {good, great} }

The partitioning of the revenue and loyalty domains results in the four equivalence 
classes C1, C2, C3, and C4 shown in Fig. 6.15. The meaning of the classes is expressed 
by semantic class names; for instance, customers with little revenue and weak loyalty are 
labeled “Donʼt invest” in C4; C1 could stand for “Retain customer”, C2 for “Improve 
loyalty”, and C3 for “Increase revenue”. It is the database administratorsʼ job, in coop-
eration with the marketing department, to define the attributes and equivalence classes 
and to specify them as an extension of the database schema.

Customer relationship management aims to take into account the customersʼ indi-
vidual wishes and behavior instead of only focusing on product-related arguments 
and efforts. If customers are seen as an asset (customer value), they have to be treated 
according to their market and resource potential. With sharply divided classes, i.e., tradi-
tional customer segments, this is hardly possible, as all customers of one class are treated 
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Fig. 6.15   Classification matrix with the attributes Revenue and Loyalty
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the same. In Fig. 6.15, for instance, Bell and Howard have almost the same revenue and 
loyalty. Nevertheless, in a sharp segmentation they are classed differently: Bell falls 
into the premium class C1 (Retain customer) and Howard into the loser class C4 (Donʼt 
invest). Additionally, top customer Stewart is treated the same as Bell, since both belong 
into segment C1.

As can be seen in Fig. 6.15, the following conflicts can arise from sharp customer 
segmentation:

•	 Customer Bell has barely any incentives to increase revenue or loyalty. They belong 
to the premium class C1 and enjoy the corresponding advantages.

•	 Customer Bell could face an unpleasant surprise, should their revenue drop slightly or 
their loyalty rating be reduced. They may suddenly find themselves in a different cus-
tomer segment; in an extreme case they could drop from the premium class C1 into 
the loser class C4.

•	 Customer Howard has a robust revenue and medium customer loyalty, but is treated 
as a loser. It would hardly be surprising if Howard investigated their options on the 
market and moved on.

•	 A sharp customer segmentation also creates a critical situation for customer Stewart. 
They are, at the moment, the most profitable customer with an excellent reputation, 
yet the company does not recognize and treat them according to their customer value.

The conflict situations illustrated here can be mitigated or eliminated by creating fuzzy 
customer classes. The position of a customer in a two or more-dimensional data matrix 
relates to the customer value now consisting of different class membership fractions.

According to Fig. 6.16, a certain customerʼs loyalty as a linguistic variable can 
simultaneously be “positive” and “negative”. For example, Bell belongs to the fuzzy set 
μpositive with a rate of 0.66 and to the set μnegative with 0.33, i.e., Bellʼs loyalty is not 
exclusively strong or weak, as it would be with sharp classes.

The linguistic variable µ with the vague terms “positive” and “negative” and the 
membership functions μpositive and μnegative results in the domain D(loyalty) being par-
titioned fuzzily. Analogously, the domain D(revenue) is partitioned by the terms “high” 
and “low”. This allows for classes with gradual transitions (fuzzy classes) in the context 
model.

An objectʼs membership in a class is the result of the aggregation across all terms 
defining that class. Class C1 is described by the terms “high” (for the linguistic variable 
revenue) and “positive” (for the linguistic variable loyalty). The aggregation, therefore, 
has to correspond to the conjunction of the individual membership values. For this, vari-
ous operators have been developed in fuzzy set theory.

Classification queries in the language fCQL (fuzzy Classification Query Language) 
operate on the linguistic level with vague contexts. This has the advantage that users do 
not need to know sharp goal values or contexts, but only the column name of the value 
identifying the object and the table or view containing the attribute values. In order to 

6.8  Fuzzy Databases
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take a more detailed look at single classes, users can specify a class or state attributes 
with a verbal description of their intensity. Classification queries, therefore, work with 
verbal descriptions on attribute or class level:

CLASSIFY  Object

FROM      Table

WITH      Classification condition

The language fCQL is based on SQL, with a CLASSIFY clause instead of SELECT 
defining the projection list by the column name of the object to be classified. While the 
WHERE clause in SQL contains a selection condition, the WITH clause determines a 
classification condition. As an example of an fCQL query,

CLASSIFY  Customer

FROM      Customer table

provides a classification of all customers in the table. The query

CLASSIFY  Customer

FROM      Customer table

WITH      CLASS IS Increase revenue

μpositiveμnegative
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Fig. 6.16   Fuzzy partitioning of domains with membership functions
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specifically targets class C3. Bypassing the definition of a class, it is also possible to 
select a certain set of objects by using the linguistic descriptions of the equivalence 
classes. The following query is an example:

CLASSIFY  Customer

FROM      Customer table

WITH      Revenue IS small AND Loyalty IS strong

This query consists of the identifier of the object to be classified (Customer), the name of 
the base table (Customer table), the critical attribute names (Revenue and Loyalty), the 
term “small” of the linguistic variable Revenue, and the term “strong” of the linguistic 
variable Loyalty.

Based on the example and the explanations above, fuzzy databases can be character-
ized as follows:

u Fuzzy database system  A fuzzy database management system (FDBMS) is a data-
base system with the following properties:

•	 The data model is fuzzily rational, i.e., it accepts imprecise, vague, and uncertain 
attribute values.

•	 Dependencies between attributes are expressed with fuzzy normal forms.
•	 Relational calculus as well as relational algebra can be extended to fuzzy relational 

calculus and fuzzy relational algebra using fuzzy logic.
•	 Using a classification language enhanced with linguistic variables, fuzzy queries 

can be formulated.

Only a few computer scientists have been researching the field of fuzzy logic and rela-
tional database systems over the years (Sect. 6.9). Their works are mainly published and 
acknowledged in the field of fuzzy logic, not in the database field. It is to be hoped that 
both fields will grow closer and the leading experts on database technology will recog-
nize the potential that lies in fuzzy databases and fuzzy query languages.

6.9	� Further Reading

One major publication on distributed database systems is the book by Ceri and Pelagatti 
(1985), and another overview is offered by Özsu and Valduriez (1991). Dadam (1996) 
illustrates distributed databases and customer-server systems. The German-language 
work by Rahm (1994) covers aspects of distributed database systems as well as ques-
tions of parallel multicomputer systems. Fundamental works on distributed database sys-
tems are based on the extensions of “System R” by Williams et al. (1982) and “Ingres” 
by Stonebraker (1986). Of interest are also the works of Rothnie et al. (1980), since the 
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database system “SDD-1” covered there was the first prototype of a distributed system. 
There are several approaches to the integration of time into relational databases; for 
instance those by Clifford and Warren (1983), Gadia (1988), and Snodgrass (1987), to 
name only a few. Snodgrass (1994), in cooperation with research colleagues, enhanced 
the SQL language with temporal constructs; that language is known as TSQL2. Further 
research on temporal databases can be found in Etzion et al. (1998). Myrach (2005) cov-
ers temporal aspects in business information systems.

The standard for works on data warehouses is set by Inmon (2005), the source of 
the data warehouse definition used in this book. Kimball et al. (2008) also discussed 
the topic. Well-known German-language works are, e.g., Gluchowski et al. (2008) and 
Mucksch and Behme (2000). Jarke et al. (2000) convey the basics of data warehouses 
and propose research projects. Books on data mining were written by Berson and Smith 
(1997) and Witten and Frank (2005). The integration of databases in the World Wide 
Web is illustrated by several authors in a focus journal issue by Meier (2000).

Object-oriented approaches for extensions of relational databases are presented by 
Dittrich (1988), Lorie et al. (1985), Meier (1987), and Schek and Scholl (1986). Books 
on object-oriented databases come from Bertino and Martino (1993), Cattell (1994), 
Geppert (2002), Heuer (1997), Hughes (1991), and Kim (1990). Lausen and Vossen 
(1996) describe fundamental aspects of object-relational and object-oriented data-
base languages. German works by Kemper and Eickler (2013), Lang and Lockemann 
(1995), and Saake et al. (1997) explain developments in relational and object-oriented 
database systems. Meier and Wüst (2003) wrote an introduction to object-oriented and 
object-relational databases for practical application. Stonebraker (1996) explains object-
relational database systems. The development of the extension of the SQL standard is 
summarized in Türker (2003). The publications by Coad and Yourdon (1991) and Martin 
and Odell (1992) include building blocks for object-oriented database design. Stein 
(1994) provides a comparison of different object-oriented analysis methods in his book.

The rule-based language in deductive database systems is often called Datalog, taking 
inspiration from the word data and the well-known logic programming language Prolog. 
A major Prolog textbook is by Clocksin and Mellish (1994); a formal treatise on logical 
database programming can be found in Maier and Warren (1988). The German-language 
work by Cremers et al. (1994) comprehensively discusses deductive databases. The 
works of Gallaire et al. (1984) and Gardarin and Valduriez (1989) are largely dedicated 
to deductive databases.

The research area of fuzzy sets was founded by Lotfi A. Zadeh (Zadeh 1965), in part 
for the extension of classical logic, with the values “true” and “false”, towards a fuzzy 
logic with any number of truth values. The results of this have been applied to data mod-
eling and databases for some years now, see, for instance, Bordogna and Pasi (2000), 
Bosc and Kacprzyk (1995), Chen (1998), Petra (1996), and Pons et al. (2000). Using 
fuzzy logic, several model enhancements have been proposed for both the entity-rela-
tionship model and the relational model. For example, Chen (1992) in his dissertation 
developed the classic normal forms of the database theory into fuzzy ones by permitting 
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fuzziness in the functional dependencies; see also Shenoi et al. (1992). Other proposals 
regarding fuzzy data models can be found in Kerre and Chen (1995). Takahashi (1995) 
proposes a Fuzzy Query Language (FQL) based on relational calculus. The language 
FQUERY by Kacprzyk and Zadrozny (1995) uses fuzzy terms and has been imple-
mented in Microsoft Access as a prototype. A slightly different approach is taken with 
fuzzy classification, as originally proposed by Schindler (1998). The fuzzy classification 
language fCQL (fuzzy Classification Query Language) was devised for this purpose and 
realized in a prototype (see Meier et al. 2008, 2005, Werro 2015).
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7.1	� Development of Nonrelational Technologies

The term NoSQL was first used in 1998 for a database that (although relational) did not 
have an SQL interface. It became of growing importance during the 2000s, especially 
with the rapid expansion of the internet. The growing popularity of global web services 
saw an increase in the use of web-scale databases, since there was a need for data man-
agement systems that could handle the enormous amounts of data (sometimes in the 
petabyte range and up) generated by web services.

Relational/SQL database systems are much more than mere data storage systems. 
They provide a large degree of processing logic:

•	 Powerful declarative language constructs
•	 Schemas and metadata
•	 Consistency assurance
•	 Referential integrity and triggers
•	 Recovery and logging
•	 Multi-user operation and synchronization
•	 Users, roles, and security
•	 Indexing

These SQL functionalities offer numerous benefits regarding data consistency and secu-
rity. This goes to show that SQL databases are mainly designed for integrity and transac-
tion protection, as required in banking applications or insurance software, among others. 
However, since data integrity control requires much work and processing power, rela-
tional databases quickly reach their limits with large amounts of data. The powerfulness 
of the database management system is disadvantageous for efficiency and performance, 
as well as for flexibility in data processing.

NoSQL Databases 7
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In practical use, consistency-oriented processing components often impede the effi-
cient processing of huge amounts of data, especially in use cases where the focus is on 
performance rather than consistency, such as social media. That is why the open source 
and web development communities soon began to push the development of massive dis-
tributed database systems that can fulfill these new demands.

u NoSQL database  NoSQL databases have the following properties (Sect. 1.4.3):

•	 The database model is not relational.
•	 The focus is on distributed and horizontal scalability.
•	 There are weak or no schema restrictions.
•	 Data replication is easy.
•	 Easy access is provided via an API.
•	 The consistency model is not ACID (instead, e.g., BASE, Sect. 4.2.1).

Although NoSQL primarily reads as databases that provide no SQL access, the acro-
nym is commonly defined as “not only SQL”. Different database models are suitable for 
different purposes, and the use of various database types within one application can be 
beneficial if each is used according to its strengths. This concept is called polyglot per-
sistence and allows for both SQL and NoSQL technologies to be deployed within one 
application.

Core NoSQL technologies are:

•	 Key-value stores (Sect. 7.2)
•	 Column family databases (Sect. 7.3)
•	 Document stores (Sect. 7.4)
•	 Graph databases (Sect. 7.6).

These four database models, also called core NoSQL models, are discussed in this chap-
ter. Other types of NoSQL databases fall in the category of Soft NoSQL, e.g., object 
databases, grid databases, and the family of XML databases (Sect. 7.5).

7.2	� Key-Value Stores

The simplest way of storing data is assigning a value to a variable or a key. At the hard-
ware level, CPUs work with registers based on this model; programming languages use 
the concept in associative arrays. Accordingly, the simplest database model possible is 
data storage that stores a data object as a value for another data object as key.

In key-value stores, a specific value can be stored for any key with a simple command, 
e.g., SET. Below is an example in which data for users of a website is stored: first name, 
last name, e-mail, and encrypted password. For instance, the value John is stored for the 
key User:U17547:firstname.
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SET User:U17547:firstname John

SET User:U17547:lastname Doe

SET User:U17547:email john.doe@blue_planet.net

SET User:U17547:pwhash D75872C818DC63BC1D87EA12

SET User:U17548:firstname Jane

SET User:U17548:lastname Doherty

…

Data objects can be retrieved with a simple query using the key:

GET User:U17547:email

> john.doe@blue_planet.net

The key space can only be structured with special characters such as colons or slashes. 
This allows for the definition of a namespace that can represent a rudimentary data struc-
ture. Apart from that, key-value stores do not support any kind of structure, neither nest-
ing nor references. Key-value stores are schema-less, i.e., data objects can be stored at 
any time and in arbitrary formats, without the need for any metadata objects such as 
tables or columns to be defined beforehand. Going without a schema or referential integ-
rity makes key-value stores performant for queries, easy to partition, and flexible regard-
ing the types of data to be stored.

u Key-value store  A database is a key-value store if it has the following properties:

•	 There is a set of identifying data objects, the keys.
•	 For each key, there is exactly one associated descriptive data object, the value for 

that key.
•	 Specifying a key allows querying the associated value in the database.

Key-value stores have seen a large increase in popularity as part of the NoSQL trend, 
since they are scalable for huge amounts of data. As referential integrity is not checked 
in key-value stores, it is possible to write and read extensive amounts of data efficiently. 
Processing speed can be enhanced even further if the key-value pairs are buffered in 
the main memory of the database. Such setups are called in-memory databases. They 
employ technologies that allow to cache values in the main memory while constantly 
validating them against the long-term persistent data in the background memory.

There is almost no limit to increasing a key-value storeʼs scalability with fragmenta-
tion or sharding of the data content. Partitioning is rather easy in key-value stores, due to 
the simple model. Individual computers within the cluster, called shards, take on only a 
part of the keyspace. This allows for the distribution of the database onto a large number 
of individual machines. The keys are usually distributed according to the principles of 
consistent hashing (Sect. 5.2.3).

7.2  Key-Value Stores
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Figure 7.1 shows a distributed architecture for a key-value store: A numerical value 
(hash) is generated from a key; using the module operator, this value can now be posi-
tioned on a defined number of address spaces (hash slots) in order to determine on which 
shard within the distributed architecture the value for the key will be stored. The distrib-
uted database can also be copied to additional computers and updated there to improve 
partition tolerance, a process called replication. The original data content in the master 
cluster is synchronized with multiple replicated data sets, the slave clusters.

Figure 7.1 shows an example of a possible massively distributed high-performance 
architecture for a key-value store. The master cluster contains three computers (shards 
A, B, and C). The data is kept directly in the main memory (RAM) to reduce response 
times. The data content is replicated to a slave cluster for permanent storage on a hard 
drive. Another slave cluster further increases performance by providing another repli-
cated computer cluster for complex queries and analyses.

Apart from the efficient sharding of large amounts of data, another advantage of key-
value stores is the flexibility of the data schema. In a relational database, a pre-existing 
schema in the shape of a relation with attributes (CREATE TABLE) is necessary for any 
record to be stored. If there is none, a schema definition must be executed before saving 
the data. For database tables with large numbers of records or for the insertion of het-
erogeneous data, this is often a lot of work. Key-value stores are basically schema-free 
and therefore highly flexible regarding the type of data to be stored. It is not necessary to 
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Fig. 7.1   Massively distributed key-value store with sharding and hash-based key distribution
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specify a table with columns and data types, rather, the data can simply be stored under 
an arbitrary key. On the other hand, the lack of a database schema often causes a clutter 
in data management.

7.3	� Column-Family Stores

Even though key-value stores are able to process large amounts of data performantly, 
their structure is still quite rudimentary. Often, the data matrix needs to be structured 
with a schema. Column-family stores enhance the key-value concept accordingly by pro-
viding additional structure.

In practical use, it has shown to be more efficient for optimizing read operations to 
store the data in relational tables not per row, but per column. This is because all col-
umns in one row are rarely needed at once, but there are groups of columns that are often 
read together. Therefore, in order to optimize access, it is useful to structure the data 
in such groups of columns—column families—as storage units. Column-family stores, 
which are named after this method, follow this model; they store data not in relational 
tables, but in enhanced and structured multidimensional key spaces.

Google presented its Bigtable database model for the distributed storage of structured 
data in 2008, significantly influencing the development of column-family stores.

u Bigtable  In the Bigtable model, a table is a sparse, distributed, multidimensional, 
sorted map. It has the following properties:

•	 The data structure is a map which assigns elements from a domain to elements in a 
co-domain.

•	 The mapping function is sorted, i.e., there is an order relation for the keys address-
ing the target elements.

•	 The addressing is multidimensional, i.e., the function has more than one parameter.
•	 The data is distributed by the map, i.e., it can be stored on different computers in 

different places.
•	 The map is sparse, since there are possibly many keys without data entry.

In Bigtable, a table has three dimensions: It maps an entry of the database for one row 
and one column at a certain time as a string:

(row:string, column:string, time:int64)   ← string

Tables in column-family stores are multistage aggregated structures. The first key, the 
row key, is an addressing of a database object, as in a key-value store. Within this key, 
however, there is another structure, dividing the row into several columns, which are also 
addressed with keys. Entries in the table are additionally versioned with a time stamp. 

7.3  Column-Family Stores
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The storage unit addressed with a certain combination of row key, column key, and time 
stamp is called a cell.

Columns in a table are grouped into column families. These are the unit for access 
control, i.e., for granting reading and writing permissions to users and applications. 
Additionally, the unit of the column family is used in assigning main memory and hard 
drive space. Column families are the only fixed schema rules of the table, which is why 
they need to be created explicitly by changing the schema of the table. Unlike in rela-
tional databases, various row keys can be used within one column family to store data. 
The column family, therefore, serves as a rudimentary schema with a reduced amount of 
metadata.

Data within a column family is of the same type, since it is assumed it will be read 
together. This is also why the database always stores the data of one column family in 
one row of the table on the same computer. This mechanism reduces the time needed for 
combined reading access within the column family. Therefore, the database management 
system sorts column families into locality groups, which define on which computer and 
in which format the data is stored. The data of one locality group is physically stored 
on the same computer. Additionally, it is possible to set certain parameters for locality 
groups, for instance to keep a specific locality group in the main memory; making it pos-
sible to read the data quickly without the need to access the hard drive.

Figure 7.2 summarizes how data is stored in the Bigtable model described above: A 
data cell is addressed with row key and column key. In the given example, there is one 
row key per user. The content is additionally historicized with a time stamp. Several col-
umns are grouped into column families: The columns Mail, Name, and Phone form the 

Column family: Contact

Spaltenschlüssel:

Contact:Mail (Spaltenschlüssel)

cybernet

Timestamp: t1

Spaltenschlüssel:

Contact:Mail (Spaltenschlüssel)

doe.john

t2

Row key:
U17547

Contact:Phone Contact:Name

+1-789-555-0123 Jane Smith

t4

Column key:

Contact:Mail (column key) Contact:Name

john.doe@blue_planet.net

t3

U17548

Contact
Column family: 
Access

...

...

Fig. 7.2   Storing data in the Bigtable model
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column family Contact. Access data, such as user names and passwords could be stored 
in the column family Access. The columns in a column family are sparse. In the example 
in Fig. 7.2, the row U17547 contains a value for the column Contact:Mail, but not for the 
column Contact:Phone. If there is no entry, this information will not be stored in the row.

u Column-family store  Databases using a data model similar to the Bigtable model are 
called column-family stores. They can be defined as NoSQL databases with the follow-
ing properties:

•	 The data is stored in multidimensional tables.
•	 Data objects are addressed with row keys.
•	 Object properties are addressed with column keys.
•	 Columns of the tables are grouped into column families.
•	 A tableʼs schema only refers to the column families; within one column family, 

arbitrary column keys can be used.
•	 In distributed, fragmented architectures, the data of a column family is preferably 

physically stored at one place (co-location) in order to optimize response times.

The advantages of column-family stores are their high scalability and availability due to 
their massive distribution, just as with key-value stores. Additionally, they provide a use-
ful structure with a schema offering access control and localization of distributed data 
on the column family level; at the same time they provide enough flexibility within the 
column family by making it possible to use arbitrary column keys.

7.4	� Document Stores

A third variety of NoSQL databases, document stores, combines the absence of a schema 
with the possibility of structuring the stored data. Unlike what is implied by the name, 
document stores do not store arbitrary documents such as web, video, or audio data, but 
structured data in records which are called documents.

The usual document stores were developed specifically for the use in web services. 
They can, therefore, easily be integrated with web technologies such as JavaScript and 
HTTP1. Additionally, they are readily horizontally scalable by combination of several 
computers into an integrated system which distributes the data volume by sharding. The 
focus is mostly on processing large amounts of heterogeneous data, while for most web 
data, for instance from social media, search engines, or news portals, the constant con-
sistency of data does not need to be ensured. Security sensitive web services such as 

1HyperText Transfer Protocol.

7.4  Document Stores



208 7  NoSQL Databases

online banking, which heavily rely on schema restrictions and guaranteed consistency, 
are an exception.

Document stores are completely schema-free, i.e., there is no need to define a schema 
before inserting data structures. The schematic responsibility is, therefore, transferred 
to the user or the processing application. The disadvantage arising from not having a 
schema is the missing referential integrity and normalization. However, the absence of 
a schema allows for extreme flexibility in storing a wide range of data, which is what 
Variety in the Vs of Big Data (see Sect. 1.3) refers to. This also facilitates fragmentation 
of the data.

On the first level, document stores are a kind of key-value stores. For every key (docu-
ment ID), a record can be stored as value. These records are called documents. On the 
second level, these documents have their own internal structure. The term document is 
not entirely appropriate, since they are explicitly not multimedia or other unstructured 
data. A document in the context of a document store is a file with structured data, for 
instance in JSON2 format. The structure is a list of attribute-value pairs. All attribute val-
ues in this data structure can recursively contain lists of attribute-value pairs themselves. 
The documents are not connected to each other, but contain a closed collection of data.

Figure 7.3 shows a sample document store D_USERS that stores data on the users of 
a website. For every user key with the attribute _id, an object containing all user infor-
mation, such as user name, first name, last name, and gender, is stored. The visitHistory 
attribute holds a nested attribute value as an associative array, which again contains key-
value pairs. This nested structure lists the date of the last visit to the website as the asso-
ciated value.

Apart from the standard attribute _id, the document contains a field _rev (revision), 
which indexes the version of the document. One possibility of resolving concurring 
queries is multiversion concurrency control. The database makes sure that every query 
receives the revision of a document with the largest number of changes. As this cannot 
ensure full transactional security, it is called eventual consistency. The consistency of the 
data is only reached after some time. This significantly speeds up data processing at the 
expense of transactional security.

u Document store  To summarize, a document store is a database management system 
with the following properties:

•	 It is a key-value store.
•	 The data objects stored as values for keys are called documents; the keys are used 

for identification.

2JavaScript Object Notation.
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•	 The documents contain data structures in the form of recursively nested attribute-
value pairs without referential integrity.

•	 These data structures are schema-free, i.e., arbitrary attributes can be used in every 
document without defining a schema first.

Queries on a document store can be parallelized and, therefore, sped up with the 
MapReduce procedure (Sect. 5.4). Such processes are two-phased, where Map corre-
sponds to grouping (group by) and Reduce corresponds to aggregation (count, sum, etc.) 
in SQL.

During the first phase, a map function which carries out a predefined process for 
every document is executed, building and returning a map. Such a map is an associative 
array with one or several key-value pairs per document. The map phase can be calculated 
per document independently from the rest of the data content, thereby always allowing 
for parallel processing without dependencies if the database is distributed among differ-
ent computers.

In the optional reduce phase, a function is executed to reduce the data, returning one 
row per key in the index from the map function and aggregating the corresponding val-
ues. The following example demonstrates how Map/Reduce can be used to calculate the 
number of users, grouped by gender, in the database from Fig. 7.3.

_id: U17547 John Doe,
_rev: 2-82ec54af78febc2790
   userName: U17547,
   firstName: John,
   lastName: Doe,
   gender: m,
   visitHistory: [
       index: 2015-03-30 07:55:12,
       blogroll: 2015-03-30 07:56:30,
       login: 2015-03-30 08:02:45
       …
   ]

Document
Key:

„U17547 John Doe“

Document store: D_USERS

Fig. 7.3   Example of a document store

7.4  Document Stores
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Because of the absence of a schema, as part of the map function a check is executed 
for every document to find out if the attribute userName exists. If that is the case, the 
emit function returns a key-value pair, with the key being the userʼs gender, the value 
the number 1. The reduce function then receives two different keys, m and f, in the 
keys array, and for every document per user of the respective gender a number 1, as 
values in the values array. The reduce function returns the sum of the ones, grouped 
by key, which equals the respective number.

// map

function(doc){

 if(doc.userName) {

 emit(doc.gender, 1)

 }

}

// reduce

function(keys, values) {

return sum(values)

}

//  >  key value

//  >   ̎f ̎ 456 //  >   ̎m ̎ 567

The results of Map/Reduce processes, called views, should be precalculated and indexed 
as permanent views using design documents for an optimal performance. Key-value 
pairs in document stores are stored in B-trees (Sect. 5.2.1). This allows quick access to 
individual key values. The reduce function uses a B-tree structure by storing aggregates 
in balanced trees, with only a few detail values stored in the leaves. Updating aggregates, 
therefore, only requires changes to the respective leaf and the (few) nodes with subtotals 
down to the root.

7.5	� XML Databases

XML (eXtensible Markup Language) was developed by the World Wide Web 
Consortium (W3C). The content of hypertext documents is marked by tags, just as in 
HTML. An XML document is self-describing, since it contains not only the actual data, 
but also information on the data structure.

<address>

<street>  W Broad Street  </street>

<number>  333  </number>

<ZIP code>  43215  </ZIP code>

<city>  Columbus  </city>

</address>
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The basic building blocks of XML documents are called elements. They consist of 
a start tag (in angle brackets <name>) and an end tag (in angle brackets with slash </
name>) with the content of the element in-between. The identifier of the start and the end 
tag must match.

The tags provide information on the meaning of the specific values and, therefore, 
make statements about the data semantics. Elements in XML documents can be nested 
arbitrarily. It is best to use a graph to visualize such hierarchically structured docu-
ments, as shown in the example in Fig. 7.4.

As mentioned above, XML documents also implicitly include information about the 
structure of the document. Since it is important for many applications to know the struc-
ture of the XML documents, explicit representations (DTD = Document Type Definition 
or XML schema) have been proposed by W3C. An explicit schema shows which tags 
occur in the XML document and how they are arranged. This allows for, e.g., localizing 
and repairing errors in XML documents. The XML schema is illustrated here as it has 
undeniable advantages for use in database systems.

An XML schema and a relational database schema are related as follows: Usually, 
relational database schemas can be characterized by three degrees of element nesting, 
i.e., the name of the database, the relation names, and the attribute names. This makes it 

Department

Address

IT www.example.com

W Broad Street 333 43215 Columbus

DEPARTMENT

D3 IT Add07 www.example.com

D# DepartmentName Address Website

ADDRESS

Add07 W Broad Street 333 43215

Add# Street Number ZIP code

Columbus

City

DepartmentName Website

CityNumber ZIP codeStreet

Fig. 7.4   Illustration of an XML document represented by tables

7.5  XML Databases
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possible to match a relational database schema to a section of an XML schema and vice 
versa.

Figure 7.4 shows the association between an XML document and a relational 
database schema. The section of the XML document gives the relation names 
DEPARTMENT and ADDRESS, each with their respective attribute names and the 
actual data values. The use of keys and foreign keys is also possible in an XML schema, 
as explained below.

The basic concept of XML schemas is to define data types, and match names and data 
types using declarations. This allows for the creation of completely arbitrary XML docu-
ments. Additionally, it is possible to describe integrity rules for the correctness of XML 
documents.

There is a large number of standard data types, such as string, Boolean, integer, date, 
time, etc.; but apart from that, user-defined data types can also be introduced. Specific 
properties of data types can be declared with facets. This allows for the properties of a 
data type to be specified, for instance the restriction of values by an upper or lower limit, 
length restrictions, or lists of permitted values:

<xs:simpleType name = «city »>
<xs:restriction base = «xs:string »>
<xs:length value = «20 »/>
</xs:restriction>

</xs:simpleType>

For cities, a simple data type based on the predefined data type string is proposed. 
Additionally, the city names cannot consist of more than 20 characters.

Several XML editors have been developed that allow for the graphical representation 
of an XML document or schema. These editors can be used for both the declaration of 
structural properties and the input of data content. By showing or hiding individual sub-
structures, XML documents and schemas can be arranged neatly.

It is desirable to be able to analyze XML documents or XML databases. Unlike rela-
tional query languages, selection conditions are not only linked to values (value selec-
tion), but also to element structures (structure selection). Other basic operations of an 
XML query include the extraction of subelements of an XML document and the modi-
fication of selected subelements. Furthermore, individual elements from different source 
structures can be combined to form new element structures. Last but not least, a suitable 
query language needs to be able to work with hyperlinks; path expressions are vital for 
that.

XQuery, influenced by SQL, various XML languages (e.g., XPath as navigation lan-
guage for XML documents) and object-oriented query languages, was proposed by the 
W3C. XQuery is an enhancement of XPath, offering not only the option to query data in 
XML documents, but also to form new XML structures. The basic elements of XQuery 
are FOR-LET-WHERE-RETURN expressions: FOR and LET bind one or more variables 



213

to the results of a query of expressions. WHERE clauses can be used to further restrict 
the result set, just as in SQL. The result of a query is shown with RETURN.

A simple example to give an outline of the principles of XQuery: The XML document 
“Department” (Fig. 7.4) is queried for the street names of the individual departments:

<streetNames>

{FOR $Department IN //department RETURN

$Department/address/street }

</streetNames>

The query above binds the variable $Department to the <Department> nodes during pro-
cessing. For each of these bindings the RETURN expression evaluates the address and 
returns the street. The query in XQuery produced the following result:

<streetNames>

<street>  W Broad Street  </street>

<street> …………  </street>

<street> …………  </street>

</streetNames>

In XQuery, variables are marked with the $ sign added to their names, in order to distin-
guish them from the names of elements. Unlike in some other programming languages, 
variables cannot have values assigned to them in XQuery; rather, it is necessary to ana-
lyze expressions and bind the result to the variables. This variable binding is done in 
XQuery with the FOR and LET expressions.

In the query example above, no LET expression is specified. Using the WHERE 
clause, the result set could be reduced further. The RETURN clause is executed for every 
FOR loop, but does not necessarily yield a result. The individual results, however, are 
listed and form the result of the FOR-LET-WHERE-RETURN expression.

XQuery is a powerful query language for hyper documents and is offered for XML 
databases as well as some postrelational database systems. In order for relational data-
base systems to store XML documents, some enhancements in the storage component 
need to be applied.

Many relational database systems are nowadays equipped with XML column data 
types and, therefore, the possibility to directly handle XML. This allows for data to 
be stored in structured XML columns and for elements of the XML tree to be queried 
and modified directly with XQuery or XPath. Around the turn of the millennium, XML 
documents for data storage and data communication experienced a boom and were used 
for countless purposes, especially web services. As part of this trend, several database 
systems that can directly process data in the form of XML documents were developed. 
Particularly in the field of open source, support for XQuery in native XML databases is 
far stronger than in relational databases.

7.5  XML Databases
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u Native XML database  A native XML database is a database that has the following 
properties:

•	 The data is stored in documents; the database is, therefore, a document store 
(Sect. 7.4).

•	 The structured data in the documents is compatible with the XML standard.
•	 XML technologies such as XPath, XQuery, and XSL/T can be used for querying 

and manipulating data.

Native XML databases store data strictly hierarchically in a tree structure. They are 
especially suitable if hierarchical data needs to be stored in a standardized format, for 
instance for web services in service-oriented architectures (SOA). A significant advan-
tage is the simplified data import into the database; some database systems even support 
drag & drop of XML files. Figure 7.5 shows a schematic illustration of a native XML 
database. It facilitates reading and writing access to data in a collection of XML docu-
ments for users and applications.

External
applications

Developers,
administrators

Data
interface (API)

User
interface

Xquery Engine (read) ;
XML file manipulations  (write)

XML
Dok.
XML
doc

XML
Dok.
XML
doc

File upload

XML
Dok.
XML
doc

Fig. 7.5   Schema of a native XML database
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An XML database cannot cross-reference like nodes. This can be problematic espe-
cially with multidimensionally-linked data. An XML database, therefore, is best suited 
for data that can be represented in a tree structure as a series of nested generalizations or 
aggregations.

7.6	� Graph Databases

The fourth and final type of core NoSQL databases differs significantly from the data 
models presented up to this point, i.e., the key-value stores, column-family stores, and 
document stores. Those three data models forgo database schemas and referential integ-
rity for the sake of easier fragmentation (sharding). Graph databases, however, have a 
structuring schema: that of the property graph presented in Sect. 1.4.1. In a graph data-
base, data is stored as nodes and edges, which belong to a node type or edge type, 
respectively, and contain data in the form of attribute-value pairs. Unlike in relational 
databases, their schema is implicit, i.e., data objects belonging to a not-yet existing node 
or edge type can be inserted directly into the database without defining the type first. 
The DBMS implicitly follows the changes in the schema based on the information avail-
able and thereby creates the respective type.

As an example, Fig. 7.6 illustrates the graph database G_USERS, which represents 
information on a web portal with users, webpages, and the relationships between them. 
As explained in Sect. 1.4.1, the database has a schema with node and edge types. There 
are two node types, USER and WEBPAGE, and three edge types, FOLLOWS, VISITED, 
and CREATED_BY. The USER node type has the attributes userName, firstName, and 
lastName; the node type WEBPAGE has only the attribute Name; and the edge type 
VISITED has one attribute as well, date with values from the date domain. Therefore, it 
is a property graph.

This graph database stores a similar type of data as the D_USERS document database 
in Fig. 7.3; for instance, it also represents users with username, first name, last name, 
and the webpages visited with date. There is an important difference though: The rela-
tionships between data objects are explicitly present as edges, and referential integrity is 
ensured by the DBMS.

Graph database  A graph database is a database management system with the follow-
ing properties:

•	 The data and/or the schema are shown as graphs (Sect. 2.4) or graph-like structures, 
which generalize the concept of graphs (e.g., hypergraphs)

•	 Data manipulations are expressed as graph transformations, or operations which 
directly address typical properties of graphs (e.g., paths, adjacency, subgraphs, con-
nections, etc.).

7.6  Graph Databases
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•	 The database supports the checking of integrity constraints to ensure data consistency. 
The definition of consistency is directly related to graph structures (e.g., node and 
edge types, attribute domains, and referential integrity of the edges).

Graph databases are used when data is organized in networks. In these cases, it is not 
the individual record that matters, but the connection of all records with each other, for 
instance in social media, but also in the analysis of infrastructure networks (e.g., water 
network or electricity grid), in internet routing, or in the analysis of links between web-
sites. The advantage of the graph database is the index-free adjacency property: For 
every node, the database system can find the direct neighbor, without having to con-
sider all edges, as would be the case in relational databases using a relationship table. 
Therefore, the effort for querying the relationships with a node is constant, independent 
of the volume of the data. In relational databases, the effort for determining referenced 
tuples increases with the number of tuples, even if indexes are used.

Just as relational databases, graph databases need indexes to ensure a quick and direct 
access to individual nodes and edges via their properties. As illustrated in Sect. 5.2.1, 
balanced trees (B-trees) are generated for indexing. A tree is a special graph that does not 
contain any cycles; therefore every tree can be represented as a graph. This is interesting 
for graph data bases, because it means that the index of a graph can be a subgraph of the 
same graph. The graph contains its own indexes.

Graph database: G_USERS

WEBPAGE:
Name: index

USER:
userName:  U17547
firstName:  John
lastName:  Doe

USER:
userName:  U17555
firstName:  Thomas
lastName:  Taylor

USER:
userName:  U17548
firstName:  Jane
lastName:  Smith

WEBPAGE:
Name: blogroll

CREATED_BY

VISITED
date: 2015-03-30

VISITED
date: 2015-03-30

FOLLOWS

FOLLOWS

FOLLOWS

Fig. 7.6   Example of a graph database with user data of a website
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The fragmentation (Sect. 6.2) of graphs is somewhat more complicated. One rea-
son why the other types of core NoSQL databases do not ensure relationships between 
records is that records can be stored on different computers with fragmentation (shard-
ing) without further consideration, since there are no dependencies between them. The 
opposite is true for graph databases. Relationships between records are the central ele-
ment of the database. Therefore, when fragmenting a graph database, the connections 
between records have to be taken into account, which often demands domain-specific 
knowledge. There is, however, no efficient method to optimally divide a graph into 
subgraphs. The existing algorithms are NP-complete, which means the computational 
expense is exponential. As a heuristic, clustering algorithms can determine highly inter-
connected partial graphs as partitions. Todayʼs graph databases, however, do not yet sup-
port sharding.

7.7	� Further Reading

Edlich et al. (2011) present the history of NoSQL databases. The definition of the term 
NoSQL database given there is the basis for the one used in this chapter. The term 
Polyglot Persistence is explained in Sadalage and Fowlerʼs (2013) book.

Clustering and replication of a column-value database is described in the Cluster 
Tutorial on Redisʼ (2015) website. The data model for column-family stores is illustrated 
by Sadalage and Fowler (2013).

Googleʼs Bigtable data structure was originally published by Chang et al. (2008).
As an example of a document store, Anderson et al. (2010) give an overview of 

CouchDB; including elaborations on data structure, views, design documents, and con-
sistency in CouchDB, which are used prototypically and generally in this chapter. For the 
derivation of a grouped aggregate using MapReduce, it was thankfully possible to draw 
on a blog entry by Toby Ho (2009).

XML databases are discussed by Sadalage and Fowler (2013), whose definition 
was broadly adopted for this chapter. Additionally, XML databases are described by 
McCreary and Kelly (2014). XQuery, detailed instructions on the use of XML in rela-
tional databases, and guidelines for a native XML database can be found in the work of 
Fawcett et al. (2012).

A good reference for general work with graph-based data is available by Charu und 
Haixun (2010). Angles and Gutierrez (2008) give an overview over current graph data-
base models; their work also provides the definition of graph databases used here. The 
work of Edlich et al. (2011) presents the graph model in detail and is also the source 
of the related information on use cases, indexing, and partitioning. Information on the 
index-free adjacency property and the complexity of algorithms for the sharding of graph 
databases are taken from Montag (2013).

7.7 � Further Reading
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Glossary

ACID  ACID is an acronym for atomicity, consistency, isolation, and durability. This 
abbreviation expresses that all transactions in a database lead from a consistent state 
to a new consistent state of the database.

Aggregation  Aggregation describes the joining of entity sets into a whole. Aggregation 
structures can be network-like or hierarchical (item list).

Anomaly  Anomalies are records that diverge from reality and can be created during 
insert, change, or delete operations in a database.

Association  The association of one entity set to another is the meaning of the relation-
ship in that direction. Associations can be weighted with an association type defining 
the cardinality of the relationship direction.

BASE  BASE is an acronym for Basically Available, Soft state, Eventual consistency, 
meaning that a consistent state in a distributed database is reached eventually, with a 
delay.

Big Data  The term Big Data describes data records that meet at least the three charac-
teristic Vs: Volume—massive amounts of data ranging from terabytes to zettabytes; 
Variety—a multitude of structured, semi-structured, and unstructured data types, and 
Velocity—high-speed data stream processing.

Business Intelligence  Business intelligence (BI) is a company-wide strategy for the 
analysis and the reporting of relevant business data.

CAP theorem  The CAP (consistency, availability, partition tolerance) theorem states 
that in any massive distributed data management system, only two of the three proper-
ties consistency, availability, and partition tolerance can be ensured.

Column-family store  Column stores or column-family stores are NoSQL databases in 
which the data is organized in columns or sets of columns.

Concurrency control  Synchronization is the coordination of simultaneous accesses to a 
database in multi-user operations. Pessimistic concurrency control prevents conflicts 
between concurrent transactions from the start, while optimistic concurrency control 
resets conflicting transactions after completion.

Cursor management  Cursor management enables the record-by-record processing of a 
set of data records with the help of a cursor.

https://doi.org/10.1007/978-3-658-24549-8
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Cypher  Cypher is a declarative query language for the graph-based Neo4j database.
Data architecture  A data architecture determines which data an organization will 

gather on their own and which they will obtain from information brokers, which data 
is to be stored centralized or non-centralized, how data protection and data security 
are ensured, and who is responsible for maintenance and upkeep of the stored data.

Database schema  A relational database schema formally specifies databases and tables, 
lists key and non-key attributes, and determines integrity constraints.

Database system  A database system consists of a storage and a management compo-
nent. The storage component is used to store data and relationships; the manage-
ment component provides functions and language tools for data maintenance and 
management.

Data dictionary system  Data dictionary systems are used for the description and docu-
mentation of data elements, database structures, transactions, etc. and their connec-
tions with each other.

Data independence  Data independence in database management systems is established 
by separating the data from the application tools via system functionalities.

Data management  Data management includes all operational, organizational, and 
technical aspects of data architecture, data governance, and data technology that sup-
port company-wide data storage, maintenance, and utilization as well as business 
analytics.

Data mining  Data mining is the search for valuable information within data sets and 
aims to discover previously unknown data patterns.

Data model  Data models provide a structured and formal description of the data and 
data relationships required for an information system.

Data protection  Data protection is the prevention of unauthorized access to and use of 
data.

Data scientist  Data scientists are business analytics specialists and experts on tools and 
methods for NoSQL databases, data mining, statistics, and the visualization of multi-
dimensional connections within data.

Data security  Data security includes all technical and organizational safeguards against 
the falsification, destruction, and loss of data.

Data stream  A data stream is a continuous flow of digital data with a variable data rate 
(records per unit of time). Data in a data stream is in chronological order and may 
include audio and video data or series of measurements.

Data warehouse  A data warehouse is a system of databases and loading applications 
which provides historized data from various distributed data sets for data analysis via 
integration.

Document store  Document stores, also called document-based databases, are NoSQL 
databases that store one record for each key, similar to key-value stores. However, 
those records contain sets of structured data in the form of attributes and characteris-
tics, hence the name document.
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End user  End users are employees in the various company departments who work with 
the database and have basic IT knowledge.

Entity  Entities are equivalent to real-world or abstract objects. They are characterized 
by attributes and grouped into entity sets.

Entity-relationship model  The entity-relationship model is a data model defining data 
classes (entity sets) and relationship sets. In graphic representations, entity sets are 
depicted as rectangles, relationship sets as rhombi, and attributes as ovals.

Fuzzy database  Fuzzy databases support incomplete, unclear, or imprecise information 
by employing fuzzy logic.

Generalization  Generalization is the abstraction process of combining entity sets into 
a superordinate entity set. The entity subsets in a generalization hierarchy are called 
specializations.

Graph database  Graph databases manage graphs consisting of vertices representing 
objects or concepts and edges representing the relationships between them. Both ver-
tices and edges can have attributes.

Graph-based model  The graph-based model represents real-world and abstract infor-
mation as vertices (objects) and edges (relationships between objects). Both vertices 
and edges can have properties, and edges can be either directed or undirected.

Hashing  Hashing is a distributed storage organization in which the storage location 
of the data records is calculated directly from the keys using a transformation (hash 
function).

Index  An index is a physical data structure that provides the internal addresses of the 
records for selected attributes.

In-memory database  In in-memory databases, the records are stored in the computerʼs 
main memory.

Integrity constraint  Integrity constraints are formal specifications for keys, attributes, 
and domains. They ensure the consistent and non-contradictory nature of the data.

Join  A join is a database operation that combines two tables via a shared attribute and 
creates a result table.

Key  A key is a minimal attribute combination that uniquely identifies records within a 
database.

Key-value store  Key-value stores are NoSQL databases in which data is stored as key-
value pairs.

MapReduce method  The MapReduce method consists of two phases: During the map 
phase, subtasks are delegated to various nodes of the computer network in order to 
use parallelism for the calculation of preliminary results. Those results are then con-
solidated in the reduce phase.

Normal form  Normal forms are rules to expose dependencies within tables in order to 
avoid redundant information and resulting anomalies.

NoSQL  NoSQL is short for ‘Not only SQLʼ and describes databases supporting Big 
Data that are not subject to a fixed database schema. In addition, the underlying data-
base model is not relational.
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NULL value  A NULL value is a data value that is not yet known to the database.
Object-orientation  In object-oriented methods, data is encapsulated by appropriate 

means and properties of data classes can be inherited.
Optimization  The optimization of a database query comprises the rephrasing of the 

respective expression (e.g. algebraic optimization) and the utilization of storage and 
access structures to reduce the computational expense.

QBE  QBE (Query by Example) is a database language in which users have their 
intended analyses created and executed based on examples.

Query language  Query languages are used to analyze and utilize databases, potentially 
set-orientedly, via the definition of selection conditions.

Recovery  Recovery is the restoration of a correct database state after an error.
Redundancy  Multiple records with the same information in one database are consid-

ered redundancies.
Relational algebra  Relational algebra provides the formal framework for the relational 

database languages and includes the set union, set difference, Cartesian product, pro-
ject, and select operators.

Relational calculus  Relational calculus is based on propositional logic, with quantifiers 
(“for all …” or “there exists …”) being permitted in addition to logical connectives 
between predicates.

Relational model  The relational model is a data model that represents both data and 
relationships between data as tables.

Selection  Selection is a database operation that yields all tuples from a table that match 
the criteria specified by the user.

SQL  SQL (Structured Query Language) is the most important relational query and 
manipulation language and has been standardized by ISO (International Organization 
for Standardization).

Table  A table (also called relation) is a set of tuples (records) of certain attribute catego-
ries, with one attribute or attribute combination uniquely identifying the tuples within 
the table.

Transaction  A transaction is a sequence of operations that is atomic, consistent, iso-
lated, and durable. Transaction management allows conflict-free simultaneous work 
by multiple users.

Tree  A tree is a data structure in which every node apart from the root node has exactly 
one previous node and where there is a single path from each leaf to the root.

Two-phase locking protocol  The two-phase locking (2PL) protocol prohibits transac-
tions from acquiring a new lock after a lock on another database object used by the 
transaction has already been released.

Vector clock  Vector clocks are no time-keeping tools, but counting algorithms allowing 
for a partial chronological ordering of events in concurrent processes.

XML  XML (eXtensible Markup Language) describes semi-structured data, content, and 
form in a hierarchical manner.
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