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m Scikit-Learn: for efficient and clean Python implementations of
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Preface

What Is Data Science?

This is a book about doing data science with Python, which immediately begs the
question: what is data science? It’s a surprisingly hard definition to nail down, espe-
cially given how ubiquitous the term has become. Vocal critics have variously dis-
missed the term as a superfluous label (after all, what science doesn’t involve data?) or
a simple buzzword that only exists to salt résumés and catch the eye of overzealous
tech recruiters.

In my mind, these critiques miss something important. Data science, despite its hype-
laden veneer, is perhaps the best label we have for the cross-disciplinary set of skills
that are becoming increasingly important in many applications across industry and
academia. This cross-disciplinary piece is key: in my mind, the best existing defini-
tion of data science is illustrated by Drew Conway’s Data Science Venn Diagram, first
published on his blog in September 2010 (see Figure P-1).

S

Substantive
Expertise

Figure P-1. Drew Conway’s Data Science Venn Diagram
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While some of the intersection labels are a bit tongue-in-cheek, this diagram captures
the essence of what I think people mean when they say “data science”: it is fundamen-
tally an interdisciplinary subject. Data science comprises three distinct and overlap-
ping areas: the skills of a statistician who knows how to model and summarize
datasets (which are growing ever larger); the skills of a computer scientist who can
design and use algorithms to efficiently store, process, and visualize this data; and the
domain expertise—what we might think of as “classical” training in a subject—neces-
sary both to formulate the right questions and to put their answers in context.

With this in mind, I would encourage you to think of data science not as a new
domain of knowledge to learn, but as a new set of skills that you can apply within
your current area of expertise. Whether you are reporting election results, forecasting
stock returns, optimizing online ad clicks, identifying microorganisms in microscope
photos, seeking new classes of astronomical objects, or working with data in any
other field, the goal of this book is to give you the ability to ask and answer new ques-
tions about your chosen subject area.

Who Is This Book For?

In my teaching both at the University of Washington and at various tech-focused
conferences and meetups, one of the most common questions I have heard is this:
“how should I learn Python?” The people asking are generally technically minded
students, developers, or researchers, often with an already strong background in writ-
ing code and using computational and numerical tools. Most of these folks don’t want
to learn Python per se, but want to learn the language with the aim of using it as a
tool for data-intensive and computational science. While a large patchwork of videos,
blog posts, and tutorials for this audience is available online, I've long been frustrated
by the lack of a single good answer to this question; that is what inspired this book.

The book is not meant to be an introduction to Python or to programming in gen-
eral; I assume the reader has familiarity with the Python language, including defining
functions, assigning variables, calling methods of objects, controlling the flow of a
program, and other basic tasks. Instead, it is meant to help Python users learn to use
Python’s data science stack—libraries such as IPython, NumPy, Pandas, Matplotlib,
Scikit-Learn, and related tools—to effectively store, manipulate, and gain insight
from data.

Why Python?

Python has emerged over the last couple decades as a first-class tool for scientific
computing tasks, including the analysis and visualization of large datasets. This may
have come as a surprise to early proponents of the Python language: the language
itself was not specifically designed with data analysis or scientific computing in mind.

xii | Preface



The usefulness of Python for data science stems primarily from the large and active
ecosystem of third-party packages: NumPy for manipulation of homogeneous array-
based data, Pandas for manipulation of heterogeneous and labeled data, SciPy for
common scientific computing tasks, Matplotlib for publication-quality visualizations,
IPython for interactive execution and sharing of code, Scikit-Learn for machine
learning, and many more tools that will be mentioned in the following pages.

If you are looking for a guide to the Python language itself, I would suggest the sister
project to this book, A Whirlwind Tour of the Python Language. This short report pro-
vides a tour of the essential features of the Python language, aimed at data scientists
who already are familiar with one or more other programming languages.

Python 2 Versus Python 3

This book uses the syntax of Python 3, which contains language enhancements that
are not compatible with the 2.x series of Python. Though Python 3.0 was first released
in 2008, adoption has been relatively slow, particularly in the scientific and web devel-
opment communities. This is primarily because it took some time for many of the
essential third-party packages and toolkits to be made compatible with the new lan-
guage internals. Since early 2014, however, stable releases of the most important tools
in the data science ecosystem have been fully compatible with both Python 2 and 3,
and so this book will use the newer Python 3 syntax. However, the vast majority of
code snippets in this book will also work without modification in Python 2: in cases
where a Py2-incompatible syntax is used, I will make every effort to note it explicitly.

Outline of This Book

Each chapter of this book focuses on a particular package or tool that contributes a
fundamental piece of the Python data science story.

IPython and Jupyter (Chapter 1)
These packages provide the computational environment in which many Python-
using data scientists work.

NumPy (Chapter 2)
This library provides the ndarray object for efficient storage and manipulation of
dense data arrays in Python.

Pandas (Chapter 3)
This library provides the DataFrame object for efficient storage and manipulation
of labeled/columnar data in Python.

Matplotlib (Chapter 4)
This library provides capabilities for a flexible range of data visualizations in
Python.
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Scikit-Learn (Chapter 5)
This library provides efficient and clean Python implementations of the most
important and established machine learning algorithms.

The PyData world is certainly much larger than these five packages, and is growing
every day. With this in mind, I make every attempt through these pages to provide
references to other interesting efforts, projects, and packages that are pushing the
boundaries of what can be done in Python. Nevertheless, these five are currently fun-
damental to much of the work being done in the Python data science space, and I
expect they will remain important even as the ecosystem continues growing around
them.

Using Code Examples

Supplemental material (code examples, figures, etc.) is available for download at
https://github.com/jakevdp/PythonDataScienceHandbook. This book is here to help
you get your job done. In general, if example code is offered with this book, you may
use it in your programs and documentation. You do not need to contact us for per-
mission unless youre reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example, “Python Data Science Handbook by
Jake VanderPlas (O'Reilly). Copyright 2017 Jake VanderPlas, 978-1-491-91205-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Installation Considerations

Installing Python and the suite of libraries that enable scientific computing is
straightforward. This section will outline some of the considerations to keep in mind
when setting up your computer.

Though there are various ways to install Python, the one I would suggest for use in
data science is the Anaconda distribution, which works similarly whether you use
Windows, Linux, or Mac OS X. The Anaconda distribution comes in two flavors:

« Miniconda gives you the Python interpreter itself, along with a command-line
tool called conda that operates as a cross-platform package manager geared
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toward Python packages, similar in spirit to the apt or yum tools that Linux users
might be familiar with.

» Anaconda includes both Python and conda, and additionally bundles a suite of
other preinstalled packages geared toward scientific computing. Because of the
size of this bundle, expect the installation to consume several gigabytes of disk
space.

Any of the packages included with Anaconda can also be installed manually on top of
Miniconda; for this reason I suggest starting with Miniconda.

To get started, download and install the Miniconda package (make sure to choose a
version with Python 3), and then install the core packages used in this book:

[~]1$ conda install numpy pandas scikit-learn matplotlib seaborn ipython-notebook

Throughout the text, we will also make use of other, more specialized tools in
Python’s scientific ecosystem; installation is usually as easy as typing conda install
packagename. For more information on conda, including information about creating
and using conda environments (which I would highly recommend), refer to conda’s
online documentation.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
‘ I training and reference platform for enterprise, government,
educators, and individuals.
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Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/python-data-sci-handbook.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER1

|Python: Beyond Normal Python

There are many options for development environments for Python, and I'm often
asked which one I use in my own work. My answer sometimes surprises people: my
preferred environment is IPython plus a text editor (in my case, Emacs or Atom
depending on my mood). IPython (short for Interactive Python) was started in 2001
by Fernando Perez as an enhanced Python interpreter, and has since grown into a
project aiming to provide, in Perez’s words, “Tools for the entire lifecycle of research
computing” If Python is the engine of our data science task, you might think of IPy-
thon as the interactive control panel.

As well as being a useful interactive interface to Python, IPython also provides a
number of useful syntactic additions to the language; we'll cover the most useful of
these additions here. In addition, IPython is closely tied with the Jupyter project,
which provides a browser-based notebook that is useful for development, collabora-
tion, sharing, and even publication of data science results. The IPython notebook is
actually a special case of the broader Jupyter notebook structure, which encompasses
notebooks for Julia, R, and other programming languages. As an example of the use-
fulness of the notebook format, look no further than the page you are reading: the
entire manuscript for this book was composed as a set of IPython notebooks.

IPython is about using Python effectively for interactive scientific and data-intensive
computing. This chapter will start by stepping through some of the IPython features
that are useful to the practice of data science, focusing especially on the syntax it
offers beyond the standard features of Python. Next, we will go into a bit more depth
on some of the more useful “magic commands” that can speed up common tasks in
creating and using data science code. Finally, we will touch on some of the features of
the notebook that make it useful in understanding data and sharing results.
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Shell or Notebook?

There are two primary means of using IPython that we’ll discuss in this chapter: the
IPython shell and the IPython notebook. The bulk of the material in this chapter is
relevant to both, and the examples will switch between them depending on what is
most convenient. In the few sections that are relevant to just one or the other, I will
explicitly state that fact. Before we start, some words on how to launch the IPython
shell and IPython notebook.

Launching the IPython Shell

This chapter, like most of this book, is not designed to be absorbed passively. I recom-
mend that as you read through it, you follow along and experiment with the tools and
syntax we cover: the muscle-memory you build through doing this will be far more
useful than the simple act of reading about it. Start by launching the IPython inter-
preter by typing ipython on the command line; alternatively, if you've installed a dis-
tribution like Anaconda or EPD, there may be a launcher specific to your system
(we'll discuss this more fully in “Help and Documentation in IPython” on page 3).

Once you do this, you should see a prompt like the following:

IPython 4.0.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.
In [1]:

With that, you're ready to follow along.

Launching the Jupyter Notebook

The Jupyter notebook is a browser-based graphical interface to the IPython shell, and
builds on it a rich set of dynamic display capabilities. As well as executing Python/
IPython statements, the notebook allows the user to include formatted text, static and
dynamic visualizations, mathematical equations, JavaScript widgets, and much more.
Furthermore, these documents can be saved in a way that lets other people open them
and execute the code on their own systems.

Though the IPython notebook is viewed and edited through your web browser win-
dow, it must connect to a running Python process in order to execute code. To start
this process (known as a “kernel”), run the following command in your system shell:

$ jupyter notebook

This command will launch a local web server that will be visible to your browser. It
immediately spits out a log showing what it is doing; that log will look something like
this:
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$ jupyter notebook

[NotebookApp] Serving notebooks from local directory: /Users/jakevdp/...

[NotebookApp] 0 active kernels

[NotebookApp] The IPython Notebook is running at: http://localhost:8888/

[NotebookApp] Use Control-C to stop this server and shut down all kernels...
Upon issuing the command, your default browser should automatically open and
navigate to the listed local URL; the exact address will depend on your system. If the
browser does not open automatically, you can open a window and manually open this
address (http://localhost:8888/ in this example).

Help and Documentation in IPython

If you read no other section in this chapter, read this one: I find the tools discussed
here to be the most transformative contributions of IPython to my daily workflow.

When a technologically minded person is asked to help a friend, family member, or
colleague with a computer problem, most of the time it’s less a matter of knowing the
answer as much as knowing how to quickly find an unknown answer. In data science
it's the same: searchable web resources such as online documentation, mailing-list
threads, and Stack Overflow answers contain a wealth of information, even (espe-
cially?) if it is a topic you've found yourself searching before. Being an effective prac-
titioner of data science is less about memorizing the tool or command you should use
for every possible situation, and more about learning to effectively find the informa-
tion you don’t know, whether through a web search engine or another means.

One of the most useful functions of IPython/Jupyter is to shorten the gap between the
user and the type of documentation and search that will help them do their work
effectively. While web searches still play a role in answering complicated questions,
an amazing amount of information can be found through IPython alone. Some
examples of the questions IPython can help answer in a few keystrokes:

o How do I call this function? What arguments and options does it have?
« What does the source code of this Python object look like?
o What is in this package I imported? What attributes or methods does this object

have?

Here we'll discuss IPython’s tools to quickly access this information, namely the ?
character to explore documentation, the ?? characters to explore source code, and the
Tab key for autocompletion.

Accessing Documentation with ?

The Python language and its data science ecosystem are built with the user in mind,
and one big part of that is access to documentation. Every Python object contains the
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reference to a string, known as a docstring, which in most cases will contain a concise
summary of the object and how to use it. Python has a built-in help() function that
can access this information and print the results. For example, to see the documenta-
tion of the built-in len function, you can do the following:

In [1]: help(len)
Help on built-in function len in module builtins:

len(...)
len(object) -> integer

Return the number of items of a sequence or mapping.

Depending on your interpreter, this information may be displayed as inline text, or in
some separate pop-up window.

Because finding help on an object is so common and useful, IPython introduces the ?
character as a shorthand for accessing this documentation and other relevant
information:

In [2]: len?

Type: builtin_function_or_method

String form: <built-in function len>

Namespace: Python builtin

Docstring:
len(object) -> integer

Return the number of items of a sequence or mapping.
This notation works for just about anything, including object methods:

In [3]: L =1[1, 2, 3]
In [4]: L.insert?

Type: builtin_function_or_method
String form: <built-in method insert of list object at 0x1024b8ea8>
Docstring: L.insert(index, object) -- insert object before index

or even objects themselves, with the documentation from their type:

In [5]: L?

Type: list

String form: [1, 2, 3]

Length: 3

Docstring:

list() -> new empty list

list(iterable) -> new list initialized from 's items

Importantly, this will even work for functions or other objects you create yourself!
Here we'll define a small function with a docstring:

In [6]: def square(a):

ceeat Return the square of a.
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ceelt return a ** 2

Note that to create a docstring for our function, we simply placed a string literal in
the first line. Because docstrings are usually multiple lines, by convention we used
Pythonss triple-quote notation for multiline strings.

Now we’ll use the ? mark to find this docstring:

In [7]: square?

Type: function

String form: <function square at 0x103713cb0o>
Definition: square(a)

Docstring: Return the square of a.

This quick access to documentation via docstrings is one reason you should get in the
habit of always adding such inline documentation to the code you write!

Accessing Source Code with 77

Because the Python language is so easily readable, you can usually gain another level
of insight by reading the source code of the object you're curious about. IPython pro-
vides a shortcut to the source code with the double question mark (??):

In [8]: square??
Type: function
String form: <function square at 0x103713cbo>
Definition: square(a)
Source:
def square(a):
"Return the square of a"
return a ** 2

For simple functions like this, the double question mark can give quick insight into
the under-the-hood details.

If you play with this much, you'll notice that sometimes the ?? suffix doesn’t display
any source code: this is generally because the object in question is not implemented in
Python, but in C or some other compiled extension language. If this is the case, the ??
suffix gives the same output as the ? suffix. You'll find this particularly with many of
Python’s built-in objects and types, for example len from above:

In [9]: len??

Type: builtin_function_or_method

String form: <built-in function len>

Namespace: Python builtin

Docstring:
len(object) -> integer

Return the number of items of a sequence or mapping.
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Using ? and/or ?? gives a powerful and quick interface for finding information about
what any Python function or module does.

Exploring Modules with Tab Completion

IPython’s other useful interface is the use of the Tab key for autocompletion and
exploration of the contents of objects, modules, and namespaces. In the examples that
follow, we'll use <TAB> to indicate when the Tab key should be pressed.

Tab completion of object contents

Every Python object has various attributes and methods associated with it. Like with
the help function discussed before, Python has a built-in dir function that returns a
list of these, but the tab-completion interface is much easier to use in practice. To see
a list of all available attributes of an object, you can type the name of the object fol-
lowed by a period (.) character and the Tab key:

In [10]: L.<TAB>
L.append L.copy L.extend L.insert L.remove L.sort
L.clear L.count L.index L.pop L.reverse

To narrow down the list, you can type the first character or several characters of the
name, and the Tab key will find the matching attributes and methods:

In [10]: L.c<TAB>
L.clear L.copy L.count

In [10]: L.co<TAB>

L.copy L.count
If there is only a single option, pressing the Tab key will complete the line for you. For
example, the following will instantly be replaced with L.count:

In [16]: L.cou<TAB>

Though Python has no strictly enforced distinction between public/external
attributes and private/internal attributes, by convention a preceding underscore is
used to denote such methods. For clarity, these private methods and special methods
are omitted from the list by default, but it's possible to list them by explicitly typing
the underscore:

In [10]: L._<TAB>
L.__add__ L._ gt L.__reduce__
L.__class__ L.__hash__ L.__reduce_ex__

For brevity, we've only shown the first couple lines of the output. Most of these are
Python’s special double-underscore methods (often nicknamed “dunder” methods).
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Tab completion when importing

Tab completion is also useful when importing objects from packages. Here we'll use it
to find all possible imports in the itertools package that start with co:

In [10]: from itertools import co<TAB>
combinations compress
combinations_with_replacement count

Similarly, you can use tab completion to see which imports are available on your sys-
tem (this will change depending on which third-party scripts and modules are visible
to your Python session):

In [10]: import <TAB>
Display all 399 possibilities? (y or n)

Crypto dis py_compile
Cython distutils pyclbr
difflib pwd zmq

In [10]: import h<TAB>

hashlib hmac http

heapq html husl

(Note that for brevity, I did not print here all 399 importable packages and modules
on my system.)

Beyond tab completion: Wildcard matching

Tab completion is useful if you know the first few characters of the object or attribute
you're looking for, but is little help if youd like to match characters at the middle or
end of the word. For this use case, IPython provides a means of wildcard matching
for names using the * character.

For example, we can use this to list every object in the namespace that ends with
Warning:

In [10]: *Warning?

BytesWarning RuntimeWarning
DeprecationWarning SyntaxWarning
FutureWarning UnicodeWarning
ImportWarning UserWarning
PendingDeprecationWarning Warning
ResourcelWarning

Notice that the * character matches any string, including the empty string.

Similarly, suppose we are looking for a string method that contains the word find
somewhere in its name. We can search for it this way:
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In [10]: str.*find*?

str.find

str.rfind
I find this type of flexible wildcard search can be very useful for finding a particular
command when I'm getting to know a new package or reacquainting myself with a
familiar one.

Keyboard Shortcuts in the IPython Shell

If you spend any amount of time on the computer, you've probably found a use for
keyboard shortcuts in your workflow. Most familiar perhaps are Cmd-C and Cmd-V
(or Ctrl-C and Ctrl-V) for copying and pasting in a wide variety of programs and sys-
tems. Power users tend to go even further: popular text editors like Emacs, Vim, and
others provide users an incredible range of operations through intricate combina-
tions of keystrokes.

The IPython shell doesn’t go this far, but does provide a number of keyboard short-
cuts for fast navigation while youre typing commands. These shortcuts are not in fact
provided by IPython itself, but through its dependency on the GNU Readline library:
thus, some of the following shortcuts may differ depending on your system configu-
ration. Also, while some of these shortcuts do work in the browser-based notebook,
this section is primarily about shortcuts in the IPython shell.

Once you get accustomed to these, they can be very useful for quickly performing
certain commands without moving your hands from the “home” keyboard position.
If you're an Emacs user or if you have experience with Linux-style shells, the follow-
ing will be very familiar. We'll group these shortcuts into a few categories: navigation
shortcuts, text entry shortcuts, command history shortcuts, and miscellaneous shortcuts.

Navigation Shortcuts

While the use of the left and right arrow keys to move backward and forward in the
line is quite obvious, there are other options that dont require moving your hands
from the “home” keyboard position:

Keystroke Action
(trl-a Move cursor to the beginning of the line
(trl-e Move cursor to the end of the line

Ctrl-b (or the left arrow key) ~ Move cursor back one character
Ctrl-f (or the right arrow key)  Move cursor forward one character
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Text Entry Shortcuts

While everyone is familiar with using the Backspace key to delete the previous char-
acter, reaching for the key often requires some minor finger gymnastics, and it only
deletes a single character at a time. In IPython there are several shortcuts for remov-
ing some portion of the text you're typing. The most immediately useful of these are
the commands to delete entire lines of text. You'll know these have become second
nature if you find yourself using a combination of Ctrl-b and Ctrl-d instead of reach-
ing for the Backspace key to delete the previous character!

Keystroke Action

Backspace key  Delete previous character in line

Ctrl-d Delete next character in line

Ctrl-k Cut text from cursor to end of line

Ctrl-u Cut text from beginning fo line to cursor

Ctrl-y Yank (i.e., paste) text that was previously cut
Ctrl-t Transpose (i.e., switch) previous two characters

Command History Shortcuts

Perhaps the most impactful shortcuts discussed here are the ones IPython provides
for navigating the command history. This command history goes beyond your cur-
rent IPython session: your entire command history is stored in a SQLite database in
your IPython profile directory. The most straightforward way to access these is with
the up and down arrow keys to step through the history, but other options exist as
well:

Keystroke Action

Ctrl-p (or the up arrow key) Access previous command in history
Ctrl-n (or the down arrow key) Access next command in history
Crl-r Reverse-search through command history

The reverse-search can be particularly useful. Recall that in the previous section we
defined a function called square. Let’s reverse-search our Python history from a new
IPython shell and find this definition again. When you press Ctrl-r in the IPython
terminal, you’ll see the following prompt:

In [1]:

(reverse-i-search) ' ':
If you start typing characters at this prompt, IPython will auto-fill the most recent
command, if any, that matches those characters:
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In [1]:

(reverse-i-search)'sqa': square??
At any point, you can add more characters to refine the search, or press Ctrl-r again
to search further for another command that matches the query. If you followed along
in the previous section, pressing Ctrl-r twice more gives:

In [1]:

(reverse-i-search)sqa': def square(a):

"""Return the square of a"""
return a ** 2

Once you have found the command you're looking for, press Return and the search
will end. We can then use the retrieved command, and carry on with our session:

In [1]: def square(a):
"""Return the square of a
return a ** 2

o

In [2]: square(2)
Out[2]: 4

Note that you can also use Ctrl-p/Ctrl-n or the up/down arrow keys to search
through history, but only by matching characters at the beginning of the line. That is,
if you type def and then press Ctrl-p, it would find the most recent command (if any)
in your history that begins with the characters def.

Miscellaneous Shortcuts

Finally, there are a few miscellaneous shortcuts that don't fit into any of the preceding
categories, but are nevertheless useful to know:

Keystroke Action

Cerl-| Clear terminal screen
Ctrl-c Interrupt current Python command
Ctrl-d Exit IPython session

The Ctrl-c shortcut in particular can be useful when you inadvertently start a very
long-running job.

While some of the shortcuts discussed here may seem a bit tedious at first, they
quickly become automatic with practice. Once you develop that muscle memory, I
suspect you will even find yourself wishing they were available in other contexts.

IPython Magic Commands

The previous two sections showed how IPython lets you use and explore Python effi-
ciently and interactively. Here we'll begin discussing some of the enhancements that
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IPython adds on top of the normal Python syntax. These are known in IPython as
magic commands, and are prefixed by the % character. These magic commands are
designed to succinctly solve various common problems in standard data analysis.
Magic commands come in two flavors: line magics, which are denoted by a single %
prefix and operate on a single line of input, and cell magics, which are denoted by a
double %% prefix and operate on multiple lines of input. We'll demonstrate and dis-
cuss a few brief examples here, and come back to more focused discussion of several
useful magic commands later in the chapter.

Pasting Code Blocks: %paste and %cpaste

When you’re working in the IPython interpreter, one common gotcha is that pasting
multiline code blocks can lead to unexpected errors, especially when indentation and
interpreter markers are involved. A common case is that you find some example code
on a website and want to paste it into your interpreter. Consider the following simple
function:

>>> def donothing(x):
return X
The code is formatted as it would appear in the Python interpreter, and if you copy
and paste this directly into IPython you get an error:

In [2]: >>> def donothing(x):
: return x

File "<ipython-input-20-5a66c8964687>", line 2

return x
A

SyntaxError: invalid syntax

In the direct paste, the interpreter is confused by the additional prompt characters.
But never fear—IPython’s %paste magic function is designed to handle this exact type
of multiline, marked-up input:

In [3]: %paste

>>> def donothing(x):
return x

## -- End pasted text --

The %paste command both enters and executes the code, so now the function is
ready to be used:

In [4]: donothing(10)
outf[4]: 10

A command with a similar intent is %cpaste, which opens up an interactive multiline
prompt in which you can paste one or more chunks of code to be executed in a batch:
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In [5]: %cpaste
Pasting code; enter
:>>> def donothing(x):
: return x

alone on the line to stop or use Ctrl-D.

These magic commands, like others we'll see, make available functionality that would
be difficult or impossible in a standard Python interpreter.

Running External Code: %run

As you begin developing more extensive code, you will likely find yourself working in
both IPython for interactive exploration, as well as a text editor to store code that you
want to reuse. Rather than running this code in a new window, it can be convenient
to run it within your IPython session. This can be done with the %run magic.

For example, imagine you've created a myscript.py file with the following contents:

# file: myscript.py

def square(x):
"""square a number
return x ** 2

o

for N in range(1, 4):
print(N, "squared is", square(N))

You can execute this from your IPython session as follows:
In [6]: %run myscript.py
1 squared is 1

2 squared is 4
3 squared is 9

Note also that after you've run this script, any functions defined within it are available
for use in your IPython session:

In [7]: square(5)
Out[7]: 25

There are several options to fine-tune how your code is run; you can see the docu-
mentation in the normal way, by typing %run? in the IPython interpreter.

Timing Code Execution: %timeit

Another example of a useful magic function is %timeit, which will automatically
determine the execution time of the single-line Python statement that follows it. For
example, we may want to check the performance of a list comprehension:

In [8]: %timeit L = [n ** 2 for n in range(1000)]
1000 loops, best of 3: 325 ps per loop
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The benefit of %timeit is that for short commands it will automatically perform mul-
tiple runs in order to attain more robust results. For multiline statements, adding a
second % sign will turn this into a cell magic that can handle multiple lines of input.
For example, here’s the equivalent construction with a for loop:
In [9]: %%timeit
s L=1]
: for n in range(1000):
L.append(n ** 2)

1000 loops, best of 3: 373 ps per loop

We can immediately see that list comprehensions are about 10% faster than the
equivalent for loop construction in this case. We'll explore %timeit and other
approaches to timing and profiling code in “Profiling and Timing Code” on page 25.

Help on Magic Functions: ?, %magic, and %Ismagic

Like normal Python functions, IPython magic functions have docstrings, and this
useful documentation can be accessed in the standard manner. So, for example, to
read the documentation of the %timeit magic, simply type this:

In [10]: %timeit?

Documentation for other functions can be accessed similarly. To access a general
description of available magic functions, including some examples, you can type this:

In [11]: %magic
For a quick and simple list of all available magic functions, type this:
In [12]: %lsmagic

Finally, I'll mention that it is quite straightforward to define your own magic func-
tions if you wish. We won't discuss it here, but if you are interested, see the references
listed in “More IPython Resources” on page 30.

Input and Output History

Previously we saw that the IPython shell allows you to access previous commands
with the up and down arrow keys, or equivalently the Ctrl-p/Ctrl-n shortcuts. Addi-
tionally, in both the shell and the notebook, IPython exposes several ways to obtain
the output of previous commands, as well as string versions of the commands them-
selves. We'll explore those here.

IPython’s In and Out Objects

By now I imagine youre quite familiar with the In[1]:/0ut[1]: style prompts used
by IPython. But it turns out that these are not just pretty decoration: they give a clue
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as to how you can access previous inputs and outputs in your current session. Imag-
ine you start a session that looks like this:

In [1]: import

In [2]: math.sin(2)
Out[2]: 0.9092974268256817

In [3]: math.cos(2)

Out[3]: -0.4161468365471424
We've imported the built-in math package, then computed the sine and the cosine of
the number 2. These inputs and outputs are displayed in the shell with In/Out labels,
but there’s more—IPython actually creates some Python variables called In and Out
that are automatically updated to reflect this history:

In [4]: print(In)
['", "import math', 'math.sin(2)', 'math.cos(2)', 'print(In)']

In [5]: Out

Out[5]: {2: 0.9092974268256817, 3: -0.4161468365471424}
The In object is a list, which keeps track of the commands in order (the first item in
the list is a placeholder so that In[1] can refer to the first command):

In [6]: print(In[1])

import
The Out object is not a list but a dictionary mapping input numbers to their outputs
(if any):

In [7]: print(Out[2])

0.9092974268256817
Note that not all operations have outputs: for example, import statements and print
statements don't affect the output. The latter may be surprising, but makes sense if
you consider that print is a function that returns None; for brevity, any command
that returns None is not added to Out.

Where this can be useful is if you want to interact with past results. For example, let’s
check the sum of sin(2) ** 2 and cos(2) ** 2 using the previously computed
results:

In [8]: Out[2] ** 2 + Out[3] ** 2

Out[8]: 1.0
The result is 1.0 as wed expect from the well-known trigonometric identity. In this

case, using these previous results probably is not necessary, but it can become very
handy if you execute a very expensive computation and want to reuse the result!
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Underscore Shortcuts and Previous Outputs

The standard Python shell contains just one simple shortcut for accessing previous
output; the variable _ (i.e., a single underscore) is kept updated with the previous out-
put; this works in IPython as well:

In [9]: print(l)

1.0
But IPython takes this a bit further—you can use a double underscore to access the
second-to-last output, and a triple underscore to access the third-to-last output (skip-
ping any commands with no output):

In [10]: print(_)
-0.4161468365471424

In [11]: print(__)

0.9092974268256817
IPython stops there: more than three underscores starts to get a bit hard to count,
and at that point it’s easier to refer to the output by line number.

There is one more shortcut we should mention, however—a shorthand for Out[X] is
_X (i.e., a single underscore followed by the line number):

In [12]: Out[2]
Out[12]: 0.9092974268256817

In [13]: _2
Out[13]: 0.9092974268256817

Suppressing Qutput

Sometimes you might wish to suppress the output of a statement (this is perhaps
most common with the plotting commands that we’ll explore in Chapter 4). Or
maybe the command you’re executing produces a result that youd prefer not to store
in your output history, perhaps so that it can be deallocated when other references are
removed. The easiest way to suppress the output of a command is to add a semicolon
to the end of the line:

In [14]: math.sin(2) + math.cos(2);

Note that the result is computed silently, and the output is neither displayed on the
screen or stored in the Out dictionary:

In [15]: 14 in Out
Out[15]: False
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Related Magic Commands

For accessing a batch of previous inputs at once, the %history magic command is
very helpful. Here is how you can print the first four inputs:
In [16]: %history -n 1-4

1: import

2: math.sin(2)

3: math.cos(2)

4: print(In)
As usual, you can type %history? for more information and a description of options
available. Other similar magic commands are %rerun (which will re-execute some
portion of the command history) and %save (which saves some set of the command
history to a file). For more information, I suggest exploring these using the ? help
functionality discussed in “Help and Documentation in IPython” on page 3.

IPython and Shell Commands

When working interactively with the standard Python interpreter, one of the frustra-
tions you'll face is the need to switch between multiple windows to access Python
tools and system command-line tools. IPython bridges this gap, and gives you a syn-
tax for executing shell commands directly from within the IPython terminal. The
magic happens with the exclamation point: anything appearing after ! on a line will
be executed not by the Python kernel, but by the system command line.

The following assumes youre on a Unix-like system, such as Linux or Mac OS X.
Some of the examples that follow will fail on Windows, which uses a different type of
shell by default (though with the 2016 announcement of native Bash shells on Win-
dows, soon this may no longer be an issue!). If youre unfamiliar with shell com-
mands, I'd suggest reviewing the Shell Tutorial put together by the always excellent
Software Carpentry Foundation.

Quick Introduction to the Shell

A full intro to using the shell/terminal/command line is well beyond the scope of this
chapter, but for the uninitiated we will offer a quick introduction here. The shell is a
way to interact textually with your computer. Ever since the mid-1980s, when Micro-
soft and Apple introduced the first versions of their now ubiquitous graphical operat-
ing systems, most computer users have interacted with their operating system
through familiar clicking of menus and drag-and-drop movements. But operating
systems existed long before these graphical user interfaces, and were primarily con-
trolled through sequences of text input: at the prompt, the user would type a com-
mand, and the computer would do what the user told it to. Those early prompt
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systems are the precursors of the shells and terminals that most active data scientists
still use today.

Someone unfamiliar with the shell might ask why you would bother with this, when
you can accomplish many results by simply clicking on icons and menus. A shell user
might reply with another question: why hunt icons and click menus when you can
accomplish things much more easily by typing? While it might sound like a typical
tech preference impasse, when moving beyond basic tasks it quickly becomes clear
that the shell offers much more control of advanced tasks, though admittedly the
learning curve can intimidate the average computer user.

As an example, here is a sample of a Linux/OS X shell session where a user explores,
creates, and modifies directories and files on their system (osx:~ $ is the prompt,
and everything after the $ sign is the typed command; text that is preceded by a # is
meant just as description, rather than something you would actually type in):

osx:~ $ echo "hello world" # echo is like Python's print function
hello world

osx:~ $ pwd # pwd = print working directory
/home/ jake # this is the "path" that we're in
osx:~ $ s # ls = list working directory contents

notebooks projects
osx:~ $ cd projects/ # cd = change directory

osx:projects $ pwd
/home/jake/projects

osx:projects $ 1s
datasci_book mpld3 myproject.txt

osx:projects $ mkdir myproject # mkdir = make new directory
osx:projects $ cd myproject/

osx:myproject $ mv ../myproject.txt ./ # mv = move file. Here we're moving the
# file myproject.txt from one directory
# up (../) to the current directory (./)
osx:myproject $ 1ls
myproject.txt
Notice that all of this is just a compact way to do familiar operations (navigating a
directory structure, creating a directory, moving a file, etc.) by typing commands
rather than clicking icons and menus. Note that with just a few commands (pwd, 1s,
cd, mkdir, and cp) you can do many of the most common file operations. It's when
you go beyond these basics that the shell approach becomes really powerful.
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Shell Commands in IPython

You can use any command that works at the command line in IPython by prefixing it
with the ! character. For example, the 1s, pwd, and echo commands can be run as
follows:

In [1]: !1s
myproject.txt

In [2]: !pwd
/home/jake/projects/myproject

In [3]: !echo "printing from the shell"
printing from

Passing Values to and from the Shell

Shell commands can not only be called from IPython, but can also be made to inter-
act with the IPython namespace. For example, you can save the output of any shell
command to a Python list using the assignment operator:

In [4]: contents = !ls

In [5]: print(contents)
['myproject.txt']

In [6]: directory = !pwd
In [7]: print(directory)
['/Users/jakevdp/notebooks/tmp/myproject']

Note that these results are not returned as lists, but as a special shell return type
defined in IPython:

In [8]: type(directory)

IPython.utils.text.SList
This looks and acts a lot like a Python list, but has additional functionality, such as
the grep and fields methods and the s, n, and p properties that allow you to search,

filter, and display the results in convenient ways. For more information on these, you
can use IPython’s built-in help features.

Communication in the other direction—passing Python variables into the shell—is
possible through the {varname} syntax:

In [9]: message = "hello from Python"

In [10]: 'echo {message}
hello from
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The curly braces contain the variable name, which is replaced by the variable’s con-
tents in the shell command.

Shell-Related Magic Commands
If you play with IPython’s shell commands for a while, you might notice that you can-
not use !cd to navigate the filesystem:

In [11]: !'pwd
/home/jake/projects/myproject

In [12]: 'cd ..

In [13]: !pwd
/home/jake/projects/myproject

The reason is that shell commands in the notebook are executed in a temporary sub-
shell. If youd like to change the working directory in a more enduring way, you can
use the %cd magic command:

In [14]: %cd ..
/home/jake/projects

In fact, by default you can even use this without the % sign:

In [15]: cd myproject
/home/jake/projects/myproject

This is known as an automagic function, and this behavior can be toggled with the
%automagic magic function.

Besides %cd, other available shell-like magic functions are %cat, %cp, %env, %ls, %man,
%mkdir, %more, %mv, %pwd, %rm, and %rmdir, any of which can be used without the %
sign if automagic is on. This makes it so that you can almost treat the IPython
prompt as if it’s a normal shell:

In [16]: mkdir tmp

In [17]: 1s
myproject.txt tmp/

In [18]: cp myproject.txt tmp/

In [19]: s tmp
myproject.txt
In [20]: rm -r tmp

This access to the shell from within the same terminal window as your Python ses-
sion means that there is a lot less switching back and forth between interpreter and
shell as you write your Python code.
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Errors and Debugging

Code development and data analysis always require a bit of trial and error, and
IPython contains tools to streamline this process. This section will briefly cover some
options for controlling Python’s exception reporting, followed by exploring tools for
debugging errors in code.

Controlling Exceptions: %xmode

Most of the time when a Python script fails, it will raise an exception. When the inter-
preter hits one of these exceptions, information about the cause of the error can be
found in the traceback, which can be accessed from within Python. With the %xmode
magic function, IPython allows you to control the amount of information printed
when the exception is raised. Consider the following code:

In[1]: def funcl(a, b):
returna / b

def func2(x):
a =X
b=x-1
return funci(a, b)

In[2]: func2(1)

ZeroDivisionError Traceback (most recent call last)

<ipython-input-2-b2e110f6fc8f~rgt; in <module>()
----> 1 func2(1)

<ipython-input-1-d849e34d61fb> in func2(x)

5 a =X
6 b=x-1
- 7 return funci(a, b)

<ipython-input-1-d849e34d61fb> in funcl(a, b)
1 def funci(a, b):

eee> 2 return a / b
3
4 def func2(x):
5 a =X

ZeroDivisionError: division by zero

Calling func2 results in an error, and reading the printed trace lets us see exactly what
happened. By default, this trace includes several lines showing the context of each
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step that led to the error. Using the %xmode magic function (short for exception mode),
we can change what information is printed.

%xmode takes a single argument, the mode, and there are three possibilities: Plain,
Context, and Verbose. The default is Context, and gives output like that just shown.
Plain is more compact and gives less information:

In[3]: %xmode Plain
Exception reporting mode: Plain
In[4]: func2(1)

Traceback (most recent call last):

File "<ipython-input-4-b2e110f6fc8f>", line 1, in <module>
func2(1)

File "<ipython-input-1-d849e34d61fb>", line 7, in func2
return funci(a, b)

File "<ipython-input-1-d849e34d61fb>", line 2, in funcl
returna / b

ZeroDivisionError: division by zero

The Verbose mode adds some extra information, including the arguments to any
functions that are called:

In[5]: %xmode Verbose
Exception reporting mode: Verbose
In[6]: func2(1)

ZeroDivisionError Traceback (most recent call last)
<ipython-input-6-b2e110f6fc8f> in <module>()

----> 1 func2(1)
global func2 = <function func2 at 0x103729320>

<ipython-input-1-d849e34d61fb> in func2(x=1)

5 a=x
6 b=x-1
- 7 return funci(a, b)
global funcl = <function funcl at 0x1037294d0>
a=1
b=20
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<ipython-input-1-d849e34d61fb> in funci(a=1, b=0)
1 def funci(a, b):

eee> 2 returna / b
a=1
b=20
3
4 def func2(x):
5 a =X

ZeroDivisionError: division by zero

This extra information can help you narrow in on why the exception is being raised.
So why not use the Verbose mode all the time? As code gets complicated, this kind of
traceback can get extremely long. Depending on the context, sometimes the brevity of
Default mode is easier to work with.

Debugging: When Reading Tracebacks Is Not Enough

The standard Python tool for interactive debugging is pdb, the Python debugger. This
debugger lets the user step through the code line by line in order to see what might be
causing a more difficult error. The IPython-enhanced version of this is ipdb, the
IPython debugger.

There are many ways to launch and use both these debuggers; we won’t cover them
fully here. Refer to the online documentation of these two utilities to learn more.

In IPython, perhaps the most convenient interface to debugging is the %debug magic
command. If you call it after hitting an exception, it will automatically open an inter-
active debugging prompt at the point of the exception. The ipdb prompt lets you
explore the current state of the stack, explore the available variables, and even run
Python commands!

Let’s look at the most recent exception, then do some basic tasks—print the values of
a and b, and type quit to quit the debugging session:

In[7]: %debug

> <ipython-input-1-d849e34d61fb>(2)funci()
1 def funci(a, b):

.- 2 returna / b
3

ipdb> print(a)
1

ipdb> print(b)
0

ipdb> quit
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The interactive debugger allows much more than this, though—we can even step up
and down through the stack and explore the values of variables there:

In[8]: %debug

> <ipython-input-1-d849e34d61fb>(2)funci()
1 def funci(a, b):

----> 2 return a / b
3

ipdb> up

> <ipython-input-1-d849e34d61fb>(7)func2()
5 a=x
6 b=x-1

.- 7 return funci(a, b)

ipdb> print(x)

1

ipdb> up

> <ipython-input-6-b2e110f6fc8f>(1)<module>()
----> 1 func2(1)

ipdb> down

> <ipython-input-1-d849e34d61fb>(7)func2()
5 a=x
6 b=x-1

.- 7 return funci(a, b)

ipdb> quit

This allows you to quickly find out not only what caused the error, but also what
function calls led up to the error.

If youd like the debugger to launch automatically whenever an exception is raised,
you can use the %pdb magic function to turn on this automatic behavior:

In[9]: %xmode Plain
%pdb on
func2(1)

Exception reporting mode: Plain
Automatic pdb calling has been turned ON

Traceback (most recent call last):

File "<ipython-input-9-569a67d2d312>", line 3, in <module>
func2(1)

File "<ipython-input-1-d849e34d61fb>", line 7, in func2
return funci(a, b)
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File "<ipython-input-1-d849e34d61fb>", line 2, in funcl
returna / b

ZeroDivisionError: division by zero

> <ipython-input-1-d849e34d61fb>(2)funci()
1 def funci(a, b):

eee> 2 returna / b
3

ipdb> print(b)

0

ipdb> quit
Finally, if you have a script that youd like to run from the beginning in interactive
mode, you can run it with the command %run -d, and use the next command to step
through the lines of code interactively.

Partial list of debugging commands

There are many more available commands for interactive debugging than we've listed
here; the following table contains a description of some of the more common and
useful ones:

list Show the current location in the file

h(elp) Show a list of commands, or find help on a specific command
q(uit) Quit the debugger and the program

c(ontinue) Quitthe debugger; continue in the program

n(ext) Go to the next step of the program

<enter> Repeat the previous command

p(rint) Print variables

s(tep) Step into a subroutine

r(eturn) Return out of a subroutine

For more information, use the help command in the debugger, or take a look at
ipdb’s online documentation.
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Profiling and Timing Code

In the process of developing code and creating data processing pipelines, there are
often trade-offs you can make between various implementations. Early in developing
your algorithm, it can be counterproductive to worry about such things. As Donald
Knuth famously quipped, “We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil”

But once you have your code working, it can be useful to dig into its efficiency a bit.
Sometimes it’s useful to check the execution time of a given command or set of com-
mands; other times it’s useful to dig into a multiline process and determine where the
bottleneck lies in some complicated series of operations. IPython provides access to a
wide array of functionality for this kind of timing and profiling of code. Here we'll
discuss the following IPython magic commands:

%time
Time the execution of a single statement

%timeit
Time repeated execution of a single statement for more accuracy

%prun
Run code with the profiler

%Llprun
Run code with the line-by-line profiler

%memit
Measure the memory use of a single statement

%mprun

Run code with the line-by-line memory profiler

The last four commands are not bundled with IPython—you’ll need to install the
line_profiler and memory_profiler extensions, which we will discuss in the fol-
lowing sections.

Timing Code Snippets: %timeit and %time

We saw the %timeit line magic and %%timeit cell magic in the introduction to magic
functions in “IPython Magic Commands” on page 10; %%timeit can be used to time
the repeated execution of snippets of code:

In[1]: %timeit sum(range(100))

100000 loops, best of 3: 1.54 ps per loop

Profiling and Timing Code | 25



Note that because this operation is so fast, %timeit automatically does a large number
of repetitions. For slower commands, %timeit will automatically adjust and perform
fewer repetitions:
In[2]: %%timelt
total = 0
for 1 in range(1000):
for j in range(1000):
total += 1 * (-1) ** j

1 loops, best of 3: 407 ms per loop

Sometimes repeating an operation is not the best option. For example, if we have a
list that wed like to sort, we might be misled by a repeated operation. Sorting a pre-
sorted list is much faster than sorting an unsorted list, so the repetition will skew the
result:

In[3]: import

L = [random.random() for i1 in range(100000)]
%timeilt L.sort()

100 loops, best of 3: 1.9 ms per loop

For this, the %time magic function may be a better choice. It also is a good choice for
longer-running commands, when short, system-related delays are unlikely to affect
the result. Let’s time the sorting of an unsorted and a presorted list:
In[4]: import
L = [random.random() for i1 in range(100000)]

print("sorting an unsorted list:")
%time L.sort()

sorting an unsorted list:
CPU times: user 40.6 ms, sys: 896 ps, total: 41.5 ms
Wall time: 41.5 ms

In[5]: print("sorting an already sorted list:")
%time L.sort()

sorting an already sorted list:

CPU times: user 8.18 ms, sys: 10 ps, total: 8.19 ms

Wall time: 8.24 ms
Notice how much faster the presorted list is to sort, but notice also how much longer
the timing takes with %time versus %timeit, even for the presorted list! This is a
result of the fact that %timeit does some clever things under the hood to prevent sys-
tem calls from interfering with the timing. For example, it prevents cleanup of unused
Python objects (known as garbage collection) that might otherwise affect the timing.
For this reason, %timeit results are usually noticeably faster than %time results.

For %time as with %timeit, using the double-percent-sign cell-magic syntax allows
timing of multiline scripts:
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In[6]: %%time
total = 0
for 1 in range(1000):
for j in range(1000):
total += 1 * (-1) ** j

CPU times: user 504 ms, sys: 979 ps, total: 505 ms
Wall time: 505 ms

For more information on %time and %timeit, as well as their available options, use
the IPython help functionality (i.e., type %time? at the IPython prompt).

Profiling Full Scripts: %prun

A program is made of many single statements, and sometimes timing these state-
ments in context is more important than timing them on their own. Python contains
a built-in code profiler (which you can read about in the Python documentation), but
IPython offers a much more convenient way to use this profiler, in the form of the
magic function %prun.

By way of example, we'll define a simple function that does some calculations:

In[7]: def sum_of_lists(N):
total = 0
for 1 in range(5):
L=1[j" (j> 1) for j in range(N)]
total += sum(L)
return total

Now we can call %prun with a function call to see the profiled results:
In[8]: %prun sum_of_lists(1000000)
In the notebook, the output is printed to the pager, and looks something like this:

14 function calls in 0.714 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

0.599 0.120 0.599 0.120 <ipython-input-19>:4(<listcomp>)
0.064 0.013 0.064 0.013 {built-in method sum}

0.036 0.036 0.699 0.699 <ipython-input-19>:1(sum_of_lists)
0.014 0.014 0.714 0.714 <string>:1(<module>)

0.000 0.000 0.714 0.714 {built-in method exec}

R R R uWn

The result is a table that indicates, in order of total time on each function call, where
the execution is spending the most time. In this case, the bulk of execution time is in
the list comprehension inside sum_of_lists. From here, we could start thinking
about what changes we might make to improve the performance in the algorithm.
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For more information on %prun, as well as its available options, use the IPython help
functionality (i.e., type %prun? at the IPython prompt).

Line-by-Line Profiling with %Iprun

The function-by-function profiling of %prun is useful, but sometimes it'’s more conve-
nient to have a line-by-line profile report. This is not built into Python or IPython,
but there is a 1ine_profiler package available for installation that can do this. Start
by using Python’s packaging tool, pip, to install the line_profiler package:

$ pip install line_profiler

Next, you can use IPython to load the line_profiler IPython extension, offered as
part of this package:

In[9]: %load_ext line_profiler

Now the %lprun command will do a line-by-line profiling of any function—in this
case, we need to tell it explicitly which functions we're interested in profiling:

In[10]: %lprun -f sum_of_lists sum_of_lists(5000)
As before, the notebook sends the result to the pager, but it looks something like this:

Timer unit: 1e-06 s

Total time: 0.009382 s
File: <ipython-input-19-fa2bel76cc3e>
Function: sum_of_lists at line 1

Line # Hits Time Per Hit % Time Line Contents
1 def sum_of_lists(N):
2 1 2 2.0 0.0 total = 0
3 6 8 1.3 0.1 for 1 in range(5):
4 5 9001 1800.2 95.9 L=[j~@G>1) ...
5 5 371 74.2 4.0 total += sum(L)
6 1 0 0.0 0.0 return total

The information at the top gives us the key to reading the results: the time is reported
in microseconds and we can see where the program is spending the most time. At this
point, we may be able to use this information to modify aspects of the script and
make it perform better for our desired use case.

For more information on %1lprun, as well as its available options, use the IPython help
functionality (i.e., type %lprun? at the IPython prompt).
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Profiling Memory Use: %memit and %mprun

Another aspect of profiling is the amount of memory an operation uses. This can be
evaluated with another IPython extension, the memory_profiler. As with the
line_profiler, we start by pip-installing the extension:

$ pip install memory_profiler
Then we can use IPython to load the extension:
In[12]: %load_ext memory_profiler

The memory profiler extension contains two useful magic functions: the %memit
magic (which offers a memory-measuring equivalent of %timeit) and the %mprun
function (which offers a memory-measuring equivalent of %lprun). The %memit func-
tion can be used rather simply:

In[13]: %memit sum_of_lists(1000000)
peak memory: 100.08 MiB, increment: 61.36 MiB

We see that this function uses about 100 MB of memory.

For a line-by-line description of memory use, we can use the %mprun magic. Unfortu-
nately, this magic works only for functions defined in separate modules rather than
the notebook itself, so we'll start by using the %%file magic to create a simple module
called mprun_demo. py, which contains our sum_of_lists function, with one addition
that will make our memory profiling results more clear:

In[14]: %%file mprun_demo.py
def sum_of_lists(N):
total = 0
for 1 in range(5):
L=1[3"(j>> 1) for j in range(N)]
total += sum(L)
del L # remove reference to L
return total

Overwriting mprun_demo.py

We can now import the new version of this function and run the memory line
profiler:

In[15]: from import sum_of_lists
%mprun -f sum_of_lists sum_of_lists(1000000)

The result, printed to the pager, gives us a summary of the memory use of the func-
tion, and looks something like this:
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Filename: ./mprun_demo.py

Line # Mem usage Increment Line Contents

4 71.9 MiB 0.0 MiB L=1[j~” (> 1) for j in range(N)]

Filename: ./mprun_demo.py

Line # Mem usage Increment Line Contents
1 39.0 MiB 0.0 MiB  def sum_of_lists(N):
2 39.0 MiB 0.0 MiB total = 0
3 46.5 MiB 7.5 MiB for 1 in range(5):
4 71.9 MiB 25.4 MiB L=1[j" (> 1) for j in range(N)]
5 71.9 MiB 0.0 MiB total += sum(L)
6 46.5 MiB -25.4 MiB del L # remove reference to L
7 39.1 MiB -7.4 MiB return total

Here the Increment column tells us how much each line affects the total memory
budget: observe that when we create and delete the list L, we are adding about 25 MB
of memory usage. This is on top of the background memory usage from the Python
interpreter itself.

For more information on %memit and %mprun, as well as their available options, use
the IPython help functionality (i.e., type %memit? at the IPython prompt).

More IPython Resources

In this chapter, we've just scratched the surface of using IPython to enable data sci-
ence tasks. Much more information is available both in print and on the Web, and
here we'll list some other resources that you may find helpful.

Web Resources

The IPython website
The IPython website links to documentation, examples, tutorials, and a variety of
other resources.

The nbviewer website
This site shows static renderings of any IPython notebook available on the Inter-
net. The front page features some example notebooks that you can browse to see
what other folks are using IPython for!
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A Gallery of Interesting IPython Notebooks
This ever-growing list of notebooks, powered by nbviewer, shows the depth and
breadth of numerical analysis you can do with IPython. It includes everything
from short examples and tutorials to full-blown courses and books composed in
the notebook format!

Video tutorials
Searching the Internet, you will find many video-recorded tutorials on IPython.
I'd especially recommend seeking tutorials from the PyCon, SciPy, and PyData
conferences by Fernando Perez and Brian Granger, two of the primary creators
and maintainers of IPython and Jupyter.

Books

Python for Data Analysis
Wes McKinney’s book includes a chapter that covers using IPython as a data sci-
entist. Although much of the material overlaps what we've discussed here,
another perspective is always helpful.

Learning IPython for Interactive Computing and Data Visualization
This short book by Cyrille Rossant offers a good introduction to using IPython
for data analysis.

IPython Interactive Computing and Visualization Cookbook
Also by Cyrille Rossant, this book is a longer and more advanced treatment of
using IPython for data science. Despite its name, it’s not just about IPython—it
also goes into some depth on a broad range of data science topics.

Finally, a reminder that you can find help on your own: IPython’s ?-based help func-
tionality (discussed in “Help and Documentation in IPython” on page 3) can be very
useful if you use it well and use it often. As you go through the examples here and
elsewhere, you can use it to familiarize yourself with all the tools that IPython has to
offer.
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CHAPTER 2
Introduction to NumPy

This chapter, along with Chapter 3, outlines techniques for effectively loading, stor-
ing, and manipulating in-memory data in Python. The topic is very broad: datasets
can come from a wide range of sources and a wide range of formats, including collec-
tions of documents, collections of images, collections of sound clips, collections of
numerical measurements, or nearly anything else. Despite this apparent heterogene-
ity, it will help us to think of all data fundamentally as arrays of numbers.

For example, images—particularly digital images—can be thought of as simply two-
dimensional arrays of numbers representing pixel brightness across the area. Sound
clips can be thought of as one-dimensional arrays of intensity versus time. Text can be
converted in various ways into numerical representations, perhaps binary digits rep-
resenting the frequency of certain words or pairs of words. No matter what the data
are, the first step in making them analyzable will be to transform them into arrays of
numbers. (We will discuss some specific examples of this process later in “Feature
Engineering” on page 375.)

For this reason, efficient storage and manipulation of numerical arrays is absolutely
fundamental to the process of doing data science. We'll now take a look at the special-
ized tools that Python has for handling such numerical arrays: the NumPy package
and the Pandas package (discussed in Chapter 3.)

This chapter will cover NumPy in detail. NumPy (short for Numerical Python) pro-
vides an efficient interface to store and operate on dense data buffers. In some ways,
NumPy arrays are like Python’s built-in list type, but NumPy arrays provide much
more efficient storage and data operations as the arrays grow larger in size. NumPy
arrays form the core of nearly the entire ecosystem of data science tools in Python, so
time spent learning to use NumPy effectively will be valuable no matter what aspect
of data science interests you.

33



If you followed the advice outlined in the preface and installed the Anaconda stack,
you already have NumPy installed and ready to go. If youre more the do-it-yourself
type, you can go to the NumPy website and follow the installation instructions found
there. Once you do, you can import NumPy and double-check the version:

In[1]: import
numpy.__version__

out[1]: '1.11.1°
For the pieces of the package discussed here, I'd recommend NumPy version 1.8 or
later. By convention, you'll find that most people in the SciPy/PyData world will
import NumPy using np as an alias:

In[2]: import as

Throughout this chapter, and indeed the rest of the book, you’ll find that this is the
way we will import and use NumPy.

Reminder About Built-In Documentation

As you read through this chapter, don’t forget that IPython gives you the ability to
quickly explore the contents of a package (by using the tab-completion feature) as
well as the documentation of various functions (using the ? character). Refer back to
“Help and Documentation in IPython” on page 3 if you need a refresher on this.

For example, to display all the contents of the numpy namespace, you can type this:
In [3]: np.<TAB>

And to display NumPy’s built-in documentation, you can use this:
In [4]: np?

More detailed documentation, along with tutorials and other resources, can be found
at http://www.numpy.org.

Understanding Data Types in Python

Effective data-driven science and computation requires understanding how data is
stored and manipulated. This section outlines and contrasts how arrays of data are
handled in the Python language itself, and how NumPy improves on this. Under-
standing this difference is fundamental to understanding much of the material
throughout the rest of the book.

Users of Python are often drawn in by its ease of use, one piece of which is dynamic
typing. While a statically typed language like C or Java requires each variable to be
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explicitly declared, a dynamically typed language like Python skips this specification.
For example, in C you might specify a particular operation as follows:

/* C code */

int result = 0;

for(int 1=0; 1<100; 1++){
result += i;

}

While in Python the equivalent operation could be written this way:

# Python code
result = 0
for 1 in range(100):
result += 1
Notice the main difference: in C, the data types of each variable are explicitly
declared, while in Python the types are dynamically inferred. This means, for exam-
ple, that we can assign any kind of data to any variable:

Python code
4

Here we've switched the contents of x from an integer to a string. The same thing in C
would lead (depending on compiler settings) to a compilation error or other uninten-
ded consequences:

/* C code */

int x = 4;

x = "four"; // FAILS
This sort of flexibility is one piece that makes Python and other dynamically typed
languages convenient and easy to use. Understanding how this works is an important
piece of learning to analyze data efficiently and effectively with Python. But what this
type flexibility also points to is the fact that Python variables are more than just their
value; they also contain extra information about the type of the value. We'll explore
this more in the sections that follow.

A Python Integer Is More Than Just an Integer

The standard Python implementation is written in C. This means that every Python
object is simply a cleverly disguised C structure, which contains not only its value, but
other information as well. For example, when we define an integer in Python, such as
x = 10000, x is not just a “raw” integer. It’s actually a pointer to a compound C struc-
ture, which contains several values. Looking through the Python 3.4 source code, we
find that the integer (long) type definition effectively looks like this (once the C mac-
ros are expanded):
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struct _longobject {
long ob_refcnt;
PyTypeObject *ob_type;
size_t ob_size;
long ob_digit[1];

b

A single integer in Python 3.4 actually contains four pieces:
o ob_refcnt, a reference count that helps Python silently handle memory alloca-
tion and deallocation
o ob_type, which encodes the type of the variable
« ob_size, which specifies the size of the following data members
« ob_digit, which contains the actual integer value that we expect the Python vari-

able to represent

This means that there is some overhead in storing an integer in Python as compared
to an integer in a compiled language like C, as illustrated in Figure 2-1.

Python Integer

PyObject_HEAD

digit

Clnteger ——p{ 1

Figure 2-1. The difference between C and Python integers

Here PyObject_HEAD is the part of the structure containing the reference count, type
code, and other pieces mentioned before.

Notice the difference here: a C integer is essentially a label for a position in memory
whose bytes encode an integer value. A Python integer is a pointer to a position in
memory containing all the Python object information, including the bytes that con-
tain the integer value. This extra information in the Python integer structure is what
allows Python to be coded so freely and dynamically. All this additional information
in Python types comes at a cost, however, which becomes especially apparent in
structures that combine many of these objects.
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A Python List Is More Than Just a List

Let’s consider now what happens when we use a Python data structure that holds
many Python objects. The standard mutable multielement container in Python is the
list. We can create a list of integers as follows:

In[1]: L = list(range(10))
L

Out[1]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In[2]: type(L[O])
Out[2]: int
Or, similarly, a list of strings:
In[3]: L2 = [str(c) for c in L]
L2
0Ut[3]: [lel’ |1|’ lzl, |3|’ |4|, |5|’ |6|, |7|’ '8‘, |9|]
In[4]: type(L2[0])
Out[4]: str
Because of Python’s dynamic typing, we can even create heterogeneous lists:
In[5]: L3 = [True, "2", 3.0, 4]
[type(item) for item in L3]
Out[5]: [bool, str, float, int]
But this flexibility comes at a cost: to allow these flexible types, each item in the list
must contain its own type info, reference count, and other information—that is, each
item is a complete Python object. In the special case that all variables are of the same
type, much of this information is redundant: it can be much more efficient to store

data in a fixed-type array. The difference between a dynamic-type list and a fixed-type
(NumPy-style) array is illustrated in Figure 2-2.

At the implementation level, the array essentially contains a single pointer to one con-
tiguous block of data. The Python list, on the other hand, contains a pointer to a
block of pointers, each of which in turn points to a full Python object like the Python
integer we saw earlier. Again, the advantage of the list is flexibility: because each list
element is a full structure containing both data and type information, the list can be
filled with data of any desired type. Fixed-type NumPy-style arrays lack this flexibil-
ity, but are much more efficient for storing and manipulating data.
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Numpy Array Python List
PyObject HEAD ] 1 | PyObject_HEAD
2
data : length
dimensions 4 items P 0x310718
5 06310748
s 6 0310730
7 0x310760
| & | 04310700
0x3106b8 b
0310640 % “—
0x3106e8

Figure 2-2. The difference between C and Python lists

Fixed-Type Arrays in Python

Python offers several different options for storing data in efficient, fixed-type data
buffers. The built-in array module (available since Python 3.3) can be used to create
dense arrays of a uniform type:
In[6]: import
L = list(range(10))

A = array.array('i', L)
A

Out[6]: array('i', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Here 'i' is a type code indicating the contents are integers.

Much more useful, however, is the ndarray object of the NumPy package. While
Python’s array object provides efficient storage of array-based data, NumPy adds to
this efficient operations on that data. We will explore these operations in later sec-
tions; here we’ll demonstrate several ways of creating a NumPy array.

We'll start with the standard NumPy import, under the alias np:

In[7]: import as
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Creating Arrays from Python Lists

First, we can use np.array to create arrays from Python lists:

In[8]: # integer array:
np.array([1, 4, 2, 5, 3])

Out[8]: array([1, 4, 2, 5, 3])

Remember that unlike Python lists, NumPy is constrained to arrays that all contain
the same type. If types do not match, NumPy will upcast if possible (here, integers are
upcast to floating point):

In[9]: np.array([3.14, 4, 2, 3])

Out[9]: array([ 3.14, 4. , 2. , 3. 1)
If we want to explicitly set the data type of the resulting array, we can use the dtype
keyword:

In[10]: np.array([1, 2, 3, 4], dtype='float32')

Out[10]: array([ 1., 2., 3., 4.], dtype=float32)

Finally, unlike Python lists, NumPy arrays can explicitly be multidimensional; here’s
one way of initializing a multidimensional array using a list of lists:

In[11]: # nested lists result in multidimensional arrays
np.array([range(i, 1 + 3) for 1 in [2, 4, 6]])

Out[11]: array([[2, 3, 4],
[4, 5, 6],
[6, 7, 811

The inner lists are treated as rows of the resulting two-dimensional array.

Creating Arrays from Scratch

Especially for larger arrays, it is more efficient to create arrays from scratch using rou-
tines built into NumPy. Here are several examples:

In[12]: # Create a length-10 integer array filled with zeros
np.zeros(10, dtype=int)

Out[12]: array([06, 0, 0, 0, 0, 0, 0, 0, 0, 0])

In[13]: # Create a 3x5 floating-point array filled with 1s
np.ones((3, 5), dtype=float)

Out[13]: array([[ 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.1D

In[14]: # Create a 3x5 array filled with 3.14
np.full((3, 5), 3.14)
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Out[14]: array([[ 3.14, 3.14, 3.14, 3.14, 3.14],
[ 3.14, 3.14, 3.14, 3.14, 3.14],
[ 3.14, 3.14, 3.14, 3.14, 3.14]1])

In[15]: # Create an array filled with a linear sequence
# Starting at 0, ending at 20, stepping by 2
# (this is similar to the built-in range() function)
np.arange(0, 20, 2)

Out[15]: array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

In[16]: # Create an array of five values evenly spaced between 0 and 1
np.linspace(0, 1, 5)

Out[16]: array([ 6. , .25, 0.5, 0.75, 1. 1)

In[17]: # Create a 3x3 array of uniformly distributed
# random values between 0 and 1
np.random.random((3, 3))

Out[17]: array([[ 0.99844933, 0.52183819, 0.22421193],
[ 0.08007488, 0.45429293, 0.20941444],
[ 0.14360941, 0.96910973, 0.946117 ]])

In[18]: # Create a 3x3 array of normally distributed random values
# with mean @ and standard deviation 1
np.random.normal(0, 1, (3, 3))

Out[18]: array([[ 1.51772646, 0.39614948, -0.10634696],
[ 0.25671348, 0.00732722, 0.37783601],
[ 0.68446945, 0.15926039, -0.70744073]])

In[19]: # Create a 3x3 array of random integers in the interval [0, 10)
np.random.randint(0, 10, (3, 3))

Out[19]: array([[2, 3, 4],
[5’ 7’ 8].!
[o, 5, ]])

In[20]: # Create a 3x3 identity matrix
np.eye(3)

Out[20]: array([[ 1., 0., 0.]
[ 0., 1., 0.],
[e., 0., 1.1]1)
In[21]: # Create an uninitialized array of three integers
# The values will be whatever happens to already exist at that
# memory location
np.empty(3)

Out[21]: array([ 1., 1., 1.])

B
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NumPy Standard Data Types

NumPy arrays contain values of a single type, so it is important to have detailed
knowledge of those types and their limitations. Because NumPy is built in C, the
types will be familiar to users of C, Fortran, and other related languages.

The standard NumPy data types are listed in Table 2-1. Note that when constructing
an array, you can specify them using a string:

np.zeros(10, dtype='int16")
Or using the associated NumPy object:

np.zeros(10, dtype=np.int16)

Table 2-1. Standard NumPy data types

Data type Description

bool_ Boolean (True or False) stored as a byte

int_ Default integer type (same as C Long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (—128 t0 127)

int16 Integer (—32768 to 32767)

int32 Integer (—2147483648 to 2147483647)

int64 Integer (—9223372036854775808 to 9223372036854775807)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 4294967295)

uint64 Unsigned integer (0 to 18446744073709551615)

float_ Shorthand for float64

floati16 Half-precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single-precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double-precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128

complex64  Complex number, represented by two 32-bit floats

complex128 Complex number, represented by two 64-bit floats

More advanced type specification is possible, such as specifying big or little endian
numbers; for more information, refer to the NumPy documentation. NumPy also
supports compound data types, which will be covered in “Structured Data: NumPy’s
Structured Arrays” on page 92.
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The Basics of NumPy Arrays

Data manipulation in Python is nearly synonymous with NumPy array manipulation:
even newer tools like Pandas (Chapter 3) are built around the NumPy array. This sec-
tion will present several examples using NumPy array manipulation to access data
and subarrays, and to split, reshape, and join the arrays. While the types of operations
shown here may seem a bit dry and pedantic, they comprise the building blocks of
many other examples used throughout the book. Get to know them well!

We'll cover a few categories of basic array manipulations here:

Attributes of arrays
Determining the size, shape, memory consumption, and data types of arrays

Indexing of arrays
Getting and setting the value of individual array elements

Slicing of arrays

Getting and setting smaller subarrays within a larger array
Reshaping of arrays

Changing the shape of a given array

Joining and splitting of arrays
Combining multiple arrays into one, and splitting one array into many

NumPy Array Attributes

First let’s discuss some useful array attributes. We'll start by defining three random
arrays: a one-dimensional, two-dimensional, and three-dimensional array. We'll use
NumPy’s random number generator, which we will seed with a set value in order to
ensure that the same random arrays are generated each time this code is run:

In[1]: import as
np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array
x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array

Each array has attributes ndim (the number of dimensions), shape (the size of each
dimension), and size (the total size of the array):
In[2]: print("x3 ndim: ", x3.ndim)

print("x3 shape:", x3.shape)
print("x3 size: ", x3.size)

x3 ndim: 3
x3 shape: (3, 4, 5)
x3 size: 60
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Another useful attribute is the dtype, the data type of the array (which we discussed
previously in “Understanding Data Types in Python” on page 34):

In[3]: print("dtype:", x3.dtype)

dtype: int64
Other attributes include itemsize, which lists the size (in bytes) of each array ele-
ment, and nbytes, which lists the total size (in bytes) of the array:

In[4]: print("itemsize:", x3.itemsize, "bytes")
print("nbytes:", x3.nbytes, "bytes")

itemsize: 8 bytes
nbytes: 480 bytes

In general, we expect that nbytes is equal to itemsize times size.

Array Indexing: Accessing Single Elements

If you are familiar with Python’s standard list indexing, indexing in NumPy will feel
quite familiar. In a one-dimensional array, you can access the i value (counting from
zero) by specifying the desired index in square brackets, just as with Python lists:

In[5]: x1
Out[5]: array([5, 0, 3, 3, 7, 9])
In[6]: x1[0]
Out[6]: 5
In[7]: x1[4]
out[7]: 7
To index from the end of the array, you can use negative indices:
In[8]: x1[-1]
Out[8]: 9
In[9]: x1[-2]
Out[9]: 7
In a multidimensional array, you access items using a comma-separated tuple of
indices:
In[10]: x2

Out[10]: array([[3, 5, 2, 4],
[7, 61 81 8]1
[1, 6, 7, 71])

In[11]: x2[0, 0]

Out[11]: 3
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In[12]: x2[2, 0]
out[12]: 1
In[13]: x2[2, -1]
Out[13]: 7
You can also modify values using any of the above index notation:

In[14]: x2[0, 0] = 12
x2

Out[14]: array([[12, 5, 2, 4],
[ 7: 6’ 8: 8];
[1, 6, 7, 711)

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type. This means,
for example, that if you attempt to insert a floating-point value to an integer array, the
value will be silently truncated. Don’t be caught unaware by this behavior!

In[15]: x1[0] = 3.14159 # this will be truncated!
x1

Out[15]: array([3, 0, 3, 3, 7, 9])

Array Slicing: Accessing Subarrays

Just as we can use square brackets to access individual array elements, we can also use
them to access subarrays with the slice notation, marked by the colon (:) character.
The NumPy slicing syntax follows that of the standard Python list; to access a slice of
an array X, use this:

x[start:stop:step]

If any of these are unspecified, they default to the values start=0, stop=size of
dimension, step=1. We'll take a look at accessing subarrays in one dimension and in
multiple dimensions.

One-dimensional subarrays

In[16]: = np.arange(10)

X
X
Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In[17]: x[:5] # first five elements

Out[17]: array([0, 1, 2, 3, 4])

In[18]: x[5:] # elements after index 5
Out[18]: array([5, 6, 7, 8, 9])

In[19]: x[4:7] # middle subarray

Out[19]: array([4, 5, 6])
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In[20]: x[::2] # every other element
Out[20]: array([0, 2, 4, 6, 8])
In[21]: x[1::2] # every other element, starting at index 1
Out[21]: array([1, 3, 5, 7, 9])
A potentially confusing case is when the step value is negative. In this case, the

defaults for start and stop are swapped. This becomes a convenient way to reverse
an array:

In[22]: x[::-1] # all elements, reversed
Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
In[23]: x[5::-2] # reversed every other from index 5

Out[23]: array([5, 3, 1])

Multidimensional subarrays

Multidimensional slices work in the same way, with multiple slices separated by com-
mas. For example:
In[24]: x2

Out[24]: array([[12, 5, 2, 4],
[7, 6, 8, 8],
[1, 6, 7, 71D

In[25]: x2[:2, :3] # two rows, three columns

Out[25]: array([[12, 5, 2],
[7, 6, 8ID

In[26]: x2[:3, ::2] # all rows, every other column

Out[26]: array([[12, 2],
[7, 8],
[1, 71D

Finally, subarray dimensions can even be reversed together:
In[27]: x2[::-1, ::-1]

out[27]: array([[ 7, 7, 6, 1],

[7
[ 8} 8! 6) 7])
[ 4, 2, 5,12]D)

Accessing array rows and columns. One commonly needed routine is accessing single
rows or columns of an array. You can do this by combining indexing and slicing,
using an empty slice marked by a single colon (:):

In[28]: print(x2[:, 0]) # first column of x2

[12 7 1]
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In[29]: print(x2[0, :]) # first row of x2
[12 5 2 4]

In the case of row access, the empty slice can be omitted for a more compact syntax:
In[30]: print(x2[0]) # equivalent to x2[0, :]

[12 5 2 4]

Subarrays as no-copy views

One important—and extremely useful—thing to know about array slices is that they
return views rather than copies of the array data. This is one area in which NumPy
array slicing differs from Python list slicing: in lists, slices will be copies. Consider our
two-dimensional array from before:

In[31]: print(x2)

[[1

[ 2 4]
[
[

2 5
7 6 8 8]
16 7 7]]
Let’s extract a 2x2 subarray from this:
In[32]: x2_sub = x2[:2, :2]
print(x2_sub)
[[12 5]
[ 7 6]]

Now if we modify this subarray, we'll see that the original array is changed! Observe:
In[33]: x2_sub[0, 0] = 99
print(x2_sub)
[[99 5]
[ 7 6]]
In[34]: print(x2)
[[99 5 2 4]

[7 6 8 8]
[1 6 7 7]]

This default behavior is actually quite useful: it means that when we work with large
datasets, we can access and process pieces of these datasets without the need to copy
the underlying data buffer.

Creating copies of arrays

Despite the nice features of array views, it is sometimes useful to instead explicitly
copy the data within an array or a subarray. This can be most easily done with the
copy() method:
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In[35]: x2_sub_copy = x2[:2, :2].copy()
print(x2_sub_copy)

[[99 5]
[ 7 6]]

If we now modify this subarray, the original array is not touched:
In[36]: x2_sub_copy[0, 0] = 42
print(x2_sub_copy)

[[42 5]
[ 7 6]]

In[37]: print(x2)

Reshaping of Arrays

Another useful type of operation is reshaping of arrays. The most flexible way of
doing this is with the reshape() method. For example, if you want to put the num-
bers 1 through 9 in a 3x3 grid, you can do the following:

In[38]: grid = np.arange(l, 10).reshape((3, 3))
print(grid)

[[12 3]

[4 5 6]

[7 8 9]]
Note that for this to work, the size of the initial array must match the size of the
reshaped array. Where possible, the reshape method will use a no-copy view of the
initial array, but with noncontiguous memory buffers this is not always the case.

Another common reshaping pattern is the conversion of a one-dimensional array
into a two-dimensional row or column matrix. You can do this with the reshape
method, or more easily by making use of the newaxis keyword within a slice opera-
tion:

In[39]: x = np.array([1, 2, 3])

# row vector via reshape
x.reshape((1, 3))
Out[39]: array([[1, 2, 3]1])

In[40]: # row vector via newaxis
x[np.newaxis, :]

Out[40]: array([[1, 2, 3]1])
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In[41]: # column vector via reshape
x.reshape((3, 1))

Out[41]: array([[1],
[2],
[31D

In[42]: # column vector via newaxis
x[:, np.newaxis]

Out[42]: array([[1],
[2],
[31D)

We will see this type of transformation often throughout the remainder of the book.

Array Concatenation and Splitting

All of the preceding routines worked on single arrays. It’s also possible to combine
multiple arrays into one, and to conversely split a single array into multiple arrays.
We'll take a look at those operations here.

Concatenation of arrays

Concatenation, or joining of two arrays in NumPy, is primarily accomplished
through the routines np.concatenate, np.vstack, and np.hstack. np.concatenate
takes a tuple or list of arrays as its first argument, as we can see here:

In[43]: x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, y])

Out[43]: array([1, 2, 3, 3, 2, 1])
You can also concatenate more than two arrays at once:
In[44]: z = [99, 99, 99]
print(np.concatenate([x, vy, z]))
[1 2 3 3 2 19999 99]
np.concatenate can also be used for two-dimensional arrays:
In[45]: grid = np.array([[1, 2, 3],
[4, 5, 611)

In[46]: # concatenate along the first axis
np.concatenate([grid, grid])

Out[46]: array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 611D

In[47]: # concatenate along the second axis (zero-indexed)
np.concatenate([grid, grid], axis=1)
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Out[47]: array([[1, 2, 3, 1, 2, 3],
[4 s’ 5 E 6 E 4.‘ 5 ks 6] ] )
For working with arrays of mixed dimensions, it can be clearer to use the np.vstack
(vertical stack) and np.hstack (horizontal stack) functions:
In[48]: x = np.array([1, 2, 3])

grid = np.array([[9, 8, 71,
[6, 5, 411

# vertically stack the arrays
np.vstack([x, grid])

Out[48]: array([[1, 2, 3],
[9) 8) 7])
[6, 5, 41D

In[49]: # horizontally stack the arrays
y = np.array([[99],

[991D)
np.hstack([grid, y])

Out[49]: array([[ 9, 8, 7, 99],
[6, 5 4,91

Similarly, np.dstack will stack arrays along the third axis.

Splitting of arrays

The opposite of concatenation is splitting, which is implemented by the functions
np.split, np.hsplit, and np.vsplit. For each of these, we can pass a list of indices
giving the split points:

In[50]: x = [1, 2, 3, 99, 99, 3, 2, 1]

x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

[123][9999] [321]

Notice that N split points lead to N + I subarrays. The related functions np.hsplit
and np.vsplit are similar:

In[51]: grid = np.arange(16).reshape((4, 4))

grid
Out[51]: array([[ 0, 1, 2, 3],
[4, 5, 6, 7],
[ 8, 9,10, 11],
[12, 13, 14, 15]])
In[52]: upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)
[[612 3]
[4 56 7]]
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[[ 8 9 10 11]

[12 13 14 15]]

In[53]: left, right = np.hsplit(grid, [2])
print(left)
print(right)

[[ o 1]

[ 4 5]

[ 8 9]

[12 13]]

[[ 2 3]

[ 6 7]

[10 11]

[14 15]]

Similarly, np.dsplit will split arrays along the third axis.

Computation on NumPy Arrays: Universal Functions

Up until now, we have been discussing some of the basic nuts and bolts of NumPy; in
the next few sections, we will dive into the reasons that NumPy is so important in the
Python data science world. Namely, it provides an easy and flexible interface to opti-
mized computation with arrays of data.

Computation on NumPy arrays can be very fast, or it can be very slow. The key to
making it fast is to use vectorized operations, generally implemented through Num-
Py’s universal functions (ufuncs). This section motivates the need for NumPy’s ufuncs,
which can be used to make repeated calculations on array elements much more effi-
cient. It then introduces many of the most common and useful arithmetic ufuncs
available in the NumPy package.

The Slowness of Loops

Python’s default implementation (known as CPython) does some operations very
slowly. This is in part due to the dynamic, interpreted nature of the language: the fact
that types are flexible, so that sequences of operations cannot be compiled down to
efficient machine code as in languages like C and Fortran. Recently there have been
various attempts to address this weakness: well-known examples are the PyPy project,
a just-in-time compiled implementation of Python; the Cython project, which con-
verts Python code to compilable C code; and the Numba project, which converts
snippets of Python code to fast LLVM bytecode. Each of these has its strengths and
weaknesses, but it is safe to say that none of the three approaches has yet surpassed
the reach and popularity of the standard CPython engine.

The relative sluggishness of Python generally manifests itself in situations where
many small operations are being repeated—for instance, looping over arrays to oper-
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ate on each element. For example, imagine we have an array of values and wed like to
compute the reciprocal of each. A straightforward approach might look like this:

In[1]: import as
np.random.seed(0)

def compute_reciprocals(values):
output = np.empty(len(values))
for 1 in range(len(values)):
output[i] = 1.0 / values[i]
return output

values = np.random.randint(1, 10, size=5)
compute_reciprocals(values)

Out[1]: array([ 0.16666667, 1. , 0.25 , 0.25 , 0.125 D

This implementation probably feels fairly natural to someone from, say, a C or Java
background. But if we measure the execution time of this code for a large input, we
see that this operation is very slow, perhaps surprisingly so! We’ll benchmark this
with IPython’s %timeit magic (discussed in “Profiling and Timing Code” on page 25):

In[2]: big_array = np.random.randint(1l, 100, size=1000000)
%timeilt compute_reciprocals(big_array)

1 loop, best of 3: 2.91 s per loop

It takes several seconds to compute these million operations and to store the result!
When even cell phones have processing speeds measured in Giga-FLOPS (i.e., bil-
lions of numerical operations per second), this seems almost absurdly slow. It turns
out that the bottleneck here is not the operations themselves, but the type-checking
and function dispatches that CPython must do at each cycle of the loop. Each time
the reciprocal is computed, Python first examines the object’s type and does a
dynamic lookup of the correct function to use for that type. If we were working in
compiled code instead, this type specification would be known before the code exe-
cutes and the result could be computed much more efficiently.

Introducing UFuncs

For many types of operations, NumPy provides a convenient interface into just this
kind of statically typed, compiled routine. This is known as a vectorized operation.
You can accomplish this by simply performing an operation on the array, which will
then be applied to each element. This vectorized approach is designed to push the
loop into the compiled layer that underlies NumPy, leading to much faster execution.

Compare the results of the following two:

In[3]: print(compute_reciprocals(values))
print(1.0 / values)
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[ 0.16666667 1. 0.25 0.25 0.125 1
[ 0.16666667 1. 0.25 0.25 0.125 1

Looking at the execution time for our big array, we see that it completes orders of
magnitude faster than the Python loop:

In[4]: %timeit (1.0 / big_array)
100 loops, best of 3: 4.6 ms per loop

Vectorized operations in NumPy are implemented via ufuncs, whose main purpose is
to quickly execute repeated operations on values in NumPy arrays. Ufuncs are
extremely flexible—before we saw an operation between a scalar and an array, but we
can also operate between two arrays:

In[5]: np.arange(5) / np.arange(l, 6)
Out[5]: array([ ©. , 0.5 , 0.66666667, 0.75 , 0.8 D

And ufunc operations are not limited to one-dimensional arrays—they can act on
multidimensional arrays as well:

In[6]: x = np.arange(9).reshape((3, 3))
2 FF X

Out[6]: array([[ 1, 2, 4],
[ 8, 16, 32],
[ 64, 128, 256]1)
Computations using vectorization through ufuncs are nearly always more efficient
than their counterpart implemented through Python loops, especially as the arrays
grow in size. Any time you see such a loop in a Python script, you should consider
whether it can be replaced with a vectorized expression.

Exploring NumPy’s UFuncs

Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary
ufuncs, which operate on two inputs. We'll see examples of both these types of func-
tions here.

Array arithmetic

NumPy’s ufuncs feel very natural to use because they make use of Pythons native
arithmetic operators. The standard addition, subtraction, multiplication, and division
can all be used:

In[7]: x = np.arange(4)

print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)

"

x
*
N
~

print("x * 2 =",
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print("x / 2 =", x / 2)
print("x // 2 =", x [/ 2) # floor division

x =[012 3]
Xx+5=1[567 8]

X - 5=[-5-4 -3 -2]
x*2=1[0246]
x/2=[6. 0.5 1. 1.5]
x//2=[0011]

There is also a unary ufunc for negation, a ** operator for exponentiation, and a %
operator for modulus:

In[8]: print("-x =", -x)
print("x ** 2 = ", x ** 2)
print("x %2 =", x% 2)

-X = [0 -1-2-3]

x ** 2= [0149]

x%2 = [06101]

In addition, these can be strung together however you wish, and the standard order
of operations is respected:

In[9]: -(0.5%x + 1) ** 2
Out[9]: array([-1. , -2.25, -4. , -6.25])

All of these arithmetic operations are simply convenient wrappers around specific
functions built into NumPy; for example, the + operator is a wrapper for the add
function:

In[10]: np.add(x, 2)
Out[10]: array([2, 3, 4, 5])

Table 2-2 lists the arithmetic operators implemented in NumPy.

Table 2-2. Arithmetic operators implemented in NumPy

+ np.add Addition (e.g., 1 + 1 = 2)

- np.subtract Subtraction (e.g., 3 - 2 = 1)

- np.negative Unary negation (e.g., -2)

* np.multiply Multiplication (e.g., 2 * 3 = 6)

/ np.divide Division (e.g.,3 / 2 = 1.5)

// np.floor_divide Floordivision (e.q.,3 // 2 = 1)

ok np.power Exponentiation (e.g., 2 ** 3 = 8)
% np.mod Modulus/remainder (e.g., 9 % 4 = 1)
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Additionally there are Boolean/bitwise operators; we will explore these in “Compari-
sons, Masks, and Boolean Logic” on page 70.

Absolute value

Just as NumPy understands Python’s built-in arithmetic operators, it also understands
Python’s built-in absolute value function:

In[11]: x = np.array([-2, -1, 0, 1, 2])
abs(x)

Out[11]: array([2, 1, 0, 1, 2])

The corresponding NumPy ufunc is np.absolute, which is also available under the
alias np.abs:

In[12]: np.absolute(x)

Out[12]: array([2, 1, 0, 1, 2])
In[13]: np.abs(x)

Out[13]: array([2, 1, 0, 1, 2])

This ufunc can also handle complex data, in which the absolute value returns the
magnitude:

In[14]: x = np.array([3 - 43, 4 - 33, 2 + 03, 0 + 13])
np.abs(x)

Out[14]: array([ 5., 5., 2., 1.])

Trigonometric functions

NumPy provides a large number of useful ufuncs, and some of the most useful for the
data scientist are the trigonometric functions. We'll start by defining an array of
angles:

In[15]: theta = np.linspace(®, np.pi, 3)
Now we can compute some trigonometric functions on these values:

In[16]: print("theta ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))

theta = [ o. 1.57079633 3.14159265]

sin(theta) = [ 0.00000000e+00 1.00000000e+00 1.22464680e-16]
cos(theta) = [ 1.00000000e+00 6.12323400e-17 -1.00000000e+00]
tan(theta) = [ 0.00000000e+00  1.63312394e+16 -1.22464680e-16]

The values are computed to within machine precision, which is why values that
should be zero do not always hit exactly zero. Inverse trigonometric functions are also
available:
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In[17]: x = [-1, 0, 1]

print("x =", x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) = ", np.arccos(x))
print("arctan(x) = ", np.arctan(x))
X = [-1, 0, 1]
arcsin(x) = [-1.57079633 0. 1.57079633]
arccos(x) = [ 3.14159265 1.57079633 0. 1
arctan(x) = [-0.78539816 0. 0.78539816]

Exponents and logarithms
Another common type of operation available in a NumPy ufunc are the exponentials:

In[18]: x = [1, 2, 3]

print("x =", Xx)
print("e*x =", np.exp(x))
print("22x =", np.exp2(x))
print("32x =", np.power(3, X))
X = [1, 2, 3]
erx = [ 2.71828183 7.3890561 20.08553692]
22x  =1[ 2. 4. 8.]
37 =[3 9 27]

The inverse of the exponentials, the logarithms, are also available. The basic np.log
gives the natural logarithm; if you prefer to compute the base-2 logarithm or the
base-10 logarithm, these are available as well:

In[19]: x = [1, 2, 4, 10]
print("x =", Xx)
print("ln(x) ", np.log(x))
print("log2(x) , np.log2(x))
print("log10(x) =", np.log10(x))

x = [1, 2, 4, 10]

n(x) =[o0. 0.69314718 1.38629436 2.30258509]
log2(x) = [ 0. 1. 2. 3.32192809]
log10(x) = [ 0. 0.30103 0.60205999 1. ]

There are also some specialized versions that are useful for maintaining precision
with very small input:

In[20]: x = [0, 0.001, 0.01, 0.1]
print("exp(x) - 1 =", np.expmi(x))
print("log(1l + x) =", np.loglp(x))

exp(x) - 1
log(1l + x)

[ o. 0.0010005 0.01005017 0.10517092]
[ o. 0.0009995  0.00995033 0.09531018]

When x is very small, these functions give more precise values than if the raw np. log
or np.exp were used.
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Specialized ufuncs

NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise
arithmetic, comparison operators, conversions from radians to degrees, rounding and
remainders, and much more. A look through the NumPy documentation reveals a lot
of interesting functionality.

Another excellent source for more specialized and obscure ufuncs is the submodule

scipy.special. If you want to compute some obscure mathematical function on
your data, chances are it is implemented in scipy.special. There are far too many
functions to list them all, but the following snippet shows a couple that might come
up in a statistics context:

In[21]: from import special

In[22]: # Gamma functions (generalized factorials) and related functions
x = [1, 5, 10]

print("gamma(x) =", special.gamma(x))
print("ln|gamma(x)| =", special.gammaln(x))
print("beta(x, 2) =", special.beta(x, 2))
gamma(x) = [ 1.00000000e+00 2.40000000e+01 3.62880000e+05]
ln|gamma(x)| = [ 0. 3.17805383 12.80182748]
beta(x, 2) =[ 0.5 0.03333333 0.00909091]

In[23]: # Error function (integral of Gaussian)
# its complement, and its inverse
x = np.array([0, 0.3, 0.7, 1.0])
print("erf(x) =", special.erf(x))
print("erfc(x) =", special.erfc(x))
print("erfinv(x) =", special.erfinv(x))

erf(x) =1[ 0. 0.32862676 0.67780119 0.84270079]
erfc(x) = [ 1. 0.67137324 0.32219881 0.15729921]
erfinv(x) = [ 0. 0.27246271 0.73286908 inf]

There are many, many more ufuncs available in both NumPy and scipy.special.
Because the documentation of these packages is available online, a web search along
the lines of “gamma function python” will generally find the relevant information.

Advanced Ufunc Features

Many NumPy users make use of ufuncs without ever learning their full set of features.
We'll outline a few specialized features of ufuncs here.

Specifying output
For large calculations, it is sometimes useful to be able to specify the array where the

result of the calculation will be stored. Rather than creating a temporary array, you
can use this to write computation results directly to the memory location where youd
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like them to be. For all ufuncs, you can do this using the out argument of the
function:

In[24]: x = np.arange(5)
y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)

[ 0. 10. 20. 30. 40.]

This can even be used with array views. For example, we can write the results of a
computation to every other element of a specified array:

In[25]: y = np.zeros(10)
np.power(2, x, out=y[::2])
print(y)

[ 1. ©o6. 2. 0. 4. 0. 8. 0. 16. 0.]
If we had instead written y[::2] = 2 ** x, this would have resulted in the creation
of a temporary array to hold the results of 2 ** X, followed by a second operation
copying those values into the y array. This doesn’t make much of a difference for such
a small computation, but for very large arrays the memory savings from careful use of
the out argument can be significant.

Aggregates

For binary ufuncs, there are some interesting aggregates that can be computed
directly from the object. For example, if wed like to reduce an array with a particular
operation, we can use the reduce method of any ufunc. A reduce repeatedly applies a
given operation to the elements of an array until only a single result remains.

For example, calling reduce on the add ufunc returns the sum of all elements in the
array:

In[26]: x = np.arange(1l, 6)
np.add.reduce(x)

Out[26]: 15

Similarly, calling reduce on the multiply ufunc results in the product of all array
elements:

In[27]: np.multiply.reduce(x)
Out[27]: 120

If wed like to store all the intermediate results of the computation, we can instead use
accumulate:

In[28]: np.add.accumulate(x)

Out[28]: array([ 1, 3, 6, 10, 15])
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In[29]: np.multiply.accumulate(x)
Out[29]: array([ 1, 2, 6, 24, 120])
Note that for these particular cases, there are dedicated NumPy functions to compute

the results (np.sum, np.prod, np.cumsum, np.cumprod), which we'll explore in “Aggre-
gations: Min, Max, and Everything in Between” on page 58.

Outer products

Finally, any ufunc can compute the output of all pairs of two different inputs using
the outer method. This allows you, in one line, to do things like create a multiplica-
tion table:

In[30]: x = np.arange(l, 6)
np.multiply.outer(x, x)

Out[30]: array([[ 1, 2, 3, 4, 5],
[ 2, 4, 6, 8, 10],
[ 3, 6, 9, 12, 15],
[ 4, 8, 12, 16, 20],
[ 5, 10, 15, 20, 25]])

The ufunc.at and ufunc.reduceat methods, which we'll explore in “Fancy Index-
ing” on page 78, are very helpful as well.

Another extremely useful feature of ufuncs is the ability to operate between arrays of
different sizes and shapes, a set of operations known as broadcasting. This subject is
important enough that we will devote a whole section to it (see “Computation on
Arrays: Broadcasting” on page 63).

Ufuncs: Learning More

More information on universal functions (including the full list of available func-
tions) can be found on the NumPy and SciPy documentation websites.

Recall that you can also access information directly from within IPython by import-
ing the packages and using IPython’s tab-completion and help (?) functionality, as
described in “Help and Documentation in IPython” on page 3.

Aggregations: Min, Max, and Everything in Between

Often when you are faced with a large amount of data, a first step is to compute sum-
mary statistics for the data in question. Perhaps the most common summary statistics
are the mean and standard deviation, which allow you to summarize the “typical” val-
ues in a dataset, but other aggregates are useful as well (the sum, product, median,
minimum and maximum, quantiles, etc.).
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NumPy has fast built-in aggregation functions for working on arrays; we'll discuss
and demonstrate some of them here.

Summing the Values in an Array

As a quick example, consider computing the sum of all values in an array. Python
itself can do this using the built-in sum function:

In[1]: import as

In[2]: L = np.random.random(100)
sum(L)

Out[2]: 55.61209116604941

The syntax is quite similar to that of NumPy’s sum function, and the result is the same
in the simplest case:

In[3]: np.sum(L)
Out[3]: 55.612091166049424

However, because it executes the operation in compiled code, NumPy’s version of the
operation is computed much more quickly:

In[4]: big_array = np.random.rand(1000000)
%timeit sum(big_array)
%timeilt np.sum(big_array)

10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 ps per loop

Be careful, though: the sum function and the np.sum function are not identical, which
can sometimes lead to confusion! In particular, their optional arguments have differ-
ent meanings, and np.sum is aware of multiple array dimensions, as we will see in the
following section.

Minimum and Maximum

Similarly, Python has built-in min and max functions, used to find the minimum value
and maximum value of any given array:

In[5]: min(big_array), max(big_array)
Out[5]: (1.1717128136634614e-06, 0.9999976784968716)

NumPy’s corresponding functions have similar syntax, and again operate much more
quickly:
In[6]: np.min(big_array), np.max(big_array)

Out[6]: (1.1717128136634614e-06, 0.9999976784968716)
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In[7]: %timeit min(big_array)
%timeit np.min(big_array)

10 loops, best of 3: 82.3 ms per loop
1000 loops, best of 3: 497 ps per loop

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use
methods of the array object itself:

In[8]: print(big_array.min(), big_array.max(), big_array.sum())
1.17171281366e-06 0.999997678497 499911.628197

Whenever possible, make sure that you are using the NumPy version of these aggre-
gates when operating on NumPy arrays!

Multidimensional aggregates

One common type of aggregation operation is an aggregate along a row or column.
Say you have some data stored in a two-dimensional array:

In[9]: M = np.random.random((3, 4))
print(M)

[ 967576  0.03783739 0.75952519 0.06682827]

[ 0.8
[ 0.8354065 0.99196818 0.19544769 0.43447084]
[ 0.66859307 0.15038721 0.37911423 0.6687194 ]]

By default, each NumPy aggregation function will return the aggregate over the entire
array:

In[10]: M.sum()
Out[10]: 6.0850555667307118

Aggregation functions take an additional argument specifying the axis along which
the aggregate is computed. For example, we can find the minimum value within each
column by specifying axis=0:

In[11]: M.min(axis=0)

Out[11]: array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827])
The function returns four values, corresponding to the four columns of numbers.
Similarly, we can find the maximum value within each row:

In[12]: M.max(axis=1)

Out[12]: array([ 0.8967576 , 0.99196818, 0.6687194 ])

The way the axis is specified here can be confusing to users coming from other lan-
guages. The axis keyword specifies the dimension of the array that will be collapsed,
rather than the dimension that will be returned. So specifying axis=0 means that the
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first axis will be collapsed: for two-dimensional arrays, this means that values within
each column will be aggregated.

Other aggregation functions

NumPy provides many other aggregation functions, but we won't discuss them in
detail here. Additionally, most aggregates have a NaN-safe counterpart that computes
the result while ignoring missing values, which are marked by the special IEEE
floating-point NaN value (for a fuller discussion of missing data, see “Handling Miss-
ing Data” on page 119). Some of these NaN-safe functions were not added until
NumPy 1.8, so they will not be available in older NumPy versions.

Table 2-3 provides a list of useful aggregation functions available in NumPy.

Table 2-3. Aggregation functions available in NumPy

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute median of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance

np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements

np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true

np.all N/A Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

Example: What Is the Average Height of US Presidents?

Aggregates available in NumPy can be extremely useful for summarizing a set of val-
ues. As a simple example, let’s consider the heights of all US presidents. This data is
available in the file president_heights.csv, which is a simple comma-separated list of
labels and values:

In[13]: !'head -4 data/president_heights.csv

order,name,height(cm)
1,George Washington,189
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2,John Adams,170
3,Thomas Jefferson,189

We'll use the Pandas package, which we'll explore more fully in Chapter 3, to read the
file and extract this information (note that the heights are measured in centimeters):

In[14]: import pandas as pd
data = pd.read_csv('data/president_heights.csv')
heights = np.array(data['height(cm)'])
print(heights)

[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173
174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183
177 185 188 188 182 185]

Now that we have this data array, we can compute a variety of summary statistics:

In[15]: print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: , heights.max())

Mean height: 179.738095238
Standard deviation: 6.93184344275
Minimum height: 163
Maximum height: 193

Note that in each case, the aggregation operation reduced the entire array to a single
summarizing value, which gives us information about the distribution of values. We
may also wish to compute quantiles:

In[16]: print("25th percentile: ", np.percentile(heights, 25))
print("Median: ", np.median(heights))
print("75th percentile: , np.percentile(heights, 75))

25th percentile: 174.25
Median: 182.0
75th percentile: 183.0

We see that the median height of US presidents is 182 cm, or just shy of six feet.

Of course, sometimes it's more useful to see a visual representation of this data, which
we can accomplish using tools in Matplotlib (we’ll discuss Matplotlib more fully in
Chapter 4). For example, this code generates the chart shown in Figure 2-3:

In[17]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # set plot style

In[18]: plt.hist(heights)
plt.title('Height Distribution of US Presidents')
plt.xlabel('height (cm)")
plt.ylabel( ' number');
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Height Distribution of US Presidents

number

160 165 70 75 120 185 190 195
height {cm)

Figure 2-3. Histogram of presidential heights

These aggregates are some of the fundamental pieces of exploratory data analysis that
we'll explore in more depth in later chapters of the book.

Computation on Arrays: Broadcasting

We saw in the previous section how NumPy’s universal functions can be used to vec-
torize operations and thereby remove slow Python loops. Another means of vectoriz-
ing operations is to use NumPy’s broadcasting functionality. Broadcasting is simply a
set of rules for applying binary ufuncs (addition, subtraction, multiplication, etc.) on
arrays of different sizes.

Introducing Broadcasting

Recall that for arrays of the same size, binary operations are performed on an
element-by-element basis:

In[1]: import numpy as np

In[2]: np.array([0, 1, 2])
np.array([5, 5, 5])

b

o w

+ 1non

d
Out[2]: array([5, 6, 7])
Broadcasting allows these types of binary operations to be performed on arrays of dif-

ferent sizes—for example, we can just as easily add a scalar (think of it as a zero-
dimensional array) to an array:
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In[3]: a + 5

Out[3]: array([5, 6, 7])
We can think of this as an operation that stretches or duplicates the value 5 into the
array [5, 5, 5], and adds the results. The advantage of NumPy’s broadcasting is that

this duplication of values does not actually take place, but it is a useful mental model
as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when
we add a one-dimensional array to a two-dimensional array:

In[4]: M = np.ones((3, 3))

M

Out[4]: array([[ 1., 1., 1.7,
[ 1., 1., 1.],
[1., 1., 1.]D

In[5]: M + a

Out[5]: array([[ 1., 2., 3.1,
[1., 2., 3.],
[1., 2., 3.1D

Here the one-dimensional array a is stretched, or broadcast, across the second
dimension in order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can
involve broadcasting of both arrays. Consider the following example:

In[6]: a = np.arange(3)
b = np.arange(3)[:, np.newaxis]
print(a)
print(b)
[0 1 2]
[rel
[1]
[2]]
In[7]: a + b
Out[7]: array([[0, 1, 2],
[11 21 3])
[2, 3, 41D
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Just as before we stretched or broadcasted one value to match the shape of the other,
here we've stretched both a and b to match a common shape, and the result is a two-
dimensional array! The geometry of these examples is visualized in Figure 2-4.!
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Figure 2-4. Visualization of NumPy broadcasting

The light boxes represent the broadcasted values: again, this extra memory is not
actually allocated in the course of the operation, but it can be useful conceptually to

imagine that it is.

Rules of Broadcasting

Broadcasting in NumPy follows a strict set of rules to determine the interaction
between the two arrays:

« Rule 1: If the two arrays differ in their number of dimensions, the shape of the
one with fewer dimensions is padded with ones on its leading (left) side.

o Rule 2: If the shape of the two arrays does not match in any dimension, the array
with shape equal to 1 in that dimension is stretched to match the other shape.

« Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is

raised.

1 Code to produce this plot can be found in the online appendix, and is adapted from source published in the
astroML documentation. Used with permission.
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To make these rules clear, let’s consider a few examples in detail.

Broadcasting example 1
Let’s look at adding a two-dimensional array to a one-dimensional array:

In[8]: M
a

np.ones((2, 3))
np.arange(3)

Let’s consider an operation on these two arrays. The shapes of the arrays are:

M.shape
a.shape

(2, 3)
(3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with
ones:

M.shape -> (2, 3)
a.shape -> (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension
to match:

M.shape -> (2, 3)
a.shape -> (2, 3)
The shapes match, and we see that the final shape will be (2, 3):
In[9]: M + a
Out[9]: array([[ 1., 2., 3.1,
[ 1., 2.,
Broadcasting example 2
Let’s take a look at an example where both arrays need to be broadcast:

In[10]: a
b

np.arange(3).reshape((3, 1))
np.arange(3)

Again, we'll start by writing out the shape of the arrays:

a.shape = (3, 1)
b.shape = (3,)
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Rule 1 says we must pad the shape of b with ones:

a.shape -> (3, 1)
b.shape -> (1, 3)

And rule 2 tells us that we upgrade each of these ones to match the corresponding
size of the other array:

a.shape -> (3, 3)
b.shape -> (3, 3)

Because the result matches, these shapes are compatible. We can see this here:

In[11]: a + b

Out[11]: array([[0, 1, 2],
[1’ 2’ 3]’
[2, 3, 41D

Broadcasting example 3
Now let’s take a look at an example in which the two arrays are not compatible:

In[12]: M
a

np.ones((3, 2))
np.arange(3)

This is just a slightly different situation than in the first example: the matrix M is
transposed. How does this affect the calculation? The shapes of the arrays are:

(3, 2)
(3,)

M.shape
a.shape

Again, rule 1 tells us that we must pad the shape of a with ones:

M.shape -> (3, 2)
a.shape -> (1, 3)

By rule 2, the first dimension of a is stretched to match that of M:

M.shape -> (3, 2)
a.shape -> (3, 3)

Now we hit rule 3—the final shapes do not match, so these two arrays are incompati-
ble, as we can observe by attempting this operation:
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In[13]: M + a

ValueError Traceback (most recent call last)

<ipython-input-13-9e16e9f98da6> in <module>()
----> 1M+ a

ValueError: operands could not be broadcast together with shapes (3,2) (3,)

Note the potential confusion here: you could imagine making a and M compatible by,
say, padding a’s shape with ones on the right rather than the left. But this is not how
the broadcasting rules work! That sort of flexibility might be useful in some cases, but
it would lead to potential areas of ambiguity. If right-side padding is what youd like,
you can do this explicitly by reshaping the array (we'll use the np.newaxis keyword
introduced in “The Basics of NumPy Arrays” on page 42):

In[14]: a[:, np.newaxis].shape
Out[14]: (3, 1)
In[15]: M + a[:, np.newaxis]
Out[15]: array([[ 1., 1.7,
[ 2. ’ 2. ] >
[3., 3.1D
Also note that while we've been focusing on the + operator here, these broadcasting
rules apply to any binary ufunc. For example, here is the logaddexp(a, b) function,
which computes log(exp(a) + exp(b)) with more precision than the naive
approach:

In[16]: np.logaddexp(M, a[:, np.newaxis])

Out[16]: array([[ 1.31326169, 1.31326169],
[ 1.69314718, 1.69314718],
[ 2.31326169, 2.31326169]])

For more information on the many available universal functions, refer to “Computa-
tion on NumPy Arrays: Universal Functions” on page 50.

Broadcasting in Practice

Broadcasting operations form the core of many examples we'll see throughout this
book. We'll now take a look at a couple simple examples of where they can be useful.

Centering an array

In the previous section, we saw that ufuncs allow a NumPy user to remove the need
to explicitly write slow Python loops. Broadcasting extends this ability. One com-
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monly seen example is centering an array of data. Imagine you have an array of 10
observations, each of which consists of 3 values. Using the standard convention (see
“Data Representation in Scikit-Learn” on page 343), we'll store this in a 10x3 array:

In[17]: X = np.random.random((10, 3))

We can compute the mean of each feature using the mean aggregate across the first
dimension:

In[18]: Xmean = X.mean(0)
Xmean

Out[18]: array([ 0.53514715, 0.66567217, 0.44385899])

And now we can center the X array by subtracting the mean (this is a broadcasting
operation):

In[19]: X_centered = X - Xmean

To double-check that we've done this correctly, we can check that the centered array
has near zero mean:

In[20]: X_centered.mean(0)
Out[20]: array([ 2.22044605e-17, -7.77156117e-17, -1.66533454e-17])

To within-machine precision, the mean is now zero.

Plotting a two-dimensional function

One place that broadcasting is very useful is in displaying images based on two-
dimensional functions. If we want to define a function z = f(x, y), broadcasting can be
used to compute the function across the grid:

In[21]: # x and y have 50 steps from @ to 5
x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 50)[:, np.newaxis]

z

np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)
We'll use Matplotlib to plot this two-dimensional array (these tools will be discussed
in full in “Density and Contour Plots” on page 241):

In[22]: %matplotlib inline

import as

In[23]: plt.imshow(z, origin='lower', extent=[0, 5, 0, 5],
cmap="viridis')
plt.colorbar();
The result, shown in Figure 2-5, is a compelling visualization of the two-dimensional
function.
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Figure 2-5. Visualization of a 2D array

Comparisons, Masks, and Boolean Logic

This section covers the use of Boolean masks to examine and manipulate values
within NumPy arrays. Masking comes up when you want to extract, modify, count, or
otherwise manipulate values in an array based on some criterion: for example, you
might wish to count all values greater than a certain value, or perhaps remove all out-
liers that are above some threshold. In NumPy, Boolean masking is often the most
efficient way to accomplish these types of tasks.

Example: Counting Rainy Days

Imagine you have a series of data that represents the amount of precipitation each day
for a year in a given city. For example, here we'll load the daily rainfall statistics for
the city of Seattle in 2014, using Pandas (which is covered in more detail in Chap-
ter 3):

In[1]: import numpy as np
import pandas as pd

# use Pandas to extract rainfall inches as a NumPy array
rainfall = pd.read_csv('data/Seattle2014.csv')['PRCP'].values
inches = rainfall / 254 # 1/16mm -> inches

inches.shape

Out[1]: (365,)
The array contains 365 values, giving daily rainfall in inches from January 1 to
December 31, 2014.

As a first quick visualization, let’s look at the histogram of rainy days shown in
Figure 2-6, which was generated using Matplotlib (we will explore this tool more fully
in Chapter 4):
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In[2]: %matplotlib inline
import as
import ; seaborn.set() # set plot styles

In[3]: plt.hist(inches, 40);
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Figure 2-6. Histogram of 2014 rainfall in Seattle

This histogram gives us a general idea of what the data looks like: despite its reputa-
tion, the vast majority of days in Seattle saw near zero measured rainfall in 2014. But
this doesn’t do a good job of conveying some information wed like to see: for exam-
ple, how many rainy days were there in the year? What is the average precipitation on
those rainy days? How many days were there with more than half an inch of rain?

Digging into the data

One approach to this would be to answer these questions by hand: loop through the
data, incrementing a counter each time we see values in some desired range. For rea-
sons discussed throughout this chapter, such an approach is very inefficient, both
from the standpoint of time writing code and time computing the result. We saw in
“Computation on NumPy Arrays: Universal Functions” on page 50 that NumPy’s
ufuncs can be used in place of loops to do fast element-wise arithmetic operations on
arrays; in the same way, we can use other ufuncs to do element-wise comparisons over
arrays, and we can then manipulate the results to answer the questions we have. We'll
leave the data aside for right now, and discuss some general tools in NumPy to use
masking to quickly answer these types of questions.

Comparison Operators as ufuncs

In “Computation on NumPy Arrays: Universal Functions” on page 50 we introduced
ufuncs, and focused in particular on arithmetic operators. We saw that using +, -, ¥, /,
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and others on arrays leads to element-wise operations. NumPy also implements com-
parison operators such as < (less than) and > (greater than) as element-wise ufuncs.
The result of these comparison operators is always an array with a Boolean data type.
All six of the standard comparison operations are available:

In[4]: x = np.array([1, 2, 3, 4, 5])

In[5]: x < 3 # less than

Out[5]: array([ True, True, False, False, False], dtype=bool)
In[6]: x > 3 # greater than

Out[6]: array([False, False, False, True, True], dtype=bool)
In[7]: x <= 3 # less than or equal

Out[7]: array([ True, True, True, False, False], dtype=bool)
In[8]: x >= 3 # greater than or equal

Out[8]: array([False, False, True, True, True], dtype=bool)
In[9]: x != 3 # not equal

Out[9]: array([ True, True, False, True, True], dtype=bool)
In[10]: x == 3 # equal

Out[10]: array([False, False, True, False, False], dtype=bool)

It is also possible to do an element-by-element comparison of two arrays, and to
include compound expressions:

In[11]: (2 * x) == (x ** 2)

Out[11]: array([False, True, False, False, False], dtype=bool)
As in the case of arithmetic operators, the comparison operators are implemented as
ufuncs in NumPy; for example, when you write x < 3, internally NumPy uses

np.less(x, 3). A summary of the comparison operators and their equivalent ufunc
is shown here:

Operator Equivalent ufunc

== np.equal

= np.not_equal

< np.less

<= np.less_equal

> np.greater

>= np.greater_equal

Just as in the case of arithmetic ufuncs, these will work on arrays of any size and
shape. Here is a two-dimensional example:
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In[12]: rng = np.random.RandomState(0)
x = rng.randint(10, size=(3, 4))
X

Out[12]: array([[5, 0, 3, 3],
[7, 9’ 31 5]’
[2, 4, 7, 611)

In[13]: x < 6

Out[13]: array([[ True, True, True, True],
[False, False, True, True],
[ True, True, False, False]], dtype=bool)

In each case, the result is a Boolean array, and NumPy provides a number of straight-
forward patterns for working with these Boolean results.

Working with Boolean Arrays

Given a Boolean array, there are a host of useful operations you can do. We'll work
with x, the two-dimensional array we created earlier:

In[14]: print(x)
[[50 3 3]
[7 9 3 5]
[2476]]
Counting entries

To count the number of True entries in a Boolean array, np.count_nonzero is useful:

In[15]: # how many values less than 6?
np.count_nonzero(x < 6)

Out[15]: 8

We see that there are eight array entries that are less than 6. Another way to get at this
information is to use np.sum; in this case, False is interpreted as 0, and True is inter-
preted as 1:

In[16]: np.sum(x < 6)
Out[16]: 8

The benefit of sum() is that like with other NumPy aggregation functions, this sum-
mation can be done along rows or columns as well:

In[17]: # how many values less than 6 in each row?
np.sum(x < 6, axis=1)

Out[17]: array([4, 2, 2])

This counts the number of values less than 6 in each row of the matrix.
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If we're interested in quickly checking whether any or all the values are true, we can
use (you guessed it) np.any() or np.all():

In[18]: # are there any values greater than 8?
np.any(x > 8)

Out[18]: True

In[19]: # are there any values less than zero?
np.any(x < 0)

Out[19]: False

In[20]: # are all values less than 10?
np.all(x < 10)

0ut[20]: True

In[21]: # are all values equal to 6?
np.all(x == 6)

Out[21]: False
np.all() and np.any() can be used along particular axes as well. For example:

In[22]: # are all values in each row less than 8?
np.all(x < 8, axis=1)

Out[22]: array([ True, False, True], dtype=bool)

Here all the elements in the first and third rows are less than 8, while this is not the
case for the second row.

Finally, a quick warning: as mentioned in “Aggregations: Min, Max, and Everything
in Between” on page 58, Python has built-in sum(), any(), and all() functions.
These have a different syntax than the NumPy versions, and in particular will fail or
produce unintended results when used on multidimensional arrays. Be sure that you
are using np.sum(), np.any(), and np.all() for these examples!

Boolean operators

We've already seen how we might count, say, all days with rain less than four inches,
or all days with rain greater than two inches. But what if we want to know about all
days with rain less than four inches and greater than one inch? This is accomplished
through Python’s bitwise logic operators, &, |, ~, and ~. Like with the standard arith-
metic operators, NumPy overloads these as ufuncs that work element-wise on (usu-
ally Boolean) arrays.

For example, we can address this sort of compound question as follows:
In[23]: np.sum((inches > 0.5) & (inches < 1))
Out[23]: 29

So we see that there are 29 days with rainfall between 0.5 and 1.0 inches.
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Note that the parentheses here are important—because of operator precedence rules,
with parentheses removed this expression would be evaluated as follows, which
results in an error:

inches > (0.5 & inches) < 1

Using the equivalence of A AND B and NOT (A OR B) (which you may remember if
you've taken an introductory logic course), we can compute the same result in a dif-
ferent manner:

In[24]: np.sum(~( (inches <= 0.5) | (inches >= 1) ))

Out[24]: 29
Combining comparison operators and Boolean operators on arrays can lead to a wide
range of efficient logical operations.

The following table summarizes the bitwise Boolean operators and their equivalent
ufuncs:

Operator Equivalent ufunc

& np.bitwise_and
| np.bitwise_or
" np.bitwise_xor

~ np.bitwise_not

Using these tools, we might start to answer the types of questions we have about our
weather data. Here are some examples of results we can compute when combining
masking with aggregations:

In[25]: print("Number days without rain: ", np.sum(inches == 0))
print("Number days with rain: ", np.sum(inches != 0))
print("Days with more than 0.5 inches:", np.sum(inches > 0.5))
print("Rainy days with < 0.1 inches :", np.sum((inches > 0) &

(inches < 0.2)))

Number days without rain: 215
Number days with rain: 150
Days with more than 0.5 inches: 37
Rainy days with < 0.1 inches : 75

Boolean Arrays as Masks

In the preceding section, we looked at aggregates computed directly on Boolean
arrays. A more powerful pattern is to use Boolean arrays as masks, to select particular
subsets of the data themselves. Returning to our x array from before, suppose we
want an array of all values in the array that are less than, say, 5:
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In[26]: x
Out[26]: array([[5, 0, 3, 3],

[7, 9’ 31 5],
[2, 4,7, 61D

We can obtain a Boolean array for this condition easily, as we've already seen:
In[27]: x < 5

Out[27]: array([[False, True, True, True],
[False, False, True, False],
[ True, True, False, False]], dtype=bool)

Now to select these values from the array, we can simply index on this Boolean array;
this is known as a masking operation:

In[28]: x[x < 5]
Out[28]: array([0, 3, 3, 3, 2, 4])

What is returned is a one-dimensional array filled with all the values that meet this
condition; in other words, all the values in positions at which the mask array is True.

We are then free to operate on these values as we wish. For example, we can compute
some relevant statistics on our Seattle rain data:

In[29]:
# construct a mask of all rainy days
rainy = (inches > 0)

# construct a mask of all summer days (June 21st is the 172nd day)

summer = (np.arange(365) - 172 < 90) & (np.arange(365) - 172 > 0)

print("Median precip on rainy days in 2014 (inches): ",
np.median(inches[rainy]))

print("Median precip on summer days in 2014 (inches):
np.median(inches[summer]))

print("Maximum precip on summer days in 2014 (inches):
np.max(inches[summer]))

print("Median precip on non-summer rainy days (inches):
np.median(inches[rainy & ~summer]))

"

-

"

-

"

-

Median precip on rainy days in 2014 (inches): 0.194881889764
Median precip on summer days in 2014 (inches): 0.0

Maximum precip on summer days in 2014 (inches): 0.850393700787
Median precip on non-summer rainy days (inches): 0.200787401575

By combining Boolean operations, masking operations, and aggregates, we can very
quickly answer these sorts of questions for our dataset.
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Using the Keywords and/or Versus the Operators &/

One common point of confusion is the difference between the keywords and and or
on one hand, and the operators & and | on the other hand. When would you use one
versus the other?

The difference is this: and and or gauge the truth or falsehood of entire object, while &
and | refer to bits within each object.

When you use and or or, it's equivalent to asking Python to treat the object as a single
Boolean entity. In Python, all nonzero integers will evaluate as True. Thus:

In[30]: bool(42), bool(0)
Out[30]: (True, False)
In[31]: bool(42 and 0)
Out[31]: False

In[32]: bool(42 or 0)
Out[32]: True

When you use & and | on integers, the expression operates on the bits of the element,
applying the and or the or to the individual bits making up the number:

In[33]: bin(42)
Out[33]: '6b101010'
In[34]: bin(59)
Out[34]: '0b111011"
In[35]: bin(42 & 59)
Out[35]: '6b101010'
In[36]: bin(42 | 59)
Out[36]: '0b111011"

Notice that the corresponding bits of the binary representation are compared in order
to yield the result.

When you have an array of Boolean values in NumPy, this can be thought of as a
string of bits where 1 = True and @ = False, and the result of & and | operates in a
similar manner as before:

In[37]: , 1, 0], dtype=bool)

, 1, 1], dtype=bool)

A = np.array([1, 0, 1
B = np.array([1, 1, 1
A| B

, 0
, 0

Out[37]: array([ True, True, True, False, True, True], dtype=bool)
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Using or on these arrays will try to evaluate the truth or falsehood of the entire array
object, which is not a well-defined value:

In[38]: Aor B

ValueError Traceback (most recent call last)

<ipython-input-38-5d8e4f2e21cO> in <module>()
---->1 AorB

ValueError: The truth value of an array with more than one element 1is...

Similarly, when doing a Boolean expression on a given array, you should use | or &
rather than or or and:

In[39]: x = np.arange(10)
(x > 4) & (x < 8)

Out[39]: array([False, False, ..., True, True, False, False], dtype=bool)

Trying to evaluate the truth or falsehood of the entire array will give the same
ValueError we saw previously:

In[40]: (x > 4) and (x < 8)

ValueError Traceback (most recent call last)

<ipython-input-40-3d24f1ffd63d> in <module>()
---->1 (x > 4) and (x < 8)

ValueError: The truth value of an array with more than one element is...

So remember this: and and or perform a single Boolean evaluation on an entire
object, while & and | perform multiple Boolean evaluations on the content (the indi-
vidual bits or bytes) of an object. For Boolean NumPy arrays, the latter is nearly
always the desired operation.

Fancy Indexing

In the previous sections, we saw how to access and modify portions of arrays using
simple indices (e.g., arr[0]), slices (e.g., arr[:5]), and Boolean masks (e.g., arr[arr
> 0]). In this section, we'll look at another style of array indexing, known as fancy
indexing. Fancy indexing is like the simple indexing we've already seen, but we pass
arrays of indices in place of single scalars. This allows us to very quickly access and
modify complicated subsets of an array’s values.
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Exploring Fancy Indexing

Fancy indexing is conceptually simple: it means passing an array of indices to access
multiple array elements at once. For example, consider the following array:

In[1]: import as
rand = np.random.RandomState(42)

x = rand.randint(100, size=10)
print(x)

[51 92 14 71 60 20 82 86 74 74]

Suppose we want to access three different elements. We could do it like this:
In[2]: [x[3], x[71, x[2]]
out[2]: [71, 86, 14]

Alternatively, we can pass a single list or array of indices to obtain the same result:

In[3]: ind = [3, 7, 4]
x[ind]

Out[3]: array([71, 86, 60])

With fancy indexing, the shape of the result reflects the shape of the index arrays
rather than the shape of the array being indexed:

In[4]: ind = np.array([[3, 7],
[4, 51D
x[ind]

Out[4]: array([[71, 86],
[60, 20]11)

Fancy indexing also works in multiple dimensions. Consider the following array:

In[5]: X = np.arange(12).reshape((3, 4))

X
Out[5]: array([[ 0, 1, 2, 3],
[ 4) 5) 6’ 7],
[ 8, 9,10, 11]])

Like with standard indexing, the first index refers to the row, and the second to the
column:
In[6]: row = np.array([0, 1, 2])

col = np.array([2, 1, 3])
X[row, col]

Out[6]: array([ 2, 5, 11])
Notice that the first value in the result is X[0, 2], the second is X[1, 1], and the

third is X[2, 3]. The pairing of indices in fancy indexing follows all the broadcasting
rules that were mentioned in “Computation on Arrays: Broadcasting” on page 63. So,
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for example, if we combine a column vector and a row vector within the indices, we
get a two-dimensional result:

In[7]: X[row[:, np.newaxis], col]

Out[7]: array([[ 2, 1, 3],
[ 6, 5) 7]1
[10, 9, 111D

Here, each row value is matched with each column vector, exactly as we saw in broad-
casting of arithmetic operations. For example:

In[8]: row[:, np.newaxis] * col

Out[8]: array([[0, 0, 0],
[21 1) 3]1
[4, 2, 6]1])

It is always important to remember with fancy indexing that the return value reflects
the broadcasted shape of the indices, rather than the shape of the array being indexed.

Combined Indexing

For even more powerful operations, fancy indexing can be combined with the other
indexing schemes we've seen:

In[9]: print(X)

[ 2 3]

[0 1

[4 5 6 7]

[ 8 910 11]]

We can combine fancy and simple indices:
In[10]: X[2, [2, 0, 1]]
Out[10]: array([10, 8, 9])

We can also combine fancy indexing with slicing:
In[11]: X[1:, [2, 0, 1]]

Out[11]: array([[ 6, 4, 5],
(10, 8, 91D
And we can combine fancy indexing with masking:

In[12]: mask = np.array([1, 0, 1, 0], dtype=bool)
X[row[:, np.newaxis], mask]
Out[12]: array([[ 0, 2],
[ 4 s 6] s’
[ 8, 10]])
All of these indexing options combined lead to a very flexible set of operations for
accessing and modifying array values.
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Example: Selecting Random Points

One common use of fancy indexing is the selection of subsets of rows from a matrix.
For example, we might have an N by D matrix representing N points in D dimen-
sions, such as the following points drawn from a two-dimensional normal distribu-
tion:
In[13]: mean = [0, 0]
cov = [[1, 2],
[2, 511

X = rand.multivariate_normal(mean, cov, 100)
X.shape

Out[13]: (100, 2)
Using the plotting tools we will discuss in Chapter 4, we can visualize these points as
a scatter plot (Figure 2-7):

In[14]: %matplotlib inline
import as
import ; seaborn.set() # for plot styling

plt.scatter(X[:, 01, X[:, 11);
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Figure 2-7. Normally distributed points

Let’s use fancy indexing to select 20 random points. We'll do this by first choosing 20
random indices with no repeats, and use these indices to select a portion of the origi-

nal array:
In[15]: indices = np.random.choice(X.shape[0], 20, replace=False)
indices

Out[15]: array([93, 45, 73, 81, 50, 10, 98, 94, 4, 64, 65, 89, 47, 84, 82,
80, 25, 90, 63, 20])
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In[16]: selection = X[indices] # fancy indexing here
selection.shape
Out[16]: (20, 2)
Now to see which points were selected, let’s over-plot large circles at the locations of
the selected points (Figure 2-8):
In[17]: plt.scatter(X[:, 0], X[:, 1], alpha=0.3)

plt.scatter(selection[:, 0], selection[:, 1],
facecolor="none', s=200);
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Figure 2-8. Random selection among points

This sort of strategy is often used to quickly partition datasets, as is often needed in
train/test splitting for validation of statistical models (see “Hyperparameters and
Model Validation” on page 359), and in sampling approaches to answering statistical
questions.

Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can also be used to
modify parts of an array. For example, imagine we have an array of indices and wed
like to set the corresponding items in an array to some value:
In[18]: x = np.arange(10)
i = np.array([2, 1, 8, 4])
x[1] = 99
print(x)

[ 09999 399 5 6 799 9]

We can use any assignment-type operator for this. For example:

82 | (Chapter2: Introduction to NumPy



In[19]: x[i] -= 10
print(x)

[0898 38 5 6 78 9]

Notice, though, that repeated indices with these operations can cause some poten-
tially unexpected results. Consider the following:
In[20]: x = np.zeros(10)
x[[o, 0]] = [4, 6]
print(x)
[6. 6. 0. 0. 0. 0. 0. 0. 0. 0.]

Where did the 4 go? The result of this operation is to first assign x[0] = 4, followed
by x[0] = 6. The result, of course, is that x[ @] contains the value 6.

Fair enough, but consider this operation:

In[21]: i = [2, 3, 3, 4, 4, 4]
x[i1] += 1
X

Out[21]: array([ 6., 0., 1., 1., 1., 0., 0., 0., 0., 0.])

You might expect that x[3] would contain the value 2, and x[4] would contain the
value 3, as this is how many times each index is repeated. Why is this not the case?
Conceptually, this is because x[1] += 1 is meant as a shorthand of x[1] = x[1] + 1.
x[1] + 1is evaluated, and then the result is assigned to the indices in x. With this in
mind, it is not the augmentation that happens multiple times, but the assignment,
which leads to the rather nonintuitive results.

So what if you want the other behavior where the operation is repeated? For this, you
can use the at() method of ufuncs (available since NumPy 1.8), and do the following:
In[22]: x = np.zeros(10)

np.add.at(x, i, 1)
print(x)

[6. 0. 1. 2. 3. 0. 0. 6. 0. 0.]

The at() method does an in-place application of the given operator at the specified
indices (here, 1) with the specified value (here, 1). Another method that is similar in
spirit is the reduceat() method of ufuncs, which you can read about in the NumPy
documentation.

Example: Binning Data

You can use these ideas to efficiently bin data to create a histogram by hand. For
example, imagine we have 1,000 values and would like to quickly find where they fall
within an array of bins. We could compute it using ufunc. at like this:

Fancy Indexing | 83



In[23]: np.random.seed(42)
X = np.random.randn(100)

# compute a histogram by hand
bins = np.linspace(-5, 5, 20)
counts = np.zeros_like(bins)

# find the appropriate bin for each x
i = np.searchsorted(bins, x)

# add 1 to each of these bins
np.add.at(counts, i, 1)

The counts now reflect the number of points within each bin—in other words, a his-
togram (Figure 2-9):

In[24]: # plot the results
plt.plot(bins, counts, linestyle='steps');

a
-6 -4 -2 a 2 4 [

Figure 2-9. A histogram computed by hand

Of course, it would be silly to have to do this each time you want to plot a histogram.
This is why Matplotlib provides the plt.hist() routine, which does the same in a
single line:

plt.hist(x, bins, histtype='step');

This function will create a nearly identical plot to the one seen here. To compute the
binning, Matplotlib uses the np.histogram function, which does a very similar com-
putation to what we did before. Let’s compare the two here:

In[25]: print("NumPy routine:")
%timeit counts, edges = np.histogram(x, bins)
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print("Custom routine:")
%timeilt np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
10000 loops, best of 3: 97.6 ps per loop
Custom routine:
10000 loops, best of 3: 19.5 ps per loop

Our own one-line algorithm is several times faster than the optimized algorithm in
NumPy! How can this be? If you dig into the np.histogram source code (you can do
this in IPython by typing np.histogram??), you'll see that it’s quite a bit more
involved than the simple search-and-count that we've done; this is because NumPy’s
algorithm is more flexible, and particularly is designed for better performance when
the number of data points becomes large:

In[26]: x = np.random.randn(1000000)
print("NumPy routine:")
%timeit counts, edges = np.histogram(x, bins)

print("Custom routine:")
%timeilt np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
10 loops, best of 3: 68.7 ms per loop
Custom routine:
10 loops, best of 3: 135 ms per loop

What this comparison shows is that algorithmic efficiency is almost never a simple
question. An algorithm efficient for large datasets will not always be the best choice
for small datasets, and vice versa (see “Big-O Notation” on page 92). But the advan-
tage of coding this algorithm yourself is that with an understanding of these basic
methods, you could use these building blocks to extend this to do some very interest-
ing custom behaviors. The key to efficiently using Python in data-intensive applica-
tions is knowing about general convenience routines like np.histogram and when
they’re appropriate, but also knowing how to make use of lower-level functionality
when you need more pointed behavior.

Sorting Arrays

Up to this point we have been concerned mainly with tools to access and operate on
array data with NumPy. This section covers algorithms related to sorting values in
NumPy arrays. These algorithms are a favorite topic in introductory computer sci-
ence courses: if you've ever taken one, you probably have had dreams (or, depending
on your temperament, nightmares) about insertion sorts, selection sorts, merge sorts,
quick sorts, bubble sorts, and many, many more. All are means of accomplishing a
similar task: sorting the values in a list or array.
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For example, a simple selection sort repeatedly finds the minimum value from a list,
and makes swaps until the list is sorted. We can code this in just a few lines of Python:

In[1]: import as

def selection_sort(x):
for 1 in range(len(x)):
swap = 1 + np.argmin(x[i:])
(x[1], x[swap]) = (x[swap], x[i])
return X

In[2]: x = np.array([2, 1, 4, 3, 5])
selection_sort(x)

out[2]: array([1, 2, 3, 4, 5])

As any first-year computer science major will tell you, the selection sort is useful for
its simplicity, but is much too slow to be useful for larger arrays. For a list of N values,
it requires N loops, each of which does on the order of ~ N comparisons to find the
swap value. In terms of the “big-O” notation often used to characterize these algo-
rithms (see “Big-O Notation” on page 92), selection sort averages ¢/ [Nz]: if you dou-
ble the number of items in the list, the execution time will go up by about a factor of
four.

Even selection sort, though, is much better than my all-time favorite sorting algo-
rithms, the bogosort:

In[3]: def bogosort(x):
while np.any(x[:-1] > x[1:]):
np.random.shuffle(x)
return x

In[4]: x = np.array([2, 1, 4, 3, 5])
bogosort(x)

Out[4]: array([1, 2, 3, 4, 5])
This silly sorting method relies on pure chance: it repeatedly applies a random shuf-
fling of the array until the result happens to be sorted. With an average scaling of

O[N x N!] (that's N times N factorial), this should—quite obviously—never be used
for any real computation.

Fortunately, Python contains built-in sorting algorithms that are much more efficient
than either of the simplistic algorithms just shown. We'll start by looking at the
Python built-ins, and then take a look at the routines included in NumPy and opti-
mized for NumPy arrays.

Fast Sorting in NumPy: np.sort and np.argsort

Although Python has built-in sort and sorted functions to work with lists, we won't
discuss them here because NumPy’s np.sort function turns out to be much more
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efficient and useful for our purposes. By default np.sort uses an €[N log N], quick-
sort algorithm, though mergesort and heapsort are also available. For most applica-
tions, the default quicksort is more than sufficient.

To return a sorted version of the array without modifying the input, you can use

np.sort:

In[5]: x = np.array([2, 1, 4, 3, 5])
np.sort(x)

Out[5]: array([1, 2, 3, 4, 5])
If you prefer to sort the array in-place, you can instead use the sort method of arrays:

In[6]: x.sort()
print(x)

[12345]

A related function is argsort, which instead returns the indices of the sorted
elements:

In[7]: x = np.array([2, 1, 4, 3, 5])
i = np.argsort(x)
print(i)

[10324]

The first element of this result gives the index of the smallest element, the second
value gives the index of the second smallest, and so on. These indices can then be
used (via fancy indexing) to construct the sorted array if desired:

In[8]: x[1]
Out[8]: array([1, 2, 3, 4, 5])

Sorting along rows or columns

A useful feature of NumPy’s sorting algorithms is the ability to sort along specific
rows or columns of a multidimensional array using the axis argument. For example:

In[9]: rand = np.random.RandomState(42)
X = rand.randint(0, 10, (4, 6))

print(X)
[[6 37 46 9]
[267437]
[725417]
[514095]]

In[10]: # sort each column of X
np.sort(X, axis=0)

Out[10]: array([[2, 1, 4, 0, 1, 5],
[5, 2, 5, 4, 3, 7],
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[6, 3’ 71 41 6, 7]1
[7, 6,7, 4,9, 91])

In[11]: # sort each row of X
np.sort(X, axis=1)

Out[11]: array([[3, 4, 6, 6, 7, 9],
[2, 3, 4, 6, 7, 7],
[1, 2, 4, 5, 7, 7],
[e, 1, 4, 5, 5, 9]1])

Keep in mind that this treats each row or column as an independent array, and any
relationships between the row or column values will be lost!

Partial Sorts: Partitioning

Sometimes we're not interested in sorting the entire array, but simply want to find the
K smallest values in the array. NumPy provides this in the np.partition function.
np.partition takes an array and a number K; the result is a new array with the small-
est K values to the left of the partition, and the remaining values to the right, in arbi-
trary order:

In[12]: x = np.array([7, 2, 3, 1, 6, 5, 4])
np.partition(x, 3)

Out[12]: array([2, 1, 3, 4, 6, 5, 7])

Note that the first three values in the resulting array are the three smallest in the
array, and the remaining array positions contain the remaining values. Within the
two partitions, the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional
array:

In[13]: np.partition(X, 2, axis=1)

Out[13]: array([[3, 4, 6, 7, 6, 9],
[2, 3, 4, 7, 6, 7],
[1, 2, 4, 5, 7, 7],
[e, 1, 4, 5, 9, 5]])

The result is an array where the first two slots in each row contain the smallest values
from that row, with the remaining values filling the remaining slots.

Finally, just as there is a np.argsort that computes indices of the sort, there is a
np.argpartition that computes indices of the partition. We'll see this in action in the
following section.

Example: k-Nearest Neighbors

Let’s quickly see how we might use this argsort function along multiple axes to find
the nearest neighbors of each point in a set. We'll start by creating a random set of 10
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points on a two-dimensional plane. Using the standard convention, we'll arrange
these in a 10x2 array:

In[14]: X = rand.rand(10, 2)
To get an idea of how these points look, let’s quickly scatter plot them (Figure 2-10):

In[15]: %matplotlib inline

import as
import ; seaborn.set() # Plot styling
plt.scatter(X[:, 0], X[:, 1], s=100);
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Figure 2-10. Visualization of points in the k-neighbors example

Now we'll compute the distance between each pair of points. Recall that the squared-
distance between two points is the sum of the squared differences in each dimension;
using the efficient broadcasting (“Computation on Arrays: Broadcasting” on page 63)
and aggregation (“Aggregations: Min, Max, and Everything in Between” on page 58)
routines provided by NumPy, we can compute the matrix of square distances in a sin-
gle line of code:

In[16]: dist_sq = np.sum((X[:,np.newaxis,:] - X[np.newaxis,:,:]) ** 2, axis=-1)

This operation has a lot packed into it, and it might be a bit confusing if youre unfa-
miliar with NumPy’s broadcasting rules. When you come across code like this, it can
be useful to break it down into its component steps:

In[17]: # for each pair of points, compute differences in their coordinates
differences = X[:, np.newaxis, :] - X[np.newaxis, :, :]
differences.shape

Out[17]: (10, 10, 2)
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In[18]: # square the coordinate differences
sq_differences = differences ** 2
sq_differences.shape

Out[18]: (10, 10, 2)

In[19]: # sum the coordinate differences to get the squared distance
dist_sq = sq_differences.sum(-1)
dist_sq.shape

Out[19]: (10, 10)

Just to double-check what we are doing, we should see that the diagonal of this matrix
(i.e., the set of distances between each point and itself) is all zero:

In[20]: dist_sq.diagonal()
Out[20]: array([ 6., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

It checks out! With the pairwise square-distances converted, we can now use np.arg
sort to sort along each row. The leftmost columns will then give the indices of the
nearest neighbors:

In[21]: nearest = np.argsort(dist_sq, axis=1)

print(nearest)
[[639714256 8]
[147936850 2]
[2146308975]
[397014586 2]
[4185679302]
[5864179320]
[6854179320]
[793140586 2]
[8564179320]
[973014586 2]]

Notice that the first column gives the numbers 0 through 9 in order: this is due to the
fact that each point’s closest neighbor is itself, as we would expect.

By using a full sort here, we've actually done more work than we need to in this case.
If we're simply interested in the nearest k neighbors, all we need is to partition each
row so that the smallest k + 1 squared distances come first, with larger distances fill-
ing the remaining positions of the array. We can do this with the np.argpartition
function:

In[22]: K =2

nearest_partition = np.argpartition(dist_sq, K + 1, axis=1)

In order to visualize this network of neighbors, let’s quickly plot the points along with
lines representing the connections from each point to its two nearest neighbors
(Figure 2-11):
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In[23]: plt.scatter(X[:, 0], X[:, 1], s=100)

# draw lines from each point to its two nearest neighbors
K=2

for 1 in range(X.shape[0]):
for j in nearest_partition[i, :K+1]:
# plot a line from X[1] to X[j]
# use some zip magic to make it happen:
plt.plot(*zip(X[j], X[1]), color='black")
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Figure 2-11. Visualization of the neighbors of each point

Each point in the plot has lines drawn to its two nearest neighbors. At first glance, it
might seem strange that some of the points have more than two lines coming out of
them: this is due to the fact that if point A is one of the two nearest neighbors of point
B, this does not necessarily imply that point B is one of the two nearest neighbors of
point A.

Although the broadcasting and row-wise sorting of this approach might seem less
straightforward than writing a loop, it turns out to be a very efficient way of operating
on this data in Python. You might be tempted to do the same type of operation by
manually looping through the data and sorting each set of neighbors individually, but
this would almost certainly lead to a slower algorithm than the vectorized version we
used. The beauty of this approach is that it’s written in a way that’s agnostic to the size
of the input data: we could just as easily compute the neighbors among 100 or
1,000,000 points in any number of dimensions, and the code would look the same.

Finally, I'll note that when doing very large nearest-neighbor searches, there are tree-
based and/or approximate algorithms that can scale as €[N log N] or better rather
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than the (7‘[N2] of the brute-force algorithm. One example of this is the KD-Tree,
implemented in Scikit-Learn.

Big-0 Notation

Big-O notation is a means of describing how the number of operations required for
an algorithm scales as the input grows in size. To use it correctly is to dive deeply into
the realm of computer science theory, and to carefully distinguish it from the related
small-o notation, big-6 notation, big-Q notation, and probably many mutant hybrids
thereof. While these distinctions add precision to statements about algorithmic scal-
ing, outside computer science theory exams and the remarks of pedantic blog com-
menters, you'll rarely see such distinctions made in practice. Far more common in the
data science world is a less rigid use of big-O notation: as a general (if imprecise)
description of the scaling of an algorithm. With apologies to theorists and pedants,
this is the interpretation we'll use throughout this book.

Big-O notation, in this loose sense, tells you how much time your algorithm will take
as you increase the amount of data. If you have an O[N] (read “order N”) algorithm
that takes 1 second to operate on a list of length N=1,000, then you should expect it to
take roughly 5 seconds for a list of length N=5,000. If you have an € [Nz] (read “order

N squared”) algorithm that takes 1 second for N=1,000, then you should expect it to
take about 25 seconds for N=5,000.

For our purposes, the N will usually indicate some aspect of the size of the dataset (the
number of points, the number of dimensions, etc.). When trying to analyze billions or

trillions of samples, the difference between ¢/[N] and € [NZ] can be far from trivial!

Notice that the big-O notation by itself tells you nothing about the actual wall-clock
time of a computation, but only about its scaling as you change N. Generally, for
example, an ¢/[N] algorithm is considered to have better scaling than an (ﬂ'[NZ] algo-
rithm, and for good reason. But for small datasets in particular, the algorithm with
better scaling might not be faster. For example, in a given problem an (//[NZ] algo-
rithm might take 0.01 seconds, while a “better” ¢’ N] algorithm might take 1 second.
Scale up N by a factor of 1,000, though, and the O[N] algorithm will win out.

Even this loose version of Big-O notation can be very useful for comparing the per-
formance of algorithms, and we'll use this notation throughout the book when talking
about how algorithms scale.

Structured Data: NumPy’s Structured Arrays

While often our data can be well represented by a homogeneous array of values,
sometimes this is not the case. This section demonstrates the use of NumPy’s struc-
tured arrays and record arrays, which provide efficient storage for compound, hetero-
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geneous data. While the patterns shown here are useful for simple operations,
scenarios like this often lend themselves to the use of Pandas DataFrames, which we'll
explore in Chapter 3.

Imagine that we have several categories of data on a number of people (say, name,
age, and weight), and wed like to store these values for use in a Python program. It
would be possible to store these in three separate arrays:
In[2]: name = ['Alice', 'Bob', 'Cathy', 'Doug']

age = [25, 45, 37, 19]

weight = [55.0, 85.5, 68.0, 61.5]
But this is a bit clumsy. There’s nothing here that tells us that the three arrays are
related; it would be more natural if we could use a single structure to store all of this
data. NumPy can handle this through structured arrays, which are arrays with com-
pound data types.

Recall that previously we created a simple array using an expression like this:
In[3]: x = np.zeros(4, dtype=int)
We can similarly create a structured array using a compound data type specification:

In[4]: # Use a compound data type for structured arrays
data = np.zeros(4, dtype={'names':('name', 'age', 'weight'),
'formats':('U10', '14', 'f8')})
print(data.dtype)
[('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]

»

Here 'U10' translates to “Unicode string of maximum length 10, 'i4' translates to
“4-byte (i.e., 32 bit) integer;” and 'f8' translates to “8-byte (i.e., 64 bit) float” We'll
discuss other options for these type codes in the following section.

Now that we've created an empty container array, we can fill the array with our lists of
values:

In[5]: data['name'] = name
data['age'] = age
data[ 'weight'] = weight
print(data)
[('Alice', 25, 55.0) ('Bob', 45, 85.5) ('Cathy', 37, 68.0)
('Doug', 19, 61.5)]
As we had hoped, the data is now arranged together in one convenient block of
memory.

The handy thing with structured arrays is that you can now refer to values either by
index or by name:

In[6]: # Get all names
data[ 'name']
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Out[6]: array(['Alice', 'Bob', 'Cathy', 'Doug'],
dtype="'<U10")

In[7]: # Get first row of data
data[0]

Out[7]: ('Alice', 25, 55.0)

In[8]: # Get the name from the last row
data[-1]["'name']

Out[8]: 'Doug'

Using Boolean masking, this even allows you to do some more sophisticated opera-
tions such as filtering on age:

In[9]: # Get names where age is under 30
data[data['age'] < 30]['name']

Out[9]: array(['Alice', 'Doug'],
dtype="'<U10")

Note that if youd like to do any operations that are any more complicated than these,
you should probably consider the Pandas package, covered in the next chapter. As
we'll see, Pandas provides a DataFrame object, which is a structure built on NumPy
arrays that offers a variety of useful data manipulation functionality similar to what
we've shown here, as well as much, much more.

Creating Structured Arrays

Structured array data types can be specified in a number of ways. Earlier, we saw the
dictionary method:

In[10]: np.dtype({'names':('name', 'age', 'weight'),
"formats':('U10', 'i4', 'f8')})

Out[10]: dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')])

For clarity, numerical types can be specified with Python types or NumPy dtypes
instead:

In[11]: np.dtype({'names':('name', 'age', 'weight'),
'formats':((np.str_, 10), int, np.float32)})

Out[11]: dtype([('name’', '<U10'), ('age', '<i8'), ('weight', '<f4')])
A compound type can also be specified as a list of tuples:

In[12]: np.dtype([('name', 'S10"'), ('age', 'i4'), ('weight', 'f8')])

Out[12]: dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')])

If the names of the types do not matter to you, you can specify the types alone in a
comma-separated string:

In[13]: np.dtype('S10,14,f8")
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Out[13]: dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')])

The shortened string format codes may seem confusing, but they are built on simple
principles. The first (optional) character is < or >, which means “little endian” or “big
endian,” respectively, and specifies the ordering convention for significant bits. The
next character specifies the type of data: characters, bytes, ints, floating points, and so
on (see Table 2-4). The last character or characters represents the size of the object in
bytes.

Table 2-4. NumPy data types

Character Description Example

'b' Byte np.dtype('b")

' Signed integer np.dtype('i4') == np.int32

u' Unsigned integer np.dtype('ul') == np.uint8

'f! Floating point np.dtype('f8') == np.int64

'c' Complex floating point np.dtype('c16') == np.complex128
'S',"a' string np.dtype('S5")

' Unicode string np.dtype('U') == np.str_

! Raw data (void) np.dtype('V') == np.void

More Advanced Compound Types

It is possible to define even more advanced compound types. For example, you can
create a type where each element contains an array or matrix of values. Here, we'll
create a data type with a mat component consisting of a 3x3 floating-point matrix:
In[14]: tp = np.dtype([('id', '18'), ('mat', 'f8', (3, 3))])
X = np.zeros(1, dtype=tp)

print(X[0])
print(X['mat'][0])

(o, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])

[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 6. 0. 0.]]

Now each element in the X array consists of an id and a 3x3 matrix. Why would you
use this rather than a simple multidimensional array, or perhaps a Python dictionary?
The reason is that this NumPy dtype directly maps onto a C structure definition, so
the buffer containing the array content can be accessed directly within an appropri-
ately written C program. If you find yourself writing a Python interface to a legacy C
or Fortran library that manipulates structured data, you’ll probably find structured
arrays quite useful!
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RecordArrays: Structured Arrays with a Twist

NumPy also provides the np.recarray class, which is almost identical to the struc-
tured arrays just described, but with one additional feature: fields can be accessed as
attributes rather than as dictionary keys. Recall that we previously accessed the ages
by writing:

In[15]: data['age']
Out[15]: array([25, 45, 37, 19], dtype=int32)

If we view our data as a record array instead, we can access this with slightly fewer
keystrokes:

In[16]: data_rec = data.view(np.recarray)
data_rec.age

Out[16]: array([25, 45, 37, 19], dtype=int32)

The downside is that for record arrays, there is some extra overhead involved in
accessing the fields, even when using the same syntax. We can see this here:

In[17]: %timeilt data['age']
%timeit data_rec['age']
%timeit data_rec.age

1000000 loops, best of 3: 241 ns per loop
100000 loops, best of 3: 4.61 ps per loop
100000 loops, best of 3: 7.27 ps per loop

Whether the more convenient notation is worth the additional overhead will depend
on your own application.

On to Pandas

This section on structured and record arrays is purposely at the end of this chapter,
because it leads so well into the next package we will cover: Pandas. Structured arrays
like the ones discussed here are good to know about for certain situations, especially
in case youre using NumPy arrays to map onto binary data formats in C, Fortran, or
another language. For day-to-day use of structured data, the Pandas package is a
much better choice, and we'll dive into a full discussion of it in the next chapter.
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CHAPTER 3
Data Manipulation with Pandas

In the previous chapter, we dove into detail on NumPy and its ndarray object, which
provides efficient storage and manipulation of dense typed arrays in Python. Here
we'll build on this knowledge by looking in detail at the data structures provided by
the Pandas library. Pandas is a newer package built on top of NumPy, and provides an
efficient implementation of a DataFrame. DataFrames are essentially multidimen-
sional arrays with attached row and column labels, and often with heterogeneous
types and/or missing data. As well as offering a convenient storage interface for
labeled data, Pandas implements a number of powerful data operations familiar to
users of both database frameworks and spreadsheet programs.

As we saw, NumPy’s ndarray data structure provides essential features for the type of
clean, well-organized data typically seen in numerical computing tasks. While it
serves this purpose very well, its limitations become clear when we need more flexi-
bility (attaching labels to data, working with missing data, etc.) and when attempting
operations that do not map well to element-wise broadcasting (groupings, pivots,
etc.), each of which is an important piece of analyzing the less structured data avail-
able in many forms in the world around us. Pandas, and in particular its Series and
DataFrame objects, builds on the NumPy array structure and provides efficient access
to these sorts of “data munging” tasks that occupy much of a data scientist’s time.

In this chapter, we will focus on the mechanics of using Series, DataFrame, and
related structures effectively. We will use examples drawn from real datasets where
appropriate, but these examples are not necessarily the focus.

Installing and Using Pandas

Installing Pandas on your system requires NumPy to be installed, and if youre build-
ing the library from source, requires the appropriate tools to compile the C and
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Cython sources on which Pandas is built. Details on this installation can be found in
the Pandas documentation. If you followed the advice outlined in the preface and
used the Anaconda stack, you already have Pandas installed.

Once Pandas is installed, you can import it and check the version:

In[1]: import
pandas.__version__

Out[1]: '0.18.1"

Just as we generally import NumPy under the alias np, we will import Pandas under
the alias pd:

In[2]: import as

This import convention will be used throughout the remainder of this book.

Reminder About Built-In Documentation

As you read through this chapter, don’t forget that IPython gives you the ability to
quickly explore the contents of a package (by using the tab-completion feature) as
well as the documentation of various functions (using the ? character). (Refer back to
“Help and Documentation in IPython” on page 3 if you need a refresher on this.)

For example, to display all the contents of the pandas namespace, you can type this:
In [3]: pd.<TAB>

And to display the built-in Pandas documentation, you can use this:
In [4]: pd?

More detailed documentation, along with tutorials and other resources, can be found
at http://pandas.pydata.org/.

Introducing Pandas Objects

At the very basic level, Pandas objects can be thought of as enhanced versions of
NumPy structured arrays in which the rows and columns are identified with labels
rather than simple integer indices. As we will see during the course of this chapter,
Pandas provides a host of useful tools, methods, and functionality on top of the basic
data structures, but nearly everything that follows will require an understanding of
what these structures are. Thus, before we go any further, let’s introduce these three
fundamental Pandas data structures: the Series, DataFrame, and Index.

We will start our code sessions with the standard NumPy and Pandas imports:

In[1]: import as
import as
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The Pandas Series Object

A Pandas Series is a one-dimensional array of indexed data. It can be created from a
list or array as follows:

In[2]: data = pd.Series([0.25, 0.5, 0.75, 1.0])

data
Out[2]: © 0.25
1 0.50
2 0.75
3 1.00

dtype: float64

As we see in the preceding output, the Series wraps both a sequence of values and a
sequence of indices, which we can access with the values and index attributes. The
values are simply a familiar NumPy array:

In[3]: data.values
Out[3]: array([ 0.25, 0.5, ©0.75, 1. 1)

The index is an array-like object of type pd. Index, which we'll discuss in more detail
momentarily:

In[4]: data.index

Out[4]: RangeIndex(start=0, stop=4, step=1)
Like with a NumPy array, data can be accessed by the associated index via the familiar
Python square-bracket notation:

In[5]: data[1]

Out[5]: 0.5

In[6]: data[1:3]

Out[6]: 1 0.50
2 0.75
dtype: float64

As we will see, though, the Pandas Series is much more general and flexible than the
one-dimensional NumPy array that it emulates.

Series as generalized NumPy array

From what we've seen so far, it may look like the Series object is basically inter-
changeable with a one-dimensional NumPy array. The essential difference is the pres-
ence of the index: while the NumPy array has an implicitly defined integer index used
to access the values, the Pandas Series has an explicitly defined index associated with
the values.
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This explicit index definition gives the Series object additional capabilities. For
example, the index need not be an integer, but can consist of values of any desired
type. For example, if we wish, we can use strings as an index:

In[7]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=['a"', 'b', 'c', 'd'])
data

out[7]: 0.25

a
b 0.50
C 0.75
d 1.00
dtype: float64
And the item access works as expected:
In[8]: data['b']
out[8]: 0.5
We can even use noncontiguous or nonsequential indices:

In[9]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=[2, 5, 3, 7])

data
out[9]: 2 0.25
5 0.50
3 0.75
7 1.00

dtype: float64
In[10]: data[5]
Out[10]: 0.5

Series as specialized dictionary

In this way, you can think of a Pandas Series a bit like a specialization of a Python
dictionary. A dictionary is a structure that maps arbitrary keys to a set of arbitrary
values, and a Series is a structure that maps typed keys to a set of typed values. This
typing is important: just as the type-specific compiled code behind a NumPy array
makes it more efficient than a Python list for certain operations, the type information
of a Pandas Series makes it much more efficient than Python dictionaries for certain
operations.

We can make the Series-as-dictionary analogy even more clear by constructing a
Series object directly from a Python dictionary:
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In[11]: population_dict = {'California': 38332521,
'Texas': 26448193,
'New York': 19651127,
'Florida': 19552860,
'Illinois': 12882135}
population = pd.Series(population_dict)
population

Out[11]: California 38332521

Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193

dtype: int64

By default, a Series will be created where the index is drawn from the sorted keys.
From here, typical dictionary-style item access can be performed:

In[12]: population['California']
Out[12]: 38332521

Unlike a dictionary, though, the Series also supports array-style operations such as
slicing:
In[13]: population['California':'Illinois"]

Out[13]: California 38332521
Florida 19552860
Illinois 12882135
dtype: int64

We'll discuss some of the quirks of Pandas indexing and slicing in “Data Indexing and
Selection” on page 107.

Constructing Series objects

We've already seen a few ways of constructing a Pandas Series from scratch; all of
them are some version of the following:

>>> pd.Series(data, index=index)
where index is an optional argument, and data can be one of many entities.

For example, data can be a list or NumPy array, in which case index defaults to an
integer sequence:

In[14]: pd.Series([2, 4, 6])

Out[14]: © 2
1 4
2 6
dtype: int64
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data can be a scalar, which is repeated to fill the specified index:
In[15]: pd.Series(5, index=[100, 200, 300])

Out[15]: 100 5
200 5
300 5
dtype: int64

data can be a dictionary, in which index defaults to the sorted dictionary keys:
In[16]: pd.Series({2:'a', 1:'b', 3:'c'})

Out[16]: 1 b
2 a
3 C
dtype: object

In each case, the index can be explicitly set if a different result is preferred:
In[17]: pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2])

Out[17]: 3 [«
2 a
dtype: object
Notice that in this case, the Series is populated only with the explicitly identified
keys.

The Pandas DataFrame Object

The next fundamental structure in Pandas is the DataFrame. Like the Series object
discussed in the previous section, the DataFrame can be thought of either as a gener-
alization of a NumPy array, or as a specialization of a Python dictionary. We'll now
take a look at each of these perspectives.

DataFrame as a generalized NumPy array

If a Series is an analog of a one-dimensional array with flexible indices, a DataFrame
is an analog of a two-dimensional array with both flexible row indices and flexible
column names. Just as you might think of a two-dimensional array as an ordered
sequence of aligned one-dimensional columns, you can think of a DataFrame as a
sequence of aligned Series objects. Here, by “aligned” we mean that they share the
same index.

To demonstrate this, let’s first construct a new Series listing the area of each of the
five states discussed in the previous section:
In[18]:

area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,
'"Florida': 170312, 'Illinois': 149995}
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area = pd.Series(area_dict)
area

Out[18]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662

dtype: int64

Now that we have this along with the population Series from before, we can use a
dictionary to construct a single two-dimensional object containing this information:

In[19]: states = pd.DataFrame({'population': population,
'area': area})

states

Out[19]: area population
California 423967 38332521
Florida 170312 19552860

Illinois 149995 12882135
New York 141297 19651127
Texas 695662 26448193

Like the Series object, the DataFrame has an index attribute that gives access to the
index labels:

In[20]: states.index

Out[20]:
Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object')

Additionally, the DataFrame has a columns attribute, which is an Index object holding
the column labels:

In[21]: states.columns
Out[21]: Index(['area', 'population'], dtype='object')
Thus the DataFrame can be thought of as a generalization of a two-dimensional

NumPy array, where both the rows and columns have a generalized index for access-
ing the data.

DataFrame as specialized dictionary

Similarly, we can also think of a DataFrame as a specialization of a dictionary. Where
a dictionary maps a key to a value, a DataFrame maps a column name to a Series of
column data. For example, asking for the 'area' attribute returns the Series object
containing the areas we saw earlier:

In[22]: states['area']

Out[22]: California 423967
Florida 170312
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Illinois 149995

New York 141297

Texas 695662

Name: area, dtype: int64
Notice the potential point of confusion here: in a two-dimensional NumPy array,
data[0] will return the first row. For a DataFrame, data['col0'] will return the first
column. Because of this, it is probably better to think about DataFrames as generalized
dictionaries rather than generalized arrays, though both ways of looking at the situa-
tion can be useful. We'll explore more flexible means of indexing DataFrames in “Data
Indexing and Selection” on page 107.

Constructing DataFrame objects

A Pandas DataFrame can be constructed in a variety of ways. Here we'll give several
examples.

From a single Series object. A DataFrame is a collection of Series objects, and a single-
column DataFrame can be constructed from a single Series:

In[23]: pd.DataFrame(population, columns=['population'])

Out[23]: population
California 38332521
Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193

Fromalist of dicts. Any list of dictionaries can be made into a DataFrame. We'll use a
simple list comprehension to create some data:

In[24]: data = [{'a': 1, 'b': 2 * i}
for 1 in range(3)]
pd.DataFrame(data)

Out[24]: a b
0 0
1 2
2 4

N = O

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN (i.e.,
“not a number”) values:

In[25]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 43}])

Out[25]: a b ¢
0 1.0 2 NaN
1 NaN 3 4.0
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From a dictionary of Series objects. As we saw before, a DataFrame can be constructed
from a dictionary of Series objects as well:

In[26]: pd.DataFrame({'population': population,
'area': area})

Out[26]: area population
California 423967 38332521
Florida 170312 19552860

Illinois 149995 12882135
New York 141297 19651127
Texas 695662 26448193

From a two-dimensional NumPy array. Given a two-dimensional array of data, we can
create a DataFrame with any specified column and index names. If omitted, an integer
index will be used for each:

In[27]: pd.DataFrame(np.random.rand(3, 2),
columns=['foo', 'bar'],
index=['a"', 'b', 'c'])

Out[27]: foo bar
a 0.865257 0.213169
b 0.442759 0.108267
c 0.047110 0.905718

From a NumPy structured array. We covered structured arrays in “Structured Data:
NumPy’s Structured Arrays” on page 92. A Pandas DataFrame operates much like a
structured array, and can be created directly from one:

In[28]: A = np.zeros(3, dtype=[('A', '18'), ('B', 'f8")])
A

Out[28]: array([(0, 0.0), (0, 0.0), (0, 0.0)],
dtype=[('A", '<i8"), ('B', '<f8')])

In[29]: pd.DataFrame(A)

Out[29]: A B
0 0 0.0
1 0 0.0
2 0 0.0

The Pandas Index Object

We have seen here that both the Series and DataFrame objects contain an explicit
index that lets you reference and modify data. This Index object is an interesting
structure in itself, and it can be thought of either as an immutable array or as an
ordered set (technically a multiset, as Index objects may contain repeated values).
Those views have some interesting consequences in the operations available on Index
objects. As a simple example, let’s construct an Index from a list of integers:
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In[30]: ind = pd.Index([2, 3, 5, 7, 11])
ind

Out[30]: Int64Index([2, 3, 5, 7, 11], dtype='int64')
Index as immutable array

The Index object in many ways operates like an array. For example, we can use stan-
dard Python indexing notation to retrieve values or slices:

In[31]: ind[1]
Out[31]: 3
In[32]: ind[::2]
Out[32]: Int64Index([2, 5, 11], dtype='int64')
Index objects also have many of the attributes familiar from NumPy arrays:
In[33]: print(ind.size, ind.shape, ind.ndim, ind.dtype)
5 (5,) 1 int64

One difference between Index objects and NumPy arrays is that indices are immuta-
ble—that is, they cannot be modified via the normal means:

In[34]: ind[1] = ©

TypeError Traceback (most recent call last)

<ipython-input-34-40e631c82e8a> in <module>()
----> 1 ind[1] = 0

/Users/jakevdp/anaconda/1lib/python3.5/site-packages/pandas/indexes/base.py ...

1243
1244 def __setitem__(self, key, value):

-> 1245 raise TypeError("Index does not support mutable operations")
1246

1247 def __getitem__(self, key):

TypeError: Index does not support mutable operations

This immutability makes it safer to share indices between multiple DataFrames and
arrays, without the potential for side effects from inadvertent index modification.

Index as ordered set

Pandas objects are designed to facilitate operations such as joins across datasets,
which depend on many aspects of set arithmetic. The Index object follows many of
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the conventions used by Python’s built-in set data structure, so that unions, intersec-
tions, differences, and other combinations can be computed in a familiar way:

In[35]: indA = pd.Index([1, 3, 5, 7, 9])
indB = pd.Index([2, 3, 5, 7, 11])
In[36]: indA & indB # intersection
Out[36]: Int64Index([3, 5, 7], dtype='int64')
In[37]: indA | indB # union
Out[37]: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64')
In[38]: indA » indB # symmetric difference
Out[38]: Int64Index([1, 2, 9, 11], dtype='int64')

These operations may also be accessed via object methods—for example, indA.inter
section(indB).

Data Indexing and Selection

In Chapter 2, we looked in detail at methods and tools to access, set, and modify val-
ues in NumPy arrays. These included indexing (e.g., arr[2, 1]), slicing (e.g., arr[:,
1:5]), masking (e.g., arr[arr > 0]), fancy indexing (e.g., arr[0, [1, 5]]), and
combinations thereof (e.g., arr[:, [1, 5]]). Here welll look at similar means of
accessing and modifying values in Pandas Series and DataFrame objects. If you have
used the NumPy patterns, the corresponding patterns in Pandas will feel very famil-
iar, though there are a few quirks to be aware of.

We'll start with the simple case of the one-dimensional Series object, and then move
on to the more complicated two-dimensional DataFrame object.

Data Selection in Series

As we saw in the previous section, a Series object acts in many ways like a one-
dimensional NumPy array, and in many ways like a standard Python dictionary. If we
keep these two overlapping analogies in mind, it will help us to understand the pat-
terns of data indexing and selection in these arrays.

Series as dictionary

Like a dictionary, the Series object provides a mapping from a collection of keys to a
collection of values:

In[1]: import as
data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=['a', 'b', 'c', 'd'])
data
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0.25
0.50

Out[1]: a
b
C 0.75
d
d

1.00
type: float64

In[2]: data['b']
out[2]: 0.5

We can also use dictionary-like Python expressions and methods to examine the
keys/indices and values:

In[3]: 'a' in data
Out[3]: True
In[4]: data.keys()
Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object')
In[5]: list(data.items())
Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]
Series objects can even be modified with a dictionary-like syntax. Just as you can

extend a dictionary by assigning to a new key, you can extend a Series by assigning
to a new index value:

In[6]: data['e'] = 1.25
data

Out[6]: 0.25

a
b 0.50
C 0.75
d 1.00
e 1.25
dtype: float64

This easy mutability of the objects is a convenient feature: under the hood, Pandas is
making decisions about memory layout and data copying that might need to take
place; the user generally does not need to worry about these issues.

Series as one-dimensional array

A Series builds on this dictionary-like interface and provides array-style item selec-
tion via the same basic mechanisms as NumPy arrays—that is, slices, masking, and
fancy indexing. Examples of these are as follows:

In[7]: # slicing by explicit index
data['a':'c']

a
b
C 0.75
dtype: float64
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In[8]: # slicing by implicit integer index
datal0:2]

Out[8]: a 0.25
b 0.50
dtype: float64

In[9]: # masking
data[(data > 0.3) & (data < 0.8)]

Out[9]: b 0.50
C 0.75
dtype: float64

In[10]: # fancy indexing
data[['a', 'e']]
Out[10]: a 0.25
e 1.25
dtype: float64
Among these, slicing may be the source of the most confusion. Notice that when you
are slicing with an explicit index (i.e., data['a':'c']), the final index is included in
the slice, while when you're slicing with an implicit index (i.e., data[0:2]), the final
index is excluded from the slice.

Indexers: log, iloc, and ix

These slicing and indexing conventions can be a source of confusion. For example, if
your Series has an explicit integer index, an indexing operation such as data[1] will
use the explicit indices, while a slicing operation like data[1:3] will use the implicit
Python-style index.

In[11]: data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
data

a
b

Out[11]:

[= TV, VS

type: object

In[12]: # explicit index when indexing
data[1]

Out[12]: 'a'

In[13]: # implicit index when slicing

data[1:3]

Out[13]: 3 b
5 C
dtype: object
Because of this potential confusion in the case of integer indexes, Pandas provides
some special indexer attributes that explicitly expose certain indexing schemes. These
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are not functional methods, but attributes that expose a particular slicing interface to
the data in the Series.

First, the loc attribute allows indexing and slicing that always references the explicit
index:

In[14]: data.loc[1]

Out[14]: 'a'

In[15]: data.loc[1:3]

Out[15]: 1 a
3 b
dtype: object
The 1loc attribute allows indexing and slicing that always references the implicit
Python-style index:

In[16]: data.iloc[1]
Out[16]: 'b'
In[17]: data.iloc[1:3]

Out[17]: 3 b
5 [«
dtype: object
A third indexing attribute, ix, is a hybrid of the two, and for Series objects is equiva-
lent to standard [ ]-based indexing. The purpose of the ix indexer will become more
apparent in the context of DataFrame objects, which we will discuss in a moment.

One guiding principle of Python code is that “explicit is better than implicit” The
explicit nature of loc and i1loc make them very useful in maintaining clean and read-
able code; especially in the case of integer indexes, I recommend using these both to
make code easier to read and understand, and to prevent subtle bugs due to the
mixed indexing/slicing convention.

Data Selection in DataFrame

Recall that a DataFrame acts in many ways like a two-dimensional or structured array,
and in other ways like a dictionary of Series structures sharing the same index.
These analogies can be helpful to keep in mind as we explore data selection within
this structure.

DataFrame as a dictionary

The first analogy we will consider is the DataFrame as a dictionary of related Series
objects. Let’s return to our example of areas and populations of states:
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In[18]: area = pd.Series({'California': 423967, 'Texas': 695662,
'"New York': 141297, 'Florida': 170312,
"Il1linoils': 149995})
pop = pd.Series({'California': 38332521, 'Texas': 26448193,
'New York': 19651127, 'Florida': 19552860,
'Illinoils': 12882135})
data = pd.DataFrame({'area':area, 'pop':pop})

data
Out[18]: area pop
California 423967 38332521
Florida 170312 19552860

Illinois 149995 12882135
New York 141297 19651127
Texas 695662 26448193

The individual Series that make up the columns of the DataFrame can be accessed
via dictionary-style indexing of the column name:

In[19]: data['area']

Out[19]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662

Name: area, dtype: int64
Equivalently, we can use attribute-style access with column names that are strings:
In[20]: data.area

Out[20]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662

Name: area, dtype: int64

This attribute-style column access actually accesses the exact same object as the
dictionary-style access:

In[21]: data.area is data['area']

Out[21]: True
Though this is a useful shorthand, keep in mind that it does not work for all cases!
For example, if the column names are not strings, or if the column names conflict
with methods of the DataFrame, this attribute-style access is not possible. For exam-
ple, the DataFrame has a pop() method, so data.pop will point to this rather than the
"pop" column:

In[22]: data.pop is data['pop']

Out[22]: False

Data Indexing and Selection | 111



In particular, you should avoid the temptation to try column assignment via attribute
(i.e., use data[ 'pop'] = z rather than data.pop = z).

Like with the Series objects discussed earlier, this dictionary-style syntax can also be
used to modify the object, in this case to add a new column:

In[23]: data['density'] = data['pop'] / data['area']

data
Out[23]: area pop density
California 423967 38332521 90.413926
Florida 170312 19552860 114.806121

Illinois 149995 12882135  85.883763

New York 141297 19651127 139.076746

Texas 695662 26448193  38.018740
This shows a preview of the straightforward syntax of element-by-element arithmetic
between Series objects; we'll dig into this further in “Operating on Data in Pandas”
on page 115.

DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced two-
dimensional array. We can examine the raw underlying data array using the values
attribute:

In[24]: data.values

Out[24]: array([[ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01],
[ 1.70312000e+05, 1.95528600e+07, 1.14806121e+02],
[ 1.49995000e+05, 1.28821350e+07, 8.58837628e+01],
[ 1.41297000e+05, 1.96511270e+07, 1.39076746e+02],
[ 6.95662000e+05, 2.64481930e+07, 3.80187404e+01]])

With this picture in mind, we can do many familiar array-like observations on the
DataFrame itself. For example, we can transpose the full DataFrame to swap rows and
columns:

In[25]: data.T

Out[25]:

California Florida Illinois New York Texas
area 4.239670e+05 1.703120e+05 1.499950e+05 1.412970e+05 6.956620e+05
pop 3.833252e+07 1.955286e+07 1.288214e+07 1.965113e+07 2.644819e+07

density 9.041393e+01 1.148061e+02 8.588376e+01 1.390767e+02 3.801874e+01

When it comes to indexing of DataFrame objects, however, it is clear that the
dictionary-style indexing of columns precludes our ability to simply treat it as a
NumPy array. In particular, passing a single index to an array accesses a row:

In[26]: data.values[0]

Out[26]: array([ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01])
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and passing a single “index” to a DataFrame accesses a column:
In[27]: data['area']

Out[27]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662

Name: area, dtype: int64

Thus for array-style indexing, we need another convention. Here Pandas again uses
the loc, iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can
index the underlying array as if it is a simple NumPy array (using the implicit
Python-style index), but the DataFrame index and column labels are maintained in
the result:

In[28]: data.iloc[:3, :2]

out[28]: area pop
California 423967 38332521
Florida 170312 19552860

Illinois 149995 12882135

In[29]: data.loc[:'Illinois', :'pop']

Out[29]: area pop
California 423967 38332521
Florida 170312 19552860

Illinois 149995 12882135
The ix indexer allows a hybrid of these two approaches:

In[30]: data.ix[:3, :'pop']

Out[30]: area pop
California 423967 38332521
Florida 170312 19552860

Illinois 149995 12882135

Keep in mind that for integer indices, the ix indexer is subject to the same potential
sources of confusion as discussed for integer-indexed Series objects.

Any of the familiar NumPy-style data access patterns can be used within these index-
ers. For example, in the loc indexer we can combine masking and fancy indexing as
in the following:

In[31]: data.loc[data.density > 100, ['pop', 'density']]

Out[31]: pop density
Florida 19552860 114.806121
New York 19651127 139.076746
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Any of these indexing conventions may also be used to set or modify values; this is
done in the standard way that you might be accustomed to from working with
NumPy:

In[32]: data.iloc[0, 2] = 90

data

Oout[32]: area pop density
California 423967 38332521 90.000000
Florida 170312 19552860 114.806121

Illinois 149995 12882135  85.883763

New York 141297 19651127 139.076746

Texas 695662 26448193  38.018740
To build up your fluency in Pandas data manipulation, I suggest spending some time
with a simple DataFrame and exploring the types of indexing, slicing, masking, and
fancy indexing that are allowed by these various indexing approaches.

Additional indexing conventions

There are a couple extra indexing conventions that might seem at odds with the pre-
ceding discussion, but nevertheless can be very useful in practice. First, while index-
ing refers to columns, slicing refers to rows:

In[33]: data['Florida':'Illinois"']

Out[33]: area pop density
Florida 170312 19552860 114.806121
ITlinols 149995 12882135 85.883763

Such slices can also refer to rows by number rather than by index:
In[34]: data[1:3]

Out[34]: area pop density
Florida 170312 19552860 114.806121
Illinols 149995 12882135 85.883763

Similarly, direct masking operations are also interpreted row-wise rather than
column-wise:

In[35]: data[data.density > 100]

Out[35]: area pop density
Florida 170312 19552860 114.806121
New York 141297 19651127 139.076746

These two conventions are syntactically similar to those on a NumPy array, and while
these may not precisely fit the mold of the Pandas conventions, they are nevertheless
quite useful in practice.
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Operating on Data in Pandas

One of the essential pieces of NumPy is the ability to perform quick element-wise
operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and
with more sophisticated operations (trigonometric functions, exponential and loga-
rithmic functions, etc.). Pandas inherits much of this functionality from NumPy, and
the ufuncs that we introduced in “Computation on NumPy Arrays: Universal Func-
tions” on page 50 are key to this.

Pandas includes a couple useful twists, however: for unary operations like negation
and trigonometric functions, these ufuncs will preserve index and column labels in the
output, and for binary operations such as addition and multiplication, Pandas will
automatically align indices when passing the objects to the ufunc. This means that
keeping the context of data and combining data from different sources—both poten-
tially error-prone tasks with raw NumPy arrays—become essentially foolproof ones
with Pandas. We will additionally see that there are well-defined operations between
one-dimensional Series structures and two-dimensional DataFrame structures.

Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy ufunc will work on
Pandas Series and DataFrame objects. Let’s start by defining a simple Series and
DataFrame on which to demonstrate this:

In[1]: import as
import as

In[2]: rng
ser
ser

np.random.RandomState(42)
pd.Series(rng.randint(0, 10, 4))

Out[2]: ©
1
2
3
dtype: inté64

A NWOR

In[3]: df = pd.DataFrame(rng.randint(0, 10, (3, 4)),
columns=['A", 'B', 'C', 'D'])
df

Out[3]:

1

A
0 6
7
2 7

N B O
unw NN
A NONO

If we apply a NumPy ufunc on either of these objects, the result will be another Pan-
das object with the indices preserved:

In[4]: np.exp(ser)

Operating on DatainPandas | 115



out[4]: 0 403.428793

1 20.085537
2 1096.633158
3 54.598150

dtype: float64
Or, for a slightly more complex calculation:
In[5]: np.sin(df * np.pi / 4)

Out[5]: A B C D
0 -1.000000 7.071068e-01 1.000000 -1.000000e+00
1 -0.707107 1.224647e-16 0.707107 -7.071068e-01
2 -0.707107 1.000000e+00 -0.707107 1.224647e-16
Any of the ufuncs discussed in “Computation on NumPy Arrays: Universal Func-
tions” on page 50 can be used in a similar manner.

UFuncs: Index Alignment

For binary operations on two Series or DataFrame objects, Pandas will align indices
in the process of performing the operation. This is very convenient when you are
working with incomplete data, as we'll see in some of the examples that follow.

Index alignment in Series

As an example, suppose we are combining two different data sources, and find only
the top three US states by area and the top three US states by population:

In[6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662,
'California': 423967}, name='area')

population = pd.Series({'California': 38332521, 'Texas': 26448193,

'"New York': 19651127}, name='population')

Let’s see what happens when we divide these to compute the population density:

In[7]: population / area

Out[7]: Alaska NaN
California 90.413926
New York NaN
Texas 38.018740

dtype: float64

The resulting array contains the union of indices of the two input arrays, which we
could determine using standard Python set arithmetic on these indices:

In[8]: area.index | population.index
Out[8]: Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object')

Any item for which one or the other does not have an entry is marked with NaN, or
“Not a Number,” which is how Pandas marks missing data (see further discussion of
missing data in “Handling Missing Data” on page 119). This index matching is imple-
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mented this way for any of Python’s built-in arithmetic expressions; any missing val-
ues are filled in with NaN by default:

In[9]: A = pd.Series([2, 4, 6], index=[0, 1, 2])
B = pd.Series([1, 3, 5], index=[1, 2, 3])

A+ B
Out[9]: © NaN
1 5.0
2 9.0
3 NaN

dtype: float64

If using NaN values is not the desired behavior, we can modify the fill value using
appropriate object methods in place of the operators. For example, calling A.add(B)
is equivalent to calling A + B, but allows optional explicit specification of the fill value
for any elements in A or B that might be missing:

In[10]: A.add(B, fill_value=0)

Out[10]: ©
1
2
3
dtype: float64

[cloN oo}

2.
5.
9.
5.

Index alignment in DataFrame

A similar type of alignment takes place for both columns and indices when you are
performing operations on DataFrames:

In[11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)),
columns=1ist('AB"))
A

Out[11]: A
0 1 11
1 5 1
In[12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)),
columns=1ist('BAC"))
B

Out[12]:

1

B
0 4
5
2 9

N O © >
o ® wvnN

In[13]: A + B

Out[13]: A B C
.0 15.0 NaN
0 6.0 NaN
N

NaN NaN
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Notice that indices are aligned correctly irrespective of their order in the two objects,
and indices in the result are sorted. As was the case with Series, we can use the asso-
ciated object’s arithmetic method and pass any desired fill_value to be used in place
of missing entries. Here we'll fill with the mean of all values in A (which we compute
by first stacking the rows of A):

In[14]: fill = A.stack().mean()
A.add(B, fill_value=fill)

Out[14]: A B C
0 1.0 15.0 13.5
1 13.0 6.0 4.5
2 6.5 13.5 10.5

Table 3-1 lists Python operators and their equivalent Pandas object methods.

Table 3-1. Mapping between Python operators and Pandas methods

Python operator Pandas method(s)

+ add()

- sub(), subtract()

* mul(), multiply()

/ truediv(), div(), divide()
// floordiv()

% mod()

ok pow()

Ufuncs: Operations Between DataFrame and Series

When you are performing operations between a DataFrame and a Serties, the index
and column alignment is similarly maintained. Operations between a DataFrame and
a Serties are similar to operations between a two-dimensional and one-dimensional
NumPy array. Consider one common operation, where we find the difference of a
two-dimensional array and one of its rows:

In[15]: A = rng.randint(10, size=(3, 4))
A

Out[15]: array([[3, 8, 2, 4],
[ZJ 6’ 4’ 8])
[61 11 3’ 8]])

In[16]: A - A[0]

Out[16]: array([[ ©, o6, 0, 0],
['15 '2: 2: 4]:
[ 3: '7: 1; 4]])
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According to NumPy’s broadcasting rules (see “Computation on Arrays: Broadcast-
ing” on page 63), subtraction between a two-dimensional array and one of its rows is
applied row-wise.

In Pandas, the convention similarly operates row-wise by default:

In[17]: df = pd.DataFrame(A, columns=1ist('QRST'))
df - df.iloc[0]

Out[17]: Q R
0 0
1-2
3 -7

= N O W0n
A b o H

If you would instead like to operate column-wise, you can use the object methods
mentioned earlier, while specifying the axis keyword:

In[18]: df.subtract(df['R'], axis=0)

Out[18]: Q RS T
0-5 0 -6 -4
1-4 0-2 2
2 50 2 7

Note that these DataFrame/Series operations, like the operations discussed before,
will automatically align indices between the two elements:

In[19]: halfrow = df.iloc[0, ::2]
halfrow

Out[19]: Q 3
S 2
Name: 0, dtype: int64

In[20]: df - halfrow

Out[20]: Q R S T
O 0.0 NaN 0.0 NaN
1 -1.0 NaN 2.0 NaN
2 3.0 NaN 1.0 NaN

This preservation and alignment of indices and columns means that operations on
data in Pandas will always maintain the data context, which prevents the types of silly
errors that might come up when you are working with heterogeneous and/or mis-
aligned data in raw NumPy arrays.

Handling Missing Data

The difference between data found in many tutorials and data in the real world is that
real-world data is rarely clean and homogeneous. In particular, many interesting
datasets will have some amount of data missing. To make matters even more compli-
cated, different data sources may indicate missing data in different ways.
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In this section, we will discuss some general considerations for missing data, discuss
how Pandas chooses to represent it, and demonstrate some built-in Pandas tools for
handling missing data in Python. Here and throughout the book, we'll refer to miss-
ing data in general as null, NaN, or NA values.

Trade-Offs in Missing Data Conventions

A number of schemes have been developed to indicate the presence of missing data in
a table or DataFrame. Generally, they revolve around one of two strategies: using a
mask that globally indicates missing values, or choosing a sentinel value that indicates
a missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or it
may involve appropriation of one bit in the data representation to locally indicate the
null status of a value.

In the sentinel approach, the sentinel value could be some data-specific convention,
such as indicating a missing integer value with ~9999 or some rare bit pattern, or it
could be a more global convention, such as indicating a missing floating-point value
with NaN (Not a Number), a special value which is part of the IEEE floating-point
specification.

None of these approaches is without trade-offs: use of a separate mask array requires
allocation of an additional Boolean array, which adds overhead in both storage and
computation. A sentinel value reduces the range of valid values that can be repre-
sented, and may require extra (often non-optimized) logic in CPU and GPU arith-
metic. Common special values like NaN are not available for all data types.

As in most cases where no universally optimal choice exists, different languages and
systems use different conventions. For example, the R language uses reserved bit pat-
terns within each data type as sentinel values indicating missing data, while the SciDB
system uses an extra byte attached to every cell to indicate a NA state.

Missing Data in Pandas

The way in which Pandas handles missing values is constrained by its reliance on the
NumPy package, which does not have a built-in notion of NA values for non-
floating-point data types.

Pandas could have followed R’s lead in specifying bit patterns for each individual data
type to indicate nullness, but this approach turns out to be rather unwieldy. While R
contains four basic data types, NumPy supports far more than this: for example,
while R has a single integer type, NumPy supports fourteen basic integer types once
you account for available precisions, signedness, and endianness of the encoding.
Reserving a specific bit pattern in all available NumPy types would lead to an
unwieldy amount of overhead in special-casing various operations for various types,
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likely even requiring a new fork of the NumPy package. Further, for the smaller data
types (such as 8-bit integers), sacrificing a bit to use as a mask will significantly
reduce the range of values it can represent.

NumPy does have support for masked arrays—that is, arrays that have a separate
Boolean mask array attached for marking data as “good” or “bad” Pandas could have
derived from this, but the overhead in both storage, computation, and code mainte-
nance makes that an unattractive choice.

With these constraints in mind, Pandas chose to use sentinels for missing data, and
further chose to use two already-existing Python null values: the special floating-
point NaN value, and the Python None object. This choice has some side effects, as we
will see, but in practice ends up being a good compromise in most cases of interest.

None: Pythonic missing data

The first sentinel value used by Pandas is None, a Python singleton object that is often
used for missing data in Python code. Because None is a Python object, it cannot be
used in any arbitrary NumPy/Pandas array, but only in arrays with data type
'object' (i.e., arrays of Python objects):

In[1]: import as
import as

In[2]: valsl = np.array([1, None, 3, 4])
vals1l

Out[2]: array([1, None, 3, 4], dtype=object)

This dtype=object means that the best common type representation NumPy could
infer for the contents of the array is that they are Python objects. While this kind of
object array is useful for some purposes, any operations on the data will be done at
the Python level, with much more overhead than the typically fast operations seen for
arrays with native types:
In[3]: for dtype in ['object', 'int']:
print("dtype =", dtype)

%timeit np.arange(1E6, dtype=dtype).sum()
print()

dtype = object
10 loops, best of 3: 78.2 ms per loop

dtype = int
100 loops, best of 3: 3.06 ms per loop

The use of Python objects in an array also means that if you perform aggregations
like sum() or min() across an array with a None value, you will generally get an error:
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In[4]: valsl.sum()

TypeError Traceback (most recent call last)

<ipython-input-4-749fd8ae6030> in <module>()
----> 1 valsl.sum()

/Users/jakevdp/anaconda/lib/python3.5/site-packages/numpy/core/_methods.py ...

30

31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
---> 32 return umr_sum(a, axis, dtype, out, keepdims)

33

34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

This reflects the fact that addition between an integer and None is undefined.

NaN: Missing numerical data

The other missing data representation, NaN (acronym for Not a Number), is different;
it is a special floating-point value recognized by all systems that use the standard
IEEE floating-point representation:

In[5]: vals2 = np.array([1, np.nan, 3, 4])
vals2.dtype

Out[5]: dtype('float64')

Notice that NumPy chose a native floating-point type for this array: this means that
unlike the object array from before, this array supports fast operations pushed into
compiled code. You should be aware that NaN is a bit like a data virus—it infects any
other object it touches. Regardless of the operation, the result of arithmetic with NaN
will be another NaN:

In[6]: 1 + np.nan
Out[6]: nan
In[7]: © * np.nan
Out[7]: nan

Note that this means that aggregates over the values are well defined (i.e., they don't
result in an error) but not always useful:

In[8]: vals2.sum(), vals2.min(), vals2.max()
Out[8]: (nman, nan, nan)

NumPy does provide some special aggregations that will ignore these missing values:
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In[9]: np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)

Out[9]: (8.0, 1.0, 4.0)
Keep in mind that NaN is specifically a floating-point value; there is no equivalent
NaN value for integers, strings, or other types.
NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle the two of them
nearly interchangeably, converting between them where appropriate:

In[10]: pd.Series([1, np.nan, 2, None])
Out[10]: © 1.0

1 NaN
2 2.0
3 NaN

dtype: float64

For types that don’'t have an available sentinel value, Pandas automatically type-casts
when NA values are present. For example, if we set a value in an integer array to

np.nan, it will automatically be upcast to a floating-point type to accommodate the
NA:

In[11]: x = pd.Series(range(2), dtype=int)
X

Out[11]: © 0
1 1
dtype: int64

In[12]: x[0] = None
X

Out[12]: © NaN
1 1.0
dtype: float64
Notice that in addition to casting the integer array to floating point, Pandas automati-
cally converts the None to a NaN value. (Be aware that there is a proposal to add a
native integer NA to Pandas in the future; as of this writing, it has not been included.)

While this type of magic may feel a bit hackish compared to the more unified
approach to NA values in domain-specific languages like R, the Pandas sentinel/cast-
ing approach works quite well in practice and in my experience only rarely causes
issues.

Table 3-2 lists the upcasting conventions in Pandas when NA values are introduced.
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Table 3-2. Pandas handling of NAs by type

Typeclass  Conversion when storing NAs  NA sentinel value

floating Nochange np.nan
object No change None or np.nan
integer (astto float64 np.nan
boolean (asttoobject None or np.nan

Keep in mind that in Pandas, string data is always stored with an object dtype.

Operating on Null Values

As we have seen, Pandas treats None and NaN as essentially interchangeable for indi-
cating missing or null values. To facilitate this convention, there are several useful
methods for detecting, removing, and replacing null values in Pandas data structures.
They are:

isnull()
Generate a Boolean mask indicating missing values

notnull()
Opposite of isnull()

dropna()
Return a filtered version of the data

fillna()
Return a copy of the data with missing values filled or imputed

We will conclude this section with a brief exploration and demonstration of these
routines.

Detecting null values

Pandas data structures have two useful methods for detecting null data: isnull() and
notnull(). Either one will return a Boolean mask over the data. For example:

In[13]: data = pd.Series([1, np.nan, 'hello', None])
In[14]: data.isnull()

Out[14]: © False

1 True
2 False
3 True
dtype: bool

As mentioned in “Data Indexing and Selection” on page 107, Boolean masks can be
used directly as a Series or DataFrame index:
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In[15]: data[data.notnull()]

Out[15]: © 1
2 hello
dtype: object

The isnull() and notnull() methods produce similar Boolean results for Data
Frames.

Dropping null values

In addition to the masking used before, there are the convenience methods, dropna()
(which removes NA values) and fillna() (which fills in NA values). For a Series,
the result is straightforward:

In[16]: data.dropna()

Out[16]: © 1
2 hello
dtype: object

For a DataFrame, there are more options. Consider the following DataFrame:

In[17]: df = pd.DataFrame([[1, np.nan, 2],
[ZJ 3! 5])
[np.nan, 4, 611)
df
out[17]: e 1 2
0 1.0 NaN 2
1 2.0 3.0 5
2 NaN 4.0 6

We cannot drop single values from a DataFrame; we can only drop full rows or full
columns. Depending on the application, you might want one or the other, so
dropna() gives a number of options for a DataFrame.

By default, dropna() will drop all rows in which any null value is present:

In[18]: df.dropna()

Out[18]: 0 1 2
1 2.0 3.0 5

Alternatively, you can drop NA values along a different axis; axis=1 drops all col-
umns containing a null value:

In[19]: df.dropna(axis='columns")

Out[19]: 2
0 2
1 5
2 6
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But this drops some good data as well; you might rather be interested in dropping
rows or columns with all NA values, or a majority of NA values. This can be specified
through the how or thresh parameters, which allow fine control of the number of
nulls to allow through.

The default is how="any"', such that any row or column (depending on the axis key-
word) containing a null value will be dropped. You can also specify how="all"', which
will only drop rows/columns that are all null values:

In[20]: df[3] = np.nan

df
Out[20]: 0 1 2 3
O 1.0 NaN 2 NaN
1 2.0 3.0 5 NaN
2 NaN 4.0 6 NaN

In[21]: df.dropna(axis='columns', how='all")

Outf[21]: 0 1 2
O 1.0 NaN 2
1 2.0 3.0 5
2 NaN 4.0 6

For finer-grained control, the thresh parameter lets you specify a minimum number
of non-null values for the row/column to be kept:

In[22]: df.dropna(axis='rows', thresh=3)

out[22]: 0 1 2 3
1 2.0 3.0 5 NaN
Here the first and last row have been dropped, because they contain only two non-
null values.

Filling null values

Sometimes rather than dropping NA values, youd rather replace them with a valid
value. This value might be a single number like zero, or it might be some sort of
imputation or interpolation from the good values. You could do this in-place using
the isnull() method as a mask, but because it is such a common operation Pandas
provides the fillna() method, which returns a copy of the array with the null values
replaced.

Consider the following Series:

In[23]: data = pd.Series([1, np.nan, 2, None, 3], index=1list('abcde'))

data
Out[23]: a 1.0
b NaN
C 2.0
d NaN
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e 3.0
dtype: float64

We can fill NA entries with a single value, such as zero:
In[24]: data.fillna(0)
Out[24]:

anNn o ow

1.
0.
2.
0.
3.

[cl ol oNoNO]

e
dtype: float64

We can specify a forward-fill to propagate the previous value forward:

In[25]: # forward-fill
data.fillna(method="'ffill")

Out[25]:

W NN P =
[clolN o ool

a
b
C
d
e
dtype: float64

Or we can specify a back-fill to propagate the next values backward:

In[26]: # back-fill
data.fillna(method="'bfill")

Out[26]:

1.
2.
2.
3.
3.

[cl oM oNoNo]

a
b
c
d
e
dtype: float64

For DataFrames, the options are similar, but we can also specify an axis along which
the fills take place:

In[27]: df

Out[27]: 0 1 2 3
0 1.0 NaN 2 NaN
1 2.0 3.0 5 NaN
2 NaN 4.0 6 NaN

In[28]: df.fillna(method='ffill', axis=1)

out[28]: 0 1 2 3
0 1.0 1.0 2.0 2.0
1 2.0 3.0 5.0 5.0
2 NaN 4.0 6.0 6.0

Notice that if a previous value is not available during a forward fill, the NA value
remains.
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Hierarchical Indexing

Up to this point we've been focused primarily on one-dimensional and two-
dimensional data, stored in Pandas Series and DataFrame objects, respectively. Often
it is useful to go beyond this and store higher-dimensional data—that is, data indexed
by more than one or two keys. While Pandas does provide Panel and Panel4D objects
that natively handle three-dimensional and four-dimensional data (see “Panel Data”
on page 141), a far more common pattern in practice is to make use of hierarchical
indexing (also known as multi-indexing) to incorporate multiple index levels within a
single index. In this way, higher-dimensional data can be compactly represented
within the familiar one-dimensional Series and two-dimensional DataFrame objects.

In this section, we'll explore the direct creation of MultiIndex objects; considerations
around indexing, slicing, and computing statistics across multiply indexed data; and
useful routines for converting between simple and hierarchically indexed representa-
tions of your data.

We begin with the standard imports:

In[1]: import as
import as

A Multiply Indexed Series

Lets start by considering how we might represent two-dimensional data within a
one-dimensional Series. For concreteness, we will consider a series of data where
each point has a character and numerical key.

The bad way

Suppose you would like to track data about states from two different years. Using the
Pandas tools we've already covered, you might be tempted to simply use Python
tuples as keys:

In[2]: index = [('California', 2000), ('California', 2010),
('New York', 2000), ('New York', 2010),
('Texas', 2000), ('Texas', 2010)]
populations = [33871648, 37253956,
18976457, 19378102,
20851820, 25145561]
pop = pd.Series(populations, index=index)
pop

Out[2]: (California, 2000) 33871648
(California, 2010) 37253956

(New York, 2000) 18976457
(New York, 2010) 19378102
(Texas, 2000) 20851820
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(Texas, 2010) 25145561
dtype: int64

With this indexing scheme, you can straightforwardly index or slice the series based
on this multiple index:

In[3]: pop[('California', 2010):('Texas', 2000)]
Out[3]: (California, 2010) 37253956

(New York, 2000) 18976457
(New York, 2010) 19378102
(Texas, 2000) 20851820

dtype: int64

But the convenience ends there. For example, if you need to select all values from
2010, you'll need to do some messy (and potentially slow) munging to make it
happen:

In[4]: pop[[i1 for 1 in pop.index if i[1] == 2010]]

Out[4]: (California, 2010) 37253956
(New York, 2010) 19378102
(Texas, 2010) 25145561
dtype: int64
This produces the desired result, but is not as clean (or as efficient for large datasets)
as the slicing syntax we've grown to love in Pandas.

The better way: Pandas Multilndex

Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a
rudimentary multi-index, and the Pandas MultiIndex type gives us the type of opera-
tions we wish to have. We can create a multi-index from the tuples as follows:

In[5]: index = pd.MultiIndex.from_tuples(index)
index

Out[5]: MultiIndex(levels=[['California', 'New York', 'Texas'], [2000, 2010]],
labels=[[0, 0, 1, 1, 2, 2]1 [0: 1, 0, 1, 0, 1]])
Notice that the MultiIndex contains multiple levels of indexing—in this case, the state
names and the years, as well as multiple labels for each data point which encode these
levels.

If we reindex our series with this MultiIndex, we see the hierarchical representation
of the data:

In[6]: pop = pop.reindex(index)
pop

Out[6]: California 2000 33871648
2010 37253956

New York 2000 18976457

2010 19378102
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Texas 2000 20851820
2010 25145561
dtype: int64

Here the first two columns of the Series representation show the multiple index val-
ues, while the third column shows the data. Notice that some entries are missing in
the first column: in this multi-index representation, any blank entry indicates the
same value as the line above it.

Now to access all data for which the second index is 2010, we can simply use the Pan-
das slicing notation:

In[7]: pop[:, 2010]

Out[7]: California 37253956

New York 19378102

Texas 25145561

dtype: int64
The result is a singly indexed array with just the keys we're interested in. This syntax
is much more convenient (and the operation is much more efficient!) than the home-
spun tuple-based multi-indexing solution that we started with. We'll now further dis-
cuss this sort of indexing operation on hierarchically indexed data.

Multilndex as extra dimension

You might notice something else here: we could easily have stored the same data
using a simple DataFrame with index and column labels. In fact, Pandas is built with
this equivalence in mind. The unstack() method will quickly convert a multiply-
indexed Series into a conventionally indexed DataFrame:

In[8]: pop_df = pop.unstack()
pop_df

Oout[8]: 2000 2010
California 33871648 37253956
New York 18976457 19378102
Texas 20851820 25145561

Naturally, the stack() method provides the opposite operation:

In[9]: pop_df.stack()

Out[9]: California 2000 33871648
2010 37253956
New York 2000 18976457
2010 19378102
Texas 2000 20851820
2010 25145561
dtype: int64

Seeing this, you might wonder why would we would bother with hierarchical index-
ing at all. The reason is simple: just as we were able to use multi-indexing to represent
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two-dimensional data within a one-dimensional Series, we can also use it to repre-
sent data of three or more dimensions in a Series or DataFrame. Each extra level in a
multi-index represents an extra dimension of data; taking advantage of this property
gives us much more flexibility in the types of data we can represent. Concretely, we
might want to add another column of demographic data for each state at each year
(say, population under 18); with a MultiIndex this is as easy as adding another col-
umn to the DataFrame:

In[10]: pop_df = pd.DataFrame({'total': pop,
'under18': [9267089, 9284094,
4687374, 4318033,
5906301, 6879014]})
pop_df

Out[10]: total underi8
California 2000 33871648 9267089

2010 37253956 9284094

New York 2000 18976457 4687374

2010 19378102 4318033

Texas 2000 20851820 5906301

2010 25145561 6879014

In addition, all the ufuncs and other functionality discussed in “Operating on Data in
Pandas” on page 115 work with hierarchical indices as well. Here we compute the
fraction of people under 18 by year, given the above data:

In[11]: f_u18 = pop_df['under18'] / pop_df['total']
f_u18.unstack()

Out[11]: 2000 2010
California 0.273594 0.249211
New York 0.247010 ©0.222831
Texas 0.283251 0.273568

This allows us to easily and quickly manipulate and explore even high-dimensional
data.

Methods of Multilndex Creation

The most straightforward way to construct a multiply indexed Series or DataFrame
is to simply pass a list of two or more index arrays to the constructor. For example:

In[12]: df = pd.DataFrame(np.random.rand(4, 2),
index=[['a", 'a', 'b', 'b'], [1, 2, 1, 211,
columns=[ 'datal', 'data2'])

df
Out[12]: datail dataz
a1l 0.554233 0.356072
2 0.925244 0.219474
b1 0.441759 0.610054
2 0.171495 0.886688
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The work of creating the MultiIndex is done in the background.

Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will auto-
matically recognize this and use a MultiIndex by default:

In[13]: data = {('California', 2000): 33871648,
('California', 2010): 37253956,
('Texas', 2000): 20851820,
('Texas', 2010): 25145561,
('New York', 2000): 18976457,
('New York', 2010): 19378102}
pd.Series(data)

Out[13]: California 2000 33871648

2010 37253956

New York 2000 18976457

2010 19378102

Texas 2000 20851820

2010 25145561
dtype: int64

Nevertheless, it is sometimes useful to explicitly create a MultiIndex; we'll see a cou-

ple of these methods here.

Explicit Multilndex constructors

For more flexibility in how the index is constructed, you can instead use the class
method constructors available in the pd.MultiIndex. For example, as we did before,
you can construct the MultiIndex from a simple list of arrays, giving the index values
within each level:

In[14]: pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]1])

Out[14]: MultiIndex(levels=[['a', 'b'], [1, 21],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can construct it from a list of tuples, giving the multiple index values of each
point:
In[15]: pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b", 2)])

Out[15]: MultiIndex(levels=[['a', 'b'], [1, 2]1],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can even construct it from a Cartesian product of single indices:
In[16]: pd.MultiIndex.from_product([['a', 'b'], [1, 2]])

Out[16]: MultiIndex(levels=[['a', 'b'], [1, 211,
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
Similarly, you can construct the MultiIndex directly using its internal encoding by
passing levels (a list of lists containing available index values for each level) and
labels (a list of lists that reference these labels):
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In[17]: pd.MultiIndex(levels=[['a', 'b'], [1, 211,
labels=[[0, 0, 1, 1], [0, 1, 0, 1]1])

Out[17]: MultiIndex(levels=[['a', 'b'], [1, 211,
labels=[[0, 0, 1, 1], [0, 1, 0, 1]1])

You can pass any of these objects as the index argument when creating a Series or
DataFrame, or to the reindex method of an existing Series or DataFrame.

Multilndex level names

Sometimes it is convenient to name the levels of the MultiIndex. You can accomplish
this by passing the names argument to any of the above MultiIndex constructors, or
by setting the names attribute of the index after the fact:

In[18]: pop.index.names = ['state', 'year']
pop

Out[18]: state year

California 2000 33871648
2010 37253956

New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64

With more involved datasets, this can be a useful way to keep track of the meaning of
various index values.

Multilndex for columns

In a DataFrame, the rows and columns are completely symmetric, and just as the rows
can have multiple levels of indices, the columns can have multiple levels as well. Con-
sider the following, which is a mock-up of some (somewhat realistic) medical data:

In[19]:
# hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 211,
names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],
names=[ 'subject', 'type'])

# mock some data

data = np.round(np.random.randn(4, 6), 1)
datal[:, ::2] *= 10

data += 37

# create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data

Hierarchical Indexing | 133



Out[19]: subject Bob Guido Sue

type HR Temp HR Temp HR Temp

year visit

2013 1 31.0 38.7 32.0 36.7 35.0 37.2
2 44.0 37.7 50.0 35.0 29.0 36.7

2014 1 30.0 37.4 39.0 37.8 61.0 36.9
2 47.0 37.8 48.0 37.3 51.0 36.5

Here we see where the multi-indexing for both rows and columns can come in very
handy. This is fundamentally four-dimensional data, where the dimensions are the
subject, the measurement type, the year, and the visit number. With this in place we
can, for example, index the top-level column by the person’s name and get a full Data
Frame containing just that person’s information:

In[20]: health_data['Guido']

0ut[20]: type HR Temp
year visit

2013 1 32.0 36.7

2 50.0 35.0

2014 1 39.0 37.8

2 48.0 37.3

For complicated records containing multiple labeled measurements across multiple
times for many subjects (people, countries, cities, etc.), use of hierarchical rows and
columns can be extremely convenient!

Indexing and Slicing a Multilndex

Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you
think about the indices as added dimensions. We'll first look at indexing multiply
indexed Series, and then multiply indexed DataFrames.

Multiply indexed Series
Consider the multiply indexed Series of state populations we saw earlier:
In[21]: pop

Out[21]: state year

California 2000 33871648
2010 37253956

New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64

We can access single elements by indexing with multiple terms:
In[22]: pop['California', 2000]

Out[22]: 33871648
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The MultiIndex also supports partial indexing, or indexing just one of the levels in
the index. The result is another Series, with the lower-level indices maintained:

In[23]: pop['California']

Out[23]: year
2000 33871648
2010 37253956
dtype: int64

Partial slicing is available as well, as long as the MultiIndex is sorted (see discussion

in “Sorted and unsorted indices” on page 137):

In[24]: pop.loc['California':'New York']

Out[24]: state year
California 2000

2010

New York 2000

2010

dtype: int64

33871648
37253956
18976457
19378102

With sorted indices, we can perform partial indexing on lower levels by passing an

empty slice in the first index:
In[25]: pop[:, 2000]

Out[25]: state

California 33871648
New York 18976457
Texas 20851820

dtype: int64

Other types of indexing and selection (discussed in “Data Indexing and Selection” on
page 107) work as well; for example, selection based on Boolean masks:

In[26]: pop[pop > 22000000]

Out[26]: state year
California 2000

2010

Texas 2010

dtype: int64

Selection based on fancy indexing also works:

33871648
37253956
25145561

In[27]: pop[['California', 'Texas']]

0ut[27]: state year
California 2000

2010

Texas 2000

2010

dtype: int64

33871648
37253956
20851820
25145561
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Multiply indexed DataFrames

A multiply indexed DataFrame behaves in a similar manner. Consider our toy medi-
cal DataFrame from before:

In[28]: health_data

Out[28]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 31.0 38.7 32.6 36.7 35.0 37.2
2 44.0 37.7 50.0 35.0 29.0 36.7
2014 1 30.0 37.4 39.06 37.8 61.0 36.9
2 47.0 37.8 48.0 37.3 51.0 36.5

Remember that columns are primary in a DataFrame, and the syntax used for multi-
ply indexed Series applies to the columns. For example, we can recover Guido’s heart
rate data with a simple operation:

In[29]: health_data['Guido', 'HR']

Out[29]: year visit

2013 1 32.0
2 50.0
2014 1 39.0
2 48.0

Name: (Guido, HR), dtype: floaté4

Also, as with the single-index case, we can use the loc, iloc, and ix indexers intro-
duced in “Data Indexing and Selection” on page 107. For example:

In[30]: health_data.iloc[:2, :2]

Out[30]: subject Bob
type HR Temp
year visit
2013 1 31.0 38.7
2 44.0 37.7

These indexers provide an array-like view of the underlying two-dimensional data,
but each individual index in loc or 1loc can be passed a tuple of multiple indices. For
example:

In[31]: health_data.loc[:, ('Bob', 'HR')]

Out[31]: year visit

2013 1 31.0
2 44.0
2014 1 30.0
2 47.0

Name: (Bob, HR), dtype: float64

Working with slices within these index tuples is not especially convenient; trying to
create a slice within a tuple will lead to a syntax error:
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In[32]: health_data.loc[(:, 1), (:, 'HR')]

File "<ipython-input-32-8e3cc151e316>", line 1
health_data.loc[(:, 1), (:, 'HR")]

A

SyntaxError: invalid syntax

You could get around this by building the desired slice explicitly using Python’s built-
in slice() function, but a better way in this context is to use an IndexSlice object,
which Pandas provides for precisely this situation. For example:

In[33]: idx = pd.IndexSlice
health_data.loc[idx[:, 1], idx[:, 'HR']]

Out[33]: subject Bob Guido Sue
type HR HR HR
year visit
2013 1 31.0 32.0 35.0
2014 1 30.0 39.0 61.0

There are so many ways to interact with data in multiply indexed Series and Data
Frames, and as with many tools in this book the best way to become familiar with
them is to try them out!

Rearranging Multi-Indices

One of the keys to working with multiply indexed data is knowing how to effectively
transform the data. There are a number of operations that will preserve all the infor-
mation in the dataset, but rearrange it for the purposes of various computations. We
saw a brief example of this in the stack() and unstack() methods, but there are
many more ways to finely control the rearrangement of data between hierarchical
indices and columns, and we'll explore them here.

Sorted and unsorted indices

Earlier, we briefly mentioned a caveat, but we should emphasize it more here. Many of

the MultiIndex slicing operations will fail if the index is not sorted. Let’s take a look at
this here.

We'll start by creating some simple multiply indexed data where the indices are not
lexographically sorted:

In[34]: index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 21])
data = pd.Series(np.random.rand(6), index=index)
data.index.names = ['char', 'int']

data
Out[34]: char 1int
a 1 0.003001
2 0.164974
C 1 0.741650
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2 0.569264
b 1 0.001693

2 0.526226
dtype: float64

If we try to take a partial slice of this index, it will result in an error:
In[35]: try:
data['a':'b']
except KeyError as e:

print(type(e))
print(e)

<class 'KeyError's

'Key length (1) was greater than MultiIndex lexsort depth (0)'
Although it is not entirely clear from the error message, this is the result of the Multi
Index not being sorted. For various reasons, partial slices and other similar opera-
tions require the levels in the MultiIndex to be in sorted (i.e., lexographical) order.
Pandas provides a number of convenience routines to perform this type of sorting;
examples are the sort_index() and sortlevel() methods of the DataFrame. We'll
use the simplest, sort_index(), here:

In[36]: data = data.sort_index()

data
Out[36]: char 1int
a 1 0.003001
2 0.164974
b 1 0.001693
2 0.526226
C 1 0.741650
2 0.569264

dtype: float64
With the index sorted in this way, partial slicing will work as expected:
In[37]: data['a':'b"]
Out[37]: char 1int

a 1 0.003001
2 0.164974
b 1 0.001693
2 0.526226

dtype: float64

Stacking and unstacking indices

As we saw briefly before, it is possible to convert a dataset from a stacked multi-index
to a simple two-dimensional representation, optionally specifying the level to use:
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In[38]: pop.unstack(level=0)

Out[38]: state California New York Texas
year
2000 33871648 18976457 20851820
2010 37253956 19378102 25145561

In[39]: pop.unstack(level=1)

Out[39]: year 2000 2010
state
California 33871648 37253956
New York 18976457 19378102
Texas 20851820 25145561

The opposite of unstack() is stack(), which here can be used to recover the original
series:

In[40]: pop.unstack().stack()

Out[40]: state year

California 2000 33871648
2010 37253956

New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64

Index setting and resetting

Another way to rearrange hierarchical data is to turn the index labels into columns;
this can be accomplished with the reset_index method. Calling this on the popula-
tion dictionary will result in a DataFrame with a state and year column holding the
information that was formerly in the index. For clarity, we can optionally specify the
name of the data for the column representation:

In[41]: pop_flat = pop.reset_index(name='population"')

pop_flat

Out[41]: state year population
0 California 2000 33871648
1 California 2010 37253956
2 New York 2000 18976457
3 New York 2010 19378102
4 Texas 2000 20851820
5 Texas 2010 25145561

Often when you are working with data in the real world, the raw input data looks like
this and it’s useful to build a MultiIndex from the column values. This can be done
with the set_index method of the DataFrame, which returns a multiply indexed Data
Frame:
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In[42]: pop_flat.set_index(['state', 'year'])

out[42]: population
state year

California 2000 33871648

2010 37253956

New York 2000 18976457

2010 19378102

Texas 2000 20851820

2010 25145561

In practice, I find this type of reindexing to be one of the more useful patterns when I
encounter real-world datasets.

Data Aggregations on Multi-Indices

We've previously seen that Pandas has built-in data aggregation methods, such as
mean(), sum(), and max(). For hierarchically indexed data, these can be passed a
level parameter that controls which subset of the data the aggregate is computed on.

For example, let’s return to our health data:

In[43]: health_data

Out[43]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 31.0 38.7 32.0 36.7 35.0 37.2
2 44.0 37.7 50.0 35.0 29.0 36.7
2014 1 30.0 37.4 39.0 37.8 61.0 36.9
2 47.0 37.8 48.0 37.3 51.0 36.5

Perhaps wed like to average out the measurements in the two visits each year. We can
do this by naming the index level wed like to explore, in this case the year:

In[44]: data_mean = health_data.mean(level='year')

data_mean
Out[44]: subject Bob Guido Sue
type HR Temp HR  Temp HR Temp
year
2013 37.5 38.2 41.0 35.85 32.0 36.95

2014 38.5 37.6 43.5 37.55 56.0 36.70

By further making use of the axis keyword, we can take the mean among levels on
the columns as well:

In[45]: data_mean.mean(axis=1, level='type')

Out[45]: type HR Temp
year
2013 36.833333 37.000000
2014 46.000000 37.283333
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Thus in two lines, we've been able to find the average heart rate and temperature
measured among all subjects in all visits each year. This syntax is actually a shortcut
to the GroupBy functionality, which we will discuss in “Aggregation and Grouping” on
page 158. While this is a toy example, many real-world datasets have similar hierarch-
ical structure.

Panel Data

Pandas has a few other fundamental data structures that we have not yet discussed,
namely the pd.Panel and pd.Panel4D objects. These can be thought of, respectively,
as three-dimensional and four-dimensional generalizations of the (one-dimensional)
Series and (two-dimensional) DataFrame structures. Once you are familiar with
indexing and manipulation of data in a Series and DataFrame, Panel and Panel4D
are relatively straightforward to use. In particular, the ix, loc, and iloc indexers dis-
cussed in “Data Indexing and Selection” on page 107 extend readily to these higher-
dimensional structures.

We won't cover these panel structures further in this text, as I've found in the majority
of cases that multi-indexing is a more useful and conceptually simpler representation
for higher-dimensional data. Additionally, panel data is fundamentally a dense data
representation, while multi-indexing is fundamentally a sparse data representation.
As the number of dimensions increases, the dense representation can become very
inefficient for the majority of real-world datasets. For the occasional specialized appli-
cation, however, these structures can be useful. If youd like to read more about the
Panel and Panel4D structures, see the references listed in “Further Resources” on
page 215.

Combining Datasets: Concat and Append

Some of the most interesting studies of data come from combining different data
sources. These operations can involve anything from very straightforward concatena-
tion of two different datasets, to more complicated database-style joins and merges
that correctly handle any overlaps between the datasets. Series and DataFrames are
built with this type of operation in mind, and Pandas includes functions and methods
that make this sort of data wrangling fast and straightforward.

Here we'll take a look at simple concatenation of Series and DataFrames with the
pd.concat function; later we'll dive into more sophisticated in-memory merges and
joins implemented in Pandas.

We begin with the standard imports:

In[1]: import as
import as

Combining Datasets: Concatand Append | 141



For convenience, we'll define this function, which creates a DataFrame of a particular
form that will be useful below:

In[2]: def make_df(cols, ind):
"""Quickly make a DataFrame
data = {c: [str(c) + str(i) for i1 in ind]

for c in cols}
return pd.DataFrame(data, ind)

wnn

# example DataFrame
make_df('ABC', range(3))

out[2]: A B C
0 A0 BO CO
1 Al B1 C1
2 A2 B2 (2

Recall: Concatenation of NumPy Arrays

Concatenation of Series and DataFrame objects is very similar to concatenation of
NumPy arrays, which can be done via the np.concatenate function as discussed in
“The Basics of NumPy Arrays” on page 42. Recall that with it, you can combine the
contents of two or more arrays into a single array:

In[4]: x = [1, 2, 3]
y = [4, 5, 6]
z =[7, 8, 9]
np.concatenate([x, y, z])

Out[4]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

The first argument is a list or tuple of arrays to concatenate. Additionally, it takes an
axis keyword that allows you to specify the axis along which the result will be
concatenated:

In[5]: x = [[1, 2],
[3, 411
np.concatenate([x, x], axis=1)
Out[5]: array([[1, 2, 1, 2],
[3, 4, 3, 411

Simple Concatenation with pd.concat

Pandas has a function, pd.concat(), which has a similar syntax to np.concatenate
but contains a number of options that we'll discuss momentarily:

# Signature in Pandas v@.18

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_1index=False,
keys=None, levels=None, names=None, verify_integrity=False,
copy=True)
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pd.concat() can be used for a simple concatenation of Series or DataFrame objects,
just as np.concatenate() can be used for simple concatenations of arrays:
In[6]: serl = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])

ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
pd.concat([serl, ser2])

out[6]: A

Mmoo N W

1
2
3
4
5
6
d

type: object

It also works to concatenate higher-dimensional objects, such as DataFrames:

In[7]: df1 = make_df('AB', [1, 2])
df2 = make_df('AB', [3, 4])
print(df1l); print(df2); print(pd.concat([df1, df2]))
df1 df2 pd.concat([df1, df2])
A B A B A B
1 Al B1 3 A3 B3 1 Al B1
2 A2 B2 4 A4 B4 2 A2 B2
3 A3 B3
4 M B4

By default, the concatenation takes place row-wise within the DataFrame (ie.,
axis=0). Like np.concatenate, pd.concat allows specification of an axis along which
concatenation will take place. Consider the following example:

In[8]: df3 = make_df('AB', [0, 1])

df4 = make_df('CD', [0, 1])
print(df3); print(df4); print(pd.concat([df3, df4], axis='col'))

df3 df4 pd.concat([df3, df4], axis='col')
A B C D A B C D
0 A0 BO 0 Co Do 0 A0 BO CO DO
1 Al B1 1 C1 D1 1 A1 B1 C1 D1

We could have equivalently specified axis=1; here we've used the more intuitive
axis="col'.

Duplicate indices

One important difference between np.concatenate and pd.concat is that Pandas
concatenation preserves indices, even if the result will have duplicate indices! Consider
this simple example:

In[9]: x
y

make_df('AB', [0, 1])
make_df('AB', [2, 3])
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y.index = x.index # make duplicate indices!
print(x); print(y); print(pd.concat([x, y]))

X y pd.concat([x, vy])
A B A B A B

0 A0 BO 0 A2 B2 0 A0 BO

1 Al B1 1 A3 B3 1 A1 B1

0 A2 B2

1 A3 B3

Notice the repeated indices in the result. While this is valid within DataFrames, the
outcome is often undesirable. pd.concat() gives us a few ways to handle it.

Catching the repeats asan error. If youd like to simply verify that the indices in the
result of pd.concat() do not overlap, you can specify the verify_integrity flag.
With this set to True, the concatenation will raise an exception if there are duplicate
indices. Here is an example, where for clarity we'll catch and print the error message:
In[10]: try:
pd.concat([x, y], verify_integrity=True)

except ValueError as e:
print("ValueError:", e)

ValueError: Indexes have overlapping values: [0, 1]

Ignoring the index. Sometimes the index itself does not matter, and you would prefer
it to simply be ignored. You can specify this option using the ignore_index flag. With
this set to True, the concatenation will create a new integer index for the resulting
Series:

In[11]: print(x); print(y); print(pd.concat([x, y], ignore_index=True))

X y pd.concat([x, y], ignore_index=True)
A B A B A B
0 A0 BO 0 A2 B2 0 A0 BO
1 Al B1 1 A3 B3 1 Al B1
2 A2 B2
3 A3 B3

Adding Multilndex keys. Another alternative is to use the keys option to specify a label
for the data sources; the result will be a hierarchically indexed series containing the
data:

In[12]: print(x); print(y); print(pd.concat([x, y], keys=['x', 'v']))

X y pd.concat([x, y], keys=['x', 'y'])
A B A B A B
0 A0 BO 0 A2 B2 X 0 A0 BO
1 Al B1 1 A3 B3 1 Al B1
y 0 A2 B2
1 A3 B3
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The result is a multiply indexed DataFrame, and we can use the tools discussed in
“Hierarchical Indexing” on page 128 to transform this data into the representation
we're interested in.

Concatenation with joins

In the simple examples we just looked at, we were mainly concatenating DataFrames
with shared column names. In practice, data from different sources might have differ-
ent sets of column names, and pd. concat offers several options in this case. Consider
the concatenation of the following two DataFrames, which have some (but not all!)
columns in common:

In[13]: df5 = make_df('ABC', [1, 2])
dfé = make_df('BCD', [3, 4])
print(df5); print(dfé6); print(pd.concat([df5, df6])

dfs dfeé pd.concat([df5, df6])
A B C B C D A B C D
1 A1 Bl C1 3 B3 C3 D3 1 Al B1 (C1 NaN
2 A2 B2 (2 4 B4 C4 D4 2 A2 B2 (C2 NaN
3 NaN B3 C3 D3
4 NaN B4 (4 D4

By default, the entries for which no data is available are filled with NA values. To
change this, we can specify one of several options for the join and join_axes param-
eters of the concatenate function. By default, the join is a union of the input columns
(join="outer'), but we can change this to an intersection of the columns using
join="inner':
In[14]: print(df5); print(df6);
print(pd.concat([df5, df6], join='inner'))

dfs dfé pd.concat([df5, df6], join='inner')
A B C B C D B C

1 A1 Bl C1 3 B3 (€3 D3 1 B1 C1

2 A2 B2 (2 4 B4 C4 D4 2 B2 (2

3 B3 (3

4 B4 (4

Another option is to directly specify the index of the remaining colums using the
join_axes argument, which takes a list of index objects. Here we'll specify that the
returned columns should be the same as those of the first input:

In[15]: print(df5); print(df6);
print(pd.concat([df5, df6], join_axes=[df5.columns]))

dfs dfé pd.concat([df5, df6], join_axes=[df5.columns])
A B C B C D A B C
1 A1 B1 (1 3 B3 (€3 D3 1 Al Bl C1
2 A2 B2 (2 4 B4 C4 D4 2 A2 B2 (2
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3 NaN B3 C3

4 NaN B4 (4
The combination of options of the pd.concat function allows a wide range of possi-
ble behaviors when you are joining two datasets; keep these in mind as you use these
tools for your own data.

The append() method

Because direct array concatenation is so common, Series and DataFrame objects
have an append method that can accomplish the same thing in fewer keystrokes. For
example, rather than calling pd.concat([df1, df2]), you can simply call
df1.append(df2):

In[16]: print(df1l); print(df2); print(dfl.append(df2))

df1 df2 df1.append(df2)
A B A B A B
1 Al B1 3 A3 B3 1 Al B1
2 A2 B2 4 A4 B4 2 A2 B2
3 A3 B3
4 A4 B4

Keep in mind that unlike the append() and extend() methods of Python lists, the
append() method in Pandas does not modify the original object—instead, it creates a
new object with the combined data. It also is not a very efficient method, because it
involves creation of a new index and data buffer. Thus, if you plan to do multiple
append operations, it is generally better to build a list of DataFrames and pass them all
at once to the concat() function.

In the next section, we'll look at another more powerful approach to combining data
from multiple sources, the database-style merges/joins implemented in pd.merge. For
more information on concat(), append(), and related functionality, see the “Merge,
Join, and Concatenate” section of the Pandas documentation.

Combining Datasets: Merge and Join

One essential feature offered by Pandas is its high-performance, in-memory join and
merge operations. If you have ever worked with databases, you should be familiar
with this type of data interaction. The main interface for this is the pd.merge func-
tion, and we'll see a few examples of how this can work in practice.

Relational Algebra

The behavior implemented in pd.merge() is a subset of what is known as relational
algebra, which is a formal set of rules for manipulating relational data, and forms the
conceptual foundation of operations available in most databases. The strength of the
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relational algebra approach is that it proposes several primitive operations, which
become the building blocks of more complicated operations on any dataset. With this
lexicon of fundamental operations implemented efficiently in a database or other pro-
gram, a wide range of fairly complicated composite operations can be performed.

Pandas implements several of these fundamental building blocks in the pd.merge()
function and the related join() method of Series and DataFrames. As we will see,
these let you efficiently link data from different sources.

Categories of Joins

The pd.merge() function implements a number of types of joins: the one-to-one,
many-to-one, and many-to-many joins. All three types of joins are accessed via an
identical call to the pd.merge() interface; the type of join performed depends on the
form of the input data. Here we will show simple examples of the three types of
merges, and discuss detailed options further below.

One-to-one joins

Perhaps the simplest type of merge expression is the one-to-one join, which is in
many ways very similar to the column-wise concatenation seen in “Combining Data-
sets: Concat and Append” on page 141. As a concrete example, consider the following
two DataFrames, which contain information on several employees in a company:

In[2]:
df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],
'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})
df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'l],
'hire_date': [2004, 2008, 2012, 2014]})
print(dfl); print(df2)

df1 df2

employee group employee hire_date
0 Bob  Accounting 0 Lisa 2004
1 Jake Engineering 1 Bob 2008
2 Lisa Engineering 2 Jake 2012
3 Sue HR 3 Sue 2014

To combine this information into a single DataFrame, we can use the pd.merge()
function:

In[3]: df3 = pd.merge(df1, df2)

df3
Out[3]: employee group hire_date
0 Bob  Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014
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The pd.merge() function recognizes that each DataFrame has an “employee” column,
and automatically joins using this column as a key. The result of the merge is a new
DataFrame that combines the information from the two inputs. Notice that the order
of entries in each column is not necessarily maintained: in this case, the order of the
“employee” column differs between df1 and df2, and the pd.merge() function cor-
rectly accounts for this. Additionally, keep in mind that the merge in general discards
the index, except in the special case of merges by index (see “The left_index and
right_index keywords” on page 151).

Many-to-one joins

Many-to-one joins are joins in which one of the two key columns contains duplicate

entries. For the many-to-one case, the resulting DataFrame will preserve those dupli-

cate entries as appropriate. Consider the following example of a many-to-one join:
In[4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],

'supervisor': ['Carly', 'Guido', 'Steve'l]})
print(df3); print(df4); print(pd.merge(df3, df4))

df3 df4

employee group hire_date group supervisor
0 Bob  Accounting 2008 0 Accounting Carly
1 Jake Engineering 2012 1 Engineering Guido
2 Lisa Engineering 2004 2 HR Steve
3 Sue HR 2014

pd.merge(df3, df4)

employee group hire_date supervisor
0 Bob  Accounting 2008 Carly
1 Jake Engineering 2012 Guido
2 Lisa Engineering 2004 Guido
3 Sue HR 2014 Steve

The resulting DataFrame has an additional column with the “supervisor” information,
where the information is repeated in one or more locations as required by the inputs.

Many-to-many joins

Many-to-many joins are a bit confusing conceptually, but are nevertheless well
defined. If the key column in both the left and right array contains duplicates, then
the result is a many-to-many merge. This will be perhaps most clear with a concrete
example. Consider the following, where we have a DataFrame showing one or more
skills associated with a particular group.

By performing a many-to-many join, we can recover the skills associated with any
individual person:

In[5]: df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',
'"Engineering', 'Engineering', 'HR', 'HR'],
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'skills': ['math', 'spreadsheets', 'coding', 'linux',
'spreadsheets', 'organization']})
print(df1l); print(df5); print(pd.merge(dfi, df5))

df1 df5
employee group group skills
0 Bob  Accounting 0 Accounting math
1 Jake Engineering 1 Accounting spreadsheets
2 Lisa Engineering 2 Engineering coding
3 Sue HR 3 Engineering 1inux
4 HR spreadsheets
5 HR organization
pd.merge(df1, df5)
employee group skills
0 Bob  Accounting math
1 Bob  Accounting spreadsheets
2 Jake Engineering coding
3 Jake Engineering Tinux
4 Lisa Engineering coding
5 Lisa Engineering 1inux
6 Sue HR spreadsheets
7 Sue HR organization

These three types of joins can be used with other Pandas tools to implement a wide
array of functionality. But in practice, datasets are rarely as clean as the one were
working with here. In the following section, we'll consider some of the options pro-
vided by pd.merge() that enable you to tune how the join operations work.

Specification of the Merge Key

We've already seen the default behavior of pd.merge(): it looks for one or more
matching column names between the two inputs, and uses this as the key. However,
often the column names will not match so nicely, and pd.merge() provides a variety
of options for handling this.

The on keyword

Most simply, you can explicitly specify the name of the key column using the on key-
word, which takes a column name or a list of column names:

In[6]: print(dfl); print(df2); print(pd.merge(dfi, df2, on='employee'))

df1 df2

employee group employee hire_date
0 Bob  Accounting 0 Lisa 2004
1 Jake Engineering 1 Bob 2008
2 Lisa Engineering 2 Jake 2012
3 Sue HR 3 Sue 2014
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pd.merge(df1, df2, on='employee')

employee group hire_date
0 Bob  Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014

This option works only if both the left and right DataFrames have the specified col-
umn name.

The left_on and right_on keywords

At times you may wish to merge two datasets with different column names; for exam-
ple, we may have a dataset in which the employee name is labeled as “name” rather
than “employee” In this case, we can use the left_on and right_on keywords to
specify the two column names:

In[7]:

df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'l],

'salary': [70000, 80000, 120000, 90000]})
print(dfl); print(df3);
print(pd.merge(df1l, df3, left_on="employee", right_on="name"))

df1 df3

employee group name salary
0 Bob  Accounting O Bob 70000
1 Jake Engineering 1 Jake 80000
2 Lisa Engineering 2 Lisa 120000
3 Sue HR 3 Sue 90000

pd.merge(df1, df3, left_on="employee", right_on="name")
employee group name salary

Bob  Accounting Bob 70000

Jake Engineering Jake 80000

Lisa Engineering Lisa 120000

Sue HR  Sue 90000

w N R o

The result has a redundant column that we can drop if desired—for example, by
using the drop() method of DataFrames:

In[8]:
pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1)
Out[8]: employee group salary

0 Bob  Accounting 70000

1 Jake Engineering 80000

2 Lisa Engineering 120000

3 Sue HR 90000
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The left_index and right_index keywords

Sometimes, rather than merging on a column, you would instead like to merge on an
index. For example, your data might look like this:

In[9]: dfla = dfi.set_index('employee')
df2a = df2.set_index('employee')
print(dfia); print(df2a)

dfi1a df2a

group hire_date
employee employee
Bob Accounting Lisa 2004
Jake Engineering Bob 2008
Lisa Engineering Jake 2012
Sue HR Sue 2014

You can use the index as the key for merging by specifying the left_index and/or
right_index flags in pd.merge():
In[10]:

print(dfia); print(df2a);
print(pd.merge(dfla, df2a, left_index=True, right_index=True))

dfi1a df2a

group hire_date
employee employee
Bob Accounting Lisa 2004
Jake Engineering Bob 2008
Lisa Engineering Jake 2012
Sue HR Sue 2014

pd.merge(dfia, df2a, left_index=True, right_index=True)
group hire_date

employee

Lisa Engineering 2004
Bob Accounting 2008
Jake Engineering 2012
Sue HR 2014

For convenience, DataFrames implement the join() method, which performs a
merge that defaults to joining on indices:

In[11]: print(dfia); print(df2a); print(dfia.join(df2a))

dfia df2a

group hire_date
employee employee
Bob Accounting Lisa 2004
Jake Engineering Bob 2008
Lisa Engineering Jake 2012
Sue HR Sue 2014
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dfia.join(df2a)
group hire_date

employee

Bob Accounting 2008
Jake Engineering 2012
Lisa Engineering 2004
Sue HR 2014

If youd like to mix indices and columns, you can combine left_index with right_on
or left_on with right_index to get the desired behavior:
In[12]:

print(dfla); print(df3);
print(pd.merge(dfia, df3, left_index=True, right_on='name'))

dfia df3

group
employee name salary
Bob Accounting 0 Bob 70000
Jake Engineering 1 Jake 80000
Lisa Engineering 2 Lisa 120000
Sue HR 3  Sue 90000

pd.merge(dfia, df3, left_index=True, right_on='name')
group name salary
Accounting Bob 70000
Engineering Jake 80000
Engineering Lisa 120000
HR  Sue 90000

w N R o

All of these options also work with multiple indices and/or multiple columns; the
interface for this behavior is very intuitive. For more information on this, see the
“Merge, Join, and Concatenate” section of the Pandas documentation.

Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important consideration in
performing a join: the type of set arithmetic used in the join. This comes up when a
value appears in one key column but not the other. Consider this example:

In[13]: dfé

pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'],
'food': ['fish', 'beans', 'bread']},
columns=[ 'name', 'food'])
df7 = pd.DataFrame({'name': ['Mary', 'Joseph'],
'drink': ['wine', 'beer']},
columns=['name', 'drink'])
print(df6); print(df7); print(pd.merge(dfe6, df7))
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dfé df7 pd.merge(df6, df7)

name food name drink name food drink
0 Peter fish 0 Mary wine © Mary bread wine
1 Paul beans 1 Joseph beer

2 Mary bread

Here we have merged two datasets that have only a single “name” entry in common:
Mary. By default, the result contains the intersection of the two sets of inputs; this is
what is known as an inner join. We can specify this explicitly using the how keyword,
which defaults to 'inner':

In[14]: pd.merge(dfé, df7, how='inner"')

Out[14]: name food drink
0 Mary bread wine

Other options for the how keyword are 'outer', 'left', and 'right'. An outer join
returns a join over the union of the input columns, and fills in all missing values with
NAs:

In[15]: print(df6); print(df7); print(pd.merge(df6, df7, how='outer'))

dfe df7 pd.merge(df6, df7, how='outer')
name food name drink name food drink
0 Peter fish 0 Mary wine 0 Peter fish NaN
1 Paul beans 1 Joseph beer 1 Paul beans NaN
2 Mary bread 2 Mary bread wine
3 Joseph NaN beer

The left join and right join return join over the left entries and right entries, respec-
tively. For example:

In[16]: print(df6); print(df7); print(pd.merge(df6, df7, how='left'))

dfé df7 pd.merge(df6, df7, how='left')
name  food name drink name food drink

0 Peter fish 0 Mary wine © Peter fish NaN

1 Paul beans 1 Joseph beer 1 Paul beans NaN

2 Mary bread 2 Mary bread wine

The output rows now correspond to the entries in the left input. Using how="right'
works in a similar manner.

All of these options can be applied straightforwardly to any of the preceding join
types.

Overlapping Column Names: The suffixes Keyword

Finally, you may end up in a case where your two input DataFrames have conflicting
column names. Consider this example:

In[17]: df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
"rank': [1, 2, 3, 41})
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df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
‘rank': [3, 1, 4, 21})
print(df8); print(df9); print(pd.merge(df8, df9, on="name"))

df8 df9 pd.merge(df8, df9, on="name"
name rank name rank name rank_x rank_y

0 Bob 1 0 Bob 3 0 Bob 1 3

1 Jake 2 1 Jake 1 1 Jake 2 1

2 Lisa 3 2 Lisa 4 2 Lisa 3 4

3  Sue 4 3  Sue 2 3  Sue 4 2

Because the output would have two conflicting column names, the merge function
automatically appends a suffix _x or _y to make the output columns unique. If these
defaults are inappropriate, it is possible to specify a custom suffix using the suffixes
keyword:

In[18]:

print(df8); print(df9);
print(pd.merge(df8, df9, on="name", suffixes=["_L", "_R"]))

dfs df9

name rank name rank
0 Bob 1 0 Bob 3
1 Jake 2 1 Jake 1
2 Lisa 3 2 Lisa 4
3  Sue 4 3  Sue 2

pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])
name rank_L rank_R

0 Bob 1 3
1 Jake 2 1
2 Lisa 3 4
3 Sue 4 2

These suffixes work in any of the possible join patterns, and work also if there are
multiple overlapping columns.

For more information on these patterns, see “Aggregation and Grouping” on page
158, where we dive a bit deeper into relational algebra. Also see the “Merge, Join, and
Concatenate” section of the Pandas documentation for further discussion of these
topics.

Example: US States Data

Merge and join operations come up most often when one is combining data from dif-
ferent sources. Here we will consider an example of some data about US states and
their populations. The data files can be found at http://github.com/jakevdp/data-
USstates/:

In[19]:
# Following are shell commands to download the data
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!curl -0 https://raw.githubusercontent.com/jakevdp/
data-USstates/master/state-population.csv

Icurl -0 https://raw.githubusercontent.com/jakevdp/
data-USstates/master/state-areas.csv

Icurl -0 https://raw.githubusercontent.com/jakevdp/
data-USstates/master/state-abbrevs.csv

O W K KRR

Let’s take a look at the three datasets, using the Pandas read_csv() function:
In[20]: pop = pd.read_csv('state-population.csv')

areas = pd.read_csv('state-areas.csv')
abbrevs = pd.read_csv('state-abbrevs.csv')

print(pop.head()); print(areas.head()); print(abbrevs.head())

pop.head() areas.head()
state/region ages year population state area (sq. mi)
0 AL underi18 2012 1117489.0 0 Alabama 52423
1 AL total 2012 4817528.0 1 Alaska 656425
2 AL underi18 2010 1130966.0 2 Arizona 114006
3 AL total 2010 4785570.0 3 Arkansas 53182
4 AL underi18 2011 1125763.0 3 Arkansas 53182
4 California 163707

abbrevs.head()
state abbreviation

0 Alabama AL
1 Alaska AK
2 Arizona AZ
3 Arkansas AR
4 California CA

Given this information, say we want to compute a relatively straightforward result:
rank US states and territories by their 2010 population density. We clearly have the
data here to find this result, but we’ll have to combine the datasets to get it.

We'll start with a many-to-one merge that will give us the full state name within the
population DataFrame. We want to merge based on the state/region column of pop,
and the abbreviation column of abbrevs. We'll use how="outer' to make sure no
data is thrown away due to mismatched labels.

In[21]: merged = pd.merge(pop, abbrevs, how='outer',
left_on='state/region', right_on='abbreviation')
merged = merged.drop('abbreviation', 1) # drop duplicate info
merged.head()

Out[21]: state/region ages year population state
0 AL under18 2012 1117489.0 Alabama
1 AL total 2012 4817528.0 Alabama
2 AL under18 2010 1130966.0 Alabama
3 AL total 2010 4785570.0 Alabama
4 AL under18 2011 1125763.0 Alabama
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Let’s double-check whether there were any mismatches here, which we can do by
looking for rows with nulls:

In[22]: merged.isnull().any()

Out[22]: state/region False

ages False
year False
population True
state True
dtype: bool

Some of the population info is null; let’s figure out which these are!

In[23]: merged[merged[ 'population'].isnull()].head()

Out[23]: state/region ages year population state
2448 PR under18 1990 NaN NaN
2449 PR total 1990 NaN  NaN
2450 PR total 1991 NaN  NaN
2451 PR under18 1991 NaN  NaN
2452 PR total 1993 NaN NaN

It appears that all the null population values are from Puerto Rico prior to the year
2000; this is likely due to this data not being available from the original source.

More importantly, we see also that some of the new state entries are also null, which
means that there was no corresponding entry in the abbrevs key! Lets figure out
which regions lack this match:

In[24]: merged.loc[merged['state'].isnull(), 'state/region'].unique()
Out[24]: array(['PR', 'USA'], dtype=object)
We can quickly infer the issue: our population data includes entries for Puerto Rico

(PR) and the United States as a whole (USA), while these entries do not appear in the
state abbreviation key. We can fix these quickly by filling in appropriate entries:

In[25]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
merged.loc[merged[ 'state/region'] == 'USA', 'state'] = 'United States'
merged.isnull().any()

Out[25]: state/region False

ages False
year False
population True
state False
dtype: bool

No more nulls in the state column: we're all set!

Now we can merge the result with the area data using a similar procedure. Examining
our results, we will want to join on the state column in both:
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In[26]: final = pd.merge(merged, areas, on='state', how='left")
final.head()

Out[26]: state/region ages year population state area (sq. mi)
0 AL under18 2012 1117489.0 Alabama 52423.0
1 AL total 2012 4817528.0 Alabama 52423.0
2 AL under18 2010 1130966.0 Alabama 52423.0
3 AL total 2010 4785570.0 Alabama 52423.0
4 AL under18 2011 1125763.0 Alabama 52423.0

Again, let’s check for nulls to see if there were any mismatches:

In[27]: final.isnull().any()

Out[27]: state/region False
ages False
year False
population True
state False
area (sq. mi) True
dtype: bool

There are nulls in the area column; we can take a look to see which regions were
ignored here:

In[28]: final['state'][final['area (sq. mi)'].isnull()].unique()

Out[28]: array(['United States'], dtype=object)
We see that our areas DataFrame does not contain the area of the United States as a
whole. We could insert the appropriate value (using the sum of all state areas, for

instance), but in this case well just drop the null values because the population den-
sity of the entire United States is not relevant to our current discussion:

In[29]: final.dropna(inplace=True)
final.head()

Out[29]: state/region ages year population state area (sq. mi)
0 AL under18 2012 1117489.0 Alabama 52423.0
1 AL total 2012 4817528.0 Alabama 52423.0
2 AL under18 2010 1130966.0 Alabama 52423.0
3 AL total 2010 4785570.0 Alabama 52423.0
4 AL under18 2011 1125763.0 Alabama 52423.0

Now we have all the data we need. To answer the question of interest, let’s first select
the portion of the data corresponding with the year 2000, and the total population.
We'll use the query() function to do this quickly (this requires the numexpr package
to be installed; see “High-Performance Pandas: eval() and query()” on page 208):

In[30]: data2010 = final.query("year == 2010 & ages == 'total'")
data2010.head()

Out[30]: state/region ages year population state area (sq. mi)
3 AL total 2010 4785570.0 Alabama 52423.0
91 AK total 2010 713868.0 Alaska 656425.0
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101 AZ total 2010 6408790.0 Arizona 114006.0
189 AR total 2010 2922280.0 Arkansas 53182.0
197 CA total 2010 37333601.0 California 163707.0

Now let’s compute the population density and display it in order. We'll start by rein-
dexing our data on the state, and then compute the result:

In[31]: data2010.set_index('state', inplace=True)
density = data2010[ 'population'] / data2010['area (sq. mi)']

In[32]: density.sort_values(ascending=False, inplace=True)
density.head()

Out[32]: state
District of Columbia 8898.897059

Puerto Rico 1058.665149
New Jersey 1009.253268
Rhode Island 681.339159
Connecticut 645.600649

dtype: float64

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of
their 2010 population density, in residents per square mile. We can see that by far the
densest region in this dataset is Washington, DC (i.e., the District of Columbia);
among states, the densest is New Jersey.

We can also check the end of the list:
In[33]: density.tail()

Out[33]: state
South Dakota 10.583512

North Dakota 9.537565
Montana 6.736171
Wyoming 5.768079
Alaska 1.087509

dtype: float64

We see that the least dense state, by far, is Alaska, averaging slightly over one resident
per square mile.

This type of messy data merging is a common task when one is trying to answer
questions using real-world data sources. I hope that this example has given you an
idea of the ways you can combine tools we've covered in order to gain insight from
your data!

Aggregation and Grouping

An essential piece of analysis of large data is efficient summarization: computing
aggregations like sum(), mean(), median(), min(), and max(), in which a single num-
ber gives insight into the nature of a potentially large dataset. In this section, we'll
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explore aggregations in Pandas, from simple operations akin to what we've seen on
NumPy arrays, to more sophisticated operations based on the concept of a groupby.

Planets Data

Here we will use the Planets dataset, available via the Seaborn package (see “Visuali-
zation with Seaborn” on page 311). It gives information on planets that astronomers
have discovered around other stars (known as extrasolar planets or exoplanets for
short). It can be downloaded with a simple Seaborn command:
In[2]: import as
planets = sns.load_dataset('planets')
planets.shape
Out[2]: (1035, 6)

In[3]: planets.head()

Out[3]: method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21  56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009

This has some details on the 1,000+ exoplanets discovered up to 2014.

Simple Aggregation in Pandas

Earlier we explored some of the data aggregations available for NumPy arrays
(“"Aggregations: Min, Max, and Everything in Between” on page 58). As with a one-
dimensional NumPy array, for a Pandas Series the aggregates return a single value:

In[4]: rng = np.random.RandomState(42)
ser = pd.Series(rng.rand(5))
ser

Out[4]: .374540
.950714
. 731994
.598658
.156019

type: float64
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In[5]: ser.sum()
Out[5]: 2.8119254917081569
In[6]: ser.mean()

Out[6]: 0.56238509834163142

For a DataFrame, by default the aggregates return results within each column:
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In[7]: df = pd.DataFrame({'A': rng.rand(5),
'B': rng.rand(5)})
df

out[7]: A B
0.155995 0.020584
0.058084 0.969910
0.866176 0.832443
0.601115 0.212339
4 0.708073 0.181825

W N R o

In[8]: df.mean()

out[8]: A  0.477888
B 0.443420
dtype: float64

By specifying the axis argument, you can instead aggregate within each row:

In[9]: df.mean(axis='columns')

Out[9]: @  0.088290
1 0.513997
2 0.849309
3 0.406727
4 0.444949

dtype: float64

Pandas Series and DataFrames include all of the common aggregates mentioned in
“Aggregations: Min, Max, and Everything in Between” on page 58; in addition, there
is a convenience method describe() that computes several common aggregates for
each column and returns the result. Let’s use this on the Planets data, for now drop-
ping rows with missing values:

In[10]: planets.dropna().describe()

Out[10]: number orbital_period mass distance year
count 498.00000 498.000000 498.000000 498.000000 498.000000
mean 1.73494 835.778671 2.509320 52.068213 2007.377510
std 1.17572 1469.128259 3.636274 46.596041 4.167284
min 1.00000 1.328300 0.003600 1.350000 1989.000000
25% 1.00000 38.272250 0.212500 24.497500 2005.000000
50% 1.00000 357.000000 1.245000 39.940000 2009.000000
75% 2.00000 999.600000 2.867500 59.332500 2011.000000
max 6.00000 17337.500000 25.000000 354.000000 2014.000000

This can be a useful way to begin understanding the overall properties of a dataset.
For example, we see in the year column that although exoplanets were discovered as
far back as 1989, half of all known exoplanets were not discovered until 2010 or after.
This is largely thanks to the Kepler mission, which is a space-based telescope specifi-
cally designed for finding eclipsing planets around other stars.

Table 3-3 summarizes some other built-in Pandas aggregations.
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Table 3-3. Listing of Pandas aggregation methods

Aggregation Description

count() Total number of items
first(), last() Firstand last item

mean(), median() Mean and median

min(), max() Minimum and maximum
std(), var() Standard deviation and variance
mad() Mean absolute deviation
prod() Product of all items

sum() Sum of all items

These are all methods of DataFrame and Series objects.

To go deeper into the data, however, simple aggregates are often not enough. The
next level of data summarization is the groupby operation, which allows you to
quickly and efficiently compute aggregates on subsets of data.

GroupBy: Split, Apply, Combine

Simple aggregations can give you a flavor of your dataset, but often we would prefer
to aggregate conditionally on some label or index: this is implemented in the so-
called groupby operation. The name “group by” comes from a command in the SQL
database language, but it is perhaps more illuminative to think of it in the terms first
coined by Hadley Wickham of Rstats fame: split, apply, combine.

Split, apply, combine

A canonical example of this split-apply-combine operation, where the “apply” is a
summation aggregation, is illustrated in Figure 3-1.

Figure 3-1 makes clear what the GroupBy accomplishes:

o The split step involves breaking up and grouping a DataFrame depending on the
value of the specified key.

o The apply step involves computing some function, usually an aggregate, transfor-
mation, or filtering, within the individual groups.

o The combine step merges the results of these operations into an output array.
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Figure 3-1. A visual representation of a groupby operation

While we could certainly do this manually using some combination of the masking,
aggregation, and merging commands covered earlier, it's important to realize that the
intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can
(often) do this in a single pass over the data, updating the sum, mean, count, min, or
other aggregate for each group along the way. The power of the GroupBy is that it
abstracts away these steps: the user need not think about how the computation is
done under the hood, but rather thinks about the operation as a whole.

As a concrete example, let’s take a look at using Pandas for the computation shown in
Figure 3-1. We'll start by creating the input DataFrame:
In[11]: df = pd.DataFrame({'key': ['A"', 'B', 'C', 'A', 'B"', 'C'],
'data': range(6)}, columns=['key', 'data'])
df

Out[11]: key data
A

v h WNRE O
N >N W
unh WNREL OO

We can compute the most basic split-apply-combine operation with the groupby()
method of DataFrames, passing the name of the desired key column:

In[12]: df.groupby('key")

Out[12]: <pandas.core.groupby.DataFrameGroupBy object at 0x117272160>
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Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy
object. This object is where the magic is: you can think of it as a special view of the
DataFrame, which is poised to dig into the groups but does no actual computation
until the aggregation is applied. This “lazy evaluation” approach means that common
aggregates can be implemented very efficiently in a way that is almost transparent to
the user.

To produce a result, we can apply an aggregate to this DataFrameGroupBy object,
which will perform the appropriate apply/combine steps to produce the desired
result:

In[13]: df.groupby('key").sum()

Out[13]: data
key
A 3
B 5
C 7

The sum() method is just one possibility here; you can apply virtually any common
Pandas or NumPy aggregation function, as well as virtually any valid DataFrame
operation, as we will see in the following discussion.

The GroupBy object

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat
it as if it’s a collection of DataFrames, and it does the difficult things under the hood.
Let’s see some examples using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate,
filter, transform, and apply. We'll discuss each of these more fully in “Aggregate, filter,
transform, apply” on page 165, but before that let’s introduce some of the other func-
tionality that can be used with the basic GroupBy operation.

Columnindexing. The GroupBy object supports column indexing in the same way as
the DataFrame, and returns a modified GroupBy object. For example:

In[14]: planets.groupby('method")

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at 0x1172727b8>
In[15]: planets.groupby('method')['orbital_period']

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Here we've selected a particular Series group from the original DataFrame group by
reference to its column name. As with the GroupBy object, no computation is done
until we call some aggregate on the object:

In[16]: planets.groupby('method')['orbital_period'].median()
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Out[16]: method

Astrometry 631.180000
Eclipse Timing Variations 4343.500000
Imaging 27500.000000
Microlensing 3300.000000
Orbital Brightness Modulation 0.342887
Pulsar Timing 66.541900
Pulsation Timing Variations 1170.000000
Radial Velocity 360.200000
Transit 5.714932
Transit Timing Variations 57.011000

Name: orbital_period, dtype: float64

This gives an idea of the general scale of orbital periods (in days) that each method is
sensitive to.

Iteration over groups. The GroupBy object supports direct iteration over the groups,
returning each group as a Series or DataFrame:

In[17]: for (method, group) in planets.groupby('method'):
print("{0:30s} shape={1}".format(method, group.shape))

Astrometry shape=(2, 6)
Eclipse Timing Variations shape=(9, 6)
Imaging shape=(38, 6)
Microlensing shape=(23, 6)
Orbital Brightness Modulation shape=(3, 6)
Pulsar Timing shape=(5, 6)
Pulsation Timing Variations shape=(1, 6)
Radial Velocity shape=(553, 6)
Transit shape=(397, 6)
Transit Timing Variations shape=(4, 6)

This can be useful for doing certain things manually, though it is often much faster to
use the built-in apply functionality, which we will discuss momentarily.

Dispatch methods. Through some Python class magic, any method not explicitly
implemented by the GroupBy object will be passed through and called on the groups,
whether they are DataFrame or Series objects. For example, you can use the
describe() method of DataFrames to perform a set of aggregations that describe each
group in the data:

In[18]: planets.groupby('method')['year'].describe().unstack()

Out[18]:
count mean std min 25% \\

method

Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75
Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00
Imaging 38.0 2009.131579 2.781901 2004.0 2008.00
Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00
Orbital Brightness Modulation 3.0 2011.666667 1.154701 2011.0 2011.00
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1998.400000 8.384510 1992.0 1992.00
2007.000000 NaN 2007.0 2007.00
2007.518987 4.249052 1989.0 2005.00
2011.236776 2.077867 2002.0 2010.00
2012.500000 1.290994 2011.0 2011.75

Pulsar Timing

Pulsation Timing Variations
Radial Velocity

Transit

Transit Timing Variations

w U
o un
A NWEL WU
[clcl ool o]

50% 75% max
method
Astrometry 2011.5 2012.25 2013.0
Eclipse Timing Variations 2010.0 2011.00 2012.0
Imaging 2009.0 2011.00 2013.0
Microlensing 2010.0 2012.00 2013.0
Orbital Brightness Modulation 2011.0 2012.00 2013.0
Pulsar Timing 1994.0 2003.00 2011.0
Pulsation Timing Variations 2007.0 2007.00 2007.0
Radial Velocity 2009.0 2011.00 2014.0
Transit 2012.0 2013.00 2014.0
Transit Timing Variations 2012.5 2013.25 2014.0

Looking at this table helps us to better understand the data: for example, the vast
majority of planets have been discovered by the Radial Velocity and Transit methods,
though the latter only became common (due to new, more accurate telescopes) in the
last decade. The newest methods seem to be Transit Timing Variation and Orbital
Brightness Modulation, which were not used to discover a new planet until 2011.

This is just one example of the utility of dispatch methods. Notice that they are
applied to each individual group, and the results are then combined within GroupBy
and returned. Again, any valid DataFrame/Series method can be used on the corre-
sponding GroupBy object, which allows for some very flexible and powerful
operations!

Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine operation, but
there are more options available. In particular, GroupBy objects have aggregate(),
filter(), transform(), and apply() methods that efficiently implement a variety of
useful operations before combining the grouped data.

For the purpose of the following subsections, we'll use this DataFrame:

In[19]: rng = np.random.RandomState(0)
df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
'datal': range(6),
'data2': rng.randint(0, 10, 6)3},
columns = ['key', 'datal', 'data2'])

df
Out[19]: key datal data2
0 A 0 5
1 B 1 0
2 C 2 3
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Aggregation. We're now familiar with GroupBy aggregations with sum(), median(),
and the like, but the aggregate() method allows for even more flexibility. It can take
a string, a function, or a list thereof, and compute all the aggregates at once. Here is a
quick example combining all these:

In[20]: df.groupby('key').aggregate(['min', np.median, max])

Out[20]: datal data2
min median max min median max
key
A 0 1.5 3 3 4.0 5
B 1 2.5 4 ¢} 3.5 7
C 2 3.5 5 3 6.0 9

Another useful pattern is to pass a dictionary mapping column names to operations
to be applied on that column:

In[21]: df.groupby('key').aggregate({'datal': 'min',
'data2': 'max'})

Out[21]: datal data2
key
A 0 5
B 1 7
C 2 9

Filtering. A filtering operation allows you to drop data based on the group proper-
ties. For example, we might want to keep all groups in which the standard deviation is
larger than some critical value:

In[22]:
def filter_func(x):
return x['data2'].std() > 4

print(df); print(df.groupby('key').std());
print(df.groupby('key').filter(filter_func))

df df.groupby('key').std()
key datal data2 key datal data2
A 0 5 A 2.12132 1.414214

B 2.12132 4.949747
C 2.12132 4.242641

v h WNRO
N >N W
v WN R
O NWwo

df.groupby('key').filter(filter_func)
key datal data2
1 B 1 0
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The filter() function should return a Boolean value specifying whether the group
passes the filtering. Here because group A does not have a standard deviation greater
than 4, it is dropped from the result.

Transformation. While aggregation must return a reduced version of the data, trans-
formation can return some transformed version of the full data to recombine. For
such a transformation, the output is the same shape as the input. A common example
is to center the data by subtracting the group-wise mean:

In[23]: df.groupby('key').transform(lambda x: x - x.mean())
Out[23]: datal data2

0 -1.5 1.0
1 -1.5 -3.5
2 -1.5 -3.0
3 1.5 -1.0
4 1.5 3.5
5 1.5 3.0

The apply() method. The apply() method lets you apply an arbitrary function to the
group results. The function should take a DataFrame, and return either a Pandas
object (e.g., DataFrame, Series) or a scalar; the combine operation will be tailored to
the type of output returned.

For example, here is an apply() that normalizes the first column by the sum of the
second:

In[24]: def norm_by_data2(x):
# x 1s a DataFrame of group values
x['data1l'] /= x['data2'].sum()
return x

print(df); print(df.groupby('key').apply(norm_by_data2))

df df.groupby('key').apply(norm_by_data2)
key datal data2 key datal data2

0 A 0 5 O A 0.000000 5

1 B 1 0 1 B 0.142857 0

2 C 2 3 2 C 0.166667 3

3 A 3 3 3 A 0.375000 3

4 B 4 7 4 B 0.571429 7

5 C 5 9 5 C 0.416667 9

apply() within a GroupBy is quite flexible: the only criterion is that the function takes
a DataFrame and returns a Pandas object or scalar; what you do in the middle is up to
you!
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Specifying the split key

In the simple examples presented before, we split the DataFrame on a single column
name. This is just one of many options by which the groups can be defined, and we'll
go through some other options for group specification here.

Alist, array, series, or index providing the grouping keys. The key can be any series or list
with a length matching that of the DataFrame. For example:

In[25]: L =[0, 1, 0, 1, 2, 0]
print(df); print(df.groupby(L).sum())

df df.groupby(L).sum()
key datal dataz datal dataz
A 0 0 7 17
1 4 3
2 4 7

v h WNRO
N >N W
v h W R
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Of course, this means there’s another, more verbose way of accomplishing the
df.groupby('key') from before:

In[26]: print(df); print(df.groupby(df['key']).sum())

df df.groupby(df[ 'key']).sum()
key datal dataz datal dataz

0 A 0 5 A 3 8

1 B 1 0 B 5 7

2 C 2 3 C 7 12

3 A 3 3

4 B 4 7

5 C 5 9

A dictionary or series mapping index to group. Another method is to provide a dictionary
that maps index values to the group keys:
In[27]: df2 = df.set_index('key')

mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'}
print(df2); print(df2.groupby(mapping).sum())

df2 df2.groupby(mapping).sum()
key datal data2 datal data2

A 0 5 consonant 12 19

B 1 0 vowel 3 8

C 2 3

A 3 3

B 4 7

C 5 9

168 | Chapter 3: Data Manipulation with Pandas



Any Python function. Similar to mapping, you can pass any Python function that will
input the index value and output the group:

In[28]: print(df2); print(df2.groupby(str.lower).mean())

df2

key datal data2

A

N ™>Nw

Alist of valid keys.

0

U h WN R
O NWwowum

group on a multi-index:

df2.groupby(str.lower).mean()
datal data2
1.5 4.0
b 2.5 3.5
C 3.5 6.0

7]

Further, any of the preceding key choices can be combined to

In[29]: df2.groupby([str.lower, mapping]).mean()

Out[29]:

datal data2

a vowel
b consonant
c consonant

Grouping example

1.5 4.0
2.5 3.5
3.5 6.0

As an example of this, in a couple lines of Python code we can put all these together
and count discovered planets by method and by decade:

In[30]: decade = 10 * (planets['year'] // 10)

decade = decade.astype(str) +

s’

decade.name = 'decade'’
planets.groupby([ 'method', decade])['number'].sum().unstack().fillna(0)

Out[30]: decade

method

Astrometry 0.0 0.0 0.0 2.0
Eclipse Timing Variations 0.0 0.0 5.0 10.0
Imaging 0.0 0.0 29.0 21.0
Microlensing 0.0 0.0 12.0 15.0
Orbital Brightness Modulation 0.0 0.0 0.0 5.0
Pulsar Timing 0.0 9.0 1.0 1.0
Pulsation Timing Variations 0.0 0.0 1.0 0.0
Radial Velocity 1.0 52.0 475.0 424.0
Transit 0.0 0.0 64.0 712.0
Transit Timing Variations 0.0 0.0 0.0 9.0

1980s 1990s 2000s 2010s

This shows the power of combining many of the operations we've discussed up to this
point when looking at realistic datasets. We immediately gain a coarse understanding
of when and how planets have been discovered over the past several decades!
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Here I would suggest digging into these few lines of code, and evaluating the individ-
ual steps to make sure you understand exactly what they are doing to the result. It’s
certainly a somewhat complicated example, but understanding these pieces will give
you the means to similarly explore your own data.

Pivot Tables

We have seen how the GroupBy abstraction lets us explore relationships within a data-
set. A pivot table is a similar operation that is commonly seen in spreadsheets and
other programs that operate on tabular data. The pivot table takes simple column-
wise data as input, and groups the entries into a two-dimensional table that provides
a multidimensional summarization of the data. The difference between pivot tables
and GroupBy can sometimes cause confusion; it helps me to think of pivot tables as
essentially a multidimensional version of GroupBy aggregation. That is, you split-
apply-combine, but both the split and the combine happen across not a one-
dimensional index, but across a two-dimensional grid.

Motivating Pivot Tables

For the examples in this section, we'll use the database of passengers on the Titanic,
available through the Seaborn library (see “Visualization with Seaborn” on page 311):

In[1]: import as
import as
import as

titanic = sns.load_dataset('titanic')

In[2]: titanic.head()

Out[2]:
survived pclass sex age sibsp parch fare embarked class \\
0 0 3 male 22.0 1 0 7.2500 S Third
1 1 1 female 38.0 1 0 71.2833 C First
2 1 3 female 26.0 0 0 7.9250 S Third
3 1 1 female 35.0 1 0 53.1000 S First
4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alive alone

0 man True NaN Southampton no False
1 woman False C Cherbourg yes False
2 woman False NaN Southampton yes True
3 woman False C Southampton yes False
4 man True NaN Southampton no True

This contains a wealth of information on each passenger of that ill-fated voyage,
including gender, age, class, fare paid, and much more.
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Pivot Tables by Hand

To start learning more about this data, we might begin by grouping it according to
gender, survival status, or some combination thereof. If you have read the previous
section, you might be tempted to apply a GroupBy operation—for example, let’s look
at survival rate by gender:

In[3]: titanic.groupby('sex"')[['survived']].mean()

Out[3]: survived
sex
female 0.742038
male 0.188908

This immediately gives us some insight: overall, three of every four females on board
survived, while only one in five males survived!

This is useful, but we might like to go one step deeper and look at survival by both sex
and, say, class. Using the vocabulary of GroupBy, we might proceed using something
like this: we group by class and gender, select survival, apply a mean aggregate, com-
bine the resulting groups, and then unstack the hierarchical index to reveal the hidden
multidimensionality. In code:

In[4]: titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack()

Out[4]: class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447

This gives us a better idea of how both gender and class affected survival, but the
code is starting to look a bit garbled. While each step of this pipeline makes sense in
light of the tools we've previously discussed, the long string of code is not particularly
easy to read or use. This two-dimensional GroupBy is common enough that Pandas
includes a convenience routine, pivot_table, which succinctly handles this type of
multidimensional aggregation.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_table method of
DataFrames:

In[5]: titanic.pivot_table('survived', index='sex', columns='class')

Out[5]: class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447

This is eminently more readable than the GroupBy approach, and produces the same
result. As you might expect of an early 20th-century transatlantic cruise, the survival
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gradient favors both women and higher classes. First-class women survived with near
certainty (hi, Rose!), while only one in ten third-class men survived (sorry, Jack!).

Multilevel pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple lev-
els, and via a number of options. For example, we might be interested in looking at
age as a third dimension. We'll bin the age using the pd. cut function:

In[6]: age = pd.cut(titanic['age'], [0, 18, 80])
titanic.pivot_table('survived', ['sex', age], 'class')

Out[6]: class First Second Third
sex age

female (0, 18] 0.909091 1.000000 0.511628

(18, 80] 0.972973 0.900000 0.423729

male (0, 18] 0.800000 0.600000 0.215686

(18, 80] ©0.375000 0.071429 0.133663

We can apply this same strategy when working with the columns as well; let’s add info
on the fare paid using pd.qcut to automatically compute quantiles:

In[7]: fare = pd.qcut(titanic['fare'], 2)
titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

Out[7]:

fare [0, 14.454]

class First Second Third \\

sex age

female (0, 18] NaN 1.000000 0.714286
(18, 80] NaN ©0.880000 0.444444

male (0, 18] NaN 0.000000 0.260870
(18, 80] 0.0 0.098039 0.125000

fare (14.454, 512.329]

class First Second Third

sex age

female (0, 18] 0.909091 1.000000 0.318182
(18, 80] 0.972973 0.914286 0.391304

male (0, 18] 0.800000 0.818182 0.178571
(18, 80] 0.391304 0.030303 0.192308

The result is a four-dimensional aggregation with hierarchical indices (see “Hierarch-
ical Indexing” on page 128), shown in a grid demonstrating the relationship between
the values.
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Additional pivot table options
The full call signature of the pivot_table method of DataFrames is as follows:

# call signature as of Pandas 0.18
DataFrame.pivot_table(data, values=None, index=None, columns=None,
aggfunc='mean', fill_value=None, margins=False,
dropna=True, margins_name='All")
We've already seen examples of the first three arguments; here we'll take a quick look
at the remaining ones. Two of the options, fill_value and dropna, have to do with
missing data and are fairly straightforward; we will not show examples of them here.

The aggfunc keyword controls what type of aggregation is applied, which is a mean
by default. As in the GroupBy, the aggregation specification can be a string represent-
ing one of several common choices ('sum', 'mean’, 'count’, 'min’', 'max', etc.) or a
function that implements an aggregation (np.sum(), min(), sum(), etc.). Additionally,
it can be specified as a dictionary mapping a column to any of the above desired
options:
In[8]: titanic.pivot_table(index='sex', columns='class',
aggfunc={'survived':sum, 'fare':'mean'})

Oout[8]: fare survived
class First Second Third First Second Third
sex
female 106.125798 21.970121 16.118810 91.0 70.0 72.0

male 67.226127 19.741782 12.661633 45.0 17.0 47.0

Notice also here that we've omitted the values keyword; when you're specifying a
mapping for aggfunc, this is determined automatically.

At times it’s useful to compute totals along each grouping. This can be done via the
margins keyword:

In[9]: titanic.pivot_table('survived', index='sex', columns='class', margins=True)

Out[9]: class First Second Third All
sex
female 0.968085 0.921053 0.500000 0.742038
male 0.368852 0.157407 0.135447 0.188908
All 0.629630 0.472826 0.242363 0.383838

Here this automatically gives us information about the class-agnostic survival rate by
gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%.
The margin label can be specified with the margins_name keyword, which defaults to
n A'L 'L n .
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Example: Birthrate Data

As a more interesting example, let’s take a look at the freely available data on births in
the United States, provided by the Centers for Disease Control (CDC). This data can
be found at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/
births.csv (this dataset has been analyzed rather extensively by Andrew Gelman and
his group; see, for example, this blog post):

In[10]:

# shell command to download the data:

# lcurl -0 https://raw.githubusercontent.com/jakevdp/data-CDCbirths/
# master/births.csv

In[11]: births = pd.read_csv('births.csv')

Taking a look at the data, we see that it’s relatively simple—it contains the number of
births grouped by date and gender:

In[12]: births.head()

Out[12]: year month day gender births

0 1969 1 1 F 4046
1 1969 1 1 M 4440
2 1969 1 2 F 4454
3 1969 1 2 M 4548
4 1969 1 3 F 4548

We can start to understand this data a bit more by using a pivot table. Let’s add a dec-
ade column, and take a look at male and female births as a function of decade:
In[13]:

births['decade'] = 10 * (births['year'] // 10)
births.pivot_table('births', index='decade', columns='gender', aggfunc='sum')

Out[13]: gender F M
decade
1960 1753634 1846572

1970 16263075 17121550
1980 18310351 19243452
1990 19479454 20420553
2000 18229309 19106428

We immediately see that male births outnumber female births in every decade. To see
this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visual-
ize the total number of births by year (Figure 3-2; see Chapter 4 for a discussion of
plotting with Matplotlib):

In[14]:

%matplotlib inline

import as

sns.set() # use Seaborn styles

births.pivot_table('births', index='year', columns='gender', aggfunc='sum').plot()
plt.ylabel('total births per year');
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Figure 3-2. Total number of US births by year and gender

With a simple pivot table and plot() method, we can immediately see the annual
trend in births by gender. By eye, it appears that over the past 50 years male births
have outnumbered female births by around 5%.

Further data exploration

Though this doesn’t necessarily relate to the pivot table, there are a few more interest-
ing features we can pull out of this dataset using the Pandas tools covered up to this
point. We must start by cleaning the data a bit, removing outliers caused by mistyped
dates (e.g., June 31st) or missing values (e.g., June 99th). One easy way to remove
these all at once is to cut outliers; we'll do this via a robust sigma-clipping operation:'
In[15]: quartiles = np.percentile(births['births'], [25, 50, 75])

mu = quartiles[1]

sig = 0.74 * (quartiles[2] - quartiles[0])
This final line is a robust estimate of the sample mean, where the 0.74 comes from the
interquartile range of a Gaussian distribution. With this we can use the query()
method (discussed further in “High-Performance Pandas: eval() and query()” on
page 208) to filter out rows with births outside these values:

In[16]:
births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)"')

1 You can learn more about sigma-clipping operations in a book I coauthored with Zeljko Ivezi¢, Andrew J.
Connolly, and Alexander Gray: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical
Python Guide for the Analysis of Survey Data (Princeton University Press, 2014).
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Next we set the day column to integers; previously it had been a string because some
columns in the dataset contained the value 'null':

In[17]: # set 'day' column to integer; it originally was a string due to nulls
births['day'] = births['day'].astype(int)

Finally, we can combine the day, month, and year to create a Date index (see “Work-

ing with Time Series” on page 188). This allows us to quickly compute the weekday
corresponding to each row:

In[18]: # create a datetime index from the year, month, day
births.index = pd.to_datetime(10000 * births.year +
100 * births.month +
births.day, format='%Y%m%d')

births['dayofweek'] = births.index.dayofweek
Using this we can plot births by weekday for several decades (Figure 3-3):

In[19]:
import matplotlib.pyplot as plt
import matplotlib as mpl

births.pivot_table('births', index='dayofweek',

columns="'decade', aggfunc='mean').plot()
plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'])
plt.ylabel('mean births by day');

mean births by day

Mon Tues Wed Thurs Fri Sat Sun
dayofweek

Figure 3-3. Average daily births by day of week and decade

Apparently births are slightly less common on weekends than on weekdays! Note that
the 1990s and 2000s are missing because the CDC data contains only the month of
birth starting in 1989.

176 | Chapter 3: Data Manipulation with Pandas



Another interesting view is to plot the mean number of births by the day of the year.
Let’s first group the data by month and day separately:

In[20]:
births_by_date = births.pivot_table('births',

[births.index.month, births.index.day])
births_by_date.head()

1 4009.225
2 4247 .400
3 4500.900
4 4571.350
4603.625
Name: births, dtype: float64

Out[20]: 1

The result is a multi-index over months and days. To make this easily plottable, lets
turn these months and days into a date by associating them with a dummy year vari-
able (making sure to choose a leap year so February 29th is correctly handled!)

In[21]: births_by date.index = [pd.datetime(2012, month, day)
for (month, day) in births_by_date.index]
births_by_date.head()

Out[21]: 2012-01-01  4009.225
2012-01-02 4247 .400
2012-01-03 4500.900
2012-01-04 4571.350
2012-01-05 4603.625
Name: births, dtype: float64

Focusing on the month and day only, we now have a time series reflecting the average

number of births by date of the year. From this, we can use the plot method to plot
the data (Figure 3-4). It reveals some interesting trends:

In[22]: # Plot the results
fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);

4200

4000

Jan Feb Mar Apr May Jun Jul Pug Sep Oct Now Dec
012

Figure 3-4. Average daily births by date
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In particular, the striking feature of this graph is the dip in birthrate on US holidays
(e.g., Independence Day, Labor Day, Thanksgiving, Christmas, New Year’s Day)
although this likely reflects trends in scheduled/induced births rather than some deep
psychosomatic effect on natural births. For more discussion on this trend, see the
analysis and links in Andrew Gelman’s blog post on the subject. We'll return to this
figure in “Example: Effect of Holidays on US Births” on page 269, where we will use
Matplotlib’s tools to annotate this plot.

Looking at this short example, you can see that many of the Python and Pandas tools
we've seen to this point can be combined and used to gain insight from a variety of
datasets. We will see some more sophisticated applications of these data manipula-
tions in future sections!

Vectorized String Operations

One strength of Python is its relative ease in handling and manipulating string data.
Pandas builds on this and provides a comprehensive set of vectorized string operations
that become an essential piece of the type of munging required when one is working
with (read: cleaning up) real-world data. In this section, we’ll walk through some of
the Pandas string operations, and then take a look at using them to partially clean up
a very messy dataset of recipes collected from the Internet.

Introducing Pandas String Operations

We saw in previous sections how tools like NumPy and Pandas generalize arithmetic
operations so that we can easily and quickly perform the same operation on many
array elements. For example:

In[1]: import as
x = np.array([2, 3, 5, 7, 11, 13])
X * 2

Out[1]: array([ 4, 6, 10, 14, 22, 26])
This vectorization of operations simplifies the syntax of operating on arrays of data:
we no longer have to worry about the size or shape of the array, but just about what

operation we want done. For arrays of strings, NumPy does not provide such simple
access, and thus you're stuck using a more verbose loop syntax:

In[2]: data = ['peter', 'Paul', 'MARY', 'gUIDO']
[s.capitalize() for s in data]

Out[2]: ['Peter', 'Paul', 'Mary', 'Guido']
This is perhaps sufficient to work with some data, but it will break if there are any

missing values. For example:

In[3]: data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
[s.capitalize() for s in data]
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AttributeError Traceback (most recent call last)

<ipython-input-3-fc1d891ab539> in <module>()
1 data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
----> 2 [s.capitalize() for s in data]

<ipython-input-3-fc1d891ab539> in <listcomp>(.0)
1 data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
----> 2 [s.capitalize() for s in data]

AttributeError: 'NoneType' object has no attribute 'capitalize'
Pandas includes features to address both this need for vectorized string operations
and for correctly handling missing data via the str attribute of Pandas Series and
Index objects containing strings. So, for example, suppose we create a Pandas Series
with this data:

In[4]: import as
names = pd.Series(data)
names

Out[4]: © peter

1 Paul
2 None
3 MARY
4 guIDO

dtype: object

We can now call a single method that will capitalize all the entries, while skipping
over any missing values:

In[5]: names.str.capitalize()

Out[5]: © Peter

1 Paul
2 None
3 Mary
4 Guido

dtype: object

Using tab completion on this str attribute will list all the vectorized string methods
available to Pandas.
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Tables of Pandas String Methods

If you have a good understanding of string manipulation in Python, most of Pandas’
string syntax is intuitive enough that it’s probably sufficient to just list a table of avail-
able methods; we will start with that here, before diving deeper into a few of the sub-
tleties. The examples in this section use the following series of names:

In[6]: monte = pd.Series(['Graham Chapman', 'John Cleese', 'Terry Gilliam',
'"Eric Idle', 'Terry Jones', 'Michael Palin'])

Methods similar to Python string methods

Nearly all Python’s built-in string methods are mirrored by a Pandas vectorized string
method. Here is a list of Pandas str methods that mirror Python string methods:

len() lower () translate() 1islower()
1just() upper() startswith() 1isupper()
rjust() find() endswith() isnumeric()
center() rfind() isalnum() isdecimal()
zfi11()  index() isalpha() split()
strip() rindex() isdigit() rsplit()
rstrip() capitalize() disspace() partition()
lstrip() swapcase() istitle() rpartition()

Notice that these have various return values. Some, like lower(), return a series of
strings:
In[7]: monte.str.lower()

Out[7]: © graham chapman

1 john cleese
2 terry gilliam
3 eric idle
4 terry jones
5 michael palin

dtype: object
But some others return numbers:

In[8]: monte.str.len()

Out[8]: 0 14

1 11
2 13
3 9
4 11
5 13
dtype: int64
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Or Boolean values:

In[9]: monte.str.startswith('T")
Out[9]: © False

1 False
2 True
3 False
4 True
5 False
dtype: bool

Still others return lists or other compound values for each element:
In[10]: monte.str.split()

Oout[10]: [Graham, Chapman]

[John, Cleese]

[Terry, Gilliam]

[Eric, Idle]

[Terry, Jones]

5 [Michael, Palin]
dtype: object

A WNERO

We'll see further manipulations of this kind of series-of-lists object as we continue
our discussion.

Methods using regular expressions

In addition, there are several methods that accept regular expressions to examine the
content of each string element, and follow some of the API conventions of Python’s
built-in re module (see Table 3-4).

Table 3-4. Mapping between Pandas methods and functions in Pythons re module

Method Description

match() Qll re.match() on each element, returning a Boolean.

extract() @ll re.match() on each element, returning matched groups as strings.
findall() (Qallre.findall() on each element.

replace()  Replace occurrences of pattern with some other string.

contains() (all re.search() on each element, returning a Boolean.

count() Count occurrences of pattern.

split() Equivalent to str.split(), but accepts regexps.

rsplit() Equivalent to str.rsplit(), but accepts regexps.

With these, you can do a wide range of interesting operations. For example, we can
extract the first name from each by asking for a contiguous group of characters at the
beginning of each element:
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In[11]: monte.str.extract('([A-Za-z]+)"')

Out[11]: © Graham
1 John
2 Terry
3 Eric
4 Terry
5 Michael
d

type: object

Or we can do something more complicated, like finding all names that start and end
with a consonant, making use of the start-of-string (*) and end-of-string ($) regular
expression characters:

In[12]: monte.str.findall(r'~[~AEIOU].*["aelou]$")

out[12]: [Graham Chapman]

[]

[Terry Gilliam]

[]

[Terry Jones]

[Michael Palin]
type: object

auvih wNERE o

The ability to concisely apply regular expressions across Series or DataFrame entries
opens up many possibilities for analysis and cleaning of data.

Miscellaneous methods

Finally, there are some miscellaneous methods that enable other convenient opera-
tions (see Table 3-5).

Table 3-5. Other Pandas string methods
Method Description
get() Index each element
slice() Slice each element

slice_replace() Replace slicein each element with passed value

cat() Concatenate strings

repeat() Repeat values

normalize() Return Unicode form of string

pad() Add whitespace to left, right, or both sides of strings

wrap() Split long strings into lines with length less than a given width
join() Join strings in each element of the Series with passed separator

get_dummies() Extract dummy variables as a DataFrame

182 | Chapter3: Data Manipulation with Pandas



Vectorized item access and slicing. The get() and slice() operations, in particular,
enable vectorized element access from each array. For example, we can get a slice of
the first three characters of each array using str.slice(®, 3). Note that this behav-
ior is also available through Pythons normal indexing syntax—for example,
df.str.slice(0, 3)isequivalent todf.str[0:3]:

In[13]: monte.str[0:3]

Out[13]: © Gra
1 Joh
2 Ter
3 Eri
4 Ter
5 Mic
dtype: object

Indexing via df.str.get(1) and df.str[1] is similar.

These get() and slice() methods also let you access elements of arrays returned by
split(). For example, to extract the last name of each entry, we can combine
split() and get():

In[14]: monte.str.split().str.get(-1)

Out[14]: © Chapman
1 Cleese
2 Gilliam
3 Idle
4 Jones
5 Palin
d

type: object

Indicator variables. Another method that requires a bit of extra explanation is the
get_dummies() method. This is useful when your data has a column containing some
sort of coded indicator. For example, we might have a dataset that contains informa-
tion in the form of codes, such as A=“born in America,” B=“born in the United King-
dom,” C="likes cheese,” D="likes spam”:

In[15]:
full_monte = pd.DataFrame({'name': monte,
'info': ['B|C|D', 'B|ID', 'A|C', 'B|D', 'B|C',

'BIC[D"I})

full_monte
Out[15]: info name

0 B|C|D Graham Chapman

1 B|D John Cleese

2 A|C  Terry Gilliam

3 B|D Eric Idle

4 B|C Terry Jones

5 B|C|D Michael Palin
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The get_dummies() routine lets you quickly split out these indicator variables into a
DataFrame:

In[16]: full_monte['info'].str.get_dummies('|")

Out[16]: C

O R O r =, O

A
0
0
1
0
0
0

UuhwWNR O
PR R, ORr R ®
R R OR OR

1

With these operations as building blocks, you can construct an endless range of string
processing procedures when cleaning your data.

We won't dive further into these methods here, but I encourage you to read through
“Working with Text Data” in the pandas online documentation, or to refer to the
resources listed in “Further Resources” on page 215.

Example: Recipe Database

These vectorized string operations become most useful in the process of cleaning up
messy, real-world data. Here I'll walk through an example of that, using an open
recipe database compiled from various sources on the Web. Our goal will be to parse
the recipe data into ingredient lists, so we can quickly find a recipe based on some
ingredients we have on hand.

The scripts used to compile this can be found at https://github.com/fictivekin/openre
cipes, and the link to the current version of the database is found there as well.

As of spring 2016, this database is about 30 MB, and can be downloaded and unzip-
ped with these commands:

In[17]: # !curl -0 http://openrecipes.s3.amazonaws.com/recipeitens-latest.json.gz
# !gunzip recipeitems-latest.json.gz

The database is in JSON format, so we will try pd. read_json to read it:

In[18]: try:
recipes = pd.read_json('recipeitems-latest.json')
except ValueError as e:
print("ValueError:", e)

ValueError: Trailing data

Oops! We get a ValueError mentioning that there is “trailing data.” Searching for this
error on the Internet, it seems that it’s due to using a file in which each line is itself a
valid JSON, but the full file is not. Let’s check if this interpretation is true:
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In[19]: with open('recipeitems-latest.json') as f:
line = f.readline()
pd.read_json(line).shape

Out[19]: (2, 12)

Yes, apparently each line is a valid JSON, so we'll need to string them together. One
way we can do this is to actually construct a string representation containing all these
JSON entries, and then load the whole thing with pd. read_json:

In[20]: # read the entire file into a Python array

with open('recipeitems-latest.json', 'r') as f:
# Extract each line
data = (line.strip() for line in f)
# Reformat so each line is the element of a list
data_json = "[{0}]".format(',"'.join(data))

# read the result as a JSON

recipes = pd.read_json(data_json)

In[21]: recipes.shape
Out[21]: (173278, 17)

We see there are nearly 200,000 recipes, and 17 columns. Let’s take a look at one row
to see what we have:

In[22]: recipes.iloc[0]

out[22]:

_id {'Sold': '5160756b96cc62079cc2db15'}
cookTime PT30M
creator NaN
dateModified NaN
datePublished 2013-03-11
description Late Saturday afternoon, after Marlboro Man ha...
image http://static.thepioneerwoman.com/cooking/file...
ingredients Biscuits\n3 cups All-purpose Flour\n2 Tablespo...
name Drop Biscuits and Sausage Gravy
prepTime PT16M
recipeCategory NaN
recipelnstructions NaN
recipeYield 12
source thepioneerwoman
totalTime NaN
ts {'$date': 1365276011104}
url http://thepioneerwoman.com/cooking/2013/03/dro...

Name: @, dtype: object

There is a lot of information there, but much of it is in a very messy form, as is typical
of data scraped from the Web. In particular, the ingredient list is in string format;
were going to have to carefully extract the information were interested in. Let’s start
by taking a closer look at the ingredients:

In[23]: recipes.ingredients.str.len().describe()
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Out[23]: count 173278.000000

mean 244.617926
std 146.705285
min 0.000000
25% 147.000000
50% 221.000000
75% 314.000000
max 9067.000000

Name: ingredients, dtype: float64

The ingredient lists average 250 characters long, with a minimum of 0 and a maxi-
mum of nearly 10,000 characters!

Just out of curiosity, let’s see which recipe has the longest ingredient list:

In[24]: recipes.name[np.argmax(recipes.ingredients.str.len())]

Out[24]: 'Carrot Pineapple Spice &amp; Brownie Layer Cake with Whipped Cream
&amp; Cream Cheese Frosting and Marzipan Carrots'

That certainly looks like an involved recipe.

We can do other aggregate explorations; for example, let’s see how many of the rec-
ipes are for breakfast food:

In[33]: recipes.description.str.contains('[Bb]reakfast').sum()
Out[33]: 3524
Or how many of the recipes list cinnamon as an ingredient:
In[34]: recipes.ingredients.str.contains('[Cc]innamon"').sum()
Out[34]: 10526
We could even look to see whether any recipes misspell the ingredient as “cinamon”:

In[27]: recipes.ingredients.str.contains('[Cc]inamon').sum()
out[27]: 11

This is the type of essential data exploration that is possible with Pandas string tools.
It is data munging like this that Python really excels at.

A simple recipe recommender

Lets go a bit further, and start working on a simple recipe recommendation system:
given a list of ingredients, find a recipe that uses all those ingredients. While concep-
tually straightforward, the task is complicated by the heterogeneity of the data: there
is no easy operation, for example, to extract a clean list of ingredients from each row.
So we will cheat a bit: we'll start with a list of common ingredients, and simply search
to see whether they are in each recipe’s ingredient list. For simplicity, let’s just stick
with herbs and spices for the time being:
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In[28]: spice_list = ['salt', 'pepper', 'oregano', 'sage', 'parsley',
'rosemary', 'tarragon', 'thyme', 'paprika', 'cumin']

We can then build a Boolean DataFrame consisting of True and False values, indicat-
ing whether this ingredient appears in the list:

In[29]:
import
spice_df = pd.DataFrame(
dict((spice, recipes.ingredients.str.contains(spice, re.IGNORECASE))
for spice in spice_list))
spice_df.head()

Out[29]:

cumin oregano paprika parsley pepper rosemary sage salt tarragon thyme
0 False False False False False False True False False False
1 False False False False False False False False False False
2 True False False False True False False True False False
3 False False False False False False False False False False
4 False False False False False False False False False False

Now, as an example, let’s say wed like to find a recipe that uses parsley, paprika, and
tarragon. We can compute this very quickly using the query() method of Data
Frames, discussed in “High-Performance Pandas: eval() and query()” on page 208:

In[30]: selection = spice_df.query('parsley & paprika & tarragon')
len(selection)

Out[30]: 10

We find only 10 recipes with this combination; let’s use the index returned by this
selection to discover the names of the recipes that have this combination:

In[31]: recipes.name[selection.index]

Out[31]: 2069 All cremat with a Little Gem, dandelion and wa...
74964 Lobster with Thermidor butter
93768 Burton's Southern Fried Chicken with White Gravy
113926 Mijo's Slow Cooker Shredded Beef
137686 Asparagus Soup with Poached Eggs
140530 Fried Oyster Po’boys
158475 Lamb shank tagine with herb tabbouleh
158486 Southern fried chicken in buttermilk
163175 Fried Chicken Sliders with Pickles + Slaw
165243 Bar Tartine Cauliflower Salad

Name: name, dtype: object

Now that we have narrowed down our recipe selection by a factor of almost 20,000,
we are in a position to make a more informed decision about what wed like to cook
for dinner.

Vectorized String Operations | 187



Going further with recipes

Hopefully this example has given you a bit of a flavor (ba-dum!) for the types of data
cleaning operations that are efficiently enabled by Pandas string methods. Of course,
building a very robust recipe recommendation system would require a Jot more
work! Extracting full ingredient lists from each recipe would be an important piece of
the task; unfortunately, the wide variety of formats used makes this a relatively time-
consuming process. This points to the truism that in data science, cleaning and
munging of real-world data often comprises the majority of the work, and Pandas
provides the tools that can help you do this efficiently.

Working with Time Series

Pandas was developed in the context of financial modeling, so as you might expect, it
contains a fairly extensive set of tools for working with dates, times, and time-
indexed data. Date and time data comes in a few flavors, which we will discuss here:

o Time stamps reference particular moments in time (e.g., July 4th, 2015, at 7:00
a.m.).

o Time intervals and periods reference a length of time between a particular begin-
ning and end point—for example, the year 2015. Periods usually reference a spe-
cial case of time intervals in which each interval is of uniform length and does
not overlap (e.g., 24 hour-long periods constituting days).

o Time deltas or durations reference an exact length of time (e.g., a duration of
22.56 seconds).

In this section, we will introduce how to work with each of these types of date/time
data in Pandas. This short section is by no means a complete guide to the time series
tools available in Python or Pandas, but instead is intended as a broad overview of
how you as a user should approach working with time series. We will start with a
brief discussion of tools for dealing with dates and times in Python, before moving
more specifically to a discussion of the tools provided by Pandas. After listing some
resources that go into more depth, we will review some short examples of working
with time series data in Pandas.

Dates and Times in Python

The Python world has a number of available representations of dates, times, deltas,
and timespans. While the time series tools provided by Pandas tend to be the most
useful for data science applications, it is helpful to see their relationship to other
packages used in Python.
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Native Python dates and times: datetime and dateutil

Python’s basic objects for working with dates and times reside in the built-in date
time module. Along with the third-party dateutil module, you can use it to quickly
perform a host of useful functionalities on dates and times. For example, you can
manually build a date using the datetime type:

In[1]: from import datetime
datetime(year=2015, month=7, day=4)

Out[1]: datetime.datetime(2015, 7, 4, 0, 0)

Or, using the dateutil module, you can parse dates from a variety of string formats:

In[2]: from import parser
date = parser.parse("4th of July, 2015")
date

Out[2]: datetime.datetime(2015, 7, 4, 0, 0)
Once you have a datetime object, you can do things like printing the day of the week:

In[3]: date.strftime('%A")
Out[3]: 'Saturday'

In the final line, we've used one of the standard string format codes for printing dates
("%A"), which you can read about in the strftime section of Python’s datetime docu-
mentation. Documentation of other useful date utilities can be found in dateutil’s
online documentation. A related package to be aware of is pytz, which contains tools
for working with the most migraine-inducing piece of time series data: time zones.

The power of datetime and dateutil lies in their flexibility and easy syntax: you can
use these objects and their built-in methods to easily perform nearly any operation
you might be interested in. Where they break down is when you wish to work with
large arrays of dates and times: just as lists of Python numerical variables are subopti-
mal compared to NumPy-style typed numerical arrays, lists of Python datetime
objects are suboptimal compared to typed arrays of encoded dates.

Typed arrays of times: NumPy’s datetime64

The weaknesses of Python’s datetime format inspired the NumPy team to add a set of
native time series data type to NumPy. The datetime64 dtype encodes dates as 64-bit
integers, and thus allows arrays of dates to be represented very compactly. The date
time64 requires a very specific input format:

In[4]: import as
date = np.array('2015-07-04', dtype=np.datetime64)
date

Out[4]: array(datetime.date(2015, 7, 4), dtype='datetime64[D]"')
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Once we have this date formatted, however, we can quickly do vectorized operations
on it:
In[5]: date + np.arange(12)

Out[5]:

array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',
'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'],
dtype='datetime64[D]")

Because of the uniform type in NumPy datetime64 arrays, this type of operation can
be accomplished much more quickly than if we were working directly with Python’s
datetime objects, especially as arrays get large (we introduced this type of vectoriza-
tion in “Computation on NumPy Arrays: Universal Functions” on page 50).

One detail of the datetime64 and timedelta64 objects is that they are built on a fun-
damental time unit. Because the datetime64 object is limited to 64-bit precision, the
range of encodable times is 2% times this fundamental unit. In other words, date
time64 imposes a trade-off between time resolution and maximum time span.

For example, if you want a time resolution of one nanosecond, you only have enough
information to encode a range of 2% nanoseconds, or just under 600 years. NumPy
will infer the desired unit from the input; for example, here is a day-based datetime:

In[6]: np.datetime64('2015-07-04")
Out[6]: numpy.datetime64('2015-07-04")
Here is a minute-based datetime:
In[7]: np.datetime64('2015-07-04 12:00')
Out[7]: numpy.datetime64('2015-07-04T12:00"')

Notice that the time zone is automatically set to the local time on the computer exe-
cuting the code. You can force any desired fundamental unit using one of many for-
mat codes; for example, here we'll force a nanosecond-based time:

In[8]: np.datetime64('2015-07-04 12:59:59.50', 'ns')
Out[8]: numpy.datetime64('2015-07-04T12:59:59.500000000"')

Table 3-6, drawn from the NumPy datetime64 documentation, lists the available for-
mat codes along with the relative and absolute timespans that they can encode.

Table 3-6. Description of date and time codes

Code Meaning Time span (relative) Time span (absolute)

Y Year +9.2e18 years [9.2e18 BC, 9.2e18 AD]
M Month +7.6e17 years [7.6e17 BC, 7.6e17 AD]
W Week + 1.7e17 years [1.7e17 B(, 1.7e17 AD]
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Code Meaning Time span (relative) Time span (absolute)

D Day +2.5e16 years [2.5e16 BC, 2.5e16 AD]
h Hour + 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m Minute + 1.7e13 years [1.7e13 BC, 1.7e13 AD]
s Second +2.9e12 years [2.9e9 BC, 2.9¢9 AD]
ms  Millisecond =+ 2.9e9 years [2.9e6 BC, 2.9¢6 AD]
us  Microsecond =+ 2.9e6 years [290301 BC, 294241 AD]
ns  Nanosecond =+ 292 years [ 1678 AD, 2262 AD]

ps  Picosecond =106 days [1969 AD, 1970 AD]

fs  Femtosecond =+ 2.6 hours [1969 AD, 1970 AD]

as  Attosecond  +9.2 seconds [1969 AD, 1970 AD]

For the types of data we see in the real world, a useful default is datetime64[ns], as it
can encode a useful range of modern dates with a suitably fine precision.

Finally, we will note that while the datetime64 data type addresses some of the defi-
ciencies of the built-in Python datetime type, it lacks many of the convenient meth-
ods and functions provided by datetime and especially dateutil. More information
can be found in NumPy’s datetime64 documentation.

Dates and times in Pandas: Best of both worlds

Pandas builds upon all the tools just discussed to provide a Timestamp object, which
combines the ease of use of datetime and dateutil with the efficient storage and
vectorized interface of numpy .datetime64. From a group of these Timestamp objects,
Pandas can construct a DatetimeIndex that can be used to index data in a Series or
DataFrame; we'll see many examples of this below.

For example, we can use Pandas tools to repeat the demonstration from above. We
can parse a flexibly formatted string date, and use format codes to output the day of
the week:

In[9]: import pandas as pd
date = pd.to_datetime("4th of July, 2015")
date

Out[9]: Timestamp('2015-07-04 00:00:00")
In[10]: date.strftime('%A")
Out[10]: 'Saturday'

Additionally, we can do NumPy-style vectorized operations directly on this same
object:

In[11]: date + pd.to_timedelta(np.arange(12), 'D')
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Out[11]: DatetimeIndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
'2015-07-08"', '2015-07-09', '2015-07-10', '2015-07-11',
'2015-07-12"', '2015-07-13', '2015-07-14', '2015-07-15'],

dtype='datetime64[ns]', freq=None)

In the next section, we will take a closer look at manipulating time series data with
the tools provided by Pandas.

Pandas Time Series: Indexing by Time

Where the Pandas time series tools really become useful is when you begin to index
data by timestamps. For example, we can construct a Series object that has time-
indexed data:

In[12]: index = pd.Datetimelndex(['2014-07-04', '2014-08-04",
'2015-07-04"', '2015-08-04'])
data = pd.Series([0, 1, 2, 3], index=index)
data

Out[12]: 2014-07-04
2014-08-04
2015-07-04
2015-08-04
dtype: int64

w N =, o

Now that we have this data in a Series, we can make use of any of the Series index-
ing patterns we discussed in previous sections, passing values that can be coerced into
dates:

In[13]: data['2014-07-04':'2015-07-04"]

Out[13]: 2014-07-04 0
2014-08-04 1
2015-07-04 2
dtype: int64
There are additional special date-only indexing operations, such as passing a year to
obtain a slice of all data from that year:

In[14]: data['2015"']

Out[14]: 2015-07-04 2
2015-08-04 3
dtype: int64

Later, we will see additional examples of the convenience of dates-as-indices. But first,
let’s take a closer look at the available time series data structures.

Pandas Time Series Data Structures

This section will introduce the fundamental Pandas data structures for working with
time series data:

192 | Chapter3: Data Manipulation with Pandas



o For time stamps, Pandas provides the Timestamp type. As mentioned before, it is
essentially a replacement for Python’s native datetime, but is based on the more
efficient numpy.datetime64 data type. The associated index structure is
DatetimeIndex.

o For time periods, Pandas provides the Period type. This encodes a fixed-
frequency interval based on numpy.datetime64. The associated index structure is
PeriodIndex.

o For time deltas or durations, Pandas provides the Timedelta type. Timedeltais a
more efficient replacement for Python’s native datetime. timedelta type, and is
based on numpy. timedelta64. The associated index structure is TimedeltaIndex.

The most fundamental of these date/time objects are the Timestamp and DatetimeIn
dex objects. While these class objects can be invoked directly, it is more common to
use the pd.to_datetime() function, which can parse a wide variety of formats. Pass-
ing a single date to pd.to_datetime() yields a Timestamp; passing a series of dates by
default yields a DatetimeIndex:

In[15]: dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015',

'2015-Jul-6', '07-07-2015', '20150708'])
dates

Out[15]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
'2015-07-08'],
dtype='datetime64[ns]', freq=None)
Any DatetimeIndex can be converted to a PeriodIndex with the to_period() func-
tion with the addition of a frequency code; here we'll use 'D' to indicate daily
frequency:

In[16]: dates.to_period('D")

Out[16]: PeriodIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
'2015-07-08"'],
dtype='int64', freq='D")

A TimedeltaIndex is created, for example, when one date is subtracted from another:
In[17]: dates - dates[0]

Out[17]:
TimedeltaIndex(['0 days', 'l days', '3 days', '4 days', '5 days'],
dtype="'timedelta64[ns]', freg=None)

Regular sequences: pd.date_range()

To make the creation of regular date sequences more convenient, Pandas offers a few
functions for this purpose: pd.date_range() for timestamps, pd.period_range() for
periods, and pd.timedelta_range() for time deltas. We've seen that Python’s
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range() and NumPy’s np.arange() turn a startpoint, endpoint, and optional stepsize
into a sequence. Similarly, pd.date_range() accepts a start date, an end date, and an
optional frequency code to create a regular sequence of dates. By default, the fre-
quency is one day:

In[18]: pd.date_range('2015-07-03', '2015-07-10")

Out[18]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',

'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
dtype='datetime64[ns]', freq='D")

Alternatively, the date range can be specified not with a start- and endpoint, but with
a startpoint and a number of periods:

In[19]: pd.date_range('2015-07-03', periods=8)
Out[19]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
dtype='datetime64[ns]', freq='D")
You can modify the spacing by altering the freq argument, which defaults to D. For
example, here we will construct a range of hourly timestamps:
In[20]: pd.date_range('2015-07-03"', periods=8, freq='H')
Out[20]: DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00',
'2015-07-03 02:00:00', '2015-07-03 03:00:00',
'2015-07-03 04:00:00', '2015-07-03 05:00:00',
'2015-07-03 06:00:00', '2015-07-03 07:00:00'],
dtype='datetime64[ns]', freq='H')
To create regular sequences of period or time delta values, the very similar
pd.period_range() and pd.timedelta_range() functions are useful. Here are some
monthly periods:

In[21]: pd.period_range('2015-07', periods=8, freq='M")

Out[21]:
PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12',
'2016-01', '2016-02'],
dtype='int64', freq='M")

And a sequence of durations increasing by an hour:
In[22]: pd.timedelta_range(0, periods=10, freq='H')

Out[22]:
TimedeltaIndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00',
'05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00'],
dtype='timedeltaé4[ns]', freq="H'")

All of these require an understanding of Pandas frequency codes, which we'll summa-
rize in the next section.
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Frequencies and Offsets

Fundamental to these Pandas time series tools is the concept of a frequency or date
offset. Just as we saw the D (day) and H (hour) codes previously, we can use such codes
to specify any desired frequency spacing. Table 3-7 summarizes the main codes
available.

Table 3-7. Listing of Pandas frequency codes

Code Description Code Description

Microseconds

D (alendarday B Business day

W Weekly

M Monthend  BM  Business month end
Q Quarterend BQ  Business quarter end
A Year end BA  Business year end
H Hours BH  Business hours
T Minutes

S Seconds

L Milliseonds

u

N

Nanoseconds

The monthly, quarterly, and annual frequencies are all marked at the end of the speci-
fied period. Adding an S suffix to any of these marks it instead at the beginning
(Table 3-8).

Table 3-8. Listing of start-indexed frequency codes

Code Description
MS  Month start

BMS  Business month start
QS Quarter start

BQS Business quarter start
AS  Yearstart

BAS  Business year start
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Additionally, you can change the month used to mark any quarterly or annual code
by adding a three-letter month code as a suffix:

* Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc.
* A-JAN, BA-FEB, AS-MAR, BAS-APR, etc.

In the same way, you can modify the split-point of the weekly frequency by adding a
three-letter weekday code:

e W-SUN, W-MON, W-TUE, W-WED, etc.

On top of this, codes can be combined with numbers to specify other frequencies. For
example, for a frequency of 2 hours 30 minutes, we can combine the hour (H) and
minute (T) codes as follows:

In[23]: pd.timedelta_range(0, periods=9, freq="2H30T")

Out[23]:

TimedeltaIndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00',

'12:30:00', '15:00:00', '17:30:00', '20:00:00'],
dtype='timedelta64[ns]', freq='150T")

All of these short codes refer to specific instances of Pandas time series offsets, which
can be found in the pd.tseries.offsets module. For example, we can create a busi-
ness day offset directly as follows:

In[24]: from import BDay
pd.date_range('2015-07-01", periods=5, freq=BDay())

Out[24]: DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06',
'2015-07-07'],
dtype='datetime64[ns]', freq='B')
For more discussion of the use of frequencies and offsets, see the “DateOffset objects”
section of the Pandas online documentation.

Resampling, Shifting, and Windowing

The ability to use dates and times as indices to intuitively organize and access data is
an important piece of the Pandas time series tools. The benefits of indexed data in
general (automatic alignment during operations, intuitive data slicing and access,
etc.) still apply, and Pandas provides several additional time series—specific
operations.

We will take a look at a few of those here, using some stock price data as an example.
Because Pandas was developed largely in a finance context, it includes some very spe-
cific tools for financial data. For example, the accompanying pandas-datareader
package (installable via conda install pandas-datareader) knows how to import
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financial data from a number of available sources, including Yahoo finance, Google
Finance, and others. Here we will load Google’s closing price history:

In[25]: from pandas_datareader import data

goog = data.DataReader('GO0G', start='2004"', end='2016",

goog.head()

Out[25]:
Date
2004-08-19
2004-08-20
2004-08-23
2004-08-24
2004-08-25

Open

49.96
50.69
55.32
55.56
52.43

data_source="'google')

High

51.98
54.49
56.68
55.74
53.95

Low

47.93
50.20
54.47
51.73
51.89

For simplicity, we'll use just the closing price:

In[26]: goog = goog['Close']

Close Volume

50.12
54.10
54.65
52.38
52.95

NaN
NaN
NaN
NaN
NaN

We can visualize this using the plot() method, after the normal Matplotlib setup

boilerplate (Figure 3-5):

In[27]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set()

In[28]: goog.plot();
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Figure 3-5. Google’s closing stock price over time

Resampling and converting frequencies

One common need for time series data is resampling at a higher or lower frequency.
You can do this using the resample() method, or the much simpler asfreq()
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method. The primary difference between the two is that resample() is fundamentally
a data aggregation, while asfreq() is fundamentally a data selection.

Taking a look at the Google closing price, let's compare what the two return when we
down-sample the data. Here we will resample the data at the end of business year
(Figure 3-6):

In[29]: goog.plot(alpha=0.5, style='-")
goog.resample('BA').mean().plot(style=":")
goog.asfreq('BA").plot(style="--");
plt.legend(['input', 'resample', 'asfreq'],

loc="upper left');
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Figure 3-6. Resamplings of Google’s stock price

Notice the difference: at each point, resample reports the average of the previous year,
while asfreq reports the value at the end of the year.

For up-sampling, resample() and asfreq() are largely equivalent, though resample
has many more options available. In this case, the default for both methods is to leave
the up-sampled points empty—that is, filled with NA values. Just as with the
pd.fillna() function discussed previously, asfreq() accepts a method argument to
specify how values are imputed. Here, we will resample the business day data at a
daily frequency (i.e., including weekends); see Figure 3-7:

In[30]: fig, ax = plt.subplots(2, sharex=True)
data = goog.iloc[:10]

data.asfreq('D').plot(ax=ax[0], marker='0")
data.asfreq('D', method='bfill").plot(ax=ax[1], style='-0")

data.asfreq('D', method='ffill').plot(ax=ax[1], style='--0")
ax[1].legend(["back-fill", "forward-fill"]);
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Figure 3-7. Comparison between forward-fill and back-fill interpolation

The top panel is the default: non-business days are left as NA values and do not
appear on the plot. The bottom panel shows the differences between two strategies
for filling the gaps: forward-filling and backward-filling.

Time-shifts

Another common time series—specific operation is shifting of data in time. Pandas
has two closely related methods for computing this: shift() and tshift(). In short,
the difference between them is that shift() shifts the data, while tshift() shifts the
index. In both cases, the shift is specified in multiples of the frequency.

Here we will both shift() and tshift() by 900 days (Figure 3-8):

In[31]: fig, ax = plt.subplots(3, sharey=True)

# apply a frequency to the data
goog = goog.asfreq('D', method='pad')

goog.plot(ax=ax[0])
goog.shift(900).plot(ax=ax[1])
goog.tshift(900).plot(ax=ax[2])

# legends and annotations
local_max = pd.to_datetime('2007-11-05")
offset = pd.Timedelta(900, 'D')

ax[0].legend(['input'], loc=2)
ax[0].get_xticklabels()[4].set(weight="heavy', color='red')
ax[0].axvline(local_max, alpha=0.3, color='red')
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ax[1].legend(['shift(900)"'], loc=2)
ax[1].get_xticklabels()[4].set(weight="'heavy', color="red')
ax[1].axvline(local_max + offset, alpha=0.3, color='red')

ax[2].legend(['tshift(900)'], loc=2)
ax[2].get_xticklabels()[1].set(weight="'heavy', color="red')
ax[2].axvline(local_max + offset, alpha=0.3, color='red');

700 = nput
600 5
500
400
00
00
100

o
i 2006 008 2010 012 014
TO0 = chift{200)
&0
500
400
00
200
100

o
00 2006 2008 10 2012 014
TO0 = {ghift{900}
600
500
400
00
200
100

o

2008 10 M1z 014 16 o

Figure 3-8. Comparison between shift and tshift

We see here that shift(900) shifts the data by 900 days, pushing some of it off the
end of the graph (and leaving NA values at the other end), while tshift(900) shifts
the index values by 900 days.

A common context for this type of shift is computing differences over time. For
example, we use shifted values to compute the one-year return on investment for
Google stock over the course of the dataset (Figure 3-9):

In[32]: ROI = 100 * (goog.tshift(-365) / goog - 1)
ROI.plot()
plt.ylabel('% Return on Investment');
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Figure 3-9. Return on investment to present day for Google stock

This helps us to see the overall trend in Google stock: thus far, the most profitable
times to invest in Google have been (unsurprisingly, in retrospect) shortly after its
IPO, and in the middle of the 2009 recession.

Rolling windows

Rolling statistics are a third type of time series—specific operation implemented by
Pandas. These can be accomplished via the rolling() attribute of Series and Data
Frame objects, which returns a view similar to what we saw with the groupby opera-
tion (see “Aggregation and Grouping” on page 158). This rolling view makes available
a number of aggregation operations by default.

For example, here is the one-year centered rolling mean and standard deviation of the
Google stock prices (Figure 3-10):

In[33]: rolling = goog.rolling(365, center=True)

data = pd.DataFrame({'input': goog,
'one-year rolling_mean': rolling.mean(),
'one-year rolling_std': rolling.std()})
ax = data.plot(style=['-', '--", ':'])
ax.lines[0].set_alpha(0.3)
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Figure 3-10. Rolling statistics on Google stock prices

As with groupby operations, the aggregate() and apply() methods can be used for
custom rolling computations.

Where to Learn More

This section has provided only a brief summary of some of the most essential features
of time series tools provided by Pandas; for a more complete discussion, you can refer
to the “Time Series/Date” section of the Pandas online documentation.

Another excellent resource is the textbook Python for Data Analysis by Wes McKin-
ney (O'Reilly, 2012). Although it is now a few years old, it is an invaluable resource on
the use of Pandas. In particular, this book emphasizes time series tools in the context
of business and finance, and focuses much more on particular details of business cal-
endars, time zones, and related topics.

As always, you can also use the IPython help functionality to explore and try further
options available to the functions and methods discussed here. I find this often is the
best way to learn a new Python tool.

Example: Visualizing Seattle Bicycle Counts

As a more involved example of working with some time series data, let’s take a look at
bicycle counts on Seattle’s Fremont Bridge. This data comes from an automated bicy-
cle counter, installed in late 2012, which has inductive sensors on the east and west
sidewalks of the bridge. The hourly bicycle counts can be downloaded from http://
data.seattle.gov/; here is the direct link to the dataset.

As of summer 2016, the CSV can be downloaded as follows:
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In[34]:
# !curl -o FremontBridge.csv
# https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Once this dataset is downloaded, we can use Pandas to read the CSV output into a
DataFrame. We will specify that we want the Date as an index, and we want these
dates to be automatically parsed:

In[35]:
data = pd.read_csv('FremontBridge.csv', index_col='Date', parse_dates=True)
data.head()

Out[35]: Fremont Bridge West Sidewalk \\
Date
2012-10-03 00:00:00
2012-10-03 01:00:00
2012-10-03 02:00:00
2012-10-03 03:00:00
2012-10-03 04:00:00

ANRFL B~ D
[clcNoNoNo)

Fremont Bridge East Sidewalk
Date
2012-10-03 00:00:00
2012-10-03 01:00:00
2012-10-03 02:00:00
2012-10-03 03:00:00
2012-10-03 04:00:00

[ S I e W e]
[clcNoNoNo]

For convenience, we'll further process this dataset by shortening the column names
and adding a “Total” column:

In[36]: data.columns = ['West', 'East']
data[ 'Total'] = data.eval('West + East')

Now let’s take a look at the summary statistics for this data:

In[37]: data.dropna().describe()

out[37]: West East Total
count 33544.000000 33544.000000 33544.000000
mean 61.726568 53.541706 115.268275
std 83.210813 76.380678 144.773983
min 0.000000 0.000000 0.000000
25% 8.000000 7.000000 16.000000
50% 33.000000 28.000000 64.000000
75% 80.000000 66.000000 151.000000
max 825.000000 717.000000 1186.000000
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Visualizing the data

We can gain some insight into the dataset by visualizing it. Let’s start by plotting the
raw data (Figure 3-11):

In[38]: %matplotlib inline
import seaborn; seaborn.set()

In[39]: data.plot()
plt.ylabel('Hourly Bicycle Count');
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Figure 3-11. Hourly bicycle counts on Seattle’s Fremont bridge

The ~25,000 hourly samples are far too dense for us to make much sense of. We can
gain more insight by resampling the data to a coarser grid. Lets resample by week
(Figure 3-12):
In[40]: weekly = data.resample('W').sum()

weekly.plot(style=[":", '--', '-'])

plt.ylabel( 'Weekly bicycle count');
This shows us some interesting seasonal trends: as you might expect, people bicycle
more in the summer than in the winter, and even within a particular season the bicy-
cle use varies from week to week (likely dependent on weather; see “In Depth: Linear
Regression” on page 390 where we explore this further).
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Figure 3-12. Weekly bicycle crossings of Seattle’s Fremont bridge

Another way that comes in handy for aggregating the data is to use a rolling mean,
utilizing the pd.rolling_mean() function. Here we’ll do a 30-day rolling mean of our
data, making sure to center the window (Figure 3-13):

In[41]: daily = data.resample('D').sum()

daily.rolling(30, center=True).sum().plot(style=[':", '--', '"-'])
plt.ylabel('mean hourly count');
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Figure 3-13. Rolling mean of weekly bicycle counts
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The jaggedness of the result is due to the hard cutoff of the window. We can get a
smoother version of a rolling mean using a window function—for example, a Gaus-
sian window. The following code (visualized in Figure 3-14) specifies both the width
of the window (we chose 50 days) and the width of the Gaussian within the window
(we chose 10 days):

In[42]:

daily.rolling(50, center=True,

win_type='gaussian').sum(std=10).plot(style=[":", '--', '-']);
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Figure 3-14. Gaussian smoothed weekly bicycle counts

Digging into the data

While the smoothed data views in Figure 3-14 are useful to get an idea of the general
trend in the data, they hide much of the interesting structure. For example, we might
want to look at the average traffic as a function of the time of day. We can do this
using the GroupBy functionality discussed in “Aggregation and Grouping” on page
158 (Figure 3-15):
In[43]: by_time = data.groupby(data.index.time).mean()
hourly_ticks = 4 * 60 * 60 * np.arange(6)
by_time.plot(xticks=hourly_ticks, style=[':"', '--', '-']);
The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the
morning and 5:00 in the evening. This is likely evidence of a strong component of
commuter traffic crossing the bridge. This is further evidenced by the differences
between the western sidewalk (generally used going toward downtown Seattle),
which peaks more strongly in the morning, and the eastern sidewalk (generally used
going away from downtown Seattle), which peaks more strongly in the evening.
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Figure 3-15. Average hourly bicycle counts

We also might be curious about how things change based on the day of the week.
Again, we can do this with a simple groupby (Figure 3-16):
In[44]: by_weekday = data.groupby(data.index.dayofweek).mean()

by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']
by _weekday.plot(style=[':", '--', '-'1);

Mon Tues Wed Thurs Fri Sat Sun

Figure 3-16. Average daily bicycle counts

This shows a strong distinction between weekday and weekend totals, with around
twice as many average riders crossing the bridge on Monday through Friday than on
Saturday and Sunday.
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With this in mind, lets do a compound groupby and look at the hourly trend on
weekdays versus weekends. We'll start by grouping by both a flag marking the week-
end, and the time of day:

In[45]: weekend = np.where(data.index.weekday < 5, 'Weekday', 'Weekend')
by_time = data.groupby([weekend, data.index.time]).mean()
Now we'll use some of the Matplotlib tools described in “Multiple Subplots” on page
262 to plot two panels side by side (Figure 3-17):
In[46]: import as

fig, ax = plt.subplots(1l, 2, figsize=(14, 5))
by_time.ix[ 'Weekday'].plot(ax=ax[0], title='Weekdays',

xticks=hourly_ticks, style=[':"', '--', '-'])
by_time.ix[ 'Weekend'].plot(ax=ax[1], title='Weekends',
xticks=hourly_ticks, style=[':', '--', '"-'1);
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Figure 3-17. Average hourly bicycle counts by weekday and weekend

The result is very interesting: we see a bimodal commute pattern during the work
week, and a unimodal recreational pattern during the weekends. It would be interest-
ing to dig through this data in more detail, and examine the effect of weather, temper-
ature, time of year, and other factors on people’s commuting patterns; for further
discussion, see my blog post “Is Seattle Really Seeing an Uptick In Cycling?”, which
uses a subset of this data. We will also revisit this dataset in the context of modeling in
“In Depth: Linear Regression” on page 390.

High-Performance Pandas: eval() and query()

As we've already seen in previous chapters, the power of the PyData stack is built
upon the ability of NumPy and Pandas to push basic operations into C via an intu-
itive syntax: examples are vectorized/broadcasted operations in NumPy, and
grouping-type operations in Pandas. While these abstractions are efficient and effec-
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tive for many common use cases, they often rely on the creation of temporary inter-
mediate objects, which can cause undue overhead in computational time and
memory use.

As of version 0.13 (released January 2014), Pandas includes some experimental tools
that allow you to directly access C-speed operations without costly allocation of inter-
mediate arrays. These are the eval() and query() functions, which rely on the
Numexpr package. In this notebook we will walk through their use and give some
rules of thumb about when you might think about using them.

Motivating query() and eval(): Compound Expressions

We've seen previously that NumPy and Pandas support fast vectorized operations; for
example, when you are adding the elements of two arrays:

In[1]: import as
rng = np.random.RandomState(42)
x = rng.rand(1E6)
y = rng.rand(1E6)
%timeilt x + y

100 loops, best of 3: 3.39 ms per loop

As discussed in “Computation on NumPy Arrays: Universal Functions” on page 50,
this is much faster than doing the addition via a Python loop or comprehension:

In[2]:
%timeilt np.fromiter((xi + yi for xi, yi in zip(x, y)),
dtype=x.dtype, count=len(x))

1 loop, best of 3: 266 ms per loop

But this abstraction can become less efficient when you are computing compound
expressions. For example, consider the following expression:

In[3]: mask = (x > 0.5) & (y < 0.5)
Because NumPy evaluates each subexpression, this is roughly equivalent to the
following:

In[4]: tmpl = (x > 0.5)
tmp2 = (y < 0.5)
mask = tmpl & tmp2

In other words, every intermediate step is explicitly allocated in memory. If the x and y
arrays are very large, this can lead to significant memory and computational over-
head. The Numexpr library gives you the ability to compute this type of compound
expression element by element, without the need to allocate full intermediate arrays.
The Numexpr documentation has more details, but for the time being it is sufficient
to say that the library accepts a string giving the NumPy-style expression youd like to
compute:
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In[5]: import
mask_numexpr = numexpr.evaluate('(x > 0.5) & (y < 0.5)")
np.allclose(mask, mask_numexpr)

Out[5]: True

The benefit here is that Numexpr evaluates the expression in a way that does not use
full-sized temporary arrays, and thus can be much more efficient than NumPy, espe-
cially for large arrays. The Pandas eval() and query() tools that we will discuss here
are conceptually similar, and depend on the Numexpr package.

pandas.eval() for Efficient Operations

The eval() function in Pandas uses string expressions to efficiently compute opera-
tions using DataFrames. For example, consider the following DataFrames:

In[6]: import as
nrows, ncols = 100000, 100
rng = np.random.RandomState(42)
df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))
for 1 in range(4))

To compute the sum of all four DataFrames using the typical Pandas approach, we can
just write the sum:

In[7]: %timeit df1 + df2 + df3 + df4
10 loops, best of 3: 87.1 ms per loop

We can compute the same result via pd.eval by constructing the expression as a
string:

In[8]: %timeit pd.eval('df1 + df2 + df3 + df4"')
10 loops, best of 3: 42.2 ms per loop

The eval() version of this expression is about 50% faster (and uses much less mem-
ory), while giving the same result:

In[9]: np.allclose(df1 + df2 + df3 + df4,
pd.eval('df1 + df2 + df3 + df4'))

Out[9]: True

Operations supported by pd.eval()

As of Pandas v0.16, pd.eval() supports a wide range of operations. To demonstrate
these, we'll use the following integer DataFrames:

In[10]: df1, df2, df3, df4, df5 = (pd.DataFrame(rng.randint(0, 1000, (100, 3)))
for 1 in range(5))

Arithmetic operators. pd.eval() supports all arithmetic operators. For example:
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In[11]: resultl = -df1 * df2 / (df3 + df4) - df5
result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5')
np.allclose(resultl, result2)

Out[11]: True

Comparison operators. pd.eval() supports all comparison operators, including
chained expressions:

In[12]: resultl = (df1 < df2) & (df2 <= df3) & (df3 != df4)
result2 = pd.eval('df1l < df2 <= df3 != df4"')
np.allclose(resultl, result2)

Out[12]: True

Bitwise operators. pd.eval() supports the & and | bitwise operators:

In[13]: resultl = (dfl1 < 0.5) & (df2 < 0.5) | (df3 < df4)
result2 = pd.eval('(df1l < 0.5) & (df2 < 0.5) | (df3 < df4)")
np.allclose(resultl, result2)

Out[13]: True
In addition, it supports the use of the literal and and or in Boolean expressions:

In[14]: result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)"')
np.allclose(resultl, result3)

Out[14]: True

Object attributes and indices. pd.eval() supports access to object attributes via the
obj.attr syntax, and indexes via the obj[index] syntax:
In[15]: resultl = df2.T[0] + df3.1iloc[1]

result2 = pd.eval('df2.7[0] + df3.iloc[1]")
np.allclose(resultl, result2)

Out[15]: True

Other operations. Other operations, such as function calls, conditional statements,
loops, and other more involved constructs, are currently not implemented in
pd.eval(). If youd like to execute these more complicated types of expressions, you
can use the Numexpr library itself.

DataFrame.eval() for Column-Wise Operations

Just as Pandas has a top-level pd.eval() function, DataFrames have an eval()
method that works in similar ways. The benefit of the eval() method is that columns
can be referred to by name. We'll use this labeled array as an example:

In[16]: df = pd.DataFrame(rng.rand(1000, 3), columns=['A"', 'B', 'C'])
df.head()
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Out[16]: A B C
0.375506 0.406939 0.069938
0.069087 0.235615 0.154374
0.677945 0.433839 0.652324
0.264038 0.808055 0.347197
0.589161 0.252418 0.557789

A wWwNERL, O

Using pd.eval() as above, we can compute expressions with the three columns like
this:
In[17]: resultl = (df['A'] + df['B']) / (df['C'] - 1)

result2 = pd.eval("(df.A + df.B) / (df.C - 1)")
np.allclose(resultl, result2)

Out[17]: True

The DataFrame.eval() method allows much more succinct evaluation of expressions
with the columns:

In[18]: result3 = df.eval('(A + B) / (C - 1)")
np.allclose(resultl, result3)

Out[18]: True

Notice here that we treat column names as variables within the evaluated expression,
and the result is what we would wish.

Assignment in DataFrame.eval()

In addition to the options just discussed, DataFrame.eval() also allows assignment
to any column. Let’s use the DataFrame from before, which has columns 'A’, 'B', and
'c':

In[19]: df.head()

Out[19]: A B C
0.375506 0.406939 0.069938
0.069087 0.235615 0.154374
0.677945 0.433839 0.652324
0.264038 0.808055 0.347197
4 0.589161 0.252418 0.557789

w N R, o

We can use df.eval() to create a new column 'D' and assign to it a value computed
from the other columns:

In[20]: df.eval('D = (A + B) / C', inplace=True)

df .head()
out[20]: A B C D
0 0.375506 0.406939 0.069938 11.187620
1 0.069087 0.235615 0.154374 1.973796
2 0.677945 0.433839 0.652324 1.704344
3 0.264038 0.808055 0.347197  3.087857
4 0.589161 0.252418 0.557789  1.508776
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In the same way, any existing column can be modified:

In[21]: df.eval('D = (A - B) / C', inplace=True)
df.head()

Out[21]: A B C D
0 0.375506 0.406939 0.069938 -0.449425

1 0.069087 0.235615 0.154374 -1.078728

2 0.677945 0.433839 0.652324 0.374209

3 0.264038 0.808055 0.347197 -1.566886

4 0.589161 0.252418 0.557789 0.603708

Local variables in DataFrame.eval()

The DataFrame.eval() method supports an additional syntax that lets it work with
local Python variables. Consider the following:
In[22]: column_mean = df.mean(1)
resultl = df['A'] + column_mean

result2 = df.eval('A + @column_mean')
np.allclose(resultl, result2)

Out[22]: True

The @ character here marks a variable name rather than a column name, and lets you
efficiently evaluate expressions involving the two “namespaces”: the namespace of
columns, and the namespace of Python objects. Notice that this @ character is only
supported by the DataFrame.eval() method, not by the pandas.eval() function,
because the pandas.eval() function only has access to the one (Python) namespace.

DataFrame.query() Method

The DataFrame has another method based on evaluated strings, called the query()
method. Consider the following:
In[23]: resultl = df[(df.A < 0.5) & (df.B < 0.5)]

result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]")
np.allclose(resultl, result2)

Out[23]: True
As with the example used in our discussion of DataFrame.eval(), this is an expres-
sion involving columns of the DataFrame. It cannot be expressed using the Data

Frame.eval() syntax, however! Instead, for this type of filtering operation, you can
use the query() method:

In[24]: result2 = df.query('A < 0.5 and B < 0.5")
np.allclose(resultl, result2)

Out[24]: True
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In addition to being a more efficient computation, compared to the masking expres-
sion this is much easier to read and understand. Note that the query() method also
accepts the @ flag to mark local variables:
In[25]: Cmean = df['C'].mean()
resultl = df[(df.A < Cmean) & (df.B < Cmean)]

result2 = df.query('A < @Cmean and B < @Cmean')
np.allclose(resultl, result2)

Out[25]: True

Performance: When to Use These Functions

When considering whether to use these functions, there are two considerations: com-
putation time and memory use. Memory use is the most predictable aspect. As already
mentioned, every compound expression involving NumPy arrays or Pandas Data
Frames will result in implicit creation of temporary arrays: For example, this:

In[26]: x = df[(df.A < 0.5) & (df.B < 0.5)]

is roughly equivalent to this:

In[27]: tmpl = df.A < 0.5
tmp2 = df.B < 0.5
tmp3 = tmpl & tmp2
x = df[tmp3]

If the size of the temporary DataFrames is significant compared to your available sys-
tem memory (typically several gigabytes), then it's a good idea to use an eval() or
query() expression. You can check the approximate size of your array in bytes using
this:

In[28]: df.values.nbytes
Out[28]: 32000

On the performance side, eval() can be faster even when you are not maxing out
your system memory. The issue is how your temporary DataFrames compare to the
size of the L1 or L2 CPU cache on your system (typically a few megabytes in 2016); if
they are much bigger, then eval() can avoid some potentially slow movement of val-
ues between the different memory caches. In practice, I find that the difference in
computation time between the traditional methods and the eval/query method is
usually not significant—if anything, the traditional method is faster for smaller
arrays! The benefit of eval/query is mainly in the saved memory, and the sometimes
cleaner syntax they offer.

We've covered most of the details of eval() and query() here; for more information
on these, you can refer to the Pandas documentation. In particular, different parsers
and engines can be specified for running these queries; for details on this, see the dis-
cussion within the “Enhancing Performance” section.
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Further Resources

In this chapter, we've covered many of the basics of using Pandas effectively for data
analysis. Still, much has been omitted from our discussion. To learn more about Pan-
das, I recommend the following resources:

Pandas online documentation
This is the go-to source for complete documentation of the package. While the
examples in the documentation tend to be small generated datasets, the descrip-
tion of the options is complete and generally very useful for understanding the
use of various functions.

Python for Data Analysis

Written by Wes McKinney (the original creator of Pandas), this book contains
much more detail on the package than we had room for in this chapter. In partic-
ular, he takes a deep dive into tools for time series, which were his bread and but-
ter as a financial consultant. The book also has many entertaining examples of
applying Pandas to gain insight from real-world datasets. Keep in mind, though,
that the book is now several years old, and the Pandas package has quite a few
new features that this book does not cover (but be on the lookout for a new edi-
tion in 2017).

Pandas on Stack Overflow
Pandas has so many users that any question you have has likely been asked and
answered on Stack Overflow. Using Pandas is a case where some Google-Fu is
your best friend. Simply go to your favorite search engine and type in the ques-
tion, problem, or error youre coming across—more than likely you'll find your
answer on a Stack Overflow page.

Pandas on PyVideo
From PyCon to SciPy to PyData, many conferences have featured tutorials from
Pandas developers and power users. The PyCon tutorials in particular tend to be
given by very well-vetted presenters.

My hope is that, by using these resources, combined with the walk-through given in
this chapter, you'll be poised to use Pandas to tackle any data analysis problem you
come across!
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CHAPTER 4
Visualization with Matplotlib

We'll now take an in-depth look at the Matplotlib tool for visualization in Python.
Matplotlib is a multiplatform data visualization library built on NumPy arrays, and
designed to work with the broader SciPy stack. It was conceived by John Hunter in
2002, originally as a patch to IPython for enabling interactive MATLAB-style plotting
via gnuplot from the IPython command line. IPython’s creator, Fernando Perez, was
at the time scrambling to finish his PhD, and let John know he wouldn’t have time to
review the patch for several months. John took this as a cue to set out on his own, and
the Matplotlib package was born, with version 0.1 released in 2003. It received an
early boost when it was adopted as the plotting package of choice of the Space Tele-
scope Science Institute (the folks behind the Hubble Telescope), which financially
supported Matplotlib’s development and greatly expanded its capabilities.

One of Matplotlib’s most important features is its ability to play well with many oper-
ating systems and graphics backends. Matplotlib supports dozens of backends and
output types, which means you can count on it to work regardless of which operating
system you are using or which output format you wish. This cross-platform,
everything-to-everyone approach has been one of the great strengths of Matplotlib. It
has led to a large userbase, which in turn has led to an active developer base and Mat-
plotlib’s powerful tools and ubiquity within the scientific Python world.

In recent years, however, the interface and style of Matplotlib have begun to show
their age. Newer tools like ggplot and ggvis in the R language, along with web visuali-
zation toolkits based on D3js and HTML5 canvas, often make Matplotlib feel clunky
and old-fashioned. Still, ’'m of the opinion that we cannot ignore Matplotlibs
strength as a well-tested, cross-platform graphics engine. Recent Matplotlib versions
make it relatively easy to set new global plotting styles (see “Customizing Matplotlib:
Configurations and Stylesheets” on page 282), and people have been developing new
packages that build on its powerful internals to drive Matplotlib via cleaner, more
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modern APIs—for example, Seaborn (discussed in “Visualization with Seaborn” on
page 311), ggplot, HoloViews, Altair, and even Pandas itself can be used as wrappers
around Matplotlibs API. Even with wrappers like these, it is still often useful to dive
into Matplotlib’s syntax to adjust the final plot output. For this reason, I believe that
Matplotlib itself will remain a vital piece of the data visualization stack, even if new
tools mean the community gradually moves away from using the Matplotlib API
directly.

General Matplotlib Tips

Before we dive into the details of creating visualizations with Matplotlib, there are a
few useful things you should know about using the package.

Importing matplotlib

Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will
use some standard shorthands for Matplotlib imports:

In[1]: import as
import as

The plt interface is what we will use most often, as we'll see throughout this chapter.

Setting Styles

We will use the plt.style directive to choose appropriate aesthetic styles for our fig-
ures. Here we will set the classic style, which ensures that the plots we create use the
classic Matplotlib style:

In[2]: plt.style.use('classic')

Throughout this section, we will adjust this style as needed. Note that the stylesheets
used here are supported as of Matplotlib version 1.5; if you are using an earlier ver-
sion of Matplotlib, only the default style is available. For more information on style-
sheets, see “Customizing Matplotlib: Configurations and Stylesheets” on page 282.

show() or No show()? How to Display Your Plots

A visualization you can't see won't be of much use, but just how you view your Mat-
plotlib plots depends on the context. The best use of Matplotlib differs depending on
how you are using it; roughly, the three applicable contexts are using Matplotlib in a
script, in an IPython terminal, or in an IPython notebook.
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Plotting from a script

If you are using Matplotlib from within a script, the function plt.show() is your
friend. plt.show() starts an event loop, looks for all currently active figure objects,
and opens one or more interactive windows that display your figure or figures.

So, for example, you may have a file called myplot.py containing the following:

# oo file: myplot.py ------
import as
import as

x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))

plt.show()

You can then run this script from the command-line prompt, which will result in a
window opening with your figure displayed:

$ python myplot.py

The plt.show() command does a lot under the hood, as it must interact with your
system’s interactive graphical backend. The details of this operation can vary greatly
from system to system and even installation to installation, but Matplotlib does its
best to hide all these details from you.

One thing to be aware of: the plt.show() command should be used only once per
Python session, and is most often seen at the very end of the script. Multiple show()
commands can lead to unpredictable backend-dependent behavior, and should
mostly be avoided.

Plotting from an IPython shell

It can be very convenient to use Matplotlib interactively within an IPython shell (see
Chapter 1). IPython is built to work well with Matplotlib if you specify Matplotlib
mode. To enable this mode, you can use the %matplotlib magic command after start-
ing ipython:

In [1]: %matplotlib
Using matplotlib backend: TkAgg

In [2]: import as

At this point, any plt plot command will cause a figure window to open, and further
commands can be run to update the plot. Some changes (such as modifying proper-
ties of lines that are already drawn) will not draw automatically; to force an update,
use plt.draw(). Using plt.show() in Matplotlib mode is not required.
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Plotting from an IPython notebook

The IPython notebook is a browser-based interactive data analysis tool that can com-
bine narrative, code, graphics, HTML elements, and much more into a single exe-
cutable document (see Chapter 1).

Plotting interactively within an IPython notebook can be done with the %¥matplotlib
command, and works in a similar way to the IPython shell. In the IPython notebook,
you also have the option of embedding graphics directly in the notebook, with two
possible options:

o %matplotlib notebook will lead to interactive plots embedded within the
notebook
o %matplotlib inline will lead to static images of your plot embedded in the
notebook
For this book, we will generally opt for %matplotlib inline:
In[3]: %matplotlib inline

After you run this command (it needs to be done only once per kernel/session), any
cell within the notebook that creates a plot will embed a PNG image of the resulting
graphic (Figure 4-1):

In[4]: import as
x = np.linspace(0, 10, 100)

fig = plt.figure()
plt.plot(x, np.sin(x), '-")
plt.plot(x, np.cos(x), '--');
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Figure 4-1. Basic plotting example
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Saving Figures to File

One nice feature of Matplotlib is the ability to save figures in a wide variety of for-
mats. You can save a figure using the savefig() command. For example, to save the
previous figure as a PNG file, you can run this:

In[5]: fig.savefig('my_figure.png')

We now have a file called my_figure.png in the current working directory:
In[6]: !'ls -1h my_figure.png
-rw-r--r-- 1 jakevdp staff 16K Aug 11 10:59 my_figure.png

To confirm that it contains what we think it contains, let'’s use the IPython Image
object to display the contents of this file (Figure 4-2):

In[7]: from import Image
Image('my_figure.png')
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Figure 4-2. PNG rendering of the basic plot

In savefig(), the file format is inferred from the extension of the given filename.
Depending on what backends you have installed, many different file formats are
available. You can find the list of supported file types for your system by using the
following method of the figure canvas object:

In[8]: fig.canvas.get_supported_filetypes()

Out[8]: {'eps': 'Encapsulated Postscript',
'jpeg': 'Joint Photographic Experts Group',
'jpg': 'Joint Photographic Experts Group',
'pdf': 'Portable Document Format',
'pgf': 'PGF code for LaTeX',
'png': 'Portable Network Graphics',
'ps': 'Postscript',
'raw': 'Raw RGBA bitmap',
'rgba': 'Raw RGBA bitmap',
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svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'tif': 'Tagged Image File Format',
'tiff': 'Tagged Image File Format'}

Note that when saving your figure, it's not necessary to use plt.show() or related
commands discussed earlier.

Two Interfaces for the Price of One

A potentially confusing feature of Matplotlib is its dual interfaces: a convenient
MATLAB-style state-based interface, and a more powerful object-oriented interface.
We'll quickly highlight the differences between the two here.

MATLAB-style interface

Matplotlib was originally written as a Python alternative for MATLAB users, and
much of its syntax reflects that fact. The MATLAB-style tools are contained in the
pyplot (plt) interface. For example, the following code will probably look quite
familiar to MATLAB users (Figure 4-3):

In[9]: plt.figure() # create a plot figure

# create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

# create the second panel and set current axis
plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x));

10

05

Figure 4-3. Subplots using the MATLAB-style interface

It's important to note that this interface is stateful: it keeps track of the “current” figure
and axes, which are where all plt commands are applied. You can get a reference to
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these using the plt.gcf() (get current figure) and plt.gca() (get current axes)
routines.

While this stateful interface is fast and convenient for simple plots, it is easy to run
into problems. For example, once the second panel is created, how can we go back
and add something to the first? This is possible within the MATLAB-style interface,
but a bit clunky. Fortunately, there is a better way.

Object-oriented interface

The object-oriented interface is available for these more complicated situations, and
for when you want more control over your figure. Rather than depending on some
notion of an “active” figure or axes, in the object-oriented interface the plotting func-
tions are methods of explicit Figure and Axes objects. To re-create the previous plot
using this style of plotting, you might do the following (Figure 4-4):

In[10]: # First create a grid of plots
# ax will be an array of two Axes objects
fig, ax = plt.subplots(2)

# Call plot() method on the appropriate object
ax[0].plot(x, np.sin(x))
ax[1].plot(x, np.cos(x));

10

05

0o f

-1.0
10

05

00

=05

-1.0

o 2 4 6 B 10

Figure 4-4. Subplots using the object-oriented interface

For more simple plots, the choice of which style to use is largely a matter of prefer-
ence, but the object-oriented approach can become a necessity as plots become more
complicated. Throughout this chapter, we will switch between the MATLAB-style
and object-oriented interfaces, depending on what is most convenient. In most cases,
the difference is as small as switching plt.plot() to ax.plot(), but there are a few
gotchas that we will highlight as they come up in the following sections.
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Simple Line Plots

Perhaps the simplest of all plots is the visualization of a single function y = f(x). Here
we will take a first look at creating a simple plot of this type. As with all the following
sections, we'll start by setting up the notebook for plotting and importing the func-
tions we will use:

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-whitegrid')
import as

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest
form, a figure and axes can be created as follows (Figure 4-5):

In[2]: fig = plt.figure()
ax = plt.axes()
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Figure 4-5. An empty gridded axes

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a
single container that contains all the objects representing axes, graphics, text, and
labels. The axes (an instance of the class plt.Axes) is what we see above: a bounding
box with ticks and labels, which will eventually contain the plot elements that make
up our visualization. Throughout this book, we'll commonly use the variable name
fig to refer to a figure instance, and ax to refer to an axes instance or group of axes
instances.

Once we have created an axes, we can use the ax.plot function to plot some data.
Let’s start with a simple sinusoid (Figure 4-6):

In[3]: fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x));
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Figure 4-6. A simple sinusoid

Alternatively, we can use the pylab interface and let the figure and axes be created for
us in the background (Figure 4-7; see “Two Interfaces for the Price of One” on page

222 for a discussion of these two interfaces):

In[4]: plt.plot(x, np.sin(x));
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Figure 4-7. A simple sinusoid via the object-oriented interface

If we want to create a single figure with multiple lines, we can simply call the plot
function multiple times (Figure 4-8):

In[5]: plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x));
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Figure 4-8. Over-plotting multiple lines

That’s all there is to plotting simple functions in Matplotlib! We'll now dive into some
more details about how to control the appearance of the axes and lines.

Adjusting the Plot: Line Colors and Styles

The first adjustment you might wish to make to a plot is to control the line colors and
styles. The plt.plot() function takes additional arguments that can be used to spec-
ify these. To adjust the color, you can use the color keyword, which accepts a string
argument representing virtually any imaginable color. The color can be specified in a
variety of ways (Figure 4-9):

In[6]:

plt.plot(x, np.sin(x - 0), color='blue') # specify color by name
plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk)
plt.plot(x, np.sin(x - 2), color='0.75") # Grayscale between 0 and 1
plt.plot(x, np.sin(x - 3), color='#FFDD44") # Hex code (RRGGBB from 00 to FF)

plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values @ and 1
plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported

‘ /,. \

Figure 4-9. Controlling the color of plot elements
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If no color is specified, Matplotlib will automatically cycle through a set of default
colors for multiple lines.

Similarly, you can adjust the line style using the linestyle keyword (Figure 4-10):

In[7]: plt.plot(x, x + 0, linestyle='solid')
plt.plot(x, x + 1, linestyle='"dashed")
plt.plot(x, x + 2, linestyle='dashdot')
plt.plot(x, x + 3, linestyle='dotted');

# For short, you can use the following codes:
plt.plot(x, x + 4, linestyle='-') # solid
plt.plot(x, x + 5, linestyle='--') # dashed
plt.plot(x, x + 6, linestyle='-.') # dashdot
plt.plot(x, x + 7, linestyle=':"'); # dotted

Figure 4-10. Example of various line styles

If you would like to be extremely terse, these linestyle and color codes can be com-
bined into a single nonkeyword argument to the plt.plot() function (Figure 4-11):

In[8]: plt.plot(x, x + 0, '-g') # solid green
plt.plot(x, x + 1, '--c') # dashed cyan
plt.plot(x, x + 2, '-.k') # dashdot black
plt.plot(x, x + 3, ':r'); # dotted red
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Figure 4-11. Controlling colors and styles with the shorthand syntax

These single-character color codes reflect the standard abbreviations in the RGB
(Red/Green/Blue) and CMYK (Cyan/Magenta/Yellow/blacK) color systems, com-
monly used for digital color graphics.

There are many other keyword arguments that can be used to fine-tune the appear-
ance of the plot; for more details, I'd suggest viewing the docstring of the plt.plot()
function using IPython’s help tools (see “Help and Documentation in IPython” on
page 3).

Adjusting the Plot: Axes Limits

Matplotlib does a decent job of choosing default axes limits for your plot, but some-
times it’s nice to have finer control. The most basic way to adjust axis limits is to use
the plt.x1im() and plt.ylim() methods (Figure 4-12):

In[9]: plt.plot(x, np.sin(x))

plt.xlim(-1, 11)
plt.ylim(-1.5, 1.5);
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Figure 4-12. Example of setting axis limits
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If for some reason youd like either axis to be displayed in reverse, you can simply
reverse the order of the arguments (Figure 4-13):

In[10]: plt.plot(x, np.sin(x))

plt.xlim(10, 0)
plt.ylim(1.2, -1.2);

a0

10 B L] 4 2 L]

Figure 4-13. Example of reversing the y-axis

A useful related method is plt.axis() (note here the potential confusion between
axes with an e, and axis with an 7). The plt.axis() method allows you to set the x
and y limits with a single call, by passing a list that specifies [xmin, xmax, ymin,
ymax] (Figure 4-14):

In[11]: plt.plot(x, np.sin(x))
plt.axis([-1, 11, -1.5, 1.5]);
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Figure 4-14. Setting the axis limits with plt.axis
The plt.axis() method goes even beyond this, allowing you to do things like auto-
matically tighten the bounds around the current plot (Figure 4-15):

In[12]: plt.plot(x, np.sin(x))
plt.axis('tight');
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Figure 4-15. Example of a “tight” layout

It allows even higher-level specifications, such as ensuring an equal aspect ratio so
that on your screen, one unit in x is equal to one unit in y (Figure 4-16):

In[13]: plt.plot(x, np.sin(x))
plt.axis('equal');

Figure 4-16. Example of an “equal” layout, with units matched to the output resolution

For more information on axis limits and the other capabilities of the plt.axis()
method, refer to the plt.axis() docstring.

Labeling Plots

As the last piece of this section, we'll briefly look at the labeling of plots: titles, axis
labels, and simple legends.

Titles and axis labels are the simplest such labels—there are methods that can be used
to quickly set them (Figure 4-17):

In[14]: plt.plot(x, np.sin(x))
plt.title("A Sine Curve")
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plt.xlabel("x")
plt.ylabel("sin(x)");

A Sine Curve
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Figure 4-17. Examples of axis labels and title

You can adjust the position, size, and style of these labels using optional arguments to
the function. For more information, see the Matplotlib documentation and the doc-
strings of each of these functions.

When multiple lines are being shown within a single axes, it can be useful to create a
plot legend that labels each line type. Again, Matplotlib has a built-in way of quickly
creating such a legend. It is done via the (you guessed it) plt.legend() method.
Though there are several valid ways of using this, I find it easiest to specify the label
of each line using the label keyword of the plot function (Figure 4-18):

In[15]: plt.plot(x, np.sin(x), '-g', label='sin(x)")

plt.plot(x, np.cos(x), ':b', label='cos(x)')
plt.axis('equal')

plt.legend();

— sinfx)
cos(x)

Figure 4-18. Plot legend example
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As you can see, the plt.legend() function keeps track of the line style and color, and
matches these with the correct label. More information on specifying and formatting
plot legends can be found in the plt.legend() docstring; additionally, we will cover
some more advanced legend options in “Customizing Plot Legends” on page 249.

Matplotlib Gotchas

While most plt functions translate directly to ax methods (such as plt.plot() -
ax.plot(), plt.legend() — ax.legend(), etc.), this is not the case for all com-
mands. In particular, functions to set limits, labels, and titles are slightly modified.
For transitioning between MATLAB-style functions and object-oriented methods,
make the following changes:

e plt.xlabel() —» ax.set_xlabel()
e plt.ylabel() > ax.set_ylabel()
e plt.x1lim() — ax.set_xLlim()
e plt.ylim() — ax.set_ylim()
o plt.title() » ax.set_title()
In the object-oriented interface to plotting, rather than calling these functions indi-

vidually, it is often more convenient to use the ax.set() method to set all these prop-
erties at once (Figure 4-19):

In[16]: ax = plt.axes()
ax.plot(x, np.sin(x))
ax.set(xlim=(0, 10), ylim=(-2, 2),
xlabel="x", ylabel='sin(x)',
title='A Simple Plot');

A Simple Plot

Figure 4-19. Example of using ax.set to set multiple properties at once
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Simple Scatter Plots

Another commonly used plot type is the simple scatter plot, a close cousin of the line
plot. Instead of points being joined by line segments, here the points are represented
individually with a dot, circle, or other shape. We'll start by setting up the notebook

for plotting and importing the functions we will use:

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-whitegrid')
import as

Scatter Plots with plt.plot

In the previous section, we looked at plt.plot/ax.plot to produce line plots. It turns
out that this same function can produce scatter plots as well (Figure 4-20):

In[2]: x = np.linspace(0, 10, 30)
y = np.sin(x)
plt.plot(x, y, 'o', color='black');
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Figure 4-20. Scatter plot example

The third argument in the function call is a character that represents the type of sym-

bol used for the plotting. Just as you can specify options such as ' -

and '--' to con-

trol the line style, the marker style has its own set of short string codes. The full list of
available symbols can be seen in the documentation of plt.plot, or in Matplotlibs
online documentation. Most of the possibilities are fairly intuitive, and we’ll show a

number of the more common ones here (Figure 4-21):

In[3]: rng = np.random.RandomState(0)
for marker in ['0', '.', ',', 'x',
plt.plot(rng.rand(5), rng.rand(5), marker,

label="marker="{0}"'".format(marker))

+
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plt.legend(numpoints=1)
plt.x1lim(0, 1.8);
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Figure 4-21. Demonstration of point numbers

For even more possibilities, these character codes can be used together with line and
color codes to plot points along with a line connecting them (Figure 4-22):

In[4]: plt.plot(x, vy, '-ok'); # line (-), circle marker (o), black (k)

05

0.0

Figure 4-22. Combining line and point markers

Additional keyword arguments to plt.plot specify a wide range of properties of the
lines and markers (Figure 4-23):

In[5]: plt.plot(x, y, '-p', color='gray',
markersize=15, linewidth=4,
markerfacecolor="white',
markeredgecolor="gray',
markeredgewidth=2)

plt.ylim(-1.2, 1.2);
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Figure 4-23. Customizing line and point numbers

This type of flexibility in the plt.plot function allows for a wide variety of possible
visualization options. For a full description of the options available, refer to the
plt.plot documentation.

Scatter Plots with plt.scatter

A second, more powerful method of creating scatter plots is the plt.scatter func-
tion, which can be used very similarly to the plt.plot function (Figure 4-24):

In[6]: plt.scatter(x, y, marker='0");
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Figure 4-24. A simple scatter plot

The primary difference of plt.scatter from plt.plot is that it can be used to create
scatter plots where the properties of each individual point (size, face color, edge color,
etc.) can be individually controlled or mapped to data.

Let’s show this by creating a random scatter plot with points of many colors and sizes.
In order to better see the overlapping results, we'll also use the alpha keyword to
adjust the transparency level (Figure 4-25):
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In[7]: rng = np.random.RandomState(0)
x = rng.randn(1600)
y = rng.randn(160)
colors = rng.rand(100)
sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
cmap="viridis')
plt.colorbar(); # show color scale
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B

Figure 4-25. Changing size, color, and transparency in scatter points

Notice that the color argument is automatically mapped to a color scale (shown here
by the colorbar() command), and the size argument is given in pixels. In this way,
the color and size of points can be used to convey information in the visualization, in
order to illustrate multidimensional data.

For example, we might use the Iris data from Scikit-Learn, where each sample is one
of three types of flowers that has had the size of its petals and sepals carefully meas-
ured (Figure 4-26):

In[8]: from sklearn.datasets import load_iris
iris = load_iris()
features = iris.data.T

plt.scatter(features[0], features[1], alpha=0.2,
s=100*features[3], c=iris.target, cmap='viridis')

plt.xlabel(iris.feature_names[0])

plt.ylabel(iris.feature_names[1]);
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Figure 4-26. Using point properties to encode features of the Iris data

We can see that this scatter plot has given us the ability to simultaneously explore
four different dimensions of the data: the (x, y) location of each point corresponds to
the sepal length and width, the size of the point is related to the petal width, and the
color is related to the particular species of flower. Multicolor and multifeature scatter
plots like this can be useful for both exploration and presentation of data.

plot Versus scatter: A Note on Efficiency

Aside from the different features available in plt.plot and plt.scatter, why might
you choose to use one over the other? While it doesn’t matter as much for small
amounts of data, as datasets get larger than a few thousand points, plt.plot can be
noticeably more efficient than plt.scatter. The reason is that plt.scatter has the
capability to render a different size and/or color for each point, so the renderer must
do the extra work of constructing each point individually. In plt.plot, on the other
hand, the points are always essentially clones of each other, so the work of determin-
ing the appearance of the points is done only once for the entire set of data. For large
datasets, the difference between these two can lead to vastly different performance,
and for this reason, plt.plot should be preferred over plt.scatter for large
datasets.

Visualizing Errors

For any scientific measurement, accurate accounting for errors is nearly as important,
if not more important, than accurate reporting of the number itself. For example,
imagine that I am using some astrophysical observations to estimate the Hubble Con-
stant, the local measurement of the expansion rate of the universe. I know that the
current literature suggests a value of around 71 (km/s)/Mpc, and I measure a value of
74 (km/s)/Mpc with my method. Are the values consistent? The only correct answer,
given this information, is this: there is no way to know.
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Suppose I augment this information with reported uncertainties: the current litera-
ture suggests a value of around 71 + 2.5 (km/s)/Mpc, and my method has measured a
value of 74 + 5 (km/s)/Mpc. Now are the values consistent? That is a question that
can be quantitatively answered.

In visualization of data and results, showing these errors effectively can make a plot
convey much more complete information.

Basic Errorbars
A basic errorbar can be created with a single Matplotlib function call (Figure 4-27):

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-whitegrid')
import as

In[2]: x = np.linspace(0, 10, 50)
dy = 0.8
y = np.sin(x) + dy * np.random.randn(50)

plt.errorbar(x, y, yerr=dy, fmt='.k');

Figure 4-27. An errorbar example

Here the fmt is a format code controlling the appearance of lines and points, and has
the same syntax as the shorthand used in plt.plot, outlined in “Simple Line Plots”
on page 224 and “Simple Scatter Plots” on page 233.

In addition to these basic options, the errorbar function has many options to fine-
tune the outputs. Using these additional options you can easily customize the aesthet-
ics of your errorbar plot. I often find it helpful, especially in crowded plots, to make
the errorbars lighter than the points themselves (Figure 4-28):

In[3]: plt.errorbar(x, y, yerr=dy, fmt='o', color='black',
ecolor="'lightgray', elinewidth=3, capsize=0);
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Figure 4-28. Customizing errorbars

In addition to these options, you can also specify horizontal errorbars (xerr), one-
sided errorbars, and many other variants. For more information on the options avail-
able, refer to the docstring of plt.errorbar.

Continuous Errors

In some situations it is desirable to show errorbars on continuous quantities. Though
Matplotlib does not have a built-in convenience routine for this type of application,
it’s relatively easy to combine primitives like plt.plot and plt.fill_between for a
useful result.

Here we'll perform a simple Gaussian process regression (GPR), using the Scikit-Learn
API (see “Introducing Scikit-Learn” on page 343 for details). This is a method of fit-
ting a very flexible nonparametric function to data with a continuous measure of the
uncertainty. We won't delve into the details of Gaussian process regression at this
point, but will focus instead on how you might visualize such a continuous error
measurement:

In[4]: from import GaussianProcess

# define the model and draw some data
model = lambda x: x * np.sin(x)

xdata = np.array([1, 3, 5, 6, 8])
ydata = model(xdata)

# Compute the Gaussian process fit

gp = GaussianProcess(corr='cubic', theta®=1e-2, thetal=1le-4, thetaU=1E-1,
random_start=100)

gp.fit(xdata[:, np.newaxis], ydata)

xfit = np.linspace(0, 10, 1000)
yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True)
dyfit = 2 * np.sqrt(MSE) # 2*sigma ~ 95% confidence region
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We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We
could pass these to the plt.errorbar function as above, but we don't really want to
plot 1,000 points with 1,000 errorbars. Instead, we can use the plt.fill_between
function with a light color to visualize this continuous error (Figure 4-29):

In[5]: # Visualize the result
plt.plot(xdata, ydata, 'or')
plt.plot(xfit, yfit, '-', color="gray')

plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,
color="'gray', alpha=0.2)
plt.x1lim(0, 10);

(1] 2 4 Li] 8 0

Figure 4-29. Representing continuous uncertainty with filled regions

Note what we’ve done here with the fill_between function: we pass an x value, then
the lower y-bound, then the upper y-bound, and the result is that the area between
these regions is filled.

The resulting figure gives a very intuitive view into what the Gaussian process regres-
sion algorithm is doing: in regions near a measured data point, the model is strongly
constrained and this is reflected in the small model errors. In regions far from a
measured data point, the model is not strongly constrained, and the model errors
increase.

For more information on the options available in plt.fill_between() (and the
closely related plt.fill() function), see the function docstring or the Matplotlib
documentation.

Finally, if this seems a bit too low level for your taste, refer to “Visualization with Sea-
born” on page 311, where we discuss the Seaborn package, which has a more stream-
lined API for visualizing this type of continuous errorbar.
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Density and Contour Plots

Sometimes it is useful to display three-dimensional data in two dimensions using
contours or color-coded regions. There are three Matplotlib functions that can be
helpful for this task: plt.contour for contour plots, plt.contourf for filled contour
plots, and plt.imshow for showing images. This section looks at several examples of
using these. We'll start by setting up the notebook for plotting and importing the
functions we will use:

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-white')
import as

Visualizing a Three-Dimensional Function

We'll start by demonstrating a contour plot using a function z = f(x, ), using the fol-
lowing particular choice for f (we've seen this before in “Computation on Arrays:
Broadcasting” on page 63, when we used it as a motivating example for array
broadcasting):
In[2]: def f(x, y):
return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

A contour plot can be created with the plt.contour function. It takes three argu-
ments: a grid of x values, a grid of y values, and a grid of z values. The x and y values
represent positions on the plot, and the z values will be represented by the contour
levels. Perhaps the most straightforward way to prepare such data is to use the
np.meshgrid function, which builds two-dimensional grids from one-dimensional
arrays:

In[3]: x
y

np.linspace(0, 5, 50)
np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)
Z = f(X, V)
Now let’s look at this with a standard line-only contour plot (Figure 4-30):

In[4]: plt.contour(X, Y, Z, colors='black');
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Figure 4-30. Visualizing three-dimensional data with contours

Notice that by default when a single color is used, negative values are represented by
dashed lines, and positive values by solid lines. Alternatively, you can color-code the
lines by specifying a colormap with the cmap argument. Here, we'll also specify that
we want more lines to be drawn—20 equally spaced intervals within the data range
(Figure 4-31):

In[5]: plt.contour(X, Y, Z, 20, cmap='RdGy');
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Figure 4-31. Visualizing three-dimensional data with colored contours

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for
centered data. Matplotlib has a wide range of colormaps available, which you can
easily browse in IPython by doing a tab completion on the plt.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting.
We can change this by switching to a filled contour plot using the plt.contourf()
function (notice the f at the end), which uses largely the same syntax as plt.con
tour().
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Additionally, we’ll add a plt.colorbar() command, which automatically creates an
additional axis with labeled color information for the plot (Figure 4-32):

In[6]: plt.contourf(X, Y, Z, 20, cmap='RdGy")
plt.colorbar();

Figure 4-32. Visualizing three-dimensional data with filled contours

The colorbar makes it clear that the black regions are “peaks,” while the red regions
are “valleys”

One potential issue with this plot is that it is a bit “splotchy” That is, the color steps
are discrete rather than continuous, which is not always what is desired. You could
remedy this by setting the number of contours to a very high number, but this results
in a rather inefficient plot: Matplotlib must render a new polygon for each step in the
level. A better way to handle this is to use the plt.imshow() function, which inter-
prets a two-dimensional grid of data as an image.

Figure 4-33 shows the result of the following code:

In[7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
cmap="'RdGy ")
plt.colorbar()
plt.axis(aspect="1image');

There are a few potential gotchas with imshow(), however:

o plt.imshow() doesn’t accept an x and y grid, so you must manually specify the
extent [xmin, xmax, ymin, ymax] of the image on the plot.

o plt.imshow() by default follows the standard image array definition where the
origin is in the upper left, not in the lower left as in most contour plots. This
must be changed when showing gridded data.
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o plt.imshow() will automatically adjust the axis aspect ratio to match the input
data; you can change this by setting, for example, plt.axis(aspect="'1image') to
make x and y units match.

Figure 4-33. Representing three-dimensional data as an image

Finally, it can sometimes be useful to combine contour plots and image plots. For
example, to create the effect shown in Figure 4-34, we'll use a partially transparent
background image (with transparency set via the alpha parameter) and over-plot
contours with labels on the contours themselves (using the plt.clabel() function):

In[8]: contours = plt.contour(X, Y, Z, 3, colors='black")
plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
cmap='RdGy ', alpha=0.5)
plt.colorbar();

Figure 4-34. Labeled contours on top of an image

The combination of these three functions—plt.contour, plt.contourf, and
plt.imshow—gives nearly limitless possibilities for displaying this sort of three-
dimensional data within a two-dimensional plot. For more information on the
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options available in these functions, refer to their docstrings. If you are interested in
three-dimensional visualizations of this type of data, see “Three-Dimensional Plot-
ting in Matplotlib” on page 290.

Histograms, Binnings, and Density

A simple histogram can be a great first step in understanding a dataset. Earlier, we
saw a preview of Matplotlibs histogram function (see “Comparisons, Masks, and
Boolean Logic” on page 70), which creates a basic histogram in one line, once the
normal boilerplate imports are done (Figure 4-35):

In[1]: %matplotlib inline
import as
import as
plt.style.use('seaborn-white')

data = np.random.randn(1000)
In[2]: plt.hist(data);
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Figure 4-35. A simple histogram

The hist() function has many options to tune both the calculation and the display;
here’s an example of a more customized histogram (Figure 4-36):

In[3]: plt.hist(data, bins=30, normed=True, alpha=0.5,
histtype="stepfilled', color="steelblue',
edgecolor="none");
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Figure 4-36. A customized histogram

The plt.hist docstring has more information on other customization options avail-
able. I find this combination of histtype="'stepfilled' along with some transpar-
ency alpha to be very useful when comparing histograms of several distributions
(Figure 4-37):

In[4]: x1 = np.random.normal(®, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40)

plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs);

a6

Figure 4-37. Over-plotting multiple histograms

If you would like to simply compute the histogram (that is, count the number of
points in a given bin) and not display it, the np.histogram() function is available:
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In[5]: counts, bin_edges = np.histogram(data, bins=5)
print(counts)

[ 12 190 468 301 29]

Two-Dimensional Histograms and Binnings

Just as we create histograms in one dimension by dividing the number line into bins,
we can also create histograms in two dimensions by dividing points among two-
dimensional bins. We'll take a brief look at several ways to do this here. We'll start by
defining some data—an x and y array drawn from a multivariate Gaussian
distribution:

In[6]: mean = [0, 0]

cov = [[1, 1], [1, 2]]
X, y = np.random.multivariate_normal(mean, cov, 10000).T

plt.hist2d: Two-dimensional histogram

One straightforward way to plot a two-dimensional histogram is to use Matplotlib’s
plt.hist2d function (Figure 4-38):
In[12]: plt.hist2d(x, y, bins=30, cmap='Blues')

cb = plt.colorbar()
cb.set_label('counts in bin'")
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Figure 4-38. A two-dimensional histogram with plt.hist2d

Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot
and the binning, which are nicely outlined in the function docstring. Further, just as
plt.hist has a counterpart in np.histogram, plt.hist2d has a counterpart in
np.histogram2d, which can be used as follows:

In[8]: counts, xedges, yedges = np.histogram2d(x, y, bins=30)

For the generalization of this histogram binning in dimensions higher than two, see
the np.histogramdd function.
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plt.hexbin: Hexagonal binnings

The two-dimensional histogram creates a tessellation of squares across the axes.
Another natural shape for such a tessellation is the regular hexagon. For this purpose,
Matplotlib provides the plt.hexbin routine, which represents a two-dimensional
dataset binned within a grid of hexagons (Figure 4-39):

In[9]: plt.hexbin(x, y, gridsize=30, cmap='Blues')
cb = plt.colorbar(label="count in bin")

=2

4 & 8 @ B8
count in bin

-3 -2 -1 ] 1 2 3

Figure 4-39. A two-dimensional histogram with plt.hexbin

plt.hexbin has a number of interesting options, including the ability to specify
weights for each point, and to change the output in each bin to any NumPy aggregate
(mean of weights, standard deviation of weights, etc.).

Kernel density estimation

Another common method of evaluating densities in multiple dimensions is kernel
density estimation (KDE). This will be discussed more fully in “In-Depth: Kernel
Density Estimation” on page 491, but for now we’ll simply mention that KDE can be
thought of as a way to “smear out” the points in space and add up the result to obtain
a smooth function. One extremely quick and simple KDE implementation exists in
the scipy.stats package. Here is a quick example of using the KDE on this data
(Figure 4-40):

In[10]: from import gaussian_kde

# fit an array of size [Ndim, Nsamples]
data = np.vstack([x, y])
kde = gaussian_kde(data)

# evaluate on a regular grid

xgrid = np.linspace(-3.5, 3.5, 40)

ygrid = np.linspace(-6, 6, 40)

Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)

Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))
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# Plot the result as an image

plt.imshow(Z.reshape(Xgrid.shape),
origin="'lower', aspect='auto',
extent=[-3.5, 3.5, -6, 6],
cmap="'Blues"')

cb = plt.colorbar()

cb.set_label("density")
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Figure 4-40. A kernel density representation of a distribution

KDE has a smoothing length that effectively slides the knob between detail and
smoothness (one example of the ubiquitous bias-variance trade-off). The literature
on choosing an appropriate smoothing length is vast: gaussian_kde uses a rule of
thumb to attempt to find a nearly optimal smoothing length for the input data.

Other KDE implementations are available within the SciPy ecosystem, each with its
own various strengths and weaknesses; see, for example, sklearn.neighbors.Kernel
Density and statsmodels.nonparametric.kernel_density.KDEMultivariate. For
visualizations based on KDE, using Matplotlib tends to be overly verbose. The Sea-
born library, discussed in “Visualization with Seaborn” on page 311, provides a much
more terse API for creating KDE-based visualizations.

Customizing Plot Legends

Plot legends give meaning to a visualization, assigning labels to the various plot ele-
ments. We previously saw how to create a simple legend; here we'll take a look at cus-
tomizing the placement and aesthetics of the legend in Matplotlib.

The simplest legend can be created with the plt.legend() command, which auto-
matically creates a legend for any labeled plot elements (Figure 4-41):

In[1]: import as
plt.style.use('classic')
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In[2]: %matplotlib inline
import as

In[3]: x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()
ax.plot(x, np.sin(x), '-b', label='Sine')
ax.plot(x, np.cos(x), '--r', label='Cosine")
ax.axis('equal')
leg = ax.legend();

3|

Figure 4-41. A default plot legend
But there are many ways we might want to customize such a legend. For example, we
can specify the location and turn off the frame (Figure 4-42):

In[4]: ax.legend(loc="upper left', frameon=False)
fig

3|

Figure 4-42. A customized plot legend
We can use the ncol command to specify the number of columns in the legend
(Figure 4-43):

In[5]: ax.legend(frameon=False, loc='lower center', ncol=2)
fig
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Figure 4-43. A two-column plot legend
We can use a rounded box (fancybox) or add a shadow, change the transparency
(alpha value) of the frame, or change the padding around the text (Figure 4-44):

In[6]: ax.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1)
fig

3f ' /
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Figure 4-44. A fancybox plot legend

For more information on available legend options, see the plt.legend docstring.

Choosing Elements for the Legend

As we've already seen, the legend includes all labeled elements by default. If this is not
what is desired, we can fine-tune which elements and labels appear in the legend by
using the objects returned by plot commands. The plt.plot() command is able to
create multiple lines at once, and returns a list of created line instances. Passing any of
these to plt.legend() will tell it which to identify, along with the labels wed like to
specify (Figure 4-45):

In[7]: y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt.plot(x, y)
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# lines is a list of plt.Line2D instances
plt.legend(lines[:2], ['first', 'second']);
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Figure 4-45. Customization of legend elements

I generally find in practice that it is clearer to use the first method, applying labels to
the plot elements youd like to show on the legend (Figure 4-46):
In[8]: plt.plot(x, y[:, 0], label='first')
plt.plot(x, y[:, 1], label="second")

plt.plot(x, y[:, 2:1)
plt.legend(framealpha=1, frameon=True);
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Figure 4-46. Alternative method of customizing legend elements

Notice that by default, the legend ignores all elements without a label attribute set.

Legend for Size of Points

Sometimes the legend defaults are not sufficient for the given visualization. For exam-
ple, perhaps you're using the size of points to mark certain features of the data, and
want to create a legend reflecting this. Here is an example where we'll use the size of
points to indicate populations of California cities. Wed like a legend that specifies the
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scale of the sizes of the points, and we’ll accomplish this by plotting some labeled data
with no entries (Figure 4-47):

In[9]: import pandas as pd
cities = pd.read_csv('data/california_cities.csv')

# Extract the data we're interested in
lat, lon = cities['latd'], cities['longd']
population, area = cities['population_total'], cities['area_total _km2']

# Scatter the points, using size and color but no label

plt.scatter(lon, lat, label=None,
c=np.log10(population), cmap='viridis',
s=area, linewidth=0, alpha=0.5)

plt.axis(aspect="'equal')

plt.xlabel('longitude')

plt.ylabel('latitude')

plt.colorbar(label="'1log$_{10}$(population)')

plt.clim(3, 7)

# Here we create a legend:
# we'll plot empty lists with the desired size and label
for area in [100, 300, 500]:
plt.scatter([], [], c='k', alpha=0.3, s=area,
label=str(area) + ' km$72$")
plt.legend(scatterpoints=1, frameon=False,
labelspacing=1, title='City Area')

plt.title('California Cities: Area and Population');

California Cities: Area and Population
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Figure 4-47. Location, geographic size, and population of California cities

The legend will always reference some object that is on the plot, so if wed like to dis-
play a particular shape we need to plot it. In this case, the objects we want (gray cir-
cles) are not on the plot, so we fake them by plotting empty lists. Notice too that the
legend only lists plot elements that have a label specified.
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By plotting empty lists, we create labeled plot objects that are picked up by the legend,
and now our legend tells us some useful information. This strategy can be useful for
creating more sophisticated visualizations.

Finally, note that for geographic data like this, it would be clearer if we could show
state boundaries or other map-specific elements. For this, an excellent choice of tool
is Matplotlibs Basemap add-on toolkit, which we'll explore in “Geographic Data with
Basemap” on page 298.

Multiple Legends

Sometimes when designing a plot youd like to add multiple legends to the same axes.
Unfortunately, Matplotlib does not make this easy: via the standard legend interface,
it is only possible to create a single legend for the entire plot. If you try to create a
second legend using plt.legend() or ax.legend(), it will simply override the first
one. We can work around this by creating a new legend artist from scratch, and then
using the lower-level ax.add_artist() method to manually add the second artist to
the plot (Figure 4-48):

In[10]: fig, ax = plt.subplots()

lines = []
Styles = [‘-IJ ""’ "-‘; ‘:']
x = np.linspace(0, 10, 1000)

for 1 in range(4):
lines += ax.plot(x, np.sin(x - 1 * np.pi / 2),
styles[i], color='black")
ax.axis('equal')

# specify the lines and labels of the first legend
ax.legend(lines[:2], ['line A', 'line B'],
loc="upper right', frameon=False)

# Create the second legend and add the artist manually.

from import Legend

leg = Legend(ax, lines[2:], ['line C', 'line D'],
loc="'lower right', frameon=False)

ax.add_artist(leg);
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Figure 4-48. A split plot legend

This is a peek into the low-level artist objects that compose any Matplotlib plot. If you
examine the source code of ax.legend() (recall that you can do this within the IPy-
thon notebook using ax.legend??) you’ll see that the function simply consists of
some logic to create a suitable Legend artist, which is then saved in the legend_
attribute and added to the figure when the plot is drawn.

Customizing Colorbars

Plot legends identify discrete labels of discrete points. For continuous labels based on
the color of points, lines, or regions, a labeled colorbar can be a great tool. In Mat-
plotlib, a colorbar is a separate axes that can provide a key for the meaning of colors
in a plot. Because the book is printed in black and white, this section has an accompa-
nying online appendix where you can view the figures in full color (https://
github.com/jakevdp/PythonDataScienceHandbook). We'll start by setting up the note-
book for plotting and importing the functions we will use:

In[1]: import as
plt.style.use('classic')

In[2]: %matplotlib inline
import as

As we have seen several times throughout this section, the simplest colorbar can be
created with the plt.colorbar function (Figure 4-49):

In[3]: x
I

np.linspace(0, 10, 1000)
np.sin(x) * np.cos(x[:, np.newaxis])

plt.imshow(I)
plt.colorbar();
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Figure 4-49. A simple colorbar legend

We'll now discuss a few ideas for customizing these colorbars and using them effec-
tively in various situations.

Customizing Colorbars

We can specify the colormap using the cmap argument to the plotting function that is
creating the visualization (Figure 4-50):

In[4]: plt.imshow(I, cmap='gray');

Figure 4-50. A grayscale colormap

All the available colormaps are in the plt.cm namespace; using IPythons tab-
completion feature will give you a full list of built-in possibilities:

plt.cm.<TAB>

But being able to choose a colormap is just the first step: more important is how to
decide among the possibilities! The choice turns out to be much more subtle than you
might initially expect.

256 | Chapter 4: Visualization with Matplotlib



Choosing the colormap

A full treatment of color choice within visualization is beyond the scope of this book,
but for entertaining reading on this subject and others, see the article “Ten Simple
Rules for Better Figures”. Matplotlib’s online documentation also has an interesting
discussion of colormap choice.

Broadly, you should be aware of three different categories of colormaps:

Sequential colormaps
These consist of one continuous sequence of colors (e.g., binary or viridis).

Divergent colormaps
These usually contain two distinct colors, which show positive and negative devi-
ations from a mean (e.g., RdBu or PuOr).

Qualitative colormaps
These mix colors with no particular sequence (e.g., rainbow or jet).

The jet colormap, which was the default in Matplotlib prior to version 2.0, is an
example of a qualitative colormap. Its status as the default was quite unfortunate,
because qualitative maps are often a poor choice for representing quantitative data.
Among the problems is the fact that qualitative maps usually do not display any uni-
form progression in brightness as the scale increases.

We can see this by converting the jet colorbar into black and white (Figure 4-51):

In[5]:
from import LinearSegmentedColormap

def grayscale_cmap(cmap):
"""Return a grayscale version of the given colormap
cmap = plt.cm.get_cmap(cmap)
colors = cmap(np.arange(cmap.N))

mwun

# convert RGBA to perceived grayscale luminance

# cf. http://alienryderflex.com/hsp.html

RGB_weight = [0.299, 0.587, 0.114]

luminance = np.sqrt(np.dot(colors[:, :3] ** 2, RGB_weight))
colors[:, :3] = luminance[:, np.newaxis]

return LinearSegmentedColormap.from_list(cmap.name + "_gray", colors, cmap.N)

def view_colormap(cmap):
"""plot a colormap with its grayscale equivalent
cmap = plt.cm.get_cmap(cmap)
colors = cmap(np.arange(cmap.N))

wnn

cmap = grayscale_cmap(cmap)
grayscale = cmap(np.arange(cmap.N))
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fig, ax = plt.subplots(2, figsize=(6, 2),
subplot_kw=dict(xticks=[], yticks=[]))

ax[0].imshow([colors], extent=[0, 10, 0, 1])

ax[1].imshow([grayscale], extent=[0, 10, 0, 1])

In[6]: view_colormap('jet')

U

Figure 4-51. The jet colormap and its uneven luminance scale

Notice the bright stripes in the grayscale image. Even in full color, this uneven bright-
ness means that the eye will be drawn to certain portions of the color range, which
will potentially emphasize unimportant parts of the dataset. It’s better to use a color-
map such as viridis (the default as of Matplotlib 2.0), which is specifically construc-
ted to have an even brightness variation across the range. Thus, it not only plays well
with our color perception, but also will translate well to grayscale printing
(Figure 4-52):

In[7]: view_colormap('viridis')

Figure 4-52. The viridis colormap and its even luminance scale

If you favor rainbow schemes, another good option for continuous data is the
cubehelix colormap (Figure 4-53):

In[8]: view_colormap('cubehelix")

N
N

Figure 4-53. The cubehelix colormap and its luminance

For other situations, such as showing positive and negative deviations from some
mean, dual-color colorbars such as RdBu (short for Red-Blue) can be useful. However,
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as you can see in Figure 4-54, it’s important to note that the positive-negative infor-
mation will be lost upon translation to grayscale!

In[9]: view_colormap('RdBu')

Figure 4-54. The RdBu (Red-Blue) colormap and its luminance

We'll see examples of using some of these color maps as we continue.

There are a large number of colormaps available in Matplotlib; to see a list of them,
you can use IPython to explore the plt.cm submodule. For a more principled
approach to colors in Python, you can refer to the tools and documentation within
the Seaborn library (see “Visualization with Seaborn” on page 311).

Color limits and extensions

Matplotlib allows for a large range of colorbar customization. The colorbar itself is
simply an instance of plt.Axes, so all of the axes and tick formatting tricks we've
learned are applicable. The colorbar has some interesting flexibility; for example, we
can narrow the color limits and indicate the out-of-bounds values with a triangular
arrow at the top and bottom by setting the extend property. This might come in
handy, for example, if youre displaying an image that is subject to noise
(Figure 4-55):

In[10]: # make noise in 1% of the image pixels
speckles = (np.random.random(I.shape) < 0.01)
I[speckles] = np.random.normal(®, 3, np.count_nonzero(speckles))

plt.figure(figsize=(10, 3.5))

plt.subplot(1l, 2, 1)
plt.imshow(I, cmap='RdBu')
plt.colorbar()

plt.subplot(1l, 2, 2)
plt.imshow(I, cmap='RdBu')
plt.colorbar(extend="'both")
plt.clim(-1, 1);
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Figure 4-55. Specifying colormap extensions

Notice that in the left panel, the default color limits respond to the noisy pixels, and
the range of the noise completely washes out the pattern we are interested in. In the
right panel, we manually set the color limits, and add extensions to indicate values
that are above or below those limits. The result is a much more useful visualization of
our data.

Discrete colorbars

Colormaps are by default continuous, but sometimes youd like to represent discrete

values. The easiest way to do this is to use the plt.cm.get_cmap() function, and pass

the name of a suitable colormap along with the number of desired bins (Figure 4-56):
In[11]: plt.imshow(I, cmap=plt.cm.get_cmap('Blues', 6))

plt.colorbar()
plt.clim(-1, 1);
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Figure 4-56. A discretized colormap

The discrete version of a colormap can be used just like any other colormap.
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Example: Handwritten Digits

For an example of where this might be useful, let’s look at an interesting visualization
of some handwritten digits data. This data is included in Scikit-Learn, and consists of
nearly 2,000 8x8 thumbnails showing various handwritten digits.

For now, let’s start by downloading the digits data and visualizing several of the exam-
ple images with plt.imshow() (Figure 4-57):

In[12]: # load images of the digits 0 through 5 and visualize several of them
from sklearn.datasets import load_digits
digits = load_digits(n_class=6)
fig, ax = plt.subplots(8, 8, figsize=(6, 6))
for 1, axi in enumerate(ax.flat):
axi.imshow(digits.images[i1], cmap='binary')
axi.set(xticks=[], yticks=[])
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Figure 4-57. Sample of handwritten digit data

Because each digit is defined by the hue of its 64 pixels, we can consider each digit to
be a point lying in 64-dimensional space: each dimension represents the brightness of
one pixel. But visualizing relationships in such high-dimensional spaces can be
extremely difficult. One way to approach this is to use a dimensionality reduction
technique such as manifold learning to reduce the dimensionality of the data while
maintaining the relationships of interest. Dimensionality reduction is an example of
unsupervised machine learning, and we will discuss it in more detail in “What Is
Machine Learning?” on page 332.

Deferring the discussion of these details, let’s take a look at a two-dimensional mani-
fold learning projection of this digits data (see “In-Depth: Manifold Learning” on
page 445 for details):
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In[13]: # project the digits into 2 dimensions using IsoMap
from import Isomap
iso = Isomap(n_components=2)
projection = iso.fit_transform(digits.data)

We'll use our discrete colormap to view the results, setting the ticks and clim to
improve the aesthetics of the resulting colorbar (Figure 4-58):

In[14]: # plot the results
plt.scatter(projection[:, 0], projection[:, 1], lw=0.1,
c=digits.target, cmap=plt.cm.get_cmap('cubehelix', 6))
plt.colorbar(ticks=range(6), label='digit value')
plt.clim(-0.5, 5.5)
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Figure 4-58. Manifold embedding of handwritten digit pixels

The projection also gives us some interesting insights on the relationships within the
dataset: for example, the ranges of 5 and 3 nearly overlap in this projection, indicating
that some handwritten fives and threes are difficult to distinguish, and therefore
more likely to be confused by an automated classification algorithm. Other values,
like 0 and 1, are more distantly separated, and therefore much less likely to be con-
fused. This observation agrees with our intuition, because 5 and 3 look much more
similar than do 0 and 1.

We'll return to manifold learning and digit classification in Chapter 5.

Multiple Subplots

Sometimes it is helpful to compare different views of data side by side. To this end,
Matplotlib has the concept of subplots: groups of smaller axes that can exist together
within a single figure. These subplots might be insets, grids of plots, or other more
complicated layouts. In this section, we'll explore four routines for creating subplots
in Matplotlib. We'll start by setting up the notebook for plotting and importing the
functions we will use:
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In[1]: %matplotlib inline

import as
plt.style.use('seaborn-white')
import as

plt.axes: Subplots by Hand

The most basic method of creating an axes is to use the plt.axes function. As we've
seen previously, by default this creates a standard axes object that fills the entire fig-
ure. plt.axes also takes an optional argument that is a list of four numbers in the
figure coordinate system. These numbers represent [bottom, left, width,
height] in the figure coordinate system, which ranges from 0 at the bottom left of the
figure to 1 at the top right of the figure.

For example, we might create an inset axes at the top-right corner of another axes by
setting the x and y position to 0.65 (that is, starting at 65% of the width and 65% of
the height of the figure) and the x and y extents to 0.2 (that is, the size of the axes is
20% of the width and 20% of the height of the figure). Figure 4-59 shows the result of
this code:

plt.axes() # standard axes
plt.axes([0.65, 0.65, 0.2, 0.2])

In[2]: ax1
ax2

10
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0o
00 02040608 1.0
0.6

0z

0.0
0o 0z 0.4 0.6 o8 10

Figure 4-59. Example of an inset axes

The equivalent of this command within the object-oriented interface is
fig.add_axes(). Let’s use this to create two vertically stacked axes (Figure 4-60):

In[3]: fig = plt.figure()
axl = fig.add_axes([0.1, 0.5, 0.8, 0.4],
xticklabels=[], ylim=(-1.2, 1.2))
fig.add_axes([0.1, 0.1, 0.8, 0.4],
ylim=(-1.2, 1.2))

ax2

x = np.linspace(0, 10)
ax1l.plot(np.sin(x))
ax2.plot(np.cos(x));
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Figure 4-60. Vertically stacked axes example

We now have two axes (the top with no tick labels) that are just touching: the bottom
of the upper panel (at position 0.5) matches the top of the lower panel (at position 0.1
+ 0.4).

plt.subplot: Simple Grids of Subplots

Aligned columns or rows of subplots are a common enough need that Matplotlib has
several convenience routines that make them easy to create. The lowest level of these
is plt.subplot(), which creates a single subplot within a grid. As you can see, this
command takes three integer arguments—the number of rows, the number of col-
umns, and the index of the plot to be created in this scheme, which runs from the
upper left to the bottom right (Figure 4-61):
In[4]: for i in range(1, 7):
plt.subplot(2, 3, 1)

plt.text(0.5, 0.5, str((2, 3, 1)),
fontsize=18, ha='center')

1.0 1.0 1.0
[iE:) 0.8 0.8
s (2,3,1) P°| (2,3,2) P°| (2 3,3)
04 0.4 0.4
0z 0.2 0.2

00 0.0 0.0
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
1.0 10

10

oe 0.8 0.8
zj (2,3, 4) zj (2,3,5) zj (2,3,6)
oz 0.2 0.2

00 0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 4-61. A plt.subplot() example
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The command plt.subplots_adjust can be used to adjust the spacing between
these plots. The following code (the result of which is shown in Figure 4-62) uses the
equivalent object-oriented command, fig.add_subplot():

In[5]: fig = plt.figure()
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for 1 in range(1, 7):
ax = fig.add_subplot(2, 3, 1)
ax.text(0.5, 0.5, str((2, 3, 1)),
fontsize=18, ha='center')

10 10 10
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“l @231 @232 (2353
02 02 02
0o 0o 0o
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eel (2,3,4) | °¢| (2,3,5) | *5| (2,3,6)
04 a4 04
02 02 02

00 00 00
0002 0406 08 10 000204 0608 1.0 0002 0406 08 1.0

Figure 4-62. plt.subplot() with adjusted margins

We've used the hspace and wspace arguments of plt.subplots_adjust, which spec-
ity the spacing along the height and width of the figure, in units of the subplot size (in
this case, the space is 40% of the subplot width and height).

plt.subplots: The Whole Grid in One Go

The approach just described can become quite tedious when you're creating a large
grid of subplots, especially if youd like to hide the x- and y-axis labels on the inner
plots. For this purpose, plt.subplots() is the easier tool to use (note the s at the end
of subplots). Rather than creating a single subplot, this function creates a full grid of
subplots in a single line, returning them in a NumPy array. The arguments are the
number of rows and number of columns, along with optional keywords sharex and
sharey, which allow you to specify the relationships between different axes.

Here we'll create a 2x3 grid of subplots, where all axes in the same row share their
y-axis scale, and all axes in the same column share their x-axis scale (Figure 4-63):

In[6]: fig, ax = plt.subplots(2, 3, sharex='col', sharey="row")
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Figure 4-63. Shared x and y axis in plt.subplots()

Note that by specifying sharex and sharey, we've automatically removed inner labels
on the grid to make the plot cleaner. The resulting grid of axes instances is returned
within a NumPy array, allowing for convenient specification of the desired axes using
standard array indexing notation (Figure 4-64):

In[7]: # axes are in a two-dimensional array, indexed by [row, col]
for 1 in range(2):
for j in range(3):
ax[i, j].text(0.5, 0.5, str((i, j)),
fontsize=18, ha='center')
fig

10

°¢l (0,0) (0, 1) (0,2)

10

el (1,0) (1, 1) (1,2)

00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 4-64. Identifying plots in a subplot grid

In comparison to plt.subplot(), plt.subplots() is more consistent with Python’s
conventional 0-based indexing.

plt.GridSpec: More Complicated Arrangements

To go beyond a regular grid to subplots that span multiple rows and columns,
plt.GridSpec() is the best tool. The plt.GridSpec() object does not create a plot by

266 | Chapter4: Visualization with Matplotlib



itself; it is simply a convenient interface that is recognized by the plt.subplot()
command. For example, a gridspec for a grid of two rows and three columns with
some specified width and height space looks like this:

In[8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)
From this we can specify subplot locations and extents using the familiar Python slic-
ing syntax (Figure 4-65):

In[9]: plt.subplot(grid[0, 0])
plt.subplot(grid[0, 1:])
plt.subplot(grid[1, :2])
plt.subplot(grid[1, 21);

10 10
08 08
06 06
04 04
0z 0z
00 00
0002 0406 08 10 0o 0z 04 06 08 1.0
10 10
08 08
06 06
04 04
0z 0z
00 00
0o 0z 04 06 08 1.0 0002 0406 08 1.0

Figure 4-65. Irregular subplots with plt.GridSpec

This type of flexible grid alignment has a wide range of uses. I most often use it when
creating multi-axes histogram plots like the one shown here (Figure 4-66):

In[10]: # Create some normally distributed data
mean = [0, 0]
cov = [[1, 1], [1, 2]1]
X, y = np.random.multivariate_normal(mean, cov, 3000).T

# Set up the axes with gridspec

fig = plt.figure(figsize=(6, 6))

grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)

main_ax = fig.add_subplot(grid[:-1, 1:])

y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=main_ax)
x_hist = fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax)

# scatter points on the main axes
main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2)

# histogram on the attached axes

x_hist.hist(x, 40, histtype='stepfilled',
orientation="'vertical', color="'gray')

x_hist.invert_yaxis()
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y_hist.hist(y, 40, histtype='stepfilled',
orientation="'horizontal', color='gray')
y_hist.invert_xaxis()

Figure 4-66. Visualizing multidimensional distributions with plt.GridSpec

This type of distribution plotted alongside its margins is common enough that it has
its own plotting API in the Seaborn package; see “Visualization with Seaborn” on
page 311 for more details.

Text and Annotation

Creating a good visualization involves guiding the reader so that the figure tells a
story. In some cases, this story can be told in an entirely visual manner, without the
need for added text, but in others, small textual cues and labels are necessary. Perhaps
the most basic types of annotations you will use are axes labels and titles, but the
options go beyond this. Let’s take a look at some data and how we might visualize and
annotate it to help convey interesting information. We'll start by setting up the note-
book for plotting and importing the functions we will use:

In[1]: %matplotlib inline
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('seaborn-whitegrid')
import numpy as np
import pandas as pd
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Example: Effect of Holidays on US Births

Let’s return to some data we worked with earlier in “Example: Birthrate Data” on page
174, where we generated a plot of average births over the course of the calendar year;
as already mentioned, this data can be downloaded at https://raw.githubusercon
tent.com/jakevdp/data-CDCbirths/master/births.csv.

We'll start with the same cleaning procedure we used there, and plot the results
(Figure 4-67):

In[2]:
births = pd.read_csv('births.csv')

quartiles = np.percentile(births['births'], [25, 50, 75])
mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0])
births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)"')

births['day'] = births['day'].astype(int)

births.index = pd.to_datetime(10000 * births.year +
100 * births.month +
births.day, format='%Y%m%d')
births_by_date = births.pivot_table('births',
[births.index.month, births.index.day])
births_by_date.index = [pd.datetime(2012, month, day)
for (month, day) in births_by_date.index]

In[3]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);

Jan Feb Mar Bor May Jun Sl hug Sep Oct Nov Dec

Figure 4-67. Average daily births by date

When were communicating data like this, it is often useful to annotate certain fea-
tures of the plot to draw the reader’s attention. This can be done manually with the
plt.text/ax.text command, which will place text at a particular x/y value
(Figure 4-68):
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In[4]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

# Add labels to the plot
style = dict(size=10, color='gray')

ax.text('2012-1-1', 3950, "New Year's Day", **style)
ax.text('2012-7-4"', 4250, "Independence Day", ha='center', **style)
ax.text('2012-9-4', 4850, "Labor Day", ha='center', **style)
ax.text('2012-10-31"', 4600, "Halloween", ha='right', **style)
ax.text('2012-11-25"', 4450, "Thanksgiving", ha='center', **style)
ax.text('2012-12-25", 3850, "Christmas ", ha='right', **style)

# Label the axes
ax.set(title="USA births by day of year (1969-1988)',
ylabel="'average daily births")

# Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxils.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));

USA births by day of year (1969-1988)
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4600

average daily births
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4000 yew Year's Da
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Figure 4-68. Annotated average daily births by date

The ax. text method takes an x position, a y position, a string, and then optional key-
words specifying the color, size, style, alignment, and other properties of the text.
Here we used ha='right' and ha='center', where ha is short for horizonal align-
ment. See the docstring of plt. text() and of mpl.text.Text() for more information
on available options.

Transforms and Text Position

In the previous example, we anchored our text annotations to data locations. Some-
times it’s preferable to anchor the text to a position on the axes or figure, independent
of the data. In Matplotlib, we do this by modifying the transform.
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Any graphics display framework needs some scheme for translating between coordi-
nate systems. For example, a data point at (x, y) = (1,1) needs to somehow be repre-
sented at a certain location on the figure, which in turn needs to be represented in
pixels on the screen. Mathematically, such coordinate transformations are relatively
straightforward, and Matplotlib has a well-developed set of tools that it uses inter-
nally to perform them (the tools can be explored in the matplotlib.transforms sub-
module).

The average user rarely needs to worry about the details of these transforms, but it is
helpful knowledge to have when considering the placement of text on a figure. There
are three predefined transforms that can be useful in this situation:

ax.transData
Transform associated with data coordinates

ax.transAxes
Transform associated with the axes (in units of axes dimensions)

fig.transFigure
Transform associated with the figure (in units of figure dimensions)

Here let’s look at an example of drawing text at various locations using these trans-
forms (Figure 4-69):

In[5]: fig, ax = plt.subplots(facecolor="'1lightgray"')
ax.axis([0, 10, 0, 10])

# transform=ax.transData is the default, but we'll specify it anyway
ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData)

ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)
ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);

. Data: {1, 5}

. Figure: (0.2, 0.2} . Axes: (0.5, 0.1)

a
a 2 4 i 8 10

Figure 4-69. Comparing Matplotlibs coordinate systems
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Note that by default, the text is aligned above and to the left of the specified coordi-
nates; here the 7 at the beginning of each string will approximately mark the given
coordinate location.

The transData coordinates give the usual data coordinates associated with the x- and
y-axis labels. The transAxes coordinates give the location from the bottom-left cor-
ner of the axes (here the white box) as a fraction of the axes size. The transFigure
coordinates are similar, but specify the position from the bottom left of the figure
(here the gray box) as a fraction of the figure size.

Notice now that if we change the axes limits, it is only the transData coordinates that
will be affected, while the others remain stationary (Figure 4-70):

In[6]: ax.set_xlim(0, 2)
ax.set_ylim(-6, 6)
fig

. Data: (1, 5)

-4
. Figure: (0.2, 0.2} - Axes: (0.5, 0.1)

-5
a0 05 10 1.5 20

Figure 4-70. Comparing Matplotlibs coordinate systems

You can see this behavior more clearly by changing the axes limits interactively; if you
are executing this code in a notebook, you can make that happen by changing %mat
plotlib inline to %matplotlib notebook and using each plot’s menu to interact
with the plot.

Arrows and Annotation
Along with tick marks and text, another useful annotation mark is the simple arrow.

Drawing arrows in Matplotlib is often much harder than you might hope. While
there is a plt.arrow() function available, I wouldn’t suggest using it; the arrows it
creates are SVG objects that will be subject to the varying aspect ratio of your plots,
and the result is rarely what the user intended. Instead, I'd suggest using the plt.anno
tate() function. This function creates some text and an arrow, and the arrows can be
very flexibly specified.
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Here we'll use annotate with several of its options (Figure 4-71):

In[7]: %matplotlib inline
fig, ax = plt.subplots()

x = np.linspace(0, 20, 1000)
ax.plot(x, np.cos(x))
ax.axis('equal')

ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),
arrowprops=dict(facecolor="'black', shrink=0.05))

ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),
arrowprops=dict(arrowstyle="->",
connectionstyle="angle3,angleA=0,angleB=-90"));

4 local maximum

& tocal minimum

0 5 10 15 2

Figure 4-71. Annotation examples

The arrow style is controlled through the arrowprops dictionary, which has numer-
ous options available. These options are fairly well documented in Matplotlib’s online
documentation, so rather than repeating them here I'll quickly show some of the pos-
sibilities. Let’s demonstrate several of the possible options using the birthrate plot
from before (Figure 4-72):

In[8]:
fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

# Add labels to the plot
ax.annotate("New Year's Day", xy=('2012-1-1', 4100), xycoords='data',
xytext=(50, -30), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc3,rad=-0.2"))

ax.annotate("Independence Day", xy=('2012-7-4', 4250), xycoords='data',
bbox=dict(boxstyle="round", fc="none", ec="gray"),
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xytext=(10, -40), textcoords='offset points', ha='center',
arrowprops=dict(arrowstyle="->"))

ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data', ha='center',
xytext=(0, -20), textcoords='offset points')

ax.annotate('', xy=('2012-9-1", 4850), xytext=('2012-9-7"', 4850),
xycoords="data', textcoords='data',
arrowprops={'arrowstyle': '|-|,widthA=0.2,widthB=0.2", })

ax.annotate('Halloween', xy=('2012-10-31', 4600), xycoords='data',
xytext=(-80, -40), textcoords='offset points',
arrowprops=dict(arrowstyle="fancy",
fc="0.6", ec="none",
connectionstyle="angle3,angleA=0,angleB=-90"))

ax.annotate('Thanksgiving', xy=('2012-11-25', 4500), xycoords='data',
xytext=(-120, -60), textcoords='offset points',
bbox=dict(boxstyle="round4,pad=.5", fc="0.9"),
arrowprops=dict(arrowstyle="->",
connectionstyle="angle,angleA=0,angleB=80,rad=20"))

ax.annotate('Christmas', xy=('2012-12-25"', 3850), xycoords='data',
xytext=(-30, 0), textcoords='offset points',
size=13, ha='right', va="center",
bbox=dict(boxstyle="round", alpha=0.1),
arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1));

# Label the axes
ax.set(title='USA births by day of year (1969-1988)',
ylabel="'average daily births')

# Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));

ax.set_ylim(3600, 5400);
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Figure 4-72. Annotated average birth rates by day

You'll notice that the specifications of the arrows and text boxes are very detailed: this
gives you the power to create nearly any arrow style you wish. Unfortunately, it also
means that these sorts of features often must be manually tweaked, a process that can
be very time-consuming when one is producing publication-quality graphics! Finally,
I'll note that the preceding mix of styles is by no means best practice for presenting
data, but rather included as a demonstration of some of the available options.

More discussion and examples of available arrow and annotation styles can be found
in the Matplotlib gallery, in particular http://matplotlib.org/examples/pylab_examples/
annotation_demo2.html.

Customizing Ticks

Matplotlib’s default tick locators and formatters are designed to be generally sufficient
in many common situations, but are in no way optimal for every plot. This section
will give several examples of adjusting the tick locations and formatting for the par-
ticular plot type you're interested in.

Before we go into examples, it will be best for us to understand further the object
hierarchy of Matplotlib plots. Matplotlib aims to have a Python object representing
everything that appears on the plot: for example, recall that the figure is the bound-
ing box within which plot elements appear. Each Matplotlib object can also act as a
container of sub-objects; for example, each figure can contain one or more axes
objects, each of which in turn contain other objects representing plot contents.

The tick marks are no exception. Each axes has attributes xaxis and yaxtis, which in
turn have attributes that contain all the properties of the lines, ticks, and labels that
make up the axes.
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Major and Minor Ticks

Within each axis, there is the concept of a major tick mark and a minor tick mark. As
the names would imply, major ticks are usually bigger or more pronounced, while
minor ticks are usually smaller. By default, Matplotlib rarely makes use of minor
ticks, but one place you can see them is within logarithmic plots (Figure 4-73):

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-whitegrid")
import as

In[2]: ax = plt.axes(xscale='log', yscale='log')
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Figure 4-73. Example of logarithmic scales and labels

We see here that each major tick shows a large tick mark and a label, while each
minor tick shows a smaller tick mark with no label.

We can customize these tick properties—that is, locations and labels—by setting the
formatter and locator objects of each axis. Let’s examine these for the x axis of the
plot just shown:

In[3]: print(ax.xaxis.get_major_locator())
print(ax.xaxis.get_minor_locator())

<matplotlib.ticker.LoglLocator object at 0x107530ccO>
<matplotlib.ticker.LoglLocator object at 0x107530198>

In[4]: print(ax.xaxis.get_major_formatter())
print(ax.xaxis.get_minor_formatter())

<matplotlib.ticker.LogFormatterMathtext object at 0x107512780>
<matplotlib.ticker.NullFormatter object at 0x10752dc18>
We see that both major and minor tick labels have their locations specified by a
LogLocator (which makes sense for a logarithmic plot). Minor ticks, though, have
their labels formatted by a NullFormatter; this says that no labels will be shown.
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We'll now show a few examples of setting these locators and formatters for various
plots.

Hiding Ticks or Labels

Perhaps the most common tick/label formatting operation is the act of hiding ticks or
labels. We can do this using plt.NulllLocator() and plt.NullFormatter(), as
shown here (Figure 4-74):

In[5]: ax = plt.axes()
ax.plot(np.random.rand(50))

ax.yaxis.set_major_locator(plt.NullLocator())
ax.xaxis.set_major_formatter(plt.NullFormatter())

Figure 4-74. Plot with hidden tick labels (x-axis) and hidden ticks (y-axis)

Notice that we've removed the labels (but kept the ticks/gridlines) from the x axis,
and removed the ticks (and thus the labels as well) from the y axis. Having no ticks at
all can be useful in many situations—for example, when you want to show a grid of
images. For instance, consider Figure 4-75, which includes images of different faces,
an example often used in supervised machine learning problems (for more informa-
tion, see “In-Depth: Support Vector Machines” on page 405):

In[6]: fig, ax = plt.subplots(5, 5, figsize=(5, 5))
fig.subplots_adjust(hspace=0, wspace=0)

# Get some face data from scikit-learn
from import fetch_olivetti_faces
faces = fetch_olivetti_faces().images

for 1 in range(5):
for j in range(5):
ax[1, j].xaxis.set_major_locator(plt.NullLocator())
ax[1, j].yaxis.set_major_locator(plt.NullLocator())
ax[i, j].imshow(faces[10 * 1 + j], cmap="bone")
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Figure 4-75. Hiding ticks within image plots

Notice that each image has its own axes, and we've set the locators to null because the
tick values (pixel number in this case) do not convey relevant information for this
particular visualization.

Reducing or Increasing the Number of Ticks

One common problem with the default settings is that smaller subplots can end up
with crowded labels. We can see this in the plot grid shown in Figure 4-76:

In[7]: fig, ax = plt.subplots(4, 4, sharex=True, sharey=True)
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Figure 4-76. A default plot with crowded ticks

Particularly for the x ticks, the numbers nearly overlap, making them quite difficult to
decipher. We can fix this with the plt.MaxNLocator (), which allows us to specify the
maximum number of ticks that will be displayed. Given this maximum number, Mat-
plotlib will use internal logic to choose the particular tick locations (Figure 4-77):
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In[8]: # For every axis, set the x and y major locator
for axi in ax.flat:
axi.xaxis.set_major_locator(plt.MaxNLocator(3))
axi.yaxis.set_major_locator(plt.MaxNLocator(3))
fig
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Figure 4-77. Customizing the number of ticks

This makes things much cleaner. If you want even more control over the locations of
regularly spaced ticks, you might also use plt.MultipleLocator, which we'll discuss
in the following section.

Fancy Tick Formats

Matplotlibs default tick formatting can leave a lot to be desired; it works well as a
broad default, but sometimes youd like to do something more. Consider the plot
shown in Figure 4-78, a sine and a cosine:

In[9]: # Plot a sine and cosine curve
fig, ax = plt.subplots()
x = np.linspace(0, 3 * np.pi, 1000)
ax.plot(x, np.sin(x), lw=3, label='Sine')
ax.plot(x, np.cos(x), lw=3, label='Cosine')

# Set up grid, legend, and limits
ax.grid(True)
ax.legend(frameon=False)
ax.axis('equal')

ax.set_x1lim(0, 3 * np.pil);
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Figure 4-78. A default plot with integer ticks

There are a couple changes we might like to make. First, it's more natural for this data
to space the ticks and grid lines in multiples of 7. We can do this by setting a Multi
pleLocator, which locates ticks at a multiple of the number you provide. For good
measure, we'll add both major and minor ticks in multiples of /4 (Figure 4-79):
In[10]: ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
fig
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Figure 4-79. Ticks at multiples of pi/2

But now these tick labels look a little bit silly: we can see that they are multiples of m,
but the decimal representation does not immediately convey this. To fix this, we can
change the tick formatter. There’s no built-in formatter for what we want to do, so
we'll instead use plt.FuncFormatter, which accepts a user-defined function giving
fine-grained control over the tick outputs (Figure 4-80):

In[11]: def format_func(value, tick_number):
# find number of multiples of pi/2
N = int(np.round(2 * value / np.pi))
if N == 0:
return "0"
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elif N == 1:
return r"S$\pi/2$"
elif N == 2:
return r"$\pis"
elif N % 2 > 0:
return r"${0}\pi/2$".format(N)
else:
return r"${0}\pis$".format(N // 2)

ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
fig
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Figure 4-80. Ticks with custom labels

This is much better! Notice that we've made use of Matplotlib’s LaTeX support, speci-
fied by enclosing the string within dollar signs. This is very convenient for display of
mathematical symbols and formulae; in this case, "$\pi$" is rendered as the Greek
character 7.

The plt.FuncFormatter() offers extremely fine-grained control over the appearance
of your plot ticks, and comes in very handy when you’re preparing plots for presenta-
tion or publication.

Summary of Formatters and Locators

We've mentioned a couple of the available formatters and locators. We'll conclude this
section by briefly listing all the built-in locator and formatter options. For more
information on any of these, refer to the docstrings or to the Matplotlib online docu-
mentation. Each of the following is available in the plt namespace:

NullLocator No ticks
FixedLocator Tick locations are fixed
IndexLocator Locator for index plots (e.g., where x = range(len(y)))
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Locator class Description
LinearLocator Evenly spaced ticks from min to max
LoglLocator Logarithmically ticks from min to max

MultipleLocator  Ticks and range are a multiple of base
MaxNLocator Finds up to a max number of ticks at nice locations
AutolLocator (Default) MaxNLocator with simple defaults

AutoMinorLocator Locator for minor ticks

NullFormatter No labels on the ticks
IndexFormatter Set the strings from a list of labels
FixedFormatter Set the strings manually for the labels
FuncFormatter User-defined function sets the labels

FormatStrFormatter Use a format string for each value
ScalarFormatter (Default) Formatter for scalar values

LogFormatter Default formatter for log axes

We'll see additional examples of these throughout the remainder of the book.

Customizing Matplotlib: Configurations and Stylesheets

Matplotlib’s default plot settings are often the subject of complaint among its users.
While much is slated to change in the 2.0 Matplotlib release, the ability to customize
default settings helps bring the package in line with your own aesthetic preferences.

Here we'll walk through some of Matplotlib’s runtime configuration (rc) options, and
take a look at the newer stylesheets feature, which contains some nice sets of default

configurations.

Plot Customization by Hand

Throughout this chapter, we've seen how it is possible to tweak individual plot set-
tings to end up with something that looks a little bit nicer than the default. It’s possi-
ble to do these customizations for each individual plot. For example, here is a fairly

drab default histogram (Figure 4-81):
In[1]: import matplotlib.pyplot as plt
plt.style.use('classic')
import numpy as np

%matplotlib inline
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In[2]: x = np.random.randn(1000)
plt.hist(x);
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Figure 4-81. A histogram in Matplotlib’s default style

We can adjust this by hand to make it a much more visually pleasing plot, shown in
Figure 4-82:

In[3]: # use a gray background
ax = plt.axes(axisbg='#E6E6GE6")
ax.set_axisbelow(True)

# draw solid white grid lines
plt.grid(color="'w', linestyle='solid")

# hide axis spines
for spine in ax.spines.values():
spine.set_visible(False)

# hide top and right ticks
ax.xaxis.tick_bottom()
ax.yaxis.tick_left()

# lighten ticks and labels

ax.tick_params(colors="gray', direction='out")

for tick in ax.get_xticklabels():
tick.set_color('gray')

for tick in ax.get_yticklabels():
tick.set_color('gray')

# control face and edge color of histogram
ax.hist(x, edgecolor="#E6EGE6', color="'#EE6666');
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Figure 4-82. A histogram with manual customizations

This looks better, and you may recognize the look as inspired by the look of the R
language’s ggplot visualization package. But this took a whole lot of effort! We defi-
nitely do not want to have to do all that tweaking each time we create a plot. Fortu-
nately, there is a way to adjust these defaults once in a way that will work for all plots.

Changing the Defaults: rcParams

Each time Matplotlib loads, it defines a runtime configuration (rc) containing the
default styles for every plot element you create. You can adjust this configuration at
any time using the plt.rc convenience routine. Let’s see what it looks like to modify
the rc parameters so that our default plot will look similar to what we did before.

We'll start by saving a copy of the current rcParams dictionary, so we can easily reset
these changes in the current session:

In[4]: IPython_default = plt.rcParams.copy()
Now we can use the plt.rc function to change some of these settings:

In[5]: from matplotlib import cycler
colors = cycler('color',
[ '#EE6666', '#3388BB', '#9988DD',
'#EECC55', '#88BB44', '#FFBBBB'])

plt.rc('axes', facecolor='#E6E6E6', edgecolor='none',

axisbelow=True, grid=True, prop_cycle=colors)
plt.rc('grid', color='w', linestyle='solid')
plt.rc('xtick', direction="'out', color="gray")
plt.rc('ytick', direction='out', color='gray')
plt.rc('patch', edgecolor="#E6E6E6")
plt.rc('lines', linewidth=2)

With these settings defined, we can now create a plot and see our settings in action
(Figure 4-83):

In[6]: plt.hist(x);
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Figure 4-83. A customized histogram using rc settings

Let’s see what simple line plots look like with these rc parameters (Figure 4-84):

In[7]: for 1 in range(4):
plt.plot(np.random.rand(10))

m%

1 2

Figure 4-84. A line plot with customized styles

I find this much more aesthetically pleasing than the default styling. If you disagree
with my aesthetic sense, the good news is that you can adjust the rc parameters to
suit your own tastes! These settings can be saved in a .matplotlibrc file, which you can
read about in the Matplotlib documentation. That said, I prefer to customize Mat-
plotlib using its stylesheets instead.

Stylesheets

The version 1.4 release of Matplotlib in August 2014 added a very convenient style
module, which includes a number of new default stylesheets, as well as the ability to
create and package your own styles. These stylesheets are formatted similarly to
the .matplotlibrc files mentioned earlier, but must be named with a .mplstyle
extension.
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Even if you don’t create your own style, the stylesheets included by default are
extremely useful. The available styles are listed in plt.style.available—here I'll list
only the first five for brevity:

In[8]: plt.style.available[:5]

Out[8]: ['fivethirtyeight',
'seaborn-pastel’,
'seaborn-whitegrid',

'ggplot’,
'grayscale']
The basic way to switch to a stylesheet is to call:

plt.style.use('stylename"')

But keep in mind that this will change the style for the rest of the session! Alterna-
tively, you can use the style context manager, which sets a style temporarily:

with plt.style.context('stylename'):
make_a_plot()

Let’s create a function that will make two basic types of plot:

In[9]: def hist_and_lines():
np.random.seed(0)
fig, ax = plt.subplots(1l, 2, figsize=(11, 4))
ax[0].hist(np.random.randn(1000))
for 1 in range(3):
ax[1].plot(np.random.rand(10))
ax[1].legend(['a", 'b', 'c'], loc='lower left")

We'll use this to explore how these plots look using the various built-in styles.

Default style

The default style is what we've been seeing so far throughout the book; we'll start with
that. First, let’s reset our runtime configuration to the notebook default:

In[10]: # reset rcParams
plt.rcParams.update(IPython_default);

Now let’s see how it looks (Figure 4-85):

In[11]: hist_and_lines()
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Figure 4-85. Matplotlib’s default style

FiveThirtyEight style

The FiveThirtyEight style mimics the graphics found on the popular FiveThirtyEight
website. As you can see in Figure 4-86, it is typified by bold colors, thick lines, and
transparent axes.

In[12]: with plt.style.context('fivethirtyeight'):
hist_and_lines()
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Figure 4-86. The FiveThirtyEight style
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ggplot

The ggplot package in the R language is a very popular visualization tool. Matplot-
lib’s ggplot style mimics the default styles from that package (Figure 4-87):

In[13]: with plt.style.context('ggplot'):
hist_and_lines()
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Figure 4-87. The ggplot style

Bayesian Methods for Hackers style

There is a very nice short online book called Probabilistic Programming and Bayesian
Methods for Hackers; it features figures created with Matplotlib, and uses a nice set of
rc parameters to create a consistent and visually appealing style throughout the book.
This style is reproduced in the bmh stylesheet (Figure 4-88):

In[14]: with plt.style.context('bmh'):
hist_and_lines()
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Figure 4-88. The bmbh style

Dark background

For figures used within presentations, it is often useful to have a dark rather than light
background. The dark_background style provides this (Figure 4-89):

In[15]: with plt.style.context('dark_background'):
hist_and_lines()
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Figure 4-89. The dark_background style

Grayscale

Sometimes you might find yourself preparing figures for a print publication that does
not accept color figures. For this, the grayscale style, shown in Figure 4-90, can be
very useful:

In[16]: with plt.style.context('grayscale'):
hist_and_lines()
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Figure 4-90. The grayscale style

Seaborn style

Matplotlib also has stylesheets inspired by the Seaborn library (discussed more fully
in “Visualization with Seaborn” on page 311). As we will see, these styles are loaded
automatically when Seaborn is imported into a notebook. I've found these settings to
be very nice, and tend to use them as defaults in my own data exploration (see
Figure 4-91):

In[17]: import
hist_and_lines()
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Figure 4-91. Seaborn’s plotting style

With all of these built-in options for various plot styles, Matplotlib becomes much
more useful for both interactive visualization and creation of figures for publication.
Throughout this book, I will generally use one or more of these style conventions
when creating plots.

Three-Dimensional Plotting in Matplotlib

Matplotlib was initially designed with only two-dimensional plotting in mind.
Around the time of the 1.0 release, some three-dimensional plotting utilities were
built on top of Matplotlib’s two-dimensional display, and the result is a convenient (if
somewhat limited) set of tools for three-dimensional data visualization. We enable
three-dimensional plots by importing the mplot3d toolkit, included with the main
Matplotlib installation (Figure 4-92):

In[1]: from mpl_toolkits import mplot3d

Once this submodule is imported, we can create a three-dimensional axes by passing
the keyword projection="'3d' to any of the normal axes creation routines:
In[2]: %matplotlib inline

import numpy as np
import matplotlib.pyplot as plt

In[3]: fig = plt.figure()
ax = plt.axes(projection="3d")
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Figure 4-92. An empty three-dimensional axes

With this 3D axes enabled, we can now plot a variety of three-dimensional plot types.
Three-dimensional plotting is one of the functionalities that benefits immensely from
viewing figures interactively rather than statically in the notebook; recall that to use
interactive figures, you can use %matplotlib notebook rather than %matplotlib
inline when running this code.

Three-Dimensional Points and Lines

The most basic three-dimensional plot is a line or scatter plot created from sets of (x,
¥, z) triples. In analogy with the more common two-dimensional plots discussed ear-
lier, we can create these using the ax.plot3D and ax.scatter3D functions. The call
signature for these is nearly identical to that of their two-dimensional counterparts,
so you can refer to “Simple Line Plots” on page 224 and “Simple Scatter Plots” on
page 233 for more information on controlling the output. Here we'll plot a trigono-
metric spiral, along with some points drawn randomly near the line (Figure 4-93):

In[4]: ax = plt.axes(projection='3d")

# Data for a three-dimensional line
zline = np.linspace(0, 15, 1000)

x1line = np.sin(zline)

yline = np.cos(zline)

ax.plot3D(xline, yline, zline, 'gray')

# Data for three-dimensional scattered points

zdata = 15 * np.random.random(100)

xdata = np.sin(zdata) + 0.1 * np.random.randn(100)

ydata = np.cos(zdata) + 0.1 * np.random.randn(100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');
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Figure 4-93. Points and lines in three dimensions

Notice that by default, the scatter points have their transparency adjusted to give a
sense of depth on the page. While the three-dimensional effect is sometimes difficult
to see within a static image, an interactive view can lead to some nice intuition about
the layout of the points.

Three-Dimensional Contour Plots

Analogous to the contour plots we explored in “Density and Contour Plots” on page
241, mplot3d contains tools to create three-dimensional relief plots using the same
inputs. Like two-dimensional ax.contour plots, ax.contour3D requires all the input
data to be in the form of two-dimensional regular grids, with the Z data evaluated at
each point. Here we'll show a three-dimensional contour diagram of a three-
dimensional sinusoidal function (Figure 4-94):

In[5]: def f(x, y):
return np.sin(np.sqrt(x ** 2 + y ** 2))

X
y

np.linspace(-6, 6, 30)
np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x, y)
Z = f(X, Y)

In[6]: fig = plt.figure()
ax = plt.axes(projection='3d")
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z');
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Figure 4-94. A three-dimensional contour plot

Sometimes the default viewing angle is not optimal, in which case we can use the
view_init method to set the elevation and azimuthal angles. In this example (the
result of which is shown in Figure 4-95), we'll use an elevation of 60 degrees (that is,
60 degrees above the x-y plane) and an azimuth of 35 degrees (that is, rotated 35
degrees counter-clockwise about the z-axis):

In[7]: ax.view_init(60, 35)
fig

Figure 4-95. Adjusting the view angle for a three-dimensional plot

Again, note that we can accomplish this type of rotation interactively by clicking and
dragging when using one of Matplotlib’s interactive backends.

Wireframes and Surface Plots

Two other types of three-dimensional plots that work on gridded data are wireframes
and surface plots. These take a grid of values and project it onto the specified three-
dimensional surface, and can make the resulting three-dimensional forms quite easy
to visualize. Here’s an example using a wireframe (Figure 4-96):
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In[8]: fig = plt.figure()
ax = plt.axes(projection='3d")
ax.plot_wireframe(X, Y, Z, color='black')
ax.set_title('wireframe');

wireframe

Figure 4-96. A wireframe plot

A surface plot is like a wireframe plot, but each face of the wireframe is a filled poly-
gon. Adding a colormap to the filled polygons can aid perception of the topology of
the surface being visualized (Figure 4-97):

In[9]: ax = plt.axes(projection='3d")
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap="viridis', edgecolor='none")
ax.set_title('surface');

Figure 4-97. A three-dimensional surface plot

Note that though the grid of values for a surface plot needs to be two-dimensional, it
need not be rectilinear. Here is an example of creating a partial polar grid, which
when used with the surface3D plot can give us a slice into the function were visualiz-
ing (Figure 4-98):
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In[10]: r = np.linspace(0, 6, 20)
theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40)
r, theta = np.meshgrid(r, theta)

X = r * np.sin(theta)
Y = r * np.cos(theta)
Z = f(X, Y)

ax = plt.axes(projection='3d")
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap="'viridis', edgecolor='none');

Figure 4-98. A polar surface plot

Surface Triangulations

For some applications, the evenly sampled grids required by the preceding routines
are overly restrictive and inconvenient. In these situations, the triangulation-based
plots can be very useful. What if rather than an even draw from a Cartesian or a polar
grid, we instead have a set of random draws?

In[11]: theta = 2 * np.pi * np.random.random(1000)
r = 6 * np.random.random(1000)

np.ravel(r * np.sin(theta))

np.ravel(r * np.cos(theta))

f(x, )

We could create a scatter plot of the points to get an idea of the surface were sampling
from (Figure 4-99):

X
y
z

In[12]: ax = plt.axes(projection='3d")
ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5);
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Figure 4-99. A three-dimensional sampled surface

This leaves a lot to be desired. The function that will help us in this case is
ax.plot_trisurf, which creates a surface by first finding a set of triangles formed
between adjacent points (the result is shown in Figure 4-100; remember that x, y, and
z here are one-dimensional arrays):

In[13]: ax = plt.axes(projection='3d")

ax.plot_trisurf(x, y, z,
cmap="viridis', edgecolor='none');

Figure 4-100. A triangulated surface plot

The result is certainly not as clean as when it is plotted with a grid, but the flexibility
of such a triangulation allows for some really interesting three-dimensional plots. For
example, it is actually possible to plot a three-dimensional Mobius strip using this, as
we'll see next.

Example: Visualizing a Mobius strip

A Mobius strip is similar to a strip of paper glued into a loop with a half-twist. Topo-
logically, it’s quite interesting because despite appearances it has only a single side!
Here we will visualize such an object using Matplotlib’s three-dimensional tools. The
key to creating the Mdobius strip is to think about its parameterization: it’s a two-
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dimensional strip, so we need two intrinsic dimensions. Lets call them 6, which
ranges from 0 to 27 around the loop, and w which ranges from -1 to 1 across the
width of the strip:
In[14]: theta = np.linspace(0, 2 * np.pi, 30)

w = np.linspace(-0.25, 0.25, 8)

w, theta = np.meshgrid(w, theta)
Now from this parameterization, we must determine the (x, y, z) positions of the
embedded strip.

Thinking about it, we might realize that there are two rotations happening: one is the
position of the loop about its center (what we've called ), while the other is the twist-
ing of the strip about its axis (well call this ¢). For a Mobius strip, we must have the
strip make half a twist during a full loop, or A¢ = A6/2.

In[15]: phi = 0.5 * theta

Now we use our recollection of trigonometry to derive the three-dimensional embed-
ding. We'll define r, the distance of each point from the center, and use this to find the
embedded (x, y, z) coordinates:

In[16]: # radius in x-y plane
r=1+w* np.cos(phi)

x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))

Finally, to plot the object, we must make sure the triangulation is correct. The best
way to do this is to define the triangulation within the underlying parameterization,
and then let Matplotlib project this triangulation into the three-dimensional space of
the Mébius strip. This can be accomplished as follows (Figure 4-101):

In[17]: # triangulate in the underlying parameterization

from import Triangulation
tri = Triangulation(np.ravel(w), np.ravel(theta))

ax = plt.axes(projection='3d")
ax.plot_trisurf(x, vy, z, triangles=tri.triangles,

cmap="viridis', linewidths=0.2);

ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1);
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Figure 4-101. Visualizing a Mobius strip

Combining all of these techniques, it is possible to create and display a wide variety of
three-dimensional objects and patterns in Matplotlib.

Geographic Data with Basemap

One common type of visualization in data science is that of geographic data. Matplot-
libs main tool for this type of visualization is the Basemap toolkit, which is one of
several Matplotlib toolkits that live under the mpl_toolkits namespace. Admittedly,
Basemap feels a bit clunky to use, and often even simple visualizations take much
longer to render than you might hope. More modern solutions, such as leaflet or the
Google Maps API, may be a better choice for more intensive map visualizations. Still,
Basemap is a useful tool for Python users to have in their virtual toolbelts. In this sec-
tion, we'll show several examples of the type of map visualization that is possible with
this toolkit.

Installation of Basemap is straightforward; if you're using conda you can type this and
the package will be downloaded:

$ conda install basemap
We add just a single new import to our standard boilerplate:

In[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

Once you have the Basemap toolkit installed and imported, geographic plots are just
a few lines away (the graphics in Figure 4-102 also require the PIL package in Python
2, or the pillow package in Python 3):

In[2]: plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)
m.bluemarble(scale=0.5);
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Figure 4-102. A “bluemarble” projection of the Earth

The meaning of the arguments to Basemap will be discussed momentarily.

The useful thing is that the globe shown here is not a mere image; it is a fully func-
tioning Matplotlib axes that understands spherical coordinates and allows us to easily
over-plot data on the map! For example, we can use a different map projection, zoom
in to North America, and plot the location of Seattle. We'll use an etopo image (which
shows topographical features both on land and under the ocean) as the map back-
ground (Figure 4-103):

In[3]: fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution=None,
width=8E6, height=8E6,
lat_0=45, lon_0=-100,)
m.etopo(scale=0.5, alpha=0.5)

# Map (long, lat) to (x, y) for plotting
X, y = m(-122.3, 47.6)

plt.plot(x, y, 'ok', markersize=5)
plt.text(x, y, ' Seattle', fontsize=12);
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Figure 4-103. Plotting data and labels on the map

This gives you a brief glimpse into the sort of geographic visualizations that are possi-
ble with just a few lines of Python. We’ll now discuss the features of Basemap in more
depth, and provide several examples of visualizing map data. Using these brief exam-
ples as building blocks, you should be able to create nearly any map visualization that
you desire.

Map Projections

The first thing to decide when you are using maps is which projection to use. Youre
probably familiar with the fact that it is impossible to project a spherical map, such as
that of the Earth, onto a flat surface without somehow distorting it or breaking its
continuity. These projections have been developed over the course of human history,
and there are a lot of choices! Depending on the intended use of the map projection,
there are certain map features (e.g., direction, area, distance, shape, or other consider-
ations) that are useful to maintain.

The Basemap package implements several dozen such projections, all referenced by a
short format code. Here we'll briefly demonstrate some of the more common ones.

We'll start by defining a convenience routine to draw our world map along with the
longitude and latitude lines:
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In[4]: from itertools import chain

def draw_map(m, scale=0.2):
# draw a shaded-relief image
m.shadedrelief(scale=scale)

# lats and longs are returned as a dictionary
lats = m.drawparallels(np.linspace(-90, 90, 13))
lons = m.drawmeridians(np.linspace(-180, 180, 13))

# keys contain the plt.Line2D instances
lat_lines = chain(*(tup[1][0] for tup in lats.items()))
lon_lines = chain(*(tup[1][0] for tup in lons.items()))
all_lines = chain(lat_lines, lon_lines)

# cycle through these lines and set the desired style
for line in all_lines:
line.set(linestyle="-

, alpha=0.3, color='w")

Cylindrical projections

The simplest of map projections are cylindrical projections, in which lines of constant
latitude and longitude are mapped to horizontal and vertical lines, respectively. This
type of mapping represents equatorial regions quite well, but results in extreme dis-
tortions near the poles. The spacing of latitude lines varies between different cylindri-
cal projections, leading to different conservation properties, and different distortion
near the poles. In Figure 4-104, we show an example of the equidistant cylindrical pro-
jection, which chooses a latitude scaling that preserves distances along meridians.
Other cylindrical projections are the Mercator (projection="'merc') and the cylin-
drical equal-area (projection="'cea') projections.
In[5]: fig = plt.figure(figsize=(8, 6), edgecolor='w")
m = Basemap(projection='cyl', resolution=None,
1lcrnrlat=-90, urcrnrlat=90,

1lernrlon=-180, urcrnrlon=180, )
draw_map(m)

Figure 4-104. Cylindrical equal-area projection
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The additional arguments to Basemap for this view specify the latitude (lat) and lon-
gitude (lon) of the lower-left corner (1lcrnr) and upper-right corner (urcrnr) for the
desired map, in units of degrees.

Pseudo-cylindrical projections

Pseudo-cylindrical projections relax the requirement that meridians (lines of constant
longitude) remain vertical; this can give better properties near the poles of the projec-
tion. The Mollweide projection (projection='moll') is one common example of
this, in which all meridians are elliptical arcs (Figure 4-105). It is constructed so as to
preserve area across the map: though there are distortions near the poles, the area of
small patches reflects the true area. Other pseudo-cylindrical projections are the
sinusoidal (projection="'sinu') and Robinson (projection="'robin") projections.
In[6]: fig = plt.figure(figsize=(8, 6), edgecolor='w")
m = Basemap(projection='moll', resolution=None,

lat_0=0, lon_0=0)
draw_map(m)

Figure 4-105. The Molleweide projection

The extra arguments to Basemap here refer to the central latitude (lat_0) and longi-
tude (lon_0) for the desired map.

Perspective projections

Perspective projections are constructed using a particular choice of perspective point,
similar to if you photographed the Earth from a particular point in space (a point
which, for some projections, technically lies within the Earth!). One common exam-
ple is the orthographic projection (projection="ortho'), which shows one side of
the globe as seen from a viewer at a very long distance. Thus, it can show only half the
globe at a time. Other perspective-based projections include the gnomonic projection
(projection="'gnom') and stereographic projection (projection="'stere"). These are
often the most useful for showing small portions of the map.
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Here is an example of the orthographic projection (Figure 4-106):

In[7]: fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='ortho', resolution=None,
lat_0=50, lon_0=0)
draw_map(m);

Figure 4-106. The orthographic projection

Conic projections

A conic projection projects the map onto a single cone, which is then unrolled. This
can lead to very good local properties, but regions far from the focus point of the
cone may become very distorted. One example of this is the Lambert conformal conic
projection (projection="'lcc'), which we saw earlier in the map of North America.
It projects the map onto a cone arranged in such a way that two standard parallels
(specified in Basemap by lat_1 and lat_2) have well-represented distances, with scale
decreasing between them and increasing outside of them. Other useful conic projec-
tions are the equidistant conic (projection="'eqdc') and the Albers equal-area (pro
jection='aea') projection (Figure 4-107). Conic projections, like perspective
projections, tend to be good choices for representing small to medium patches of the
globe.
In[8]: fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='1lcc', resolution=None,
lon_0=0, lat_0=50, lat_1=45, lat_2=55,
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width=1.6E7, height=1.2E7)
draw_map(m)

Figure 4-107. The Albers equal-area projection

Other projections

If you're going to do much with map-based visualizations, I encourage you to read up
on other available projections, along with their properties, advantages, and disadvan-
tages. Most likely, they are available in the Basemap package. If you dig deep enough
into this topic, you'll find an incredible subculture of geo-viz geeks who will be ready
to argue fervently in support of their favorite projection for any given application!

Drawing a Map Background

Earlier we saw the bluemarble() and shadedrelief() methods for projecting global
images on the map, as well as the drawparallels() and drawmeridians() methods
for drawing lines of constant latitude and longitude. The Basemap package contains a
range of useful functions for drawing borders of physical features like continents,
oceans, lakes, and rivers, as well as political boundaries such as countries and US
states and counties. The following are some of the available drawing functions that
you may wish to explore using IPython’s help features:

o Physical boundaries and bodies of water

drawcoastlines()
Draw continental coast lines

drawlsmask()
Draw a mask between the land and sea, for use with projecting images on
one or the other
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drawmapboundary()

Draw the map boundary, including the fill color for oceans

drawrivers()
Draw rivers on the map

fillcontinents()

Fill the continents with a given color; optionally fill lakes with another color

Political boundaries

drawcountries()
Draw country boundaries

drawstates()
Draw US state boundaries

drawcounties()
Draw US county boundaries

Map features

drawgreatcircle()
Draw a great circle between two points

drawparallels()
Draw lines of constant latitude

drawmeridians()
Draw lines of constant longitude

drawmapscale()
Draw a linear scale on the map

Whole-globe images

bluemarble()
Project NASA’s blue marble image onto the map

shadedrelief()
Project a shaded relief image onto the map

etopo()
Draw an etopo relief image onto the map

warpimage()
Project a user-provided image onto the map

Geographic Data with Basemap

305



For the boundary-based features, you must set the desired resolution when creating a
Basemap image. The resolution argument of the Basemap class sets the level of detail
in boundaries, either 'c' (crude), '1' (low), 'i' (intermediate), 'h' (high), 'f' (full),
or None if no boundaries will be used. This choice is important: setting high-
resolution boundaries on a global map, for example, can be very slow.

Here’s an example of drawing land/sea boundaries, and the effect of the resolution
parameter. We'll create both a low- and high-resolution map of Scotland’s beautiful
Isle of Skye. It's located at 57.3°N, 6.2°W, and a map of 90,000x120,000 kilometers
shows it well (Figure 4-108):

In[9]: fig, ax = plt.subplots(l, 2, figsize=(12, 8))

for 1, res in enumerate(['l', 'h']):
m = Basemap(projection="gnom', lat_0=57.3, lon_0=-6.2,
width=90000, height=120000, resolution=res, ax=ax[i])
m.fillcontinents(color="#FFDDCC", lake_color="'#DDEEFF")
m.drawmapboundary(fill_color="#DDEEFF")
m.drawcoastlines()
ax[1].set_title("resolution="'{0}"'".format(res));

resolution="l' resolution="h"

& \

Figure 4-108. Map boundaries at low and high resolution

Notice that the low-resolution coastlines are not suitable for this level of zoom, while
high-resolution works just fine. The low level would work just fine for a global view,
however, and would be much faster than loading the high-resolution border data for
the entire globe! It might require some experimentation to find the correct resolution
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parameter for a given view; the best route is to start with a fast, low-resolution plot
and increase the resolution as needed.

Plotting Data on Maps

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a vari-
ety of data onto a map background. For simple plotting and text, any plt function
works on the map; you can use the Basemap instance to project latitude and longitude
coordinates to (x, y) coordinates for plotting with plt, as we saw earlier in the Seat-
tle example.

In addition to this, there are many map-specific functions available as methods of the
Basemap instance. These work very similarly to their standard Matplotlib counter-
parts, but have an additional Boolean argument latlon, which if set to True allows
you to pass raw latitudes and longitudes to the method, rather than projected (x, y)
coordinates.

Some of these map-specific methods are:

contour()/contourf()
Draw contour lines or filled contours

imshow()
Draw an image

pcolor()/pcolormesh()
Draw a pseudocolor plot for irregular/regular meshes

plot()
Draw lines and/or markers

scatter()
Draw points with markers

quiver()
Draw vectors

barbs()
Draw wind barbs

drawgreatcircle()
Draw a great circle

We'll see examples of a few of these as we continue. For more information on these
functions, including several example plots, see the online Basemap documentation.
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Example: California Cities

Recall that in “Customizing Plot Legends” on page 249, we demonstrated the use of
size and color in a scatter plot to convey information about the location, size, and
population of California cities. Here, we'll create this plot again, but using Basemap to
put the data in context.

We start with loading the data, as we did before:

In[10]: import pandas as pd
cities = pd.read_csv('data/california_cities.csv')

# Extract the data we're interested in

lat = cities['latd'].values

lon = cities['longd'].values

population = cities['population_total'].values
area = cities['area_total_km2'].values

Next, we set up the map projection, scatter the data, and then create a colorbar and
legend (Figure 4-109):

In[11]: # 1. Draw the map background

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc', resolution='h",
lat_0=37.5, lon_0=-119,
width=1E6, height=1.2E6)

.shadedrelief()
.drawcoastlines(color="'gray')
.drawcountries(color="gray")
.drawstates(color="'gray')

3 3 3 3

W

2. scatter city data, with color reflecting population
# and size reflecting area

m.scatter(lon, lat, latlon=True,

c=np.logl10(population), s=area,

cmap='Reds', alpha=0.5)

# 3. create colorbar and legend
plt.colorbar(label=r'S$\log_{10}({\rm population})$")
plt.clim(3, 7)

# make legend with dummy points
for a in [100, 300, 500]:
plt.scatter([], [], c='k', alpha=0.5, s=a,
label=str(a) + ' km$725$")
plt.legend(scatterpoints=1, frameon=False,
labelspacing=1, loc='lower left');
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Figure 4-109. Scatter plot over a map background

This shows us roughly where larger populations of people have settled in California:
they are clustered near the coast in the Los Angeles and San Francisco areas,
stretched along the highways in the flat central valley, and avoiding almost completely
the mountainous regions along the borders of the state.

Example: Surface Temperature Data

As an example of visualizing some more continuous geographic data, let’s consider
the “polar vortex” that hit the eastern half of the United States in January 2014. A
great source for any sort of climatic data is NASAs Goddard Institute for Space Stud-
ies. Here we'll use the GIS 250 temperature data, which we can download using shell
commands (these commands may have to be modified on Windows machines). The
data used here was downloaded on 6/12/2016, and the file size is approximately 9
MB:

In[12]: # !curl -0 http://data.giss.nasa.gov/pub/gistemp/gistemp250.nc.gz
# !gunzip gistemp250.nc.gz

The data comes in NetCDF format, which can be read in Python by the netCDF4
library. You can install this library as shown here:

$ conda install netcdf4
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We read the data as follows:

In[13]: from import Dataset
data = Dataset('gistemp250.nc')

The file contains many global temperature readings on a variety of dates; we need to
select the index of the date were interested in—in this case, January 15, 2014:

In[14]: from import date2index
from import datetime
timeindex = date2index(datetime(2014, 1, 15),
data.variables['time'])

Now we can load the latitude and longitude data, as well as the temperature anomaly
for this index:

In[15]: lat = data.variables['lat'][:]
lon = data.variables['lon'][:]
lon, lat = np.meshgrid(lon, lat)
temp_anomaly = data.variables['tempanomaly'][timeindex]

Finally, we'll use the pcolormesh() method to draw a color mesh of the data. We'll
look at North America, and use a shaded relief map in the background. Note that for
this data we specifically chose a divergent colormap, which has a neutral color at zero
and two contrasting colors at negative and positive values (Figure 4-110). We'll also
lightly draw the coastlines over the colors for reference:

In[16]: fig = plt.figure(figsize=(10, 8))
m = Basemap(projection='lcc', resolution='c',
width=8E6, height=8E6,
lat_0=45, lon_0=-100,)
m.shadedrelief(scale=0.5)
m.pcolormesh(lon, lat, temp_anomaly,
latlon=True, cmap='RdBu_r")
plt.clim(-8, 8)
m.drawcoastlines(color="'1lightgray')

plt.title('January 2014 Temperature Anomaly')
plt.colorbar(label="temperature anomaly (°C)');

The data paints a picture of the localized, extreme temperature anomalies that hap-
pened during that month. The eastern half of the United States was much colder than
normal, while the western half and Alaska were much warmer. Regions with no
recorded temperature show the map background.
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January 2014 Temperature Anomaly
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temperature anomaly (°C)

Figure 4-110. The temperature anomaly in January 2014

Visualization with Seaborn

Matplotlib has proven to be an incredibly useful and popular visualization tool, but
even avid users will admit it often leaves much to be desired. There are several valid
complaints about Matplotlib that often come up:

« Prior to version 2.0, Matplotlib’s defaults are not exactly the best choices. It was
based off of MATLAB circa 1999, and this often shows.

« Matplotlib's API is relatively low level. Doing sophisticated statistical visualiza-
tion is possible, but often requires a lot of boilerplate code.

» Matplotlib predated Pandas by more than a decade, and thus is not designed for
use with Pandas DataFrames. In order to visualize data from a Pandas DataFrame,
you must extract each Series and often concatenate them together into the right
format. It would be nicer to have a plotting library that can intelligently use the
DataFrame labels in a plot.

An answer to these problems is Seaborn. Seaborn provides an API on top of Matplot-
lib that offers sane choices for plot style and color defaults, defines simple high-level
functions for common statistical plot types, and integrates with the functionality pro-
vided by Pandas DataFrames.
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To be fair, the Matplotlib team is addressing this: it has recently added the plt.style
tools (discussed in “Customizing Matplotlib: Configurations and Stylesheets” on page
282), and is starting to handle Pandas data more seamlessly. The 2.0 release of the
library will include a new default stylesheet that will improve on the current status

quo. But for all the reasons just discussed, Seaborn remains an extremely useful
add-on.

Seaborn Versus Matplotlib

Here is an example of a simple random-walk plot in Matplotlib, using its classic plot
formatting and colors. We start with the typical imports:

In[1]: import matplotlib.pyplot as plt
plt.style.use('classic')
%matplotlib inline
import numpy as np
import pandas as pd

Now we create some random walk data:

In[2]: # Create some data
rng = np.random.RandomState(0)
x = np.linspace(0, 10, 500)
y = np.cumsum(rng.randn(500, 6), 0)

And do a simple plot (Figure 4-111):

In[3]: # Plot the data with Matplotlib defaults
plt.plot(x, vy)
plt.legend('ABCDEF', ncol=2, loc='upper left');

Figure 4-111. Data in Matplotlib’s default style

Although the result contains all the information wed like it to convey, it does so in a
way that is not all that aesthetically pleasing, and even looks a bit old-fashioned in the
context of 21st-century data visualization.
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Now let’s take a look at how it works with Seaborn. As we will see, Seaborn has many
of its own high-level plotting routines, but it can also overwrite Matplotlib’s default
parameters and in turn get even simple Matplotlib scripts to produce vastly superior
output. We can set the style by calling Seaborn’s set() method. By convention, Sea-
born is imported as sns:

In[4]: import seaborn as sns
sns.set()

Now let’s rerun the same two lines as before (Figure 4-112):

In[5]: # same plotting code as above!
plt.plot(x, y)
plt.legend('ABCDEF', ncol=2, loc='upper left');

Figure 4-112. Data in Seaborn’s default style

Ah, much better!

Exploring Seaborn Plots

The main idea of Seaborn is that it provides high-level commands to create a variety
of plot types useful for statistical data exploration, and even some statistical model
fitting.

Let’s take a look at a few of the datasets and plot types available in Seaborn. Note that
all of the following could be done using raw Matplotlib commands (this is, in fact,
what Seaborn does under the hood), but the Seaborn API is much more convenient.
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Histograms, KDE, and densities

Often in statistical data visualization, all you want is to plot histograms and joint dis-
tributions of variables. We have seen that this is relatively straightforward in Matplot-
lib (Figure 4-113):

np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]], size=2000)
pd.DataFrame(data, columns=['x"', 'y'])

In[6]: data
data

for col in 'xy':
plt.hist(data[col], normed=True, alpha=0.5)
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Figure 4-113. Histograms for visualizing distributions
Rather than a histogram, we can get a smooth estimate of the distribution using a
kernel density estimation, which Seaborn does with sns.kdeplot (Figure 4-114):

In[7]: for col in 'xy':
sns.kdeplot(data[col], shade=True)
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Figure 4-114. Kernel density estimates for visualizing distributions

Histograms and KDE can be combined using distplot (Figure 4-115):

In[8]: sns.distplot(data['x'])
sns.distplot(datal'y']);

030

Figure 4-115. Kernel density and histograms plotted together

If we pass the full two-dimensional dataset to kdeplot, we will get a two-dimensional
visualization of the data (Figure 4-116):

In[9]: sns.kdeplot(data);
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Figure 4-116. A two-dimensional kernel density plot

We can see the joint distribution and the marginal distributions together using
sns. jointplot. For this plot, well set the style to a white background (Figure 4-117):

In[10]: with sns.axes_style('white'):
sns.jointplot("x", "y", data, kind='kde');

-

pearsonr = 0.63; p = 2.9e-225

-2

Figure 4-117. A joint distribution plot with a two-dimensional kernel density estimate
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There are other parameters that can be passed to jointplot—for example, we can

use a hexagonally based histogram instead (Figure 4-118):

In[11]: with sns.axes_style('white'):
sns.jointplot("x", "y",

data, kind="hex")

pearsonr = 0.63; p = 2.9e-225

-6

-4 -2

Figure 4-118. A joint distribution plot with a hexagonal bin representation

Pair plots

When you generalize joint plots to datasets of larger dimensions, you end up with
pair plots. This is very useful for exploring correlations between multidimensional
data, when youd like to plot all pairs of values against each other.

We'll demo this with the well-known Iris dataset, which lists measurements of petals
and sepals of three iris species:

In[12]: iris = sns.load_dataset("iris"
iris.head()

Out[12]:
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Visualizing the multidimensional relationships among the samples is as easy as call-
ing sns.pairplot (Figure 4-119):

In[13]: sns.pairplot(iris, hue='species', size=2.5);
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Figure 4-119. A pair plot showing the relationships between four variables

Faceted histograms

Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid
makes this extremely simple. We'll take a look at some data that shows the amount
that restaurant staff receive in tips based on various indicator data (Figure 4-120):

In[14]: tips = sns.load_dataset('tips')
tips.head()

Out[14]: total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
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3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

In[15]: tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill']

grid = sns.FacetGrid(tips, row="sex", col="time", margin_titles=True)
grid.map(plt.hist, "tip_pct", bins=np.linspace(0, 40, 15));
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Figure 4-120. An example of a faceted histogram

Factor plots

Factor plots can be useful for this kind of visualization as well. This allows you to
view the distribution of a parameter within bins defined by any other parameter
(Figure 4-121):

In[16]: with sns.axes_style(style="ticks'):
g = sns.factorplot("day", "total_bill", "sex", data=tips, kind="box")
g.set_axis_labels("Day", "Total Bill");
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Figure 4-121. An example of a factor plot, comparing distributions given various discrete
factors

Joint distributions

Similar to the pair plot we saw earlier, we can use sns. jointplot to show the joint
distribution between different datasets, along with the associated marginal distribu-
tions (Figure 4-122):

In[17]: with sns.axes_style('white'):
sns.jointplot("total _bill", "tip", data=tips, kind='hex')

10
pearsonr = 0.68; p = 6.72-34

fip

Figure 4-122. A joint distribution plot
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The joint plot can even do some automatic kernel density estimation and regression
(Figure 4-123):

In[18]: sns.jointplot("total_bill", "tip", data=tips, kind='reg');

pearsonr = 0.68; p = 6.7e-34

fip
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Figure 4-123. A joint distribution plot with a regression fit

Bar plots

Time series can be plotted with sns. factorplot. In the following example (visualized
in Figure 4-124), we'll use the Planets data that we first saw in “Aggregation and
Grouping” on page 158:

In[19]: planets = sns.load_dataset('planets')
planets.head()

Out[19]: method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009

In[20]: with sns.axes_style('white'):
g = sns.factorplot("year", data=planets, aspect=2,
kind="count", color='steelblue')

g.set_xticklabels(step=5)
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Figure 4-124. A histogram as a special case of a factor plot

We can learn more by looking at the method of discovery of each of these planets, as
illustrated in Figure 4-125:

In[21]: with sns.axes_style('white'):
g = sns.factorplot("year", data=planets, aspect=4.0, kind='count',
hue="method', order=range(2001, 2015))
g.set_ylabels('Number of Planets Discovered')
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Figure 4-125. Number of planets discovered by year and type (see the online appendix
for a full-scale figure)

For more information on plotting with Seaborn, see the Seaborn documentation, a
tutorial, and the Seaborn gallery.

Example: Exploring Marathon Finishing Times

Here we'll look at using Seaborn to help visualize and understand finishing results
from a marathon. I've scraped the data from sources on the Web, aggregated it and
removed any identifying information, and put it on GitHub where it can be downloa-
ded (if you are interested in using Python for web scraping, I would recommend Web
Scraping with Python by Ryan Mitchell). We will start by downloading the data from
the Web, and loading it into Pandas:
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In[22]:
# !curl -0 https://raw.githubusercontent.com/jakevdp/marathon-data/
# master/marathon-data.csv

In[23]: data = pd.read_csv('marathon-data.csv')
data.head()

Out[23]: age gender split final
0 33 M 01:05:38 02:08:51
1 32 M 01:06:26 02:09:28
2 31 M 01:06:49 02:10:42
3 38 M 01:06:16 02:13:45
4 31 M 01:06:32 02:13:59

By default, Pandas loaded the time columns as Python strings (type object); we can
see this by looking at the dtypes attribute of the DataFrame:

In[24]: data.dtypes

Out[24]: age int64
gender object
split object
final object

dtype: object
Let’s fix this by providing a converter for the times:

In[25]: def convert_time(s):
h, m, s = map(int, s.split(':"))
return pd.datetools.timedelta(hours=h, minutes=m, seconds=s)

data = pd.read_csv('marathon-data.csv',
converters={"split':convert_time, 'final':convert_time})
data.head()

Out[25]: age gender split final
0 33 M 01:05:38 02:08:51
1 32 M 01:06:26 02:09:28
2 31 M 01:06:49 02:10:42
3 38 M 01:06:16 02:13:45
4 31 M 01:06:32 02:13:59

In[26]: data.dtypes

Out[26]: age int64
gender object
split timedelta64[ns]
final timedelta64[ns]

dtype: object
That looks much better. For the purpose of our Seaborn plotting utilities, let’s next
add columns that give the times in seconds:

In[27]: data['split_sec'] = data['split'].astype(int) / 1E9
data[ 'final_sec'] = data['final'].astype(int) / 1E9
data.head()
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Out[27]: age gender split final split_sec final_sec

0 33 M 01:05:38 02:08:51 3938.0 7731.0
1 32 M 01:06:26 02:09:28 3986.0 7768.0
2 31 M 01:06:49 02:10:42 4009.0 7842.0
3 38 M 01:06:16 02:13:45 3976.0 8025.0
4 31 M 01:06:32 02:13:59 3992.0 8039.0

To get an idea of what the data looks like, we can plot a jointplot over the data
(Figure 4-126):

In[28]: with sns.axes_style('white'):
g = sns.jointplot("split_sec", "final_sec", data, kind='hex')
g.ax_joint.plot(np.linspace(4000, 16000),
np.linspace(8000, 32000), ':k")
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Figure 4-126. The relationship between the split for the first half-marathon and the fin-
ishing time for the full marathon

The dotted line shows where someone’s time would lie if they ran the marathon at a
perfectly steady pace. The fact that the distribution lies above this indicates (as you
might expect) that most people slow down over the course of the marathon. If you
have run competitively, you'll know that those who do the opposite—run faster dur-
ing the second half of the race—are said to have “negative-split” the race.

Let’s create another column in the data, the split fraction, which measures the degree
to which each runner negative-splits or positive-splits the race:

In[29]: data['split_frac'] = 1 - 2 * data['split_sec'] / data['final_sec']
data.head()
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Out[29]: age gender split final split_sec final_sec split_frac

0 33 M 01:05:38 02:08:51 3938.0 7731.0  -0.018756
1 32 M 01:06:26 02:09:28 3986.0 7768.0  -0.026262
2 31 M 01:06:49 02:10:42 4009.0 7842.0  -0.022443
3 38 M 01:06:16 02:13:45 3976.0 8025.0 0.009097
4 31 M 01:06:32 02:13:59 3992.0 8039.0 0.006842

Where this split difference is less than zero, the person negative-split the race by that
fraction. Let’s do a distribution plot of this split fraction (Figure 4-127):

In[30]: sns.distplot(data['split_frac'], kde=False);

plt.axvline(0, color="k", linestyle="--");
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Figure 4-127. The distribution of split fractions; 0.0 indicates a runner who completed
the first and second halves in identical times

In[31]: sum(data.split_frac < 0)
Out[31]: 251

Out of nearly 40,000 participants, there were only 250 people who negative-split their
marathon.

Let’s see whether there is any correlation between this split fraction and other vari-
ables. We'll do this using a pairgrid, which draws plots of all these correlations
(Figure 4-128):

In[32]:

g = sns.PairGrid(data, vars=['age', 'split_sec', 'final_sec', 'split_frac'],
hue="'gender', palette='RdBu_r")

g.map(plt.scatter, alpha=0.8)

g.add_legend();
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Figure 4-128. The relationship between quantities within the marathon dataset

It looks like the split fraction does not correlate particularly with age, but does corre-
late with the final time: faster runners tend to have closer to even splits on their mara-
thon time. (We see here that Seaborn is no panacea for Matplotlib’s ills when it comes
to plot styles: in particular, the x-axis labels overlap. Because the output is a simple
Matplotlib plot, however, the methods in “Customizing Ticks” on page 275 can be
used to adjust such things if desired.)

The difference between men and women here is interesting. Let’s look at the histo-
gram of split fractions for these two groups (Figure 4-129):

In[33]: sns.kdeplot(data.split_frac[data.gender=='M'], label='men', shade=True)
sns.kdeplot(data.split_frac[data.gender=="W'], label='women', shade=True)
plt.xlabel('split_frac');
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Figure 4-129. The distribution of split fractions by gender

The interesting thing here is that there are many more men than women who are
running close to an even split! This almost looks like some kind of bimodal distribu-
tion among the men and women. Let’s see if we can suss out what’s going on by look-
ing at the distributions as a function of age.

A nice way to compare distributions is to use a violin plot (Figure 4-130):
In[34]:

sns.violinplot("gender", "split_frac", data=data,
palette=["lightblue", "lightpink"]);
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Figure 4-130. A violin plot showing the split fraction by gender

Visualization with Seaborn | 327



This is yet another way to compare the distributions between men and women.

Let’s look a little deeper, and compare these violin plots as a function of age. We'll
start by creating a new column in the array that specifies the decade of age that each
person is in (Figure 4-131):

In[35]: data['age_dec'] = data.age.map(lambda age: 10 * (age // 10))
data.head()

Out[35]:

age gender split final split_sec final_sec split_frac age_dec
0 33 M 01:05:38 02:08:51 3938.0 7731.0 -0.018756 30
1 32 M 01:06:26 02:09:28 3986.0 7768.0 -0.026262 30
2 31 M 01:06:49 02:10:42 4009.0 7842.0 -0.022443 30
3 38 M 01:06:16 02:13:45 3976.0 8025.0 0.009097 30
4 31 M 01:06:32 02:13:59 3992.0 8039.0 0.006842 30
In[36]:
men = (data.gender == 'M'")
women = (data.gender == 'W')

with sns.axes_style(style=None):
sns.violinplot("age_dec", "split_frac", hue="gender", data=data,
split=True, inner="quartile",
palette=["lightblue", "lightpink"]);
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Figure 4-131. A violin plot showing the split fraction by gender and age

Looking at this, we can see where the distributions of men and women differ: the split
distributions of men in their 20s to 50s show a pronounced over-density toward
lower splits when compared to women of the same age (or of any age, for that
matter).
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Also surprisingly, the 80-year-old women seem to outperform everyone in terms of
their split time. This is probably due to the fact that we're estimating the distribution
from small numbers, as there are only a handful of runners in that range:

In[38]: (data.age > 80).sum()
Out[38]: 7
Back to the men with negative splits: who are these runners? Does this split fraction

correlate with finishing quickly? We can plot this very easily. We'll use regplot,
which will automatically fit a linear regression to the data (Figure 4-132):

In[37]: g = sns.lmplot('final_sec', 'split_frac', col='gender', data=data,
markers=".", scatter_kws=dict(color="'c'))

g.map(plt.axhline, y=0.1, color="k", ls=":");
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Figure 4-132. Split fraction versus finishing time by gender

Apparently the people with fast splits are the elite runners who are finishing within
~15,000 seconds, or about 4 hours. People slower than that are much less likely to
have a fast second split.

Further Resources

Matplotlib Resources

A single chapter in a book can never hope to cover all the available features and plot
types available in Matplotlib. As with other packages we've seen, liberal use of IPy-
thon’s tab-completion and help functions (see “Help and Documentation in IPython”
on page 3) can be very helpful when you're exploring Matplotlibs API. In addition,
Matplotlibs online documentation can be a helpful reference. See in particular the
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Matplotlib gallery linked on that page: it shows thumbnails of hundreds of different
plot types, each one linked to a page with the Python code snippet used to generate it.
In this way, you can visually inspect and learn about a wide range of different plotting
styles and visualization techniques.

For a book-length treatment of Matplotlib, I would recommend Interactive Applica-
tions Using Matplotlib, written by Matplotlib core developer Ben Root.

Other Python Graphics Libraries

Although Matplotlib is the most prominent Python visualization library, there are
other more modern tools that are worth exploring as well. I'll mention a few of them
briefly here:

o Bokeh is a JavaScript visualization library with a Python frontend that creates

highly interactive visualizations capable of handling very large and/or streaming
datasets. The Python frontend outputs a JSON data structure that can be inter-
preted by the Bokeh JS engine.

Plotly is the eponymous open source product of the Plotly company, and is simi-
lar in spirit to Bokeh. Because Plotly is the main product of a startup, it is receiv-
ing a high level of development effort. Use of the library is entirely free.

Vispy is an actively developed project focused on dynamic visualizations of very
large datasets. Because it is built to target OpenGL and make use of efficient
graphics processors in your computer, it is able to render some quite large and
stunning visualizations.

Vega and Vega-Lite are declarative graphics representations, and are the product
of years of research into the fundamental language of data visualization. The ref-
erence rendering implementation is JavaScript, but the API is language agnostic.
There is a Python API under development in the Altair package. Though it’s not
mature yet, 'm quite excited for the possibilities of this project to provide a com-
mon reference point for visualization in Python and other languages.

The visualization space in the Python community is very dynamic, and I fully expect
this list to be out of date as soon as it is published. Keep an eye out for what's coming
in the future!
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CHAPTER 5
Machine Learning

In many ways, machine learning is the primary means by which data science mani-
fests itself to the broader world. Machine learning is where these computational and
algorithmic skills of data science meet the statistical thinking of data science, and the
result is a collection of approaches to inference and data exploration that are not
about effective theory so much as effective computation.

The term “machine learning” is sometimes thrown around as if it is some kind of
magic pill: apply machine learning to your data, and all your problems will be solved!
As you might expect, the reality is rarely this simple. While these methods can be
incredibly powerful, to be effective they must be approached with a firm grasp of the
strengths and weaknesses of each method, as well as a grasp of general concepts such
as bias and variance, overfitting and underfitting, and more.

This chapter will dive into practical aspects of machine learning, primarily using
Python’s Scikit-Learn package. This is not meant to be a comprehensive introduction
to the field of machine learning; that is a large subject and necessitates a more techni-
cal approach than we take here. Nor is it meant to be a comprehensive manual for the
use of the Scikit-Learn package (for this, see “Further Machine Learning Resources”
on page 514). Rather, the goals of this chapter are:

« To introduce the fundamental vocabulary and concepts of machine learning.
« To introduce the Scikit-Learn API and show some examples of its use.

« To take a deeper dive into the details of several of the most important machine
learning approaches, and develop an intuition into how they work and when and
where they are applicable.

Much of this material is drawn from the Scikit-Learn tutorials and workshops I have
given on several occasions at PyCon, SciPy, PyData, and other conferences. Any
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clarity in the following pages is likely due to the many workshop participants and co-
instructors who have given me valuable feedback on this material over the years!

Finally, if you are seeking a more comprehensive or technical treatment of any of
these subjects, I've listed several resources and references in “Further Machine Learn-
ing Resources” on page 514.

What Is Machine Learning?

Before we take a look at the details of various machine learning methods, let’s start by
looking at what machine learning is, and what it isn’t. Machine learning is often cate-
gorized as a subfield of artificial intelligence, but I find that categorization can often
be misleading at first brush. The study of machine learning certainly arose from
research in this context, but in the data science application of machine learning meth-
ods, it's more helpful to think of machine learning as a means of building models of
data.

Fundamentally, machine learning involves building mathematical models to help
understand data. “Learning” enters the fray when we give these models tunable
parameters that can be adapted to observed data; in this way the program can be con-
sidered to be “learning” from the data. Once these models have been fit to previously
seen data, they can be used to predict and understand aspects of newly observed data.
I'll leave to the reader the more philosophical digression regarding the extent to
which this type of mathematical, model-based “learning” is similar to the “learning”
exhibited by the human brain.

Understanding the problem setting in machine learning is essential to using these
tools effectively, and so we will start with some broad categorizations of the types of
approaches we'll discuss here.

Categories of Machine Learning

At the most fundamental level, machine learning can be categorized into two main
types: supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured
features of data and some label associated with the data; once this model is deter-
mined, it can be used to apply labels to new, unknown data. This is further subdivi-
ded into classification tasks and regression tasks: in classification, the labels are
discrete categories, while in regression, the labels are continuous quantities. We will
see examples of both types of supervised learning in the following section.

Unsupervised learning involves modeling the features of a dataset without reference to
any label, and is often described as “letting the dataset speak for itself” These models
include tasks such as clustering and dimensionality reduction. Clustering algorithms
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identify distinct groups of data, while dimensionality reduction algorithms search for
more succinct representations of the data. We will see examples of both types of
unsupervised learning in the following section.

In addition, there are so-called semi-supervised learning methods, which fall some-
where between supervised learning and unsupervised learning. Semi-supervised
learning methods are often useful when only incomplete labels are available.

Qualitative Examples of Machine Learning Applications

To make these ideas more concrete, let’s take a look at a few very simple examples of a
machine learning task. These examples are meant to give an intuitive, non-
quantitative overview of the types of machine learning tasks we will be looking at in
this chapter. In later sections, we will go into more depth regarding the particular
models and how they are used. For a preview of these more technical aspects, you can
find the Python source that generates the figures in the online appendix.

(lassification: Predicting discrete labels

We will first take a look at a simple classification task, in which you are given a set of
labeled points and want to use these to classify some unlabeled points.

Imagine that we have the data shown in Figure 5-1 (the code used to generate this
figure, and all figures in this section, is available in the online appendix).
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Figure 5-1. A simple data set for classification
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Here we have two-dimensional data; that is, we have two features for each point, rep-
resented by the (x,y) positions of the points on the plane. In addition, we have one of
two class labels for each point, here represented by the colors of the points. From
these features and labels, we would like to create a model that will let us decide
whether a new point should be labeled “blue” or “red”

There are a number of possible models for such a classification task, but here we will
use an extremely simple one. We will make the assumption that the two groups can
be separated by drawing a straight line through the plane between them, such that
points on each side of the line fall in the same group. Here the model is a quantitative
version of the statement “a straight line separates the classes,” while the model param-
eters are the particular numbers describing the location and orientation of that line
for our data. The optimal values for these model parameters are learned from the
data (this is the “learning” in machine learning), which is often called training the
model.

Figure 5-2 is a visual representation of what the trained model looks like for this data.
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Figure 5-2. A simple classification model

Now that this model has been trained, it can be generalized to new, unlabeled data. In
other words, we can take a new set of data, draw this model line through it, and
assign labels to the new points based on this model. This stage is usually called predic-
tion. See Figure 5-3.
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Figure 5-3. Applying a classification model to new data

This is the basic idea of a classification task in machine learning, where “classifica-
tion” indicates that the data has discrete class labels. At first glance this may look
fairly trivial: it would be relatively easy to simply look at this data and draw such a
discriminatory line to accomplish this classification. A benefit of the machine learn-
ing approach, however, is that it can generalize to much larger datasets in many more
dimensions.

For example, this is similar to the task of automated spam detection for email; in this
case, we might use the following features and labels:

o feature 1, feature 2, etc. - normalized counts of important words or phrases
(“Viagra,” “Nigerian prince,” etc.)

o label - “spam” or “not spam”

For the training set, these labels might be determined by individual inspection of a
small representative sample of emails; for the remaining emails, the label would be
determined using the model. For a suitably trained classification algorithm with
enough well-constructed features (typically thousands or millions of words or
phrases), this type of approach can be very effective. We will see an example of such
text-based classification in “In Depth: Naive Bayes Classification” on page 382.

Some important classification algorithms that we will discuss in more detail are Gaus-
sian naive Bayes (see “In Depth: Naive Bayes Classification” on page 382), support
vector machines (see “In-Depth: Support Vector Machines” on page 405), and ran-
dom forest classification (see “In-Depth: Decision Trees and Random Forests” on
page 421).

Regression: Predicting continuous labels

In contrast with the discrete labels of a classification algorithm, we will next look at a
simple regression task in which the labels are continuous quantities.
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Consider the data shown in Figure 5-4, which consists of a set of points, each with a
continuous label.
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Figure 5-4. A simple dataset for regression

As with the classification example, we have two-dimensional data; that is, there are
two features describing each data point. The color of each point represents the con-
tinuous label for that point.

There are a number of possible regression models we might use for this type of data,
but here we will use a simple linear regression to predict the points. This simple linear
regression model assumes that if we treat the label as a third spatial dimension, we
can fit a plane to the data. This is a higher-level generalization of the well-known
problem of fitting a line to data with two coordinates.

We can visualize this setup as shown in Figure 5-5.
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Figure 5-5. A three-dimensional view of the regression data

Notice that the feature 1-feature 2 plane here is the same as in the two-dimensional
plot from before; in this case, however, we have represented the labels by both color
and three-dimensional axis position. From this view, it seems reasonable that fitting a
plane through this three-dimensional data would allow us to predict the expected
label for any set of input parameters. Returning to the two-dimensional projection,
when we fit such a plane we get the result shown in Figure 5-6.
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Figure 5-6. A representation of the regression model
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This plane of fit gives us what we need to predict labels for new points. Visually, we
find the results shown in Figure 5-7.
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Figure 5-7. Applying the regression model to new data

As with the classification example, this may seem rather trivial in a low number of
dimensions. But the power of these methods is that they can be straightforwardly
applied and evaluated in the case of data with many, many features.

For example, this is similar to the task of computing the distance to galaxies observed
through a telescope—in this case, we might use the following features and labels:

o feature 1, feature 2, etc. — brightness of each galaxy at one of several wavelengths
or colors

o label — distance or redshift of the galaxy

The distances for a small number of these galaxies might be determined through an
independent set of (typically more expensive) observations. We could then estimate
distances to remaining galaxies using a suitable regression model, without the need to
employ the more expensive observation across the entire set. In astronomy circles,
this is known as the “photometric redshift” problem.

Some important regression algorithms that we will discuss are linear regression (see
“In Depth: Linear Regression” on page 390), support vector machines (see “In-Depth:
Support Vector Machines” on page 405), and random forest regression (see “In-
Depth: Decision Trees and Random Forests” on page 421).

Clustering: Inferring labels on unlabeled data

The classification and regression illustrations we just looked at are examples of super-
vised learning algorithms, in which we are trying to build a model that will predict
labels for new data. Unsupervised learning involves models that describe data without
reference to any known labels.
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One common case of unsupervised learning is “clustering,” in which data is automati-
cally assigned to some number of discrete groups. For example, we might have some
two-dimensional data like that shown in Figure 5-8.
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Figure 5-8. Example data for clustering

By eye, it is clear that each of these points is part of a distinct group. Given this input,
a clustering model will use the intrinsic structure of the data to determine which
points are related. Using the very fast and intuitive k-means algorithm (see “In Depth:
k-Means Clustering” on page 462), we find the clusters shown in Figure 5-9.

k-means fits a model consisting of k cluster centers; the optimal centers are assumed
to be those that minimize the distance of each point from its assigned center. Again,
this might seem like a trivial exercise in two dimensions, but as our data becomes
larger and more complex, such clustering algorithms can be employed to extract use-
ful information from the dataset.

We will discuss the k-means algorithm in more depth in “In Depth: k-Means Cluster-
ing” on page 462. Other important clustering algorithms include Gaussian mixture
models (see “In Depth: Gaussian Mixture Models” on page 476) and spectral cluster-
ing (see Scikit-Learn’s clustering documentation).
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Figure 5-9. Data labeled with a k-means clustering model

Dimensionality reduction: Inferring structure of unlabeled data

Dimensionality reduction is another example of an unsupervised algorithm, in which
labels or other information are inferred from the structure of the dataset itself.
Dimensionality reduction is a bit more abstract than the examples we looked at
before, but generally it seeks to pull out some low-dimensional representation of data
that in some way preserves relevant qualities of the full dataset. Different dimension-
ality reduction routines measure these relevant qualities in different ways, as we will
see in “In-Depth: Manifold Learning” on page 445.

As an example of this, consider the data shown in Figure 5-10.

Visually, it is clear that there is some structure in this data: it is drawn from a one-
dimensional line that is arranged in a spiral within this two-dimensional space. In a
sense, you could say that this data is “intrinsically” only one dimensional, though this
one-dimensional data is embedded in higher-dimensional space. A suitable dimen-
sionality reduction model in this case would be sensitive to this nonlinear embedded
structure, and be able to pull out this lower-dimensionality representation.
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Figure 5-10. Example data for dimensionality reduction

Figure 5-11 presents a visualization of the results of the Isomap algorithm, a manifold
learning algorithm that does exactly this.
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Figure 5-11. Data with a label learned via dimensionality reduction

Notice that the colors (which represent the extracted one-dimensional latent variable)
change uniformly along the spiral, which indicates that the algorithm did in fact
detect the structure we saw by eye. As with the previous examples, the power of

What Is Machine Learning? | 341




dimensionality reduction algorithms becomes clearer in higher-dimensional cases.
For example, we might wish to visualize important relationships within a dataset that
has 100 or 1,000 features. Visualizing 1,000-dimensional data is a challenge, and one
way we can make this more manageable is to use a dimensionality reduction techni-
que to reduce the data to two or three dimensions.

Some important dimensionality reduction algorithms that we will discuss are princi-
pal component analysis (see “In Depth: Principal Component Analysis” on page 433)
and various manifold learning algorithms, including Isomap and locally linear
embedding (see “In-Depth: Manifold Learning” on page 445).

Summary

Here we have seen a few simple examples of some of the basic types of machine learn-
ing approaches. Needless to say, there are a number of important practical details that
we have glossed over, but I hope this section was enough to give you a basic idea of
what types of problems machine learning approaches can solve.

In short, we saw the following:

Supervised learning
Models that can predict labels based on labeled training data

Classification
Models that predict labels as two or more discrete categories

Regression
Models that predict continuous labels

Unsupervised learning
Models that identify structure in unlabeled data

Clustering
Models that detect and identify distinct groups in the data

Dimensionality reduction
Models that detect and identify lower-dimensional structure in higher-
dimensional data

In the following sections we will go into much greater depth within these categories,
and see some more interesting examples of where these concepts can be useful.

All of the figures in the preceding discussion are generated based on actual machine
learning computations; the code behind them can be found in the online appendix.
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Introducing Scikit-Learn

There are several Python libraries that provide solid implementations of a range of
machine learning algorithms. One of the best known is Scikit-Learn, a package that
provides efficient versions of a large number of common algorithms. Scikit-Learn is
characterized by a clean, uniform, and streamlined API, as well as by very useful and
complete online documentation. A benefit of this uniformity is that once you under-
stand the basic use and syntax of Scikit-Learn for one type of model, switching to a
new model or algorithm is very straightforward.

This section provides an overview of the Scikit-Learn API; a solid understanding of
these API elements will form the foundation for understanding the deeper practical
discussion of machine learning algorithms and approaches in the following chapters.

We will start by covering data representation in Scikit-Learn, followed by covering the
Estimator AP], and finally go through a more interesting example of using these tools
for exploring a set of images of handwritten digits.

Data Representation in Scikit-Learn

Machine learning is about creating models from data: for that reason, we'll start by
discussing how data can be represented in order to be understood by the computer.
The best way to think about data within Scikit-Learn is in terms of tables of data.

Data as table

A basic table is a two-dimensional grid of data, in which the rows represent individ-
ual elements of the dataset, and the columns represent quantities related to each of
these elements. For example, consider the Iris dataset, famously analyzed by Ronald
Fisher in 1936. We can download this dataset in the form of a Pandas DataFrame
using the Seaborn library:

In[1]: import as
iris = sns.load_dataset('iris")
iris.head()

Out[1]: sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

Here each row of the data refers to a single observed flower, and the number of rows
is the total number of flowers in the dataset. In general, we will refer to the rows of
the matrix as samples, and the number of rows as n_samples.
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Likewise, each column of the data refers to a particular quantitative piece of informa-
tion that describes each sample. In general, we will refer to the columns of the matrix
as features, and the number of columns as n_features.

Features matrix

This table layout makes clear that the information can be thought of as a two-
dimensional numerical array or matrix, which we will call the features matrix. By con-
vention, this features matrix is often stored in a variable named X. The features matrix
is assumed to be two-dimensional, with shape [n_samples, n_features], and is
most often contained in a NumPy array or a Pandas DataFrame, though some Scikit-
Learn models also accept SciPy sparse matrices.

The samples (i.e., rows) always refer to the individual objects described by the dataset.
For example, the sample might be a flower, a person, a document, an image, a sound
file, a video, an astronomical object, or anything else you can describe with a set of
quantitative measurements.

The features (i.e., columns) always refer to the distinct observations that describe
each sample in a quantitative manner. Features are generally real-valued, but may be
Boolean or discrete-valued in some cases.

Target array

In addition to the feature matrix X, we also generally work with a label or target array,
which by convention we will usually call y. The target array is usually one dimen-
sional, with length n_samples, and is generally contained in a NumPy array or Pan-
das Series. The target array may have continuous numerical values, or discrete
classes/labels. While some Scikit-Learn estimators do handle multiple target values in
the form of a two-dimensional [n_samples, n_targets] target array, we will pri-
marily be working with the common case of a one-dimensional target array.

Often one point of confusion is how the target array differs from the other features
columns. The distinguishing feature of the target array is that it is usually the quantity
we want to predict from the data: in statistical terms, it is the dependent variable. For
example, in the preceding data we may wish to construct a model that can predict the
species of flower based on the other measurements; in this case, the species column
would be considered the feature.
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With this target array in mind, we can use Seaborn (discussed earlier in “Visualiza-
tion with Seaborn” on page 311) to conveniently visualize the data (see Figure 5-12):
In[2]: %matplotlib inline

import seaborn as sns; sns.set()
sns.pairplot(iris, hue='species', size=1.5);
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Figure 5-12. A visualization of the Iris dataset

For use in Scikit-Learn, we will extract the features matrix and target array from the

DataFrame, which we can do using some of the Pandas DataFrame operations dis-
cussed in Chapter 3:

In[3]: X_iris = iris.drop('species', axis=1)
X_1iris.shape
Out[3]: (150, 4)

In[4]: y_irls = iris['species']
y_iris.shape

Out[4]: (150,)

To summarize, the expected layout of features and target values is visualized in
Figure 5-13.

Introducing Scikit-Learn | 345



Feature Matrix (X) Target Vector (y)
n_features —

ples
ples

n_samj
n_samj

Figure 5-13. Scikit-Learn’s data layout

With this data properly formatted, we can move on to consider the estimator API of
Scikit-Learn.

Scikit-Learn’s Estimator API

The Scikit-Learn API is designed with the following guiding principles in mind, as
outlined in the Scikit-Learn API paper:

Consistency

All objects share a common interface drawn from a limited set of methods, with
consistent documentation.

Inspection
All specified parameter values are exposed as public attributes.

Limited object hierarchy
Only algorithms are represented by Python classes; datasets are represented in

standard formats (NumPy arrays, Pandas DataFrames, SciPy sparse matrices) and
parameter names use standard Python strings.

Composition
Many machine learning tasks can be expressed as sequences of more fundamen-
tal algorithms, and Scikit-Learn makes use of this wherever possible.

Sensible defaults

When models require user-specified parameters, the library defines an appropri-
ate default value.
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In practice, these principles make Scikit-Learn very easy to use, once the basic princi-
ples are understood. Every machine learning algorithm in Scikit-Learn is imple-
mented via the Estimator API, which provides a consistent interface for a wide range
of machine learning applications.

Basics of the API

Most commonly, the steps in using the Scikit-Learn estimator API are as follows (we
will step through a handful of detailed examples in the sections that follow):

1. Choose a class of model by importing the appropriate estimator class from Scikit-
Learn.

2. Choose model hyperparameters by instantiating this class with desired values.

3. Arrange data into a features matrix and target vector following the discussion
from before.

4. Fit the model to your data by calling the fit() method of the model instance.
5. Apply the model to new data:
o For supervised learning, often we predict labels for unknown data using the
predict() method.

« For unsupervised learning, we often transform or infer properties of the data
using the transform() or predict() method.

We will now step through several simple examples of applying supervised and unsu-
pervised learning methods.

Supervised learning example: Simple linear regression

As an example of this process, let’s consider a simple linear regression—that is, the
common case of fitting a line to (x, y) data. We will use the following simple data for
our regression example (Figure 5-14):

In[5]: import as
import as

rng = np.random.RandomState(42)
X = 10 * rng.rand(50)

y =2 *x -1+ rng.randn(50)
plt.scatter(x, y);
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Figure 5-14. Data for linear regression

With this data in place, we can use the recipe outlined earlier. Let’s walk through the
process:

1.

Choose a class of model.

In Scikit-Learn, every class of model is represented by a Python class. So, for
example, if we would like to compute a simple linear regression model, we can
import the linear regression class:

In[6]: from import LinearRegression

Note that other, more general linear regression models exist as well; you can read
more about them in the sklearn.linear_model module documentation.

. Choose model hyperparameters.

An important point is that a class of model is not the same as an instance of a
model.

Once we have decided on our model class, there are still some options open to us.
Depending on the model class we are working with, we might need to answer
one or more questions like the following:

« Would we like to fit for the offset (i.e., intercept)?

» Would we like the model to be normalized?

o Would we like to preprocess our features to add model flexibility?

o What degree of regularization would we like to use in our model?

« How many model components would we like to use?
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These are examples of the important choices that must be made once the model
class is selected. These choices are often represented as hyperparameters, or
parameters that must be set before the model is fit to data. In Scikit-Learn, we
choose hyperparameters by passing values at model instantiation. We will
explore how you can quantitatively motivate the choice of hyperparameters in
“Hyperparameters and Model Validation” on page 359.

For our linear regression example, we can instantiate the LinearRegression
class and specify that we would like to fit the intercept using the fit_inter
cept hyperparameter:

In[7]: model = LinearRegression(fit_intercept=True)

model
Out[7]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

Keep in mind that when the model is instantiated, the only action is the storing
of these hyperparameter values. In particular, we have not yet applied the
model to any data: the Scikit-Learn API makes very clear the distinction
between choice of model and application of model to data.

3. Arrange data into a features matrix and target vector.

Previously we detailed the Scikit-Learn data representation, which requires a
two-dimensional features matrix and a one-dimensional target array. Here our
target variable y is already in the correct form (a length-n_samples array), but we
need to massage the data x to make it a matrix of size [n_samples, n_features].
In this case, this amounts to a simple reshaping of the one-dimensional array:

In[8]: X = x[:, np.newaxis]
X.shape

Out[8]: (50, 1)
4. Fit the model to your data.

Now it is time to apply our model to data. This can be done with the fit()
method of the model:

In[9]: model.fit(X, y)
Out[9]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

This fit() command causes a number of model-dependent internal computa-
tions to take place, and the results of these computations are stored in model-
specific attributes that the user can explore. In Scikit-Learn, by convention all
model parameters that were learned during the fit() process have trailing
underscores; for example, in this linear model, we have the following:

Introducing Scikit-Learn | 349



In[10]: model.coef_

Out[10]: array([ 1.9776566])
In[11]: model.intercept_
Out[11]: -0.90331072553111635

These two parameters represent the slope and intercept of the simple linear fit to
the data. Comparing to the data definition, we see that they are very close to the
input slope of 2 and intercept of -1.

One question that frequently comes up regards the uncertainty in such internal
model parameters. In general, Scikit-Learn does not provide tools to draw con-
clusions from internal model parameters themselves: interpreting model parame-
ters is much more a statistical modeling question than a machine learning
question. Machine learning rather focuses on what the model predicts. If you
would like to dive into the meaning of fit parameters within the model, other
tools are available, including the StatsModels Python package.

5. Predict labels for unknown data.
Once the model is trained, the main task of supervised machine learning is to
evaluate it based on what it says about new data that was not part of the training
set. In Scikit-Learn, we can do this using the predict() method. For the sake of
this example, our “new data” will be a grid of x values, and we will ask what y
values the model predicts:
In[12]: xfit = np.linspace(-1, 11)
As before, we need to coerce these x values into a [n_samples, n_features]
features matrix, after which we can feed it to the model:
In[13]: Xfit = xfit[:, np.newaxis]
yfit = model.predict(Xfit)
Finally, let’s visualize the results by plotting first the raw data, and then this
model fit (Figure 5-15):
In[14]: plt.scatter(x, y)
plt.plot(xfit, yfit);
Typically one evaluates the efficacy of the model by comparing its results to some
known baseline, as we will see in the next example.
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Figure 5-15. A simple linear regression fit to the data

Supervised learning example: Iris classification

Let’s take a look at another example of this process, using the Iris dataset we discussed
earlier. Our question will be this: given a model trained on a portion of the Iris data,
how well can we predict the remaining labels?

For this task, we will use an extremely simple generative model known as Gaussian
naive Bayes, which proceeds by assuming each class is drawn from an axis-aligned
Gaussian distribution (see “In Depth: Naive Bayes Classification” on page 382 for
more details). Because it is so fast and has no hyperparameters to choose, Gaussian
naive Bayes is often a good model to use as a baseline classification, before you
explore whether improvements can be found through more sophisticated models.

We would like to evaluate the model on data it has not seen before, and so we will
split the data into a training set and a testing set. This could be done by hand, but it is
more convenient to use the train_test_split utility function:

In[15]: from import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris,
random_state=1)

With the data arranged, we can follow our recipe to predict the labels:

In[16]: from import GaussianNB # 1. choose model class
model = GaussianNB() # 2. instantiate model
model.fit(Xtrain, ytrain) # 3. fit model to data
y_model = model.predict(Xtest) # 4. predict on new data

Finally, we can use the accuracy_score utility to see the fraction of predicted labels
that match their true value:
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In[17]: from import accuracy_score
accuracy_score(ytest, y_model)

Out[17]: 0.97368421052631582

With an accuracy topping 97%, we see that even this very naive classification algo-
rithm is effective for this particular dataset!

Unsupervised learning example: Iris dimensionality

As an example of an unsupervised learning problem, let’s take a look at reducing the
dimensionality of the Iris data so as to more easily visualize it. Recall that the Iris data
is four dimensional: there are four features recorded for each sample.

The task of dimensionality reduction is to ask whether there is a suitable lower-
dimensional representation that retains the essential features of the data. Often
dimensionality reduction is used as an aid to visualizing data; after all, it is much eas-
ier to plot data in two dimensions than in four dimensions or higher!

Here we will use principal component analysis (PCA; see “In Depth: Principal Com-
ponent Analysis” on page 433), which is a fast linear dimensionality reduction techni-
que. We will ask the model to return two components—that is, a two-dimensional
representation of the data.

Following the sequence of steps outlined earlier, we have:

In[18]:

from import PCA # 1. Choose the model class

model = PCA(n_components=2) # 2. Instantiate the model with hyperparameters
model. fit(X_iris) # 3. Fit to data. Notice y is not specified!

X_2D = model.transform(X_1iris) # 4. Transform the data to two dimensions

Now let’s plot the results. A quick way to do this is to insert the results into the origi-
nal Iris DataFrame, and use Seaborn’s lmplot to show the results (Figure 5-16):
In[19]: iris['PCA1'] = X_2D[:, 0]

iris['PCA2'] = X_2D[:, 1]

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False);
We see that in the two-dimensional representation, the species are fairly well separa-
ted, even though the PCA algorithm had no knowledge of the species labels! This
indicates to us that a relatively straightforward classification will probably be effective
on the dataset, as we saw before.
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Figure 5-16. The Iris data projected to two dimensions

Unsupervised learning: Iris clustering

Let’s next look at applying clustering to the Iris data. A clustering algorithm attempts
to find distinct groups of data without reference to any labels. Here we will use a
powerful clustering method called a Gaussian mixture model (GMM), discussed in
more detail in “In Depth: Gaussian Mixture Models” on page 476. A GMM attempts
to model the data as a collection of Gaussian blobs.

We can fit the Gaussian mixture model as follows:

In[20]:
from import GMM # 1. Choose the model class
model = GMM(n_components=3,

covariance_type='full') # 2. Instantiate the model w/ hyperparameters
model. fit(X_iris) # 3. Fit to data. Notice y is not specified!
y_gmm = model.predict(X_1iris) # 4. Determine cluster labels

As before, we will add the cluster label to the Iris DataFrame and use Seaborn to plot
the results (Figure 5-17):

In[21]:

iris['cluster'] = y_gmm

sns.lmplot("PCA1", "PCA2", data=iris, hue='species',

col="cluster', fit_reg=False);

By splitting the data by cluster number, we see exactly how well the GMM algorithm
has recovered the underlying label: the setosa species is separated perfectly within
cluster 0, while there remains a small amount of mixing between versicolor and vir-
ginica. This means that even without an expert to tell us the species labels of the indi-
vidual flowers, the measurements of these flowers are distinct enough that we could
automatically identify the presence of these different groups of species with a simple

Introducing Scikit-Learn | 353



clustering algorithm! This sort of algorithm might further give experts in the field
clues as to the relationship between the samples they are observing.

=] FTAl ]

Figure 5-17. k-means clusters within the Iris data

Application: Exploring Handwritten Digits

To demonstrate these principles on a more interesting problem, let’s consider one
piece of the optical character recognition problem: the identification of handwritten
digits. In the wild, this problem involves both locating and identifying characters in
an image. Here we'll take a shortcut and use Scikit-Learn’s set of preformatted digits,
which is built into the library.

Loading and visualizing the digits data
WEe'll use Scikit-Learn’s data access interface and take a look at this data:

In[22]: from import load_digits
digits = load_digits()
digits.images.shape

Out[22]: (1797, 8, 8)

The images data is a three-dimensional array: 1,797 samples, each consisting of an
8x8 grid of pixels. Let’s visualize the first hundred of these (Figure 5-18):

In[23]: import as

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot_kw={"xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for 1, ax in enumerate(axes.flat):
ax.imshow(digits.images[1], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(digits.target[i]),
transform=ax.transAxes, color='green')
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Figure 5-18. The handwritten digits data; each sample is represented by one 8x8 grid of
pixels

In order to work with this data within Scikit-Learn, we need a two-dimensional,
[n_samples, n_features] representation. We can accomplish this by treating each
pixel in the image as a feature—that is, by flattening out the pixel arrays so that we
have a length-64 array of pixel values representing each digit. Additionally, we need
the target array, which gives the previously determined label for each digit. These two
quantities are built into the digits dataset under the data and target attributes,
respectively:

In[24]: X = digits.data
X.shape

Out[24]: (1797, 64)

In[25]: y = digits.target
y.shape

Out[25]: (1797,)

We see here that there are 1,797 samples and 64 features.

Unsupervised learning: Dimensionality reduction

Wed like to visualize our points within the 64-dimensional parameter space, but it’s
difficult to effectively visualize points in such a high-dimensional space. Instead we'll
reduce the dimensions to 2, using an unsupervised method. Here, we'll make use of a
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manifold learning algorithm called Isomap (see “In-Depth: Manifold Learning” on
page 445), and transform the data to two dimensions:

In[26]: from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
iso.fit(digits.data)
data_projected = iso.transform(digits.data)
data_projected.shape

Out[26]: (1797, 2)

We see that the projected data is now two-dimensional. Let’s plot this data to see if we
can learn anything from its structure (Figure 5-19):

In[27]: plt.scatter(data_projected[:, 0], data_projected[:, 1], c=digits.target,
edgecolor="none', alpha=0.5,
cmap=plt.cm.get_cmap('spectral', 10))

plt.colorbar(label="digit label', ticks=range(10))
plt.clim(-0.5, 9.5);
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Figure 5-19. An Isomap embedding of the digits data

This plot gives us some good intuition into how well various numbers are separated
in the larger 64-dimensional space. For example, zeros (in black) and ones (in purple)
have very little overlap in parameter space. Intuitively, this makes sense: a zero is
empty in the middle of the image, while a one will generally have ink in the middle.
On the other hand, there seems to be a more or less continuous spectrum between
ones and fours: we can understand this by realizing that some people draw ones with
“hats” on them, which cause them to look similar to fours.

Overall, however, the different groups appear to be fairly well separated in the param-
eter space: this tells us that even a very straightforward supervised classification algo-
rithm should perform suitably on this data. Let’s give it a try.
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Classification on digits

Let’s apply a classification algorithm to the digits. As with the Iris data previously, we
will split the data into a training and test set, and fit a Gaussian naive Bayes model:

In[28]: Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0)

In[29]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(Xtrain, ytrain)
y_model = model.predict(Xtest)

Now that we have predicted our model, we can gauge its accuracy by comparing the
true values of the test set to the predictions:

In[30]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

Out[30]: 0.83333333333333337

With even this extremely simple model, we find about 80% accuracy for classification
of the digits! However, this single number doesn't tell us where we've gone wrong—
one nice way to do this is to use the confusion matrix, which we can compute with
Scikit-Learn and plot with Seaborn (Figure 5-20):

In[31]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, y_model)
sns.heatmap(mat, square=True, annot=True, cbar=False)

plt.xlabel('predicted value')
plt.ylabel('true value');

true value

predicted value

Figure 5-20. A confusion matrix showing the frequency of misclassifications by our
classifier
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This shows us where the mislabeled points tend to be: for example, a large number of
twos here are misclassified as either ones or eights. Another way to gain intuition into
the characteristics of the model is to plot the inputs again, with their predicted labels.
WEe'll use green for correct labels, and red for incorrect labels (Figure 5-21):

In[32]: fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot_kw={"'xticks':[], 'yticks':[]},

gridspec_kw=dict(hspace=0.1, wspace=0.1))

for 1, ax in enumerate(axes.flat):
ax.imshow(digits.images[i1], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(y_model[1]),
transform=ax.transAxes,

color="green' if (ytest[i] == y_model[i]) else
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Figure 5-21. Data showing correct (green) and incorrect (red) labels; for a color version
of this plot, see the online appendix

Examining this subset of the data, we can gain insight regarding where the algorithm
might not be performing optimally. To go beyond our 80% classification rate, we
might move to a more sophisticated algorithm, such as support vector machines (see
“In-Depth: Support Vector Machines” on page 405) or random forests (see “In-
Depth: Decision Trees and Random Forests” on page 421), or another classification
approach.
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Summary

In this section we have covered the essential features of the Scikit-Learn data repre-
sentation, and the estimator API. Regardless of the type of estimator, the same
import/instantiate/fit/predict pattern holds. Armed with this information about the
estimator API, you can explore the Scikit-Learn documentation and begin trying out
various models on your data.

In the next section, we will explore perhaps the most important topic in machine
learning: how to select and validate your model.

Hyperparameters and Model Validation

In the previous section, we saw the basic recipe for applying a supervised machine
learning model:

1. Choose a class of model

2. Choose model hyperparameters

3. Fit the model to the training data

4. Use the model to predict labels for new data

The first two pieces of this—the choice of model and choice of hyperparameters—are
perhaps the most important part of using these tools and techniques effectively. In
order to make an informed choice, we need a way to validate that our model and our
hyperparameters are a good fit to the data. While this may sound simple, there are
some pitfalls that you must avoid to do this effectively.

Thinking About Model Validation

In principle, model validation is very simple: after choosing a model and its hyper-
parameters, we can estimate how effective it is by applying it to some of the training
data and comparing the prediction to the known value.

The following sections first show a naive approach to model validation and why it
fails, before exploring the use of holdout sets and cross-validation for more robust
model evaluation.

Model validation the wrong way

Let’s demonstrate the naive approach to validation using the Iris data, which we saw
in the previous section. We will start by loading the data:

In[1]: from import load_iris
iris = load_iris()
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X
y

iris.data
iris.target

Next we choose a model and hyperparameters. Here we'll use a k-neighbors classifier
with n_neighbors=1. This is a very simple and intuitive model that says “the label of
an unknown point is the same as the label of its closest training point™:

In[2]: from import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=1)

Then we train the model, and use it to predict labels for data we already know:

In[3]: model.fit(X, y)
y_model = model.predict(X)

Finally, we compute the fraction of correctly labeled points:

In[4]: from import accuracy_score
accuracy_score(y, y_model)

out[4]: 1.0

We see an accuracy score of 1.0, which indicates that 100% of points were correctly
labeled by our model! But is this truly measuring the expected accuracy? Have we
really come upon a model that we expect to be correct 100% of the time?

As you may have gathered, the answer is no. In fact, this approach contains a funda-
mental flaw: it trains and evaluates the model on the same data. Furthermore, the
nearest neighbor model is an instance-based estimator that simply stores the training
data, and predicts labels by comparing new data to these stored points; except in con-
trived cases, it will get 100% accuracy every time!

Model validation the right way: Holdout sets

So what can be done? We can get a better sense of a model’s performance using what’s
known as a holdout set; that is, we hold back some subset of the data from the training
of the model, and then use this holdout set to check the model performance. We can
do this splitting using the train_test_split utility in Scikit-Learn:
In[5]: from import train_test_split
# split the data with 50% in each set

X1, X2, y1, y2 = train_test_split(X, y, random_state=0,
train_size=0.5)

# fit the model on one set of data
model. fit(X1, y1)

# evaluate the model on the second set of data
y2_model = model.predict(X2)
accuracy_score(y2, y2_model)

Out[5]: 0.90666666666666662
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We see here a more reasonable result: the nearest-neighbor classifier is about 90%
accurate on this holdout set. The holdout set is similar to unknown data, because the
model has not “seen” it before.

Model validation via cross-validation

One disadvantage of using a holdout set for model validation is that we have lost a
portion of our data to the model training. In the previous case, half the dataset does
not contribute to the training of the model! This is not optimal, and can cause prob-
lems—especially if the initial set of training data is small.

One way to address this is to use cross-validation—that is, to do a sequence of fits
where each subset of the data is used both as a training set and as a validation set.
Visually, it might look something like Figure 5-22.

validation
set

trial 1

validation
st

trial 2

Figure 5-22. Visualization of two-fold cross-validation

Here we do two validation trials, alternately using each half of the data as a holdout
set. Using the split data from before, we could implement it like this:

In[6]: y2_model = model.fit(X1, y1).predict(X2)

y1_model = model.fit(X2, y2).predict(X1)
accuracy_score(yl, y1_model), accuracy_score(y2, y2_model)

Out[6]: (0.95999999999999996, 0.90666666666666662)

What comes out are two accuracy scores, which we could combine (by, say, taking the
mean) to get a better measure of the global model performance. This particular form
of cross-validation is a two-fold cross-validation—one in which we have split the data
into two sets and used each in turn as a validation set.

We could expand on this idea to use even more trials, and more folds in the data—for
example, Figure 5-23 is a visual depiction of five-fold cross-validation.
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Figure 5-23. Visualization of five-fold cross-validation

Here we split the data into five groups, and use each of them in turn to evaluate the
model fit on the other 4/5 of the data. This would be rather tedious to do by hand,
and so we can use Scikit-Learn’s cross_val_score convenience routine to do it
succinctly:

In[7]: from import cross_val_score
cross_val_score(model, X, y, cv=5)

Out[7]: array([ 0.96666667, 0.96666667, 0.93333333, 0.93333333, 1. D)

Repeating the validation across different subsets of the data gives us an even better
idea of the performance of the algorithm.

Scikit-Learn implements a number of cross-validation schemes that are useful in par-
ticular situations; these are implemented via iterators in the cross_validation mod-
ule. For example, we might wish to go to the extreme case in which our number of
folds is equal to the number of data points; that is, we train on all points but one in
each trial. This type of cross-validation is known as leave-one-out cross-validation,
and can be used as follows:

In[8]: from import LeaveOneOut
scores = cross_val_score(model, X, y, cv=LeaveOneOut(len(X)))
scores
Out[8]: array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
i., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
i., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1. 1. 1 1. 1 0. 1. 0. 1 1. 1 1 1.
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i., 1., 1., 1., 1., eo., 1., 1., 1., 1., 1., 1., 1.,
i., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
i., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
i., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
i., 1., 1., ©o., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1.1

Because we have 150 samples, the leave-one-out cross-validation yields scores for 150
trials, and the score indicates either successful (1.0) or unsuccessful (0.0) prediction.
Taking the mean of these gives an estimate of the error rate:

In[9]: scores.mean()
Out[9]: 0.95999999999999996
Other cross-validation schemes can be used similarly. For a description of what is

available in Scikit-Learn, use IPython to explore the sklearn.cross_validation sub-
module, or take a look at Scikit-Learn’s online cross-validation documentation.

Selecting the Best Model

Now that we've seen the basics of validation and cross-validation, we will go into a
little more depth regarding model selection and selection of hyperparameters. These
issues are some of the most important aspects of the practice of machine learning,
and I find that this information is often glossed over in introductory machine learn-
ing tutorials.

Of core importance is the following question: if our estimator is underperforming, how
should we move forward? There are several possible answers:

 Use a more complicated/more flexible model
o Use a less complicated/less flexible model
« Gather more training samples

+ Gather more data to add features to each sample

The answer to this question is often counterintuitive. In particular, sometimes using a
more complicated model will give worse results, and adding more training samples
may not improve your results! The ability to determine what steps will improve your
model is what separates the successful machine learning practitioners from the
unsuccessful.
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The bias—variance trade-off

Fundamentally, the question of “the best model” is about finding a sweet spot in the
trade-off between bias and variance. Consider Figure 5-24, which presents two
regression fits to the same dataset.

High-bias modal: Underfits tha dats o High-varianca medel: Cverfits the data
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Figure 5-24. A high-bias and high-variance regression model

It is clear that neither of these models is a particularly good fit to the data, but they
fail in different ways.

The model on the left attempts to find a straight-line fit through the data. Because the
data are intrinsically more complicated than a straight line, the straight-line model
will never be able to describe this dataset well. Such a model is said to underfit the
data; that is, it does not have enough model flexibility to suitably account for all the
features in the data. Another way of saying this is that the model has high bias.

The model on the right attempts to fit a high-order polynomial through the data.
Here the model fit has enough flexibility to nearly perfectly account for the fine fea-
tures in the data, but even though it very accurately describes the training data, its
precise form seems to be more reflective of the particular noise properties of the data
rather than the intrinsic properties of whatever process generated that data. Such a
model is said to overfit the data; that is, it has so much model flexibility that the
model ends up accounting for random errors as well as the underlying data distribu-
tion. Another way of saying this is that the model has high variance.

To look at this in another light, consider what happens if we use these two models to
predict the y-value for some new data. In diagrams in Figure 5-25, the red/lighter
points indicate data that is omitted from the training set.
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Figure 5-25. Training and validation scores in high-bias and high-variance models

The score here is the R score, or coefficient of determination, which measures how
well a model performs relative to a simple mean of the target values. R* = 1 indicates

a perfect match, R? = 0 indicates the model does no better than simply taking the
mean of the data, and negative values mean even worse models. From the scores asso-
ciated with these two models, we can make an observation that holds more generally:

o For high-bias models, the performance of the model on the validation set is simi-
lar to the performance on the training set.

« For high-variance models, the performance of the model on the validation set is
far worse than the performance on the training set.

If we imagine that we have some ability to tune the model complexity, we would
expect the training score and validation score to behave as illustrated in Figure 5-26.

The diagram shown in Figure 5-26 is often called a validation curve, and we see the
following essential features:

o The training score is everywhere higher than the validation score. This is gener-
ally the case: the model will be a better fit to data it has seen than to data it has

not seen.

« For very low model complexity (a high-bias model), the training data is underfit,
which means that the model is a poor predictor both for the training data and for
any previously unseen data.

« For very high model complexity (a high-variance model), the training data is
overfit, which means that the model predicts the training data very well, but fails
for any previously unseen data.

« For some intermediate value, the validation curve has a maximum. This level of
complexity indicates a suitable trade-off between bias and variance.
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Validation Curve Schematic
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Figure 5-26. A schematic of the relationship between model complexity, training score,
and validation score

The means of tuning the model complexity varies from model to model; when we
discuss individual models in depth in later sections, we will see how each model
allows for such tuning.

Validation curves in Scikit-Learn

Let’s look at an example of using cross-validation to compute the validation curve for
a class of models. Here we will use a polynomial regression model: this is a generalized
linear model in which the degree of the polynomial is a tunable parameter. For
example, a degree-1 polynomial fits a straight line to the data; for model parameters a

and b:
y=ax+b

A degree-3 polynomial fits a cubic curve to the data; for model parameters a, b, ¢, d:

y=ax +bx* +ex+d

We can generalize this to any number of polynomial features. In Scikit-Learn, we can
implement this with a simple linear regression combined with the polynomial pre-
processor. We will use a pipeline to string these operations together (we will discuss
polynomial features and pipelines more fully in “Feature Engineering” on page 375):
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In[10]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline

def PolynomialRegression(degree=2, **kwargs):
return make_pipeline(PolynomialFeatures(degree),
LinearRegression(**kwargs))

Now let’s create some data to which we will fit our model:

In[11]: import numpy as np

def make_data(N, err=1.0, rseed=1):
# randomly sample the data
rng = np.random.RandomState(rseed)
X = rng.rand(N, 1) ** 2
y =10 - 1. / (X.ravel() + 0.1)
if err > 0:
y += err * rng.randn(N)
return X, y

X, y = make_data(40)

We can now visualize our data, along with polynomial fits of several degrees
(Figure 5-27):

In[12]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # plot formatting

X_test = np.linspace(-0.1, 1.1, 500)[:, None]

plt.scatter(X.ravel(), vy, color='black")

axis = plt.axis()

for degree in [1, 3, 5]:
y_test = PolynomialRegression(degree).fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test, label='degree={0}'.format(degree))

plt.xlim(-0.1, 1.0)

plt.ylim(-2, 12)

plt.legend(loc="'best"');

The knob controlling model complexity in this case is the degree of the polynomial,
which can be any non-negative integer. A useful question to answer is this: what

degree of polynomial provides a suitable trade-off between bias (underfitting) and
variance (overfitting)?
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Figure 5-27. Three different polynomial models fit to a dataset

We can make progress in this by visualizing the validation curve for this particular
data and model; we can do this straightforwardly using the validation_curve conve-
nience routine provided by Scikit-Learn. Given a model, data, parameter name, and a
range to explore, this function will automatically compute both the training score and
validation score across the range (Figure 5-28):

In[13]:

from import validation_curve

degree = np.arange(0, 21)

train_score, val_score = validation_curve(PolynomialRegression(), X, vy,
'polynomialfeatures__degree',
degree, cv=7)

plt.plot(degree, np.median(train_score, 1), color='blue', label='training score')
plt.plot(degree, np.median(val_score, 1), color='red', label='validation score')
plt.legend(loc="best")

plt.ylim(0, 1)

plt.xlabel('degree")

plt.ylabel('score');

This shows precisely the qualitative behavior we expect: the training score is every-
where higher than the validation score; the training score is monotonically improving
with increased model complexity; and the validation score reaches a maximum
before dropping off as the model becomes overfit.
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Figure 5-28. The validation curves for the data in Figure 5-27 (cf. Figure 5-26)

From the validation curve, we can read off that the optimal trade-off between bias
and variance is found for a third-order polynomial; we can compute and display this
fit over the original data as follows (Figure 5-29):

In[14]: plt.scatter(X.ravel(), vy)
1im = plt.axis()
y_test = PolynomialRegression(3).fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test);
plt.axis(lim);

12
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Figure 5-29. The cross-validated optimal model for the data in Figure 5-27

Hyperparameters and Model Validation | 369




Notice that finding this optimal model did not actually require us to compute the
training score, but examining the relationship between the training score and valida-
tion score can give us useful insight into the performance of the model.

Learning Curves

One important aspect of model complexity is that the optimal model will generally
depend on the size of your training data. For example, let’s generate a new dataset
with a factor of five more points (Figure 5-30):

In[15]: X2, y2 = make_data(200)
plt.scatter(X2.ravel(), y2);
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Figure 5-30. Data to demonstrate learning curves

We will duplicate the preceding code to plot the validation curve for this larger data-
set; for reference let’s over-plot the previous results as well (Figure 5-31):

In[16]:

degree = np.arange(21)

train_score2, val_score2 = validation_curve(PolynomialRegression(), X2, y2,
'polynomialfeatures__degree',
degree, cv=7)

plt.plot(degree, np.median(train_score2, 1), color='blue',
label="training score')

plt.plot(degree, np.median(val_score2, 1), color='red', label='validation score')

plt.plot(degree, np.median(train_score, 1), color='blue', alpha=0.3,
linestyle="'dashed")

plt.plot(degree, np.median(val_score, 1), color='red', alpha=0.3,
linestyle="'dashed")

plt.legend(loc="'lower center')

plt.ylim(0, 1)
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plt.xlabel('degree")
plt.ylabel('score');

08

SCore

04

= training score
= validation score
oo
0 5 10 15 0
degree

Figure 5-31. Learning curves for the polynomial model fit to data in Figure 5-30

The solid lines show the new results, while the fainter dashed lines show the results of
the previous smaller dataset. It is clear from the validation curve that the larger data-
set can support a much more complicated model: the peak here is probably around a
degree of 6, but even a degree-20 model is not seriously overfitting the data—the vali-
dation and training scores remain very close.

Thus we see that the behavior of the validation curve has not one, but two, important
inputs: the model complexity and the number of training points. It is often useful to
explore the behavior of the model as a function of the number of training points,
which we can do by using increasingly larger subsets of the data to fit our model. A
plot of the training/validation score with respect to the size of the training set is
known as a learning curve.

The general behavior we would expect from a learning curve is this:

o A model of a given complexity will overfit a small dataset: this means the training
score will be relatively high, while the validation score will be relatively low.

o A model of a given complexity will underfit a large dataset: this means that the
training score will decrease, but the validation score will increase.

« A model will never, except by chance, give a better score to the validation set than
the training set: this means the curves should keep getting closer together but
never cross.
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With these features in mind, we would expect a learning curve to look qualitatively
like that shown in Figure 5-32.

Learning Curve Schematic

model score —

fraining set size —

Figure 5-32. Schematic showing the typical interpretation of learning curves

The notable feature of the learning curve is the convergence to a particular score as
the number of training samples grows. In particular, once you have enough points
that a particular model has converged, adding more training data will not help you!
The only way to increase model performance in this case is to use another (often
more complex) model.

Learning curves in Scikit-Learn

Scikit-Learn offers a convenient utility for computing such learning curves from your
models; here we will compute a learning curve for our original dataset with a second-
order polynomial model and a ninth-order polynomial (Figure 5-33):

In[17]:
from sklearn.learning_curve import learning_curve

fig, ax = plt.subplots(1l, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for i1, degree in enumerate([2, 9]):
N, train_lc, val_lc = learning_curve(PolynomialRegression(degree),
X, y, cv=7,
train_sizes=np.linspace(0.3, 1, 25))

ax[i1].plot(N, np.mean(train_lc, 1), color='blue', label='training score')

ax[1].plot(N, np.mean(val_lc, 1), color='red', label='validation score')

ax[i].hlines(np.mean([train_lc[-1], val_lc[-1]]1), N[©], N[-1], color='gray',
linestyle="'dashed')
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ax[i1].set_ylim(0, 1)

ax[1].set_x1lim(N[0], N[-1])

ax[1].set_xlabel('training size')
ax[1].set_ylabel('score')

ax[1].set_title('degree = {0}'.format(degree), size=14)
ax[1].legend(loc="best")

degree = 2 s dagres =9

Figure 5-33. Learning curves for a low-complexity model (left) and a high-complexity
model (right)

This is a valuable diagnostic, because it gives us a visual depiction of how our model
responds to increasing training data. In particular, when your learning curve has
already converged (i.e., when the training and validation curves are already close to
each other), adding more training data will not significantly improve the fit! This situa-
tion is seen in the left panel, with the learning curve for the degree-2 model.

The only way to increase the converged score is to use a different (usually more com-
plicated) model. We see this in the right panel: by moving to a much more compli-
cated model, we increase the score of convergence (indicated by the dashed line), but
at the expense of higher model variance (indicated by the difference between the
training and validation scores). If we were to add even more data points, the learning
curve for the more complicated model would eventually converge.

Plotting a learning curve for your particular choice of model and dataset can help you
to make this type of decision about how to move forward in improving your analysis.

Validation in Practice: Grid Search

The preceding discussion is meant to give you some intuition into the trade-off
between bias and variance, and its dependence on model complexity and training set
size. In practice, models generally have more than one knob to turn, and thus plots of
validation and learning curves change from lines to multidimensional surfaces. In
these cases, such visualizations are difficult and we would rather simply find the par-
ticular model that maximizes the validation score.

Hyperparameters and Model Validation | 373



Scikit-Learn provides automated tools to do this in the grid_search module. Here is
an example of using grid search to find the optimal polynomial model. We will
explore a three-dimensional grid of model features—namely, the polynomial degree,
the flag telling us whether to fit the intercept, and the flag telling us whether to nor-
malize the problem. We can set this up using Scikit-Learn’s GridSearchCV meta-
estimator:

In[18]: from import GridSearchCVv

param_grid = {'polynomialfeatures__degree': np.arange(21),
'linearregression__fit_intercept': [True, False],
"linearregression__normalize': [True, False]}

grid = GridSearchCV(PolynomialRegression(), param_grid, cv=7)

Notice that like a normal estimator, this has not yet been applied to any data. Calling
the fit() method will fit the model at each grid point, keeping track of the scores
along the way:

In[19]: grid.fit(X, y);
Now that this is fit, we can ask for the best parameters as follows:

In[20]: grid.best_params_

Out[20]: {'linearregression__fit_intercept': False,
'linearregression__normalize': True,
'polynomialfeatures__degree': 4}

Finally, if we wish, we can use the best model and show the fit to our data using code
from before (Figure 5-34):

In[21]: model = grid.best_estimator_

plt.scatter(X.ravel(), vy)

1im = plt.axis()

y_test = model.fit(X, y).predict(X_test)

plt.plot(X_test.ravel(), y_test, hold=True);

plt.axis(lim);
The grid search provides many more options, including the ability to specify a cus-
tom scoring function, to parallelize the computations, to do randomized searches,
and more. For information, see the examples in “In-Depth: Kernel Density Estima-
tion” on page 491 and “Application: A Face Detection Pipeline” on page 506, or refer
to Scikit-Learn’s grid search documentation.
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Figure 5-34. The best-fit model determined via an automatic grid-search

Summary

In this section, we have begun to explore the concept of model validation and hyper-
parameter optimization, focusing on intuitive aspects of the bias-variance trade-off
and how it comes into play when fitting models to data. In particular, we found that
the use of a validation set or cross-validation approach is vital when tuning parame-
ters in order to avoid overfitting for more complex/flexible models.

In later sections, we will discuss the details of particularly useful models, and
throughout will talk about what tuning is available for these models and how these
free parameters affect model complexity. Keep the lessons of this section in mind as
you read on and learn about these machine learning approaches!

Feature Engineering

The previous sections outline the fundamental ideas of machine learning, but all of
the examples assume that you have numerical data in a tidy, [n_samples, n_fea
tures] format. In the real world, data rarely comes in such a form. With this in mind,
one of the more important steps in using machine learning in practice is feature engi-
neering—that is, taking whatever information you have about your problem and
turning it into numbers that you can use to build your feature matrix.

In this section, we will cover a few common examples of feature engineering tasks:
features for representing categorical data, features for representing text, and features
for representing images. Additionally, we will discuss derived features for increasing
model complexity and imputation of missing data. Often this process is known as vec-
torization, as it involves converting arbitrary data into well-behaved vectors.
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Categorical Features

One common type of non-numerical data is categorical data. For example, imagine
you are exploring some data on housing prices, and along with numerical features
like “price” and “rooms,” you also have “neighborhood” information. For example,
your data might look something like this:

In[1]: data = [

{'price': 850000, 'rooms': 4, 'neighborhood': 'Queen Anne'},
{'price': 700000, 'rooms': 3, 'neighborhood': 'Fremont'},
{'price': 650000, 'rooms': 3, 'neighborhood': 'Wallingford'},
{'price': 600000, 'rooms': 2, 'neighborhood': 'Fremont'}

]

You might be tempted to encode this data with a straightforward numerical mapping:
In[2]: {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};

It turns out that this is not generally a useful approach in Scikit-Learn: the package’s
models make the fundamental assumption that numerical features reflect algebraic
quantities. Thus such a mapping would imply, for example, that Queen Anne < Fre-
mont < Wallingford, or even that Wallingford - Queen Anne = Fremont, which (niche
demographic jokes aside) does not make much sense.

In this case, one proven technique is to use one-hot encoding, which effectively creates
extra columns indicating the presence or absence of a category with a value of 1 or 0,
respectively. When your data comes as a list of dictionaries, Scikit-Learn’s DictVector
izer will do this for you:

In[3]: from import DictVectorizer

vec = DictVectorizer(sparse=False, dtype=int)
vec.fit_transform(data)

Out[3]: array([[ 0, 1, 0, 850000, 4],
[ 1, 0, 0, 700000, 3],
[ 0, 0, 1, 650000, 3],
[ 1, 0, 0, 600000, 21], dtype=int64)

Notice that the neighborhood column has been expanded into three separate columns,
representing the three neighborhood labels, and that each row has a 1 in the column
associated with its neighborhood. With these categorical features thus encoded, you
can proceed as normal with fitting a Scikit-Learn model.

To see the meaning of each column, you can inspect the feature names:

In[4]: vec.get_feature_names()

Out[4]: ['neighborhood=Fremont',
'neighborhood=Queen Anne',
'neighborhood=Wallingford',
'price’,

'rooms']
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There is one clear disadvantage of this approach: if your category has many possible
values, this can greatly increase the size of your dataset. However, because the enco-
ded data contains mostly zeros, a sparse output can be a very efficient solution:

In[5]: vec = DictVectorizer(sparse=True, dtype=int)
vec.fit_transform(data)

Out[5]: <4x5 sparse matrix of type '<class 'numpy.int64's'
with 12 stored elements in Compressed Sparse Row format>
Many (though not yet all) of the Scikit-Learn estimators accept such sparse inputs
when fitting and evaluating models. sklearn.preprocessing.OneHotEncoder and
sklearn.feature_extraction.FeatureHasher are two additional tools that Scikit-
Learn includes to support this type of encoding.

Text Features

Another common need in feature engineering is to convert text to a set of representa-
tive numerical values. For example, most automatic mining of social media data relies
on some form of encoding the text as numbers. One of the simplest methods of
encoding data is by word counts: you take each snippet of text, count the occurrences
of each word within it, and put the results in a table.

For example, consider the following set of three phrases:

In[6]: sample = ['problem of evil',
'evil queen',
'"horizon problem']
For a vectorization of this data based on word count, we could construct a column
representing the word “problem,” the word “evil,” the word “horizon,” and so on.
While doing this by hand would be possible, we can avoid the tedium by using Scikit-
Learn’s CountVectorizer:

In[7]: from import CountVectorizer

vec = CountVectorizer()
X = vec.fit_transform(sample)
X

Out[7]: <3x5 sparse matrix of type '<class 'numpy.int64's'
with 7 stored elements in Compressed Sparse Row format>

The result is a sparse matrix recording the number of times each word appears; it is
easier to inspect if we convert this to a DataFrame with labeled columns:

In[8]: import as
pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Feature Engineering | 377



Out[8]: evil horizon of problem queen

0 1 0 1 1 0
1 1 0 0 0 1
2 0 1 0 1 0

There are some issues with this approach, however: the raw word counts lead to fea-
tures that put too much weight on words that appear very frequently, and this can be
suboptimal in some classification algorithms. One approach to fix this is known as

term frequency-inverse document frequency (TF-IDF), which weights the word counts
by a measure of how often they appear in the documents. The syntax for computing
these features is similar to the previous example:

In[9]: from import TfidfVectorizer
vec = TfidfVectorizer()
X = vec.fit_transform(sample)
pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Out[9]: evil horizon of  problem queen
0 0.517856 0.000000 0.680919 0.517856 0.000000
1 0.605349 0.000000 0.000000 0.000000 0.795961
2 0.000000 0.795961 0.000000 0.605349 0.000000

For an example of using TF-IDF in a classification problem, see “In Depth: Naive
Bayes Classification” on page 382.

Image Features

Another common need is to suitably encode images for machine learning analysis.
The simplest approach is what we used for the digits data in “Introducing Scikit-
Learn” on page 343: simply using the pixel values themselves. But depending on the
application, such approaches may not be optimal.

A comprehensive summary of feature extraction techniques for images is well beyond
the scope of this section, but you can find excellent implementations of many of the
standard approaches in the Scikit-Image project. For one example of using Scikit-
Learn and Scikit-Image together, see “Application: A Face Detection Pipeline” on page
506.

Derived Features

Another useful type of feature is one that is mathematically derived from some input
features. We saw an example of this in “Hyperparameters and Model Validation” on
page 359 when we constructed polynomial features from our input data. We saw that
we could convert a linear regression into a polynomial regression not by changing the
model, but by transforming the input! This is sometimes known as basis function
regression, and is explored further in “In Depth: Linear Regression” on page 390.
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For example, this data clearly cannot be well described by a straight line
(Figure 5-35):

In[10]: %matplotlib inline
import as
import as

x = np.array([1, 2, 3, 4, 5])
y = np.array([4, 2, 1, 3, 7])
plt.scatter(x, y);
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Figure 5-35. Data that is not well described by a straight line

Still, we can fit a line to the data using LinearRegression and get the optimal result
(Figure 5-36):

In[11]: from import LinearRegression
X = x[:, np.newaxis]
model = LinearRegression().fit(X, y)
yfit = model.predict(X)
plt.scatter(x, y)
plt.plot(x, yfit);
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Figure 5-36. A poor straight-line fit
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Its clear that we need a more sophisticated model to describe the relationship
between x and y. We can do this by transforming the data, adding extra columns of
features to drive more flexibility in the model. For example, we can add polynomial
features to the data this way:

In[12]: from import PolynomialFeatures
poly = PolynomialFeatures(degree=3, include_bias=False)
X2 = poly.fit_transform(X)

print(X2)

[r 1. 1. 1.]
[ 2. 4. 8.]
[ 3. 9. 27.]
[ 4. 16. 64.]
[ 5. 25. 125.]]

The derived feature matrix has one column representing x, and a second column rep-

resenting x%, and a third column representing x°. Computing a linear regression on
this expanded input gives a much closer fit to our data (Figure 5-37):

In[13]: model = LinearRegression().fit(X2, y)
yfit = model.predict(X2)
plt.scatter(x, y)
plt.plot(x, yfit);

1} .

o

o 1 2 3 4 5 &

Figure 5-37. A linear fit to polynomial features derived from the data

This idea of improving a model not by changing the model, but by transforming the
inputs, is fundamental to many of the more powerful machine learning methods. We
explore this idea further in “In Depth: Linear Regression” on page 390 in the context
of basis function regression. More generally, this is one motivational path to the pow-
erful set of techniques known as kernel methods, which we will explore in “In-Depth:
Support Vector Machines” on page 405.

380 | Chapter5: Machine Learning



Imputation of Missing Data

Another common need in feature engineering is handling missing data. We discussed
the handling of missing data in DataFrames in “Handling Missing Data” on page 119,
and saw that often the NaN value is used to mark missing values. For example, we
might have a dataset that looks like this:

In[14]: from import nan
X = np.array([[ nan, 0, 3 1,
[3 7, 91,

2

[3’ 5’ ]J
[ 4, nan, 6 1,

(s & 11D
y = np.array([14, 16, -1, 8, -5])
When applying a typical machine learning model to such data, we will need to first
replace such missing data with some appropriate fill value. This is known as imputa-
tion of missing values, and strategies range from simple (e.g., replacing missing values
with the mean of the column) to sophisticated (e.g., using matrix completion or a
robust model to handle such data).

The sophisticated approaches tend to be very application-specific, and we won't dive
into them here. For a baseline imputation approach, using the mean, median, or most
frequent value, Scikit-Learn provides the Imputer class:

In[15]: from import Imputer

imp = Imputer(strategy='mean')
X2 = imp.fit_transform(X)

X2
Out[15]: array([[ 4.5, ©0. , 3.1,
[3., 7., 9.1,
[ 3., 5., 2.1,
[ 4., 5., 6.1,
[8., 8., 1. 1D

We see that in the resulting data, the two missing values have been replaced with the
mean of the remaining values in the column. This imputed data can then be fed
directly into, for example, a LinearRegression estimator:

In[16]: model = LinearRegression().fit(X2, y)
model.predict(X2)

Out[16]:
array([ 13.14869292, 14.3784627 , -1.15539732, 10.96606197, -5.33782027])

Feature Pipelines

With any of the preceding examples, it can quickly become tedious to do the transfor-
mations by hand, especially if you wish to string together multiple steps. For example,
we might want a processing pipeline that looks something like this:
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1. Impute missing values using the mean
2. Transform features to quadratic

3. Fit alinear regression

To streamline this type of processing pipeline, Scikit-Learn provides a pipeline object,
which can be used as follows:

In[17]: from import make_pipeline

model = make_pipeline(Imputer(strategy='mean'),
PolynomialFeatures(degree=2),
LinearRegression())

This pipeline looks and acts like a standard Scikit-Learn object, and will apply all the
specified steps to any input data.

In[18]: model.fit(X, y) # X with missing values, from above
print(y)
print(model.predict(X))
[14 16 -1 8 -5]
[ 14. 16. -1. 8. -5.]
All the steps of the model are applied automatically. Notice that for the simplicity of
this demonstration, we’ve applied the model to the data it was trained on; this is why
it was able to perfectly predict the result (refer back to “Hyperparameters and Model
Validation” on page 359 for further discussion of this).

For some examples of Scikit-Learn pipelines in action, see the following section on
naive Bayes classification as well as “In Depth: Linear Regression” on page 390 and
“In-Depth: Support Vector Machines” on page 405.

In Depth: Naive Bayes Classification

The previous four sections have given a general overview of the concepts of machine
learning. In this section and the ones that follow, we will be taking a closer look at
several specific algorithms for supervised and unsupervised learning, starting here
with naive Bayes classification.

Naive Bayes models are a group of extremely fast and simple classification algorithms
that are often suitable for very high-dimensional datasets. Because they are so fast
and have so few tunable parameters, they end up being very useful as a quick-and-
dirty baseline for a classification problem. This section will focus on an intuitive
explanation of how naive Bayes classifiers work, followed by a couple examples of
them in action on some datasets.
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Bayesian Classification

Naive Bayes classifiers are built on Bayesian classification methods. These rely on
Bayes’s theorem, which is an equation describing the relationship of conditional
probabilities of statistical quantities. In Bayesian classification, were interested in
finding the probability of a label given some observed features, which we can write as
P(L | features). Bayes’s theorem tells us how to express this in terms of quantities we
can compute more directly:

P(features | L)P(L)
P(features)

P(L | features) =
If we are trying to decide between two labels—let’s call them L, and L,—then one way

to make this decision is to compute the ratio of the posterior probabilities for each
label:

P(L1 | features) P(features | Ll) P(Ll)

P(L1 | features) B P(features | L2) P(Lz)

All we need now is some model by which we can compute P(features | L;) for each

label. Such a model is called a generative model because it specifies the hypothetical
random process that generates the data. Specifying this generative model for each
label is the main piece of the training of such a Bayesian classifier. The general ver-
sion of such a training step is a very difficult task, but we can make it simpler through
the use of some simplifying assumptions about the form of this model.

This is where the “naive” in “naive Bayes” comes in: if we make very naive assump-
tions about the generative model for each label, we can find a rough approximation of
the generative model for each class, and then proceed with the Bayesian classification.
Different types of naive Bayes classifiers rest on different naive assumptions about the
data, and we will examine a few of these in the following sections. We begin with the
standard imports:

In[1]: %matplotlib inline

import as
import as
import as ; sns.set()

Gaussian Naive Bayes

Perhaps the easiest naive Bayes classifier to understand is Gaussian naive Bayes. In
this classifier, the assumption is that data from each label is drawn from a simple Gaus-
sian distribution. Imagine that you have the following data (Figure 5-38):
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In[2]: from import make_blobs
X, y = make_blobs(100, 2, centers=2, random_state=2, cluster_std=1.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu');
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Figure 5-38. Data for Gaussian naive Bayes classification

One extremely fast way to create a simple model is to assume that the data is
described by a Gaussian distribution with no covariance between dimensions. We can
fit this model by simply finding the mean and standard deviation of the points within
each label, which is all you need to define such a distribution. The result of this naive
Gaussian assumption is shown in Figure 5-39.
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Figure 5-39. Visualization of the Gaussian naive Bayes model
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The ellipses here represent the Gaussian generative model for each label, with larger
probability toward the center of the ellipses. With this generative model in place for
each class, we have a simple recipe to compute the likelihood P(features | L,) for any
data point, and thus we can quickly compute the posterior ratio and determine which
label is the most probable for a given point.

This procedure is implemented in Scikit-Learn’s sklearn.naive_bayes.GaussianNB
estimator:

In[3]: from import GaussianNB
model = GaussianNB()
model.fit(X, y);

Now let’s generate some new data and predict the label:

In[4]: rng = np.random.RandomState(0)
Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2)
ynew = model.predict(Xnew)

Now we can plot this new data to get an idea of where the decision boundary is
(Figure 5-40):

In[5]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu")
1im = plt.axis()
plt.scatter(Xnew[:, 0], Xnew[:, 1], c=ynew, s=20, cmap='RdBu', alpha=0.1)
plt.axis(lim);
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Figure 5-40. Visualization of the Gaussian naive Bayes classification
We see a slightly curved boundary in the classifications—in general, the boundary in
Gaussian naive Bayes is quadratic.

A nice piece of this Bayesian formalism is that it naturally allows for probabilistic
classification, which we can compute using the predict_proba method:
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In[6]: yprob = model.predict_proba(Xnew)
yprob[-8:].round(2)

Out[6]: array([[ 0.89, 0.11],
0. 1,
1,

v e e e e

e R B B R R
OO R R R R R

0
0
0. 1,
0
1
0

[ 8511)

The columns give the posterior probabilities of the first and second label, respectively.
If you are looking for estimates of uncertainty in your classification, Bayesian
approaches like this can be a useful approach.

15,

Of course, the final classification will only be as good as the model assumptions that
lead to it, which is why Gaussian naive Bayes often does not produce very good
results. Still, in many cases—especially as the number of features becomes large—this
assumption is not detrimental enough to prevent Gaussian naive Bayes from being a
useful method.

Multinomial Naive Bayes

The Gaussian assumption just described is by no means the only simple assumption
that could be used to specify the generative distribution for each label. Another useful
example is multinomial naive Bayes, where the features are assumed to be generated
from a simple multinomial distribution. The multinomial distribution describes the
probability of observing counts among a number of categories, and thus multinomial
naive Bayes is most appropriate for features that represent counts or count rates.

The idea is precisely the same as before, except that instead of modeling the data dis-
tribution with the best-fit Gaussian, we model the data distribution with a best-fit
multinomial distribution.

Example: Classifying text

One place where multinomial naive Bayes is often used is in text classification, where
the features are related to word counts or frequencies within the documents to be
classified. We discussed the extraction of such features from text in “Feature Engi-
neering” on page 375; here we will use the sparse word count features from the 20
Newsgroups corpus to show how we might classify these short documents into
categories.

Let’s download the data and take a look at the target names:

In[7]: from import fetch_20newsgroups
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data = fetch_20newsgroups()
data.target_names

Out[7]: ['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale’,
'rec.autos’,

rec.motorcycles',

rec.sport.baseball’,
rec.sport.hockey',
sci.crypt’,
sci.electronics',
sci.med',

sci.space',

soc.religion.christian’,

'talk.politics.quns',

'talk.politics.mideast’',

'talk.politics.misc',

'talk.religion.misc']

For simplicity, we will select just a few of these categories, and download the training
and testing set:

In[8]:

categories = ['talk.religion.misc', 'soc.religion.christian', 'sci.space',
'comp.graphics']

train = fetch_20newsgroups(subset="train', categories=categories)

test = fetch_20newsgroups(subset='test', categories=categories)

Here is a representative entry from the data:
In[9]: print(train.data[5])

From: dmcgee@uluhe.soest.hawaii.edu (Don McGee)

Subject: Federal Hearing

Originator: dmcgee@uluhe

Organization: School of Ocean and Earth Science and Technology
Distribution: usa

Lines: 10

Fact or rumor....? Madalyn Murray O'Hare an atheist who eliminated the

use of the bible reading and prayer in public schools 15 years ago is now
going to appear before the FCC with a petition to stop the reading of the
Gospel on the airways of America. And she is also campaigning to remove
Christmas programs, songs, etc from the public schools. If it is true

then mail to Federal Communications Commission 1919 H Street Washington DC
20054 expressing your opposition to her request. Reference Petition number
2493.
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In order to use this data for machine learning, we need to be able to convert the con-
tent of each string into a vector of numbers. For this we will use the TF-IDF vector-
izer (discussed in “Feature Engineering” on page 375), and create a pipeline that
attaches it to a multinomial naive Bayes classifier:

In[10]: from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline

model = make_pipeline(TfidfVectorizer(), MultinomialNB())

With this pipeline, we can apply the model to the training data, and predict labels for
the test data:

In[11]: model.fit(train.data, train.target)
labels = model.predict(test.data)

Now that we have predicted the labels for the test data, we can evaluate them to learn
about the performance of the estimator. For example, here is the confusion matrix
between the true and predicted labels for the test data (Figure 5-41):

In[12]:

from sklearn.metrics import confusion_matrix

mat = confusion_matrix(test.target, labels)

sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=train.target_names, yticklabels=train.target_names)

plt.xlabel('true label')

plt.ylabel('predicted label');
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soc.religion.christian
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comp.graphics
sCi.space
=soc_religion.christian
talk.religion.misc

true label

Figure 5-41. Confusion matrix for the multinomial naive Bayes text classifier
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Evidently, even this very simple classifier can successfully separate space talk from
computer talk, but it gets confused between talk about religion and talk about Chris-
tianity. This is perhaps an expected area of confusion!

The very cool thing here is that we now have the tools to determine the category for
any string, using the predict() method of this pipeline. Here’s a quick utility func-
tion that will return the prediction for a single string:

In[13]: def predict_category(s, train=train, model=model):
pred = model.predict([s])
return train.target_names[pred[0]]

Let’s try it out:
In[14]: predict_category('sending a payload to the ISS')
Out[14]: 'sci.space'
In[15]: predict_category('discussing islam vs atheism')
Out[15]: 'soc.religion.christian'
In[16]: predict_category('determining the screen resolution')
Out[16]: 'comp.graphics'

Remember that this is nothing more sophisticated than a simple probability model
for the (weighted) frequency of each word in the string; nevertheless, the result is
striking. Even a very naive algorithm, when used carefully and trained on a large set
of high-dimensional data, can be surprisingly effective.

When to Use Naive Bayes

Because naive Bayesian classifiers make such stringent assumptions about data, they
will generally not perform as well as a more complicated model. That said, they have
several advantages:

o They are extremely fast for both training and prediction
o They provide straightforward probabilistic prediction
o They are often very easily interpretable

« They have very few (if any) tunable parameters

These advantages mean a naive Bayesian classifier is often a good choice as an initial
baseline classification. If it performs suitably, then congratulations: you have a very
fast, very interpretable classifier for your problem. If it does not perform well, then
you can begin exploring more sophisticated models, with some baseline knowledge of
how well they should perform.

Naive Bayes classifiers tend to perform especially well in one of the following
situations:
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o When the naive assumptions actually match the data (very rare in practice)
o For very well-separated categories, when model complexity is less important

o For very high-dimensional data, when model complexity is less important

The last two points seem distinct, but they actually are related: as the dimension of a
dataset grows, it is much less likely for any two points to be found close together
(after all, they must be close in every single dimension to be close overall). This means
that clusters in high dimensions tend to be more separated, on average, than clusters
in low dimensions, assuming the new dimensions actually add information. For this
reason, simplistic classifiers like naive Bayes tend to work as well or better than more
complicated classifiers as the dimensionality grows: once you have enough data, even
a simple model can be very powerful.

In Depth: Linear Regression

Just as naive Bayes (discussed earlier in “In Depth: Naive Bayes Classification” on
page 382) is a good starting point for classification tasks, linear regression models are
a good starting point for regression tasks. Such models are popular because they can
be fit very quickly, and are very interpretable. You are probably familiar with the sim-
plest form of a linear regression model (i.e., fitting a straight line to data), but such
models can be extended to model more complicated data behavior.

In this section we will start with a quick intuitive walk-through of the mathematics
behind this well-known problem, before moving on to see how linear models can be
generalized to account for more complicated patterns in data. We begin with the stan-
dard imports:

In[1]: %matplotlib inline

import as
import as ; sns.set()
import as

Simple Linear Regression

We will start with the most familiar linear regression, a straight-line fit to data. A
straight-line fit is a model of the form y = ax + b where a is commonly known as the
slope, and b is commonly known as the intercept.

Consider the following data, which is scattered about a line with a slope of 2 and an
intercept of -5 (Figure 5-42):

In[2]: rng = np.random.RandomState(1)
X = 10 * rng.rand(50)
y =2 *x -5+ rng.randn(50)
plt.scatter(x, y);
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Figure 5-42. Data for linear regression

We can use Scikit-Learn’s LinearRegression estimator to fit this data and construct
the best-fit line (Figure 5-43):

In[3]: from import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 10, 1000)
yfit = model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);

Figure 5-43. A linear regression model
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The slope and intercept of the data are contained in the model’s fit parameters, which
in Scikit-Learn are always marked by a trailing underscore. Here the relevant parame-
ters are coef_and intercept_:

In[4]: print("Model slope: ", model.coef_[0])
print("Model intercept:", model.intercept_)

Model slope: 2.02720881036
Model intercept: -4.99857708555

We see that the results are very close to the inputs, as we might hope.

The LinearRegression estimator is much more capable than this, however—in addi-
tion to simple straight-line fits, it can also handle multidimensional linear models of
the form:

y=ag+ax; +ax,+

where there are multiple x values. Geometrically, this is akin to fitting a plane to
points in three dimensions, or fitting a hyper-plane to points in higher dimensions.

The multidimensional nature of such regressions makes them more difficult to visu-
alize, but we can see one of these fits in action by building some example data, using
NumPy’s matrix multiplication operator:

In[5]: rng = np.random.RandomState(1)

X = 10 * rng.rand(100, 3)
y = 0.5 + np.dot(X, [1.5, -2., 1.])

model.fit(X, y)
print(model.intercept_)
print(model.coef_ )

0.5

[ 1.5 -2. 1. ]
Here the y data is constructed from three random x values, and the linear regression
recovers the coefficients used to construct the data.

In this way, we can use the single LinearRegression estimator to fit lines, planes, or
hyperplanes to our data. It still appears that this approach would be limited to strictly
linear relationships between variables, but it turns out we can relax this as well.

Basis Function Regression

One trick you can use to adapt linear regression to nonlinear relationships between
variables is to transform the data according to basis functions. We have seen one ver-
sion of this before, in the PolynomialRegression pipeline used in “Hyperparameters
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and Model Validation” on page 359 and “Feature Engineering” on page 375. The idea
is to take our multidimensional linear model:

y=a0+a1x1+a2x2+a3x3+

and build the x;, x,, x5, and so on from our single-dimensional input x. That is, we let
x, = f,(x), where f () is some function that transforms our data.

For example, if f,(x) = x", our model becomes a polynomial regression:
= Gy + AKX+ AX a0+
V=gt axTay 3

Notice that this is still a linear model—the linearity refers to the fact that the coeffi-
cients a, never multiply or divide each other. What we have effectively done is taken
our one-dimensional x values and projected them into a higher dimension, so that a
linear fit can fit more complicated relationships between x and y.

Polynomial basis functions

This polynomial projection is useful enough that it is built into Scikit-Learn, using
the PolynomialFeatures transformer:

In[6]: from import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])

Out[6]: array([[ 2., 4., 8.1,
[ 3., 9., 27.],
[ 4., 16., 64.1])
We see here that the transformer has converted our one-dimensional array into a
three-dimensional array by taking the exponent of each value. This new, higher-
dimensional data representation can then be plugged into a linear regression.

As we saw in “Feature Engineering” on page 375, the cleanest way to accomplish this
is to use a pipeline. Let’s make a 7th-degree polynomial model in this way:

In[7]: from import make_pipeline
poly_model = make_pipeline(PolynomialFeatures(7),
LinearRegression())

With this transform in place, we can use the linear model to fit much more compli-
cated relationships between x and y. For example, here is a sine wave with noise
(Figure 5-44):
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In[8]: rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = np.sin(x) + 0.1 * rng.randn(50)

poly_model.fit(x[:, np.newaxis], y)
yfit = poly_model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);

0o

Figure 5-44. A linear polynomial fit to nonlinear training data

Our linear model, through the use of 7th-order polynomial basis functions, can pro-
vide an excellent fit to this nonlinear data!

Gaussian basis functions

Of course, other basis functions are possible. For example, one useful pattern is to fit
a model that is not a sum of polynomial bases, but a sum of Gaussian bases. The
result might look something like Figure 5-45.
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Figure 5-45. A Gaussian basis function fit to nonlinear data

The shaded regions in the plot shown in Figure 5-45 are the scaled basis functions,
and when added together they reproduce the smooth curve through the data. These
Gaussian basis functions are not built into Scikit-Learn, but we can write a custom
transformer that will create them, as shown here and illustrated in Figure 5-46
(Scikit-Learn transformers are implemented as Python classes; reading Scikit-Learn’s
source is a good way to see how they can be created):

In[9]:
from sklearn.base import BaseEstimator, TransformerMixin

class GaussianFeatures(BaseEstimator, TransformerMixin):
"""Uniformly spaced Gaussian features for one-dimensional input"""
def __init__(self, N, width_factor=2.0):
self.N = N
self.width_factor = width_factor

def _gauss_basis(x, y, width, axis=None):
arg = (x - y) / width
return np.exp(-0.5 * np.sum(arg ** 2, axis))

def fit(self, X, y=None):
# create N centers spread along the data range
self.centers_ = np.linspace(X.min(), X.max(), self.N)
self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])
return self

def transform(self, X):
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return self._gauss_basis(X[:, :, np.newaxis], self.centers_,
self.width_, axis=1)

gauss_model = make_pipeline(GaussianFeatures(20),
LinearRegression())

gauss_model.fit(x[:, np.newaxis], y)

yfit = gauss_model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.xlim(0, 10);

a 2 4 (] 8 [

Figure 5-46. A Gaussian basis function fit computed with a custom transformer

We put this example here just to make clear that there is nothing magic about poly-
nomial basis functions: if you have some sort of intuition into the generating process
of your data that makes you think one basis or another might be appropriate, you can
use them as well.

Regularization

The introduction of basis functions into our linear regression makes the model much
more flexible, but it also can very quickly lead to overfitting (refer back to “Hyper-
parameters and Model Validation” on page 359 for a discussion of this). For example,
if we choose too many Gaussian basis functions, we end up with results that don’t
look so good (Figure 5-47):

In[10]: model = make_pipeline(GaussianFeatures(30),
LinearRegression())
model.fit(x[:, np.newaxis], y)

plt.scatter(x, y)
plt.plot(xfit, model.predict(xfit[:, np.newaxis]))
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plt.x1lim(0, 10)
plt.ylim(-1.5, 1.5);

a 2 4 (] 8 [

Figure 5-47. An overly complex basis function model that overfits the data

With the data projected to the 30-dimensional basis, the model has far too much flex-
ibility and goes to extreme values between locations where it is constrained by data.
We can see the reason for this if we plot the coefficients of the Gaussian bases with
respect to their locations (Figure 5-48):

In[11]: def basis_plot(model, title=None):
fig, ax = plt.subplots(2, sharex=True)
model.fit(x[:, np.newaxis], y)
ax[0].scatter(x, y)
ax[0].plot(xfit, model.predict(xfit[:, np.newaxis]))
ax[0].set(xlabel="'x"', ylabel="y', ylim=(-1.5, 1.5))

if title:
ax[0].set_title(title)

ax[1].plot(model.steps[0][1].centers_,
model.steps[1][1].coef_)

ax[1].set(xlabel="'basis location',
ylabel="coefficient',
x1im=(0, 10))

model = make_pipeline(GaussianFeatures(30), LinearRegression())
basis_plot(model)
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Figure 5-48. The coefficients of the Gaussian bases in the overly complex model

The lower panel in Figure 5-48 shows the amplitude of the basis function at each
location. This is typical overfitting behavior when basis functions overlap: the coeffi-
cients of adjacent basis functions blow up and cancel each other out. We know that
such behavior is problematic, and it would be nice if we could limit such spikes
explicitly in the model by penalizing large values of the model parameters. Such a
penalty is known as regularization, and comes in several forms.

Ridge regression (L, reqularization)

Perhaps the most common form of regularization is known as ridge regression or L,
regularization, sometimes also called Tikhonov regularization. This proceeds by penal-
izing the sum of squares (2-norms) of the model coefficients; in this case, the penalty
on the model fit would be:

P=ayy &

n=1"n

where « is a free parameter that controls the strength of the penalty. This type of
penalized model is built into Scikit-Learn with the Ridge estimator (Figure 5-49):
In[12]: from import Ridge

model = make_pipeline(GaussianFeatures(30), Ridge(alpha=0.1))
basis_plot(model, title='Ridge Regression')
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Figure 5-49. Ridge (L,) regularization applied to the overly complex model (compare to
Figure 5-48)

The « parameter is essentially a knob controlling the complexity of the resulting
model. In the limit & — 0, we recover the standard linear regression result; in the
limit & — oo, all model responses will be suppressed. One advantage of ridge regres-
sion in particular is that it can be computed very efficiently—at hardly more compu-
tational cost than the original linear regression model.

Lasso reqularization (L ,)

Another very common type of regularization is known as lasso, and involves penaliz-
ing the sum of absolute values (1-norms) of regression coefficients:

pP= (XZ;\]: 1 |6n|

Though this is conceptually very similar to ridge regression, the results can differ sur-
prisingly: for example, due to geometric reasons lasso regression tends to favor sparse
models where possible; that is, it preferentially sets model coefficients to exactly zero.

We can see this behavior in duplicating the plot shown in Figure 5-49, but using L1-
normalized coefficients (Figure 5-50):
In[13]: from import Lasso

model = make_pipeline(GaussianFeatures(30), Lasso(alpha=0.001))
basis_plot(model, title='Lasso Regression')
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Figure 5-50. Lasso (L,) regularization applied to the overly complex model (compare to
Figure 5-48)

With the lasso regression penalty, the majority of the coefficients are exactly zero,
with the functional behavior being modeled by a small subset of the available basis
functions. As with ridge regularization, the « parameter tunes the strength of the
penalty, and should be determined via, for example, cross-validation (refer back to
“Hyperparameters and Model Validation” on page 359 for a discussion of this).

Example: Predicting Bicycle Traffic

As an example, let’s take a look at whether we can predict the number of bicycle trips
across Seattle’s Fremont Bridge based on weather, season, and other factors. We have
seen this data already in “Working with Time Series” on page 188.

In this section, we will join the bike data with another dataset, and try to determine
the extent to which weather and seasonal factors—temperature, precipitation, and
daylight hours—affect the volume of bicycle traffic through this corridor. Fortunately,
the NOAA makes available their daily weather station data (I used station ID
USW00024233) and we can easily use Pandas to join the two data sources. We will
perform a simple linear regression to relate weather and other information to bicycle
counts, in order to estimate how a change in any one of these parameters affects the
number of riders on a given day.

In particular, this is an example of how the tools of Scikit-Learn can be used in a stat-
istical modeling framework, in which the parameters of the model are assumed to
have interpretable meaning. As discussed previously, this is not a standard approach
within machine learning, but such interpretation is possible for some models.
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Let’s start by loading the two datasets, indexing by date:

In[14]:

import pandas as pd

counts = pd.read_csv('fremont_hourly.csv', index_col='Date', parse_dates=True)
weather = pd.read_csv('599021.csv', index_col='DATE', parse_dates=True)

Next we will compute the total daily bicycle traffic, and put this in its own DataFrame:

In[15]: daily = counts.resample('d', how='sum')
daily['Total'] = daily.sum(axis=1)
daily = daily[['Total']] # remove other columns

We saw previously that the patterns of use generally vary from day to day; lets
account for this in our data by adding binary columns that indicate the day of the
week:

In[16]: days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
for 1 in range(7):
daily[days[1]] = (daily.index.dayofweek == 1).astype(float)

Similarly, we might expect riders to behave differently on holidays; let’s add an indica-
tor of this as well:

In[17]: from pandas.tseries.holiday import USFederalHolidayCalendar
cal = USFederalHolidayCalendar()
holidays = cal.holidays('2012', '2016')
daily = daily.join(pd.Series(1, index=holidays, name='holiday'))
daily[ 'holiday'].fillna(®, inplace=True)

We also might suspect that the hours of daylight would affect how many people ride;
let’s use the standard astronomical calculation to add this information (Figure 5-51):

In[18]: def hours_of_daylight(date, axis=23.44, latitude=47.61):
Compute the hours of daylight for the given date"""
days = (date - pd.datetime(2000, 12, 21)).days
m = (1. - np.tan(np.radians(latitude))
* np.tan(np.radians(axis) * np.cos(days * 2 * np.pl / 365.25)))
return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180.

mwn

daily[ 'daylight_hrs'] = list(map(hours_of_daylight, daily.index))
daily[['daylight_hrs']].plot();
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Figure 5-51. Visualization of hours of daylight in Seattle

We can also add the average temperature and total precipitation to the data. In addi-
tion to the inches of precipitation, let’s add a flag that indicates whether a day is dry
(has zero precipitation):
In[19]: # temperatures are in 1/10 deg C; convert to C
weather['TMIN'] /= 10

weather['TMAX'] /= 10
weather['Temp (C)'] = 0.5 * (weather['TMIN'] + weather['TMAX'])

# precip is in 1/10 mm; convert to inches
weather['PRCP'] /= 254
weather['dry day'] = (weather['PRCP'] == 0).astype(int)

daily = daily.join(weather[['PRCP', 'Temp (C)', 'dry day']])

Finally, let’s add a counter that increases from day 1, and measures how many years
have passed. This will let us measure any observed annual increase or decrease in
daily crossings:

In[20]: daily['annual'] = (daily.index - daily.index[0]).days / 365.
Now our data is in order, and we can take a look at it:

In[21]: daily.head()

Out[21]:

Total Mon Tue Wed Thu Fri Sat Sun holiday daylight_hrs \\
Date
2012-10-03 3521 0 0 1 0 [¢] 0 0 0 11.277359
2012-10-04 3475 0 0 0 1 0 0 0 0 11.219142
2012-10-05 3148 0 0 0 0 1 0 0 0 11.161038
2012-10-06 2006 0 0 0 0 0 1 0 0 11.103056
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2012-10-07 2142 0 0 0 0 0 0 1 0 11.045208

PRCP Temp (C) dry day annual

Date

2012-10-03 0 13.35 1 0.000000
2012-10-04 0 13.60 1 0.002740
2012-10-05 0 15.30 1 0.005479
2012-10-06 0 15.85 1 0.008219
2012-10-07 0 15.85 1 0.010959

With this in place, we can choose the columns to use, and fit a linear regression
model to our data. We will set fit_intercept = False, because the daily flags essen-
tially operate as their own day-specific intercepts:

In[22]:

column_names = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun', 'holiday',
'daylight_hrs', 'PRCP', 'dry day', 'Temp (C)', 'annual']

daily[column_names]

daily['Total']

X
y

model = LinearRegression(fit_intercept=False)
model.fit(X, y)
daily['predicted'] = model.predict(X)

Finally, we can compare the total and predicted bicycle traffic visually (Figure 5-52):

In[23]: daily[['Total', 'predicted']].plot(alpha=0.5);

Total
pradicted

00 '

00 ; |g|“!|
7 it

4000 i ]

300

00

1000

-1000
Jan Jul Jan Jul Jn Jul
213 2014 2015

Date

Figure 5-52. Our model’s prediction of bicycle traffic

It is evident that we have missed some key features, especially during the summer
time. Either our features are not complete (i.e., people decide whether to ride to work
based on more than just these) or there are some nonlinear relationships that we have
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failed to take into account (e.g., perhaps people ride less at both high and low temper-
atures). Nevertheless, our rough approximation is enough to give us some insights,
and we can take a look at the coefficients of the linear model to estimate how much
each feature contributes to the daily bicycle count:

In[24]: params = pd.Series(model.coef_, index=X.columns)

params
Out[24]: Mon 503.797330
Tue 612.088879
Wed 591.611292
Thu 481.250377
Fri 176.838999
Sat -1104.321406
Sun -1134.610322
holiday -1187.212688
daylight_hrs 128.873251
PRCP -665.185105
dry day 546.185613
Temp (C) 65.194390
annual 27.865349

dtype: float64

These numbers are difficult to interpret without some measure of their uncertainty.
We can compute these uncertainties quickly using bootstrap resamplings of the data:

In[25]: from import resample
np.random.seed(1)
err = np.std([model.fit(*resample(X, y)).coef_
for 1 in range(1000)], 0)

With these errors estimated, let’s again look at the results:

In[26]: print(pd.DataFrame({'effect': params.round(0),
'error': err.round(0)}))

effect error

Mon 504 85
Tue 612 82
Wed 592 82
Thu 481 85
Fri 177 81
Sat -1104 79
Sun -1135 82
holiday -1187 164
daylight_hrs 129 9
PRCP -665 62
dry day 546 33
Temp (C) 65 4
annual 28 18

We first see that there is a relatively stable trend in the weekly baseline: there are
many more riders on weekdays than on weekends and holidays. We see that for each
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additional hour of daylight, 129 + 9 more people choose to ride; a temperature
increase of one degree Celsius encourages 65 + 4 people to grab their bicycle; a dry
day means an average of 546 + 33 more riders; and each inch of precipitation means
665 + 62 more people leave their bike at home. Once all these effects are accounted
for, we see a modest increase of 28 + 18 new daily riders each year.

Our model is almost certainly missing some relevant information. For example, non-
linear effects (such as effects of precipitation and cold temperature) and nonlinear
trends within each variable (such as disinclination to ride at very cold and very hot
temperatures) cannot be accounted for in this model. Additionally, we have thrown
away some of the finer-grained information (such as the difference between a rainy
morning and a rainy afternoon), and we have ignored correlations between days
(such as the possible effect of a rainy Tuesday on Wednesday’s numbers, or the effect
of an unexpected sunny day after a streak of rainy days). These are all potentially
interesting effects, and you now have the tools to begin exploring them if you wish!

In-Depth: Support Vector Machines

Support vector machines (SVMs) are a particularly powerful and flexible class of
supervised algorithms for both classification and regression. In this section, we will
develop the intuition behind support vector machines and their use in classification
problems. We begin with the standard imports:

In[1]: %matplotlib inline

import as
import as
from import stats

# use Seaborn plotting defaults
import as ; sns.set()

Motivating Support Vector Machines

As part of our discussion of Bayesian classification (see “In Depth: Naive Bayes Clas-
sification” on page 382), we learned a simple model describing the distribution of
each underlying class, and used these generative models to probabilistically deter-
mine labels for new points. That was an example of generative classification; here we
will consider instead discriminative classification: rather than modeling each class, we
simply find a line or curve (in two dimensions) or manifold (in multiple dimensions)
that divides the classes from each other.

As an example of this, consider the simple case of a classification task, in which the
two classes of points are well separated (Figure 5-53):
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In[2]: from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2,
random_state=0, cluster_std=0.60)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');
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Figure 5-53. Simple data for classification

A linear discriminative classifier would attempt to draw a straight line separating the
two sets of data, and thereby create a model for classification. For two-dimensional
data like that shown here, this is a task we could do by hand. But immediately we see
a problem: there is more than one possible dividing line that can perfectly discrimi-
nate between the two classes!

We can draw them as follows (Figure 5-54):
In[3]: xfit = np.linspace(-1, 3.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

406 | Chapter5: Machine Learning



-10 -0.5 0o 05 10 15 20 25 ao 35

Figure 5-54. Three perfect linear discriminative classifiers for our data

These are three very different separators that, nevertheless, perfectly discriminate
between these samples. Depending on which you choose, a new data point (e.g., the
one marked by the “X” in Figure 5-54) will be assigned a different label! Evidently our
simple intuition of “drawing a line between classes” is not enough, and we need to
think a bit deeper.

Support Vector Machines: Maximizing the Margin

Support vector machines offer one way to improve on this. The intuition is this:
rather than simply drawing a zero-width line between the classes, we can draw
around each line a margin of some width, up to the nearest point. Here is an example
of how this might look (Figure 5-55):

In[4]:
xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
yfit = m * xfit + b
plt.plot(xfit, yfit, '-k')
plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', color='#AAAAAA',
alpha=0.4)

plt.xlim(-1, 3.5);
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Figure 5-55. Visualization of “margins” within discriminative classifiers

In support vector machines, the line that maximizes this margin is the one we will
choose as the optimal model. Support vector machines are an example of such a max-
imum margin estimator.

Fitting a support vector machine

Let’s see the result of an actual fit to this data: we will use Scikit-Learn’s support vector
classifier to train an SVM model on this data. For the time being, we will use a linear
kernel and set the C parameter to a very large number (we'll discuss the meaning of
these in more depth momentarily):

In[5]: from import SVC # "Support vector classifier”
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

Out[5]: SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

To better visualize whats happening here, let’s create a quick convenience function
that will plot SVM decision boundaries for us (Figure 5-56):

In[6]: def plot_svc_decision_function(model, ax=None, plot_support=True):
Plot the decision function for a two-dimensional SVC"""
if ax is None:
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

wnn

# create grid to evaluate model
x = np.linspace(xlim[0], x1lim[1], 30)
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y = np.linspace(ylim[0], ylim[1], 30)

Y, X = np.meshgrid(y, x)

xy = np.vstack([X.ravel(), Y.ravel()]).T

P = model.decision_function(xy).reshape(X.shape)

# plot decision boundary and margins

ax.contour(X, Y, P, colors="k',
levels=[-1, 0, 1], alpha=0.5,
linestyles=['--"', '-', '"--'])

# plot support vectors
if plot_support:
ax.scatter(model.support_vectors_[:, 0],
model.support_vectors_[:, 1],
s=300, linewidth=1, facecolors='none');
ax.set_xlim(xlim)
ax.set_ylim(ylim)

In[7]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="autumn')
plot_svc_decision_function(model);
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Figure 5-56. A support vector machine classifier fit to the data, with margins (dashed
lines) and support vectors (circles) shown

This is the dividing line that maximizes the margin between the two sets of points.
Notice that a few of the training points just touch the margin; they are indicated by
the black circles in Figure 5-56. These points are the pivotal elements of this fit, and
are known as the support vectors, and give the algorithm its name. In Scikit-Learn, the
identity of these points is stored in the support_vectors_ attribute of the classifier:

In[8]: model.support_vectors_

Out[8]: array([[ 0.44359863, 3.11530945],
[ 2.33812285, 3.43116792],
[ 2.06156753, 1.96918596]])
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A key to this classifier’s success is that for the fit, only the position of the support vec-
tors matters; any points further from the margin that are on the correct side do not
modify the fit! Technically, this is because these points do not contribute to the loss
function used to fit the model, so their position and number do not matter so long as
they do not cross the margin.

We can see this, for example, if we plot the model learned from the first 60 points and
first 120 points of this dataset (Figure 5-57):

In[9]: def plot_svm(N=10, ax=None):
X, y = make_blobs(n_samples=200, centers=2,
random_state=0, cluster_std=0.60)
X = X[:N]
y = y[:N]
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

ax = ax or plt.gca()

ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="autumn')
ax.set_xlim(-1, 4)

ax.set_ylim(-1, 6)

plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1l, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):

plot_svm(N, axi)

axi.set_title('N = {0}'.format(N))
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Figure 5-57. The influence of new training points on the SVM model

In the left panel, we see the model and the support vectors for 60 training points. In
the right panel, we have doubled the number of training points, but the model has
not changed: the three support vectors from the left panel are still the support vectors
from the right panel. This insensitivity to the exact behavior of distant points is one of
the strengths of the SVM model.
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If you are running this notebook live, you can use IPython’s interactive widgets to
view this feature of the SVM model interactively (Figure 5-58):

In[10]: from import interact, fixed
interact(plot_svm, N=[10, 200], ax=fixed(None));

-1 ] .| 2 3 4

Figure 5-58. The first frame of the interactive SVM visualization (see the online appen-
dix for the full version)

Beyond linear boundaries: Kernel SVM

Where SVM becomes extremely powerful is when it is combined with kernels. We
have seen a version of kernels before, in the basis function regressions of “In Depth:
Linear Regression” on page 390. There we projected our data into higher-dimensional
space defined by polynomials and Gaussian basis functions, and thereby were able to
fit for nonlinear relationships with a linear classifier.

In SVM models, we can use a version of the same idea. To motivate the need for ker-
nels, let’s look at some data that is not linearly separable (Figure 5-59):

In[11]: from import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear").fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="autumn')
plot_svc_decision_function(clf, plot_support=False);

In-Depth: Support Vector Machines | 411


https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/jakevdp/PythonDataScienceHandbook

Figure 5-59. A linear classifier performs poorly for nonlinear boundaries

It is clear that no linear discrimination will ever be able to separate this data. But we
can draw a lesson from the basis function regressions in “In Depth: Linear Regres-
sion” on page 390, and think about how we might project the data into a higher
dimension such that a linear separator would be sufficient. For example, one simple
projection we could use would be to compute a radial basis function centered on the
middle clump:

In[12]: r = np.exp(-(X ** 2).sum(1))

We can visualize this extra data dimension using a three-dimensional plot—if you are
running this notebook live, you will be able to use the sliders to rotate the plot
(Figure 5-60):

In[13]: from import mplot3d

def plot_3D(elev=30, azim=30, X=X, y=y):
ax = plt.subplot(projection="'3d")
ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
ax.view_init(elev=elev, azim=azim)
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('r')

interact(plot_3D, elev=[-90, 90], azip=(-180, 180),
X=fixed(X), y=fixed(y));
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Figure 5-60. A third dimension added to the data allows for linear separation

We can see that with this additional dimension, the data becomes trivially linearly
separable, by drawing a separating plane at, say, r=0.7.

Here we had to choose and carefully tune our projection; if we had not centered our
radial basis function in the right location, we would not have seen such clean, linearly
separable results. In general, the need to make such a choice is a problem: we would
like to somehow automatically find the best basis functions to use.

One strategy to this end is to compute a basis function centered at every point in the
dataset, and let the SVM algorithm sift through the results. This type of basis function
transformation is known as a kernel transformation, as it is based on a similarity rela-
tionship (or kernel) between each pair of points.

A potential problem with this strategy—projecting N points into N dimensions—is
that it might become very computationally intensive as N grows large. However,
because of a neat little procedure known as the kernel trick, a fit on kernel-
transformed data can be done implicitly—that is, without ever building the full N-
dimensional representation of the kernel projection! This kernel trick is built into the
SVM, and is one of the reasons the method is so powerful.

In Scikit-Learn, we can apply kernelized SVM simply by changing our linear kernel to
an RBF (radial basis function) kernel, using the kernel model hyperparameter
(Figure 5-61):

In[14]: clf = SvC(kernel='rbf', C=1E6)
clf.fit(X, y)

Out[14]: SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_1iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
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In[15]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],

s=300, lw=1, facecolors='none');

0o

Figure 5-61. Kernel SVM fit to the data

Using this kernelized support vector machine, we learn a suitable nonlinear decision
boundary. This kernel transformation strategy is used often in machine learning to
turn fast linear methods into fast nonlinear methods, especially for models in which
the kernel trick can be used.

Tuning the SVM: Softening margins

Our discussion so far has centered on very clean datasets, in which a perfect decision
boundary exists. But what if your data has some amount of overlap? For example, you
may have data like this (Figure 5-62):

In[16]: X, y = make_blobs(n_samples=100, centers=2,

random_state=0, cluster_std=1.2)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

414 | Chapter 5: Machine Learning



° o
. L [)
b @ "H' °
@
4 ° o® % e o
°
ool e .
° ° ) LA}
2 .. 3
o
2
-
| -2 -1 a 1 2 3 4 5 &

Figure 5-62. Data with some level of overlap

To handle this case, the SVM implementation has a bit of a fudge-factor that “softens”
the margin; that is, it allows some of the points to creep into the margin if that allows
a better fit. The hardness of the margin is controlled by a tuning parameter, most
often known as C. For very large C, the margin is hard, and points cannot lie in it. For
smaller C, the margin is softer, and can grow to encompass some points.

The plot shown in Figure 5-63 gives a visual picture of how a changing C parameter
affects the final fit, via the softening of the margin:

In[17]: X, y = make_blobs(n_samples=100, centers=2,
random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1l, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, C in zip(ax, [10.0, 0.1]):
model = SVC(kernel='linear', C=C).fit(X, y)
axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model, axi)
axi.scatter(model.support_vectors_[:, 0],
model.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');
axi.set_title('C = {0:.1f}'.format(C), size=14)
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Figure 5-63. The effect of the C parameter on the support vector fit

The optimal value of the C parameter will depend on your dataset, and should be
tuned via cross-validation or a similar procedure (refer back to “Hyperparameters
and Model Validation” on page 359 for further information).

Example: Face Recognition

As an example of support vector machines in action, let’s take a look at the facial rec-
ognition problem. We will use the Labeled Faces in the Wild dataset, which consists
of several thousand collated photos of various public figures. A fetcher for the dataset
is built into Scikit-Learn:

In[18]: from import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)

Let’s plot a few of these faces to see what we're working with (Figure 5-64):

In[19]: fig, ax = plt.subplots(3, 5)
for 1, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone")
axi.set(xticks=[], yticks=[],
xlabel=faces.target_names[faces.target[i]])
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Figure 5-64. Examples from the Labeled Faces in the Wild dataset

Each image contains [62x47] or nearly 3,000 pixels. We could proceed by simply
using each pixel value as a feature, but often it is more effective to use some sort of
preprocessor to extract more meaningful features; here we will use a principal com-
ponent analysis (see “In Depth: Principal Component Analysis” on page 433) to
extract 150 fundamental components to feed into our support vector machine classi-
fier. We can do this most straightforwardly by packaging the preprocessor and the
classifier into a single pipeline:
In[20]: from sklearn.svm import SVC

from sklearn.decomposition import RandomizedPCA
from sklearn.pipeline import make_pipeline

pca = RandomizedPCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel="rbf', class_weight='balanced")
model = make_pipeline(pca, svc)

For the sake of testing our classifier output, we will split the data into a training and
testing set:

In[21]: from sklearn.cross_validation import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target,
random_state=42)

Finally, we can use a grid search cross-validation to explore combinations of parame-

ters. Here we will adjust C (which controls the margin hardness) and gamma (which
controls the size of the radial basis function kernel), and determine the best model:

In[22]: from sklearn.grid_search import GridSearchCV
param_grid = {'svc_ C': [1, 5, 10, 50],
'svc__gamma': [0.0001, 0.0005, 0.001, 0.005]}
grid = GridSearchCV(model, param_grid)
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%time grid.fit(Xtrain, ytrain)
print(grid.best_params_)

CPU times: user 47.8 s, sys: 4.08 s, total: 51.8 s
Wall time: 26 s
{'svc__gamma': 0.001, 'svc_ C': 10}

The optimal values fall toward the middle of our grid; if they fell at the edges, we
would want to expand the grid to make sure we have found the true optimum.

Now with this cross-validated model, we can predict the labels for the test data, which
the model has not yet seen:

In[23]: model = grid.best_estimator_
yfit = model.predict(Xtest)

Let’s take a look at a few of the test images along with their predicted values
(Figure 5-65):

In[24]: fig, ax = plt.subplots(4, 6)
for 1, axi in enumerate(ax.flat):
axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[yfit[i]].split()[-1],
color="'black' if yfit[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14);
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Figure 5-65. Labels predicted by our model

Out of this small sample, our optimal estimator mislabeled only a single face (Bush’s
face in the bottom row was mislabeled as Blair). We can get a better sense of our esti-

mator’s performance using the classification report, which lists recovery statistics
label by label:
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In[25]: from sklearn.metrics import classification_report
print(classification_report(ytest, yfit,
target_names=faces.target_names))

precision recall fi1-score support

Ariel Sharon 0.65 0.73 0.69 15
Colin Powell 0.81 0.87 0.84 68
Donald Rumsfeld 0.75 0.87 0.81 31
George W Bush 0.93 0.83 0.88 126
Gerhard Schroeder 0.86 0.78 0.82 23
Hugo Chavez 0.93 0.70 0.80 20
Junichiro Koizumi 0.80 1.00 0.89 12
Tony Blair 0.83 0.93 0.88 42

avg / total 0.85 0.85 0.85 337

We might also display the confusion matrix between these classes (Figure 5-66):

In[26]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=faces.target_names,
yticklabels=faces.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label');
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Figure 5-66. Confusion matrix for the faces data

This helps us get a sense of which labels are likely to be confused by the estimator.
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For a real-world facial recognition task, in which the photos do not come precropped
into nice grids, the only difference in the facial classification scheme is the feature
selection: you would need to use a more sophisticated algorithm to find the faces, and
extract features that are independent of the pixellation. For this kind of application,
one good option is to make use of OpenCV, which among other things, includes pre-
trained implementations of state-of-the-art feature extraction tools for images in gen-
eral and faces in particular.

Support Vector Machine Summary

We have seen here a brief intuitive introduction to the principals behind support vec-
tor machines. These methods are a powerful classification method for a number of
reasons:

o Their dependence on relatively few support vectors means that they are very
compact models, and take up very little memory.

o+ Once the model is trained, the prediction phase is very fast.

+ Because they are affected only by points near the margin, they work well with
high-dimensional data—even data with more dimensions than samples, which is
a challenging regime for other algorithms.

o Their integration with kernel methods makes them very versatile, able to adapt to
many types of data.

However, SVMs have several disadvantages as well:

o The scaling with the number of samples N is (7[N3] at worst, or (7[N2] for effi-
cient implementations. For large numbers of training samples, this computa-
tional cost can be prohibitive.

o The results are strongly dependent on a suitable choice for the softening parame-
ter C. This must be carefully chosen via cross-validation, which can be expensive
as datasets grow in size.

o The results do not have a direct probabilistic interpretation. This can be estima-
ted via an internal cross-validation (see the probability parameter of SVC), but
this extra estimation is costly.

With those traits in mind, I generally only turn to SVMs once other simpler, faster,
and less tuning-intensive methods have been shown to be insufficient for my needs.
Nevertheless, if you have the CPU cycles to commit to training and cross-validating
an SVM on your data, the method can lead to excellent results.
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In-Depth: Decision Trees and Random Forests

Previously we have looked in depth at a simple generative classifier (naive Bayes; see
“In Depth: Naive Bayes Classification” on page 382) and a powerful discriminative
classifier (support vector machines; see “In-Depth: Support Vector Machines” on
page 405). Here we'll take a look at motivating another powerful algorithm—a non-
parametric algorithm called random forests. Random forests are an example of an
ensemble method, a method that relies on aggregating the results of an ensemble of
simpler estimators. The somewhat surprising result with such ensemble methods is
that the sum can be greater than the parts; that is, a majority vote among a number of
estimators can end up being better than any of the individual estimators doing the
voting! We will see examples of this in the following sections. We begin with the stan-
dard imports:

In[1]: %matplotlib inline

import as
import as
import as ; sns.set()

Motivating Random Forests: Decision Trees

Random forests are an example of an ensemble learner built on decision trees. For this
reason we'll start by discussing decision trees themselves.

Decision trees are extremely intuitive ways to classify or label objects: you simply ask
a series of questions designed to zero in on the classification. For example, if you
wanted to build a decision tree to classify an animal you come across while on a hike,
you might construct the one shown in Figure 5-67.

How big is
the animal?

=>1m <Tm
| |

Does the animal Does the animal
have homs? have two legs?

yes no yes no

—— [ —1

Are the horns Is the animal Does the animal Does the animal
longer than 10cm? wearing a collar? have wings? have a tail?

Figure 5-67. An example of a binary decision tree
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The binary splitting makes this extremely efficient: in a well-constructed tree, each
question will cut the number of options by approximately half, very quickly narrow-
ing the options even among a large number of classes. The trick, of course, comes in
deciding which questions to ask at each step. In machine learning implementations of
decision trees, the questions generally take the form of axis-aligned splits in the data;
that is, each node in the tree splits the data into two groups using a cutoff value
within one of the features. Let’s now take a look at an example.

Creating a decision tree

Consider the following two-dimensional data, which has one of four class labels
(Figure 5-68):

In[2]: from import make_blobs
X, y = make_blobs(n_samples=300, centers=4,

random_state=0, cluster_std=1.0)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow');
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Figure 5-68. Data for the decision tree classifier

A simple decision tree built on this data will iteratively split the data along one or the
other axis according to some quantitative criterion, and at each level assign the label
of the new region according to a majority vote of points within it. Figure 5-69
presents a visualization of the first four levels of a decision tree classifier for this data.
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Figure 5-69. Visualization of how the decision tree splits the data

Notice that after the first split, every point in the upper branch remains unchanged,
so there is no need to further subdivide this branch. Except for nodes that contain all
of one color, at each level every region is again split along one of the two features.

This process of fitting a decision tree to our data can be done in Scikit-Learn with the
DecisionTreeClassifier estimator:

In[3]: from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier().fit(X, y)

Let’s write a quick utility function to help us visualize the output of the classifier:

In[4]: def visualize_classifier(model, X, y, ax=None, cmap='rainbow'):
ax = ax or plt.gca()

# Plot the training points

ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=cmap,
clim=(y.min(), y.max()), zorder=3)

ax.axis('tight")

ax.axis('off")

x1lim = ax.get_xlim()

ylim = ax.get_ylim()

# fit the estimator

model.fit(X, y)

XX, yy = np.meshgrid(np.linspace(*x1lim, num=200),
np.linspace(*ylim, num=200))

Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# Create a color plot with the results

n_classes = len(np.unigue(y))

contours = ax.contourf(xx, yy, Z, alpha=0.3,
levels=np.arange(n_classes + 1) - 0.5,
cmap=cmap, clim=(y.min(), y.max()),
zorder=1)

ax.set(xlim=x1lim, ylim=ylim)
Now we can examine what the decision tree classification looks like (Figure 5-70):

In[5]: visualize_classifier(DecisionTreeClassifier(), X, y)
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Figure 5-70. Visualization of a decision tree classification

If you're running this notebook live, you can use the helpers script included in the
online appendix to bring up an interactive visualization of the decision tree building
process (Figure 5-71):

In[6]: # helpers_05_08 is found in the online appendix
# (https://github.com/jakevdp/PythonDataScienceHandbook)
import helpers_05_08
helpers_05_08.plot_tree_interactive(X, y);

Figure 5-71. First frame of the interactive decision tree widget; for the full version, see
the online appendix

Notice that as the depth increases, we tend to get very strangely shaped classification
regions; for example, at a depth of five, there is a tall and skinny purple region
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between the yellow and blue regions. It’s clear that this is less a result of the true,
intrinsic data distribution, and more a result of the particular sampling or noise prop-
erties of the data. That is, this decision tree, even at only five levels deep, is clearly
overfitting our data.

Decision trees and overfitting

Such overfitting turns out to be a general property of decision trees; it is very easy to
go too deep in the tree, and thus to fit details of the particular data rather than the
overall properties of the distributions they are drawn from. Another way to see this
overfitting is to look at models trained on different subsets of the data—for example,
in Figure 5-72 we train two different trees, each on half of the original data.
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Figure 5-72. An example of two randomized decision trees

It is clear that in some places, the two trees produce consistent results (e.g., in the
four corners), while in other places, the two trees give very different classifications
(e.g., in the regions between any two clusters). The key observation is that the incon-
sistencies tend to happen where the classification is less certain, and thus by using
information from both of these trees, we might come up with a better result!

If you are running this notebook live, the following function will allow you to interac-
tively display the fits of trees trained on a random subset of the data (Figure 5-73):

In[7]: # helpers_05_08 is found in the online appendix
# (https://github.com/jakevdp/PythonDataScienceHandbook)
import
helpers_05_08.randomized_tree_interactive(X, y)
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Figure 5-73. First frame of the interactive randomized decision tree widget; for the full
version, see the online appendix

Just as using information from two trees improves our results, we might expect that
using information from many trees would improve our results even further.

Ensembles of Estimators: Random Forests

This notion—that multiple overfitting estimators can be combined to reduce the
effect of this overfitting—is what underlies an ensemble method called bagging. Bag-
ging makes use of an ensemble (a grab bag, perhaps) of parallel estimators, each of
which overfits the data, and averages the results to find a better classification. An
ensemble of randomized decision trees is known as a random forest.

We can do this type of bagging classification manually using Scikit-Learn’s Bagging
Classifier meta-estimator as shown here (Figure 5-74):

In[8]: from import DecisionTreeClassifier
from import BaggingClassifier

tree = DecisionTreeClassifier()
bag = BaggingClassifier(tree, n_estimators=100, max_samples=0.8,
random_state=1)

bag.fit(X, y)
visualize_classifier(bag, X, y)

426 | Chapter5: Machine Learning


https://github.com/jakevdp/PythonDataScienceHandbook

Figure 5-74. Decision boundaries for an ensemble of random decision trees

In this example, we have randomized the data by fitting each estimator with a ran-
dom subset of 80% of the training points. In practice, decision trees are more effec-
tively randomized when some stochasticity is injected in how the splits are chosen;
this way, all the data contributes to the fit each time, but the results of the fit still have
the desired randomness. For example, when determining which feature to split on,
the randomized tree might select from among the top several features. You can read
more technical details about these randomization strategies in the Scikit-Learn docu-
mentation and references within.

In Scikit-Learn, such an optimized ensemble of randomized decision trees is imple-
mented in the RandomForestClassifier estimator, which takes care of all the ran-
domization automatically. All you need to do is select a number of estimators, and it
will very quickly (in parallel, if desired) fit the ensemble of trees (Figure 5-75):

In[9]: from import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=0)
visualize_classifier(model, X, y);
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Figure 5-75. Decision boundaries for a random forest, which is an optimized ensemble of
decision trees

We see that by averaging over 100 randomly perturbed models, we end up with an
overall model that is much closer to our intuition about how the parameter space
should be split.

Random Forest Regression

In the previous section we considered random forests within the context of classifica-
tion. Random forests can also be made to work in the case of regression (that is, con-
tinuous rather than categorical variables). The estimator to use for this is the
RandomForestRegressor, and the syntax is very similar to what we saw earlier.

Consider the following data, drawn from the combination of a fast and slow oscilla-
tion (Figure 5-76):
In[10]: rng = np.random.RandomState(42)
X = 10 * rng.rand(200)

def model(x, sigma=0.3):
fast_oscillation = np.sin(5 * x)
slow_oscillation = np.sin(0.5 * x)
noise = sigma * rng.randn(len(x))

return slow_oscillation + fast_oscillation + noise

y = model(x)
plt.errorbar(x, y, 0.3, fmt="'0");
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Figure 5-76. Data for random forest regression

Using the random forest regressor, we can find the best-fit curve as follows
(Figure 5-77):
In[11]: from sklearn.ensemble import RandomForestRegressor

forest = RandomForestRegressor(200)
forest.fit(x[:, None], y)

xfit = np.linspace(0, 10, 1000)
yfit = forest.predict(xfit[:, None])
ytrue = model(xfit, sigma=0)

plt.errorbar(x, y, 0.3, fmt="'0o"', alpha=0.5)

plt.plot(xfit, yfit, '-r');

plt.plot(xfit, ytrue, '-k', alpha=0.5);
Here the true model is shown by the smooth curve, while the random forest model is
shown by the jagged curve. As you can see, the nonparametric random forest model
is flexible enough to fit the multiperiod data, without us needing to specify a multi-
period model!
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Figure 5-77. Random forest model fit to the data

Example: Random Forest for Classifying Digits

Earlier we took a quick look at the handwritten digits data (see “Introducing Scikit-
Learn” on page 343). Let’s use that again here to see how the random forest classifier
can be used in this context.

In[12]: from sklearn.datasets import load_digits
digits = load_digits()
digits.keys()

Out[12]: dict_keys(['target', 'data', 'target_names', 'DESCR', 'images'])

To remind us what were looking at, welll visualize the first few data points
(Figure 5-78):

In[13]:

# set up the figure

fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

# plot the digits: each image is 8x8 pixels

for 1 in range(64):
ax = fig.add_subplot(8, 8, 1 + 1, xticks=[], yticks=[])
ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest')

# label the image with the target value
ax.text(0, 7, str(digits.target[i]))
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Figure 5-78. Representation of the digits data

We can quickly classify the digits using a random forest as follows (Figure 5-79):

In[14]:

from sklearn.cross_validation import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target,

random_state=0)

model = RandomForestClassifier(n_estimators=1000)
model.fit(Xtrain, ytrain)
ypred = model.predict(Xtest)

We can take a look at the classification report for this classifier:

In[15]: from sklearn import metrics
print(metrics.classification_report(ypred, ytest))
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And for good measure, plot the confusion matrix (Figure 5-79):

In[16]: from import confusion_matrix
mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.xlabel('true label')
plt.ylabel('predicted label');

predicted label

true label

Figure 5-79. Confusion matrix for digit classification with random forests

We find that a simple, untuned random forest results in a very accurate classification
of the digits data.

Summary of Random Forests

This section contained a brief introduction to the concept of ensemble estimators, and
in particular the random forest model—an ensemble of randomized decision trees.
Random forests are a powerful method with several advantages:

« Both training and prediction are very fast, because of the simplicity of the under-
lying decision trees. In addition, both tasks can be straightforwardly parallelized,
because the individual trees are entirely independent entities.

 The multiple trees allow for a probabilistic classification: a majority vote among
estimators gives an estimate of the probability (accessed in Scikit-Learn with the
predict_proba() method).

o The nonparametric model is extremely flexible, and can thus perform well on
tasks that are underfit by other estimators.
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A primary disadvantage of random forests is that the results are not easily interpreta-
ble; that is, if you would like to draw conclusions about the meaning of the classifica-
tion model, random forests may not be the best choice.

In Depth: Principal Component Analysis

Up until now, we have been looking in depth at supervised learning estimators: those
estimators that predict labels based on labeled training data. Here we begin looking at
several unsupervised estimators, which can highlight interesting aspects of the data
without reference to any known labels.

In this section, we explore what is perhaps one of the most broadly used of unsuper-
vised algorithms, principal component analysis (PCA). PCA is fundamentally a
dimensionality reduction algorithm, but it can also be useful as a tool for visualiza-
tion, for noise filtering, for feature extraction and engineering, and much more. After
a brief conceptual discussion of the PCA algorithm, we will see a couple examples of
these further applications. We begin with the standard imports:

In[1]: %matplotlib inline

import as
import as
import as ; sns.set()

Introducing Principal Component Analysis

Principal component analysis is a fast and flexible unsupervised method for dimen-
sionality reduction in data, which we saw briefly in “Introducing Scikit-Learn” on
page 343. Its behavior is easiest to visualize by looking at a two-dimensional dataset.
Consider the following 200 points (Figure 5-80):

In[2]: rng = np.random.RandomState(1)

X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T

plt.scatter(X[:, 0], X[:, 1])

plt.axis('equal');
By eye, it is clear that there is a nearly linear relationship between the x and y vari-
ables. This is reminiscent of the linear regression data we explored in “In Depth: Lin-
ear Regression” on page 390, but the problem setting here is slightly different: rather
than attempting to predict the y values from the x values, the unsupervised learning
problem attempts to learn about the relationship between the x and y values.
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Figure 5-80. Data for demonstration of PCA

In principal component analysis, one quantifies this relationship by finding a list of
the principal axes in the data, and using those axes to describe the dataset. Using
Scikit-Learn’s PCA estimator, we can compute this as follows:

In[3]: from import PCA
pca = PCA(n_components=2)
pca.fit(X)

Out[3]: PCA(copy=True, n_components=2, whiten=False)

The fit learns some quantities from the data, most importantly the “components” and
“explained variance™:

In[4]: print(pca.components_)

[[ 0.94446029 0.32862557]
[ 0.32862557 -0.94446029]]

In[5]: print(pca.explained_variance_)
[ 0.75871884 0.01838551]

To see what these numbers mean, let’s visualize them as vectors over the input data,
using the “components” to define the direction of the vector, and the “explained var-
iance” to define the squared-length of the vector (Figure 5-81):

In[6]: def draw_vector(v®, v1, ax=None):
ax = ax or plt.gca()
arrowprops=dict(arrowstyle="'->",
linewidth=2,
shrinkA=0, shrinkB=0)
ax.annotate('', v1, vO, arrowprops=arrowprops)

# plot data
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plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

for length, vector in zip(pca.explained_variance_, pca.components_):
v = vector * 3 * npp.sqrt(length)
draw_vector(pca.mean_, pca.mean_ + V)

plt.axis('equal');

20

-3 -2 -1 a 1 2 3

Figure 5-81. Visualization of the principal axes in the data

These vectors represent the principal axes of the data, and the length shown in
Figure 5-81 is an indication of how “important” that axis is in describing the distribu-
tion of the data—more precisely, it is a measure of the variance of the data when pro-
jected onto that axis. The projection of each data point onto the principal axes are the
“principal components” of the data.

If we plot these principal components beside the original data, we see the plots shown
in Figure 5-82.

component 1

x sompnent 1

Figure 5-82. Transformed principal axes in the data
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This transformation from data axes to principal axes is as an affine transformation,
which basically means it is composed of a translation, rotation, and uniform scaling.

While this algorithm to find principal components may seem like just a mathematical
curijosity, it turns out to have very far-reaching applications in the world of machine
learning and data exploration.

PCA as dimensionality reduction

Using PCA for dimensionality reduction involves zeroing out one or more of the
smallest principal components, resulting in a lower-dimensional projection of the
data that preserves the maximal data variance.

Here is an example of using PCA as a dimensionality reduction transform:

In[7]: pca = PCA(n_components=1)
pca.fit(X)
X_pca = pca.transform(X)
print("original shape: , X.shape)
print("transformed shape:", X_pca.shape)

original shape: (200, 2)

transformed shape: (200, 1)
The transformed data has been reduced to a single dimension. To understand the
effect of this dimensionality reduction, we can perform the inverse transform of this
reduced data and plot it along with the original data (Figure 5-83):

In[8]: X_new = pca.inverse_transform(X_pca)
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8)
plt.axis('equal');

20

Figure 5-83. Visualization of PCA as dimensionality reduction

436 | Chapter5: Machine Learning




The light points are the original data, while the dark points are the projected version.
This makes clear what a PCA dimensionality reduction means: the information along
the least important principal axis or axes is removed, leaving only the component(s)
of the data with the highest variance. The fraction of variance that is cut out (propor-
tional to the spread of points about the line formed in Figure 5-83) is roughly a meas-
ure of how much “information” is discarded in this reduction of dimensionality.

This reduced-dimension dataset is in some senses “good enough” to encode the most
important relationships between the points: despite reducing the dimension of the
data by 50%, the overall relationship between the data points is mostly preserved.

PCA for visualization: Handwritten digits

The usefulness of the dimensionality reduction may not be entirely apparent in only
two dimensions, but becomes much more clear when we look at high-dimensional
data. To see this, let’s take a quick look at the application of PCA to the digits data we
saw in “In-Depth: Decision Trees and Random Forests” on page 421.

We start by loading the data:

In[9]: from import load_digits
digits = load_digits()
digits.data.shape

Out[9]:
(1797, 64)

Recall that the data consists of 8x8 pixel images, meaning that they are 64-
dimensional. To gain some intuition into the relationships between these points, we
can use PCA to project them to a more manageable number of dimensions, say two:

In[10]: pca = PCA(2) # project from 64 to 2 dimensions
projected = pca.fit_transform(digits.data)
print(digits.data.shape)
print(projected.shape)

(1797, 64)
(1797, 2)

We can now plot the first two principal components of each point to learn about the
data (Figure 5-84):

In[11]: plt.scatter(projected[:, 0], projected[:, 1],
c=digits.target, edgecolor="none', alpha=0.5,
cmap=plt.cm.get_cmap('spectral', 10))

plt.xlabel('component 1")
plt.ylabel('component 2")
plt.colorbar();
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Figure 5-84. PCA applied to the handwritten digits data

Recall what these components mean: the full data is a 64-dimensional point cloud,
and these points are the projection of each data point along the directions with the
largest variance. Essentially, we have found the optimal stretch and rotation in 64-
dimensional space that allows us to see the layout of the digits in two dimensions, and
have done this in an unsupervised manner—that is, without reference to the labels.

What do the components mean?

We can go a bit further here, and begin to ask what the reduced dimensions mean.
This meaning can be understood in terms of combinations of basis vectors. For
example, each image in the training set is defined by a collection of 64 pixel values,
which we will call the vector x:

X = [x1>x2>x3"'x64]

One way we can think about this is in terms of a pixel basis. That is, to construct the
image, we multiply each element of the vector by the pixel it describes, and then add
the results together to build the image:

image(x) = x, - (pixel 1) + x, - (pixel 2) + x; - (pixel 3)---x,, - (pixel 64)

One way we might imagine reducing the dimension of this data is to zero out all but a
few of these basis vectors. For example, if we use only the first eight pixels, we get an
eight-dimensional projection of the data (Figure 5-85), but it is not very reflective of
the whole image: we've thrown out nearly 90% of the pixels!
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Figure 5-85. A naive dimensionality reduction achieved by discarding pixels

The upper row of panels shows the individual pixels, and the lower row shows the
cumulative contribution of these pixels to the construction of the image. Using only
eight of the pixel-basis components, we can only construct a small portion of the 64-
pixel image. Were we to continue this sequence and use all 64 pixels, we would
recover the original image.

But the pixel-wise representation is not the only choice of basis. We can also use other
basis functions, which each contain some predefined contribution from each pixel,
and write something like:

image(x) = mean + x, - (basis 1) + x, - (basis 2) + x; - (basis 3)---

PCA can be thought of as a process of choosing optimal basis functions, such that
adding together just the first few of them is enough to suitably reconstruct the bulk of
the elements in the dataset. The principal components, which act as the low-
dimensional representation of our data, are simply the coefficients that multiply each
of the elements in this series. Figure 5-86 is a similar depiction of reconstructing this
digit using the mean plus the first eight PCA basis functions.
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Figure 5-86. A more sophisticated dimensionality reduction achieved by discarding the
least important principal components (compare to Figure 5-85)
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Unlike the pixel basis, the PCA basis allows us to recover the salient features of the
input image with just a mean plus eight components! The amount of each pixel in
each component is the corollary of the orientation of the vector in our two-
dimensional example. This is the sense in which PCA provides a low-dimensional
representation of the data: it discovers a set of basis functions that are more efficient
than the native pixel-basis of the input data.
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Choosing the number of components

A vital part of using PCA in practice is the ability to estimate how many components
are needed to describe the data. We can determine this by looking at the cumulative
explained variance ratio as a function of the number of components (Figure 5-87):

In[12]: pca = PCA().fit(digits.data)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel( 'number of components')
plt.ylabel('cumulative explained variance');
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cumulative explained variance
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Figure 5-87. The cumulative explained variance, which measures how well PCA pre-
serves the content of the data

This curve quantifies how much of the total, 64-dimensional variance is contained
within the first N components. For example, we see that with the digits the first 10
components contain approximately 75% of the variance, while you need around 50
components to describe close to 100% of the variance.

Here we see that our two-dimensional projection loses a lot of information (as meas-
ured by the explained variance) and that wed need about 20 components to retain
90% of the variance. Looking at this plot for a high-dimensional dataset can help you
understand the level of redundancy present in multiple observations.

PCA as Noise Filtering

PCA can also be used as a filtering approach for noisy data. The idea is this: any com-
ponents with variance much larger than the effect of the noise should be relatively
unaffected by the noise. So if you reconstruct the data using just the largest subset of
principal components, you should be preferentially keeping the signal and throwing
out the noise.
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Let’s see how this looks with the digits data. First we will plot several of the input
noise-free data (Figure 5-88):

In[13]: def plot_digits(data):
fig, axes = plt.subplots(4, 10, figsize=(10, 4),
subplot_kw={"'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for 1, ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8, 8),
cmap="binary', interpolation='nearest’,
clim=(0, 16))
plot_digits(digits.data)

Figure 5-88. Digits without noise

Now lets add some random noise to create a noisy dataset, and replot it
(Figure 5-89):

In[14]: np.random.seed(42)
noisy = np.random.normal(digits.data, 4)
plot_digits(noisy)
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Figure 5-89. Digits with Gaussian random noise added

It’s clear by eye that the images are noisy, and contain spurious pixels. Let’s train a
PCA on the noisy data, requesting that the projection preserve 50% of the variance:
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In[15]: pca = PCA(0.50).fit(noisy)
pca.n_components_

Out[15]: 12

Here 50% of the variance amounts to 12 principal components. Now we compute
these components, and then use the inverse of the transform to reconstruct the fil-
tered digits (Figure 5-90):

In[16]: components = pca.transform(noisy)
filtered = pca.inverse_transform(components)
plot_digits(filtered)

DL3L4IGFED
DELIATLAT S
PALIAELTE Y
Da3F2&6504F3

Figure 5-90. Digits “denoised” using PCA

This signal preserving/noise filtering property makes PCA a very useful feature selec-
tion routine—for example, rather than training a classifier on very high-dimensional
data, you might instead train the classifier on the lower-dimensional representation,
which will automatically serve to filter out random noise in the inputs.

Example: Eigenfaces

Earlier we explored an example of using a PCA projection as a feature selector for
facial recognition with a support vector machine (“In-Depth: Support Vector
Machines” on page 405). Here we will take a look back and explore a bit more of what
went into that. Recall that we were using the Labeled Faces in the Wild dataset made
available through Scikit-Learn:

In[17]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)
Lets take a look at the principal axes that span this dataset. Because this is a large
dataset, we will use RandomizedPCA—it contains a randomized method to approxi-
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mate the first N principal components much more quickly than the standard PCA esti-
mator, and thus is very useful for high-dimensional data (here, a dimensionality of
nearly 3,000). We will take a look at the first 150 components:

In[18]: from sklearn.decomposition import RandomizedPCA
pca = RandomizedPCA(150)
pca.fit(faces.data)

Out[18]: RandomizedPCA(copy=True, iterated_power=3, n_components=150,
random_state=None, whiten=False)

In this case, it can be interesting to visualize the images associated with the first sev-
eral principal components (these components are technically known as “eigenvec-
tors,” so these types of images are often called “eigenfaces”). As you can see in
Figure 5-91, they are as creepy as they sound:

In[19]: fig, axes = plt.subplots(3, 8, figsize=(9, 4),
subplot_kw={"xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for 1, ax in enumerate(axes.flat):
ax.imshow(pca.components_[1i].reshape(62, 47), cmap='bone')

Figure 5-91. A visualization of eigenfaces learned from the LFW dataset

The results are very interesting, and give us insight into how the images vary: for
example, the first few eigenfaces (from the top left) seem to be associated with the
angle of lighting on the face, and later principal vectors seem to be picking out certain
features, such as eyes, noses, and lips. Let’s take a look at the cumulative variance of
these components to see how much of the data information the projection is preserv-
ing (Figure 5-92):

In[20]: plt.plot(np.cumsum(pca.explained_variance_ratio_))

plt.xlabel( 'number of components')
plt.ylabel('cumulative explained variance');
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Figure 5-92. Cumulative explained variance for the LFW data

We see that these 150 components account for just over 90% of the variance. That
would lead us to believe that using these 150 components, we would recover most of
the essential characteristics of the data. To make this more concrete, we can compare
images with the images reconstructed from these 150 components

the input

(Figure 5-93):

In[21]:

In[22]:

# Compute the components and projected faces
pca = RandomizedPCA(150).fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

# Plot the results
fig, ax = plt.subplots(2, 10, figsize=(10, 2.5),
subplot_kw={"xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for 1 in range(10):
ax[0, i].imshow(faces.data[1].reshape(62, 47), cmap='binary_r'")
ax[1, i].imshow(projected[i].reshape(62, 47), cmap='binary_r')

ax[0, 0].set_ylabel('full-dim\ninput')
ax[1, 0].set_ylabel('150-dim\nreconstruction');

full-dim

150-dim
reconstruction

it

npu

|-

Figure 5-93. 150-dimensional PCA reconstruction of the LFW data
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The top row here shows the input images, while the bottom row shows the recon-
struction of the images from just 150 of the ~3,000 initial features. This visualization
makes clear why the PCA feature selection used in “In-Depth: Support Vector
Machines” on page 405 was so successful: although it reduces the dimensionality of
the data by nearly a factor of 20, the projected images contain enough information
that we might, by eye, recognize the individuals in the image. What this means is that
our classification algorithm needs to be trained on 150-dimensional data rather than
3,000-dimensional data, which depending on the particular algorithm we choose, can
lead to a much more efficient classification.

Principal Component Analysis Summary

In this section we have discussed the use of principal component analysis for dimen-
sionality reduction, for visualization of high-dimensional data, for noise filtering, and
for feature selection within high-dimensional data. Because of the versatility and
interpretability of PCA, it has been shown to be effective in a wide variety of contexts
and disciplines. Given any high-dimensional dataset, I tend to start with PCA in
order to visualize the relationship between points (as we did with the digits), to
understand the main variance in the data (as we did with the eigenfaces), and to
understand the intrinsic dimensionality (by plotting the explained variance ratio).
Certainly PCA is not useful for every high-dimensional dataset, but it offers a
straightforward and efficient path to gaining insight into high-dimensional data.

PCA’s main weakness is that it tends to be highly affected by outliers in the data. For
this reason, many robust variants of PCA have been developed, many of which act to
iteratively discard data points that are poorly described by the initial components.
Scikit-Learn contains a couple interesting variants on PCA, including RandomizedPCA
and SparsePCA, both also in the sklearn.decomposition submodule. Randomi
zedPCA, which we saw earlier, uses a nondeterministic method to quickly approxi-
mate the first few principal components in very high-dimensional data, while
SparsePCA introduces a regularization term (see “In Depth: Linear Regression” on
page 390) that serves to enforce sparsity of the components.

In the following sections, we will look at other unsupervised learning methods that
build on some of the ideas of PCA.

In-Depth: Manifold Learning

We have seen how principal component analysis can be used in the dimensionality
reduction task—reducing the number of features of a dataset while maintaining the
essential relationships between the points. While PCA is flexible, fast, and easily
interpretable, it does not perform so well when there are nonlinear relationships
within the data; we will see some examples of these below.
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To address this deficiency, we can turn to a class of methods known as manifold learn-
ing—a class of unsupervised estimators that seeks to describe datasets as low-
dimensional manifolds embedded in high-dimensional spaces. When you think of a
manifold, I'd suggest imagining a sheet of paper: this is a two-dimensional object that
lives in our familiar three-dimensional world, and can be bent or rolled in two
dimensions. In the parlance of manifold learning, we can think of this sheet as a two-
dimensional manifold embedded in three-dimensional space.

Rotating, reorienting, or stretching the piece of paper in three-dimensional space
doesn’t change the flat geometry of the paper: such operations are akin to linear
embeddings. If you bend, curl, or crumple the paper, it is still a two-dimensional
manifold, but the embedding into the three-dimensional space is no longer linear.
Manifold learning algorithms would seek to learn about the fundamental two-
dimensional nature of the paper, even as it is contorted to fill the three-dimensional
space.

Here we will demonstrate a number of manifold methods, going most deeply into a
couple techniques: multidimensional scaling (MDS), locally linear embedding (LLE),
and isometric mapping (Isomap). We begin with the standard imports:

In[1]: %matplotlib inline

import as
import as ; sns.set()
import as

Manifold Learning: “HELLO”

To make these concepts more clear, let’s start by generating some two-dimensional
data that we can use to define a manifold. Here is a function that will create data in
the shape of the word “HELLO”:

In[2]:
def make_hello(N=1000, rseed=42):
# Make a plot with "HELLO" text; save as PNG
fig, ax = plt.subplots(figsize=(4, 1))
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.axis('off")
ax.text(0.5, 0.4, 'HELLO', va='center', ha='center', weight='bold', size=85)
fig.savefig('hello.png')
plt.close(fig)

# Open this PNG and draw random points from it
from import imread

data = imread('hello.png')[::-1, :, O].T

rng = np.random.RandomState(rseed)

X = rng.rand(4 * N, 2)

i, j = (X * data.shape).astype(int).T

mask = (data[i, j] < 1)

X = X[mask]
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X[:, 0] *= (data.shape[0] / data.shape[1])
X = X[:N]
return X[np.argsort(X[:, 0])]

Let’s call the function and visualize the resulting data (Figure 5-94):

In[3]: X = make_hello(1000)
colorize = dict(c=X[:, 0], cmap=plt.cm.get_cmap('rainbow', 5))
plt.scatter(X[:, 0], X[:, 1], **colorize)
plt.axis('equal');
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Figure 5-94. Data for use with manifold learning

The output is two dimensional, and consists of points drawn in the shape of the word
“HELLO?”. This data form will help us to see visually what these algorithms are doing.

Multidimensional Scaling (MDS)

Looking at data like this, we can see that the particular choice of x and y values of the
dataset are not the most fundamental description of the data: we can scale, shrink, or
rotate the data, and the “HELLO” will still be apparent. For example, if we use a rota-
tion matrix to rotate the data, the x and y values change, but the data is still funda-
mentally the same (Figure 5-95):

In[4]: def rotate(X, angle):
theta = np.deg2rad(angle)
R = [[np.cos(theta), np.sin(theta)],
[-np.sin(theta), np.cos(theta)]]
return np.dot(X, R)

X2 = rotate(X, 20) + 5
plt.scatter(X2[:, 0], X2[:, 1], **colorize)
plt.axis('equal');
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Figure 5-95. Rotated dataset

This tells us that the x and y values are not necessarily fundamental to the relation-
ships in the data. What is fundamental, in this case, is the distance between each point
and the other points in the dataset. A common way to represent this is to use a dis-
tance matrix: for N points, we construct an N x N array such that entry (i, j) contains
the distance between point i and point j. Let’s use Scikit-Learns efficient pair
wise_distances function to do this for our original data:

In[5]: from sklearn.metrics import pairwise_distances
D = pairwise_distances(X)
D.shape

Out[5]: (1000, 1000)

As promised, for our N=1,000 points, we obtain a 1,000x1,000 matrix, which can be
visualized as shown in Figure 5-96:

In[6]: plt.imshow(D, zorder=2, cmap='Blues', interpolation='nearest')
plt.colorbar();
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Figure 5-96. Visualization of the pairwise distances between points

If we similarly construct a distance matrix for our rotated and translated data, we see
that it is the same:

In[7]: D2 = pairwise_distances(X2)
np.allclose(D, D2)

Out[7]: True

This distance matrix gives us a representation of our data that is invariant to rotations
and translations, but the visualization of the matrix is not entirely intuitive. In the
representation presented in Figure 5-96, we have lost any visible sign of the interest-
ing structure in the data: the “HELLO” that we saw before.

Further, while computing this distance matrix from the (x, y) coordinates is straight-
forward, transforming the distances back into x and y coordinates is rather difficult.
This is exactly what the multidimensional scaling algorithm aims to do: given a dis-
tance matrix between points, it recovers a D-dimensional coordinate representation
of the data. Let’s see how it works for our distance matrix, using the precomputed
dissimilarity to specify that we are passing a distance matrix (Figure 5-97):

In[8]: from sklearn.manifold import MDS
model = MDS(n_components=2, dissimilarity='precomputed', random_state=1)
out = model.fit_transform(D)
plt.scatter(out[:, 0], out[:, 1], **colorize)
plt.axis('equal');
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Figure 5-97. An MDS embedding computed from the pairwise distances

The MDS algorithm recovers one of the possible two-dimensional coordinate repre-
sentations of our data, using only the N x N distance matrix describing the relation-
ship between the data points.

MDS as Manifold Learning

The usefulness of this becomes more apparent when we consider the fact that dis-
tance matrices can be computed from data in any dimension. So, for example, instead
of simply rotating the data in the two-dimensional plane, we can project it into three
dimensions using the following function (essentially a three-dimensional generaliza-
tion of the rotation matrix used earlier):

In[9]: def random_projection(X, dimension=3, rseed=42):
assert dimension >= X.shape[1]
rng = np.random.RandomState(rseed)
C = rng.randn(dimension, dimension)
e, V = np.linalg.eigh(np.dot(C, C.T))
return np.dot(X, V[:X.shape[1]])

X3 = random_projection(X, 3)
X3.shape

out[9]: (1000, 3)
Let’s visualize these points to see what we're working with (Figure 5-98):

In[10]: from mpl_toolkits import mplot3d
ax = plt.axes(projection='3d")
ax.scatter3D(X3[:, 0], X3[:, 1], X3[:, 2],
**colorize)
ax.view_init(azim=70, elev=50)
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Figure 5-98. Data embedded linearly into three dimensions

We can now ask the MDS estimator to input this three-dimensional data, compute the
distance matrix, and then determine the optimal two-dimensional embedding for this

distance matrix. The result recovers a representation of the original data
(Figure 5-99):

In[11]: model = MDS(n_components=2, random_state=1)
out3 = model.fit_transform(X3)
plt.scatter(out3[:, 0], out3[:, 1], **colorize)
plt.axis('equal');
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Figure 5-99. The MDS embedding of the three-dimensional data recovers the input up to
a rotation and reflection

This is essentially the goal of a manifold learning estimator: given high-dimensional
embedded data, it seeks a low-dimensional representation of the data that preserves
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certain relationships within the data. In the case of MDS, the quantity preserved is the
distance between every pair of points.

Nonlinear Embeddings: Where MDS Fails

Our discussion so far has considered linear embeddings, which essentially consist of
rotations, translations, and scalings of data into higher-dimensional spaces. Where
MDS breaks down is when the embedding is nonlinear—that is, when it goes beyond
this simple set of operations. Consider the following embedding, which takes the
input and contorts it into an “S” shape in three dimensions:

In[12]: def make_hello_s_curve(X):

t = (X[:, 0] - 2) * 0.75 * np.pi
x = np.sin(t)
y = X[:, 1]

z = np.sign(t) * (np.cos(t) - 1)
return np.vstack((x, y, z)).T

XS = make_hello_s_curve(X)

This is again three-dimensional data, but we can see that the embedding is much
more complicated (Figure 5-100):

In[13]: from import mplot3d
ax = plt.axes(projection='3d")
ax.scatter3D(XS[:, 0], XS[:, 11, XS[:, 2],
**colorize);

Figure 5-100. Data embedded nonlinearly into three dimensions

The fundamental relationships between the data points are still there, but this time
the data has been transformed in a nonlinear way: it has been wrapped up into the
shape of an “S”
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If we try a simple MDS algorithm on this data, it is not able to “unwrap” this nonlin-
ear embedding, and we lose track of the fundamental relationships in the embedded
manifold (Figure 5-101):

In[14]: from import MDS
model = MDS(n_components=2, random_state=2)
outS = model.fit_transform(XS)
plt.scatter(outS[:, 0], outS[:, 1], **colorize)
plt.axis('equal');
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Figure 5-101. The MDS algorithm applied to the nonlinear data; it fails to recover the
underlying structure

The best two-dimensional linear embedding does not unwrap the S-curve, but
instead throws out the original y-axis.

Nonlinear Manifolds: Locally Linear Embedding

How can we move forward here? Stepping back, we can see that the source of the
problem is that MDS tries to preserve distances between faraway points when con-
structing the embedding. But what if we instead modified the algorithm such that it
only preserves distances between nearby points? The resulting embedding would be
closer to what we want.

Visually, we can think of it as illustrated in Figure 5-102.
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Figure 5-102. Representation of linkages between points within MDS and LLE

Here each faint line represents a distance that should be preserved in the embedding.
On the left is a representation of the model used by MDS: it tries to preserve the dis-
tances between each pair of points in the dataset. On the right is a representation of
the model used by a manifold learning algorithm called locally linear embedding
(LLE): rather than preserving all distances, it instead tries to preserve only the distan-
ces between neighboring points: in this case, the nearest 100 neighbors of each point.

Thinking about the left panel, we can see why MDS fails: there is no way to flatten
this data while adequately preserving the length of every line drawn between the two
points. For the right panel, on the other hand, things look a bit more optimistic. We
could imagine unrolling the data in a way that keeps the lengths of the lines approxi-
mately the same. This is precisely what LLE does, through a global optimization of a
cost function reflecting this logic.

LLE comes in a number of flavors; here we will use the modified LLE algorithm to
recover the embedded two-dimensional manifold. In general, modified LLE does bet-
ter than other flavors of the algorithm at recovering well-defined manifolds with very
little distortion (Figure 5-103):

In[15]:

from import LocallylLinearEmbedding

model = LocallyLinearEmbedding(n_neighbors=100, n_components=2, method='modified',
eigen_solver='dense')

out = model.fit_transform(XS)

fig, ax = plt.subplots()
ax.scatter(out[:, 0], out[:, 1], **colorize)
ax.set_ylim(0.15, -0.15);
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Figure 5-103. Locally linear embedding can recover the underlying data from a nonli-
nearly embedded input

The result remains somewhat distorted compared to our original manifold, but cap-
tures the essential relationships in the data!

Some Thoughts on Manifold Methods

Though this story and motivation is compelling, in practice manifold learning tech-
niques tend to be finicky enough that they are rarely used for anything more than
simple qualitative visualization of high-dimensional data.

The following are some of the particular challenges of manifold learning, which all
contrast poorly with PCA:

In manifold learning, there is no good framework for handling missing data. In
contrast, there are straightforward iterative approaches for missing data in PCA.

In manifold learning, the presence of noise in the data can “short-circuit” the
manifold and drastically change the embedding. In contrast, PCA naturally filters
noise from the most important components.

The manifold embedding result is generally highly dependent on the number of
neighbors chosen, and there is generally no solid quantitative way to choose an
optimal number of neighbors. In contrast, PCA does not involve such a choice.

In manifold learning, the globally optimal number of output dimensions is diffi-
cult to determine. In contrast, PCA lets you find the output dimension based on
the explained variance.

In manifold learning, the meaning of the embedded dimensions is not always
clear. In PCA, the principal components have a very clear meaning.

In-Depth: Manifold Learning | 455



+ In manifold learning the computational expense of manifold methods scales as
O[N?] or O[N?]. For PCA, there exist randomized approaches that are generally
much faster (though see the megaman package for some more scalable imple-
mentations of manifold learning).

With all that on the table, the only clear advantage of manifold learning methods over
PCA is their ability to preserve nonlinear relationships in the data; for that reason I
tend to explore data with manifold methods only after first exploring them with PCA.

Scikit-Learn implements several common variants of manifold learning beyond Iso-
map and LLE: the Scikit-Learn documentation has a nice discussion and comparison
of them. Based on my own experience, I would give the following recommendations:

o For toy problems such as the S-curve we saw before, locally linear embedding
(LLE) and its variants (especially modified LLE), perform very well. This is imple-
mented in sklearn.manifold.LocallyLinearEmbedding.

o For high-dimensional data from real-world sources, LLE often produces poor
results, and isometric mapping (Isomap) seems to generally lead to more mean-
ingful embeddings. This is implemented in sklearn.manifold. Isomap.

o For data that is highly clustered, t-distributed stochastic neighbor embedding (t-
SNE) seems to work very well, though can be very slow compared to other meth-
ods. This is implemented in sklearn.manifold.TSNE.

If you're interested in getting a feel for how these work, I'd suggest running each of
the methods on the data in this section.

Example: Isomap on Faces

One place manifold learning is often used is in understanding the relationship
between high-dimensional data points. A common case of high-dimensional data is
images; for example, a set of images with 1,000 pixels each can be thought of as col-
lection of points in 1,000 dimensions—the brightness of each pixel in each image
defines the coordinate in that dimension.

Here let’s apply Isomap on some faces data. We will use the Labeled Faces in the Wild
dataset, which we previously saw in “In-Depth: Support Vector Machines” on page
405 and “In Depth: Principal Component Analysis” on page 433. Running this com-
mand will download the data and cache it in your home directory for later use:

In[16]: from import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=30)
faces.data.shape

Out[16]: (2370, 2914)
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We have 2,370 images, each with 2,914 pixels. In other words, the images can be
thought of as data points in a 2,914-dimensional space!

Lets quickly visualize several of these images to see what were working with
(Figure 5-104):

In[17]: fig, ax = plt.subplots(4, 8, subplot_kw=dict(xticks=[], yticks=[]))
for 1, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='gray')
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Figure 5-104. Examples of the input faces

We would like to plot a low-dimensional embedding of the 2,914-dimensional data to
learn the fundamental relationships between the images. One useful way to start is to
compute a PCA, and examine the explained variance ratio, which will give us an idea
of how many linear features are required to describe the data (Figure 5-105):

In[18]: from sklearn.decomposition import RandomizedPCA
model = RandomizedPCA(100).fit(faces.data)
plt.plot(np.cumsum(model.explained_variance_ratio_))
plt.xlabel('n components')
plt.ylabel('cumulative variance');

We see that for this data, nearly 100 components are required to preserve 90% of the
variance. This tells us that the data is intrinsically very high dimensional—it can’t be
described linearly with just a few components.
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Figure 5-105. Cumulative variance from the PCA projection

When this is the case, nonlinear manifold embeddings like LLE and Isomap can be
helpful. We can compute an Isomap embedding on these faces using the same pattern
shown before:

In[19]: from sklearn.manifold import Isomap
model = Isomap(n_components=2)
proj = model.fit_transform(faces.data)
proj.shape

out[19]: (2370, 2)

The output is a two-dimensional projection of all the input images. To get a better
idea of what the projection tells us, let’s define a function that will output image
thumbnails at the locations of the projections:

In[20]: from matplotlib import offsetbox

def plot_components(data, model, images=None, ax=None,
thumb_frac=0.05, cmap="gray'):
ax = ax or plt.gca()

proj = model.fit_transform(data)
ax.plot(proj[:, 01, proj[:, 1], '.k")

if images is not None:
min_dist_2 = (thumb_frac * max(proj.max(0) - proj.min(0))) ** 2
shown_images = np.array([2 * proj.max(0)])
for 1 in range(data.shape[0]):
dist = np.sum((proj[i] - shown_images) ** 2, 1)
if np.min(dist) < min_dist_2:
# don't show points that are too close
continue
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shown_images = np.vstack([shown_images, proj[i]])
imagebox = offsetbox.AnnotationBbox(
offsetbox.0ffsetImage(images[i], cmap=cmap),
proj[il)
ax.add_artist(imagebox)

Calling this function now, we see the result (Figure 5-106):

In[21]: fig, ax = plt.subplots(figsize=(10, 10))
plot_components(faces.data,
model=Isomap(n_components=2),
images=faces.images[:, ::2, ::2])
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Figure 5-106. Isomap embedding of the faces data

The result is interesting: the first two Isomap dimensions seem to describe global
image features: the overall darkness or lightness of the image from left to right, and
the general orientation of the face from bottom to top. This gives us a nice visual
indication of some of the fundamental features in our data.
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We could then go on to classify this data, perhaps using manifold features as inputs to
the classification algorithm as we did in “In-Depth: Support Vector Machines” on
page 405.

Example: Visualizing Structure in Digits

As another example of using manifold learning for visualization, let’s take a look at
the MNIST handwritten digits set. This data is similar to the digits we saw in “In-
Depth: Decision Trees and Random Forests” on page 421, but with many more pixels
per image. It can be downloaded from http://mldata.org/ with the Scikit-Learn utility:

In[22]: from import fetch_mldata
mnist = fetch_mldata('MNIST original')
mnist.data.shape

Out[22]: (70000, 784)

This consists of 70,000 images, each with 784 pixels (i.e., the images are 28x28). As
before, we can take a look at the first few images (Figure 5-107):

In[23]: fig, ax = plt.subplots(6, 8, subplot_kw=dict(xticks=[], yticks=[]))
for 1, axi in enumerate(ax.flat):
axi.imshow(mnist.data[1250 * i].reshape(28, 28), cmap='gray_r')
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Figure 5-107. Examples of the MNIST digits

This gives us an idea of the variety of handwriting styles in the dataset.

Lets compute a manifold learning projection across the data, illustrated in
Figure 5-108. For speed here, we'll only use 1/30 of the data, which is about ~2,000
points (because of the relatively poor scaling of manifold learning, I find that a few
thousand samples is a good number to start with for relatively quick exploration
before moving to a full calculation):
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In[24]:

# use only 1/30 of the data: full dataset takes a long time!
data = mnist.data[::30]

target = mnist.target[::30]

model = Isomap(n_components=2)

proj = model.fit_transform(data)

plt.scatter(proj[:, 0], proj[:, 1], c=target, cmap=plt.cm.get_cmap('jet', 10))
plt.colorbar(ticks=range(10))

plt.clim(-0.5, 9.5);
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Figure 5-108. Isomap embedding of the MNIST digit data

The resulting scatter plot shows some of the relationships between the data points,
but is a bit crowded. We can gain more insight by looking at just a single number at a
time (Figure 5-109):

In[25]: from sklearn.manifold import Isomap

# Choose 1/4 of the "1" digits to project
data = mnist.data[mnist.target == 1][::4]

fig, ax = plt.subplots(figsize=(10, 10))

model = Isomap(n_neighbors=5, n_components=2, eigen_solver='dense')

plot_components(data, model, images=data.reshape((-1, 28, 28)),
ax=ax, thumb_frac=0.05, cmap="gray_r')
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Figure 5-109. Isomap embedding of only the 1s within the digits data

The result gives you an idea of the variety of forms that the number “1” can take
within the dataset. The data lies along a broad curve in the projected space, which
appears to trace the orientation of the digit. As you move up the plot, you find ones
that have hats and/or bases, though these are very sparse within the dataset. The pro-
jection lets us identify outliers that have data issues (i.e., pieces of the neighboring
digits that snuck into the extracted images).

Now, this in itself may not be useful for the task of classifying digits, but it does help
us get an understanding of the data, and may give us ideas about how to move for-
ward, such as how we might want to preprocess the data before building a classifica-
tion pipeline.

In Depth: k-Means Clustering

In the previous few sections, we have explored one category of unsupervised machine
learning models: dimensionality reduction. Here we will move on to another class of
unsupervised machine learning models: clustering algorithms. Clustering algorithms
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seek to learn, from the properties of the data, an optimal division or discrete labeling
of groups of points.

Many clustering algorithms are available in Scikit-Learn and elsewhere, but perhaps
the simplest to understand is an algorithm known as k-means clustering, which is
implemented in sklearn.cluster.KMeans. We begin with the standard imports:

In[1]: %matplotlib inline

import as
import as ; sns.set() # for plot styling
import as

Introducing k-Means

The k-means algorithm searches for a predetermined number of clusters within an
unlabeled multidimensional dataset. It accomplishes this using a simple conception of
what the optimal clustering looks like:

o The “cluster center” is the arithmetic mean of all the points belonging to the
cluster.

« Each point is closer to its own cluster center than to other cluster centers.

Those two assumptions are the basis of the k-means model. We will soon dive into
exactly how the algorithm reaches this solution, but for now let’s take a look at a sim-
ple dataset and see the k-means result.

First, let's generate a two-dimensional dataset containing four distinct blobs. To
emphasize that this is an unsupervised algorithm, we will leave the labels out of the
visualization (Figure 5-110):

In[2]: from import make_blobs
X, y_true = make_blobs(n_samples=300, centers=4,
cluster_std=0.60, random_state=0)
plt.scatter(X[:, 0], X[:, 1], s=50);

By eye, it is relatively easy to pick out the four clusters. The k-means algorithm does
this automatically, and in Scikit-Learn uses the typical estimator API:

In[3]: from import KMeans
kmeans = KMeans(n_clusters=4)
kmeans. fit(X)
y_kmeans = kmeans.predict(X)
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Figure 5-110. Data for demonstration of clustering
Let’s visualize the results by plotting the data colored by these labels. We will also plot
the cluster centers as determined by the k-means estimator (Figure 5-111):

In[4]: plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);

10

Figure 5-111. k-means cluster centers with clusters indicated by color

The good news is that the k-means algorithm (at least in this simple case) assigns the
points to clusters very similarly to how we might assign them by eye. But you might
wonder how this algorithm finds these clusters so quickly! After all, the number of
possible combinations of cluster assignments is exponential in the number of data
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points—an exhaustive search would be very, very costly. Fortunately for us, such an
exhaustive search is not necessary; instead, the typical approach to k-means involves
an intuitive iterative approach known as expectation-maximization.

k-Means Algorithm: Expectation—Maximization

Expectation-maximization (E-M) is a powerful algorithm that comes up in a variety
of contexts within data science. k-means is a particularly simple and easy-to-
understand application of the algorithm, and we will walk through it briefly here. In
short, the expectation-maximization approach consists of the following procedure:

1. Guess some cluster centers
2. Repeat until converged
a. E-Step: assign points to the nearest cluster center

b. M-Step: set the cluster centers to the mean

Here the “E-step” or “Expectation step” is so named because it involves updating our
expectation of which cluster each point belongs to. The “M-step” or “Maximization
step” is so named because it involves maximizing some fitness function that defines
the location of the cluster centers—in this case, that maximization is accomplished by
taking a simple mean of the data in each cluster.

The literature about this algorithm is vast, but can be summarized as follows: under
typical circumstances, each repetition of the E-step and M-step will always result in a
better estimate of the cluster characteristics.

We can visualize the algorithm as shown in Figure 5-112.

For the particular initialization shown here, the clusters converge in just three itera-
tions. For an interactive version of this figure, refer to the code in the online appen-
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Figure 5-112. Visualization of the E-M algorithm for k-means

The k-means algorithm is simple enough that we can write it in a few lines of code.
The following is a very basic implementation (Figure 5-113):
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In[5]: from sklearn.metrics import pairwise_distances_argmin

def find_clusters(X, n_clusters, rseed=2):
# 1. Randomly choose clusters
rng = np.random.RandomState(rseed)
i1 = rng.permutation(X.shape[0])[:n_clusters]
centers = X[1]

while True:
# 2a. Assign labels based on closest center
labels = pairwise_distances_argmin(X, centers)

# 2b. Find new centers from means of points
new_centers = np.array([X[labels == i1].mean(0)
for 1 in range(n_clusters)])

# 2c. Check for convergence

if np.all(centers == new_centers):
break

centers = new_centers

return centers, labels
centers, labels = find_clusters(X, 4)

plt.scatter(X[:, 0], X[:, 1], c=labels,
s=50, cmap='viridis');
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Figure 5-113. Data labeled with k-means

Most well-tested implementations will do a bit more than this under the hood, but
the preceding function gives the gist of the expectation-maximization approach.
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(aveats of expectation—maximization

There are a few issues to be aware of when using the expectation-maximization
algorithm.

The globally optimal result may not be achieved
First, although the E-M procedure is guaranteed to improve the result in each
step, there is no assurance that it will lead to the global best solution. For exam-
ple, if we use a different random seed in our simple procedure, the particular
starting guesses lead to poor results (Figure 5-114):

In[6]: centers, labels = find_clusters(X, 4, rseed=0)
plt.scatter(X[:, 0], X[:, 1], c=labels,
s=50, cmap="viridis');
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Figure 5-114. An example of poor convergence in k-means

Here the E-M approach has converged, but has not converged to a globally opti-
mal configuration. For this reason, it is common for the algorithm to be run for
multiple starting guesses, as indeed Scikit-Learn does by default (set by the
n_init parameter, which defaults to 10).

The number of clusters must be selected beforehand
Another common challenge with k-means is that you must tell it how many clus-
ters you expect: it cannot learn the number of clusters from the data. For exam-
ple, if we ask the algorithm to identify six clusters, it will happily proceed and
find the best six clusters (Figure 5-115):

In[7]: labels = KMeans(6, random_state=0).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,
s=50, cmap="viridis');
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Figure 5-115. An example where the number of clusters is chosen poorly

Whether the result is meaningful is a question that is difficult to answer defini-
tively; one approach that is rather intuitive, but that we won’t discuss further
here, is called silhouette analysis.

Alternatively, you might use a more complicated clustering algorithm which has
a better quantitative measure of the fitness per number of clusters (e.g., Gaussian
mixture models; see “In Depth: Gaussian Mixture Models” on page 476) or which
can choose a suitable number of clusters (e.g., DBSCAN, mean-shift, or affinity
propagation, all available in the sklearn.cluster submodule).

k-means is limited to linear cluster boundaries

The fundamental model assumptions of k-means (points will be closer to their
own cluster center than to others) means that the algorithm will often be ineffec-
tive if the clusters have complicated geometries.

In particular, the boundaries between k-means clusters will always be linear,
which means that it will fail for more complicated boundaries. Consider the fol-
lowing data, along with the cluster labels found by the typical k-means approach
(Figure 5-116):

In[8]: from import make_moons
X, y = make_moons(200, noise=.05, random_state=0)

In[9]: labels = KMeans(2, random_state=0).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,
s=50, cmap='viridis');
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Figure 5-116. Failure of k-means with nonlinear boundaries

This situation is reminiscent of the discussion in “In-Depth: Support Vector
Machines” on page 405, where we used a kernel transformation to project the
data into a higher dimension where a linear separation is possible. We might
imagine using the same trick to allow k-means to discover nonlinear boundaries.

One version of this kernelized k-means is implemented in Scikit-Learn within the
SpectralClustering estimator. It uses the graph of nearest neighbors to com-
pute a higher-dimensional representation of the data, and then assigns labels
using a k-means algorithm (Figure 5-117):

In[10]: from import SpectralClustering
model = SpectralClustering(n_clusters=2,
affinity="nearest_neighbors',
assign_labels="kmeans")
labels = model.fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,
s=50, cmap='viridis');

We see that with this kernel transform approach, the kernelized k-means is able
to find the more complicated nonlinear boundaries between clusters.
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Figure 5-117. Nonlinear boundaries learned by SpectralClustering

k-means can be slow for large numbers of samples

Because each iteration of k-means must access every point in the dataset, the
algorithm can be relatively slow as the number of samples grows. You might
wonder if this requirement to use all data at each iteration can be relaxed; for
example, you might just use a subset of the data to update the cluster centers at
each step. This is the idea behind batch-based k-means algorithms, one form of
which is implemented in sklearn.cluster.MiniBatchKMeans. The interface for
this is the same as for standard KMeans; we will see an example of its use as we
continue our discussion.

Examples

Being careful about these limitations of the algorithm, we can use k-means to our
advantage in a wide variety of situations. We’ll now take a look at a couple examples.

Example 1: k-Means on digits

To start, let’s take a look at applying k-means on the same simple digits data that we
saw in “In-Depth: Decision Trees and Random Forests” on page 421 and “In Depth:
Principal Component Analysis” on page 433. Here we will attempt to use k-means to
try to identify similar digits without using the original label information; this might be
similar to a first step in extracting meaning from a new dataset about which you don’t
have any a priori label information.

We will start by loading the digits and then finding the KMeans clusters. Recall that the
digits consist of 1,797 samples with 64 features, where each of the 64 features is the
brightness of one pixel in an 8x8 image:
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In[11]: from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape

out[11]: (1797, 64)
The clustering can be performed as we did before:

In[12]: kmeans = KMeans(n_clusters=10, random_state=0)
clusters = kmeans.fit_predict(digits.data)
kmeans.cluster_centers_.shape

Out[12]: (10, 64)
The result is 10 clusters in 64 dimensions. Notice that the cluster centers themselves
are 64-dimensional points, and can themselves be interpreted as the “typical” digit
within the cluster. Let’s see what these cluster centers look like (Figure 5-118):
In[13]: fig, ax = plt.subplots(2, 5, figsize=(8, 3))
centers = kmeans.cluster_centers_.reshape(10, 8, 8)
for axi, center in zip(ax.flat, centers):

axi.set(xticks=[], yticks=[])
axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary)
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Figure 5-118. Cluster centers learned by k-means
We see that even without the labels, KMeans is able to find clusters whose centers are

recognizable digits, with perhaps the exception of 1 and 8.

Because k-means knows nothing about the identity of the cluster, the 0-9 labels may
be permuted. We can fix this by matching each learned cluster label with the true
labels found in them:

In[14]: from scipy.stats import mode

labels = np.zeros_like(clusters)
for 1 in range(10):
mask = (clusters == 1)
labels[mask] = mode(digits.target[mask])[0]

Now we can check how accurate our unsupervised clustering was in finding similar
digits within the data:
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In[15]: from sklearn.metrics import accuracy_score
accuracy_score(digits.target, labels)

Out[15]: 0.79354479688369506

With just a simple k-means algorithm, we discovered the correct grouping for 80% of
the input digits! Let’s check the confusion matrix for this (Figure 5-119):

In[16]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(digits.target, labels)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=digits.target_names,
yticklabels=digits.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label');

predicted label

true label

Figure 5-119. Confusion matrix for the k-means classifier

As we might expect from the cluster centers we visualized before, the main point of
confusion is between the eights and ones. But this still shows that using k-means, we
can essentially build a digit classifier without reference to any known labels!

Just for fun, let’s try to push this even further. We can use the t-distributed stochastic
neighbor embedding (t-SNE) algorithm (mentioned in “In-Depth: Manifold Learn-
ing” on page 445) to preprocess the data before performing k-means. t-SNE is a non-
linear embedding algorithm that is particularly adept at preserving points within
clusters. Let’s see how it does:

In[17]: from sklearn.manifold import TSNE

# Project the data: this step will take several seconds
tsne = TSNE(n_components=2, init='pca', random_state=0)
digits_proj = tsne.fit_transform(digits.data)
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# Compute the clusters
kmeans = KMeans(n_clusters=10, random_state=0)
clusters = kmeans.fit_predict(digits_proj)

# Permute the labels
labels = np.zeros_like(clusters)
for 1 in range(10):
mask = (clusters == 1)
labels[mask] = mode(digits.target[mask])[0]

# Compute the accuracy
accuracy_score(digits.target, labels)

Out[17]: 0.93356149137451305

That's nearly 94% classification accuracy without using the labels. This is the power of
unsupervised learning when used carefully: it can extract information from the data-
set that it might be difficult to do by hand or by eye.

Example 2: k-means for color compression

One interesting application of clustering is in color compression within images. For
example, imagine you have an image with millions of colors. In most images, a large
number of the colors will be unused, and many of the pixels in the image will have
similar or even identical colors.

For example, consider the image shown in Figure 5-120, which is from Scikit-Learn’s
datasets module (for this to work, you’ll have to have the pillow Python package
installed):

In[18]: # Note: this requires the pillow package to be installed
from import load_sample_1image
china = load_sample_image("china.jpg")
ax = plt.axes(xticks=[], yticks=[])
ax.imshow(china);

The image itself is stored in a three-dimensional array of size (height, width, RGB),
containing red/blue/green contributions as integers from 0 to 255:

In[19]: china.shape
Out[19]: (427, 640, 3)
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Figure 5-120. The input image

One way we can view this set of pixels is as a cloud of points in a three-dimensional
color space. We will reshape the data to [n_samples x n_features], and rescale the
colors so that they lie between 0 and 1:

In[20]: data = china / 255.0 # use 0...1 scale
data = data.reshape(427 * 640, 3)
data.shape

Out[20]: (273280, 3)

We can visualize these pixels in this color space, using a subset of 10,000 pixels for
efficiency (Figure 5-121):

In[21]: def plot_pixels(data, title, colors=None, N=10000):
if colors is None:
colors = data

# choose a random subset

rng = np.random.RandomState(0)

i = rng.permutation(data.shape[0])[:N]
colors = colors[i]

R, G, B = data[i].T

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
ax[0].scatter(R, G, color=colors, marker='.")

ax[0].set(xlabel="'Red', ylabel='Green', xlim=(0, 1), ylim=(0, 1))

ax[1].scatter(R, B, color=colors, marker='.")
ax[1].set(xlabel="'Red', ylabel='Blue', xlim=(0, 1), ylim=(0, 1))

fig.suptitle(title, size=20);

In[22]: plot_pixels(data, title='Input color space: 16 million possible colors')
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Input color space: 16 million possible colors
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Figure 5-121. The distribution of the pixels in RGB color space

Now let’s reduce these 16 million colors to just 16 colors, using a k-means clustering
across the pixel space. Because we are dealing with a very large dataset, we will use
the mini batch k-means, which operates on subsets of the data to compute the result
much more quickly than the standard k-means algorithm (Figure 5-122):

In[23]: from sklearn.cluster import MiniBatchKMeans
kmeans = MiniBatchKMeans(16)
kmeans.fit(data)
new_colors = kmeans.cluster_centers_[kmeans.predict(data)]

plot_pixels(data, colors=new_colors,
title="Reduced color space: 16 colors")

Reduced color space: 16 colors
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Figure 5-122. 16 clusters in RGB color space
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The result is a recoloring of the original pixels, where each pixel is assigned the color
of its closest cluster center. Plotting these new colors in the image space rather than
the pixel space shows us the effect of this (Figure 5-123):

In[24]:
china_recolored = new_colors.reshape(china.shape)

fig, ax = plt.subplots(il, 2, figsize=(16, 6),
subplot_kw=dict(xticks=[], yticks=[]))

fig.subplots_adjust(wspace=0.05)

ax[0].imshow(china)

ax[0].set_title('Original Image', size=16)

ax[1].imshow(china_recolored)

ax[1].set_title('16-color Image', size=16);

Onginal Image 16-calor Image

Figure 5-123. A comparison of the full-color image (left) and the 16-color image (right)

Some detail is certainly lost in the rightmost panel, but the overall image is still easily
recognizable. This image on the right achieves a compression factor of around 1 mil-
lion! While this is an interesting application of k-means, there are certainly better way
to compress information in images. But the example shows the power of thinking
outside of the box with unsupervised methods like k-means.

In Depth: Gaussian Mixture Models

The k-means clustering model explored in the previous section is simple and rela-
tively easy to understand, but its simplicity leads to practical challenges in its applica-
tion. In particular, the nonprobabilistic nature of k-means and its use of simple
distance-from-cluster-center to assign cluster membership leads to poor performance
for many real-world situations. In this section we will take a look at Gaussian mixture
models, which can be viewed as an extension of the ideas behind k-means, but can
also be a powerful tool for estimation beyond simple clustering. We begin with the
standard imports:
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In[1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

Motivating GMM: Weaknesses of k-Means

Let’s take a look at some of the weaknesses of k-means and think about how we might
improve the cluster model. As we saw in the previous section, given simple, well-
separated data, k-means finds suitable clustering results.

For example, if we have simple blobs of data, the k-means algorithm can quickly label
those clusters in a way that closely matches what we might do by eye (Figure 5-124):

In[2]: # Generate some data
from sklearn.datasets.samples_generator import make_blobs
X, y_true = make_blobs(n_samples=400, centers=4,
cluster_std=0.60, random_state=0)
X = X[:, ::-1] # flip axes for better plotting

In[3]: # Plot the data with k-means labels
from sklearn.cluster import KMeans
kmeans = KMeans(4, random_state=0)
labels = kmeans.fit(X).predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');
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Figure 5-124. k-means labels for simple data

From an intuitive standpoint, we might expect that the clustering assignment for
some points is more certain than others; for example, there appears to be a very slight
overlap between the two middle clusters, such that we might not have complete confi-
dence in the cluster assignment of points between them. Unfortunately, the k-means
model has no intrinsic measure of probability or uncertainty of cluster assignments
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(although it may be possible to use a bootstrap approach to estimate this uncertainty).
For this, we must think about generalizing the model.

One way to think about the k-means model is that it places a circle (or, in higher
dimensions, a hyper-sphere) at the center of each cluster, with a radius defined by the
most distant point in the cluster. This radius acts as a hard cutoff for cluster assign-
ment within the training set: any point outside this circle is not considered a member
of the cluster. We can visualize this cluster model with the following function
(Figure 5-125):

In[4]:
from sklearn.cluster import KMeans
from scipy.spatial.distance import cdist

def plot_kmeans(kmeans, X, n_clusters=4, rseed=0, ax=None):
labels = kmeans.fit_predict(X)

# plot the input data

ax = ax or plt.gca()

ax.axis('equal')

ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2)

# plot the representation of the k-means model
centers = kmeans.cluster_centers_
radiil = [cdist(X[labels == 1], [center]).max()
for 1, center in enumerate(centers)]
for ¢, r in zip(centers, radii):
ax.add_patch(plt.Circle(c, r, fc='#CCCCCC', 1w=3, alpha=0.5, zorder=1))

In[5]: kmeans = KMeans(n_clusters=4, random_state=0)
plot_kmeans(kmeans, X)

Figure 5-125. The circular clusters implied by the k-means model
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An important observation for k-means is that these cluster models must be circular: k-
means has no built-in way of accounting for oblong or elliptical clusters. So, for
example, if we take the same data and transform it, the cluster assignments end up
becoming muddled (Figure 5-126):

In[6]: rng = np.random.RandomState(13)
X_stretched = np.dot(X, rng.randn(2, 2))

kmeans = KMeans(n_clusters=4, random_state=0)
plot_kmeans(kmeans, X_stretched)
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Figure 5-126. Poor performance of k-means for noncircular clusters

By eye, we recognize that these transformed clusters are noncircular, and thus circu-
lar clusters would be a poor fit. Nevertheless, k-means is not flexible enough to
account for this, and tries to force-fit the data into four circular clusters. This results
in a mixing of cluster assignments where the resulting circles overlap: see especially
the bottom right of this plot. One might imagine addressing this particular situation
by preprocessing the data with PCA (see “In Depth: Principal Component Analysis”
on page 433), but in practice there is no guarantee that such a global operation will
circularize the individual data.

These two disadvantages of k-means—its lack of flexibility in cluster shape and lack
of probabilistic cluster assignment—mean that for many datasets (especially low-
dimensional datasets) it may not perform as well as you might hope.

You might imagine addressing these weaknesses by generalizing the k-means model:
for example, you could measure uncertainty in cluster assignment by comparing the
distances of each point to all cluster centers, rather than focusing on just the closest.
You might also imagine allowing the cluster boundaries to be ellipses rather than cir-
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cles, so as to account for noncircular clusters. It turns out these are two essential com-
ponents of a different type of clustering model, Gaussian mixture models.

Generalizing E-M: Gaussian Mixture Models

A Gaussian mixture model (GMM) attempts to find a mixture of multidimensional
Gaussian probability distributions that best model any input dataset. In the simplest
case, GMMs can be used for finding clusters in the same manner as k-means
(Figure 5-127):

In[7]: from import GMM
gmm = GMM(n_components=4).fi1t(X)
labels = gmm.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');
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Figure 5-127. Gaussian mixture model labels for the data

But because GMM contains a probabilistic model under the hood, it is also possible
to find probabilistic cluster assignments—in Scikit-Learn we do this using the pre
dict_proba method. This returns a matrix of size [n_samples, n_clusters] that
measures the probability that any point belongs to the given cluster:

In[8]: probs = gmm.predict_proba(X)
print(probs[:5].round(3))

[[ o. 0. 0.475 0.525]
[ o. 1. 0. 0. ]
[ o. 1. 0. 0. ]
[ o. 0. 0. 1. 1]
[ o. 1. 0 0. 11

We can visualize this uncertainty by, for example, making the size of each point pro-
portional to the certainty of its prediction; looking at Figure 5-128, we can see that it
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is precisely the points at the boundaries between clusters that reflect this uncertainty
of cluster assignment:

In[9]: size = 50 * probs.max(1) ** 2 # square emphasizes differences
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=size);
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Figure 5-128. GMM probablistic labels: probabilities are shown by the size of points

Under the hood, a Gaussian mixture model is very similar to k-means: it uses an
expectation-maximization approach that qualitatively does the following:

1. Choose starting guesses for the location and shape

2. Repeat until converged:
a. E-step: for each point, find weights encoding the probability of membership in
each cluster

b. M-step: for each cluster, update its location, normalization, and shape based
on all data points, making use of the weights

The result of this is that each cluster is associated not with a hard-edged sphere, but
with a smooth Gaussian model. Just as in the k-means expectation-maximization
approach, this algorithm can sometimes miss the globally optimal solution, and thus
in practice multiple random initializations are used.

Let’s create a function that will help us visualize the locations and shapes of the GMM
clusters by drawing ellipses based on the gmm output:

In[10]:
from matplotlib.patches import Ellipse

def draw_ellipse(position, covariance, ax=None, **kwargs):
"""Draw an ellipse with a given position and covariance

o
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ax = ax or plt.gca()

# Convert covariance to principal axes
if covariance.shape == (2, 2):
U, s, Vt = np.linalg.svd(covariance)
angle = np.degrees(np.arctan2(U[1, 0], U[0, 0]))
width, height = 2 * np.sqrt(s)
else:
angle = 0
width, height = 2 * np.sgrt(covariance)

# Draw the ellipse
for nsig in range(1, 4):
ax.add_patch(Ellipse(position, nsig * width, nsig * height,
angle, **kwargs))

def plot_gmm(gmm, X, label=True, ax=None):
ax = ax or plt.gca()
labels = gmm.fit(X).predict(X)
if label:
ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2)
else:
ax.scatter(X[:, 0], X[:, 1], s=40, zorder=2)
ax.axis('equal')

w_factor = 0.2 / gmm.weights_.max()
for pos, covar, w in zip(gmm.means_, gmm.covars_, gmm.weights_):
draw_ellipse(pos, covar, alpha=w * w_factor)
With this in place, we can take a look at what the four-component GMM gives us for
our initial data (Figure 5-129):

In[11]: gmm = GMM(n_components=4, random_state=42)
plot_gmm(gmm, X)

482 | (Chapter5: Machine Learning



-2

-3

Figure 5-129. Representation of the four-component GMM in the presence of circular
clusters

Similarly, we can use the GMM approach to fit our stretched dataset; allowing for a
full covariance, the model will fit even very oblong, stretched-out clusters
(Figure 5-130):

In[12]: gmm = GMM(n_components=4, covariance_type='full', random_state=42)
plot_gmm(gmm, X_stretched)
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Figure 5-130. Representation of the four-component GMM in the presence of noncircu-
lar clusters

This makes clear that GMMs address the two main practical issues with k-means
encountered before.
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Choosing the covariance type

If you look at the details of the preceding fits, you will see that the covariance_type
option was set differently within each. This hyperparameter controls the degrees of
freedom in the shape of each cluster; it is essential to set this carefully for any given
problem. The default is covariance_type="diag", which means that the size of the
cluster along each dimension can be set independently, with the resulting ellipse
constrained to align with the axes. A slightly simpler and faster model is cova
riance_type="spherical", which constrains the shape of the cluster such that all
dimensions are equal. The resulting clustering will have similar characteristics to that
of k-means, though it is not entirely equivalent. A more complicated and computa-
tionally expensive model (especially as the number of dimensions grows) is to use
covariance_type="full", which allows each cluster to be modeled as an ellipse with
arbitrary orientation.

We can see a visual representation of these three choices for a single cluster within
Figure 5-131:

covariance_type="diag” cowvariance_type="spherical” covariance_type="full"

Figure 5-131. Visualization of GMM covariance types

GMM as Density Estimation

Though GMM is often categorized as a clustering algorithm, fundamentally it is an
algorithm for density estimation. That is to say, the result of a GMM fit to some data is
technically not a clustering model, but a generative probabilistic model describing the
distribution of the data.

As an example, consider some data generated from Scikit-Learn’s make_moons func-
tion (visualized in Figure 5-132), which we saw in “In Depth: k-Means Clustering” on
page 462:

In[13]: from import make_moons
Xmoon, ymoon = make_moons(200, noise=.05, random_state=0)
plt.scatter(Xmoon[:, 0], Xmoon[:, 1]);
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Figure 5-132. GMM applied to clusters with nonlinear boundaries

If we try to fit this to a two-component GMM viewed as a clustering model, the
results are not particularly useful (Figure 5-133):

In[14]: gmm2 = GMM(n_components=2, covariance_type='full', random_state=0)
plot_gmm(gmm2, Xmoon)

00

05

Figure 5-133. Two component GMM fit to nonlinear clusters

But if we instead use many more components and ignore the cluster labels, we find a
fit that is much closer to the input data (Figure 5-134):

In[15]: gmm16 = GMM(n_components=16, covariance_type='full', random_state=0)
plot_gmm(gmm16, Xmoon, label=False)
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Figure 5-134. Using many GMM clusters to model the distribution of points

Here the mixture of 16 Gaussians serves not to find separated clusters of data, but
rather to model the overall distribution of the input data. This is a generative model of
the distribution, meaning that the GMM gives us the recipe to generate new random
data distributed similarly to our input. For example, here are 400 new points drawn
from this 16-component GMM fit to our original data (Figure 5-135):

In[16]: Xnew = gmm16.sample(400, random_state=42)
plt.scatter(Xnew[:, 0], Xnew[:, 1]);
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Figure 5-135. New data drawn from the 16-component GMM

GMM is convenient as a flexible means of modeling an arbitrary multidimensional
distribution of data.
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How many components?

The fact that GMM is a generative model gives us a natural means of determining the
optimal number of components for a given dataset. A generative model is inherently
a probability distribution for the dataset, and so we can simply evaluate the likelihood
of the data under the model, using cross-validation to avoid overfitting. Another
means of correcting for overfitting is to adjust the model likelihoods using some ana-
Iytic criterion such as the Akaike information criterion (AIC) or the Bayesian infor-
mation criterion (BIC). Scikit-Learn's GMM estimator actually includes built-in
methods that compute both of these, and so it is very easy to operate on this
approach.

Let’s look at the AIC and BIC as a function as the number of GMM components for
our moon dataset (Figure 5-136):

In[17]: n_components = np.arange(1, 21)
models = [GMM(n, covariance_type='full', random_state=0).fit(Xmoon)
for n in n_components]

plt.plot(n_components, [m.bic(Xmoon) for m in models], label='BIC')
plt.plot(n_components, [m.aic(Xmoon) for m in models], label='AIC'")
plt.legend(loc="best")

plt.xlabel('n_components');
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Figure 5-136. Visualization of AIC and BIC for choosing the number of GMM
components

The optimal number of clusters is the value that minimizes the AIC or BIC, depend-
ing on which approximation we wish to use. The AIC tells us that our choice of 16
components was probably too many: around 8-12 components would have been a
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better choice. As is typical with this sort of problem, the BIC recommends a simpler
model.

Notice the important point: this choice of number of components measures how well
GMM works as a density estimator, not how well it works as a clustering algorithm. I'd
encourage you to think of GMM primarily as a density estimator, and use it for clus-
tering only when warranted within simple datasets.

Example: GMM for Generating New Data

We just saw a simple example of using GMM as a generative model of data in order to
create new samples from the distribution defined by the input data. Here we will run
with this idea and generate new handwritten digits from the standard digits corpus
that we have used before.

To start with, let’s load the digits data using Scikit-Learn’s data tools:

In[18]: from import load_digits
digits = load_digits()
digits.data.shape

Out[18]: (1797, 64)

Next lets plot the first 100 of these to recall exactly what were looking at
(Figure 5-137):

In[19]: def plot_digits(data):
fig, ax = plt.subplots(10, 10, figsize=(8, 8),
subplot_kw=dict(xticks=[], yticks=[]))

fig.subplots_adjust(hspace=0.05, wspace=0.05)

for 1, axi in enumerate(ax.flat):
im = axi.imshow(data[i].reshape(8, 8), cmap='binary")
im.set_clim(0, 16)

plot_digits(digits.data)

We have nearly 1,800 digits in 64 dimensions, and we can build a GMM on top of
these to generate more. GMMs can have difficulty converging in such a high dimen-
sional space, so we will start with an invertible dimensionality reduction algorithm on
the data. Here we will use a straightforward PCA, asking it to preserve 99% of the
variance in the projected data:

In[20]: from import PCA
pca = PCA(0.99, whiten=True)
data = pca.fit_transform(digits.data)
data.shape

Out[20]: (1797, 41)
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Figure 5-137. Handwritten digits input

The result is 41 dimensions, a reduction of nearly 1/3 with almost no information
loss. Given this projected data, let’s use the AIC to get a gauge for the number of
GMM components we should use (Figure 5-138):
In[21]: n_components = np.arange(50, 210, 10)
models = [GMM(n, covariance_type='full', random_state=0)
for n in n_components]

alcs = [model.fit(data).aic(data) for model in models]

plt.plot(n_components, aics);
It appears that around 110 components minimizes the AIC; we will use this model.
Let’s quickly fit this to the data and confirm that it has converged:

In[22]: gmm = GMM(110, covariance_type='full', random_state=0)
gmm. fit(data)
print(gmm.converged_)

True

Now we can draw samples of 100 new points within this 41-dimensional projected
space, using the GMM as a generative model:

In[23]: data_new = gmm.sample(100, random_state=0)
data_new.shape

Out[23]: (100, 41)
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Figure 5-138. AIC curve for choosing the appropriate number of GMM components

Finally, we can use the inverse transform of the PCA object to construct the new dig-
its (Figure 5-139):

In[24]: digits_new = pca.inverse_transform(data_new)
plot_digits(digits_new)
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Figure 5-139. “New” digits randomly drawn from the underlying model of the GMM
estimator
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The results for the most part look like plausible digits from the dataset!

Consider what we've done here: given a sampling of handwritten digits, we have
modeled the distribution of that data in such a way that we can generate brand new
samples of digits from the data: these are “handwritten digits” that do not individu-
ally appear in the original dataset, but rather capture the general features of the input
data as modeled by the mixture model. Such a generative model of digits can prove
very useful as a component of a Bayesian generative classifier, as we shall see in the
next section.

In-Depth: Kernel Density Estimation

In the previous section we covered Gaussian mixture models (GMM), which are a
kind of hybrid between a clustering estimator and a density estimator. Recall that a
density estimator is an algorithm that takes a D-dimensional dataset and produces an
estimate of the D-dimensional probability distribution which that data is drawn from.
The GMM algorithm accomplishes this by representing the density as a weighted
sum of Gaussian distributions. Kernel density estimation (KDE) is in some senses an
algorithm that takes the mixture-of-Gaussians idea to its logical extreme: it uses a
mixture consisting of one Gaussian component per point, resulting in an essentially
nonparametric estimator of density. In this section, we will explore the motivation
and uses of KDE. We begin with the standard imports:

In[1]: %matplotlib inline

import as
import as ; sns.set()
import as

Motivating KDE: Histograms

As already discussed, a density estimator is an algorithm that seeks to model the
probability distribution that generated a dataset. For one-dimensional data, you are
probably already familiar with one simple density estimator: the histogram. A histo-
gram divides the data into discrete bins, counts the number of points that fall in each
bin, and then visualizes the results in an intuitive manner.

For example, let’s create some data that is drawn from two normal distributions:

In[2]: def make_data(N, f=0.3, rseed=1):
rand = np.random.RandomState(rseed)
x = rand.randn(N)
x[int(f * N):] += 5
return x

x = make_data(1000)
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We have previously seen that the standard count-based histogram can be created with
the plt.hist() function. By specifying the normed parameter of the histogram, we
end up with a normalized histogram where the height of the bins does not reflect
counts, but instead reflects probability density (Figure 5-140):

In[3]: hist = plt.hist(x, bins=30, normed=True)
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Figure 5-140. Data drawn from a combination of normal distributions

Notice that for equal binning, this normalization simply changes the scale on the y-

axis, leaving the relative heights essentially the same as in a histogram built from

counts. This normalization is chosen so that the total area under the histogram is

equal to 1, as we can confirm by looking at the output of the histogram function:
In[4]: density, bins, patches = hist

widths = bins[1:] - bins[:-1]
(density * widths).sum()

Out[4]: 1.0

One of the issues with using a histogram as a density estimator is that the choice of
bin size and location can lead to representations that have qualitatively different fea-
tures. For example, if we look at a version of this data with only 20 points, the choice
of how to draw the bins can lead to an entirely different interpretation of the data!
Consider this example (visualized in Figure 5-141):

In[5]: x = make_data(20)
bins = np.linspace(-5, 10, 10)

In[6]: fig, ax = plt.subplots(l, 2, figsize=(12, 4),
sharex=True, sharey=True,
subplot_kw={'x1lim': (-4, 9),
'ylim':(-0.02, 0.3)})
fig.subplots_adjust(wspace=0.05)

492 | Chapter5: Machine Learning



for i1, offset in enumerate([0.0, 0.6]):
ax[1].hist(x, bins=bins + offset, normed=True)
ax[1].plot(x, np.full_like(x, -0.01), '[k',

markeredgewidth=1)
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Figure 5-141. The problem with histograms: the location of bins can affect interpretation

On the left, the histogram makes clear that this is a bimodal distribution. On the
right, we see a unimodal distribution with a long tail. Without seeing the preceding
code, you would probably not guess that these two histograms were built from the
same data. With that in mind, how can you trust the intuition that histograms confer?
And how might we improve on this?

Stepping back, we can think of a histogram as a stack of blocks, where we stack one
block within each bin on top of each point in the dataset. Let’s view this directly
(Figure 5-142):

In[7]: fig, ax = plt.subplots()
bins = np.arange(-3, 8)
ax.plot(x, np.full_like(x, -0.1), '|k',
markeredgewidth=1)
for count, edge in zip(*np.histogram(x, bins)):
for 1 in range(count):
ax.add_patch(plt.Rectangle((edge, 1), 1, 1,
alpha=0.5))
ax.set_xlim(-4, 8)
ax.set_ylim(-0.2, 8)

Out[7]: (-0.2, 8)
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Figure 5-142. Histogram as stack of blocks

The problem with our two binnings stems from the fact that the height of the block
stack often reflects not on the actual density of points nearby, but on coincidences of
how the bins align with the data points. This misalignment between points and their
blocks is a potential cause of the poor histogram results seen here. But what if, instead
of stacking the blocks aligned with the bins, we were to stack the blocks aligned with
the points they represent? If we do this, the blocks won't be aligned, but we can add
their contributions at each location along the x-axis to find the result. Lets try this
(Figure 5-143):
In[8]: x_d = np.linspace(-4, 8, 2000)
density = sum((abs(xi - x_d) < 0.5) for xi in x)

plt.fill_between(x_d, density, alpha=0.5)
plt.plot(x, np.full_like(x, -0.1), '|k', markeredgewidth=1)

plt.axis([-4, 8, -0.2, 8]);
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Figure 5-143. A “histogram” where blocks center on each individual point; this is an
example of a kernel density estimate

The result looks a bit messy, but is a much more robust reflection of the actual data
characteristics than is the standard histogram. Still, the rough edges are not aestheti-
cally pleasing, nor are they reflective of any true properties of the data. In order to
smooth them out, we might decide to replace the blocks at each location with a
smooth function, like a Gaussian. Let’s use a standard normal curve at each point
instead of a block (Figure 5-144):
In[9]: from import norm
x_d = np.linspace(-4, 8, 1000)
density = sum(norm(xi).pdf(x_d) for xi in x)

plt.fill_between(x_d, density, alpha=0.5)
plt.plot(x, np.full_like(x, -0.1), '|k', markeredgewidth=1)

plt.axis([-4, 8, -0.2, 5]);
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Figure 5-144. A kernel density estimate with a Gaussian kernel

This smoothed-out plot, with a Gaussian distribution contributed at the location of
each input point, gives a much more accurate idea of the shape of the data distribu-
tion, and one that has much less variance (i.e., changes much less in response to dif-
ferences in sampling).

These last two plots are examples of kernel density estimation in one dimension: the
first uses a so-called “tophat” kernel and the second uses a Gaussian kernel. We'll now
look at kernel density estimation in more detail.

Kernel Density Estimation in Practice

The free parameters of kernel density estimation are the kernel, which specifies the
shape of the distribution placed at each point, and the kernel bandwidth, which con-
trols the size of the kernel at each point. In practice, there are many kernels you might
use for a kernel density estimation: in particular, the Scikit-Learn KDE implementa-
tion supports one of six kernels, which you can read about in Scikit-Learn’s Density
Estimation documentation.

While there are several versions of kernel density estimation implemented in Python
(notably in the SciPy and StatsModels packages), I prefer to use Scikit-Learn’s version
because of its efficiency and flexibility. It is implemented in the sklearn.neigh
bors.KernelDensity estimator, which handles KDE in multiple dimensions with one
of six kernels and one of a couple dozen distance metrics. Because KDE can be fairly
computationally intensive, the Scikit-Learn estimator uses a tree-based algorithm
under the hood and can trade off computation time for accuracy using the atol
(absolute tolerance) and rtol (relative tolerance) parameters. We can determine the
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kernel bandwidth, which is a free parameter, using Scikit-Learn’s standard cross-
validation tools, as we will soon see.

Let’s first see a simple example of replicating the preceding plot using the Scikit-Learn
KernelDensity estimator (Figure 5-145):

In[10]: from import KernelDensity

# instantiate and fit the KDE model
kde = KernelDensity(bandwidth=1.0, kernel='gaussian')
kde.fit(x[:, Nonel])

# score_samples returns the log of the probability density
logprob = kde.score_samples(x_d[:, None])

plt.fill_between(x_d, np.exp(logprob), alpha=0.5)
plt.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)
plt.ylim(-0.02, 0.22)

Out[10]: (-0.02, 0.22)
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Figure 5-145. A kernel density estimate computed with Scikit-Learn
The result here is normalized such that the area under the curve is equal to 1.

Selecting the bandwidth via cross-validation

The choice of bandwidth within KDE is extremely important to finding a suitable
density estimate, and is the knob that controls the bias—variance trade-off in the esti-
mate of density: too narrow a bandwidth leads to a high-variance estimate (i.e., over-
fitting), where the presence or absence of a single point makes a large difference. Too
wide a bandwidth leads to a high-bias estimate (i.e., underfitting) where the structure
in the data is washed out by the wide kernel.
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There is a long history in statistics of methods to quickly estimate the best bandwidth
based on rather stringent assumptions about the data: if you look up the KDE imple-
mentations in the SciPy and StatsModels packages, for example, you will see imple-
mentations based on some of these rules.

In machine learning contexts, we've seen that such hyperparameter tuning often is
done empirically via a cross-validation approach. With this in mind, the KernelDen
sity estimator in Scikit-Learn is designed such that it can be used directly within
Scikit-Learn’s standard grid search tools. Here we will use GridSearchCV to optimize
the bandwidth for the preceding dataset. Because we are looking at such a small data-
set, we will use leave-one-out cross-validation, which minimizes the reduction in
training set size for each cross-validation trial:

In[11]: from import GridSearchCv
from import LeaveOneOut

bandwidths = 10 ** np.linspace(-1, 1, 100)
grid = GridSearchCV(KernelDensity(kernel='gaussian'),
{'bandwidth': bandwidths},
cv=LeaveOneOut(len(x)))
grid.fit(x[:, None]);
Now we can find the choice of bandwidth that maximizes the score (which in this
case defaults to the log-likelihood):

In[12]: grid.best_params_
Out[12]: {'bandwidth': 1.1233240329780276}

The optimal bandwidth happens to be very close to what we used in the example plot
earlier, where the bandwidth was 1.0 (i.e., the default width of scipy.stats.norm).

Example: KDE on a Sphere

Perhaps the most common use of KDE is in graphically representing distributions of
points. For example, in the Seaborn visualization library (discussed earlier in “Visual-
ization with Seaborn” on page 311), KDE is built in and automatically used to help
visualize points in one and two dimensions.

Here we will look at a slightly more sophisticated use of KDE for visualization of dis-
tributions. We will make use of some geographic data that can be loaded with Scikit-
Learn: the geographic distributions of recorded observations of two South American
mammals, Bradypus variegatus (the brown-throated sloth) and Microryzomys minu-
tus (the forest small rice rat).

With Scikit-Learn, we can fetch this data as follows:

In[13]: from import fetch_species_distributions

data = fetch_species_distributions()
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# Get matrices/arrays of species IDs and locations
latlon = np.vstack([data.train['dd lat'],
data.train['dd long']]).T
species = np.array([d.decode('ascii').startswith('micro')
for d in data.train['species']], dtype='int')

With this data loaded, we can use the Basemap toolkit (mentioned previously in
“Geographic Data with Basemap” on page 298) to plot the observed locations of these
two species on the map of South America (Figure 5-146):

In[14]: from mpl_toolkits.basemap import Basemap
from sklearn.datasets.species_distributions import construct_grids

xgrid, ygrid = construct_grids(data)

# plot coastlines with Basemap

m = Basemap(projection='cyl', resolution='c',
1lcrnrlat=ygrid.min(), urcrnrlat=ygrid.max(),
1lernrlon=xgrid.min(), urcrnrlon=xgrid.max())

.drawmapboundary(fill_color="#DDEEFF')

.fillcontinents(color="#FFEEDD")

.drawcoastlines(color="gray', zorder=2)

.drawcountries(color="gray', zorder=2)

3 3 3 3

# plot locations
m.scatter(latlon[:, 1], latlon[:, 0], zorder=3,
c=species, cmap='rainbow', latlon=True);

Figure 5-146. Location of species in training data

Unfortunately, this doesn't give a very good idea of the density of the species, because
points in the species range may overlap one another. You may not realize it by looking
at this plot, but there are over 1,600 points shown here!
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Let’s use kernel density estimation to show this distribution in a more interpretable
way: as a smooth indication of density on the map. Because the coordinate system
here lies on a spherical surface rather than a flat plane, we will use the haversine
distance metric, which will correctly represent distances on a curved surface.

There is a bit of boilerplate code here (one of the disadvantages of the Basemap tool-
kit), but the meaning of each code block should be clear (Figure 5-147):

In[15]:

# Set up the data grid for the contour plot

X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1])
land_reference = data.coverages[6][::5, ::5]
land_mask = (land_reference > -9999).ravel()

xy = np.vstack([Y.ravel(), X.ravel()]).T

xy = np.radians(xy[land_mask])

# Create two side-by-side plots

fig, ax = plt.subplots(l, 2)

fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05)
species_names = ['Bradypus Variegatus', 'Microryzomys Minutus']
cmaps = ['Purples', 'Reds']

for 1, axi in enumerate(ax):
axi.set_title(species_names[i])

# plot coastlines with Basemap

m = Basemap(projection='cyl', llcrnrlat=Y.min(),
urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c', ax=axi)

.drawmapboundary(fill_color="#DDEEFF')

.drawcoastlines()

m.drawcountries()

3 3

# construct a spherical kernel density estimate of the distribution
kde = KernelDensity(bandwidth=0.03, metric='haversine')
kde.fit(np.radians(latlon[species == 1]))

# evaluate only on the land: -9999 indicates ocean
Z = np.full(land_mask.shape[0], -9999.0)
Z[land_mask] = np.exp(kde.score_samples(xy))

Z = Z.reshape(X.shape)

# plot contours of the density
levels = np.linspace(0, Z.max(), 25)
axi.contourf(X, Y, Z, levels=levels, cmap=cmaps[i])
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Figure 5-147. A kernel density representation of the species distributions

Compared to the simple scatter plot we initially used, this visualization paints a much
clearer picture of the geographical distribution of observations of these two species.

Example: Not-So-Naive Bayes

This example looks at Bayesian generative classification with KDE, and demonstrates
how to use the Scikit-Learn architecture to create a custom estimator.

In “In Depth: Naive Bayes Classification” on page 382, we took a look at naive Baye-
sian classification, in which we created a simple generative model for each class, and
used these models to build a fast classifier. For naive Bayes, the generative model is a
simple axis-aligned Gaussian. With a density estimation algorithm like KDE, we can
remove the “naive” element and perform the same classification with a more sophisti-
cated generative model for each class. It’s still Bayesian classification, but it's no longer
naive.

The general approach for generative classification is this:

1. Split the training data by label.

2. For each set, fit a KDE to obtain a generative model of the data. This allows you
for any observation x and label y to compute a likelihood P(x | y).

3. From the number of examples of each class in the training set, compute the class
prior, P(y).
4. For an unknown point x, the posterior probability for each class is

P(y | x) x P(x | )P(y). The class that maximizes this posterior is the label
assigned to the point.
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The algorithm is straightforward and intuitive to understand; the more difficult piece
is couching it within the Scikit-Learn framework in order to make use of the grid
search and cross-validation architecture.

This is the code that implements the algorithm within the Scikit-Learn framework;
we will step through it following the code block:

In[16]: from sklearn.base import BaseEstimator, ClassifierMixin

class KDEClassifier(BaseEstimator, ClassifierMixin):
"""Bayesian generative classification based on KDE

Parameters

bandwidth : float

the kernel bandwidth within each class

kernel : str

nwnn

def

def

def

def

the kernel name, passed to KernelDensity

__init__(self, bandwidth=1.0, kernel='gaussian'):
self.bandwidth = bandwidth
self.kernel = kernel

fit(self, X, y):
self.classes_ = np.sort(np.unique(y))
training_sets = [X[y == yi] for yi in self.classes_]

self.models_ = [KernelDensity(bandwidth=self.bandwidth,
kernel=self.kernel).fit(X1i)
for Xi in training_sets]
self.logpriors_ = [np.log(Xi.shape[0] / X.shape[0])
for Xi in training_sets]
return self

predict_proba(self, X):
logprobs = np.array([model.score_samples(X)
for model in self.models_]).T
result = np.exp(logprobs + self.logpriors_)
return result / result.sum(1, keepdims=True)

predict(self, X):
return self.classes_[np.argmax(self.predict_proba(X), 1)]

The anatomy of a custom estimator

Let’s step through this code and discuss the essential features:

from sklearn.base import BaseEstimator, ClassifierMixin

class KDEClassifier(BaseEstimator, ClassifierMixin):

mwnn

Bayesian

generative classification based on KDE
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Parameters

bandwidth : float

the kernel bandwidth within each class
kernel : str

the kernel name, passed to KernelDensity

Each estimator in Scikit-Learn is a class, and it is most convenient for this class to
inherit from the BaseEstimator class as well as the appropriate mixin, which pro-
vides standard functionality. For example, among other things, here the BaseEstima
tor contains the logic necessary to clone/copy an estimator for use in a cross-
validation procedure, and ClassifierMixin defines a default score() method used
by such routines. We also provide a docstring, which will be captured by IPython’s
help functionality (see “Help and Documentation in IPython” on page 3).

Next comes the class initialization method:

def __init__(self, bandwidth=1.0, kernel='gaussian'):
self.bandwidth = bandwidth
self.kernel = kernel

This is the actual code executed when the object is instantiated with KDEClassi
fier(). In Scikit-Learn, it is important that initialization contains no operations other
than assigning the passed values by name to self. This is due to the logic contained
in BaseEstimator required for cloning and modifying estimators for cross-
validation, grid search, and other functions. Similarly, all arguments to __init__
should be explicit; that is, *args or **kwargs should be avoided, as they will not be
correctly handled within cross-validation routines.

Next comes the fit() method, where we handle training data:

def fit(self, X, y):
self.classes_ = np.sort(np.unique(y))
training_sets = [X[y == yi] for yi in self.classes_]
self.models_ = [KernelDensity(bandwidth=self.bandwidth,
kernel=self.kernel).fit(X1i)
for X1 in training_sets]
self.logpriors_ = [np.log(Xi.shape[0] / X.shape[0])
for X1 in training_sets]
return self

Here we find the unique classes in the training data, train a KernelDensity model for
each class, and compute the class priors based on the number of input samples.
Finally, fit() should always return self so that we can chain commands. For
example:

label = model.fit(X, y).predict(X)
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Notice that each persistent result of the fit is stored with a trailing underscore (e.g.,
self.logpriors_). This is a convention used in Scikit-Learn so that you can quickly
scan the members of an estimator (using IPython’s tab completion) and see exactly
which members are fit to training data.

Finally, we have the logic for predicting labels on new data:

def predict_proba(self, X):
logprobs = np.vstack([model.score_samples(X)
for model in self.models_]).T
result = np.exp(logprobs + self.logpriors_)
return result / result.sum(1, keepdims=True)

def predict(self, X):
return self.classes_[np.argmax(self.predict_proba(X), 1)]
Because this is a probabilistic classifier, we first implement predict_proba(), which
returns an array of class probabilities of shape [n_samples, n_classes]. Entry [{,
j1 of this array is the posterior probability that sample 1 is a member of class j, com-
puted by multiplying the likelihood by the class prior and normalizing.

Finally, the predict() method uses these probabilities and simply returns the class
with the largest probability.

Using our custom estimator

Let’s try this custom estimator on a problem we have seen before: the classification of
handwritten digits. Here we will load the digits, and compute the cross-validation
score for a range of candidate bandwidths using the GridSearchCV meta-estimator
(refer back to “Hyperparameters and Model Validation” on page 359 for more infor-
mation on this):

In[17]: from import load_digits
from import GridSearchCVv

digits = load_digits()

bandwidths = 10 ** np.linspace(0, 2, 100)
grid = GridSearchCV(KDEClassifier(), {'bandwidth': bandwidths})
grid.fit(digits.data, digits.target)

scores = [val.mean_validation_score for val in grid.grid_scores_]

Next we can plot the cross-validation score as a function of bandwidth
(Figure 5-148):

In[18]: plt.semilogx(bandwidths, scores)
plt.xlabel('bandwidth')
plt.ylabel('accuracy')
plt.title('KDE Model Performance')
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print(grid.best_params_)
print('accuracy =', grid.best_score_ )

{'bandwidth': 7.0548023107186433}
accuracy = 0.966611018364

KDE Model Performance

0g

08

oy

accuracy

0.6

10° 10! 10%
bandwidth

Figure 5-148. Validation curve for the KDE-based Bayesian classifier

We see that this not-so-naive Bayesian classifier reaches a cross-validation accuracy of
just over 96%; this is compared to around 80% for the naive Bayesian classification:

In[19]: from import GaussianNB
from import cross_val_score
cross_val_score(GaussianNB(), digits.data, digits.target).mean()

Out[19]: 0.81860038035501381

One benefit of such a generative classifier is interpretability of results: for each
unknown sample, we not only get a probabilistic classification, but a full model of the
distribution of points we are comparing it to! If desired, this offers an intuitive win-
dow into the reasons for a particular classification that algorithms like SVMs and ran-
dom forests tend to obscure.

If you would like to take this further, there are some improvements that could be
made to our KDE classifier model:

« We could allow the bandwidth in each class to vary independently.

o We could optimize these bandwidths not based on their prediction score, but on
the likelihood of the training data under the generative model within each class
(i.e., use the scores from KernelDensity itself rather than the global prediction
accuracy).

In-Depth: Kernel Density Estimation | 505



Finally, if you want some practice building your own estimator, you might tackle
building a similar Bayesian classifier using Gaussian mixture models instead of KDE.

Application: A Face Detection Pipeline

This chapter has explored a number of the central concepts and algorithms of
machine learning. But moving from these concepts to real-world application can be a
challenge. Real-world datasets are noisy and heterogeneous, may have missing fea-
tures, and may include data in a form that is difficult to map to a clean [n_samples,
n_features] matrix. Before applying any of the methods discussed here, you must
first extract these features from your data; there is no formula for how to do this that
applies across all domains, and thus this is where you as a data scientist must exercise
your own intuition and expertise.

One interesting and compelling application of machine learning is to images, and we
have already seen a few examples of this where pixel-level features are used for classi-
fication. In the real world, data is rarely so uniform and simple pixels will not be suit-
able, a fact that has led to a large literature on feature extraction methods for image
data (see “Feature Engineering” on page 375).

In this section, we will take a look at one such feature extraction technique, the Histo-
gram of Oriented Gradients (HOG), which transforms image pixels into a vector rep-
resentation that is sensitive to broadly informative image features regardless of
confounding factors like illumination. We will use these features to develop a simple
face detection pipeline, using machine learning algorithms and concepts we've seen
throughout this chapter. We begin with the standard imports:

In[1]: %matplotlib inline

import as
import as ; sns.set()
import as

HOG Features

The Histogram of Gradients is a straightforward feature extraction procedure that
was developed in the context of identifying pedestrians within images. HOG involves
the following steps:

1. Optionally prenormalize images. This leads to features that resist dependence on
variations in illumination.

2. Convolve the image with two filters that are sensitive to horizontal and vertical
brightness gradients. These capture edge, contour, and texture information.

3. Subdivide the image into cells of a predetermined size, and compute a histogram
of the gradient orientations within each cell.
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4. Normalize the histograms in each cell by comparing to the block of neighboring
cells. This further suppresses the effect of illumination across the image.

5. Construct a one-dimensional feature vector from the information in each cell.

A fast HOG extractor is built into the Scikit-Image project, and we can try it out rela-
tively quickly and visualize the oriented gradients within each cell (Figure 5-149):

In[2]: from skimage import data, color, feature
import skimage.data

image = color.rgb2gray(data.chelsea())
hog_vec, hog_vis = feature.hog(image, visualise=True)

fig, ax = plt.subplots(il, 2, figsize=(12, 6),
subplot_kw=dict(xticks=[], yticks=[]))

ax[0].imshow(image, cmap='gray')

ax[0].set_title('input image')

ax[1].imshow(hog_vis)
ax[1].set_title('visualization of HOG features');

input image visualization of HOG features
T

Figure 5-149. Visualization of HOG features computed from an image

HOG in Action: A Simple Face Detector

Using these HOG features, we can build up a simple facial detection algorithm with
any Scikit-Learn estimator; here we will use a linear support vector machine (refer
back to “In-Depth: Support Vector Machines” on page 405 if you need a refresher on
this). The steps are as follows:

1. Obtain a set of image thumbnails of faces to constitute “positive” training
samples.

2. Obtain a set of image thumbnails of nonfaces to constitute “negative” training
samples.

3. Extract HOG features from these training samples.
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4. Train a linear SVM classifier on these samples.

5. For an “unknown” image, pass a sliding window across the image, using the
model to evaluate whether that window contains a face or not.

6. If detections overlap, combine them into a single window.
Let’s go through these steps and try it out:

1. Obtain a set of positive training samples.

Let’s start by finding some positive training samples that show a variety of faces.
We have one easy set of data to work with—the Labeled Faces in the Wild dataset,
which can be downloaded by Scikit-Learn:

In[3]: from import fetch_lfw_people
faces = fetch_lfw_people()
positive_patches = faces.images
positive_patches.shape

Out[3]: (13233, 62, 47)
This gives us a sample of 13,000 face images to use for training.
2. Obtain a set of negative training samples.

Next we need a set of similarly sized thumbnails that do not have a face in them.
One way to do this is to take any corpus of input images, and extract thumbnails
from them at a variety of scales. Here we can use some of the images shipped
with Scikit-Image, along with Scikit-Learn’s PatchExtractor:

In[4]: from import data, transform

imgs_to_use = ['camera', 'text', 'coins', 'moon',
'page', 'clock', 'immunohistochemistry',
'chelsea', 'coffee', 'hubble_deep_field']
images = [color.rgb2gray(getattr(data, name)())
for name in imgs_to_use]

In[5]:
from import PatchExtractor

def extract_patches(img, N, scale=1.0,
patch_size=positive_patches[0].shape):
extracted_patch_size =\
tuple((scale * np.array(patch_size)).astype(int))
extractor = PatchExtractor(patch_size=extracted_patch_size,
max_patches=N, random_state=0)
patches = extractor.transform(img[np.newaxis])
if scale != 1:
patches = np.array([transform.resize(patch, patch_size)
for patch in patches])
return patches
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negative_patches = np.vstack([extract_patches(im, 1000, scale)
for im in images for scale in [0.5, 1.0, 2.0]])
negative_patches.shape

Out[5]: (30000, 62, 47)

We now have 30,000 suitable image patches that do not contain faces. Let’s take a
look at a few of them to get an idea of what they look like (Figure 5-150):
In[6]: fig, ax = plt.subplots(6, 10)
for 1, axi in enumerate(ax.flat):
axi.imshow(negative_patches[500 * 1], cmap='gray')
axi.axis('off")
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Figure 5-150. Negative image patches, which don’t include faces

Our hope is that these would sufficiently cover the space of “nonfaces” that our
algorithm is likely to see.

. Combine sets and extract HOG features.

Now that we have these positive samples and negative samples, we can combine
them and compute HOG features. This step takes a little while, because the HOG
features involve a nontrivial computation for each image:

In[7]: from itertools import chain
X_train = np.array([feature.hog(im)
for im in chain(positive_patches,
negative_patches)])
y_train = np.zeros(X_train.shape[0])
y_train[:positive_patches.shape[0]] = 1

In[8]: X_train.shape
Out[8]: (43233, 1215)
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5.

We are left with 43,000 training samples in 1,215 dimensions, and we now have
our data in a form that we can feed into Scikit-Learn!

. Train a support vector machine.

Next we use the tools we have been exploring in this chapter to create a classifier
of thumbnail patches. For such a high-dimensional binary classification task, a
linear support vector machine is a good choice. We will use Scikit-Learn’s Line
arsSVe, because in comparison to SVC it often has better scaling for large number
of samples.

First, though, let’s use a simple Gaussian naive Bayes to get a quick baseline:

In[9]: from import GaussianNB
from import cross_val_score

cross_val_score(GaussianNB(), X_train, y_train)
Out[9]: array([ 0.9408785 , 0.8752342 , 0.93976823])

We see that on our training data, even a simple naive Bayes algorithm gets us
upward of 90% accuracy. Let’s try the support vector machine, with a grid search
over a few choices of the C parameter:

In[10]: from import LinearSVC
from import GridSearchCV
grid = GridSearchCV(LinearSvC(), {'C': [1.0, 2.0, 4.0, 8.0]})
grid.fit(X_train, y_train)
grid.best_score_

Out[10]: 0.98667684407744083
In[11]: grid.best_params_
Out[11]: {'C': 4.0}
Let’s take the best estimator and retrain it on the full dataset:

In[12]: model = grid.best_estimator_
model.fit(X_train, y_train)

Out[12]: LinearSVC(C=4.0, class_weight=None, dual=True,
fit_intercept=True, intercept_scaling=1,
loss="'squared_hinge', max_iter=1000,
multi_class='ovr', penalty='12",
random_state=None, tol=0.0001, verbose=0)

Find faces in a new image.

Now that we have this model in place, let’s grab a new image and see how the
model does. We will use one portion of the astronaut image for simplicity (see
discussion of this in “Caveats and Improvements” on page 512), and run a sliding
window over it and evaluate each patch (Figure 5-151):
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In[13]: test_image = skimage.data.astronaut()
test_image = skimage.color.rgb2gray(test_image)
test_image = skimage.transform.rescale(test_image, 0.5)
test_image = test_image[:160, 40:180]

plt.imshow(test_image, cmap='gray')
plt.axis('off');

Figure 5-151. An image in which we will attempt to locate a face

Next, let’s create a window that iterates over patches of this image, and compute
HOG features for each patch:

In[14]: def sliding_window(img, patch_size=positive_patches[0].shape,
istep=2, jstep=2, scale=1.0):
Ni, Nj = (int(scale * s) for s in patch_size)
for 1 in range(0, img.shape[0] - Ni, istep):
for j in range(0, img.shape[1] - Ni, jstep):
patch = img[i:1 + Ni, j:j + Nj]
if scale != 1:
patch = transform.resize(patch, patch_size)
yield (i, j), patch

indices, patches = zip(*sliding_window(test_image))
patches_hog = np.array([feature.hog(patch) for patch in patches])
patches_hog.shape

Out[14]: (1911, 1215)

Finally, we can take these HOG-featured patches and use our model to evaluate
whether each patch contains a face:

In[15]: labels = model.predict(patches_hog)
labels.sum()
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Out[15]: 33.0

We see that out of nearly 2,000 patches, we have found 30 detections. Let’s use the
information we have about these patches to show where they lie on our test
image, drawing them as rectangles (Figure 5-152):

In[16]: fig, ax = plt.subplots()
ax.imshow(test_image, cmap='gray')
ax.axis('off")

Ni, Nj = positive_patches[0].shape
indices = np.array(indices)

for 1, j in indices[labels == 1]:
ax.add_patch(plt.Rectangle((j, 1), Nj, Ni, edgecolor='red',
alpha=0.3, lw=2,
facecolor="'none'))

Figure 5-152. Windows that were determined to contain a face

All of the detected patches overlap and found the face in the image! Not bad for a
few lines of Python.

Caveats and Improvements

If you dig a bit deeper into the preceding code and examples, you’'ll see that we still
have a bit of work before we can claim a production-ready face detector. There are
several issues with what we've done, and several improvements that could be made. In
particular:
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Our training set, especially for negative features, is not very complete
The central issue is that there are many face-like textures that are not in the train-
ing set, and so our current model is very prone to false positives. You can see this
if you try out the preceding algorithm on the full astronaut image: the current
model leads to many false detections in other regions of the image.

We might imagine addressing this by adding a wider variety of images to the neg-
ative training set, and this would probably yield some improvement. Another
way to address this is to use a more directed approach, such as hard negative min-
ing. In hard negative mining, we take a new set of images that our classifier has
not seen, find all the patches representing false positives, and explicitly add them
as negative instances in the training set before retraining the classifier.

Our current pipeline searches only at one scale
As currently written, our algorithm will miss faces that are not approximately
62x47 pixels. We can straightforwardly address this by using sliding windows of
a variety of sizes, and resizing each patch using skimage.transform.resize
before feeding it into the model. In fact, the sliding_window() utility used here
is already built with this in mind.

We should combine overlapped detection patches
For a production-ready pipeline, we would prefer not to have 30 detections of the
same face, but to somehow reduce overlapping groups of detections down to a
single detection. This could be done via an unsupervised clustering approach
(MeanShift Clustering is one good candidate for this), or via a procedural
approach such as nonmaximum suppression, an algorithm common in machine
vision.

The pipeline should be streamlined
Once we address these issues, it would also be nice to create a more streamlined
pipeline for ingesting training images and predicting sliding-window outputs.
This is where Python as a data science tool really shines: with a bit of work, we
could take our prototype code and package it with a well-designed object-
oriented API that gives the user the ability to use this easily. I will leave this as a
proverbial “exercise for the reader”

More recent advances, such as deep learning, should be considered
Finally, I should add that HOG and other procedural feature extraction methods
for images are no longer state-of-the-art techniques. Instead, many modern
object detection pipelines use variants of deep neural networks. One way to think
of neural networks is that they are an estimator that determines optimal feature
extraction strategies from the data, rather than relying on the intuition of
the user. An intro to these deep neural net methods is conceptually (and compu-
tationally!) beyond the scope of this section, although open tools like Google’s
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TensorFlow have recently made deep learning approaches much more accessible
than they once were. As of the writing of this book, deep learning in Python is
still relatively young, and so I can’t yet point to any definitive resource. That said,
the list of references in the following section should provide a useful place to
start.

Further Machine Learning Resources

This chapter has been a quick tour of machine learning in Python, primarily using
the tools within the Scikit-Learn library. As long as the chapter is, it is still too short
to cover many interesting and important algorithms, approaches, and discussions.
Here I want to suggest some resources for those who would like to learn more about
machine learning.

Machine Learning in Python

To learn more about machine learning in Python, I'd suggest some of the following
resources:

The Scikit-Learn website
The Scikit-Learn website has an impressive breadth of documentation and exam-
ples covering some of the models discussed here, and much, much more. If you
want a brief survey of the most important and often used machine learning algo-
rithms, this website is a good place to start.

SciPy, PyCon, and PyData tutorial videos
Scikit-Learn and other machine learning topics are perennial favorites in the
tutorial tracks of many Python-focused conference series, in particular the
PyCon, SciPy, and PyData conferences. You can find the most recent ones via a
simple web search.

Introduction to Machine Learning with Python
Written by Andreas C. Mueller and Sarah Guido, this book includes a fuller treat-
ment of the topics in this chapter. If you're interested in reviewing the fundamen-
tals of machine learning and pushing the Scikit-Learn toolkit to its limits, this is a
great resource, written by one of the most prolific developers on the Scikit-Learn
team.

Python Machine Learning
Sebastian Raschka’s book focuses less on Scikit-Learn itself, and more on the
breadth of machine learning tools available in Python. In particular, there is
some very useful discussion on how to scale Python-based machine learning
approaches to large and complex datasets.
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General Machine Learning

Of course, machine learning is much broader than just the Python world. There are
many good resources to take your knowledge further, and here I highlight a few that I
have found useful:

Machine Learning
Taught by Andrew Ng (Coursera), this is a very clearly taught, free online course
covering the basics of machine learning from an algorithmic perspective. It
assumes undergraduate-level understanding of mathematics and programming,
and steps through detailed considerations of some of the most important
machine learning algorithms. Homework assignments, which are algorithmically
graded, have you actually implement some of these models yourself.

Pattern Recognition and Machine Learning
Written by Christopher Bishop, this classic technical text covers the concepts of
machine learning discussed in this chapter in detail. If you plan to go further in
this subject, you should have this book on your shelf.

Machine Learning: A Probabilistic Perspective
Written by Kevin Murphy, this is an excellent graduate-level text that explores
nearly all important machine learning algorithms from a ground-up, unified
probabilistic perspective.

These resources are more technical than the material presented in this book, but to
really understand the fundamentals of these methods requires a deep dive into the
mathematics behind them. If youre up for the challenge and ready to bring your data
science to the next level, don’t hesitate to dive in!
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Symbols
%automagic, 19
%cpaste, 11
%debug, 22
%history, 16
%lprun, 28
%lsmagic, 13
%magic, 13
%matplotlib, 219
%memit, 29
%mode, 20-22
%mprun, 29
%paste, 11

%prun, 27

%run, 12

%time, 25-27
%timeit, 12, 25-27
& (ampersand), 77
* (asterisk), 7

: (colon), 44

? (question mark), 3
22 (double question mark), 5
_ (underscore) shortcut, 15
| (operator), 77

A

absolute value function, 54
aggregate() method, 166
aggregates
computed directly from object, 57
multidimensional, 60
summarizing set of values with, 61
aggregation (NumPy), 58-63
minimum and maximum, 59

Index

multidimensional aggregates, 60
presidents average height example, 61
summing the values in an array, 59
various functions, 61
aggregation (Pandas), 158-170
groupby() operation, 161-170
Multilndex, 140
Planets dataset for, 159
simple aggregation, 159-161
Akaike information criterion (AIC), 487, 489
Albers equal-area projection, 303
algorithmic efficiency
big-O notation, 92
dataset size and, 85
ampersand (&), 77
Anaconda, xiv
and keyword, 77
annotation of plots, 268-275
arrows, 272-275
holidays/US births example, 269
transforms and text position, 270-272
APIs (see Estimator API)
append() method, Pandas vs. Python, 146
apply() method, 167
arithmetic operators, 52
arrays
accessing single rows/columns, 45
arithmetic operators, 52
attributes, 42
basics, 42
Boolean, 73-75
broadcasting, 63-69
centering, 68
computation on, 50-58
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concatenation, 48, 142
creating copies, 46
creating from Python lists, 39
creating from scratch, 39
data as, 33
DataFrame object as, 102
DataFrame object constructed from, 105
fixed-type, 38
Index object as immutable array, 106
Index object vs., 106
indexing: accessing single elements, 43
reshaping, 47
Series object vs., 99
slicing, 44
slicing multidimensional subarrays, 45
slicing one-dimensional subarrays, 44
sorting, 85-96
specifying output to, 56
splitting, 49
standard data types, 41
structured, 92-96
subarrays as no-copy views, 46
summing values in, 59
universal functions, 50-58
arrows, 272-275
asfreq() method, 197-199
asterisk (*), 7
automagic function, 19
axes limits, 228-230

B
bagging, 426
bandwidth (see kernel bandwidth)
bar (|) operator, 77
bar plots, 321
Basemap toolkit
geographic data with, 298
(see also geographic data)
installation, 298
basis function regression, 378, 392-396
Gaussian basis functions, 394-396
polynomial basis functions, 393
Bayesian classification, 383, 501-506
(see also naive Bayes classification)
Bayesian information criterion (BIC), 487
Bayesian Methods for Hackers stylesheet, 288
Bayess theorem, 383
bias—variance trade-off
kernel bandwidth and, 497

model selection and, 364-366
bicycle traffic prediction
linear regression, 400
time series, 202-209
big-O notation, 92
binary ufuncs, 52
binnings, 248
bitwise logic operators, 74
bogosort, 86
Bokeh, 330
Boolean arrays
Boolean operators and, 74
counting entries in, 73
working with, 73-75
Boolean masks, 70-78
Boolean arrays as, 75-78
rainfall statistics, 70
working with Boolean arrays, 73-75
Boolean operators, 74
broadcasting, 63-69
adding two-dimensional array to one-
dimensional array, 66
basics, 63-65
centering an array, 68
defined, 58, 63
in practice, 68
plotting two-dimensional function, 69
rules, 65-68
two compatible arrays, 66
two incompatible arrays, 67

C

categorical data, 376
class labels (for data point), 334
classification task
defined, 332
machine learning, 333-335
clustering, 332
basics, 338-339
GMMs, 353, 476-491
k-means, 339, 462-476
code
magic commands for determining execu-
tion time, 12
magic commands for pasting blocks, 11
magic commands for running external, 12
profiling and timing, 25-30
timing of snippets, 25-27
coefficient of determination, 365
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colon (%), 44
color compression, 473-476
colorbars
colormap selection, 256-259
customizing, 255-262
discrete, 260
handwritten digit example, 261-262
colormap, 256-259
column(s)
accessing single, 45
indexing, 163
Multilndex for, 133
sorting arrays along, 87
suffixes keyword and overlapping names,
153
column-wise operations, 211-213
command history shortcuts, 9
comparison operators, 71-73
concatenation
datasets, 141-146
of arrays, 48, 142
with pd.concat(), 142-146
confusion matrix, 357
conic projections, 303
contour plots, 241-245
density and, 241-245
three-dimensional function, 241-245
three-dimensional plot, 292
Conway, Drew, xi
cross-validation, 361-370
cubehelix colormap, 258
cylindrical projections, 301

D

data
as arrays, 33
missing (see missing data)
data representation (Scikit-Learn package),
343-346
data as table, 343
features matrix, 344
target array, 344-345
data science, defining, xi
data types, 34
fixed-type arrays, 38
integers, 35
lists in, 37-41
NumPy, 41
DataFrame object (Pandas), 102-105

as dictionary, 110-112
as generalized NumPy array, 102
as specialized dictionary, 103
as two-dimensional array, 112-114
constructing, 104
data selection in, 110
defined, 97
index alignment in, 117
masking, 114
multiply indexed, 136
operations between Series object and, 118
slicing, 114
DataFrame.eval() method, 211-213
assignment in, 212
local variables in, 213
DataFrame.query() method, 213
datasets
appending, 146
combining (Panda), 141-158
concatenation, 141-146
merging/joining, 146-158
datetime module, 189
datetime64 dtype, 189
dateutil module, 189
debugging, 22-24
decision trees, 421-426
(see also random forests)
creating, 422-425
overfitting, 425
deep learning, 513
density estimator
GMM, 484-488
histogram as, 492
KDE (see kernel density estimation (KDE))
describe() method, 164
development, IPython
profiling and timing code, 25-30
profiling full scripts, 27
timing of code snippets, 25-27
dictionary(-ies)
DataFrame as specialization of, 103
DataFrame object constructed from list of,
104
Pandas Series object vs., 100
digits, recognition of (see optical character rec-
ognition)
dimensionality reduction, 261
machine learning, 340-342
PCA and, 433
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discriminative classification, 405-407
documentation, accessing

IPython, 3-8, 98

Pandas, 98
double question mark (??), 5
dropna() method, 125
dynamic typing, 34

E
eigenfaces, 442-445
ensemble estimator/method, 421
(see also random forests)
ensemble learner, 421
equidistant cylindrical projection, 301
errors, visualizing
basic errorbars, 238
continuous quantities, 239
Matplotlib, 237-240
Estimator API, 346-359
basics, 347
Iris classification example, 351
Iris clustering example, 353
Iris dimensionality example, 352
simple linear regression example, 347-354
eval() function, 210-211
DataFrame.eval() method and, 211-213
pd.eval() function and, 210-211
when to use, 214
exceptions, controlling, 20-22
expectation-maximization (E-M) algorithm
caveats, 467-470
GMM as generalization of, 480-484
k-means clustering and, 465-476
exponentials, 55
external code, magic commands for running,
12

F

face recognition
HOG, 506-514
Isomap, 456-460
PCA, 442-445
SVMs, 416-420

faceted histograms, 318

factor plots, 319

fancy indexing, 78-85
basics, 79
binning data, 83
combined with other indexing schemes, 80

modifying values with, 82
selection of random points, 81

feature engineering, 375-382
categorical features, 376
derived features, 378-380
image features, 378
imputation of missing data, 381
processing pipeline, 381
text features, 377

feature, data point, 334

features matrix, 344

fillna() method, 126

filter() method, 166

FiveThirtyEight stylesheet, 287

fixed-type arrays, 38

G
Gaussian basis functions, 394-396
Gaussian mixture models (GMMs), 476-491
choosing covariance type, 484
clustering with, 353
density estimation algorithm, 484-488
E-M generalization, 480-484
handwritten data generation example,
488-491
k-means weaknesses addressed by, 477-480
KDE and, 491
Gaussian naive Bayes classification, 351, 357,
383-386, 510
Gaussian process regression (GPR), 239
generative models, 383
geographic data, 298
Basemap toolkit for, 298
California city population example, 308
drawing a map background, 304-307
map projections, 300-304
plotting data on maps, 307
surface temperature data example, 309
get() operation, 183
get_dummies() method, 183
ggplot stylesheet, 287
graphics libraries, 330
GroupBy aggregation, 170
GroupBy object, 163-165
aggregate() method, 166
apply() method, 167
column indexing, 163
dispatch methods, 164
filter() method, 166
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iteration over groups, 164
transform() method, 167

groupby() operation (Pandas), 161-170
GroupBy object and, 163-165
grouping example, 169
pivot tables vs., 171
split key specification, 168
split-apply-combine example, 161-163

H

handwritten digits, recognition of (see optical
character recognition)
hard negative mining, 513
help
IPython, 3-8
magic functions, 13
help() function, 4
hexagonal binnings, 248
hierarchical indexing
in one-dimensional Series, 128-141
Multilndex, 128-141, 129-131
(see also MultiIndex type)
rearranging multi-indices, 137-140
unstack() method, 130
with Python tuples as keys, 128
Histogram of Oriented Gradients (HOG)
caveats and improvements, 512-514
features, 506
for face detection pipeline, 506-514
simple face detector, 507-512
histograms, 245-249
binning data to create, 83
faceted, 318
KDE and, 2438, 491-496
manual customization, 282-284
plt.hexbin() function, 248
plt.hist2d() function, 247
Seaborn, 314-317
simple, 245-246
two-dimensional, 247-249
holdout sets, 360
Hunter, John, 217
hyperparameters, 349
(see also model validation)

I

iloc attribute (Pandas), 110

images, encoding for machine learning analy-
sis, 378

immutable array, Index object as, 106

importing, tab completion for, 7

In objects, IPython, 13

index alignment
in DataFrame, 117
in Series, 116

Index object (Pandas), 105-107
as immutable array, 106
as ordered set, 106

indexing
fancy, 78-85

(see also fancy indexing)

hierarchical (see hierarchical indexing)
NumPy arrays: accessing single elements, 43
Pandas, 107

IndexSlice object, 137

indicator variables, 183

inner join, 153

input/output history, IPython, 13-16
In and Out objects, 13
related magic commands, 16
suppressing output, 15
underscore shortcuts and previous outputs,

15

installation, Python, xiv

integers, Python, 35

IPython, 1
accessing documentation with 2, 3
accessing source code with 22, 5
command-line commands in shell, 18
controlling exceptions, 20-22
debugging, 22-24
documentation, 3-8, 34
errors handling, 20-24
exploring modules with tab completion, 6-7
help and documentation, 3-8
input/output history, 13-16
keyboard shortcuts in shell, 8
launching Jupyter notebook, 2
launching shell, 2
magic commands, 10-13
notebook (see Jupyter notebook)
plotting from shell, 219
profiling and timing code, 25-30
shell commands, 16-19
shell-related magic commands, 19
web resources, 30
wildcard matching, 7

Iris dataset
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as table, 343
classification, 351
clustering, 353
dimensionality, 352
pair plots, 317
scatter plots, 236
visualization of, 345
isnull() method, 124
Isomap
dimensionality reduction, 341, 355
face data, 456-460
ix attribute (Pandas), 110

J

jet colormap, 257
joins, 145
(see also merging)
categories of, 147-149
datasets, 146-158
many-to-one, 148
one-to-one, 147
set arithmetic for, 152
joint distributions, 316, 320
Jupyter notebook
launching, 2
plotting from, 220

K
k-means clustering, 339, 462-476
basics, 463-465
color compression example, 473-476
expectation-maximization algorithm,
465-476
GMM as means of addressing weaknesses
of, 477-480
simple digits data application, 470-473
kernel (defined), 496
kernel bandwidth
defined, 496
selection via cross-validation, 497
kernel density estimation (KDE), 491-506
bandwidth selection via cross-validation,
497
Bayesian generative classification with,
501-506
custom estimator, 501-506
histograms and, 491-496
in practice, 496-506
Matplotlib, 248

Seaborn, 314
visualization of geographic distributions,
498-501
kernel SVM, 411-414
kernel transformation, 413
kernel trick, 413
keyboard shortcuts, IPython shell, 8
command history, 9
navigation, 8
text entry, 9
Knuth, Donald, 25

L
labels/labeling
classification task, 333-335
clustering, 338-339
dimensionality reduction and, 340-342
regression task, 335-338
simple line plots, 230-232
Lambert conformal conic projection, 303
lasso regularization (L1 regularization), 399
learning curves, computing, 372
left join, 153
left_index keyword, 151-152
legends, plot
choosing elements for, 251
customizing, 249-255
multiple legends on same axes, 254
point size, 252
levels, naming, 133
line plots
axes limits for, 228-230
labeling, 230-232
line colors and styles, 226-228
Matplotlib, 224-232
line-by-line profiling, 28
linear regression (in machine learning), 390
basis function regression, 392-396
regularization, 396-400
Seattle bicycle traffic prediction example,
400
simple, 390-392
lists, Python, 37-41
loc attribute (Pandas), 110
locally linear embedding (LLE), 453-455
logarithms, 55

M

machine learning, 331
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basics, 331-342
categories of, 332
classification task, 333-335
clustering, 338-339
decision trees and random forests, 421
defined, 332
dimensionality reduction, 340-342
educational resources, 514
face detection pipeline, 506-514
feature engineering, 375-382
GMM (see Gaussian mixture models)
hyperparameters and model validation,
359-375

KDE (see kernel density estimation)
linear regression (see linear regression)
manifold learning (see manifold learning)
naive Bayes classification, 382-390
PCA (see principal component analysis)
qualitative examples, 333-342
regression task, 335-338
Scikit-Learn basics, 343
supervised, 332
SVMs (see support vector machines)
unsupervised, 332

magic commands
code block pasting, 11
code execution timing, 12
help commands, 13
IPython input/output history, 16
running external code, 12
shell-related, 19

manifold learning, 445-462
"HELLO" function, 446
advantages/disadvantages, 455
applying Isomap on faces data, 456-460
defined, 446

k-means clustering (see k-means clustering)

multidimensional scaling, 450-452
PCA vs., 455
visualizing structure in digits, 460-462

(see also Boolean masks)
Boolean arrays, 75-78
Boolean masks, 70-78

MATLAB-style interface, 222
Matplotlib, 217, 329

axes limits for line plots, 228-230

changing defaults via rcParams, 284

colorbar customization, 255-262

configurations and stylesheets, 282-290

density and contour plots, 241-245

error visualization, 237-240

general tips, 218-222

geographic data with Basemap toolkit, 298

gotchas, 232

histograms, binnings, and density, 245-249

importing, 218

interfaces, 222

labeling simple line plots, 230-232

line colors and styles, 226-228

MATLAB-style interfaces, 222

multiple subplots, 262-268

object hierarchy of plots, 275

object-oriented interfaces, 223

plot customization, 282-284

plot display contexts, 218-220

plot legend customization, 249-255

plotting from a script, 219

plotting from IPython notebook, 220

plotting from IPython shell, 219

resources and documentation for, 329

saving figures to file, 221

Seaborn vs., 311-313

setting styles, 218

simple line plots, 224-232

stylesheets, 285-290

text and annotation, 268-275

three-dimensional function visualization,
241-245

three-dimensional plotting, 290-298

tick customization, 275-282

many-to-one joins, 148 max() function, 59
map projections, 300-304 maximum margin estimator, 408
conic, 303 (see also support vector machines (SVMs))
cylindrical, 301 memory use, profiling, 29
perspective, 302 merge key
pseudo-cylindrical, 302 on keyword, 149
maps, geographic (see geographic data) specification of, 149-152
margins, maximizing, 407-416 merging, 146-158
masking, 114 (see also joins)
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key specification, 149-152
relational algebra and, 146
US state population data example, 154-158
min() function, 59
Miniconda, xiv
missing data, 120-124
feature engineering and, 381
handling, 119-120
NaN and None, 123
operating on null values in Pandas, 124-127
Mobius strip, 296-298
model (defined), 334
model parameters (defined), 334
model selection
bias—variance trade-off, 364-366
validation curves in Scikit-Learn, 366-370
model validation, 359-375
bias—variance trade-off, 364-366
cross-validation, 361-370
grid search example, 373
holdout sets, 360
learning curves, 370-373
naive approach to, 359
validation curves, 366-370
modules, IPython, 6-7
Mollweide projection, 302
multi-indexing (see hierarchical indexing)
multidimensional scaling (MDS), 450-452
basics, 447-450
locally linear embedding and, 453-455
nonlinear embeddings, 452
Multilndex type, 129-131
creation methods, 131-134
data aggregations on, 140
explicit constructors for, 132
extra dimension of data with, 130
for columns, 133
index setting/resetting, 139
indexing and slicing, 134-137
keys option, 144
level names, 133
multiply indexed DataFrames, 136
multiply indexed Series, 134
rearranging, 137-140
sorted/unsorted indices with, 137
stacking/unstacking indices, 138
multinomial naive Bayes classification, 386-389

N

naive Bayes classification, 382-390
advantages/disadvantages, 389
Bayesian classification and, 383
Gaussian, 383-386
multinomial, 386-389
text classification example, 386-389

NaN value, 104, 116, 122

navigation shortcuts, 8

neural networks, 513

noise filter, PCA as, 440-442

None object, 121, 123

nonlinear embeddings, MDS and, 452

notnull() method, 124

np.argsort() function, 86

np.concatenate() function, 48, 143

np.sort() function, 86

null values, 124-127
detecting, 124
dropping, 125
filling, 126

NumPy, 33
aggregations, 58-63
array attributes, 42
array basics, 42
array indexing: accessing single elements, 43
array slicing: accessing subarrays, 44
Boolean masks, 70-78
broadcasting, 63-69
comparison operators as ufuncs, 71-73
computation on arrays, 50-58
data types in Python, 34
datetime64 dtype, 189
documentation, 34
fancy indexing, 78-85
keywords and/or vs. operators &/|, 77
sorting arrays, 85-92
standard data types, 41
structured arrays, 92-96
universal functions, 50-58

0

object-oriented interface, 223

offsets, time series, 196

on keyword, 149

one-hot encoding, 376

one-to-one joins, 147

optical character recognition
digit classification, 357-358
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GMMs, 488-491
k-means clustering, 470-473
loading/visualizing digits data, 354
Matplotlib, 261-262
PCA as noise filtering, 440-442
PCA for visualization, 437
random forests for classifying digits,
430-432
Scikit-Learn application, 354-358
visualizing structure in digits, 460-462
or keyword, 77
ordered set, Index object as, 106
orthographic projection, 302
Out objects, IPython, 13
outer join, 153
outer products, 58
outliers, PCA and, 445
output, suppressing, 15
overfitting, 371, 425

P

pair plots, 317

Pandas, 97
aggregation and grouping, 158-170
and compound expressions, 209
appending datasets, 146
built-in documentation, 98
combining datasets, 141-158
concatenation of datasets, 141-146
data indexing and selection, 107
data selection in DataFrame, 110-215
data selection in Series, 107-110
DataFrame object, 102-105
eval() and query(), 208-209
handling missing data, 119-120
hierarchical indexing, 128-141
Index object, 105-107
installation, 97
merging/joining datasets, 146-158
NaN and None in, 123
null values, 124-127
objects, 98-107
operating on data in, 115-127

(see also universal functions)

pandas.eval(), 210-211
Panel data, 141
pivot tables, 170-178
Series object, 99-102
time series, 188-214

vectorized string operations, 178-188
pandas.eval() function, 210-211
Panel data, 141
partial slicing, 135
partitioning (partial sorts), 88
pasting code blocks, magic commands for, 11
pd.concat() function
catching repeats as error, 144
concatenation with, 142-146
concatenation with joins, 145
duplicate indices, 143
ignoring the index, 144
Multilndex keys, 144
pd.date_range() function, 193
pd.eval() function, 210-211
pd.merge() function, 146-158
categories of joins, 147-149
keywords, 149-152
left_index/right_index keywords, 151-152
merge key specification, 149-152
relational algebra and, 146
specifying set arithmetic for joins, 152
pdb (Python debugger), 22
Perez, Fernando, 1, 217
Period type, 193
perspective projections, 302
pipelines, 366, 381
pivot tables, 170-178
groupby() operation vs., 171
multi-level, 172
syntax, 171-173
Titanic passengers example, 170
US birthrate data example, 174-178
Planets dataset
aggregation and grouping, 159
bar plots, 321
plot legends
choosing elements for, 251
customizing, 249-255
multiple legends on same axes, 254
points size, 252
Plotly, 330
plotting
axes limits for simple line plots, 228-230
bar plots, 321
changing defaults via rcParams, 284
colorbars, 255-262
data on maps, 307-329
density and contour plots, 241-245
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display contexts, 218-220
factor plots, 319
from an IPython shell, 219
from script, 219
histograms, binnings, and density, 245-249
IPython notebook, 220
joint distributions, 320
labeling simple line plots, 230-232
line colors and styles, 226-228
manual customization, 282-284
Matplotlib, 217
multiple subplots, 262-268
of errors, 237-240
pair plots, 317
plot legends, 249-255
Seaborn, 311-313
simple line plots, 224-232
simple scatter plots, 233-237
stylesheets for, 285-290
text and annotation for, 268-275
three-dimensional, 290-298
three-dimensional function, 241-245
ticks, 275-282
two-dimensional function, 69
various Python graphics libraries, 330
plt.axes() function, 263-264
plt.contour() function, 241-244
plt.GridSpec() function, 266-268
plt.imshow() function, 243-244
plt.legend() command, 249-254
plt.plot() function
color arguments, 226
plt.scatter vs., 237
scatter plots with, 233-235
plt.scatter() function
plt.plot vs., 237
simple scatter plots with, 235-237
plt.subplot() function, 264
plt.subplots() function, 265
polynomial basis functions, 393
polynomial regression model, 366
pop() method, 111
population data, US, merge and join operations
with, 154-158
principal axes, 434-436
principal component analysis (PCA), 433-515
basics, 433-442
choosing number of components, 440
eigenfaces example, 442-445

facial recognition example, 442-445
for dimensionality reduction, 436
handwritten digit example, 437-440,
440-442
manifold learning vs., 455
meaning of components, 438-439
noise filtering, 440-442
strengths/weaknesses, 445
visualization with, 437
profiling
full scripts, 27
line-by-line, 28
memory use, 29
projections (see map projections)
pseudo-cylindrical projections, 302
Python
installation considerations, xiv
Python 2.x vs. Python 3, xiii
reasons for using, xii

Q

query() method
DataFrame.query() method, 213
when to use, 214

question mark (?), accessing IPython documen-
tation with, 3

quicksort algorithm, 87

R
radial basis function, 412
rainfall statistics, 70
random forests
advantages/disadvantages, 432
classifying digits with, 430-432
defined, 426
ensembles of estimators, 426-428
motivating with decision trees, 421-426
regression, 428
RandomizedPCA, 442
rcParams dictionary, changing defaults via, 284
RdBu colormap, 258
record arrays, 96
reduce() method, 57
regression, 428-433
(see also specific forms, e.g.: linear regres-
sion)
regression task
defined, 332
machine learning, 335-338
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regular expressions, 181
regularization, 396-400
lasso regularization, 399
ridge regression, 398
relational algebra, 146
resample() method, 197-199
reset_index() method, 139
reshaping, 47
ridge regression (L2 regularization), 398
right join, 153
right_index keyword, 151-152
rolling statistics, 201
runtime configuration (rc), 284

S
scatter plots (see simple scatter plots)
Scikit-Learn package, 331, 343-346
API (see Estimator API)
basics, 343-359
data as table, 343
data representation in, 343-346
Estimator API, 346-354
features matrix, 344
handwritten digit application, 354-358
support vector classifier, 408-411
target array, 344-345
scipy.special submodule, 56
script
plotting from, 219
profiling, 27
Seaborn
bar plots, 321
datasets and plot types, 313-329
faceted histograms, 318
factor plots, 319
histograms, KDE, and densities, 314-317
joint distributions, 320
marathon finishing times example, 322-329
Matplotlib vs., 311-313
pair plots, 317
stylesheet, 289
visualization with, 311-313
Seattle, bicycle traffic prediction in
linear regression, 400-405
time series, 202-209
Seattle, rainfall statistics in, 70
semi-supervised learning, 333
Series object (Pandas), 99-102
as dictionary, 100, 107

constructing, 101
data indexing/selection in, 107-110
DataFrame as dictionary of, 110-112
DataFrame object constructed from, 104
DataFrame object constructed from dictio-
nary of, 105
generalized NumPy array, 99
hierarchical indexing in, 128-141
index alignment in, 116
indexer attributes, 109
multiply indexed, 134
one-dimensional array, 108
operations between DataFrame and, 118
shell, IPython
basics, 16
command-line commands, 18
commands, 16-19
keyboard shortcuts in, 8
launching, 2
magic commands, 19
passing values to and from, 18
shift() function, 199-201
shortcuts
accessing previous output, 15
command history, 9
IPython shell, 8-31
navigation, 8
text entry, 9
simple histograms, 245-246
simple line plots
axes limits for, 228-230
labeling, 230-232
line colors and styles, 226-228
Matplotlib, 224-232
simple (Matplotlib), 224-232
simple linear regression, 390-392
simple scatter plots
California city populations, 249-254
Matplotlib, 233-237
plt.plot, 233-235
plt.plot vs. plt.scatter, 237
plt.scatter, 235-237
slice() operation, 183
slicing
MultiIndex with sorted/unsorted indices,
137
NumPy arrays, 44-47
NumPy arrays: accessing subarrays, 44
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NumPy arrays: multidimensional subarrays,
45
NumPy arrays: one-dimensional subarrays,
44
NumPy vs. Python, 46
Pandas conventions, 114
sorting arrays, 85-92
along rows or columns, 87
basics, 85
fast sorting with np.sort and np.argsort, 86
k-nearest neighbors example, 88-92
partitioning, 88
source code, accessing, 5
splitting arrays, 49
string operations (see vectorized string opera-
tions)
structured arrays, 92-96
advanced compound types, 95
creating, 94
record arrays, 96
stylesheets
Bayesian Methods for Hackers, 288
default style, 286
FiveThirtyEight style, 287
ggplot, 287
Matplotlib, 285-290
Seaborn, 289
subarrays
as no-copy views, 46
creating copies, 46
slicing multidimensional, 45
slicing one-dimensional, 44
subplots
manual customization, 263-264
multiple, 262-268
plt.axes() for, 263-264
plt.GridSpec() for, 266-268
plt.subplot() for, 264
plt.subplots() for, 265
subsets, faceted histograms, 318
suffixes keyword, 153
supervised learning, 332
classification task, 333-335
regression task, 335-338
support vector (defined), 409
support vector classifier, 408-411
support vector machines (SVMs), 405
advantages/disadvantages, 420
face recognition example, 416-420

fitting, 408-411
kernels and, 411-414
maximizing the margin, 407-416
motivating, 405-420
simple face detector, 507
softening margins, 414-416
surface plots, three-dimensional, 293-298

T
t-distributed stochastic neighbor embedding (t-
SNE), 456, 472
tab completion
exploring IPython modules with, 6-7
of object contents, 6
when importing, 7
table, data as, 343
target array, 344-345
term frequency-inverse document frequency
(TE-IDF), 378
text, 377
(see also annotation of plots)
transforms and position of, 270-272
text entry shortcuts, 9
three-dimensional plotting
contour plots, 292
Mobius strip visualization, 296-298
points and lines, 291
surface plots, 293-298
surface triangulations, 295-298
wireframes, 293
with Matplotlib, 290-298
ticks (tick marks)
customizing, 275-282
fancy formats, 279-281
formatter/locator options, 281
major and minor, 276
reducing/increasing number of, 278
Tikhonov regularization, 398
time series
bar plots, 321
dates and times in Pandas, 191
datetime64, 189
frequency codes, 195
indexing data by timestamps, 192
native Python dates and times, 189
offsets, 196
Pandas, 188-209
Pandas data structures for, 192-194
pd.date_range(), 193
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Python vs. Pandas, 188-192
resampling and converting frequencies,
197-199
rolling statistics, 201
Seattle bicycle counts example, 202-209
time-shifts, 199-201
typed arrays, 189
Timedelta type, 193
Timestamp type, 193
timestamps, indexing data by, 192
timing, of code, 12, 25-27
transform() method, 167
transforms
modifying, 270-272
text position and, 270-272
triangulated surface plots, 295-298
trigonometric functions, 54
tshift() function, 199-201
two-fold cross-validation, 361

U

ufuncs (see universal functions)
unary ufuncs, 52
underfitting, 364, 371
underscore (_) shortcut, 15
universal functions (ufuncs), 50-58
absolute value, 54
advanced features, 56
aggregates, 57
array arithmetic, 52
basics, 51
comparison operators as, 71-73
exponentials, 55
index alignment, 116-118
index preservation, 115
logarithms, 55
operating on data in Pandas, 115-127
operations between DataFrame and Series,
118
outer products, 58
slowness of Python loops, 50

specialized ufuncs, 56
specifying output, 56
trigonometric functions, 54
unstack() method, 130
unsupervised learning
clustering, 338-339, 353
defined, 332
dimensionality reduction, 261, 340-342,
352, 355
PCA (see principal component analysis)

v

validation (see model validation)
validation curves, 366-370
variables
dynamic typing, 34
passing to and from shell, 18
variance, in bias-variance trade-off, 364-366
vectorized operations, 63
vectorized string operations, 178-188
basics, 178
indicator variables, 183
methods similar to Python string methods,
180
methods using regular expressions, 181
recipe database example, 184-188
tables of, 180-184
vectorized item access and slicing, 183
Vega/Vega-Lite, 330
violin plot, 327
viridis colormap, 258
Vispy, 330
visualization software (see Matplotlib) (see Sea-
born)

W

Wickham, Hadley, 161
wildcard matching, 7
wireframe plot, 293
word counts, 377-378
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Colophon

The animal on the cover of Python Data Science Handbook is a Mexican beaded lizard
(Heloderma horridum), a reptile found in Mexico and parts of Guatemala. It and the
Gila monster (a close relative) are the only venomous lizards in the world. This ani-
mal primarily feeds on eggs, however, so the venom is used as a defense mechanism.
When it feels threatened, the lizard will bite—and because it cannot release a large
quantity of venom at once, it firmly clamps its jaws and uses a chewing motion to
move the toxin deeper into the wound. This bite and the aftereffects of the venom are
extremely painful, though rarely fatal to humans.

The Greek word heloderma translates to “studded skin,” referring to the distinctive
beaded texture of the reptile’s skin. These bumps are osteoderms, which each contain
a small piece of bone and serve as protective armor. The Mexican beaded lizard is
black with yellow patches and bands. It has a broad head and a thick tail that stores
fat to help the animal survive during the hot summer months when it is inactive. On
average, these lizards are 22-36 inches long, and weigh around 1.8 pounds.

As with most snakes and lizards, the tongue of the Mexican beaded lizard is its pri-
mary sensory organ. It will flick it out repeatedly to gather scent particles from the
environment and detect prey (or, during mating season, a potential partner). When
the forked tongue is retracted into the mouth, it touches the Jacobson’s organ, a patch
of sensory cells that identify various chemicals and pheromones.

The beaded lizard’s venom contains enzymes that have been synthesized to help treat
diabetes, and further pharmacological research is in progress. It is endangered by loss
of habitat, poaching for the pet trade, and being killed by locals who are simply afraid
of it. This animal is protected by legislation in both countries where it lives.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type-
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.
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