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Foreword

The important summarizing work of RENJI TAO appears now in book form.
It is a great pleasure for me to see this happen, especially because I have
known Professor Tao as one of the very early contributors to public-key
cryptography. The research community has missed a book such as the present
one now published by Tsinghua University Press and Springer. The book will
be of special interest for students and researchers in the theories of finite
automata, cryptography and error correcting codes.

One of the phenomena characterizing the second half of the last century is
the rapid growth of computer science and informatics in general. The theory
of finite automata, models of computing devices with a finite non-extensible
memory, was initiated in the 1940s and 1950s, mainly by McCulloch, Pitts
and Kleene. It has found numerous applications in most diverse areas, as
exemplified by the series of yearly international conferences in implemen-
tation and applications of finite automata. The present work by Professor
Tao develops a theory and contains strong results concerning invertible finite
automata: the input sequence can be recovered from the output sequence.
This is a desirable feature both in cryptography and error correcting codes.
The book considers various types of invertibility and, for instance, the effect
of bounded delay to invertibility.

Cryptography, secret writing, has grown enormously both in extent and
importance and quality during the past few decades. This is obvious in view
of the fact that so many transactions and so much confidential information
are nowadays sent over the Internet. After the introduction of public-key
cryptography by Diffie and Hellman in the 1970s, many devices were tried
and applied for the construction of public-key cryptosystems. Professor Tao
was one of such initiators in applying invertible finite automata. Although
mostly in Chinese, his work was known also in the West. I referred to it
already some twenty years ago. Later on, for instance, a PhD thesis was
written about this topic in my university.

Many of the results in this book appear now for the first time in book
form. The book systematizes important and essential results, as well as gives
a comprehensive list of references. It can be used also as a starting point
for further study. Different parts of the book are of varying importance for
students and researchers, depending on their particular interests. Professor
Tao gives useful guidelines about this in his Preface.
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Much of the material in this book has not been previously available for
western researchers. As a consequence, some of the results obtained by Profes-
sor Tao and his group already in the late 1970s have been independently redis-
covered later. This concerns especially shift register sequences, for instance,
the decimation sequence and the linear complexity of the product sequence.

I feel grateful and honored that Professor Tao has asked me to write this
preface. I wish success for the book.

Turku, Finland, January 2008 Arto Salomaa



Preface

Automata theory is a mathematical theory to investigate behavior, structure
and their relationship to discrete and digital systems such as algorithms,
nerve nets, digital circuits, and so on. The first investigation of automata
theory goes back to A. M. Turing in 1936 for the formulation of the informal
idea of algorithms. Finite automata model the discrete and digital systems
with finite “memory”, for example, digital circuits. The theory of finite au-
tomata has received considerable attention and found applications in areas
of computer, communication, automatic control, and biology, since the pio-
neering works of Kleene, Huffman, and Moore in the 1950s. Among others,
autonomous finite automata including shift registers are used to generate
pseudo-random sequences, and finite automata with invertibility are used to
model encoders and decoders for error correcting and cipher as well as to
solve topics in pure mathematics such as the Burnside problem for torsion
groups. This book is devoted to the invertibility theory of finite automata
and its application to cryptography. The book also focuses on autonomous
finite automata and Latin arrays which are relative to the canonical form for
one key cryptosystems based on finite automata.

After reviewing some basic concepts and notations on relation, function
and graph, Chap. 1 gives the concept of finite automata, three types of “in-
vertibility” for finite automata, and proves the equivalence between “feedfor-
ward invertibility” and “boundedness of decoding error propagation” which
is the starting point of studying one key cryptosystems based on finite au-
tomata; a tool using labelled trees to represent states of finite automata is
also given. In addition, some results on linear finite automata over finite fields
are reviewed, in preparation for Chap. 7. Chapter 2 analyzes finite automata
from the aspects of minimal output weight and input set. Results for weakly
invertible finite automata are in return applied to establish the mutual in-
vertibility for finite automata, and to evaluate complexity of searching an
input given an output and an initial state for a kind of weakly invertible
finite automata. In Chap. 3 the R, R, transformation method is presented
for generating a kind of weakly invertible finite automata and correspondent
weak inverse finite automata which are used in key generation in Chap. 9;
this method is also used to solve the structure problem for quasi-linear finite
automata over finite fields. Chapter 4 first discusses the relation between two
linear R, R; transformation sequences and “composition” of R, R trans-
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formation sequences, then the relation of inversion by R, R} transformation
method with inversion by reduced echelon matrix method and by canoni-
cal diagonal matrix polynomial method. Chapter 5 deals with the structure
problem of feedforward inverse finite automata. Explicit expressions of feed-
forward inverse finite automata with delay < 2 are given. The result for delay
0 lays a foundation for the canonical form of one key cryptosystems based on
finite automata in Chap. 8. In Chap. 6, for any given finite automaton which
is invertible (weakly invertible, feedforward invertible, an inverse, or a weak
inverse, respectively), the structure of all its inverses (weak inverses, weak
inverses with bounded error propagation, original inverses, or original weak
inverses, respectively) is characterized. Chapter 7 deals with autonomous lin-
ear finite automata over finite fields. Main topics contain representation of
output sequences, translation, period, linearization, and decimation. The final
two chapters discuss the application to cryptography. A canonical form for
one key cryptosystems which can be implemented by finite automata without
plaintext expansion and with bounded decoding error propagation is given
in Chap. 8. As a component of the canonical form, the theory of Latin array
is also dealt with. Chapter 9 gives a public key cryptosystem based finite
automata and discusses its security. Some generalized cryptosystems are also
given.

The material of this book is mainly taken from the works of our research
group since the 1970s, except some basic results, for example, on linear fi-
nite automata and on partial finite automata. Of course, this book does not
contain all important topics on invertibility of finite automata which our re-
search group have investigated such as decomposition of finite automata and
linear finite automata over finite rings. Results presented here other than
Chaps. 1 and 7 are appearing for the first time in book form; Chapter 7 is
appearing for the first time in English which is originally published in [97]
and in Chap. 3 of the monograph [98]. This book is nearly self-contained,
but algebra is required as a mathematical background in topics on linear fi-
nite automata, linear R, R} transformation, and Latin array; the reader is
referred to, for example, [16], or [42] for matrix theory, [142] for finite group.

This book pursues precision in logic, which is extremely important for a
mathematical theory. For automata theorists and other mathematicians in-
terested merely in the invertibility theory of finite automata, the readers may
read Chap. 1 to Chap. 6 and propose easily open problems on topics con-
cerned. For an algebraist interested in the theory of shift register sequences,
taking a glance at Chap. 7 is, at least to avoid overlap of research, harm-
less. A mathematician majoring in combinatory theory may be interested in
Sects. 8.2 and 8.3 of Chap. 8.
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For readers interested merely in one key cryptography, it is enough to
read Chap. 1 (except Subsect. 1.2.3 and Sect. 1.6), the first two sections of
Chap. 5, Chap. 7, and Chap. 8.

For readers interested merely in public key cryptography, they may read
Chap. 1 (except Subsect. 1.2.4 and Sects. 1.3 and 1.5), Chap. 2 (except
Sect. 2.2), Chap. 3 (except Sect. 3.3), Chap. 4, Sects. 6.1 and 6.5 of Chap. 6,
and Chap. 9. They may skip over all proofs if they believe them to be correct;
but a generation algorithm of finite automata satisfying the condition PI is
directly obtained from several proofs in the first two sections of Chap. 3.

I would like to thank Zuliang Huang for his continuous encouragement
and suggestions about the investigation on finite automata since the 1960s.
Thanks also go to Peilin Yan, the late first director of Institute of Comput-
ing Technology, Chinese Academy of Sciences, and to Kongshi Xu, the first
director of Institute of Software, Chinese Academy of Sciences, for their sup-
port and providing a suitable environment for me to do theoretical research
since the 1970s. I am also grateful to many of my colleagues and students for
various helpful discussions and valuable suggestions. My thanks go to Hongji
Wang for his careful reading and commenting on the manuscript. Naturally,
I have to take responsibility for any errors that may occur in this book. My
special thanks go to Hui Xue for her continuing thorough and helpful ed-
itorial commentary, and careful polishing the manuscript. Finally, I thank
my wife Shihua Chen and my daughter Xuemei Chen for their patience and
continuous encouragement.

Beijing, May 2007 Rengi Tao



Contents

Foreword by Arto Salomaa ............. ... ... .. .. ... ..... i
Preface ... ... iii
1. Introduction .......... .. .. .. . . 1
1.1 Preliminaries. ... .. ...t 2
1.1.1 Relations and Functions.............. .. ... ... ... 2

1.1.2 Graphs. ... 5

1.2 Definitions of Finite Automata ........................... 6
1.2.1 Finite Automata as Transducers.................... 6

1.2.2  Special Finite Automata .......................... 12

1.2.3 Compound Finite Automata ....................... 14

1.2.4 Finite Automata as Recognizers.................... 16

1.3 Linear Finite Automata ........... ... ... ... ... ... ... .. 16

1.4 Concepts on Invertibility ......... ... ... ... .. 26

1.5 Error Propagation and Feedforward Invertibility ............ 34

1.6 Labelled Trees as States of Finite Automata ............... 41

2. Mutual Invertibility and Search .......................... 47
2.1  Minimal Output Weight and Input Set .................... 48

2.2 Mutual Invertibility of Finite Automata ................... 54

2.3 Find Input by Search ....... ... .. .. .. . i 56
2.3.1 On Output Set and Input Tree..................... 56

2.3.2 Exhausting Search.......... ... ... .. .. ... ... 67

2.3.3 Stochastic Search ............ ...l 74

3. R, Rp Transformation Method ........................ ... 77
3.1 Sufficient Conditions and Inversion ....................... 78

3.2 Generation of Finite Automata with Invertibility ........... 86

3.3 Invertibility of Quasi-Linear Finite Automata .............. 95
3.3.1 Decision Criteria ......... .. ..., 95

3.3.2 Structure Problem.......... ... ... .. ... ... ... ... 100



viii

4.

Contents

Relations Between Transformations....................... 109
4.1 Relations Between R, Rp Transformations................. 110
4.2 Composition of R, R, Transformations.................... 115
4.3 Reduced Echelon Matrix .............. ... ... ... ... 128
4.4 Canonical Diagonal Matrix Polynomial . ................... 132
4.4.1 R, R, Transformations over Matrix Polynomial . ..... 132
4.4.2 Relations Between R, R Transformation and
Canonical Diagonal Form.......................... 136
4.4.3 Relations of Right-Parts........................... 139
4.4.4 Existence of Terminating R, R, Transformation
SEqUENCE . ..ot 144
Structure of Feedforward Inverses ........................ 153
5.1 A Decision Criterion . ............. ... 154
5.2 Delay Free. .. ... 157
5.3 One Step Delay ...... ... i 160
54 TwoStep Delay ........ . i 165
Some Topics on Structure Problem ....................... 177
6.1 Some Variants of Finite Automata . ....................... 178
6.1.1 Partial Finite Automata........................... 178
6.1.2 Nondeterministic Finite Automata.................. 184
6.2 Inverses of a Finite Automaton........................... 185
6.3 Original Inverses of a Finite Automaton ................... 198
6.4 Weak Inverses of a Finite Automaton ..................... 201
6.5 Original Weak Inverses of a Finite Automaton ............. 205
6.6 Weak Inverses with Bounded Error Propagation of a Finite
Automaton .......... ... 208
Linear Autonomous Finite Automata ..................... 215
7.1 Binomial Coefficient .......... ... ... ... . .. . .. . .. . ... ... 216
7.2 Root Representation .......... ... . ... . ... 224
7.3 Translation and Period .. ...... ... ... ... ... .. .. .. ... ..... 245
7.3.1 Shift Registers ....... ... ... . 245
7.3.2 Finite Automata ......... ... ... .. ... 252
7.4 Linearization........... ... ...t 254
7.5 Decimation ........... .. 265
One Key Cryptosystems and Latin Arrays................ 273
8.1 Canonical Form for Finite Automaton One Key Cryptosystems274
8.2 Latin ATrays . ... ..ot 279

8.2.1 Definitions ....... ... 279



Contents ix

8.2.2 On (n,k,r)-Latin Arrays ..., 280
8.2.3 Invariant ........... ... . .. 284
8.2.4 Autotopism Group ................iiiiiiiiii.. 288
825 TheCasen =2,3 ... ... 291
826 TheCasen=4, k<4 ... .. ... 294
8.3 Linearly Independent Latin Arrays ....................... 327
8.3.1 Latin Arrays of Invertible Functions ................ 327

8.3.2 Generation of Linearly Independent Permutations . ... 331

9. Finite Automaton Public Key Cryptosystems............. 347
9.1 Theoretical Fundamentals .............. ... .. .. .. ... .. 348

9.2 Basic Algorithm ......... .. ... ... ... . 351

9.3 An Example of FAPKC ..... ... .. ... .. .. . ... .. ... ..... 356

9.4 On Weak Keys . ... e 362
9.4.1 Linear R, R; Transformation Test.................. 362

9.4.2 On Attack by Reduced Echelon Matrix.............. 362

9.4.3 On Attack by Canonical Diagonal Matrix Polynomial 363

9.5 SeCUTrity . .ottt 364
9.5.1 Inversion by a General Method..................... 365

9.5.2 Inversion by Decomposing Finite Automata.......... 365

9.5.3 Chosen Plaintext Attack .......................... 366

9.5.4 Exhausting Search and Stochastic Search............ 367

9.6 Generalized Algorithms ........ ... ... ... .. .. ... ... 372
9.6.1 Some Theoretical Results.......................... 372

9.6.2 Two Algorithms......... ... . i, 387
References....... ... ... . 395



1. Introduction

Renji Tao

Institute of Software, Chinese Academy of Sciences
Beijing 100080, China  trj@ios.ac.cn

Summary.

Finite automata are a mathematical abstraction of discrete and digital
systems with finite “memory”. From a behavior viewpoint, such a system
is a transducer which transforms an input sequence to an output sequence
with the same length. Whenever the input sequence can be retrieved by the
output sequence (and initial internal state), the system is with invertibility
and may be used as an encoder in application to cipher or error correcting.

The invertibility theory of finite automata is dealt within the first six
chapters of this book. In the first chapter, the basic concepts on finite au-
tomata are introduced. The existence of (weak) inverse finite automata and
boundedness of delay for (weakly) invertible finite automata are proven
in Sect. 1.4, and the coincidence between feedforward invertibility and
bounded error propagation is presented in Sect. 1.5. In Sect. 1.7, we char-
acterize the structure of (weakly) invertible finite automata by means of
their state tree. In addition, there is a section that reviews some basic
results of linear finite automata, as an introduction to Chap. 7.

Key words: finite automata, invertible, weakly invertible, feedforward
invertible, inverse, weak inverse, feedforward inverse, error propagation,
state tree

Finite automata are a mathematical abstraction of discrete and digital sys-
tems with finite “memory”. From a structural viewpoint, such a system has
an input and an output as well as an “internal state”. Its time system is
discrete (say, moments 0,1,...). Only finite possible values can be taken by
the input (output and internal state, respectively) at each moment. And, the
output at the current moment and the internal state at the next moment can
be uniquely determined by the input and the internal state at the current
moment. From a behavior viewpoint, such a system is a transducer which
transforms an input sequence to an output sequence with the same length.
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Whenever the input sequence can be retrieved by the output sequence (and
the initial internal state), the system is with invertibility and may be used
as an encoder in application to cipher or error correcting.

The invertibility theory of finite automata is dealt within the first six
chapters. In the first chapter, the basic concepts on finite automata are in-
troduced. The existence of (weak) inverse finite automata and boundedness
of delay for (weakly) invertible finite automata are proven in Sect. 1.4, and
the coincidence between feedforward invertibility and bounded error propa-
gation is presented in Sect. 1.5. In Sect. 1.6, we characterize the structure of
(weakly) invertible finite automata by means of their state tree. In addition,
there is a section that reviews some basic results of linear finite automata, as
an introduction to Chap. 7.

1.1 Preliminaries

We begin with a brief excursion through some fundamental concepts. A reader
acquainted with the notation used may skip this section. We will assume a
familiarity with the most basic notions of set theory, such as membership €,
set-builder notation {---| -~} or {---:---}, empty set &, subset C, union U,
intersection N, difference \.

1.1.1 Relations and Functions

For any sets Aq, As, ..., A,, the Cartesian product of Ay, Ao, ..., A, is the
set
{(a1,a2,...,a,) | a; € Aj,i=1,2,...,n},

denoted by A; X As x - - - x A, (sometimes (a1, as,...,ay,) is replaced by
(a1,a2,...,a,)). In the case of A; = A;i=1,2,...,m, Ay Xx Ag X -+ X A, is
called the n-fold Cartesian product of A and is abbreviated to A™. For any
i,1 < i < n, the i-th component of an element (aj,as,...,a,) in A} x Ay X
-+ X A,, means a;.

Let A and B be two sets. A relation R from A to B is a subset R of Ax B.
If (a,b) is in the relation R, it is written as aRb. If (a, ) is not in the relation
R, it is written as aRR b. In the case of A = B, R is also called a relation on
A.

A relation R on a set A is an equivalence relation, if the following condi-
tions hold: (a) R is reflexive, i.e., (a,a) € R for any a in A; (b) R is symmetric,
ie., (a,b) € R implies (b,a) € R for any a¢ and b in A; and (c) R is transitive,
i.e., (a,b) € R and (b,c) € R imply (a,c) € R for any a, b and ¢ in A.
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Let R be an equivalence relation on A. For any a in A, the set [a]g =
{b|be A (a,b) € R} is called the equivalence class containing a. The set
{[a]r | a € A} is called the equivalence classes of R.

Let A be a set and m = {H; | ¢ € I} be a family of subsets of A. If (a)
UierH; = A and (b) H; N H; = @ for any different ¢ and j in I, 7 is called a
partition of A, and H;, i € I are called blocks of the partition 7.

Clearly, the equivalence classes of an equivalence relation on A define a
partition. Conversely, a partition {H; | i € I} of A determines an equivalence
relation R on A in the following way:

(a,b)e ReJiellae Hi & be Hy),
a,be A

It is convenient to identify an equivalence relation with its partition.
Let R be a relation from A to B. The subset

{a € A|3be B((a,b) € R)}
of A is called the domain of R, and the subset
{be B |3Jac A((a,b) € R)}

of B is called the range of R.
Suppose that R is a relation from A to B. Define a relation R~! from B
to A as follows:

(a,b) € R < (b,a) € R,
a€AbeB.

R! is called the inverse relation of R. Clearly, the domain of R and the
range of R™! are the same; the domain of R~! and the range of R are the
same.

Let R be a relation from A to B. If, for any a in A, any b and V' in B,
(a,b) € R and (a,b’) € R imply b=V, R is called a partial function from A
to B.

A single-valued function (mapping) from A to B is a partial function R
from A to B such that the domain of R is A. A single-valued function from
a set to itself is also called a function or a transformation on the set.

Let f be a single-valued mapping or partial function from A to B. For
any a in the domain of f, the unique element in B, say b, satisfying (a,b) € f
is written as f(a), and is called the value of f at (the point) a. For any a not
in the domain of f, we say that the value of f at (the point) a is undefined.
For any relation R from A to B and any a in A, we also use R(a) to denote
the set {b € B | (a,b) € R}. Clearly, R"'(b) = {a € A | (b,a) € R7'} =
{a € A | (a,b) € R} for any b in B.
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Let f be a single-valued mapping from A to B. If the range of f is B, f
is called a surjection, or to be surjective, or a single-valued mapping from A
onto B. If f(a) # f(a’) holds for any different elements a and a’ in A, f is
called an injection, or to be injective, or to be one-to-one. If f is injective and
surjective, f is called a bijection, or to be bijective, or a one-to-one mapping
from A onto B. If there exists a one-to-one mapping from A onto B, A is
said to be one-to-one correspondent with B. A bijection from a finite set to
itself is also called a permutation on the set, or of its elements.

If f is a partial or single-valued function from A to B, the inverse relation
f~1is also called the inverse function of f. Thus f~1(b) = {a € A | (a,b) €
f}={ae A| f(a) =b}. For any b in B, whenever |f~1(b)| = 1, we also use
f71(b) to denote the unique element, say a, in f~1(b), where f(a) = b; from
the context, the reader can easily understand the meaning of the notation
without ambiguity. It is easy to see that if f is a bijection from A to B,
then f~! is a bijection from B to A and f~!(f(a)) = a for any a € A,
f(f~1(b)) = b for any b € B.

An injection f from A to B is also called an invertible function, or an
invertible transformation in the case of A = B; a partial or single-valued
function g from B to A is called an inverse function, or an inverse transfor-
mation in the case of A = B, of f, if g(f(a)) = a holds for any a € A. For
any partial or single-valued function f; from A; to B;, i = 1,2, if As C Aj,
By C By and fi(a) = fa(a) for any a € Ay, fo is called a restriction of f;
(on Ay). We use f1]a, to denote a restriction of fi on Ay. Clearly, if g is an
inverse function of f, then the inverse function f~! of f is a restriction of
g. We also use f~! to denote an inverse function of f; from the context, the
reader can easily understand the meaning of the notation without ambiguity.

A wvector function of dimension n in s variables over F' means a single-
valued function from the s-fold Cartesian product of F (respectively an
s-dimensional vector space over F') to the n-fold Cartesian product of F' (re-
spectively an n-dimensional vector space over F'). For a vector function ¢ of
dimension n in s variables over F', its value at the point (z1,...,zs) is usually
expressed as o(z1,...,%s); for any 4, 1 <1 < n, the i-th component function
of ¢ is a single-valued function from the s-fold Cartesian product of F' (re-
spectively an s-dimensional vector space over F') to F' of which the value at
each point (z1,...,xs) is the i-th component of ¢(z1,...,x5). A vector func-
tion over {0, 1} is called a Boolean vector function. A Boolean function means
a Boolean vector function of dimension 1. A Boolean function p(z1,...,zs)
in s variables can be expressed by a polynomial of x1,...,x,; if the degree
of the polynomial is greater than 1, ¢ is said to be nonlinear. The Boolean
function in s variables of which all values are 0 is called the zero Boolean
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function in s variables. The function on A of which the value at each a in A
equals a is called the identity function on A.

1.1.2 Graphs

We will discuss some fundamental concepts of graph. (V,I") is called a (di-
rected) graph, if ' C V x V for a nonempty set V. V is called the vertex
set, and elements in V are called wvertices. I' is called the arc set or the di-
rected edge set, and elements in I" are called arcs or directed edges. For an arc
u = (a,b) € I', a is called the initial vertex of u, and b the terminal vertex
of u.

Let w = ujus ... u; ... be a finite or infinite sequence of arcs, where u; €
I'yi=1,2,...If the terminal vertex of u; is the initial vertex of w;y; for any
U, U1 in w, w is called a path of the graph (V, I'). The number of arcs in w
is called the length of the path w. The initial vertex of u; is called the initial
vertex of the path w; and the terminal vertex of wu, is called the terminal
vertex of the path w if the length of the path w is n.

If w = ujus . .. uy, is a path of the graph (V, I') and the terminal vertex of
the arc u,, is the initial vertex of the arc uq, the path w is called a circuit of
the graph (V, I'). Evidently, if there exists a circuit, then there exists a path
of infinite length.

For any vertex a, the set {b|(b,a) € I',b € V'} is called the incoming vertex
set of a, and the set {b|(a,b) € I',b € V} is called the outgoing vertex set of
a.

A vertex of which both the incoming vertex set and the outgoing vertex
set are empty is called an isolated verter.

We define recurrently the levels of vertices as follows. For any vertex a in
V, if the incoming vertex set of a is empty, the level of a is defined to be 0.
For any vertex a in V, if the levels of all vertices in the incoming vertex set
of a have been defined and the maximum is A, the level of a is defined to be
h+1.

For any arc u = (a,b), if levels of a and b have been defined, the level of
the arc u is defined to be the level of the vertex a.

If the level of each vertex of (V,I) is defined and the maximum is h, we
say that the graph has level, and the level of the graph is defined to be h — 1.

Clearly, if each vertex of (V, I') is an isolated vertex, then the level of the
graph is —1.

If V is finite, the graph (V,I") is said to be finite.

Notice that for a finite graph, it has no circuit if and only if it has level,
and the maximum of its path-lengths equals its level plus 1 if it has level.
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It is convenient for some applications to introduce the empty graph. The
vertex set and the arc set of the empty graph can be regarded as the empty
set. The level of the empty graph is defined to be —2.

Two graphs (V,I") and (V', ") are said to be isomorphic, if there exists
a one-to-one mapping ¢ from V onto V' such that (a,b) is an arc of (V, I) if
and only if (¢(a), p(b)) is an arc of (V’, I'"). Any such mapping ¢ is called an
isomorphism from (V,I") to (V',I"'). An isomorphism from a graph to itself
is called an automorphism of the graph.

A graph (V',I") is called a subgraph of a graph (V,I"), if V' C V and
I'cr.

A graph (V,T') is called a tree with root v, if the following conditions
hold: (a) each vertex (# v) is a terminal vertex of a unique arc; (b) v is not
a terminal vertex of any arc; and (c) (V,I") has no circuit.

A vertex of a tree is called a leaf, if no arc emits from the vertex, i.e., the
outgoing vertex set of the vertex is empty.

Let (V,I") and (V',I") be two trees. If (V',I"") is a subgraph of (V,I"),
(V',I") is called a subtree of (V,I).

Let G be a (directed) graph (respectively tree). If an element of some set
is assigned to each arc of G, or if an element of some set is assigned to each
arc of G and an element of some set is assigned to each vertex of G, G is
called a labelled graph (respectively labelled tree). The element assigned to an
arc (respectively a vertex) is referred to as the arc (respectively vertex) label
of the arc (respectively vertex).

1.2 Definitions of Finite Automata

1.2.1 Finite Automata as Transducers

For any set A, the concatenation of elements in A, say agay - ..a;_1, is called
a word (or a finite sequence) over A, and [ its length, where ag,aq,...,a;—1
are elements in A. In the case of [ = 0, agay ...a;_1 is a void sequence which
contains no element. The void sequence is called the empty word and its
length is 0. We use ¢ to denote the empty word (void sequence), and |«| the
length of a word «. The set of all the words over A including the empty word
is denoted by A*. If ag,a1,...,an,... are elements in A, the concatenation
of the infinite elements aga; ... a, ... is called an infinite-length word or an
w-word (or an infinite sequence) over A. We use A% to denote the set of all
infinite-length words over A. We also use A™ to denote the set of all words
over A of length n for any nonnegative integer n.

Let & = agay...a,m—1 and B = bgby...b,_1 be two words in A*. The
concatenation of  and 3 is agay ... am_1bpb1 .. .b,_1, which is also a word in



1.2 Definitions of Finite Automata 7

A* of length m+n, and is denoted by a-(3, or a3 for short. Clearly, a-e = e-:a =
«. Similarly, if « = agay...a;y,—1 is in A* and 8 = bgby...by_1... in A%,
then the concatenation of o and (3 is the element agay ... amm_1b60b1 ... bp_1 ...
in A“ which is also denoted by « - 3, or af for short. Clearly, ¢ - 3 = (. § is
called a prefix of «, if there exists v such that o = 3. 3 is called a suffiz of
«, if there exists v such that a = 3. For any U,V C A*, the concatenation
of U and V is the set {af | @ € U, 3 € V'}, denoted by UV.

A finite automaton is a quintuple (X,Y, 5,4, A), where X, Y and S are
nonempty finite sets, J is a single-valued mapping from S x X to .S, and X is
a single-valued mapping from S x X to Y. X, Y and S are called the input
alphabet, the output alphabet and the state alphabet of the finite automaton,
respectively; and § and A are called the nezt state function and the output
function of the finite automaton, respectively.

Expand the domain of § to § x X* as follows. For any state sy in S and
any [(> 0) input letters xg,x1,...,2;—1 in X, we compute recurrently states
81,...,8 in S by

Siv1 = 0(si,24), 1=0,1,...,0—1,
and define
0(s0, Tox1 ... T1—1) = 8.
In the case of [ = 0, we define
4(s0,€) = So.

Expand the domain of A to S x (X* U X%) and the range of A to Y*UY¥ as
follows. For any state sg in S and any (> 0) input letters xg,x1,...,2;—1 in
X, we define

)\(3079603?1 .- -xlfl) =YoYy1---Yi-1,
where
yi = A0(s0, xox1 ... Ti—1),24), 1=0,1,...,1—1.
In the case of [ = 0, we define
A(sp,€) = €.
For any state sg in S and any infinite input letters xq, z1,... in X, we define
(80, ToT1---) = Yoy1 - - -,

where
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yi = AN0(s0, Tox1 ... Ti—1), i), i=0,1,...
From the definitions, it is easy to see that
0(s,af) =6(0(s,0), ), s€S8, a,f e X*
and
A(s,af) = As,)A(d(s,a),0), s€8, ae X", e X *UXY. (1.1)

Notice that each state s of the finite automaton determines a single-valued
mapping As from X* U X to Y* UY*, where

As(a) = A(s, ), ae X"UX®.

Xs is called the automaton mapping of s of which the restriction Ag|x+ is a
single-valued mapping from X* to Y* and the restriction As|x« is a single-
valued mapping from X* to Y*. From (1.1), it is evident that A\s|x- and
As|x« can be determined by each other. A single-valued mapping ¢ from X*
to Y™ is said to be sequential, if |¢p(a)| = |a| for any o € X* and ¢(0) is a
prefix of ¢(«) for any o € X* and any prefix 3 of «. From the definition of
A and (1.1), A\s|x~ is sequential.

Ezample 1.2.1. Let X =Y ={0,1} and S = {0,1}" = {{a1, ..., an)|a1, ...,
an = 0,1}. Define

0({ar,...,an),x) = (ag,...,an, f(a1,...,an,x)),
)\(<a1,...,an>,x) = g(ala"'aanv'x)a
aly...yan,r=0,1,

where f and g are two single-valued mappings from {0, 1}"* to {0,1}. Then
(X,Y,S,6,)) is a finite automaton. We use BSRy, to denote the finite
automaton. The name is an abbreviation of the phrase “Binary Shift Register
with feedback function f and mixer g 7. Given sg = (a—n,...,a—1) € S and
2 € X,i=0,1,..., let

)\(80,%01’1....’&;...):yoyl...yi...

for some y; € Y,i=0,1,... Then
Yi = 9(Qi—ny .oy ai—1,25), 1=0,1,...

and
5(80,1’0.’E1 .. .[L’i,1) = <ai7n» . .,ai,1>, 1= O, 1, ey

where
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a; = f(ai_n,...,ai_l,mi), 1= 0,1,...

A special case is of interest, where f(ai,...,an,2) does not depend on
x, that is, f is a single-valued mapping from {0,1}" to {0,1}, and g can be
expressed as
glai,...,an, ) =g (a1,...,a,) ®z,

@ standing for the exclusive-or operation, that is, the addition modulo 2
operation. This automaton is called the binary steam cipher in cryptology
community. The key-sequence is generated by a shift register with feedback
function f and output logic ¢’; the mixer of the key and the input is the
addition modulo 2. Given sg = (a—p,...,a—1) € Sand z; € X,i=0,1,...,
let

)\(80,%01’1....’[1'...) =YoY1---Yi--..

for some y; € Y,i=0,1,... Then
/ .
Yi =9 (Gi—n,-..,ai-1) Dy, i=0,1,...

and
6(80,IOI1 ce xi—l) = (ai_n, ey ai_1>, 1= 0, 1, ey

where
a; = f(ai,n, .. .,ai,l), 1= 07 ]., e

Let M; = (X;,Y:,5;,0:;,\i), i = 1,2 be two finite automata. For any
s; € S;, 1 =1,2, s1 and s are said to be equivalent, denoted by s1 ~ sa, if
X1 = X, and for any a € X7, A\1(s1,a) = A2(s2, ) holds.

Let X; s, be the automaton mapping of s;, i = 1,2. Consider /\z‘,sq-,|X; as
a mapping from X to (Y1 U Y2)*". Then s; ~ sg if and only if Ay 4, |x; =
A2.s, | x5 - Consider \; x+ as a mapping from X}’ to (Y1UY2)“. Since A, g, \X;
and A g, |Xf are determined by each other, we have that s; ~ so if and only
if A1 s, [xe = Aas,|xg . Therefore, s; ~ s if and only if Ay 5, = Az 5,. In other
words, s1 ~ sg if and only if for any a € X{¥ (= X¥), A1(s1, @) = Aa(s2, )
holds, if and only if for any o € X7 U X¥ (= X5 U XY), A1(s1, @) = Aa(s2, @)
holds.

From the definition, it is easy to show that the relation ~ is reflexive,

symmetric and transitive.

If 57 ~ s and a € X7, then §(s1,a) ~ §(s2, ). In fact, since s; ~ so,
for any 5 € X7, we have A\1(s1, ) = Aa(S2,a) and A (s1,a8) = Aa(s2, ).
From

Ai(si,af) = Ni(ss, @) Ai(0:(s4, @), B), 1 =1,2,

it follows that
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A1(s1,)A1(01(s1, @), B) = A2(s2, @) A2(02(s2, @), B).

Thus

)\1((51(51, a),ﬁ) = /\2(52(82, Oé),ﬁ).

We conclude that §(s1,a) ~ 0(s2, @).

Mo is said to be stronger than My, denoted by M7 < Mo, if for any state
s1 in S7, there exists a state sy in Sy such that s; ~ so. M; and My are
said to be equivalent, denoted by My ~ My, if My < My and My < M.
Clearly, the relation < is reflexive and transitive, and the relation ~ on finite
automata is reflexive, symmetric and transitive.

A finite automaton is said to be minimal, if any different states of it are
not equivalent.

M, and M, are said to be isomorphic, if X1 = X5, Y7 = Y5 and there
exists a one-to-one mapping ¢ from S; onto S5 such that

©(01(s1,2)) = da(p(s1), @), A1(s1,2) = Aa(p(s1),x), s1 €51, € X;.

p is called an isomorphism from M; to Ms.

If M; and M5 are isomorphic, then M; and M are equivalent. In fact,
since M; and My are isomorphic, there exists an isomorphism ¢ from M; to
M. We prove by induction on the length of o that

A (5,0) = Aa((s), ) (12)
holds for any s in S; and any « in X;. Basis : || =0, i.e., « = ¢. Since
A1(s, @) == Xa(p(s), @)

holds for any s in S7, (1.2) holds for any s in S; and «a = e. Induction step :
Suppose that we have proven that (1.2) holds for any s in S; and any « in
X7 of length n. Given « € X of length n 4 1, let a = za’, where x € X;.
Then the length of o’ is n. Since M7 and My are isomorphic, we have

p(01(s, ) = 62(p(s), 7)
and
A1(s,z) = Aa(p(s), x).
From the induction hypothesis, we have
A (61(s,2),a") = Xa((81(s, 1)), a’).

Thus
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Therefore, (1.2) holds for any s in S; and any « in X; of length n + 1. We
conclude that (1.2) holds for any s in S and any « in X7. Thus s ~ ¢(s),
s € S7. Since ¢ is surjective, My and M, are equivalent.

Conversely, if M7 and M are minimal and equivalent, and Y} = Y5, then
My and M> are isomorphic. In fact, since My and M; are equivalent, we have
X1 = X5 and for any state s in S7 we can find a state s’ in Sy with s ~ s’. Let
© be the relation ~ from S; to S3. Since M is minimal, ¢ is single-valued.
Since M; and M are equivalent, ¢ is a mapping from S; onto S5. To prove
 is one-to-one, suppose that ¢(s1) = p(s2). Since s; ~ ¢(s;), i = 1,2, we
have s; ~ so. Since M; is minimal, this yields s; = so. Thus ¢ is one-to-one.
We conclude that ¢ is a one-to-one mapping from S; onto Ss. To prove that
M; and Ms are isomorphic, it is sufficient to prove that ¢ is an isomorphism.
Since s ~ ¢(s) holds for any s in S7, for any « in X7, we have

Ai(s,2) = Aa(p(s), )
and 61 (s1, ) ~ d2(p(s), z). The latter yields

@(61(s1,)) = d2(p(s), 7).

Therefore, ¢ is an isomorphism from M; to Ms.
M, is called a finite subautomaton of My, denoted by My < M, if X; C
X2, Y1 CY5, 51 C 955, and

01(s, ) = da(s,x), Ai(s,x) = Aa(s,x),
s€e S, e X;.

For any finite automaton M = (X,Y,S,d,\), any nonempty subset X'
of X and any nonempty subset S of S, if §(5', X’) = {d(s,z) | s € §',z €
X'} € 5, 5 is said to be closed with respect to X’ in M. Clearly, given
M, for any nonempty subset X; of X5, any nonempty subset S; of Ss, and
any nonempty subset Y7 of Y5, if S7 is closed with respect to X7 in My and
)\g(Sl,Xl) = {/\Q(S,JJ) | s€e S, r € Xl} C Y;, then

(X1,Y7,51,02]5, xx1, A2ls x x1 )

is a finite subautomaton of Ms.

For any states s and s’ of a finite automaton (X, Y, S, d, \), if there exists
z € X such that s’ = d(s,z), s’ is called a successor state of s; if s’ is a
successor state of s, s is called a predecessor state of s'.
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1.2.2 Special Finite Automata

We give definitions of several special finite automata.

Let M = (X,Y,S,d,\) be a finite automaton. If for any s in S, (s, x)
and A(s,z) do not depend on z, M is said to be autonomous. We abbreviate
the autonomous finite automaton to a quadruple (Y, 5,4, \), where § is a
single-valued mapping from S to S, and A is a single-valued mapping from .S
to Y.

Ezxample 1.2.2. LetY ={0,1} and S = {0,1}" = {{a1, ..., an)|a1,...,an =
0,1}. Define

d({at,...,an)) ={ag,...,an, fa1,...,a,)),
)‘(<a17"'aan>) = g(ala"'aan)a
al,...,an =0,1,

where f and g are two single-valued mappings from {0,1}" to {0,1}. Then
(Y,S,9,\) is an autonomous finite automaton. We use BASR; , to denote
the autonomous finite automaton. The name is an abbreviation of the phrase
“Binary Autonomous Shift Register with feedback function f and output
function g”.

Let M; = (Y;,5;,0;,\i), i = 1,2 be two autonomous finite automata. M;
is called an (autonomous) finite subautomaton of My, denoted by M; < Mo,
if Yl Q }/2, Sl Q SQ and

61(s) = d2(5), A1(s) = Aa(s),
s € S.

For any autonomous finite automaton M = (Y,5,6,A) and any nonempty
subset S’ of S, if §(S") = {d(s) | s € S’} C S, S is said to be closed in
M. Clearly, given My, for any nonempty subset S; of S; and any nonempty
subset Y7 of Ya, if Sy is closed in My and A2(S1) = {X2(s) | s € S1} C Y7,
then (Y1, S1,d2|s,, A2|s,) is an autonomous finite subautomaton of Ms.

For any single-valued mapping f from Y* x X"*! to Y, where h and k
are nonnegative integers, and X and Y are two nonempty finite sets, we use
My to denote a finite automaton defined by

Y = f(yi—h ooy Yimky Ljy . ,IIZi_h), 1= O, 1, N
More precisely, My = (X,Y,Y* x X" § \), where

O((Y—tyee oy Ymky @1y ey T_p), L)

= <y07y713 ey Y—k+1,T0, T—1, - - - 7x7h+1>7
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/\(<y—1) e Yk -1y ,I_h>,$0) = Yo,
Yo = f(yflv e Yk O, L1y e - 7x7h)7

Y-1,---5Y-k GK Loy L—15---,L—h e X.

M is called the (h, k)-order memory finite automaton determined by f. In
the case of £ = 0, My is called the h-order input-memory finite automaton
determined by f.

Let f and g be single-valued mappings from Y* x UPt! x XPt! to YV
and U, respectively, where h and k are nonnegative integers, p > —1 is an
integer, X, Y and U are nonempty finite sets. We use M 4 to denote a finite
automaton defined by

Yi; = f(yi—la s Yi—ky Ugy oo ,ui_p,xi, Ce ,sci_h),
Uig1 = G(Yim1s -+ Yikr Wiy - - - y Wi—py Ly« -+ s Tieh)s
i=0,1,...

More precisely, My, = (X,Y,Y* x UPt1 x X" §,)\), where

6(3,.130) = <y0, ey Y—k41,UT, ,u_p+1,a;‘0, e ,x_h+1>,
A(s,z0) = Yo,
Yo = fY=1,- Yy U0, -+ U—p, O, - - -, Th),
U1 = g(Y=1, s Yeks U0y - -+, U—py TO5 -+, T—p),
8= (Ytsee s Ykr U0y ey Uy Ty e s Tpy) € YE X UPTL 5 X
T € X.

My 4 is called the (h, k, p)-order pseudo-memory finite automaton determined
by f and g. Clearly, in the case of p = —1, My , degenerates to M.

Let M, = (Y4, Sa, 04, Aa) be an autonomous finite automaton, f a single-
valued mapping from X1 x \,(S,) to Y. We use SIM(M,, f) to denote a
finite automaton (X,Y, X¢ x S,,d, \), where

6((1‘_1, sy Tg, 5a>a‘TO) = <I07I—1a ce 7x—c+176a(5a)>7
AM{z_1, o ¢, 8a),m0) = f(T0, T—1, -+, T—e, Aa(Sa)),
Loy T_1,...,T_c € X, Sq € 5,.

SIM(M,, f) is referred to as a c-order semi-input-memory finite automaton
determined by M, and f.

Clearly, if f(zq,...,z—,t) does not depend on t, then STM(M,, f)
degenerates to the input-memory finite automaton My, where f’(zo,...,
x_.) = f(zo,...,x_¢,t), t being an arbitrarily given element in A, (S,).
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A finite automaton (X,Y] S, 4, \) is said to be linear over the finite field
GF(q),if X,Y and S are vector spaces over GF(q) of dimensions [, m and n,
respectively, J is a linear mapping from S x X to .S, and X is a linear mapping
from S x X to Y, where [, m and n are some nonnegative integers.

In the case where X, Y and S consist of all column vectors over GF(q)
of dimensions I, m and n, respectively, § may be given by an n X n matrix A
and an n x [ matrix B over GF(q), and A may be given by an m x n matrix
C and an m x [ matrix D over GF'(q), that is,

d(s,z) = As + Bu,
A(s,z) = Cs + D,
ses, reX.
The matrices A, B, C, D are called structure matrices of the finite automaton
and [, m, n structure parameters of the finite automaton. A is referred to as

the state transition matriz of the finite automaton. In the autonomous case,
its structure matrices are A, C and its structure parameters are m, n.

1.2.3 Compound Finite Automata

For any two finite automata M; = (X;,Y;,S;,0;, \i), i = 1,2 with Y7 = X,
we use C(My, Ms) to denote the superposition of M; and Ms, i.e., the finite
automaton (X1, Y, S1 x Sa, d, A), where
6((s1,52),7) = (1(s1, ), 02(52, A1 (81, 7))),
A({s1,82), @) = Aa(s2, A1 (s1,2)),
s1 € 51,80 € 5o, € X7,

Another kind of combination of finite automata may be defined as follows.
Let g be a single-valued mapping from U” x VP! to U, and f a single-valued
mapping from W to V. C"(My, M) = (W, U, U" x WPTt 5 ) is a (p+t,7)-
order memory finite automaton defined by

Ui = g(Wim1y ooy Uimr, Wiy ooy Wimy), ooy Wiy oo, Wimp—t)),
i=0,1,...,
that is,
S((U—ty e U, Wty e e, W), Wo)
= (UQy vy U 1, WOy -+« + s Wep—t41),
AUty Uy W, e W), W) = U,
uo = g(u—1,...,u—p, f(wo, ..., w_g),..., flw_p,...,w_p_y)),

Wo, W—1y+++,W_p—t S W, U1y ., U_p € U.
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Theorem 1.2.1. Let s = (u_1, ..., U_p, W_1, ..., W_p_¢) e a state of
C'(My, My). Let sy = (w_1, ..., w_y) and Sg = (U_1, ..., U—p,V_1,...,V_p),
where v; = f(wg,...,wi—), i = —1, ..., —p. Then the state (sy,sq) of
C(My, Mgy) and s are equivalent. Moreover, if

Vop. o V10Ut - = Ap((Wepo1, o, W), Wep . . W wowy .. .)  (1.3)

and
UoUL - .. = Ag({U—1, ..o, U, V1, .o, U_p), VUL - . ), (1.4)

then
Ut oo = AU,y o Uy, W, e, Wy ), WoWT - - ), (1.5)

where Ay, Ag and A are output functions of My, My and C'(My, My), respec-
tively.

Proof. Suppose that (1.3) and (1.4) hold. Then
v, = flwg,...,wi—y), i=—p,...,—1,0,1,...,
and
Up = G(Uim1y ooy Uimp, Uy oo, Vimp), 4 =10,1,...

It immediately follows that

U; = g(ui_l, cee s Uj—yp, f(wl, - ,wi_t), ceey f(wi_p, e ,wi_p_t)),
1=0,1,...
Thus (1.5) holds.
For any wq, w1, ... in W, suppose that
UUL - .. = Ag(8g, Af(sf, wows .. .)).
Then there exist vg,v1,... in V such that
VoV1 ... = /\f(sf,wowl . )

It follows that
UUL - .. = Ag(8g, Vo1 .. .).

Therefore, (1.3) and (1.4) hold. From the result proven in the preceding
paragraph, (1.5) holds. Thus the state (sy, sq) of C'(My, M,) and the state
s of C'(Mjy, M) are equivalent. O

For n > 1, we use C'(My, M,...,M,) to denote C'(C'(My, M, ...,
Mn—l)aMn)a and C(Mo,Ml, vy Mn) to denote C(O(Mo,Ml,...,Mn_l),
M,). For n = 0, C'(My,...,M,) and C(My,...,M,) mean M,. Clearly,
C'(C'( My, My, ..., My_1), M) = C'(My, C' (M, ..., My)), C(C(My, M,

oy My_1), My) = C(My, C(M;, ..., My,)); that is, the associative law holds.
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1.2.4 Finite Automata as Recognizers

We have dealt with a finite automaton as a transducer which transforms an
input sequence to an output sequence of the same length.

We also defined a special kind of finite automata, i.e., autonomous finite
automata. Behavior of an autonomous finite automaton is producing periodic
sequences.

In history, a finite automaton is considered as an event (sequence)
recognizer in the early 1950s by S. C. Kleene who introduced the concept
of regular events and proved the equivalence between regular events and
acceptable events by finite automata, an important result in formal language
theory. We review some basic concepts.

For a finite automaton (X,Y,S,5, ), if |Y| = 1, it is called a finite
automaton without output, abbreviated to (X, S, §).

If (X,5,6) is a finite automaton without output, sp € S and F C 5,
the quintuple (X, S, 0, sg, F) is called a finite automaton recognizer, or finite
recognizer for short. sq is called its initial state, and F its final state set.

Let M = (X,S,6,s0,F) be a finite automaton recognizer. The set
R(M) ={a|aec X* d(so,a) € F}is called the recognizing set of M.

For any finite automaton recognizer M = (X, 5,6, s, F') and any set
A C X* if R(M) = A, we say that M recognizes A.

1.3 Linear Finite Automata

We review some properties of linear finite automata and the definition of the
z-transformation for linear finite automata.

Theorem 1.3.1. Let M be a linear finite automaton over GF(q) with
structure matrices A, B,C, D. For any sg in S and any xg,1,... in X, let
Siv1 = 0(8i,24), ¥i = M(si,24), 1 =0,1,... Then

i—1
S; = AiSO —+ E Ali]ilB(Ej,
=0

Yi = CA780 + ZHi_jxj’
=0
1=0,1,...,

where Hy = D, H; = CA~IB, § > 0.

Proof. We prove by induction on i that s; = AisoJij.;lO A"I71 Bz, holds
for any 4 > 0. Basis : i = 0. It is trivial that so = A%y + Z?;é Ao’jlexj
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holds. Induction step : Suppose that s; = Alsg + Z;;E A"=I=1Bz; holds.
Then
i—1
Si+1 = As; + Bx; = A(AZSO + ZAZ_j_lBl‘j) + Bx;
§=0

= Alsg+ > A Ba;.
7=0
That is, s;41 = Atlsy + Z§:o A"~iBx; holds. Therefore, s; = A’sy +

Z;;%) A"=3=1Bx; holds for any i > 0.
Using the proven result, for any ¢ > 0, we have

i—1
y;i = Cs; + Dx; = C(Aiso + ZAi_j_lej) + Dx;
j=0
i—1 i
= CAiSO -+ ZCAiijilBl’j —+ DSEl = CAiSO + ZHz‘_jIj.
§=0 =0
That is, y; = CAlsy + Z;:o H;_jz; holds for any i > 0. O

Theorem 1.3.2. Let M = (X,Y,S,8,\) be a linear finite automaton over
GF(q) with structure matrices A, B,C, D. For any s; € S, any «; € X¥, any
ci € GF(q), 1 = 1,2, we have

)\(6151 + c282,Cc1001 + C2a2) = cl)\(sl, 041) + 62)\(52, 042).

Proof. For any infinite sequence (w-word) 3, denote 8 = (8)o(0)1 ...,
where |(8);| =1,7=0,1,... From Theorem 1.3.1, we have

(AMc1s1 + cas2, c100 + c2002));

= CAi(clsl + 0282) + Z Hi,j(clal + Cgag)j

Jj=0

= CA'(c151 + c282) + 3 Hij((cr0n); + (c202);)
=0

= chAisl + CQCAiSQ +c1 Z H;_; (Oél)j + C2 Z Hi_j(ag)j

§=0 §=0
= c1(A(s1,00))i + ca(A(s2, 2))is
1=0,1,...
Thus A(c181 + €282, 101 + caa) = 1 A(s1, 1) + caA(s2, ). O

From the proof of Theorem 1.3.2, we have the following corollaries.
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Corollary 1.3.1. Let M = (X,Y,S,6,\) be a linear finite automaton over
GF(q). For any positive integer k, any s; € S, any a; € X* with |a;| = k,
any ¢; € GF(q), i = 1,2, we have

)\(6181 + C2892,C101 + 02042) = ClA(Sl, Oél) —+ CQ)\(SQ, 062).

Corollary 1.3.2. Let M = (X,Y,S,6,\) be a linear finite automaton over
GF(q). For any s € S and any o € X¥, we have

A(s, ) = A(s,0%) + A0, @),

where 0 stands for the zero vector in S, and 0% stands for an infinite sequence
consisting of zero vectors in X.

A(s,0v) is called the free response of the state s, and A(0, ) the force
response of the input a. Corollary 1.3.2 means that any output sequence of
any linear finite automaton can be decomposed into the free response of the
initial state and the force response of the input sequence.

Clearly, all the free responses of a linear finite automaton over GF(q) is
a vector space over GF(q).

Theorem 1.3.3. Let M; = (X;,Y;, Si,0:, \i) be a linear finite automaton
over GF(q), 1 =1,2, and X1 = Xo. For any s; € S;, i = 1,2, s1 ~ so if and
only if the zero state of My and the zero state of Ms are equivalent and the
free responses of s1 and so are the same.

Proof. Suppose that s1 ~ so. For any a € X{, we then have A\;(s1,a) =
A2(s2, ). Especially, taking o = 0¥, we obtain A1(s1,0%) = Ag(s2,0%), that
is, the free responses of s; and s are the same. Since A;(s;,a) = A;(s;,0%)
+2:(0,), i = 1,2, A(s1,) = Aa(s2, @) yields A1 (0, @) = A2(0, @). Tt follows
that the zero state of M; and the zero state of My are equivalent.

Conversely, suppose that the zero state of M; and the zero state of My
are equivalent and the free responses of s; and sy are the same. Then for
any @ € X¢, A\1(0,a) = A2(0, ), and A (s1,0%) = A2(s2,0%). Thus for any
o€ Xf, )\1(51,0[) = Al(Sl,Ow) +)\1(0,0Z) = A2(5270w) +)\2(0,0t) = A2(527a).
Therefore, s1 ~ 5. O

Corollary 1.3.3. Let M be a linear finite automaton over GF(q). For any
states s1 and s of M, s1 ~ so if and only if the free responses of s1 and so
are the same.

Corollary 1.3.4. Let M; and My be two linear finite automata over GF(q).
Then My ~ My if and only if the zero state of My and the zero state of My
are equivalent and the free response spaces of My and My are the same.
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Corollary 1.3.5. Let M and M’ be two linear finite automata over GF(q).
If the state s; of M and the state s, of M' are equivalent, i = 1,...,k, then
for any ¢; in GF(q), i = 1,...,k, the state ¢c181 + - - - + cxsx of M and the
state 18] + - - - + xS}, of M' are equivalent.

Let M be a linear finite automaton over GF(q) with structure matrices
A, B,C, D and structure parameters [, m, n. The matrix

C

CA
K, =

caArt

is called the diagnostic matriz of M.

For any states s; and so of M, since s; ~ so if and only if their free
responses are the same, s; ~ sg if and only if CA’s; = CA’sy, i = 0,1,...
Since the degree of the minimal polynomial of A is at most n, s; ~ sg if
and only if CA's; = CA’sy, i = 0,1,...,n — 1. Thus s; ~ s, if and only if
Knsl = KnSQ.

Let T be a matrix consisting of some maximal independent rows of K,.
Then s1 ~ sg if and only if T's; = T'ss.

Theorem 1.3.4. Let M be a linear finite automaton over GF(q) with
structure matrices A, B,C, D. Assume that a matriz T over GF(q) satisfies
conditions: rows of T' are linear independent and for any states s and so of M
s1 ~ 8o if and only if Tsy = T'sy. Let M' be a linear finite automaton over
GF(q) with structure matrices A', B',C", D', where A’ = TAR, B’ = TB,
C'" = CR, D' = D, R is a right inverse matriz of T. Then M’ is minimal
and equivalent to M.

Proof. Clearly, for any state s of M, T's = T(RT's); therefore, s ~ RT's.

We prove TART = T A. For any state s of M, the input 0 carries states
s and RT's to states As and ART's, respectively. From RTs ~ s, we have
ARTs ~ As. It follows that TARTs = T As. From arbitrariness of s, we have
TART =TA.

We prove CRT = C'. For any state s of M, since s ~ RT's, the output of
the input 0 on the state s and the output of the input 0 on the state RT's are
the same, namely, C's = CRT's. From arbitrariness of s, we have C' = CRT.

For any state s of M, T's is a state of M’. We prove s ~ T's. For any input
sequence o1 ..., let the output sequences on s and on T's be yoy; ... and
Yoy - - -, respectively. From Theorem 1.3.1, we have

yi = CA's + Dxo+ Y CA™/ 7' Ba,
j=1
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i
Y, =C'A"Ts + D'z + Z C'A"=I71 B,
j=1

i=0,1,...

Using TART =T A and CRT = C, this yields

y; = (CR)(TAR)'Ts + Dzxo + zl:(CR)(TAR)i_j_l(TB)l“j

j=1

= (CR)TA's + Do+ » (CR)TA"™ 7' Bu;

j=1

i
= CA's+ Dxo+ )y CA™/7'Ba; =y,
j=1
i=0,1,...

Thus s ~ T's.

Since for any state s’ of M’ there exists a state s of M such that s’ = T's,
we have s ~ s’. On the other hand, for any state s of M, the state T's of M’
is equivalent to s. Thus M’ and M are equivalent.

We prove that M’ is minimal. Suppose that s] and s} are two equivalent
states of M'. Let s; = Rs,, i = 1,2. Then s; and T's; (=s}) are equivalent,
i =1,2. From s} ~ s}, we have s; ~ so. It follows that T's; = T'sy. That is,
s} = s4. Thus M’ is minimal. O

Let M; = (X;,Y;,5:,8;,\:), ¢ = 1,2 be two linear finite automata over
GF(q). My and M> are said to be similar, if there exists a linear isomorphism
from M; to Ms. From the definition, it is easy to show that the similar relation
is reflexive, symmetric and transitive.

If M; and M, are minimal and equivalent, and Y; = Y5, then M; and
My are similar. In fact, it is proven in Subsect. 1.2.1 that the relation ~ is
an isomorphism from M; to Ms. Let ¢ be the relation ~ from S; to Ss. We
prove that ¢ is linear. Let ¢; € GF(q), s; € S1, ¢ = 1,2. Since s; ~ ©(s;),
i = 1,2, from Corollary 1.3.5, we have c181 + casa ~ c1¢(s1) + cap(s2). Thus
p(c1814ca82) = c19(81) 4 cap(s2). We conclude that My and My are similar.

Let f(z) = 2F + ap_12""' 4+ - - - + a1z + ag be a polynomial over GF(q).
We use Py () to denote the matrix

0 1 ---0 0
0 0 ---0 0

Pry=1+ + -~ : ~ (1.6)
0 0 ---0 1

—Qo —a1 - —Ag-2 —0k-1



1.3 Linear Finite Automata 21

A linear finite automaton is called a linear shift register, if its state transition
matrix is Py, for some f(z).

Let M; = (X,Y,S;,d;,\;) be a linear finite automaton over GF(q) with
structure matrices A;, B;, C;, D; and structure parameters I, m, n;, i =

1,...,h. The linear finite automaton with structure matrices A, B, C, D is
called the union of My, ..., My, where
A1 Bl
A2 B2
A= . s B=1. 1,
Ap, By,

C:[Cl Cy ... th]7 D=D1+Dy+---+ Dy.

In the definition, some M, may be autonomous, where B; and D; are zero
matrices.

Theorem 1.3.5. Let M be a linear finite automaton over GF(q). Then
there exist linear shift registers My, ..., My over GF(q) such that M s
similar to the union of My, ..., My,.

Proof. Let A, B, C, D be structure matrices of M. It is known that there
exists a nonsingular matrix P over GF(q) such that

Py, (2) »
PAP! = 25

Py, (2

where f1(z), ..., fn(2) are the elementary divisors of A. Let M’ be a linear
finite automaton with structure matrices A’, B’, C', D, where A’ = PAP~!,
B' = PB, ¢! = CP~!. Clearly, M and M’ are similar. Let M; be a linear
shift register with structure matrices Py,(.), Bi, Ci, D;, i = 1,..., h, where

By
By
PB=| .|, CP'=[C1Cy ... Cy], D=Dy+Dy+---+ Dy,
By,
Clearly, M’ is the union of My, ..., Mj. O

Let M = (X,Y,S,0,\) be a linear finite automata over GF(q) with
structure matrices A, B,C, D and structure parameters [, m, n. Let Sy =
{6(0, ), € X*}. Denote the restrictions of § and A on Sy x X by dp and Ay,
respectively. It is easy to verify that dg and )y are single-valued mappings
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from Sy x X to Sy and Y, respectively. Thus My = (X, Y, S, dp, Ao) is a finite
subautomaton of M. It is easy to see that Sy is a subspace of S. Denote the
dimension of Sy by ng. Let R be an n X ng matrix so that columns of R
form a basis of Sy. Let T be a left inverse matrix of R. Define Ag = TAR,
By =TB, Cy = CR, and Dy = D. Let M} = (X,Y, S}, 0, Aj) be a linear
finite automaton over GF'(q) with structure matrices Ay, By, Co, Do, where
S{ is the vector space of dimension ng over GF(q). Then M/ and M, are
isomorphic. In fact, for any s; and ss in Sp, there exist s and sf in S} such
that s; = Rsl, i = 1,2. Thus T's; = T'sy if and only if s] = sj. It follows that
s1 = 8o if and only if T's; = T'sa. Let ¢ be a single-valued mapping from .S)
to Sp defined by ¢(s’) = Rs’ for any s’ in 5. Clearly, ¢ is bijective. For any
s" in S} and for any x in X, since Rs’ is in Sp, from the definitions of Sy and
d0, do(@(s’),x) is in Sy. Clearly, ¢(8((s’,z)) is in Sp. Since

Too(p(s"),z) = TARs + TBx = Ays’' + Box
— T(R(Aos' + Bow)) = T(sh(s',2)),
we have dg(¢(s'),z) = ¢(84(s’, z)). We also have
Mo(p(s"),2) = CRs' + Dz = Cys’ + Doz = N\(s', x).

Thus ¢ is an isomorphism from M} to My. Therefore, M{ and M, are
isomorphic. M{ is referred to as a minimal linear finite subautomaton of
M. Since each of minimal linear finite subautomata of M is isomorphic
to My, they are isomorphic. Since M{; and My are isomorphic, we have
S, = {8(0,a), @ € X*}. Let M, be the linear autonomous finite automa-
ton with structure matrices A,C. M, is referred to as the mazimal linear
autonomous finite subautomaton of M. From Corollary 1.3.2, for any state
(Sa, 84y of the union of M, and M{, the state s, + Rs{, of M and (s,, sj,) are
equivalent. Conversely, for any state s of M, the state (s,0) of the union of
M, and M| and s are equivalent. Thus M and the union of M, and M} are
equivalent.

Take a formal symbol z. Let

F = { Z a:z" | ar € GF(q), 7 =0,£1,£2,..., and the number

T=—00

of nonzero a, for negative subscript 7 is finite }

Any a(z) = Y00 _a.;2" in F, max n(a; = 0if 7 < n) is called the low
degree of a(z). We also denote a(z) by Y >, a-z" for any integer k < the
low degree of a(z). In the case of a, = 0 for any integer 7, we use 0 to

denote a(z). Notice that the low degree of 0 is —oo. For any two elements
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a(z) = 3222 __a;2" and b(z) = Y20 __b;2" in F, we define the sum of

T=—00 T=—00

a(z) and b(z) as an element > 7 (a;+b;)2z7 in F, denoted by a(z) + b(z).

We define the product of a(z) and b(z) as an element ».>° _ ¢,2" of F,
denoted by a(2)b(z), where

Cr = E aibj,

itj=7,i2k,j2h

k and h are lower degrees of a(z) and b(z), respectively. It is easy to verify
that F is a field and GF(q) is its subfield in the isomorphic sense (ag in
GF(q) corresponds to agz’ in F).

Let 2 = [wo,w1,...] be an infinite sequence over GF(q). The element
Y2 gwr2T in F is called the generating function or z-transformation of 2.
For any {2, we use {2(z) to denote its z-transformation.

Let @ = [pg, ¢1, - - -] be an infinite sequence over the column vector space of
dimension k over GF(q). Let ¢, = [p1r,...,0rr] T, for any nonnegative inte-
ger 7. We use @; to denote [p;o, @41, . . .], that is, the i-th component sequence
of @. [@1(2),...,Pr(2)]T is called the generating function or z-transformation
of @, denoted by ®(z). It is easy to verify that the z-transformation of the
linear combination of sequences, say a1 @1 + - - - + a,P,., is the linear combina-
tion of z-transformations, namely, a;P1(z) + - -+ a, P, (z),where ay, ..., a, €
GF(q), ®1, ..., P, are r infinite sequences over GF(q) or r infinite sequences
over a column vector space over GF(q).

Let M = (X,Y,S5,0,\) be a linear finite automaton over GF(q) with
structure matrices A, B, C, D and structure parameters [, m, n. For any sg
in S and any xg,x1,... in X, let s;41 = 6(si,24), ¥i = A(si,2), 1 =0,1,...
Then

Sr41 = AST + BI’-,—,
Yr = Cs, + Dx7'7 (17)
T=0,1,...

We use X(z), Y(z), and S(z) to denote z-transformations of the input se-
quence [xg, 1, ...], the output sequence [yo,y1,...], and the state sequence
[s0, S1, .. .], respectively. We use X;(z), Y;(2), Si(2), Tir, Yir, and s;; to de-
note the i-th components of X(z), Y(2), S(z), -, y,, and s,, respectively.
From (1.7), we have



24 1. Introduction

Z s1.27
Sl (Z) =0

oo
E Spr2’
L 7=0

i oo n l
s10+ Y (D aysjr—1+ Y biywr-1)z
=1 j=1 j=1

sn0+§ E UnjSj,r— 1+ g bn]'rJT 1

=1 j=1

B n [eS) l (eS)
T—1 T—1
S10 + 2 E ai; E Sjr—12"  + =z E by E Tjr—1%
j=1 =1 j=1 =1

n [eS) l 0o
T—1 T—
Sno + 2 E Qnj E 8jr—1% + z E bn;j E Tjr—1%
L j=1 =1 j=1 =1

810+ZZG,1J +Zzb1j

sn0+zZam +szmX

= s9 + 2zAS(2) + 2zBX (2),

where a;; and b;; are elements at row ¢ and column j of A and B, respectively.
It follows that

(E —2zA)S(z) = sp + 2BX(2),
where E stands for the n x n identity matrix over GF(q). Since the constant
term of the determinant |E — zA| is 1, we have

(E—2A)"!' = (E - 2A)"/|E — zA|,

where (E — zA)* is the adjoint matrix of E — zA, i.e., the matrix of which

the element at row ¢ and column j is the cofactor at row j and column ¢ of
E — zA. Thus
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S(z) = (E — 2A) 'sg+ 2(E — 24) "' BX(2)
(B - zA) - z2(E—zA)*B
T E—z4] ° |E — 24|

X(2). (1.8)

Since
n l
Yir :Zczjsjr+zd2]ij7 i= ]-7"'7m7 7-20717"'7
j=1 j=1
we have
n l
Yi(z) = Zciij(z) + Zdinj(zL i=1,...,m,
j=1 j=1

where ¢;; and d;; are elements at row ¢ and column j of C and D, respectively.
It follows that Y (z) = C'S(z) + DX (z). From (1.8), we have

Y(z) = C(E — zA) ‘s + (2C(E — zA)"'B+ D)X (2)

B ms° <W + D) X(x).  (19)

Let
C(E—zA)"' =C(E - 2A)"/|E — 24|, (1.10)
H(z) = 20(E — 2A)"'B+ D = 20(E — 2A)*B/|E — zA| + D.

Y(z) = G(2)so + H(2)X (). (1.11)

In (1.11), G(z)sp is the z-transformation of the free response of the initial
state sg, and H(z)X(z) is the z-transformation of the force response of the
input sequence zgxy... G(z) is called the free response matriz of M, and
H(z) is called the transfer function matriz of M. Clearly, if matrices G(z)
and H(z) over the field F satisfy the condition that (1.11) holds for any s and
any X (z), then G(z) and H(z) are the free response matrix and the transfer
function matrix of M, respectively. In other words, the free response matrix
and the transfer function matrix of M are uniquely determined by (1.11).
Notice that from (1.10), each element of G(z) and H(z) may be expressed as
a rational fraction of z with a nonzero constant term of the denominator.
In the case of

0 1 -0 0
0 0 -0 0

A= | = - : , (1.12)
0o 0 ---0 1
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we have
|E—zA| =14 an_12+ - +a12"" " + apz", (1.13)
220n_1(2) 2lon_a(2) s 2" 2p1(2) 2T
2 01 (2) 22n_2(2) e 2" B0i(2) 2R
(BE—2A)" = | : EI : ,
Z*(n72)¢n_1(z) Z*(nff%)%_Q(z) o 2% (2) P
Z_(n_l)'(/Jnfl(Z) z_(n_2)¢n72(z) “e. 2_11/]1(2;) ZO
where

k
(,Ok(Z) =1+ Zanfizia 1/%(2) = Z _anfizia (114)
i=1

k=1,....,n—1.

1.4 Concepts on Invertibility

A finite automaton M = (XY, S, 4, \) is said to be invertible, if for any s, s’
in S, and any «, & in X%, A(s,a) = A(s/, &) yields a = . In other words,
M is invertible, if and only if for any s in S and any « in X%, a can be
uniquely determined by A(s, «).

Evidently, if M is invertible, then M"” = (X,Y, 5" 6", \") is invertible in
the case where M < M or M" < M.

M is invertible, if and only if for any s, s’ in S, any z, 2’ in X, and any
a, & in X¥ A(s,za) = A(s',2'a’) implies x = 2/, that is, for any s in S,
any z in X, and any « in X¥, « can be uniquely determined by A(s, za). In
fact, the only if part is trivial. To prove the if part, suppose that A(s,a) =
A(s',a) for s, ¢’ in S and «, o’ in X*. We prove a = o/. Denote a = gz . . .,
o =z ..., for some x;, z} in X,i=0,1,... To prove z; = z} for i > 0,
let s; = d(s,x0...2i—1) and s, = (s, z(...2;_1). From A(s,zoz1...) =
A(s, 2o . ..), we have A(sj, &%iq1...) = A(si, xjxj . ..). Since for any ¢, ¢/
in S, any z, ' in X, and any 8, 8 in X%, \(t,z0) = A(t',2'f3) yields z =
«’, we have x; = 2. Thus a = .

A finite automaton M = (X,Y, S, 0, A) is said to be invertible with delay T,

7 being a nonnegative integer, if for any sin S and any z; in X,7=0,1,...,7,
xo can be uniquely determined by A(s,xq...x;), that is, for any s, s’ in S
and any x;,  in X, i = 0,1,...,7, A(s,z0...2;) = X', z(...2) yields
T = ).

Evidently, if M is invertible with delay 7, then M" = (X, Y,58",6",\") is
invertible with delay 7 in the case where M < M or M" < M.
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Clearly, if M is invertible with delay 7, then M is invertible. Below we
prove that its converse proposition also holds.

Let M = (X,Y,S,5,)) be a finite automaton. Construct a graph Gy, =
(V,I') as follows. Let

R={(8(s,2),8(s",2")) | x # a', X(s,x) = \(s',2),z,2" € X,s,5' € S}.

In the case of R # @, let the vertex set V of Gj; be the minimal subset
of S x S satisfying the following conditions: (a) R C V, (b) if (s,s') € V
and A(s,z) = A(¢,2) for z,2" € X, then (6(s,x),0(s’,2")) € V. Let the arc
set I of G be the set of all arcs ((s s'), (6(s,x), 6( x'))) satisfying the
following conditions: (s,s’) € V, z,2’ € X, and A(s, x) A(s’,2’). In the
case of R = @, let Gj; be the empty graph.

Theorem 1.4.1. M is invertible if and only if G has no circuit. Moreover,
if Gpr has no circuit and the level of Gy is p— 1, then M is invertible with
delay p + 1 and not invertible with delay T for any T < p.

Proof. Suppose that Gj; has a circuit, say w. From the construction of
G, for any vertex on w, there exists a path of which the terminal vertex
is the vertex on w and the initial vertex is in R. Thus there exists a path
Uy .. . up such that the initial vertex of wy is in R and w,tp41...ug is a
circuit for some r, 1 < r < k. Let (s;,5}) be the initial vertex of Uiy, © =
1,2,...,k. Then the termlnal vertex of uy is (s, s.). From the construction
of GM, there exist x;, o € X, ¢ = 1,2,...,k, such that §(s;, ;) = Sit1,
d(sj,wy) = sjpq,i=1,2,..., k=1, 0(sk, 2x) = r, 0(s}, 2},) = s, and A(s;, x;)
= A8}, z}),i=1,2,...,k. From (s1,s]) € R, there exist so, sj € S, zo, 2, €
X, such that 6(so, o) = s1, 0(s0, ) = 81, AM(s0,T0) = A(s(, ) and zg # xy.
Taking

QO =20%1 .- - Tp—1Tp ... TkTp ... Tho-.,

/ A / /! VA /
« Zl‘oxl...J}T_l.%‘r...l‘kajr...xk...,

we then have A(sg, @) = A(s(, ). Since xg # xf, M is not invertible.
Conversely, suppose that Gj; has no circuit. Then the level of Gy is
an integer, say p — 1. In the case of R = &, it is evident that p = —1
and M is invertible with delay 0 (= p 4+ 1). In the case of R # &, for
any states so and s of M, and any input sequences o = xox1 ...2Zp41 and
o = xor...x) g of length p+ 2, z;, 27 € X, i=0,1,...,p+ 1, we prove
by reduction to absurdity that A(s,a) = A(s,«’) implies g = x{,. Suppose
to the contrary that A(so, zox1 ... 7,41) = A(sp, 2p2] ... 2,1 1) and x # xp,
for some states sg, s, in .S and some input letters Ti, T ;, 1=0,1,...,p+1
in X. Denote s; = §(s;—1,2i—1), s} = 0(sh_1,25_1), i =1,2,...,p+ 2. Since
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(80, T0T1 - Tpr1) = A(80, TOT] - - - T)pyq), We have A(si, i) = A(sj,27), i =
0,1,...,p+1. From x¢ # x(, we have (s1,s]) € R, and for any i, 1 <14 < p+1,
there exists an arc, say u;, such that the initial vertex of w; is (s;, s;) and the
terminal vertex of u; is (si41, 87, 1). Thus uyus ... u,y1 is a path of Gy. Since
the length of the path is p+ 1, the level of G, is at least p. This contradicts
that the level of Gps is p — 1. We conclude that M is invertible with delay
p+1

Let 0 < 7 < p. Since the level of Gy is p— 1, there exists a path of length
7 of Gy, say ujus ... u,. Denote the initial vertex of u; by (s;,s;) and the
terminal vertex of u; by (sit1,s],1), ¢ = 1,2,...,7. From the construction
of Gy, without loss of generality, suppose that (s1,s}) is in R. From the
definition of R, there exist xg, z{, in X and so, s{, in S, such that 6(sg, zg) =
s1, 0(sh, zg) = sty A(so,zo) = A(sg,z() and xg # x{. From the construc-
tion of Gy, there exist z;, } in X, i = 1,2,...,7, such that §(s;,z;) =
Siq1, 0(8),25) = sjq, and A(s;, x5) = A(sj,27), ¢ = 1,2,...,7. Thus we have
A(80, Tox1 ... 27) = A(sh, xpx) ... al). From g # xy, M is not invertible with
delay 7. a

Corollary 1.4.1. If M is invertible, then there exists T < n(n — 1)/2 such
that M 1is invertible with delay T, where n is the element number in the state
alphabet of M.

Proof. Suppose that M is invertible. Whenever G, is the empty graph,
M is invertible with delay 0 and 0 < n(n — 1)/2. Whenever G is not the
empty graph, then Gj; = (V,I') has no circuit. This yields that s; # so
for any (s1,s2) in V. Thus |V| < n(n — 1). It is evident that (s1,s2) € R
if and only if (s2,s1) € R. From the construction of Gy, this yields that
(s1,s2) € V if and only if (sg,s1) € V, and that ((s1, s2), (s3,54)) € I' if and
only if ((s2,s1),(s4,83)) € I'. Therefore, the number of vertices with level
1 is at least 2, for any i, 0 < i < p, where p — 1 is the level of Gj;. Then
we have 2(p+ 1) < n(n —1). Take 7 = p+ 1. Then 7 < n(n — 1)/2. From
Theorem 1.4.1, M is invertible with delay 7. O

Let M = (X,Y,S,0,\) and M' = (Y, X, 5,6’ \) be two finite automata.
For any states s in S and s’ in S, if

(Vo) xo (Fag) x+ [N (8", A(5,0)) = apa & || = 7],

i.e., for any oo € X* there exists ag € X* such that N (s', A(s,«)) = apa and
lao| = 7, (8, 8) is called a match pair with delay 7 or say that s’ 7-matches
s. Clearly, if s’ T-matches s and 8 = (s, a) for some « in X*, then §'(¢', )
T-matches 4(s, ).

M’ is called an inverse with delay 7 of M, if for any s in S and any s’ in
S, (s',s) is a match pair with delay 7. M is called an original inverse with
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delay 7 of M’, if M’ is an inverse with delay 7 of M. M’ is called an inverse
with delay 7, if M’ is an inverse with delay 7 of some finite automaton. M’
is called an inverse, if M’ is an inverse with delay 7 for some 7.

Clearly, if M’ is an inverse with delay 7 of M, then M’ is an inverse with
delay 7 of M"” = (X,Y,S”,6",\") in the case where M < M or M" < M. If
M’ is an inverse with delay 7 of M, then M" = (Y, X, 5",6"”,\") is an inverse
with delay 7 of M in the case where M"” < M’ or M" < M’. Therefore, if
M’ is an inverse with delay 7, then M = (Y, X, 5", §”, A"} is an inverse with
delay 7 in the case where M < M’ or M" < M.

Theorem 1.4.2. If M is invertible with delay T, then there exists a T-order
input-memory finite automaton M’ such that M’ is an inverse with delay T
of M.

Proof. Since M is invertible with delay 7, for any s € S and any =z,
x1, ..., r € X, 2o can be uniquely determined by A(s,zozy ...xz,). Thus
we can construct a single-valued mapping f from Y7 t! to X satisfying the
condition: if yoy1 ...y, = A(s,xox1 ... 2,), s € S and xg, x1,...,2, € X, then
f@Wry - y1,90) = xo. Let M'(Y,X,S5",8,\) be the r-order input-memory
finite automaton M. From the definition of f and the construction of My,
it is easy to verify that for any s € S, any s’ € S’ and any g, z1,... € X,

N (s, A(s,x0m1...)) =T _r... 0 13077 ...

holds for some z_,,...,x_7 € X. Therefore, M’ is an inverse with delay 7
of M. a

Corollary 1.4.2. M is invertible with delay T if and only if there exists a
finite automaton M’ such that M’ is an inverse with delay T of M.

A finite automaton M = (X,Y, 5,4, ) is said to be weakly invertible, if
for any s in S, and any a, o in X“, A(s,a) = A(s,’) implies & = o/. In
other words, M is weakly invertible, if and only if for any s in S and any «
in X%, a can be uniquely determined by s and A(s, «), if and only if for any
sin S, Ag|xw is injective.

Evidently, if M is weakly invertible, then M"” = (X,Y,S5”,6" \') is
weakly invertible in the case where M” < M or M" < M.

M is weakly invertible, if and only if for any s in S, any z, 2’ in X, and
any «, o in X¥ A(s,za) = A(s,2’a’) implies z = 2/, that is, for any s in
S, any z in X, and any « in X“, x can be uniquely determined by s and
A(s, za). In fact, the only if part is trivial. To prove the if part, suppose that
As,a) = A(s, ') for s in S and «, o' in X¥. We prove a = . Denote
in X, 7= 0,1,... We prove

a = zoxy..., & = xixh. .., for some z;,
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x; = z; by induction on i. Basis : ¢ = 0. Since for any ¢ in S, any z, «’
in X, and any 8, 8 in X¥, A(¢,z8) = A(t,2'8") implies z = 2/, we have
xog = ). Induction step : Suppose that z; = a} holds for ¢ = 0,1,...,n.
Denote s” = d(s,xg...2y). Then s = §(s,z( ... z,). From A(s,xoz1...) =
A(s, 2o . ..), we have (8", xpi1%nq2...) = A(8", 2], 127,45 ...). Since for
any t in S, any z, 2’ in X, and any 3, 8’ in X“, A\(t,z3) = A(t,2'’) implies
x = ', we have x,11 = ], ;. We conclude that x; = z} holds for any i > 0,
that is, a = .

A finite automaton M = (X,Y,S,0, ) is said to be weakly invertible
with delay T, T being a nonnegative integer, if for any s in S and any z; in
X,i=0,1,...,7, o can be uniquely determined by s and A(s,xq...z,),
that is, for any s in S and any z;, «} in X, ¢ =0,1,...,7, A(s,z0...2,) =
A(s,z ... %) implies zg = xy).

Evidently, if M is weakly invertible with delay 7, then M"” = (X, Y,
S, 8", X'y is weakly invertible with delay 7 in the case where M"” < M or
M’ < M.

Clearly, if M is weakly invertible with delay 7, then M is weakly invertible.
Below we prove that its converse proposition also holds.

Let M = (X,Y, 5,6, ) be a finite automaton. Construct a graph G, =
(V,I') as follows. Let

R ={(6(s,2),0(s,2") | © # 2, A\(s,2) = X(s,2),z,2" € X,s € S}.

In the case of R’ # @, let the vertex set V' of G’; be the minimal subset of
S x S satisfying the following conditions: (a) R’ C V, (b) if (s,s’) € V and
A(s,z) = A(¢',2') for z, 2’ € X, then (§(s,x),d(s’,2’)) € V. Let the arc set I’
of G, be the set of all arcs ((s, s'), (d(s,z),d(s’, 2"))) satisfying the condition:
(s,s") eV, z,2' € X, and A(s,z) = A(s',2’). In the case of R’ = &, let G,
be the empty graph.

Theorem 1.4.3. M is weakly invertible if and only if G, has no circuit.
Moreover, if G, has no circuit and the level of G, is p — 1, then M is
weakly invertible with delay p + 1 and not weakly invertible with delay T for
any T < p.

Proof. Replacing s{,, R, G, “invertible” in the proof of Theorem 1.4.1
by so, R', G, “weakly invertible”, respectively, we obtain a proof of the
theorem. Below we give the details.

Suppose that G, has a circuit, say w. From the construction of G/, for
any vertex on w, there exists a path of which the terminal vertex is the vertex
on w and the initial vertex is in R’. Thus there exists a path ujus ... u such
that the initial vertex of uy is in R’ and w,uy41 ... ug is a circuit for some
r, 1 < r < k. Let (s;,8}) be the initial vertex of u;, ¢ = 1,2,...,k. Then
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!/
T

exist x;, x; € X, i =1,2,...,k, such that (s;,x;) = s441, 0(s}, ) = sj,q,
i=1,2,...,k—1, 0(sk,xk) = Sy, 0(8),2}) = 5., and A(s;, ;) = A(s}, x}),

i=1,2,...,k. From (s1,s}) € R’, there exist sg € S, o, z, € X, such that
d(s0,x0) = s1, (S0, x5) = Shs A(S0, o) = A(so,z() and xg # z(. Taking

the terminal vertex of wuy is (sy,s.). From the construction of G, there

a=Tox1 .- - Lyp—1Tp ... Ty ... Thk...,

o =zhxy.xh @l whal
we then have A(sg, &) = A(so, ). Since zg # x(, M is not weakly invertible.
Conversely, suppose that G', has no circuit. Then the level of G, is an
integer, say p — 1. In the case of R’ = @, it is evident that p = —1 and M is
weakly invertible with delay 0 (= p+ 1). In the case of R # &, for any state
so of M, and any input sequences a = ¢Z1...7,41 and ' = x4 ... 7,4,
of length p + 2, z;, , € X, i =0,1,...,p + 1, we prove by reduction to
absurdity that A(s,a) = A(s,a’) implies zg = z(. Suppose to the contrary
that A(so, 2021 ... 7p11) = A(S0,2pT] - .- 2),41) and xg # x, for some state
so in S, and some input letters xz;, %, i« = 0,1,...,p 4+ 1 in X. Denote

79

! / ! . !/

s; = 0(Si—1,%i—1), S, = 0(S,_1,@i_1), 1 = 1,2,...,p+ 2, where s; = so.
: ! a0 ! ! /
Since A(so, 201 - - Tpy1) = A(S0, T ... T}, 41), we have A(s;, x;) = A(s], z7),
i=0,1,...,p+1, where sj = sg. From x¢ # x{,, we have (s1,s]) € R’, and for

any ¢, 1 <1i < p+1, there exists an arc, say u;, such that the initial vertex of
u; is (s, 5;) and the terminal vertex of w; is (sit1,s7,1). Thus ujuy ... up41
is a path of G',. Since the length of the path is p + 1, the level of G, is at
least p. This contradicts that the level of G’ is p — 1. We conclude that M
is weakly invertible with delay p + 1.

Let 0 < 7 < p. Since the level of G}, is p — 1, there exists a path of
length 7 of G, say ujus...u,. Denote the initial vertex of u; by (s;,s})
and the terminal vertex of w; by (siy1,8;,1), 4 = 1,2,...,7. From the con-
struction of G%,, without loss of generality, suppose that (s1,s}) is in R'.
From the definition of R’, there exist xg, z(, in X and sg in S, such that
d(s0,x0) = s1, 0(s0,2() = s4, A(so,x0) = A(so, () and zg # xj. From the

construction of G, there exist z;, 2} in X, 4 =1,2,...,7, such that 6(s;, x;)
= sit1, 0(s5,25) = 5544, and A(ss,x;) = A(sj,25), ¢ = 1,2,...,7. Thus we
have A(so, Toz1 ... 27) = A(so, x(2] ... 2}). From xy # x{, M is not weakly
invertible with delay 7. a

Corollary 1.4.3. If M is weakly invertible, then there exists T < n(n—1)/2
such that M is weakly invertible with delay T, where n is the element number
in the state alphabet of M.
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Proof. Replacing R, Gys, “invertible”, “Theorem 1.4.1” in the proof of
Corollary 1.4.1 by R/, G';, “weakly invertible”, “Theorem 1.4.3”, respec-
tively, we obtain a proof of the corollary. Below we give the details.

Suppose that M is weakly invertible. Whenever G, is the empty graph,
M is invertible with delay 0 and 0 < n(n — 1)/2. Whenever G, is not the
empty graph, then G, = (V,I') has no circuit. This yields that s; # s
for any (s1,s2) in V. Thus |V| < n(n — 1). It is evident that (s1,s2) € R’
if and only if (s2,s1) € R’. From the construction of G, this yields that
(s1,82) € V if and only if (s2,s1) € V, and that ((s1, s2), (s3,54)) € I if and
only if ((s2,$1),(S4,83)) € I'. Therefore, the number of vertices with level
i is at least 2, for any ¢, 0 < 7 < p, where p — 1 is the level of G};. Then
we have 2(p+ 1) < n(n —1). Take 7 = p+ 1. Then 7 < n(n — 1)/2. From
Theorem 1.4.3, M is weakly invertible with delay 7. a

Let M = (X,Y,S,6,\) and M’ = (Y, X, S’,0', \') be two finite automata.
M’ is called a weak inverse with delay 7 of M, if for any s in S there exists
s" in S’ such that (s, s) is a match pair with delay 7. M is called an original
weak inverse with delay 7 of M', if M’ is a weak inverse with delay 7 of M.
M’ is called a weak inverse with delay 7, if M’ is a weak inverse with delay
of some finite automaton. M’ is called a weak inverse, if M' is a weak inverse
with delay 7 for some 7.

Clearly, if M’ is a weak inverse with delay 7 of M, then M’ is a weak
inverse with delay 7 of M"” = (X,Y,S”,6”,\') in the case where M" <
M or M" < M. If M’ is a weak inverse with delay 7 of M, then M" =
(Y, X,S",0",\") is a weak inverse with delay 7 of M in the case where
M < M" or M'" < M". Therefore, if M’ is a weak inverse with delay T,
then M = (Y, X,5"”,6"”,\") is a weak inverse with delay 7 in the case where
M <M"or M' < M".

Theorem 1.4.4. If M is weakly invertible with delay T, then there exists a
finite automaton M’ such that M’ is a weak inverse with delay T of M.

Proof. Let M = (X,Y,S,d,\). Since M is weakly invertible with delay
T, for any s € S and any xzg,x1,...,2; € X, g can be uniquely deter-
mined by s and A(s,zoz1...z,). Thus we can construct a single-valued
mapping f from S x Y™t to X satisfying the condition: if yoy; ...y, =
A(s,zox1...27), s € S and zg,x1,...,2, € X, then f(8,yr,...,y1,Y0) = Zo.
Let M’ = (Y, X,5",§',\) be a finite automaton, where

S/ = {<Casay*1a"'ay7‘r> | CZO,]—a"'vTa ERS Sa Y—1,--,Y—7 € Y}v

5/(<C, S, Y—15--- 7y—7'>7y0)

_{<C+17S7y07y—1""7y—7'+1> if0<C<T7

<C,(5(S, f(sayan—lv - 'ay—T))7y0a re. ay—T+1>a if c = T,
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)\I(<C7S7y—17"'7y—7'>ay0) = f(sayan—la"'ay—T)7
c=0,1,....,7, s€S, yo,y_1,.--,y_r €Y.

We prove that M’ is a weak inverse with delay 7 of M. Given any state

so in S, take any 7 elements y_1,...,y_, in Y and let s be the state
(0, 80,Y-1,---,Y—r) in S’. To prove that s{ T-matches sg, for any zg, 1, ...
€ X, let

A(s0,ZoZ1 .- .) = Yoy - - -
for some yo,y1,... in Y. Denote
d(s0,xox1 ... ;) = Siy1, 1 =0,1,...
From the definition of f, we have
F(SisYitrs -5 Yig1,¥i) =, 1 =0,1,...
Let
8" (80s Yoy - - - i) = Sjyq, 1 =0,1,...
Clearly,
S = 1,80, Yi—1s-- s Yi—r), 1=0,1,...,T.

We prove by induction on ¢ that s; = (7,8i—r,%i—1,...,Yi—r) holds for
any ¢ > 7. Basis : i = 7. The result has proven above. Induction step :
Suppose that s; = (7,8;—r,¥i—1,...,%i—r) holds. We prove that sj, , =
(T, Six1-7\Yi»r- - Yi+1—r) holds. Since s} ; = ¢'(s},y;), from the definition of
0" and the induction hypothesis, we have
8§+1 = (7'75(31‘—7,f(Si—r,yz‘7yi—17 cee ,yz‘—r))7yz’, e ,yi+1—7>

= <Ta 6(375777 xifr)a Yiy--- 7yi+177'>

=T, Sicr 41, Yir -+ Yit1—7)-
We conclude that s} = (7, 8;—+,Yi—1,...,Yi—r) holds for any ¢ > 7. Let

N(shy)=a), i=0,1,...

Then for any 7 > 7, from the definition of )\, we have

Z‘; = f(si—‘ra YiyYi—1,--- 7yi—7) = Ti—r-

It follows that M\ (s, A(so,xox1...)) = x(zy...xh_qzox1... Thus s{ 7-
matches sg. Therefore, M’ is a weak inverse with delay 7 of M. O
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Corollary 1.4.4. M is weakly invertible with delay 7 if and only if there
exists a finite automaton M’ such that M’ is a weak inverse with delay T of
M.

Theorem 1.4.5. Let M = (X,Y,S,0,\) be a finite automaton. If M is
weakly invertible with delay T, then |X| < |Y].

Proof. Denote | = | X| and m = |Y|. We prove by reduction to absurdity
that | X| < |Y|. Suppose to the contrary that | X| > |Y|. Take any s in S. Let
Vi ={A\(s,20...27_14n) | 7 € X,i=0,...,7—1+h}. Clearly, | V3| < m™".
On the other hand, since M is weakly invertible with delay 7, zg...xp_1
can be determined by s and A(s,zg...%,_11). Thus we have I* < |V},|.
Therefore, m™™" > (" It follows that m”™(m/l)* > 1. From |X| > |Y|, we
have m/l < 1. Thus limj,_, 1 m™ (m/)* = 0. From m™(m/I)"* > 1, we have
0 > 1. This is a contradiction. We conclude that |X| < |Y]. O

Theorem 1.4.6. Let M = (X,Y,S,0,\) be a finite automaton. If | X| = |Y|
and M is weakly invertible with delay 7, then A(S,X")(i.e.,{\(s, ) | s €
S, € X"}) =Y" holds for any nonnegative integer r.

Proof. In the case of r = 0, A\(S,X") = {e} = Y". For any positive
integer r, we prove by reduction to absurdity that A(S,X") = Y". Sup-
pose to the contrary that A(S, X") # Y. Clearly, A(S,X") C Y". It follows
that [A(S,X7)] < m" — 1, where m = |Y|. Take any s in S. Let V,., =
{As, 20 . Tro1qnr) | i € X,i=0,...,7— 1+ hr}. It is easy to see that for
any yo - - - Yr—1+hr € Ve, Yrtir -+ Yr—14(i41)r 18 I A8, X7),i=0,...,h—1.
Thus we have |V,. 5| < m™(m” — 1)". On the other hand, since M is weakly
invertible with delay 7, we have |V,.,| > ", where | = |X|. Therefore,
m™(m” — 1)* > ", From | = m, we have m™((m" — 1)/m")* > 1. It follows
that limy,_, 1 oo m™((m" —1)/m")" > 1. That is, 0 > 1. This is a contradiction.
We conclude that A\(S, X") =Y. O

1.5 Error Propagation and Feedforward Invertibility

Let M’ = (Y, X,5',0’,\') be an inverse finite automaton with delay 7 of
M = (X,Y,S,4,\). For any infinite input sequence o € X* and any state s
€ S, let 8 = A(s, ). Then for any state s’ € S of M’, there exists ag € X*
of length 7 such that \'(s’, ) = apa. Suppose that 8 = 8102 and §' = 5152
with |G1] = |61|. Let @ = ayag with |aq| = |B1|. Then
N(s',B87) = N(s", BN (' (s, B1), B2)
= )‘/(3/7 ﬂi)A/(al(slv ﬂi)v )‘(5(87 al)v 042))

= )‘/(8/7 5i)a6a2
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for some sequence oy, of length 7 in X*. Since |agaq| = [N (s, 5])], the
i-th letter of M'(s', 3) equals the i-th letter of X' (s', 3’) whenever i > |31]+ 7.
This means that propagation of decoding errors of the inverse M’ to M is at
most 7 letters.

For the weak inverse case, one letter error could cause infinite decoding
errors. For example, let X and Y be {0,1}, and M a l-order input-memory
finite automaton My, where f is a single-valued mapping from X? to Y

flxo,z_1) =20 ®x_1,

where @ stands for addition modulo 2. Let M’ be a (0,1)-order memory finite
automaton My, where g is a single-valued mapping from X x Y to X

g(x_1,y0) = —1 D yo.

It is easy to verify that any state z_1 of M’ O-matches the state z_1 of M.
Thus M’ is a weak inverse of M with delay 0. For the zero input sequence,
ie.,; 00...0..., and the initial state 0 of M, the output sequence of M is the
zero sequence 00...0... Since (0,0) is a match pair with delay 0, for the zero
input sequence 00...0... and the initial state 0 of M’, the output sequence
of M’ is the zero sequence 00...0... On the other hand, we can verify that
for the input sequence 10...0.. ., all zero but the first letter 1, and the initial
state 0 of M’, the output sequence of M’ is the 1 sequence, i.e., 11...1...
Thus propagation of decoding errors of the weak inverse M’ to M is infinite.

We use R(—n, ) to denote the suffix of « of length |a| —n in the case of
|| > n or the empty word in the case of || < n. For any «, # in Y* with
|| = | 6| and any nonnegative integer k, we use a =, [ to denote R(—k, o) =
R(—k, ).

Let M/ = (Y, X,5",§,\) be a weak inverse finite automaton with delay
Tof M = (X,Y,5,6,\). For any s in S and any s’ in S’, if s’ 7-matches
s, and if for any o in X* and any § in Y* with |a] = |§|, and any k,
0 <k < |B]—c¢ As,a) = B implies X (s', (s, ) =g4e N(,08), (s,8)
is called a (7, ¢)-match pair. If for any s in S there exists s’ in S’ such that
(s,8") is a (7, ¢)-match pair, we say that propagation of weakly decoding errors
of M’ to M is bounded with length of error propagation < c. The minimal
nonnegative integer c satisfying the above condition is called the length of
error propagation.

Theorem 1.5.1. Let M' = (Y, X, 5,6, \') be a weak inverse finite automa-
ton with delay 7 of M = (X,Y, 5,6, \). Assume that propagation of weakly
decoding errors of M' to M is bounded with length of error propagation < ¢,
where ¢ > 1. Then we can construct a c-order semi-input-memory finite
automaton SIM(M", f) such that SIM(M", f) is a weak inverse finite au-
tomaton with delay T of M.
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Proof. Since M’ is a weak inverse finite automaton with delay 7 of M and
propagation of weakly decoding errors of M’ to M is bounded with length
of error propagation < ¢, for each s in S, we can choose a state of M’, say
©(s), such that (s,¢(s)) is a (7, ¢)-match pair.

Given s in S, let Tso = {s}, Tsit1 = {0(si,2) | v € X, 5, € T}, T g =
{o(s)}, and T ;g = {0'(s},y) |y € Y,s; € T(;}, i =0,1,... Since X, Y, S
and S’ are finite, it is easy to see that the sequence

(T5,07 Ts/,O)v (Ts,l’ Ts/,l)v AR (Ts,ia Tsl,i)a ce

is ultimately periodic, i.e., there exist ¢, > 0 and e, > 1 such that Ty ;4., =
T, and TS’)Z»Jres = Ts”i, i = ts,ts11,... Let ts and e; be the least integers
satisfying the above condition. Let M, = (Y5, Ss, ds, As) be an autonomous
finite automaton, where

Y =5 ={ws;,i=0,1,...,ts +c+es — 1},

Ws j+1, fo<i<ts+cet+es—1,
65(ws,i) = e .

Wetoqe, fi=ts+c+e,—1,
As(w) =w, we Ss.

Take a subset I of S with U;>0 se1Ts,: = S, i.e., {d(s,a) | s€ [,a e X*} = 5.
Let the autonomous finite automaton M” be the juxtaposition of all M,
s ranging over I, i.e.,, M" = (Y 5" 6", N"), where Y = Use/Ys, S” =
UserSs, and 6" (w) = ds(w), N'(w) = As(w), for any w in S and any s in I.

For any subset T of S, let R(T) = {A(t,a) |t € T, € X*}. To define the
single-valued mapping f from Y°*t! x §” to X, we need the following result.

For any s in S and any nonnegative n, states in 7. S’n are c-carelessly-
equivalent regarding R(T; ), i.e., for any &', s” in T ,, and any 3 in R(Ts ),
N(s',8) = N(s",3) holds.

To prove this result, let 8 be in R(T} ;). From the definition of R(T ,,),
there exist s, in T, and a in X* such that \(s,, a) = 3. From the definition
of T ,,, there exists o, in X* of length n such that §(s, a,) = sp,. Let 5, =
A5, @), 51, = 8'(p(5), Bu), @y = N((s), Bu) and o’ = X(s},, #). Suppose
that s is a state in 7} ,,. Then there exists 3;, in Y of length n such that
8 (p(s),0)) = sii. Let all = XN (p(s),8)) and o = N(s, 8). Since (s, ¢(s))
is a (7, ¢)-match pair, we have

ald” =, . ald.
It follows that o” =, /. Since R(—c¢, ) is independent of the choice of s/,
states in T} ,, are c-carelessly-equivalent regarding R(T ).
Given a state ws; of M” and y;,...,yi—c in Y, we define f(y;, ...,
Yi—e, Ws;) as follows. When ¢ > ¢ and y;—c...y; € R(Ts—.), we define
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FWise s Yimeswsi) = N (6 (Si_ s Yimc - - - Yi-1),Yi), Si— being astatein Ty ;..
From the result proven above, states in T ; _, are c-carelessly-equivalent re-
garding R(Ts;—.). Thus the above value of f is independent of the choice
of s;_,. When 7 < i < cand yo...y; € R(Tsp), for any zo,...,z; € X,
As,xo...2;) =yo...y; implies N (¢(s),y0...¥i) =T—r ... T_1Z0 ... T;—, fOr
some ¥_,, ..., x_1 in X. Evidently, x;_, is uniquely determined by ¢ and
Yo, - Yi- Since yo...y; € R(Ts0), such zg,...,x; are existent. We define
F(Wis- -y Yice, Ws i) = Tj—r. Otherwise, the value of f(yi,. .., Yi—c, Ws ;) may
be arbitrarily chosen from X.

To prove that STM(M”, f) is a weak inverse with delay 7 of M, we first
prove that for any s in I, there exists a state s/ of STM(M", f) such that
s"" r-matches s. Let s be in I. Take s = (y_c,...,y—1,Ws,0), Where y_1,
..., Y— are arbitrary elements in Y. For any zg,...,2; in X, let yo...y; =
A(s,zg...x5) and z9...2; = X' (s",yo...y;), where X" is the output func-
tion of STM(M", f). We prove that z; = x;_, holds for any i, 7 < i < j.
In the case of 7 < i < ¢, since yo...y; € R(Ts,0), from the construction of
SIM(M”, f) and the definition of f, it immediately follows that z; = z;_,.
In the case of i > ¢, take h = i if i <ty +c+es, and take h =t +c+ d
ifi =ts;+c+d+ kes for some k > 0 and d, 0 < d < e,. Since h — ¢ > tg
and h =i (mod ey), or h = i, we have (Ts;—.,T;,; .) = (Ts,h—aTé’h,c)- Let

Sice = 0(8,Z0 ... Ti—e—1) and s,_. = 0'(¢(s), Yo .- Yi—c—1). Then we have
Sice € Tsh—e, Si_, € Ts’)h_c, and yi—¢ ...y € R(Tsp—c). From the construc-

tion of STM(M”, f) and the definition of f, it is easy to show that

5”’(8/”,% . '~yi71) = <yi71; ce 7yi7c;ws,h>a
2i = N((Yim1y - Yimes Ws n) s i)

= f(Yir Yi-15- -+ s Yimes Ws,h)

=N (8i—erYie - Yio1):Yi),

where §" is the next state function of STM(M”, f). Since (s,¢(s)) is a
(7, ¢)-match pair, we have

N0 (8 _esYime - Yim1),¥i) = N (8 (0(8),Y0 - - - Yiz1), Yi) = Tir-

It follows that z; = z;_,. Therefore, for any s in I, there exists a state s’ of
SIM(M", f) such that s’ T-matches s. It follows that §"'(s", 3) T-matches
0(s,a), if B = A(s,a). From S = {6(s,a) | s € I,a € X*}, for any s in
S, there exists a state s”' of STM(M"”, f) such that s’ 7-matches s. Thus
SIM(M", f) is a weak inverse finite automaton with delay 7 of M. O

Corollary 1.5.1. In the above theorem, if M is a linear finite automaton
over GF(q) and S = {6(0,a) | « € X*}, then SIM(M", f) can be equivalent
to a linear c-order input-memory finite automaton.
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Proof. In the proof of the above theorem, take I = {0}. We use R;(Tp,;)
to denote the set of all elements in R(Tp ;) of length j. Since M is linear
over GF(q), for any j, R;(Tp,0) is a vector space over GF(q). Evidently,
there exists a linear mapping from R, ;(Tp,0) onto R;(Tp ;). It follows that
R;(Tp ;) is a vector space over GF(q). Clearly, Ty ; C Tp ;+1. This yields that
R;(To:) € Rj(Toi+1). Denote n =ty +c+eyp—1. In the case of y;—...y; €
R(Thi—c) & c<i<n,orinthecaseof yo...y; € R(Tpp) & 7<i<c &
Yice = ... =y_1 = 0, we define the value of f(y;,...,Yi—c, wo,) as identical
as that in the proof of the above theorem. Taking

$" = {y_cyoi  Yoepr—1,0,...,0,w0,0),
where y_.,...,Y—_ctr—1 are arbitrarily chosen from Y, from the proof of the
above theorem, yo...y; = A(0,2¢...2;) and 2zg...2; = N (s y0...y;) im-
ply zr...zi =x0...x;—r. Inthe case of y;_c...y; € R(Tp—c) & c<i<n,
there exist § € Tp;—. and ®j_¢,...,2; in X such that A(5,zj—c...z;) =
Yi—c - - Yi- Therefore, for any o in X*, §(0,a) = § and A(0,) = (3 yield
T = N0 (8", BYi—c.--yi—1),yi). Since 5 € Ty € Ton—c, We may

take a such that || =i — ¢ or n — ¢. Then 6" (s", Byi—c...yi—1) equals
<yz‘—c> s Yie1, w0¢i> or <yz‘—c7 s Yi-1, wo,n>~ It follows that f(yi, s Yi—c
wo,i) = Tier = fWi,-- -, Yice, Wo,n). In the case of yo...y; € R(Too) &
T<i<c¢c & yie=...=1y_1 = 0, there exist zg,...,z; in X such

that A(0,zo...2;) = Yo . .. y;. From the definition of f, f(vi,. .., Yi—e, wo,:) =
Zi—r. Let @/ =0...0xg...2; and ' =y ...y, =0...0yp...y; with |o/| =
|8’ = n. Since A(0,z0...2;) = Yo ... y:, we have X\(0,a’) = f'. It follows that
NO0,0 g ... i) = YooY € R(Ton—c). Thus f(yiy. ., Yie,Won) =
FWhs - s Yh_cy Won) = Xi—r. Therefore, f(yi, ..., Yi—e,wo) = F Wiy - -, Yize,
wo.n). Noticing that in the proof of the above theorem, y_1,...,y_. in s
are arbitrarily chosen, we can choose values of f at the other points such
that f(yis- -+ Yime, wo,i) = f(Yis- -, Yi—e, Wo,n) holds for any y;,...,y;—. in
Y and any i, 0 < 7 < n. That is, the value f(y.,...,y), w) does not de-
pend on w; therefore, f can be regarded as a function f’ from Y°*! to X,
where f'(yl,...,90) = f(Yl - Y0, Won)s Yy - -, Yy € Y. Thus SIM(M”, f)
is equivalent to the c-order input-memory finite automaton M.

We prove that f’ is linear on Rc41(Ton—c). For any yn—c...y, and
Yh—e-o-Yh 0 Rey1(Ton—c), from the definitions, there exist zg, ..., zn,
Xy ooy in X and Yo, .oy Yn—e—1, Yos - -+ Yoq in Y such that yo ...y, =
A0,zq...2,) and yg ...y, = M0,z;...2,). For any a, o’ in GF(q), let
Y = ax; + dz}, y! = ay; + 'y, i = 0,1,...,n. Since M is linear, we
have yg ...y = X0, z( ...z). Taking s = (0,...,0,wo,0), from the proof
of the above theorem, s 7-matches the state 0 of M. It follows that

X

fl(yxv e ,y;{,c) = f(ygv s vy:z/—cvwoyn)
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= NS ), 9
=Tp_,
=aX" (0" (" yo - yn—1),yn) + N (8" (8" 4 - Y1), Yn)
=af(Yn, - Yn—crWon) + @ F (Y- Yn_cr Won)

= af,(yru s 7ynfc) + a,f/(y;w s 7y;1—c)‘

=)
=axrp_r tax,_ .

Since Ret1(To,n—c) is a subspace of Y+l we can expand f such that f’ is
linear. Therefore, My is linear. a
Corollary 1.5.2. Let M’ be a weak inverse finite automaton with delay T of
a linear finite automaton M over GF(q). Assume that propagation of weakly
decoding errors of M’ to M 1is bounded with length of error propagation < c,
where ¢ > 1. Then we can construct a linear c-order semi-input-memory
finite automaton STM(M", f) over GF(q) such that SIM(M", f) is a weak
imverse finite automaton with delay T of M.

Proof. Since M is linear, M is equivalent to the union of M, and My,
where M, is the maximal linear autonomous finite subautomaton of M and
My is a minimal linear finite subautomaton of M. Using Corollary 1.5.1,
there exists a linear c-order input-memory finite automaton Ay which is a
weak inverse of My with delay 7. From automata M, = (Y, Sq, 04, Aa) and
M;=(Y,X,Sy,dp,As) construct a finite automaton, say M" = (Y, X, S, x
Sy, 0", "), where

6" ((8as51),Y) = (0a(5a), 07 (55, Y + Xa(8a))),
X'({sas57),y) = Ap(sf 4 + Aalsa)),
Sq € Say, Sy €Sf, yeY.
For any state s of M, s and the state (s,0) of the union of M, and M, are
equivalent. Let the state sy of My 7-matches the state 0 of My. It is easy to
see that the state (—s,sy) of M” T-matches the state (s,0). Thus (—s,sy)
7-matches s. Therefore, M" is a weak inverse with delay 7 of M.
From M, construct a linear autonomous finite automaton M, = (Y¢+1,
S x Y€, 6!, \), where
6(/1(<8aa y/—l? cee ay/—c>) = <5a(5a)a Aa(sa)a yl—la e ayl—c+1>7
A;(<Sa7yilﬂ AR 7y/—c>) = <)\a(8a)7yl—17 AR 7yic>7
Sa S Saa y/_la"'7yl—c € Y.
Let f’ be a function from Y?2¢t2 to X defined by

F WosY=1, - Y—er Yoo Yo Y e)
= f(yO + y(/J?yfl + y/717 v Y—ct ylfc)’
v, yi €Y, i=0,-1,...,—c.
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It is easy to see that for any state s” = (sq,s7) = (Sq,y"1,.-.,y",) of
M and any state 8" = (y_1,...,Y—c, (Sas Y 15---,Y_.)) of SIM(M], [, if
yi +yi =vyl,i=—1,...,—c, then s’ and s’ are equivalent. Thus M" and

SIM(M], f) are equivalent. It follows that STM (M, f') is a weak inverse
with delay 7 of M. Clearly, STM (M|, f') is linear. Thus the corollary holds.
O

A finite automaton M is said to be feedforward invertible with delay T,
if there exists a finite order semi-input-memory finite automaton which is a
weak inverse with delay 7 of M. A finite automaton M’ is said to be a feed-
forward inverse with delay 7, if M’ is a finite order semi-input-memory finite
automaton which is a weak inverse with delay 7 of some finite automaton.

Theorem 1.5.2. A finite automaton M is feedforward invertible with delay
7, if and only if there exists a finite automaton M’ such that M’ is a weak
inverse with delay T of M and propagation of weakly decoding errors of M’
to M is bounded.

Proof. if : Assume that M’ is a weak inverse with delay 7 of M and
propagation of weakly decoding errors of M’ to M is bounded. Let ¢’ be
the length of error propagation. Denote ¢ = max(c’, 7). Then propagation of
weakly decoding errors of M’ to M is bounded with length of error propa-
gation < c¢. From Theorem 1.5.1, there exists a c-order semi-input-memory
finite automaton M"”’ such that M’ is a weak inverse finite automaton with
delay 7 of M. Thus M is feedforward invertible with delay 7.

only if : Assume that M is feedforward invertible with delay 7. Then
there exist a nonnegative integer ¢ and a c-order semi-input-memory finite
automaton STM(M”, f) such that SIM(M", f) is a weak inverse finite
automaton with delay 7 of M. Thus for each state s of M, we can choose a
state of STM(M", f), say ¢(s), such that ¢(s) T-matches s. We prove the
following result: for any « in X* and any @ in Y* with |a| = |8], any k,
0 <k <|B]—e¢ A(s,a) =¢ B implies A (p(s), A(s,@)) =g+ X (0(), ),
where X'’ is the output function of STM(M", f). Denote || = I. In the case
of l < k+c¢ R(—k —c, N (0(8),A(s,0))) =€ = R(=k — e, N""(¢(s),8)). In
the case of | > k+¢, let ¢(s) = (Y—c,...,y—1,57) and A(s, ) = Yoy1 - .. Yi—1,
where y_c,...,y-1,%0,Y1,---, Y11 € Y. Then 8=y{ ... Y}_q Yk ... Yi—1, for
some yg,...,Y,_; € Y. Since SIM(M", f) is a c-order semi-input-memory
finite automaton, we have

6"(@(8),90 -+ Yrre—1) = Whte—1r- - Yk Shye)
= 6/”(90(5)’ y6 o .. yllg—lyk o .. yk+c—1)a

where s}, = 0"(s]), 1 =0,1,..., 6" and 0" are the next state functions of
M and SIM(M", f), respectively. Thus
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R(—k‘ _¢, )\”/(Lp(s), )\(S, a))) _ )\m(<yk+c—1’ oy Yk 3%+c>7y/€+c .. .yz—1)
— R(—k— e X"(0(s), ).

We conclude that propagation of weakly decoding errors of STM(M”, f) to
M is bounded. O

Using Corollary 1.5.2, we have the following equivalent definition for linear
finite automata.

Corollary 1.5.3. Let M be a linear finite automaton. Then M is feedfor-
ward invertible with delay T if and only if there exists a linear finite order

semi-input-memory finite automaton which is a weak inverse with delay T of
M.

1.6 Labelled Trees as States of Finite Automata

Let X and Y be two finite nonempty sets and 7 a nonnegative integer. Define
a kind of labelled trees with level 7 as follows. Each vertex with level < 7
emits |X| arcs and each arc has a label of the form (z,y), where x € X
and y € Y. x and y are called the input label and the output label of the
arc, respectively. Input labels of arcs with the same initial vertex are distinct
from each other, they constitute the set X. Output labels of arcs with the
same initial vertex are not restricted. We use 7 (X,Y,7) to denote the set
of all such trees. For any vertex with level ¢ + 1, if the labels of arcs in the
path from the root to the vertex are (zg, o), (z1,91), ..., (Zi,¥i), To...x;
is called the input label sequence of the path or of the vertex, and yq . ..y; is
called the output label sequence of the path or of the vertex.

Let T be a tree in 7 (X, Y, 7). If for any two paths w; of length 741 in T,
1 = 1,2, that the output label sequence of w; and of ws are the same implies
that arcs of wy and of wsy are joint, T is said to be compatible. Noticing that
the initial vertex of w; is the root, i = 1,2, the condition that arcs of w; and
of wq are joint is equivalent to the condition: the first arc of w; and of ws
are the same. This condition is also equivalent to a condition: the first letter
of the input label sequence of wy and of ws are the same.

Let T7 and T3 be two trees in 7 (X, Y, 7). If for any path w; of length 7+1
in T;, i = 1,2, that the output label sequence of w; and of wy are the same
implies that the first letter of the input label sequence of w; and of wy are
the same, T7 and T5 are said to be strongly compatible.

For any F C T(X,Y, 1), if each tree in F is compatible, F is said to be
compatible; if any two trees in F are strongly compatible, F is said to be
strongly compatible.
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For any T in 7 (X,Y, 7), in the case of 7 > 0, we use T_ to denote the set
of | X| subtrees of T of which roots are the terminal vertices of arcs emitted
from the root of T' and arcs contain all arcs of T" with level > 1. We use T-
to denote the subtree of T' which is obtained from 7" by deleting all vertices
with level 7+ 1 and all arcs with level 7. Clearly, T C 7(X,Y,7 — 1) and
T-e€ T(X,Y,7—1). For any F C 7(X,Y,7), let F. = UpexrT and F- =
{T-|T e F}.

If 7 =0or F_ C F-, F is said to be closed. For any T; in T(X,Y,7),
i = 1,2, if T5 and the subtree of T3 in T;7_, of which the root is the terminal
vertex of an arc emitted from the root of T} with input label x, are the same,
T5 is called an z-successor of Ty. Clearly, if 7 C T(X,Y,7) is closed, then
for any 77 in F and any x in X, there exists 75 in F such that T is an
x-successor of T7.

Let F be a closed nonempty subset of 7(X,Y,7), and v a single-valued
mapping from F to the set of positive integers. We construct a finite automa-
ton M = (X,Y, S, 4§, \), where

S={T,) | TeF,i=1,....,v(T)},
and § and A are defined as follows. For any 7" in F and any = in X, define
o((T,3), x) = (T", j),

/\(<T7’L>7I) =Y,

where T” is an z-successor of T, j is an integer with 1 < j < v(T”), and (z,y)
is a label of an arc emitted from the root of T'. Notice that given T' and =,
from the construction of 7', the value of y is unique, and from the closedness
of F, values of T" and j are existent but not necessary to be unique. Since M
is determined by F, v and 4, we use M (F, v, §) to denote the finite automaton
M.

For any finite automaton M = (X,Y, 5,4, \) and any state s of M, con-
struct a labelled tree with level 7, denoted by T (s), as follows. The root
of TM(s) is temporarily labelled by s. For each vertex v with level < 7 of
TM(s) and any x in X, an arc with label (2, A(s’,x)) is emitted from v, and
we use §(s’,z) to label the terminal vertex of the arc temporarily, where s’
is the label of v. Finally, deleting all labels of vertices, we obtain the tree

Clearly, TM (s) € T(X,Y,7). It is easy to see that for any s in S and any =
in X, TM(§(s,)) is an x-successor of T (s). And for any path of length 7+1
of TM(s), if the input label sequence and the output label sequence of the
path are g ...z, and yo...y,, respectively, then we have A(s,zq...2,) =
Yo.--Yr.

From the construction of M (F,v,d), we have the following lemma.
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Lemma 1.6.1. For any state (T,i) of M(F,v,J), TTM(}—’”’(;)«T,Z')) and T
are the same.

Lemma 1.6.2. Let M = (X,Y,S5,0,)\) be a finite automaton and F =
{TM(s) | s € S}. Then M is weakly invertible with delay T if and only if
F is compatible, and M is invertible with delay T if and only if F is strongly
compatible.

Proof. Suppose that M is weakly invertible with delay 7. For any s in S
and any path w; of length 7+ 1 in TTM(S), 1 =1, 2, suppose that the output
label sequence of wy and of ws are the same, say yg...y,. Let xg...z, and
xy ... x, be the input label sequence of w; and of wsq, respectively. Then we
have A(s,zo...27) = yo...yr and A(s,2...2L) = yo...y,. It follows that
xg = x). Thus TM(s) is compatible. It follows that JF is compatible.

Conversely, suppose that F is compatible. Let A(s,zg...2,) = A(s, z( . ..
z') for sin S and z;, ) € X,i=0,1,...,7. From the construction of TM (s),
there exist two paths w; and wy of length 7+ 1 in T (s) such that the input
label sequence of wy and of ws are xq ... 2, and xy . . .z, respectively, and the
output label sequence of wy and of ws are A(s,zg...2,) and A(s,zj ... 2)),
respectively. Since T (s) is compatible and A(s,zg...7,) = A(s,zf ... z.),
we have g = x(. Thus M is weakly invertible with delay .

Suppose that M is invertible with delay 7. For any s; and s; in .S and
any path w; of length 7 + 1 in TM(s;), i = 1,2, suppose that the output
label sequence of w; and of ws are the same, say yo...y,. Let xg...2x, and
xf ... x, be the input label sequence of w; and of ws, respectively. Then we
have A(s1,Zo... %) = Yo ... yr and X(s2, (... 2,) = yo . . . yr. It follows that
xg = x). Thus TM(sy) and TM (s,) are strongly compatible. And it follows
that F is strongly compatible.

Conversely, suppose that F is strongly compatible. Let A(s1, 2o ...x;) =
A(s2,xf...al) for s1, sp in S and =z;, ©; € X, ¢ = 0,1,...,7. From the
construction of TM (s;), there exist two paths wy in TM (s1) and wy in TM (s5)
of length 741 such that the input label sequence of w; and of ws are zg ...z,
and xzj, ... ), respectively, and the output label sequence of w; and of wy are
A(s1,20...2;) and A(s2, ) ... 2. ), respectively. Since TM (s1) and TM (sq)
are strongly compatible and A(s1,2q...2;) = A(s2,2f...2.), we have xy =
xf. Thus M is invertible with delay 7. O

Theorem 1.6.1. For any finite automaton M (F,v, ), M(F,v,d) is weakly
invertible with delay T if and only if F is compatible, and M(F,v,§) is in-
vertible with delay T if and only if F is strongly compatible.

Proof. From Lemma 1.6.1, F = {TTM(f’”’é)(s/)| s’ is a state of M(F,v,0)}.

Using Lemma 1.6.2, the theorem follows. a
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Lemma 1.6.3. Let M = (X,Y,S5,0,\) be a finite automaton. Then there
exists a finite automaton M(F,v,d") such that M and M(F,v,d') are iso-
morphic.

Proof. Take F = {TM(s) | s € S}. Partition S into blocks so that s; and
s2 belong to the same block if and only if TM (s) = TM (s5). Let Sy, ..., S,
be the blocks of the partition. Define (T (s)) = |S;| for any s in S;. Let

S’ = {(TM(s),i) | s € Syi=1,...,.u(TM(s))}.

For any j, 1 < j < r, let s{, .. '75|ij| be a permutation of elements in S;.
Define a single-valued mapping 7 from S to S’:

77(3?@) = (Ty(si),k% j=1...,r k=1,...,|5
It is easy to verify that 7 is bijective. Define
§'(s' x) =n(d(n(s),z)), se€S, reX.

It is easy to show that n is an isomorphism from M to M (F,v,d’). Therefore,
M and M(F,v,d") are isomorphic. O

Theorem 1.6.2. Let M = (X,Y,S,5,\) be a finite automaton. Then there
exists a finite automaton M(F,v,d") such that M and M(F,v,d') are iso-
morphic and M is weakly invertible (respectively invertible) with delay T if
and only if F is compatible (respectively strongly compatible).

Proof. From Lemma 1.6.3, there exists a finite automaton M (F,v,d")
such that M and M (F,v,0") are isomorphic. Thus M is weakly invertible
with delay 7 if and only if M (F,v,d’) is weakly invertible with delay 7, and
M is invertible with delay 7 if and only if M (F, v, ") is invertible with delay
7. From Theorem 1.6.1, the theorem follows. a

In Sect. 6.5 of Chap. 6, we will deal with trees with arc label and vertex
label. Let X, Y and S’ be three finite nonempty sets and 7 a nonnegative
integer. Let T be a tree in 7(X,Y, 7). We assign an element in S’ to each
vertex of T, the element is referred to as the label of the vertex. We use
T'(X,Y,S’,7) to denote the set of all such trees with arc label and vertex
label.

The concept of closedness for 7(X,Y,7) may be naturally generalized to
T'(X,Y,S8, 7). For any T in 7'(X,Y, S, 7), in the case of 7 > 0, we use T_
to denote the set of | X| subtrees of T' of which roots are the terminal vertices
of arcs emitted from the root of T" and arcs contain all arcs of 7" with level >
1. We use T~ to denote the subtree of 1" which is obtained from 7" by delet-
ing all vertices with level 7 4+ 1 and all arcs with level 7. Clearly, T C
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T7'(X,Y,S,7—1)and T- € T'(X,Y, 5,7 —1). For any F C 7'(X,Y, 5, 1),
let 7 = UTE]:T7 and F- = {T’ | T e .7:}

For any F C T'(X,Y,S',7),if r=0o0or F_ C F-, F is said to be closed.
For any T; in 7/(X,Y,S’,7), i = 1,2, if T5 and the subtree of T} in T;_, of
which the root is the terminal vertex of an arc emitted from the root of T;
with input label x, are the same, T is called an z-successor of T7.

Let F be a closed nonempty subset of 7/(X,Y,S’, 7). Let v be a single-
valued mapping from F to the set of positive integers. Similar to the case of
7 (X,Y, 1), we construct a finite automaton M = (XY, S, 4§, \), where

S={T,i | TeF,i=1,...,v(T)},
and § and A are defined as follows. For any 7" in F and any = in X, define

6(<T7i>7$) = <T/7j>7
)‘(<T71>7$) =Y,

where T” is an z-successor of T, j is an integer with 1 < j < v(T”), and (z,y)
is a label of an arc emitted from the root of T'. Notice that given T and =,
from the construction of T', the value of y is unique, and from the closedness
of F, values of T and j are existent but not necessary to be unique. Since
M is determined by F, v and ¢, we still use M (F,v,d) to denote the finite
automaton M.

Historical Notes

The original development of finite automata is found in [62, 58, 78]. In [78],
the output function of a finite automaton is independent of the input. In this
book we adopt the definition in [73]. In [62], finite automata are regarded as
recognizers and their equivalence with regular sets is first proven. The com-
pound finite automaton C'(M, M’) of finite automata M and M’ is intro-
duced in [112] for application to cryptography. References [59, 40, 24, 25, 47]
deal with linear finite automata. Section 1.3 is in part based on [25], Theo-
rem 1.3.5 is due to [35], and the material of z-transformation is taken from
[98).

Finite order information lossless finite automata, that is, weakly invertible
finite automata with finite delay in this book, are first defined in [60]. Finite
order invertible finite automata are first defined in [96]. Most of Sect. 1.4
are taken from Sect. 2.1 of [98], where the decision method is based on [36].
In [71], feedforward invertible linear finite automata are defined by means of
transfer function matrix. Section 1.5 is based on [99], in which semi-input-
memory finite automata and feedforward invertible finite automata in general
case are first defined. Section 1.6 is based on Sects. 2.7 and 2.8 of [98].
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Summary.

In this chapter, we first discuss the weights of output sets and input
sets of finite automata and prove that for any weakly invertible finite au-
tomaton and its states with minimal output weight, the distribution of
input sets is uniform. Then, using a result on output set, mutual invert-
ibility of finite automata is proven. Finally, for a kind of compound finite
automata, we give weights of output sets and input sets explicitly, and a
characterization of their input-trees; this leads to an evaluation of search
amounts of an exhausting search algorithm in average case and in worse
case, and successful probabilities of a stochastic search algorithm.

The search problem is proposed in cryptanalysis for a public key cryp-
tosystem based on finite automata in Chap. 9.

Key words: minimal output weight, input tree, exhausting search, sto-
chastic search, mutual invertibility

According to the definition of weakly invertible finite automata with delay
7, from the initial state and the output sequence we can uniquely determine
the input sequence except the last 7 letters by means of exhausting search.
The exhausting search method is effective, but not feasible in general. How to
evaluate the complexity of the search amount? In parallel, for the stochastic
search, what is the successful probability? These problems are proposed in
cryptanalysis for a public key cryptosystem based on finite automata (see
Subsect. 9.5.4).

In this chapter, we deal with these problems by studying the weights
of output sets and input sets of finite automata. It is proved that for any
weakly invertible finite automaton and its states with minimal output weight,
the distribution of input sets is uniform. Then for a kind of alternatively
compound finite automata of weakly invertible finite automata with delay 0
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and “delayers”, we give weights of output sets and input sets explicitly, and
a characterization of their input-trees. This leads to an evaluation of search
amounts of an exhausting search algorithm in average case and in worse case,
and successful probabilities of a stochastic search algorithm.

In addition, mutual invertibility of finite automata is also proven using a
result on output set.

2.1 Minimal Output Weight and Input Set

Let M = (X,Y, 5,6, A) be a finite automaton. For any s € S and any positive
integer r, the set

{A(S,l’o...ﬂ?r_l) | oy, Lpr—1 € X}

is called the r-output set of s in M, denoted by W#Wg |WM| the number of

elements in W is called the r-output weight of s in M. And min,cg |

.87 r,s|

is called the minimal r-output weight in M, denoted by w, ps. In the case of
r > 1, for any s € S and z € X, >\(87x)W7£\{1,5(s,x) is called the x-branch
of WM. If for any two states s and s’ of M there exists & € X* such that
s' =4d(s,a), M is said to be strongly connected.

Theorem 2.1.1. Let M = (X,Y,S,6,\) be weakly invertible with delay
r—1and | X|=|Y|=g¢.

(a) gl

(b) For any s €8S, if wear = |W|, then the number of elements in any
z-branch of W is wy. a1 /q.

(c) For any s € S, if wer = |[WHM| and s’ is a successor of s, then
Wr, M = |Wr]§/£,|

(d) For any s € S, if wypr = W],

WA{LS” then Br—1y € W%, foreachyeY.

" is a successor of s, and B,_1 €

T

(e) For any s € S, if wer = [WP, thenT/VJrnS = WHXY™ for anyn > 0.

(f) For any s € S, if wenr = |WM| and s is a successor of s, then
WM1+n s’ = Wr 1 s’Yn fO?" any n = 0.

(g) If M s strongly connected, then wy p = |W, | holds for any s € S.

Proof. (b) Assume that wyn = |[W|. First of all, since M is weakly
invertible with delay r — 1, it is easy to see that for any different elements
xz and 2’ in X, the x-branch of W% and the z’-branch of VVTMg are disjoint.
Thus all distinct z-branches of er\g constitute a partition of W% It follows
that

zeX
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We prove [WM, S(s,)] = wrar/q for any @ € X by reduction to ab-
surdlty Suppose to the contrary that there is an element x E X satisfying
W 1 S(sy| < wrar/q. Tt is evident that (W5 | < g[WM, 5 ] Thus
W, 5 (s.0)| < A(Wrn1/qQ) = wrar ThlS contradicts the deﬁmtlon of the mini-
mal r-output weight. Therefore (WM, (s Z W/

Next, we prove |[WM sy = wr M/q forany z € X. Smce WM, Ss)| =
wy a1 /q for any x € X it is sufficient to prove that |[WM 5(5.2) \ # wen/q
for any x € X. We prove this fact by reduction to absurdlty Suppose to the
contrary that there is an element z’ € X satisfying |W, 1 5(s w,)| > Wy pm/q.
From (2.1), we have

Wr,M = Z |W]V[1551; | > ZwrM/q_Q(wrM/Q)—wrM

z€X zeX
Thus w, ar > wyr ar; this is a contradiction. Therefore, |[W 1 (s, x)\ # wrn/q
holds for any x € X.
(a) Let s be a state of M and [W| = w, 5. From (b), w,as/q is the

number in elements of z-branch of WM Since the number of elements in
z-branch of WM is an integer, we have q|wr M-

(c) Let &' be a successor of s and wyar = |WM|. Then we have s’ = (s, x)
for some z € X. From (b), the number of elements in J; branch of WM i
wy.ar/q. This yields that |W, 1 o| = wrm/q. Thus [W, q|w, 1 o =
q(wyrar/q) = wy o, that is, |W7,7S | < wypr. On the other hand from the
definition of the minimal r-output weight, we have |W7f\£,\ > wy . Thus
(Wil = wrar

(d) Let s’ be a successor of s, wy,ny = |[WM|, and ,_, € WM “1s From
(c), we obtain w,,pr = [W,|. Since s is a successor of s, we have s' = §(s, x)
for some sc € X. Then the z-branch of W is A(&x)WT 1,5+ From (b), we
have [WM, S,| = wy pr/q. This yields that WM, < q(wr M/q) in case of
Br_1y & W , for some y € Y. Since |W, \ = w, M = q(wrar/q), we have
Br_1y € Wm, for each y € Y.

(e) Let wy ar = [WE]. We prove by induction on n that WY, . = WMy™n
for any n > 0. Basis : n = 0. It is trivial. Induction step : Suppose that
V[/HnS = W%Y”. Let yo...Yr4+n be an arbitrary element in W%Y"“.
Clearly, yo ... Yr4n-1 € W%Y". From the induction hypothesis, it follows
that yo ... Yr4n-1 € WT+” 5
Yo+ Yrin-1 = A(8$,Zg ... Tppn—1). Denote s;y1 = d(s,x0...2;) for i =
0,1,...,7 +n— L From w, = |W>], using (c), we have w,,p = |
i=1,...,7 +n. Since Ypy1. Yrpna € WM, and wppr = | rén+1|
from (d), Yn+1---Yrtn € Wr vsny1- 1t follows that there are 27, ,4,... 27, €
X such that ynq1...Yr4n = MSng1, Ty --- 25.,,). Thus

Thus there are xzg,...,Zr4+n—1 € X such that

rsL|
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Yo Yrn = A8, 20 - Tn)A(Spi1, Thyyq - Ty )

= A8, 20 ... Tppyyq .. Tyy).

This yields yo...Yren € WM, 1, Thus WMyt c WM ., . On the
other hand, it is evident that VV%Y"“‘1 D WT tnt1,s- We conclude that
WY+ = W7+n+15

(f) Let s’ be a successor of s and w,. s = |WM|. To prove WM s 2
W%LS,Y”, let y1...Yr—14n be an arbitrary element in WM Sy Y It fol-
lows that y1...y._1 € W Tl Thus there exist xq,...,2,_1 € X such
that y1...9.—1 = A(s’,21...24_1). Since s’ is a successor of s, there
exists g € X such that s’ = §(s,x0). Denoting yo = A(s,x0), then
Yoy1 - - Yr—1 = A(S,zox1 ... xr—1). It follows that yoy1 ... yr—1 € W% From

(€), Yo ¥1 - Yr—14n € WM, .. Thus there exist $07951a~--7$/r—1+n e X
such that yoy1 ... Yr—14n = A(s, 202 ... 2.1, ). This yields yo...y,—1 =
A(s, y ... x._q). Since Yo ... Yr—1 = A(S,%g...xr—1) and M is weakly in-

vertible with delay r — 1, we obtain z; = zo. It follows immediately that
Y- Yr—14n = M, 2] xl_1,,). That is, y1...yr—14n € wM ~14n, - We
conclude that WM Cltns 2 VVM1 s Y Cleaurly7 wM lins & wM Y

Thus WM Ltns = VVM1 Y

(g) Assume that M is strongly connected. Let § in S satisfy wy. ar = [W,|.
For any s € S, since M is strongly connected, there are zg, ..., , in X such
that s = 0(5,20...x,). Denote s;+1 = 6(8,2¢...2;), for 0 < i < n. From
(c), we have w, pr = | M1, i=1,...,n+ 1 From s,11 = s, it follows that
Wy M = |WM O

For any g € Y7, Iévfs ={a|ae X* A(s,a) =} is called the S-input set
of sin M.
Let
w,. 5y = min{ |Ié\’48\ tse S, |WTJ\/£ =wp M, 0 € Wf\/é .

wy. 5, is called the minimal r-input weight in M.

Lemma 2.1.1. Let M = (X,Y, 5,5, \) be weakly invertible with delay r — 1

and | X| = Y]|. Let wy s = |W, M| For any xq, ..., x,—1 € X, if I}, |
wy. 5y, then for any y € Y, | e 16(s.m0) | = wy. s where Yo .. Yro1 =

As,zg...Tr_1).

Proof. Assume that [I}f | = wy. 5. Let s’ = 6(s,x0). Since M is

weakly invertible with delay r — 1, x¢ is uniquely determined by s and

Yo - Z/r 1. Thus |IM o sl =10 gl Since |1 ] = w) y, we
have | M Denotlng |X| = ¢, it follows that

Z | Ypr— 1y,5’| qw'/r,M' (22)

yeYy

Yr— 1S’|_
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We prove [} | = w], for each y € Y. From Theorem 2.1.1
(d), forany y € Y, y1...y—1y € ert/é,. From wyp = |[W2|, using Theo-
rem 2.1.1 (c), we have w, pr = \WTMS, |. From the definition of wy. ;,, we then
obtain [I} | > w]  for each y € Y. We prove 1))~ | <wl
for each y € Y by reduction to absurdity Suppose to the contrary that
LY el > wyy for some y' € Y. From [I}f > w,.y, for

Y1y, sl 2
each y € Y, it follows that >° |

LY el > qu)M, this contradicts
(2.2). We conclude that [I)f .| < w), for each y € Y. Therefore,

o | = W)y for each y €Y. O
Lemma 2.1.2. Let M = (X,Y,S,§,\) be weakly invertible with delay r—1
and | X| = |Y|. Let wypy = W] Foranyxo,.. ey € X af I =
wy. 5, then for any B € wM 16(5,30-Tr1)? |1M 65,20, 1)| = wTM, where

Yo Yro1 = A(,20. Ty 1),

Proof. Applying repeatedly Theorem 2.1.1 (¢) r times, we obtain

M
|W7',6(s xox1)| = Wr,M

forany i, 0 <i<r—1l Let B=y,...92_1 € WM o TR Then there are
ZTp,...,Tor_1 € X such that 8 = )\( ($,20.. . Tr_1),Zp...xT2r—1). It follows
that A(s,xq...To— 1) = Yo...Y2r—1. Applying repeatedly Lemma 2.1.1 r
times, we obtam |IM v yr+7‘,75(57$0---m7‘,)| = wjn’M for any i, 0 < i < r — 1. The
case i =1 — 1 gives | 8.8(s,20..20 1) = Wron- O

Lemma 2.1.3. Let M = (X,Y, 5,5, \) be weakly invertible with delay r — 1
and |X| = Y| =q. Then w; yy = q"/wr -

Proof. Let s in S and zo,...,z,—1 in X satisfy w, y = |W,{V£| and
M _
|I)\(s,a:g...mr,1),s| - TM Since
M _ r
U 156,00 201) = X
BeW, 7‘6(5 20 Tp_1)
we have
M
> 11536 (s,w0.. 2 )] = 4
Bewr §(s,xg...@p_1)
_ M
From Lemma 2.1.2, |Iﬁ_’5(s’zon_%_1)| = “’/r,M for any 3 € Wr,J(s,mo...zr_l)' It
follows that
!
‘ 5(5 To...Tp_ 1)|w = Z wr,M
BEW 5 o00.2r_1)
M
= Z |Iﬁ75($a$0-~$r71)| = qT

M
BEW S5 20. 2y _1)
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Since |[W| = wr,a, from Theorem 2.1.1 (c), we have \W%(S N e

wy - It follows immediately that w,.aw, ,, = ¢". Therefore, w; ,, =

qr/wr,M- g
Let

w;’_M = max{ |Ié\’45\ i s € S,\W%| =Wy, 0 € ervg .

w;”M is called the mazimal r-input weight in M.

Lemma 2.1.4. Let M = (X,Y, 5,5, \) be weakly invertible with delay r — 1
and | X| = |Y|. Let wy pr = WM. For any o, ..., x,—1 € X, if [I)T
wy 5, then for any y € Y, |Iﬁ...yrily’5(s’x0)\
As, 2. .. Tr_1).

SYr—1,81 T
— o _
= Wy s where yo ... Yr—1 =

Proof. The proof of this lemma is similar to Lemma 2.1.1 but replacing
wy. 5y 2, < and > by wy,, <, > and <, respectively. O

Lemma 2.1.5. Let M = (XY, S,8,\) be weakly invertible with delay r — 1
and | X| = Y. Let wy pr = [WX|. For any xo,..., 2,1 € X, if 1)), |=
w;,"M, then for any B € W%(S,xom%.il), |Ié\,46(s,m0...z,.,1)| = w;”M; where

Yo -Yro1 = NS, T0 ... Tp_q).

Proof. The proof of this lemma is similar to Lemma 2.1.2 but replacing
Lemma 2.1.1 and wy. 5, by Lemma 2.1.4 and wy’ ,, respectively. O

Lemma 2.1.6. Let M = (XY, S,8,\) be weakly invertible with delay r — 1
and |X| = Y[ =q. Then w; y = q" /wrn-

Proof. The proof of this lemma is similar to Lemma 2.1.3 but replacing
Lemma 2.1.2 and w, 5, by Lemma 2.1.5 and wy’ ,, respectively. O

Theorem 2.1.2. Let M = (X,Y, 5,6, \) be weakly invertible with delay r—1
and |X| =|Y| = q. Then wyar | ¢" and for any s € S and any 8 € WM, if
Wy M = |WT]\£ , then |Ig/fs| =q" /Wy M.

Proof. From Lemma 2.1.3, w]. ,; = ¢" /wy p. Since w,. 5, is an integer, we
have w, a1 | 4"

Let s € S, 8 € WM and w.n = [W|. By definitions of w] ,, and
wy apy Wy < |Ié\,45| < w)/ps- From Lemma 2.1.3 and Lemma 2.1.6, we have
w), = q"/wrar = w] 5 Tt follows that w], ,, = 13| = w!,,. Therefore,
113 = q" Jwr - O

Corollary 2.1.1. Let M = (XY, 5,6, \) be weakly invertible with delay r—1
and | X| = |Y| = q. Let wy,pr = [WPL|. Then for any xo,...,2.—1 € X and

anyy €Y, |I;‘f”yr_ly,5(s7m0)| = q"/wenr, where yo .. Yr—1 = A(S, 20 ... Tp_1).
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Proof. From Theorem 2.1.2 and Lemmas 2.1.3, \I%H_yr47s| =q" Jwrp =

w;’M. Using Lemmas 2.1.1 and 2.1.3, |Ié\14-~7/'r717l 5(s w0)| = w'nM =q"Jwr M-
O

Theorem 2.1.3. Let M = (X,Y,S,5,\) be weakly invertible with delay T
and | X|=1Y] =q.

(a) Wrt1,m = qwrar and wr arlq".

(b) For any s in S, if \WTMS\ = wr and s’ is a successor of s, then
|W7{\7/£/| = Wr,M-

(c) For any s in S, if |W7MS = wr M, then |WTJ‘f[H’S| = Wry1,M-

(d) For any s in S, if s is a successor state of § and WM, (| = wr41 n,
then WM | = w; .

(e) For any s in S, if W] = wrn and 8 € WM, then |I£fls| =q"/wr M-

(f) If M is strongly connected, then |W7MS,| = wr m holds for any s’ in S.

(g) If M is strongly connected and [ € WTJY{S,/, then |Igffs,| =q7/wr .

Proof. (a) Let s’ be a state of M satisfying the condition: there exist
s € S and z € X such that s = §(s,x) and |WM, | = wry1m. From
Theorem 2.1.1 (c), we have |[WY{, | = w;y1,a. From Theorem 2.1.1 (f), for
any n > 0, Wﬂn’s, = 7{%,}”‘ holds. Taking n = 1, it follows that w, 1,3 =
WM, | = WM, |g. Thus we obtain wy ar < [WM,| = wr 41 a/q. We prove
wr M = Wr+1,Mm/¢ by reduction to absurdity. Suppose to the contrary that
Wr M F Wrg1,Mm/q. Since wrp < Wry1,m/q, we have wr y < wWry1,m/9.
Therefore, there is 5 € S such that |[W| < wri1,0/q. Clearly, WX, (| <
[W2|q. It follows that [W | (| < w;41 a3 this is a contradiction. Thus the
hypothesis wr ar # wri1,0/q does not hold. That is, wr pr = wry1,a/q-

From Theorem 2.1.2, we have wT+1,M|qT+1. Using wr41,m = qwr , it
follows that w, ar]q".

(b) Let s" be a successor of s and [WM| = w, . Clearly, WM, | <
q|WTMS = qw; p. On the other hand, from (a), \Wﬂ17s| > Wrp1,M = qQWr M-
Thus we have |[WM, (| = qw;n = wrqq,n. From Theorem 2.1.1 (f) (for

the case of n = 1 and r = 7 + 1), it follows that WTA_{_LS, = WM)Y. Using

7,8’
Theorem 2.1.1 (c), |WT]\_{_17S,\ = Wr41, m. Therefore, w,11,p = q\WTJ\fg,L From
(a), we obtain |WTMg,| = Wri1,M/q = Wr -

(¢) From the proof of (b).

(d) Let s be a successor state of 5 and [W, (| = wr11,a. From Theo-
rem 2.1.1 (f) (for the case of n = 1 and r = 74 1), we have WM, = WMy
It follows immediately that W2, | = [WM|q. Next, we have [WM, | =
wr41,m from Theorem 2.1.1 (c), and w41, = qw- »m from (a). Therefore,
|WTMs = |W7{\—4&-1,s|/q = Wri1,M/q = Wr M-

(e) Let [WM| = wrp and 8 € WM. From (c), WM, (| = wri1m
holds. From Theorem 2.1.2, for any y € Y, if Sy € W%_Ls, then |I%7S| =
" Jw, 41 . Using (a), it immediately follows that |I[%7S| =q" /wr .
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We prove |I é”s| = ¢"/w,; pm by reduction to absurdity. Suppose to the
contrary that |I3’| # ¢" /w- a. There are two cases to consider. In the case
of [IEL| > ¢ /wr a, it is evident that ZUEY| | = q|IB | > ¢ wr
Therefore, there is y € Y such that fy € WM, | and |Iﬁy <| > ¢" /w- ar. This
contradicts |1 By, S\ = ¢" /w; u proven in the preceding paragraph. In the case
of |Iéws\ < q" /wr p, we have Zer |Iﬁy o= |I§/[S| < q¢" " /w; pr. Therefore,
there is y € Y such that By ¢ WM,  or By € WX, , and | ﬁyé|<q JWr -
In the preceding paragraph, we have proven that \Iﬁy sl = a7 Jwrar if By €
WT+1 s- Thus there is y € Y such that By ¢ W, T+1 s- On the other hand,
from (a), wri1,m = quyar. It follows that (WM, (| = wT_H M= qQUrp =

g|W2|. Thus we have W2, . = WMY. Since § € W}, it follows that
By W 41,5 holds for any y € Y. This is a contradiction. Therefore, the
hypothes1s |IIV,IS| # q" Jwr pr does not hold, that is, |IA{S\ =q" /wr M.

(f) Assume that M is strongly connected. For any s’ in S, since M is

strongly connected, there is s in S such that s’ is a successor of s. From

Theorem 2.1.1 (g), we have wr11,0 = [WM, |. Using (d), it follows that
w-,—7]\/[ = ‘W%d
(g) This is immediate from (e) and (f). O

2.2 Mutual Invertibility of Finite Automata

Lemma 2.2.1. Let M = (X,Y,S5,6,\) and M' = (Y, X,5",6",\) be two
finite automata. Assume that so in S and yo,...,yr—1 in Y satisfy the con-
dition yo . . . Yrypn € WM +n+1 so for anyn =0 and any yr, ..., Yr1n in Y. If
sy € S" T-matches so and s, = §'(sh, Yo - - - Yr—1), then sg T-matches s..

Proof. Assume that s 7-matches so and s. = §'(sp,y0-..yr—1). Let
Yry - -+ Yr4+n be arbitrary elements in Y, n > 0, and
zg ... =N, Yr o Yrin)- (2.3)
From the assumption, g . .. ¥, 4yn € WM r4n41,se- Lhus there exist Ty Ty
€ X such that
Yo Yrin = )‘(807 1’6 s x;+n) (24)
Since s;, T-matches sg, from (2.4), there exist 2’ _,..., 2" ; € X such that

/ / ’ I NI
T oxlgxg . x, = NS0, Y0 - Yrdn)-

x
Noticing s, = 6'(s(, Yo - - - yr—1), it follows that

gy =N, Yr o Yran)- (2.5)
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From (2.5) and (2.3), we obtain ..., = x{ ...z} . Using this result, (2.4)
yields
Yo Yrin = Mool -2l o).

It immediately follows that
Yo - Yn = A(S0,T( - .. T ). (2.6)

From (2.3) and (2.6), we conclude that sy T-matches s/ . O

Notice that A(sg,z( ...27_;) equals yo...yr—1 which is independent of

Yrs oo s Yr4n-

Theorem 2.2.1. Assume that M’ = (Y, X, 5,8, \') is a weak inverse with
delay 7 of M = (X,Y,S,8,\) and | X| =|Y|. Let

S =1{0(s,p8)|s €S, Be V[/f.\’/{qY*7 s’ T-matches s} (2.7)

for each s € S, and 8" = S’, where

SEST
Sr = {5(5533) |s€ S zeX, Wry1,M = |W7{\-4&-17s|}'

Then M" = (Y, X,58",8" X"} is a finite subautomaton of M’ of which M is
a weak inverse with delay 7, where 6" and N' are the restrictions of ' and
N on 8" XY, respectively.

Proof. Clearly, S; is nonempty. It follows that S” is nonempty. For any
state s” in S”, from the definitions, there exist s in S,, s’ in S’, and 3 in
W%Y* such that s’ 7-matches s and s’ = ¢’(s’, 8). For any ' in Y™, from
XS VVT]V,{SY*7 we have 83 € W%Y*. Thus ¢'(s”, ") = §'(s', 80') is in S,. It
follows that ¢’(s”, 8') is in S”. Thus S” is closed with respect to Y. Therefore,
M" is a finite subautomaton of M’.

For any state s” € S, from the definition, there exists s in S; such that
" € 5. From the definition of S/, there exist s’ in S” and § in WMY™ such
that s’ 7-matches s and s” = ¢'(s, 3). Denoting 8 = yo ... yr—1y~ ...y;, from
the definition of S, using Theorem 2.1.1 (f), we have yg . . . Yrin € W%nJrl,s
for any n > 0 and any y,,...,Yr4+n in Y. Denoting s, = §'(s',y0...Yr-1),
from Lemma 2.2.1, s T-matches s.. Letting oo = N (s.,y....y]), it follows
that (s, a) T-matches ¢'(s],y, ...y;) = s”. We conclude that M is a weak
inverse of M" with delay . O

Corollary 2.2.1. If M is weakly invertible with delay T and the input al-
phabet and the output alphabet of M have the same size, then M is a weak
inverse with delay 7.
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Corollary 2.2.2. If M is a weak inverse with delay 7 and the input alphabet
and the output alphabet of M have the same size, then there exists a finite
subautomaton of M which is weakly invertible with delay T and has the same
input alphabet and the same output alphabet with M.

Lemma 2.2.2. Let M' = (Y, X, 5,8, X) be a weak inverse with delay T of
M = (X,Y,S5,0,\) and | X| = |Y|. If M’ is strongly connected, then M is a
weak inverse with delay T of M'.

Proof. From Theorem 2.2.1 and its proof, it is enough to prove S” = 5’.

Take s € S with [WM, || = w41, Since M’ is a weak inverse with
delay 7 of M, we can find s’ € S’ such that s’ T-matches s. Take arbitrary
ap € X* of length 7. Let 8y = A(s,ap) and s] = §'(s', By). For any s € §’,
since M’ is strongly connected, there exists 81 € Y* such that s, = §'(s], 51).
It follows that s, = 6'(s’, Bo/31). Since fy € WTA’{,, we have [y, € WT%Y*.
From (2.7), it follows that s, € S.. From the arbitrariness of s}, we obtain
S’ C 8. This deduces S’ C S”. On the other hand, it is evident that S” C S’
Therefore, S” = S’. O

Theorem 2.2.2. Let M' = (Y, X,S5",8,N) be strongly connected and | X| =
|Y|. Then M’ is weakly invertible with delay T if and only if M’ is a weak
inverse with delay 7.

Proof. only if : This is immediate from Corollary 2.2.1.

if : Suppose that M’ is a weak inverse with delay 7. Then there exists
M = (X,Y,S,0,\) such that M’ is a weak inverse with delay 7 of M. Using
Lemma 2.2.2, M is a weak inverse with delay 7 of M’. Therefore, M’ is weakly
invertible with delay 7. a

2.3 Find Input by Search

2.3.1 On Output Set and Input Tree

For a weakly invertible finite automaton M with delay 7, an approach to
finding zg...2—r from s and A(s,z¢...x;) is guessing a value zj... xi
and comparing (s, z{ ... x}) with A(s,z¢...2;). As soon as (s, z(...x)) =
A(s,xo ... x;), we obtain xq ... x;—, = (... x__. This is so-called “search”.
To evaluate the complexity of exhausting search or the successful probability
of stochastic search, we need to know input-trees or input sets of M.

In this section, we suppose | X|=|Y|=|Z| =¢q, |F| =p and ¢ = p™. Let
M = (X,Y,S5,6,\) be a finite automaton.

In this section, we also use F'™ to denote the set of all column vectors of
dimension n over F for any set F' and any nonnegative integer n. In the case
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of Y = F™, we use Dy, or D, for short, to denote the finite automaton
(Y,Y,F",0p,Ap), for any r, 0 < r < m, where

5D([817 ey ST]T7 [yh e 7ym]T) = [ym7T+17 oo 7ym]T
)‘D([Sh s aST]Tv [yh te aym]T) - [yla ces Ym—r; S15- -5 Sp

817"'787'7y1a"'7y7nEF-

)
1%,

Let M = (X,Y,S5,0,)\) be a finite automaton. For any s € S and any
n > 0, we use P1(M, s,n) to denote the following condition:

VB € Wol (L5 = 4" /IWRL]).
And for any ¢t < n, we use P2(M, s,n,t) to denote the following condition:

VYo VYn—1 (Yo - Yn-1 € Wi
=YY, VY (Yo Y1y Yy € WD),

Lemma 2.3.1. Let M = (X,Y,S,6,\), M' = C(M,D,), and s’ = (s,sp)
be a state of M.

! ’
(a) If 20 .. 2n—1 € WM, then 29 = 2o | for some z, € F™7T.

b) For any v = Kl Z,;/ e 2%71 , we have
SD z
7 z

n—1
= ., (2.8)

v’
Zl€FT

5]
(¢) If M satisfies conditions P1(M, s,n) and P2(M, s,n,t), then |W7]L\£,\ =

|W%|/p’ holds and M' satisfies conditions P1(M',s',n) and P2(M',s",n,t+
1) in the case of t+1 < n.

Proof. (a) It is evident from the definition of D,..

(b) Let v = [?D} [jﬂ . [j,:] . Suppose that zg ... 2,1 € Uz;[eFr I%S,
where 7/ = LZH [2,} . {zz;{’l} Then there is 2! € F" such that zg ... 2,1
€ I,IYV,{S. Thus v = A(s,20...%n—1). From the definition of D,, we have
v = Ap(sp,7’). It follows immediately that xg...z,—1 € Iys/,. Therefore,
I%, ) UzgeFT Ié‘f{s. On the other hand, suppose that zg...z,_1 € I%,.

Then v = N(s',20...2,_1), where X is the output function of M’. Since

s’ = (s,sp), denoting

Yo -Yn—1= )‘(svx0~-~xn—1)a (29)
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we have v = Ap(sp,yo--.Yn—1). From the definition of D,., it follows that

Yo .- -Yn—1 = 7 for some 2! € F" where 7/ = [ZZH {2} [271} Thus
(2.9) yields xg...2n-1 € U, nepr I%s. It follows immediately that I%, -
U.repr Iy’s. Therefore, (2.8) holds.

(c) Suppose that P1(M,s,n) and P2(M, s,n,t) hold.

For any element y € Y = F™, we use y’ and y” to denote the first m —r
components and the last » components of y, respectively, that is, y = [¢/, y"]T.
To prove |WT]L‘§/| = [W|/p", partition the set W% into blocks so that
Yo---Yn_1 and zg...2,_1 belong to the same block if and only if yg . .. yn_2 =
20...2n—2 and y,_; = zI,_;. Since P2(M, s,n,t) holds, the number of ele-
ments in each block is p”. It follows that the number of blocks is [W,M|/p".
From the definition of D,., for any 3,3 € Wé‘f[s, Ap(sp,B) = Ap(sp, ) if
and only if 8 and 8’ belong to the same block. Thus the number of elements
in WTIL‘)/IS/, equals the number of blocks. Therefore, \W%,,\ = [W|/p" holds.

To prove P1(M’,s',n), let s’ = (s,sp) be a state of M’ and v € W%//-
Clearly, Ié\{s N Ié\/{s =g if 8 # (. Using (b) and P1(M, s,n), we have

D= 15kl = Y /W =0a W, (2.10)
zeF” zeFT
where v = (5] []-- [T ] wma v =[] [3]

result [WM| = |WL|/p" proven in the preceding paragraph, (2.10) yields

n,s’

z

n

[Z:},—l}. Using the

155 = a" [(WRkl/p") = ¢ /Wl .

Therefore, P1(M’,s',n) holds.
We prove P2(M',s',n,t+1) if t+ 1 < n. Suppose further that t +1 < n.

Let v = [?D} [jﬂ {27‘71] € Wv%,/- Since M' = C(M, D,.), thereis z]] € F"

such that v/ € WM | where 7/ = {2,‘,’,} [zﬂ {ZZ;},*]. From P2(M,s,n,t), it

n,s’ 21 2
follows immediately that

/ / ! / !/ !/
20 | |*1 -1 | | #t Vi1 Un—1 M 11
A D)L e e
for any v;_ ,...,v,_; € F™ ", v/ |,...,v), € F". Since M = C(M,D,),
from the definition of D,, (2.11) yields

/ / / ’ !
"o " " s " n,s’
SD | [~ 2 Vt4+1 Un—-1

for any vy 1, ..., v,_; € F™ ", v/, ..., vy _y € F". Therefore, P2(M’, s,
n, t + 1) holds. O
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A single-valued mapping ¢ from Y™ to Z* is said to be sequential, if
lo(B)] = |B] for any 5 € Y* and () is a prefix of ¢(8’) for any 5’ € Y* and
any prefix 3 of 5.

Lemma 2.3.2. Let M = (Y,Z,5,5,\) be weakly invertible with delay 0,
M = (X,Y,S,8,)\) and M' = (X, Z,5",6',\) = C(M,M). Suppose |Y| =
2. )

(a) For any state 3 of M, there is a sequential bijection @z from Y* to Z*
such that for any state s of M and any n > 0, we have WZL\?(;@ = <p§(W%),
|Wé\4/ =W M andIM(B) (5,5) = = I3, for any B € W

(b) For any state s' = {(s,8) of M, if M satisfies the condition P1(M, s, n),
then M’ satisfies the condition P1(M',s',n).

(c) For any state s’ = (s,5) of M', if M satisfies the condition P2(M, s,
n, t), then M’ satisfies the condition P2(M’,s',n,t).

Proof. (a) Let ¢s(8) = A(3, 3), for any 3 € Y*. Clearly, 5 is sequential.
Since M is weakly invertible with delay 0 and |Y| = |Z|, o5 is bijective.
To prove Wﬁ;@ = os(WM), let 3 € W Then there is o € X* such

that 6 = A(s, «). Thus
ps(8) = A5 A(s,0)) = X ((5,5),0) € WM.

It immediately follows that s(W,),) C Wfl” . On the other hand, suppose
that v € WTIL‘/Q/S 5)- Then there is a € X* such that v = N((s, 8), @). Denoting

B = A(s,a), we have 3 € W%s and
7= A5 A(5,0)) = A8, B) = ¢s(B) € ps(W,)L).

Thus WM<' 5 C @—(W]WS) We conclude that Wﬁ;@ = os(WaL).

n
n,s|'

Since Wn s(WL) and <p5 is bijective, we have |Wé\/‘[</s§>| = |W,

For any ﬁ E ns, we prove I (B)( 5 = é\{s. Suppose that a € Ié\{s.
Then 5 = A(s, «). It follows that

)\/(<S,§>,Oé) = 5‘(57 )‘(370‘)) = 5‘(57 ﬁ) = 905(ﬁ)
Thus a € I (B) (s,5)° Therefore, Iﬁ - ISO (8).(s, . On the other hand, sup-
pose that o € I (ﬂ) (s,5) Then ¢5(8) = N ((s, ), ). This yields

905(6) = S‘(Ea )‘(570‘» = 905()‘(570‘))'

Since @3 is bijective it follows that 8 = A(s,«). Thus « € Ié\{s. Therefore,

il . We conclude I =1 g/fs

LPQ(ﬁ)»<5)_> (B) (s,8)
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(b) Suppose that P1(M, s, n) holds, that is, V3 € W,%(|Iéws| =q"/|[WL)).
To prove P1(M',s',n), let v € W,Jl\gl. From (a), there is a bijection ¢z such

that W%,, = ps(W), |W7]l\£,| = |[W L] and Iﬁﬁg) o = Ié‘ffs for any 8 € W),
Taking = @5 *(7), we have § € W and Ify\g, = Ié‘ffs. Thus

1] = 3L = " IW = W
We conclude that P1(M’, s’,n) holds.

(c) Suppose that P2(M,s,n,t) holds, that is, ¢ < n and Vyo...Vyn_1
(Yo yn—1 € WM =y, .. .Yyl 1 (o ye—19 - -yn_1 € WiL)). To prove
P2(M',s',n,t), let zo,...,2n—1 be in Z with 2zp...2,-1 € W%S/,. Con-
sider any elements zj,...,z/,_; in Z. We prove zp...2t-1 2 ... 2,1 €
Wé‘é’,. From (a), there is a bijection @3 such that W%/, = ps(W2L). Since
20..-2p—1 € W%S/, and s is surjective, there are yg,...,yn—1 € Y such that
Yo .- -Yn_1 € VVTJL\)/I,S and 29...2p—-1 = ©5(Yo - .-Yn—1). Denoting vy ...y,_1 =
0 (20 .. 2014, ... 2 _ ), since g is sequential and bijective, we have 4}, . ..
Yi_1 = Yo---Ys—1. Since P2(M,s,n,t) holds, this yields yg ...y, € W)
Using W,JL\)/IS/, = ps(WM,), we obtain

20212 2 = Ps(Yh - Yn_1) € s(W) = W

Therefore, P2(M’, s',n,t) holds. O

Lemma 2.3.3. Let M;, i =0,1,...,h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M =C(My,Dx y,,M1,Dxr,, Ma,...,Dx ., ,,Mp_1,Dx r,, Mp).

Then for any n > h, any state s of M, and any B € W,]L\,/[s, we have
(a) P1(M,s,n) and P2(M,s,n,t + h) for t < n —h hold; (b) [WM| =

[P and (o) [T = [FIr .

Proof. We prove the lemma by induction on h. Basis : h = 0, that is,
M = Mj. Since M is weakly invertible with delay 0, it is easy to see that
for any n > 0 and any state s of M we have |[WL| = |X|* = |F|"™, and
that for any 8 € W% we have |I g/ls| =1=|F|° It follows immediately that
P1(M, s,n) holds. Notice that W, contains all elements of length n in X*.
Thus for any ¢ < n, P2(M, s,n,t) is evident. Induction step : Suppose that
the lemma holds for the case of h. To prove the case of h + 1, assume that
M;,i=0,1,...,h+ 1 are weakly invertible finite automata with delay 0 and

their input alphabets and output alphabets are X = F™. Let

MI = C(M07 -DX,Tllev DX,T27M27 ey -DX,Tthhv DX,Th+17Mh+1)‘
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Denote
M = C<MO’ DX,T] ) Mla DX,Tza MQa ceey DX,T;L,1 ) Mh—h DX,Th? Mh)

Then M" = C(M,Dx .., Mp41). Let s' be a state of M' and n > h + 1.
Denote s’ = (s,sp,sn1), where s,sp and s,y are states of M, Dx ., ,
and Myy1, respectively. From the induction hypothesis, P1(M,s,n) and
P2(M, s,n,t+h) for t < n—hhold. From Lemma 2.3.1 (c), P1(C(M, Dx r, ),
(s,sp), n) holds, and P2(C(M, Dx r,.,),(s,sp),n,t+h+1) holds for t+h+
1 <n(ie.,t <n—(h+1)). From Lemma 2.3.2 (b), P1(C(M, Dx r,.,, Mht1),
(s,8D, Sh+1), n) (i.e., P1(M',s',n)) holds. From Lemma 2.3.2 (c), P2(C(M,
Dx s Muy1), (s,5p, shy1), n, t +h +1) (e, P2(M',s",n,t + h+ 1))
holds for ¢t < n — (h+ 1). We conclude that (a) holds for the case h + 1. We

C(M,Dx.r, )
prove (b) for the case of h + 1. From Lemma 2.3.1 (c), W, (o00) w)| =
|WL|/|F|™+t. Using Lemma 2.3.2 (a), it follows that

MDX7h+1,Mh+1 C(MDXTh+1)

Wl = W e =W, (.50 | = (WLl F
From the induction hypothesis,

W20 = WAL/ Fress = [Fmrsssmn B = |jrm=n==ress,
We prove (c) for the case of h + 1. Using the result P1(M’,s’,n) proven
above, for any 8 € W%/, we obtain |Ig/lsl/| = |X\"/|W7]l\£, . Since \Wé‘gﬁ =
|F|rmerime i it follows that [I7,[ = [F|™®/|F|mm=rm =
|F|ritFra+1 Thus (c) holds for the case of h + 1. |

For any finite automaton M = (XY, S,4,\), if X =Y = F™ and for any
s € S and any x € X the first ¢ components of A(s,x) are coincided with the
corresponding components of z, M is said to be t-preservable.

Lemma 2.3.4. Let M' = C(M,D,). If M = (X,Y,5,6,\) is (m — r)-
preservable, then for any state s’ = (s,wg) of M' and any input o« =
hg} [“L} with (m — r)-dimensional u;, the output N (s',a) of M’ is in

v
the form {“0} [”l} and w; is determined by s and [23} ["’ 1] for any

wo wq v

i, 0<i<l.

wi Wi+1

Proof. Denote A(s,a) = ["6] [“2 ] with (m — r)-dimensional w}.

Clearly, w; is determined by s and {Z:ﬂ {2“ 1} for any i, 0 < ¢ <1+ 1.
Since M is (m — r)-preservable, we have v ... u; = ug...w;. From the def-

inition of D,., the output N (s’,a) of M’ is {"6] [”/1} {“2 }7 which equals

wo w1 wy
Uo
wo | *°

[Zﬁ] O
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Lemma 2.3.5. Let M;, i = 0,1,...,h be finite automata of which input
alphabets and output alphabets are X = F™. Let

M = C(Moy,Dx ,,M1,Dx vy, Ma,...,Dx p,_,My_1,Dx vy, Mp,Dx r,.,)

1=20,1,...,h, then for any state s S0,d1,81,d2, ..., Shydpt1) of M and
any two inputs o = ug...w and &' = ug...up, if 1 = h, ug... u_p_1 =
T/ u;_h_l, and the first m —r; components of w;y;—p—1 are coincided with

with 1y < ro < -+ < rpy1, b = 0. If M; is (m — ryy1)-preservable,
=

the corresponding components of u;+l_h_1, i=1,...,h+ 1, then outputs on
s for a and o/ are the same.

Proof. Denote A(s,a) = wq ... w; and A(s,a’) = wy ... w;, where A is the
output function of M. We prove wg...w; = w...w, by induction on h.
Basis : h = 0. From the hypothesis of the theorem, ug ... w1 = uf...u;_,
and the first m — r; components of w; are coincided with the correspond-
ing components of uj. Using Lemma 2.3.4, we have wg...w; = wy...w;.
Induction step : Suppose that the lemma holds for the case of h — 1 with
h —1 > 0. (That is, replacing h by h — 1 in the lemma, the result holds.)
To prove the case of h, let @ = ug...w; and &/ = ug...u, be two in-
puts with [ > h. Assume that ug...w—p—1 = uy...u];_,_, and the first
m — r; components of u;1;_p_1 are coincided with the corresponding com-
ponents of wj ;_,_;, i = 1,...,h + 1. Denote the outputs of C(My, D,)
on the state (sg,d;) for the inputs @ and o by vy...v; and vj...v], re-
spectively. Since ug...w_p—1 = ug...u;_,_; and the first m — r; com-
ponents of u;_;, are coincided with the corresponding components of ] ,,
applying Lemma 2.3.4 to C(My, D,,), we obtain vg...v_p = v...0]_,.
Applying Lemma 2.3.4 to C(My, D,,) again, the first m — r; components
of v;y;—p are coincided with the corresponding components of wu;4;—p, and
the first m — r; components of v, , are coincided with the correspond-
ing components of u;,;_,, i = 1,...,h. Since the first m — r;;; compo-
nents of u;4;_p, are coincided with the corresponding components of e h
i=20,1,...,h, using r; <719 < - < rpp1, it follows that the first m — r;q
components of v;4;_, are coincided with the corresponding components of
Vi_py @ = 1,..., h. Noticing h — 1 > 0, from the induction hypothesis
on M = C(Ml, Dx .y, My, ..., DXJ“}HNMh—}’ Dx ., My, DX7,«}L+1) and its
state § = (s1,da,...,8h,dps1), outputs of M on § for inputs vg...v; and
Vg ... v] are the same, that is, wo...w; = wj ... wj. O

For any zg,...,Zn4n € X and any 0 < 71 < -+ < rpp1 < M, We

use Ez()-~v£n+hﬂ"17--~7rh+1
length n+h+1 such that the first m —r; 1 components of z;, , ; are coincided
with the corresponding components of x,,4;, i =0,1,..., h.

to denote the set of all 2 ...z, 127, ... 2], in X* of
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Lemma 2.3.6. Let M;, i =0,1,...,h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M = C(Moy,Dx p,, M1, Dx vy, Ma,...,Dx p,_,My_1,Dx vy, My, Dx 1, )

with 1 < r9 < -+ < rpy1, b 2 0. If M; is (m — ri41)-preservable,
i = 0,1,...,h, then for any state s of M, any B € Wﬁh+1,s and any

M M _
Zo .- Tnth € Iﬁ,s7 we have 1 i EJJO---OE‘nJth'l7~~-,7‘h+1'

Proof. From Lemma 2.3.5, we have Ijvfs 2 Eyg..xpinyriy..rnsq - Clearly, the

number of elements in E,,. is p"1 T *+7r+1 which is the number

T hs Ty Thy 1
of elements in [, é‘ffs from Lemma 2.3.3 (¢) (Mp+1 implements the identical

] . M
transformation). Thus I5's = Eug..zpyre,erng - O

We use 1T}, to denote the set {x € X|3a(za € IF,)}.

Lemma 2.3.7. Let M;, i = 0,1,...,h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M = C(M07DX,T17M17DX,T27M27 .- 7DX,Th7Mh7DX,Th+1)

with 1y < ro < -+ < Thy1, b = 0. If M; is (m — riy1)-preservable,
i = 0,1,...,h, then for any state s of M, any B € Wé‘ihH’s and any
Q... Tpip € Ié\{g, we have IIévfs =FEyyr ifn=0, {zo} ifn>0.

Proof. This is immediate from Lemma 2.3.6. a

From the definitions, it is easy to show the following lemma.

Lemma 2.3.8. Let M = (X, X,5,6,)\) and M = (X,Y,S,6,)\) be two finite
automata, and M be weakly invertible with delay 0. Let M’ =(X,Y, S, &', \) =
C(M,M). Then for any state s' = (5,s) of M’ and any n > 0, we have
WM, = WM || = |I3L] and |TI3%,| = [TTYL) for any B € WM.

Using Lemma 2.3.2 (a) and Lemma 2.3.8, Lemma 2.3.6 and Lemma 2.3.7
yield the following.

Theorem 2.3.1. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X =F™. Let

M = C(M07DX,7"17M17DX,7"27M27 cee 7DX77“;uMh7DX,Th+17Mh-‘rl)

with r1 < rg < -+ < rpy1, b 2 0. If M; is (m — r;41)-preservable, i =
1,...,h, then for any state s of M and any B € Wﬁhﬂys, we have |Ié\{g =
prit et and |Ilé‘/7[s| =p™ ifn=20,1ifn>0.
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Lemma 2.3.9. Let M;, i =0,1,...,h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M = C(M07DX,T17M17DX,T27M27 . ’7DX,Th7Mh7DX,Th+1)

with rp < rg < -+ < rpy1, b 2 0. If M; is (m — ryyq1)-preservable, i =
0,1,...,h, then for any state s of M and any B € W/\_fLS, l < h, Ig/)[s =

Evo..oirnproirng, and II%S = Evyrpya, hold for any zo...7; € Ié\{s.
Proof. Denote M’ = C(My, Dxr,, ..., Mp_1—1, Dx,, ,) and M" =
C(Mh,l, nyrthl, ceey Mh, DX-,""h,+1)' Then M = C(M/7M/,). Let s =

(s',8"), where s’ and s” are states of M’ and M", respectively. Below, we
use A, A’ and )\’ to denote output functions of M, M’ and M", respectively.

Let zg...2; € Iévfs

E' ={N(s,a)|la € E,

and

0L, Th41—15--sTh4+1 }

Since 11 < ro < -+ < rh < rpy1— and M; is (m — 7;41)-preservable,
i = 0,1,...,h — [, we obtain E" C Ey. 2,rpsi_y,...rnss- 1t follows that

1o ’ ;o
N(s',zg...21), denoted by x( ... 2}, is in Epg. oyrpi1_y,...rngr - Lhus

E,

7
T LY Thg 1=y Tht1

=F

Lo« Ll Th4+1—1s5--sTh+1"

Since X’(s”,zf ...x}) = (3, using Lemma 2.3.6 to M", we have

Iﬁ,s” = Er{)---ﬂ?ffhﬂfz7~~-,Th+1 = E-TO-WTZ77‘h+1—l7»--77"h+1'
This yields £’ C I3, Tt follows that Eauy .oy srnss © I3 On the
other hand, suppose that o & Eu. 2 rpi1_y,..irpis- SinCE 71 < 72 < -0+ <

Th—t < Thy1—; and M; is (m — 7;41)-preservable, i = 0,1,...,h — I, we
have N'(s', @) & Eug. 2 i1 1,rnyr - FrOM Ié\{s//// = Eaoairniityerngprs W
have X'(s”, N (s',a)) # B, namely, A(s,«) # 3. Thus a ¢ Ié‘{g. Therefore,
Erg.cotrni—tyrngs = Iéf[s. Moreover, from the definitions of II%S and E,
this equation yields E, =11 %s. O

0,Th4+1—1

Using Lemma 2.3.2 (a) and Lemma 2.3.8, this lemma yields the following
result.

Theorem 2.3.2. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X =F™. Let

M = C(MO7DX,T17M17DX,T27M27 . ’7DX,T‘h7Mh7DX,T‘h+17Mh+1)

with 1y < ro < -+« < rpg1, b 2 0. If M; is (m — ry11)-preservable, i =
1,...,h, then for any state s of M and any 08 € WlAfLS, l < h, we have
|]’é/’fs| — p"‘h+1—l+"'+rh+l and u’jé\{sl = pThti-t,
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Let M = (X,Y,S5,0, ) be a finite automaton. For any s € S and any
o € Y* of length h 4 1, we use T s, to denote a labelled tree defined as
follows. We assign to the root of Ths s o a label s. Denoting a = yg ... yp, for
any i, 0 < i < h, and any vertex v with level ¢ and label &, if z € X and
A(s',x) = y;, then an arc labelled = is emitted from v and we assign to its
terminal vertex a label §(s, z). Clearly, for any i, 0 <@ < h, A(s,zqg...2;) =
Yo - - - y; if and only if there is a vertex with level 4+ 1 to which from the root
the unique path has the arc label sequence xg ... x;.

For a vertex v, the maximal length of paths with initial vertex v in T 5.
is called the depth of v. The depth of an arc means the depth of its ter-
minal vertex. Clearly, if the level and label of v are 7 and s’, respectively,
then the depth of v is maxj(j >0 — Jz;...3xipj—1 (A, 2. . iy j_1) =
Yi - --yi+j—1))'

Theorem 2.3.3. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X =F™. Let

M = C(M07DX,7'17M17DX,7'27M27 ... 7DX,7‘;L)Mh7DX,7‘;L+17Mh+1)

withry <1y < - < rpp1, h 2 0. If My is (m—ri41)-preservable, i = 1,..., h,
then for any state s of M and any o € Wi]L\il,m the number of arcs emitted
from the root of T s o with depth > 1 is p"™+1=1 for 0 <1 < h, therefore, the
number of arcs emitted from the root of Th,s,o with depthl is p™+i1-t —p"r-t
for 0 <1 < h—1, and the number of arcs emitted from the root of T s.q
with depth h is p™.

Proof. Let a = yo ...y and 0 < I < h. From Theorem 2.3.1 and The-
orem 2.3.2, [II)! | = p™+-t. It is easy to see that the depth of an arc
emitted from the root of Tas, . with label x is at least [ if and only if

x € II%”%S. Thus the number of arcs emitted from the root of Ty s o with
depth > [ is p"r+1-t a

Corollary 2.3.1. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X =F™. Let

M = C(M07DX,T17M17DX,T27M27 cee 7DX77"hﬂMh7DX77“h+17Mh+1)

withry <ry < - < rpy1, h = 0. If My is (m—r;1)-preservable, i = 1,..., h,
then for any state s of M and any o € W,{Yﬂlﬁs, h' < h, the number of arcs
emitted from the root of Tas s, with depth > 1 is p™+1=t for 0 < I < R/,
therefore, the number of arcs emitted from the root of Thr s, with depth I is
prhri=t — pTh=t for 0 < I < B — 1 and the number of arcs emitted from the
r00t of Tar,s,a with depth B/ is pTr+i-n.
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Proof. Take o € W;{‘QI_LS of which « is a prefix. Applying Theorem 2.3.3
to o/, the number of arcs emitted from the root of Ths s o with depth > [ is
prri-t for 0 < I < AL Since Tass,q is the first A’ + 1 levels of Thy s o, the
number of arcs emitted from the root of Ths s With depth > [ is p™+1-t for
0 <1< P It follows that the number of arcs emitted from the root of Ths s o
with depth [ is p™+1-t — p™n=t for 0 < | < A’ — 1 and the number of arcs
emitted from the root of Ty s with depth b’ is p™n+i-n. a

For any z € X, the z-branch of T s, denoted by Ty . ., means the
subtree of Ths s With the same root obtained by deleting all arcs emitted
from the root but one with label x. Clearly, the level of a tree is equal to
the depth of its root minus one. From Theorem 2.3.3 and Corollary 2.3.1, we
have the following result.

Corollary 2.3.2. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X =F". Let

M = C(M07DX,T17M17DX,T27M27 L] 7DX,Th7Mh7DX,Th+17Mh+1)

withry <1y < o < rppr, h = 0. If M is (m—1;41)-preservable, i = 1,...  h,
then for any state s of M and any o € Wh,+1 o W < h, the number of
branches of Tyy s.o with level I is p"™n+1-t — p™ =t for 0 <1< W' — 1, and the
number of branches of Thy s.o with level b’ is pTh+1-n'.

Theorem 2.3.4. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = F™. Assume that M; is (m — r;41)-preservable, i = 1,... h. Let

M = C(MO7DX,T17M17DX,T27M27 .. '7DX,Th7Mh7DX,Th+17Mh+1)

withry <rg < -+ < rpg1, b 2 0.

(a) For any state s of M and any o € WM ntht1.s the number of arcs in
ht

Toiys,0 1S Z;H'Ql pEL =i "4 (n 4 1)p2i=1 ",
(b) For any state s of M and any o € I/V%LS, l < h, the number of arcs

h+1
-
in Thi s, zszj gl lpzt i

Proof. (a) Let @« = yo ... Yn+n. From Theorem 2.3.1 and Theorem 2.3.2,
we have [I])] wpansl = POTTETEL for 00 < j < o, and L sl =
prhti—g T s for 0 < j < h-1. Since the number of vertices with level j+1
of T s, 1s equal to | s | for 0 < j < n+h, the number of arcs of Ths 5o

is equal to Zn+h Ihs s 9| which equals Z?’LQ pzz i (n+ 1)pz7~,:1 ri,
(b) Similar to (a ) let @« =yo...y;, | < h. From Theorem 2.3.2, we have

I sl = prrerst e for 0 j <. Since the number of vertices with
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level j+ 1 of Ths s, is equal to |I%%s| for 0 < j <1, the number of arcs of
h
Tnr,s,0 1s equal to Z;:o |I% yj,s| which equals ]+h+1 lpzi:jl Ti, O

Corollary 2.3.3. Let M;, i = 0,1,...,h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X =F™. Let

M = C(Mo,Dx p,, M1, Dx vy, Mo, ...,Dx v, Mp,Dx r,,,, Mpy1)

withry <rg < - < rpy1, h =2 00 If My is (m—r;1)-preservable, i = 1,..., h,
then for any state s of M and any o € W,f‘//ﬁrl o W < h, the number of the arcs

of an z-branch with level | +1 of Ty .0, 0 <1< K, is 1—|—ZJ 1 lth“ ri

Proof. Let Tj; , , be a branch with level I + 1 of T 5o and I < h'. Let
T be a tree obtained by deleting the root of Ty .. It is easy to see that
T = This(s,2)1...0041> Where & = yo...yn. From Theorem 2.3.4 (b), the

h

i 18 Z?ﬂi—t—l zPZijfl ", Tt follows that
h1

the number of the arcs of a Tf; ., is 1+ Z] [ lpz F i O

number of the arcs of T, s5(s,2),y, ..

We point out that Lemmas 2.3.5 —2.3.7, 2.3.9, Theorems 2.3.1 — 2.3.4 and
Corollaries 2.3.1 — 2.3.3 still hold if we change the definition of preservation
as follows. For a finite automaton M = (XY, 5,4,A), if X =Y = F™ and
for any s € S and any k, 1 < k <t < m, the first k¥ components of A(s, z) are
independent of s and the last m — k components of x, and A\ is a bijection,
where A\ (2') is the first k& components of A(s, x), «’ is the first k¥ components
of x, M is said to be t-preservable.

2.3.2 Exhausting Search

Let M = (X,Y, S, 6, \) be a finite automaton. An exhausting search algorithm
to find an input sequence from an output sequence is the like of the following.

Algorithm 1 (exhausting search algorithm)

Input : a state s of M, an output sequence yoy1 ...y € VVlAfLS.

Output : an input sequence Togxy...x; € I%yl Ti,s

Procedure :

1. Set i = 0.

2. Set X a10r..0r_, = {2]v € X,y = AN(d(s, 207 ... x}_;), )} in the
case of i > 0, or {z|z € X,y; = A(s,2)} otherw1se.

3. If X a4y 2, # 9, then choose an element in it as x}, delete this
element from it, increase ¢ by 1 and go to Step 4; otherwise, de-
crease ¢ by 1 and go to Step 5.
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4.If i > [, then output zj ...z} as the input zg . .. z; and stop; other-
wise, go to Step 2.

5.If i > 0, go to Step 3; otherwise, prompt a failure information and
stop.

Algorithm 1 is a so-called backtracking. It is convenient to understand the
execution of this algorithm for an input, say s and yq .. .y;, by means of the
tree T, s,yo...y,; the output xg . .. x; is the arc label sequence of a longest path
in Ths,yo...y;- To find one of the longest path in Tas s y,...y, the algorithm
attempts to exhaust all possible paths from the root to leaves. Whenever the
level of a searched leaf is less than [+1, i.e., the path is not one of the longest,
the search process comes back until an arc which is not searched yet is met,
then the search process goes forward again. Whenever the level of a searched
leaf is [ + 1, i.e., the path from the root to this leaf is the longest, the search
process finishes and the arc label sequence of this path is the output.

How do we evaluate search amounts or accurate lower bounds in worse
case or in average case of this algorithm? This is a rather difficult problem,
as the structure of the input-trees for general finite automata has not been
investigated yet except the case of finite automata discussed in the preceding
subsection and the case of C(Mj, My), where My is linear and M; is weakly
invertible with delay 0. We point out that the quantity |I Ms| may be used
to evaluate a loose lower bound in worse case of the search amount. We use
the number of arcs in Thz s y,..y, Passed in an execution of Algorithm 1 to
express the search amount of that execution. Let M be weakly invertible
with delay 7 and 7 < [. Although the track of an execution of Algorithm 1
for an instance yq . ..%; is not clear for us, we may tentatively omit all parts
but the part corresponding to I%Hyl_ﬂs in Tars,yo...y,- It is evident that the
minimal search amount is {41 which can be reached by guessing xj, . .., z] as
xg, - - - , T, respectively. Meanwhile, in worse cases, the last guessed values of
xQ,...,T)_, are To,...,T—r, respectively. The search amount in worse case
is at least [+[I)! | as the search amount between two distinct elements

Yo---
of I)! s at least 1. Therefore, if [I)! ] is large enough, then the
exhausting search is very difficult.
Below we confine X and Y to F™ and the automaton M in Algorithm 1

to the form
M = C(M07DX,T‘17M17DX,T27M27' . '7M7'717DX,T77MT)

with 0 <7y <71y < -+ - <1 < m, and assume that M; = (X, X, S;,6;, \i),
1=0,1,...,7 are weakly invertible finite automata with delay 0 and that M;
is (m — r;41)-preservable, i = 1,...,7 — 1.

We first discuss the case of | > 7. Since yoy1 ...y € V[/'l]\_fLS, the level of
T ,s,yo...y, 15 1. Since M is weakly invertible with delay 7, it is easy to see
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that there exists a unique branch of Ths s y,...y, With level > 7. This branch

is TX’/IOS 0.y~ Notice that any other branch, say TIiRs,yg...yﬂ coincides with

0
M,s,yo...yr
0 and less than I, then 2 < h < 7 and, from Corollary 2.3.3 (with values 7—1,

. If the level of a branch of T, y,...y,, Say b — 1, is greater than

7 — 1, h — 2 for parameters h, h', [, respectively), the number of its arcs is

-
th =1+ Z pzz—:j Ti
j=T—h+2

Denoting t; = 1, it is trivial to see that a branch with level 0 has t; arcs.
Consider the search process when Algorithm 1 is executing. Arcs in the
tree T s,y0...y, are searched branch by branch. Let levels of the first ¢ — 1
searched branches in Ths s ...y, be less than 7 and the i-th searched branch
be Tj\?,s.,yo...yl‘ Let v; be the number of branches with level j — 1 in the first
1 — 1 searched branches, j = 1,...,7. Then the search amount of searching
such ¢ — 1 branches is Z;‘:1 v;t;. Denote

N =y, my=p i —pr, j=1,..,, (2.12)

where 7o = 0. From Corollary 2.3.2 (with values 7 — 1, 7 — 1, j — 1 for
parameters h, h', [, respectively), the number of branches of T s,y0..yr 1
with level j —1is m; if 1 < j <7, m; +11if j = 7. Since the level of the

branch Ty7 . is at least 7 and for any zj # g, the branch TM0

$,Y0---Y1
coincides with the branch TM‘J sy, » 1t follows that the number of branches
of Ths,yo...y, With level j —1is m;, j = 1,...,7; therefore, the number of

branches of T s,y,...y, is N. Fixing ¢ and v;,j = 1,...,7, then

(i = DN =) - (07)

is the number of all different permutations of N branches of T s yo..y, in
which the i-th branch is Tf/f’ S0 11 and the first ¢ — 1 branches consist of v;
branches with level j — 1, j = 1,...,7. Thus the average search amount for

Yt

searching branches of T s y,..., With level <1 —1 is

N
_12 Z (i = DUN =)I() - (77) ZUJ iE

i=2 d(iv1,...,vr)

where d(i,vl, ...,v;) represents the condition v1 + -+ -4+ v, =i —1& 0 <
vy <mq & - &0<vT m,. Lettlnng—Oforl 7 >7and miy =1,
we have ¢ = ¢/, where

N—-mj41+1

=@t Y > = DUN =iy (1) - Zv“,

i=2 d(i,01,...,07)
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(8) =1,and d(i,v1,...,v) S v+ =i—1&0< v <m & - &0

v < my.
The search process for the branch Ty .~ with level [ is reduced to the
search process for T 5(s,20),y; ...y, - In the case vof [— > 7, we can analogously

discuss as above. Repeat this dlscussmn, until we reach a tree with level 7—1.

Now we consider the search process for Ths s y,...y, With [ < 7. Similar to
the case of T s y,...y, With I > 7, its arcs are searched branch by branch. Let
the first ¢ — 1 searched branches in Ty s y,...y, be with level <1 —1 and the
i-th searched branch be with level [. If the level of a branch of T/ s yq. .45
say h — 1, satisfies 2 < h < [, from Corollary 2.3.3 (with values 7 — 1,1, h—2
for parameters h, h', I, respectively), then the number of its arcs is

=1+ Y p==n
j=T—h+2

Clearly, the number of arcs of a branch with level 0 is ¢,(= 1). Let v; be
the number of branches with level j — 1 in the first 4 — 1 searched branches,

j = 1,...,1. Then the search amount of searching such ¢ — 1 branches is
Zé 1 v;t;. From Corollary 2.3.2 (with values 7 — 1, [, j — 1 for parameters
h, W, 1, respectlvely)7 the number of branches of Ty s y,...y, With level j —1
is mj, j = 1,...,1, and the number of branches with level [ is m;1, where

m; is defined in (2.12), and my41 = p"~—'. Fixing ¢ and v;,j = 1,...,(, then

(= D) - () () i)

is the number of all different permutations of N branches of T y,...y, Of
which the i-th branch is T ;@}’ s,y and the first ¢ — 1 branches consist of v;
branches with level j — 1, j = 1,...,l. Thus the average search amount for
searching branches with level <1 —1 is

N-—mji1+1

=@t Yy S = DN =iy (T) L (T va,

1=2 d(i,v1,...,01)

where d(i vy, .. vl) represents the condition v1 +---+v;, =i—1& 0 < v1 <
my & &I 0 ml

The average search amount for executing Algorithm 1 is the sum of the av-
erage search amounts for Ty 5(s,z0...0x_1),yx...y, PEfOTE searching its xj-branch
with level [ — k, k = 0,1,...,l — 1, because these search processes are inde-
pendent. Therefore, the average search amount for executing Algorithm 1
is

I
ch—i—l
k=1
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! N—mp1+1

(N) IZ Z Z i—1 —z)lmk+1 Zv]t +1,

= 1=2 d(i,v1,...,0k)

where d(i,v1,...,vy) represents the condition v1 + -+ vy =i —1& 0 <
v <my & - & 0 < v, < my. We state this result as a theorem.

Theorem 2.3.5. Let M;,i=0,1,...,7 be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M: C(M07DX,T17M17DX7T‘27M27'"7MT—17DX,T77MT)

with 0 < rp < re < - < 7 < my and M; be (m — riq1)-preservable,
t=1,..., 7= 1. Ifyp...y; € Wlﬂfst then the average search amount for
executmg Algomthm 1is

N—mpq1+1

(N) 12 ST =DV = g (7). (0 ZvjtnLl

1=2 d(i,01,...,U%)

where N = p'™, m; = p’”f*j+1 —p"i for 3 = 1,...,l, mp = p""—k+t1 for
k=1,...0+1, 1, =0ifj <0, t, = 1+ZJ L h+2pzlﬂlfor =
1,...,min(7,1), andd( ViyeoohU) S 1+ -Fvp =1—1& 0 < v <
m & - &0< v <m

Consider Ths,s,y,...y, With level [ > 7. Let
jmax:maxj(mj?éo&lgjgl)

and

tmax = jopa-

The main branch means the unique branch of T s y,..y, With level [. A next
mazimal branch means a branch of Ty s y,..4, With level jnax — 1. Fixing a
next maximal branch, let Py .. be the set of all permutations of N branches
of Ths,s,yo...y; in Which the next maximal branch is before the main branch.
It is easy to see that

N
|Pmax| = Z (N — 2)' (111) = N'/2
i=2
Corresponding to a permutation in Pp,x, the search amount for executing
Algorithm 1 is greater than t.,.x. Notice that the average search amount for
searching branches of T s(s zo...25_1),yr..., Pefore searching its xx-branch
with level <1 —kisc/, for k=0,1,...,1 — 7. It follows that

7S (ND)™HNY/2)tmax = tmax/2.
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In the case of 1 > 1, we have jyax = 7. Therefore,

T
CZ > tT/Q = (1 =+ Zprj_‘—“'_‘—rr)/Q’ if T1 2 1.
Jj=2

Since the average search amount for executing Algorithm 1 on Tz s y,...y, is
greater than (I+1—7)c/, it is greater than (I+1—7)(1+ Z]_ i) /2
in the case of 1 > 1. We state this result as a theorem.

Theorem 2.3.6. Let M;, i =0,1,...,7 be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M = C(M()v-DX,TlaMlvDX,Tg)MQv"~7M7'717DX,7’7-7MT)

with 1 < rp < 1rg < -+ < rp < m, and M; be (m — r;y1)-preservable,
i=1,....,7t—1. Ifyo...y € WlAfLs and | > T, then the average search
amount for executing Algorithm 1 is greater than

(+1-7)(1+ ipwm%)/z.

Finally, we evaluate the search amount in worse case. Consider the search
process when Algorithm 1 is executing. For searching the tree T ¢ y,..., With
Yo.--Y € WZAfLS and [ > 7, in worse cases, all arcs in Ty s,y,...y, €Xcept some
arcs mentioned below are searched. According to Corollary 2.3.2 (with val-
ues 7 — 1, 7 — 1 for parameters h, h’, respectively), there are p"* branches

of Tars5(s,z0...21-1)y1—rs1...yy With level 7 —1; only one in such branches, say

T$177+1
M,5(s,0...T1—7),Y1—741---Y1’

in Thr,s,yo..y, 18 searched. Next, according to Corollary 2.3.2 (with values

is searched, because only one path of length [ + 1

7 — 1, 7 — 2 for parameters h, h’, respectively), there are p™ branches
of Tt 5(s,20. 01— r41)y1—rs0...y, With level 7 — 25 only one in such branches,
say T]"f/[’ 52;’10 PO PR is searched, because only one path of length
I+ 1 in Thss,y,...y, is searched; and so on. According to Corollary 2.3.2
(with values 7 — 1, 2 for parameters h, h', respectively), there are p"~—2
branches of T 5(s,z0...01_3),y1_2v1_1y With level 2; only one in such branches,
say sz\lc/flisis Zo---Tr— 3)77/1 2Y1—-1Y1
I+ 1 in Tarsye..y, is searched. Finally, according to Corollary 2.3.2 (with

values 7 — 1, 1 for parameters h, h', respectively), there are p"=—1! branches of

is searched, because only one path of length

T ,5(s,0..01—2),y1— 1y With level 1; only two arcs in such a branch are searched,
because only one path of length I + 1 in T/ s y,...y, is searched. For any k,
2 < k < 7, from Corollary 2.3.3 (with value 7 — 1,k — 1,k — 2 of the parame-
ter h, h',1), the numbers of arcs of a branch of T 5(s.z...c1— 1)1 i1y With
level k —1is 1+ Z;:T_kw p>i=i". Thus the number of arcs which are not
searched is
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From Theorem 2.3.4 (a) (with values 7 — 1, { + 1 — 7 for parameters h, n,
respectively), the number of arcs in T s 0.y 18

D opEET (=T 2)pin T
=2

Then the search amount in worse case for executing Algorithm 1 is

T T k
DopT (2t = S(3p —k

)ka+1+'"+TT

=2 k=1 j=1
T k
e 9) 9 S SEU e
k=1 j=1
T T k
= (= 1)p" Y (ke 1)pree bt (N pra)prin et
k=0 k=1 j=1
T+1 T k
=(—7+1ptrtr 4 Z kprEto e — Z(Zp""j yprErt e
k=1 k=1 j=1

T k
= (L=7+ Lpr ot N S (kp™ =y pla)pi Tt o
k=1 j=1

We state this result as a theorem.

Theorem 2.3.7. Let M;, i =0,1,...,7 be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let
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M = C(My,Dx,,,M1,Dx vy, Ma,...,M;_1,Dx ., M;)

with 0 < rp < 1rg < -+ < rp < m, and M; be (m — riy1)-preservable,
i=1,...,7— 1. Ifyp...y1 € VV%LS and l > 7, then the search amount in
worse case for executing Algorithm 1 is

k

(I—71+1)pttr 4 Z (k’pr’“ _ Zprj)prk+1+m+n + 7
k=1 j=1

Using Theorem 2.3.1, this theorem yields the following.

Corollary 2.3.4. Let M;,i=0,1,...,7 be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M = C(My, Dx v, M1, Dx vy, Ma, ..., M;_1,Dx ., M;)

with 0 < rp <19 < -+~ < rp < m, and M; be (m — riy1)-preservable,
i=1,...,7—1. Ifys...y1 € VV%LS and 1> 1, then (I— 7+ 1)pn T+ 47
pe, =7+ 1)) .
in worse case for executing Algorithm 1 and this bound can be reached if and

only ifry =---=1r,.

| + 7 is a positive lower bound of the search amount

2.3.3 Stochastic Search

Algorithm 2 (stochastic search algorithm)
Input : astate sof M = (XY, 5,0, \), an output sequence yoy1 - .. y; €
VVlJ\fl,s'

Output : an input sequence xoxi ...T; € I%yl_“yhs.
Procedure :
1. Set i = 0.

2. Set X apaf . a)_, = {z|r € X,y; = Md(s,zyzy ... x5_;),x)} in the
case of i > 0, or {z|x € X,y; = A(s, )} otherwise.

3. If X4y 2)  # 9, then choose an element in it as x}, increase @
by 1 and go to Step 4; otherwise, prompt a failure information
and stop.

4.If i > [, then output zj ...z} as the input o . .. z; and stop; other-
wise, go to Step 2.

Let p?> ¥ be the probability of successfully choosing z(,...,x} in Algo-
rithm 2.

Let pr(z}|zy ... zi_1, S, Yo -.. Y1) be the conditional probability of suc-
cessfully choosing } in Algorithm 2, 0 <4 < I. It is easy to see that

0---Y1

Y — YoYU . / A
pi =DPi—1 PT($¢|$0~~~$i71737y0~~yl)> Z_Ovla"'7lv



2.3 Find Input by Search 75

where p”; ¥ = 1. Thus

!
Yo---Yr __ / / /
P}’ —Hpr(xibco...xi_l,s,yo...yl).
i=0

Below we confine X and Y to F™ and the automaton M in Algorithm 2
to the form

M = C(M07DX,T17M17DX,T‘27M27'"7MT—13DX,T77MT)

with 0 <7 <7 < -+ < rp < m, and assume that M; = (X, X, S;,6;, \;),

1 = 0,1,...,7 are weakly invertible finite automata with delay 0 and that
M; is (m — riq1)-preservable, i = 1,...,7 — 1. Notice that X 4.1 o = =
Yi,0(8,x(...x;_1) and

przileg .. 21,890 .. y1) = |I‘Té\i..yl,6(s,xg...m;71)|/‘Igj\:[,5(s,m6...m;71)"

Using Theorem 2.3.1 (with values 7 — 1, I — 7 — i + 1 for parameters h, n,
respectively), we have [T} ol =1if =140 <0, or p if

i Y1,0 (8,2
T — 1414 = 1. Using Theorem 2.3.2 (with values 7 — 1, | — i for parameters
h, 1, respectively), we have |ITM o =prrifr =l +i > 1

Yi-Y1,0(8,20... 25 _
Using Theorem 2.3.2 (with values 7 — 1, 0 for parameters h, [, respectively),

we have |Iy1\:[,6(s7x,0._m;71)| =p", fori=0,1,...,1. It follows that
pr(xi|al ... a8, yo...y) =p T pTT =Pl T = 0,1,

where r; = 0, for j < 0. Therefore,

l
Yo---Yyr __ / ! /
j2 = Hpr(xi\xo...xifl,s,yo...yl)
i=0

l
— H prTii T
=0

o (rr i)

Zi‘:o rr—ipi—(+1)rr

=D
=D
B S Al
We obtain the following.

Theorem 2.3.8. Let M;, i =0,1,...,7 be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = F™. Let

M = C(M07 -DX,TlaMlv DX,T27M27 ey M‘rfla DX,rTaMT)
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with 0 < rp < ry < -+ < rp < my, and M; be (m — ri41)-preservable,
t=1,....Tt— 1. Ifyp...y; € Wll‘fl’s, then the probability of successfully
choosing x(, . .., x} of Algorithm 2 is

Yo

min(l,7—1)
D; YL :pzizo TT—i_(l+1)rr.

Historical Notes

The concepts of the r-output set, the r-output weight and S-input set are
first defined in [4] for » = || = 1 and in [8] for the general case, and the
minimal 1-output weight is also defined in [4]. The minimal r-output weight
for general r, the minimal r-input weight and the maximal r-input weight
are introduced in [128]. And the input-tree Ths s « is introduced in [120]. The
material of this chapter is based on [128].
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Summary.

For characterization of the structure of weakly invertible finite au-
tomata, the state tree method is presented in Chap. 1. However, from
an algorithmic viewpoint, it is rather hard to manipulate such state trees
for large state alphabets and delay steps. In this chapter, the R, Ry trans-
formation is presented and used to generate a kind of weakly invertible
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method.

This chapter may be regarded as an introduction to Chap. 9.

Key words: R, Ry transformation, inversion method, quasi-linear finite
automata

For characterization of the structure of weakly invertible finite automata,
the state tree method is presented in Chap. 1. However, from an algorithmic
viewpoint, it is rather hard to manipulate such state trees for large state
alphabets and delay steps. In this chapter, the R, R transformation is pre-
sented and used to generate a kind of weakly invertible finite automata and
their weak inverses. This result paves the way for the key generation of a
public key cryptosystem based on finite automata in Chap. 9. For weakly in-
vertible quasi-linear finite automata over finite fields, the structure problem
is also solved by means of the R, R}, transformation method.
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3.1 Sufficient Conditions and Inversion

Throughout this chapter, for any integer ¢, any nonnegative integer k£ and any
symbol string z, we use z(i, k) to denote the symbol string z;, z;—1, ..., Zi—k+1
(void string in the case of k = 0). Let X and U be two finite nonempty sets.
Let Y be a column vector space of dimension m over a finite commutative
ring R with identity, where m is a positive integer. For any integer ¢, we use
x; (x}), i (v}, y!) and u; to denote elements in X, Y and U, respectively.

Let r and ¢ be two nonnegative integers, and p an integer with p > —1.
For any nonnegative integer k, let f and f; be two single-valued mappings
from X7 x UPH x Yk+t+1 o V.

Rule R, : Let eqi(i) be an equation in the form

fe(z(,r+1)u(é,p+ 1), y(i + k,k+t+1))=0.

Let ¢ be a transformation on eqy(7), and eq), (i) the transformational result
in the form

Je(@(,r+1),u(i,p+1),y(i + k,k+t+1)) =0.

If eqy (i) and eqj, (i) are equivalent (viz. their solutions are the same), eq; (%)
is said to be obtained from eqy (i) by Rule R, using ¢, denoted by

eqr(i) "2 eql i),

Rule Ry, : Assume that eg;, (i) is an equation in the form
fe(x(,r 4+ 1),u(i,p+1),y(i +kk+t+1)) =0

and that the last m —ry41 components of the left side of eqj,(¢) do not depend
on u; and x;. Let eqr+1(7) be the equation

Ep fi(@(i,r +1),u(i,p+ 1),y(i + b,k +t +1))
Elfix(i+ 1,7+ 1),u(i+1,p+1),y(i+1+k,k+t+1))

)

where Ej, and E}/ are the submatrix of the first 441 rows and the submatrix
of the last m — rp41 rows of the m x m identity matrix, respectively. eqp+1 (%)
is said to be obtained from eq) (i) by Rule Ry with respect to variables x and
u, denoted by

R
eqp (i) 5 eqeia (i),
Notice that the result equation egyy1(7) of applying Rule Ry, to egj, (i) is
still in the form

fer1(@(yr +1),u(i,p+1),y(i+k+1L,k+1+t+1))=0
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on which Rule R, should be applied.

Assume that

. a N Rplre+a .
eqy (i) Raley] eqy (i), eqp. (i) h[—kf]eqkﬂ(m k=0,1,...,7—1.

It is easy to prove the following properties.

Property (a) For any k,0 < k < 7, eqx (i) if and only if eq}c(')

Property (b) For any k,0 < k < 7, if eq, (i), = b,b+1,..., then
eqr+1(1),i=0bb+1,...

Property (c) For any k,0 < k < 7, if eqr11(3),s = b,b+ 1,..., then
eq, (i), i =b+1,b+2,.

From Property (a) and Property (b), we have the following.

Property (d) If eqy(é), i =b,b+1,..., then eq, (i), i =bb+1,...

From Property (a) and Property (c), we have the following.

Property (e) Ifeq (i), i =b,b+1,..., theneqo(i), i = b+7,b+7+1,.

Letting C' be a matrix with m columns we use Ceqy (i) to denote the
equation obtained by multiplying two sides of eq). (i) on the left by C. Using
Property (a), it is easy to show the following property.

Property (f) For any k,0 < k < 7, and any b < e, eq(i), i =b, b+ 1,

., e if and only if

GQk+1(i), i:b7b+1,...,6* 13
Egeqy(e),
Eyleq;,(b)-

Applying Property (f) repeatedly, we have the following.
Property (g) eqo(i), i =0,1,...,7 if and only if

eq-(0),
Egeqo(t), Ereqy (T —1),..., Br_yeq;_1(1),
Egeqy(0), By eqy(0), ..., EY_jeqr_1(0).
Let M = (X,Y,Y! x UPT! x X" 4, )\) be a finite automaton defined by
0((y(i — 1,¢t),u(i,p+1),2(i — 1,7)),z;)
= (y(i,t),u(i+1,p+ 1), 2(i,7)),
Ay = 1L, 0),uli,p+1),2(i = 1,7)), z:) = i,
where

Yi = f(y(l - 17t)’u(i7p+ 1)7$(ia7ﬂ + 1))7
uiv1 = g(y(i — 1,t),u(i,p+1),z(i,r + 1)), (3.1)
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f and g are two single-valued mappings from Y? x UPT! x X"t to Y and U,
respectively. Assume that eqo(4) is the equation

—yi+f(y(if1,t),u(i,p+l),x(i,r+1)) =0 (32)
and that
eaqn(i) " eql (i), eqp(i) " eqrin (i), k=0,1,...,7 1

is an R, R, transformation sequence.
Let f* be a single-valued mapping from X" x UP*! x Y7+ +1 to X. From
f* and g in (3.1), construct a finite automaton M* = (Y, X, X" x UPH! x
Y7 5% \*) by
5*(<l’(l - l,r),u(i,p + 1)3 y/(i - 177_ + t)>,y:)
= (z(i,r),u(i+1,p+1),y/(i,7 + 1)),
N({x(i —1,7),uli,p+ 1),y — 1,7+ 1), y)) = x4,
where
z; = fr(z(i— L), u(i,p+ 1),y (i, 7+t +1)),
Ui+l = g(y,(l - T lvt)7u(iap + 1),$(i,’l‘ + 1))
Lemma 3.1.1. Assume that for any parameters x;_1, ..., Ti_p, Ui, ...,
Uizp, Yitrs - - Yiet, €4 (1) has a solution x;
T; = f:(ﬂ?(l - 17T)au(i7p+ 1)7y(Z =+ T +i+ 1))
Let
SS = (x(—lm),u(O,p—&— 1)73/(_177— +t)>
be a state of M*. For any yj,yi,... €Y, if
2T - = XN (S5, Yo - - )
then
Yoy - = NSr, TrTri1 .,
where
Sr = <y/(717t)a U(T,p + 1),$(T - 1a T)>7
Ui+1 = g(y’(z —T—= 1,t),u(z,p—|— 1),33‘(i,7’ + 1))7 1= Oa 17 ey T 1.
Proof. Denoting
Ui+1 = g(y/(l -7 17t)au(i7p + 1),I(i,7" + 1))7
i=1,7+1,..., (3.3)
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since zox1 ... = A*(s8, yoyy - - -), we have
;= fA(x(i—1,7),u(i,p+ 1),y (G, 7+t+1)), i=0,1,...
Denoting y;+- = y; for any integer ¢, this yields that
x; = fi(zx(i—1,r),uli,p+ 1), yG+7,7+t+1)), i=0,1,...

From the hypothesis of the lemma, for any parameters x; 1, ..., Z;_», U, .. .,
Ui—py Yitrs - - - Yi—t, such a value of x; is a solution of egq,(3), i.e.,

fr(w(ir+1),u(i,p+1),y(i + 7,7 +1+1)) =0,

for i = 0,1,... Thus eq, (i), ¢ = 0,1,... hold. From Property (e), we have
eqo(i), i =7,7+ 1,... It immediately follows that

yi = fly(@ —1,¢),u(i,p+ 1),2(éi,r+ 1)), i=7,7+1,...
Using (3.3), we then have

y1,l—7- = f(y/(Z - T 1,t),u(i,p—|— 1)71‘(7;,7’ + 1))a
Ui41 = g(y/(l - T = 17t>7u(7ﬂp+ 1),.’I?(i77" + 1))7

t=T71,7T+1,...
From the definition of M, this yields y{y] ... = A(Sr, @7 Zrq1 .. .). O
Theorem 3.1.1. Assume that for any parameters T;_1, ..., Ti—p, Uiy -« -,
Uiep, Yidrs -+ Yi—t, €¢- (1) has a solution x;

xi = fr(x(i = 1,7),u(i,p+1),y(i + 7,7+t +1)).

Let M** = (Y, X, S**, 6"
where

s xy, A s=xy) be a finite subautomaton of M*,

S ={0"(s" 50 yr—1) | 8T € X" X UPT X YT o, ,yr 1 €Y}
For any state
53 = <1’(—1,’I"),’(L(O,p+ 1)7y,(_17T + t)>
of M**, if
so = (Y (=7 —1,t),u(0,p+ 1), 2(=1,7)),

then the state sg of M matches s§ with delay 7 and A(sp, ) =y, ...y 4
for any o € X*(s§,YT). Therefore, M is a weak inverse with delay T of M**.
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Proof. For any yj,y; ... €Y, let

o1 ... = N (85, youh - - )
From the definition of $**, since s* € S**, there are x_,_1, ..., 2, € X,
Up—i, .o U—pr €U,and ' _,_1,...,y o,_, € Y such that

(s Ly y) =85,

where
s o={(x(-t—=1,r),u(-7,p+ 1),y (=7 — 1,7+ 1)).

It follows that

R T Y s WD Wl A T A VAPE T/ VAR B
Uit1 = g(yl(i -7T= 1,t)7u(i,p + 1),x(i,r + 1))»
1=—7,...,—1,
where z_,...x_,_1 = N (s* .,y ...y ,_q) in the case of 7 > r. From

Lemma 3.1.1, we obtain

/

Yoy vy - = Mso, ToT - ).

Thus, sp matches the state s§ with delay 7 and A(sp, ) =y, ...y"; for any
a € XN (s5,YT). O

Corollary 3.1.1. If for any parameters Ti_i1, ..., Ti—p, Uiy .., Ui—p,
Yidrs - Yit, €qr (1) has a solution x;, then M is a weak inverse with delay
T.

Theorem 3.1.2. Assume that t = 0 and that for any parameters r;_q, ...
Tizr, Wiy - ooy Uiep, Yitrs -+, Yiet, €¢r (i) has a solution x;

)

z; = fr(2x(i—1,r),u(i,p+1),y(i + 7,7+t +1)).
For any state
so = (z(=1,7),u(0,p + 1),y (-1, 7 +1))
of M*, if
so = (u(0,p+1),z(-1,r)),

then the state sy of M matches siy with delay 7. Therefore, M is a weak
inverse with delay T of M*.
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Proof. For any yj,y; ... €Y, let

2Ty« = XN (85, Yoy - - )-

Let
sy =(u(r,p+1),z(r — 1,r)),

where
uipr = g(u(i,p+ 1), 2, r+1)), i=0,1,...,7— 1.

From Lemma 3.1.1, we obtain
YUy - = NSr, Trryr .. ).

Since ¢t = 0, it is easy to see that d(sg, 2o ...2,—1) = $,. Thus

Yo - Yr 1 Yoys - = M(S0, Tox1 .. .)
for some y{,...,y”_1 € Y. Therefore, sy matches s§ with delay 7. O
Theorem 3.1.3. If for any parameters T;_1, ..., Ti—r, Uiy ., Ui—p, Yitrs-- -5

Yi—t, eqr (1) has at most one solution x;, then M is weakly invertible with delay
T.

Proof. Assume that for any parameters z;_1, ..., Ti—p, Ui, ..., Ui_p,
Yitrs - - Yi—t, €¢- (1) has at most one solution x;. For any initial state so =
(y(—=1,t), w(0,p+ 1), (—1,7) ), and any input zoz; ... of M, let

Yoy1 - - = A(So, ToT1 - . .).

From the definition of M, (3.1) holds for ¢ = 0,1, ... Since eqo(4) is defined
by (3.2), from (3.1), eqo(¢) holds for i = 0,1, ... Using Property (d), eg, (%)

holds for ¢ = 0,1, ... It immediately follows that for such values of ;_1, ...,
Ti—r, Wiy oy Yiep, Yigrs - Yi—t, €¢r(4) has a unique solution z;, ¢ = 0,
1,... Thus x¢ is uniquely determined by the initial state s and the output
sequence o . . . Y. Therefore, M is weakly invertible with delay 7. g
Lemma 3.1.2. Assume that for any i, ..., Ti—r, Ui, .., Uiep, Yigrs -

Yi—t, if they satisfy the equation eq, (i) then x; = f* (z(i—1,r), u(i,p+1),
y(i+71,7+t+1)). For any state so = (y(—1,%t),u(0,p+1),z(—1,7)) and any
mput xoxy ... of M, if

Yoy ... = )\(80,.130.1‘1 .. .),
then

/\*(<.’L’(—1,T),’U/(O,p—|— 1)7y(T - 1aT + t)>vy7'y7'+l .. ) = ToTq - --



84 3. R, Ry Transformation Method

Proof. Suppose that yoy1 ... = A(So, ZoZ1 ...). From the definition of M,
we have

yi = f(y(i — 1,0),u(i,p+ 1),x(i,r +1)),
Uj+1 = g(y(l - 1,t>,u(i,p+ 1),x(i,r + 1))3 (34)
i=0,1,...

From the proof of Theorem 3.1.3, eq, (i) holds for ¢ = 0,1,... Using the

hypothesis of the lemma, for any x;, ..., Zi—r, Ui, -, Uipy Yitrs -+ Yiot,
if they satisfy the equation eq. (i) then z; = f* ( z(i — 1,r), u(i,p + 1),
y(i+7,7+t+1)). Thus for such values of x;,. .., Ti—y, Ui, - - -, Uicp, Yitrs-- -

Yi—t, We have
v, = fx@t—1,r),u(l,p+1),yli+7,7+t+1)), i=0,1,... (3.5)

Denote y;_, = y; for any j. Using (3.5) and (3.4), it immediately follows
that

v = f7(x(i—1,r),uli,p+ 1),y (i, 7+t +1)),
Ui+1 = g(y’(z - T 1,t),u(z,p—|— 1),33‘(i,7” =+ 1))7
i=0,1,...

From the definition of M*, we have

roxy ... = A*(<'r(_1a"4)7’(1(071)_" 1)7?/(_177- + t)>7y(/)yi H )
=N {(z(=1,7),u(0,p+ 1), y(r = L, 7+ t), YrYrt1---)- ]

Theorem 3.1.4. Assume that each state of M has a predecessor state and
that for any x;, ..., Ti—p, Wi, -y Uicpy Yitrs -+, Yiet, 4f they satisfy the
equation eq, (1) then z; = f*(x(i—1,7),u(i,p+1),y(i + 7,7+t +1)). Then
M* is a weak inverse with delay T of M.

Proof. For any state so = (y(—1,¢),u(0,p + 1),z(—1,7)) of M, since
any state of M has a predecessor state, there exist x_,_1,...,2_,_r € X,
U—p_1y--sU—p—r €U, y_¢—1,...,Yy—t—r €Y such that

AMSery g 1) = Yor o Y1,

O0(S—ry@_r...x_1) = S0,

where
S—r = {y(—7 = L, t),u(—7,p+ 1), z(—7 — 1,7)).

For any input zgx; ... of M, let
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Yoyi ... = )\(So,xoxl .. )

Then
Yer oo Ya1YoY1 - - = MS—ry g oo . T_1T0T7 - . .).

From Lemma 3.1.2, we have

® (o
A (507y0y1---) =T_7... 21201 ..,

where
SS = <‘T(_T - 177")au(—7',p + 1)7:1/(_1,7' + t)>

It immediately follows that s§ matches so with delay 7. Thus M* is a weak
inverse with delay 7 of M. a

Corollary 3.1.2. Assume that t = 0 and that for any parameters xg, ...

)

T_py1, U0y - -5 U—pt1, §(Uo, -y U—p, To, .., T_y) aS a function of the
variables u_, and x_, 1is surjective.t Assume that for any x;, ..., Ti_p,
Uiy -y Uicp, Yitrs -5 Yiet, Uf they satisfy the equation eg (i) then z; =

fix@—1r),u(i,p+1),y(i+7,7+t+1)). Then M* is a weak inverse with
delay 7 of M.

Proof. Since t = 0 and for any parameters xo, ..., T_r11, U0, - -+ U—pt1,
g(uo, ..., U_p, Tg, ..., T_,) as a function of the variables u_, and xz_, is
surjective, it is easy to show that each state of M has a predecessor state.
From Theorem 3.1.4, M* is a weak inverse with delay 7 of M. a

For any finite automaton M’ = (Y, X, S’,6’, \') so that S’ = S x Y* for
some k > 0 and 0'({s,y—1,-..,Y—k),Yo) is in the form (s, yo,...,y—g+1), the
finite automaton M" = (Y, X,S x Y*¥ x N,, 6", \") is called the T-stay of
M’, where

N, ={0,1,...,7},
5H(<3>y71w~,y—k,c>7 Yo)
(8,905 s Y—kt1, ¢+ 1), ife<,
:{<5'(<8,y—17--~,y—k>7yo),0>, if ¢ =T,
N'((s,y-15- 5 Y—k:€), y0) = N((8,y=15- -, Y—k), Yo)-

From the definition of 7-stay, it is easy to verify the following lemma.

Lemma 3.1.3. Assume that M" is the T-stay of M’. For any state s’ of
M, the state (s',7) of M" and s’ are equivalent.

! Precisely speaking, g(uo, ..., U—p, To, ..., T_r) as a function of the variables u_p
and z_, means the restriction of g on the set { (uo, ..., u—p, To, ..., T—y)
u_p €U,z € X }.
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From Lemma 3.1.3 and the definition of 7-stay, it is easy to prove the
following lemma.

Lemma 3.1.4. Assume that M" is the T-stay of M'. For any state s”" =
($,Y—1, -+, Y=k, 0) of M"" and any yo, y1, ... €Y, there are xg, ..., x-—1 €
X such that

)‘H(S”a Yoly1 - - ) =g -- IT—l)\/(S/7yTyT+1 .. ')a

where 8" = ($,Yr—1, -+ s Yr—k)-

Theorem 3.1.5. Assume that for any s, ..., Ti—r, Ui, -, Uiep, Yidrs -« - »
Yi—t, if they satisfy the equation eq.(i) then x; = f*(x(i — 1,7), u(i,p+ 1),
y(i+7,7+t+1)). Let M" be the T-stay of M*. Then M" is a weak inverse
with delay T of M. Moreover, for any state so = (y(—1,t),u(0,p+1),z(—1,7))
of M, the state s" = (x(—=1,7),u(0,p+1),y(—=1,7 +1),0) of M" matches s
with delay T, for any y_¢—1,...,Yy—r—t in Y.

Proof. For the state so = (y(—1,t),u(0,p + 1),2(—1,r)) and any input
Toxq ... of M, let
Yoy ... = )\(SQ,.IO,Il .. )

From Lemma 3.1.2,

A*(S:ﬂyTyT—‘rl c) = x0Ty
where
sy = (x(=1,7),u(0,p+1),y(r — 1,7 +1)).

Using Lemma 3.1.4, there are z,...,2,_; € X such that

N yoyr . ) =af oo N (S5, YrYrgr - - )

It follows that
N (" yoyr...) =xf ... 2l _jxowy ...

Thus, s” matches sy with delay 7. O

3.2 Generation of Finite Automata with Invertibility

Let X and U be two finite nonempty sets. Let m be a positive integer, and
Y a column vector space of dimension m over a finite commutative ring R
with identity.

For any integer i, we use z;, u; and y; to denote elements in X, U and Y,
respectively. We use R[y;+k, - - -, Yi—t] to denote the polynomial ring consisting
of all polynomials of components of y; g, ...,y;—: with coefficients in R.
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Let r, t and 7 be nonnegative integers with 7 < r, and p an integer with
p > —1. Let f; and f] be two single-valued mappings from X"+ x UPT! x
Y#+t+1 to Y for any nonnegative integer k. We use eqx(i) to denote the
equation
fe(z(,r+ 1), u(i,p+ 1),y +kk+t+1))=0

and use eg;,(¢) to denote the equation
(@, r+1),u(i,p+1),y(i + k,k+t+1)) =0.

Let wf“, be a column vector of dimension [ of which each component is a
single-valued mapping from U#*t! x X¥*! to R, for integers u > —1, v > 0
and [ > 1. For any integers h > 0 and i, let

(i, p+ 1), 2(i,v + 1))
Ol (u,2,i) = |

) l . .
(@ = hyp+1),2(i — h,v + 1))
Assume that f; can be expressed in the following form
fe(z(i,r+ 1), u(i,p+1),y(i + k, k+t+1)) (3.6)
T
= " Glyli+ k. k+t+ 1)), (u(i — j, p+ 1), 26 — j,v + 1)),
§j=0
where G (y(i + k,k +t + 1)) is an m x | matrix over R[yitk,---,Yi—t],
0<j<r. Let
Gr(1) = [Gor(y(i + k,k+t+1)),..., Gy + k, k+t+1)))].
Then (3.6) can be rewritten as follows
fr(@@,r + 1), u(i,p+1),y(i + k, b+t + 1)) = GR(i)l], (u, z,1).
Notice that the right side of the above equation does not depend on z;_;
for j > r and w;_; for j > p. The matrix G (i) in such an expression is not

unique for general w,lw. Gr(i) is referred to as a coefficient matriz of fi or
eqy (7). Similarly, assume that f;, can be expressed in the form

Se(x(i,r+1),u(i,p+1),y(i +k,k+t+1))

=Y Gyli+kk+t+ D)), (u(i — jp+1), 26 — j,v + 1))
§=0

or
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fi@(i,r +1),uli,p+1),y(i + k, k+t 4+ 1)) = Gy ()¢, (u, 7, ),

where G;k(y(z + kk+t+ 1)) is an m x | matrix over R[Yitk,---,Yi—t],
0<j<r,and

GL(1) = [Gor(y(i + kk+t+1)),...,Gp(yli + k, k+t+1))];

G (i) is referred to as a coefficient matriz of f], or eq;, ().
In the case where the transformation ¢j, on eq () is multiplying two sides

of eqi (i) on the left by a matrix polynomial Py (y(i + k,k + ¢+ 1)), we also

denote eqy (1) RalFyl eq;, (1) instead of eqy (7) Ralpyl eqy,(4). In this case, the rule

R, can be restated as follows.

Rule R, : Let Gk (i) be an m x I(r + 1) matrix over R[y; g, ..., yi—t]. Let
Pi(y(i+k,k+t+1)) be an invertible m x m matrix over R[yitk, .-, Yi—t)-
Assume that

GiL(i) = Pe(y(i + k, k+t+1))Gr(4).

G, (1) is said to be obtained from Gy (i) by Rule R, using Py, denoted by
Gi(i) " G i),

Clearly, if Gy (i) and G}, (i) are coefficient matriceb of eg (i) and egq}(7),

respectively, then egqy () Lf] eq;, (i) and Gy (i ) i g

The Rule R, can be restated as follows.

Rule Ry : Let G}.(i) be an m x I(r + 1) matrix over R[Yitk,- .., Yi—t)-
Assume that the submatrix of the last m — r11 rows and the first [ columns
of G'.(t) has zeros whenever ry; < m. Let Gp11(i) be the matrix obtained
by shifting the last m —ry41 rows of G} (7) I columns to the left entering zeros

G}.(i) are the same.

to the right and replacing each variable y; of elements in the last m — r; 41
rows by y,41 for any j. Gr11(i) is said to be obtained from G,(i) by Rule Ry,

denoted by
Rylrey

Gl (7) Gk+1( )-
Clearly, if Gr4+1(i) and G} (i) are coefficient matrices of egyy1(i) and
R Ru[rs
eq;, (1), respectively, then eg; (¢) elrip] eqi+1(2) and G7.(7) il Gr41(7)
are the same.
It is easy to see that the condition that for any parameters x;_1, ..., T;_,,

Ugy « ooy Uig—py Yidrs - oy Yi—t,
Gor (y(i + 7,7 4+t + 1))ty (u(i, p + 1), 2(i, v + 1))

as a function of the variable x; is a surjection yields the condition in Theo-
rem 3.1.1 that for any parameters x;—1, ..., Zi—r, Wiy - - -y Uieps Yikrs - - - Yits



3.2 Generation of Finite Automata with Invertibility 89

eq, (1) has a solution x;(the reverse proposition is also true in some case, see
1 .
[135]). * And for any parameters i1, ..., Ti—y, Ui, - - - Uieps Yigrs - - - Yiet

Gor(y(i + 7,7+t + 1), (uli, p+ 1), (i, v + 1))

as a function of the variable z; is an injection, if and only if the condition in
Theorem 3.1.3 holds, that is, for any parameters x;_1, ..., Ti—r, U;, ..., Ui—p,
Yitrs -+ Yi—t, €qr (1) has at most one solution x;.

We now modify the above rules R, and Ry, to deal with incomplete spec-
ified matrices.

Let G be an m x [(T + 1) incomplete specified matrix. Let 0 < k < 7. If
there exist rqg,71...,7¢, 0 = r9g < 11 < -+ < 1 < m, such that whenever
r; < Tiy1 in row r; + 1 to row ;41 of G elements of the first I(7 + 1 — )
columns are defined and elements of the last l¢ columns are undefined for
i=0,1,..., k, where rpr1 = m, G is called an (I, k)-echelon matriz. Tt is
easy to see that ro,r1,..., 7, satisfying the above condition are unique. r; is
referred to as the i-height of G, 0 < < k.

Ezxample 3.2.1. 7 =05, k = 3. The matrix G5

G1o0 G11 G12 G13 G14 G135
G20 G21 Gaz Gaz Gy *
G30 G31 G32 Gz * %
G4o G41 G42 * * *

Gs =

is an (I, 3)-echelon matrix, where G,; is an (r; — 7;—1) X [ complete specified
matrix, ¢ = 1,2,3,4, 57 =0,1,...,6 — 1, % stands for “undefined”, and 0 =
ro <ry < ro <ryg < ry =m. Clearly, r; is the i-height of G3, 0 < i < 3.

Notice that if G is an (I, k)-echelon matrix with i-height r; for 0 < i < k,
then G is an (I, k 4 1)-echelon matrix with i-height r; for 0 < ¢ < k and with
(k + 1)-height m.

Rule R, (modified): Let G () be an mxI(7+1) (I, k)-echelon matrix over
RlYitks---,Yi—t), and 0 < k < 7. Let Py(y(i + &,k +t+ 1)) be an invertible
m X m matrix over R[y;i,...,¥i—t] in the form

. | By 0
Pyl b k1) = | By bk 4 1) Pralyli+ b+ £ +1) )
where E,, is the ri, X rj identity matrix, rj is the k-height of Gy (7). Assume
that
G.(1) = Pu(y(i + K,k +t +1))Gr(i).
! Precisely speaking, Gor (Yitr,. . . ,yift)i/);l“, (Wiy e vy Uimpy iy .., Tiey) @S a func-

tion of the variable x; means its restriction on the set {(yitr, ---, Yi—t, Ui, - .-,
WUi—py Tiy ooy Iify) | xT; € X}
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G (1) is said to be obtained from Gy (i) by Rule R, using Py, denoted by

\ Ra[Pk .
(i) "B G ).

In computing elements of Py (y(i + k,k +t + 1))G (i), we define u-u =
utu=u,z-u=ux=1u,0-u=1u0=0and y+u = u+y = u, where u stands
for undefined symbol, z(# 0) and y are any elements in R[y;yx,-- -, Yi—t]-

Let Gk (i) be an m x (T + 1) (I, k)-echelon matrix over R[y; 1k, -- -, Yi—t],
and 0 < k < 7. If Gi(0) RalFyl Gj.(i), then G, (7) is also an m x I(7 + 1)
(1, k)-echelon matrix over R[yi+k,--.,Yi—t), and the j-height of G}.(7) is the
same as the j-height of Gy () for any j, 0 < j < k.

Rule Ry(modified): Let G},(¢) be an mxI(7+1) (I, k)-echelon matrix over
RYitk,---,Yi—t], and 0 < k < 7. Assume that for some rgy1, m = rpp1 > 1,
the submatrix of the last m — r;41 rows and the first [ columns of G} (i) has
zeros whenever ri; < m. Let Giy1(i) be the matrix obtained by shifting
the last m — 741 rows of G}.(¢) I columns to the left entering “undefined”
to the right and replacing each variable y; of elements in the last m — 7,11
rows by y,+1 for any j. G11(4) is said to be obtained from G,(i) by Rule Ry,
denoted by

Gh(0) Y G )

Let Gj.(i) be an m x I(7+1) (I, k)-echelon matrix over R[y;+x, - .., Yi—¢]. If
G).(0) Rb[m“ Gr41(2), then Gp41(2) is an mxI(7+1) (I, k+1)-echelon matrix
over R[Yitk+1,---,Yi—t] of which the j-height is the same as the j-height of
G, (1) for any j, 0 < j < k and the (k + 1)-height is rp41.

Lemma 3.2.1. Let eqo(i) be
ZGJO (it + 1)y, (w(i = Gy p+1),2(i — j,v +1)) =0,

and Go(i) the m x I(7 + 1) (I,0)-echelon matriz
[GOO(y(i7 i+ 1))7 LR GTO(y(ia i+ 1))]7
T<r. If

Gr(i) " iy, ) T G (), k=01, -1

is a modified R, Ry transformation sequence, then

eqr (i) " eq (0), eq(i) Y equii (i), k=0,1,...7—1

is an R, Ry transformation sequence, and the first I columns of G, (i) and
the first I columns of the coefficient matriz of eq, (i) are the same.
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Proof. We use Gy,(i) and G/,(4) to denote the coefficient matrices of eqy, ()
and egy,(7), respectively. It is sufficient to show that

~ Rq [Pk]

Gl B Gy, Gr) M G (i), k=0,1,..,7 -1

is an R, R; transformation sequence in the original sense and that corre-
sponding matrices (between Gy and Gj, and between G}, and G},) are com-
patible.! This can be proved by simple induction as follows. It is evident that
Go(i) and Gy(i) are compatible. Suppose that G (i) and G(i) are compati-
ble and G (i) = RalBl ' (1) in the modified sense for k < 7. Letting G (i) =
P.Gy(i), we have Gy (i) RalFy] G'.(i) in the original sense. Since Gy(i) is an
(I, k)-echelon matrix and Py has special shape, it is easy to verify that G} (¢)
and G} (i) are compatible. Suppose that Gj,(i) and G} (i) are compatible and
G.(1) Relrnyal Gi+1(7) in the modified sense for k < 7. From G/ (i) filcg
Gr+1(%), the submatrix of the last m — 741 rows and the first I columns of
G'1.(i) has zeros whenever 711 < m. Since G} (i) and G} (i) are compatible,
it follows that the submatrix of the last m —ry1 rows and the first [ columns
of G4.(i) has zeros whenever 7411 < m. Thus we have G/,(4) Rolrayal Grr1(i)
in the original sense. Clearly, G141 (i) and Gy1(i) are compatible. O

Rule R;' : Let G} (i) be an m x I(t + 1) (I, k)-echelon matrix over
RlYitks - Yi—t], and 0 < k < 7. Let P (y(i + k,k +t+ 1)) be an invertible
m X m matrix over R[Y; i, - .., Yi—¢) in the form

E,, 0

L
Pe(yli+ k. k+t+1)) = Pl(y(i+kk+t+1)) Ply(y(i+k k+t+1))

where E,, is the r x 71, identity matrix, 7 is the k-height of G7.(¢). Let
Gr(i) = PL(y(i + k, k +t +1))G}(4).

Gy (i) is said to be obtained from G.(i) by Rule Ry using P}, denoted by
B[P
Gy "= Gl

In computing elements of P} (y(i + k,k +t + 1))G}. (), we define u - u =
utu=u,x-u=ux=1u,0u=u0=0and y+u = u+y = u, where u stands
for undefined symbol, 2(# 0) and y are any elements in R[Yitk,- .., Yi—t)-

Let G}.(7) be an m x I(7 + 1) (I, k)-echelon matrix over R[yi+k,- -, Yi—t),

—1 /
and 0 < k < 7. If G).(4) o 5 G (i), then Gg(i) is also an m x I(7 + 1)

! Two matrices are compatible, if for any position (i, ), elements of the two ma-
trices are the same whenever they are defined.
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(I, k)-echelon matrix over R[y;ik, ..., ¥i—t], and the j-height of Gi(7) is the
same as the j-height of G} (7) for any j, 0 < j < k.

Rule R;' : Let Gyy1(i) be an m x (1 + 1) (I,k + 1)-echelon matrix
over RlYitk+1,---,Yi—t], and 0 < k < 7. Assume that elements in the first
Tr+1 rows of Ggi1(i) do not depend on y;1x+1 and that elements in the
last m — 741 rows of Ggy1(i) do not depend on y;_;, where ri4q is the
(k + 1)-height of Gx41(t). Let G).(7) be the matrix obtained by shifting the
last m — rg41 rows of Gi41(4) I columns to the right entering zeros to the left
and replacing each variable y; of elements in the last m — 741 rows by y;_1
for any j. G4 (i) is said to be obtained from Gy1(i) by Rule R, ", denoted by

Gr+1(i) o [THI Gl(9).
Let Ggy1(7) be an m xI(7+1) (I, k+1)-echelon matrix over R[Yi+k+1; - - -

—1
Yi—t], and 0 < k < 7. If Ggy1(7) R gl G).(i), then G}, (4) is an m x [(T+1)
(1, k)-echelon matrix over R[yi+k,--.,Yi—t), and the j-height of G}.(7) is the
same as the j-height of Ggy1(i) for any j, 0 < j < k, and the k-height of
G}, (1) is the sum of the k-height and the (k + 1)-height of G441 (7).

Lemma 3.2.2.
N RalPr] ~/ /. ;o B Tk+1] -
Gp(i) — G,(3), Gi(i) Gry1(), k=0,1,...,7—1 (3.7)
18 a modified R, Ry transformation sequence if and only if

1[Pk ]

G (i) 5 gy, i) i), k=7—1,...,1,0 (3.8)

is an R, 1 R;l transformation sequence.

Proof. For any k, 0 < k < 7 and any invertible matrix Py (y(i+k, k+t+1))
over RlYitk,..-,Yi—t), it is easy to see that Py(y(i + k,k +t+ 1)) is in the
form

Po(yli+k k+t+1)) = {E 0 }

Poa(yli +kk+t+1)) Peo(y(i + k,k+t+1))
if and only if P, ' (y(i + k,k 4+t + 1)) is in the form

E,, 0 }

1 . _
P (y(i+k k+t+1)) = [P,;l(y(i+k,k+t+ 1)) Ply(y(i+ k, k+t+1))

From the definitions of R, and R;*, it follows that G (i) " FalBe] (1) if and
only if G} (4) OQ» G}, (). Similarly, from the definitions of R, and R} ', it

[rr+1]

-1
is easy to verify that GJ.(¢) Gr+1(%) if and only if Gi41(4) L
G, (1). Therefore, (3.7) is a modified R, R transformation sequence if and
only if (3.8) is an R; ! R, ' transformation sequence. O

Rb[THl]
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Lemma 3.2.3. Assume that eqo (i) is
> Gioly(int + D), (u(i — jop+ 1), (i — jv +1)) =0
7=0
and Go(i) = [Goo(y(3,t+1)), ..., Gro(y(i,t+1))], 7 < 7. For any mx1(T+1)

(I,7)-echelon matriz G, (i) over R[Yiyr, ... Yi—t], if

G () 2 G, are) " Gy, k=7 —1,.,1,0 (39

is an R, 1 R;l transformation sequence, then

R.[P]

eqr(i) =" eq)(i), eq) (i) Rulrga] eqrs1(1), k=0,1,...,7—1 (3.10)

is an R, Ry transformation sequence and the first I columns of G,(i) and
the first 1 columns of the coefficient matriz of eq, (i) are the same, where
Pey(i+kk+t+1) = (Pl(yGi +kk+t+1)" L, 0<k<T.

Proof. Assume that (3.9) is an R;! R, ! transformation sequence. From
Lemma 3.2.2,

anl) " Gy, an) M (), k=0,1,..,7 -1

is a modified R, R}, transformation sequence. From Lemma 3.2.1, (3.10) is
an R, Ry transformation sequence, and the first { columns of G, (¢) and the
first { columns of the coefficient matrix of eq, (i) are the same. O

Theorem 3.2.1. Let f and g be two single-valued mappings from Y x
UPTLx X"+ to Y and U, respectively. Let M = (X, Y, Y x UPTL x X7 6, \)
be a finite automaton defined by

5(<y(l - 17t)a U(i,p + 1)71'(2 - 1,7’)>,l‘i)
= <y(la t)vu(i +1,p+ 1); Z‘(Z.,T»,
/\(<y(l - 1,t),u(i,p + 1)7:L‘(Z' - 1,7“)>,$Z') = Yi,

where

Yi = f(y(z - 1,t),u(i,p—|— 1),$(i,7‘ + 1))7
Uj+1 = g(y(’L - l,t),u(i,p + 1)’ z(i,r+1)).

Let eqo(i) be the equation

—yi + fly(i — 1,8),uli,p+ 1), z(i,r + 1)) = 0.
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Assume that
i Sy 10, + 1), 2l 1)

_ZGJO (i,t + 1)l (u(i — j, p+ 1), 2(i — j,v + 1))

and Go(l) = [Goo(y(i,t+1)>7...,G7— ( (Z t-‘rl))] <r.
(a) If there exist an mx1(T+1) (I, T)-echelon matric G (¢) over RlYitry .- -,
Yi—t) and an R;' Ry transformation sequence (3.9) such that for any para-

MELETS L1, ooy Ti—yy Ujy « vy Uiepy Yidrs + -y Yits
Gor(y(i + 7,7+t + 1))y, (u(i, p+ 1), 2(i,v + 1)) (3.11)

as a function of the variable x; is a surjection, then M is a weak inverse with
delay T.

(b) If there exist an mxI(7+1) (I, 7)-echelon matriz G (i) over R[Yitr,. ..,
yi—t) and an R;' Ry transformation sequence (3.9) such that for any para-
MELETS Ti—1, -y Timyy Uiy <oy Uiy, Yitrs -+ - Yiet, (3.11) as a function of
the variable x; is an injection, then M is weakly invertible with delay 7.

Proof. (a) Assume that (3.9) is an R; ' R, ' transformation sequence and
that for any parameters T;_1, ..., Ti—y, Uis - - Uiep, Yitrs - - Yiet, (3.11)
as a function of the variable z; is a surjection. From Lemma 3.2.3, (3.10)
is an R, Ry transformation sequence, and the first ! columns of G, (i) and
the first [ columns of the coefficient matrix of eq, (i) are the same, where
Po(y(i+ kk+t+1) = (Pl(y(i + k,k+t+1))" 0 < k < 7. Clearly,

the condition that for any parameters x;—1, ..., Ti—y, Ui, -+ -, Uimps Yigrs -«
Yi—t, (3.11) as a function of the variable z; is a surjection yields the condition
that for any parameters ;_1, ..., Ti—r, Ui, - - -, Uiep; Yitrs - - Yiet, €¢r (%)

has a solution z;. From Corollary 3.1.1, M is a weak inverse with delay 7.
(b) This part is similar to part (a) but using Theorem 3.1.3 instead of
Corollary 3.1.1. a

We point out that the matrices Py(y(i + k,k +t + 1)) in the definition
of R, and P[(y(i + k,k 4+t + 1)) in the definition of R, ' could be extended
by replacing Ej in Py(y(i + k,k 4+t + 1)) and P[(y(i + k,k +t+ 1)) as an
invertible quasi-lower-triangular matrix over R[y;ik,-..,¥yi—¢] of which the
block at position (i,7) is an (r; — 7;—1) X (r; — rj—1) matrix. In this case,
results in this section still hold.
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3.3 Invertibility of Quasi-Linear Finite Automata
3.3.1 Decision Criteria

Assume that X and Y are column vector spaces over GF'(q) of dimension [
and m, respectively. For any integer ¢, we use x; (z}) and y; (y}) to denote
column vectors over GF'(q) of dimensions [ and m, respectively. Assume that
r and T are two nonnegative integers with 7 < r.

Let M = (X,Y, Yt x X", 5, \) be an (r, t)-order memory finite automaton
over GF(q). If M is defined by

yi = ZBjmi,j +g(z(i —7=1,7—7),y(i — 1,t)),
=0
i=0,1,..., (3.12)

where B; is an m x [ matrix over GF(q), j =0,1,...,7, g is a single-valued
mapping from X"~ x Y to Y, M is said to be T-quasi-linear over GF(q).
In this section, for any k, 0 < k < 7, we use eqx(i) to denote an equation

T—k

Z Birxi—j — A_kYivk

j=0
+gr@li—T+k—Lk+r—7)yli+k—1k+t) =0 (3.13)

and eq),(7) to denote an equation

T—k

Z Blwij — AL yyit

j=0
toiati—T+k—1k+r—7),y(i+k—1k+1t) =0, (3.14)

where A_y, A" ., Bj, and B}k are m x m, m X m, m X [ and m x | matrices
over GF(q), respectively, and g and g, are two single-valued mappings from

Xktr=m x Ykt to Y.

R [Py N . : . .
eqx () [Pyl eq},(7) is said to be linear over GF(q), if Py is a matrix over

GF(q) and for some 741 > 0 the first 7441 rows of Bj, is linearly independent
over GF(q) and B{, has zeros in the last m — 441 rows whenever r41 < m.

eqp, (%) Relrnal eqr+1(4) is said to be linear over GF(q), if the first ri41 rows of

Bj,, is linearly independent over GF(q). An R, R, transformation sequence

eqy (1) RelPel eqy, (i), eqp(i) pilcg eqp+1(i), k=0,1,...,h (3.15)

is said to be linear over GF(q), if eqx(i) Rally] eq) (i) and eq) (i)

eqr+1(7) are linear over GF'(q) for k =0,1,...,h.

Ry [rr41]
-
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Lemma 3.3.1. Let

eqn()) "B eqt (), eq (i) TS eqrin (i), k=0,1,...,7—1
be linear over GF(q). If the rank of the matriz [Boo, A—g] is m, then the rank
of the matriz [Bo,, A_;] is m.

Proof. For any k, 0 < k < 7, since eq(i) RalFyl eq;, (i), the rank of

[Bok, A—i] and the rank of [B{,, A’ ] are the same. Since eg; (i) Ryl

eqr+1(?) is linear over GF(q), the first 7441 rows of B, is linearly inde-
pendent and B{, has zeros in the last m — ri11 rows whenever i1 < m.
Therefore, if the rank of [Bj,, A’ ] is m, then the rank of the last m — 741
rows of A" ;. is m — 541 and the rank of [Bg p41, A_g—1] is m. By simple
induction, the rank of [By,, A_,] is m. O

Let eqq(i) be the equation

ZBjxi—j —Yi + g(x(z - T 137' - T)ay(i - ]-at)) = 07 (316)
j=0
that is, the equation (3.13) with k = 0, where Bjo = B;,j =0,1,...,7, A_g
is the identity matrix, and gg = g.

Theorem 3.3.1. Let eqq(i) be (3.16). Let

R,[P] ’ (Z) Rb[T_kJ)rl]

eqr(i) =" eqy (i), eqy eqre1(1), k=0,1,...,7—1

be linear over GF(q). Then M is a weak inverse with delay T if and only if
the rank of By, is m.

Proof. if : Suppose that the rank of By, is m. Then there is a right inverse
matrix of By,, say Bng. Thus for any parameters T;_1, ..., Ti—r, Yitrs - - -
Yi—t, €q- (1) has a solution z;

T; = Bo_,,—lA—‘ryi—&-‘r - B(;rlgT(x(i —Lr)yli+7—1,7+¢)).

From Corollary 3.1.1, M is a weak inverse with delay 7.

only if : Suppose that M is a weak inverse with delay 7. Then there is
a finite automaton M; such that M is a weak inverse with delay 7 of Mj.
Therefore, for any state s; of My there is a state s = (y(—1,t),z(—1,r)) of
M such that s matches s; with delay 7. For any input y vy} ... of My, let

o1 ... = M (S1,Y0Y1 - )

and
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Yoy1 - - = A(s, moxy1 .. .), (3.17)

where \; is the output function of M;j. Since s matches s; with delay 7,
we have yj4, = y},j = 0,1,... Meanwhile, from (3.17), eqo(¢) holds for
i=0,1,... Using Property (d), it follows that eq,(¢) holds for ¢ = 0,1, ...

We prove by reduction to absurdity that the rank 7,1 of By, is m.

. N\ Bolrr N a1
Suppose to the contrary that r,41 < m. Since eq] (i) il eq- (i) is linear

over GF(q), the first 7, rows of By, are linearly independent and r, < rr41.

Then a linear R, transformation can be applied to eq, (i), say eq, (%) gt

eq.(i). Thus eq. (i) holds for i = 0,1,... It follows that E. eq’ (i) holds for
1=0,1,..., that is,

E'Ir/P'rBO'rxi - E‘/FIPTAny’L'JrT + E'/FIPTgT(x(i -1, T)vy(i +7—-1,7+ t)) =0,
t=0,1,..., (318)

where E! is the submatrix of the last m — r.1 rows of the m x m identity
matrix. Noticing that E' P, By, = 0 and y;4, = yj for j > 0, from (3.18), we
have

E'P.A_ Ly, — E!'Prg-(z(i—1,7),y'(i — 1,7 +t)) =0,
i=T+t,T+t+1,... (3.19)

From Lemma 3.3.1, the rank of [By,, A_;] is m. Since m > 7,41 and
E!'P;By; = 0, rows of E/P.A_, are linearly independent. Thus the for-
mula (3.19) gives constraint equations, that is, when ¢ > 7 + ¢, the input
y; of My depends on the past inputs y,_;,...,y;_._, and the past outputs
Zi—1,...,%i—r. This is a contradiction. Therefore, the hypothesis r,4+1 < m
does not hold. We conclude that r.;1 = m. O

Notice that if eqo(¢) is defined by (3.16), then a linear R, R} transforma-
tion sequence of length 27 beginning at eqg(7) is existent.
Let M be a T-order input-memory finite automaton defined by

vi=Y Bjwij, i=01,..., (3.20)
§=0
where B; is an m x [ matrix over GF(q), j =0,1,...,7.

Corollary 3.3.1. Let eqo(i) be the equation
ZBin_j —Yi = 0, (3.21)
§=0

that is, the equation (3.13) with k =t =0 and r = 7, where Bjo = Bj,j =
0,1,...,7, A_q is the identity matriz, and gy = 0. Let
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Ra[Pk] /. . Rolri4i]

eqr(i) =" eq).(i), eq) (i) eqri1(i), k=0,1,...,7—1

be linear over GF(q). Then M is a weak inverse with delay T if and only if
the rank of By, is m.

Corollary 3.3.2. Let eqo(i) be (3.21). Let

eq (1) RalPy] eqy (i), eq,(i) Rolresa] eqr1(i), k=0,1,...,7—1
be linear over GF(q). Then M is an inverse with delay T if and only if the
rank of By, is m.

Corollary 3.3.3. Assume that B; in (3.12) is the same as B; in (3.20) for
0 < j < 7. Then M is a weak inverse with delay T if and only if M is a weak
inverse with delay T, if and only if M is an inverse with delay 7.

Proof. Notice that in Theorem 3.3.1 By, depends only on By,...,B;.
Since linear R, R} transformation sequence is existent, from Theorem 3.3.1,
Corollary 3.3.1 and Corollary 3.3.2, the corollary follows. O

Theorem 3.3.2. Let eqo(i) be (3.16). Let

Ro[Pr] . ’ (Z) Rb["‘_kJ)rl]

eqr(i) =" eqy (i), eqy eqre1(1), k=0,1,...,7—1

be linear over GF(q). Then M is weakly invertible with delay T if and only
if the rank of By, is .

Proof. if : Suppose that the rank of By, is [. Then there is a left inverse
matrix of By,, say BaTl. Thus for any parameters T;—1, ..., Ti—r, Yitrs - - -
Yi—t, €q- (i) has at most one solution z;

z; = ByrA Lyis — Byltgr(x(i— 1,r),y(i +7— 1,7 +1)).

From Theorem 3.1.3, M is weakly invertible with delay 7.

only if : Suppose that the rank of By, is less than {. We prove that M is
not weakly invertible with delay 7.

For any state so = (y(—1,¢),2(—1,r)) of M, and any input sequence
Zg ...z, of length 7+ 1 of M, let

Yo---Yr = A(S0, %0 ... Tr). (3.22)

Since eqp(4) is (3.16), from (3.12), (3.22) is equivalent to the system of equa-
tions

eqo(i), i=0,1,...,7. (3.23)
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Using Property (g), the system (3.23) is equivalent to the system of equations

eq-(0),
E(/)Gqé)(T), Eieqll (T - 1)7 R E*/r—leqfr—l(l)a (324)
6’6(]6(0), Eileqi (0)7 te 7E-lr/—1eq-lr—l(0)7

where E,’€ and E,’c’ are submatrices of the first ry1 rows and the last m — g1
rows of the m x m identity matrix, respectively. Therefore, M is not weakly
invertible with delay 7 if and only if there are two solutions of (3.24) in which
the corresponding values of x_1,...,2_, Yr,...,y—_; are the same and the
corresponding values of x( are different.

Given an arbitrary initial state s = (y'(—1,t),2'(=1,r)) of M, and any
input sequence xy . .. /. of length 7+ 1 of M, let

Yo -y = Nsg, gy ... L),

Then yr =y.,...,y—t =y 4, Tr = ,,...,2_, = 2 is a solution of (3.24).
Notice that the equation eq,(0) depends only on zg,...,z_, and yr,...,y—¢,
and in the polynomial expression of eg,(0) the variable xzy only occurs in
linear term with coefficient By,. Since the rank of By, is less than [, there

is a column vector A # 0 such that By;A = 0. To find another solution

/
-7

zo = z(, + A. Clearly, such new values satisfy the equation eq,(0). Notice
that the equation FEj/eq; (0) depends only on z_q,...,z_, and yg,...,y—_¢,
k=0,1,....7— 1. Thus y, = y.,...,y—t =y 4, 21 =a_4,..., 0, =z",
satisfy the system of equations E}eq;(0), & = 0,1,...,7 — 1. We seek
new values of x1,...,z, step by step. Suppose that we have sought the
new values of xg,...,z,_p—1 such that the equations eq,(0), E!_jeq._,(1),
Bl _seq. 5(2),..., B eq (T —k —1) hold, and 0 < k < 7 — 1. Since
Eleq,(t — k) depends only on ,_g,...,Zr—k—r, Yr,...,Yr—k—¢t and in
the polynomial expression of Ejeq (7 — k) the variable z._j only occurs
in linear term with a coefficient matrix E,;PkBok of which rows are lin-
early independent, we can seek a value of x,_p from the new values of
Tr_f—1,.--T—p, Yr,...,Y—¢ by solving the equation Ejeq,(r — k). (If so-
lutions for x,_j are not unique, then take arbitrarily such a solution as the

of (3.24), take y, = y.,...,y—+ = Y, T—1 = ' 4,..., 2, = T and

new value of z._j. If the number of rows of Ej is 0, then the new value
of z,_ can be arbitrarily taken.) Since equations eq,(0), E._jeq._,(1),
E; _seq._5(2), ..., Ej eq. (T —k — 1) do not depend on z,_j, from
the hypothesis that new values xq,...,x,_r_1 satisfy the system of equa-
tions eq,(0), E._jeq, 1(1), ..., Ej jeq (T —k — 1), the new values of
Xy, Tr_g—1,Tr—k satisfy the system of equations eq,(0), E._jeq._,(1),
B} _seq; 5(2), ..., B eq (T —k—1), Ejeq. (T — k). Repeating the above
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process for k from 7 —1 to 0, we can obtain new values of xg, ..., z, such that
the equations eq,(0), E._jeq._1(1), El_seq,_5(2), . Eoeqo( ) hold. Thus
we obtain a new solution of the system (3.24) in Wthh Yr = Yoy Yot =Y 4y
x_1=a"4,...,x_, =2, and g = z{, + A. Therefore, there are two solu-
tions of (3.24) in which the corresponding values of z_1,...,Z_p, Yr, ..., y—¢
are the same and the corresponding values of xg are different. We conclude
that M is not weakly invertible with delay 7. a

Corollary 3.3.4. Let eqo(i) be (3.21). Let

R, [Py)

eqr(i) =" eq)(i), eq) (i) Rulrig] eqr1(i), k=0,1,...,7—1

be linear over GF(q). Then M is weakly invertible with delay T if and only
if the rank of By, is .

Corollary 3.3.5. Assume that B; in (3.12) is the same as B; in (3.20) for
any j, 0 < j < 7. Then M is weakly invertible with delay T if and only if M
18 weakly invertible with delay 7.

Proof. Notice that in Theorem 3.3.2 By, depends only on By,..., B,.
Since linear R, Ry transformation sequence is existent, from Theorem 3.3.2
and Corollary 3.3.4, the corollary follows. O

3.3.2 Structure Problem

In this subsection, unless otherwise stated, Gy(i) and G} (i) in modified
Rules R,, Ry and Rules R, 1, Rb_1 defined in Sect. 3.2 do not depend on
Yit+k,---,Yi—t and are abbreviated to Gy and G}, respectively. Let R be a
finite field GF(q).

Gy RalF] G}, is said to be linear over GF(q), if P, is a matrix over
GF(q) and for some r41 > the k-height of Gy, the first 11 rows of Bj, is
linearly independent over GF'(¢) and B, has zeros in the last m — 1 rows

whenever 7,41 < m, where By, is the submatrix of the first [ columns of GJ,.

R
Gy, g G41 is said to be linear over GF(q), if the first ri41 rows of Bj,

is linearly independent over GF(¢q). An R, R} transformation sequence

G B G g Bl g k=01, n (3.25)

FalBl Gt and @, ™ Gy are

is said to be linear over GF(q), if Gy,
linear over GF'(q) for k =0,1,...,h.
Let

G(): [307...,BT]
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be an m x I(7 + 1) matrix over GF(q) determined by M which is defined
by (3.12). Clearly, Gy is an (I,0)-echelon matrix and there exists a linear
modified R, R; transformation sequence

G B g Bl g k=01, — 1.
Lemma 3.3.2. Let Gy = [Bo,...,B:]. If
G P g el G k=01, -1
s a linear modified R, Ry transformation sequence, then
eqn(i) " eql (i), eqh(@) T equin (), k=0,1,...,7—1

is a linear R, Ry transformation sequence and the submatriz of the first
columns of G, is the same as the coefficient matriz Bo, of x; in eq, (i),

where eqo(i) is (3.16).

R [Pk Rb [’I‘k+1

Proof. Suppose that Gy, G, G, Gg+1 are linear over GF(q),
0 < k < 7 and that [Bog, . .., Br—j x|, determined by the coefficients of egy(7),
is the leftmost [(7 — k+ 1) columns of G, where egy, (i) is expressed as (3.13).
Then the first 7,1 rows of Bj, are linearly independent over GF(q), and By,

has zeros in the last m — ;1 rows whenever ry4; < m, where BOk = P, By

is the leftmost [ columns of GY,. Thus eqy(7) RalPyl eq, (i) is linear over GF(q),

where eq), (i) is Preqy(i) and is expressed as (3.14). Clearly, [Byy, ..., B, ;. .1,

determined by the coefficients of egj, (i), is the leftmost I(7 — k + 1) columns

Ry[ry
of G.. Tt is easy to see that eg;, (i) iy eqr+1(7) is linear over GF'(¢) and

[Bo,k+1s- - - s Br—k—1,k+1], determined by the coefficients of eqy4+1(7), is the
leftmost I(7 — (k+ 1) + 1) columns of Gj.+1. By simple induction, the lemma
follows. =

Theorem 3.3.3. Let Gy = [By,..., B;], and

Gk Rﬂ] ;ca G;s Rbml]Gk+l7 /{3:0,1,...,7'—1
be a linear modified R, Ry transformation sequence. Then M is a weak in-
verse with delay T if and only if the rank of Bor is m, and M is weakly
invertible with delay T if and only if the rank of By, is I, where By, is the

submatriz of the first I columns of G,.

Proof. This theorem immediately follows from Theorem 3.3.1, Theo-
rem 3.3.2 and Lemma 3.3.2. O
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G, R ] Gy, is said to be linear over GF(q), if P; is a matrix over
GF(q) and for some 7441 > the k-height of G}, the first 7441 rows of B
is linearly independent over GF(q) and By, has zeros in the last m — 741
rows whenever 741 < m, where B, is the submatrix of the first [ columns

R Yrg
of G},. G+ Qiileg G, is said to be linear over GF(q), if the first 741

rows of By, is linearly independent over GF(q). An R; ' R, ' transformation
sequence

. .
G P G o " G k=10 (3.26)

. Rt
is said to be linear over GF(q), if Ggy1 Lﬁl] G, and G, B If
linear over GF(q) for k =h,...,1,0.

Lemma 3.3.3.

Pl Gy, are

G P g el G k=01, -1

s a linear modified R, Ry transformation sequence if and only if

R71 R71 P71
Grt1 » Ll s Gl L ]Gk, k=71-1,...,1,0

is a linear R Rb_1 transformation sequence.

Proof. From Lemma 3.2.2,
G e et G k=01, -1

is a modified R, R}, transformation sequence if and only if

Ry M reqa] Pt

R P,
o s g T B e =21 1,0

Ra[Pk]
—

is an R;! R,! transformation sequence It is easy to see that G, Gy,

R, [P, k b[Tk+1]

is linear if and only if G}, Gk is linear and that GJ, Gyt is

linear if and only if G41 bﬂﬂ] G, is linear. From the definition of linear

transformation sequence, the lemma follows. a

Theorem 3.3.4. Let M be a finite automaton defined by (3.12) and Gy =
[Bo, ..., By], 7 <.

(a) M is a weak inverse finite automaton with delay T if and only if there
exist an m X (1 + 1) (I,7)-echelon matriz G, over GF(q) and a linear R, !
Rb_1 transformation sequence

R Y[r 1
Growr o G P G 11,0 (3.27)
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such that the rank of the submatriz By, of the first | columns of G is m.

(b) M is weakly invertible finite automaton with delay 7 if and only if
there exist an m x I(T + 1) (I, 7)-echelon matriz G, over GF(q) and a linear
R;? Rb_1 transformation sequence (3.27) such that the rank of the submatriz
By, of the first I columns of G, is .

Proof. (a) Suppose that M is a weak inverse with delay 7. Clearly, there
exists a linear modified R, Ry transformation sequence

Ra[Ps

Gy _>] » G%Rb[r_ktl]GkH’ k=0,1,...,7—1.

From Theorem 3.3.3, the rank of By, is m, where By, is the submatrix of
the first ! columns of G,. From Lemma 3.3.3, taking P] = Pk_1 for k =
0,1,...,7—1, (3.27) is a linear R;' R, ' transformation sequence.

Conversely, suppose that (3.27) is a linear R;' R, ! transformation se-
quence and the rank of By, is m. Let P, = (P})~!, k=0,1,...,7 — 1. From
Lemma 3.3.3,

Rq [Py

Gk‘ —>] ;m G;ﬁ;Rb[r—k;rl]Gk-‘rlv k:O,l,...7T—1

is a linear modified R, R transformation sequence. Using Theorem 3.3.3, M
is a weak inverse with delay 7.
(b) This part is similar to part (a). O

We use R, to denote an operator: shift the last ¢ rows [ columns to the
right entering zeros to the left.

Clearly, (3.27) is a linear R, ' Ry ! transformation sequence if and only if
the following conditions hold:

;c: Rm—T’kJrle-‘rla G = Plg ;6’
k=7-1,...,1,0,

P/ is an m x m invertible matrix over GF(g) in the form

!/ E’I"k 0
m= {5 )
7k, is the k-height of G, Gi41 is an (I, k+ 1)-echelon matrix over GF(g) with
(k + 1)-height 741 > ri and the first 41 rows of the submatrix of the first
I columns of Gi41 are linear independent over GF(q), k = 7 —1,...,1,0,
where E,, is the ry, X ry identity matrix. In computing elements of PG}, we
definev-u=uv+u=u,v-u=uv-v=u,0-u=u-0=0andw+u=u+w=
u, where u stands for undefined symbol, v(# 0) and w are any elements in
GF(q). Notice that the k-height of G}, is the same as the k-height of G, and
the submatrices consisting of the first [ columns and the first r; rows of Gy,
and G, are the same, for k < 7. From Theorem 3.3.4, we obtain the following.
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Theorem 3.3.5. Let M be a finite automaton defined by (3.12).
(a) M is a weak inverse finite automaton with delay T if and only if there
exist an mx1(r7+1) (I, 7)-echelon matriz G, and m x m nonsingular matrices

E,, 0

/ — —
Pl = {Pél P&], k=0,1,...,7—1

such that the rank of the submatriz By, of the first | columns of G, is m,
and

[Bo, ..., B;] = B)Ro—r. (P Ron—ro (.. (P Rinr (G2))...))

if > 0 and [By,...,B;] = G, otherwise, where E,, is the v, X 1y identity
matriz, and ry is the k-height of G..

(b) M is a weakly invertible finite automaton with delay 7 if and only if
there exist an m x I(7 + 1) (I, 7)-echelon matrix G, and m x m nonsingular
matrices

i | En O _ _
Pk—liPélpéZ , k=0,1,...,7—1
such that the rank of the submatriz By, of the first | columns of G, is 1, the
first . rows of By, are linearly independent over GF(q), and

[Bo, ..., By] = P)Run—r, (P Rin—rs (.. (P Rinr (G2))..))

if 7> 0 and [By,...,B;] = G, otherwise, where E,, is the r X 1, identity
matriz, and ry, is the k-height of G .

Denote 7,41 = m. Let h = min k{ry =m,1 <k <7+ 1}. Notice that
in the case of ry = m, Ry, _r, is the identity operator and P}, is the identity
matrix. In the case of h < 7, we have

Py Ronry (PR (o (P Rrnr (G)) -.))
= P(ng—n (PllRm—rz(~ .- (P}IL72Rm_Th71 (P};—lG‘r)) .- ))

Since P},_, is nonsingular, the rank of the submatrix of the first { columns of
P} _, G is the same as the rank of the submatrix of the first { columns of G.
Since h < 7, we have r, = m. Therefore, the first r, rows of the submatrix of
the first [ columns of P; ;G are linearly independent over GF(q) if and only
if the first r, rows of the submatrix of the first [ columns of G, are linearly
independent over GF(q). Clearly, P; ;G is also an m x{(7+1) (I, 7)-echelon
matrix over GF'(q) of which the i-height is the same as the i-height of G for
any ¢, 0 < ¢ < 7. From Theorem 3.3.5, taking G = P}_,G-, we then have
the following theorem.
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Theorem 3.3.6. Let M be a finite automaton defined by (3.12).
(a) M is a weak inverse finite automaton with delay T if and only if there
exist an m x (1 +1) (I, 7)-echelon matriz G and m x m nonsingular matrices

E, 0

/o _ _
Pl = [P,Ql P,;J’ k=0,1,....h—2

such that the rank of the submatriz of the first I columns of G is m, and
[Bo, ..., Br] = PoRy—ry (P Rin—ry (- .. (P g Ry, (G)) ..))

if h > 1 and [By,...,B;] = G otherwise, where E,,_ is the ri x ry identity
matriz, vy, is the k-height of G, and h = min k{ry =m,1 < k< 7+1}
(rr+1 = m by convention).

(b) M is a weakly invertible finite automaton with delay 7 if and only if
there exist an m X l(T + 1) (I, 7)-echelon matrix G and m x m nonsingular
matrices

;| Er O — _
Pl = [Pél | k=0,1,...,h—2
such that the rank of the submatriz Gl of the first I columns of G is I, the
first v, rows of Gl are linearly independent over GF(q), and

[Bo,...,Br] = PyRu—r, (P{Ri—ry (... (P} _oRi—r,_, (G))...))

if h > 1 and [By,...,B;] = G otherwise, where E,,_ is the ry x ry, identity
matriz, vy is the k-height of G, and h = min k{ry =m,1 < k <7+1}
(rr+1 = m by convention).

Let G be an m x I(7 + 1) incompletely specified matrix over GF(q). If
there are ky,,...,k; such that 0 < &k, < -+ < k1 < 7, and for each j,
1< j<m,inrow j of G elements in the first [(1 + k;) columns are defined
and in the last I(7 — k;) columns are undefined, that is, G is in the form

where * stands for the 1 x [ “undefined matrix”, G;; is a 1 x | completely
specified matrix, G is called an echelon matriz and k; is called the j-length of
G,forj=1,...,m.

Let G be an m x I(7 + 1) (I, 7)-echelon matrix over GF(q) with i-height
ri, 1 =0,1,...,7. Let
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kj=7—min i{0<i<7, r,<j<rit1}, j=1,...,m, (3.28)

where r;1 = m. Then G is an echelon matrix with j-length k;, j =1,...,m.
In fact, for any j, 1 < j < m, when r; < j < r;41 for some i, 0 < i < 7,
from the definition of i-height, we have that in row j of G elements in the
first [(7 + 1 — ) columns are defined and elements in the last /i columns
are undefined. From (3.28), k; = 7 — ¢. Then in row j of G elements in
the first I(1 4+ k;) columns are defined and elements in the last (7 — k;)
columns are undefined. Since rg < r; < - -+ < 75, it is easy to verify that
O0<km<--<ki<T.

Conversely, let G be an m x I(7 4+ 1) echelon matrix over GF'(q) with
J-length k;, j =1,...,m. Let

ri=min c{0<c<m, kj<7+1—i ife<ji<m}, i=1,...,7.
Then G is an (I, 7)-echelon matrix with i-height r;, i =1,... 7.
Since0 =rg <7 <+ <rp <Trp1 =m, using ky, =7 —min {0 <

i <7, <m< 7T}, wehave by, =7 —min i {0<i< T ,m=1r1} It
follows immediately that

min k{l1<k<7+1lm=rp}—1=min i{0<i<T,m=riy1}

=7 —kp.
From the above discussion, Theorem 3.3.6 can be restated as follows.

Theorem 3.3.7. Let M be a finite automaton defined by (3.12).

(a) M is a weak inverse finite automaton with delay T if and only if there
exist an m X (T + 1) echelon matriz G with j-length k;, 7 =1,...,m, and
m X m nonsingular matrices

E., .0

P’:[ ] k=1,2...,7—kn
PP, P

such that the rank of the submatriz of the first I columns of G is m, and

[Bo,...,Bs] = PRy, (PyRi—ry (... (P} _p Ren—r,_, (G))...))

if kyy < 7 and [Boy,...,B:] = G otherwise, where E,,_, is the r_1 X rp_1
identity matriz, ro = 0,

ri=min c{0<c<m, kj<t+1—-dife<j<m}, i=1,...,7.

(b) M is a weakly invertible finite automaton with delay 7 if and only if
there exist an m x (T + 1) echelon matriz G with j-length k;,j =1,...,m,
and m X m nonsingular matrices
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E 0

P’—[ Th-t ], k=1,2,....71 — kp,
PG P

such that the rank of the submatriz Gl of the first | columns of G is I, the

first v, rows of G, are linearly independent over GF(q), and

[307 e ,B‘r] = PllRm—h (leRm—Tz(~ = ( -;—k,,,LRm—Tka (G)) - ))

if km < 7 and [By,...,B;] = G otherwise, where E,,_, is the r_1 X Tj,_1
identity matriz, rog = 0,

ri=min c{0<c<m, kj<t+1—-dife<j<m}, i=1,...,7.

Historical Notes

The R, Ry transformation method is first proposed in [96, 98] to deal with the
invertibility problem of linear finite automata over finite fields. The method is
then used to quasi-linear finite automata over finite fields in [21]. References
[135, 136] use the R, R} transformation method to finite automata over rings,
and [22] to quadratic finite automata. The R, R; transformation method is
also generalized to generate a kind of weakly invertible finite automata and
their weak inverses in [118, 127]. Sections 3.1 and 3.2 are based on [127] and
Sect. 3.3 is based on [21].
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Summary.

In application to public key cryptosystems, for finite automata in public
keys no feasible inversion algorithm had been found. In Sect. 3.1 of the
preceding chapter, an inversion method by R, R} transformation was given
implicitly. In this chapter, a relation between two R, R, transformation
sequences beginning at the same equation is derived. It means that in
the inversion process it is enough to choose any one of the linear R, Ry
transformation sequences. Then, by exploring properties of “composition”
of two R, R transformation sequences, it is shown that the inversion
method by R, Rp transformation works for some special compound finite
automata.

Other two inversion methods are by reduced echelon matrices, and by
canonical diagonal matrix polynomials. Results in the last two sections
show that the two inversion methods are “equivalent” to the inversion
method by R, R, transformation.

This chapter provides a foundation for assertions on the weak key of
the public key cryptosystem based on finite automata in Sect. 9.4.

Key words: R, Ry transformation, reduced echelon matriz, canonical di-
agonal matriz polynomial

In application to public key cryptosystems, for finite automata in public keys
no feasible inversion algorithm had been found. In Sect. 3.1 of the preceding
chapter, an inversion method by R, R, transformation was given implicitly.
That is, from a given finite automaton M make an equation eqq(i), choose
an R, R, transformation sequence of length 27 beginning at eqg(%), check
whether the variable z; in the equation eg, (i) has at most one solution (re-
spectively a solution), if so, then an weak inverse (respectively original weak
inverse) finite automaton with delay 7 of M can be feasibly constructed from
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eq, (7). In the first section of this chapter, a relation between two R, R; trans-
formation sequences beginning at the same equation is derived. It means that
in the inversion process it is enough to choose any one of the linear R, R
transformation sequences.

By exploring properties of “composition” of two R, R transformation
sequences, it is shown that the inversion method by R, R, transformation
works for some special compound finite automata, for example, one com-
ponent belongs to quasi-linear finite automata, and another component is a
weakly invertible or weak inverse finite automaton generated by linear R, Ry
transformation or with delay 0.

Another inversion method is to solve equations corresponding to an output
sequence of length 7 + 1 by means of finding the reduced echelon matrix of
the coefficient matrix of the equations. Section 4.3 proves that for a weakly
invertible finite automaton with delay 7, its weak inverse can be found by
the reduced echelon matrix method if and only if it can be found by the R,
Ry transformation method.

Using a “time shift” operator z, coefficient matrices of pseudo-memory
finite automata may be expressed by matrix polynomials of z. By means
of reducing to canonical diagonal matrix polynomials, an inversion method
was derived. In Sect. 4.4, relations between terminating and elementary R,
Ry, transformation sequences and canonical diagonal matrix polynomials and
the existence of such R, R} transformation sequence are investigated. From
presented results, it is easy to see that the inversion method by canonical
diagonal matrix polynomial works if and only if the inversion method by R,
Ry, transformation works.

This chapter provides a foundation for assertions on the weak key of the
public key cryptosystem based on finite automata in Sect. 9.4.

4.1 Relations Between R, R; Transformations

Throughout this chapter, for any integer ¢, any nonnegative integer k and any
symbol string z, we use z(i, k) to denote the symbol string z;, z;—1, ..., Zi—k+1-
Let X and U be two finite nonempty sets. Let Y be a column vector space
of dimension m over a finite commutative ring R with identity, where m is
a positive integer. In this section, for any integer ¢, we use x;, u; and y; to
denote elements in X, U and Y, respectively.

Let dsz be a column vector of dimension [ of which each component is
a single-valued mapping from U#*! x X¥*! to Y for some integers p > —1,
v >0 and ! > 1. For any integers h > 0 and 4, let
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Uo(u(i,p+ 1), 2(i, v + 1))

N2
Y (2,1) = |
l . .
(@@ = hyp+1),2(i — h,v + 1))
In the case of u = —1, ¢!, (u,x) and P! (u,z,i) are abbreviated to ¢!, (z)

and " (z,1), respectively.
In this section, for any nonnegative integer ¢, let eq.(i) be an equation

vyl +ce,c+t+ 1))+ [Boe, - - - ,th]i/JL}f,(u, x,1) =0,
and let eqg..(i) be an equation
Puly(i+e,c+t+1) + [Bg, .., ByJwy, (u,z,4) = 0,

where ¢, and ¢/, are two single-valued mappings from Y1 to Y, B;. and
B;C are m X [ matrices over R, j = 0,1,...,h. Similarly, for any nonnegative
integer ¢, let €g,(i) be an equation

Ge(y(i+c,c+t+ 1))+ [Boc, - - - ,th]z/}gfj(u, x,1) =0,
and let €g’.(i) be an equation
oL(y(i+ec,e+t+ 1))+ B, ..., B}, fﬁ,(u,a@z) =0,

where @, and @/, are two single-valued mappings from Y+ *lto V| B, and
B}c are m x [ matrices over R, j =0,1,... h.

. ~ RalPe N . . .
For such expressions, eq.(¢) o F] eq.(i) is said to be linear over R, if P,

is a matrix over R, and for some 7.1 > 0 the first r.y; rows of B(, is linearly

independent over R and BY, has zeros in the last m — r.y; rows whenever

Ry[re R . . .
Ter1 < m. eql(i) ikag eqe+1(7) is said to be linear over R, if the first

ret1 rows of By, is linearly independent over R. An R, R, transformation
sequence

eqo(i) " el (i), eq (i)

Rp[ret1]
—

eqet1(i), ¢=0,1,...,n (4.1)

is said to be linear over R, if eq.(i) RalFel eq.(i) and eq.(4) eqe+1(4)

are linear over R for c = 0,1,...,n. The R, R} transformation sequence (4.1)

Ry [Tc+1]
—

is said to be elementary over R, if (4.1) is linear over R and P, is in the form

E. 0
P.=|. ,
© |:Pcl Pc2:|
c=0,1,...,n, where E, stands for the r x r identity matrix for any r, and

7"0:0.
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For any integers n and r with 0 < r < n, we use I, , to denote the n x n

0 E,

P o } ,and F, _, to denote E,, ,_,. Denote the n X r zero matrix
n—mr

matrix [

P
by 0y,-. Also we use DIAp, to denote the quasi-diagonal matrix [ ]
P

with n occurrences of P.

Below the ring R is restricted to a finite field GF(q), and the R, trans-
formation means multiplying two sides of an equation on the left by a matrix
over GF(q).

Lemma 4.1.1. Let ¢ > 0, and let

. Ra[Pc—l] . . [TL]
eqe—1(i) 5 eql (i), eqh_y () ™ eqeli) (4.2)
be linear over GF(q) and
R [Pc ] — R [Tc] .
ey (1) " gy (i), ey () = € (i) (4.3)
If
h B c—1 . h )
ZB c— 1Zj = ZQj,c—le)(ZBj,c—lzj) (44)
§=0 §=0 j=0
for some m x m matrices Q;j .—1 over GF(q), j =0,1,...,c— 1, then there
exist m X m matrices Q. over GF(q), j =0, 1, ..., ¢ such that

h
ZBj ZQ]CZ] ZBJCZJ (4.5)
7=0

=0

Moreover, if Qo c—1 is nonsingular and (4.3) is linear over GF(q), then Qo
18 nonsingular and 7. = 7.

Proof. Let Ry = Eyy 5., Ro = [0 5. EiOmm—7.], R3 = DIAp, | 5,

R Qo,e—1 Qie—1 -+ Qe—1,c-1 0 0
4 =
0 Qo,c—1 -+ Qe—2,c-1 Qe—1,-1 0
Rs = DIAPj er2r Be = Em(er2)r., B7 = DIAE,, _,_ c+2- Then we have

Ry' = DIAp,_, ci2, Rg" = Ep(ey2),—rs R7' = DIAg,, , ci2.
Let Q = R1R2R3R4R5R6R7. Partltlon Q = [QOw vy Qc+1,c]7 Where Qjc
has m columns, j = 0,1,...,c + 1. We prove that Q.41 is 0. For any j,

1
0<j<ec—1Llet Q. =P Qe Pl and Q) , = [ggc fgw ﬂ
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1 2
or {gg gi} for short, where Q} . ; and Q. , are 7. x 7. and (m— 7.) X
i 9 ’ ;

(m — r.) matrices, respectively. Then we have

R3R4Rs =

QE),C—I Qll,c—l Qé—l,c—l 0 0
0 Q6,0—1 te Q/C—Q,c—l Q/c—l,c—l 0

It follows that

QLE3QIQ...Q* ;0 0 00 Q3
RyR3RyRs Re = ’ 1 ; i 2 ' 1 2 1
O QO QO Ql e c—2 c—1 c—1 O O O
Let RoR3R4RsRs = [Qocy ---, Qei1.c], where Qjc has m columns, j =

0,1,...,c+1. To prove Qg,cq = 0, from (4.4), we have By .—1 = Qo.c—1Bo.c—1-
Thus

P._1Byc—1=Pe1Qo,c—1 P, (P._1Byc—1) = Q0.c_1(Pe—1Boc—1). (4.6

Since (4.2) is linear over GF'(g), the first 7, rows of P._1Bg 1 are linearly
independent over GF(q) and the last m — 7, rows of P._1Bg .1 are 0. From
(4.3), the last m — 7, rows of 156_13076_1 are 0. Using (4.6), it follows that
QS,C_l, the submatrix of the first r. columns and the last m — 7, rows of
Q0.c_1, is 0. Since Qg’kl = 0 yields Qct1.. = 0, we obtain Qcy1. = 0;
therefore, Qcy1,c = RchH,CEm’,TC =0.

Let Bje-1 =B}, 1 =0mm,j=h+1,...,h+c—1, and

Boy Biy ... ... By
Bor Biy ... ... B
Boyr Biy ... ... B
with mk rows, for any r and any k. From (4.4), we have

h+c—1 B ‘ c—1 ‘ h ‘
Z Bje12) = (Z Qje—17")( Z Bjc177).
j=0 j=0 §j=0
It follows immediately that

BO,cfl Bl,cfl v Bh+c71,c71 0 0

_ _ _ = Ry 2571 4.7
0 Boc—1 ... Bhte—2,c-1 Bhce—1,6-1 0 4 fet2 (4.7)

Let Bje = Omm, j = h+1, ..., h+c. From (4.3), we have
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Boe1 Bieo1...Brye1.6.10 0
Ry RoR; 0,c=1 De—1 Phte—tle—1 Y
0 Bo,e1--- Bhye—2,c-1 Brye-1,c-10
_ R1R2 B(l),c—l ?é,c—l ?Ez+cfl,cfl O_/ 0
0 BO,C—l te Bh+c72,c71 Bh+c71,c71 0

= [0 BOC o BthcfQ,c Bthcfl,c Bh+c,c] .
Using (4.7), we have
[0 BOC o Bh+c—2,c Bh+c—1,c Bh+c,c] = R1R2R3R4~Qg_~__%
= RiRyR3RyRsReR7 R7 'Ry "Ry ' 2573 = Q(R: 'Ry 'Ry ' 02575).

From (4.2), it follows that

_ _ _ _ 0 ¢
[0 BOC e BthcfQ,c Bthcfl,c Bh+c,c] = Q |:G, G?ﬁ_l:l (48)
for some matrices G and G” with m rows. Since Q = [Qoc, - - -, Qc+1,c] and

Qer1.c =0, (4.8) yields
[Bocs- - s Brteel = [Qoes - -+ Qe 2511,

which is equivalent to (4.5) because Bj. = 0 for h+ 1 < j < h + ¢. That is,
(4.5) holds.

Now we suppose that Qg .1 is nonsingular and (4.3) is linear over GF'(gq).
Since (4.3) and (4.2) are linear over GF(q), 7. and 7. are the ranks of By .1
and By .1, respectively. Since Bo,cq = Qo,c—1B0,c—1 and Q1 is nonsin-
gular, we have 7. = r..

Since P._q, P._y and Qo,c—1 are nonsingular, Q67071 = Pc_1Q07c_1PC,__11
is nonsingular. Noticing 7. = 7. and Qf ._; = 0, it follows that Qg . ; and
Q(l)’cfl are nonsingular. Thus Qg = o 0.0-1 gg"‘ﬂ is nonsingular. Therefore,
Qoc = R1QocErm,—r, is nonsingular. O

Theorem 4.1.1. Assume that eqo(i) and éqy(i) are the same. Assume that

eqe.(7) RalF] eq.(i), eq.(i) Rylre] eqer1(i), ¢=0,1,...,7—1 (4.9)

is a linear R, Ry transformation sequence and

eq. (i) " e (i), eql(i) " e, (), e=0,1,. 7 =1 (4.10)

is an R, Ry transformation sequence. Then there exist m x m matrices Q;r,
j=0,1,...,7 over GF(q) such that
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h T h
Y Birdd = (3 Q52") (D Birs).
j=0 §=0 j=0
Moreover, if (4.10) is linear over GF(q), then T; = r; holds for any j, 1 <
j <7 and Qor is nonsingular.

Proof. Since €éqy(i) and eqo(i) are the same, (4.4) holds in the case of
¢ = 1, where Qo is the identity matrix. Applying Lemma 4.1.1 7 times, ¢
from 1 to 7, we obtain the theorem. a

Theorem 4.1.2. Let eqo(i) and éqy(i) be the same and equivalent to the
equation
@o(y(i,t +1)) + [Boo, - - -, Bty (u, z, i) = 0.

(a) If (4.10) is an Ry Ry transformation sequence and Bor ¢!, (u(i, p+ 1),
z(i,v+1)) as a function of the variable x; is an injection, then for any linear
R, Ry transformation sequence (4.9), BOwaw(u(Lu +1),z(i,v + 1)) as a
function of the variable x; is an injection.

(b) If (4.10) is an Ry Ry transformation sequence and Bor1},,, (u(i, p+ 1),
x(i,v+1)) as a function of the variable x; is a surjection, then for any linear
Ra Ry transformation sequence (4.9), BosYl, (u(i,p+ 1),z(i,v + 1)) as a
function of the variable x; is a surjection.

Proof. (a) Suppose that (4.10) is an R, R transformation sequence and
Boripl,, (u(i, p+1),2(i, v+ 1)) as a function of the variable ; is an injection.
For any linear (4.9), from Theorem 4.1.1, there exists an m X m matrix Qo
such that By, = QorBo,. It follows immediately that for any parameters
Tio1y ooy Ticy Uiy -y Uimps, Bortl, (u(i, p41),2(i,v + 1)) as a function of
the variable x; is an injection.

(b) The proof of part (b) is similar to part (a), just by replacing “injection”
by “surjection”. a

Notice that if for any linear R, Ry, transformation sequence (4.9), Bowaw
(u(i, p+1),z(i,v+1)) as a function of the variable x; is a surjection, then for
any parameters Ti—1, ..., Ti—h—u, Uiy - - -, Yieh—p, Yitrs - - -» Yi—t, the equation
eq. (1) has a solution x;. If for any linear R, Ry transformation sequence (4.9),
Borl,,, (u(i, p+1),2(i,v+1)) as a function of the variable z; is an injection,
then for any parameters ©;_1, ..., Ti—h—v, Wi; - - -, Yich—ps Yitr, - - - Yi—t, the
equation eq,(7) has at most one solution z;.

4.2 Composition of R, R, Transformations

Let X and U be two finite nonempty sets. Let Y/ and Y be two column vector
spaces over a finite field GF(q) of dimensions m’ and m, respectively, where
m' and m are two positive integers.
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For any nonnegative integer ¢, let leq.(7) be an equation
E(y(i+ ¢, +1)) + [Foes -, Pyt (u, 2,8) = 0
and let leg.(7) be an equation
Eylitect 1)+ [Foen -, Fy Uy (u, 2,4) = 0,

where £, and £, are two single-valued mappings from Y1 to Y’, Fj. and
FJ. are m' x [ matrices over GF'(q), j = 0,1,...,h1.
For any nonnegative integer ¢, let Oeq.(7) be an equation

z;
Ne(y(i +c,c+k+1)) + [Boc,- .., Broe) | ¢ =0
xi—ho
and let Oeg..(7) be an equation
T
ﬂé(y(i+0ac+k+1))+ [B(Iva"‘vB;mc] =0,
Li—ho

where 7, and 7, are two single-valued mappings from Y*t*+! to Y, Bj. and
Bj,. are m x m’ matrices over GF'(q), j = 0,1,..., ho.

Let h = hg + hy. In this section, for any nonnegative integer ¢, let eq.(7)
be an equation

welyi +c,e+k+1)) + [Coc,y- - - s Chc]wfﬁ/(u, x,1) =0
and let eq’.(7) be an equation
pely(i+e,c+k+1)) +[Cop - Chelty (u, 2,1) = 0,

where ¢, and ¢/, are two single-valued mappings from Y*+1to Y, Cjc and
C}. are m x | matrices over GF(q), j =0,1,...,h.
For any nonnegative integer r, let

Dy = o (4.11)
R F ... ...Fy,

be an (hg + r)m’ x (h + r)l matrix, where F;, j = 0,1,...,hq are m’ x [
matrices over GF'(q).
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Lemma 4.2.1. Let ¢ >0 and

[Coc=15---sChe—1) = [Bo,e—1,- - Bhy,c—1) L h+1- (4.12)
If
Oeqe—1(1) RaPeal Oeq.._1 (i), Oeq,_(4) Rulre] Oeq.(1), (4.13)
then
eqe-1(0) 5 el (@), eqy (i) g (4.14)
and
[Cocy -y Che] = [Bocs - - - » Bhoe| T ht1- (4.15)

Proof. Let Ry = Ep .y Ro = [Omr, B Omom—r.], R3 = DIAp, | 2. By
(4.13), we have

RiR>R
A Bow—1 - Bhy—1.c-1 Bhy.c—1

Boec—1 Bie—1 ... Bhge—1 O 1

= RiRy (4.16)

/ / /

BO,cfl Bl,cfl cee Bho,c—l 0
! ! !

0 BO,C—l tee Bhofl,cfl Bh07cfl

= [O BOC PN Bho_lvc Bhgc] .

We prove that (4.14) is an R, R transformation sequence. It is suffi-
cient to prove that the last m — r. rows of P._1Cy.—1 are 0. Let Cé,c_l =
PC,1C0’C,1. Since (412) yields CO,cfl = BO,cleoa we have Cé,c—l =
B .1 Fo. From (4.13), it is easy to see that the last m — r. rows of B ._;
are 0. It follows immediately that the last m — r. rows of Cj ., are 0.

Since (4.14) holds, we have

Coe—1Cle-1...Che—1 O ]

RiRsR
R Coe-1--- Che1,c=1 Che—1

! / !
CO,cfl Cl,cfl ce Ch,c—l 0

=R Ry
/ / /
0 CO,c—l ce CVhfl,cfl Ch,cfl

=[0Coe ... Ch-1,c Che].
From (4.12) and (4.16), it follows that
[O C’Oc e Ch—l,c Chc]

Boe-1 Bie-1--- Bpge1 0

= R1R5R;5
0 Boe—1 ... Bpy—1,c—1 Bhgy,c—1

Inia

= [0 By ... Bho—l,c Bhoc] Fh+2~
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Therefore, (4.15) holds. O
For any nonnegative integers c and r, let Iy, be an (ho +r)m’ x (h+r)l
matrix
Foc Fic... ... Fr,.c
Foo Fio ... ... Fie
Foe Fie oo ... Fhye

Lemma 4.2.2. Assume that 19 >0, ¢ > 0,

[CO,TU+671) ey Ch+c71,70+c71] = [QO,cfla sy Qh0+c71,c71][‘}f+27 (418)

Chtjrgte—1 = 0 for j > 0, where Qj.—1 is an m x m’ matriz over GF(q),
j=0,1,....ho+c—1.1If

Ra[ c— 1]

. . N Rulre .
Lege—1 (i) Leg_y (i), led, (i) 5 1eq.(),  (4.19)

then there exist an m x m invertible matriz P, ,._1 over GF(q) and a non-
negative integer 7r,+. such that

Ry [7770+C]

~ Ral[Prytc—1] . . .
—Ot eq”/rg+cfl(7’)7 eqfrg+cfl(l) - eqTo+C(Z) (420)

€qryte—1(%)

and there exist m x m' matrices Qoc, - - -, Qno+e,c over GF(q) such that

[CO,TO—O—m R Ch+c,ro+c] = [QOC? ceey Qho—&-c,c]F}f.Fc_._l

and the rank of Qo. s not less than the rank of Qo c—1, where Chyjro4c =0
for 7 >0.

Proof. Let Qp._; be the reduced echelon matrix of Qo,c—1F, 11, and
P 1c—1 an m X m invertible matrix with Q67C_1 = PTO+C_1Q0,C_1P671. Let
Tro+c be the rank of the submatrix of the first r. columns of C% o1

Let Ry = Em,FTO+Ca Ry = [Om,FTOJFCEmOm,mf'FTOJrC]v R3 = DIAP

Tot+ec— 17

Qoe—1 Que—1 -+ Qhote—1,-10 0
0 QO,C—l oo Qh0+c—2,c—1 Qh0+c—l,c—l 0

Rs = DIAp—1 jtoios Be = Eni(notesa)re, Br = DIAg,, | hotera- Tt

follows that R5' = DIAp, | no+et2: RBg' = Ems(hotet2),—res and Ry =
.DIAEM,7 Jho+c+2- Let Q = R1R2R3R4R5R6R7. Partition Q = [QOC; ey

Qho+c+1,c] where Q. has m’ columns, j =0,1,...,hg+c+ 1.
Forany j, 1 <j < hg+c—1,let Q;F 1= Protce-1Qj,c— 1P ;- For any j,

Ry =

1 1 2
0<j<hyo+c—1,let QJC L= [géc 18“ 1], or {gg gi} for short, where
jie— j,e— j %3
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Qj . and Qj, | are Fry1e X 1e and (m— Troqc) X (m'— r.) matrices,
respectively. We prove Qf .1 = 0 and Qpnotet1,c = 0. Since Qf ., is the
reduced echelon matrix of QO,C_lPC__ll, from the definition of 7, ., we have
Qg,c—l = 0. Clearly,

R3R4Rs =

Qé),cfl Qi,cfl tet Q/ho+c—1,c—1 0 0]

0 Qé),cfl ce Q/ho+c—2,c—1 Q;zg—&-c—l,c—l 0

Therefore, we have

RoR3R4RsRe =

Qg Q? Qél1 Q% Q%O+C_1 0 0 00 QS
0 Q[l) Qg Q% Q}%o—i—c—Z Q}Lo-‘rc—l Q%L0+c—1 000

Let RoR3RyRsRs = [Qoc, - - -, Qhy+ct1.c), Wwhere Qjc has m’ columns, j = 0,
1,..., hg+c+1. Since Q(B),cq = 0 yields Qh0+c+1’c = 0, we obtain Qhﬁc“,c =
0 and Qhotet1,c = R1Qhotet1,cBmi,—r. = 0.

We prove that (4.20) is an R, R, transformation sequence. It is suffi-
cient to prove that the last m — 7, 4. rows of PTD+C_1CO)TO+C_1 are 0. Let
C(/J,7—0+c—1 = p7—0+c_100770+c_1. Since (418) yields CO,To+c—1 = Q07C_1FO,C_1,
we have

C(/)J()Jrcfl = PTDJFC*lQOxC*lFO’c*l
= (p'ro+cle0,cflpc111)(PC*1F01C*1)
/ /
= QO,C—lFO,c—l'

Since Qf ._; = 0 and the last m/— r, rows of Fj ._; are 0, the last m— 77 4.
rows of Cp .. are 0.

To prove [CO,TU+07 B Ch+c,m+c] = [QOw S Qh0+c,c]F}§+c+1a using (4.19),
it is easy to verify that Rglf,f;iﬁ equals
!/ / !
FO,cfl Fl,cfl Fhl,c—l
/ / !
FO,cfl Fl,cfl e e Fhl,c—l
/ / !

FO,C—l Fl,c—l Fhl,cfl
—1p—1lp—1lpc—1 _ |0 If .y : [ "o /
and Ry "Rg Ry "Iy oo = | o for some matrices G’ and G” with m

rows. Since Q = [Qoc, - - -, Qhotet1,c) and Qpytet1,c = 0, we have

QR;'Ry'R' I L o = [Qocs - -, Qnotene] [0, T4 eya]- (4.21)

From (4.20) and Ch4jry4c—1 = 0 for j > 0, we have
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RiRoRs Corote—1 Crirgte—1 - -+ Chge—1,r94¢-1 0 0]

0 CO,TO+C—1 s C(h+c—2,‘r0+c—1 Oh+c—1,7—0+c—1 0

! / !
00,7'0-1—0—1 Cl,To—i-c—l e Cthcfl,'rngcfl O O
= R1Rs

0 C(/),To—i-c—l te C;L+672,7‘0+671 C]/l+c71770+C71 0
= [0 CO,TO+C s Ch+cf2,7'0+c Ch+671,7'0+c 0] (422)
and Chyj ro+c = 0 for j > 0. On the other hand, from (4.18), we obtain

CVO To+c—1 Cl To+c—1 - - Cthcfl To+c—1 0 0
R1R2R3 sTO »TO »TO

0 CO,Tngcfl oo Ch+c72,7'g+c71 CthCfl,T()JrCfl 0
= RiRoRsRy Iy}, = RiRsRsRyRs R Re Ry 'R "Ry ' T L,
= QR7'Rg 'Ry ' I s

Using (4.22) and (4.21), it follows immediately that

[0, Corotcr -+ s Chteyrote]) = QR;IRglRQIFEICIH
= [QOca ceey Qho—i-c,c] [Oa F}f+c+1]7

where Chyc rg+c = 0. Therefore,

[CO,TO+C> ceey Ch+c,To+c] = [QOC? ) th+c,c]Flg+c+1«

Finally, we prove that the rank of Q. is not less than the rank of Qg 1.
It is easy to see that the rank of (o .—1 is equal to the rank of Qf),c—l'
From Qq. = RlQOCEm/’,TC, the rank of Q. is equal to the rank of Qq.. Since

Q) R and 7 is the rank of | 90.¢-1 |, the rows of Q}
0,c—1 = |0 Qé,cf1 To+cC 0 ) 0,c—1

are linearly independent. It follows that the rank of Qf . ; is equal to the
sum of the rank of Qf ._; and the rank of Qf ._;. On the other hand, Qo. =

0 Q6,01
sum of the rank of Qj ., and the rank of Qé,c—l' Therefore, the rank of Qo
is equal to or greater than the rank of Qg .. It follows that the rank of Qo
is equal to or greater than the rank of Qg .—1. a

4 3 —
{Qovcl Q“l} deduces that the rank of Q. is equal to or greater than the

Theorem 4.2.1. Let
[Co0, - -+ Cho) = [Boo, - - - » Broo Ly 1 (4.23)
Assume that

0eqe(i) " 0eql (i), Oeq (i) T Oeqera (i), ¢=0,1,...,70 — 1 (4.24)
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and
Ra[P! . .\ Rolre .
leq. (i) i leg.(i), leq.(i) olregal leget1(i), ¢=0,1,...,71 —1 (4.25)
are two R, Ry transformation sequences. Then there exist an R, Ry trans-
formation sequence

~ Ra[P:] I(Z) R@l]

eqe(i) =" eq.(i), eq. eqet+1(i), ¢=0,1,...,7—1

and m x m' matrices Qory; -, Qnotrn,m over GF(q) such that

[007'7 sy Ch+T1,T] = [QOTl oo ;Qh0+7'1,71]F}5r7—1+1 (426)

and the rank of Qor, is not less than the rank of Bor, in Oeqr, (i), where
T = 10+71, Chyjr = 0 for j > 0. Therefore, if the rank of Byr, is min(m,m’),
then the rank of Qor, is min(m,m’).

Proof. From (4.23), (4.12) for ¢ = 1 in Lemma 4.2.1 holds, where F; = Fjo,
j=0,1,...,hy. From (4.24), using Lemma 4.2.1 7 times, ¢ from 1 to 79, we
obtain

Ra[Pc]

eqe(i) " eql i), eql(i) "L equia(), c=0,1,...,m—1 (427)

and
[Corgs -+ Chrol = [Borgs - - - s Bhoro) I pi1- (4.28)

Let Qjo = Bjr, for any j, 0 < j < ho. Then the rank of By, is the rank
of Qqo. Clearly, (4.28) yields (4.18) for ¢ = 1 in Lemma 4.2.2. From (4.25),
using Lemma 4.2.2 71 times, ¢ from 1 to 71, we obtain that there exist

Ra [p(']

. Ry[Fey1]
eqc(z) — —

eq.(i), eq.(i) eqer1(i), c=19,70+1,...,7—1 (4.29)
and Qory s - -+, Qho+r,m such that (4.26) holds and the rank of Qo-, is not
less than the rank of Qoo, where 7 = 79 + 71, Ch4j,» = 0 for j > 0. Thus the
rank of Qor, is not less than the rank of By,,. Letting Pj = P; and 7; = 1
for any 7, 0 < j < 79 — 1, from (4.27) and (4.29),

R,[P.]

eqe(i) " eq (i), eqi(i) "

eqet1(i), ¢=0,1,...,7—1
is an R, Ry transformation sequence. This completes the proof of the theo-
rem. O

Let My = (Y, Y, Y* x Y'ho 55, \g) be a special ho-quasi-linear finite
automaton defined by
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Yi
Yi = Qout(y(i — 1,k)) + [Bo, ..., Bn,) | : ,1=0,1,... (4.30)
Yih,
Let My = (X, Y, UP*! x X" §;, \) be a pseudo-memory finite automa-
ton defined by

vi = f(uli,p+1),2(i, by + 1)),
Ui+1 = g(u(l,p + 1),.%‘(@, hy + 1))7 (431)
i=0,1,...,

and suppose that f can be expressed in the form
Fui,p+1),x(i,hy + 1)) = [Fo, ..., Fy, [V (u, 2, 9).
Let h = hg + hq and
[Co,C4,...,Ch]l = [Bo,Bi,--., Bro|Tht1, (4.32)

where I, 11 is defined by (4.11).
From My and M;, a finite automaton (X,Y,Y* x UPt! x X" 4§ )\) is
defined by

Yi = Soout(y(i - 17 k)) + [007 RN Ch]’(/JZL(U,.’I},Z%
Ujt+1 = g(u(i,p + 1),1’(i, hy + 1))7
i=0,1,...

Theorem 4.2.2. Let My and M be finite automata defined by (4.30) and
(4.31), respectively. Let leqy(i) be equivalent to the equation

—Yi + [F(]v tee 7Fh1] /lﬁ/l(u7x7i) = 07
and eqo(i) be equivalent to the equation
—yi + ©out (y(i — 1,k)) + [Co, - . ., Ch] fﬁu(u, x,1) = 0. (4.33)

Assume that (4.25) is an R, Ry transformation sequence.

(a) If For, ¥l (u(i,p + 1), z(i,v + 1)) in legs, (i) as a function of the
variable x; is an injection and My is weakly invertible with delay 1y, then for
any linear R, Ry transformation sequence

eqc(i) FalFel eq.(i), eq.(7) Relrepl €qer1(i), ¢=0,1,...,7—1  (4.34)

with T = 10 + 71, Cortl,,, (u(i, p+ 1), 2(i,v + 1)) in eq, (i) as a function of
the variable x; is an injection.
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(b) If For, bl (u(i,p + 1),2(i,v + 1)) in legr (i) as a function of the
variable x; is a surjection and My is a weak inverse with delay 19, then
for any linear R, Ry transformation sequence (4.34) with 7 = 79 + 71,
Cortpl,, (u(i, p+1),2(i,v + 1)) in eq. (i) as a function of the variable x; is a
surjection.

Proof. (a) Suppose that M, is weakly invertible with delay 7. Then m >
m’. Let Oeqo(i) be equivalent to the equation

T
_yz+§00ut(y(z_ 1ak))+ [307~-~7Bh0] =0.
xi*ho
Let (4.24) be a linear R, R} transformation sequence. From Theorem 3.3.2
in Chap. 3, the rank of By, in Oeq,, (i) is m’. Using (4.32), (4.33), (4.11) and

(4.17), it is easy to see that (4.23) holds. From Theorem 4.2.1, there exist an
R, Ry transformation sequence

N RalPe] _ oy Rylfeqr] _ ,
a (i) " el @), eql(i) " g0 (i), e= 0.1, 71
with 7 = 79 + 71 and m x m’ matrices Qor,, -- -, Qnotr.n Over GF(q) such
that
[CO‘H ) Ch+T1,T] = [QO‘H yee Qh0+7—1y71]‘l—1}:—1l-7'1+1 (435)

holds and the rank of Qo-, is m’, where €q, () is eqo (%), €q,(¢) is in the form
er(y(i+7,7+k+1) +[Cor,...,Cheltbll (u,x,i) = 0,

and Cpyjr = 0 for j > 0. Clearly, (4.35) yields Co, = Qor, For,. Since
For, wfw (u(i,p+1),2(i,v+1)) in leq, (i) as a function of the variable z; is
an injection and the rank of Qor, is m’, Cor ¢!, (u(i, p+1), z(i, v+1)) in eq, (i)
as a function of the variable x; is an injection. From Theorem 4.1.2, for any
linear R, Ry transformation sequence (4.34), Cor9l,,, (u(i, pu+ 1), 2(i,v + 1))
in eq. (i) as a function of the variable z; is an injection.

(b) The proof of part (b) is similar to part (a). What we need to do is to
replace the phrases “weakly invertible”, “is m’”, “Theorem 3.3.2” and “injec-
tion” in the proof of part (a) by “a weak inverse”, “is m”, “Theorem 3.3.1”
and “surjection”, respectively. O

Below M is restricted to an hi-order input-memory finite automaton.

Lemma 4.2.3. For any (ho,k)-order memory finite automaton My =
(Y'Y, So,00, o) and any hy-order input-memory finite automaton M; =
(X,Y’, 51, 01, \1) with | X| = Y|, if My is weakly invertible with delay 0,
then for any state so of My there exist a state s of C'(My, My) and a state
s1 of My such that s and the state (s1,s0) of C(M1, My) are equivalent.
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Proof. Denote sg = (y(—1,k),y' (=1, ho)). From Theorem 1.4.6, since M;
is weakly invertible with delay 0, there exist z_1, ..., x_p,—n, € X, such
that

M(z(=ho =L h1)) sz ng-oox1) =y gy - Y1

Let s = (y(—1,k),z(—1,ho+h1)) and s; = (z(—1, h1)). From Theorem 1.2.1,
s and (s1, sg) are equivalent. O

Lemma 4.2.4. Let My = (Y'Y, Sy, 80, \o) be an (ho, k)-order memory fi-
nite automaton, and My = (X,Y’, 51,01, A1) an hyi-order input-memory finite
automaton with |X| = |Y'|. Assume that My is weakly invertible with delay
0.

(a) C'(My, My) is weakly invertible with delay T if and only if My is weakly
invertible with delay T.

(b) C' (M, My) is a weak inverse with delay T if and only if My is a weak
imverse with delay 7.

Proof. (a) Suppose that C’ (M7, My) is weakly invertible with delay 7. For
any state so of M, from Lemma 4.2.3, there exist a state s of C'(My, M)
and a state s; of M; such that s and the state (s, sg) of C(My, My) are
equivalent. Since M; is weakly invertible with delay 0, there exists a finite
automaton M| = (Y, X, 51,7, A\]) such that Mj is a weak inverse with
delay 0 of M. Since |X| = |Y’|, for any state s” of M; and any state s’
of M{, s” O-matches s if and only if s’ O-matches s”’. Thus there exists a
state s of M such that s; O-matches s). It follows that the state so of My
and the state (s}, (s1, so)) of C(M;,C (M1, My)) are equivalent. Clearly, the
state (s}, (s1,s0)) of C(Mj,C(My,My)) is equivalent to the state (s}, s) of
C(M;,C" (M, My)). Tt follows that the state sg of My is equivalent to the
state (si,s) of C(Mj,C’ (M, My)). Suppose that M’ is a weak inverse of
C'(My, My) with delay 7 and the state s’ of M’ 7T-matches s. Let M; be
the 7-stay of M; and 31 = (s1,0). It is easy to see that the state (s’,51) of
C(M’, My) T-matches the state (s}, s) of C(M{,C’(My, My)). Therefore, the
state (s, 51) of C(M’, M) T-matches the state so of My. Thus C(M’, M) is
a weak inverse of M, with delay 7. We conclude that M is weakly invertible
with delay 7.

Conversely, suppose that M is weakly invertible with delay 7. Let M be
a weak inverse of My with delay 7. Since M; is weakly invertible with delay
0, there exists M, such that M/ is a weak inverse with delay 0 of M;. Let
Mj be the T-stay of M]. We prove that C(M/, M]) is a weak inverse with
delay 7 of C'(My, My). Let s be a state of C’'(My, My). Clearly, there is a
state (s1, so) of C'(My, My) such that s and (s1, so) are equivalent. Since M
is a weak inverse of My with delay 7, there is a state sj of M] such that s{ 7-
matches sg. Since M7 is a weak inverse of My with delay 0, there is a state s}
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of M such that s} 0-matches s;. Letting 8 = (s, 0), it follows that the state
(sh,58)) of C(M}, M{) T-matches the state (s, so) of C(My, Mp). Therefore,
the state (s}, 5}) of C(M}, M{) T-matches the state s of C’(My, My). Thus
C(MY, Mj) is a weak inverse of C’(Mjy, My) with delay 7. We conclude that
C'(My, My) is weakly invertible with delay 7.

(b) Suppose that C’(M7, My) is a weak inverse with delay 7. Then there
exists M’ such that C' (M7, My) is a weak inverse with delay 7 of M’. It follows
that C (M7, Mp) is a weak inverse with delay 7 of M’. For any state s’ of M’,
choose a state (p(s'), so) of C(My, Mp) such that (p(s'), so) T-matches s’. Let
M be the finite subautomaton of C(M’, M7) of which the state alphabet is
the set {6 ({(s',p(s)),0)|s’ € S’,f € Y*} and the input alphabet and the
output alphabet are Y and Y’, respectively, where S’ is the state alphabet
of M’, ¢§" is the next state function of C(M’, My). Since for any state s’ of
M, there exists a state so of My such that the state (¢(s'), so) of C(My, My)
T-matches s', it is easy to prove that sy T-matches the state (s’,p(s')) of
M. From the construction of M, for any state of M/, there exists a state of
My 7-matching it. Therefore, My is a weak inverse with delay 7 of M{. We
conclude that M is a weak inverse with delay 7.

Conversely, suppose that My is a weak inverse with delay 7. Then there
exists M{ such that My is a weak inverse with delay 7 of M. Since M; is
weakly invertible with delay 0, there exists M such that M is a weak inverse
with delay 0 of Mj. Since |X| = |Y’], for any state s’ of M; and any state s’
of M, s” O-matches s if and only if ' O-matches s”. For any state s of M|,
let s be a state of My such that sy 7-matches sj. From Lemma 4.2.3, there
exist a state s of C'(My, Mp) and a state s; of M; such that s and the state
(s1,80) of C(My, M) are equivalent. Let s§ be a state of M{ such that s;
matches s] with delay 0. For each s fix such an s}, denoted by ¢’(sj). Let
M’ be the finite subautomaton of C'(M{, M7) of which the state alphabet is
the set {6"(s”,0) | 8" € §”,8 € Y*} and the input alphabet and the output
alphabet are Y and X, respectively, where S” = {(s{,, ¢'(s()) | s, € S}, So
is the state alphabet of M, §” is the next state function of C(M{, M]). From
the above discussion, for each state (s(,¢'(s()) in S” there exists a state
(s1,50) of C(My, Mp) such that (sq,sg) T-matches (s(,’(s)) and (s1, so)
is equivalent to some state s of C'(My, My). It follows that s 7-matches
(sh,¢'(sp)). From the construction of M’, for any state s’ of M’ there is a
state § of C'(Mjy, My) such that § 7-matches s’. Thus C’ (M7, Mp) is a weak
inverse with delay 7 of M’. We conclude that C'(M;, M) is a weak inverse
with delay 7. a

Since M; is an hi-order input-memory finite automaton, that is, p = —1
in (4.31), My = (X,Y’, X" §;, ) is defined by
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yi = f(a(ihn + 1)), (4.36)
i=0,1,...,

and f is expressed in the form
f(@(iyhy + 1)) = [Fo, ..., Fp,Jol (2, 4).

From the definition of compound finite automata, C'(My, My) = (XY,
Y* x X" §,)) is a finite automaton defined by

Yi = Soout(y(i - 17 k;)) + [COa ey Ch]wzl/h(xa 7’)’
i=0,1,...,

where Cj, j =0,1,...,h are defined by (4.32), and h = hg + h1.

Theorem 4.2.3. Let My be an (hg, k)-order memory finite automaton de-
fined by (4.30), and M; an hy-order memory finite automaton defined by
(4.36) with | X| = |Y'|. Let eqo(?) be equivalent to the equation

—Yi + @out(y(i - ]-7 k)) + [COv ceey Chhplyh(maz) = 07

and
 R4[P. ) ~ Rolre .
eac() "B eq (i), eq () T eqea (i), e=0,1, 71
a linear R, Ry transformation sequence, where C;, j = 0,1,..., h are defined

by (4.32). Assume that My is weakly invertible with delay 0.
(a) C'(My, My) is a weak inverse with delay 7 if and only if for any

PATameters Ti—1, ..., Ti—phy Yitrs - - - Yi—k, €qr(1) has a solution x;.

(b) C'(My, My) is weakly invertible with delay 7 if and only if for any
parameters Ti—1, ..., Ti—h, Yitry > Yi—k, eqT(i) has at most one solution
L.

Proof. (a) The if part is a special case of Corollary 3.1.1. To prove the
only if part we suppose that C'(My, My) is a weak inverse with delay 7. It
follows that ¢™ = |Y| < | X|. From Lemma 4.2.4, My is a weak inverse with
delay 7. Let

Oeqe(i) B 0eql (i), Oeql (i) TE Oegly 1 (i), c=0,1,...,7—1 (4.37)

be a linear R, Ry transformation sequence, where Oeq(i) is equivalent to the
equation
T
—yi+(Pout(y(i_ 1,k’))—‘r [B(),...,Bho] =0,

Li—hg
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where x;, ..., x;_p, take values in Y’. Applying Lemma 4.2.1 7 times, ¢ from
1 to 7, we obtain an R, R; transformation sequence

eq.(i) 5 e (i), equ(i) " e, (), e=0,1,.r—1  (4.38)

satisfying

[Coc,- -, Chel = [Boes - -+ Bhge) Thy1, c=0,1,...,7,
where €q,(7) is eqo(?), €q.(7) is in the form

oly(i+c.ct+k+1)) + [Coc, - Chelty (2,1) =0,
€q.(1) is in the form

Pely(itectk+1)) + [Coer - Ot (2,1) = 0,

¢ and ¢!, are two single-valued mappings from Y***+1to Y, ;. and é;c are
m X | matrices over GF(q). It follows that

COCZBOCF(), 020,1,...,’7'.

Thus
Cp. = By Fo, c=0,1,...,7—1.

Since M is weakly invertible with delay 0, the rank of Fy is m/. Noticing
that (4.37) is linear over GF(q), from the definition (on p.111), using these
facts, it is easy to see that (4.38) is linear over GF(q). Since eqy(i) and é€q,(4)
are the same, using Theorem 4.1.1, there exists an m x m nonsingular matrix
Qo such that Co; = Qo-Co-. Thus we have Cy, = QETIBOTFO. Notice that
(4.37) is also linear in the sense of Sect. 3.3 (see p.95). Using Theorem 3.3.1,
since My is a weak inverse with delay 7, the rank of By, is m. It follows that
the rank of QaTlBOT is m. Since M; is weakly invertible with delay 0, for any
parameters ;_1, ..., Z;_,, Foib,(z(i,v + 1)) as a function of the variable
x; is injective. From |X| = [Y”|, this function is bijective. Since the rank
of QaTlBOT is m and ¢™ < |X| = |[Y’|, for any parameters x;_1, ..., T;—y,
Qo Bo- Foll (2(i,v+1)), ie., Corpl (2(i,v+1)), as a function of the variable
x; is surjective. It follows that for any parameters x;_1, ..., Ti—h, Yitr, - - -
Yi—k, the equation eq, (i) has a solution x;.

(b) The if part is a special case of Theorem 3.1.3. To prove the only if
part we suppose that C'(M;, M) is weakly invertible with delay 7. From
Lemma 4.2.4, My is weakly invertible with delay 7. Let (4.37) be a linear R,
Ry transformation sequence. Applying Lemma 4.2.1 7 times, ¢ from 1 to 7,
we obtain an R, Ry transformation sequence (4.38) satisfying
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[éoc,...,éhc] = [BOC)"'7Bh0C]Fh+1a CZO,L...,T.

It follows that
Coc = BocFy, ¢=0,1,...,T.

Similar to the proof of (a), (4.38) is linear and there exists an m x m nonsin-
gular matrix Q. such that Cy, = Qo-Co,. Thus we have Cy, = QaTlBOTFO.
Using Theorem 3.3.2, since My is weakly invertible with delay 7, the rank
of By, is m'. It follows that the rank of QETIBOT is m'. Since M; is weakly
invertible with delay 0, for any parameters x;_1, ..., z;_,, Fou' (z(i,v + 1))
as a function of the variable z; is injective. From |X| = |Y’|, this function is
bijective. Since the rank of the m x m’ matrix QarlBOT is m’, for any para-
meters z;_1, ..., Ti—, Qo Bor Fol (x(i,v + 1)), i.e., Cortb, (x(i,v + 1)), as
a function of the variable z; is injective. It follows that for any parameters
Ti1y « vy Tiehy Yitry - - -5 Yi—k, the equation eq,(7) has at most one solution
ZTi. (]

From the proof of the above theorem, we have the following.

Corollary 4.2.1. Let My be an (hg, k)-order memory finite automaton de-
fined by (4.30), and M; an hi-order memory finite automaton defined by
(4.36) with | X| = |Y'|. Let eqo(?) be equivalent to the equation

—Yi + @out(y(i -1 k)) + [COv R Ch]lﬁf,h(x’ Z) =0,

and
Ro [P . N Rolre .
eqe (1) alFl eq.(i), eq.(i) dicig eqet1(i), ¢=0,1,...,7—1
a linear R, Ry transformation sequence, where C;, j = 0,1,..., h are defined

by (4.32). Assume that My is weakly invertible with delay 0.

(a) C"(My, My) is a weak inverse with delay T if and only if Co-t' (2(i,
v+ 1)) as a function of the variable x; is surjective.

(b) C'(My, My) is weakly invertible with delay T if and only if Co-4' (2 (i,
v+ 1)) as a function of the variable x; is injective.

4.3 Reduced Echelon Matrix

For any nonnegative integer ¢, let eq.(7) be an equation
welyli+e,e+k+1)) + [Coey - - -y Chc]wfﬁ,(u, x,1) =0
and let eq’.(i) be an equation
oL (yi+ce+k+1)+[Chey--v, Chel Lhu(u,x,z) =0,

where ¢, and ¢/, are two single-valued mappings from Y¢t¥+1 to Y, Cjc and
C’, are m x | matrices over a finite field GF(q), j = 0,1,...,h.
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Theorem 4.3.1. Let eqy(i) be equivalent to the equation

—Yi + @Out(y(i - 17 k)) + [005 sy Ch] IZJ,}IL/(U/7:E7Z) = 07
and
CoCrp ... ... Ch,
CoCy ... ... Ch,
r= .
CoCr ... ... Ch,

be an m(7 + 1) x l(T7 + h + 1) matriz, where pous s a single-valued mapping
from Y* toY. Let

Ra[P]
)

=" eql (i), eql(i) Rolreq] €qer1(1), ¢=0,1,...,7 (4.39)

eq.(1

be a linear R, Ry transformation sequence. Assume that the reduced echelon
matriz of I' is expressed in the form

D11 Diy Dy3
0 Da Do |,
0 O D33

where Dy1 and Doy are row independent and have It and I columns, respec-
tively. Then Day and the submatriz of the first r-y1 rows of C§. in eq.(i) are
row equivalent.!

Proof. Using Properties (g) and (a) of R, R} transformations in Sect. 3.1,
from (4.39), the system of equations eqg(i), ¢ = 0,1,...,7 is equivalent to
the system of equations Ejeq|(7), Ele¢i(t—1), ..., EL_jeq._1(1), Ereq.(0),
Egeqy(0), EYeqi(0), ..., Eleq;(0), where £} and EY are the submatrices
of the first r;41 rows and the last m — rj;1 rows of the m x m identity
matrix, respectively, j = 0,1,...,7. Since, for any z/wa, I is the coefficient
matrix with respect to ¢47 " (u, 2, 7) in the system of equations eqo(i), i =
7,7 —1,...,0, it follows that I" is row equivalent to a matrix I"':

[ EiCho ByCly o ECh
EICOI Elcll T Elchl

ELCor ELCY - E.Cy,,

EYCy ... EyCy,

BCY, ... Joile/®

EIC), ... EIC),

! Two matrices A and B are row equivalent, if there exists a nonsingular matrix
T such that B = T A.
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Since (4.39) is linear over GF(q), E}Cj; is row independent for any j, 0 <
j < 7. Thus there is a nonsingular matrix

Poo Po1--- Por—1 Por  Pori1
0 Pu...Pir-1 P P

0 0 P‘r—l,‘r—l PT—l,T P‘r—l,7'+1
0 0 ...0 P P
0 0 ...0 0 Pyt

such that PI" is the reduced echelon matrix of I', where P.. is an 7,41 X
Ter1 matrix and P..E.C{, is the reduced echelon matrix of E.C{., for ¢ =
0,1,...,7. Let
D11 D12 Di3
PI" = | D1 Dyy Dos | ,
D31 D33 Dss

where D11 and Das are (rq +---+7,) X I7 and 7,11 x [ matrices, respectively.
It is easy to see that Di; is row independent, Dyy = 0, Dy = P ELCY,,
D3y = 0 and D3y = 0. Noticing that P,, is nonsingular, EZC{,_, the submatrix
of the first r,41 rows of C{,, is row equivalent to Dgg. Since the reduced
echelon matrix is unique, the theorem holds. a

Corollary 4.3.1. Under the hypothesis of Theorem 4.3.1, for any parame-
LersS Ti1, ooy Timpy Uiy oy Uiep,s CoTwiW(u(z',u—&—l),x(i, v+1)) as a function
of the variable x; is an injection if and only ifD22¢Lu(U(ia pt1), x(i,v+1)) as
a function of the variable x; is an injection, and Cor ¥, (u(i, p+1), z(i, v+1))
as a function of the variable x; is a surjection if and only if Dgg@bf“,(u(i,
u+1), z(i,v+1)) as a function of the variable x; is a surjection and .11 = m.

Proof. Since eq, (%) RalFy] eq. (i) and eq’ (i)

Rp[rr41] . .
— " eq, (i) are linear,

Cl, = PCyr = [EOLCC/’T}haS rank 7, 1. Therefore, Corl,,, (u(i, p + 1), z(i,

v+ 1)) as a function of the variable z; is an injection if and only if Cj, ¢!,
(u(i,pu + 1),z(i,v + 1)) as a function of the variable x; is an injection, if
and only if EZCq ¢!, (u(i,n+1), x(i,v + 1)) as a function of the variable x;
is an injection. From Theorem 4.3.1, Dyy and ELCj, are row equivalent. It
follows that Cor !, (u(i, p+1),2(i, v+ 1)) as a function of the variable x; is
an injection if and only if Do ’(/Jﬁ“j (u(i,pp + 1), 2(i,v + 1)) as a function of
the variable x; is an injection. Similarly, CoTwiW(u(i, pw+1), z(i,v+1)) as a
function of the variable x; is a surjection if and only if Cg, ¢!, (u(i,u+ 1),
z(i,v + 1)) as a function of the variable x; is a surjection, if and only if
ELCh !, (u(i, p+1), (i, v+1)) as a function of the variable x; is a surjection
and rry1 = m. Since E,Cy !, (u(i, p+ 1), 2(i,v + 1)) as a function of the
variable z; is a surjection if and only if Dggi/)fw(u(i,u +1),z(i,y+1)) as a
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function of the variable x; is a surjection, we obtain that COwaw(u(i, p+1),
z(i,v + 1)) as a function of the variable z; is a surjection if and only if
ngz/;,lw(u(i, pw+1),2(i,v+ 1)) as a function of the variable x; is a surjection
and r.41 = m. O

From this observation, if some inversion method by reduced echelon ma-
trix based on injectiveness or surjectiveness of Dggwfw(u(i, p+1),z(i,v+1))
is applicable to a finite automaton M, so is the R, R} transformation method
described in Sect. 3.1. But the method of reduced echelon matrix for finding
weak inverse of M is a bit more complex than the R, R, transformation
method, 7 4 1 equations v. one equation.

As to finding weak inverse of a finite automaton by reduced echelon ma-
trix, assume that M = (X, Y, Y* x UhFtr+l 5 X747 5 )) is defined by

Ui+1 = g(U(Z,h + 1Y + 1)?1‘(7'vh +v+ 1))7
1=0,1,...

We can multiply I" on the left by a nonsingular matrix P to obtain its reduced
echelon matrix. Because the reduced echelon matrix of a matrix is unique, we

obtain Dyy and Dsy3 in Theorem 4.3.1. Let P =
Ps

P
P;] , where the numbers of

rows of P; and Dj; are the same, and the numbers of rows of P, and Das are
—Yitr+Pout (Yii+T—1,k))
it ou(yli—1,k))

any parameters T;_1, ..., Li—y, Uiy - - -, Uiep, Dggwllw(u(L u+1),z(i,v+1)) as
a function of the variable x; is an injection, then for any parameters x;_1, ..

the same. Denote P 1 by ¢(y(i + 7,7+ k+1)). If for

*

Ti—h—vy Wiy « -y Wi—h—py Yitrs -+ Yi—k; the equation
P(y(i+ 7,7+ k + 1)) + [Daz, Doty (u, 7,3) = 0

has at most one solution z;. Let f* be a single-valued mapping from X"+ x
Uhtetl 5 y7+k+l to X so that if such a solution x; exists, then

z; = f (i —Lh+v),uli,h+p+1),y@+7,7+k+1)).

Construct a finite automaton M* = (Y, X, X"V x Uhtrtl 5 ym+k 5% \*),
where
Sz — Lh+v),uli,h+p+1),y (G —1,7+k)),y)
=(z(i,h+v)uli+ 1, h+pu+1),y G, 7+k)),
N(z(i — 1L,h+v),uli,h+p+1),y G — 1,7 +k),y) =i,
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= "z —1L,h+v),uli,h+p+1),y G174+ k+1)),
wip1 = g(u(i,h+ p+1),2(i,h + v+ 1)).

Similar to the discussions in Sect. 3.1, the 7-stay of M* is a weak inverse
with delay 7 of M.

4.4 Canonical Diagonal Matrix Polynomial
4.4.1 R, Ry Transformations over Matrix Polynomial

Let F be a field, z an indeterminate, and F[z] the polynomial ring over F'. A
matrix, of which elements are polynomials of z, is called a matriz polynomial.
Let My, (F[z]) be the set of all m x n matrix polynomials, and GLy(F[z])
the set of all & x k invertible matrix polynomials. !

We use DIA;,,(91(2); - - - Gmin(m.n)(2)) to denote the m x n matrix of
which main diagonal elements are gi1(z), ..., gmin(m,n)(2) in turn and zero
elsewhere. If m x n matrices are partitioned into r x s blocks, we also use
DIAy, n(A1(2), ..., Amin(r,s)(2)) to denote the matrix of which main diagonal
blocks are A1(z), . . ., Amin(r,s)(2) in turn and zero elsewhere. Denote the nxn
identity matrix by E,. For any m > n > 0, denote DIA,, ,,(Ey, 2En—y) by
I, . For any matrix A and any matrix polynomial A(z), we use A(iq, ...,
ir; 1y -- o Jr) and A(iy, ..., @p; J1, - -+ Jr; 2) to denote their r-order minors
of rows i1,...,4,. and columns ji,...,j., and call them (i1, ..., ir; J1, - - -, Jr)
minors of A and A(z), respectively.

A matrix polynomial can be transformed into the canonical diagonal form
by elementary transformations. That is, for any C(z)eM,, ., (F'[2]) with rank
r, there exist P(z)eGLy,(Flz]), Q(2)€GL,(F[z]), r nonnegative integers
ai,...,a, and r polynomials fi(z),..., f-(2) such that

C(z) = P(2)DIApm n (2 f1(2), ..., 2 fr(2),0,...,0)Q(2),

0<ar <---<ap, fj(2) | fj+1(z) for j =1,...,7 =1, and f;(0) # 0 for
g=1...,r

Let C(z) in My, »(F[2]) be Z?:o Cjoz?. We can expand the definitions of
R, Ry transformations on matrices over GF(q) to the matrix [Co, - .., Cho]
over the field F. In parallel, we define R, R, transformations for matrix
polynomial as follows.

Rule R, : Let k > 0, Cy(2) € My, n(F[2]) and Ci(z) = Z;'L:O Cjrz7. Let
Px be a nonsingular matrix over F', and

1 A matrix polynomial is said to be invertible, if its determinant is a nonzero
constant.
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}k = P.Cj, 7=0,1,...,h.

Ci(z) = Z?:o C}# s said to be obtained from Cy(2) by Rule R, using Py,
denoted by
Ci(z) B 2.

Rule Ry, : Let k > 0, C},(2) € My, »(F2]) and Cj(z) = Z;L 0 Clp?? . I
the last m — 741 rows of Cj, are 0 in the case of rp11 < m, Cry1(2) =
It Ch(z) € My n(F[2]) is said to be obtained from Cy(z) by Rule Ry,

denoted by

Cp(z) st

An R, R, transformation sequence

Cr+1(2).

Pk]

Ry [riga]

Cuz) B ez, cpe) Cinn(s), k=01,....t—1 (440)
is said to be elementary, if for any k, 0 < k <t — 1, Py is in the form
E. 0
Po= |
¥ [Pkl sz}

and the first 7,41 rows of C{, is linearly independent over F', where 79 = 0.

Notice that if (4.40) is an elementary R, R; transformation sequence,
then r; > rj_q for j =2,...,1.

The R, R, transformation sequence (4.40) is said to be terminating, if
the last m — r; rows of C;(z) are 0 in the case of r, < m and the first 7, rows
of Cy; are linearly independent over F.

From the definitions of R, and R} transformations, we have the following.

Lemma 4.4.1. If (4.40) is an R, Ry, transformation sequence, then

Culz) =1 P I}

m,r m,re—1

P_s5.. PyCo(z).

mrl

Lemma 4.4.2. Let (4.40) be an elementary R, Ry transformation sequence.
Let mq =ri, myj =rj —rj_1, j = 2,...,t. Then there exists an m x m
invertible matriz polynomial P(z) such that degrees of elements in columns
T+ 1 to T,y of P(z) are at mostt —k —1 fork=0,1,...,t—1, and

Py i P gy - - P Do Py T,
= P(2)DIApm(Em, s 2Emy, o 2 By 20 B ),

where ry, =0, ri =r;,i=1,...,t =1, and r; = m.
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Proof. 1t is easy to verify that for any k, 1 < k < ¢,

Lmi I -+ Iy = DI Ay i (Ernyy 2By 2" VB 28 B ).

Denote
E..,
P] = ’ ) j = 17 at -1
En,
Pj-- Py Py
Clearly, Pj_1 is in the form
_E'rnl
Pl= =1, -1
By,
[Py - Pl Py
Let ~
B,
Pli(z) = E Lj=1,...,t—1. (4.41)
. Em,
L2/ Pjy - 2P Pl

It is easy to see that
Lot Doy -+ D Pt = Ph(2) Lo Ty + - - Dy k=1, t — 1.

Using this observation, it is easy to prove, by induction on k, the following
proposition

Lov P Do P T P = PUAPYE) o P D Lo - Do,
holds for £k =1,2,...,t — 1. This yields

Py i P s Py Ly Py D,
= PO_lpll(z)PZI(Z) e Pt/—l(z)lm,ﬁ Im,rz te Imﬂ”t—llmﬂ’t
= P(2)DIApm(Emy s 2Emy, o 2 By 2P B ),

where P(z) = Py 'P/(2)P4(2) ... P|_,(2).

From (4.41), the determinant of P;(z) is a nonzero constant for any j, 1 <
j <t—1.Tt follows immediately that the determinant of Py ' P{(2)P4(z). ..
P!_,(z) is a nonzero constant. Therefore, P(z) is invertible.

Partition P{(z) ... Pj(z) into [P}(z), ..., P};;1(2)], where P (2) has
my columns for k = 1,...,j. From (4.41), it is easy to prove by induction

on j that degrees of elements of Pj/jc (z) are at most j — k + 1 for any k, j,
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1<k<j+1land 1l < j < t—1. It follows immediately that degrees
of elements in columns r}, + 1 to r}_, of P(z) are at most t — k — 1 for
k=0,1,...,t—1. 0

Theorem 4.4.1. Let (4.40) be an elementary R, Ry transformation se-
quence. Let my = m, mj; = r; —1rj_1, j = 2,...,t. Then there exists an
m x m invertible matriz polynomial P(z) such that degrees of elements in
columns 7, + 1 to of P(z) are at mostt —k —1 fork=0,1,...,t—1,
and

Co(2) = P(2)DI A ;i (Emy s 2By« o 2 By 2 By, ) Ci(2),
where vy =0, r, =71, i=1,...,t =1, and r; = m.
Proof. From Lemma 4.4.1,
Ci(z)=1," P_1I}

m,T¢ m,Tt—1

Pt_Q ce In_%lrlPOC’o(z).
Thus
Co(z) = PO_IImJ'l Pl_llm,rz .. 'Pt_—121m77't—1Pt_—11[7n77'tct(z)'

Using Lemma 4.4.2, it follows immediately that there exists an m x m invert-
ible matrix polynomial P(z) such that degrees of elements in columns 7}, + 1
to rj,_, of P(z) are at most t —k — 1 for k=0,1,...,t— 1, and

Co(2) = P(2)DI A (Brmys 2By« - 2 By 2" B, ) Ci(2). O

Corollary 4.4.1. Let (4.40) be a terminating and elementary R, Ry trans-
formation sequence. Let my =m1, mj =1;—rj_1,J = 2,...,t. Then there ex-
ists an m xm invertible matriz polynomial P(z) such that degrees of elements
in columns T, +1 to ), of P(z) are at mostt—k—1 fork=0,1,...,t—1,
and

Co(2) = P(2)DI A v, (B, 2By, .. 2 B, )Q(2), (4.42)

where vy = 0, rl =r;, i =1,...,t — 1, v}, = m, and Q(z) is the first r; rows
of C¢(z).

Corollary 4.4.2. Let (4.40) be a terminating and elementary R, Ry trans-
formation sequence. Then the rank of Co(z) is 1¢.

Proof. Let r be the rank of Cp(z). Since P(z) is invertible, from (4.42),
the rank of C'(2) = DIAy,(Emy, 2Emy, -y 227 Ey,) Q(z) is r. Tt is
easy to see that any k-order minor of C’(z) equals 0 if k¥ > r;. On the
other hand, since Q(0) is row independent, there exists a nonzero ri-order
minor Q(1,...,7¢ 1, .., ;%) of Q(2). It follows that the ri-order minor
C'(1,...,791, -+, Jr,; 2) is nonzero. Thus r; is the rank of C'(z). It follows
that r = ry. O
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4.4.2 Relations Between R, R; Transformation and Canonical
Diagonal Form

Given Cy(z) in My, (F[z]) with rank r, there exist P(z) € GL,,(F[z]),
Q(z) € GL,(FIz]), r nonnegative integers ai,...,a,, and r polynomials
f1(2), ..., fr(z) such that

Co(2) = P(2)DIAy (2% f1(2), ..., 2% f(2),0,...,0)Q(%), (4.43)

0<a <---<ap, fj(2) | fji+1(z) for j =1,...,7 =1, and f;(0) # 0 for
g=1...,r

Let (4.40) be a terminating and elementary R, R, transformation se-
quence. From Corollaries 4.4.1 and 4.4.2, we can construct an m xm invertible
matrix polynomial P(z) such that (4.42) holds, that is,

Co(z) = P(z)DIAm’T(Eml,zEmQ, el zt_lEmt)Q(z),

where my = r1, m; = r; —rj_1, j = 2,...,t, and Q(2) is the first r rows
of Cy(2). Denote b; = k —1for rp_1 < i <1, L < k<t i=1,...,r.
Then DIA;,(Emys2Emy, ..., 2t Y Ey,) = DIA;, (25,202 . 20). Tt fol-
lows that

Co(2) = P(2)DI A, (2, 2%2, ... 2P)Q(2). (4.44)
Notice that Q(z) has r rows and rank 7 and Q(0) is row independent.

Thus there exist M(z)€GL,(F[z]), R(z)€GL,(F[z]), and r polynomials
g1(2), ..., 9-(2) such that

Qz) = M(Z)DIAnn(gl(Z)a e ,gT(z))R(Z),
9i(2) | gj41(2) for j =1,...,r —1, and g;(0) # 0 for j = 1,...,r. From
(4.44), it follows that

Co(2) = P(2)DI A, (2", 2%, ... 2" YM(2) DI A, (91(2), ..., g-(2))R(2).
(4.45)
Since P, @, P and R are invertible, from (4.43) and (4.45), D,; and
Dy M (2) Dy are equivalent ! and their determinant factors are the same, where

Doy = DIA,;, n(2* fi(2),..., 2% fr(2),0,...,0),
Dy = DIA,, (2", 2%, ..., 2")
Dg - DIAr,n(gl(z)7 cee agr(’z))

1 A(z) and B(z) in My, »(F[z]) are equivalent if and only if there exist P’(2) in
GLy(F2]) and Q'(2) in GL,(F[z]) such that A(z) = P'(2)B(2)Q’ ().

)
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Lemma 4.4.3. For any A(z) € GL,(F[z]) and any r < n, let

dil,..‘,ir = ng{A(lla CIaE 77;’r;j17 o 7j’r‘; Z)7 1 < jl <- < j’r < ’I’L}7
dj, o= ged{A(iy, ... i g1, e 2), 1<y < -0 < dp <
Then d;, ..., and dj, . are nonzero constants.

Proof. Using Laplace expansion theorem, for any ¢ < n, we have

A1,y de13 01, -5 Jeg15 2)
t+1
= Z(*l)HHkamljk (2)AQi1, -85 s e oy Jh=15 Tkt 1y - -+ Jt415 2)
= a’(z)dil,nwit

for some a(z) € F[z], where a;;(z) is the element at row ¢ and column j
of A(z). Thus d;, .. i, = a(2)d;,,. s, for some a(z) € F[z]. It follows that
diy .0, = a(2)d;,,. ;. for some a(z) € F[z]. Therefore, |A(z)| = a(2)d;, ...,
for some a(z) € F[z]. Since A(z) € GL,(F]z]), |A(2)| is a nonzero element
in . Thus d;, ... ;, is a nonzero element in F.

Similarly, expanding A(i1,...,%+1;J1,---,jt+1; 2) by the (¢t + 1)-th col-

umn, we can prove that d;i,-wjr is a nonzero element in F'. ad

Lemma 4.4.4. For anyi, 1 <i<r, we havea; +---+a; =by +---+b;.

Proof. Consider the (1,...,4;j1,..., ;) minor of DyM(2)D,, j; < r. Notic-
ing the shape of matrices, this minor is equal to 221+ +% M (1,... 4;71,..., 7
z) gj,(2)...g;,(2). Consider the set

S={MQ,....i551,....ji2), 1<ji<- - <j<rh

Denote the greatest common divisor of polynomials in S by d(z). From

Lemma 4.4.3, d(z) is a nonzero constant. By <p17,,_,i(z) we denote the greatest

common divisor of all (1,...,4;1,...,4;) minors of DM (2)D, for 1 < ji <
- < 3; < r. It follows that

for some ¢}, with ¢} ;(0) # 0.

On the other hand, for any 1< k1 <--- <k <mandl1<j; < ---<
Jji < n, ki > ror j; > r, the (ki,..., k‘z,jl,...,jz) minor of DyM(z )Dg
is0. Forany 1 < ky < -+ <k, <rand1<j; <--- < j <, the
(K1, ... ki3 j1,s- -, j:) minor of DyM(2)D, has a factor 2% T +br Clearly,
b, + -+ bk, > b1+ -+ b; holds. Thus the multiplicity of z in the i-order
determinant factor of DbJ\Zf(z)Dg is by +---+b;. Notice that the determinant
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factors of Dy and of DyM (2)Dy are the same. Since the i-order determinant
factor of Dy is z®1 %% fi(2)... f;(z) and f;(0) # 0 for any j, 1 < j <4,
we have z@1ttai — bt 4bi O

Lemma 4.4.5. Foranyi, 1 <i <7, wehave f1(2)... fi(z2) = q1(2)...9:(2).

Proof. Similar to the discussion in the proof of Lemma 4.4.4, the (51, ...,
ji; 1, ..., i) minor of Dy M(2)D, equals 240 M(jy, ... 5:;1,...,i;2)
91(2) ... gi(z) if j; < r. Consider the set

S/:{M(.7177.71a177’t7z>7 1<.71<<]z<r}7

and denote the greatest common divisor of polynomials in S’ by d’(z). From
Lemma 4.4.3, d'(z) is a nonzero constant. By 91 . ;(z) we denote the greatest
common divisor of all (j1, ..., ji; 1,...,i) minors of DM (2)D, for 1 < ji < -
< j; < r. It follows that

Ur1,.i(2) = 2%q1(2) ... gi(2)

for some nonnegative integer b.

On the other hand, forany 1 < k; < --- < k; <nand1<j; <---<
Jji < m, ki > rorj;, >r, the (ji,...,4i;k1,..., ki) minor of DbM(z)Dg
is0. Forany 1 < k1 < --- < k; <rand 1< j; <---< g <, the
(1, - -+, ji; k1, - - -, ki) minor of DyM(2)D,, has a factor gi, (2) . .. gk, (2) which
has the factor g;(2) ... g;(z). Thus the non z factor in the i-order determinant
factor of DM (2)Dy is g1(2) ... gi(2). Notice that the determinant factors of
D, and of DM (z)D, are the same. Since the i-order determinant factor of
Dgy is zvt % fi(2)... f(z) and f;(0) # 0 for any j, 1 < j < i, we have
f1(z) . fi(2) = 91(2) - gi(2). U
Lemma 4.4.6. a; =b; and f;(z) = g;(z) forj=1,...,r.

Proof. From Lemmas 4.4.4 and 4.4.5. O

Theorem 4.4.2. Let DIA,, (2" f1(2),...,2% fr(2),0,...,0) be the canon-
ical diagonal form of Co(z) € My, (F [2]), where f;(0) #£0, j =1,...,r.
Let (4.40) be a terminating and elementary R, Ry transformation sequence,
and Q(2) the first r rows of Cy(2).

(a) There exists P(z) € GLy,(F[2]) such that degrees of elements in
columns 7, + 1 to rj ., of P(z) are at mostt —k —1 for k=0,1,...,t—1,
and

Co(2) = P(2)DI Ay, (2, ..., 2°)Q(2),

wherer(/) :O’ r;:ri7i: 1’...,t—17 andré:m.
(b) DIA, (f1(2),..., f+(2)) is the canonical diagonal form of Q(z).

Proof. (a) From Corollaries 4.4.1 and 4.4.2, and Lemma 4.4.6.
(b) From Lemma 4.4.6 and Corollary 4.4.2. O
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4.4.3 Relations of Right-Parts
From now on, we denote
D(z) = DIA, (z*,...,2%)

withO0<a; <---<a,=t—1.Let my = maxj [Fk(Q1 <k <r &ap =
apy1 = = apyj1 =1—1)], i =1,...,¢t. Then

D(2) = DIA, (B, 2By - - 27 B, ).

Lemma 4.4.7. For any L(z) € M, .(F[2]), Q(z2), Q*(2) € M, ,(F[z]), as-
sume that

L(2)D(2)Q"(2) = D(2)Q(2) (4.46)

and Q*(0) is row independent. If L(z) = Lo+ 2Ly + 2?Lo+ -+ 271 L1 +
2tLi(2) and for any h, 0 < h < t, Ly is partitioned into blocks L, =
[Lhijli<i,j<t with my X m; Ly;j, then Lp;; = 0 whenever i — j > h.

Proof. Denote D(2)Q(2) = Ag + zA; + 2245 + - + 217 A, 1 + 21 Ay(2)
and D(2)Q*(z) = Af + 2 A} + 22 A5+ - - - + 271 A7 | + 2" A} (2). For any £,
0 < k < t, partition Ay and Aj, into ¢ blocks

At ki1 AT k1

Ap k1 Al e
where A; ;41 and A:,k+1 have m; rows, i = 1,...,t. Since D(z) = DIA,,
(Bmys 2By, -y 287 Eny,), we have Aj; = A7 = 0 for any 4,7, 1 < j <i <t.
Since Q*(0) is row independent, rows of A%, ..., A}, are linearly independent.

For any k, 0 < k < t, we prove, by induction on k, the proposition P(k):
Lpij=0ift>2i2j+h+1,1<j<k—h+1and0< h <k Basis: k=0.
Comparing constant terms in two sides of (4.46), we have

Aty ] An
0 0
Lo | . =
o | o
It follows immediately that

Lo21 |

: Ap =0.
Lo |
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Noticing that Aj; is row independent, we have Lg;; = 0 for any ¢, 2 <7 < ¢
Thus P(0) holds. Induction step : Suppose that P(k — 1) holds and k < t.
That is, Lp;;j =0fort > i 2 j+h+1,1<j<k—-hand0<h<k-1
Comparing coefficients of z¥ in two sides of (4.46), we have

(A% ] (A%, ] (AT ] [ AT k1 [Atk+1
0 A3y : : :
0 0 A A A
Lilo |[+Lk-1fo |[+-+11 0 kk 14+ Lo 0 kLRt — 0 FLAL
0] 0] 0] 0 1 |0 |
It follows immediately that
Apt1 k41
0
0
(A3 ] [ A3, ] [ ATy ] [ ATk ]
0 A3y : :
0 0 A* A*
k k k k
:L](C) 0 +LIE:21 0 +~--+L§) Okk +L(()) Ok+1,k+1 7
L0 ] L0 0 0

where
Lyk+1,1 - Lugt1

L = Lpgt21 oo Lngtor . h=0,1,... k.

Lt R
From the induction hypothesis, this yields

Akt1,k+1
0
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AL 0 o7 o]
0 A3y : :
0 0 Az, 0
k k k k ¥
:Ll(c )0 +LIE:21 0 + -+L§ 1o +L(() ) Aft1 k1
0 0 0 0
[0 ] 0] 0 0
Since rows of Aiq, .. A",;H x1 are linear independent, we have Ly, ; k—nt1 =
Ofort>i>k+2and 0<h<k From P(k— 1), this yields P(k).
FromP(tfl),Lh”f()foranyO\h<tandz‘fj>h. O

Lemma 4.4.8. For any L(z) € M,,(F[z]), Q(z), Q*(2) € M, ,(F[z]),
assume that (4.46) holds and Q*(0) is row independent. Then there exists
R(z) € M, (F[z]) such that

Q(z) = R(2)Q"(2).

Proof. Denote L(z) = Lo+2zL1+22Lo+-+-+2' " L; 1 +2'L;(z). Partition
Lk into blocks (Lkn])1<z]<t with m; X m; Lkij; k= 0, 1, .. t — 1. Partition
ZkLkD( ) into blocks ( k”( ))1§i,j<t with m; Xm; Lkzy( ) k = 0, 1, ‘e ,t—l.
From Lemma 4.4.7, it is easy to see that

wii(2) = I Ly, if i j <R,
* 0, otherwise.

It follows that for any k, 0 < k<t —1,
2#L.D(2) = D(2)Ry.(2),
where

Ri(2) = [Rrij (2)1<ij<ts

ktj—ip, . ifi—7i<k

z kijs 17 J )

R}“‘j(z) = Y .\
0, otherwise.

Clearly, there exists a matrix polynomial R;(z) such that
2'Li(2)D(2) = D(2)Ry(2).

Let

ZRk + Rz
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We then have

Using (4.46), this yields
D(2)R(2)Q"(2) = D(2)Q(2)-
It follows that R(2)Q*(z) = Q(2). O

Lemma 4.4.9. For any R(2),R'(2) € M,,.(F[z]) and Q(2),Q*(z) €
M, (Fl2]), if ~ ~

Q"(2) = R(2)Q(2), Q(z) = R'(2)Q"(2) (4.47)
hold and Q(0) or Q*(0) are row independent, then

R'(z)R(z) = R(2)R'(z) = E,,
therefore, R(z) and R'(z) are invertible.

Proof. Suppose that Q(0) is row independent. From (4.47), we have

Q(2) = R'(2)R(2)Q(2).

Let T(z) = E, — R'(2)R(z). Denote T'(z) = Ty + 2Ty + - - - + 2'T;. Then we
have
(To+ 2Ty + - -+ 2'T})Q(2) = 0. (4.48)

We prove T; = 0 for any i, 0 < i < t by induction on i. Denote Q(z) =
Qo+ 2Q1+ -+ 2°Qs. In the case of i = 0, from (4.48), we have TxQo = 0.
Since Qo = Q(0) is row independent, we obtain Ty = 0. Suppose that we
have proven T; = 0 for 0 < j <i—1 < t—1. Using (4.48), we have T;Q¢ = 0.
Since @ is row independent, we obtain 7; = 0. We conclude T'(z) = 0. It
immediately follows that R'(z)R(z) = E,. Therefore, R(2)R/(z) = E,.

The proof is similar in the case where @Q*(0) is row independent. O

For any C(z)€M,y, ,(F[z]) with rank r, P(z)€GL,,(F[z]) and Q(z)e
GL,(F[z]), if P71(2) C(2) Q@ *(z) is the canonical diagonal form of C(z),
say DIA., n(z° fi1(2), ..., 2% fr(2), 0, ..., 0), with f;(0) #0, j =1,...,7,
DIA, .(f1(%), ..., fr(2)) Q(2) is called a right-part of C(z).

Notice that the constant term of a right-part of C(z) is row independent.

Theorem 4.4.3. Given Cy(z) in My, (F[z]) with rank v, assume that
Q*(2) is a right-part of Co(z) and DIA,, (2" f1(2),..., 2% f-(2),0,...,0) is
the canonical diagonal form of Cy(z), where 0 < a1 < -+ < ayr, fi(2) | fj+1(2)
forj=1,...,r—1, and f;(0) #0 for j=1,...,r. Let (4.40), i.e.,

Cu(z) B o), nz) M O z), k=0,1,. 01
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be a terminating and elementary R, Ry transformation sequence, and Q(z)

the submatrixz of the first r rows of C¢(z). Then there exists R(z) € GL,.(F|z])
such that

Q" (2) = R(2)Q(2).
Proof. Assume that
Co(z) = P(2)DIA, (2 f1(2),..., 2% fr(2),0...,0)Q(z)

and
Q(2) = DIA w(f1(2),.. ., [r(2))Q(2)
for some P(z) € GL,,(F[z]) and Q(2)€GL,(F[z]). Then we have

Co(z) = P(2)DIA,, (2%, ..., 29)Q"(2).
From Theorem 4.4.2 (a), there exists P(z) € GL,,(F[z]) such that
Co(2) = P(2)DI A, (2, ..., 2°")Q(2).
It follows that
P(2)DIA,, (2, ..., 2°)Q*(2) = P(2) DI Ay (2™, ..., 2°7)Q(2).
Thus there exists P’'(z)€GLy,(F[z]) such that
P'(2)DIA, - (2™,...,2°)Q*(2) = DIA,, (2™, ...,2°)Q(z).

Let L(z) be the submatrix of the first r rows and the first  columns of P’(z).
Then we have

L(2)DIA, (2%, ...,2°)Q*(2) = DIA,.(2*,...,2°)Q(2),
that is, )
L(2)D(2)Q"(z) = D(2)Q(2).
Symmetrically, there exists L'(z) € M, .(F[z]) such that

L'(2)D(2)Q(2) = D(2)Q"(2).

From Corollary 4.4.2, we have r = 7. It follows that Q(0) is row inde-
pendent. Since Q(0) is row independent, Q*(0) is row independent. From
Lemmas 4.4.8, there exist R(z) and R'(2) in M, ,(F[z]) such that

Q"(2) = R(2)Q(2), Q(2) = R'(2)Q" ().

Using Lemmas 4.4.9, R(z) is invertible. This completes the proof of the the-
oreml. O
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Corollary 4.4.3. Under the hypothesis of Theorem 4.4.3, Q*(0) and Q(0)
are row equivalent.

Corollary 4.4.4. Let¢(x1,...,xs) be a vector function of dimensionn in s
variables over F. Under the hypothesis of Theorem 4.4.3, the following results
hold.

(a) For any parameters xi41, ..., Ts, Q*(0)(x1,...,xs) is injective if
and only if for any parameters xi11, ..., xs, Q0)(z1,...,x,) is injective.

(b) For any parameters xi11, ..., xs, Q*(0)(x1,...,xs) is surjective if
and only if for any parameters x;,1, ..., s, Q0)(x1,...,x,) is surjective.

Corollary 4.4.5. For any Co(z) in M, ,(F[z]) with rank r. Assume that
P(2)71 Co(2) Q(2)~! is the canonical diagonal form of Co(2) for some P(z) €
GL,,(F[z]) and Q(z) € GL,(F[z]) and that

[Pk

Cr(z) I 2), Cuz) M Cuaz), k=01, 01

is a terminating and elementary R, Ry transformation sequence. Let Q(z)
and Q(z) be the submatriz of the first v rows of Q(z) and Cy(z), respectively.
Let (x1,...,x5) be a vector function of dimension n in s variables over F.

(a) For any parameters Tj41, ..., Ts, Q(O)w(xl, ..., Xs) 18 injective if and

only if for any parameters xi41, ..., xs, Q0)(x1,...,xs) is injective.

(b) For any parameters xjy1, ..., Ts, Q(0)(x1,...,xs) is surjective if

and only if for any parameters xii1, ..., xs, Q(0)(x1,...,x5) is surjective.

4.4.4 Existence of Terminating R, R; Transformation Sequence

Recall some notations in Sect. 4.1, but R is restricted to a finite field GF(q).
Let U and X be two finite nonempty sets. Let Y be a column vector space
of dimension m over GF(q), where m is a positive integer. Let Ix = log, | X]|.
For any integer i, we use x; (x}), u; and y; (y;) to denote elements in X, U
and Y, respectively.

Let wfw be a column vector of dimension [ of which each component is
a single-valued mapping from U#*! x X¥*! to Y for some integers p > —1,

> 0and [ > 1. For any integers h > 0 and 4, let

Lo (u(i, p+ 1), (i, v + 1))
lh

W(u,:zc,z') =

iy (u(@i —h,p+1),2(i — h,v+1))

uv

For any nonnegative integer ¢, let eq.(i) be an equation

wely(i +ec,c+k+1))+ [Boe, - - th]w L(u,z,4) =0
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and let eq’.(¢) be an equation
Pelylit cse+ b+ 1)) + [Boe, -, Brelt, (u,,1) = 0,

where ¢, and ¢/, are two single-valued mappings from Y*t++1 to Y, Bj. and
B;-c are m x [ matrices over GF(q), 7 =0,1,... h.
An R, Rp transformation sequence

eq. (1) RalF] eq.(i), eq.(i) folreyal eqer1(i), ¢=0,1,... e (4.49)

is said to be (t,e) circular, if 0 <t < e and Bjey1 = Bjt, j = 0,1,...,h.
(4.49) is said to be circular, if it is (t,e) circular, for some ¢. The R, Ry
transformation sequence (4.49) is said to be terminating, if the last m — reqq
rows of Bj 11 are 0 in the case of s <m, j =0,1,...,h, and the first 7.4
rows of By 41 are linearly independent over GF(g).

Let M = (X,Y, Yk x Uhtrtl x X"+ 5 )\) be a finite automaton over
GF(q) defined by

6((y(i — Lk),u(i,h+ p+1),2(i — 1L, h +v)), z;)
= (y(i,k),u(@+ 1, h+ p+1),2(i,h + v)),
My —1,k),u(i,h+p+1),2(i—1,h+v)),2;) = s,

where
yi = (y(i — 1,k)) + [Bo, - - -, Bh]@/}fﬁ,(u, T, 1),
uipr = g(u(i,h+p+1), 20, h+v+1)),
¢ is a single-valued mapping from Y* to Y, By, ..., B, are m x | matrices

over GF(q), and g is a single-valued mapping from U"#+1 x Xh+v+l to U,
Let eqo(i) be the equation

—yi + @(y(i — 1,k)) + [Bo, ..., Bu]yj, (u, z,i) = 0. (4.50)

For any state s = (y(—1,k),u(0,h + p+ 1),z(—1,h + v)) of M and any
nonnegative integer n, let
Yo ={A(s,x0...zn) | ®o,...,xn € X},
We={wg...wn | w;i =y — pWi-1,---,Yi-k), i =0,1,...,n, yo...yn € Y,?}.
Lemma 4.4.10. |[W?| = |Y.?|.

Proof. From the definition of W}, we have |W3| < |Y,?|. Let M, = (Y,
Y, Y* 64, Ay) be a k-order input-memory finite automaton defined by

wi =Y —P(Yi-1,-- 5 Yi-k), 1=0,1,...

Clearly, wy . .. w, € W7 ifand only if wg ... wy, = Ay ((Y—1, - -, Y=k ), Y0 - - - Yn)
for some yo ...y, € Y,S. Since M,, is weakly invertible with delay 0, we have
(Wl £ Y| Thus [Wi] = [Y;7]. 0
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Lemma 4.4.11. (a) If M is weakly invertible with delay T, then |Y,5| >
qlx(’n—‘l'-i-l).

(b) If M is a weak inverse with delay T and a state s of M T-matches
some state, then |Y;5| > (=71,

Proof. (a) We prove |Y;?| > ¢'x(»=7+1) by reduction to absurdity. Suppose
to the contrary that |Y;?| < ¢/x(»=7+1)_ Then there exist xq, ..., T, zh,. . .,
x,, € X such that

T Typer Tl Xy (4.51)
and
A, 20 xn) = A(s, 25 .. 2. (4.52)

n

Since M is weakly invertible with delay 7, (4.52) yields zg...zp—r =
xl ..., . This contradicts (4.51). Thus |Y;?| > ¢lx(—7+1),

(b) Assume that M is a weak inverse with delay 7 of M’ = (Y, X, 5’, 46, \')
and a state s of M 7-matches some state s’ of M’. Then for any yj,...,y, €
Y there exist yo,...,yr—1 € Y such that

A, N (S 00 - Yn) = Yo - Yr=1Yp - - - Yp—r-

Since yj . .. yl,_, may take ¢"("~7t1) values, we have |V;?| > ¢("~7tD. 0O

Lemma 4.4.12. (a) If M is weakly invertible with delay T, then |W2| >
Ix(n—7+1)
q

(b) If M is a weak inverse with delay T and a state s of M T-matches
some state, then |W3| > ¢m(n=7+1),

Proof. From Lemmas 4.4.10 and 4.4.11, the lemma holds. g

Consider the R, Ry transformation sequence (4.49), where eqg(4) is (4.50).
Let s = (y(—1,k),u(0, h+pu+1),2(—1, h+v)) be a state of M. For any n > 0
and any ¢, 0 <c< e+ 1, let

W, ={woc ... Wne | Wie = [Boe, - - .,th]wzhy(u,x,i), i=0,1,...,n,

Uj+1 = g(u(]7h +p + 1)7*%.(]7]7’ +v+ 1))7
i=0,1,....n—1, zo,21,...,2n € X},

and for any n > 0 and any ¢, 0 < ¢ < ¢, let

W' = {whe .. whe | wh. = [Bp, - -, Bpel /lﬁ,(u,x,i), 1=0,1,...,n,
Ujt1 = g(u(jah+“+ 1),x(j,h+1/+ 1))a
i=0,1,....,n—1, zp,21,...,2, € X}.

Lemma 4.4.13. oo =W
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Lemma 4.4.14. |W; | = |W}3|.
Proof. From the definition of R,, we have
W) ={wp, ... wh, | Wi, = Pew;e,i =0,1,...,n, woc...wn. € WS, }.
Since P, is nonsingular, we obtain |W?_| = [W/3|. O
Lemma 4.4.15. |W;_; . | > [Wy g7

Proof. For any element wy, ...w),, in W/$

N nc nc?

denoting the first r.y; rows
respectively, 1 = 0,1,...,n,
from the definition of R;, we have woct1.. . Wn—1.c+1 € W54 .1y, where

and the last m — 7., rows of w/_ by w* and w®

)

the first 741 rows and the last m — r4q rows of w; .41 are wi¥ and wg?H o

respectively, ¢ = 0,1,...,n — 1. Since the number of elements in W/s, which
have the same value of wg ... wji* | . wi,...w’, is at most ¢™ (the number
of values of w, wyt), we have [Ws_ ., 1| > [W/5|g~™. Using Lemma 4.4.14,

it immediately follows that [W;_; ..q| > [Wy. lg™™. O
Lemma 4.4.16. |Wy_; | > |[WS |¢77™, for any j, 1 <j<n,e—c+1.

Proof. We prove the lemma by induction on j. Basis : j = 1. The result
holds from Lemma 4.4.15. Induction step : suppose that [W;_; 1 i 1] >
[W.lg~U=D™. From Lemma 4.4.15, we have [W;_; .| = Wi iy .y

q~™. It follows from induction hypothesis that [Wy;_, ..,| > [W7 [¢7/™. O

Lemma 4.4.17. (a) If M is weakly invertible with delay T, then for any j,
1<j<n,e+1,
W3yl > gxtnrenam,

(b) If M is a weak inverse with delay T and a state s of M T-matches
some state, then for any j, 1 <j<n,e+1,

Wil = g7,

Proof. From Lemma 4.4.16 for ¢ = 0, we have [W?_, ;| > |[Wylg~7™ for
any j, 1 < j < n,e + 1. Using Lemma 4.4.13, it follows that [Wy_, .| >
[W2lg—™. In the case where M is weakly invertible with delay 7, using
Lemma 4.4.12 (a), we have [W;_, ;| > ¢/x(n=7Hg=im = glx(n=rtl)=im 15
the case where M is a weak inverse with delay 7, using Lemma 4.4.12 (b),
we have [W3_, .| > gD gmim = gmn=T—j+1) O

Lemma 4.4.18. Assume that the R, Ry transformation sequence (4.49) is
elementary and (t,e) circular. Then we have ri;1 = ripo = -+ = Tey1 and
Wit = Wieq1, ¢ = 0, where

Wie = [Boc, - - -, Bre|$!lh (u, @, 1), i=0,1,... (4.53)
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Proof. Since (4.49) is elementary, we have ri11 < ripa < - < TFeyl.
Since (4.49) is (¢,e) circular, we have Bjet1 = Bji, j = 0,1,...,h. Thus
. . N Ral[P: .
there exists an elementary R, Rp transformation eqei(¢) ol eqy (1),
N R .
eq, (%) blregal €qet2(i). It follows that r.y1 < ryq1. Therefore, ripq =
Tt42 =+ = Tet1. From the definition, using Bj .41 = Bj: for j =0,1,...,h,
we have wi = w; 41 for ¢ > 0. O

Let (4.49) be an elementary and (t,e) circular R, R} transformation se-
quence. Taking

Piice—t+1)+5 =Prtj Ttrc(e—t+1)+j+1 =Tt+j+1,¢=1,2,..., j=0,1,... ;e = 1,
it is evident that for any n > e,

R, [Pc] / (Z) Rb[T:}rl]

eqe(i) =" eqc(i), eq. eget1(i), ¢=0,1,...,m (4.54)

is an elementary R, R} transformation sequence. Such an R, R, transforma-
tion sequence (4.54) is called a natural expansion of (4.49).

Let w;. be defined by (4.53) for any nonnegative integer c¢. From the
definition of the natural expansion, it is easy to see that w;;ice—t41)45 =
Wiy, forany c > 1and any j, 0 < j<e—t.

Lemma 4.4.19. Assume that the R, Ry transformation sequence (4.49)
is elementary and (t,e) circular. Then for any ¢,1 < ¢ < e —t+ 1, there
exist a single-valued mapping f. from (GF(q)"+1)¢ to GF(q)™ "+! and an
(m —7¢41) X (m — re1) nonsingular matriz P, over GF(q) such that

u _ u
Wi tye = Wity

w?,t-‘rc = fc(wzy—&-l,t? s 7wzy+c,t) + Pcwg—i-c,t? (4.55)

i=0,1,...,

where wy . ; and wz’tﬂ- are the first riy1 rows and the last m —ry41 rows of
Wy 14+, which is defined by (4.53), respectively.

Proof. We prove the result for the case of r; = ryy1. First at all, we have
the following proposition: for any j, 0 < j <e—t,

u _u
Wit4j+1 = Wit4j>
b _ p! u 17" b
Witgj1 = Do Wit e + Pr Wity e4g (4.56)
i=0,1,...

where
E. .0
Pt+j = |: ' o
t+5 Lty
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in (4.49). In fact, denoting
U};C = [B(/)ca R B;’LC] W(u,x, i), i=0,1,...,

from Lemma 4.4.18 and the definitions of R, and R;, we have

u
Wy 44 ]

!
i,t+] t+5 %t +g / wu 7 b
Pt+jwi,t+j + Pt+jwi,t+j

and

Wi, t+j+1 =

Wit
Pt/+jw?+1,t+j + Pt/zrjw?+1,t+j

Thus (4.56) holds. We now prove the lemma by induction on ¢. Basis : ¢ = 1.
From (4.56) with 7 = 0, (4.55) holds in the case of ¢ = 1. Induction step :

suppose that (4.55) holds in the case of ¢ and 1 < ¢ < e —¢. From (4.56) with
J = ¢ and the induction hypothesis, we have

u _ u — u
Wi ttet1 = Wi tte = Wiy

b _ pl u 17 b
Wi ttet+1 = Pt+cwi+1,t+c + Pt+cwi+1,t+c

_ ! u 11 u u D b
=P/ owit + Pl (fe(wiia g, witiiey) + Pewiigiey)-
Taking
u u _ / u /! u U
fc+1(wi+1,tv e awi+(c+1),t) = Pt+cwi+1,t + Pt+cfc(wi+2,ta e 7wi+1+c,t)
and

PC+1 = Ptlf‘rcpw
it follows that

U o
Wi t4(c+1) = Wits

b _ u u D b
Wi t4(c+1) = Jerr(Wihy g 7wi+(c+1),t) + Peq 1wy (cq1) ¢

Thus (4.55) holds in the case of ¢+ 1.

Below we prove the lemma for the case of r; < ryy1. Take a natural
expansion of (4.49), say (4.54), with n = e+ (e —t 4+ 1). Denote ¢/ = n and
t' = e+ 1. Clearly, (4.54) is elementary and (t',e’) circular. Noticing that
(4.54) is also (t,€’) circular, from Lemma 4.4.18, we have r;41 = ryqq for
any i, t < i < €. It follows that r, = rp4q. Since the lemma for the case
of 1y = 741 Is true, replacing (4.49) by (4.54), we obtain that for any c,
1< ce< e =t +1, there exist a single-valued mapping f. from (GF(g)"'+1)¢
to GF(q)™ "+t and an (m —ry 1) X (m—17y41) nonsingular matrix P, over
GF(q) such that
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b 5 b .
Wiy 1o = Wig, Wiy = fe(Wiiy ..., wzﬂrc’t,) + Pewi ey, 1=0,1,...
Notice that ¢/ —t'+1=e—t+1, ri41 = ry41, and w; 14 = w; v for any
j,0<j<e—t+1. Thusforanyc, 1 <c<e—t+1, f.is a single-valued
mapping from (GF(q)"+1)¢ to GF(q)™ "+, P.is an (m—7¢41) X (m—7¢11)
nonsingular matrix over GF(q), and

b 5 b .
w?,tJrc = wyy, Wi e = fC(w?Jrl,m e 7w'?+c,t) + PCwi+c,t7 1=0,1,...
That is, (4.55) holds. O
Lemma 4.4.20. Let (4.49) be an elementary and (t,e) circular R, Rp
transformation sequence. Then there exist a single-valued mapping f from
(GF(q)m 1)t to GF(q)™ "+ and an (m — r41) X (M — rey1) nonsin-

gular matriz P over GF(q) such that
w$+e—t+1,t = f(w?+1,tv e 7w?+e—t+1,t) + owt, 1=0,1,...,
where wiy and w?t are the first ri11 rows and the last m — vy rows of wjt

which is defined by (4.53), respectively.

Proof. From Lemma 4.4.18, w;z = w; ¢4+1,? = 0,1,... Using Lemma 4.4.19
with ¢ = e — t + 1, there exist a single-valued mapping fe_;y1 from
(GF(q)m+1)e 1 to GF(q)™ "+ and an (m—7y11) X (m—7;41) nonsingular
matrix P,_syq over GF(q) such that

b _ b _ u u D b
Wit =W e41 _fe—t+1(wi+l7t7 s 7wi+e—t+1,t) + Pe—t+1wi+e—t+1,ta
i=0,1,...
It follows that
b _ p—1 u u p—1 b
Witey114=—Popiifemtr1(Wig s Wi e 1) + Py wi,
1=0,1,... a

Lemma 4.4.21. Assume that the R, Ry transformation sequence (4.49) is
elementary and (t,e) circular. Let (4.54) be a natural expansion of (4.49).
Then we have |[W3,| < gm(etDtrisa(n=e),

Proof. Assume that w;. is defined by (4.53) for any nonnegative integer
c. Then w; ¢4 c(e—t41)+5 = Wit4j, for any ¢ > 1 and any j, 0 < j < e —t.
Denote the first 411 rows and the last m — r; 1 rows of w;; by w;‘j and wfj7
respectively. From Lemma 4.4.20, wi? te—t+1,¢ can be uniquely determined by

wh and wly | 4, .o w4y, fori =t t+1,...,n—(e—t+1). It follows that
w2+1,t wi’lyt can be uniquely determined by w?,, ..., w?, and Wy gy e
wy,. Since the number of values of wot ... wer w¢yy; ... wy, is at most

(™) H(q"+*)" ¢, we have

‘W;t| < (qm)e+1(qrt+1)n,—e — qm(e+1)+m+1(n—e)- 0O
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Theorem 4.4.4. Assume that the R, Ry transformation sequence (4.49) is
elementary and (t,e) circular.

(a) If M is weakly invertible, then lx < Tey1.

(b) If M is a weak inverse, then r.y1 = m.

Proof. (a) Assume that M is weakly invertible with delay 7. From
Lemma 4.4.17 (a) (with values ¢, n + ¢ for parameters j, n, respectively)
and Lemma 4.4.21, we have

qlx(n+t—7+1)—tm < |ert| < qm(e+1)+rt+1(n—e)’

whenever n is large enough. It follows that

qn(lerprl) g qu(T7t71)+m(t+e+1)fm+1e’
whenever n is large enough. We prove l[x < ry+1 by reduction to absurdity.
Suppose to the contrary that r.11 < lx. Then we have

0o = lim qn(lx—rt+1) < qlx(‘r—t—l)+m(t+e+1)—7‘t+1e
n—oo = ’
This is a contradiction. We conclude 1411 > lx. From Lemma 4.4.18, ro41 =
r¢11. It follows that 7.1 > lx.
(b) Assume that M is a weak inverse with delay 7. From Lemma 4.4.17 (b)
(with values t, n +t for parameters j, n, respectively) and Lemma 4.4.21, we

have
qm(n—7'+1) < |W7it| < qm(e+1)+n+1(n—e)7

whenever n is large enough. It follows that

qn(m—rt_H) < qm('r+e)—7",,_*_1e7

whenever n is large enough. We prove m < ryy1 by reduction to absurdity.
Suppose to the contrary that 7,11 < m. Then we have
0o = lim qn(mfrprl) < qm(‘r+e)7rt+1e.
n—oo =

This is a contradiction. We conclude 7,41 > m. From m > rey1 = 1441, it
follows that rey; = m. O

Corollary 4.4.6. Assume that the elementary R, Ry transformation se-
quence (4.49) is (t,e) circular.

(a) If M is invertible, then lx < resq;

(b) If M is an inverse, then rei 1 = m.
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Theorem 4.4.5. (a) If m = Ix and M is invertible or weakly invertible,
then there exists an elementary and terminating R, Ry transformation se-
quence of which eqo(i) is (4.50).

(b) If M is an inverse or a weak inverse, then there exists an elementary
and terminating R, Ry transformation sequence of which eqo (i) is (4.50).

Proof. Clearly, there exists an elementary and circular R, R transforma-
tion sequence (4.49) of which eqo(4) is (4.50). Since 7e+1 < m, from Corol-
lary 4.4.6 or Theorem 4.4.4, we have m = 7r.41. It follows that (4.49) is
terminating. a

Historical Notes

References [107, 108] give a feasible inversion method using linear R, Rp
transformation for some kind of finite automata, and [108] derives a relation
between linear R, R} transformation sequences. Section 4.1 is based on [108]
but extends the scope of objects. Section 4.2 is based on [108] (but extends
the scope of objects) and [107], where Lemma 4.2.2 is enhanced according
to Lemmas 5.5 and 5.6 in [135]. From the viewpoint of automata, [83] pro-
poses an inversion method by reduced echelon matrix and [28] proposes an
inversion method by canonical diagonal matrix polynomial; these methods
are feasible for some kind of finite automata. The equivalence between the
inversion method by reduced echelon matrix and the linear R, R; transfor-
mation method is given in [108, 135, 137]. Section 4.3 is based on [108]. The
equivalence between the inversion method by canonical diagonal matrix poly-
nomial and the linear R, R; transformation method is given in [132], and
Sect. 4.4 is based on [132, 121].
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Summary.

In Chaps. 1 and 3, we have adopted two methods, the state tree method
and the R, Ry transformation method, to deal with the structure problem.
The former is suitable for general finite automata but not easy to manip-
ulate for large parameters. Contrarily, the latter is easy to manipulate but
only suitable for very special finite automata — linear or quasi-linear ones.
For nonlinear finite automata, the investigation meets with difficulties.

A feedforward invertible finite automaton is more complex in structure
as compared with its feedforward inverse. We first explore the structure
problem for the simple. This chapter presents two approaches to the inves-
tigation for small delay cases. A decision criterion for feedforward inverse
finite automata with delay 7 is proven and used to derive an explicit ex-
pression for ones of delay 0 which lays a foundation of a canonical form for
one key cryptosystems in Chap. 8. In another approach based on mutual
invertibility of finite automata, we give an explicit expression for feed-
forward inverse finite automata with delay 1 and for binary feedforward
inverse finite automata with delay 2.

Key words: semi-input-memory finite automata, feedforward inverse,
weakly invertible

In Chaps. 1 and 3, we have adopted two methods, the state tree method
and the R, Ry transformation method, to deal with the structure problem.
The former is suitable for general finite automata but not easy to manipulate
for large parameters. Contrarily, the latter is easy to manipulate but only
suitable for very special finite automata — linear or quasi-linear ones over
finite fields. In general, for nonlinear finite automata, the investigation meets
up with difficulties for lack of mathematical tools.

Although semi-input-memory finite automata are nonlinear, they have
simpler structure as compared with general finite automata. So a feedforward
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invertible finite automaton is more complex in structure as compared with its
feedforward inverse. We first explore the structure problem for the simple. In
this chapter, we present two approaches to the investigation for small delay
cases. A decision criterion for feedforward inverse finite automata with delay
T is proven and used to derive an explicit expression for ones of delay 0 which
lays a foundation of a canonical form for one key cryptosystems in Chap. 8.
In another approach based on mutual invertibility of finite automata, we give
an explicit expression for feedforward inverse finite automata with delay 1
and for binary feedforward inverse finite automata with delay 2.

5.1 A Decision Criterion

Let M' =(Y, X, 5", §, \) be a c-order semi-input-memory finite automaton
SIM(M,, f), where S’ =Y° x Sy, M, = (Y, Sa, 0a, Aa) is an autonomous
finite automaton, and f is a single-valued mapping from Y°+! x X\, (S,) to
X. The restriction of f on a subset of Y1 x \,(S,) is still denoted by f.

Let uy,...,u, be n(> 1) different states of M, = (Y, Sa,dq, Aa). If
Oa(ui) = tir1, i =1,....,n—1, §q(un) = w1, {u1,...,uy} is called a cycle of
M,.

M, = (Y,, 54,04, Aa) is said to be cyclic , if S, is a cycle of M,. M, is
said to be strongly cyclic , if Y, = Sq, Aa(Sa) = 84 holds for any s, € S, and
M, is cyclic.

Theorem 5.1.1. M’ is a feedforward inverse with delay T if and only if
there exists a finite subautomaton M, of M, such that M, is cyclic and
SIM(M,, f) is a feedforward inverse with delay 7.

Proof. Since STM(M,, f) is a finite subautomaton of M’, the if part is
evident. To prove the only if part, suppose that M’ is a feedforward inverse
with delay 7. Then there exists a finite automaton M = (X,Y, S, 0, A) such
that M’ is a weak inverse with delay 7 of M. Let s be in S. Then there
exists 8 = (y_1,...,y_¢,t) in S’ such that s’ 7-matches s. Let 60(t) = ¢
and §.TH(t) = 6,(85(t)) for any i > 0. Consider the infinite sequence ¢,
8a(t), 62(t), ... Since S, is finite, some states occur repetitively in the se-
quence. Let the earliest repetitive states be 62(¢t) and 62+7(t). Take S, =
{62(t),68FL(t), ..., 687 1(¢)}. Clearly, S, is closed in M,. Thus there exists
a finite subautomaton M, of M, such that the state alphabet of M, is S,.
On the other hand, let S = {d(s,a) | a € X*,|a| > p}. It is evident that S
is closed with respect to X in M. Thus there exists a finite subautomaton
M of M such that the input, output and state alphabets of M are X, Y
and S, respectively. We prove STM(M,, f) is a weak inverse with delay 7
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of M. Let 5 be in S. Then there exists o in X* such that |a| > p and 5 =
0(s,a). Let A(s,a) = 8 = yo...yk—1, where k = |a|. Clearly, ¢'(s',5) =
(Yk—1,- -y Yh—c,0F(t)). From k > p, 6k(¢) is in S,. Tt follows that &'(s’, ) is
also a state of the finite subautomaton STM(M,, f) of M'. Since the state s’
of M’ 7-matches the state s of M and 8 = \(s, a), the state §'(s’, 5) of M’ 7-
matches the state §(s, a) (= 5) of M. Thus the state &’ (s, ) of STM(M,, f)
r-matches the state 5 of M. We conclude that STM(M,, f) is a feedforward
inverse with delay 7 of M. Therefore, SIM(M,, f) is a weak inverse with
delay 7. a

For any t in S,, we use f; to denote a single-valued mapping from Y¢t!

to X, defined by fi(ye, .- %0) = f(We,- -, Y0, Xalt)), Yo,--.,ye € Y. For any
7,0<7< ¢, and any t € S, let

FJS:):{ZUO~-~xcy0"'y0|x0a---7xceXayOa"'7yc EYaft(ZUC7--~7yO) :xC—T}'

Algorithm of F\”) t € S,
Input : An autonomous finite automaton M, = (Y,,Sq,da, Aa), a single-
valued mapping f from Y1 x \,(S,) to X.

Output : Sets Ft(T)7 te S,.

Procedure :

1. Take Fy = F{/), t € S,.

2. For each t € S,, each z; € X, each y; € Y, i=1,...,c, if there exists
ZTet1 € X such that x1 ... Zeqr191 -+ - Yer1 € Fi holds for any ye41 € Y,
then delete elements xq...Zcyo ... Ye, To € X, yo € Y from Fy,,, for
any £ € 8,1 (t) (= {to € S | Salto) = £}).

3. Repeat Step 2 until no element can be deleted.

4. Output Ft(T) = F, t € S,, and stop.

From the algorithm of Ft(T),t € S,, it is easy to show the following lemma.

Lemma 5.1.1. (a) Ft(T) C FJE:), teS,.

(b) If t = 6,(u) and F” = @, then F\”) = @.

(¢c) For anyt € Sy, any xo...TcYo---Ye € Ft(T) and any x.+1 € X, there
exists Yyeyr1 €Y such that 1 ... Tep1Y1 -« - Yer1 1S 0 Fy), where v = §,4(t).

Theorem 5.1.2. M’ is a feedforward inverse with delay T if and only if
there exists t in S, such that Ft(T) # 2.

Proof. only if : Suppose that M’ is a feedforward inverse with delay 7.
Then there exists a finite automaton M = (XY, 5,4, A) such that M’ is a
weak inverse with delay 7 of M. Let s be a state of M. Then there exists
a state s’ = (y_1,...,Y—c, t) of M’ such that s’ 7-matches s. Thus for any
Zo,x1,...1in X and any yo, y1,...in Y, if yoy1 ... = A(s,zox1 .. .), then there
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exist _,,...,x_1 in X such that X (s',yoy1...) = ¢—r ... 2_12ox1 ... From
the construction of M’, it is easy to see that x;_, = f(yi,- .., Yi—t, Aa(0L(2))),
i=20,1,... Thusforany i > ¢, Tj_c ... Til¥i—c ... y; iSin Ffz , where u = 0% (¢).
For any u € {0.(t),i = c,c+1,...},define F, = {zi—¢c.. . TlYi—c...¥i | 1 2 ¢,
Ti ey, .o 1 € X, u = 65(t), there exist xg, ..., 7;_._1 € X such that
AO(8,20 .. Tie 1)y Ti—c---Ti) = Yi—e-.-Y; +. Then we have F! C F]Ej)
for any u € {6 (t),i = ¢,c+ 1,...}. We prove the proposition: for any u €
{6i(t),i = c,e+1,...}, any ag...acby ...b. € F!, and any a.y1 € X, there
exists ber1 € Y such that aj...ac41b1... bey1 € F), where v = §,(u).
In fact, from the definition of F, there exist i > ¢, zg,...,z; € X, and
Yo, ---5Yi €Y such that A(S,l‘oﬂ?z) =Yo---Yi, Ti—c--TilYi—c.--Yi =
ag...achy...be, and u = 0 (t). Let bey1 = AO(s,20...2;),act1). Clearly,
A8, 20 .. Ti Qes1) = Yo - - - Yiber1. Since v = §,(u) = 6571 (1), from the defin-
ition of F), we have &;_c41 ... ZiGct1Yi—ct1 - - - Yiber1 = @1 ... Qey1D1 .. bet1
€ F).

Since {d%(t),i = c,c + 1,...} is finite, there exist different elements
Uty -y Uy in {00(¢),i = c,c+1,...} such that 6,(u;) = uiy1,i=1,...,n—1
and 64 (upn) = uy. Since F,, C F}:) holds for any u € {uq,...,u,}, using the
above proposition, by induction on steps of the algorithm of Ft(T), teS,, it
is easy to prove that F! C F{) holds for any u € {uq,...,u,}. For any u €
{ui,...,u,}, from F, # @, we have F + &.

if : Suppose that Ft(T) # & for some t in S,. From Lemma 5.1.1 (b),
it is easy to see that £ # @ for any w in {6!(t),i = 0,1,...}. Since
{8i(t),i = 0,1,...} is finite, there exist different elements wui,...,u, in
{8i(t),i =0,1,...} such that 6, (u;) = uy1,5=1,...,n—1 and &4 (up) = us.
We construct M = (XY, S, 4, \) as follows. Take S = {(xg...Zc¥yo - - Ye, u) |
To.. . TelYo .- Yo € FuT)7 U = Up,...,Up} Let (xo...ZeYo ... Ye,u) be in S.
Then g ... 2eYo ... ye € Fy') and u € {u1,...,un}. From Lemma 5.1.1 (c),
for any x.41 € X, there exists y.41 € Y suchthat z1 ... 191 .. - Yer1 € Fy),
where v = d,(u). Clearly, v € {uy,...,u,}. It follows that (z1...Zcp191 ...
Yet1,v) is in S. Choose arbitrarily such a y.i1, and define 6({zg...z:y0 .. .
Yoo W, Tet1) = (T1.o Teg1¥1---Yetr1,0a(w)) and A({(To...ZeYo - - Yo, u),
Tet1) = Yer1. We prove that M’ is a weak inverse with delay 7 of M. For any
state s = (¥ _c—1... -1 Y—eo1 ---Y—1,u) Of M, let ' = (y_1,...,Y—c, 0a(u))
which is a state of M'. For any xg,x1,... in X, let A(s,zoz1...) = Yoy1 - - -
where yo,¥y1,... € Y. From the construction of M, it is easy to see that
§(8,20 ... 2;) = (Time o TYi—e - Yi, 057 (u)), i = 0,1, ... Therefore, for any
1 >0, we have &;_¢...T¥Yi_c...Y; € F57)7 where v = 61 (u). From FIET)
- F;:), it follows that f(yi, .-+ Yi—es Aa(65T1(w))) = @7, @ = 0,1,...
Let 0'(s',yo..-yi—1) = sk, i = 0,1,... Then s, = (yi_1, ..., Yi—e, 0.7 (u)),
i=0,1,... Thus N(sk,y:) = f(Wi,- - Yi—es Aa (65T (w))) = @47, i = 0,1, ..
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It follows that A (s',yoy1...) = 7 ...2_120271 ... Thus s’ T-matches s. We
conclude that M’ is a weak inverse with delay 7 of M. Therefore, M’ is a
feedforward inverse with delay 7. O

Corollary 5.1.1. If there exists a cycle C of M, such that for any u € C
and any y—1,..,Y—c € Y, |f(Y,y_1,..,y—c, \a(w))| = |X]| holds, then for
any 7,0 < 7 < ¢, M’ is a feedforward inverse with delay T.

Proof. 1t is easy to verify that for any u € C, any ¢ ...2cyo ... yc € F]E:)
and any z.41 € X, there exists y.+1 € Y such that fgycﬂ, ces Y1, Aa(0a(w))) =
, where v = J,(u) € C.

For any u € C, from the algorithm of Ft(T),t € S,, we have F\”) = F}:) £
@. From Theorem 5.1.2, M’ is a feedforward inverse with delay 7. O

Te_ri1. It follows that T1...Ter1y1 ... Yer1 € F}:

5.2 Delay Free

Lemma 5.2.1. Let M = (X, Y, S, 6, \), M =, X, S, &, N) and
M'" = (Y, X, 5, §, N') be finite automata, and s' € S'. Assume that
[N (s, Y)| < |X]| and that N'(s”,y) = X'(s”,y) holds for any s € S’ \ {s'}
and any y € Y. If M’ is a weak inverse with delay 0 of M, then M" is a
weak inverse with delay 0 of M.

Proof. Suppose that M’ is a weak inverse with delay 0 of M. Let s
be a state of M. Then there exists a state ¢(s) of M’ such that ¢(s) 0-
matches s. Clearly, ¢(s) is also a state of M”. We prove that the state
©(s) of M” O-matches the state s of M. For any zg, 21, ... € X, let
Yoy1 --. = A(s,xox1...), where yo, y1, ... € Y. We prove by reduction to
absurdity a proposition: ¢'(¢(s),yo - ..y;) # s holds for j = —1,0,1,... Sup-
pose to the contrary that ¢’(¢(s),yo...y;) = s holds for some j > —1.
From yoyi1 ...y; = A(s,zox1...x;), for any z € X there exists y, € Y such
that yoy1 ... Yy = A(s,zoz1 ... 2 2). Since the state ¢(s) of M’ 0-matches
the state s of M, we have X (¢(s),%oy1-..Yj¥z) = Zox1 ...z z. It follows
that X(s',yz) = N (6" (¢(8),Yoy1--.vj),Yz) = x. Since x may take any el-
ement in X, we have |\ (s',Y)| = |X|. This contradicts the assumption of
the theorem. Thus the proposition holds. Since X (s”,y) = N’(s”,y) holds
for any s’ € S\ {s'} and y € Y, using the above proposition, we have
N((8),yoy1 --.) = N (p(s),yoy1 - - .). Since X' (o(s),%oy1 -..) = ToT1 ..., We
have A (o(s),yoy1 -..) = xoxy ... Thus the state ¢(s) of M" 0-matches the
state s of M. Therefore, M" is a weak inverse with delay 0 of M. O

Theorem 5.2.1. M is a feedforward invertible with delay 0 if and only if
there exists STM(M,, f) such that STM(M,, f) is a weak inverse with delay
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0of M and |f(Y,y—1,..-, Y—e, Ma(t))| = | X| holds for any state t of M, and
any Y—1,.--,Y—c in Y.

Proof. The if part is trivial. The only if part can be obtained by applying
repeatedly Lemma 5.2.1. a

Let M’ = (Y, X,5,6,N) be a c-order semi-input-memory finite au-
tomaton SIM(M,, f), where 8" = Y x S,, M, = (Y4,S4,04,\a) 18
an autonomous finite automaton, and f is a single-valued mapping from
Yt x A\, (S,) to X.

From Corollary 5.1.1, if |f(Y,y_1,...,Y—c, Aa(t))] = |X| holds for any
state ¢t of M, and any y_1,...,y_. in Y, then M’ is a feedforward inverse
with delay 0. Below we prove that the sufficient condition is also necessary
in the case of | X| = |Y.

Lemma 5.2.2. Let M, be cyclic, and |X| = |Y|. If there exist v in S, and
Yoy -y Yee1 Y such that | f(Y,ye—1,---, %0, Xa(v))] < |X|, then M’ is not
a feedforward inverse with delay 0.

Proof. Let v € S, and yo,...,yc.—1 € Y. Suppose that |f(Y,yo,.- ., Ye—1,
Aa(®)] < |X|. Then X \ f(Y,Ye—1,---,Y0,2a(v)) # @ holds and for any
Zoy. vy Te—1 in X, any . in X \ f(Y,¥e—1,.--,¥0, Aa(v)) and any y. in Y,
To...ZeYo - - - Ye 18 Ot in F}S). Therefore, for any xg,...,x._1 in X, any z.
in X\ f(Y,ye-1,---,%0,\(v)) and any y. in Y, xg...ZcY0... Y is not in
F9. Let u € S, with 4, (u) = v. From the algorithm of Ft(T), t € S,, for any
T_1,20y---,2Tc—1 in X and any y_1 in Y, z_120...Tc—1Y—1Y0 - - - Ye—1 1S NOt
in Fz(LO)

We prove a proposition: for any j, 1 < j < ¢, and any p,q € S, if 6,(p) = ¢
and T_j ... TejY—j .. Yoej & Féo) holds for any z_j,...,z.—; in X and any
Y—jso-ry—1in Y, thenx_j_1 ... Te—j1y—j—1.. - Yooj—1 & F,EO) holds for any
T_j_1, ..+ Te—j—1 in X and any y_;_1,...,y—1 in Y. In fact, from the algo-
rithm of Ft(T), t € S,, it is sufficient to prove that for any x_;,...,z.—;—1 in
X and any y_j,...,y—1 in Y, there exists x._; in X such that x_; ... x._;
Yeij oo Yoej1Y & Fq(o) holds for any y in Y. There are two cases to consider.
In the case of |f(Y, Ye—j—1, -+ Y—j, Aa(q))| < | X[, we choose an element in
X\ f(Y Ye—jt1,--Y—j, Ma(q)) as @e—j. Then x_j ... Zejy—j .. . Ye—j_1y &
FJES) holds for any y in Y. Therefore, x_; ... zq—;y— j Ye—j1Y & F(O) holds
for any y in Y. In the case of | f(Y, Ye—j—1,- .-, Y5, ( )| = |X|, from | X| =
|Y], it is easy to see that for any x in X there exists uniquely y in Y such
that f(y,Ye—j—1,---,Y—j,Aa(q)) = x. Let z.—; = f(yc,j,...,y jsAa(Q))-
Then for any y in Y \ {y.—;}, we have f(y,Ye—j—1,---,Y—j, Aa(q)) F# Tce—j.
Thus z_; ... TcjyY—j .. Yoj1Y & F}S) holds for any y in Y\ {yc—,}. There-

fore, x ;... Tejy—j .. Yoojo1y & Fq(o) holds for any y in Y\ {y.—;}. Since
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T jooiTeejY—j-o-Yooj & Fq(o) holds, z_; .. . Te—jY—j .. Yej1Y & Fq(o) holds
for any y in Y.

We have proven in the first paragraph of the proof that z_1 g ... z.—1
Y1 Y0 -+ Yeu1 & F,EO) holds for any x_1, zg, ..., Tc—1 in X and any y_1 in
Y. Using the above proposition ¢ times, we have that there exists w € S,
such that z_. 1 ... 2 1y_c1...Y_1 & Fé,o) holds for any x_1,...,Z_._1 in
X and any y_1,...,y_—1 in Y. It follows that F&O) = @ holds. Since M, is
cyclic, from Lemma 5.1.1 (b), we have Ft(O = @ holds for any ¢t € S,. From
Theorem 5.1.2, M’ is not a feedforward inverse with delay 0. O

Theorem 5.2.2. If|X| = Y|, then M’ is a feedforward inverse with delay 0
if and only if there exists a cycle C of M, such that | f(Y,y—1,...,Y—c, Aa(1))]
= |X| holds for any u € C and any y_1,...,y—. € Y.

Proof. From Corollary 5.1.1, the if part holds.

To prove the only if part, suppose that M’ is a feedforward inverse
with delay 0. From Theorem 5.1.1, there exists a cycle C' of M, such
that STM(M,, f) is a feedforward inverse with delay 0, where M, =
(Ya, C,d4|cs Aalo). From Lemma 5.2.2, | f(Y,y—1, ..., Y—c, Aa(u))| = | X| holds
for any u € C and any y_1,...,y_. € Y. O

Theorem 5.2.2 can be proven using mutual invertibility (Theorem 2.2.2)
as follows.
It is easy to verify the following proposition.

Proposition 5.2.1. For any finite automaton M = (X,Y,S,6,\), M is
weakly invertible with delay 0 if and only if for any state s of M, Ag|x is
an injection from X to Y.

Let M' = (Y, X, 5,8, \) be a c-order semi-input-memory finite automa-
ton STM(M,, f) with | X| = |Y|. From Theorem 5.1.1, M’ is a feedforward
inverse with delay 0 if and only if there exists a finite subautomaton M, of M,
such that M, is cyclic and STM (M,, f) is a feedforward inverse with delay 0.
Since STM(M,, f) is strongly connected, using Theorem 2.2.2, STM(M,, f)
is a feedforward inverse with delay 0 if and only if STM(M,, f) is weakly in-
vertible with delay 0. From | X| = |Y|, using Proposition 5.2.1, STM(M,, f)
is a feedforward inverse with delay 0 if and only if | f (Y, y—1, ..., y—c, Aa(w))| =
| X| holds for any state u of M, and any y_1,...,y_. in Y. Let C be the state
alphabet of M,. Clearly, C is a cycle of M,. Thus M’ is a feedforward inverse
with delay 0 if and only if | f(Y,y—1,...,Y—c, Aa(u))] = |X| holds for any u €
C and any y_1,...,y—. € Y. This completes another proof of Theorem 5.2.2.
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5.3 One Step Delay

Let M = (X,Y,X¢ x S,,0,\) be a c-order semi-input-memory finite au-
tomaton STM(M,, f), where M, = (Y, Sa,da, Aq) Is an autonomous finite
automaton, and f is a single-valued mapping from X+ x \,(S,) to Y.

Lemma 5.3.1. Let M = (X, Y,S, 0, ) be a semi-input-memory finite
automaton STM(M,, f).

(a) M is strongly connected if and only if M, is cyclic.

(b) If M, is cyclic, | X| = |Y| and M is weakly invertible with delay T,
then WM, (| = wry1,m and WX = werpr hold for any s € S.

Proof. (a) It is trivial from definitions.

(b) From (a), M is strongly connected. From Theorem 2.1.3 (f), [W}| =
wy p holds for any s € S. Using Theorem 2.1.3 (c), it immediately follows
that WM, .| = wr41,ar holds. O

Lemma 5.3.2. Let M = (X,Y, 5,6, \) be weakly invertible with delay 1, and
|X| = Y| =q. Let [W}| = wy . Divide q successors of s into blocks such
that 6(s,z;) and 6(s,x;) belong to the same block if and only if A(s,x;) =
A(s,zj). Then the number of blocks is w1 a, each block consists of q/w1,m
different states, the set of the outputs of length 1 on each state in a block has

wy p elements and such q/wiy ar sets for the block constitute a partition of
Y.

Proof. Denote the successors §(s,z), € X of s by s1,...,5, (they are
not necessary to be different from each other). From Theorem 2.1.3 (b),
we have |W1]V§7\ = wi,m, j = 1,...,¢. Divide s1,...,s, into blocks such
that s; = 6(s, ;) and s; = 0(s,x;) belong to the same block if and only if
A(s, ;) = X(s,2;). Since [WPM| = wy 57, the number of blocks is w1 js. From
Theorem 2.1.3 (e), [I)%| = q/w1,a holds for any y € W, Thus each block
consists of ¢/wn a elements. Since M is weakly invertible with delay 1, the
sets of the outputs of length 1 on any two elements in a block are disjoint. It
follows that any two elements in a block are different states. For any block
T, from |W1Mg7| =wi M, j=1,...,q we have |W1]V{| = wip for any t € T
From |T| = q/wy pr and wiin le\,/{/ = & for any different ¢ and ¢’ in T, it
follows that the sets le"@ t € T constitute a partition of Y. O

We use Y{*) to denote the set of all subsets with w elements of Y, that
is, Y(W) = {T|T CY,|T| = w}.

Let ¢ be a single-valued mapping from X to V() and |X| = [Y]. Let ¢
be a uniform mapping from X to {1,...,w}, that is, w is a divisor of |X]|
and [~ 1(j)| = | X|/w for any j, 1 < j < w. If U,cy1(; () =Y holds for



5.3 One Step Delay 161

any j, 1 < j < w, ¢ is called a valid partition of . We use P, to denote
the set of all valid partitions of ¢. Denote n, = |P,|; n, = 0 means no valid
partition of ¢.

We make an order of elements in Y. It leads to an ordering of elements
in each subset of Y. We use m(j,T) to denote the j-th element of 7" in the
ordering.

Lemma 5.3.3. Let M = (X,Y,5,6,\) be a c-order semi-input-memory fi-
nite automaton SIM(M,, f), and M, be strongly cyclic. Let M be weakly
invertible with delay 1, and | X| = |Y|. Then f can be expressed as

f(an LT _1y---3T—c, Sa) = m(wﬂfc,..-xihsa (Io), Pr_c,...,®_2,54 (‘r—l))7

where Vg ., .4 15, € P,

o it 1 ibatony? W Pa_ o s, 15 G single-

valued mapping from X to Y {winm),

Proof. Define ¢, . .o 5.5, (®—1) = A({x_-1,...,2_¢, Sa), X ). From Lemma
5.3.1 (a), M is strongly connected. From Lemma 5.3.1 (b), we have [W}M| =
wy,m forany s € S. Thus forany z_.,...,z_2 € X and s, € So, Y2_.....2 0,54
is a single-valued mapping from X to Y{¥1.M) For any state s = (x_1,...,
T_c,Sq) of M, define v, . ,s.(x0) =7, where A(s, ) is the j-th element
of A(s, X). Since [\(s,X)| = [WM| = w1, ¢o_......o_, s, i a single-valued

mapping from X to {1,...,wy ax}. Noticing that o' (j) = I}

Y
when the j-th element of WlMS is y;, from Theorem 2.1.3 (g), we have
|w;}cy~~~7w71)3a(j)| = |I;\j475 = q/w1,m. Therefore, ¥, . . s, is uniform.

From the definitions, it is easy to verify that

f((Eo, L1y yT—gc, Sa) = m("/}x,c,‘..,z,l,sa (1’0), Pr_e,...,x_2,54 (1'71))

To prove ¥g_., .o i,s. € P,

P otrt 1 5a(sa)? take arbitrarily an integer
Ceq1s 1,80 (5a

4, 1 < j < wi,y. From the definition, z € ¢, . (j) if and only if
A(s,x) = y;, where s = (x_1,...,T_¢, Sq), y; is the j-th element of VVlMS
Since M is weakly invertible with delay 1, A({(zo, -1, - -+, T—ct1, 0a(8a)); X)
and M\({(z(, _1, ..., Toct1, 0a(Sa)), X) are disjoint if A\(s, zg) = A(s, xp) = y;
and zo # 2. That is, 0z, 2 1 6.(s0)(T0) and @ o 5.(s0) (20) are
disjoint, if xo,zq € ¢, ', . | (j) and zo # 2. Since [¢;' o (5)] =
Ié\f’s| = q/WiM, [Po iy z1,00(s0) (@) = w1y and Y] = g, we have

U SDCE_C+1,...,I_1,§E(SQ)(:L.) = Y

B I )

Thus ¥ ...z ,.s, is a valid partition of P oty 1,0a(50)"
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Lemma 5.3.4. Let M = (X,Y,5,0,\) be a c-order semi-input-memory fi-
nite automaton SIM(M,, f), M, be strongly cyclic, and | X| = |Y|. If f can
be expressed as

f(x()a LT —1y---,T—c, Sa) = mwz,c,“.,xfl,sa (x()), Pr_cys®_2,8q (.13_1))7

where ¢$—m~--,$—178a € Ptﬂz,cﬂ s _1,0q(sa)’

valued mapping from X to Y W) then M is weakly invertible with delay 1

and Qg ...z 5. 15 0 single-

and wi p = w.

Proof. For any state s = (x_1,...,%_c, Sq) of M, any z¢,x1, 2(, 2] € X,
let yoy1 = A(s, zox1) and yiy; = A(s, zpz}), where yo, y1,90, y5 € Y. Suppose
that yoy1 = yyi. To prove that M is weakly invertible with delay 1, it is
sufficient to prove xg = . Suppose to the contrary that zg # xf. Since
Yo = Yj, we have f(xo,x_1,...,2_¢,84) = f(x(,T—1,...,Z_¢, Sq). Therefore,
the valuesof ¥, o 45, (x0) and ¥y, . . o , s, (x() are the same; we denote
the value by j. On the other hand, since ©,__ .. »_, s, is a valid partition of

P gp1set—1,0a(sa)r WE have

U ‘px,c+1,...,x,1,éa(sa)(x) =Y.

S )

From |¢;}C,H.,z,1,sa(‘j)| = Q/w7 |§01_C+1 ..... 1_1,5a(sa,)(x)| = w and ‘Y| = q, it
follows that v, ., ..o 1.5.(sa) (2), x ranging over elements in ¢;}c,...,m71,sa (),
constitute a partition of Y. Since wo # 4, Vo . ... 2 1.64(s.)(T0) and

O irrm1,6a(sa) (T0) are disjoint. It follows that

m(wz—c+1yuwzflaxﬂyéa(sa) (1‘1), 905177C+1,~~,I71,5a(8a)(xo))

F MWy w i Sa(s0) (T Pa_opr w180 (50) (20))-

Therefore,

f(wlax(% L1y 7mfc+175a(sa)) 7& f(iCll,fE{), T 1y 7xfc+175a(sa))u

that is, y1 # y{. This contradicts yoy1 = yy;. Thus the hypothesis zo # =
does not hold. We conclude that 2y = x},.

From the definition of the valid partition, it is easy to see that for
any state s = (x_1,...,Z_¢, Sq) of M, the number of the elements in
f(X,x_1,...,2_¢, 8q) is w, that is, |A(s, X)| = w. From Lemma 5.3.1 (a), M
is strongly connected. Using Lemma 5.3.1 (b), we have wy pr = |A\(s, X)| =
w. O

Theorem 5.3.1. Let M = (X,Y,S,4,\) be a c-order semi-input-memory
finite automaton STM(M,, f), M, = (Y4, Sa,0a, Aa) be strongly cyclic, and
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|X| = |Y]|. Then M is weakly invertible with delay 1 if and only if there exist
single-valued mappings ¢z ... z_,.s, from X to Y gz o€ X, s, €

Sa such that (a) for any x—,...,v—9 € X and any sq € Sa, Pp, . . 18
non-empty, and (b) for any x_.,...,x_1 € X and any s, € S,, there exists
Vw150 € Psam_cﬂ,.,.,z_l,aa(sa) such that

f(IOa x—17 e ,l'_c, Sa) = m(,(/)w—cy~“7w7175a (370), sz,c,.“,w,g,sa ('T—l)) (51)

holds for any xo € X. Moreover, whenever the above condition holds, w in
the condition is equal to wy .

Proof. only if : from Lemma 5.3.3.
if and w = wq pr : from Lemma 5.3.4. O

Remark In the case of wyy = 1, in the condition (b), we have
Yo o..x 1.5, (o) = 1. Therefore, the equation (5.1) can be simplified into

f(l'(),l'fl, oy T—g, Sa) = Pr_(,.0sT_2,5q (l',l).

Meanwhile, the condition (a) is equivalent to the condition: for any z_.., ...,
z_9 € X and any S, € Sa, Pz_.,..z_»,s, 15 & surjection (or an injection, or a
bijection).

In the case of w1y = | X, Yo oz 0s,(@—1) =Y and ¥y 2 4., 1S
bijective. It follows that the right-side of the equation (5.1) as a function
of zy defines a bijection from X to Y. In this case, the condition in Theo-
rem 5.3.1 is equivalent to the condition: for any x_.,...,z_; € X and any
Sa € Sa, f(xo,—1,...,%_¢, $q) as a function of xg is a bijection from X to Y.
Therefore, this case degenerates to the case of weakly invertible with delay
0.

To sum up, for the cases of wy pr = 1,|X|, the expressions of semi-input-
memory finite automata with strongly cyclic autonomous finite automata are
very succinct, and their synthesization is clear. Below we present synthesizing
method for the case where wy ps is a proper divisor of |X| other than 1.

Synthesizing method Given |X| = |Y| = ¢, ¢ > 1 and a strongly cyclic
autonomous finite automaton M, = (Y,, S4, 04, Aa). Suppose that w|g and
w # 1,q. Find f, a single-valued mapping from X! x S, to Y, such that
SIM(M,, f) is weakly invertible with delay 1.

Step 1. For any z_.,...,x_o € X and any s, € S, choose arbitrarily a
single-valued mapping ¢, ...z ,s, from X to Y (@) of which a valid par-
tition is existent, that is, there exists a single-valued mapping ¥ from X to
{1,...,w} such that for any j, 1 < j <w, [~1(j)| = |X|/w and U,cy-1(;
Oz o5, (@) = Y. Denote the set of all valid partitions of ¢, __ . & ,.s.
by Py,

;oo _9,8q
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Step 2. For any z_,...,x_1 € X and any s, € S, choose arbitrarily a
valid partition, say ¥._. .. z_,s., 0 P,
Step 3. Define

T_oq1sT_1,0a(sa)’

f(l'(), L1y yT—gc, Sa) = m(wm,c,...,x,l,sa (:C[))a Pr_e,....x_2,54 (.’1771))

for x_.,...,z1,20 € X, s4 € S,, where m(j,T) denotes the j-th element in
T. (The order of elements of 7' C Y is naturally induced by a given order of
elements in Y.)

According to Theorem 5.3.1, each STM(M,, f) obtained by the above
synthesizing method is weakly invertible with delay 1, and all c-order semi-
input-memory finite automata with strongly cyclic autonomous finite au-
tomata which are weakly invertible with delay 1 can be found by the above
synthesizing method.

Ezample 5.3.1. Let X =Y ={0,1,2,3}. Take ¢ > 1, w = 2. Suppose that
M, = (Y,, 54,04, \a) is a strongly cyclic autonomous finite automaton. Find
a single-valued mapping from X! x S, to Y, say f, such that STM(M,, f)
is weakly invertible with delay 1.

According to the synthesizing method mentioned above, for any z_., ...,
z_o € X and any s, € Sy, we define ¢, ., .. () = o(x), where ¢(z) =
{0,1} if x = 0,2, o(x) = {2,3} if x = 1, 3. Define 1); as in Table 5.3.1.

Table 5.3.1 Definition of v;

x 1 (z) P2 (z) p3(z) Ya(z)
0 1 1 2 2
1 1 2 2 1
2 2 2 1 1
3 2 1 1 2

It is easy to verify that 11, 99, 13 and 4 are all valid partitions of . For
any T_c,...,x—1 € X and any s, € S,, take ¥y ..z s, =1 ifz_. =0,
or 9y if x_. # 0. Take an order for elements in Y: the first to the fourth
elements are 0, 1, 2, 3. We then have

{m(wl(xo)?(p(ml))v if x,c:(),
m(a(z0), p(a_1)), if 2_c #0.

f(SL'O,.’l?,l, .. 'axfcasa) =

It follows that
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, fzx_.=0,2_1=0,2, 20=0,1,
ifx_.=0, z_1=0,2, xg =2,3,
ife_.=0,xz_1=13, xr0=0,1,
, ifx_.=0 2_1=13, z0=2,3,
2 40, 21 =0,2, 25 =0,3,
ifx_#0, z_1=0,2, 2o = 1,2,
, fz_.#0, x_1=1,3, 0 =0,3,
, fax_#0, z_1=1,3, zo=1,2.
Theorem 5.3.2. Let M = (X,Y,S5,5,\) be a c-order semi-input-memory

finite automaton SIM(M,, f), M, = (Yo, Sa,da, Aa) be strongly cyclic, and
|X| = |Y|. Then M is a feedforward inverse with delay 1 if and only if

f(x071‘—1a cee ax—wsa) =

0
1
2
3
0
1
2
3

there exist single-valued mappings ©u_ ., ..o 5,505 Tecy---> To2 € X, 84 € 54
from X to Y{®) such that (a) for any x_c,...,x_y € X and any s, € S,
P, ., .. tsnon-empty, and (b) for any x_c,...,x_1 € X and any s, €

Sas there exists Yo_...a_15. € Po, || 4 | suea) Such that (5.1) holds for
any ro € X. Moreover, whenever the above condition holds, w in the condition

is equal to wy pr.

Proof. Since M, i.e. SIM(M,, f), is a semi-input-memory finite automa-
ton and M, is strongly cyclic, M is strongly connected. Using Theorem 2.2.2,
M is a feedforward inverse with delay 1 if and only if M is weakly invertible
with delay 1. From Theorem 5.3.1, the theorem holds. O

It should be pointed out that any STM(M,, f) can be expressed as
SIM(M,, f) such that the output function of M, is the identity function. In
fact, let My, = (Y,, 84,04, Aa). Take My = (Sq, Sa, 0, Aa),where Aq(s4) = 54
for any s, € S,. Take f(xo, _1, ..., T—c, Sa) = f(T0, T 1, ., T_c; Aa(5a)).
Then STM(M,, ) = STM(M,, f).

5.4 Two Step Delay

For any finite automaton M = (X,Y, S,J, \) and any state s of M, if for any
a=xq...2; of length [ + 1 in X*, zy can be uniquely determined by s and
A(s, @), s is called a < [-step state; for [ > 0, if s is a < [-step state and not
a < (I — 1)-step state, s is called an [-step state; if s is a < O-step state, s is
called a 0-step state. Clearly, if M is weakly invertible with delay 7 and s is
a state of M, then s is an [-step state for some [, 0 <1 < 7.

Lemma 5.4.1. Let M = (X,Y,S,0,\) be a finite automaton, and | X| = 2.
Let |W%| = 2. If s is a O-step state and s’ a successor state of s, then s’ is
not a 0-step state.
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Proof. Assume that s is a O-step state and s’ a successor state of s. We
prove by reduction to absurdity that s’ is not a 0-step state. Suppose to the
contrary that s’ is a O-step state. Since s and s’ are O-step states, we have

[A(s, X)| = |A(s’, X)| = 2. Since ¢ is a successor state of s, it is easy to see
that [W3'%| > 3. This contradicts [W3%| = 2. We conclude that s’ is not a
0-step state. a

Lemma 5.4.2. Let M = (X,Y,S,0,\) be a finite automaton, and | X|= 2.
(a) If s in S is a 1-step state and s’ a successor state of s, then s’ is not
a 0-step state.
(b) Let s’ and s” be two different successor states of s € S. If s, s’ and
s are not O-step states and |[W3%| = 2, then [X(s', X)| = [X(s", X)| =1 and
M8, X) # A", X), therefore, s is a 1-step state.

Proof. (a) Assume that s in S is a 1-step state and s’ a successor state of
s. We prove by reduction to absurdity that s’ is not a O-step state. Suppose to
the contrary that s’ is a O-step state. Since s is a 1-step state and s’ a 0-step
state, we have |[A(s, X)| = 1 and |A(s’, X)| = 2. Since s’ is a successor state
of s, it is easy to see that there exist xg, z(, 21,2} € X such that xy # z{, and
A(s, zox1) = A(s, z(z}). This contradicts that s is a 1-step state. We conclude
that s’ is not a 0-step state.

(b) Since s, s’ and s” are not O-step states, we have [A(s, X)| = [A(¢/, X)| =
IA(s”, X)| = 1. From |[W3%| = 2, it follows that A(s', X) # A(s”, X). There-
fore, s is a 1-step state. O

Lemma 5.4.3. Let M = (X,Y,S,0,\) be weakly invertible with delay 2,
and wany = |X| = |Y| = 2. Let So = {s|s € S, [W3L| = wa nr}.

(a) If s’ and s" are two different successor states of s € Sy, then s’ is a
0-step state if and only if s” is a 0-step state.

(b) If s in Sp is a 2-step state and s’ a successor state of s, then s is a
0-step state.

Proof. (a) Assume that s’ and s” are two different successor states of
s € Sg. We prove by reduction to absurdity that s’ is a 0-step state if and
only if s is a 0-step state. Suppose to the contrary that one state in {s, s}
is a O-step state and the other is not. Without loss of generality, suppose
that s’ is a O-step state and s” is not. Then we have |A(s’, X)| = 2 and
[A(s”,X)| = 1. Since s’ and s’ are two different successor states of s and
|wi’| = 2, we have |X(s, X)| = 1. (Otherwise, we obtain |w}’| = 3, which
contradicts s € Sp.) Since s is in Sy, from Theorem 2.1.3 (b), s is in Sy. Thus
we have A(s3, X)UA(s4, X) =Y, where s3 and s4 are two different successors
of . Let 1 in X satisfy A(s’,z1) = A(s”,z1). Since s’ is a 0-step state, such
an x7 is existent. Denote s = §(s’,z1). From A(s3, X) U A(s4,X) =Y, we
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can find 25 and z, in X and s in {s3,s4} such that A(s1,x2) = A(s", 25).
Let xg, xf, ) in X satisfy s’ = d(s,x0), s = d(s,z() and s = §(s”, z)).
Then zy # z{, and A(s, zox122) = A(s,x(xixh). This contradicts that M is
weakly invertible with delay 2. We conclude that s’ is a O-step state if and
only if s is a 0-step state.

(b) Assume that s in Sy is a 2-step state and s’ a successor state of s.
We prove by reduction to absurdity that s’ is a O-step state. Suppose to the
contrary that s’ is not a 0-step state. Then |A(s’, X)| = 1. Since s is a 2-step
state, we have |A(s, X)| = 1. Let s” be a successor state of s other than
s’. From (a), s” is not a O-step state. Thus |[A(s”,X)| = 1. From s € Sy,
we obtain A(s’, X) N A(s”, X) = @. It immediately follows that s is a 1-step
state. This contradicts that s is a 2-step state. We conclude that s’ is a 0-step
state. a

Lemma 5.4.4. Let M = (X,Y,S,6,\) be a weakly invertible finite automa-
ton with delay 2. Let won = |X| = Y] =2 and So = {s|s € S,|[WL| =
w2_’M}.

(a) Let s and s’ be two different successor states of s—1 € Sp. Let $1
and sg be two different successor states of s, and sy and sy be two different
successor states of s'. Assume that s; and sy are not 0-step states and s
is a 0-step state. Then sy and s, are not 0-step states and s’ is a 0-step
state. Moreover, A(s1,X) = A(s2,X) if and only if A(s},X) = A(sh, X); if
A(s1, X) = A(s2, X), then A(s}, X) = A(sh, X) # A(s1,X); and if AM(s1,X) #
A(s2,X), then A(s1,X) = A(s), X) if and only if A(s,z1) # A(s',2}), where
x1 and o} in X satisfy §(s,x1) = s1 and 0(s',x) = 5.

(b) Let s1 and sy be two different successor states of s, and s} and sb be
two different successor states of s', where s and s’ are two different successor
states of a state in Sg. If M(s1,X) = A(s2,X) and |A(s1,X)| = 1, then
[A(s1, X)| =1 and A(s}, X) = A(sh, X) # A(s1, X).

Proof. (a) Since s is a 0-step state, using Lemma 5.4.3 (a), s’ is a O-step
state. Since s is a 0-step state, using Lemma 5.4.1 and Lemma 5.4.2 (a), s_;
is a 2-step state. We prove that s| and s are not O-step states. For any i €
{1,2}, since s’ a successor state of s_; and s} a successor state of s, there
exist x(, 2} € X such that §(s_1,2() = " and §(s_1, zpa}) = s,. Since s_1 is
a 2-step state and s a 0-step state, there exist zg, z1 € X such that z(, # xo
and A(s—1,@oz1) = A(s—1,zpx]). Clearly, §(s—1,z0z1) = s; for some j €
{1,2}. Since M is weakly invertible with delay 2, A(s;, X) N A(s}, X) = @.
It immediately follows that |A(s;, X)| = 1, that is, s} is not a O-step state.

Denote A(s;, X) = {e;} and A(s}, X) = {e}} for i = 1,2. Suppose e; = es.
We prove by reduction to absurdity that e} = e, # ey, that is, e, # e; for
i = 1,2. Suppose to the contrary that e, = ey for some i € {1,2}. Since s_; is



168 5. Structure of Feedforward Inverses

a 2-step state and s is a O-step state, there exist xg, x1, (, } € X such that
xh # oy A(S—1,T021) = A(s—1,2(2)), 0(s—1,20) = s and §(s_1,xpx)) = s
Let 6(s—1,zox1) = s;. Noticing e; = ez, we have e; = e}, that is, A(s;,z2) =
A(sh, ) for any zo € X. It follows that A(s_1,zox122) = A(s_1,z(x|x2).
This contradicts that s_; is a 2-step state. We conclude that €} = e} # e;.
Using this result, we obtain that e; = ey implies ] = ¢e}. From symmetry,
e} = e, implies e; = eg. Therefore, e; = ey if and only if €] = €.

Suppose e; # ey. We then have €] # e}. It follows that there exists
i € {1,2} such that e; = e}. Let 1, 2} and z, € X satisfy §(s,21) = 51 and
o(s',2%) = s}, j = 1,2. We prove by reduction to absurdity that A(s,z1) #
A(s,x%). Suppose to the contrary that A(s,xz1) = A(s’,x}). Since e; = e,
for any zo € X we have A(s1,22) = A(s},x2). It follows that A(s,z122) =
(s, xbxa). Since s and s’ be two different successor states of s_; and s_; is
a 2-step state, we obtain A(s_1,xox122) = A(s—1,z(T,z2), where z¢ and z
are different elements in X satisfying 6(s_1,x¢) = s and d(s_1,x,) = ¢'. This
contradicts that s_; is a 2-step state. We conclude that A(s,z1) # A(s', 2).
In the case of ey = €}, we have ¢ = 1. This yields A(s,z1) # A(s',2}). In
the case of e; # e}, we have i = 2. This yields A(s,xz1) # A(s',2}). Since
s' is a O-step state, we have A(s’,x)) # A(s',x}). Thus A(s,z1) = A(s',z)).
Therefore, e; = €] if and only if A(s,x1) # A(s', 2)).

(b) Suppose that A(s1, X) = A(s2, X) and |A(s1, X)| = 1. Then s; and so
are not O-step states. Since s is a successor state of a state in Sy, from Theo-
rem 2.1.3 (b), s is a state in So, that is, [W4%| = 2. From Lemma 5.4.2 (b), s
is a O-step state. From (a), s} is not a O-step state. Thus |A(s], X)| = 1. Since
A(s1,X) = A(s2,X), using (a), we obtain A(s},X) = A(sh, X) # A(s1,X).

O

Lemma 5.4.5. Let M = (X,Y,5,0,\) be a c-order semi-input-memory fi-
nite automaton SIM(M,, f), and M, = (Yo, Sa, 04, Aa) be strongly cyclic.
Ifce22=wynm, X =Y ={0,1} and M is weakly invertible with delay 2,
then there exist single-valued mappings ho from X~ x S, to {0,1}, hy from
X2 xS, to {0,1}, fo from X¢x S, to Y, f1 from X1 x S, toY, and f>
from X°72 x S, toY, such that

h0($—27 R ) Sa) =0— ho('r—lv coes T—ctls 5{1(511)) =1,
hi(x_s,...,2_¢,8q) =1 — ho(z_3,... ,x,c,hé_l(sa)) =0, (5.2)

a

and
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f(xOv e, Tgy Sa)
f2($737 ceey ey Sa) 2] T2,
if ho(l‘_g, RN N Sa) =1& h1($_37 PN PN Sa) = 1,
fl(x—27 e 71‘—0) Sa) @ l'_]_,
- if ho(z—oy...,@_¢,8q4) =1& h1(x_3,...,2_¢,84) =0, (5.3)
fo(x_1,...,2_¢, 84) D x0, '
if ho(I_Q,...,l‘_c,Sa) :O&hl(x_27... p+1, ( )):
fi(_o, ... e, 80) ®xo D r_1 Dr_1ho(x_2,... I—c+1, a(Sa )
if ho(z_Q,...,’I‘_C,Sa):O&hl(l_g,... C+1, ( ) =
where

ho(x_3,...,Z—¢y8q) = [1(0,2_3, ..., 2, 84)Bf1(1,x_3,...,2_¢,84). (5.4)

Proof. Define

fole—1, . y2—c,80) = f(O, 21, ..., Z_¢, Sa),
fl(x72; e 75(:76780,) = f<0707'/1;727 .. 'a$7078a)7
f2(1'73; cee axfcvsa) = f(0,0,0,$,37 cee 7xfcasa)'

Define hg and h; as follows. ho(z_2,...,2_., s) = 1 if and only if (0, x_o, . . .,
T_¢, Sq) i not a O-step state. hi(x_s3,...,2_¢,8,) = 1 if and only if
f(zo,2-1,0, x_3, ..., T_¢, Sq) does not depend on z_; and zy. Since M is a
semi-input-memory finite automaton SZM (M, f) and M, is strongly cyclic,
M is strongly connected. From Theorem 2.1.3 (f), it follows that [W,| = 2
holds for any state s of M. From Lemma 5.4.4 (b), hy(z_35,...,2_¢,84) =1

if and only if f(xg,z_1,1,2_3,...,Z_¢, Sq) does not depend on z_; and x.
To prove ho(T_2,. .-, T_¢,84) =0 — ho(T_1,...,T_cy1,04(84)) = 1, sup-
pose ho(x_2, ..., T_., 8q) = 0. Since M is weakly invertible with delay 2,

any state of M is a j-step state for some j, 0 < j < 2. From the defin-
ition of hg, (0,2_9,...,2_.,S,) is a O-step state. Using Lemma 5.4.3 (a),
this yields that (1,z_q,...,2_.,S,) is a O-step state. From Lemma 5.4.1,
(0, -1, -, T—ct1,0a(Sq)) is not a O-step state for any x_1, zo € X. There-
fore, ho(z_1,...,Z—ct1,0a(8a)) = 1.

To prove hi(z_3,...,%_¢,8q) = 1 — ho(r_3,...,2_c_1,0;,1(s4)) = 0,
suppose hi(Z_3,...,Z_¢,8q) = 1. Then f(zo,... ,m_c,sa) does not depend
on zg and z_; for any x_o € X. It follows that (x_1,...,2_¢,84) is not
a O-step state for any z_o, x_1 € X. We prove by reduction to absurdity
that ho(x_3,...,2_c—1,0, *(s4)) = 0 holds for any x_._; € X. Suppose to
the contrary that ho(x_3,..., T—c—1, 0, (s4)) = 1 for some z_.1 € X.
From the definition of hg, (0, z_3, ..., _c_1, 6, (s4)) is not a O-step
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state. From Lemma 5.4.3 (a), (1,2_3,...,7_c_1,0, (s,)) is not a O-step
state. Using Lemma 5.4.2 (b), we have A({0,2_2,...,2_c, 8q), X) # A((1,
T_9y vy Ty Sq), X). Thus f(zo,...,2—¢,Sq) depends on z_;. Therefore,
hi(x_3,...,2_¢,8q) = 0. This contradicts hy(z_3,...,2_¢,8,) = 1. We con-
clude that ho(z_3,...,2_c—1,0; *(s4)) = 0 holds for any x_._.

Below we prove that f can be expressed by fo, f1, f2, ho, and hy. There
are four cases to consider.

Case ho(x_2,...,T_c,8q4) =1 & hy(x_3,...,0_¢,84) =1:

Let sp o = (21,2 0,0 3,...,7 ¢, 84). Since hi(z_3, ..., T_¢, 5a) =
1, M(Sg_5,2 1, To) does not depend on z_; and zy, that is, \)\(sz .00 X)| =
[A(sz_p,1, X)| =1 and A(sg_,,0,X) = A(Sz_,,1,X). Letting e = A(syz_,.0,0),
we have A(sy_,0_,,%0) = e for any z_1,290 € X. Let Z_5 € X \ {z_2}.
From Lemma 5.4.4 (b), |[A(sz_,0,X)| =1and Xsz_,0,X) = A(sz_,,1,X) #
A(Sz_5,0,X). It follows that A(sz_,x_,,%0) = e ® 1 for any z_1,20 € X.
Therefore,

f($07x—15 sy Tey Sa) = >\(<1‘_1,x_2,x_3, R D Sa>7x0)
= )‘(<O7 T_2,L-3,.--,L—c, Sa>7 O)
= A(0,0,2_3,...,T—¢,54),0) DT _2
= fQ(x—Z’n sy Teey Sa) Dr_2.
Case ho(x_a,..., ¢, 8a) =1 & hi(z_3,...,2_¢,8,) =0:
Since ho(x_2,...,T_¢,8¢) = 1, from the definition of hg, s;_,0 is not
a O-step state. Using Lemma 5.4.3 (a), S;_, 1 is not a O-step state. It fol-

lows that A(sz ,4 ,,0) = A(Sg_pz_,,1) holds for any z_; € X. Since
hi(z_3,...,%—c,Sa) = 0, we have A(sy_,.0,0) # A(Sz_,1,0). Therefore,

flxo,z—1,...,@—¢,8q4) = A{T—1,2_2,...,Z_¢,Sa), o)
=A{(x_1,2_2,...,%_¢, Sq),0)
=M{0,2_2,...,%_¢,84),0) Dx_1
= fi(x_a,...,T ¢, 8q) DT_1.
Case ho(T—2,...,Z—c,84) =0 & hi(x_2,...,T_c41,04(84)) =1:
Since ho(z_2,...,T_¢,Sq) = 0, from the definition of hg, s ,0 is a 0-

step state. Using Lemma 5.4.3 (a), s, ,.1 is a O-step state. It follows that
A(Sz_ 9.5 1:%0) = AN(Sz_p.z_4,0) @ xo. Therefore,

f(anmfla cee 7',17767311) = )\(<.’17,1, .. .,$76,5a>,$0)
=A{(x_1,..-,T_¢,84),0) ® z0
= fo(x—la s ax—wsa) D zo.

Case ho(x_a,...,2—¢,84) =0 & hi(x_2,...,2_cy1,04(84)) =0 :
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Since ho(x_2,...,%_c, Sq) = 0, as proven in the preceding case, s,_, o and
Sy, are O-step states. It follows that A(sy 5. 1, %0) = AM(Sz_,2_,,0) & o
for any x_1,2¢9 € X. Using Lemma 5.4.1, {xg,T_1,%Z_2,...,Z—_ct1,04(84)),
denoted by Sz _, z_,.29, 1S DOt a O-step state for any z_i,29 € X. It fol-
lows that A(Sz_,.e 1,20:0) = A(Sz_s.0_1.00,1) for any z_q,29 € X. On the
other hand, from hy(x_2, ..., T_ct1, da(Sq)) = 0, we have A(sz_, »_,.0,0) #
MSz_9,3_11,0) for any z_; € X. Using Lemma 5.4.4 (a), A(Sz_,,0,0,0) =
A(Sz_5.1,0,0) if and only if A(sy_,,0,0) # A(sz_,.1,0). It follows that

A(Sz_5.0,0) B A(Sz_5,1,0) = A(S2_,,00,0) D A(Sz_5,1,0,0) B 1
= f(0,0,0,2_9,...,Z—ct1,04(8a))Df(0,0,1,2_9,...,2_ct1,04(84)) D1
= f1(0,2_2, ..., %_c11,04(84)) ® f1(1,2_0,...,T_cy1,04(84)) D1
=ha(T_2,. .., T—ct1,0a(8q)) D 1.
Thus A(sz_5,0,0)BA(Sz_s01,0) =x_1(ha(z_2,...,T_c41,04(S4)) D 1). This
yields
A(Sz_9.51:0) = A(Sp_5,0,0) Dx_1(ha(T_2,...,T—ct1,04(54)) B 1)
= fi(w_9,. .., T, 84) Dx_1(ha(T_2,. .., T—ct1,04(54)) B 1).

Therefore,

f(x()a R Sa) = )‘<<x—1; [ P Sa>am0)
=A{(z_1,Z-2,...,T_¢,54),0) D xg
= fi(x_a, ..., 2, 8q) Dax_1(ho(x_2,...,2_c11,04(84)) ® 1) Bxo. O
Lemma 5.4.6. Let M = (X,Y,5,6,\) be a c-order semi-input-memory fi-
nite automaton SIM(M,, f), and M, = (Y4, Sa, da, Aa) be strongly cyclic. If
cz2,way =1, X =Y ={0,1} and M is weakly invertible with delay 2,
then there exists a single-valued mapping fo from X2 x 8, toY such that

f(xoy o @, 8a) = fo(®_3,...,T_¢,84) B XT_2.

Proof. Since M is a semi-input-memory finite automaton STM(M,, f)
and M, is strongly cyclic, M is strongly connected. From Theorem 2.1.3
(f), it follows that [W3%| = 1 holds for any state s of M. This yields
that A({(z_1,2_2,...,Z_¢,84),%0), T—1,2Z9 = 0,1 are the same. Since M
is weakly invertible with delay 2, we have A({(0,0,2_3,...,Z_.,$,),0) #
A{0,1,z_3,...,2_¢,84),0). Thus

f(Z'O; L1y L—c, sa) = >\(<l’717 sy Legy Sa>7x0)
= >\(<O,£E_2, cees ey Sa>70)
=X{0,0,2_3,...,Z_¢,54),0) B x_o

= f2(1'73, DR ,x,c,sa) @x727
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where fo(x_3,...,2_¢,84) = (0,0,0,2_3,...,Z_¢, Sq)- O

Lemma 5.4.7. Let M = (X,Y, 5,0, \) be a c-order semi-input-memory fi-
nite automaton SIM(M,, f), and M, = (Y4, Sa, 0a, Aa) be strongly cyclic. If
c=22, wym =4, X=Y ={0,1} and M is weakly invertible with delay 2,
then there exists a single-valued mapping fo from X x S, to'Y such that

flxo, . x—e,8q) = folx_1, ..., T_c, 8a) D Xo-

Proof. Since M is a semi-input-memory finite automaton STM (M, f)
and M, is strongly cyclic, M is strongly connected. From Theorem 2.1.3
(), it follows that [W4%| = 4 holds for any state s of M. This yields that
M{z_1, . @0, 84),0) # A{x-1,...,Z—¢,Sa),1). Thus f(zg,x_1,...,2_¢,
Sa) =A{x_1, .. Ty Sa), o) = A{(T_1y ..o, Ty Sa), 0) D 20 = folr_1,...,
T, 8q) D xo, where fo(x_1,...,2_¢,8q4) = f(0,2_1,...,2_¢,8q)- O

Theorem 5.4.1. Let M = (X,Y,S,0,)\) be a c-order semi-input-memory
finite automaton SIM(M,, f), and M, = (Y, Sa, 04, Aa) be strongly cyclic.
Let ¢ > 2 and X =Y = {0,1}. Then M is weakly invertible with delay 2 if
and only if one of the following conditions holds:

(a) There exists a single-valued mapping fo from X€ x S, to'Y such that

flxo, . x_e,8q) = folx_1, ..., T_c, 8a) D Xo-

(b) There exists a single-valued mapping fo from X¢=2 x S, to Y such
that

f(IOa o 7$—C75a) = f2(x—3a .. 7x—(:75a) @x—2-

(c) There ezist single-valued mappings ho from X1 x S, to {0,1}, hy
from X72x S, to {0,1}, fo from X¢x S, toY, f1 from X1 xS, toY, and
fo from X¢72 x S, to Y, such that (5.2) and (5.3) hold, where hy is defined
by (5.4).

Proof. only if : From Theorem 2.1.3 (a), wgo ar is in {1,2,4}. In the case of
wa,pr = 4, from Lemma 5.4.7, the condition (a) holds. In the case of wa 3y = 1,
from Lemma 5.4.6, the condition (b) holds. In the case of wq pr = 2, from
Lemma 5.4.5, the condition (c) holds.

if : Suppose that one of conditions (a), (b) and (c) holds. In the case of
(a), clearly, M is weakly invertible with delay 0. Thus M is weakly invertible
with delay 2. In the case of (b), it is easy to verify that M is weakly invertible
with delay 2.

Below we discuss the case (c). Suppose that the condition (c¢) holds.
Let s = (x_1,%-2,...,%—¢,8a), Si = ($,T_1,...,Z_ct1,04(8q)) and s;; =
(4,8, _1, - oy T_cyo, 02(54)), 4,7 = 0, 1. To prove s is a t-step state for some
t, 0 <t < 2, there are several cases to consider.
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In the case of ho(z—_2,...,2_¢,8,) = 0, from (5.3) in the condition (c),
A(s,20) = f(oy. s T—cy8a) = [H(T—1,...,Z—c,Sa) ® o for any zy € X,
where fl(z_1,..., T_c, Sa) = fo(T-1,...,Z—¢,8qa) OF f1(T_a,...,Z_¢,8q) ®
T_1 Bx_1he(x_o,..., T_ct1, 0a(sq)). It follows that s is a O-step state.

In the case of ho(z_2,...,2_¢,8,) = 1, from (5.2) in the condition (c),

hi(z_2,..., T_ct1, 04(Sqa)) = 0 holds; and from (5.3) in the condition (c),
we have A(s,0) = A(s, 1). We further consider ho(x_1,...,Z_ct1,04(Sq)) and
hi(r_1, ..., T_cy2, 02(s4)). In the subcase of ho(T_1,..., T ct1,04(54)) =
1, from (5.3) in the condition (c), ho(z_1,...,Z—ct1,04(8a)) =1 &

hi(z_2,..., 2 c41,04(84)) = 0 yields A(sp,0) = A(so,1) # A(s1,0) =
A(s1,1). Thus s is a l-step state. In the subcase of ho(z_1, ..., T_ct1,
8a(84)) = 0 & hi(x_1, ...y T_cra, 62(84)) = 1, from (5.2) in the condi-
tion (C), ho(l’_l, ey Tt 1, 5a(sa)) =0 yields ho(l‘o, oy 42, 52(8(1)) =1
for any 29 € X. From (5.3) in the condition (c), ho(zo, ..., T—ct2, 62(84))
=1 & hi(z_1,...,T_ct2,02(84)) = 1 yields A(545.0,0) = A(8zp0,1) =
A(S20,1,0) = A(8gg,1,1) for any zg € X and A(sg,0,0) # A(s1,0,0). Thus s is a
< 2-step state. It follows that s is a 2-step or 1-step state. In the subcase of
ho(_1,.. ., %—ct1,0a(84)) =0 & hi(w_1,...,7_cy2,02(84)) = 0, from (5.3)
in the condition (c), A(s;,0) # A(s;,1) for ¢ = 0,1. From (5.2) in the condi-
tion (c), ho(z_1,...,T—ct1, 6a(54)) = 0 yields ho(xg, ..., T—ct12,02(54)) =
1 for any zo € X. For any xop € X, since ho(wo,...,T_ci2,0-(5,)) =
1 & hi(z_1,...,2_¢42,62(s4)) = 0, from (5.3) in the condition (c), we
have A(Sz,,0,0) = A(S20,0,1) # A(S20,1,0) = A(Szo.1,1) and A(szy,0,0) =

f1(@o,m_1,.. ., % _cy2,02(84)). Since ho(r_1,...,2_ct1, 6a(sa)) = 0 &
hi(r_1,...,%_cy2,02(84)) = 0, from (5.3) and (5.4) in the condition (c),
we have A(sg,0) = fi(z_1,...,Z—ct1,04(84)) and

)\(5170) = fl(x—la ey Tt 1, 5a(5a)) SY 1 ¥ hg(l'_l, ey T2, 52(5(1))
= fl(x—la B e ) 611(3(1)) ole fl(oa T—1y--- 7x—c+2a5§(3a))
@ fl(la L1y yT—c42, 53(8a))'

It follows that A(sg,0) = A(s1,0) if and only if f1(0,2_1,...,7_ci2, 02(s4)) #
fi(l,z1,. . 2 ci2,02(84)). Since A(S44.,0,0) = f1(z0, -1,y ..., T—cy2,02(54))
for z9 = 0,1, A(s0,0) = A(s1,0) if and only if A(s9.0,0) # A(s1,0,0). Noticing
that A(s,0) = A(s,1), A(Sz,0) # A(Szy,1) and A(8zy.0,0) = A(Sz0,0,1) #
A(S20,1,0) = A(8g4,1,1) for g = 0,1, thus s is a 2-step state.

To sum up, if the condition (c) holds, then any state s of M is a t-step
state for some ¢, 0 < t < 2. Thus M is weakly invertible with delay 2. O

Theorem 5.4.2. Let M = (X,Y,S5,5,\) be a c-order semi-input-memory
finite automaton STM(M,, f), and M, = (Y, Sq,0a, \a) be strongly cyclic.
Letc>2 and X =Y ={0,1}. Then M is a feedforward inverse with delay
2 if and only if one of the following conditions holds:
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(a) There exists a single-valued mapping fo from X¢ x S, to'Y such that
f(x(h ey L, sa) = fO(xfla ey L, sa) D xo.

(b) There exists a single-valued mapping fo from X¢=2 x S, to Y such
that
f(an cey Teg,y sa) = f2(1'73a sy Tec,y Sa) D x_2.

(c) There exist single-valued mappings hg from X1 x S, to {0,1}, hy
from X¢=2x S, to {0,1}, fo from X¢x S, to Y, f1 from X" 1 xS, toY, and
fo from X¢=2 x S, to Y, such that (5.2) and (5.3) hold, where hy is defined
by (5.4).

Proof. Since M, i.e., STM(M,, f), is a semi-input-memory finite automa-
ton and M, is strongly cyclic, M is strongly connected. Using Theorem 2.2.2,
M is a feedforward inverse with delay 2 if and only if M is invertible with
delay 2. From Theorem 5.4.1, M is a feedforward inverse with delay 2 if and

only if one of the conditions (a), (b) and (c) holds. O

We discuss briefly hg and h; in (5.2). Suppose that (5.2) holds for any
-1, ..., T_.in X and any s, in S,. Then we have
ho(x_g,...,Z—¢c,8q) = ho(T—2,...,T_¢,Sq4)

V (ho(0,2_9,...,T—ct1,04(84)) D 1)

Vo(ho(l,z_9,...,2—ct1,0a(84)) D 1),
hi(x_g,...,T—¢,8q) = h1(z_3,...,Z_¢,Sq)

& (ho(z_3,. .., 2_¢,0,6, " (s4)) ® 1)

& (ho(z_3,. ..y 2 e, 1,6, (54)) @ 1),

where V stands for the logical-or operation, that is, I1V1=1v0=0V1=
1,0 Vv 0 = 0. Conversely, given arbitrarily single-valued mappings h{, from
X1 xS, to {0,1} and A} from X2 x S, to {0, 1}, define

ho(®—2y...,T—¢y8a) = h((T_2,...,T_¢, Sa)
V (h(0,2—9, ..., @—ct1,04(84)) B 1)
V (ho(1, 22, .., T—ctr1,04(54)) D 1),
hi(x_3,...,T—cy8a) =R\ (T_3,...,2_¢, S4) (5.5)
& (ho(z_3,. .., 2_¢,0,6,(s4)) ® 1)
& (ho(x_3,. .. 2, 1,6, (54)) ®1).

It is easy to see that hg and hy satisfy (5.2). We conclude that hy and hq
satisfy (5.2) if and only if hg and h; can be defined by (5.5).
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Historical Notes

The structure of feedforward inverse finite automata is first studied in [100]
for delay 0 and for delay 1 in binary case. References [4, 5, 146] present a
characterization for feedforward inverse finite automata with delay 1 of which
sizes of the input and output alphabets are the same, and [129] introduces
another characterization of them by means of mutual invertibility. Reference
[153] gives the first characterization for binary feedforward inverse finite au-
tomata with delay 2, and [130] gives another characterization of them by
means of mutual invertibility. Reference [141] deals with the structure of bi-
nary feedforward inverse finite automata with delay 3. Sections 5.1 and 5.2
are based on [100]. Section 5.3 is based on [129]. And Sect. 5.4 is based on
[130].



6. Some Topics on Structure Problem

Renji Tao

Institute of Software, Chinese Academy of Sciences
Beijing 100080, China  trj@ios.ac.cn

Summary.

This chapter investigates the following problem: given an invertible
(respectively inverse, weakly invertible, weak inverse, and feedforward in-
vertible) finite automaton, characterize the structure of the set of all its in-
verses (respectively original inverses, weak inverses, original weak inverses
and weak inverses with bounded error propagation).

To characterize the set of all inverses (or weak inverses, or weak inverses
with bounded error propagation) of a given finite automaton, the measures
are, loosely speaking, first taking one member in the set and making a
partial finite automaton by restricting its inputs, then constructing the
set from this partial finite automaton. As an auxiliary tool, partial finite
automata and partial semi-input-memory finite automata are defined.

To characterize the set of all original inverses (or original weak inverses)
of a given finite automaton, we use the state tree method and results in
Sect. 1.6 of Chap. 1.

Key words: inverses, weak inverses, original inverses, original weak in-
verses, bounded error propagation

This chapter investigates the following problem: given an invertible (respec-
tively inverse, weakly invertible, weak inverse, feedforward invertible) finite
automaton, characterize the structure of the set of all its inverses (respec-
tively original inverses, weak inverses, original weak inverses, weak inverses
with bounded error propagation).

To characterize the set of all inverses (or weak inverses, or weak inverses
with bounded error propagation) of a given finite automaton, the measures
are, loosely speaking, first taking one member in the set and making a partial
finite automaton by restricting its inputs, then constructing the set from this
partial finite automaton. As an auxiliary tool, partial finite automata and
partial semi-input-memory finite automata are defined.
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To characterize the set of all original inverses (or original weak inverses) of
a given finite automaton, we use the state tree method and results in Sect. 1.6
of Chap. 1.

6.1 Some Variants of Finite Automata

6.1.1 Partial Finite Automata

A partial finite automaton is a quintuple (X, Y, S, 4, A), where X, Y and S are
nonempty finite sets,  is a single-valued mapping from a subset of S x X to
S, and A is a single-valued mapping from a subset of Sx X toY. X, Y and S
are called the input alphabet, the output alphabet and the state alphabet of the
partial finite automaton, respectively; and 6 and A are called the next state
function and the output function of the partial finite automaton, respectively.

A partial finite automaton may naturally be expanded to a finite automa-
ton. Taken a special symbol, say _, to stand for the “undefined symbol”, which
is not in S or Y. Denote the domain of § by A and the domain of A by A.
Let

§(s,x)=-, if(s,z)e(SxX)\Aors=_,
As,z)=_, if (s,z)e(SxX)\Adors=_.

(X, YU{},SU{_},d,)) is a finite automaton, and is called the trivial ez-
pansion of M.

By expanding domains of § and A of the trivial expansion of the partial
finite automaton M, the domain of § of M may be expanded to (SU{_}) x X*;
the domain of A of M may be expanded to (S U {_}) x (X* U X¥).

Let s € S and a € X*. If |a| > 0 yields d(s, 1) € S, where oy is the prefix
of a of length || — 1, we say that « is applicable to s. Clearly, if || < 1, then
« is applicable to s.

Let « = ay...a, and 8 = by ...b,, where a1,b1,...,a.,b, € YU{_}. If
for any 4, 1 < ¢ < r, a; # _ and b; # _ implies a; = b;, we say that « and
B are compatible, denoted by a ~ §. If for any 4, 1 < ¢ < r, b; # _ implies
a; = b;, we say that « is stronger than (3, denoted by 8 < «. Notice that
the relation ~ over words is reflexive and symmetric and the relation < over
words is reflexive and transitive. It is easy to see that o« < § and 8 < « if
and only if a = (.

Let M = (X,Y,S,6,\) be a partial finite automaton. For any states s;
and sy of M, if for any o in X*, that « is applicable to s; and sy implies
that A1 (s1, @) & Aa(s2,a), we say that s; and s are compatible, denoted by
$1 &~ so. Notice that the relation ~ over states is reflexive and symmetric. It
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is easy to see that for any s1, s3 in S and any « in X*, if s; = s9 and §(s;, @)
is defined, i = 1,2, then d(s1, ) ~ d(s2, ). For any nonempty subset T of S,
if any two states in T' are compatible, T is called a compatible set of M. If T
is a compatible set of M and for any T/, T C T C S, T’ is not a compatible
set of M, T is called a maximum compatible set of M.

Let Cj, ..., Cx be k compatible sets of M. If UF_,C; = S, and for any 1,
1< i<k, and any z in X, there exists j, 1 < j < k, such that §(C;, z), i.e.,
{0(s,x) | s € C;,0(s,x) is defined}, is a subset of C;, the sequence Ci, ...,
Cl is called a closed compatible family of M. Notice that C; and C}, may be
the same set, i # h.

Let Cq, ..., Ck be a closed compatible family of M = (X,Y, 5,4, A). Let
X =XY'=Y,5={c,...,cx},

6/(0 x) _ Cj, if 5(CZ,SC) # @7
v undefined, if §(C;,x) = @,

N(es,x) = {)\(8733), if 3s1(s1 € C; & A(s1,x) is defined),

undefined, otherwise,
i=1,...,k, € X,

where j is an arbitrary integer satisfying 6(C;, ) C Cj, and s is an arbitrary
state in C; such that A(s,x) is defined. Since C; is compatible, the value
of N (c;,x) is independent of the selection of s. Let M’ = (X', Y’ 5" ¢’ \').
Then M’ is a partial finite automaton. We use M(C1, ..., Cy) to denote the
set of all such M’.

Let M; = (X;,Y;,Si,0i, i), ¢ = 1,2 be two partial finite automata with
X1 = Xs. Let s; bein S;, ¢ = 1,2. If for any o in X7, that a is applicable to
s1 implies that « is applicable to sy and A\ (s1,a) < Aa2(s2, @), we say that
So i stronger than s;, denoted by s1 < ss. If for any s; in Sp, there exists so
in Sy such that s; < so, we say that M is stronger than M, denoted by M,
< Mo. If for any o in X7, « is applicable to s; if and only if « is applicable
to $2, and A1(s1, @) = Aa(s2, ) whenever « is applicable to s1, s1 and sy are
said to be equivalent, denoted by s; ~ so. If for any s; in Sy, there exists so
in Sy such that s; ~ so, and for any s, in So, there exists s; in S7 such that
So ~ 81, M1 and M> are said to be equivalent, denoted by My ~ M.

Similar to the case of finite automata, for any s; in Sy, any s in Sa, and
any « in X7, if §;(s;, ), i = 1,2 are defined and s; ~ sz, then §;(s1,a) ~
02(s2,a). And for any s; in Sy, any s in Sp, and any « in X7, if 0;(s;, @),
i =1,2 are defined and s; < sg, then 61(s1, @) < d2(s2, ).

From the definition, it is easy to show that for any positive integer k, any
s1 in S7 and any ss in S, a sufficient and necessary condition of s; ~ s5 is
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the following: for any « € X7 with |a| < k, « is applicable to s if and only
if « is applicable to sa, A1(s1,a) = Aa(s2, @) whenever « is applicable to s,
and for any a € X7 with |a| = k, 01(s1,a) is defined if and only if d5(s2, @)
is defined, and d1(s1, @) ~ da(s2, @) whenever 01 (s, «) is defined.

Notice that both the relation < over states and the relation < over partial
finite automata are reflexive and transitive, and both the relation ~ over
states and the relation ~ over partial finite automata are reflexive, symmetric
and transitive. It is easy to see that s; ~ s5 if and only if s; < so and sy <
S1.

We point out that in the case of finite automata, relations s; < s, §1 ~
s9 and s; ~ sy are the same.

Let M; = (X;,Y;, 55,0, \i), ¢ = 1,2 be two partial finite automata with
X1 = X5. Assume that for any i, 1 < < 2, any s; in S; and any « in X7,
0i(s;, ) is defined if and only if \;(s;,x) is defined. Then for any s; in S;,
i=1,2, 51 ~ s9 if and only if for any a in X7, A1(s1, @) is defined (i.e., each
letter in A1 (s1, @) is defined) if and only if A3 (s2, ) is defined, and A\;(s1, @) =
A2 (82, @) whenever they are defined. In fact, s; ~ s if and only if for any « in
X7 and any z in X, ax is applicable to s; if and only if cux is applicable to sg,
and for any « in X and any = in Xy, A1(s1,ax) = A2(s2, axr) whenever ax
is applicable to s1. From the assumption that \;(s;, «) is defined if and only
if 6;(s;, «) is defined, ax is applicable to s; if and only if A;(s;, «) is defined.
Thus the condition that for any « in X} and any z in X;, ax is applicable
to sy if and only if ax is applicable to so, is equivalent to the condition
that for any a in X7, A1(s1,a) is defined if and only if Aa(s2, ) is defined.
Similarly, the condition that for any a in X7 and any x in X1, A\ (s1,ax) =
A2 (82, ax) whenever az is applicable to s1, is equivalent to the condition that
for any o in X7 and any z in X7, A1(s1, ax) = Aa(s2, ax) whenever Ay (s1, @)
is defined. Therefore, sy ~ s if and only if for any o € X7, Ai(s1, ) is
defined if and only if Aa(s2,a) is defined, and for any o € X7 and = € Xy,
A1(s1, ) = Aa(s2, ax) whenever Ai(s1,«) is defined. Thus s; ~ sq if and
only if for any @ € X7, A1(s1, @) is defined if and only if Aa(s2, ) is defined,
and for any o € X and = € X, A\ (s1,00) = A2(s2, ax) whenever A (s, a)
and Ay(s2, ) are defined. We conclude that s; ~ ss if and only if for any «
in X7, A1(s1, ) is defined if and only if Ay(s2, @) is defined, and A (s1, ) =
A2 (s2, ) whenever they are defined.

Let M; = (X;,Y;,5:,0;,\i), i = 1,2 be two partial finite automata with
X7 = Xs. Assume that for any i, 1 <4 < 2, any s; in S; and any z in X7,
0;(s;, ) is defined if and only if \;(s;,x) is defined. Then for any s; in S;,
i = 1,2, s1 < so if and only if for any « in X7, Aa2(s2, ) is defined and
A1(s1,a) = Aa(s2, ) whenever Aj(s1, ) is defined. In fact, s; < sq if and
only if for any o in X7 and any z in X5, ax is applicable to sy and A (s1, ax)
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=< Aa(82, az) whenever ax is applicable to s1. Thus s1 < s9 if and only if for
any « in X7 and any x in X7, A2(s2, ) is defined and A (s1, az) < Aa(s2, ax)
whenever A (s1, ) is defined. Therefore, s; < s2 if and only if for any « in X7
and any = in X7, \a(sq, ax) is defined and Aq(s1, ax) = Aa(s2, ax) whenever
A1(s1,ax) is defined. It follows that s; < so if and only if for any « in X7,
A2(s9, ) is defined and A (s1,a) = Ag(s2, ) whenever Aq(s1, @) is defined.

Let M; = (X;,Y;,5:,0i,\i), ¢ = 1,2 be two partial finite automata with
X7 = X5. Assume that for any i, 1 <1 < 2, any s; in S; and any x in Xj,
0i(si,x) is defined if and only if A;(s;, z) is defined. It is easy to show that
for any positive integer k, any s1 in S; and any so in Sy, a sufficient and
necessary condition of s; ~ sy is the following: for any « € X7 with |«| < k,
A1(s1, @) is defined if and only if Aa(s2, @) is defined, A1 (s1,a) = Aa(s2, @)
whenever they are defined, and d;(s1, ) ~ d2(s2,a) whenever 61(s1, ) is
defined and |o| = k.

Lemma 6.1.1. Let M; = (X, Y;,S;,0:, \i) be a partial finite automaton and
s €S, i=1,2.

(a) For any s; € S;, i = 1,2, and any a € X*, if 51 < 82 and §1(s1, )
is defined, then ds(s2, ) is defined and §1(s1,a) < d2(s2, ).

(b) For any sg, s1 € S1, and any s € Sa, if sg < s2 and s1 < Sa, then
So =~ S1.

Proof. (a) Let € X* be applicable to d1(s1, ). Then af is applicable
to s1. From s; < s2, af is applicable to sy and A (s1,a8) < Aa(s2,af).
Take 1 € X. Clearly, 41 is applicable to d1(s1, ). Thus af; is applicable
to s2. It follows that da(s2, ) is defined. Since a3 is applicable to sq, 3 is
applicable to d2(s2, @). Since A1(s1, af) < A2(s2, af), we have A1(d1(s1, @), B)
=< A2(d2(82, @), B). Therefore, d1(s1, ) < (82, @).

(b) Let v in X* be applicable to sp and s1. Since s < so and 1 < 89, «
is applicable to sy and A1(s;, ) < Aa(s2, @), i = 0, 1. It follows that A1 (sp, @)
~ A1(s1, ). Therefore, sg &~ s;. |

Lemma 6.1.2. Let M = (X,Y,5,0,\) be a partial finite automaton, and
Cy, ..., Cy aclosed compatible family of M. For any M' = (X, Y, {c1,...,ck},
& Ny in M(Cy,...,C) and any s in C;, 1 < i < k, we have s < ¢;.

Proof. We prove by induction on the length of « that for any i, 1 < i < k,
any s in C;, and any a in X*, if « is applicable to s, then « is applicable
to ¢; and A(s,a) < N(¢;, ). Basis : |a| < 1. Clearly, « is applicable to
s and ¢;. From the definition of X, it is evident that A(s,a) < N (¢;, ).
Thus s < ¢;. Induction step : Suppose that for any « of length j(> 1) the
proposition has been proven. To prove the case 7 + 1, let s € C; and « €
X* with |a| = j + 1. Suppose that « is applicable to s. Let a« = za’, where
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x € X. Then |o/| = j. Since || > 1, 6(s,z) is defined. From the definition
of &', §(c¢;, ) is defined and d(s,x) € C}, where ¢;, = 6'(¢;,x). Since « is
applicable to s, o is applicable to d(s,z). From the induction hypothesis,
o/ is applicable to ¢’(c;, ) and A(d(s,x),a’) < N (8 (¢, x),a’). Since s € Cy,
we have A(s,z) < N(¢;,x). It follows that A(s,a) = A(s,2)A(d(s,z),a’) <
X (i, )X (0" (¢, ), @) = N (ei, ). O

Theorem 6.1.1. Let M be a partial finite automaton, and Cq, ..., Cy a
closed compatible family of M. For any M’ in M(Ch,...,Ck), we have M <
M.

Proof. Let M’ = (X,Y,{c1,...,cx}, 8, ). Since Uk 1C is the state al-
phabet of M, for any state s of M, there exists i, 1 < i < k, such that s €
C;. From Lemma 6.1.2, we have s < ¢;. Therefore, M < M’'. a

Let M; = (X;,Y;,5:,8;,A), ¢ = 1,2 be two partial finite automata. If
X1 C X2,Y] €Yo, S1 C Sy, and for any s in S and any « in X7, that 61(s, z)
is defined implies that do(s,x) is defined and &1(s,z) = d2(s, ), and that
A1(s, x) is defined implies that Aa(s, x) is defined and Ay (s, z) = Aa(s, ), M
is called a partial finite subautomaton of My, denoted by M; < Ms. For any
nonempty subset S% of Sy and any nonempty subset X} of X, if d2(S5%, X3) =
{s’ | there exist s2 € S5 and x € X3 such that s’ = d3(s2,2z) € Sa} C 55, S5
is said to be closed with respect to X} in M,. Clearly, if S% is closed with
respect to X3 in Mo, then (X3, Ya, S5, d2]s;x x4, A2ls,xx,) is a partial finite
subautomaton of My, where (52|Séxxé and )\Q‘Séxxé are restrictions of o and
A2 on Sh x X} | respectively.

Notice that the relation < on partial finite automata is reflexive and
transitive. It is easy to see that M; < My implies M7 < Ms in the case of
X1 = X2.

Let M; = (X;,Y:,5;,0;,A\i), i = 1,2 be two partial finite automata. M;
and M, are said to be isomorphic, if X1 = Xo, Y7 = Y5 and there exists
a one-to-one mapping ¢ from S; onto Sy such that for any s; in S; and
any x in X1, 01(s1,2) is defined if and only if d2(p(s1), ) is defined, and
p(01(s1,2)) = d2(¢(s1), x) whenever they are defined, and A; (s1, z) is defined
if and only if A\y(¢(s1), ) is defined, and A1 (s1,2) = A2(p(s1), ) whenever
they are defined. ¢ is called an isomorphism from M; to Ms.

Notice that the isomorphic relation on partial finite automata is reflexive,
symmetric and transitive. Clearly, if M; and M are isomorphic, then M; ~
My and My < M.

Theorem 6.1.2. Let M = (X,Y,5,6,\) and M" = (X", Y", 5" 6" N} be
two partial finite automata. If M < M" and Y = Y, then there exist a
partial finite subautomaton M'"' of M", a closed compatible family Cq, ...,
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Ck of M, and a partial finite automaton M' in M(C4,...,Cy) such that M’
and M'"" are isomorphic.

Proof. Suppose that M < M"”. Then X = X”. Let S = {s" | s’ €
5", 3s(s € S & s < s")}. For any s in S, let ¢(s"") = {s | se S,s < s"}.
Clearly, (s") # @. From M < M"  we have Ugrncgmtp(s") = S. From
Lemma 6.1.1 (b), for any s in S, 1(s"") is a compatible set of M. Let s
€ 8" x e X, and 6(¢(s"),x) # @. Let s be in ¢(s"), so that (s, z) is
defined. Since s < ¢”, from Lemma 6.1.1 (a), 6" (s", z) is defined and (s, z)

=< §"(s"",x). Thus §((s"),z) C (8" (s, x)). Let states of " be s, ...,
sy, where k = [S"|. Let C; = ¢(s}’), i = 1,...,k. We conclude that the
sequence C1, ..., C is a closed compatible family of M.

We construct a partial finite automaton M = (X" Y" 5" 6", N") as
follows. For any s/’ in S” and any = in X, whenever 6(C;,z) # @, there
exists s in ¢(s}”) such that §(s,z) is defined. In the preceding paragraph,
we have proven that for any s/ € S and any x € X, §(¢(s"),x) # @
yields 6(v(s"),z) C (6" (s"”,x)). Thus 6(¢(s!"),xz) C (6" (s, x)). Since
S((si"),x) = 6(Ci,x) # @, 6"(s),x) is defined and in S™. If 5(01,1:) + O,
we define 8" (s}, x) = " (s, x); otherwise, 6"’ (s}, ) is undefined. Whenever
there exists s in C’Z such that A(s, z) is defined, since z is applicable to s and
s < s, we have A(s,z) < X'(s)",x). It follows that \”(s}”, x) is defined and
A(s,x) = N'(s}’,z). If there ex1sts s in C; such that A(s,x) is defined, we
define N’ (s, ) = N'(s", z); otherwise, X'/ (s, x) is undefined. It is easy to
see that M”’ is a partial ﬁnite subautomaton of M” .

Take a partial finite automaton (X,Y, S’ ¢, \') in M(C1,...,Ck) as M,
where S = {c1,..., ¢k},

5,(0 ;L') _ Cj, if 5(01,.23) #* g,
Y undefined, if 6(C;,x) = &,

N(enz) = A(s, z), if 3s1(s1 € C; & A(s1,x) is defined),
v undefined, otherwise,

i=1,...,k x€X,

j is the integer satisfying ¢”(s{",z) = s7’, and s is an arbitrary state in C;

such that A(s, z) is defined. In the first paragraph of the proof, we have proven
that for any s € " and any x € X, 6(¢(s""),z) # @ yields §(¢p(s"),z) C
¢(5//( ", )) From 5”( ///’x) _ S;H, we have 5(¢( ///) ) C w((;//( " )) —
P(s]), that is, 6(Cy,z) C C;. Thus M’ is in M(C4, ..., Cy) indeed.

We prove that M’ and M"" are isomorphic. Let ¢(¢;) = s/, i=1,... k.
Clearly, ¢ is a one-to-one mapping from S’ onto S””’. From the constructions

of M and M’', it is easy to see that ¢"'(s}’,z) is defined if and only if

7 7
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d'(ci, ) is defined, and that whenever they are defined, 8" (s}, r) = s" if
and only if ¢’(¢;, ) = ¢;. Similarly, \"’(s}’, z) is defined if and only if X' (¢;, )
is defined, and whenever they are defined, N’ (s}’,2) = X (¢;, ). Thus ¢ is an
isomorphism from M’ to M. We conclude that M’ and M’ are isomorphic.

O

Let M = (X,Y,S,4,\) be a finite automaton, and M’ = (Y, X, 5", 8, \')
a partial finite automaton. For any states s in S and s’ in 9/, if

(Vo) xe (3o) (xugp~ | N A(s,0)) = apa & |ag| =71,

(s, s) is called a match pair with delay 7 or say that s’ 7-matches s. Clearly,
if s/ T-matches s and 5 = A(s, «) for some « in X*, then §'(s, ) 7-matches
0(s, ). M’ is called a weak inverse with delay 7 of M, if for any s in S, there
exists s’ in S’ such that (s, s) is a match pair with delay 7.

Let M = (X,Y,5,6,\) be a partial finite automaton. The states of M
is said to be reachable from a state s (respectively from a subset I of §),
if for any state s’ in S, there exists @ in X* such that s’ = (s, «) holds
(respectively holds for some s in T).

6.1.2 Nondeterministic Finite Automata

A nondeterministic finite automaton is a quintuple (X,Y, S,J, \), where X,
Y and S are nonempty finite sets, ¢ is a single-valued mapping from S x X
to 29\ {@}, and \ is a single-valued mapping from S x X to 2 \ {@}, where
2T stands for the power set of a set T', that is, 27 = {T" | T C T}. X, Y and
S are called the input alphabet, the output alphabet and the state alphabet of
the nondeterministic finite automaton, respectively; and § and \ are called
the next state function and the output function of the nondeterministic finite
automaton, respectively.
The domain of § may be expanded to S x X* as follows.

0(s,e) = {s},
d(s,ox) = 6(8(s, ), x),1e., Ugess,a)0(s’, ),
seS, ae X*, reX.

It is easy to see that for any sg,s; € S and any zq,...,z;-1 € X, § €
0(s0,q -..l;—1) if and only if there exist s1,...,8_1 € S such that s;4; €
5(si,xi), 1= 071,...,1 —1.

The domain of A may be expanded to S x (X* U X%) as follows. For any
state sg € S and any ! input letters zg, z1,..., 211 € X, A(s0, Tox1 ... T1-1)
is a subset of the set of all the sequences of length [ over Y satisfying the
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condition: for any yo, Y1, .- Yi—1 I Y, yoy1 ... yi—1 is in A(Sp, Tox1 ... T1—1)
if and only if there exist s;, ¢ =1,2,...,1 — 1 in S such that

si+1€5(si,xi), i:O,l,...,l—Q
and
yie)\(si,xi), 1 =0,1,...,1—1.

In the case of [ = 0, zgz1...x;-1 and yoy1 ...y;—1 mean the empty word
e. For any state sy € S and any infinite input letters xg,z1,... € X,
A(s0, oy .. .) is a subset of Y satisfying the condition: for any yo, y1, - .-
inY, yoy1 ... is in A(sg, zox1 ...) if and only if for any I > 0, yoy1 ... yi—1 is
in A(sg, zoxy ... 21-1).

Let M = (X,Y, 5,4, \) be a nondeterministic finite automaton, and M’ =
(Y, X, S 4§, N) a finite automaton. For any states s in S and s’ in S5,
(s',s) is called a match pair with delay 7 or say that s’ 7-matches s, if
for any | > 7, any xg,21,...,%],20,21,---,2 in X and any o, Y1,---,U
inY, yoy1...y € A(s,zoxy...2;) and zp21...21 = N (s, y0y1 ... y1) yield
ZpZral .- 2] = Tox1 ... Ti—r. M’ is called an inverse with delay 7 of M, if for
any s in S and any &’ in S’ (s', s) is a match pair with delay 7. M’ is called
a weak inverse with delay 7 of M, if for any s in S, there exists s’ in S’ such
that (s',s) is a match pair with delay 7.

Let M = (X,Y,S,6,\) be a finite automaton, and M’ = (Y, X, 5,6, \')
a nondeterministic finite automaton. For any states s in S and s’ in S,
(s',8) is called a match pair with delay 7 or say that s’ 7-matches s, if
for any | > 7, any zg,21,...,%],20,21,---,2 in X and any o, y1,---,Y
inY, yoy1...y1 = As,@ox1...2;) and zp21...21 € N (8, y0y1...y1) yield
ZrZral .- 2] = Tox1 ... T—r. M’ is called an inverse with delay 7 of M, if for
any s in S and any s’ in S’, (¢, ) is a match pair with delay 7.

Let M = (X,Y,S,6,\) be a finite automaton, and M’ = (X, Y’ 5" §, \)
a nondeterministic finite automaton. For any states s in .S and s’ in ', if for
any o € X*, A(s, ) is in N (s, @), s’ is said to be stronger than s, denoted by
s < &'. If for any s in S, there exists s’ in S’ such that s < s’, we say that M’
is stronger than M, denoted by M < M’. It is easy to verify that whenever
M’ is a finite automaton also, s < s’ if and only if s ~ s’, and the definition
of M < M’ here coincides with the definition in Sect. 1.2 of Chap. 1.

6.2 Inverses of a Finite Automaton

For any finite automaton M = (X,Y, S, 4, \), let dps be a single-valued map-
ping from 2° x Y to 2%, defined by
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om(T,y) ={é(s,2) [ s€ T,z € X,y = A(s, z)},
TCS, yey.

Notice that dp(T,y) = @ holds if y # A(s,x) holds for any s € T and any
z € X. Expand the domain of §3; to 25 x Y* as follows:

(SM(T,S) ZT,
o (T, By) = oae (O (T, B), y),
TCS peYr, yeY.

It is easy to prove by induction on [ that for any Ty, 7; C S, and any yq, - . -,
Yi—1 €Y, 0m(To,%0---yi—1) = T; if and only if there exist subsets T, ...,
T,—1 of S such that T;y; = oy (Ty,w4), ¢ = 0,1,...,0 — 1. It immediately
follows that 0/ (T, aB) = Ip(9n (T, @), B) holds for any T' C S and any a,
6 € Y*. Moreover, we can prove by induction on [ the following assertion:
for any Ty C S and any yo, ..., yi—1 € Y, if a7 (To,y0 ... yi—1) # &, then for
any s; in dp7(To, 9o - - - y1—1) there exist sp in Ty and « in X* of length [ such
that s; = §(so, ) and yo ... yi—1 = A(S0, @). Conversely, it is evident that for
any Ty C S and any yg, ..., y1—1 € Y, if there exist sg in Ty and « in X*
of length I such that yo...y—1 = A(sg, @), then 5y (To,y0-.-y1—1) # & and
(s0,) € o (To,yo - - yi—1)-

Given an invertible finite automaton M = (X,Y,S,d,\) with delay 7,
without loss of generality, we assume A(S,X) =Y.

Let Ry = {\(s,a) | s € S;a € X*}. Let Moy = (Y,25, 601,55, Sar \
{@}) be a finite automaton recognizer, where Sy = {dp(S,5) | B € Y*}.
We prove that M, recognizes Ry;. Suppose ¥yo...y—1 € Ry. Then there
exist sp € S and a € X* such that yo...yi—1 = A(so,@). It follows that
oM (S,yo---yi—1) # &. Thus dp(S,y0-.-41—1) € Sum. Conversely, suppose
0rm(S,yo---yi—1) € Sy Then 637 (S, 9o - .- yi—1) # . Take arbitrarily a state
s in dpr(S, 9o - .- yi—1). Then there exist sp in S and « in X* of length I such
that s; = d(sp, ) and yo ... yi—1 = A(S0, @). It follows that yo...y—1 € Ras.
We conclude that M, recognizes Ry;. Point out that if 5 € Ry, then there
exists y € Y such that By € Ryy.

Let M' = (Y, X, 5,8, \') be an inverse finite automaton with delay 7 of
M. We construct a partial finite automaton M’ = (Y, X, 5,8, \') from M’
and M, where

S ={{0m(S.8),0'(s', B)) | s € §',B €Y, 0m(S, B) # 2},

5((t,5'),y) = { (Gaa(t,9),9'(s',y)), i Sua(t,9) # 2,

undefined, otherwise,
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N(s',y), if om(t,y) # 2,
undefined,  otherwise,

N((t,s"),y) = {

t,sye S yev.

M’ is referred to as the input restriction of M’ by M.

Clearly, for any state (t,s') of M’ and any 3 € Y*, &'((t,s'), )
(6ar(t,B), 8'(s',8)) and N({t,s),8) = N(s',3) whenever 5y (t,3) #
§'((t,s'"),8) and N({t,s"),3) are undefined whenever 65/(t,3) = @, Where
N((t,s"),) is defined if and only if each letter of N({t,s’),3) is defined.
Thus we have (t,s') < s'.

It is easy to show that S; C Sy yields (S1,s’) < (Sa2,s'), s € S, 51,52 €
Swnr \ {@} -

States of M’ are reachable from {(S,s’),s’ € S’}. In fact, from the de-
finition of S’, for any state & of M’, there exist s’ € S’ and 3 € Y* such
that 8 = (0a(S, 8),8'(s', B)) and 6,(S, B) # @. From (6,,(S, 3),8' (s, 8)) =
8'((S,s'), B), for any state 3 of M’', there exist a state (S,s’) of M’ and
B € Y* such that 5 = ¢'((S, s"), 3).

Let S! = {§'(5,8) | 3 € §',8 € Y*,|3] = 7}. Clearly, S’ is closed with
respect to Y in M’. We use M. to denote the partial finite subautomaton
(Y, X, S., 5_I|§;Xy, 5\/|§;Xy> of M'. M! is referred to as the T-successor of
M.

Let M" = (Y, X,5"”,6"”,\") be an inverse finite automaton with delay 7.
Similarly, from M" and M we can construct A", the input restriction of M”
by M, and M”, the T-successor of M".

Lemma 6.2.1. If M’ and M" are inverse finite automata with delay T of
M, then M! and M! are equivalent.

Proof. Let 8 be a state of M’. Then there exist 5) in S’ and 3, of length
7 in Y* such that & = 6'(5),3,). From the construction of M’, there exist
s" in 8" and 8 of length > 7 in Rj; such that 3 = §'((S,s'), ). Let 3 =
8"((S,s"), 3), where s” is an arbitrarily fixed state in S”. We prove & ~ 5".
For any (7 in Y*, we have

5\/<<S7 5/>;ﬁﬁl) _ {A/(S/7ﬁ))\/(§/(5/3/8)761), if 6M(S, 6ﬂ1) 7é %]

undefined, otherwise,
5\//(<S 8”) ﬁﬂl) _ )\"(S”,ﬁ)/\”((s”(sﬂ,ﬂ),/6’1), if 6M(Sa /861) 7£ %)
T undefined, otherwise,

where “undefined” means that some letter is undefined. Noticing that M
recognizes Rps, when dp/(S, 861) # @, there exist s in S and « in X* such
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that A(s, ) = 86;. Since M’ and M" are inverse finite automata with delay
T of M, we have

and

)\//(8”7ﬂ))\ll(5/,(sll,6)751) — )\/I(s//,ﬁﬁ])
=N'(" Ns,a))=2" ... 2" jxoxy .. 2,

"

/
for some x S

Zr—r € X, and zoxy...2,—, is & prefix of a. From |B] > 7, it follows that
N(&'(s', 8), B1) = N"(8"(s", B), B). Since X'(5', p1) = XN'(&'(s', B), 1) and
N'(8", B1) = N'(8"(s", B), B1), we obtain N(5/,51) = N'(5",31). When
Su(S,B61) = @, N((S,s'),861) and N'((S,s"),331) are undefined. Since
§'((S, 8"y, 3) = & and §"((S, s"),8) = 5", N({S, '), 3) and \((S, s"), B) are
defined. Therefore, X' (5, 3;) and \’(5", 3;) are undefined. We conclude that
5’ and 5" are equivalent.

From symmetry, for any 3’ in S” there exists 5 in S’ such that & and 5"

waxlq,x . x”, in X, where r = |o| — 1, zo, 21, ...,

are equivalent. Thus M. and M/ are equivalent. O

Since M is invertible with delay 7, there exists a 7-order input-memory
finite automaton which is an inverse with delay 7 of M. Given a 7-order
input-memory finite automaton, say M’, assume that M’ is an inverse with
delay 7 of M. Let M’ be the input restriction of M’ by M, and M’ the
T-successor of M’.

We use T'(Y, 7 — 1) to denote a labelled tree with level 7 — 1 in which
any vertex with level < 7 emits |Y| arcs labelled by different letters in Y,
respectively. Such labels are called input labels of arcs. For each vertex v of
T'(Y,7—1), the sequence of labels of arcs in the unique path from the root of
T'(Y,7—1) to the vertex v is called the input label sequence of the vertex v.
Let T'(Y, 7—1) be the subtree of T"(Y, 7—1) satisfying the following condition:
a vertex of T'(Y, 7 — 1) is a vertex of T(Y, 7 — 1) if and only if its input label
sequence is in Rjy;. From the definition of Ry, By € Ry yields 8 € Ry, for
any 3 € Y* and any y € Y. Therefore, T(Y,7 — 1) is a tree indeed and the
root of T(Y, T — 1) is the root of T"(Y,7 — 1). Since for any S € Y*, 8 € Ry
yields By € Ry for some y € Y, any vertex with level < 7 of T(Y,7 — 1)
emits at least one arc. It is easy to see that in the case of A\(S,X) =Y, the
root of T(Y,7 — 1) emits |Y| arcs of which input labels consist of different
letters in Y. For each arc of T(Y,7 — 1), we assign a letter in X to it as its
output label. Different assignments of the output labels give different trees;
the set of all such trees is denoted by 7/(Y, X, 7 — 1). Let 7 (Y, X, 7 — 1) be
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a non-empty subset of 7/(Y, X, 7 — 1). We “join” trees in 7j (Y, X, 7 — 1) to
the partial finite automaton M to get a partial finite automaton, say M"" =
(Y, X,8",6" ,N"), as follows. The state alphabet S”’ of M" is the union set
of S. and all vertices with level < 7 of all trees in 7 (Y, X, 7 — 1); we assume
that states in S/ and such vertices are different from each other. For any state
tin S and any y in Y, we define 8" (¢, y) and X' (¢,y) as follows. In the case
of t € S., define 8" (t,y) = §'(t,y) and A"’ (t,y) = N (t,y). In the case where ¢
is a vertex with level < 7—1 of some tree in 7 (Y, X, 7 — 1), if there is an arc
with input label y emitted from ¢, then define 6"(¢,y) = ¢’ and A" (t,y) = =,
where t’ is the terminal vertex of the arc and x is the output label of the arc;
if there is no arc with input label y emitted from ¢, then 6" (¢,y) and A" (¢, y)
are undefined. In the case where t is a vertex with level 7 — 1 of some tree in
1, (Y, X, 7—1), let yo, y1, - .-, Yr—2 be the input label sequence of arcs in the
path from the root to t. If there is an arc with input label y emitted from ¢,
then define 8" (t,y) = (6a(S, o0 - - - Yr—29), (Y, Yr—2,---,%0)), a state of M.,
and \'(t,y) = =, where x is the output label of the arc; if there is no arc
with input label y emitted from ¢, then §"(¢,y) and A"/(¢,y) are undefined.
The states corresponding to roots of trees in 7 (Y, X, 7 — 1) are called root
states of M. We use J'(M, M’) to denote the set of all such M"".

For any M in J'(M, M'), states of M"" are reachable from root states
of M. In fact, for any state ¢ of M’’, in the case where ¢ is a vertex of
some tree with root tp, it is evident that there exists § € Y™ such that
8" (to, 3) = t. Suppose that ¢t € S.. From the definition of M., there ex-
ist a state 5 of M’ and (32 in Y* such that |32| = 7 and &§'(5,32) = t.
From the definition of M’, there exist a state (S,s’) of M’ and 3; in Y*
such that 5 = (6x/(S, £1),0'(s', 81)). Thus 5 = §'({S,s'), B1). It follows that
5/(<S, 8’>,ﬁ1ﬁ2) =t. Li%t ﬁlﬁg = 6364 with ‘ﬂ3| =T, and 5/(<S,:9/>763) = 56.
Then 5 is a state of M., 5, = (6 (S, B3), (Yr—1,---,%0)), and &' (55, B4) = ¢,
where 33 = yg...y,_1. Let £y be any root state of M"”. From the construc-
tion of M", noticing that 83 € Ry and (3 is an input label sequence of trees
in 7/(Y, X, 7 — 1), we have ¢"(tg, B3) = 5. This yields that 6" (to, 3304) =
§"(8" (to, B3), Ba) = 6" (5, B4) = 8'(5,81) = t. We conclude that for any
state t of M"" there exist a root state ¢ty and § in Y* such that 6" (tp, 5) = ¢.

Let M = (Y,X,S,5,)) be a partial finite automaton such that (s, y)
is defined if and only if 6(s,y) is defined. Each state so of M determines a
labelled tree with level 7 — 1, denoted by TM | (sg), which can be recurrently
constructed from M and sq as follows. We assign sq to the root of Tf_‘zl(so)
temporarily. For any vertex with level < 7 of T ﬁ 1(so) and any y in Y, let s
be the label of the vertex. If §(s, y) is defined, then an arc is emitted from the
vertex and y, called the input label, and 5\(3, y), called the output label, are
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assigned to the arc, and ) (s,y) is temporarily assigned to the terminal vertex
of the arc. Finally, deleting all labels of vertices results the tree T | (s¢).

We use J(M,M') to denote the set of M in J'(M,M’) satisfying the
following condition: for any states s; and ss of M , if s1 is a root state and
2 18 a successor state of 81, then there exists a root state sy of M such that
TM | (s2) is a subtree of TM , (s).

Lemma 6.2.2. For any partial finite automaton M = <Y X,S,6,\) in
J(M,M') and any state 5 of M, there exists a root state T of M such that
§=<t.
Proof. Since states of M are reachable from root states of M, for any state
5 of M, there exist a root state to of M and 3 € Y* such that S(fo,ﬂ) = 3.
It is sufficient to prove the following proposition: for any state § of M, any
root state iy of M and any 8 € Y*, if S(fo,ﬂ) = §, then there exists a root
state £ of M such that § < 7. We prove the proposition by induction on the
length of 3. Basis : |3] = 0. 5 is a root state of M. Take { = 5. Then § < .
Induction step : Suppose that for any state § of M, any root state £y of M
and any £ of length [ in Y*, if §(fo, ) = §, then there exists a root state £ of
M such that 5 < £. To prove the case of || = [+ 1, suppose that S(fo, B8) =3,
|3| = 1+ 1 and i is a root state of M. Let 3 = yf3,, y€eY,and 5(fo,y) = 3.
Since M € J (M, M), there exists a root state £, of M such that TMl(sl) is a
subtree of Tﬂl(fl). We prove §; < 11. Let 3 be in Y*. Suppose that (31, B2)
is defined. In the case of |32| < 7, since TM,(5) is a subtree of TMl(tl)
A(t1, B2) is defined and A(31, 82) = A(f1,B2). In the case of |Ba| > T, let
By = B34 with | 35| = 7. Then A(31, f3) is defined. Since TM () is a subtree
of TM | (#)), A(f1, Bs) is defined and (31, 83) = A(f1, 83). Let 6(31, 8s) = 52
and 5(t1,53) = §3. Then g(fo,yﬁg) = §,. From the construction of M, we
have 33 = (0a1(S, 83); (Yr—1,---,%0)) and 52 = (Oar (S, yB3), (Yr—1,---,40)) =
(0a1(S1,03)s (Yr—1,---,%0)), where S; = dpr(S,y), and B3 = yo ... yr—1. From
S1 C S, we have d3/(S1,03) € 0a(S, B3). Notice that for any states (Ss, s’)
and (Ss,s) of M, if Sy C Ss, then (S,5') < (S3,'). Thus 5 < 3. Since
(81,6354) is defined and 35 = 5(31763) A(82, B4) is defined. From & S2 < 83,
(53, 54) is defined and /\(52, ﬂ4) (83, 54) Therefore, /\(51, ﬂg) = (81, 53)
(52,54) = )\(tl,ﬂg) (53,ﬂ4) = )\(tl,/Bg) We conclude that §; < ;. Since §;
<t and § = (5(31,61) 5(t1, 31) is defined. Denoting 5, = S(tl,ﬂl) then § <
34. Since |B1| = I, from the induction hypothesis, there exists a root state ts
of M such that 34 < 1o Using § < 84, we have § < to. O

Lemma 6.2.3. For any finite automaton M" = (Y, X,58",6" X"y, M" is
an inverse with delay T of M if and only if there exists M in J (M, M') such
that M" and M are equivalent, where M" is the input restriction of M" by
M.
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Proof. only if : Suppose that M” is an inverse with delay 7 of M. Let
Ty = {TM((S,5")) | s" € S"}. Clearly, Ty;n € T'(Y, X, 7 — 1). Joining
trees in Ty to M results a partial finite automaton, say M = (Y, X, S, 4§, \),
where M/ is the T-successor of M’, and M’ is the input restriction of M’ by
M. Clearly, M is in J'(M, M").

Below, the root state of M corresponding to the root of TM'|((S,s' )
is called the root state of M corresponding to s”. (Root states of M
corresponding to s’ and s’ may be the same for different s” and s".)
For any s’ in S”, if § is the root state of M corresponding to s”, then
the state § of M and the state (S,s") of M" are equivalent. To prove
this assertion, notice that the following fact is evident: for any § in Y*
with || < 7, NM'((S,s"),3) is defined if and only if :\(é,ﬂ) is defined,
and \'((S,s"),3) = 5\(5, () whenever they are defined. We prove the fact
that 6”((S,s"),8) ~ 6(5,8) holds for any B of length 7 in Rp;. Let-
ting 8 € Ry and |B] = 7, from the proof of Lemma 6.2.1, we have
(5”((5 s"),B) ~ §'((S,s"), B) for any state s’ of M’. From the construction of
M, we have 6(3, 8) = (6r(S, 8), (Yr—1,---,%0)), where B =1yq ...y, 1. Since
8'((S, 8", 8) = (61:(S, B), (Yr—1,-..,40)), from the construction of M, it fol-
lows that &'((S, s'), 8) ~ &(3, ﬁ) Therefore 8"((S,s"), B) ~ &(3, 3). Using the
two facts mentioned above, since §”((S, s”), 8) and (8, 3) are undefined for
B & Ry, the state § of M and the state (S, s”) of M” are equivalent.

Using the above assertion, for any state (S,s”) of M", there exists a
state 5 of M such that § ~ (S,s”). Since states of M” are reachable from
{(S,s"),s" € 8"}, for any state of M", there exists a state of M such that
they are equivalent. Conversely, for any root state § of M, there exists a state
(S,s") of M" such that 5 ~ (S,s"”). Since states of M’ are reachable from
{(S,s"),s" € S}, states of M. are reachable from

{0'((S,s"),8),s" € §',8 € R, |8 = 7}
- {<6M(Svy0 .. 'y‘r—l)7 <y‘r—17' .. 7ZJO>>7?JO e Yr—1 S RM}

From the construction of M, states in {(5a7(S,%0 ... Yr—1), Wr—1,---,%0)),
Yo - .. Yr—1 € Ry} are reachable from root states of M. Tt follows that states
of M are reachable from its root states. Thus for any state of M, there exists
a state of M" such that they are equivalent. We conclude M” ~ M.

We prove M € J (M, M"). Suppose that § is a root state of M. From
the assertion shown previously, there exists s in S” such that § ~ (S, s").
For any y in Y, if §(3,y) is defined, then 8(3,y) ~ 8”((S,s"),y). Clearly,
§"((S, 8", y) = (5m(S,y),0"(s",y)) < (S,8"(s",y)). Let  be the root state
of M corresponding to 6"(s",y). Then we have t ~ (8,6"(s",y)). Thus
6(3,y) < t. Tt follows that TM(6(3,y)) is a subtree of TM,(f). Therefore,
M e J(M,M).
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if : Suppose that M = (Y, X, 5,6, \) € J(M, M') and M" ~ M. For any s
in S, any s” in S” and any o = g ... 2, let yo...y; = A(s,a) and 2¢...2 =
MN(s" yo...y1), where zg, ..., 2 € X, yo, ..,y €Y, and zg, ..., 2z € X. We
prove z,...z; =xqg...x;_, if [ > 7. Suppose that [ > 7. Let 81 = yo...¥yr_1,
B2 =yr...y;, and 8 = (S, s"). Since M" and M are equivalent, there exists
§in S such that 5 ~ 5”. Noticing that domains of 6 and A are the same and
that domains of 4 and X are the same, for any 3 in Y*, N'(8",3) is defined if
and only if X(3, 3) is defined, and X’(5”, 3) = A(3, 3) holds whenever they are
defined. Since (3132, i.e., A(s,a), is in Rys, A’(5", $1/32) is defined. It follows
that X’( s" ﬁlﬁg) = A3 ,B182). From \'(s", 3182) = N'(5", B132), it follows
that MG, B1) AO(5, 1), B2) = N'(s",B102) = 20...2. Therefore, we have

A(6(3,61),02) = 2y ...2z. On the other hand, from the construction of M,
6(5,01) = (8, (yr—1,.--,90)) for some state (5, (yr—1,...,%0)) in S!. Thus

we have )‘( ( ﬂl) ﬂ?) = )‘I(< <y7' 1»'~~ay0>>762) = )‘/(<y7'*13~-~7y0>;/82)'
Since M’ is an inverse with delay 7 of M, for any state s’ of M’, we have

N(s',0182) =x_7...x_120...2)_; forsomexz_,,...,z_1 in X. Since M’ isa
7-order input-memory finite automaton, it follows that X' ({(y-—1,...,y0),B2) =
2o ... &j—r. Thus zr...2; = A(3,51),82) = N({(Yyr—1,---,Y0),02) = zg ...
x;_.. Therefore, M" is an inverse with delay 7 of M. |

For any partial finite automaton M = (Y, X, S, :\) in j(M M"), each
root state ¢ determines a compatible set C(f) = {5 | 5 € S,5 < t}. For
any two different root states ¢ and ¢ of M, if { < #, then trees with
roots ¢ and ' are the same. Thus each C(f) only contains one root state.
From Lemma 6.1.1 (b), C(#) is compatible. We use C'(M) to denote the set
{C() | t is a root state of M}. For any C() in C(M) and any y in Y, us-
ing Lemma 6.1.1 (a), if 5(C(t),y) # @, then § < &(f,y) holds for any 5 in
5(C(),y). Since M is in J(M, M), from Lemma 6.2.2, there exists a root
state #; of M such that 6(t y) < t1. It follows that § < ¢; holds for any 3
in 6(C(1), y). Thus 5(C(1),y) C C(f1). Moreover, from Lemma 6.2.2, for any
state 3 of M, there exists a root state f of M such that § € C(f). This yields
UC’GC(M)C =S. Therefore, for any Ci, ..., Cy, (it is not necessary that i # j
implies C; # C,) if the set {Cy, ..., Cy} equals C(M), then the sequence
Cy, ..., Cy is a closed compatible family of M. It is easy to see that in case
of A(S,X) =Y, each partial finite automaton in M(C1,...,C}) is a finite
automaton whenever {C}, ..., Cy} = C(M). We use Mo(M) to denote the
union set of all M(C4,...,C%), C1, ..., Cy ranging over all sequences so that
the set {C1,...,Cy} is equal to C'(M).

Theorem 6.2.1. If M = (X,Y,S5,0,\) is an invertible finite automaton
with delay 7 and A\(S,X) =Y, then the set of all inverse finite automata
with delay T of M is Uyre 7arnr) Mo(M) up to equivalence, i.e., for any
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finite automaton M" = (Y, X,S",6", Ny, M" is an inverse with delay T of
M, if and only if there exist M in J(M,M') and M"" in My(M) such that
M/// ~ M//.

Proof. only if : Suppose that M" is an inverse finite automaton with delay
7 of M. In the proof of the only if part of Lemma 6.2.3, we construct a partial
finite automaton M = (Y, X, S, s, 5\> in J(M,M') such that M and M" are
equivalent, where M" is the input restriction of M” by M. Especially, any
state (S, s”) of M" and the root state of M corresponding to s” are equivalent;
any root state of M is a root state of M corresponding to s’ for some state

"in §”, and for any s” in S” there exists a root state of M corresponding
to s”.

Let 8" = {s/,...,s/'} and C; = {5 | 5 is a state of M", 5 < (S,s!)},i=

., h. Noticing that (S1,s”) < (S,s”) and §"((S,s"),y) < (S,8"(s",v)),
using Lemma 6.1.1, it is easy to show that the sequence C1, ..., C}, is a closed
compatible family of M”.

Let C; = {5 | 5 is a state of M, there exists § € C; such that § ~ 5},
t=1,...,h. We prove that for any root state ¢ of M and any i, 1 <i < h,
if 7 is a root state of M corresponding to s/, then C(t) = C;. Suppose that
i is a root state of M corresponding to s;. Then t is equivalent to the state
(S, /) of M". Therefore, for any 5 € S, 5 € C() if and only if § < 7, if and
only if § < (S, s!/), if and only if there exists a state 5 of M” such that 5 ~ 5
and 5 < (S, s}, if and only if there exists 5 in C; such that § ~ 5, if and only
if 5 € C;. It follows that C(t) = C;. Since for any s” in S” there exists a root
state of M corresponding to s”, we have {C},...,Cy} € C(M). Since any
root state of M is a root state of M corresponding to s’ for some state s” in
8", we have C(M) C {C1,...,Ch}. Thus {Cy,...,Ch} = C(M). Tt follows
that C4,...,CY is a closed compatible family of M.

From M M", it is easy to prove that C; = {5 | 5 is a state of M",
there exists § € C; such that § ~ 5}, 7 = 1,..., h. We prove that 6" (C;,y) C
C; if and only if 5(Cy,y) C Cj. Suppose §"(Ci,y) C C;. For any § € C;, there
exists § in C; such that § ~ 5. When 6(3,y) is defined, from § ~ 3, §"'(8,y) is
defined and 6(3,y) ~ 6”(5,y). From §"(C;,y) C C;, we have 0" (3,y) € C;. It
follows that & (5,y) € C;. Thus ) (Ci,y) C C;. Conversely, from the symmetry,
8(Cy,y) C C; implies §"(Cy,y) € C;. We conclude that 6" (C;, y) C C; if and
only if §(Ci, y) C Cj.

Construct M"" = (Y, X, {é,...,¢en},0" , \"), where

(
;\’”(@,y) N'((S,s7), ),
i=1,....h, yeY,
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j is the integer satisfying s/ = 6" (s}, y). Using Lemma 6.1.1 (a), 3" < (S, s}/)
implies 8" (5", y) < (0a(S,y), 0" (s}, y)), therefore, implies 6" (5", y) < (S, s7),
that is, 0”(5",y) € C;. It follows that §”(C;,y) C Cj. Since A\(S,X) =Y,
for any y € Y, §”((S,s”),y) and \'((S,s"),y) are defined. It follows that
§"(Ci,y) # @. Noticing (S,s!) € C;, we obtain M" € M(Cy,...,Ch).
Defining p(¢;) = s/, i = 1,..., h, using \'((S,s),y) = N'(s/,y), it is easy
to verify that ¢ is an isomorphism from M’ to M". Therefore, M"" and M"
are isomorphic.

Let M" = (Y, X, {c1,...,cn}, 0", X"}, where 8" (¢;,y) = ¢; for the inte-
ger j satisfying 6" (¢;,y) = ¢;, and N’ (¢;,y) = N"(¢;,y). Since 6" (¢;,y) = ¢;
implies 6”(Cy,y) € Cj, 8" (ci,y) = ¢; implies 8" (Cy,y) € Cj. Tt follows that
8" (ci,y) = ¢; implies 6(Ci,y) C Cj. Let t be a root state corresponding to
s!!. Then t ~ (S, s/). From (S, s!) € C;, we have t € C;. Since §"((S, s/),y)
is defined, 0(%,y) is defined. Tt follows that 6(C;,y) # @. From i ~ (S, s”),
we have \/((S,s!),y) = A({,y). Since N (G,y) = N'((S,s),y), we have
N (e y) = N"(@,y) = ME,y). Thus M" is in M(C4,...,Cy). Clearly, M""
and M"" are isomorphic. Thus M’ and M" are isomorphic. Therefore, M’
and M" are equivalent. We conclude that for any inverse finite automaton
M" with delay 7 of M, there exist M in J (M, M’) and M"" in My(M) such
that M ~ M".

if : Suppose that M” ~ M for some M" € My(M), where M &
J(M,M’). Then there exists a closed compatible family Ci,...,Cy of M
such that {C1,...,Ch} = C(M) and M"" € M(C4,...,Cy). Thus M"" =
(Y, X, {c1,...,cn},0"”, N"), where 6"'(¢c;,y) = ¢; for some j satisfying the
condition @ # 3(Ci,y) C Oy, and X(c;,y) = A(3,y), § being the root state
in C;. For any state s of M, any state ¢; of M"', 1 <i < h, and any xo, ...,
xpin X, let A(s,zo...21) =yo...y and N (¢i,y0-.-y1) = 20 - - - 21. We prove
Zr...2] = Xg...x;_, in case of 7 < [. Suppose 7 < [ and let § be the root
state in Cy. Since yo ... y; € Rar, we have dp(S,yo ... y1) # <. It follows that

A8, yo ... y1) is defined. Thus we have

N (i, A(s, @0 ... xp)) 5,90.--y1)

= A
MOy Yo - Yr1),Yr - Y1)

(3,90 -+ Yr—1)
= AME, Yo Yr— )N (OM (S, %0 -+ - Yr—1)s Yr—1, - Y0)) s Yr - - - Y1)
= A5 90- - Yr- )N (Wr—1,- -, Y0)s Yr - - 91
= 5\(5, Yoo Yr—1)TO .- Tj—r

It follows that z,...2; = zg ... 2z;—r. Thus M’ is an inverse finite automaton
with delay 7 of M. Since M" ~ M"', M" is an inverse with delay 7 of M.
O
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Joining all trees in 7/(Y, X, 7 — 1) to the partial finite automaton M/,
we get a partial finite automaton, denoted by My ax. It is easy to see that
Mmax € j(Ma M/)

Theorem 6.2.2. If M = (X,Y,5,6,\) is an invertible finite automaton
with delay T and A(S, X) =Y, then a finite automaton M" = (Y, X, S", 6", \")
8 an inverse with delay 7 of M if and only if there exist a finite automaton
M in Mo( max) and a finite subautomaton M'" of M such that M'" ~
M.

Proof. if : Suppose that M"" € Mo (Myay) and M"" ~ M" for some finite
subautomaton M" of M"". From A(S,X) =Y, M"” is a finite automaton.
Since Miax € J (M, M'), from Theorem 6.2.1, M"" is an inverse with delay
7 of M. Tt follows that M" is an inverse with delay 7 of M. From M"" ~
M", M" is an inverse with delay 7 of M.

only if : Suppose that M" is an inverse with delay T of M. From Theo-
rem 6.2.1, there exist M in J (M, M’) and M" in Mo (M [) such that M"' ~
M". Clearly, M is a partlal finite subautomaton of M. and any root state
of M is a root state of Myax. Let M" = Y, X, {c1,...,en}, 8" N") €
M(Cy,...,Cy) for ‘some closed compatible family Ci,...,Cp of M with
{C1,...,CL} =C(M ) Let #; be the root state in Cy, i = 1,...,h. It is easy
to prove that there exists a closed compatible family C1,.. .,C’;L/ of Mpax
with {C},...,Cs,} = C(Mpax) such that h < h' and #; is the root state in
C} for any 4, 1 < i < h. Clearly, C; = {5 [ § is a state of M,5 < t;} and
C! = {5 ] § is a state of Mmax,s < t;},i=1,...,h. Since M is a partial
finite subautomaton of M.y, we have C; C C” i =1,...,h. And for any
y €Y, 8(Cy,y) C C; implies dmax (fi,y) = 5(51-73;) € Cj C (1, therefore, us-
ing Lemma 6.1.1 (a), 5(Cl-,y) C C; implies Smax(CZ{,y) CClij=1,....h,
where & and gmax are the next functions of M and ]\;[max, respectively. Thus we
can construct M"" = (Y, X, {c1,...,cp }, 6" N") in M(C1,...,C},) such
that M’ is a finite subautomaton of M"”. Clearly, M"" € Mo(Mupax). This
completes the proof of the theorem. O

Noticing that the condition “there exist a finite automaton M"" in
Mo(Mpax) and a finite subautomaton M" of M"" such that M"" ~ M"”
is equivalent to the condition “there exists a finite automaton M"” in
Mo (Muax) such that M” < M 7 the theorem can be restated as the
following corollary.

Corollary 6.2.1. If M = (X,Y,S5,0,\) is an invertible finite automaton
with delay T and A(S, X) =Y, then a finite automaton M" = (Y, X, S", 6", \")
8 an inverse with delay T of M if and only if there exists a finite automaton
M in Mo( max) such that M" < M.
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We deal with the case | X| = |Y|. In this case, from Theorem 1.4.6, since
M is invertible with delay 7, we have Rj; = Y*. Thus we can construct
a finite automaton recognizer Moy, = (Y, {S}, 0,5, {S}) to recognize Ry,
where 637(S,y) = S for any y in Y. It is easy to see that both M’ and
M; are finite automata. Therefore, the partial finite automaton Mmax is a
finite automaton. Using Lemma 6.1.2, it follows that each finite automaton in
Mo maX) is equivalent to Mnax. Therefore, finite automata in Mo max)
are equivalent to each other. From Corollary 6.2.1, we obtain the following
corollary.

Corollary 6.2.2. If M = (X,Y,S,0,\) is an invertible finite automaton
with delay 7 and | X| = |Y|, then a finite automaton M" = (Y, X,S",§", \")
s an inverse with delay T ofM if and only if M" < M'", where M"" is any
finite automaton in Mg max) or M" = Mpax.

Corollary 6.2.2 means that in the case of [ X[ = [Y], the finite automaton
Mmax and each finite automaton in Mg( max) are a “universal” inverse with
delay 7 of M. And in the general case of |X| < |Y|, Theorem 6.2.2 means
that all finite automata in the set M| max) not one finite automaton in it,

constitute the “universal” inverses with delay 7 of M. But a nondeterministic
finite automaton can be constructed as follows, which is a “universal” inverse
with delay 7 of the finite automaton M.

From My = (v, X, S, 5 :\) we construct a nondeterministic finite au-
tomaton M"" = (Y, X, C(Mmax), 8", ") as follows. For any T" in C( Mipax)
and any y in Y, define 6" (T,y) = {W | W € C(Mmax),d(T,y) € W} and
N'(T,y) = {\(3,y)}, where 3 is the root state of Myax in T.

Theorem 6.2.3. The nondeterministic finite automaton M’ is an inverse
with delay T of the finite automaton M.

Proof. Let Cy be a state of M", and s a state of M. We prove that Cy
T-matches s. That is, for any | > 7, any zo,x1,...,%, 20, 21,...,2; in X
and any yo,y1,-..,u in Y, yo y1 ... y1 = A(s,xox1...2;) and zpz1...2 €
XN (Coyyoyr - --yi) imply 2zr2741...21 = ToTy ... Tj—r. SUPPOSE YoY1 ... Y1 =
A(s,zoxy ... x;) and 2921 ...21 € N (Co,yoy1 - --y1), where | > 7, x9, 21, .. .,
xy, 20,%1,---,21 € X, and yo,y1,...,y1 € Y. We prove z:2;41...21 =
Tox1 . ..T]—r. From the definition of A", there exist states Cj,...,C; of M""’
such that C;41 € 0"(Cj,y;) holds for j =0,1,...,1 —1 and z; € X(C},y;)
holds for j = 0,1,...,I. From the construction of M"’, it follows that
5(Cj,y5) € Cjyq holds for j = 0,1,...,1 — 1 and z; = A(i;,y;) holds
for j = 0,1,...,1, where tJ is the root state of M in Cj, 73 =0,1,...,1.
Let 39 = tg. Since ...y, € Ry, we can recurswely define 5,41 =
5~(§j7yj), j = 0,1,...,0 — 1. Since yo...y1 € Rum, A(8j,y;) is defined,
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j = 0,1,...,1. From 3, € Cy and 6(Cj,y;) € Cji1, j = 0,1,...,01 — 1,
we have 5; € C;, j = 1,...,0. It follows that §; < ¢;, j = 1,...,l. Thus
zj = Mtj,y;) = M3j,95), 5 = 0,1,...,1. From the construction of Myay,
:\(éj,yj) =N{Yj-1,---,Yj—r),Yj), j=T,...,1. Since M’ is an inverse of M
and yoy1 ...y = A(s,zoxy ... xl)l we have N ((yj—1,...,¥Yj—r),¥j) = Tj—r,
Jj=r,...,01. It follows that z; = A(5;,y;) = N ((yj—1,---,Yj—r),Yj) = Tj_r,
j = rm7,...,0. That is, z;2;41...21 = zox1...x;_,. We conclude that Cy
7-matches s. Therefore, M"" is an inverse with delay 7 of M. O

Theorem 6.2.4. If M = (X,Y,S5,0,)\) is an invertible finite automaton
with delay T and A\(S, X) =Y, then a finite automaton M" = (Y, X, 5" 6", \")
is an inverse with delay 7 of M if and only if M" < M.

Proof. only if : Suppose that M” is an inverse finite automaton with
delay 7 of M. From Corollary 6.2.1, there exist a closed compatible family
Cy,...,Cp of Myay and a finite automaton M = (Y, X, {c1,...,cn}, 0", N")
in M(Cy,...,Cy) such that M” < M" and {C1,...,Cp} = C(Mpax), where

g///(ci’y) _ > if (i(clvx) # 9,
undefined, if §(C;,z) = o,
N (i) A(s,y), if 3s1(s1 € C; & A(s1,) is defined),
Ci, =
Y undefined, otherwise,

i=1,....h, yey,

j is an arbitrary integer satisfying S(Ci, y) € Cj, and s is an arbitrary state
in C; such that 5\(3, y) is defined.

We prove that M < M. For any i, 1 < i < h, ¢; and C; are states of
M"" and M"", respectively. We prove ¢; < C;. For any yo,y1,...,y €Y, let
N (ci, yoyr - .- Y1) = ToT1 . ..21, where xg,x1,...,2; € X. Then there exist
states ¢;;,5 = 0,1,...,1 of M such that ¢;, = ¢;, and

Cijp1 = Sl’l(cijayj)) .7 = Oa la sl 17

xj = X///(Cij,yj), j = O7 1, 0
Thus we have S(Cij,yj) CCiyy g =01, =11t fol}ows that C;, .,
€ ¢"(Cy;,y5), 5 = 0,1,...,1 — 1. From the definitions of X and A", we
have {X"(c;;, y;)} = {A(tj,y;)} = N"(Cy;,x5), therefore, N'(C;;, y;) = {;},
j =0,1,...,1, where t; is the root state of M in C;. This yields zo 1 ...
x; € N (Ci, yoy1 - - - y1). We conclude that ¢; < C;.

For any state s” of M”, from M" < M, there exists a state ¢; of M’

such that s” < ¢;. Using ¢; < Cj, it is easy to verify that s” < C;. We conclude
MI/ < M//I.
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if : Suppose that M < M"'. For any state s” of M", we can choose a
state s of M such that s” < s”’. For any state s of M, from Theorem 6.2.3,
s"" T-matches s. Using s” < s’ it is easy to verify that s” 7-matches s. Thus
M" is an inverse with delay 7 of M. O

6.3 Original Inverses of a Finite Automaton

Given an inverse finite automaton M’ = (Y, X, 5", 8, \') with delay 7, let

N (s yo - - yr—1)y-), i N (8(S,y0 - - yr—1)y-) = 1,
undefined, otherwise,

f(yr,m,yo):{

y07"'7y‘f'€}/7

where s’ is an arbitrarily fixed element in S’. We construct a labelled tree
with level 7. Each vertex with level 4, 0 < ¢ < 7, emits |X| arcs. Each arc
has a label of the form (z,y), where € X and y € Y. x and y are called
the input label and the output label, respectively. The input labels of | X| arcs
emitted from the same vertex are different letters in X. If the labels of arcs
in a path from the root of length 7+ 1 are (zg, yo), (x1,%1), - - -, (Zr,yr), then
f(r, ..., y0) = o holds. We use 7 to denote the set of all such trees.

We use M(M’) to denote the set of all M(7,v,d), T ranging over all
nonempty closed subset of 7. (For the construction of the finite automaton
M(T,v,d), see Sect. 1.6 of Chap. 1.)

Lemma 6.3.1. If M' = (Y, X,S5,§,)N) is an inverse finite automaton with
delay T, then M’ is an inverse of any finite automaton in M(M').

Proof. Let M (7T ,v,§) be a finite automaton in M(M'). Denote M (7T, v, §)
= (X,Y, S, 4, A\). For any s in S and any x; in X, ¢ = 0,1,...,7, let
You1 ---Yr = A(s,xox1...2,), where y; € Y, i =0,1,...,7. From the con-
struction of M(7,v,J), it is easy to show that if s = (T, j), where T' € T,
then yoy1 ...y, is the output label of a path from the root of T' of length
T + 1 with input label zgz; ... x,. Therefore, f(yr,...,%0) = xo holds. From
the definition of f, for any s in S’, we have N (8'(s',yoy1 .. -Yr—1),yr) =
f@Wr, -, y0). It follows that

N(s',A(s,zox1 ... 2r)) = N (s, y0y1 - - - yr)
=N yoyr - yr— )N ('(s s woy1 -+ Yr—1),yr)
=XN(s your - Yr—1)fYrs- -5 00)
= XN(s',y0u1 ... Yr—1)70.

We conclude that M’ is an inverse of M (7 ,v,d) with delay 7. O
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We use 7, to denote the maximum closed subset of 7. Notice that 7, is
unique. We use M(M’) to denote the set of all M(T,,,v,5).

Lemma 6.3.2. If M'=(Y,X,S5",§,)N) is an inverse finite automaton with
delay 7 of M = (X,Y,S,0,)\), then there exists Mo in M(M') such that M
and some finite subautomaton of Ms are isomorphic.

Proof. We construct M (7q,v1, 1) as follows. Partition S so that s; and s
belong to the same block if and only if T (s1) = T (s3). (For the definition
of TM(s), see Sect. 1.6 of Chap. 1.) We use C, ..., C, to denote such blocks.
In the case of s € Cj, we take v1(TM(s)) = |C;|. Take 7y = {TM(s) | s € S}
and S1 ={(T,j) | Te€T,j=1,...,1(T)}.

Fix a one-to-one mapping ¢ from S onto S; such that ¢(s) = (TM(s), j)
for some j. From the definition of v, such a ¢ is existent. Define 1 (¢(s), z) =
©(d(s,x)). Tt is easy to verify that M (77,v1,81) is a finite automaton and ¢
is an isomorphism from M to M (77,v1,d1). Therefore, M and M (77,v1,01)
are isomorphic.

For any s in S and any xq, ..., . in X, let yo...y> = A(s,zq...2,),
where g, ..., y € Y. Since M’ is an inverse finite automaton with delay
7 of M, for any s’ in S, we have N(8'(s',y0...Yr-1),yr) = xo. It follows
that f(yr,...,y0) = 2o. Thus TM(s) is in 7. This yields 7; C 7. Since 7; is
closed, we have 7; C 7,,. Let

g (@ HTET,
S Y it T e T, \ T,
5.(T.i),2), i#TeT,

52(<Tai>’x):{<f’1>7 if T €T, \Ti,

where T is an arbitrarily fixed 2-successor of T' in 7,,,. Then M (7T,,,vs,02) €
M(M’). Choose M(T,,,v2,82) as My. Clearly, M(7y,v1,01) is a finite sub-
automaton of M. O

From the proof of the above lemma, we have the following corollary.

Corollary 6.3.1. If M’ = (Y, X,S5’,0',\) is an inverse finite automaton
with delay 7 of M = (XY, S, 8, \), then there exists My in M(M') such that
M and My are isomorphic.

From Lemmas 6.3.1 and 6.3.2, we obtain the following theorem.

Theorem 6.3.1. M’ is an inverse finite automaton with delay T of a finite
automaton M if and only if there exist My in M(M') and a finite subau-
tomaton My of My such that M and M, are isomorphic.
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Similarly, from Lemma 6.3.1 and Corollary 6.3.1, we obtain the following
theorem.

Theorem 6.3.2. M’ is an inverse finite automaton with delay T of a finite
automaton M if and only if there exists My in M(M') such that M and M,
are isomorphic.

Let M(7,,) = (X,Y,7,,d,\) be a nondeterministic finite automaton,
where

§(T,x) ={T | T € T,,, T is an x-successor of T},

AT, z) = {y},
TeT,,xeX,

and (z,y) is the label of an arc emitted from the root of T'. Notice that §(7, z)
and A(T, x) are nonempty.

Theorem 6.3.3. (a) M’ is an inverse finite automaton with delay T of the
nondeterministic finite automaton M(7,,).

(b) If M’ is an inverse finite automaton with delay T of a finite automaton
M, then M < M(T,,).

Proof. (a) For any state Ty of M(7,,) and any xg,x1,...,2; in X, let
You1 - --yi € MTo, wox1 ... x;), where I > 7, and yg,y1,... € Y. Then there
exist states T1,Ts,...,Ti41 of M(7,,) such that T;1; € §(T;,2;) and y; €
AT, z;) hold for ¢ = 0,1,...,1. From the definition of J, it is easy to see
that for any 4, 0 < ¢ <1 —7, (4, %), (Tit1, Yi+1), - - -5 (Titr, Yitrr) are labels
of arcs in a path from the root to a leaf of T;. This yields f(yitr,...,¥:) =
2, 0 =0,1,...,0 — 7. It follows that N (6'(s',yi ... Yitr—1),Yi+r) = x; holds
for any state s’ of M’. Thus for any state s; of M', N(s{,yoy1.--y1) =
xgy...Th_qxox1 ... x—7 holds for some z(,...,x._; in X. Therefore, M’ is
an inverse finite automaton with delay 7 of M(7,,).

(b) Suppose that M’ is an inverse finite automaton with delay 7 of a
finite automaton M. From Lemma 6.3.2, there exist My = M(7,,,v,02)
and a finite subautomaton M; of M, such that M and M; are isomor-
phic. We prove My < M(7,,). For any state (Tp, jo) of Ms, Ty is a state
of M(7T,). To prove (T, jo) < To, let xo,z1,...,2; bein X, and yoy1 ...y =
X2 ((To, jo), xox1 - - . 1), where yo,y1,...,y are in Y, and Ag is the output
function of Ms. Thus there exist states (T}, j;), ¢ = 1,...,l+1 of My such that
52(<T’i7j'i>; .Ti) = <Ti+1;ji+1> and A2(<ﬂ,ji>,$¢) = Yi, 1= 0, 1, ey l7 where 52
is the next state function of My. From the definition of M(7,,,v,d2), Tit1 is
an x;-successor of T; and (z;,y;) is the label of an arc emitted from the root
of T;. From the definition of M (7,,), we have yoy1 ...y € AM(To, zox1 ... 7).
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Thus (To,jo) < Tp. We conclude that My < M(7,,). Since M; is a finite
subautomaton of My, this yields M; < M(7,,). Since M is isomorphic to
M, we have M < M(7T,). O

Theorem 6.3.3 means that M (7,,) is a “universal” nondeterministic finite
automaton for finite automata of which M’ is an inverse with delay 7.

6.4 Weak Inverses of a Finite Automaton

Given a weakly invertible finite automaton M = (X,Y,S,§, \) with delay 7,
there exists a weak inverse finite automaton with delay 7 of M. Let M’ =
(Y, X,5",8,)) be a weak inverse finite automaton with delay 7 of M. For
each s in S, we choose a state of M’, say ¢(s), such that ¢(s) T-matches s.

For any s in S, let M, = (Y,25 8ar,{s}, Ss \ {@}) be a finite automaton
recognizer, where S; = {0a({s},8) | B € Y*}, 0as is defined in the beginning
of Sect. 6.2. Let Ry = {\(s,a) | &« € X*}. It is easy to verify that M,
recognizes R;.

We construct a partial finite automaton M| = (Y, X, S{, 6, Ay) from M’
and M as follows. Let

Sy =T>"UT°,
where

TOZUTSv

ses
>T >T
> =177,
seS

T) ={(s,8) | B € Rs,|8| <7},
127 = {(0n({s}.8),8'((s),0) | B € R, || > 7}.

For any (t,s') in 727 and any y in Y, let

<6M(t7 y)a 6/(5/3 y)>7 if <6M(t7 y)’ 6/<S/v y)> € T>T’
undefined, otherwise,

N(s'y), if (on(t,y),0'(s',y)) € T>7,
undefined,  otherwise.

So({t,s"),y) = {

)‘6(<t’ 8/>ay) = {

For any (s,3) in T2, || < 7 — 1 and any y in Y, let

(s, By), if (s, By) € T7,
undefined,  otherwise,

36((s,8), y) :{

Ao ((s, B),y) = undefined.
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For any (s,3) in T, |3 =7 — 1 and any y in Y, let

3((s,8),9)
_ {<6M({5}7ﬁy)a5/(@(S)aﬁy)>7 if <5M({S}aﬁy)a6/(§0(8)7ﬁy)> € TET,

undefined, otherwise,

)\6(<Sa 6>a ZU) = undefined.

From the construction of M{, for any 5 € Y* with |5| < 7, 6;({s,€),8) =
(s,8) if B € Rs, 6,((s,€),) is undefined otherwise. For any 8 € Y* with
18] = 7, 8((s,€),8) = (dm({s},0),6'(e(s),8)) if B € Ry, 04((s,€),)
is undefined otherwise. For any 3 € Y* with [8] > 7, §((s,€),8) =
56(<5M({3},ﬂ’)7 51(@(8)7/3/»75”) = <6M({S}vﬁ)75/(§0(s)vﬁ)> if B € R, 5(/)(<575>7
() is undefined otherwise, where 3 = 3’3" with |3/| = 7. Therefore,
04((s, &), ) is defined if and only if 5 € R;.

Lemma 6.4.1. If M’ is a weak inverse finite automaton with delay T of M,
then the partial finite automaton M is a weak inverse with delay T of M.

Proof. Suppose that M’ is a weak inverse finite automaton with delay 7
of M. In the construction of M{, for any s in S, we choose a state ¢(s) of
M’ such that ¢(s) 7-matches s. Let @ = zoxy ..., where z; € X, i=0,1,...
Then we have

N(p(s),A(s,0)) =2 _1...2_ 12021 - ..,

for some x_,,..., z_1 in X. Denote A(s,a) = $13, |81] = 7. Then f; and any
prefix of 513 are in R;. It follows that for any prefix 8’ of 515, 6(((s,e),3) is
defined. From the construction of M, this yields that for any prefix 5" of §,
Ao (60((s,€), B1), B8), i.e., Ny((0ar ({8}, B1), ' (¢(5), B1)), "), is defined and it

equals X (8'(p(s),51),8"”). Thus A\;({dar({s},51),0'(¢(s),51)),0) is defined
and it equals X (8’ (p(s), 1), B). It follows that

Ao((s,€), Als, @) = Ao((s,€), 518)
= ((s,€), 1) Ao (% ((s,€), B), B)
= No((5,), B1)A((0ar ({5}, B1), & (1#(5), B1)), B)
=l al N (0 (p(s), B1), B)
=z _...2 jxemy ...,

where #”__ = --- = 2’ = _ . Therefore, (s,e) T-matches s. It follows that
My is a weak inverse with delay 7 of M. O

Lemma 6.4.2. Let M’ be a weak inverse finite automaton with delay T of
M. For any partial finite automaton M" = (Y, X,S"”,6" X"y, M" is a weak
inverse with delay T of M if and only if My < M".
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Proof. only if : Suppose that M" is a weak inverse with delay 7 of M.
Given any s in S and any s}, in 727 UT?, from the definitions of &), and S},
there exists 3 in R, such that s, = §3((s, &), 3). Since M" is a weak inverse
with delay 7 of M, there exists s in S” such that s” 7-matches s. We prove
that 6”(s", 3) is defined. From the definition of Ry, there exists 3 in Y* such
that 3 # ¢, B3 € R, and |38] > 7. It follows that 38 = A(s, ) for some « of
length |38] in X*. Denote a = xg z; ... =, where zq, 1, ..., T, € X, and
n = |383| — 1. Since s” T-matches s, we have

N'(s",B8) = N'(s", \(s,a)) =07 ...0 120 .. Ty_r,

for some z_,, ..., z_1 in X U{_}. From 8 # ¢ and z,,_, € X, it follows that
§"(s", B) is defined.

Let sy = 8" (s",3). We prove s}, < si. Assume that 3 in Y* is applicable
to sp. In the case of B = e, it is obvious that § is applicable to s and
Ao (s, 8) < X'(s(, 8). In the case of 5 # ¢, let 3 = f1y, where y € Y. Since
is applicable to s{, d4(sg, 51), i-e., ;((s, ), B51) is defined. Thus B0 € Rs. It
immediately follows that A(s, zox1 ... 2,_1) = BB for some xq, 21, ..., Tp_1
in X, where n = |33;]. Let r = max(7, n). Take arbitrarily z,, Tpi1,..., T,
in X. Let (s, o1 ...2,) = 36182y, for some B2 in Y* and ¥, in Y. Since
s"” T-matches s, we have

N'(s", BB1Bayr) = N (8", N8, 2021 ... 2,)) =T 7 ... 2 120 .. Trr,

for some x_., ..., x_1 in X U {_}. Since r > 7, we have z,_, € X. It
follows that 6”(s”, 361 32) is defined. From " (s”, 33132) = 6" (sy, B152) =
0"(8" (sg, 1), B2), 6"(sy, 1) is defined. Therefore, § is applicable to sj.
We have proven that A(s, zoxi...T,_1) = BB1 and N'(s”,B6182y,) =
T ;... 2_120...Tr_r. From r > n, we have N'(s”, BB1) = x_+ ... 2
To ... Tn_r_1. It follows that \'(s”, BB) =27 ... T_1 20 ... Tyr—1 Tnr,
for some Z,_, in X U {_}. From the proof of Lemma 6.4.1, (s,&) T-matches
s. When X\ (8((s(,81),y) is undefined, we have

Ao((s,€),88) = Xo((s,€), BB ((5,€), BB1), y)

/ !
=z__ ... T_Tg...Tp—r_1T

wherez’ . =---=a'=ua)__=_.Sincez; <z;,i=-7,...,—1,and x

< Zn_r, we have X)((s,e),38) < N'(s”,33). This yields that \)(s},3)
N8 ((5,2), B), 8) =< N(8"(”, B),B) = N(s%, ). When Xy(8) (s B1),9) is
defined, from the construction of M}, 64(8(sy,51),v), ie., 5,((s,e), BF), is
defined. Tt follows that 33 € R,. Thus A(s,xoz; ...2,) = (B3 for some zq,

Z1, ..., Ty in X. Since (s, &) T-matches s, we have

No((s,8), BB) = Ao ((s,€), A(s, 2021 ... xp)) =2/ ... 2 120 .. Tp_r,

/
n—

I
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where /= --- =2’ = _. Since s 7-matches s, we have
N'(s",88) = N'(s", M8, 0021 ... Tn)) =Ty T 1T0 ... Ty s,

for some x_,, ..., x_1 in X U{_}. Therefore, \,((s, ), 33) < \’(s”, 33). This
yields that \y(sp, 8) < X' (sy, 8). We conclude sj < s .

Since for any s;, in S)), we can find s§ in S” such that s < sg, we have
MY < M".

if : Suppose that M < M”. From Lemma 6.4.1, M} is a weak inverse
with delay 7 of M. Thus for each s in S, there exists s{, in Sj, such that
sy T-matches s. From M) < M", there exists s” in S” such that s < s”.

We prove that s” 7-matches s. Let o = zgxy..., where z; € X, i =0,1,...
Denote yoy1 ... = A(s,xox1...), where y; € Y, i = 0,1,... Then we have
Ao(80sYoy1 -..) =T—y ... T_1 ToT7 ..., fOr some x_,, ..., x_1 € XU{_}. Since

z; € X for any j > 0, yoy1 . .. y; is applicable to s; for any ¢ > 0. From s( <
s", yoy1 ... y; is applicable to s, and Aj(sh, Yoy ---yi) < N'(s",yoy1 .- vi),
le, @ s @ ryr .. mi—r < N'(s",yoy1...4:), i =0,1,... Noticing that z; € X
for any ¢ > 0, it follows that \/(s”, A(s,a)) = X' (", yoy1...) = 2" ... 2",
Zoxy ..., for some a” _, ..., x”; € X U{_}. Therefore, s” t-matches s. It

follows that M" is a weak inverse with delay 7 of M. O

Since M is weakly invertible with delay 7, there is a finite automaton M’
such that M’ is a weak inverse with delay 7 of M. Given a weak inverse finite
automaton M’ with delay 7 of M, from M and M’, we construct a partial
finite automaton M| as mentioned above.

For any closed compatible family C1, ..., Cy of M}, according to the dis-

cussion in Subsect. 6.1.1, we can construct a set M(C1,...,Cy) of partial fi-
nite automata. We use M1 (M})) to denote the union set of all M(C4,...,Cy),
(4, ..., Cy ranging over all closed compatible family of M.

Theorem 6.4.1. If M = (XY, 5,4, \) is a weakly invertible finite automa-
ton with delay 7, then a finite automaton M" = (Y, X,8",6" N} is a weak
inverse with delay 7 of M if and only if there exist a partial finite automaton
M in My (M) and a partial finite subautomaton M of M" such that M
and M'" are isomorphic.

Proof. From Lemma 6.4.2, for any (partial) finite automaton M", M" is a
weak inverse with delay 7 of M if and only if M < M". From Theorems 6.1.1
and 6.1.2, M} < M" if and only if there exist a partial finite automaton M
in M1 (M}) and a partial finite subautomaton M"” of M" such that M and
M'"" are isomorphic. We then obtain the result of the theorem. O
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Given a weak inverse finite automaton M’ = (Y, X, S’ ¢', \') with delay 7,
let

f(yTa v ayOaSI) = /\/(5,(3/7% .. -y‘r—l)7y‘r);
seS yo,...,yr €Y.

For any s’ in .S’, construct a set 7., of labelled trees with level 7 as follows. In
any tree in 7}, each vertex with level < 7 emits | X| arcs and each arc has a
label of the form (x,y), where © € X and y € Y. z and y are called the input
label and the output label of the arc, respectively. Input labels of | X| arcs
emitted from the same vertex are different letters in X. Each vertex of the
tree has a label also. The label of the root vertex is s’. For any vertex other
than the root, if the labels of arcs in the path from the root to the vertex are
(x0,v0), (z1,91)s - -+, (Ti,y:), then the label of the vertex is 6'(s',yo ... v:)-
For any path from the root to a leaf, if the labels of arcs in the path are

(IanO)v (Ilay1)7 cee (z'rayT)a then f(y7'7 .- 'ay075,) = Zo holds.

Let 77 = US/GS/IZ;/,.

We use M’(M’) to denote the set of all M(T,v,0), T ranging over
all nonempty closed subset of 7/. We use 7, to denote the maximum
closed subset of 7”. Clearly, 7,/ is unique. Let M/(M') = {M (T, ,v,d) |
M(T),v,6) € M'(M')}. (For the construction of the finite automaton
M(T,v,d), see the end of Sect. 1.6 of Chap. 1.)

Lemma 6.5.1. If M’ is a weak inverse finite automaton with delay T, then
M’ is a weak inverse with delay T of any finite automaton in M’'(M’).

Proof. Let M(7T,v,6) be a finite automaton in M’(M'). Let M’ = (Y, X,
S, 8, Ny and M(T,v,0) = (X,Y,S,5,\). For any s = (T,j) in S and any
z;in X,9=0,1,..., let yoy1 ... = A(s,x0x1...), where y; € Y, i =0,1,...
Let sj, be the label of the root of the tree T'. Given i > 0, we use (T, j') to
denote §({(T,5),yo - - - yi—1). From the construction of M (7 ,v,0), it is easy to
show that the label of the root of 7" is ¢’ (s(, Yo - - - ¥i—1), which is abbreviated
to s;. From the construction of M(7,v,9), (4, yi), - .., (®itr,Yitr) are the
labels of arcs in some path from the root of T". Since T” € T],, we have
f(yi+7'7"‘7yi7‘9;;) = Ty Thus /
N (5 Yi o Yirr) = NS5 Vi o Yigr—1)N (0 (855 i -+ Yikr—1), Vit r)

= )‘/(5;7 Y- yi-‘rT—l)f(yi-‘rTa <9 Yis 8;)

=N (85 Yi - Yirr—1)Ti.
It follows that N (s{,yoy1...) = T_r...T_1Z0x1 ..., for some x_,, ..., x_1

in X. Therefore, s{, T-matches s. We conclude that M’ is a weak inverse of
M(T,v,0) with delay 7. O
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Lemma 6.5.2. If M’ is a weak inverse finite automaton with delay T of a
finite automaton M, then there exists M (Ty,v1,61) in M'(M') such that M
and M(T1,v1,61) are equivalent.

Proof. Let M' = (Y, X,5',0", Ny and M = (X,Y,S,0, ). For any s in S
and any s’ in S’, we assign labels to vertices of the tree T (s) as follows.
s’ is assigned to the root. For any vertex other than the root, if the labels
of arcs in the path from the root to the vertex are (zg,%0), (z1,%1), -
(z4,9:), we assign 6 (s, yo...y;) to the vertex. We use T (s,s’) to denote
the tree, with arc label and vertex label, as mentioned above. To construct
M(Tq,v1,61), take Ty = {T(s,8') | s € S, 8" € §', s’ matches s with delay 7}.
Clearly, for any z in X, T-(8(s, z), 8’ (s', A(s, z))) is an z-successor of T (s, s').
Thus 77 is closed. For any T in 77, we use s’ to denote the label of the
root of T and take v4(T') as the number of elements in the set {s | s €
S, T-(s,s") =T, s’ matches s with delay 7}. For any s” in S{, fix a one-to-
one mapping ¢4 from the set {s | s € S,s” matches s with delay 7} onto
the set {(T.,j) | T € T1,1 < j < v1(T), the label of the root of T is 5"},
where S = {s’ € §’, there exists s € S such that s’ 7-matches s}. From the
definition of vq, such a @4 is existent. For any T in 77, any j, 1 < j < 11 (T),
and any z in X, let 6;((T,j),z) = s (6(s,x)), where s = o' ((T, 5)), s" =
0'(s', A(s,x)), and s’ is the label of the root of T. It is easy to verify that if
(T, j),z) = (T',5'), then T" is the z-successor of T

Denote M (Ty,v1,601) = (X,Y, 51,81, A1). For any s in S, any s’ in S” and
any t in S, if pg(s) = t, then there exists j such that t = (T-(s,s'), j).
From the definition of T} (s, s’) and the construction of M (77,14, d7), for any
x in X, we have A(s,z) = A(t,z). And from the definition of d;, we have
01(t, ) = @sr(0(s,x)), where s = §'(s’,\(s,x)). To sum up, for any s in
S, any s in S’ and any t in Sy, if ¢ (s) = t, then for any = in X, we have
A(s,2) = A (t,x) and s (6(s,x)) = 1(t, z). Using this result repeatedly, it
is easy to show that for any s in S, any s in S" and any ¢ in Sy, if ps(s) =
t, then s ~ t. Since M’ is a weak inverse with delay 7 of M, for any s in
S, there exist s’ in S’ and ¢ in Sy such that ¢y (s) = t. It follows that for
any s in S, there exists ¢ in S7 such that s ~ ¢. Thus M < M (71,v1,01).
Conversely, for any ¢ in 51, there exist s in S and s’ in S’ such that ¢ (s) =
t. It follows that for any ¢ in Sy, there exists s in S such that ¢ ~ s. Thus
M(Tq,v1,61) < M. We conclude that M ~ M(7q,v,01).

We prove M (Tq,v1,01) € M/(M'). Tt is sufficient to prove that for any s
in S and any s’ in ', if s’ 7-matches s, then T, (s,s’) € 7). Suppose that
(zo0,90), (x1,¥1), ---, (xr,y,) are the labels of arcs in a path from the root
of T, (s, s’). Clearly, for any t = (T (s,s'), j) in S1, we have Ay (¢t,20...2,) =
Yo - - - Yr. Since s’ 7-matches s, there exists j such that (T (s,s'),j) = @ (s).
From the result shown previously, it follows that (7T-(s,s’),j) ~ s. Thus
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A($,Zg ... %) = Yo ...Yr. Therefore,

N yo - oyr) =N yo - yr— )N (8 (8" 90 - Yr—1), yr)
= /\/(3/7y0~--y7—1)$0-

It follows that f(yr,...,yo0,5) = xg. We conclude T;(s,s’) € Ty. O

From Lemmas 6.5.1 and 6.5.2, we obtain the following theorem.

Theorem 6.5.1. Let M' be a weak inverse finite automaton with delay .
Then M’ is a weak inverse with delay T of a finite automaton M if and only
if there exists My in M'(M') such that M and M, are equivalent.

Theorem 6.5.2. Let M’ = (Y, X, 5§, N) be a weak inverse finite au-
tomaton with delay 7. Then M' is a weak inverse with delay T of a finite
automaton M = (X,Y,S,6,\) if and only if there exists My in M'(M') such
that M < M.

Proof. if : Suppose that there exists My in M’(M’) such that M < M.
Clearly, My € M’(M’). From Theorem 6.5.1, M’ is a weak inverse finite
automaton with delay 7 of M. Since M < M,, M’ is a weak inverse finite
automaton with delay 7 of M.

only if : Suppose that M’ is a weak inverse finite automaton with delay 7
of a finite automaton M. From Theorem 6.5.1, there exists M (77,v1,d1) in
M’ (M") such that M ~ M(7q,v1,61). Let

oy (@) AT ET,
AR if TeT) \T,

‘ 51((T,i),z), i TeT,
d2((T = -
({0-2) {<T,1>, if 7€ T\ Ti,

where T is an arbitrarily fixed z-successor of T in 7,,. Then M(7,,v2,82) €
M'(M"). Choose M(T,,,v2,82) as M. Clearly, M(7y,v1,0,) is a finite sub-
automaton of Ms. From M ~ M(7y,v1,01), this yields M < M. |

Construct M(7,) = (X,Y, 7,5, \) as follows:

§(T,x) ={T | T € 7., is an z-successor of T},
AT, z) = {y},
TeT!, v€X,

where (z,y) is the label of an arc emitted from the root of T'. Clearly, M (7,,)
is a nondeterministic finite automaton.
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Theorem 6.5.3. (a) M’ is a weak inverse with delay T of the nondeter-
ministic finite automaton M(T,),).
(b) If M’ is a weak inverse with delay T of M, then M < M(T)).

Proof. (a) For any state Ty of M(7,) and any xzg,21,...,2; in X, let
youy1 ---yi € AT, xoxy...x), where yo,y1,...,y € Y. Then there exist
states Ty, T, ..., Ti4+1 of M (7)) such that T;11 € 6(T;, ;) and y; € AN(Ti, x;)
hold for ¢ = 0,1,...,l. From the definition of J, it is easy to see that for
any 4, 0 < ¢ <1 —7, (x4,¥i), (Tig1,Yit1)s -+ (Titr,Yirs) are labels of arcs
in a path from the root to a leaf of T;. This yields f(yitr,-..,¥:, Si) = i,
i=0,1,...,1—7, where s} is the label of the root vertex of T}, i = 0,1,...,1.
It follows that N (6'(s}, ¥i - - - Yitr—1), Yitr) = @i, ¢ = 0,1,...,1 — 7. From the
definition of M(7,,), it is easy to show that s} ; = ¢'(s},v:), i = 0,1,..., L.
Thus N(sj, . Yitr) = xi, @ = 0,1,...,1 — 7. Therefore, N'(sy, yoy1 ... ) =
T_;...T_1Xox1...x;_, holds for some x_,,...,z_1 in X. We conclude that
M’ is a weak inverse finite automaton with delay 7 of M (7).

(b) Similar to the proof of Theorem 6.3.3 (b), from Theorem 6.5.2, there
exists My = M(7,,,v,02) such that M < My. We prove My < M(T,).
For any state (Tp, jo) of Ms, Ty is a state of M(7T',,). To prove (Tp,jo) <
To, let xo,21,...,2 € X and yoy1 ...y = A2((To, Jo), Xox1 ... 2;), where
Yo, Y1, - .-,y are in Y, and As is the output function of Ms,. Then there exist
states (T;,7:), ¢ = 1,...,1 + 1 of My such that 62((T3, j;), x;) = (Tit1, Jit1)
and Ao ((T}, ji), x;) = yi, ¢ = 0,1,...,1, where d2 is the next state function
of My. From the definition of M(7,),,v,d2), Ti+1 is an x;-successor of T; and
(24, y:) is the label of an arc emitted from the root of T;. From the definition
of M(T)), vovy1--.-yi € MTo,zoz1...21). Thus (Tp,jo) < To. We conclude
My < M(T),). From M < Ms, we have M < M (7). O

This theorem means that M (7)) is a “universal” nondeterministic finite
automaton for finite automata of which M’ is a weak inverse with delay 7.

6.6 Weak Inverses with Bounded Error Propagation of a
Finite Automaton

Let M, = (Ya, Sa,da, Aa) be an autonomous finite automaton, and f a partial
function from Xt x \,(S,) to Y. We also use STM(M,, f) to denote a
partial finite automaton (X,Y, X¢ x S, 0, \), where

6(<1‘_1, sy Tegy 5a>7 $0) = <Z‘o, ey Tt 1, da(sa»)

)\(<$,1, oy T—g, Sa>ax0) = f(x07x717 o Tg, )‘a(sa))7

Ty T 1y, T_c € X, Sq € Sg.
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SIM(M,, f) is called a c-order semi-input-memory partial finite automa-
ton determined by M, and f. Clearly, a c-order semi-input-memory finite
automaton is a special c-order semi-input-memory partial finite automaton.

Let M = (X,Y,S,0,\) and M’ = (Y, X, 5,6’ \) be two finite automata.
Assume that M’ is a weak inverse finite automaton with delay 7 of M and that
propagation of weakly decoding errors of M’ to M is bounded with length of
error propagation < ¢, where ¢ > 7. Similar to the proof of Theorem 1.5.1,
we can construct a c-order semi-input-memory partial finite automaton as
follows.

Since M’ is a weak inverse finite automaton with delay 7 of M and prop-
agation of weakly decoding errors of M’ to M is bounded with length of
error propagation < ¢, for each s in S, we can choose a state of M’, say
©(s), such that (s,p(s)) is a (7, c¢)-match pair. Take a subset I of S with
{d(s,a) | sel,ae X*} =S5

We first construct an autonomous finite automaton M” = (Y, " 6" \')
mentioned in the proof of Theorem 1 5.1.

For any subset T of S, let R(T) = {\(t,a) | t € T,a € X*}. For any
state wy; of M" and any y;, .. .,yl cinY, we define f(yi,...,Yi—c, Ws,i) aS
follows. When ¢ > c and y;—c...y; € R(Ts,i—), define f(yi, ..., Yi—e, Ws i) =
N(8" (8} _ e Yi—c -+ Yi-1)Yi), Si_. being a state in T ; .. From the proof of
Theorem 1.5.1, this value of f is independent of the choice of s, .. When
T<i<cand yo...y; € R(Tsp), define f(yi, ..., Yi—c, Ws;) = Ti—r, Where
Yo.--Yi = A(s,zg...x;) for some zg, ..., z; in X. From the proof of The-
orem 1.5.1, the value of z;_, is uniquely determined by ¢ and o, ..., ¥;.
Otherwise, the value of f(y;,...,¥i—c, Ws;) is undefined. We then construct
a c-order semi-input-memory partial finite automaton SZM(M”, f) from M"

and f.

Lemma 6.6.1. STM(M", f) is a weak inverse partial finite automaton with
delay T of M. Furthermore, for any s in I, the state s = (y_c,...,y—1,Ws,0)

of SIM(M”, f) T-matches s, where y_1, ..., y_. are arbitrary elements in
Y.

Proof. Similar to the proof of Theorem 1.5.1, for any zg,...,z; in X, let
Yo.--Yj = A(s,x0...2z;) and z. = XN"(s",yo...y;), where X' is the
output function of STM(M”, f). We prove that z; = x;_, holds for any 7 <

< j. In the case of 7 < i < ¢, since yp ... y; € R(Ts ), from the construction
of SIM(M", f) and the definition off, it immediately follows that z; = x;_,.
In the case of i > ¢, take h =i if i < ts +c+ es, and take h =t 4+ c+ d if
i=ts+c+d+kesfork >0and 0 < d < es. Since h—c>ts, and h =1
(mod ey), or h = 4, we have (Ts;—¢,Te; ) = (Ts7h,c,TS7h_C). Let s;_. =

0(s,xg...i—e—1) and s;__, = 6 (¢(8),90-.-Yi—e—1). Then we have s;_. €
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Tsh—c, Sj_, € T;h_c, and yi—c...y; € R(Ts p—c). From the construction of

SIM(M”, f) and the definition of f, it is easy to show that

5///(8”/7 Yo - .. yifl) = <yi717 s Yi—c ws,h>7
i = >\H/(<yi—17 sy Yi—cy ws,h>a yl)
= fWisYiz1s - YimerWs,n) = N (8 (Si_0s Yioc - - - Yiz1), i),

where 8" is the next state function of STM(M”, f). Since (s,¢(s)) is a
(7, ¢)-match pair, we have

N0 (si_esYime--Yim1):¥i) = N(0"(2(8), 90 - - - Yi-1), Yi) = Tir-

Tt follows that z; = z;_,. Therefore, s” T-matches s. It follows that 6" (s", 3)
T-matches §(s, @), if 8 = A(s,a). From S = {i(s,a) | s € I,a € X*}, for any
sin S, there exists a state s’ of STM(M”, f) such that s’ T-matches s. Thus
SIM(M”, f) is a weak inverse partial finite automaton with delay 7 of M.

O

Lemma 6.6.2. SIM(M",f) < M'.

Proof. For any state s = (y_1,...,Y—c, ws,0) of SIM(M", f), where
se€elandy_1,...,y—c €Y, we prove s/ < ¢(s). Let yo, ..., y; € Y, j = 0.
From the construction of STM(M", f), yo ... y; is applicable to s, i.e.,
j=0or¢"(s" yo...yj—1) is defined, where ¢ is the next state function
of SIM(M", f). Let N"(s",yo...y;) = xg' ... 27" and N(p(s),v0...y;) =
g . .. o, where A" is the output function of SIM(M", f), and x}" € XU{_},

" n "

z, € X,i=0,1,...,5. We prove z/ < zf, i.e., 2}/ = z whenever z/’ is
defined, for ¢ = 0,1,...,j. There are three cases to consider.
In the case of 7 < i < cand yo ... y; € R(Ts,), there exist zo, ..., z; in X

such that A(s,zg...x;) = yo...y;. From the construction of STM(M", f),

n

we have z!” = x;_,. Since (s, ¢(s)) is a match pair with delay 7, there exist

i

T_ry ..., _1 in X such that N (o(s),y0..-4i) = T—r ... T_12Z0 ... Ti—r. It

immediately follows that « = z;_,. Therefore, we have ;" = x,. This yields
z! <
(2 7°

In the case of ¢ > ¢ and y;—¢ ... y; € R(Ts—c), from the construction

of SIM(M", f), we have z}" = N (8'(si_., Yi—c - -Yi—1),Yi), for any s;__ in

1—cC
T;i_c. Since y;—¢ ...y is in R(Ts,i—c), there exist s,_. in Ts ;_ and z;_, . . .,

x; in X such that A(sj—¢,Ti—c...T;) = Yi—c-..y;- From the definition of
Ty i—c, there exist xg, . .., Tj_c—1 in X such that §(s,z¢ ... Tj—c—1) = Si—c. Let
A(S, 20 Time—1) = Y- -Yj_o_q1, Where yg, ..., ¥yi_._; € Y. Then we have

!

AS,To - Ti) =Yy oo Yoy Yiee --- Yi- Take si_. = 0"(0(8),Y) - - Yi_oq)-

Clearly, s;_, is in T}, .. Thus for this s} ., N (6'(s}_,Yi—c---¥i-1),4:) =
z}’. Since (s, ¢(s)) is a (7, ¢)-match pair, we have



6.6 Weak Inverses with Bounded Error Propagation 211

It immediately follows that =}’ < 7.

Otherwise, from the construction of STM(M", f), z}’ is undefined. It
"<

We have proven that (y_1,...,y_c, ws0) < @(s) for any s € I and any
Y_1, .- Y—c € Y. For any state 8" of STM(M”, f), from the construction of
SIM(M", f), thereexist sin I and y;_¢, ..., y;—1 InY,0 <i < ts+ctes—1,
such that 5" = (y;—1,...,Yi—c, Ws,i). Let 8" = (y_1,...,y_c, ws0) be a state
of SIM(M", f). Then 6" (s" ,yo...y;—1) = 8" holds for any yo, ..., Yi—c—1
inY. Since s < ¢(s), we have "' (s",yo ... yi—1) < 8'(¢(8),y0 ... yi—1), L.e.,
5" < 0"(o(8),yo - - yi—1). We conclude that STM(M", f) < M'. O

immediately follows that x

Let M' = (Y, X,S’,0’,\') be a finite automaton. Assume that M’ is a
weak inverse with delay 7 of M and that propagation of weakly decoding
errors of M’ to M is bounded with length of error propagation < &, where
¢ > 7. Similar to the constructing method of STM(M", f) from M and
M’, we can construct a é-order semi-input-memory partial finite automaton
SIM(M", f) from M and M’, replacing o, Te; M", f, ¢, 8, N, ... by &,
T;i, M", f, & 6, N, ..., respectively.

Lemma 6.6.3. If¢<c, then SIM(M", f) < SIM(M", f).

Proof. From the construction of SIM(M”, f) and STM(M", f), it is
sufficient to prove that for any s € I and any y_1, ..., y_. € Y, the state 5"
of SIM(M", f) is stronger than the state 5" of SIM(M", f), where " =
(Y1yee oy Yo, Ws0), 8" = (Y—1,...,Y—z,Ws 0). Since any [ in Y* is applicable
to s and 5", s"" < &" if and only if for any B in Y*, M'(s", 3) < X" (3", 3),
where A\ and A"/ are output functions of STM(M", f) and STM(M", f),
respectively.

For any yo, ..., y; in Y, j > 0, let zp’"...2}" = N"(s"",y0...y;) and

"

Ty ...5:;.” = X’”(E”’,yo...yj), where x’, 7", i =0,1,...,j are in X U {_}.

7 70
We prove z/ <z, i=0,1,...,7. There are four cases to consider.
In the case of T < i < cand yp ... y; € R(Ts), there exist zo, ..., z; in
X such that A(s,zg...2;) = yo ... y;. From the construction of STM(M", f)

and SIM(M", f), using ¢ < ¢, we have 2/ = x;_, and 7/ = z;_,. It

i
immediately follows =7/ = z!’, therefore, z/" < z/".

i
In the caseof e <i < cand yp ... y; € R(Ts0), there exist g, ..., z; in X
such that A(s,zg...x;) = yo...y;. From the construction of STM(M", f),
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we have z/// = z;_,. Using Lemma 6.6.1 (in the version of STIM(M", f)),

i

we have \M'(8",yo...vi) = _y...2_1%g...T;_, for some x_,, ..., x_; in
X U{_}. It immediately follows that z}" = x;_,. Therefore, =}’ = z}’. This
yields z/" < z}".

In the case of i > ¢ and y;—c ... y; € R(Ts,i—c), there exist s,_. in
Tsi—cand z;_g, ..., x; in X such that A(s;—c,Zi—c...%;) = Yi—c...Yy;. From
Si—c € Tsi—c, there exist xg, ..., Ti_c—1 in X such that §(s,zo...Ti—c—1) =

Si—c- Let AM(s,20 ... ®i—ee1) = Yo - Yi_o_q, Where y(, ..., Yi_._q € Y. Then
we have A(s,x0...2;) = Y§..-Yi_e_1Yi—c-.-Y;. Using Lemma 6.6.1, it is
easy to see that N (8" (8", y .- Y e 1Yi—c---Yi-1),¥i) = Ti—,. Similarly,
using Lemma 6.6.1 (in the version of STM(M", f)), we have X" (5" (3",
Yoo Yooy Yiee---Yie1),Yi) = Ti—r. Since

)\/"(5”/(8/”, Yo .- yi—l)a yz) = )\///(<yi—1; sy Yi—c 5/Ii(ws,0)>7 yz)
= N"(8"(8" Yo - Yimem1Yimc -+ Yio1)sYi) = Timr,

we have z = x,_,. Similarly, we can show z}’ = z;_.. Therefore, z/’ =

This yields =’ < z}".

Otherwise, from the construction of SIM(M", f), z’ is undefined. It
immediately follows that "’ < z}”. O
Theorem 6.6.1. Let M = (X,Y,S,6,\) and M' = (Y, X, 5,6, N) be two
finite automata. Assume that M' is a weak inverse finite automaton with
delay 7 of M and that propagation of weakly decoding errors of M' to M is
bounded with length of error propagation < ¢, where ¢ = 7. Let STM(M", f)
be a c-order semi-input-memory partial finite automaton constructed from
M and M'. Then for any finite automaton M' = (Y, X,S", 8 X}, M' is a
weak inverse finite automaton with delay T of M and propagation of weakly

decoding errors of M’ to M is bounded with length of error propagation < c,
if and only if SIM(M", f) < M'.

Proof. only if : Suppose that M’ is a weak inverse finite automaton with
delay 7 of M and that propagation of weakly decoding errors of M’ to
M is bounded with length of error propagation < c. Let SIM(M”, f) be
a c-order semi-input-memory partial finite automaton constructed from M
and M’. From Lemma 6.6.2 (in the version of STM(M”, f) and M'), we
have SIM(M", f) < M'. From Lemma 6.6.3, SIM(M", f) < SIM(M", f)
holds. It follows that STM(M", f) < M.

if : Suppose STM(M", f) < M’. From Theorem 6.1.2, there exist a closed
compatible family C4, ..., Cx of SIM(M", f), a partial finite automaton
M in M(C4,...,Cy), and a partial finite subautomaton My of M’ such that
M, and M, are isomorphic. It follows that there exists a finite automaton
Mz = (Y, X, S5, 03, A3) such that M; is a partial finite subautomaton of Ms



6.6 Weak Inverses with Bounded Error Propagation 213

and M3 is isomorphic to M'. Therefore, proving the if part is equivalent to
proving that Mj is a weak inverse finite automaton with delay 7 of M and
propagation of weakly decoding errors of M3 to M is bounded with length
of error propagation < c. Since S = {d(s,a) | s € I, € X*}, it is sufficient
to prove that for any s in I, there exists a state sz of M3 such that (s, s3) is
a (7, ¢)-match pair.

Given arbitrarily s in I, we fix arbitrary c elements in Y, say y_, ..., y_1,
and use s to denote the state (y_1,...,y_c, ws,0) of STM(M", f). Suppose
that s/ € C}, for some h, 1 < h < k. Since U1<i<kC; is the state alphabet
of SIM(M", f), such an h is existent. From Lemma 6.6.1, s/ 7-matches s.
From Lemma 6.1.2, we have s”’
to C}. Since M is a partial finite subautomaton of M3, ¢;, is also a state of
M; and s < ¢;, also holds. This yields that ¢, T-matches s.

< c¢p, where ¢y, is a state of M; corresponding

We consider the error propagation. Given arbitrarily zg, ..., 2; in X,
1>0,let M(s,zg...21) =yo...y and As(ch, Yo ... y1) = x( ... x], where y; €
Y,z € X,i=0,1,...,1. Given arbitrarily v, ..., y,_1 € Y, n < [, let

As(Ch, Yo - - Yn1Yn .- Y1) = (... 2}, where 2, € X,i=0,1,...,l. We prove
Ty ... 2] =, ... .2 In the case of n4c > [, this is trivial. In the case of
nt+e<llet W={w|3g_,....,5-1 €Y ((§=1,...,F=c,w) € Cp)}. For any
r,n+c < r <1, we have r —c > n. Since M, is a partial finite subautomaton
of M3 and M; € M(Cy,...,Cy), from the construction of My, it is easy to
see that

Ci 2 5/”(0}“@/0 s y?“—l) = {<y7’—17 sy Yr—cy 5//T(w)>’w S W}7
Cj 2 5”I(Ch; y6 KR y;71yn LR yrfl) = {(y’rfh sy Yr—c, 6//r(w)>aw € W}>

where C; and C; correspond to ¢; = §1(¢cp, Yo ... Yr—1) and ¢; = d1(ch.yg - - -
Yh_4 Yn ... Yr—1), Tespectively, and ¢ and 4; are the next state functions
of SIM(M”, f) and My, respectively. Let s = 6"'(s",yo...yr—1). From
r—c 2= n, we have s/ = 8" (" yl, ... Yh_1Yn .. yr—1). It follows that s/ €
C; and s € Cj. Since s T-matches s, we have X" (s, y,) = x,_,, where
A" is the output function of STM(M", f). From the construction of M7, we
have A1 (ci,yr) = N(s? yr) = zr—r and Ai(cj,yr) = N (s, yr) = s,
where A; is the output function of M. It follows that Ai(c;, yr) = M(cj, yr)-
Since M is a partial finite subautomaton of M3, we have A\i(c;, y,) = !/ and
Ai(¢j,yr) = .. Therefore, a] = x/.

We conclude that (s,cp) is a (7, ¢)-match pair. Taking s3 = ¢, then s3
satisfies the condition: (s, s3) is a (7, ¢)-match pair. O

Corollary 6.6.1. Let M = (X,Y,S,6,\) and M' = (Y, X,5",6', X'} be two
finite automata. Assume that M' is a weak inverse finite automaton with
delay 7 of M and that propagation of weakly decoding errors of M' to M is
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bounded with length of error propagation < ¢, where ¢ = 7. Let STM(M", f)
be a c-order semi-input-memory partial finite automaton constructed from
M and M'. Then for any finite automaton M' = (Y, X,S’,&6', XY, M' is a
weak inverse finite automaton with delay T of M and propagation of weakly
decoding errors of M’ to M is bounded with length of error propagation < c, if
and only if there exist a closed compatible family C1, ..., Cx of SIM(M", f),
a partial finite automaton My in M(Cy,...,Cyk), and a finite automaton Ms
such that My is a partial finite subautomaton of Mz and M3 is isomorphic
to M'.

Historical Notes

Partial finite automata are first discussed in [58, 73]. The concept of < is
introduced in [48], and the concept of compatibility is introduced in [3]. Sub-
section 6.1.1 is based on [80]. Nondeterministic finite automata are defined
in [86] for the proof of Kleene Theorem, and a systematic development first
appears in [94], see also [95]. Structures of some kinds of finite automata with
invertibility are studied in [64]. Given a finite automaton, the structures of
its inverses, its original inverses, its weak inverses, its original weak inverses,
and its weak inverses with bounded error propagation are characterized in
[111, 18, 19, 20]. Sections 6.2 and 6.4 are based on [19]. Sections 6.3 and 6.5
are based on [18]. Section 6.6 is based on [20].
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Summary.

Autonomous finite automata are regarded as sequence generators. For
the general case, the set of output sequences of an autonomous finite
automaton consists of ultimately periodic sequences and is closed under
translation operation. From a mathematical viewpoint, such sets have been
clearly characterized, although such a characterization is not very useful
to cryptology. On the other hand, nonlinear autonomous finite automata
can be linearized. So we confine ourself to the linear case in this chapter.
Notice that each linear autonomous finite automaton with output dimen-
sion 1 is equivalent to a linear shift register and that linear shift registers
as a special case of linear autonomous finite automata have been so in-
tensively and extensively studied. In this chapter, we focus on the case of
arbitrary output dimension. After reviewing some preliminary results of
combinatory theory, we deal with representation, translation, period, and
linearization for output sequences of linear autonomous finite automata.
A result of decimation of linear shift register sequences is also presented.
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Autonomous finite automata are regarded as sequence generators. For the
general case, the set of output sequences of an autonomous finite automa-
ton consists of ultimately periodic sequences and is closed under translation
operation. From a mathematical viewpoint, such sets have been clearly char-
acterized, although such a characterization is not very useful to cryptology.
On the other hand, nonlinear autonomous finite automata can be linearized.
So we confine ourself to the linear case in this chapter. Notice that each lin-
ear autonomous finite automaton with output dimension 1 is equivalent to a
linear shift register and that linear shift registers as a special case of linear au-
tonomous finite automata have been so intensively and extensively studied.
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In this chapter, we focus on the case of arbitrary output dimension. After
reviewing some preliminary results of combinatory theory, we give several
representations for output sequences of linear autonomous finite automata.
Then translation, period, and linearization for output sequences of linear
autonomous finite automata are discussed. Finally, we present a result of
decimation of linear shift register sequences.

7.1 Binomial Coefficient

Let n and r be two integers. We define

(MY =nn—1)...(n—r+1)/rl, ifr>0,
(6) =1,
(M=o, if n>0, r<Oo,
where r! stands for the factorial of r, that is, r! = H;Zli for » > 0, and
| =
' Ct!arly,
() =0r),  ifnzr>o0 (7.1)
We prove
(Z) = (n;l) + (:f:i), if r>0o0rn>0. (7.2)

In the case of r =1, (7.2) is evident. In the case of r > 1,

(") + ()
=n—-1)n=-2)...(n—7)/rl+(n—1)(n—-2)...(n—r+1)/(r—1)!
=n-1)n-2)...(n—r+)(n—r+r)/r
= (7).

In the case of r < 0 and n > 0, we have (::i) =0 and (Z) = (”;1); therefore,

(7.2) holds.
We prove by induction on j the following formula:

J
(TTH =01, ifjizo (7.3)
i=0

. . j i+r—1 r—1 j+r r
Basis : j = 0. We have >7_, ("*"7") = (";') =1 and (jj )= (§) =1. Thus
the equation in (7.3) holds. Induction step : Suppose that the equation in
(7.3) holds and j > 0. From the induction hypothesis and (7.2), we have
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Jjtl J_ ‘
> (T =X (D + 03
=0 =0

_ (3FT ji+r\ _ (j+1+7
= (50 + G = (5
That is, the equation in (7.3) holds for j + 1. We conclude that (7.3) holds.
From (7.3) and (7.1), we obtain

r—1 T

2

i
(=0, itj=0,r>0. (7.4)
=0

A polynomial f(z) over the real field is called an integer-valued polynomial
if for any integer n, f(n) is an integer.

For any nonnegative integer r, let (“1") = (z+r)(z+7—1)...(z+1)/r!

if » > 0, and (g) = 1. Clearly, (x':r) is an integer-valued polynomial of

x+r

degree r. It follows that if ag, ..., ai are integers, then Zl::o ar( M

) is an
integer-valued polynomial. Below we prove that its reverse proposition also
holds.
We define a difference operator V: Vg(z) = g(x) —g(z—1). Let VVg(z) =
g(z), V' tig(z) = V(V"g(z)). It is easy to verify that
V() = (Y, ifi>o, (7.5)

% 1—1

v(;) =0

From (7.5), it is easy to prove by induction on r that for any nonnegative
integers r and 1,

T+i—r ifo
r (i (L), iz
. = 7.6
v ( ¢ ) { 0, if i <r. (7.6)

We prove
V'g(x) = Z(—l)z(:)g(x —4), ifr>0 (7.7)

by induction on r. Basis : 7 = 0. Clearly, the two sides of the equation in (7.7)
are g(z). Thus the equation in (7.7) holds. Induction step : Suppose that the
equation in (7.7) holds. From the induction hypothesis and (7.2), we have

VHg(z) = Vg(x) — V'g(z — 1)

T T

=3 (=)' (Dgle—i) =Y (-1 (gle—i—1)

=0 =0
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r r+1
=D (D) (Dgle =) =Y (=17 (" )glz — )
=0 i=1
r+1
=3V O+ ()] s =)
=0
r+1 .
=Y (1" gx ).
=0

Thus the equation in (7.7) holds for  + 1. We conclude that (7.7) holds.

Theorem 7.1.1. Any integer-valued polynomial f(x) of degree k can be
uniquely expressed in form Z]::o a, (“’jr), where ag,ai,...,a, are integers
and ay # 0, and

T

ar =V f(2)|p=1 = Z(_1)i(§)f(—1 — i), (7.8)
i=0
r=0,1,... k.
Proof. Tt is easy to prove by induction on the degree k of f(x) that f(z)

can be expressed in the form 3¢ a, ("1") with ay, # 0.
Now suppose that

k
f@)=>a("I). (7.9)
r=0

We prove (7.8). Using (7.6), taking V operation r times on two sides of (7.9)
gives

r=0,1,...,k
It follows that
k
V' f(z)|g=—1 = Zai (fi:l) = ay,
r=0,1,...,k
From (7.7), (7.8) holds. O

Applying Theorem 7.1.1 to f(7) = (T+Zf§_1) for k > 1, since

V) = ()
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and (Tﬂif?*l) is a degree k — 1 polynomial of the variable 7, we have
k-1
T+c+k 1 Z 1—}];0—&-1]6 Tl r ‘r—:r)
r=0
k
=2 (ETHEEY, (7.10)
h=1
k=1,2,.
Applying Theorem 7.1.1 to f(7) = (“T,:'_kl_l), we have
k—1 r ) ‘
(TN =20 DoY) RO
r=0 =0
k a—1 ) .
=2 Do EEEICEY, @
a=1 =0
k=1,2

Expanding two sides of the equation (7.11) into polynomials of the variable 7
and comparing the coefficients of the highest term 7!, we obtain that the
coefficient of the highest term (T+k 1) in the right side of (7.11) is u*~1.

Applying Theorem 7.1.1 to f(7) = HZ:l (T}L‘fffl), we have

=

ki+4-+kp— h r h
H T+k 71 _ 2 : H —1—c+kq 71 T+r)
kqo—1 - ko—1 r
a=1 r=0 c= a=1
ki+-+kn—h+1 k 1
. k: —2— c T+k 1
= > - ) (7.12)
k=1 c=0 a:l
Lkn=1,2,...

=)
>

Since k, —1 >k, —2—c>ky,—1—k >0 whenever 0 < ¢ < k < k,, we have
(k —2 1) = 0. Thus (7.12) can be written as

ka—
h ki+--+kp—h+1 k-1 h
H ‘r—]&;kﬁ;l — Z [ (_1 kk—ilc ‘r+k 1)’
a=1 k=max(k1,...,kn) ¢=0 a:l
kv k=12, .. (7.13)

In the case of h = 2, for computing the value in the square brackets in
(7.13), we may use the following formula.

2 DRI = (0 )

c=0
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— (_1)r1+r2+r< T1 )(r) (714)

T—T2 ™1
(_1)7"1+7"2+7“7«!
(r—r)lr —r)l(ry +rg — 1)’

r,ri,re=0,1,...,

where (—n)! = oo if n > 0 by convention. We prove (7.14) by induction on r.
Basis : 7 = 0. The two sides of the equation (7.14) take 0 whenever 1 # 0
or ry # 0, take 1 otherwise. Thus (7.14) holds. Induction step : Suppose that
(7.14) holds for r — 1 (> 0), that is,

r—1

Z(_l)C(T;l) (—1;(:+7‘1) (—1—Tz‘+7'2) _ (_1)r1+r2+r71 (T_;'g_rl) (7';1)
c=0
= (=t (Y. (7.15)

We prove that (7.14) holds for r. There are four cases to consider. In the case
of r1,72 > 0, using (7.2) and (7.15), we have

2D

3

=) D) A DI

_ g(—l)c(rgl) (1) (1) ;il(_l)c(r;l) (2 ()
B :_:(‘””(’”?) (")

—g(_l)c(rf) (7179 — (29 [(759) — (2229)]
B :(_1)6(Tcl) (") + :2:;(—1)6(“01) (1) (22

DY E S RIEy
c=0
= ()0 + () E) + (D)
(71)7’1+7’2+7’ (r—ril)) (TTQ) .

In the case of r; = ro = 0, using (7.2) and (7.15), we have

s T

DD @) = > =0 + ()]

c=0 c=0
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=S = S (Y
c=0 c=—1

S Y = Y
c=0 c=0

= D)) ()

In the case of r; > 0 and ro = 0, using (7.2) and (7.15), we have

OO = 20O

c=0 c=0

(D[ + DI

[ 0
S o —
Nilsgh
= O

Il
(]

)+ D) ()

= i(_l)c(rzl) (—1—Ti+r1) _ Z(_l)c(rzl) [(—1—Tf+r1) o (_27;3.:,1.“)]

3 0
Il
= O

|
(]

(0T

3 0
I
=

0T

c=0
= (=ymrr (L e ) ()
= (=0 () ()

In the case of 72 > 0 and r; = 0, from symmetry, the above case yields

s

DD ) = o () ()

c=0

We conclude that (7.14) holds for r,ry, 72 > 0.
Taking ro = 0, (7.14) is reduced to

3

(_1)0(2) (—1—;—&-7“1) — (_1)7-1+7‘ (T,OTI) (6)

L if r=rq,
10, if £,

r,ry =0,1,...



222 7. Linear Autonomous Finite Automata

Taking r; = ro = 0, (7.14) is reduced to

T 1, ifr=0
~1)¢ Ty 1) 0\ (r —_ ’ ’
From (7.12),(7.13) and (7.14), we have
k1+ko—1
(e = >0 (R (DD ()
k=1

ki1+ko—1

= Y MRS,

k=max(k1,k2)

ki,ko =1,2,...
Similar to Theorem 7.1.1, we can prove the following theorem.

Theorem 7.1.2. Any integer-valued polynomial f(x) of degree k can be

. . k .
uniquely expressed in the form Y _, a, (f), where ag, a1, ...,ax are integers
and ax # 0, and

T

= T o = S )
=0
r=0,1,...,k.

Applying Theorem 7.1.2 to f(w) = (‘”hwe), e being a positive integer, we
have

() = Z [Z:(*l)'H BIGIIE (7.16)
h=01,...

Expanding the two sides of the equation (7.16) into polynomials of w and
comparing the coefficients of the highest term w”, we obtain that the coeffi-
cients of the highest term (}) in the right side of (7.16) is e”.

Let p be a prime number. Since ged(r,p) = 1 for any r, 0 < r < p, we
have

(*)=0 (modp), 0<r<p. (7.17)

It is easy to see that

’JJer Z "y, (7.18)

r=0
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From (7.17) and (7.18), we have
(z+y)P =2 +y? (modp), if pis prime.
Theorem 7.1.3. (Lucas) Let p be a prime number. If

k k
n:Znipi, 0<n; <p, r:Zripi, 0<r; <p, (7.19)
i=0 1=0

then
k
() =TIC)  (modp). (7.20)

Proof. Since (1 +x)? = 1+ 2P(mod p), we have (1 + x)™PT* = (14 zP)™
(14 2)*(mod p). Using (7.18), this yields

mp+a m a
S (= (32 () (2 () (mod ).
i=0 i=0 i=0

Expanding two sides of the above equation and comparing the coefficients of
the term z"P1?, we obtain

(mrtay { 0 (mod p), if0<a<b<p,
PTG (modp), f0<b<a<p.
Therefore,
(et = (3)(3) (modp), if0<a,b<p. (7.21)

We prove by induction on k that (7.20) holds for any k, n and r satisfying
(7.19). Basis : k = 0. That is, n = ng and r = ro. Thus () = (7;3)(m0d D).
Induction step : Suppose that (7.20) holds for any n and r satisfying (7.19).
Let

k1 k1
n’:Znipl,Ogni<p, r’:ZTiPZ,O<Ti<P~
i=0 i=0

Then n’ = np + ng and 7’ = rp + rg, where

k k
n= Zni+1pl, r= Zri+1p1.
i=0 i=0

From (7.21) and the induction hypothesis, we have
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(5) = (12mo) = (M) (™) (mod p)
k
= (> () () (mod p)
1=0
k+1

=>" (") (modp).
1=0

We conclude that (7.20) holds for any k, n and r satisfying (7.19). O

7.2 Root Representation

Consider (generalized) polynomials over GF(q). Let ¢(z) = Zf:k a;z" be a
(generalized) polynomials over GF(q), where h,k are integers, h > k, and
a; € GF(q),i=k,k+1,...,h. maxi[a; # 0] is referred to as the high degree
of ¢, and mini[a; # 0] is referred to as the low degree of 1. In the case of the
zero polynomial, its high degree is co and its low degree is —oo. Clearly, if the
high degree and the low degree of ¥;(z) are h; and k;, respectively, i = 1,2,
then the high degree and the low degree of the product of ¥ (2) and ¥a(2)
are hi + ho and ki + ko, respectively. For any polynomial ¢ and any nonzero
polynomial ¢, it is easy to show that there exist uniquely polynomials ¢(2)
and r(z) such that

¥(2) = q(2)p(2) +1(2),

r(2) = 0 or the low degree of 7(z) > the low degree of p(2), and ¢(z) = 0 or the
high degree of g(z) < 0. Denote the unique ¢(z) and r(z) by Quo’ (¢ (z), p(2))
and Res'(¥(z), p(z)), respectively. It is easy to verify that for any nonzero
polynomial x(2), we have Quo'(x(2)¥/(2), x(=)¢(2)) = Quo' ((2), p(2)) and
Res' (x(2)1(2), x(2)¢(2)) = x(2) Res' (=), o(2).

Let M = (Y, 5,4, \) be a linear autonomous finite automaton over GF'(q)
with structure parameters m,n and structure matrices A, C'. That is, Y and
S are column vector spaces of dimensions m and n over GF'(q), respectively,
0(s) = As, A(s) = Cs, and A and C are n x n and m x n matrices over
GF(q), respectively. A and C are referred to as the state transition matriz
and the output matriz of M, respectively.

For any s € S, the infinite output sequence generated by s means the
sequence Yoy1 ... Yi..., where y; = A(6%(s)) for i > 0. We use @p;(s) to
denote [yo, Y1, - i, - -], and use Pps(s,z) to denote its z-transformation
S yiz'. For any i, 1 <4 < m, we use @S\})(s) and @g\? (s, 2) to denote the
i-th row of @s(s) and the i-th component of $p;(s, z), respectively. Clearly,
@g\i[)(s, z) is the z-transformation of sﬁg&)(s)
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Similarly, for any s € S, we use ¥y, (s) to denote the infinite state sequence
generated by s

Unr(s) = [5,6(s),...,8%s),...],
and use Wp/(s,z) to denote its z-transformation > :°,6°(s)z". For any i,
1 <i < n, we use LD]\(;[)(S) and WJ(\})(S,Z) to denote the i-th row of Wy (s)
and the i-th component of Wy,(s, z), respectively. Clearly, W](VZI)(S,Z) is the
z-transformation of WJ(J[) (s). Notice that the elements of @ (s, z) and ¥y (s, 2)

are formal power series of z and can be expressed as rational fractions of z.
Define

Oy ={Pp(s), s€ S}, Pu(z) ={Pun(s,2), s €S},
WM:{LD]\/[(S), SES}, WM(Z):{LDM(S,Z), SGS},
U = {07 (s), s € 8}, 03 (2) = (¥} (5,2), s € 5.

Let f(2) = 2"+ an_12""1 4+ -+ + a1z + ap be a polynomial over GF(q).
Recall that Py () is used to denote the n x n matrix

0 1 -0 0
0 0 -0 0
o 0 ---0 1
—Q@p —ap r - —Ap—2 —0n-1

If A= Py for some f(z), M is called a shift register. If M is a shift register
and A = Py(), then f(z) = |2E — A|, where E stands for the n x n identity
matrix. f(z) is referred to as the characteristic polynomial of M.

Theorem 7.2.1. Let M be a linear shift register over GF(q), and f(z) the
characteristic polynomial of M. Let g(z) be the reverse polynomial of f(z),
i.e., g(z) = 2" f(z71). Then for any state s of M, we have

iy (s, %) = nzl hiz*/g(2), (7.22)
k=0
where
t L
; =Qr=s Qe =|: 1 i i (7.23)
};/n—l as  az --- 1 0

a1 as - - an_ll
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Proof. Let M’ be a linear shift register with structure parameters n, n
and structure matrices A, E. Then Wy (s) = @y (s). Since the free response
matrix of M’ is E(E—2zA)"! = (E—2A)~!, we have ¥y(s,2) = (E—2zA) !
Since |zE — A| = f(z), we have g(z) = |E — zA|. Letting s = [sg,. .., Sp—1]

1.1

z
T
.12),(1.13) and (1.14) in Sect. 1.3 of Chap. 1, we have

and a, = 1, using (

— n—1—j
Ll7(1) (s,2) 1 + an_iz)20s: | |E — zA
fi
i=0 i=1
—1-

n

3
|
—

—J

Z Gy ,z 2Is;/g(2)

Il
I
- o

S .
|

3

|

-

An—k+555) 2" /9(2)

I

L[]
[ )

—

ankaerj)Zk/g(z)

I
]
Ingiiing

i T
= o
<
Il
o

hiez®[g(2).

=
Il
o

Thus (7.22) holds. O

Corollary 7.2.1. Let M be a linear shift register over GF(q), and g(z)
the reverse polynomial of the characteristic polynomial of M. Then 1/g(z),

2/9(2), ..., 2" /g(2) form a basis of 471(\})(2)

Proof. Let h = [hg, ..., hn_1]T. From Theorem 7.2.1, for any Wj(é)(s, z) in
!Pj(\})(z), we have W]\(/l[)(& z) = Z;é hi,2¥ /g(z), where h = Q(,)s. Conversely,
for any ho, ..., h,—1 in GF(q), since Q(.) is nonsingular, there is s in S such
that h = Q(;)s. From Theorem 7.2.1, we have W](\})(s, z) = Z;S hiez¥/g(2),
Thus

S s fg(z) € 1D (2)
k=0

Clearly, if hg, ..., h,_1 are not identically equal to zero, then Z:fé hi 2" /g( )
# 0. We conclude that 1/g(z), 2/g(2), ..., 2" ~1/g(z) form a basis of W( (2).
O

The basis [1/g(2),2/g(2),...,2""1/g(2)] is referred to as the polynomial
basis of WJ(\})(Z) and [ho, . .., h,_1]T is referred to as the polynomial coordinate

of 3120 hez¥ /g(2).
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Let .
ci(z) = Zcikzlfk, i=1,...,m,
k=1
where C = [¢;;]mxn 1S the output matrix of M. ¢;(2),i =1, ..., m are referred

to as the output polynomials of M, and

F'(2) = f(2)/ ged(f(2), (=71, - em(z71))

is called the second characteristic polynomial of M.

For any infinite sequence {2 = [bg, b1, ..., b;,...], we use D({2) to denote
the sequence [by, ba, ..., b;,...], the (one digit) translation of {2. Similarly, we
use D(Y 2, b;z") to denote > .2 b;y12'. We define DO(2) = 2, DT (2) =
D(D4(2)), D°(£2(z)) = 2(z), D (£2(2)) = D(D*(£2(2))).

Theorem 7.2.2. Let M be a linear shift register over GF(q) with structure
parameters m,n. Let g(z) be the reverse polynomial of the characteristic poly-
nomial of M, and cx(2),k = 1,...,m the output polynomials of M. Let n' be
the degree of the second characteristic polynomial of M. Then the dimension
of Ppr(2) is n', and 2(z) € Pp(2) if and only if there exists a polynomial
h(z) of degree < n over GF(q) such that 2"~ |h(z) and

Res'(c1(2)h(2),9(2))/g(2)
06— | - | (7.24)

Res’(cm(Z)h(Z), 9(2))/9(z)

Proof. We first prove the following result: for any s € S and any polyno-
mial h(2) = 10 hiz?, if [ho, - .., hao1]T = Q (25, then

Res'(c1(2)h(2), 9(2))/9(2)
Drr(s,z) = | ¢ ) (7.25)
Res'(em (2)h(2), 9(2))/9(2)
where f(z) is the characteristic polynomial of M. In fact, from Theo-
rem 7.2.1, W1 (s, 2) = h(z)/g(2). It follows that Wy, (s, z) = [D°(h(z)/g(2)),
D'(h(z)/9(2)), .-, D"~ !(h(2)/g(2))]". Thus

D (s, 2) = CID"(h(2)/g(2)), D' (h(2)/9(2)), ..., D"~ (h(2) /9 ()]
= [c(D7H)(W(2)/9(2)); - - ca—1 (D7) (R(2) /9 ()]

Clearly, D*(h(z)/g(z)) is the nonnegative power part of z=*(h(z)/g(z)). Thus
for any i, 1 < i < m, Yo, cixD¥"1(h(2)/g(2)) is the nonnegative power
part of > p_; cixz'™F (h(2)/9(2)) = ¢i(2)h(2)/g(z). Therefore, (s, z) is
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the nonnegative power part of [c1(2)h(2)/g(2), - - ., cm(2)h(2)/g(2)]T, that is,
(7.25) holds.

Suppose that (7.24) holds for a polynomial h(z) of degree < n over GF(q).
Let s = Q;(lz)[ho,...,hn_l]T, where h(z) = Y77 h;z'. From (7.24) and
(7.25), we have 2(z) = @ps(s, 2); therefore, 2(2) € Ppr(2).

We prove a proposition: If h(z) = S0 h;2z* and h(z) = Y1) hi2" are
two polynomials over GF(gq), then

Res'(c1(2)h(2),9(2))/9(2) Res'(c1(2)(2), 9(2))/9(2)
: =|: (7.26)

Res' (e (2)h(2), 9(20)/9(2) | | Res'(cm(2)R(2), 9(2))/9(2)

holds if and only if f/(2)|(h/(2)—h'(z)), where h'(z) = 2" ~'h(1/2) and W' (z) =
2"~1h(1/z). In fact, since for any i, 1 <i < m, c(2) = ¢;(1/2) is a common
polynomial, there exist uniquely common polynomials ¢}(z) and 7}(z) such
that ¢;(2)h(z) = ¢i(2)f(z) + ri(z), ri(z) = 0 or the degree of ri(z) < n.
It follows that c;(2)h(z) = 2" 1l (1/2)W (1/2) = (27 q}(1/2))(z"f(1/2)) +
P l(1/2) = (2 1g)(1/2))g(z) + 2" Hr(1/2). Thus

271qi(1/2) = Quo(ci(2)h(2), g(2)), 2" 'ri(1/2) = Res'(ci(2)h(2), g(2))-

Similarly, there exist uniquely common polynomials ;(z) and 7}(z) such that
ci(2)h'(2) = @.(2) f(2) + 7i(2), i(2) = 0 or the degree of 7.(z) < n. It follows
that z71q(1/2) = Quo'(c;(2)h(2), g(2)), 2"~ 17i(1/2) = Res'(c;(2)h(z), g(2))-
Thus for any i, 1 < i < m, Res'(¢;(2)h(z), g(2)) = Res'(¢;(2)h(2), g(2)) if and
only if 2"~ 1ri(1/2) = 2""'7(1/2), if and only if f(z)|ci(2)(R/(2) — h'(2)).
Thus (7.26) holds if and only if f(z)|ci(2)(R'(2) — W (2)), i = 1,...,m. Let
d'(z) = ged(cy(2), ..., c,(2)). It is easy to see that

rm

ged(ci (2)(W (2) = W'(2)), ..l (2) (W' (2) = W' (2))) = d'(2) (W' (2) — ' (2)).

It follows that (7.26) holds if and only if f(z)|d’(2)(h'(z) — h'(2)), if and only
it f(2)|(R(2) — (2)).

Suppose that 2(z) € ®@p(z). We prove that there exists a polynomial
h(z) of degree < n over GF(q) such that 2" "|h(z) and (7.24) hold. Let
2(z) = &(8,2) for some § € S. Denote [hg,...,hn-1]" = Q)5 and
h(z) = S hiz'. Let #(z) be a common polynomial of degree < n/,
and 7 (z) = h'(z) (mod f'(z)), where h/(z) = 2z""'h(1/z). Take h(z) =
2"=1#(1/z). Then 2"~ |h(z) and W' (z) = 2"~ h(1/z) = 7 (2). It follows that
f'(2)|(R'(2) —h'(2)). From the proposition proven in the preceding paragraph,
(7.26) holds. From 2(z) = &(5,2) and using (7.25) (in version of 5 and h),
this yields
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Res'(c1(2)h(2), 9(2))/9(2) Res'(c1(2)h(2), 9(2))/9(z)
R(z)=|": = |

Res'(cm(2)h(2), 9(2))/0(2) | | Res'(em(2)h(2), 9(2))/9(2)

In the case where h(z) and h(z) have divisor z”~" , degrees of #'(z) and
h'(z) are < n’. Thus f'(z) f(h'(z) — h'(2)). Therefore, (7.26) does not hold.
Since the number of polynomials of degree < n over GF(q) which have divisor

’
n—m

z is ¢, the dimension of @y (z) is n'. O
Corollary 7.2.2. Letn' be the dimension of ®p(z), then

Res'(c1(2)z" " *k, g(2))/9(2)

I.{es’(cm(z)zn_"urk,g(z))/g(z)
form a basis of ®pr(2).

This basis is called the polynomial basis of @pr(z). If (7.24) holds and
h(z) = Z:;Bl hiz" ="' [ho, ... hu—1]T is called the polynomial coordinate
of 02(2).

Corollary 7.2.3. Foranys€ S, if

n'—1 n—1
Z h;zm_l_i _ Zhizn_l_i (mod f/(Z))
1=0 =0

and [ho, ..., hn—1]" = Q(»ys, then [k, ... hl,_,]T is the polynomial coordi-
nate of Pur(s, z), where f(z) and f'(z) are the characteristic polynomial and

the second characteristic polynomial of M, respectively, and n’ is the degree

of f'(2).

Assume that GF(g*) is a splitting field of the second characteristic poly-
nomial f'(z) of M. Let M* be the natural extension of M over GF(q*), i.e.,
the state transition matrices and the output matrices of M and M* are the
same, respectively.

Theorem 7.2.3. Assume that the second characteristic polynomial f'(z) of
the linear shift register M has the factorization

r o on; .
f) =TI IIE- (7.27)

i=1j=1
where €1,...,&. are nonzero elements in GF(q*) of which minimal polyno-

mials over GF(q) are coprime and have degrees ny,...,n,, respectively, and
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lo 20,11 >0, ..., 1, > 0. Then there exist uniquely column vectors Ry,
E=1,...,0o, Rijk,1=1,...,r, j=1,...,n4, k=1,...,1; of dimension m
over GF(q*) such that

CI(Z)Znil/g(Z) rong

ZROkzk ! +Z szk/ 1—5 12)’“, (7.28)

Cm(Z)Znil/g(Z) =1 j=1 k=1

where g(z) = 2" f(1/2), f(2) is the characteristic polynomial of M. Moreover,
Zf (728) hOld.S then Ro(k) ( ) k= 1 l(), sz(k)FU(Z), i = 1, ceey Ty
i=1,..,n;, k=1,...,1; form a basis of(PM*(z), where Ry(k) and R;;(k)
are matrices of dimension m X lg and m X l;, respectively, and

Ro(k) = [RO(ZO—&-l—k) ROlo 0... 0}, k= 1,...,[0,

sz(k') = [Rij(lhtlfk) Rijl,- 0 ... O],
i:l,...,r,j:l,...,ni, I{:L...,li,

1
z
FQ(Z) = . y
2‘,[071
1/(1 -7 2) (7.29)
j—1
1/(1 =¥ 2)?
F”(Z)— /( ’ ) 9 Z:]-, s .7:17 ;N

Proof. Let ¢'(z) = 2" f'(1/z), where n’ is the degree of f'(z). From (7.27),
we have n’ =lo + >_._, n;l; and

= H ﬁ(l — et )k, (7.30)
i=1j=1

Let ¢i(1/z) = ¢;(1/2)/d(2), i = 1,...,m, Where d(z) = ged(f(2), c1(1/2),
- ¢m(1/2)). Since g(2) "f(l/z) = (=" (1/,2)) (z"d(1/2)) =
(

¢(2) (2" d(1/z)) and ¢;(z)2" ()27 1 (2" 1/2)),i=1,...,m,
we have ¢;(2)2""1/g(2) = cj(2)2" 1/g (2),i=1,...,m. From (7.30), there
exists uniquely column vectors Rox, k& = 1,...,lp, Riyx, @ = 1, ...,7,
j=1,...,n;, k=1,...,1; of dimension m over GF(q*) such that
c1(2)2""1/g(2) A (2)2" 71/ (2)
: =|: (7.31)

em(2)g(2) | L (2)e7 1 /g (2)
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l ron; U )
= ZO Roez* ' 4+ 3N Rijn/(1 - S
k=1

i=1 j=1 k=1
= RI'(z),
where
R=[RyRy1 ... Rip, -..... Ry ... Ren ],
Rij:[Rij1~-~ Rijli]V izl,...,T, j:1,...,ni,
[ Io(z)
1"11(2)
Fln (Z)
rey=|{. "
Frl(Z)
| Irn, (2) ]
Let
00 ...00
10...00
To = o ;
0...00
00 ...10
10...00
11...0
Ti=|: |, Ty=<l T,
11...10
11...11
i=1,...,m, j=1,...,n
"7 _
T
T — T1n1 7

Trn, |

231
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where the dimension of T} is I; x I;, i = 0,1,..., 7. Since 1/2(1—e2)* = 1/2z+
Zle e/(1—€z)*, the nonnegative term part of 1/z(1—¢ez)" is Ele e/(1—ez)t.
It follows that the nonnegative term part of z71I7;(2) is T;;I5;(2). Clearly,
the nonnegative term part of 2711 (z) is Tolp. Thus the nonnegative term
part of 271I'(2) is TT'(z). From (7.31), it is easy to prove by simple induction
that

Res'(c1(2)2" "%, g(2))/g(2)
' = RT"*I(2), k=0,....,n/ — 1.

I;Les'(cm(z)z"7”/+k7 9(2))/9(2)

From Corollary 7.2.2, RT”/_l_kF(z)7 k=0,...,n/ — 1 form the polynomial
basis of @y« (2).

Suppose that 2(z) € Pp+(z) has the polynomial coordinate [hy, ..
hn/_l]T. Then

e

n'—1 n’—1
=3 mRTYRD(z Z hT" 7 F) D (2).
k=0

We use Res(a(z),b(z )) to denote the remalnder of a(z) on division by b(z).
Let hy;(z) = Res(zk 5 gz =1k, (z—e Yy i=1, . =1, . .
Let ho(z) = Res(zk o hrz" '—1-k_2lo). Since the minimal polynomial of T};
is (z — aq 1)ll, t=1,...,r,j5=1,..., n; and the minimal polynomial of T
is 2%, we have
[ ho(To)

hi1(T11)

h’lnl (Tlnl)

hrl (Trl)

hrnr (Trnr )

It follows that

(=) = Roho(To) Ty (= +ZZRth 1)1 (2).

i=1 j=1

Define the [; x [; matrix H;



7.2 Root Representation 233

00...00
10...00
Hy= |t = 1],i=0,1,...,r (7.32)
00...00
00 10

Then we have Hy = Ty, e?jil ﬁg:_ol HF =Ty, i=1,..,rj=1,..,n;. Tt
is evident that the minimal polynomial of H; is 2%, i =1, ..., r. Let h;(2) =
Res(hi;(ef S2hZlzk) 2b),i=1,..,r j=1,..., ni, hj(2) = ho(z). Then
we have i,
2(z) = Rohly(Ho) Ty (= +ZZRW H)Ty5(2).
i=1 j=1

Since lp+Y_;_; n;l; = n’ and the dimension of @+ (2) is 1/, Rngflfo(z),k =

.,lo, Rinf_lrij(Z), L = 1, e Ty j = 1, ceey NGy k= 1, ceey lz form a
basis of @pr+(2). Since R;jx is the k-th column of R;; and Ry is the k-th
column of Ry, we have

RoHY ' =[Ror ... Roiy 0 ... 0]=Ro(lo+1—k), k=1,...,1,
RijHF ' =[Rijx ... Riji, 0 ... 0] = Ryj(li +1 —k),
i=1,...r j=1,....n, k=1,....,1;.

Therefore, Ro(k)[o(2),k =1,...,lo, Rij(k) (), i =1,...,r,j=1,..., n;
k=1, ... form a basis of @M*(z). O

The basis mentioned in the theorem is called the (e1,. .., &) root basis of
P+ (z). For any state s of M*, any 8, € GF(q*), k=0, ...,lo—1, any Bijx
€ GF((]*),Z:L . ’I”,j:L coy Ny, kzl, . li7

6: [/807"'7ﬂl0—17 /81117--'7ﬂ1n11a sy ﬂlllla"'vﬂlnllu
""" b 67‘117"'75’!‘1’7/7»17 M ﬁ’r‘llra-"7ﬁ’rn7.l7»]T

is called the (eq,...,&,) root coordinate of @pr-(s, z), if
@M* 8 Z Zﬁk 1R0 +ZZZﬁzykR2] ( )
=1 j=1k=1
Let
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Clearly, the generating function of I}, is z*, k = 0,...,lp — 1. We prove
by induction on k that 1/(1 —e2)? = 32 ("r*")e727. Basis : k = 1.
1/(1—ez) = > (e2)" =370, (TBLO)ETZT. Induction step : Suppose that
1/(1—ez)k =322 (TF57")e727. Using (7.4), we then have

1/(1—e2)™ = (1/(1 - EZ) )(1/(1 —e2))
_ (Z (r—i—k 1 ZE
— Z > (izliql)grzT
— Z (T—]L—k)ETZT

Therefore, the generating function of I (sgjil) is1/(1— afjilz)k’, i=1,...
r,j=1,..,n;, k=1, ..., ;. Then

Iy
Ro(k) ) k:L 3107
I
i-1
(e )
Rij (k) ,
Jj—1
I, (63 )
1= 1,...,7“, ]: 1,...7ni, k’:L,Zz
form a basis of @ps«, which is referred to as the (e1,...,&,) root basis of
@)r+. Similarly, coordinates relative to the (e1,...,e,) root basis are called
(e1,...,&r) root coordinates.

Let 8 be the (e1,...,&,) root coordinate of 2 = [yo,y1,-.-,Yr,...] in
@D pr+. Then

-1
lo Iy roon; U Fl(gi )
Q=" Bra1Ro(k) | + BijnRij (k)
k=1 L1 | =ti=tk=t nE ™
_Zﬁk 1ZR0 (to+h—k) L h— 1+Z ZﬂzngRzg(z +h—k)Dh(ef )
=1 j=1 k=1

—Z Zﬁk 1Rogtg+h—k)) Th—1
h=1 k=h
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roon; U l; -
2.2 2. ( Z ik Rigttoen i) Tu(el )
i=1 j=1 h=1 k=h
o o
=> (D Birn-k-1Ror)Tha
h=1 k=h
r o n; I l; o
+ZZZ Z ij(l;+h— k)szk)Fh( 7 1)~
i=1 j=1h=1 k=h

Thus we have

r n; I
Z Bio+r—kRok+ Zﬂzg(z wheryRige) (el o
k=1+1 =1 j=1 h=1 k=h
7=0,1,... (7.33)

Clearly, whenever (7.33) holds, (3 is the (e1,...,&,) root coordinate of 2.

We discuss a special case, where m = 1 and the output matrix of M
s [1,0,...,0]. Thus we have ¢1(z) = 1. It follows that the second charac-
teristic polynomial and the characteristic polynomial of M are the same.
Since Ro(1)Iv(z) and R;;(1)I5;(z) are basis vectors, they are not zero;
therefore, Ry, # 0 and R;j, # 0. Noticing m = 1, from Theorem 7.2.3,
R{)(k)Fo(z),k = 17 PN ,107 R;](k)]“”(z), 1= 17 e Ty j = 17 ceey Ny, k= 1, ce ey
I; form a basis of @y« (z), where

Ry(k)=1[0,...,0,1,0,...,0], k=1,... 1,
——

——
k—1 lo—k
R.(k)=[0,...,0,1,0,...,0],
——
k—1 li—k

’L'Zl,...,T‘, jzl,...,’l’Li, kJ:L,ll

That is, 1,2,...,20° 0 1/(1 =¥ 2% i=1,...r j=1,... n, k=1,
., I; form a basis of @ (z). We complete a proof of the following.

Corollary 7.2.4. Assume that the characteristic polynomial f(z) of the
linear shift register M has the factorization

T

n; -
z) = zlo H H(z — 539 1)li,

i=1j=1

where €1,...,&. are nonzero elements in GF(q*) of which minimal polyno-

mials over GF(q) are coprime and have degrees ny, . ..,n,, respectively, and
-1

lo>0,1,>0,..., 0, >0. Then1,z,...,2071 1/(1—e? 2k i=1,...r,

i=1,..,n, k=1,...,1; formabaszs ofW(l)( ).
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The basis mentioned in the corollary is called the (e1,...,&,) root basis
of W]\(/}l(z) For any 2(z) € Q/(ll(z), any Or € GF(q*), k=0, ...,lp — 1, any
ﬂijk € G’]‘T(q)k),Z':l7 ceari=1 o ng k=1, ... 1,

6 = [ﬂ07 s 7ﬁlo—17 ﬁllh s 7ﬁ1n11a RS ﬁlllla s 761n1l17
""" ) /8’1"11’ e 75’(‘7’7@17 sy ﬁ’l‘ll7-7 v 757“77,7.[7»]’1‘

is called the (eq,... ,sr) root coordinate of (2(2) if
Z/Bk 127 1+ZZZBU;€/175 2)*.
i=1 j=1 k=1

i—1
Corresponding to !I/J(\}), I, ..., Iy -1, Fk(eg ,i=1,...,r, =1, ...,

ng, k=1, l form a basis of W(ll which is referred to as the (eq,...,¢;)
root basis of W . Slmllarly, coordinates relative to the (e1,...,¢&,) root basis
are called (g1, ...,&,) root coordinates.

Let 8 be the (e1,...,&,) root coordinate of 2 = [sg, $1,...,87,...] in LPZ(VI[)
Then

2= Zﬂk 1L 1+ZZZﬁzngk .

i=1 j=1k=1
Thus we have

T k3 .
ﬁwZZZm

i=1 j=1k=1
r= 0.1, (7.34)

where 3, = 0 whenever 7 > [j.
We define matrices over GF(¢*)

1 1 1
ng—1
g &l el
AZ = . ) 1= ]'7 7/,17
n—1 _(n—1)q (n—=1)g"i~!
el e -

By = _ L k=1,2,..., (7.35)
. n—2+k
("21")
D() = [BlAla llAla- 1A .. Bl A }
E
E) = [0“)},
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where Ej, is the [y x [y identity matrix over GF(q), and the dimension of E|
is m x lg. It is easy to verify that

T
ﬁT+ZZZﬁ11k TJkrkll El e 1, 7=01,...,n—1

=1 j=1 k=1
can be written as [sg, ..., sn_1]T = D(e1,...,e., M)[3. Since [s0, $1,- -, 57, -]
= LT/]\(}) (s) implies s = [sg,...,8n-1]7, !P(l) ( )= W](V})( ") if and only if s = ¢'.
Thus D(ey,...,&r, M) is nonsingular.

Corollary 7.2.5. For any state s of M*, the (e1,...,&,) ro0t coordinate
of LI’](J)(S) is D(e1, ..., e, M) 1s.

We turn to characterizing sequences over GF'(q). For any integer u, let
={D bei™ | b, by, €GF(q)}, i=1,...,r. (7.36)

It is easy to verify that F,(e;) is a subfield of GF(¢*) of which elements
consist of all roots of 24" — z. Thus F,(¢;) = GF(qg™). Since elements in

GF(q) consist of all roots of 27 — z and 29 — z is a divisor of 24" — 2z, GF(q)
is a subfield of F,(g;).

Theorem 7.2.4. Let 2 € W](\;) Then (2 € W](\}) if and only if in the
(€1,...,&r) 100t coordinate B of 2, B € GF(q), k =0, ..., lo — 1, Bijk
€ GF(q™) and B;j :ﬂffk_l,i: 1L, ..,ri=1,...n;, k=1,..., 1.

Proof. Suppose that the condition in the theorem holds. Then there exist
bink € GF(q), i = 1,...,7r, h = 1,...,n;;, k = 1,...,1; such that B;1, =
S baket ™ i =1,k =1,...,1;. Let 2 = [s0,81,-- . S7y...]. From
(7.34), we have

¢t T+k 1 ¢t
S SR e

lelk‘l

ﬁzzzz

i=1 j=1k=1h=1
T=0,1,...,

i n (uth+71)¢’ n (uth+7)g’
where 3, = 0if 7 > l. From —51‘»231151 :Zj’lsl

holds; this yields
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sl =06+ Z Z Zﬂ Z bin T:kl ! £u+h+7)qj

zlglklhl

Z Z Z Z rk-1) S(uthtr)g’ ™!
- ﬁT + bzhk: k—1 &; )
i=1 j=1k=1h=1

=S5,

T=0,1,...

Thus s, € GF(q), 7 =0,1,... We conclude that 2 € WJ(\;).

Since the number of 3’s which satisfy the condition in the theorem is equal
to glot2izimili = ¢ and the dimension of LDI(V}) is m, such 3’s determine the
subset W](\/}) of Q/](Vl[), this completes the proof of the theorem. O

Corollary 7.2.6. Assume that the characteristic polynomial f(z) of the
linear shift register M has the factorization

K Uz -
i
z):zlollll(zfsg ),

i=1j=1
where €1, ...,&. are nonzero elements in GF(q*) of which minimal polyno-
mials over GF( ) are coprime and have degrees ny,...,n,, respectively, and
lo=20,1; >0, , I > 0. Let u be an integer. Then

I, =[0,...,0,1,0,...,0,...], k=0,....0o — 1,

Z (uth)g’ = Z (uth+1)¢’
Fhk 517 k 1 ey

n
7—+k 1 (ut+h+7)g? ™t
sz ]

iil,...,r, hzl,...,m, k—l,,lz

, 1
form a basis of u'/J(M).

Proof. From Theorem 7.2.4 and its proof, for any §2 = [sq, $1,...,5r,...]
in W]\(/}), there uniquely exist bo,...,bj,—1, bink, ¢ = 1,...,r, h = 1,...,n,

k=1,...,l; in GF(q) such that

s =b, +ZZZiszhk TJkrkll £u+h+7)qj,17

i=1 j=1 k=1 h=1
T7=0,1,...

)

where b, = 0 if 7 > ly. That is,
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l;

lo L
2= Zbk,1Fk71 —‘rZZZbihthk(Ei,u). (7.37)
k=1

i=1 h=1 k=1

On the other hand, since each Iy (g;,u) is a sequence over GF(q), such 2
with the above expression is in Wj(v}) Thus Iy, k=0,...,lg — 1, Thi(ei,u),
i=1,....,r,h=1,....,n;, k=1,....1; formabasisof%(v}). O

The basis mentioned in the corollary is called the (e1,...,&,,u) root basis
of WJ(\}). If (2 is expressed as (7.37),

b = [b07 .. 7bl0—17 bllla DRI blnlla ey blllla ey blnllu
T
...... s br1ty e s brng 1y ooy Dritny ey benst, ]
is called the (e1,...,&.,u) o0t coordinate of 2.

Using Corollary 7.2.5, we have the following.
Corollary 7.2.7. Let

é_;Hrl Ely+2 L €?+m
sl(»wl)q sz(-u+2)q . 5§”+”")q
Gi(u) = | . . . ,t=1,...,17,
E(u+1)q"i_1 6Z(_u4r2)q"i_1 €(u+ni)q"i_1
B, _
Gl(u)
Gl(u)
G(u) = ) (7.38)
G (u)
L Gr(u) |

with I; Gi(u) fori=1,...,r, where Ey, is the ly X lg identity matriz. Then
DG(u) is a nonsingular matriz over GF(q) and for any (2 in W](\;) with
(e1,...,&r,u) TO0t coordinate b, Q:!P](Vl[)(s) holds, where s=D(eq,...,e., M)
G(w)b, D(e1,...,eq, M) is defined in (7.35).

The following corollary is a z-transformational version for Theorem 7.2.4.

Corollary 7.2.8. Assume that the characteristic polynomial f(z) of the
linear shift register M has the factorization

ks ng

FE =TT

i=1j=1
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where €1, ..., are nonzero elements in GF(q*) of which minimal polynomials

over GF(q) are coprime and have degrees ny, .. .,n,, respectively, and ly > 0
Iy, >0,..., 0. >0. For any 2(z) € Wj(vl) (2), 2(2) is in W](V})(z) if and only

if there exist B, € GF(q), k=0, ..., lo — 1, B € GF(q"™) ,i=1, ..., r,
k=1, ..., 1; such that

lop—1 T

-1 j—1 )
SDOCERS 9 9 WIS SED
=1 j=1 k=1
Moreover, whenever such (3’s exist, they are unique.

Using Theorem 7.2.1, Corollary 7.2.8 implies the following corollary.

Corollary 7.2.9. Let f(z) be a polynomial of degree n over GF(q), and
g(z) = 2"f(1/z). Assume that

ks Uz -
.
z):zlf’””(zfs? ),

i=1j=1
where €1,...,&. are nonzero elements in GF(q*) of which minimal polyno-
mials over GF(q) are coprime and have degrees nq,...,n,, respectively, and
lo > 0,10 >0, , I > 0. For any polynomial h(z) of degree < n over
GF(q*), h(z ) is a polynomml over GF(q) if and only if there exist By €

GF(q), k =0, —1, Bix € GF(¢™),i=1, ...,r, k=1, ..., 1l; such
that

lo—1 : » .

SDICERS 9 9 WIS AED

i=1 j=1k=1

Moreover, whenever such (3’s exist, they are unique.

Theorem 7.2.5. Let 2 € &y« Then 2 is in @y if and only if in the
(e1y...,&r) TOOt coordinate 3 of 2, By, € GF(q), k=0, ..., lo—1, Bijk €
GF(¢™) andﬁijk:ﬁgk_l, i=1,..,r7=1,..,n, k=1,..., 1.

Proof. Suppose that the condition in the theorem holds. Let 2 =
(Y0, Y1y Yrr--o] and yr = [Yri,.. oy Yrm] s T = 0, 1, ... Let Rop =
[Tokl,...,Tokm]T, k = 1,...,10, Rijk == [rijklw--;rijkm]T, T = 1,...,1",
j=1,...,n;, k=1,...,l;. From (7.33), we have

- j—
Z ﬁloJr'r kT0ke 1 Z Z Z Z 5”“ Chek rwkc) (T-;L_EII)EZ(IJ 1’

k=7+1 i=1 j=1h=1 k=h
7=01,...,c=1,....m.
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From (;1; € GF(¢™), there exist bjg, i =1,...,r,d=1,...,n;, k=1,...,1;
such that

n;
B vd . _
Bitk = E bidkfg ,i=1,...,r, k=1,...,1;.

From (7.28), using Corollary 7.2.9, we have rox. € GF(q), k = 1, ..., l,
c=1,...,m, and rijp. = rflj,;: € GF(g™),i=1,..,r, 5 =1, ..., n,
k=1,..,1l;,c=1,...,m. Thus there exist p;cr. in GF(q), i = 1 r,
e=1,....n;, k=1,...,l;, c=1,...,m such that

_ u+te . _ _
rilkc—g Dieke€y s t=1,...,r, k=1,...,l;, c=1,...,m.

It follows that

lo
E Blo+r—kT0ke

k=71+1
l;

i i omy oy

+ Z Z Z Z Z szd(l Yh—k plekc(72511)522“+d+e+7)q1—17

i=1 j=1 h=1k=hd=1e=1
7T=0,1,..., ¢c=1,...,m.

From e! " = ¢; and B, Toke, bidk, Pieke € GF(q), we have

lo
q __ q q
Yre = E, Brotr—kToke
k=1+1
r n; I n;

[ |
+ZZZZZZ()MU he k)pzekc(7+f 1)!1 £2u+d+e+7—)q.

i=1 j=1 h=1 k=h d=1 e=1

lo
= E Blo+r—kToke
k=1+1

roong i l; n; n;

+ Z Z Z id(l;+h—k)Pieke (T-}&;ﬁ;l)€7(22u+d+e+‘r)qj71

l;
i=1 j=1 h=1k=h d=1 e=1
= Yre
7=0,1,...,¢c=1,....,m.

Thus y,. € GF(q), 7=0,1,..., c=1,...,m. We conclude that 2 € &,,.
Since the number of 3’s which satisfy the condition in the theorem is equal

to glotZizinili = ¢n" and the dimension of @, is n’, such 3’s determine the

subset @), of ®@p;+; this completes the proof of the theorem. O
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Let M be a linear autonomous finite automaton over GF(q), with struc-
ture parameters m, n and structure matrices A, C. It is well known that there
exists a nonsingular matrix P over GF(q) such that

Pra ()
PAP™! = L
Pro)

where f1)(2),..., f(*)(2) are elementary divisors of A. Let M’ be the au-
tonomous linear finite automaton over GF(q) with structure parameters m, n
and structure matrices PAP~!, CP~!. It is easy to show that M and M’
are equivalent. Thus @y/(z) = Py (z). Let CP~1 = [C4,...,C,], where
C; has n® columns, n(¥) is the degree of f()(z), i = 1,...,v. For each i,
1 < i < v, define a linear autonomous finite automaton M; with structure
parameters m, n; and structure matrices me , C;. Tt is easy to show that
Dp(2) = Pppr (2) = Pop, (2) + -+ + Py, (2). In the case where M is minimal,
the space sum is the direct sum; therefore, all bases of @y, (2), ..., Pas, (2)
together form a basis of @/(2).

We discuss how to obtain a basis of @)/(z) from bases of @y, (2), ...,
@y, (2) for general M. Let gV (2) = ,z"mf(i)(l/z)7 i=1, ..., v. We use
f(i)/(z) to denote the second characteristic polynomial of M® | and n(" the
degree of f(i)/(z), 1 =1,...,v. Let g(i)/(z) = z”(i)/f(i)l(l/z), 1 =1, .
We use f(z) to denote the least common multiple of f)'(2), ..., f'(2).
Assume that GF(q¢*) is a splitting field of f/(z) and that (7.27) holds. Then

f(h) —zléh)HH (z—¢l ¢! l(h) h=1,...,v, (7.39)

i=17=1

for some lz(h) >0,1=0,1,...,7, h=1,...,v. It follows that

n® =1 3" ™, h=1,... .

i=1
Let

cgh)(z)z”<h)*1/g(h)(2) o - l(h
. k— (h) k
: ZROkz 1+ZZZR'L]]€ Z) ’
c(h)(z)zn(h)_l/g(h)(z) i=1 j=1k=1
h h h h

R (k) = [R((l)(h)+1_k) Rélgh) 0...0, k=1,....0" h=1,.. v,
h h h

R (k) = RV ()l,(h)-i-l—k) jol{h) 0...0] (7.40)

i=1,...mj=1,... 0, k=1,...,1" h=1,.
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where c,(ch)(z), k=1,...,m are the output polynomials of M) h =1, ... v.
We use M ("* to denote the natural extension of M) over GF(q*),h =1, ...,
v. From Theorem 7.2.3, RY" (k) [ (2), k = 1,..., 1", R (k) [ (2), i = 1,..,
roj=1,...n;, k=1,.., lEh) form a basis of @y« (2), h =1, ..., v, where
I'v(z), I;j(z) are defined in (7.29). We use Sy to denote the set consisting
of RY)(k)[o(2), k = 1,..., 1", h =1, ..., v, RV(K)T(2), i = 1, ..., 1,
ji=1..,n;, k=1,..., ll(-h), h=1, ..., v. Clearly, Sy generates @« (z). We
use Syo to denote the set consisting of R(()h) (K)o(z),k=1,..., léh), h=1,...,
v, use S;jo to denote the set consisting of RE?)(k)Fij(z), k=1, ..., ll(h),
h=1,...,vforanyi, 1 <i<r, and any j, 1 < j < n;. Evidently, elements
in Sy are linearly independent over GF'(¢*) if and only if elements in Sy
are linearly independent over GF(¢*) and for any i, 1 < ¢ < r and any j,
1 < j < ny, elements in ;50 are linearly independent over GF(q*).

Proposition 7.2.1. Elements in Sog are linearly dependent over GF(q*) if
and only if R(()}ZL()M, h=1, ..., v are linearly dependent over GF(q).
0

Proof. Suppose that R((J]Z())h), h =1, ..., v are linearly dependent over

GF(q). Since all columns of R(()h)(l) are 0 except the first column R(()};(())h),

R((Jh)(l)l"o(z), h=1, ..., v are linearly dependent over GF(q). From Réh)(l)
I'o(z) € Spo, elements in Sy are linearly dependent over GF(q); therefore,
elements in Sy are linearly dependent over GF(g*).

Suppose that elements in Spg are linearly dependent over GF(g*). Then
there exist apy, € GF(¢*),h=1,...,v, k=1, .., l(()h) such that apy # 0 for

some h, k and
l(h)
0

v
Z Z ani RS (k) o (2) = 0.
h=1k=1
It follows that

v 1Y

Z Z ahkRéh) (k) =0.

h=1k=1
We use k' to denote the maximum k satisfying the condition app # 0 for
some h, 1 < h < v. Then we have

h
> ane Rij = 0.
h=1

Thus Ré’;()h), h =1, ..., v are linearly dependent over GF'(g*). Since elements
0

. h
in R’ <),,) ,
o

over GF(q). O

h=1,...,varein GF(q), R(()};((J)h), h =1, ..., v are linearly dependent
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Similarly, we can prove the following.

Proposition 7.2.2. Foranyi, 1 <7 <7 and any j, 1 < j < n;, elements
in Sijo are linearly dependent over GF( *) if and only if RQ‘LI)(’”’ h=1,
igl;

v are linearly dependent over GF(¢").

Proposition 7.2.3. Foranyi, 1 <i<r and any j, 1 < j < ny, RE;&,W

h = 1,...,v are linearly dependent over GF(q™) if and only if R(hl)(h),

h=1, ..., v are linearly dependent over GF(q™). Moreover, for any ap m
GF(¢"™), h =1, ..., v, >)_ 1ahR L = = 0 implies Y, _ 1a?j R( i = 0,
and Y, _ 1ahR o = =0 implies Y ,_, a q R R(H(h) 0.

Proof. Let R( = (715, s Tmn)T. Using Corollary 7.2.9, 7y, is in
GF(q™), for k =1, ..., m, and REZ)E,L) = [r‘f;:l, e ,rf;h ]T. Suppose that

> h—1 ahR(.Z)(h) = 0 for some ay, ..., a, € GF(¢™). Then

v
Zahrkhzo, k=1,....m
h=1

Thus

i—1
that is, >, _; GZJ RQZ)(M =0.
1] i

Conversely, suppose that >.,_, ahREZ)(,L) = 0 for some aq, ..., a, €
GF(q™). Then

h=1

From a¢"" = a for any a € GF(¢™), we have

v v
P AR gt _ _
g ay, rkh—g aj ren =0, k=1,...,m
h=1 h=1

. n;—j+1 h)
that is, Y>0_, al REuW = 0. O
For any i, 1 < ¢ < r, construct S;51 from S;50, 7 =1, ..., n;, as follows.

Whenever elementb in S;19 are linearly independent, from Propositions 7.2.2
and 7.2.3, elements in S;jo are linearly independent; we take S;;1 = Sijo,
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j=1,...,n;. Whenever elements in S;1¢ are linearly dependent, from Propo-

sition 7.2.2, RETZ@), h =1, ..., v are linearly dependent over GF(q"); there-

fore, there exist ap € GF(¢™), h =1, ..., vsuch that ap, #0 for some h and

Sor_1 ahR i = = 0. From Prop051t10n 7.2.3, this yields >, _, a R(hl)(m =

0,7=1,...,n;. Let I={h|a,#0,h=1,...,v}. Take arbltrarlly an inte-
’ j—1

ger ' in I with lgh) < lgh) for any h in I. Let R;j(k) =D her Rgl)(k),

k=1,...,1{"). Since R (k) = [RE;()Z,(-h)+1—k) REZ?(_M 0...0,k=1,...
1™ we have Ri;(1) = 0. Let Zf-hl) = 0 whenever R (l(h/)) = 0, and

K2

[Z(h/) = max k{the k-th column of R};(l; 1 ;é 0} otherwise. It is easy to ver-
ify that R (k) = RS (") EI"F, that is, shifting R (1"7) 10 — &
columns to the left, k =1, .. l(h/) where H; is defined by (7.32). Therefore,
R};(k) = 0if and only if k < z<h fz<h Since R};(1) = 0, we have I(") < ("),
Let Sm be the set obtained from ;o by deleting RE?/)(k)Fij(z), k=1, ...,
I") and adding R} (k)Ti;(2), k = 1) =14 11, 1), Clearly, the space
generated by S;jo and the space generated by S;;1 are the same, j =1, ...,
n;. Since RZ(»?) (k) can be obtained by taking each element in Rﬁ”)(k) to the
¢/~ '-th power, Rj;(k) is equal to the matrix obtained by taking each element
in R}, (k) to the ¢’~'-th power. Thus the fashion of S;;; is the same as the
fashion of S;jo, but the number of elements in S;;; is less than the number of
Sijo. Similarly, from S;j; we construct S;j2, and so on. We stop the process
until some S;j. in which elements are linearly independent.

Similar to constructing S;;1, from Spp we can construct Spi. Repeatedly,
we obtain Sz, Sps, - - ., until some Sy, in which elements are linearly inde-
pendent.

To sum up, by this method we can obtain a basis of @y« (2).

7.3 Translation and Period

7.3.1 Shift Registers

For any nonnegative integer ¢, the c-translation of an infinite sequence
(ag,a1,...) means the infinite sequence (a, ac+1, ...). Correspondingly,
oo aitez is called the c-translation of Y2 a;z

Let M be a linear shift register over GF'(q). Let GF(¢*) be a splitting field
of the second characteristic polynomial of M, and M* the natural extension
of M over GF(q*).

Theorem 7.3.1. Let 3 be the (1, .. .,&,) root coordinate of £2(z) in Py« (z).
If 2'(2) is the c-translation of £2(z) and
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B = Betks k=0,1,...,0o—c—1,
,6’]2:0, k:lo—c,...,lo—l, (741)
l;
k—h+c—1 g1
ﬂz{jh:Z( kirh )61’]’165;‘(1 s
k=h
i=1,...m, j=1,....n;, h=1,...,1;

then
Blz[ﬂ(l)""vﬂllo—h 6111""76£n11a cty ﬂilllv""ﬂinlllv
/ / ! / T
...... 5 r11s - s Prn,ls o0 /67“1[,,'"" 5 7'”1'[1']
is the (e1,...,&,) Toot coordinate of £2'(z).

Proof. Let 2(z) = Y272 y-2" and 2'(2) = Y 72 jy.z". From (7.33), we
have
li

Z Blo4r— kROk+ZZ Zﬂw(l +h— k)RZJk)(TJf:h11) qu_lv
i

k=7+1 =1 j=1
T7=0,1,...

Thus

0
/
Yr = Yetr = Z Bio+etr—k Lok
k=c+7+1

roong U l; N
+ZZZ(Z ﬂij(lq;-i-k—d)Rijd) (C+;‘fl§_1)5£°‘”)‘f 17

i=1j=1k=1 d=Fk
T=0,1,...

Using (7.10), we have

lo
!
yT = Z ﬁlo+c+T—kR0k
k=c+7+1
k -
k h+c 1 T+h—1 (e+7)g’ ™
P Zﬂmz sh- Rija) Y ( wnt)e ~
i=1 j=1 k=1 = h=1

Thus

lo
E Bio+et+r—k ok

k=c+7+1

T n; .
+ Z Z Z Bij(ti+k—dyRijd (k_,?ffl_l) (TZEIl)sz )a

i=1 j=11<h<k<d<l;
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lo
E Blo+et+r—k ok

k=c+7+1

+ZZZZZ (e B b—a)E cqjile‘jd(TZhll)sl ¢

i=1 j=1 h=1d=h k=h

lo
g Bio+ct+r—k ok

k=c+7+1
r o n; I l; l; ] L J )
li h+d+ 1 +h—1
DB Z (Q (i Aunel” ) Riad) ()<l
i=1j=1h=1 d=h k=l;+h— d
r l; )
+h—1\ _T¢ ™
= Z Blotr— kROk+Z Zﬁuwrh d)RUd] (et
k=1+1 1=1j=1h=1 d=h
T=0,1,...
Therefore, 8’ is the (e1,...,&,) root coordinate of £2/(z). O
For an (ey,...,¢&,) root coordinate 3, let l;; = minh [h >0, B, =0 if

h<k<ll,i=1,...,r, j=1,...,n; max{l;,i=1,...,r, j=1,...,n; }
is called the efficient multiplicity of (8. Let i1,...,4,, be different elements
in{i]1<i<r 31 <j<n &l;; > 0)}. Denote the order of ¢; by e;,
i =1,...,7. The least common multiple of e;,, ..., e; is called the basic
period of 3.

M is said to be nonsingular, if its state transition matrix is nonsingular.

Theorem 7.3.2. Assume that M is nonsingular. Then any 2(2) in @y« (2)
is periodic and its period is ep®, where p is the characteristic of GF(q), e is
the basic period of the (e1,... &) root coordinate 3 of £2(z), a = [log, ] *
and | is the efficient multiplicity of (3.

Proof. Let £2'(z) be the c-translation of £2(z), i.e., 2'(z) = D°(£2(2)). Let
(B and 3’ be the (e1,...,&,) root coordinates of £2(z) and (2’(z), respectively.
From Theorem 7.3.1, noticing lg = 0, we have

l;

g1
ﬁz(jh = Z k h+c 1 613165 ) (742)
k=h
1= 1, 1,...,ni,h:1,...,li.

Without loss of generality, assume that there exists j such that [;; > 0 when-
ever 1 < i < ry and that /;; = 0 whenever r; < ¢ < r. Then

! [z] stands for the minimal integer > =
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ﬁl{jhzo, i:l,...,rl, j:l,...,ni, hzlij—‘rl,...,li,
ﬂl{jhzo, i:T1+17...,T, jzl,...7ni, h:].,JZ

From (7.42), £2(z) = £2(z) is equivalent to the equations

li]‘

j—1
Bijh = Z (kililf}clil)ﬁz]kgcq ) (743)
k=h
7;:17...,7’1, j:17...,ni, h:1,...7lij.
Equations for h = [;; in (7.43) are

1

] . .
5ijliJ ﬁ”l” i , 1= 1,...,7‘1, ] = 1,...,ni. (744)

Since Bj1,; # 0 whenever [;; > 0, (7.44) is equivalent to the equations

Since €f = 1 if and only if e;|c, this yields that (7.44) is equivalent to e|c.
Thus (7.43) is equivalent to the equations
ele,

lij

Z (k h+c 1)61]]43 _ O

k=h+1
izl,...7T1, j:].,...,ni, h:].,...Jij—]..

It is equivalent to the equations

ele,
lijfl
lij—h+c—1\ __ —1 k— h+c 1
(” lij—h ) - *@jlu Z ( )f%kv
k=h+1
1= ].,...77’1, _]: ].,...,TLZ', h:].,...Jij —].,
that is,
ele,
lijfl
h+c—1 k—l;;+h+c—1
( ) 7ﬂ2]l Z ( kqilijﬁ—h )ﬂijk’
k:lijfhr‘rl

i:l,...,rl, j:l,...,ni, hzl,...Jij—l.

h+c—1 -1 k—lij+h+c—1\ . _ B :
Clearly, ("*771) = —ﬁ”l 1”7}#1 ( Kt VBijes h=1,..., li; —1if
and only if (h+;_1) = 0(mod p), h=1,...,l;; — 1. Thus (7.43) is equivalent
to the equations
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ele,
(") =0 (modp), h=1,...,01—-1. (7.45)
Let
c=cog+we, 0<cy<e.
Then (7.45) is equivalent to the equations
Co = Oa
(Mo 1wy =0 (mod p), h=1,...,01— L (7.46)
Since ged(e, p) = 1, e~ (mod p) exists. From (7.16), we have
ho ok
h+co—1+we\ __ k—i (k\ (h4+co—1+1ie w
() = 20 [0 (T TG,
k=0 =0
h=1,...,01—1.

Thus (7.46) is equivalent to the equations

Co = 0,
hok
DD (] (R) =0 (modp),  (747)
k=0 =0
h=1,. ...1-1
Since the coefficient of the term (}) in (7.47) is e”, (7.47) is equivalent to the
equations
0o =0,
h—1 &
() = =" 2 DU ORI (mod p),
k=0 i=0
h=1,...,0—1. (7.48)

It is easy to prove by induction on A that (7.48) is equivalent to the equations
co =0,
()Y =qn (modp), h=1,...,1—1, (7.49)
where 0 < ¢1,...,q-1 < p, and

CIO:L

= —hZ Z OO @k (mod p),

h= ,...,1—1.
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Therefore, (7.43) is equivalent to (7.49). Let

a
w=Y wp " +uwp
i1
0L wy,...,we <p, w >=0.

From Theorem 7.1.3, since h < [ < p?, (7.49) is equivalent to the system of
equations cg = 0 and

(Zia ™y — g, (modp), h=1,...,1—1. (7.50)

Se_ L awpt Tt .
From Theorem 7.1.3, we have w; = ( 37;7:_'71 )(mod p),i=1,...,a. Thus
(7.50) implies

w; :qp13717 7= 1,...,&. (75]‘)

Conversely, (7.51) implies (7.50). In fact, since £2(z) is periodic, we may take
a positive integer ¢ such that D(£2(z)) = §2(z). Then (7.50) holds for such
a c. It follows that (7.51) holds for such a ¢. From (7.50) and (7.51), we have

(Z= %y g (modp), h=1,...,01—1, (7.52)

which is independent of ¢. Using (7.52), (7.51) implies (7.50). Thus (7.50)
and (7.51) are equivalent. Clearly, (7.51) is equivalent to the equation

a
c=co+ equi—lpi_l +w'ep®.
i—1

Therefore, (7.43) is equivalent to the equations

c=e Z Gpi—1p "+ wep”. (7.53)
i=1

We conclude that D¢(£2(z)) = 2(z) if and only if (7.53) holds for some

nonnegative integer w’.
Since £2(z) is periodic, there exists a positive integer ¢; such that D (£2(2))
= £2(2). It follows that there exists w] such that ¢; = €Y./ | gpi-1p"~ " +
wjep®. Therefore, for any nonnegative integer ¢, D°(§2(z)) = §2(z) if and
only if ¢ = ¢ (mod ep®). From D°(2(z)) = 2(z), it follows that 0 =
¢1 (mod ep®). Thus for any nonnegative integer ¢, D¢(£2(z)) = 2(z) if and
only if ¢ = 0 (mod ep?). This yields that the period of 2(z) is ep®. O

From the definitions, whenever 3 = 0, the efficient multiplicity ! of 3 is 0
and the basic period e of 3 is 1; whenever 3 # 0,
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l=maxk(FI(I<i<r&l<i<n &l<k< &by #0)), (7.54)

e is the least common multiple of e;,, ..., e;, where e;; is the order of ¢;,
J = ]-a YA )

{ig oo yip b =i [1<i<r, (A< j<n &1 <k < &by #0)}-

Corollary 7.3.1. Assume that the state transition matriz of M is nonsin-
gular. Let B; and u; be the (g1, ...,€,) root coordinate and the period of (2;(z)

€ Ppr-(z), respectively, i = 1,..., h. If the number of nonzero components of
B, ..., Br at each position is at most one, then the period of 21(z) +-- -+
0n(2) is the least common multiple of uy, ..., up.

If the maximum period of the sequences in @ys(z) is h and the number of
the sequences in @/(z) with period i is¢;, i = 1,..., h, 2?21 ¢; 2" is called the
period distribution polynomial of ®r(z), denoted by &pr(z). For any subset
of @p(z), we define similarly its period distribution polynomial. We define
an addition operation on period distribution polynomials similar to common
polynomials, and define * operation:

k h k h
(ZCZZ’L) * (Zdjzj) = Z Zcidelcm(i’j). (755)
i=1 j=1 i=1 j=1
Take an (e1,...,&,) root basis of @ps-(z). Let 3 be the root coordinate
of £2(z) € ®p(z). If components of § are zero but Bijr, j = 1, ..., n; for

some i and k, then the period of 3 is e;p/'°%» *1, where ¢, is the order of ;.
Clearly, given 7 and k, 1 < ¢ < 7, 1 < k < [;, the number of such 3, is
g™ — 1. Consider the subset of ®;(z) in which in components of the root
coordinate § of any sequence, B;/ ;i = 0 holds whenever i’ # i or k' # k.
Then the subset’s period distribution polynomial is z + (¢™ — 1)zeipﬂogp "
From Corollary 7.3.1, we have

rol;
gM(Z) — H H(z + (qni _ 1)Zeip“0gp k] )’ (756)

i=1k=1

where [TL_y 9(i) = o(1), [} ¢(0) = (TTiy 9(0)) * 9(n + 1). Since for any
u>1,any cand any d, (z + (¢ — 1)z") x (z + (d — 1)z%) = 2+ (ed — 1)2*
holds, we have

ph—1+t
h h
H (z4 (¢" —1)2%P ) = 2z 4 (g™ — 1)2%P" . (7.57)
k:ph’1+1

Since p/'°&» k1 = ph for k = ph=1 41, ..., p", using (7.56) and (7.57), we have
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r lrlogp l;]-1
en(x) =l + @ =)« T (e (@@ "D 100"
i=1 h=1
s (2 + (@l T qypeplin iy (7.58)

It is easy to prove by induction on k that

k
(z+(¢" J# [T+ @@ =D =1ty (7.59)
h=

k
=z+(¢" Z nip" )24P .

=

Using (7.58) and (7.59), it is easy to show that

r [logp 1;]—1
h h—1 h
En(@) =[]+ @ =D+ D (" =g )P
i=1 h=1
(gt — g e, (7.60)
Let f;(z) be the minimal polynomial of ¢;, i = 1,...,r. It is easy to show
that f1(z), ..., fr(2) are coprime with each other of which degrees are ni,

.., My, respectively, and that the second characteristic polynomial of M is
[Ti_, fi(2)%. Notice that the period of fi(2), i.e., minc[e > 0, f;(2)|(2¢ — 1)],
equals the order of ;. We then obtain the following theorem.

Theorem 7.3.3. Assume that M is nonsingular. Let [[;_, fi(2)" be the

second characteristic polynomial of M, where f1(z), ..., fr(2) are irreducible

polynomials over GF(q) and coprime with each other, and ly, ..., L. are pos-

itive integers. Let n; and e; be the degree and the period of f;(z), respectively,

i=1,...,7. Then the period distribution polynomial of M is given by (7.56)
r (7.60).

7.3.2 Finite Automata

For any linear autonomous finite automaton M, From Theorems 1.3.4 and
1.3.5, we can find linear autonomous registers M), ..., M®) such that the
union of MM ... M® is minimal and equivalent to M. It follows that
®s(2) equals the direct sum of @1y (2), ..., Py (2).

Let GF(q*) be a splitting field of the second characteristic polynomial of
MM h=1,... v. Let M* be the natural extension of M over GF(q*), and
M* the natural extension of M) over GF(q*), h =1,...,v. Clearly, the
union of MW* .. M®)* is minimal and equivalent to M*. It follows that
D+ (2) equals the direct sum of @y;)«(2), ..., Porer«(2).
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Let nyl)

777(17,1), h=1,...,v together form a basis of @y« (z). For any 2(z) € @pr+(2),
there uniquely exist 20 (2) € &y;m.(2), h = 1,...,v such that 2(z) =
QW (2) 4+ QW (2). Thus D(02(2)) = D4(2M(2)) +---+ DN (2)). Let
3 be the coordinate of £2(z), and ") the coordinate of 2" (2), h =1,...,v.
Then we have 3 = [3W1), ..., p()]T,

It is easy to show that D°(£2(z)) = 2(z) if and only if D¢(2"M)(2)) =
QM (2), h =1,...,v. From the proof of Theorem 7.3.2, D*(£2(2)) = 2(z) if
and only if

) e 777(1}(12) be a basis of @y;m«(2), h = 1,...,v. Then nih), cey

¢ =0 (mod e(h)pa(h)), h=1,...,v, (7.61)

where e® and (" are the basic period and the efficient multiplicity of the
(sgh), - sff(ﬁz)) root coordinate of 2(")(z), respectively, h = 1,...,v. Let e be
the least common multiple of ey, ..., e,, and a = max(a™®, ... a(*)). Then
the least common multiple of e(l)p“m, cey e(“)p““)) is ep®. Thus (7.61) is

equivalent to the equation

c=0 (mod ep?). (7.62)

It follows that D°(§2(z)) = §2(z) if and only if (7.62) holds. We obtain the
following Theorem.

Theorem 7.3.4. Assume that M is a nonsingular linear autonomous finite
automaton and that the union of linear registers MM, ..., M) is minimal
and equivalent to M. Let 2(z) = QW (2) 4+ 20 (2), M) (2) € &y (2),
h =1,...,v. Let e be the least common multiple of ey, ..., e,, and a =
max(a(l), ceey a(“)), where e and 1™ are the basic period and the efficient
multiplicity of the (sgh), A 65?2)) root coordinate of 2 (z), respectively, h =
1,...,v. Then D°(£2(z)) = $2(z) if and only if ¢ = 0 (mod ep®). Therefore,
the period of £2(2) is ep®.

Using Theorem 7.3.2 and Theorem 7.3.4, we obtain the following.

Corollary 7.3.2. Assume that M is a nonsingular linear autonomous finite
automaton and that the union of linear registers MM, ..., M) is minimal
and equivalent to M. Let 2(z) = QW (2) 4+-+ QW) (2), QM (2) € 0+ (2),
h=1,...,v. Let uy be the period of 2" (2), h = 1,...,v. Then the period
of 2(z) is the least common multiple of uy, ..., U,.

From Corollary 7.3.2, it is easy to show the following.

Corollary 7.3.3. Assume that M is a nonsingular linear autonomous finite
automaton and that the union of linear registers MM, ..., M) is minimal
and equivalent to M. Then we have
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v
En(2) =[] émo (2). (7.63)
i=1

Since the union of linear registers M, ... M®) is minimal, M) is
minimal, h = 1,...,v. Therefore, the characteristic polynomial and the sec-
ond characteristic polynomial of M (" are the same, say f(h)(z)7 h=1,...,v.
Clearly, we can take f(h)(z), h =1,...,v as the elementary divisors of the
state transition matrix of the union of M), ..., M (). Since elementary divi-
sors of the state transition matrix of a linear finite automaton keep unchanged
under similarity transformation, f*)(z), h = 1,...,v are the elementary di-
visors of the state transition matrix of any minimal linear finite automaton
of M. From Theorem 7.3.3 and Corollary 7.3.3, noticing that any elementary
divisor is a positive power of a irreducible polynomial, we have the following
theorem.

Theorem 7.3.5. Assume that M is a nonsingular linear autonomous finite
automaton and that f(i)(z), i =1,...,v are the elementary divisors of the
state tramsition matriz of any minimal linear finite automaton of M. Let
fD(2) = fi(2)l, where fi(z) is an irreducible polynomial over GF(q) of
degree n; and with period e;, i = 1,...,v. Then we have

vl
en(z) = [T T[ = + (@ = D==""")

i=1k=1
v [log, 1;1—1

= H [z + (g™ —1)z% + Z (qmph g
i=1 —

1 pllogp 1;1—1 o llogy 151
+ (qTM i qn'Lp )ZE'LP :I.

h—l)zeiph

7.4 Linearization

We use R to denote the set of all linear shift registers over GF(q) of which
the output is the first component of the state. It is evident that any linear
shift register in # is uniquely determined by its characteristic polynomial.
We define two operations on .

Let M; € ®,i=1,...,h. For any i, 1 < i < h, let f;(2) be the charac-
teristic polynomial of M; and G(M;), or G; for short, the set of all different
roots of f;(z); let ;(¢) be the multiplicity of € whenever ¢ is a root of f;(z),
l;(€) = 0 otherwise. Let

fE(z) — H (Z _ E)ma)c(ll(e),...,lh(s))_ (764)

e€eG1U---UG
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Tt is easy to show that fx(z) is the least common multiple of fi(z), ..., fn(z)
with leading coefficient 1. The linear shift register in R with characteristic
polynomial fx(z) is called the sum of My, ..., M}, denoted by My + - - -+
My, or Z?Zl M;. Clearly, the sum is independent of the order of My, ..., M}
and we have

(My+ -+ Mp) + (Mpgr + -+ -+ M) = My + - - + Mg, (7.65)
M+---+M=M.

This yields
My+ (Mi+-- -+ My)=M + -+ My, (7.66)

We use p to denote the characteristic of GF(q). Let

h
Q:Q(Mla"'th):{HEi|€i€Gi7 ’L.Zl,...7h},
=1

1(0) = max(11(0),...,1(0)),
v(k)=min v(v 20& k <p’), k=1,2,...,
v(k1,...,kn) = max(v(ky),...,v(kn)),

WEy, ... kp) =min(ky 4 - -+ kp — h 4 1, pEokn)y, (7.67)
ki, ... kn=1,2,...,
h
I(e) = max {I(li(z1)... ., In(en)) | e = [ [ esvei € Govi=1,...,h},
=1
e€Q\{0}.

Clearly, whenever f;(z) has no nonzero repeated root for any i, 1 < i < h,
l(e) =1if 0 # ¢ € Q. It is easy to see that ¢ € @ implies € € @ and
l(e) =1(g9). Let

fr(z) =[] (z = ). (7.68)

e€Q

It is easy to show that fr7(z) is a polynomial over GF(q). The linear shift
register in R with characteristic polynomial fr7(2) is called the product of

My, ..., My, denoted by M; ... My or H?Zl M;. Clearly, the product is
independent of the order of My, ..., M. It is easy to verify that
MM+ -+ My)=MM, + -+ MM, (7.69)

We use Mg to denote the linear shift register in ® with characteristic poly-
nomial z — 1. Then we have
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MMg =MgM = M. (7.70)

Notice that for any My, My in R, My < M if and only if ¥{}) (z) C W),
if and only if f1(z)|f2(2). Thus M7 < Ms if and only if My + Ms = Ms. From
(765) and (769), we have My + M3 < My + M3 and M Ms < MyMs, if
My < M.

Point out that the associative law does not hold.

Theorem 7.4.1. For any My, Ms in R, we have
1 1 1
Vil a, () = Vil (2) + 747) (2), (7.71)
therefore, My + Mo is equivalent to the union of My and M.

Proof. Let f(z) be the characteristic polynomial of M7+ Ms, and f;(z) the
characteristic polynomial of M;, i = 1,2. Let g(z) be the reverse polynomial
of f(z), and g;(z) the reverse polynomial of f;(z), i =1, 2. It is easy to prove
that for any polynomials ¢ and 1, 1(z)|p(2) implies ¥(z)|@(z), where 1(z)
and @(z) are the reverse polynomials of ¥(z) and ¢(2), respectively. Using
the result, it is easy to show that g(z) is the least common multiple of g1 (z)
and ga(2).

Any 2(z) € WJ(\2+Mg (%), £2(z) can be expressed as the sum of a polynomial
bo(z) and a proper fraction h(z)/g(z), where the degree of by(z) is less than
the multiplicity of the divisor z of f(z). Since g(z) is the least common
multiple of g1 (z) and g2(2), h(z)/g(z) can be decomposed into a sum of proper
fractions h1(2)/g1(z) and h2(z)/g2(2). Since the multiplicity of the divisor z of
f(2) equals the multiplicity of the divisor z of f1(z) or of f2(z), we have bg(z)+
hi(2)/91(2) + ha(2)/g2(2) € Uiy (2) + W4y (2). Thus W)y (2) © Wiy (=) +
%(\}g(z) On the other hand, let £2;(z) € WI(VP(Z), i =1,2. Then (2;(z) can be
expressed as the sum of a polynomial b;(z) and a proper fraction h;(z)/g:(z),
where the degree of b;(z) is less than the multiplicity of the divisor z of f;(z),
i = 1,2. Thus £21(2) + 22(2) = b1(2) + ba(2) + h1(2)/91(2) + ha(2)/g2(2) =
b1(z) + ba(2) + h(z)/g(z), where h(z)/g(z) is a proper fraction. Since the
degree of by (z) +ba(2) is less than the multiplicity of the divisor z of f(z), we
have 21 (2)+25(2) € Wiy, 1, (2). Therefore, Wi, (2) + Wi} (2) W), (2).

We conclude LT/§2+M2(Z) = LT/&E (2) + W](\};(z) O

Let 2;(2) = Yooqwjiz', 7 = 1,...,n. Y ieg(wii...wp)z" is called the
product of £21(z),...,$2.(z), denoted by §21(z) ... 2.(2).

Theorem 7.4.2. Assume that M, MV, ... MM e R and MV ... M) <
M. Let 3% be the (eﬁ“),...,eﬁ”ﬁ)) root coordinate of 24,(z) in ![/](V}?a) (2),

a = 1,...,h. Then 4(z)...24(2) is in WJ(\/})(Z) and the (e1,...,&,) r00t
coordinate B of 21(2) ... 2n(z) is determined by
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h
H H (a)f ](Ca))’k:(),...,lo*L

a=1

ﬂijk:d}(iv‘jakaﬁ(l 7"'7ﬂ(h)) Z @(ila‘jla"wihv]‘hvk)a

(415J15y%h,Jn ) EPij
t=1,...,r, j=1,....n;, k=1,...,1;, (7.72)

where s,(ca) is the coefficient of z¥ in 2,(2), k=0,1,..., ﬂka) =0 in the case

0fk>léa),a:1,...,h,

h
. . . . a—1 Jj—1 .
Pij = { (i1, 41, »in, jn) | H( Ej))J =l iy =1,...,79,
a=1
=1 (@ 1,....h
Ja y 1, s @ ) ) }7
i=1,...,r, 7=1,...,n,,
(p<i1aj1a" '7ih7jh7k) (773)
l(.l) lg: 1) l(h)
=> > Z d(k:—l,k1—1,...,kh—1)Hﬁ(j])a
ki=1 kn—1=1 kp=max(1l,k—ki—--—kp_1+h—1) a=1

io=1,...,r@ ja:1,...,n§:’>, a=1,...,h, k=1,2,.

ey

k—

h
dk =1,k —1,... kp—1) = Z H kfl,
c=0 a=1
kki,....kn=1,2,.

Proof. Let 2(z) = $1(2)...2,(2) = > 282" For any a, 1 < a < h,

since the (Ega) e ,s(<3)) root coordinate of £2,(z) is 3(%), we have

(@) n(a) l(a)

Y S AL O ED T =0

1u °
ta=1ja=1kqs=1

where ﬁg‘l) = 0 in the case of 7 > l(()a). Noticing l(()a)
follows that

h
Sr = H sla)
a=1

Mo ()
EO IO I > ngy 1

=6T+Z'“Z DIEDID IS Hﬁm ke

ii=1  ip=1j1=1 jp=lki=1 kp=1a=1

H (H= ) ATED

a=1 a=1

Slgfora=1,... h,it
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T=0,1,...,

where 3, = 0 in the case of 7 >
1,...,r % j,=1,...,n

M®)\ {0}
h
_ H (a) Ja—

lo. Since G(M
Y and M) .

a ja—1 .
@)\ {0} = {(&i)7" " | ia =
M™) < M, we have

Nia=1,...,7@ jo=1,... 0" a=1,...,h}

Thus
o
EPNS 5 SIS SRS SRt o8 | (<1 H G DL
=1 §=1 (41,j1,..s0n,jn) EPi; k1=1 kn=1a=1
T=0,1,... (7.74)

From (7.12), i.e

H T+kq —1 _
kqo—1 -

>

ki+-+kp—h+1

> dk—1,k —1

k=1

ko=1,..,0 a=1,...,h,

we have

l(l) l(h)

> T

H ‘r+k: 71
ka—1

in  kiteotkp— h-‘rl

ki=1  kp=la=1
i Q)
ki=1  kp=1

(W)
141 —ht1

D

k=1 ki=1
Ak =1,k —1,.
ia=1,...,7 @ =10 a=1,..
Clearly, in (7.73), ©(i1,J1,- - -,

We prove (i1, ji1,. -,

z: k—1,k —1,...,

l<1) l(h—l)
i1 *h—1

DI

kn—1=1 kp=max(l,k—ki—-—kp_1+h—1)

ih,jh, k) = 0 whenever k > p

X kh - 1)(T:Ezl)a

(7.75)

h

=1 T 60000, (250

a=1

(h)
l‘h

> (7.76)

_1 Hﬂaja s ‘r+k 1)’

,h.

ih, jn, k) = 0 whenever k > l(1)+ --H(h)—h—i—l.

o1V, l(h
E . From (7.73),
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it is sufficient to prove that d(k—1,k1 —1,...,k, — 1) = 0(mod p) whenever
i+ -+kn—h+1>k >pv(l§i)7 ,li;”)v k, = 1,...,l§:), lg = 1,...,7“(a)
a = 1,...,h. For any positive integer k, let Ax(z) = 3220 ) ("7 1)27 over
GF(q). Tt is known that the period of Ag(2) is p**), where v(k) is defined

n (7.67). Let

)

h
=8 | ETXE)
a=1
ki+-+kn—h+1
Alz) = o d(k =1k =1,k — 1D Ag(2).
k=1

From (7.75), we have A(z) = A’(z). It follows that the period u of A(z)
and the period u' of A’(z) are the same. Since k, < l(:), we have v(k,) <
h

v(ll(f)). Thus p¥(Fe) | the period of Ay, (z), is a divisor of p”(lgz)), a=1,...
Clearly, u is a divisor of the least common multiple of pU(1), p“(kh .
From v(l( Yo l(h )= max(v(lg)), . ,v(lz(f))) w is a divisor of p" n
Suppose to the contrary that there exists k, ky +---+kp—h+12>k >
O]
vt guch that d(k — 1, ky — 1, kn — 1) # 0 (mod p). Then the
period ' of A'(z) is a multiple of p*® and v(k) > v(I{" My 10Tt

PO
W m
follows that u' is a multiple of pv(li1 ""’lihr )*1 Thus u < «. This contradicts

u = u'. We conclude that d(k — 1,k — ., kp —1) = 0(mod p) whenever
(1) (h) (1) (h)
i+ -4+kn—h+12>2Fk> pv(li ook, ) Since k > pv(lil weobiy,) implies
@(#1,91, - - 5 n, Jn, k) = 0, from (7.76), we have
1o e
(a) T—Hc —1
>3 T H b
k:l 1 k?h la=1
zugp,...,zggn
= Z @(ilmjla"'77;h7jh7k)(7-]~;ﬁ;1)a
k=1
ia=1,..,r @ ja=1,...,n" a=1,...h,
where l(lgll), . ,ZEZL)) is defined in (7.67). Replacing the leftside by the right-
side of the above equation in (7.74), we obtain
1D, 1)

21

T ng
Sr:ﬁ‘r""zz Z Z 90(217]'1’"-7ih7jh7k)<T-;c_k11)El . 1’

i=1 j=1 (i1,j1,...,in,jn)EP;; k=1
T=0,1,...
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From MW ... M®™ < M, we have l(lgll), .. .,ll(f)) < l; whenever (i1, j1,. ..,
1)

TR LI 1Y

in, jn) € Pyj. Noticing (i1, j1, ..., h, jn, k) = 0 whenever k > (I
this yields

T Uz lri -
ST:/8T+ZZ Z Zw(ihjlv"'vih7jh7k)(7—:ﬁ;1)5zq] 1

1=1 j=1 (i1,51,..-,in,jn)EPij k=1

r n; I -
=B+ S el dn B)] (E)E

i=1j=1k=1 (i1,j1,..-,%n,Jn)EPij;
T7=0,1,...

We conclude that 2(z) € Wg/})(z) and its (e1,...,&,) root coordinate [ is
determined by (7.72). O

Since 2 = (21 ...(2, is a sequence over GF(q), in its (e1,...,&;) root
coordinate 3, components satisfy 3;;; = ﬁflj,; " Therefore, it is not necessary
to compute [, using (7.72) for j > 1.

It is easy to see that all characteristic polynomials of MM .. . M")
have no nonzero repeated root if and only if the characteristic polynomial of
M® . M™ has no nonzero repeated root. Assume that the characteristic
polynomial of M has no nonzero repeated root. Then we have

h
So(ilajlv sy ihajha k) = H ﬁi(:j).aka
a=1
for k =1, and ¢(i1,51,.-,%n,Jn, k) = 0 for k > 1. Thus the formula (7.72)
for computing ;1 may be simplified into the following

h
6ij1:w(i7j7laﬁ(l)7"'7ﬁ(h)): Z Hﬁg;l;al’
(i1,31,--in,dn) €Pij a=1

i=1,...,7, j=1,...,n;.

For any autonomous finite automaton M = (Y, S,4,\), if Y and S are
the column vector spaces over GF(q) of dimensions m and n, respectively,
and 0(s) = As for some n x n matrix A over GF(q), M is called a linear
backward autonomous finite automaton over GF(q). A is referred to as the
state transition matriz of M, and |zE — A| is referred to as the characteristic
polynomial of M, where E stands for the n x n identity matrix.

Below we discuss the problem: given a linear backward autonomous finite
automaton M, find linear autonomous finite automaton M with M < M.
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Let M be a linear backward autonomous finite automaton over GF(q)
with state transition matrix

Pray(z)

A= , (7.78)

Pf(">(z)

where f(* is a polynomial of degree n(? with leading coefficient 1, i =
1,...,v. Let M; be in ® with characteristic polynomial f® i = 1,...,v.
Given ¢, 1 < ¢ < m, assume that the c-th component function A. of the
output function A\ of M is given by

)\0(8117 sy S1p@ s a5 Suly ey svn(v)) (779)
_ E hiy BCH) hot by
= Chll»--hln(l)»--hvl (u)sll "'Sl’n(l) ce S "'S’U’n(”) 5
hij=0,...,a—1
i=1,...,v
j=1,..., n (%)

where Ch11~--h1n(1)~--hv1--'hvn(v) c GF(q), hij =0,...,g—1,t=1,...,v, j =
1,...,n%. Let

hi1+-+h, (1) hy1+-+h

My, = z: M, w0 M, o) (7.80)

Chit-hy (1) heteeh ) (y)
where M? = Mg. Let @(p)( ) = {@g\?(s,z) | s € S}.

Theorem 7.4.3. Assume that M € R and My, < M. Then we have @5\?(7;)

C 47](\7}) (2). Moreover, if the (65‘1), . £(3>) root coordinate of &01(\2 (50 2) is
B a=1,...,v and the (€1,...,&:) root coordinate of @g\‘/})([s(l), ey 8T

z) in Wl(é)(z) is 3, then

2 _ [h11...h whyionh ]
p= E Chyyehy (1yehorch, B (et R (0,
hij=0.....a—1
i=1,..., v
G=1,...,n(®)
where
h N v n® v nl®
R T COR ()] b (a) hap
By HHSblka HH5b1+k k)
a=1b=1 a=1 b=1

k=0,...,00—1,
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[hi1. by (1) hoi b (] L. n® n
ﬂijklrl i ' on) :w(%]?kaﬂ[ll]w"76[11]3"'aﬁ[1 ]7"'3/8[1 ]7
hi1 hi,
LA g g gl ™y
Y b )
i=1,...,7, j=1,...,05 k=1,...,1;, (7.81)

B =5 k=0,.,08 — b,

B =0, k=15 —b+1,...,08" -1,
l(@)

a a 1)t
Hﬁmi’“ T E) I
i:l,...,r( =10 =1, 0,
a=1,...,0, b:l,...,nl(-a),

!Z/J(L}i(s(a),z) =37 Za) i ﬁ = 0 whenever 7 > l(()a), a=1,...,v, and ¢
is defined by (7.72) and (7.73).

Proof. Since M, is a shift register, from (7.79) we have

) ([sM, ..., sT, 2) (7.82)
v nl®
_ 1
= D0 emnhano LTI @G, ),
hiji‘; ----- q—1 a=1b=1
et (D)

where the 0-th power of any sequence is the 1 sequence. From Theorem 7.4.1
and Theorem 7.4.2, we have @g\fl) (2) C WJ(\XL (). Since My, < M, @s\ff)(z) C
v (2) holds.

We give some explanation on root basis mentioned in the theorem. Let
GF(q*) be a splitting field of fM)(z), ..., f*)(2) and the characteristic poly-
nomial f(z) of M. Then the factorizations

Fo) =TG-

i=1j=1
(@) n(a)
(a) (a g1 l(a
70 =4 T TG - 0!
i=1 j=1
a=1,...,v
determine the (€1, ..., &5) root basis of Wj(\;ll) (2), the (sga), e ,5((2)) root basis

of W](\}) (2),a=1,..., h, where M* is the natural extension of M over GF'(q*),
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and M7 is the natural extension of M, over GF(¢*), a = 1,...,v. Since the

(eﬁ“),. 5(?2)) root coordinate of WJ(V}()I(S(“),Z) is 3@, from Theorem 7.3.1,
Bla¥l s the (), ... ,55?3)) root coordinate of Dbil(%(\z (5(*), 2)), where com-

ponents of ﬁ[ab] are given in (7.81),a =1,...,v,b=1,...,n(*. Suppose that
Chvh, oy ohonh o 7 0- Then Mh“+ RIS SRS AR
M. From Theorem 7.4. 2, T, T2, (Db~ 1@}\/ (s<a>,z)))hab is in ¥ (2),
and its (€1,...,&r) root coordinate is ﬁ[h“ ) Pothy 0] of which com-
ponents are given in (7.81). From (7.82), we have

o) ([sW,...,sW]T,2) e ()
and its (&1, ...,&7) root coordinate is given by (7.81). O

Corollary 7.4.1. Let M be a linear backward shift register over GF(q), of
which the c-th component function of the output function is given by

q—1
Ac(S1y.0ny8n) = Z Chy p, S st (7.83)
Rt yeeeshn =0

)

Assume that My € R and characteristic polynomials of M and My are the
same. Assume that M € R and M{L1+"'+h" < M whenever cu,..pn, # 0,

hi,...,hp,=0,...,q— 1. Then we have @S\f])(z) C II/SI)(Z) Moreover, if the
(€1,...,&r) TOOt coordinate of WJ(\Z (s,z) is B, and the (£1,...,&7) ro0t coor-
dinate of @g\fl)(s,z) in &PJ(\—;)(,Z) is 3, then

g = Chy.oy B0 (7.84)
where
H C ﬁ (Sv—14k — Bo—14%)"™, k=0,...,1o— 1,
b=1
ﬂjjk el (i k, g1, L, 80 g

h1 hn
i=1,...,7, j=1,....0; k=1,...,1, (7.85)

][gb]:ﬁb—l-‘rk) k:(),...,lo—b,
B =0, k=l —b+1,...,1—1,

b b—1)g? ~*
z[j]h Hﬁl.] k hjb 2) 5 ) ’

1—1,..., r,j=1,...,n5, h=1,....0;, b=1,...,n,
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W](V}f(s,z) = Y20 siz', Br = 0 whenever 7 > ly, and v is defined by (7.72)
and (7.73).

For a linear backward autonomous finite automaton M’ = (Y, 5,4, \')
over GF(q) of which the state transition matrix A’ is not in the form of (7.78),
we can transform it to the form of (7.78) by similarity transformation, that
is, we can find a nonsingular matrix P over GF(q) such that A = P~1A’'P
can be expressed in the form of (7.78). Let M = (Y, S, J, \), where §(s) = As,
A(s) = XN(Ps). Then M is a linear backward autonomous finite automaton
over GF(q). Tt is easy to verify that M and M’ are isomorphic and the state
s’ of M’ and the state P~!s’ of M are equivalent.

Notice that if the (e1,...,¢&,) root coordinate of a periodic §2 in @y, is 3,
then the linear complexity of £2 equals to >__, n;l;1, where [;; = min h[h > 0,
Giixg =0 if h<k<U],i=1,...,r, the linear complexity of {2 means the
minimal state space dimension of linear shift registers over GF(q) which
generate (2.

We finish this section by the following theorem.

Theorem 7.4.4. For any autonomous finite automaton M = (Y, S, 5, \), if
Y is a column vector space over GF(q), then there exists a linear autonomous
finite automaton M = (Y, S,8,\) over GF(q) such that the dimension of S <
|S| and M is isomorphic to a finite subautomaton of M.

Proof. Let S = {s1,...,8,} and

6(si) = Sjis
Y1i
A(si) = | ¢ , (7.86)
Ymi
=1, , M,

where y;; € GF(q),i=1,...,n, j = 1,...,m. Let S be the column vector
space over GF(q) of dimension n. Let 7; be the column vector of dimension
n of which the i-th component is 1 and 0 elsewhere, i = 1,...,n. Define

5(3) = A3, \(3)=Cs, 5€ 8, (7.87)
where
A= le, s 7:an]v
Y11 Y12 --- Yin
Y21 Y22 ... Yon

C= (7.88)

Ym1 Ym2 - - - Ymn
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Take

S = {’717 v’?n}
From (7.87) and (7.88), (%) = 7;,, i = 1,...,n. Therefore, S is closed in
M. Tt follows that M = (Y,S’, \) is a finite subautomaton of M, where

)
5(5) = 6(5), A(3) = A(5), for 5€ S. Let
@(Sz) =5, t=1,...,n.

Clearly, ¢ is a bijection from S to S. From d(p(s;)) = 6(%;) = Vi, = ¢(s5,) =
©(d(s;)), we have

3(p(s)) = ¢(d(s)), s € 5.
Since A(¢(8:)) = M%) = [Y1is - - - Ymi] T = A(si), we have
Ae(s)) = A(s), s € S.

Thus ¢ is an isomorphism from M to M. We conclude that M and M are
isomorphic. O

7.5 Decimation

For any sequence w = [wg,w1,...,w,,...] and any positive integer u, the
sequence [Wo, Wy, . . ., Wyr, - . .| is called the u-decimation of w.

Let M be a linear shift register over GF(q) with structure parameters m,
n and structure matrices A, C. Let f(z) be the characteristic polynomial of
M.

Assume that GF(¢*) is a splitting field of f(z). Let M* be the natural

extension of M over GF(q*). Take an (e1,...,¢&,) root basis of !Pj(é) (2), where
T Uz _—
i
fe) =2 [J=< )"
i=1j=1
Given a positive integer u, let R be a relation on {1,...,r}, where iRj

if and only if €} and €} are conjugate on GF(q), i.e., g = (e;*)qk for some
nonnegative integer k . Clearly, the relation R is reflexive, symmetric and

transitive. Let
PP, ... P (7.89)

be the equivalence classes of R. For each h, 1 < h < 7, fix an integer my, in
Ph. Let
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&, =eb (7.90)

mp°

From the definition of Py, for any ¢ in Py, €} and € are conjugate on

i mp,

k
GF(q); therefore, there exists k > 0 such that e} = 5“mq:, ie., el =&} . Let

v, =mink(k > 0& e} = éﬁk), (7.91)
1€ Py, h=1,...,T.

We use 7y, to denote the degree of the minimal polynomial over GF'(q) of &p,.
Then éznh = &5,. Thus

v; < 7Np, 1€ Py, h=1,...,7T. (792)

Let ¢ € Pp,. Then the minimal polynomials over GF'(q) of ¥ and &j, are the

k s ng
same. Thus 7ip = mink(k > 0 & &9 = e¥). Since /7 " = (e ")* =¥, we

have np|n;. Let
G =n;/fp, 1€ Py, h=1,...,T. (7.93)
Then g; is a positive integer. Let u = p*“u/, where v’ and p are coprime. Take!

lo=min k(ku>1y),

In=max k(k—1=|(;—1)/p"],i € Py), (7.94)
h=1,...,7.
Let
fe =TI TG4 (7.95)
h=1j=1

It is easy to show that f(z) is a polynomial over G F(q) with leading coefficient
1. Let M be a linear autonomous shift register over G F(q) with characteristic
polynomial f(z). Let M* be the natural extension of M over GF(q*). Then

€1,...,&r determine an (&1, ...,&x root basis of W]%)*
Assume that 2 = [sg,$1,...,8,...] is in WJ(\}) and its (e1,...,&-) OOt

coordinate is 8. Then

T Kz 11 o
Sr= 0+ >33 B (TN

i=1 j=1k=1
T=0,1,...,

! |z| stands for the maximal integer < .
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where 3, = 0 whenever 7 > lo. Let 2 = [50,5,
decimation of §2. Then

+k— 1 u‘rq-7_1
= Sur = ﬂur + ZZZ/B’L]]C u‘rk 1 /L'

=1 j=1k=1

PN 5D 3D 3p 31 T G Erk

h=1i€Py j=1k=1

..y87,...] be the u-

nh qi—

E—1\ _rqUitennti—1
SYIRS 55 35 30 ) W SRINCATSEL

h=1i€Pp j=1 ¢=0 k=1

np ¢—1 1;

= Pur + Z Z Z Z Zﬁz ciip+j,k uT]:r_klil)E;;qUiHil (7.96)

h=1i€Py j=1 ¢c=0 k=1
vitnn ¢—1 I;

S0 35 D 3 D) IR T B

h=1i€Py j=v;+1 ¢=0 k=1
i qi—1 1

SRR 55 30 35 D) 3 IR UL G

h=1i€Pp j=1 c=0 k=1

fn ln

—ﬁ +ZZZﬂh3k uT/:k1 ! Jrqj 17

h=1j=1 k=1
T=0,1,..

°

where a(mod 7;) = min b(b > 0 & a = b (mod 7)), I, = max{l;,i € Py},
h=1,...,T,
ﬂ;:O7 ifT>ZOa

ﬂ‘/r:/BUT7T:O7"'7ZO_17 (797)
qi—1

ﬂh]k Z Z ﬁz ,cfip+(5—v;)( mod 7y ),k
1€Py, c=0
h=1,...,7, j=1,....an,k=1,....1,

and By =0fori€ Py, h=1,...,7 j=1,...,n;, k=1;+1,...,1,. We use
0(c) to denote |¢/p™]. From Theorem 7.1.3, it is easy to show that
(u’r+k71) _ (pw(u'7'+«9(k—1))+y)
k-1 - pwO(k—1)+v
w' T4+6(k—1 v
= ( 9(k£1) )) () (mod p)

— (u"r+0(kfl))

0(k—1) (mod p),

where 0 < v < p* and v = k — 1(mod p*). From (7.11), for any k, we have
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k
u T+k 1 ZC 17(1 o 1)(T<gi;1)’

a=

J

a—1
' k—T1a—1) =Y (=1)1(*;}) ("W,
i=1
a=1,...,k
Thus
0(k—1)+1
("B = Y e 0k —1),a =1 (7).
a=1
It follows that
0(k—1)+1
(Y= S e 0k —1),a-1)(7TY)  (mod p).
a=1

Replacing the leftside by the rightside of the above equation in (7.96), letting
c(u',k';a) =0 for a > k', we have

Foan O(k—1)+1 B
=0 DD Y B D el 0k =D - 1)(T !
h=1j=1 k=1 Pt
T np lh
=3 +ZZZﬂh]kZ c(u',0(k a_l)(sz_le)C:;qg
h=1j=1k=1
T Np lh lh N
=B+ 302 > (el 0k = 1),a = 1)) (30 )GT (7.98)
h=1j=1a=1 k=a

T N lh—l)"rl [h
=YD D (e bk == D5 (E
h=1j=1 a=1 k=a
T=0,1,...

Since [, = max{l;,i € Py}, from (7.94), we have [}, = 9([h —1)+1, h=
1,...,7. Let

BTzﬂf/m 7—:07"‘7[0_17

I

Bhja = Z c(u,0(k —1),a — 1)8} 1, (7.99)
k=a
h=1,....7, j=1,...;0p,a=1,..., 1.

Then (7.98) can be written as
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Foan Iy L
s — A 2 T+a—1\ =1¢’ "
5r=pr+ E E E Brja("R2)ER"
h=1j=1a=1
T=0,1,...,

where 3, = 0 whenever 7 > ly. Therefore, {2 is a sequence in LZ/](E}) of which
the (&1,...,&r) root coordinate is .

(7.97) and (7.99) can be written in matrix form. We use E; to denote the
i x 1 identity matrix, 0;; to denote the i x j zero matrix; and the leftmost
j columns and the rightmost ¢ — j columns of F; are denoted by E;(j) and
E;(—j), respectively. Let

IO(Z) = [Eﬁh(fvi),Eﬁh,. .. ’Eﬁh”Eﬁh(Ui)}7 1 S P}“ h = 1,. .. ,F7
—_———

n,;/nhfl

16(0)
L= DIAIO(l),11 | ,

DIA 1,

o _[Ea. iicPuk=c
T Onpryss  if € Puyh # Bor k # ¢,

h=1,....,F k=1,..., 0, i=1,...,r, c=1,....,1;, (7.100)
Ik = [Tnkrs - Tnkany oo Tnker oo Tngrr,)s h=1,...,F k=1,...,1,
S
I~
/ .lll EZO
11: : ’ Il Ii ;
Ir
_IF~;_
¢(0,0) ¢(1,0) ... c(lp —1,0) . el —1,0)
0 c(1,1) ... ey —1,1) el —1,1)
IQ(h): . . . : )
0 0 ...C(Zh—l,ih—l)...C(Zh—l,zh—l)
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Ey,

Ix(1)
I = 15(2)

I5()
where the definition of the symbol DIA is in Sect. 4.1 of Chap. 4, I(0) is
an ly x lp matrix of which the element at row i and column u(i — 1) + 1 is
1 and 0 elsewhere, and ¢(4, j) stands for c(u’,0(i), j)Ex, . It is easy to verify
that (7.97) can be written as 5/ = I3[y and that (7.99) can be written as
B = If8'. Therefore, § = I,I,1y3. We complete the proof of the following
theorem.

Theorem 7.5.1. Let {2 be a sequence in W](Vl[), and (3 the (e1,...,e.) root
coordinate of 2. If 2 is the u-decimation of £2, then 2 is in W](é) and its
(81,...,&r) To00t coordinate [3 is determined by

B = Li1p.
Corollary 7.5.1. Let

J=D(&,...,60, M)Io1 IgD(e1, ... 60, M)™,

where D(-) is defined by (7.35). Then W%)(E) is the u-decimation of W](\})(s)
if and only if 5 = Js; therefore, J is a matriz over GF(q).

By the way, if the characteristic polynomial f(z) of M has no nonzero
repeated root, then I, = I, = 1, h = 1,...,7. Thus Iz(h) in (7.100) equals
E5, ; therefore I is the identity matrix.

Theorem 7.5.2. FEach sequence in WZ(\—;) is u-decimations of ¢" ™ sequences

in W](V}), and u-decimations of &T/A(}[)(sl) and Wz(v})

if Js1 = Jso, where i =lo+ >, _, nln.

(s2) are the same if and only

Proof. It is easy to see that the rank of I is n' = Iy + 22:1 ZiGPh, nnl;
and the rank of I} is 7 = Iy +ZZ:1 fnlp. Since u and p are coprime, we have
c(u,a,a) = (v')* # 0 (mod p). Using this fact, noticing c¢(u',k’,a) = 0 for
k' < a, we can prove that the rank of I5(h) is finlp; therefore, the rank of I is
n. Clearly, D(¢1,...,&7 M) and D(ey,...,&., M) are nonsingular matrices.
Using Sylvester inequality, that is, “the rank of G + the rank of H — the
number of rows of H < the rank of GH < the rank of G, the rank of H”, it is
easy to see that the rank of J is nn. Since n is the number of rows of J, for any
state 5 of M, the equation 5 = Js has ¢"~™ solutions. From Corollary 7.5.1,
!Z/](V})(E) is u-decimations of ¢" ™" sequences in Ll7§/1[), ie., WZ(V})(S), se S, 5=Js.

From Corollary 7.5.1, u-decimations of W](\})(sl) and Epj(\;)(SQ) are the same
if and only if Js; = Jss. a
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)

Corollary 7.5.2. Ifn =n, then each sequence in ![/](\711 is the u-decimation

. 1 . .
of one sequence in WJ(\4) ; therefore, the u-decimation of any monzero sequence

. 1) .
m WI(EI) 18 monzero.

It is easy to prove that in the case of u > 1, 7 = n holds if and only if the
following conditions hold: €¥,...,c* are not conjugate on GF(q) with each
other, degrees of minimal polynomials of €; and €} are the same, ¢ =1,...,7,
0 is not a repeated root of f(z), f(z) has no nonzero repeated root or v and
p are coprime. In particular, whenever u > 1 and f(z) is irreducible other
than z, 7 = n holds if and only if degrees of minimal polynomials of €; and
e} are the same.

Historical Notes

Each component sequence of an output sequence of a linear autonomous
finite automaton over a finite field is equivalent to a linear shift register
sequence over a finite field. A great deal of work has been done on linear shift
register sequences (equivalently, linear autonomous finite automata with 1-
dimensional output), see [51] and its references for example. In particular, a
root representation for linear shift register sequences is found in [54], pp. 20—
22. References [97, 98] devote mainly to general (viz. the output dimension
> 1) linear autonomous finite automata over finite fields. The material of this
chapter is taken out from Appendix ITT and Chap. 3 of [98], but Theorem 7.3.2
is narrowed and its proof is slightly simplified.
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Summary.

In the first seven chapters, theory of finite automata is developed. From
now on, some applications to cryptography are presented. This chapter
proposes a canonical form for one key cryptosystems in the sense: for any
one key cryptosystem without data expansion and with bounded error
propagation implementable by a finite automaton, we always find a one
key cryptosystem in canonical form such that they are equivalent in be-
havior. This assertion is affirmative by results concerned on feedforward
invertibility in Sects. 1.5 and 5.2. Under the framework of the canonical
form, the next is to study its three components: an autonomous finite au-
tomaton, a family of permutations, and a nonlinear transformation. The-
ory of autonomous finite automata has been discussed in the preceding
chapter. As to permutational family, theory of Latin arrays, a topic on
combinatory theory, is presented in this chapter also.
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In the first seven chapters, theory of finite automata is developed. From now
on, some applications to cryptography are presented. This chapter proposes
a canonical form for one key cryptosystems in the sense: for any one key
cryptosystem without data expansion and with bounded error propagation
implementable by a finite automaton, we always find a one key cryptosystem
in canonical form such that they are equivalent in behavior. This assertion is
affirmative by results concerned on feedforward invertibility in Sects. 1.5 and
5.2. Under the framework of the canonical form, the next is to study its three
components: an autonomous finite automaton, a family of permutations, and
a nonlinear transformation. Theory of autonomous finite automata has been
discussed in the preceding chapter. As to permutational family, theory of
Latin arrays, a topic on combinatory theory, is presented in this chapter
also.
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8.1 Canonical Form for Finite Automaton One Key

Cryptosystems

From a mathematical viewpoint, a cryptographic system, or cryptosystem for
short, is a family of transformations { fx,k € K} depended on a parameter k
called the key, where K is called the key space, fi is called the cryptographic
transformation which is an injective mapping from a set P (the plaintext
space) to a set C' (the ciphertext space). For sending a message « which is re-
ferred to as plaintext through an insecure channel, where it may be tapped by
an adversary, using this cryptosystem, the sender first encrypts a by applying
fr to it and then sends the result fx(«) which is referred to as ciphertext
over the channel. The receiver decrypts the ciphertext fi(«) by applying f; !
to it and retrieves the plaintext «, where f,~ 1 is an inverse transformation of
fr. The receiver and the sender share the key k; this cryptosystem is referred
to as a one key cryptosysyem.

An example of cryptosystems is the stream cipher of which the key string
is a pseudorandom sequence generated by a binary shift register of order n.
The key space is the vector space of dimension n over GF(2), the plaintext
space and the ciphertext space consist of all words over GF'(2), and the cryp-
tographic transformation fy is defined by fi(zox1...2i—1) = Yoy1---Yi—1,
where y; = s; ®x;, i = 0,1,...,1 — 1, and the key string sgs;1 ...s;—1 is the
first | digits of the output of the shift register for the initial state k. It is
well known that shift register sequences have received extensive attentions in
cryptology community since the 1950s. Although shift registers are impor-
tant sequence generators in stream ciphers, they are merely a special kind of
autonomous finite automata. Finite automata have been regarded as a nat-
ural mathematical model of cryptosystems from an implementing viewpoint,
where the plaintext space and the ciphertext space consist of all words over
some finite sets, and the cryptographic transformation fi(«) equals A(k, @),
A being the output function of some weakly invertible finite automaton, and
the key space is a set of weakly invertible finite automata and their initial
states.

Assume that a finite automaton M = (X, Y, 5,4, \) is chosen as an en-
coder to implement encryption. Then M must satisfy some conditions on
invertibility. In the case where M is invertible with delay 7, we may choose
its inverse finite automaton with delay 7, say a 7-order input-memory finite
automaton M’ = (Y, X,5’,¢',\), as the corresponding decoder to imple-
ment decryption. To encrypt a plaintext xq...x;_1 in X*, we first expand
randomly 7 letters x;, ..., z;1,—1 in X to its end and choose randomly a state
s of M, then compute



8.1 Canonical Form for Finite Automaton One Key Cryptosystems 275

Yo - Yirr—1 = A(8,T0 -+ Tigr-1).

Yo - .- Yi+r—1 is a ciphertext of xg...x;_1. For decryption, we compute

. =N Yo Y1)

for any state s’ of M’, then the plaintext x¢...2;—; equals 7 ...2;, ;. In
this case, the key is the structure of M. In general, the variable structure
of the encoder leads its implementation to inconvenient. In the case where
M is weakly invertible with delay 7, we may choose its weak inverse finite
automaton with delay 7, say M’ = (Y, X, 5,8, \), as the corresponding
decoder. To encrypt a plaintext zg...x;_1 in X*, we first expand randomly
T letters x;,...,z;4-—1 in X to its end, then compute

Yoo Yipr—1 = A8, 20 .. Tryr_1).

Yo - - - Yi+r—1 is a ciphertext of xq...x;_1. For decryption, we compute

/ / / /
o T =N Yo Yipr—1),

where the state s’ of M’ 7-matches s with delay 7. Then the plaintext
To...x;—q equals 2/ ...xj, ;. In this case, the key is the state s of M
if the structure of M is fixed.

In invertible case, since M’ is an input-memory finite automaton, an er-
ror letter in cipher causes at most 7 + 1 error letters in decryption. But in
weakly invertible case, sometimes an error letter in cipher can cause infinite
error letters in decryption as pointed out in p.35. From Theorem 1.5.2; to
guarantee bounded propagation of decoding errors, encoders must be feedfor-
ward invertible and their feedforward inverses are taken as the corresponding
decoders.

From Theorem 1.4.5, if M = (X,Y,S,d,\) is taken as an encoder, then
|Y| > |X|. To represent all ciphertexts for all plaintexts of length I (Ilog, | X|
bits), we need (I47) log, |Y| bits. Thus llog, | X| < (I47) log, |Y|. Therefore,
there is no plaintext expansion if and only if [log, | X| = (I + 7)log, |V, if
and only if |Y| = |X| and the delay step 7 = 0.

For one key cryptosystems implemented by finite automata without plain-
text expansion and with bounded propagation of decoding errors, decoders
may be chosen from weakly inverse semi-input-memory finite automata with
delay 0 in which the input alphabet and the output alphabet of a finite au-
tomaton have the same size. Theorem 5.2.2 characterizes the structure of
feedforward inverses with delay 0; using this result, we give a canonical form
of such cryptosystems as follows.

The decoder M’ = (Y, X, 5,6, ') is a c-order semi-input-memory finite
automaton STM(M,, f), where X =Y, M, = (Ya,S4,04,Aq) is an au-
tonomous finite automaton, f is a single-valued mapping from Y+ x \,(S,)
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to X with |f(Y,¥e—1,---,Y0,Xa(Sa))] = |X]| for any s, € S, and any
Yoy -+ Yee1 € Y. For any y, € Ao(Sq) and any yo,...,y.—1 € Y, let
fyer1,omowa D€ & single-valued mapping from Y to X defined by

fycfhm,yn,ya (yc) = f(ym e 7y07ya)7 yc S Y

Clearly, fy. 1.....y0,y. 18 @ permutation on Y (or X). Then there exists a single-
valued mapping h from Y x \,(S,) to W such that

FWesYe1s- -3 ¥0:Ya) = Gty v oy (Ye):
Ya € )\a(Sa)a Yo, Yc € Y
for some finite set W, where g, is a bijection from Y to X, for any w in
W. Fig.8.1.1 (b) gives a pictorial form of the decoder M’. For any initial

state s{, = (Y—1,...,Y—c, Sq0) and any input sequence (ciphertext) yo...y—1
of M’, the output sequence (plaintext) xg...x;—1 of M’ can be computed by

Sa,i+1 = 0a(Sai),
ti = Xa(Sai),
wi = h(Yi—1,. -, Yi—e, ti),
i = G, (i),
i=0,1,...,01—1.
Among others, a corresponding encoder may be chosen as a finite au-

tomaton M = (X, Y, Y x S,, §, \), of which a pictorial form is given by
Fig.8.1.1 (a), where

S((y=1,- -+ ¥Y—cs8a)s T0) = (Y0,Y—1,- -+ Y—c+1,0a(Sa)),
A(Y=15-+,Y=crSa)s To) = Yo,
wo = h(Y—1,-,Y—c, Aal(Sa)),
Yo = Gu, (o),
Y1y oo Y—es Sa) €Y X Sy, zp € X.
That is to say, for any initial state sg = (Yy—1,...,Y—c, Sa0) and any in-

put sequence (plaintext) xq...xz;—1 of M, the output sequence (ciphertext)
Yo -..-yi—1 of M can be computed by

Sa,i+1 = 6a(3ai)7

ti = )\a(sai)v
wi = h(Yi-1,- s Yi—es i),
Yi = gwi(’ri)’

i=0,1,...,01—1.
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T

Yi

Xq

Yi—c Yi—2 Yi—1 Yi
i ‘ .
w;
h(Yiz1,- s Yizec, ti) G, (7i)
t;
M,
(a) Encoder M
Yic Yi2 Yi-1
Ws _
h(yi=1,.. ., Yi-e, ti) G, (Y3)
t;
M,

(b) Decoder M’
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Other decoders are possible; results in Sect. 6.6 of Chap. 6 show that, from

a behavior viewpoint, they are slightly different from the above decoder.

On the other hand, other encoders are possible. We may even take nonde-
terministic encoders from results in Sect. 6.5 of Chap. 6. But they are more

complex than the above encoder from a structural viewpoint.
As a special case (¢ = 0), for one key cryptosystems implemented by
finite automata without expansion of the plaintext and without propagation
of decoding errors, the canonical form is as follows.
The decoder M' = (Y, X, S,, 6", \') is a O-order semi-input-memory finite
automaton STM(M,,g'), where X =Y,

5/(5a7y) = 6a(3a);
)‘/(Savy) = 91;1(3/)7

w = A(8q),
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Sq € Say YEY,

M, = (W, S4, 084, \a) is an autonomous finite automaton, g, is a bijection
from Y to X for any w in W, and g;;*(y) = ¢'(y, w). For any initial state s4o
and any input sequence (ciphertext) yo...y;—1 of M’, the output sequence
(plaintext) zq...2;—1 of M’ can be computed by

Saq,i+1 = 0a(Sai),

Wi = )\a(sai)a

i = G, (1),
i=0,1,...,1 —1.

A corresponding encoder may be chosen as a finite automaton M = (X,
Y, Sa, 0, A), where X =Y,

0(Sasx) = 0a(Sa),
A(Sa; ) = gu (),
w = Aa(Sa),
Sq €ES,, x € X.
That is to say, M = (X,Y,5,,d,\) is also a 0-order semi-input-memory
finite automaton STM (M, g), where g(z,w) = g, (x). For any initial state

sq0 and any input sequence (plaintext) g ...x;—1 of M, the output sequence
(ciphertext) yo ... y;—1 of M can be computed by

Sa,i+1 = 6a(sai);
w; = /\a(sai)a

yi:gwi(xi)7
i=0,1,...,1 —1.

Fig. 8.1.2 gives a pictorial form of the canonical form.

T Yi Yi 1 T;
— Gu; (i) ——> " Gu, (¥s) —>
W; wsg
M, M,
(a) Encoder M (b) Decoder M’

Figure 8.1.2
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Block ciphers and stream ciphers (in the narrow sense) are special cases
of the above canonical form. For block ciphers, ¢, is the identity function.
For binary stream ciphers, g, (v) = g5 (v) = w & v.

Ezample 8.1.1. To give a cipher pictorialized by Fig. 8.1.1, let X and Y be
the set of all 8 bits 0,1 strings. Take ¢ = 6. M, consists of a binary shift
register with characteristic polynomial z'?® @ 28 @ z and an autonomous
finite automaton M of which the next state function is the identity function.
t; is (s;, ), where s; is the state of the shift register and ¢ is the output
L = ) of 8 bits 0,1 strings.
w; is (wi1, wiz, @), where w;; and w;z are 8 bits 0,1 strings. gru, ws,,e) () is
p(wy — (w2 @ (w1 — ¢(x)))), where — stands for subtraction modulo 256;
therefore, g@)lhwmw (Y) = J(wy,ws,0)(¥)- The key consists of the initial state
of M,.

If the characteristic polynomial of the binary shift register is variable
which may be taken as the product of x and any primitive polynomial of
degree 127 over GF(2), then the key consists of the initial state of M, and
the characteristic polynomial, in other words, the key consists of M, and its
initial state. Formally, the structure of M, is variable; but after redefining
the autonomous finite automaton M, by expanding its state to include the
coefficient of the characteristic polynomial, the key still consists of the initial
state of M,.

of M which represents an involution (i.e., ¢~

8.2 Latin Arrays
8.2.1 Definitions

The problem of designing one key cryptosystems implemented by finite au-
tomata without plaintext expansion and with bounded propagation of decod-
ing errors may be reduced to choosing suitable parameters such as the size
of alphabets and the length ¢ of the ciphertext history and designing three
components in the above canonical form (Fig.8.1.1) — an autonomous finite
automaton M,, a transformation h and a permutational family {g.,, w in W}
— so that the systems are both efficient and secure.

Assume that the distribution of elements in the derived key sequence wq
wy ... in the above canonical form is uniform. Let {g,, w in W} be a family
of permutations on X. For resisting the known plaintext attack, under the
above assumption, the requirement in Property 1 is very natural.

Property 1. For any z, y in X, [{w|w in W, g,,(z) = y}| = constant.

From the viewpoint of uniformity for permutations, the following property
is also desired.
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Property 2. For any v’ in W, [{w|w in W, g,, = gy }| = constant.

Specify an order for elements of X, say 1, ..., ,, and an order for el-
ements of W, say wi, ..., w,. Let A be an n x m matrix, of which the
element at row i and column j is g, (7;). Then each column of A is a per-
mutation of elements in X. Clearly, fixing orders of elements for X and W,
the family of permutations {g,, w in W} is one-to-one correspondent with
A. Corresponding to Property 1, we introduce the following concept.

Let A be an n x nk matrix over N = {1,...,n}. If each element of N
occurs exactly once in each column of A and k times in each row of A, A is
called an (n, k)-Latin array.

Corresponding to Properties 1 and 2, we introduce the following concept.

Let A be an (n, k)-Latin array. If each column of A occurs exactly r times
in columns of A, A is called an (n, k, r)-Latin array.

Notice that (n,1)-Latin arrays are n-order Latin squares in literature.

Let A and B be n X m matrices over N. If B can be obtained from A by
rearranging rows, rearranging columns and renaming elements, we say that
A and B are isotopic; and the transformation («, 3, ) is called an isotopism
from A to B, where «, 8 and v are the row arranging, the renaming and the
column arranging, respectively. It is easy to verify that the isotopy relation is
reflexive, symmetric and transitive. Clearly, if A is an (n, k)-Latin array and
if A and B are isotopic, then B is an (n, k)-Latin array. Similarly, if A is an
(n, k,r)-Latin array and if A and B are isotopic, then B is an (n, k, r)-Latin
array.

For (n,k)-Latin arrays or (n,k,r)-Latin arrays, any equivalence class of
the isotopy relation is also called an isotopy class.

8.2.2 On (n,k,r)-Latin Arrays

We use U(n, k) to denote the number of all (n,k)-Latin arrays, U(n, k,r)
the number of all (n,k,r)-Latin arrays, I(n,k) the number of all isotopy
classes of (n, k)-Latin arrays, and I(n, k,r) the number of all isotopy classes
of (n, k,r)-Latin arrays.

Let A; be an n xm; matrix, ¢ = 1, ..., t. The n X (m7 + - - - + my) matrix
[A1, ..., Af] is called the concatenation of Ay, ..., A;. The concatenation of ¢
identical matrices A is called the ¢-fold concatenation of A, denoted by A®.

It is easy to see that the concatenation [A4, ..., A;] of the (n, k;)-Latin
array A;,i=1,...,tis an (n,k; + - - - + k¢)-Latin array.

Let A and B be n x m matrices over N. If B can be obtained from A by
rearranging A’s columns, we say that A and B are column-equivalent.
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Clearly, the column-equivalence relation is reflexive, symmetric, and tran-
sitive. For (n, k)-Latin arrays or (n, k, r)-Latin arrays, the equivalence classes
of the column-equivalence relation are called the column-equivalence classes.

For any matrix A, we use b(A) to denote the matrix obtained from A by
deleting repeated columns but the leftmost ones.

Lemma 8.2.1. (a) Let A be an (n,k,1)-Latin array. Then A") is an
(n, k,r)-Latin array.

(b) Let A be an (n,k,r)-Latin array. Then r|k, b(A) is an (n,k/r,1)-
Latin array, and A and the r-fold concatenation of b(A) are isotopic and
column-equivalent.

Proof. (a) From the definition, the result is evident.

(b) From the definitions, it is easy to see that A and b(A)("), the r-fold
concatenation of b(A), are column-equivalent; therefore, A and b(A)(") are
isotopic. Let k' be the number of occurrences of an element y in row i of
b(A). Then the number of occurrences of the element y in row i of b(A)(")
is 7k’. Since b(A)(") and A are column-equivalent and A is an (n, k, r)-Latin
array, b(A)(") is an (n, k,r)-Latin array. It follows that k = rk’. Thus r|k.
Since k' = k/r, k' is independent of y. Therefore, b(A) is an (n, k/r, 1)-Latin
array. O

Lemma 8.2.2. Let A and B be two (n, k,r)-Latin arrays.

(a) A and B are isotopic if and only if b(A) and b(B) are isotopic.

(b) A and B are column-equivalent if and only if b(A) and b(B) are
column-equivalent.

Proof. (a) Suppose that b(A) and b(B) are isotopic. It is easy to see that
b(A)") and b(B)") are isotopic. From Lemma 8.2.1(b), b(A)(") and A are
isotopic, and b(B)(T) and B are isotopic. Therefore, A and B are isotopic.

Conversely, suppose that A and B are isotopic. Then there is an isotopism
(a, B,7) from A to B. Let A’ be the result obtained by applying row arrang-
ing « and renaming 5 to A. Then B can be obtained by applying column
arranging v from A’. Clearly, columns ¢ and j of A are the same if and only
if columns i and j of A’ are the same. This yields that if b(A) consists of
columns jy, ..., ji/r of A, then b(A’) consists of columns ji, ..., j/» of A’
Thus applying row arranging o and renaming 3 to b(A) results b(A’). Since
A’ and B are column-equivalent, it is easy to see that b(A’) and b(B) are
column-equivalent. It follows that b(A) and b(B) are isotopic.

(b) The proof of part (b) is similar to part (a). O

Theorem 8.2.1. (a) I(n,k,r) = I(n,k/r,1).
(b) U(n, k,r) = U(n, k/r, 1) (nk)!/((nk/r)!(r})" /).
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Proof. (a) We define a mapping ¢ from the isotopy classes of (n,k/r,1)-
Latin arrays to the isotopy classes of (n,k,r)-Latin arrays by taking ¢(C)
as the isotopy class containing A", where A is an arbitrary element in C.
From Lemma 8.2.1(a), A" is an (n, k,r)-Latin array. Noticing b(A(")) = A
for any (n, k,1)-Latin array A, from Lemma 8.2.2 (a), it is easy to show that
 is single-valued and injective. From Lemma 8.2.1 (b), ¢ is surjective. Thus
we have I(n,k,r) =I(n,k/r,1).

(b) Let C be an isotopy class of (n,k/r,1)-Latin array, and C' = ¢(C).
Since no column occurs repeatedly within any Latin array in C, each column-
equivalence class of C' has (nk/r)! elements. Denote the number of column-
equivalence classes of C' by x. Then the number of Latin arrays in C is
|C| = (nk/r)lz.

We define a mapping ¥ from the column-equivalence classes of C' to the
column-equivalence classes of C’ by taking (D) as the column-equivalence
class containing A("), where A is an arbitrary element in D. From Lemma
8.2.2(b), it is easy to show that 1 is single-valued and injective. From
Lemma 8.2.1(b), ¢ is surjective. Thus the number of column-equivalence
classes of C is equal to the number of column-equivalence classes of C”.

For any column-equivalence class D’ of C’, it is easy to see that all el-
ements of D’ can be obtained from an arbitrary specific element of D’ by
rearranging columns. Since any Latin array in D’ has nk columns and each
column occurs exactly r times, there are (nk)! ways to rearrange columns of
a specific Latin array of D', and there are exactly (r!)"*/" ways generating
the same result. Therefore, the number of elements in D’ is (nk)!/(r!)"*/T.

Using proven results, we conclude that the number of Latin arrays in C’
is

|| = ((nk)!/ (r)™ ")z

— ((nk)!/(r))™/7)[C]/(nk/r)!
= C(nk)!/ (/) ()77,

From (a), it follows that U(n, k,7) = U(n, k/r, 1)(nk)!/((nk/r)!(r)"*/7). O

Let A be an (n, k, 1)-Latin array, and A’ an (n, (n—1)!—k, 1)-Latin array.
If the columns of the concatenation of A and A’ consist of all permutations
on N, A’ is called a complement of A.

Clearly, if A’ is a complement of A, then A is a complement of A’. Any
two complements of A are column-equivalent.

Lemma 8.2.3. Let A; be an (n,k,1)-Latin array, and A} a complement of
A i=1,2.
(a) A1 and Ay are isotopic if and only if A} and AL are isotopic.
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(b) Ay and Ay are column-equivalent if and only if A} and A} are column-
equivalent.

Proof. (a) Suppose that A; and As are isotopic. Then there is an isotopism
from A; to Ay, say («, 3,7). Let 4/ be a column arranging of n x (n!) matrices
so that the restriction of 7/ on the first nk columns is v and ' keeps the
last n! — nk columns unchanged. Let [A3, A5] be the result of applying the
transformation («, 3,7') to [A1, A]]. Then we have A3 = As and that («, 3, €)
is an isotopism from A} to A%, where e stands for the identical transformation.
Since the columns of [A;, A]] consist of all permutations on N, the columns
of [As, A4] consist of all permutations on N. Thus A% is a complement of
As. If follows that there exists a column arranging 7" from A% to A}. Thus
(o, B,7") is an isotopism from A} to Af. Therefore, A} and A}, are isotopic.

From symmetry, if A and A} are isotopic, then A; and A, are isotopic.

(b) From the proof of (a), taking « and 3 as the identity transformation
results a proof of (b). O

Theorem 8.2.2. Let 1 <k < (n—1).
(@) I(n,k,1) =I(n,(n—1)! —k,1).
(b) Uln,(n—1)! =k, 1) =U(n, k,1)(n! —nk)!/(nk)!.
(¢) I(n,(n—1)1,1) =1,U(n,(n — 1), 1) = (nhHl.

Proof. (a) We define a mapping ¢ from the isotopy classes of (n, k, 1)-Latin
arrays to the isotopy classes of (n, (n —1)! — k, 1)-Latin arrays so that ¢ maps
the isotopy class containing A to the isotopy class containing a complement of
A. From Lemma 8.2.3(a), ¢ is single-valued and injective. Since complements
of any (n, (n — 1)! — k, 1)-Latin array are existent, ¢ is surjective. Therefore,
we have I(n,k,1) = I(n,(n — 1)! =k, 1).

(b) For any isotopy class of (n,k,1)-Latin arrays C, let C' = ¢(C).
Clearly, the number of elements of any column-equivalence class of C'is (nk)!.
Denote the number of column-equivalence classes of C' by x. Then the number
of Latin arrays in C' is |C] = (nk)!z.

We define a mapping ¢ from the column-equivalence classes of C' to the
column-equivalence classes of C’ so that 1) maps the column-equivalence class
containing A to the column-equivalence class containing a complement of
A. From Lemma 8.2.3(b), ¢ is single-valued and injective. Since for each
(n, (n — k)! — k,1)-Latin array in C’ there is an (n, k, 1)-Latin array in C as
its complement, 1) is surjective. Therefore, the number of column-equivalence
classes of C is equal to the number of column-equivalence classes of C’.
Clearly, the number of elements of any column-equivalence class of C’ is
(n!—nk)!. It follows that the number of Latin arrays in C' is |C’| = (n!—nk)!x.
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Using proven results, we conclude that the number of Latin arrays in C’
is |C'] = (n! = nk)lz = (n! —nk)!(|C]/(nk)!) = |C|(n! —nk)!/(nk)!. From (a),
it follows that U(n, (n — 1)! — k,1) = U(n, k, 1)(n! — nk)!/(nk)!.

(¢) Evident. O

8.2.3 Invariant

Let A be an (n, k)-Latin array.

For any column in a matrix, the multiplicity of the column means the oc-
currence number of the column in the matrix. We use ¢; to denote the number
of distinct columns of A with multiplicity 4, for i = 1,... k. cgcp_1...¢2 I8
called the column characteristic value of A.

For any sequence (x1,...,xg), x; taking value from an arbitrary set with
n — 1 elements, ngng_1...n2 is called the type of the sequence, where n; is
the number of distinct z;’s with multiplicity j. In the case of k = 2, possible
types are 1 and 0 which are referred to as twins and all different, respectively.
In the case of k = 3, possible types are 10, 01 and 00 which are referred to as
trio, twins and all different, respectively. In the case of k = 4, possible types
are 100, 010, 002 and 001 which are referred to as quad, trio, double twins
and twins, respectively.

For any different ¢ and j, we use A(i,7,a) to denote the j-th row of the
submatrix consisting of A’s columns of which the elements at row ¢ are a.
Let ¢; be the number of a, 1 < a < n, such that the type of A(i,j,a) is t;
denote T4 (i,j) = Y.t - ¢, t ranging over all types. Noting > ¢; = n, any
cp, can be determined by other ¢;’s. Fixing a permutation of all types, say
tr,...,t1, T1(i,7) is also represented by ¢t ¢, _, ...ct,. For example, in the
case of (4,2)-Latin array, we permute types as 1, 0 and represent 77 (i, j) by
c1; in the case of (4, 3)-Latin array, we permute types as 10, 01, 00 and rep-
resent T4 (4,7) by cioco1; in the case of (4,4)-Latin array, we permute types
as 100, 010, 002, 001 and represent T7 (7, j) by c100C010C002- Given different i
and j, ¢ # j, for any a,1 < a < n, if in the type ngng—_1 ...n2 of A(i,j,a) the
nonzero ny, with the maximal subscript h takes value 1, then we define 7 (a)
as the element in A(i, j, a) with the maximal multiplicity. If the mapping 7
is bijective, 7 is called the derived permutation from row i to row j, denoted
by 7(i,7). A derived permutation can be expressed as a product of disjoint
cycles of length > 1. The distribution of these lengths of cycles is called the
type of the derived permutation, denoted by T5(%, j). If the derived permuta-
tion does not exist and if the maximal multiplicity of elements occurring in
A, 4,1),...,A(i, j,n), say r, is great than k/2, |I N J| is called the intersec-
tion number from row i to row j, denoted by T3(i,5), where I = {a | a € N,
the maximal multiplicity of elements in A(i,4,a) is v}, and J = {b | there
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is an a € I, such that the multiplicity of b in A(i,4,a) is r}. Let T(i,5) =
(T1(i,9), To(i, ), T5(i,5)); T=(i,7) and T3(4,5) may be undefined. The set
consisting of T'(i,7), 4,5 = 1,...,n,i # j (repetition allowable) is called the
row characteristic set of A. Let GR 4 be a (directed) graph with vertex set N
and arc set (N x N)\ {(4,7),i € N}, of which each arc, say (,7), is labelled
by T'(i,7); GRa4 is called the row characteristic graph of A. GR4 is said to
be symmetric, if T(i,5) = T(j,4) holds for any i # j; it is considered as
undirected, that is, the two arcs (4, ) and (j,4) are merged into an edge with
endpoints i and j, which is also denoted by (4, 7) or (j,1).

Theorem 8.2.3. Let A and B be two (n,k)-Latin arrays. If A and B are
isotopic, then (a) the column characteristic values of A and B are the same,
(b) the row characteristic graphs of A and B are isomorphic, and (c) the row
characteristic sets of A and B are the same.

Proof. (a) Since the identity between two columns keeps unchanged under
row arrangings and renamings and the column characteristic value keeps
unchanged under column arrangings, the column characteristic values of A
and B are the same.

(b) Since the type of a sequence (x1, ..., xy) keeps unchanged under col-
umn arrangings and renamings, for any two rows ¢ and j of an (n, k)-Latin
array, T1(i,7) keeps unchanged under column arrangings and renamings.
Clearly, 7(4,j) keeps unchanged under column arrangings, and a renaming
for A yields the same renaming for 7 (4, 7). Thus T»(4, j) keeps unchanged un-
der column arrangings and renamings. It is easy from the definition to prove
that T5(¢,7) keeps unchanged under column arrangings and renamings. Let
(o, B,7) be an isotopism from A to B. Let A’ be the result of transforming
A by renaming 3 and column arranging . From the above results, GR4 and
GR 4 are the same. Since row arranging a transforms A’ to B, a transforms
GR4 (= GRa/) to GRp. Tt follows that the row characteristic graphs of A
and B are isomorphic.

(¢) Immediately obtained from (b). O

Corollary 8.2.1. For any two (n, k)-Latin arrays, if the column character-
istic values or the row characteristic sets of them are distinct, then they are
not isotopic.

Theorem 8.2.4. Forn =4,2 < k < 4, the row characteristic graph of any
(n, k)-Latin array is symmetric.

Proof. Let A be a (4, k)-Latin array. For any 4,7, 1 < 4,j < 4, i # j, we
use A;; to denote the submatrix of A consisting of its rows 4, j.

Case k = 2: For any 4,7, 1 < 4,5 < 4, i # j, let ¢ be the number of
different columns of A;; with column multiplicity > 1. It is easy to see that
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Ty(i,5) =T1(4,4) =1-¢+0-(4—c). Whenever ¢ =4, 7(i,j) and 7 (j,4) exist
and 7(j,4) is the inverse permutation of (¢, j); therefore Ty (i, ) = T5(4,1).
Whenever ¢ < 4, 7(i,5) and 7(j,4) do not exist. In the case of 0 < ¢ < 4,
it is easy to see that T3(i,j) is equal to the number of the elements in the
intersection of the elements in the two rows of the submatrix of A;; consisting
of columns with column multiplicity 2. Thus T3(i,5) = T3(j,¢). To sum up,
we obtain T'(i,7) = T'(4,1).

Case k = 3: For any 4,5, 1 < 4,7 < 4,1 # j, it is easy to see that the
number of different columns of A;; with column multiplicity 3 is equal to
the the number of A;j,, a = 1,...,4 with type trio and that the number of
different columns of A;; with column multiplicity 2 is equal to the number of
Aija,a =1,...,4 with type twins. Since A;; and A;; are the same, we have
T4 (i,5) = Tu(j4,1). Let c3 (respectively c2) be the numbers of A;j,,a =1,...,4
with type trio (respectively twins). Clearly, 7 (i, 7) is existent if and only if
cs+co = 4. Thus 7 (i, 7) is existent if and only if 7(j, ¢) is existent, and 7(j, 7)
is the inverse permutation of (4, j) whenever they are existent. It follows that
T5(i, j) = Ta(j, i) whenever c3 +cz = 4. In the case of 0 < c3 +c2 < 4, let Aj;
be the submatrix of A;; consisting of its columns with column multiplicity
3 if c3 # 0, with column multiplicity 2 if ¢c3 = 0. It is easy to see that
T5(i,7) is equal to the number of the elements in the intersection of the
elements in the two rows of Aj;. Thus 75(i,j) = T3(j,i). To sum up, we
obtain T'(i,7) = T'(4,1).

Case k = 4: For any 4,7, 1 < 4,5 < 4,1 # j, it is easy to see that the
number of different columns of A;; with column multiplicity 4 (respectively 3)
is equal to the the number of A;j,, a = 1,...,4 with type quad (respectively
trio). Since A;; and Aj; are the same, the number of 4;j,, a =1,...,4 with
type quad (respectively trio) and the number of A;;,, a = 1,...,4 with type
quad (respectively trio) are the same. We prove the following proposition.
If A;jq has type double twins and consists of b, b, ¢, c, and if Aj; and Ajje
have no type double twins, then A;;;, and Aj;. have type twins and one of the
following conditions holds: (a) Aj;j, and A;jq have type twins, A;j. has type
trio, Ajiq has type double twins, and Aj;q has type trio; (b) Ajjp has type trio,
Ajjc and A;;4 have type twins, Aj;, has type double twins, and A;;4 has type
trio; (c) Aijp, Aije, Aija and Aj;, have type twins, and Aj;q has type double
twins, where {a,b,c,d} = {1,2,3,4}. In fact, since A;;q consists of b,b,¢c,c
and Aj;;, (respectively Aj;.) has no type double twins, A, (respectively Aj;.)
consists of a, a, ¢, d (respectively a, a,b, d). Since d does not occur in A,;4 and
occurs 4 times in each row of A, Aj;, consists of d,d,b,b, or d,d,c,c, or
d,d,b,c. In the case where A;;, consists of d,d,b,b, Aj;;q consists of b, c,c,c;
therefore, the condition (a) holds. In the case where A;;, consists of d,d, ¢, c,
Ajiq consists of b, b, b, c; therefore, the condition (b) holds. In the case where
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Ajiq consists of d,d,b,c, Ajiq consists of b,b,c,c; therefore, the condition
(c) holds. Let Sa(i,5) = {a| Aij, has type double twins,a = 1,...,4} and
na(i,7) = |S2(4,4)|. From the proposition, for any 4,5, 1 < i,j < 4, i # j,
if ny(i,j5) = 1, then ny(j,7) > 1. We prove that for any 4,5, 1 < 4,5 < 4,
i # 7, if na(f,5) = 2, then na(4,7) > 2. In fact, suppose that A;;, has type
double twins and consists of b, b, ¢, c and that A;;. has type double twins and
consists of f, f, g, g, where {a,b,c,d} = {1,2,3,4} and e € {b, ¢, d}. Consider
the intersection set S = {b,c}N{f, g}. In the case of |S| = 2, we have {b,c} =
{f,g}. Thus Aj;, and Aj;. have type double twins. Therefore, na(j,7) > 2.
In the case of |S| = 1, without loss of generality, we suppose that S = {b}. It
follows that {f,g} = {a,b} or {f,g} = {b,d}. Whenever {f, g} = {a,b}, we
have e = ¢ or e = d. We prove e # ¢ by reduction to absurdity. Suppose to
the contrary that e = c. Since A;;4 does not contain d and b, A;j4 consists of
a,a,c,c. Thus na(i, j) = 3. This contradicts ns (7, j) = 2. Thus we have e = d.
Since A;j. contains no ¢, A;j has two occurrences of c¢. Therefore, A;;, and
Ajic have type double twins; that is, ns(j,4) > 2. Whenever {f, g} = {b,d},
we have e = c. Since A;jq contains no d, A;j, has two occurrences of d.
Therefore, A;;;, and Aj;q have type double twins; that is, ne(j,4) > 2. In the
case of |S| = 0, we have {f,g} = {a,d}. It follows that e = b or e = c.
Without loss of generality, we suppose that e = b. Since A;jc contains no
¢, Ajjq has two occurrences of ¢; since A;jq contains no d, A;j. has two
occurrences of d. Therefore, Aj;. and Aj;q have type double twins; that is,
n2(j, %) = 2. This completes the proof of that ny(i,j) = 2 implies na(j,7) = 2.
It is easy to prove that for any 4,7, 1 < i,7 < 4, ¢ # j, if no(é,j) = 3 and
{1,2,3,4} \ S2(4,7) = {a'}, then A;;q has type quad; therefore, na(j,4) = 3.
Clearly, for any 4,7, 1 < i,5 < 4, @ # j, if n2(i,j) = 4, then na(j,4) = 4.
To sum up, for any i,5, 1 < 4,5 < 4, i # j, we have na(i,5) < na(j,4). This
yields that na(j,4) < ma(4,5). Thus na(4,j) = na(j, ). Noticing that for k = 4
types of any A;j, are quad, trio, double twins, and twins, from results proven
above, we conclude that T4 (4, 7) = T1(j, ).

We prove T5(4, j) = T2(j,¢). From the definition, if (4, j) exists, then the
type of A;j, is not double twins, a = 1,...,4. Forany 7,7, 1 <14,j < 4,1 # j,
suppose that 7 (i, j) exists. We prove that 7(j,¢) is the inverse permutation
of (%, 7); since types of a permutation and its inverse permutation are the
same, from the definition, this yields T5(i, j) = T2(j,%). Let r be the number
of a such that A;;, has type quad or type trio, a = 1,...,4. In the case
of r = 4, it is evident that m(j,¢) is the inverse permutation of 7(4,5). In
the case of r = 3, suppose that A;;q, Aijp and A;j. have type quad or type
trio, where {a,b,c,d} = {1,2,3,4}. Then A,;;4 has type twins. Without loss
of generality, A;jq consists of a,b,c,c. It follows that A;;, and A;j;, contain
one c. It reduces to two cases: (a) A;jc consists of d,d,d,d, A;j, consists of
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b,b,b,c, and A;j, consists of a,a,a,c; or (b) Aj;j, consists of d,d,d,c, A
consists of a,a,a,c, and A;;. consists of b,b,b,d. It is easy to verify that
7(i,7) = 7(j, 1) = (ab)(ed) in case (a) and that (i, j) = (dcba) and 7 (j,4) =
(abed) in case (b). Thus 7(j,4) is the inverse permutation of 7 (7, ). In the
case of r = 2, suppose that A;;, and A;;, have type quad or type trio,
where {a,b,c,d} = {1,2,3,4}. Then A,;. and A,jq have type twins. Thus
Ajjc contains a,b,d and A;;q contains a, b, c. This yields that A;j, and A;j
have type trio; therefore, without loss of generality, A;;, consists of c,c,c,b
and A;j;, consists of d,d,d,a. Then two cases are possible: (a) A;j. consists
of a,a,b,d, and A;;q consists of a,b,b, c; or (b) A;;. consists of a,b,b,d, and
A;;q consists of a, a, b, c. It is easy to verify that 7 (i, j) = 7(j,7) = (ac)(bd) in
case (a) and that 7(i,j) = (acbd) and 7(j,7) = (dbca) in case (b). Thus 7(j, 1)
is the inverse permutation of 7 (¢, 7). In the case of r = 1, suppose that A;;,
has type quad or type trio, where {a,b,c,d} = {1,2,3,4}. Then A;;, Aijc
and A;jq have type twins. Thus A;j; contains a,c,d, Ajj. contains a,b,d,
and A;jq contains a,b,c. Since the number of occurrences of each element
in a row of A is 4, the number of occurrences of any element in A;;, is at
most 2; this contradicts that A;;, has type quad or type trio. Thus, the case
r = 1 should not happen. In the case of r = 0, A;j¢, e = 1,2, 3,4 have type
twins. Let m(e) be the element which occurs two times in A;;e, e =1,...,4.
Then A;je consists of m(e) and elements in {1,2,3,4} \ {e}, e = 1,...,4.
Since the number of occurrences of each element in a row of A is 4, we have
{m(e) | e =1,2,3,4} = {1,2,3,4}. Clearly, n(i,j) = 7. It is easy to verify
that 7(j,4) = m—*. Thus 7(j,4) is the inverse permutation of 7 (i, 7). To sum
up, we conclude Ts(4,j) = Ta(j, ).

In final, from the definition of T5(4, j), it is easy to see that for any 4, j,
1<4,5<4,i#j, T3(i,5) = T5(4,4) holds. Since for any ¢,j, 1 < 4,5 < 4,
i # j, Ta(i,5) = To(4,4) holds for a = 1,2,3, we obtain T'(i,j) = T(j,4) for
any i,7, 1 <i,j <A4,i# j. O

8.2.4 Autotopism Group

For any n and any k, the group consisting of all isotopisms of (n, k)-Latin
arrays equipped with the composition operation is called the isotopism group
of (n,k)-Latin arrays, denoted by G. Clearly, G can be represented as S,, X
Sn X Spk, where S, stands for the symmetric group of degree r for any
positive integer r. We denote an element of G by («, 3,7), where a (the row
arranging), @ (the renaming) and ~ (the column arranging) are permutations
of the first n, n and nk positive integers, respectively.

For any (n,k)-Latin array A, an isotopism from A to itself is called an
autotopism on A. All autotopisms on A constitute a subgroup of G, denoted
by G 4, which is referred to as the autotopism group of A.
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Using a result in group theory, see Theorem 3.2 in [142] for exam-
ple, we have |G4||AY| = |G|, where A® stands for the isotopy class con-
taining A. Since the order of the isotopism group G of (n,k)-Latin ar-
rays is (n!)?(nk)!, the cardinal number of the isotopy class containing A is
|A%| = (n!)2(nk)!/|G a|. Therefore, for enumeration of (n, k)-Latin arrays, we
may first find out all isotopy classes of (n, k)-Latin arrays, then evaluate the
cardinal number of each isotopy class by means of computing the autotopism
group of any Latin array in the isotopy class. The following results are useful
in computing autotopism groups.

We use e to denote the identity element of G, and (143 .. .4x) to denote
the cyclic permutation which carries i; into i;41 for j < k and iy into ;.
Therefore, (1) denotes the identity permutation.

Given an arbitrary (n, k)-Latin array A, let

A =By €eGala=(1),8= ()}
:g = {<Oé,ﬂ,’}/> S GA | a = (1)}7
Gy ={{a,8,7) €Gala(l) =1}

It is easy to see that G’ < G’} < G’y < G4, where the symbol < in group
theory stands for “is a subgroup of”. Similarly, let

G" ={{a,8,7) €G|a=(1),8= (1)}
G// = {<O[,ﬂ,’}’> € G | a = (1)}7
G'={{,8,7) €G | a(l) = 1}.

Clearly, we have G < G" < G' < G,and G} < G, G} <G, G, < G

G4 can be obtained by computing G'Y, G’}, G’y and G4 in turn. The
subgroup G’{ can be determined as follows. Partition the column labels of
A into equivalence classes according to the identity relation of columns, i.e.,
1 and j belong to the same equivalence class if and only if the i-th column
and the j-th column of A are the same. Denote the equivalence classes with
cardinal number > 1 by Iy, ..., I,. We use ST/ to denote the symmetric group
on I;. It is easy to show that G’} is isomorphic to STt x S%2 x ... x ST, Let
Ck ... c2 be the column characteristic value of A. Then¢; = [{j | 1 <j < r,
|I;] = i}]. Tt follows that the order of G4 is T[F_,(i!)".

For any subgroup H of a group H’, and any elements hy; and hy in H',
we use hy = ho(mod H) to denote the condition h1h2_1 € H.

Similar to the case of Latin square, we can prove the following.

Theorem 8.2.5. Let {a;, 5;,7i) € Ga,i=1,2.
(a) If a; = ao and By = B2, then 41 = ¥o (mod STt x §12 x ... x §Tr),
(b) If oy = az and 1 = v2 (mod STt x Sz x ... x SI) then B = .
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(¢) 1If rows of A are distinct from each other, 51 = (B2 and v1 = 72
(mod STt x S'2 x ... x SIr), then a; = as.

Proof. Let {«, 3,7) = (a1a517616§1,71751>. Then («a, 3,7) € G 4.

(a) Since ay = ag and 31 = fa2, we have a = (1) and 8 = (1). It follows
that (a, 3,7) € G'{. Therefore, we have v € STt x §12 x ... x §*. That is,
71 =72 (mod STt x STz x ... x §Ir).

(b) Since a; = ap and 71 = 42 (mod STt x T2 x - . x SIr) we have
a=(1)and vy € STt x §2 x ... x §*. Thus A keeps unchanged under row
arranging « and column arranging «. From («, 3,v) € G 4, this yields that A
keeps unchanged under renaming (3. Since each column of A is a permutation
of elements in N, we have 8 = (1). This yields 51 = (.

(c) Since B; = B2 and 71 = 42 (mod ST+ x §%2 x ... x SI*) we have
B = (1) and v € ST x 82 x ... x §Ir. Thus A keeps unchanged under
renaming  and column arranging . From («, 3,7) € G4, this yields that A
keeps unchanged under row arranging «. Since rows of A are distinct from
each other, we have o = (1). Thus a3 = as. O

Theorem 8.2.6. (a) Let Gy be a subgroup of Go and of G 4. For any g in
Ga, the (right) coset gG1 C G 4 if and only if g € G 4.

(b) Let gi = (i, Bi,vi),i = 1,2. If g1,92 € Gy, then ¢1G"Y = g2G'Y if
and only if B1 = Bs.

(¢) If g1,92 € G'y, then ¢1G"y = g2G'4 if and only if an = aa.

(d) If 91,92 € Ga, then g1G'y = g2G'y if and only if a1 (1) = aa(1).

Proof. (a) Evident from the definition.

(b) Suppose g1,92 € G’4. Then a1 = ay = (1). Thus g5 'g1 = ((1),
By ' B1, V5 '71). Therefore, 31 = (7 if and only if g5 'g1 € G*, if and only if
9 Gy = g2GY.

(c) Suppose g1, 92 € G'4. Since g5 ' g1 = (a3 a1, 85 Br, 75 ')y o1 = ao
if and only if g5 'g; € G'4, if and only if g1G"y = g2G'.

(d) Suppose g1, g2 € G 4. Clearly, a; (1) = as(1) if and only if ag *ay (1) =
1 (ie., ay'(ay(1)) = 1), if and only if g; 'g1 € G/, if and only if g;G'y =
g2Gy. O

Although parallel results for left coset hold, in this section, it is enough
to use right coset; hereafter, “coset” means “right coset”.

An (n, k)-Latin array A is said to be canonical, if the first row of Ais1...1
2...2...n...n. Partition a canonical (n, k)-Latin array A into n blocks such
that all the elements in the first row of the h-th block of A, denoted by Ay, are
h, h =1,...,n. For any block A}, let ¢; be the number of distinct columns of
Ajp, which occur exactly 4 times in Ap; cpep_1 ... co is called the column type
of Ap,. Let p; be the type of the i-th row of A; the sequence (pa, ps, ..., pn)
is called the row type of Ay,.
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Theorem 8.2.7. Assume that (n,k)-Latin arrays A and B are canonical
and that A can be transformed into B by an isotopism ((1),3,7). Then for
any i,1 < i < n, column types (row types) of blocks A; and By are the
same. Moreover, if there is a block of A, say Ay, such that the pair of the
row type and the column type of Ay is distinct from the ones of other blocks
and that for some positive integer r there is only one column of Ay with
multiplicity r, then 8 can be determined by such a column.

Proof. Clearly, for any i,1 < i < n, the block A; can be transformed into
the block Bg(;y by some renaming and some column arranging within block.
Since the column type and the row type of a block keep unchanged under
renamings and column arrangings within block, the column type and the row
type of A; are the same with ones of Bg;, respectively.

Suppose that Aj, satisfies the conditions mentioned in the theorem. For
any isotopism ((1),3,7) which transforms A into B, using the first part of
the theorem, there is only one block of B of which the column type and the
row type are the same with ones of Ay, respectively, and such a block is
the block Bgy). Clearly, there is only one column in the block Bg) with
column multiplicity r, and such a column can be obtained from transforming
the column of Ay with multiplicity r by renaming 3. Since each column of A
is a permutation, such two corresponding columns determine (3. a

8.2.5 The Case n = 2,3

From the definitions, it is easy to see that any (2, k)-Latin array is a (2, k, k)-
Latin array. Therefore, if A is a (2, k,r)-Latin array, then r = k holds.

Theorem 8.2.8. For any positive integer k, we have I(2,k) =1, U(2,k) =
(%)-

Proof. Let A be a canonical (2, k)-Latin array. Since each column of 4 is
a permutation of 1 and 2, elements in the second row of A are 2 at the first &
columns and 1 at the last k£ columns. Such a Latin array is denoted by A12k.
Clearly, any (2, k)-Latin array can be transformed into A12k by some column
arranging. Consequently, (2, k)-Latin arrays have a unique isotopy class.

Since a (2, k)-Latin array can be uniquely determined by any row and the
multiplicity of 1 and of 2 in any row are k, the number of distinct (2, k)-Latin
arrays is (Qkk). a

Theorem 8.2.9. For any positive integer k, we have

1G.k) = (k+1)/2, ifk is odd,
U k241, otherwise,
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S (b1 2 203)1/ (R (k — h))3, if k is odd,
Sk jai1 203K)!/ (B (k — B)1)? + (3k)!/((k/2)1)8,  otherwise,

and 1(3,k,1) = U(3,k,1) = 0 if k > 2, 1(3,2,1) = 1, U(3,2,1) = 6!,
1(3,1,1) =1, U(3,1,1) = 312!

U(3,k) = {

Proof. For any h,1 < h < k, let A(k—h+1)3k be a canonical (3, k)-Latin
array of the form

1...11...12...22...23...3 3...3
2...23...33...31...11...1 2...2
3...32...21...13...32...21...1
~—— —— —— ——

h k—h h k—h h k—h

We first prove that for any (3, k)-Latin array A there exists h, 1 < h < k, such
that A and A(k — h + 1)3k are isotopic. We transform A into its canonical
form, say A’, by some column arranging. Then using column arranging within
block we transform the second row of A" in the form2...23...33...31...1
1...12...2 and denote the result by A”. Let h be the number of 2 in block
1 row 2 of A”. Then the number of 3 in block 1 row 2 of A” is k — h. Since
each row of a (3, k)-Latin array contains exactly k elements 7, 1 <4 < 3, the
number of 3 in block 2 row 2 of A” is h and the number of 2 in block 3 row 2 of
A" is k— h. Consequently, the number of 1 in block 2 row 2 of A” is k—h, and
the number of 1 in block 3 row 2 of A” is h. Therefore, the first two rows of A”
and of A(k—h+1)3k are the same. Since each column of a (3, k)-Latin array
is a permutation of 1, 2 and 3, row 3 is uniquely determined by rows 1 and 2.
Thus A” is equal to A(k — h+ 1)3k. We conclude that A and A(k —h+ 1)3k
are isotopic. Notice that A(h + 1)3k and A(k — h + 1)3k can be mutually
obtained by applying renaming (23) and some column arranging. From the
above results, any (3, k)-Latin array A is isotopic to A(k—h+1)3k, for some h,
k> h > [k/2]. We next prove that A(k—h+1)3k, h =k, k—1,...,[k/2] are
not isotopic to each other. Whenever h = k/2 and k is even, in the column
characteristic value of A(k — h + 1)3k, namely, ¢ ...c2, we have ¢, = 6,
and ¢; = 0 for ¢ # h. Whenever h = k, in the column characteristic value
¢k ...co of A(k— h+1)3k, we have ¢, = 3, and ¢; = 0 for i # h. Whenever
h=k—-1,...,[k/2] and h > k/2, in the column characteristic value ¢y ... ca
of A(k—h+1)3k, we have ¢, = cx—p, = 3, and ¢; = 0 for i # h, k—h. Therefore,
column characteristic values of A(k —h + 1)3k, h = k,k—1,...,[k/2] are
different from each other. From Corollary 8.2.1, they are not isotopic to each
other. To sum up, I(3,k) = (k+1)/2 if k is odd, and k/2 + 1 otherwise.
For U(3, k), we compute the order of the autotopism group of A(k —h +
1)3k. Clearly, the order of GiX(k—h—&-l)?)k is (h!(k—h)!)®. We now compute coset
representatives of G;’l’(k_h+1)3k in G%(k—h+1)3k' In the case of h > k — h,
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it is easy to see that there is a column arranging v = (3k,3k — 1,...,1)*
such that the isotopism g = ((1), (321),) keeps A(k — h + 1)3k unchanged.
Consequently, g? and g3 = e also keep A(k — h + 1)3k unchanged, where e
stands for the identity isotopism. Since h # k — h, for any transposition 3
and any column arranging ~y the isotopism ((1), 8, ) is not an autotopism of
A(k — h + 1)3k. From Theorem 8.2.6 (b), the coset representatives are g, g2
and e. It follows that the order of G'y; )3, is equal to 3|G';_, 1y3:] =
3(h!(k—h)!)3. In the case of h = k—h, we have h = k/2. It is easy to prove that
there exist column arrangings 1, v such that ((1), (23),v1) and ((1), (12),y2)
are autotopisms of A(k—h+1)3k. Since transpositions (23) and (12) can gen-
erate all permutations of 1, 2 and 3, for any renaming /3 there exists a column
arranging v such that ((1), 3,~) is an autotopism of A(k—h+1)3k. Using The-
orem 8.2.6 (b), we have |G, 1)3.] = 3G _pi1)s] = 6(h!)8. We turn
to computing coset representatives of GZx(kchrl)Sk in Gi4(k7h+1)3k:' It is easy
to see that there exists a column arranging v such that ((23), (23),7) keeps
A(k — h + 1)3k unchanged. From Theorem 8.2.6 (c), it is easy to prove that
|Gy h+1)3k\ = 2|G'}(._p11)3x|- We finally compute coset representatives of
GA(k h1)3k in G A(k—n+1)3k- It is easy to show that there exists a column ar-
ranging v such that g = ((321), (1), ) keeps A(k —h+ 1)3k unchanged. From
Theorem 8.2.6 (d), we have that g, g> and e are the all coset representatives.
It immediately follows that |G 4(k—n41)3] = 3|G:4(k7h+1)3k|. To sum up, the
order of G 4(k—n+1)3k is equal to 3-2-3(h!(k — h)!)® in the case of h > k — h,
or 3-2-6(h!)® in the case of h = k — h. Therefore, the cardinal number of the
isotopy class containing Aj_p1)3x is equal to (31)%(3k)!/(3-2-3(hl(k—h)!)?)
= 2(3k)!/(h!(k — h))? in the case of h > k — h, or (3!)%(3k)!/(3 -2 - 6(h!)°)
= (3k)!/((k/2)!")® in the case of h = k—h. In the preceding paragraph we have
proven that the isotopy classes containing A, _p41)3k, h =k, k—1,...,[k/2]
are all isotopy classes of (3, k)-Latin array. Thus the formula of U(3, k) in the
theorem holds.

Since the number of columns of a (3, k)-Latin array is 3k and the number
of permutations on {1,2,3} is 3!=6, for any (3,k,1)-Latin array we have
3k < 6, that is, k < 2. Thus I(3,k,1) = U(3,k,1) = 0 if k > 2.

It is easy to see that the columns of any (3,2, 1)-Latin array consists of
all permutations on {1,2,3}. Thus any two (3,2, 1)-Latin arrays are column-
equivalent. Therefore, 1(3,2,1) =1 and U(3,2,1) = 6!

Consider a (3,1, 1)-Latin array of which the first row and the first column
are xy, Tz, r3. Then the Latin array is uniquely determined by these elements.
In fact, since any row and any column are some permutations of z1, x2 and
x3, its elements at the positions (2,3) and (3,2) take z1. It follows that its
elements at the positions (2,2) and (3,3) are x5 and x2, respectively.



294 8. One Key Cryptosystems and Latin Arrays

Since any (3, 1, 1)-Latin array can be transformed by rearranging rows and
columus into a (3, 1, 1)-Latin array of which the first row and the first column
are 1, 2, 3, from the result in the preceding paragraph, we have 1(3,1,1) = 1.
Since the number of permutations on {1,2,3} is 3!, we have U(3,1,1) =
3121, O

8.2.6 The Case n =4, k<4
Enumeration of (4, 2)-Latin Arrays

It is known that the number of isotopy classes of Latin squares of order 4 is 2
and the number of Latin squares of order 4 is (4!)?, see [31] for example. Since
both (4,1)-Latin arrays and (4,1,1)-Latin arrays coincide with Latin squares
of order 4, we have I(4,1) = I(4,1,1) = 2 and U(4,1) = U(4,1,1) = (4!)2.
Another proof of the results using Theorem 8.2.1 will be given later.

Let A142,..., A1142 be (4,2)-Latin arrays as follows:

(112233447 [112233447] [112233447 [11223344 ]
22114433 | | 22334411 22134413 22341413
34341212 | | 34411223 | | 34341221 34432121
43432121 | | 43142132 | | 43412132 43114232

Al42 A242 A342 A442

112233447 [112233447 [112233447 [11223344]
22341413 23144123 22114433 22114433
34412132 34431212 33441122 33441221
43134221 42312431 44332211 44332112

A542 A642 AT42 A842

(112233447 [112233447 [11223344]
22114433 22134413 22344113
33442211 33441221 33412421
44331122 44312132 44131232

A942 T A1042 T Al142

Lemma 8.2.4. A142,..., A1142 are not isotopic to each other.

Proof. We compute the column characteristic value and the row charac-
teristic set of Ax42 and represent them in the format: “x: the column charac-
teristic value of Az42; the row characteristic sets of Ax42”, where the column
characteristic value is in the form c¢o, the row characteristic set is in the form
Ti(i,5) To(4,7), in order of ij = 12,13,14, 23,24, 34, T5(, j) is not listed. We
list the results of column characteristic values and row characteristic sets of
Al142, ..., A1142 as follows:
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1:0;42,00,00,00,00,42 2 : 0;44, 00,00, 00, 00, 00
3:0;20,00,00,00,00,20 4 :0;10,00,10, 10,00, 10
5:0;10,00,00,10,10,00 6 : 0;00,00, 00,00, 00,00
7:4;42,42,42,42,42,42 8 : 242,20, 20, 20, 20, 42
9:4;42,44,44,44,44,42 10 : 1;20, 20, 10, 10, 20, 20
11:1;10,10, 10, 10, 10, 10

where T5(7,j) = 4,2,0 mean “a cycle of length 4”7, “two transpositions”,
“no derived permutation”, respectively. It is easy to verify that for any two
distinct Ai42’s either their column characteristic values are different, or their
row characteristic sets are different. From Corollary 8.2.1, it immediately
follows that A142,..., A1142 are not isotopic to each other. O

Lemma 8.2.5. Any (4,2)-Latin array is isotopic to one of A142, ..., A1142;
any (4,2, 1)-Latin array is isotopic to one of A142, ..., A642 and any (4,2,2)-
Latin array is isotopic to A742 or A942.

Proof. Let A be a (4,2)-Latin array. In the proof, by A(i,7) denote the
element of A at row ¢ column j; by A(i,j — h) denote elements of A at
row ¢ columns j to h. Since Latin arrays can be reduced to canonical ones
by rearranging columns, without loss of generality, we suppose that A is
canonical. From Theorem 8.2.4, instead of “from row ¢ to row j” we can say
“between rows ¢ and j”, for example, the intersection number between rows
i and j; and from T4 (4,7) = T1(j,i) = 1-¢1 + 0 - ¢, we can say “the number
of twins between rows ¢ and j is ¢;”, and so on.

We prove by exhaustion that A is isotopic to Ai42 for some i, 1 <7 < 11.
There are two cases to consider. Case 1: columns of A are different. Case 2:
otherwise.

Case 1: no repeated columns in A. There are five alternatives according to
the numbers of twins between rows. Case 11: there are two rows of A between
which the number of twins is 4. Case 12: not the case 11 and there are two
rows of A between which the number of twins is 3. Case 13: not the cases 11
and 12 and there are two rows of A between which the number of twins is 2.
Case 14: not the cases 11 to 13 and there are two rows of A between which
the number of twins is 1. Case 15: there is no twins between any two rows of
A.

In case 11, in the sense of row arranging and column arranging we assume
that the number of twins between rows 1 and 2 of A is 4. We subdivide this
case into two subcases according to the derived permutation from row 1 to
row 2 of A. Case 111: the derived permutation can be decomposed into a
product of two disjoint transpositions. Case 112: the derived permutation is
a cycle of length 4.
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In case 111, in the sense of isotopy we assume that A(2,1—8) = 22114433.
Note that for the last two rows of any block of A, whenever one has type twins,
so has the other. This yields that A has repeated columns. But this is impos-
sible in case 1. Therefore, in the sense of column transposition within block
we have A(3,1—8) = 34341212. Since each column of A is a permutation, for
any column of A the element at any row can be uniquely determined by others
in that column. It follows that A(4,1—8) = 43432121. [Hereafter, this deduc-
tion and the like are abbreviated to the form: “since last element(s), ...”.]
Therefore, A is isotopic to A142.

In case 112, in the sense of isotopy we assume that A(2,1—8) = 22334411.
Since A has no repeated columns, in the sense of column transposition
within block we have A(3,1 — 8) = 34411223. Since last elements, we ob-
tain A(4,1 — 8) = 43142132. Therefore, A is isotopic to A242.

In case 12, since each element occurs exactly two times in any row of A,
between any two rows of A if the number of twins is at least 3 then it is equal
to 4. This contradicts not the case 11. Therefore, this case can not occur.

In case 13, in the sense of isotopy we suppose that the number of twins
between rows 1 and 2 of A is 2. We subdivide this case into three subcases
according to the intersection number between rows 1 and 2 of A. Case 131:
the intersection number is 2. Case 132: the intersection number is 1. Case 133:
the intersection number is 0.

In case 131, in the sense of isotopy we assume A(2,1 —4) = 2211. Since
each element occurs exactly once in each column and 2 times in each row of A,
elements in block 3 row 2 of A are uniquely determined, namely, A(2,5—6) =
44. [Hereafter, this deduction and the like are abbreviated to the form: “since
unique value(s), ...”.] This contradicts not the cases 11 and 12. Therefore,
this case can not occur.

In case 132, in the sense of isotopy we assume A(2,1 —4) = 2233. Since
unique values, we have A(2,7 — 8) = 11. This contradicts not the cases 11
and 12. Therefore, this case can not occur.

In case 133, in the sense of isotopy we assume A(2,1-2) = 22, A(2,5—6) =
44. Since row 2 has already two occurrences of 2 and of 4, elements in blocks
2 and 4 row 2 are 1 or 3. Since block 2 row 2 and block 4 row 2 are not
twins, in the sense of column transposition within block we have A(2,3—4) =
A(2,7-8) = 13. [Hereafter, this deduction and the like are abbreviated to the
form: “since no twins, ...”. ] Since each element occurs once in each column,
in the sense of row transposition we have A(4,3) = 4. Since last element, we
have A(3,3) = 3. Since A has no repeated columns, in the sense of column
transposition within block we have A(3,1 —2) = 34, A(3,5 — 6) = 12. Since
last elements, we obtain A(4,1 —2) = 43, A(4,5 — 6) = 21. Consider the
columns in which the elements at row 3 are not determined yet and the
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elements determined so far do not contain 4. Since such a column is unique,
the place in row 3 which can take value 4 is unique. It immediately follows
that A(3,4) = 4. [Hereafter, this deduction and the like are abbreviated to
the form: “since unique place(s), ...”.] Since unique value, we have A(3,7) =
2. Since unique value, we have A(3,8) = 1. Since last elements, we obtain
A(4,4) =1, A(4,7 — 8) = 32. Therefore, A is isotopic to A342.

In case 14, in the sense of isotopy we assume that there is one twins
between rows 1 and 2, say A(2,1— 2) = 22. Since no twins, we have A(2,5 —
6) = 14 and A(2,7 — 8) = 13. Since each element occurs exactly two times
in each row of A, elements 3 and 4 in row 2 which are not determined yet
so far can only occur in block 2 row 2. Consequently, in the sense of column
transposition we have A(2,3—4) = 34. [Hereafter, this deduction and the like
are abbreviated to the form: “since row sum, ...”.] Since each element occurs
once in each column, in the sense of row transposition we have A(4,3) = 1.
Since last element, we obtain A(3,3) = 4. Since A has no repeated columns,
in the sense of column transposition within block we have A(3,1 —2) = 34.
Since last elements, we have A(4,1 — 2) = 43. Since unique place, we have
A(4,5) = 4. Since last element, we have A(3,5) = 2. At this point, there are
two alternatives according to the value of A(3,4), 3 for the case 141, and 1
for the case 142.

In case 141, since unique places, we have A(3,6) = A(3,8) =1, A(4,
3. Since last elements, we have A(4,4) = 1, A(4,6) = A(4,8) = A(3,7)
Therefore, A is isotopic to A442.

In case 142, since unique place, we have A(3,7) = 3. Since last elements,
we have A(4,4) = 3, A(4,7) = 2. Denoting A(4,8) = a, it is easy to see that a
takes values 1 or 2. Since row sum, we have A(4,6) = o/, where 1’ =2, 2" = 1.
Since last elements, we have A(3,8) = a’, A(3,6) = a. Whenever a = 1, A is
isotopic to A542. Whenever a = 2, A can be transformed into A542 by row
transposition (12), renaming (12)(34) and some column arranging.

In case 15, in the sense of isotopy we assume A(2,1 — 2) = 23. We have
A(2,8) = 3 in the sense of isotopy. (In fact, when 3 does not occur in block 4
row 2, 2 occurs in it since no twins. Thus we can transform A in advance by
renaming (23) and some column arranging.) Since no twins, we have A(2,3 —

|-
Nl

4) = 14. Since unique places, in the sense of column transposition we have
A(2,5) = 4. Denoting A(2,7) = b, it is easy to see that b takes values 1 or
2. Since row sum, we have A(2,6) = b'. In the sense of row transposition
we assume A(3,1) = 3, A(4,1) = 4. Since no twins, we have A(4,2) = 2.
Since last element, we have A(3,2) = 4. We prove A(3,3) # 3 by reduction
to absurdity. Suppose to the contrary that A(3,3) = 3. Since last element,
we have A(4,3) = 4. It follows that there is a twins between rows 3 and
4. This contradicts the case 15. Therefore, we obtain A(3,3) = 4. Since
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last element, we have A(4,3) = 3. Since no twins, we have A(4,4) = 1.
Since no twins between rows 2 and 4 exists, we have A(4,8) = 1. Since last
elements, we have A(3,4) = 3, A(3,8) = 2. Since unique places, we have
A(4,6) = 4,A(4,7) = 3. Since row sum, we have A(4,5) = 2. Since last
elements, we have A(3,5 — 7) = 1bb’. Since no twins between rows 2 and 4
exists, we have b # 1. It immediately follows that b = 2. Therefore, A is
isotopic to A642.

Case 2: A has repeated columns. Subdivide this case into three subcases
according to the number of twins between rows. Case 21: there are two rows
of A between which the number of twins is 4. Case 22: not the case 21 but
there are two rows of A between which the number of twins is 2. Case 23:
otherwise.

In case 21, in the sense of isotopy we assume that there are four twins
between rows 1 and 2. We subdivide this case into two subcases according
to the derived permutation from rows 1 to 2 of A. Case 211: the derived
permutation can be decomposed into a product of two disjoint transpositions.
Case 212: the derived permutation is a cycle of length 4.

In case 211, in the sense of isotopy we assume A(2,1 — 8) = 22114433,
A(3,1—2) = 33, A(4,1 — 2) = 44. Since unique values, we have A(3,3 —
4) = 44, A(4,3 — 4) = 33. Denoting A(4,7 — 8) = ab, clearly, a and b take
values 1 or 2. Since row sum, in the sense of column transposition we have
A(4,5 — 6) = a'b’. Since last elements, we have A(3,5 — 8) = aba'b’. In the
sense of column transposition ab may take three values 11,12 and 22, it follows
that A is isotopic to A742, A842 and A942, respectively.

In case 212, in the sense of isotopy we assume A(2,1 — 8) = 22334411,
A(3,1—2) =33, A(4,1—2) = 44. Since unique values, we have A(4,3—4) =
11, A(3,7—8) = 22. Since last elements, we have A(3,3—4) =44, A(4,7—8) =
33. Since row sum, we have A(3,5—6) = 11, A(4,5—6) = 22. It is easy to see
that A can be transformed into A942 by row transposition (23), renaming
(23) and some column arranging.

In case 22, in the sense of isotopy we assume that there are two twins
between rows 1 and 2 of A. We subdivide this case into three subcases ac-
cording to the intersection number between rows 1 and 2 of A. Case 221: the
intersection number is 2. Case 222: the intersection number is 1. Case 223:
the intersection number is 0.

In case 221, in the sense of isotopy we assume A(2,1 —4) = 2211. Since
unique places, we have A(2,5 — 6) = 44, A(2,7 — 8) = 33. This contradicts
not the case 21. Therefore, this case can not occur.

In case 222, in the sense of isotopy we assume A(2,1-2) = 22, A(2,3—4) =
33. Since unique values, we have A(2,7 — 8) = 11. Since row sum, we have
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A(2,5 — 6) = 44. This contradicts not the case 21. Therefore, this case can
not occur.

In case 223, in the sense of isotopy we assume A(2,1-2) = 22, A(2,5—6) =
44, A(3,1 —2) =33, A(4,1 — 2) = 44. Since no twins, we have A(2,3 —4) =
A(2,7 — 8) = 13. Since unique values, we have A(4,3 —4) = 31, A(3,7) = 2.
Since last elements, we have A(3,3 —4) = 44, A(4,7) = 3. Since no twins,
we have A(3,8) = 1. Since row sum, in the sense of column transposition
we have A(3,5 — 6) = 12. Since last elements, we have A(4,5 — 6) = 21 and
A(4,8) = 2. Therefore, A is isotopic to A1042.

In case 23, it is easy to show that the number of twins between two rows
of A is equal to 4 whenever it is at least 3. Thus in this case the number of
twins between some two rows of A is equal to 1. In the sense of isotopy we
assume that columns 1 and 2 are the same and A(2,1—-2) =22, A(3,1-2) =
33, A(4,1—2) = 44. Since no twins, we have A(2,5—6) = 41, A(2,7—8) = 13.
Since row sum, in the sense of column transposition we have A(2,3—4) = 34.
Since unique values, we have A(3,4) = 1, A(3,7) = A(4,6) = 2. Since last
elements, we have A(4,4) = A(4,7) = 3, A(3,6) = 4. Since no twins, we have
A(3,8) = 1. Since unique places, we have A(3,3) = 4, A(3,5) = 2. Since last
elements, we have A(4,8) =2, A(4,3) = A(4,5) = 1. Therefore, A is isotopic
to A1142.

Since the column characteristic value of any (4, 2, 2)-Latin array is 4, A742
and A942 are all distinct isotopy class representatives of (4,2, 2)-Latin array.
That is, any (4, 2,2)-Latin array is isotopic to A742 or A942. O

Theorem 8.2.10. [(4,2) =11, I(4,2,1)=6, I(4,2,2) =2.
Proof. This is immediate from Lemmas 8.2.4 and 8.2.5. a

Theorem 8.2.11. U(4,2) = 12640320, U(4,2,1) = 10281600, U(4,2,2) =
60480.

Proof. Denote the order of autotopism group Ga;qo of Aid2 by n;,i =
1,...,11. Then the number of elements in the isotopy class containing Ai42
is 4!4!8!/n;. Therefore, we have

11
= 41418!/n;, U(4,2,1) 24'4'8'/711, (4,2,2) = ) 41418!/n;.
i=1

1=7,9
We compute Ga142. In GR 142, labels of edges (1,2) and (3,4) are the
same, say “red”; labels of other edges are the same and not red, say “green”.

Since columns of A142 are different, we have G'},,, = {e}, where e stands
for the identity isotopism. It immediately follows that its order is 1.
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To compute the coset representatives of G),,, in G'j4,, note that an
isotopism («, 3,7) on a Latin array can be decomposed into a product
of (o, (1),(1)) (the row arranging «), ((1),5,(1)) (the renaming (), and
((1),(1),v) (the column arranging <), independent of their order. Clearly,
for any isotopism in G its row arranging component is (1). We then con-
sider the renaming component 3 so that the renaming 8 and some column
arranging v keep A142 unchanged. Since each column of A142 is a permu-
tation, 8 can be uniquely determined by any two columns, say j and h, of
A142 such that 3 transforms column A into column j. For each h € {1,...,8},
take (8 as the permutation which transforms column A into column 1. For ex-
ample, in the case of h = 3, the renaming [ transforms the column 2134
into the column 1234; that is, 8 = (12). In this way, we obtain eight candi-
dates for : (1), (34), (12), (12)(34), (13)(24), (1423), (1324) and (14)(23),
which can be generated by (34) and (1324) for example. It is easy to verify
that 0 transforms A142 into a (4, 2)-Latin array which can be further trans-
formed into A142 by some column arranging, for 5 = (34) and (1324). It
follows that 3 transforms A142 into a (4, 2)-Latin array which can be further
transformed into A142 by some column arranging, for all eight candidates.
From Theorem 8.2.6 (b), autotopisms with different renamings correspond
to different cosets, and autotopisms with the same renaming correspond to
the same coset. Therefore, the coset representatives of all different cosets are
(((1),(34),-), ((1),(1423), -)), here and elsewhere a dot - in an isotopism repre-
sents some column arranging, and (g1, . . ., g-) stands for the set generated by
g1, -, 9gr (the column arranging component is neglected in the case of coset
representatives of G’J in G'}). That is, G’41 4, = ({(1), (34), -}, ((1), (1423), -))

Mo = (((1),(34),4), ((1),(1423), -)). It immediately follows that the order
of G445 is 8.

To compute the coset representatives of G’y 45 in G445, let (o, 5,7) € G,
where the row arranging « is a permutation of 2,3,4. From the proof of Theo-
rem 8.2.3 (b), if («, 8,7) is an autotopism of A142, then the row arranging «
is an automorphism of GR4142. It follows that edges (1,2) and (a(1), a(2)),
that is, (1,@(2)), have the same color. Since the edge (1,2) is the unique
red edge with endpoint 1, we have «(2) = 2 whenever (o, 3,7) € G4149-
Thus candidates of « are (34) and (1) in this case. Transform rows of A142
by row transposition (34). Clearly, the result can be further transformed
into A142 by some column arranging. We then obtain a coset representa-
tive ((34),(1),-). Together with another coset representative e, from Theo-
rem 8.2.6 (c), they are coset representatives of all distinct cosets; that is,

a2 = (((34),(1),+)) G'A149, here and elsewhere (g1, ..., g,) stands for the
set generated by g1, ..., g, but redundant autotopisms with identical row ar-
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ranging component are omitted except one in the case of coset representatives
of G’ in G’4. Consequently, the order of G4,45 is 2 - 8.

To compute the coset representatives of G'4,45 in G 4142, let (o, 3,7) €
G A142. Thus « is an automorphism of PR 4142. Try «(3) = 1. Since the edge
(3,4) is red, the edge («(3),a(4)), that is, (1,(4)), is red. Since the edge
(1,2) is the unique red edge with endpoint 1, we have «a(4) = 2. It follows
that a = (1423) or (13)(24). Try a = (1423). A142 can be transformed into

33 44 11 22
44 33 22 11
1212 34 34
21 21 43 43

A=

by row arranging (1423) and some column arranging. It is evident that
A’ can be transformed into A142 by some column arranging. Therefore,
g = ((1423), (1), -) is an autotopism of A142. It follows from Theorem 8.2.6 (d)
that ¢,¢%, ¢> and ¢g* = e are coset representatives of all distinct cosets of
G'y140 10 G 4142. That is, Ga142 = ({(1423), (1), -)) G'4149, here and elsewhere
(91,--.,9r) stands for the set generated by ¢i,...,g, but redundant auto-
topisms with identical value of the row arranging at 1 are omitted except one
in the case of coset representatives of G’y in G 4. Consequently, the order of
GA142 is4-2-8.

We turn to computing nq;. From the column characteristic value, the
order of G’} is 2! =2.

To compute coset representatives of G'{};45 in G’j1149, since the row ar-
ranging is restricted to be (1), from Theorem 8.2.7, for the result obtained
from A1142 by applying a renaming 3 and reducing to a canonical form, the
distribution of column types and row types of its blocks are coincided with
ones for A1142, in particular, 8 transforms repeated columns of A1142 into
repeated columns of the result. Since there is only one block of A1142 with
repeated columns, § transforms the block with repeated columns into itself.
It follows that § = (1). Therefore, there is only one coset and e is a coset
representative. It immediately follows that G’j140 = G'41140-

To compute coset representatives of G'j1140 In G'y1149, let (o, 8,7) € G,
where the row arranging « is a permutation of 2,3,4. Try o = (234). The row
arranging (234) transforms A1142 into

11 22 33 44
44 13 12 32
22 34 41 13
33412421

A=

Suppose that A’ can be transformed into A1142 by a renaming 3 and some
column arranging. Since column types of the first block of A’ and the first
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block of A1142 are the same and different from column types of other blocks,
from Theorem 8.2.7, the first block of A’ is transformed into the first block of
A1142 by renaming (3 and some column arranging. Thus 3 transforms the col-
umn 1423 into the column 1234; that is, 8 = (234). It is easy to verify that
((1),(234),-) transforms A’ into A1142 indeed. Thus ((234), (234), ) keeps
A1142 unchanged. Similarly, it is easy to see that ((34), (34),-) keeps A1142
unchanged. Note that the autotopisms generated by the two autotopisms con-
tain six different autotopisms of which row arrangings are all the possible.
From Theorem 8.2.6 (c), (((234), (234), -), ((34), (34), -)) are coset representa-
tives of all distinct cosets. That is, G'y;140 = (((234), (234),-), ((34), (34), )
" 1142- Therefore, the order of G’y 45 is 6 - 2.

To compute coset representatives of G'yq145 In Ga1142, let (o, 5,7) € G.

Try a = (1234). A1142 can be transformed into

11 22 33 44
23342411
34 13 41 22
42 41 12 33

A// —

by row arranging (1234) and some column arranging. Suppose that A” can be
transformed into A1142 by a renaming 3 and some column arranging. Since
column types of the fourth block of A” and the first block of A1142 are the
same and different from column types of other blocks, from Theorem 8.2.7, the
fourth block of A” is transformed into the first block of A1142 by renaming
B and some column arranging. Thus 3 transforms the column 4123 into the
column 1234; that is, § = (1234). It is easy to verify that ((1), (1234), -) trans-
forms A” into A1142 indeed. Thus ((1234), (1234), -) keeps A1142 unchanged.
From Theorem 8.2.6 (d), ({((1234), (1234),-)) are coset representatives of all
distinct cosets; that is, Ga1142 = (((1234), (1234), -)) G'41145- Therefore, n11,
the order of G A1142, 18 4-6 - 2.

Similarly, we can compute values of no, ..., n1g.

The following is the computing results in the format: “x: the order of

40, the number of cosets of G’ ,5 in G}, ., the number of cosets of

Gl pas In G’y 4o, the number of cosets of Gy, 45 In G 4442 (the product of the
four numbers is n,); the set of coset representatives of G}, 4, in G}, ,o; the
set of coset representatives of G’y ;5 in G4, 45; the set of coset representatives
of G’y 4o in Gazas.” 7y in a coset representative («, 3, ) is omitted.

12 1,8,2,4; (((1),(34)), (1), (1423))); ({(34), (1))); ({(1423),(1))).
20 1,4,2,2; (((1), (1234))); ({(34), (1))); ({(12), (12)(34))).

30 1,2,1,45 (((1), (13)(24))); 5 (((13)(24), (1)), ((14)(23), (12)(34)))-
4 (), ( ) )

(14)(
D 1,2,2,4;5 (((1),(34))); (((24), (12))); ({(4321), (1))).
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5:1,1,2,3; e (((34),(34))); (((431), (234))).

6: 1,4,6,4; (((1),(12)(34)),((1), (14)(23))); ({(34),(23)),((234),(234)))
(((4321), (12))).

7:2%,4,6,4; (((1),(12)(34)),((1), (13)(24))); (((234),(234)),((34),(34)))
(((4321), (24))).

8:2%,2,2,4; (((1),(12)(34))); (((34),(34))); (((1423), (1423)))

9: 2%,4,2,4; (((1),(1423))); (((34),(34))); ({(1423),(1)))

10: 2,1,2,4; e; (((23),(23))); (((1243), (1243))).

11: 2,1,6,4; e; (((234),(234)), ((34), (34))): (((1234), (1234)))

Using the formulae at the beginning of the proof, we then have

11
2) = Z4!4!8!/m
=1

=414181(1/(8-2-4)+1/(4-2-2) +1/(2-4) +1/(2-2-4)+1/(2-3)
+1/(4-6-4)+1/(2*-4-6-4) +1/(22-2-2-4)
+1/(24-2-4)+1/(2-2-4) +1/(2-6-4))

=3 4170+ 31318! + 41417) + 3!1318! + 4 - 418! 4 318!
+3-71 42313171+ 9 - 7! + 313!8! + 2 - 318!

=772+ 576 + 3+ 72+ 9) + 8!(36 + 36 + 96 + 6 + 36 + 12)

= 71732 + 8'222 = 712508 = 12640320,

U(4,2,1) 24'4'8%z

=3 4'7' + 3'3'8' + 414171 4 31318! 4 4 - 418! + 38!
= 7!(72 + 576) + 8!(36 + 36 + 96 + 6)
= 71648 + 8!174 = 712040 = 10281600,

U(4,2,2) = 414181 /n; + 41418! /ng
= 414181/(2* - 4.6 - 4) +41418!/(2* - 4-2 - 4)
=3-7'+9-7 = 60480.

We obtain the results of the theorem. O
Corollary 8.2.2. [(4,1)=1(4,1,1)=2,U(4,1) =U(4,1,1) = (41)2.

Proof. From Theorem 8.2.1, we have I(4,1) = I(4,1,1) = 1(4,2,2) = 2,
and U(4,1,1) = U(4,2,2)41(21)*/8l. Thus U(4,1) = U(4,1,1) = 60480/105 =
576 = (41)2. O
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Enumeration of (4, 3)-Latin Arrays

Let A143,..., A4643 be (4,3)-Latin arrays as follows:

1112223334447 [1112223334447 [ 1112223334447 [111222333444 ]
222111444333 | | 222111444333 | | 222111444333 | | 222111444333
333444111222 | | 333444222111 | | 333444112221 | | 333444221112
444333222111 | | 444333111222 | | 444333221112 | | 444333112221

C A143 T A243 T A343  A443

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
222133444113 | | 222131444313 | | 222434141133 | | 222431144133
333444112221 | | 333444112221 | | 333141424212 | | 333144421221
444311221332 | | 444313221132 | | 444313212321 | | 444313212312

- AR43 T A643 AT43 A843

1112223334447 [11122233344471 [ 1112223334447 [ 111222333444 ]
222111444333 | | 222111444333 | | 222333444111 | | 222331444113
334443112221 | | 334443221112 | | 334441112322 | | 334443112221
443334221112 | | 443334112221 | | 443114221233 | | 443114221332

© o A943 A1043 A1143  A1243

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
222313444113 | | 222313444113 | | 222131444331 | | 222131444331
334441112232 | | 334441212231 | | 334443212112 | | 334443112212
443134221321 | | 443134121322 | | 443314121223 | | 443314221123

© A1343 Al1443  © A1543 Al1643

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
222113444331 | | 222443114133 | | 222314441331 | | 222134441331
334441112223 | | 334111442322 | | 334441222113 | | 334413114222
443334221112 | | 443334221211 | | 443133114222 | | 443341222113

C A17T43 0 A1843  A1943 A2043

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
229341441331 | | 222334441113 | | 222334441113 | | 222334441113
334413114222 | | 334441212321 | | 334411124322 | | 334411224321
443134222113 | | 443113124232 | | 443143212231 | | 443143112232

C A2143 T A2243 T A2343 A2443

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
222314441133 | | 222314441133 | | 222314441133 | | 222314441133
334431124221 | | 334431224211 | | 334443112221 | | 334443122211
443143212312 | | 443143112322 | | 443131224312 | | 443131214322

© A543 A2643 A2743 A2843
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(1112223334447 [1112223334447 [1112223334447 [111222333444]
222314441133 | | 223443421311 | | 223114144233 | | 223114144233
334143214221 | | 334114242132 | | 334443211122 | | 334443212121
443431122312 | | 442331114223 | | 442331422311 | | 442331421312
© A2943 T A3043  © A3143 A3243

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
223441124331 | | 223441114332 | | 223443114123 | | 234134124123
334134241212 | | 334134242121 | | 334314242211 | | 342341241231
442313412123 | | 442313421213 | | 442131421332 | | 423413412312
© A3343 A3443 © A3543 A3643

(1112223334447 [1112223334447 [1112223334447 [111222333444 ]
234134124123 | | 234134124123 | | 332441124123 | | 332441124123
342413241312 | | 423341241231 | | 424313241231 | | 424313241312
423341412231 | | 342413412312 | | 243134412312 | | 243134412231

A3743 A3843 A3943 A4043

1112223334447 [1112223334447 [1112223334447 [ 111222333444 ]
332441124123 234334114221 234331441221 224113442331
424313412231 423141242313 423414212313 343434121212

| 243134241312 342413421132 342143124132 432341214123

A4143 A4243 A4343 A4443

(111222333444 [ 111222333444 ]
224113441332 224113442331
343434212121 343341214212
432341124213 432434121123

A4543 A4643

Lemma 8.2.6. A143,..., A4643 are not isotopic to each other.

Proof. We compute the column characteristic value and the row charac-
teristic set of Az43 and represent them in the format: “z: the column charac-
teristic value of Ax43; the row characteristic set of Az43”, where the column
characteristic value is in the form czcs, the row characteristic set is in the
form Ty (i,7) T'(4,5), in order of ij = 12,13,14,23,24,34, T'(i,5) = To(i,5)
if the derived permutation from row i to row j exists, T"(¢, ) = T5(4,j) oth-
erwise. T»(i,7) = 4 means “a cycle of length 4”; T5(i,j) = 2 means “two
transpositions”. We list the results of column characteristic values and row
characteristic sets of A143, ..., A4643 as follows:

1:40;402,402,402, 402,402,402 2 : 40; 402, 404, 404, 404, 404, 402
3:22:402, 222,222,222, 222,402 4 : 22; 402,224, 224, 224, 224, 402
5:13;224,222,134,134,222,224 6 : 12; 222,222,120, 120, 222, 222
7:12;134,134,120,120,134,134 8 : 10;120, 120, 120, 120, 120, 120
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9 : 04; 402, 042, 042, 042,042,402 10 : 04; 402, 044, 044, 044, 044, 402
11 : 04; 404, 042,044, 044,042,044 12 : 04; 224, 042, 044, 044, 042, 224
13 : 02; 224, 042, 020, 020, 042,042 14 : 02; 224, 032, 032, 032, 032, 042
15 : 03; 222,044, 032,032, 044,222 16 : 02; 222, 042, 020, 020, 042, 222
17 : 04; 222,042, 042,042, 042,222 18 : 04; 134, 134,042, 042, 134, 134
19 : 03;120, 134, 134,032, 032,042 20 : 03; 120, 120, 120, 042, 042, 042
21 : 03;120, 120, 120, 120,120,120 22 : 02; 134, 032, 033, 044, 020, 032
23 : 01; 134,032,020, 020,032,020 24 : 02; 134,033,032, 032, 033, 020
25 : 01; 120, 020, 020, 020,020,120 26 : 03; 120, 032, 032, 032, 032, 120
27 : 02; 120,042, 032, 032,042,120 28 : 02; 120, 044, 033, 033, 044, 120
29 : 01; 120,020, 020, 032,032,042 30 : 02; 033,033, 044, 044, 033,033
31 :04; 042,042,042, 042,042,042 32 : 02; 042, 044, 020, 020, 044, 042
33 : 01;032, 020,020, 032,032,020 34 : 01; 044, 032, 020, 020, 032, 044
35 : 01;032, 032, 032,032,032,032 36 : 00; 000, 000, 000, 044, 044, 044
37 : 00; 000, 000, 000, 000,000,000 38 : 00; 000, 000, 000, 033, 033,033
39 : 00; 020, 020, 000, 033,032,032 40 : 00; 020, 020, 000, 044, 020, 020
41 : 00; 020, 020, 000, 000,020,020 42 : 00; 032, 032, 000, 000, 032, 032
43 : 00; 033,033,000, 000,033,033 44 : 00; 042, 042,000, 000, 042, 042
45 : 00; 042, 044, 000, 000, 044,042 46 : 00; 042, 020, 020, 020, 020, 042

It is easy to verify that for any two distinct Ai43’s either their column char-
acteristic values are different, or their row characteristic sets are different.
From Corollary 8.2.1, it immediately follows that A143,..., A4643 are not
isotopic to each other. a

Lemma 8.2.7. Any (4, 3)-Latin array is isotopic to one of A143, ..., A4643;
and any (4,3, 1)-Latin array is isotopic to one of A3643, ..., A4643.

Proof. The proof of this lemma is similar to Lemma 8.2.5 but more tedious.
We omit the details of the proof for the sake of space. ad

Theorem 8.2.12. [(4,3) =46, 1(4,3,1) = 11.
Proof. This is immediate from Lemmas 8.2.6 and 8.2.7. O
Theorem 8.2.13. U(4,3,1) = 306561024000, U(4,3) = 805929062400.

Proof. For any Axz43, G’} .5 is easy to determine from positions of re-
peated columns. For computing the order of G 4,43, we find out the set of
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: " : 17 3
coset representatives of G’y 5 in G’} 45, the set of coset representatives of
Mz In G'y4q and the set of coset representatives of G4,45 in Gagas.
Below we give an example for G g1743

111 222 333 444
222 113 444 331
334 441 112 223
443 334 221 112

Al743 =

In GRA1743, labels of edges (1,2) and (3,4) are the same, say “red”; labels
of other edges are the same and not red, say “green”.

G743 consists of the product of the following permutations: permuta-
tions of columns 1 and 2, permutations of columns 4 and 5, permutations of
columns 7 and 8, permutations of columns 10 and 11; its order is (2!)%.

Let ((1),8,7) € G'41745- Although the column types of various blocks of
A1743 are the same, the first block and the third block have the same row
type which is different from row types of other blocks. From Theorem 8.2.7,
the first block should be transformed into itself or the third block by renaming
(B and some column arranging. In the case of being transformed into itself, the
renaming [ transforms the repeated column 1234 into itself; that is, 5 = (1).
This gives the coset representative e. In the case of being transformed into
the third block, 8 transforms the repeated column 1234 into the repeated
column 3412; that is, 8 = (13)(24). It is easy to verify that ((1), (13)(24), -)
keeps A1743 unchanged indeed; this gives another coset representative. From
Theorem 8.2.6 (b), it follows that G'j154, = (((1),(13)(24),-)) G'{i944, Of
which the order is 2 - (2!)%.

To find G’y 745, let (o, 8,7) € G', where the row arranging « is a permuta-
tion of 2,3,4. From the proof of Theorem 8.2.3 (b), if («, 3, ) is an autotopism
of A1743, then the row arranging « is an automorphism of GR 41743. It fol-
lows that edges (1,2) and («(1), «(2)), that is, (1, «(2)), have the same color.
Since the edge (1, 2) is the unique red edge with endpoint 1, we have «(2) = 2
whenever (a, 8,7) € G'4o44. Thus the candidates of « are (34) and (1). Try
a = (34). The row arranging (34) transforms A1743 into

111 222 333 444
222 113 444 331
443 334 221 112
334 441 112 223

A =

If A’ can be transformed into A1743 by a renaming (3 and some column
arranging, from Theorem 8.2.7, then the first block of A’ should be trans-
formed into the first block or the third block of A1743 by renaming 3 and
some column arranging. In the case of being transformed into the first block,
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0B transforms the repeated column 1243 into the repeated column 1234; that
is, B = (34). It is easy to see that § transforms the column 2341 into the
column 2431, which is not a column of A1743. It follows that A’ can not be
transformed into A1743 by ((1), (34), -). In the case of being transformed into
the third block, § transforms the repeated column 1243 into the repeated col-
umn 3412; that is, § = (1324). It is easy to see that § transforms the column
2143 into the column 4312, which is not a column of A1743. It follows that A’
can not be transformed into A1743 by ((1), (1324), -). To sum up, ((34), 5, -)
can not keep A1743 unchanged for any (. Therefore, from Theorem 8.2.6 (c),
e is a coset representative of the unique coset. That is, G'y1743 = G'41745, Of
which the order is 2 - (2!)%.

To find Gai743, let {«,5,7) € Gar7as. Thus « is an automorphism of
PRa1743. Try a(3) = 1. Since the edge (3,4) is red, the edge («(3),a(4)),
that is, (1,(4)), is red. Since the edge (1,2) is the unique red edge with
endpoint 1, we have o(4) = 2. It follows that o = (1423) or (13)(24). Try
a = (1423). A1743 can be transformed into

111 222 333 444
422 111 442 333
344 433 221 211
233 344 114 122

A// —

by row arranging (1423) and some column arranging. If A” can be trans-
formed into A1743 by a renaming (3 and some column arranging, from The-
orem 8.2.7, then the second block of A” should be transformed into the first
block or the third block of A1743 by renaming (3 and some column arrang-
ing. In the case of being transformed into the first block, # transforms the
repeated column 2134 into the repeated column 1234; that is, 8 = (12). It is
easy to see that 3 transforms the column 1432 into the column 2431, which is
not a column of A1744. In the case of being transformed into the third block,
( transforms the repeated column 2134 into the repeated column 3412; that
is, 0 = (1423). It is easy to see that § transforms the column 1432 into the
column 4213, which is not a column of A1744. To sum up, for any renaning (3,
((1),8,-) can not transform A” into A1743. Thus ((1324), 3,-) can not keep
A1743 unchanged for any 8. Try a = (13)(24). A1743 can be transformed
into

111 222 333 444

422 111 442 333

233 344 114 122

344 433 221 211

A —

by row arranging (13)(24) and some column arranging. If A”" can be trans-
formed into A1743 by a renaming (3 and some column arranging, from The-
orem 8.2.7, then the second block of A" should be transformed into the first
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block or the third block of A1743 by renaming 3 and some column arranging.
Try the first block. In this case, 3 transforms the repeated column 2143 into
the repeated column 1234; that is, 8 = (12)(34). It is easy to verify that
A" can be transformed into A1743 by ((1),(12)(34),-) indeed. Therefore,
((13)(24), (12)(34), -) keeps A1743 unchanged. Similarly, Try «(2) = 1. Since
the edge (1, 2) is red, the edge (a(1), ®(2)), that is, (a(1), 1), is red. Since the
edge (2,1) is the unique red edge with endpoint 1, we have «(1) = 2. It fol-
lows that o = (12)(34) or (12). Try « = (12)(34). A1743 can be transformed
into

111 222 333 444

224 111 244 333

332 443 411 221

443 334 122 112

A —

by row arranging (12)(34) and some column arranging. Suppose that A"
can be transformed into A1743 by a renaming (§ and some column ar-
ranging. From Theorem 8.2.7, the second block of A"’ should be trans-
formed into the first block or the third block of A1743 by renaming /3
and some column arranging. Try the first block. In this case, § trans-
forms the repeated column 2143 into the repeated column 1234; that is,
B = (12)(34). It is easy to verify that A”” can be transformed into A1743
by ((1), (12)(34), ) indeed. Therefore, ((12)(34), (12)(34), -) keeps A1743 un-
changed. From (13)(24) - (12)(34) = (14)(23) and (12)(34) - (12)(34) = (1),
((14)(23), (1), ) keeps A1743 unchanged. From Theorem 8.2.6 (d), we then
have G a1743 = (((13)(24), (12)(34), -), {(12)(34), (12)(34), -)) G’41743, of which
the order is 4 -2 - (2!)%.

Similarly, we can compute other G 4,43, using GR z,43 to reduce the trying
scope for row arranging, and using column types and row types of blocks to
reduce the trying scope for renaming.

Denote the order of autotopism group G ;43 of Aid3 by n;,i =1,...,46.
On autotopism group of Ax43 and its order n,, the computing results are

represented in the format: “z: the order of G’ 5, the number of cosets of

N oas In G as, the number of cosets of G}, 5 in G'y,.45, the number of
cosets of G’y .45 In G 4543 (the product of the four numbers is n,); the set of
coset representatives of G’y in G’j_,4; the set of coset representatives of
" . ' . . . P ’ . .
G\ a3 0 G’y 455 the set of coset representatives of G'4,45 in Gaza3.” v in a

coset representative («, 3,v) is omitted.

Lo (B)4,4,6,4; (1), (12)(34)), {(1), (13) (24)));
(((234), (234)), {(23), (23))); (((1234)), ((4321))).

21 (3)%,4,2,4 (((1), (1423))); (((34), (34))); (((1423), (1)).
(3121)2,2,2,4; (((1), (12)(34))); (((34), (34))); (((1324), (1423)))
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33: 2,1,1,3; e e (((134), (134))).

34: 2,1,1,4; e; e; (((12)(34), (12)(34)), ((14)(23), (14)(23))).

35: 2,1,3,4; e; (((234),(234)));

e, {(124), (124)), ((421), (421)), ((132), (132)).
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36: 1,4,6,1; (((1),(1234))); (((23),(24)), ((24),(24))); e

37: 1,12,6,4; ((1),m), 7 is an even permutation
(((234), (1)), ((23), (1234))); (((1234), (1234)))

38: 1,3,6,1; (((1),(124))); (((234),(1)),((23),(24))); e

39: 1,1,2,1; e; ({(23),(12))); e.

40: 1,2,2,2; (((1),(12)(34))); (((23),(34))); ({(14)(23),(13)(24)))

41:1,2,2,4; (((1), (12)(34))); (((23),(12))); (((1342), (1423)))

421 1,1,2,4; e; ({(23),(23))); ({(1243), (14))).

431 1,3,2,4; (((1),(234))); (((23),(34))); ({(1342),(1)))

440 1,4,2,4; (((1), (12)(34)), (1), (14)(23))); (((23), (23))); (((1342), (1342)))

45: 1,4,1,4; (((1),(1423))); e; (((12)(34), (12)), ((14)(23), (1))).

46 1,2,2,4; (((1),(14)(23))); (((34),(12)(34))); (((1423),(1))).

Thus nq,...,n4s are

3729 3129 3298 3298 3.96 3.96 3.96 3291 99 99,
27 27 9% 2% 95 95 97 o7 94 3. 94,

3.26,92 92 93 94 96 94 9% 92 95,
3.28,25.3.2,233.23 3.23 3225 322, 2 23,

24 23.3.23 95 24 24

respectively. Since the number of elements in the isotopy class containing
Aid3 is 414112!/n;, noticing 414112 = 322612! = 372147700, we have
46
U(4,3,1) = ) 414112!/n;
i=36
=121(24 424324288+ 72+ 36 + 72 + 24 + 18 4 36 + 36)
= 121640 = 479001600 - 640 = 306561024000,
46
U(4,3) = Z 414112 /n; = 805929062400.

i=1

Enumeration of (4, 4)-Latin Arrays

Notice that the first row of any canonical (4,4)-Latin array is 111122223333
4444. Since each column of any canonical (4,4)-Latin array is a permutation
of 1,2,3 and 4, any canonical (4,4)-Latin array may be determined by its rows
2 and 3. For example, if rows 2 and 3 of a canonical (4,4)-Latin array A are
2222111144443333 and 3333444411112222, respectively, then we have
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1111222233334444
2222111144443333
3333444411112222
4444333322221111

A:

We give a (4,4)-Latin array Az44 in the format: “z: the second row of
Az44, the third row of Az44”. Let A144, ..., A20144 be 201 (4,4)-Latin arrays
given as follows:

1 2222111144443333, 3333444411112222
1 2222111144443333, 3333444422221111
1 2222111144443333, 3333444411122221
1 2222111144443333, 3333444422211112
:2222111144443333, 3333444411222211
1 2222111144443333, 3334444311122221
:2222111144443333, 3334444322211112
1 2222111144443333, 3334444311222211
:2222111144443333, 3344443311222211
10 : 2222333344441111, 3334444111122223
11 : 2222333344441111, 3344441111223322
12 : 3333444421111222, 4444333112222113
13 : 3333444422211112,4444333111122223
14 : 3333444422111122,4444333111222213
15 : 3333444422112211, 4444331111223322
16 : 3333444411122221,4442333122241113
17 : 3333444411222211, 4442333122141123
18 : 3333444412222111,4442333121141223
19 : 3333444421111222,4442333112242113
20 : 3333444422111122,4442333111242213
21 : 3333444422211112,4442333111142223
22 :3333444411121222,4442111322243331
23 : 3333444421121221,4442111312243332
24 : 3333444412221211, 4442331121143322
25 :3333444412121212,4442331121243321
26 : 3333444411121222,4442331122243311
27 : 3333444412212211,4442331121143322
28 : 3333444411212221, 4442331122143312
29 : 3333444411122122,2244113344211233
30 : 3333444411221122,2244113344112233
31 : 3333444412122121,2244113344211233
32 : 3333444412221121,2244113344112233
33 : 2222333444411113, 3333444121142221
34 1 2222113444413331, 3333444111242212
35 1 2222113444413331, 3333444112242112
36 : 2222331444413311, 3333444122141122
37 1 2222443311441133, 3333114444222211
38 : 2222333444411113, 3334444111222231
39 : 2222333444411113, 3334444111122232
40 : 2222333444411113, 3334444311122221
41 : 2222333444411113, 3334441112242231
42 : 2222333444411113, 3334441111242232
43 : 2222113444413331, 3334434122241112

QOO U= W —
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:2222113444413331, 3334434122141122
1 2222113444413331, 3334434121141222
:2222113444413331, 3334434111142222
1 2222113444413331, 3334444322121112
:2222113444413331, 3334444321121122
1 2222113444413331, 3334444311121222
1 2222113444413331, 3334441322141122
:2222113444413331, 3334441321141222
1 2222113444413331, 3334441311142222
:2222133444411133, 3334344122142211
1 2222133444411133, 3334344121142212
:2222133444411133, 3334344111142222
1 2222133444411133, 3334414312142221
:2222133444411133, 3334414322142211
1 2222133444411133, 3334414121142322
1 2222133444411133, 3334414121242321
1 2222133444411133, 3334414122242311
1 2222133444411133, 3334444311122212
:2222133444411133, 3334444321122211
1 2222133444411133, 3334444111122322
:2222334444111122,3334413121442221
1 2222334444111133, 3334413122442211
1 2222334444111133, 3334443111422221
1 2222334444111133, 3334443121422211
1 2222334444111133, 3334441111423222
1 2222333444411113, 3344411122143322
1 2222333444411113, 3344411122243321
:2222333444411113, 3344411321142322
1 2222113444413331, 3344334121141222
:2222113444413331, 3344334121241212
1 2222113444413331, 3344334122241112
:2222113444413331, 3344431121242213
1 2222113444413331, 3344434111221223
1 2222133444411133, 3344344321122211
1 2222133444411133, 3344314321142221
1 2222133444411133, 3344314322142211
:2222133444411133,3344314121142322
1 2222133444411133, 3344314122142312
:2222133444411133, 3344314122242311
1 2222334444111133, 3344443311222211
1 2222334444111133, 3344413311422221
1 2222334444111133, 3344413111422322
1 2222334444111133, 3344413121422312
1 2222334444111133, 3344441111223322
1 2222334444111133, 3344441112223312
:2223111444413332, 3334444311122221
1 2223111444413332, 3334444311222211
:2223111444413332, 3334444312222111
1 2223111444413332,4332443321242111
:2223111444413332,4332443321142121
1 2223111444423331,4332443121242113
:2223111444413332,4332443121242113
1 2223111444413332,4332443121142123

313
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97
98
99

100 :
1 2223333444411112, 3444411112222333
102 :
103 :
104 :
105 :
106 :
107 :
108 :
109 :
110 :

101

111

114

121
122

131

141

2223111444423331,4332443121142123
2223111444413332, 3344443321121221
2223333444411112,3334441122143221
2224333144421113, 3332441411243221

2223333444411112, 3444411321123223
2223333444411112, 3444411312222331
2224333144421113,4333411412143222
2224333144421113,4333411412243221
2224333144421113,4433114421213232
2224333144421113,4433414321212231
2224333144411123,3332144421142312
2224333144411123, 3332144422142311
2224333144411123, 3342444311222311

1 2224333144411123, 3343444311222211
112:
113 :
1 2224333144411123, 3442414312123231
115:
116 :
117
118 :
119:
120 :
1 2224333144411123, 3432414312142231
1 2224333144411123,3432411412142332
123 :
124 :
125 :
126 :
127 :
128 :
129 :
130 :
1 2224333444111123,4333441122422311
132:
133 :
134 :
135 :
136 :
137 :
138 :
139 :
140 :

2224333144411123, 3442411412123332
2224333144411123, 3442411412223331

2224333144411123,3442411312143232
2224333144411123, 3442411312243231
2224333144411123, 3442414312123312
2224333144411123, 3442414312223311
2224333144411123, 3443411312242231
2224333144411123, 3443411312242312

2224333444111123, 3332441122443211
2224333444111123, 3332444121423211
2224333444111123,4333411321442212
2224333444111123,4333411322442211
2224333444111123,4333411122442312
2224333444111123,4333411122442231
2224333444111123,4333441321422211
2224333444111123,4333441121422312

2224333444111123,4333441112422231
2224333444111123,4433144312222311
2224333444111123, 3342144311242231
2224333444111123, 3342144312243211
2224333444111123, 3342114321443212
2224333444111123, 3342441122243311
2223311444411332, 3334444311222121
2223311444411332, 3334444111223221
2223311444411332,4332434121142123

1 2223311444411332,4332434321142121
142 :
143 :
144
145 :
146 :
147 :
148 :
149 :

2223311444411332,4332434121143221
2223311444411332,4332144321143221
2223311444411332,4332434122142113
2223311444411332,4332434322142111
2223311444411332,4332434122143211
2223311444411332,4332144122143213
2223311444411332,4332444311223211
2223311444411332, 3344144311223221



150 :
1 2223331444411132, 3334144122143221
152 :
153 :
154 :
155 :
156 :
157 :
158 :
159 :
160 :
: 2223331444411132, 3344414311222321
162 :
163 :
164 :
165 :
166 :
1 2223113444421133,3344441321112322
168 :
169 :
170 :
1 2224113344421133,3342441111243322
172
173 :
174 :
175 :
176 :
177 .
178 :
179 :
180 :
1 2223314444111332, 3334441312242211
182 :
183 :
184 :
185 :
186 :
187 :
188 :
1 2223334444113211, 3344141321422132
190 :
:2233314444211123,3344141312423212
192 :
193 :
:2234334144121123,3342413411242312
:2234114344123321, 3342443111242213
196 :
197 :
198 :
199 :
200 :
1 2344133412241123,4223314141422331

161

171

181

191

195

201

8.2 Latin Arrays

2223311444411332, 3344434311222121

2223331444411132,4332144321142213
2223331444411132,4332144121243321
2223331444411132,4332144321143221
2223331444411132,4332144321243211
2223331444411132,4332144121242313
2223331444411132,4332443121242311
2223331444411132,4332443121142213
2223331444411132,4332444121123321
2223331444411132, 3344443311222211

2223331444411132, 3344143122142321
2223113444421133,4332434112142321
2223113444421133,4332441112143322
2223113444421133,4332444112113322
2223113444421133, 3344434321112212

2223113444421133,3344341311242212
2224113344421133,4333434421212211
2224113344421133,4333434121242211

2224113344421133, 3342434111243212
2223314444123311,4332141321441232
2223314444123311,4332441321411232
2223314444123311,4332441311241223
2223314444123311,4332431121441232
2223314444123311, 3344431112241232
2223314444123311, 3344143311241222
2223314444123311,3344141311242232
2223314444123311, 3344141312242132

2223314444111332,4332431122442113
2223314444111332, 3344443311222211
2223314444111332, 3344441311223221
2223314444111332, 3344441312223211
2223314444111332, 3344433111422221
2223314444111332, 3344433121422211
2223314444111332, 3344141321423221

2233441111442233, 3344334422111122

2233314444211123, 3442133112442231
2233314444211123, 3442433112142231

3344334411221122,2423141324142313
3344114411222233,2423341324141312
3344134411221322,2423411324143213
3344113412241223,2423341141423132
3344113412241223, 2423341341422131

315
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Lemma 8.2.8. Al44,..., A20144 are not isotopic to each other.

Proof. We compute the column characteristic value and the row charac-
teristic set of Ax44 and represent them in the format: “z: the column charac-
teristic value of Ax44; the row characteristic set of Ax44”, where the column
characteristic value is in the form c4c3cs, the row characteristic set is in the
form Ty (i,5) T'(i,5), in order of ij = 12,13,14,23,24,34, T'(3,j) = T»(4,J)
if the derived permutation from row ¢ to row j exists, T"(4,j) = T5(¢, j) oth-
erwise. T»(i,7) = 4 means “a cycle of length 4”; T5(i,7j) = 2 means “two
transpositions”. We list the results of column characteristic values and row

characteristic sets of A144, ..., A19544 as follows:

QOO0 T W -

: 400; 4002, 4002, 4002, 4002, 4002, 4002
: 400; 4002, 4004, 4004, 4004, 4004, 4002
1 220; 4002, 2202, 2202, 2202, 2202, 4002
: 220; 4002, 2204, 2204, 2204, 2204, 4002
: 204; 4002, 2020, 2020, 2020, 2020, 4002
: 040; 4002, 0402, 0402, 0402, 0402, 4002
: 040; 4002, 0404, 0404, 0404, 0404, 4002
: 024; 4002, 0220, 0220, 0220, 0220, 4002
: 008; 4002, 0040, 0040, 0040, 0040, 4002
: 040; 4004, 0402, 0404, 0404, 0402, 0404
: 008; 4004, 0040, 0040, 0040, 0040, 0040
1 121; 2202, 1202, 2202, 2202, 1202, 2202
: 130; 2204, 1304, 2202, 2202, 1304, 2204
: 113; 2020, 1110, 2202, 2202, 1110, 2020
: 106; 2020, 1030, 2020, 2020, 1030, 2020
1 040; 2202, 0402, 0402, 0402, 0402, 2202
: 022; 2020, 0202, 0402, 0402, 0202, 0402
1 022; 2204, 0204, 0402, 0402, 0204, 0220
1 022; 2202, 0202, 0402, 0402, 0202, 2202
: 022; 2020, 0204, 0402, 0402, 0204, 2020
: 040; 2204, 0404, 0402, 0402, 0404, 2204
: 031; 2202, 0404, 0304, 0304, 0404, 2202
: 022; 2020, 0304, 0304, 0304, 0304, 0402
: 014; 2204, 0120, 0210, 0210, 0120, 0220
: 013; 2020, 0110, 0210, 0210, 0110, 0402
1 023;2202, 0220, 0210, 0210, 0220, 2202
: 015; 2020, 0120, 0220, 0220, 0120, 2020
: 014; 2202, 0110, 0220, 0220, 0110, 2202
: 006; 2202, 0020, 0040, 0040, 0020, 2202
: 008; 2020, 0040, 0040, 0040, 0040, 2020
: 004; 2020, 0020, 0020, 0020, 0020, 0402
: 006; 2204, 0040, 0020, 0020, 0040, 0220
: 121; 1304, 1202, 1304, 1304, 1202, 1304
: 103; 1202, 1202, 1202, 1202, 1202, 1202
: 103; 1202, 1110, 1110, 1110, 1110, 1202
:104; 1110, 1110, 1030, 1030, 1110, 1110
: 106; 1030, 1030, 1030, 1030, 1030, 1030
: 022; 1304, 0210, 0211, 0404, 0202, 0304
: 031; 1304, 0402, 0304, 1304, 1202, 0304
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: 040; 1304, 0402, 1304, 1304, 0402, 1304
: 013; 1304, 0110, 0120, 0120, 0110, 0110
: 013; 1304, 0210, 0204, 0204, 0210, 0110
: 030; 1202, 0304, 0304, 0304, 0304, 1202
: 012; 1202, 0110, 0110, 0110, 0110, 1202
£ 012; 1202, 0202, 0202, 0202, 0202, 1202
: 030; 1202, 1202, 1202, 1202, 1202, 1202
£ 022; 1202, 0404, 0211, 0211, 0404, 1202
: 013; 1202, 0220, 0110, 0110, 0220, 1202
1 022; 1202, 0402, 0210, 0210, 0402, 1202
: 013;1202, 0110, 0110, 0304, 0304, 0402
: 013; 1202, 0202, 0202, 0210, 0210, 0402
: 031; 1202, 1202, 1202, 0402, 0402, 0402
: 014; 1110, 0110, 0120, 0120, 0110, 0110
: 013; 1110, 0202, 0204, 0204, 0202, 1110
1 023;1110, 1202, 1110, 1110, 1202, 1110
: 012; 1110, 0202, 0204, 0110, 0210, 0210
: 013;1110, 0110, 0120, 0211, 0304, 0210
: 012; 1110, 0210, 0202, 0202, 0210, 0202
: 011;1110, 0110, 0110, 0110, 0110, 0202
: 021; 1110, 0211, 0304, 0304, 0211, 0202
: 022; 1110, 0402, 0304, 0304, 0402, 1110
: 014; 1110, 0220, 0211, 0211, 0220, 1110
: 022; 1110, 0402, 0210, 1110, 1202, 0210
: 012; 1030, 0204, 0204, 0110, 0110, 0110
: 014; 1030, 0120, 0120, 0211, 0211, 0110
: 013; 1030, 0202, 0304, 0304, 0202, 0204
: 013; 1030, 0110, 0211, 0211, 0110, 0204
: 014; 1030, 0210, 0210, 1110, 1110, 0110
: 005; 1304, 0120, 0020, 0020, 0120, 0110
: 014; 1304, 0211, 0210, 0210, 0211, 0110
: 005; 1304, 0110, 0120, 0010, 0040, 0020
: 005; 1202, 0110, 0110, 0110, 0110, 1202
: 005; 1202, 0020, 0020, 0020, 0020, 1202
: 023; 1202, 0210, 0210, 0210, 0210, 1202
: 004; 1202, 0010, 0040, 0040, 0010, 1202
: 004; 1202, 0020, 0020, 0110, 0110, 0402
: 006; 1110, 0040, 0120, 0120, 0040, 1110
: 004; 1110, 0110, 0120, 0010, 0020, 0210
: 005; 1110, 0020, 0040, 0110, 0110, 0210
: 004; 1110, 0110, 0110, 0110, 0110, 0202
: 003; 1110, 0010, 0020, 0020, 0010, 0202
: 013; 1110, 0110, 0210, 0210, 0110, 0202
: 008; 1030, 0040, 1030, 1030, 0040, 1030
: 005; 1030, 0110, 0211, 0120, 0020, 0110
: 004; 1030, 0110, 0110, 0110, 0110, 0002
: 002; 1030, 0010, 0010, 0010, 0010, 0002
: 008; 1030, 0040, 0040, 1030, 1030, 0040
: 006; 1030, 0120, 0120, 0120, 0120, 0040
: 040; 0402, 0402, 0402, 0402, 0402, 0402
: 022; 0402, 0220, 0202, 0202, 0220, 0402
: 022; 0402, 0404, 0204, 0204, 0404, 0402
: 004; 0402, 0110, 0110, 0110, 0110, 0402

317
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: 004; 0402, 0020, 0202, 0202, 0020, 0402
: 004; 0402, 0004, 0404, 0040, 0004, 0402
: 004; 0402, 0004, 0220, 0220, 0004, 0402
: 004; 0402, 0002, 0402, 0402, 0002, 0402
: 004; 0402, 0002, 0220, 0220, 0002, 0402
: 004; 0402, 0040, 0002, 0002, 0040, 0402
- 013; 0404, 0110, 0211, 0211, 0110, 0120
: 013; 0404, 0202, 0120, 0120, 0202, 0404
: 004; 0404, 0404, 0002, 0040, 0004, 0004
: 004; 0404, 0120, 0010, 0120, 0010, 0010
: 004; 0404, 0204, 0020, 0020, 0204, 0004
: 004; 0404, 0210, 0010, 0010, 0210, 0040
: 004; 0404, 0110, 0110, 0110, 0110, 0040
: 004; 0404, 0040, 0002, 0002, 0040, 0404
: 004; 0404, 0020, 0020, 0020, 0020, 0040
: 012; 0304, 0202, 0204, 0110, 0210, 0110
: 012; 0304, 0204, 0120, 0211, 0110, 0110
: 012; 0304, 0110, 0120, 0120, 0110, 0304
: 013; 0304, 0220, 0204, 0204, 0220, 0304
: 004; 0304, 0120, 0110, 0020, 0010, 0110
: 004; 0304, 0211, 0202, 0210, 0004, 0110
: 003; 0304, 0010, 0110, 0040, 0004, 0110
: 003; 0304, 0010, 0304, 0020, 0010, 0020
: 003; 0304, 0004, 0210, 0210, 0004, 0020
: 004; 0304, 0010, 0110, 0110, 0211, 0020
: 004; 0304, 0110, 0210, 0210, 0110, 0020
: 004; 0304, 0010, 0110, 0110, 0010, 0020
: 003; 0304, 0010, 0110, 0002, 0120, 0110
: 004; 0304, 0002, 0120, 0120, 0002, 0304
: 003; 0304, 0020, 0110, 0110, 0020, 0020
- 013;0211, 0120, 0120, 0211, 0211, 0120
- 020; 0211, 0204, 0211, 0211, 0204, 0211
: 004; 0211, 0204, 0211, 0010, 0040, 0010
: 005; 0211, 0120, 0120, 0120, 0120, 0010
: 004; 0211, 0211, 0010, 0004, 0120, 0120
: 005; 0211, 0211, 0010, 0211, 0010, 0010
: 003; 0211, 0110, 0204, 0110, 0020, 0004
: 002; 0211, 0110, 0004, 0004, 0110, 0010
: 003; 0211, 0211, 0010, 0010, 0010, 0010
: 003; 0211, 0110, 0004, 0211, 0002, 0004
: 003; 0211, 0110, 0110, 0110, 0110, 0010
: 004; 0211, 0002, 0211, 0211, 0002, 0211
: 002; 0211, 0004, 0120, 0010, 0010, 0004
: 003; 0211, 0004, 0120, 0004, 0120, 0010
: 004; 0211, 0120, 0110, 0110, 0120, 0010
- 012; 0202, 0220, 0110, 0110, 0220, 0202
: 013; 0202, 0210, 0202, 0210, 0202, 0210
: 002; 0202, 0002, 0202, 0202, 0002, 0202
: 002; 0202, 0020, 0204, 0002, 0020, 0202
: 003; 0202, 0002, 0202, 0210, 0110, 0210
: 004; 0202, 0002, 0202, 0202, 0040, 0202
: 003; 0202, 0004, 0110, 0110, 0004, 0202
: 003; 0202, 0110, 0120, 0004, 0110, 0202
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: 002; 0202, 0004, 0110, 0020, 0010, 0210
: 003; 0202, 0010, 0220, 0220, 0010, 0202
: 003; 0202,0110,0110, 0002, 0020, 0210
: 004; 0202, 0020, 0002, 0002, 0020, 0202
: 002; 0202, 0040, 0004, 0004, 0040, 0202
: 011;0204,0110,0110,0110,0110, 0204
: 003; 0204, 0002, 0204,0110,0110,0110
: 003; 0204, 0010, 0110, 0020, 0120,0110
: 002; 0204, 0002, 0204, 0002, 0040, 0002
: 002; 0204, 0004, 0120, 0004, 0120, 0002
: 002; 0204, 0010,0110,0110,0010, 0002
: 003; 0204, 0004, 0120, 0010,0010,0110
: 004; 0204, 0002, 0204, 0204, 0002, 0204
: 004; 0204, 0110,0110,0110,0110, 0040
: 004; 0204, 0040, 0204, 0204, 0040, 0204
: 002; 0204, 0020, 0004, 0004, 0020, 0002
: 002; 0204, 0010, 0010, 0010, 0010, 0204
: 002; 0210, 0002,0110,0110, 0002, 0210
: 005; 0210, 0020, 0220, 0220, 0020, 0210
: 005; 0210, 0210, 0210, 0210, 0210,0210
: 003; 0210, 0220, 0004, 0004, 0220, 0210
: 004; 0210, 0210, 0002, 0002, 0210, 0210
: 003;0210,0110,0010,0010,0110,0210
: 005; 0220, 0220, 0010, 0010, 0220, 0220
: 004; 0220,0110,0110,0110,0110, 0220
: 006; 0220, 0020, 0040, 0040, 0020, 0220
: 002; 0220, 0002, 0020, 0020, 0002, 0220
: 001; 0110, 0004, 0110, 0020, 0010, 0002
: 001; 0110, 0002, 0110, 0002, 0110, 0002
: 002;0110,0002,0110,0110,0002,0110
176 :
177 -
178 :
179 :
180 :
181 :
182 :
183 :
184 :
185 :
186 :
187 -
188 :
189 :
190 :
191 :
192 :
193 :
194 :
195 :

002; 0110, 0004, 0110, 0110, 0004, 0110
002; 0110, 0010, 0004, 0120, 0010, 0110
004; 0110, 0110, 0004, 0120, 0110, 0110
003; 0110, 0110, 0002, 0110, 0002, 0002
001; 0110, 0010, 0004, 0010, 0004, 0002
010;0110,0110,0110, 0110, 0110, 0110
005; 0110, 0010, 0110, 0110, 0010, 0110
004; 0110, 0040, 0110, 0110, 0040, 0110
004; 0110, 0020, 0020, 0110, 0110, 0020
002; 0110, 0110, 0010, 0004, 0020, 0020
003;0110,0110,0110, 0110, 0110, 0110
001; 0110, 0020, 0004, 0004, 0020, 0110
002; 0110, 0010, 0002, 0002, 0010, 0110
001; 0120, 0010, 0004, 0004, 0010, 0004
008; 0040, 0040, 0040, 0040, 0040, 0040
002; 0010, 0010, 0010, 0004, 0004, 0004
001; 0010, 0010, 0010, 0010, 0010, 0010
001; 0010, 0004, 0004, 0004, 0004, 0010
002; 0004, 0002, 0004, 0004, 0002, 0004
004; 0002, 0002, 0002, 0002, 0002, 0002

319

We can verify that for any two distinct Ax44’s, either their column character-
istic values are different, or their row characteristic sets are different. From
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Corollary 8.2.1, it immediately follows that A144,..., A19544 are not iso-
topic to each other. Since A19644, ..., A20144 are complements of A142,.. .,
A642, respectively, from Lemma 8.2.3 (a) and Lemma 8.2.4, A19644, ...,
A20144 are not isotopic to each other. For any i, 1 < ¢ < 195, and any j,
196 < j < 201, since Ai44 has repeated columns and columns of Aj44 are
different, Ai44 and Aj44 are not isotopic. Therefore, A144, ..., A20144 are
not isotopic to each other. a

Lemma 8.2.9. Any (4,4)-Latin array is isotopic to one of A144, ..., A20144;
and any (4,4, 1)-Latin array is isotopic to one of A19644, ..., A20144.

Proof. The proof of this lemma is similar to Lemma 8.2.5 but more tedious.
We omit the details of the proof for the sake of space. O

Theorem 8.2.14. [(4,4) =201, I(4,4,1) =6.

Proof. This is immediate from Lemmas 8.2.8 and 8.2.9. I(4,4, 1) can also
be obtained from Theorem 8.2.2 (a) and Theorem 8.2.10, that is, 1(4,4,1) =
1(4,2,1) =6. O

Theorem 8.2.15. U(4,4,1) = 5335311421440000,
U(4,4) = 80306439693480000.

Proof. For any Axz44, G'},,, is easy to determine from positions of re-
peated columns. For computing the order of G 4,44, We find out the set of
coset representatives of G’{,,, in G’y 44, the set of coset representatives of
G’} paq In G’y .4, and the set of coset representatives of G444 in G agz44. Below
we give three examples for G144, G a244 and G a4844.

1111 2222 3333 4444 1111 2222 3333 4444 1111 2222 3333 4444

2222 1111 4444 3333 2222 1111 4444 3333 2222 1134 4441 3331

3333 4444 1111 2222 3333 4444 2222 1111 3334 4443 2112 1122

4444 3333 2222 1111 4444 3333 1111 2222 4443 3311 1224 2213
Al44 A244 A4844

From the form of A144, each block consists of four identical columns.
Thus G'Y, 44 consists of all column permutations within blocks; therefore, its
order is (4!)%.

To find G’,,4, let ((1),5,7) € G” and 5(ij) = j, where iy,ia,13,14 are
a permutation of 1,2,3,4. Whenever ((1), 3,7) keeps A144 unchanged, from
the form of A144, the renaming [ transforms the i;-th block of A144 into
the first block of A144. Thus § transforms the first column of the i;-th block
of A144 into the first column of first block of A144. Therefore, the renam-
ing (3 is uniquely determined by i;. In the case of i1 = 2, the renaming (3
should transform the fifth column 2143 into the first column 1234. Thus
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[ should be the permutation (12)(34). It is easy to verify that § trans-
forms the first, the third and the fourth blocks of A144 into the second,
the fourth and the third blocks of A144, respectively. Thus ((1), (12)(34),-)
keeps A144 unchanged. Recall that a dot - in the place of the column arrang-
ing means “some column arranging ~”. Similarly, in the case of iy = 3, it
is easy to verify that ((1),(13)(24),-) keeps A144 unchanged; in the case of
i1 =4, it is easy to verify that ((1), (14)(23), -) keeps A144 unchanged. Using
(12)(34) - (13)(24) = (14)(23), from Theorem 8.2.6 (b), we have G4, =
({(1), (12)(34), ), (1), (13)(24),)) G4y of which the ovder is 4(41)".

To find Gy 44, let (a,3,7) € G’, where the row arranging o is a per-
mutation of 2,3,4. Try a = (432). The row arranging (432) transforms A144
into

1111 2222 3333 4444
3333 4444 1111 2222
4444 3333 2222 1111
2222 1111 4444 3333

A=

If A’ can be transformed into A144 by a renaming 3 and some column arrang-
ing, then the first block of A’ is transformed into the 5(1)-th block of A144.
From the form of A144 and A’, the first column of A’ is transformed into the
first column of the 5(1)-th block of A144. Try (1) = 1. Then g transforms
the column 1342 into the column 1234; that is, § = (432). It is easy to ver-
ify that ((1),(432),-) transforms A’ into A144 indeed. Thus ((432), (432),-)
keeps A144 unchanged. Similarly, we can choose the row arranging (34) and
the renaming (34) so that ((34), (34), -) keeps A144 unchanged. Noticing that
permutations (432) and (34) can generate all permutations on {2,3,4}, from
Theorem 8.2.6 (c), we have G'y,,, = ({(432), (432),-), ((34),(34), ) G'4144,
of which the order is 6 - 4(4!)%.

To find Gaya4, let (o, 5,7) € G. Try a = (4321). The row arranging
(4321) transforms A144 into

2222 1111 4444 3333
3333 4444 1111 2222
4444 3333 2222 1111
1111 2222 3333 4444

A// —

If A” can be transformed into A144 by a renaming 3 and some column ar-
ranging, then the first block of A” is transformed into the 3(2)-th block of
Al144. From the form of A144 and A”, the first column of A" is transformed
into the first column of the ((2)-th block of Al144. Try ((2) = 1. Then
0 transforms the column 2341 into the column 1234; that is, 8 = (4321).
It is easy to verify that ((1),(4321),-) transforms A” into Al44 indeed.
Thus ((4321), (4321), -) keeps A144 unchanged. Noticing that the permuta-
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tion (4321) generates (1234), (13)(24) and (1), from Theorem 8.2.6 (d), we
have Ga144 = (((4321), (4321),-)) G'4144, of which the order is 4 - 6 - 4(4!)%.

We compute Ga244. In GR A244, labels of edges (1,2) and (3,4) are the

same, say “red”; labels of other edges are the same and not red, say “green”.
",44 coincides with G'{,,,; its order is (41)%.

To find G'j,4, let (1), B,7) € G'4ouy and [(i;) = j, where (i1, 1i2,13,74) is
a permutation of 1,2,3,4. Similar to the discussion on A144, since ((1), 3,7)
keeps A244 unchanged, the renaming 3 is uniquely determined by ;. It fol-
lows that there are at most four choices for i;. Try i; = 3. Similar to the
discussion for A144, ( transforms the column 3421 into the column 1234;
that is, 8 = (1423). It is easy to verify that ((1),(1423),-) keeps A244 un-
changed indeed. Since the permutation (1423) generates four permutations
corresponding to four choices for ¢, from Theorem 8.2.6 (b), we have G’}5,, =
(((1),(1423),-)) G"{5,4, of which the order is 4 - (41)%.

To find G'y944, let {a, B3,7) € G', where the row arranging « is a permu-
tation of 2,3,4. From the proof of Theorem 8.2.3 (b), if («, 3,7) is an auto-
topism of A244, then the row arranging « is an automorphism of GRa244.
In this case, edges (1,2) and (a(1),«(2)), that is, (1,(2)), have the same
color. Since the edge (1,2) is the unique red edge with endpoint 1, we have
a(2) = 2 whenever («, 3,7) € G'4044- Thus the choices of a are (34) and (1)
in this case. The row arranging (34) transforms A244 into

1111 2222 3333 4444
2222 1111 4444 3333
4444 3333 1111 2222
3333 4444 2222 1111

A=

Tt is easy to verify that A’ can be transformed into A244 by renaming (34) and
some column arranging. Thus ((34), (34), -) keeps A244 unchanged. Therefore,
from Theorem 8.2.6 (c), we have G'y5,, = (((34), (34),-)) G'}944, of which the
order is 2 - 4 - (4!)%.

To find G244, let {(a,8,7) € Gazas. Thus « is an automorphism of
PRA244. Try a(4) = 1. Since the edge (3,4) is red, the edge (a(3),a(4)),
that is, («(3),1), is red. Since the edge (2,1) is the unique red edge with
endpoint 1, we have «(3) = 2. It follows that o = (1324) or (14)(23). Try
a = (1324). A244 can be transformed into

4444 3333 1111 2222
3333 4444 2222 1111
1111 2222 3333 4444
2222 1111 4444 3333

AI/ —

by row arranging (1324). It is evident that A” can be transformed into A244
by some column arranging. Therefore, ((1324), (1), -) keeps A244 unchanged.
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Noticing that the permutation (1324) generates (1423), (12)(34) and (1), from
Theorem 8.2.6 (d), we then have Gaz44 = ({(1324), (1),)) G'4944, of which
the order is 4-2 -4 - (4!)%.

We compute G g4g44- In GR a4844, labels of edges (1,4) and (2, 3) are the
same, say “red”; labels of edges (1,2) and (3,4) are the same and not red,
say “green”; labels of edges (1,3) and (2,4) are the same, not red and not
green, say “blue”.

G'}4g44 consists of the product of the following permutations: permuta-
tions of columns 1,2 and 3, permutations of columns 5 and 6, permutations
of columns 10 and 11, permutations of columns 13 and 14; its order is 3!(2!)3.

To find G'f 544, let ((1),8,7) € G'44g44- Since the column type of the
first block of A4844 are different from the column types of other blocks,
from Theorem 8.2.7 and its proof, the renaming 3 transforms the column
1234 into itself; that is, § = (1). From Theorem 8.2.6 (b), it follows that

"1244 = G 1944, of which the order is 3!(2!)3.

To find G’y 544, let (a, 5,7) € G'yyg44, Where the row arranging o is a
permutation of 2, 3, 4. Thus « is an automorphism of G R 4844. It follows
that edges (1,7) and («(1), «()), that is, (1, (7)), have the same color for
1 = 2,3,4. Since the colors of edges with endpoint 1 are different, we have
a(i) =i for i = 2,3,4; that is, @ = (1). From Theorem 8.2.6 (c), we have
G’y 4300 = G'Assas, of which the order is 3!(2!)3.

To find Gausgaa, let (o, 53,7) € Gassaa. Thus « is an automorphism of
PR asgaa. Try a(4) = 1. Since the edge (1,4) is red, the edge (a(1),a(4)),
that is, (a(1),1), is red. Since the edge (4,1) is the unique red edge with
endpoint 1, we have a(1) = 4. It follows that o = (14) or (14)(23). A4844
can be transformed into

1111 2222 3333 4444
4322 1111 4442 3332
3443 4433 2111 2221
2234 3344 1224 1113

A=

by row arranging (14)(23) and some column arranging. Since no pair of the
row type and the column type of a block of A’ coincides with one of the
first block of A4844, from Theorem 8.2.7, no isotopism {((1), 3’,7') from A’
to A4844 exists. It follows that no autotopism of A4844 with row arranging
(14)(23) exists. For the result of transforming A’ by row arranging (23), no
pair of the row type and the column type of a block of its coincides with one
of the first block of A4844. Thus no isotopism ((1),5’,') from it to A4844
exists. It follows that no autotopism of A4844 with row arranging (14) exists.
We next try «(2) = 1. Since the edge (1,2) is green, the edge (a(1), a(2)),
that is, («(1), 1), is green. Since the edge (2, 1) is the unique green edge with
endpoint 1, we have a(1) = 2. It follows that a = (12) or (12)(34). A4844
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can be transformed into

1111 2222 3333 4444
2234 1111 2444 2333
3343 4443 1221 1122
4422 3334 4112 3211

Al/ —

by row arranging (12)(34) and some column arranging. From Theorem 8.2.7
and its proof, since the column with multiplicity 3 is unique in A” and in
A4844, the renaming 3 should transform the column 2143 of A” into the
column 1234 of A4844. It follows that 5 = (12)(34). It is easy to verify that
A" can be transformed into A4844 by renaming 8 and some column arranging
indeed. Thus ((12)(34), (12)(34), -) keeps A4844 unchanged. Finally, for any
row arranging « with «(3) = 1, the product « - (12)(34) brings row 4 to row
1. Thus such («, §,-) is not an autotopism of A4844; otherwise there exists
an autotopism of A4844 in which the row arranging bring row 4 to row 1,
this is impossible as shown previously. From Theorem 8.2.6 (d), we obtain
G a1saa = ({(12)(34), (12)(34), ) G'44g44, of which the order is 2 - 3(2!)3.

Similarly, we can compute other G g;44, using GR az44 to reduce the trying
scope for row arranging, and using column types and row types of blocks to
reduce the trying scope for renaming.

Denote the order of autotopism group G a;44 of Aidd by n;, i =1,...,201.
On the autotopism group of Ax44 and its order n,, the computing results
are represented by the format: “z: the order of G’ ,,, the number of cosets
of G’ 44 in G'),44, the number of cosets of G’} 4, in G'4,44, the number of
cosets of G;‘x44 in G Agz44 (the product of the four numbers is n,); the set of
coset representatives of G'{,,, in G’y 44; the set of coset representatives of
G'lpaq In G’y 445 the set of coset representatives of G’y 44 in Gagas.” v in a
coset representative («, 3,7) is omitted. For the sake of space, we only list a
part of results as follows:

1o (4)%4,6,4; (1), (12)(34)), (1), (13)(24)));
((432), (432)), ((34), (34))); (((4321), (4321))).
ANt 4,2,4; ((1),(1423))); (((34),(34))); ({(1324), (1))).
413)%,2,2,4; (1), (12)(34))); (((34),(34))); ({(1423), (1423))).
4131)%,2,2,4; (((1), (12)(34)); ({(34),(34))); (((1324), (1324))).

4122°,2,2,4; (((1), (12)(34))); (((34), (34))); ((1324), (1324))).
3D*%,4,2,4; ({(1), (12)(34), (1), (13)(24))): (((34), (34)));
((1423), (1423))).

3D*,4,2,4; ({(1), (1423))): ({(34), (340))): ({(1423), (1423))).

S Ut R W N
AN N N N N~~~ —~



195 : 24,

(3
196 : 1,8,2,4; (((1),(34)), (1),
197: 1,4,2,2; ( ));
198: 1,2,1,4; (
199: 1,2,2,4; (
200: 1,1,2,3; e
201: 1,4,6,4; (

—
—~
~—
w
IS
~—
~—
DO
w
S~—
~
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(1), (13)(24)));

4,6,4; (((1), (12)(34)), {

) )i (((4321), (4321))).
(
(

4))
1423))); (((34), (1))); (((1423), (1)))-
(34), (1)
(<(13
2))

> (((12), (12)(34))).
(14)(23), (12)(34))).-
(1))-

);

)(24), (1)), (

); (((4321),
); (234)))-

,(12)(34)), (1), (14)(23)));

(234),(234))); (((4321), (12))).

Thus we have

ny =327, ngg =3°28, no =3%2Y ng =ny =322, ng =n; = 342Y,

13 — 34287

T2 = N33

n; =327, i =10,16,21,40, ngs = 3*2%, nsy = 342°,

=3%2" noy = nuz = 3°2%, nge = 3%2°,

ny = 32214, nay = 32212, ng = 322107 N4 = N3q4 = 3229,

N5 = N74
n; = 3226,
n; = 3224,

=3228 n; =3%27, i=19,20,26,90,91,
i=17,18,23,47,49,61, n; = 3?25, i=63,124,
i=38,60,123,139, nig = 3223,

nigo = 31213, nys = 31212, ngg = 31210 n,; =312% i =35,87,195,

o7 = 312%,
n; = 3126,
n; = 3'2°,
n; = 3124,
n; = 3123,
Ng = 214,
n; = 28,
n; =27,
n; = 2°,
n; = 257
n; = 24,
n; = 23,

n; = 22,

n; = 3127, i =28,53,165,
i =24,44,45,54,62,65,68,70,100,111,128,
i = 25,41,42,48, 50, 51, 66,67,82,99,110, 138, 186, 201,
i =57,58,64,151,179,184,192,
i =56,59,108,109,191, nqi74 = 3'22, ngge = 3'2¢,
ni1 = ngs = 212, ngo =2, n; =2°, i =29,96,171,
i=32,72,73,77,88,98,106, 158, 160, 169, 182,
i =31,75,92,93,94,95,97, 101,107, 134, 143, 149, 164, 167, 183,
i = 69,85,103,105,121, 126, 140, 194, 196,
i=71,76,79,80,84,86,102,104, 118,119,125, 127, 137, 144, 147,
150,159, 162, 166, 168, 170,172, 178,
i=78,81,112,113,115,116,117,122,131,132, 133,136, 141, 142,
145,152,154, 161,163, 175, 188,193,197, 199,
i = 114,120, 129,130, 148,153, 155, 156, 157, 176,177, 185, 187, 198,
i = 135,146, 180,189, ny73 = 2.
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Since the number of elements in the isotopy class containing Ai44 is 414!16!/n;,
noticing 4!4!16! = 322616! = 382187007000, we have
201
U(4,4,1) = ) 414116!/n;
=196
=16!3220(1/2° + 1/2* +1/23 +1/2* +1/(3-2) + 1/(3 - 2%))
= 16!(3% +3%2% 43723 + 3222 +3.2° +3.2)
= 161255 = 5335311421440000,
201
U(4,4) = 24!4!16!/7% = 11460887640 - 7007000 = 80306439693480000.
i=1
We point out that U(4,4,1) can also be obtained from Theorem 8.2.2 (b)
and Theorem 8.2.11, that is, U(4,4,1) = U(4,2,1)(4! —4-2)!/(4-2)! =
10281600 - 16!/8! = 5335311421440000. O

Enumerating high order Latin arrays is not easy. Among others, sev-
eral useful permutational families corresponding to (2", 2")-Latin arrays are
Guwiws (7) = (w1 — (w2 & (w1 =9(2)))), Guyw, (€) = P(w1 S (w2 — (W1Bp(2)))),
Gurw, (¥) = w1 & (w2 — p(w1 & 7)), Guw, (¢) = w1 — (w2 & p(wr — x)),
where ¢ is a bijection. In the case where ¢ is an involution (i.e., o= ! = ¢),
such g,,’s are involutions.

We return to giving an application of (4,4)-Latin array to cryptography.
It is known that the following binary steam cipher is insecure: a plaintext
Zo...x;—1 is encrypted into a ciphertext yg...y;_1 by

yZZZL'Z@U}“ ’L'ZO,...,I—].,

where the key string wy . ..w;_1 is generated by a binary linear shift register.
In fact, this cipher can not resist the plain-chosen attack. Assume that the
key string satisfies the equation

W; = AWi—1 D+ - Dapwi_p, 1=0,...,1—1. (8.1)

The key of the cipheris aq,...,an, W_p, ..., w_1. If one can obtain a segment
of plaintext of length 2n, say z;...%jy2,—1, then w;...w;12,—1 may be
evaluated by

W =2, Py, 1=17,...,5+2n—1;

therefore, by solving the equation
Wi = a1wWi—1 D D AWi—p, 1 =7 +n,...,5+2n—1,

the coefficients a1, . . ., a, can be easily found. By (8.1), the key bits wjyon, . . .,
wy—1 can be easily computed from wj4y, ... wjr2n—1, and the key bits wy, ...,
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w;_1 can be easily computed from w; ... w;y,—1. If we describe this cipher
in the form in Fig.8.1.2, then M, is a binary linear shift register and the
permutational family {g,,w = 0,1} is {w ® z,w = 0,1} which corresponds
to a (2,2)-Latin array. The permutational family is too small! To improve this
situation, one may adopt a more complex shift register or a permutational
family corresponding to a higher order Latin array. For the latter, we give an
example using (4,4)-Latin array which can resist the plain-chosen attack.

Ezample 8.2.1. A maximal linear shift register sequence plus (4,4)-Latin ar-
ray cipher.

In Fig.8.1.2, let X and Y be GF(2?) = {00,01,10,11}. Let M, be an
n-order maximal linear shift register sequence generator (i.e., a linear shift
register over GF'(2) with characteristic polynomial period 2™ — 1) with 4 bits
output. And the permutation g, on GF(22) corresponds to a (4,4)-Latin
array A in such a way: for any w = wzwowiwy € GF(2%), if the element
of A at column (w32% 4+ w22% + w12 + wp) + 1 and row (212 + x9) + 1 is
(y12 + yo) + 1, then g, (x120) = y1y0. The key counsists of g,,, M, and its
initial state; the amount of keys is the product of the number of (4,4)-Latin
arrays, the number of the primitive polynomials of degree n over GF(2) and
2" —1. An analysis in [104] shows that this cipher can resist the plain-chosen
attack.

If we use Latin arrays with larger order and if the family of permutations
corresponding to the Latin array satisfies the following condition: for any x
and y, components of w with g, (z) = y can not satisfy any linear equation,
where w is represented as a vector of dimension [log, nk| over GF(2), then
for the counterpart of the above cipher in the case of (n, k)-Latin array, the
characteristic polynomial of M, may be excluded from the key, in other words,
the structure of M, can be fixed and the key consists of the Latin array and
the initial state of M,. In the following section, we will give the definition
of such a kind Latin arrays, so-called Latin arrays with independence degree
> 1, and discuss their generation problem by means of invertible Boolean
vector functions with independence degree > 1.

8.3 Linearly Independent Latin Arrays
8.3.1 Latin Arrays of Invertible Functions

Let n and k be two positive integers. Denote r = [logynk] and N =
{1,...,n}. Let A be an (n, k)-Latin array. The vector [ug, ..., u,| over GF(2)
is called the column label of column (u12" 4+ ue2" 2 +---+u,.) +1 of A. Let
x, y € N. If components of column labels of columns of A in which the ele-
ments at row x are y satisfy some nonzero polynomial in r variables of degree
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< c over GF(2), A is said to be c-dependent with respect to (z,y), other-
wise A is said to be c-independent with respect to (x,y). If A is c-dependent
with respect to (x,y) for any z, y € N, A is said to be c-dependent. If A
is c-independent with respect to (z,y) for any x, y € N, A is said to be
c-independent. If A is c-dependent and not (¢ — 1)-dependent, ¢ is called the
dependent degree of A, denoted by c4. If A is c-independent and not (¢ + 1)-
independent, c¢ is called the independent degree of A, denoted by I4. Clearly,
cazls+1.

Proposition 8.3.1. Let A be an (n, k)-Latin array and r = [logy nk]. Then
we have
ca <minc|[1+ (;) + 4 (';) > k.
Proof. Let ¢ be a positive integer with 1 + (;) +- 4 (’;) > k. For any
x,y € N, let the element at row x column j, of A be y, h =1,... k. Denote

the column label of column j, by [wh1, ..., wh.]. Let «; be the row vector
(1, Whis oy Whys WHIWR2, -+ Whr—1Whys
...... yWh1 - - - Whey ++ -y Whyr—c4+1--- whr],

for h=1,...,k. Let C be a matrix of which the h-th row is ap, h =1,... k.
Since the number of C’s columns is greater than the number of C’s rows,
columns of C' are linearly dependent. Thus there is a nonzero column vector
~ such that Cy = 0. It follows that A is c-dependent with respect to (z,y).
Thus A is c-dependent. Therefore, c4 < c. a

We use R} to denote the row vector space of dimension r over GF(2). For
any positive integer m, let f,, be a one-to-one mapping from R3* onto {0,
1, ..., 2™ — 1} defined by f(21,...,Tm) = 212™ 1 + 22272 + - + 2.
Let ¢1 and @2 be two permutations on R5, and ¢ a transformation on Rj.
Denote @ = (1, p, @2). Construct a 2" x 22" matrix Ag over {1,...,2"} as
follows: for any z,w;,ws € Rj, the element at row f.(z) 4+ 1 and column
for(w1,w2) + 1is fr(p1(w1) @ p(p2(w2) ® x)) + 1, where @ stands for the
vector addition over GF(2).

Proposition 8.3.2. Ag is a (27,2")-Latin array if and only if ¢ is a per-
mutation.

Proof. Whenever ¢ is a permutation, it is easy to prove that each column
of Ag is a permutation on N and that for any z,y € N, any wy € R} there
exists uniquely wy € R} such that the element at row z column f(wq,ws)+1
of Ag is y. Thus Ag is a (27,2")-Latin array.

Whenever ¢ is not a permutation, it is easy to prove that each column of
Ag is not a permutation on N. Thus Ag is not a (27,2")-Latin array. a
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Whenever ¢ is a permutation, Ag is called the (27, 2")-Latin array of &.

Let ¢ be a transformation on R5 with component functions 1, ..., ¢;.
For any nonnegative integer c, if there is a nonzero polynomial h of degree
< ¢ in 2r variables over GF(2) such that

h’(xlw"71'T7()01(I15"'axr)w"awr(xlwuazr)):07 L1seees Ty GGF(2)3

o is said to be c-dependent, and h is called a dependent polynomial of ¢. If
 is not c-dependent, ¢ is said to be c-independent. If ¢ is c-dependent and
(¢ —1)-independent, ¢ is called the dependent degree of ¢, denoted by c,, and
¢ — 1 is called the independent degree of ¢, denoted by I,. In the case where
o is 1-dependent, ¢ is said to be linearly dependent. In the case where ¢ is
1-independent, ¢ is said to be linearly independent.

An affine transformation on R} means a mapping xC @ b, where C' is an
r X r matrix over GF(2), b is a row vector of dimension r over GF(2).

Lemma 8.3.1. Let ¢ be a transformation on R}, and p and q two invertible
affine transformations on Ry. Let ¢'(x) = p(p(q(x))), € Ry. Then we have
Cp =Cyp and I, = I,

Proof. Suppose that h is a dependent polynomial of . Since p and ¢ are

invertible affine transformations, p~—! and ¢! are invertible affine transfor-

mations. Let
W (z,y) = h(g(z),p" " (y)), =,y € R.

Since h is a dependent polynomial of ¢ and q is invertible, it is easy to verify
that b/ is a dependent polynomial of ¢’. Since ¢ and p~!
mations, the degree of h' is not greater than the degree of h. Therefore, we

are affine transfor-

have ¢, < c,. Since p~! and ¢~! are invertible affine transformations and
o(x) = p~ (¢ (¢ (z))), from symmetry, we have ¢, < cpr. Thus ¢ = cy.
From I, = ¢, — 1 and I, = ¢, — 1, we have I, = L. a

Theorem 8.3.1. Let ¢ be a transformation on R5, and p1 and @2 two
invertible affine transformations on RY. Let & = (¢1,p,¢2), and Ag be the
(27,27)-Latin array of $. Then we have ca, = ¢y, La, = Iy, and ca, =
Tg, +1.

Proof. For any x,y,w;,ws € Ry, from the definition of Ag, the element
of Ag at row f.(z) + 1 column fo.(wy,wz) + 1 is fr(y) + 1 if and only if
y = p1(w1) © p(p2(we) © z), if and only if wy = ¢}, (w2), where ¢}, (u) =
Po((ae(), py(w) = o7 (u B y), gulu) = pa(u) ® v, u € R, Tt follows
that Ag is ¢, -dependent with respect to (f,(x) +1, f-(y) +1) and that Ag
is I%y—indepehdent with respect to (fr(z) + 1, fr(y) + 1). Since ¢1 and @2
are invertible affine transformations on Ry, py, and ¢, are invertible affine
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transformations on Rj3. From Lemma 8.3.1, we have ¢y, = cy. Thus I, =
I,. Therefore, Ap is c,-dependent and I,-independent. Since ¢, = I, + 1,
we have ca, = ¢, L4, = I, and cay, = L4, + 1. O

Denote ¢(r) =minc[1+ () +- -+ (*) > 2"]. We have the following.
Proposition 8.3.3. For any transformation ¢ on R5, we have ¢, < c(r).

Proof. We give a proof analogous to Proposition 8.3.1. For any = € R5,
let o, be the row vector

[Lwla ceey W2, W1W2,y - .o, W2p—1W2py - oo, WL e We(r)s v oy W2r—c(r)41 -+ ~w2r]a

where [z, o(x)] = [wr,..., w2, wi,...,wy € GF(2). Let C' be a matrix
of which row f.(x) + 1 is a,, © € Rj. Since the number of C’s columns is
greater than the number of C’s rows, columns of C' are linearly dependent.
Thus there is a nonzero column vector 7 such that Cy = 0. It follows that ¢
is ¢(r)-dependent. Therefore, ¢, < ¢(r). O

Theorem 8.3.2. Letr > 3. Then there is a permutation ¢ on Ry such that
Cp = 2.

Proof. Denote t; = x1...2;_1%;41 ... 2, 9 =1,...,r. Define a function ¢
on R} so that o(x1,...,2,) = [y1,..., Y], where

Y1 =x1 Bt Do,
Yo = T O t2 D L3,

......... , (8.2)
Yr—1 = Tr—1 57 trfl SY tr»
Yr = Tr D .

Tt is easy to verify that if the weight (number of 1) of [z1,...,x,] is less than

r—1then p(z1,...,2,) = [21,..., 2], and that on the points of weights r — 1
and r, ¢ is the cyclic permutation

(11...110,11...101, ...,101...11, 011... 11, 111...11).

Therefore, ¢ is invertible. We prove that ¢ is linearly independent. Suppose
to the contrary that ¢ is linearly dependent. Then there exist cg, ..., ¢y,
dy,..., d, € GF(2) such that at least one of them is nonzero and

P @ DT, Ddiy1 ©---Ddryr =0

holds for any z1,...,z, in GF(2), where y1,...,y, are defined by (8.2). No-
tice that for the zero Boolean function all the coefficients of its polynomial
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expression are zero. From the coefficients of t;, we have d; = 0. From the
coefficients of t5, we have dy = 0. And so forth, from the coefficients of ¢,., we
have d,, = 0. It follows that ¢o = - -- = ¢, = 0. This is a contradiction. So ¢
is linearly independent. a

Corollary 8.3.1. For any r, 1 < r < 6, there is a permutation ¢ on RY
such that c, = c(r).

Proof. Whenever r = 1,2, we have ¢(r) = 1. Since any permutation ¢ on
Rj is O-independent, from Proposition 8.3.3, ¢, = ¢(r) holds.

Whenever r = 3,...,6, we have ¢(r) = 2. From Theorem 8.3.2; there is
a permutation ¢ on Rj such that ¢, > 2. From Proposition 8.3.3, we have
¢, < ¢(r) = 2. Therefore, ¢, = 2 holds. O

8.3.2 Generation of Linearly Independent Permutations

Truth Table

Given r > 0, let ¢ be a transformation on Rj. Let W; be a (:) X r matrix

over GF'(2) of which rows consist of all difference vectors of dimension r with
weight ¢, ¢ =0, 1, ..., r. We use I; to denote the column vector of dimension

(:) of which each component is 1. For any i, 0 < ¢ < r, define a (:) X r matrix
U; over GF(2) of which row j is the value of ¢ at row j of W;, 1 < j < (:)
Define a 2" x (1 + 2r) matrix

Iy Wy Uy
LWy Uy
o=1. . .
1. W, U,
In this section, we refer to @ as the truth table of p, and denote the submatrix
of the last r columns of @ by U,. Notice that Wy = 0. For convenience, we

arrange rows of Wi so that it is the identity matrix.
From the definitions, we have the following.

Proposition 8.3.4. (a) ¢, > 1 if and only if columns of & are linearly
independent.
(b) ¢ is invertible if and only if rows of U, are distinct.

By E; denote the (}) x (}) identity matrix. Let the 2" x 2" matrix
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Iy
I
I
0

1y

!
Irl

I/

Wo
44}
Wa
W3
Wy
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Ey

0 Es

0 0 Eyu
000 .. B,
0 0 O .0

where I; = I; if j is even, I ; = 0 otherwise. It is easy to verify that P is
nonsingular and

LW -
L W
L, W, B
I, Ws; 0 Ej

P =
I, Wi 0 0 E4
Iy W,210 0 0 ...E_4
LI, W, 0 00 0 E|

Noticing that the first 1 + r columns of P~! and of & are the same, we have
the following.

Lemma 8.3.2. P9 is in the form

I0 Vo
0 E1Vp
Po— |00 Vol
00 V.
where Vo = Up, V; is a (§) X r matriz, i =1, ..., 7.
Let
Vo Vo
Ve=1:1: Vo= 1"
Ve Ve

Since P is nonsingular, columns of @ are linearly independent if and only if
columns of P are linearly independent. Using Lemma 8.3.2, columns of P9
are linearly independent if and only if columns of V,_ are linearly indepen-
dent. From Proposition 8.3.4 (a), we obtain the following proposition.
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Proposition 8.3.5. ¢, > 1 if and only if columns of V,_ are linearly in-
dependent.

Lemma 8.3.3. Foranyi, 1 <i<r, and any r X r permutation matriz Q

over GF(2), there exists uniquely a (:) X (’;) permutation matriz Pig such
that PiQWi = WlQ

Proof. Notice that rows of W; consist of all row vectors of dimension r
with weight ¢. Since arranging columns of W, keeps the weight of each row
and sameness between rows unchanged, rows of W;(Q consist of all row vectors
of dimension r with weight ¢. Therefore, there exists uniquely a permutation
matrix P;g such that P,oW; = W;Q. a

For any r x r permutation matrix @ over GF(2), let

Iy
Q
DQ = P2Q

P.g

Let G, = {Dg | Q is an rxr permutation matrix over GF'(2)}. Clearly, in the
case where () is the identity matrix, P;g is the identity matrix. In the case of
PoW; = W;Q, we have W,Q~ " = PiZgl(PiQWz’)Q_l = P,Zgl(Wz‘Q)Q_l =
PZ.E; W;; therefore, Pg-1 = PZEQI. In the case of PgW; = W,;Q' and
PoW;, = W,;Q, we have PigP,oW; = PoW,Q' = W;QQ'; therefore,
PiqPig = Pioq)- Thus G, is a group.

Let G, = {(Dg,6,C) | Q is an r X r permutation matrix over GF(2), ¢
is a row vector of dimension r over GF(2), C'is an r X r nonsingular matrix
over GF(2) }.

For any 2" x r matrix V, partition it into blocks

where V; has (71) rows, i =0,1,...,r. For any (Dg,d,C) in G,, define

] oC

0 0
VPO = Do(Va | . |)C=DoVC®
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For any 2" x r matrices V and V' over GF(2), V and V' are said to be
equivalent if there is (Dg, d,C) in G, such that V{Pe:5C) — V' Tt is easy to
verify that the equivalence relation is reflexive, symmetric and transitive.

Lemma 8.3.4. Assume that VPe:9C) = V' Then we have

oC
oC

PV = Dgo(P'V)C @
oC
Proof. Since P;q is a permutation matrix, we have Pjgl; = I;. Using
PioW; = W;Q, it follows that

Iy
L Q
P_IDQ: I2 WQQ PZQ

I, W, 0 ... Pqg

Iy

I Q

= | Io PoygWa Pag :DQPA.
IT P’I“QWT 0 PT-Q

Since V! = V(P4 we have

oC

. 0

V' =DgVCea | .

0

Therefore,
oC oC
0 e
PV =P 'DoVCo P | | | =Do(PT'V)Ca | . |. u|

0 e

For any 2" x r matrices V and V', denote the submatrices of V and of V'
obtained by deleting their first 1 4 r rows by V_ and V', respectively.
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Lemma 8.3.5. Assume that two 2" x r matrices V and V' are equivalent.
(a) Columns of V_ are linearly independent if and only if columns of V'
are linearly independent.
(b) Rows of P~V are distinct if and only if rows of P~YV' are distinct.

Proof. (a) Since V' and V' are equivalent, there exists (Dg,d,C) in G,
such that V/ = V{Pe:5C)  Thus

Pso
V= V_C.
Pro

Therefore, columns of V_ are linearly independent if and only if columns of
V! are linearly independent.

(b) Since Dg is a permutation matrix, rows of P~1V are distinct if
and only if rows of Dg(P~!V) are distinct. Since C' is nonsingular, rows
of Dg(P~'V) are distinct if and only if rows of Dg(P~'V)C are distinct.
From Lemma 8.3.4, P~V are distinct if and only if rows of P~'V" are dis-
tinct. ad

Theorem 8.3.3. Let ¢ and ¢ be two transformations on Ry, and V, and
Vo be submatrices of the last v columns of P® and P®', respectively, where ®
and @' are truth tables of ¢ and ¢, respectively. If V,, and Vi are equivalent,
then the condition that c, > 1 and ¢ is invertible holds if and only if the
condition that c,r > 1 and ¢ is invertible holds.

Proof. From Lemma 8.3.5, Proposition 8.3.4(b) and Proposition 8.3.5. O

On S(Vo, Vi)

For any row vector Vj of dimension r over GF(2) and any r x r matrix V;
over GF(2), we use S(Vp, V1) to denote a set of 2" x r matrices over GF(2)
such that V' € S(Vp, V1) if and only if the following conditions hold: the first
row of V is Vp, the submatrix of rows 2 to 1 + r of V is Vi, columns of V_
are linearly independent, and rows of P~!V are distinct.

For any transformation ¢ on Rj, let V, be the last r columns of P,
where @ is the truth table of ¢. Denote the first row of Vi, by V0, and the
submatrix consisting of rows 2 to r + 1 of Vi, by V1. From Propositions
8.3.4 (b) and 8.3.5, if ¢, > 1 and ¢ is invertible, then V,, € S(V o, V,1).
Conversely, from Propositions 8.3.4 (b) and 8.3.5, for any V € S(Vp, V1), if
 is the transformation on R with V,, =V, then ¢, > 1 and ¢ is invertible.
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Theorem 8.3.4. Let § be a row vector of dimension r over GF(2), Q an
r X r permutation matriz over GF(2), and C an r X r nonsingular matriz
over GF(2). Then we have

S((Vo ® 0)C,QViC) = {V{PadO) | vV e SV, W)},
and [S((Vo & 6)C, QV1C)| = |S(Vo, V1)|.

Proof. For any V € S(Vo, V1), from the definitions, using Lemma 8.3.5,
we have V{P2:0C) ¢ S((Vy @ §)C,QViC). Thus S((Vy @ 6)C,QViC) D
{V{Pe:dC) | vV ¢ S(Vy,Vi)}. Clearly, for any V,V € S(Vo, V1), if V. #
V, then V(Pa:5C) £ (Pe:dC) Tt follows that |S((Vy @ 0)C,QViC)| >
|S(Va, V1)|. On the other hand, we have S(Vp, V3) D {V{Pe-19CC"1 |y ¢
S((Vo®6)C,QViC)} and |S((Vo @ 6)C,QV1C)| < |S(Vo, V1)|. Thus we have
1S(Vo @ 6)C, QViC)| = |S(Vo, V1)|. Tt follows that S((Vp @ 6)C,QViC) =
{ViPe2O |V e S(Vo, W)} O

For any positive integer 7, denote G, = { (Q, C) | Q is an rxr permutation
matrix over GF(2), C is an r x r nonsingular matrix over GF'(2 }. Let - be an
operation on G: defined by (@, C) - (@', C") = (QQ', C'C). It is easy to verify
that (G..,-) is a group. For any 7 x r matrix V; over GF(2) and any (Q, C) in
G:, denote V1<Q’C) = QV,C. Vi and V1<Q’C) are said to be equivalent under
G:. It is easy to verify that the equivalence relation is reflexive, symmetric
and transitive. Any equivalence class of the equivalence relation under G:

includes 7 X r matrices in the form [ B 8}, where F is the identity matrix,

columns of B are in decreasing order in some ordering. The minimum one in
the ordering is called the canonical form of the equivalence class under G/T,.

Notice that the property that rows of V; are nonzero and the distinct
keeps unchanged under equivalence. Clearly, S(0,V;) # @ implies that rows
of V1 are nonzero and distinct. From Theorem 8.3.4, generation of linear inde-
pendent permutations can be reduced to generating S(0, V1), where V; ranges
over canonical forms under G:, and rows of V; are nonzero and distinct. For
example, in the case of r = 4, V; has only three alternatives (see [38] for more
details):

1000 1000 1000
0100 0100 0100
0010’ 0010}’ 0010
0001 1100 1110
Lemma 8.3.6. Let
Ib 0 O Iy
R=1(0 E{ O , Pr= E, )

0 W* P P
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where Pp is a (2" —1—r) x (2" =1 —7r) permutation matriz over GF(2), and

Wy
W =W P,W, W=|":
W,
Then we have PrP~! = P71R, and R satisfying this equation is uniquely
determined by Pgr.

Proof. Partition P! into blocks with 1, r, 2" — 1 — r rows and columns

in turn
Ih 0 0
pPl=1|L E0 [,
I W FE
where I’ is the column vector of dimension 2" —1—7r of which each component
is 1, and F’ is the (2" — 1 —r) x (2" — 1 — r) identity matrix. It is easy to
verify that both PrP~! and P~!R are equal to

o 0
I By 0
I' PLW P},

Therefore, PrP~! = P~'R. We prove that if PkP~! = P"'R/ then R = R’.
Partition R’ into blocks with 1, r, 2" — 1 — r rows and columns in turn

Ri1 Ri2 Ry
R’ = | Ra1 Ras Ros
R31 R3p Rss

Since P7'R’ = PrP~!, we have R = Iy, Ri» =0, Ri3 = 0. It follows that
Ro1 = 0, Ry = Eq, Ro3 = 0. Furthermore, we have I' ® Rz = I', W @
R32 = PI/%W7 R33 = P]/% It follows that R31 = 0, R32 =W @ P/RW = W*.
Therefore, R’ = R. O

Lemma 8.3.7. For any 2" xr matrices V and V' over GF(2), the following
two conditions are equivalent: (a) the first v+ 1 rows of P~V and of PV’
are the same, and rows of P~YV" are a permutation of rows of P~V ; (b) the
first r+1 rows of V and of V' are the same, and there exists a (2" —1—1r) x
(2" — 1 —r) permutation matric Py, such that V! = (E' & PR)WVi & PRV_,
where V_ and V' are the submatrices consisting of the last 2" — 1 — r rows
of V. and V', respectively, V1 is the submatriz consisting of rows 2 to r+1 of
Wa

V, E is the (2" —1—17r) x (2" — 1 —r) identity matriz, and W = l
W,
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Proof. From the form of P71, it is easy to verify that the first » + 1 rows
of P71V and P~'V’ are the same if and only if the first r + 1 rows of V and
of V' are the same.

Suppose that the first 7 + 1 rows of V and of V' are the same and that
V! = (E' & Pp)WVi1 @ PRpV_. Let

Ip O 0
R=1|0 E; 0
0 (E'®PL)W P

Then we have V/ = RV. Therefore, P~V = P~'RV. Let

Io
Pr = Ey
Pr
From Lemma 8.3.6, we obtain P!V’ = P"1RV = PrP~'V. That is, rows
of P71V’ are a permutation of rows of P!V,

Conversely, suppose that rows of PV’ are a permutation of rows of
P~V and the first 7 + 1 rows of them are the same. Then there exists a

it
permutation matrix Pr = { o } such that P~'V/ = PprP~'V. From
Py

Lemma 8.3.6, we obtain P!V’ = P~1RV. It follows that V' = RV. There-
fore, V! = (E' & Pp)WV, & PRV_. O

Theorem 8.3.5. Let Vo and Vi be 1 x r and r X r matrices over GF(2),
respectively. Assume that rows of Vi are distinct and nonzero. Let U_ be a
(2" — 1 —r) x r matriz over GF(2) of which rows consist of all different row
vectors of dimension r except Vo and rows of I1Vo ® Vi. Then S(Vy, V1) is
the set of all

Vo

Vi )

WV & PL(I'Vo @ U_)
Py, ranging over (2" —1 —r) x (2" — 1 — r) permutation matrices such that
columns of WVi & Pp(I'Vy @ U_) are linearly independent, where Iy and I’

are column vectors of dimensions r and 2" — 1 — r of which each component
s 1, respectively.

Proof. Let
Vo
V=P |LhVyeW
U_
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Clearly, the first row of V is Vj, the submatrix consisting of rows 2 to r + 1
of V is V1, and rows of P~V are distinct. Since U_ = I'Vp @ WV, @ V_, we
have WV, @ V_ =I'Vo o U_.

Suppose that V' € S(Vp, V7). Then the first row of V' is V, the submatrix
consisting of rows 2 to r+1 of V' is V1, columns of V' are linearly independent,
and rows of P71V’ are distinct. Thus V and V' satisfy the condition (a)
in Lemma 8.3.7. From Lemma 8.3.7, there exists a permutation matrix P,
such that V! = (E' @ Pp) WV @ PRV_ = WV @ PRr(WV; @ V_). Since
WVie Ve =I'Vh @ U_, we have V! = WV; & Pir(I'Vh @ U_). Therefore,
columns of WV; & Pr(I'Vy @ U_) are linearly independent.

Conversely, suppose that Pp is a permutation matrix and that columns
of WVi @ PL(I'Vy @ U_) are linearly independent. Let

Vo
Vi=|W
WVi @ PL(I'Vo @ U_)

Then columns of V’ are linearly independent. Since WV, & V_ = I'Vy e U_,
we have V! = WV @ P,(WV; & V_). Thus V and V' satisfy the condi-
tion (b) in Lemma 8.3.7; therefore, the condition (a) in Lemma 8.3.7 holds.
Since rows of P~V are distinct, rows of P~1V” are distinct. Therefore, V' €
S(Vo, V1). o

Problem P(ai,...,ak,b1,...,bg)

Given a row vector Vj of dimension r over GF(2) and an r X r matrix V;
over GF'(2) with distinct and nonzero rows, we fix a (2" — 1 — r) x r matrix
U_ over GF(2) such that rows of Vi, 1V @ V4 and U_ are all different
row vectors of dimension r. Denoting A = WV; and B = I'Vy & U_, from
Theorem 8.3.5, the problem on generation of S(Vp, V1) is reduced to choosing
(2" —=1—r) x (2" — 1 — r) permutation matrices Pf’s such that columns
of A@® PpB are linearly independent. The latter can be generalized to the
following problem.

Problem P(ay,...,ak,b1,...,b): given row vectors ay,...,ak,b1,...,bg
of dimension r over GF'(2), find all permutations, say m, on {1,2,...,k} such
that columns of V. are linearly independent, where

a1 @ br(1)

az ® br(2)
Ve =

ak D br(r)
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Clearly, if k£ < r, then Problem P(ay,...,a,b1,...,bx) has no solution.
Below we assume k > r.

For any sequences (cy, ..., ¢.) and (dy,...,d,), if there exists ¢, 1 < i < r,
such that ¢; = dy, ..., ¢i_1 = d;j—1 and ¢; < d;, (c1,...,¢-) is said to be
less than (dy, . ..,d,). For any solution 7 of Problem P(a1,...,a,b1,...,bg),
consider the set of all sequences (c1,...,¢.) such that 1 < ¢; <2 < ... <
¢ < k,rows ¢y, ..., ¢ of V are linearly independent. The minimum sequence
in the set is called the rank-spectrum of w. Since columns of V. are linearly
independent, the rank-spectrum of 7 is defined.

Denote the set of all solutions of Problem P(aq,...,ag,b1,...,b;) with
rank-spectrum (¢, ..., ¢.) by V(ey,...,¢). Let

Vier,..ooyeridy,y.ooyde) ={mn|meVier,...,c),m(c1) =du,...,m(c;) = d}.

Let 7 € V(ci,...,¢3d1,...,dy). Then a1 © br1y = ... = G¢—1 @
br(c,—1) = 0 and ac, ® by, # 0. Therefore, if for some i < c1, a; is differ-
ent from each b;, j =1,...,k, then V(cy,...,¢c.) = @.

We use R(cy,...,¢,d1,...,d;) to denote the vector space generated by
ae; D by, - .y Ge; D bg,, which is the 0-dimensional space {0} in the case of
i=0.Forany I C {1, ..., k}, let

H(I,h7017...,Ci,dl,...,di)
:{]|j€{17,]€}\[, bj 6ahEBR(cl7...,ci,d1,...7di)}.

Given c1,...,c. and dy,...,d,. such that 1 < ¢y < e <--- < ¢ < kand
that dy, ..., d, are distinct elements in {1, ..., k}, denote ¢ = 0, ¢, 41 = k+1.
Let

sz{h ‘ Ci<h<0i+1}, 1=0,1,...,7.

Define a relation ~; on H;
h~ih & ap®ap € R(Cl7...7ci7d1,...,di),

0 < i < r. Clearly, ~; is reflexive, symmetric and transitive. We use H,1,

Hio, ..., Hy, to denote all equivalence classes of ~; on H;.
Lemma 8.3.8. Assume that 1 < ¢; < ¢ < -+ < ¢ < k and that
dy,...,d, are distinct elements in {1, ..., k}. Let I C {1, ..., k}. Then

for any i, 0 < i < 7, and any h, k' € H; we have (a) if h ~; h' holds,
then H(I,h,cl,...,Ci,dl,...,di) = H(I,h/,cl,...,Ci,dl,...,di), and (b) Zf
h ~; B/ does not hold, then II (I, h, c1,..., ¢;, d1, ..., d;) and II (I, W/,
Cly -y Ciy di, ..., d;) are disjoint.
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Proof. (a) Since h ~; h’ holds, we have ap @ ap € R(cy,...,ci,d1, ..., d;).
Therefore, ap, D R(Ch SN ,Ci,dl, ‘e ,dl) = ap D R(Cl, “ee ,Ci,dl, RPN ,dl) It
follows that H(I, h, Cly - ..y Cjy dl, ‘e dz) = H(I, h/, Cly « ..y Cjy dl, ceay dz)

(b) Since h ~; b’ does not hold, ap ® ayp is not in R(cy, ..., ¢, d1, ..., d;).
It follows that the coset ap ® R(ci,...,¢i,d1,...,d;) and the coset apr @
R(e1,. .., ¢, dy, ..., d;) are disjoint. Therefore, IT (I, h, c¢1, ..., ¢;, d1, ...,
d;)and IT (I, b/, cq,..., ¢;, di, ..., d;) are disjoint. |

Lemma 8.3.9. Assume thatl < ¢y <cy < -+ < ¢ <k and thatdy,...,d,
are distinct elements in {1, ..., k}. Let I C {1, ..., k}. Then for any i and ',
0<é <i<r,anyh € H; and any b’ € Hy, H(I,} ,c1,...,cir,d1,...,d;)
is a subset of II(I,h,c1,...,ciydy,...,d;) or they are disjoint.

Proof. Suppose that the intersection set of IT(I,h',cy,...,¢ci,dy, ..., dy)
and IT(I,h,c1,...,¢i,d1,...,d;) is nonempty. Then the intersection set of
ap® R(ci,...,ci,dy,...,dy) and ap, ® R(cy, ..., ¢, d1, ..., d;) is nonempty.
This yields h ~; h', since R(ey, ..., ¢y, dy, ..., di) is a subspace of
R(Cl,...70¢7d1,...,di). Thus ap @ ]‘Z(Cl7 ceey Ciry dy, ., dll) C ap P
R(ei, -.o, ¢iy diy oooy di) = ap ® R(cq,...,ciydy,...,d;). Tt follows that
H(I,h’,cl,...,ci/,dl,...,di/) g H(I,h, Cly - .-y Ciy dl, ceey dz) O

Let Noj = @ for any j. For any 4, j, 1 < <7, 1 <j <y, let

Ny ={(j") 10<7 <i, 1< <t
(Elh)H,;j(Elh/)Hi/j/[H(Ivh/7cla---aCi’,dla~~~7di/)
QH(I,h,cl,...,ci,dl,...,di)]}.

Theorem 8.3.6. Assume that 1 < ¢1 < ¢cg < --+ < ¢, < k and that
dy,...,d, € {1,...,k} are distinct. Let I = {dy, ..., d.}. Then for any
transformation m on {1, ..., k}, m is in V(cr,...,¢r5dy, ..., d;y) if and only
if the following conditions hold:

(a) m(ej)=d;, j=1,...,7;

(b) a¢, ®bay, .-, Gc, D bg, are linearly independent;

(c) any i, j, 0<i<r, 1 <j<ty, |n(Hiy)| = [Hi;| and

W(Hij)gH(I,]’Lij,cl,...,Ci,dl,...,di)\ U 71'(1’11‘/7]'/)7
(¢/,5')EN;

where hy; is an arbitrary element in H;;.

Proof. only if : Suppose that © € V(ey,...,¢5dy, ..., d,). From the de-
finition of V(ecy,...,¢r;d1,...,d,), (a) and (b) are obvious. Since 7 is a
permutation, numbers of elements of H;; and mw(H;;) are the same. For

any i, i, 0 < ¢ < i < 7, since H; and Hy are disjoint, w(H;) and
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m(Hy ) are disjoint. It follows that m(H;;) and Uy ey, 7(Hir ;) are dis-

joint. On the other hand, for any h in H,j, since (cq,...,¢,) is the rank-
spectrum of 7, ap @ br(p) is in R(cy, ..., ¢,dy, ..., d;). Since 7 is a permuta-
tion, 7(h) is not in I. Therefore, w(h) € I (I, h,c1,...,¢;,d1,...,d;). Since
h ~; h;j, from Lemma 8.3.8, we obtain II(I, h, c1, ..., ¢, di, ..., d;) =

H(I,hij,cl,...,ci,dl,...7di). Thus 7T(h) S H(I,hij,cl,...,Ci,dl,...,di). It
follows that w(H;;) C II(I, hij,c1,...,¢,d1,...,d;). Therefore, (c) holds.

if : Suppose that the transformation 7 satisfies conditions (a), (b) and
(c). First of all, we prove a proposition by reduction to absurdity: for any
i,4,0 < i < i< r w(H;) and w(H; ) are disjoint. Suppose to the con-
trary that there exist ¢ and ¢/, 0 < i’ < ¢ < r, such that n(H;) and w(H;/)
intersect. Then there exist j and 5/, 1 < j < #;, 1 < 5/ < ¢, such that
mw(H;;) and w(H, ;) intersect. Since (c¢) holds, II(I,h,c1,...,¢;,d1,...,d;)
and II(I,H c1,...,ci,d1,...,d;) intersect, for any h € H;j, h' € Hy ;. Using
Lemma 8.3.9, IT(I,h c1,...,¢cp,dy,...,dy) is a subset of II(I,h,cy,..., ¢,
di,...,d;). Therefore, (i',j") € N;j. Since m(H;;) and m(H; ;) intersect,
m(Hi;) and U, yyen,, T(Hst) intersect. This contradicts the condition (c).
Thus the proposition holds. From (a), (¢) and the proposition, it is easy to
show that 7 is a permutation if and only if for any i, 0 < ¢ < r, any j and
J, 1< j <j<t, n(H;) and n(H;j) are disjoint. Using Lemma 8.3.8,
whenever h ~; h' does not hold, IT (I, h, c1, ..., ¢, d1, ..., d;) and IT (I,
R, e, ..., ¢, d, ..., d;) are disjoint. From (c), it is easy to see that for
any i, 0 < @ < r,any j and j/, 1 < j/ < j < t;, m(H;;) and n(H;; ) are
disjoint. Thus 7 is a permutation. From (b) and (c), it is easy to prove that
(c1,...,c¢r) is the rank-spectrum of 7. It immediately follows, using (a), that
7TEV(Cl,...,CT,dl,...,dT). O

Solutions 7 and 7’ of Problem P(aq,...,ak,b1,...,b;) are said to be
equivalent, if rank-spectra of m and 7’ are the same, say (ci,...,¢.), and
mw(e) = n'(¢;) for ¢ =1, ..., r, m(H;;) = n'(H;;) for i =0, 1, ..., r and
Jj = 1,..., t;. (In the definition of H,j, the value of d; is taken as m(c;),
i =1,..., r.) It is easy to verify that the equivalent relation is reflexive,
symmetric and transitive.

Corollary 8.3.2. If V(c1,...,c3ds,...,d,) # &, then the number of so-
lutions in each equivalence class is Hoéiér,léjéti H;j|', and the equivalence
class containing m can be obtained by changing the restriction of m on Hyj to
bijections from H;; to m(H;;) fori=0,1,...,randj=1, ..., t.

Corollary 8.3.3. Assume that 1 < ¢1 < ¢c3 < -+ < ¢ < k and that
dy,...,d, € {1,...,k} are distinct. Let I = {dy,...,d.}. If there exist
i, j, 0 < i< 1< j <t such that |Hyl + 3 inen,, |Hiyl >
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[II(I, hij,c1y...,¢ida, ..., d;)|, where hij € Hyj, thenV(er,. .., ¢rds,. .., dy)
= J.

Noticing that H;; and II(I,h;j,c1,...,¢,di,...,d;) do not depend on
parameters ¢;jy2,...,Cr,diy1,...,d,, Corollary 8.3.3 can be generalized to
the following.

Corollary 8.3.4. Let 0 <i<r. Assume that 1 < c¢; <cg < -+ < ¢iy1 <
k—r+i4+1 and that dy,...,d; € {1,...,k} are distinct. Let I = {dy, ...,
di }. If there ewists j, 1 < j < t; such that |Hi;| + > inen,, [Hij| >
[II(I,hij,cay...,¢ide,...,d;)|, where h;; € H;j, then for any cito, ..., cr,
div1,. .., dr, we have V(cy, ..., ¢p; dy,..., d.) = &.

Theorem 8.3.6 and Corollaries 8.3.3 and 8.3.4 give criteria to decide
whether V(cy, ..., ¢ di, ..., d) is empty and a method of enumerat-
ing its elements in nonempty case. The first step is computing a.; @ bg,,
j =1, ..., r and deciding whether they are linear independent; in the case of
Vier, ... er3dy, ... dy) # &, they must be linearly independent. The second
step is, for each ¢ from 1 to 7 in turn, choosing m(H;;), 1 < j < t;, so that the
condition (c) in Theorem 8.3.6 holds. In the case of V(cy,...,¢r5d1, ..., d;) #
&, this process can go on, that is, the circumstances without enough elements
for choosing mentioned in Corollaries 8.3.3 and 8.3.4 can not happen. Point

out that t, = 1 and II(I, h, ¢1, ..., ¢, d1, ..., dr) = {1, ..., k} — I, so
w(Hp1) is unique, i.e., m(Hpq) = {1, ..., k} — {w(i), i =1, ..., ¢, }. The third
step is choosing 7 so that 7(¢;) = d; for i = 1, ..., r and that the restriction

of m on H;; is a surjection from H;; to m(H;;) (in fact, a bijection because of
|H”| = |7T(HZJ)D for i = O, 1, e T and _] = ]., coey ti.

Notice that in the sense of equivalence 7 is determined by m(H;;), ¢ =0, 1,
..or,7=1,...,t;. From the method mentioned above we have the following.

Corollary 8.3.5. Assume that 0 < ¢1 < ¢cg < -+ < ¢ < k and that
di,...,d. € {1,...,k} are distinct. Let I = {dy, ..., d.}. For any i, j,
1<i<7’, ].gjgt“ letqw:|H”| and

sij:|H(I7h'7cl7"'7Ci7d17"'udi)‘_ Z qi’j’v
(i,37)ENi;

where h is an arbitrary element in H;;.

(a) V(cr, ... eryda, ... dyp) # @ if and only if ac, ®bay, - .., ac, ®ba, are
linearly independent and (Vi)(V5)[0 <i<r& 1< j <t — g5 < sij].

(b) For nonempty V(c1,...,¢rdy, ..., d;), the number of its equivalence

classes is
I ¢

0<i<r, 1< <t
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and the number of its elements is

(I Grant)-(k—en

0<i<r, 1Syt

Ezxample 8.5.1. Let a; and b; be the i-th row of A and B, respectively, where

[1110] [0001]
1000 0011
0110 0101
0100 0110
1010 1001
A=|1100(, B={1010
1010 0111
0110 1011
0000 1101
1110 1110
10010 [ 1111]
Find V(2,6,8,9;5,11,1,9).
We first compute
as ® by 0001
C = a6@b11 _ 0011
ag @ by 0111
ag P by 1101

Let R; be the vector space spanned by the first j rows of C, j = 1,2,3.
Let Ry = {0} be the vector space of dimension 0. We use II;; to denote the
set of all h € I’ such that ay ® by, € R;, where I’ = {1,...,11}\ {5,11,1,9},
k is an arbitrarily given element in H;;. We compute H;; and II;;.

Hy=Hy; = {1}, Iy = {10}

Hy = {3,4,5}, Hyy = {3}, Hyp = {4}, Hi3 = {5}, II; = {4,7}, IT» =
{3}, 13 = {6,8}.

Hy = Hyy = {7}, Iy = {6,8}

H3 = .

Hy = Hyy ={10,11}, Iy = I'.

We define the permutation = on {1,...,11}.

First define w(2) =5, n(6) = 11, (8) =1, m(9) = 9.

Then for points with |H;;| = |II;;|, define w(1) = 10, w(4) = 3. Similarly,
define 7({5,7}) = {6, 8}.

Now define 7(3) € {4, 7}. In the case where m(3) = 4, define 7({10,11}) =
{2,7}. In the case where 7(3) = 7, define 7 ({10, 11}) = {2,4}.

To sum up, the solutions of 7(1),...,w(11) are:
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10,5,4,3,6,11,8,1,9,2,7;
10,5,4,3,6,11,8,1,9,7,2;
10,5,7,3,6,11,8,1,9, 2, 4;
10,5,7,3,6,11,8,1,9,4, 2;
10,5,4,3,8,11,6,1,9,2, 7;
10,5,4,3,8,11,6,1,9,7, 2;
10,5,7,3,8,11,6,1,9, 2, 4;
10,5,7,3,8,11,6,1,9,4, 2.

For any solution 7 in the example, let

1000
0100
0010(°
1100

Vo=1[0000], W=

and P, be the 11 x 11 permutation matrix of which the element at row ¢
column 7(4) is 1. From Theorem 8.3.5,

Vo
i
WVL & PL(I'Vo @ U_)

is in S(Vp, V1), where WV; = A, U_ = B, and rows of W; in W are arranged
in increasing order, that is,

(00117
0101
0110
1001
1010

W=11100
0111
1011
1101
1110

(1111

Therefore,
Vo 0
p! Vi =W
WVi @ Pr(I'Voe U-) PLB

gives the last 4 columns of the truth table of a permutation ¢ on Rj with
cp > 1.
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Historical Notes

Finite automata are regarded as mathematical models of ciphers in [91, 88, 33|
for example. Based on [99, 100], a one key cryptosystem is proposed in [101]
to model the ciphers which can be realized by finite automata and possess
features of bounded error propagation and no plaintext expansion. Section 8.1
is based on [101]. This model consists of four part: a segment of recent ci-
phertext history, an autonomous finite automaton, a discrete function, and
a permutational family. In [115], the concept of Latin array is introduced for
studying permutational families, which is a generalization of Latin square.
Section 8.2 is based on [115, 116, 43] and an unpublished manuscript [114];
the omitted parts in the proofs of Lemmas 8.2.7 and 8.2.9 and Theorem 8.2.15
can be found in [114]. And Sect. 8.3 is based on [119].
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Summary.

Since the introduction of the concept of public key cryptosystems by
Diffie and Hellman[?’z], many concrete cryptosystems had been proposed
and found applications in the area of information security; almost all are
block. In this chapter, we present a sequential one, the so-called finite
automaton public key cryptosystem; it can be used for encryption as well
as for implementing digital signatures. The public key is a compound finite
automaton of n + 1 (> 2) finite automata and states, the private key is
the n + 1 weak inverse finite automata of them and states; no feasible
inversion algorithm for the compound finite automaton is known unless
its decomposition is known. Chapter 3 gives implicitly a feasible method
to construct the 2n + 2 finite automata. We restrict the 2n + 2 finite
automata to memory finite automata in the first five sections; in the last
section, we use pseudo-memory finite automata to construct generalized
cryptosystems.

Security of finite automaton public key cryptosystems is discussed in
Sects. 9.4 and 9.5, which is heavily dependent on Chap. 4 and Sect. 2.3.

Key words: public key cryptosystem, FAPKC, finite automata

Since the introduction of the concept of public key cryptosystems by Diffie
and Hellman!®?/, many concrete cryptosystems had been proposed and found
applications in the area of information security; almost all are block. In this
chapter, we present a sequential one, the so-called finite automaton public
key cryptosystem; it can be used for encryption as well as for implement-
ing digital signatures. The public key is a compound finite automaton of
n + 1(> 2) finite automata and states, the private key is the n + 1 weak in-
verse finite automata of them and states; no feasible inversion algorithm for
the compound finite automaton is known unless its decomposition is known.
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Chapter 3 gives implicitly a feasible method to construct the 2n + 2 finite
automata. We restrict the 2n + 2 finite automata to memory finite automata
in the first five sections; in the last section, we use pseudo-memory finite
automata to construct generalized cryptosystems.

Security of finite automaton public key cryptosystems is discussed in
Sects. 9.4 and 9.5, which is heavily depend on Chap. 4 and Sect. 2.3.

9.1 Theoretical Fundamentals

Throughout this chapter, for any integer ¢, any positive integer k and any
symbol string z, we still use z(4, k) to denote the symbol string z;,z;1,. ..,
Zi—k41. For any (r,t)-order memory finite automaton M = (X,Y,S,d, ),
any (r',t')-order memory finite automaton M’ = (Y, X, S’,’, '), and any
nonnegative integer 7, we use PI(M, M’, 7) to denote the following condition:

For any state s = (y(—1,t),2(—1,7)) of M and any state s’ =
(x(=1,¢), y(r = 1,7")) of M’, and any zg,21,... € X, Yr,Yr41,... €

Y, if yoy1 ... = A(s,xox1...), then zoz1 ... = N(s', YrYrq1...)-

For any 4, 0 < i < n, let X; be the column vector space over GF(q) of
dimension [;. Let Y be the column vector space over GF'(g) of dimension m,
and X = X,,.

For any i, 1 <1i < n,let M; = (X;, X;_1, X", ;, \;) be an r;-order input-
memory finite automaton, M = (X,;_1, X;, X" ><X1T1 1,05, AF) a (7, r;)-order
memory finite automaton, and 7; < ;.

Let My = (Xo,Y,Y" x X(° 69, o) be an (rg,to)-order memory finite
automaton, Mg = (Y, XO,XS5 x Y7065, \5) an (1, t5)-order memory finite
automaton, and 7y < 7g.

Theorem 9.1.1. Assume that M}, M; and 7; satisfy PI(M}, M;,7;),1 =0,
1,...,n. Let s(z)* o= (@O (=bimy — 1,73), 207D (=bi_y — 1, 7)) be a state of
My, i=1,...,n, and let x(i)go,...,x(i)i € Xo,

; vy (i)% i1 i—1
T, T )1 = A (s G ;}ii ,x(fbil 95(—1 )),
)

where by =19 — 10, bj = bj_1+1; — 7,1 =1,...,n. Let 8(0)* (x (0)(—1,t5),
y(—=1,78)) be a state of M. If

e 2= N o ),
xg%gw.. = A (s 2D, (9.2)

1=1,...,n,
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then

yoy1 - .. = N (s, x(T")a:(TZ_)l ce)s (9.3)
where X' is the output function of C'(M,,...,Mi,My), s = (y(—1,t0),
e (r—1,7)), r=ro4 - +rp, and T =Tg+ - -+ Tp.

Proof. Suppose that (9.2) holds. From (9.1) and (9.2), it is easy to obtain
that

i i vy (D)% i—1 i—1) (i—1) (i—1
a:(J) ) m()lx(())xg).. )\(s - le)l...x(_l )xé )J;§ )...)7

i—1

i=1,...,n. Since PI(M}, M;, ;) holds, this yields that

i1 i-1) (i-1)_(i—1 o G i
x&bi_)l 33(_1 )CL‘(() )scg )= (s, 2 ) 4T Sli_ﬁﬂﬂ .., (94)

i =1,...,n, where s = () (=b;_1 + 7, — 1,1;)). Since PI(M, Mo, 7o)
holds, from the part on M{ in (9.2), we have
Yoy - - = Ao(s, 2l S;)Jr ) (9.5)

where 50 = (y(—1,t0), 2 (19 — 1,79)).
For 1 <i < n—1,let A, be the output function of C'(M,, ..., M;). From
(9.4) for i = n — 1,n, by Theorem 1.2.1 we have

—2 —2
'T(:lbnf)zz(jbnf)z-‘rl o )‘n 1(<I(n)(7bn—2 + Tn—1+Tn — 17 Tp—1+ Tn)>7
(n) (n)
L by ot rn 170 T bt T+ )-

Suppose that we have proven that

(—12; 5”(—13) +1 = )‘§+1(<x(n)(*bi +Tqpr T = L+ ),
2 RO )
—bi+Tit1t T —bit T+t

for i > 1, we prove the case of A. From the above equation and (9.4), noticing
—b; = —b;_1 + 1 — i, applying Theorem 1.2.1, we obtain
eGP e = N (@ (b A Tt T = L b)),
(n) (n) )
—bi 1Tt T b Tl )

Thus the above equation holds for the case of i = 1, that is,

(—013017(—0204-1 = )‘/1(< (n)(*bo +7n+ T — 1,7’1 + - +T7L)>7

2 o) )
—bot+Ti+ A+ Tn Y =bo+T1 4T +1

Since (9.5) holds, from Theorem 1.2.1 it immediately follows that
Yoyir-.. = )‘/(S/a x(T")x(TZ_)l . ')7
that is, (9.3) holds. O
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Theorem 9.1.2. Assume that PI(M;, M}, 7;), i = 0, 1, ..., n hold. Let
s" = (y(=1,t0), 2™ (=1,7)) be a state of C'(M,,..., My, My) with output
function X', where r =19+ -+ -+ 1,. Let

1—1 1—1
O Y
=A@ D (=rg — = = L)), 2 2 ) (9.6)
fori=nn-1,...,1, and
Yoy - - (s, z acl ce)e (9.7)
If
22 = N (@O (=1, 8),y(r0 = Lrg)) Yre Yot ), (98)
and
w2 = A (D (= 1,m), 20D (1 — 1, 7)), 26 V2T ) (9.9)

fori=1,...,n—1, then
e = A (@ (=1,7,), 2D (1, = 1,m)), 20V ). (9.10)

Proof. Let s; = (x(=1,r;)) for 1 < i < n, s/, = s’ and s, = ( y(—1,
to), 2 (=1,79 4 - - -+ 1;)) for 0 < i < n— 1. For any i, 0 < i < n, since
(9.6) holds, from Theorem 1.2.1, the state s; of C'(M;,..., My, My) and
the state (s;,s;_;) of C(M;,C"(M;_1,..., My, My)) are equivalent. Thus,
the state s'(= s},) of C'(M,, ..., M1, Mp) and the state (s,,...,s1,s() of
C(M,,...,M;, My) are equivalent.

Suppose that (9.7) holds. Let

7(n Dz g" D o= (sn,xén):ﬁgn) ), (9.11)

and _ A
af(ngl)a’:g%l) = Ai(si, % )a:(l D ) (9.12)

fori =n—-1,n—2,...,1. Since ¢’ and (s,,...,s1,s) are equivalent, (9.7)
yields
Yoy1 ... = )\O(so,x(()o)xg )) (9.13)

To show xén_l)xgn_l) c= Eé"_l)fgn_l) ., we now prove by simple in-

duction that xéi)a:gi) S= i‘(()i)a’:gi) ... for 0 < i < n—1. Since PI(My, M, )
holds, by (9.13) we have

0 * * *
l‘é )xg ) s = )\0(<$(0)(—17t0), y(TO - 1,7"0)>, YroYro+1 -+ )

From (9.8) it follows that x(()o)xgo)... = 5550)5:?)... Suppose that

x(()i_l)xgi_l)... = ;f((f_l);?gi_l)... is true and 7 < n — 1. We prove that
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a:(()i)xgi) c.= a’céi)igi) ... Since PI(M;, M}, 7;) holds, noticing x;ifl) = a?;ifl),
(9.12) yields

VD = A (@D (~1,r), 20D (1 = 1,m)), 28V L),
From (9.9), we have a?((f)xgi) .= a?éi)g’cgi) .

Since PI(M,, M;,7,) holds, noticing z\"~" = z{"~", (9.11) yields

J

;L’(()")zgn) = N (=1,r,), 2D (1, — 1,Tn)>,x$271)x5_::_? ),
that is, (9.10) holds. |

Corollary 9.1.1. If condition (9.6) is replaced by
(i-1) (i—1)

x', Y
—ry—ri—-—ri_1
= )\,L(<;C(Z)(—T6 —ry— =711 — l’ri)>7x(—z?ré—’r1—‘-'—’r‘i71 .. x(j?‘_%
where r{ = min(rg, t§), —rf{ —r1 — -+ —ri—1 means —r{, in the case of i = 1,
then Theorem 9.1.2 still holds.
Proof. Since M;, i =1,...,n are input-memory finite automata, x(_oi, cee

a:(_ot)s in (9.8), x(_l)l, ... ,x(i) ,i=1,...,nin (9.9) and (9.10) are independent

of x(f?, 2™ 2™ O

—r+1 o g —r—1"

9.2 Basic Algorithm

A conventional cryptosystem, namely, a one key cryptosystem, is a family of
pairs of encryption algorithms and decryption algorithms, each algorithm in
any pair is indexed by its key. The key of an encryption algorithm and the
key of its corresponding decryption algorithm are the same, or the latter can
be easily derived from the former. Conventional cryptosystems require the
sender and the receiver to share a key in secret.

According to Diffie and Hellman[®?, a public key cryptosystem is a family
of pairs of algorithms, say {(Ej, Dx),k € K}, satisfying conditions: (a) for
any k € K, Dy is an inverse of Fj (for confidence application), and/or Ey is
an inverse of Dy, (for authenticity application), (b) for any k € K, Ej and Dy,
are easy to compute, (c) for almost every k € K, it is infeasible to derive an
easily computed algorithm equivalent to Dy, from Ej, and (d) for any k € K,
it is feasible to compute the pair of Fj and Dy. In applications of a public
key cryptosystem, each user chooses a pair of Ey, the user’s public key, and
Dy, the user’s private key, the user makes E}, public and keeps Dy, secret.
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Based on the results of the preceding section, a public key cryptosys-
tem for both confidence and authenticity applications can be proposed. It is
required that m =l = - - - = [,,.1 We denote X; by X for short.

Choose a common q and m for all users. Let both the alphabets X and Y
be the same column vector space over GF(q) of dimension m. The plaintext
space X* and the ciphertext space Y* are the same.

A user, say A, choose his/her own public key and private key as follows.

(a) Construct an (r§, t5)-order memory finite automaton Mi= (Y, X, Sg,
05, A§) and an (ro, tg)-order memory finite automaton My = (X, Y, Sy, do,
Ao) satisfying conditions PI(Mg, My, 10) and PI(Mg, Mg, 10).

(b) For each i, 1 < i < n, construct an r;-order input-memory finite
automaton M; = (X, X, S;, §;, \;) and a (7;,r;)-order memory finite au-
tomaton M} = (X, X, S},df, \f) satisfying conditions PI(M}, M;,1;) and
PI(M;, M}, ;).

(c) Construct the finite automaton C'(M,, ..., M1, My) = (X,Y, S, 0, ))
from My, ..., M,.

(d) Let bg = ro—70, by = bj—1+r;—75, i =1,...,n. Assume that bg = ... =

be—1 =0,ie,r; =7;,5=0,...,c—1, for some ¢, 0 < ¢ < n. Choose arbitrary
Yoiyeo s Y—ty €Y, x(c) ...7:5(_61), € X. For each i, c—|—1 < n, choose an

i % _(i—1 _(t—1
arbitrary state s( ) = <x(—2n_1—1’ e (_2, s (_bi,—)l_l’ . (—bl )1 n> of
M. Compute

i i (8% i—1 i—1

x(_?”il . :c(_)l =\ (S(_;H—l , x(_bil . .x(_l ))

and
887’)* 5 ( (_1;;: 1’ (—1’1711)1 o (1,1_1))’

fori=c+ 17 ) 1. Take S(O)ﬂn <y 1yeer Y- min(to,m)> SgC)put < (—C%’ )
:I:(_cl))c>,sgl):sé) ci=ctl, . oo,m, sOM = (Y1, .. Yy ), S (a:(nl),...,x(_ngn>.

(e) Choose arbitrarily y_1,...,y_rsyrs, € Y, and x(_"l),...,x(_nr), € X,
where ' =7( + 11+ - - + 1y, ry = min(rg, t§). Compute

i—1 i—1
LD 26D

R EE
— ) (((® (@) (2) (2)
- )\l(<‘r—r6—r1—---—n71—1’ ce 7x—r6—r1—--~—7‘1>’ x—rt’)—n—-n—ri,l cee xfl)v
t=n,n—1,...,1.
L If the public key system is only for the confidence apphcatlon, ln<---<lpo<m

is enough. If it is only for the authenticity application, [, -=lo>=m sufﬁces
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Take Sgut = <y—17 cee Y- min(’ra‘ 7T0,t0)>a s(z;/n = <x(n1)7 ey >7 OUt -
0 0 0),in 7out 7
<x(—%’""x(—)rnin(m,té)>’$£l) = <y—1""’y ""0+7'0> S() < (—)1 x(_')"i>7

i=1,...,n.1!

(f) The public key of the user A is
C/(Mn, » .7M17M0), Sout Sin Sout7s(iin7 To+ -+ Th

v r v €

The private key of the user A is

Mg, My, sQ0 (ot (et sl

S(SO),out’ 5,(10) zn’ 3((11)7out7 o S&n),out’ T0s e T
Encryption
Any user, say B, wants to send a plaintext xg . ..x; to a user A. B first suffixes
any 7o + - - - + 7, digits, say x;41 ... Tiyrg4+-.-4r,, to the plaintext. Then
using A’s public key C'(M,,,..., My, Mo), s = (Y1, -, Y min(rs —ro.to))
and s = (Jc( 1), A x(_n),>, B computes the ciphertext yo ... Yntrgttr, aS
follows: L

Yo Yirrotetra = A (8 T0 -+ Bigrgpotr, )
where

= (y_1,. ..,y,to,x(_nl), .. ,x(fr)),

:U(I?HO%SA, o ,x(_"g are arbitrarily chosen from X when tj < 7o, and
Y—rztro—1, - - -» Y—t, are arbitrarily chosen from Y when r5 — 79 < .
Decryption

From the ciphertext yo...Yi+ry+...+r,, A can retrieve the plaintext as fol-
lows. Using M¢,..., M}, s (0)’Ow = (w(f)i, .. ,x(o) . ) s((io) n— (Y—1,--,

n» S — min(rg,t§)/?
Yritro)s s((;)’out = <x(_1)1, . ,x@), i = 1,...,n in his/her private key, A
computes
(0)_.(0) (0)
To 1 Tipry b,
-\ (0) (0)
O(<‘T IERRRREY —t5 Yro—15- - - ay‘ro—r3>a YroYro+1 - - - yl+ro+-~-+fn)a
(@) ,.(4) (4)
To Ty .- I+Tip1++Tn
i 1 i—1 - i—1 1
B O S e O B
i=1,...,n,
where 33(_020_1, .. ,:U(_Ot)(,; may be arbitrarily chosen when ry < t§. From Corol-

lary 9.1.1, the plaintext xg ... z; is equal to x(()n)xgn) . :vl(n).

! For the simplicity of symbolization, we use the same symbols y—; and xg in (d)
and in (e), but their intentions are different.
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Signature

To sign a message yq - ..y, the user A first suffixes any 79 + - - - + 7, digits,
SaY Yi+1 --- Yitro+--+m,, b0 the message. Then using his/her private key

Mg, ey M;:, Sg0)7in = <’y_17 ey y_ min(to,’ra‘) >, Sgc),out = <$(_ci7 ey ‘T(—Cl))c>7 Sgi),
i=c+1,...,n, A computes
0) (0 0
{E(() )SL'g ) ce xl(+)7'0+"'+7'n = )\S(nga YolY1 - - - yl+To+"'+Tn)7
i), (i j x/ (i i—1) (i—1 i—1
P R x§270+.._+7n = A (s, 2P .xl(iTO)Jr__.JrT”),
1=1,...,n,
where
0 0
sgo) = <a:(_%, ... ,x(_t)s,y_l, Y ),
s® = (@9, .29 g0 E )y,
1=1,...,c,
x(fogofl, R a:(_ot)(,; are arbitrarily chosen from X in the case of ¢ = 0,
ac(f);, . 7x(_0t)3,x@17 . ,x@i, i=1,...,¢c—1, x(_cl))c_l, e ,m(flc, and f(fl_l), e
59;1)7 i =1,...,c, are arbitrarily chosen from X in the case of ¢ > 0, and
Y—to—1,---,Y—r; are arbitrarily chosen from Y in the case of ¢ty < rg. Then
(n) .(n) (n) : :
Ty Ty T gy, 182 signature of the message yo ... y;.
Validation
Any user, say B, can verify the validity of the signature mén)xgn) e acl(z)m T
as follows. Using C" (M, ..., My, Mp), s5“ = (y_1,...,Y_¢,), 87" = (x(_"l), ey

at(l? +,) in A’s public key, B computes

N (s, ;U(T")x(:gl . xl(?_)T),

which would coincide with the message yq . ..y; from Theorem 9.1.1, where

s’ = <y_1,...,y_t0,x(Tn_)1, ...,l‘S_n_)T>,7“=7‘0—‘r~-'—|-7“n,andTZTo+-'~+Tn.

The public key cryptosystem based on finite automata mentioned above is
abbreviated to FAPKC. Notice that a plaintext may have many ciphertexts
and that a message may have many signatures. In encryption or signing,
some digits of the initial state(s) may take arbitrary values. The number of
such digits is referred to as the freedom, which depends on the choice of
parameters. For example, in FAPKC3, a special case of FAPKC with n =1,
ré = to+70, and t§ = ro (cf. [131]), the freedom for signature is 279 if 79 < 7o,
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279+27 if 79 = 10, and the freedom for encryption is 0. In FAPKC4, a special
case of FAPKC with n =1, 7y = t§ + 10, and ¢, = r{ (cf. [122]), the freedom
for signature is 0 if 79 < rg, 27 if 79 = 79, and the freedom for encryption is
2’7’0.

We point out that finite automata M; and M/ satisfying conditions
PI(M}, M;, ;) and PI(M;, M}, ;) do exist. Recall some results in Chap. 3.
Taking p = —1, let M be an (r, t)-order memory finite automaton My defined
by

Yi = f(Wic1y ooy Yiet, Tiye ooy Tiey), 1=0,1,... (9.14)

Assume that eqq(i) is the equation
—Yi + f(Yim1, Vit iy oo Timr) = 0 (9.15)
and that
eq (1) Raleg] eqy, (i), eqp. (i) Relrwya] eqr+1(i), k=0,1,...,7—1  (9.16)

isan R, Ry transformation sequence. Let f be a single-valued mapping from
XTx Y™ to X and M* = (Y, X, X" x Y7t §* \*) be a finite automaton
My defined by

* / / -
T; = f-r(xiflw-'7xi7T7yi7"'7yi77—7t)7 i=0,1,...

If eq, (i) has a solution fF, i.e., for any parameters ;—1, ..., Ti—r, Yitr, - -
Yi—t, €q- (1) has a solution z;

Ty = f:(xifla'"axif’r‘ayi+‘r7"'7yi7t)7

then from Lemma 3.1.1 we have PI(M*, M, 7). If eq.(i) has at most one
solution f7, i.e., for any x;, ..., Ti—r, Yitr, - -+ Yi—t, €¢- (i) implies xz; =
fE(®iay oy Timry Yitrs - - -5 Yi—t), then from Lemma 3.1.2 we have PI(M, M*, 7).
Thus if eq, (i) determines a single-valued function f, then we have PI(M*, M,
7) and PI(M, M*,7). Using R; ' R, * transformation, in Sect. 3.2 of Chap. 3
a generation procedure of such a finite automaton M and such an R, R,
transformation sequence are given. For example, choose an m x (1 +1) (I, 7)-
echelon matrix G (i) over GF(q) and an R;! R;' transformation sequence

G (3) L) ai (i), &) I Gy, k=7 —1,...,1,0 (9.17)

such that for any parameters x;_1, ..., T;_,,

GOTwlfl’y(mlﬁ s axifl/)

as a function of the variable z; is a bijection. Take
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f(yi—h e Yi—ty Ty e e axi—’r)

r
= f/(yi—l, o 7yi7t) + ZGjO'(/}lfl)U(wiij e ,$i,j,l,),

Jj=0

where " and Gjo, j =7+ 1,...,r are arbitrarily chosen such that the right
side of the equation does not depend on x;_,_1,...,%;—r—,. Taking M as
My and the R, R transformation sequence corresponding to the reverse
transformation sequence of (9.17), then the finite automaton and the R, Ry
transformation sequence satisfy the conditions mentioned above.

9.3 An Example of FAPKC

We give a pedagogical example with ¢ =2, m = 8, n =1 and ¢ = 0. Thus the
alphabets X and Y are the column vector spaces over GF'(2) of dimension 8.
My is an (rg, tg)-order nonlinear finite automaton, defined by

ro—1
ZAJyl j@ZBxl ]@ZBt Tijr Tioj1);

2—0,1,...7

and M is a nonlinear (to + 79, 7g)-order memory finite automaton, defined
by

0 ro—1 to+710

x;:ZA;QJ@ZA** Ti T jo1) ZB%J’

=1
i=0,1,...,

where t' is a nonlinear function from X? to X,

t'(zo,2_1) = Pagy,

= 2%j5+2%j2 + 2j1 + jo,

J3 = ps(Ba20 & o),

J2 = ps(B21 & 20)),

J1 = ps(Ba0 & x_1),

Jo = ps(Ba1 & v_1),

ps([br, b6, .- bo] ") =br D bg - - - B by,

laz,ag, ..., a0)" & [br,bg, ..., bo]T = [ar & by, a6 & bg, . .., ag & bo] T,
xo,x—1 € X, a;,b; € GF(2), i =0,...,7.
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T1 7‘172
=Y Fx, ;® Fit(wi_j, w5 1,T5_j_2)
i Jri—g j i—gybi—j—1yLi—5-2),
Jj=0 Jj=0

i=0,1,...,

M is a nonlinear ri-order input-memory finite automaton, defined by

and M is a nonlinear (71, r1)-order memory finite automaton, defined by

ry1—2

1
* * K %
Ly = ZFJ Ti—j © E : Fj t(l’i*jﬂifjflyxifjfz) &) E Dj:v
j=1 j=1 j

T1
i—0

i=0,1,...,

where ¢ is a nonlinear function from X3 to X,

Bo, - .-

example, Gg, (1, ..

To,T_1,T_o € X.

/
=7

t(zo,-1,2-2) = B34 ® (Bro & ¥(x0) & Y(2-1) & Y(2-2)),
j =253+ 2%jo + 251 + jo,

J3 = ps((Bo & x0) ® (B2 & x-1)),
J2 =ps(B1 & xq),

J1=p8((Bo & 2-1) @ (B2 & 2_2)),
Jo=ps(B1 & 2_2),

, 821 are in X, and v is a single-valued mapping from X to X. In this
., P21 are £1, a2, 57, 00, 00, 00, 00, 01, 01, 01, 01, 00, 20,

40, 64, 80, a8, d0, fe, 04, 79, 39, respectively, and ¥([0,0,0,0,0,0,0,0]T)
1([0,0,0,0,0,0,0,1]T) ... ([1,1,1,1,1,1,1,1]T) are

30 31 33 34 35 36 37 38 05 06 07 08 09 Oa Ob Oc
0d Oe Of 02 00 01 03 04 10 11 13 14 15 16 17 18
19 1a 1b 1c 1d 1e 1f 12 29 2a 2b 2c 20 21 23 24
25 26 27 28 2d 2e 2f 22 39 3a 3b 3c 3d 3e 3f 32
707173747576 77 78 45 46 47 48 49 4a 4b 4c
4d 4e 4f 42 40 41 43 44 50 51 563 54 55 56 57 58
59 ba 5b 5¢ 5d 5e 5f 52 69 6a 6b 6¢c 60 61 63 64
65 66 67 68 6d 6e 6f 6279 7Ta 7b 7c 7d 7e 7f 72
b0 bl b3 b4 b5 b6 b7 b8 85 86 87 88 89 8a 8b 8¢
8d 8e 8f 82 80 81 83 84 90 91 93 94 95 96 97 98
99 9a 9b 9¢c 9d 9e 9f 92 a9 aa ab ac a0 al a3 a4
ab a6 a7 a8 ad ae af a2 b9 ba bb bc bd be bf b2
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fO0 £1 £3 £4 £5 £6 £7 £8 ¢c5 ¢c6 c7 c8 c9 ca cb cc
cd ce cf c2cOcl c3 c4d0dl d3 d4 d5 d6 d7 d8
d9 da db dc dd de df d2 e9 ea eb ec e0 el e3 e4
eb e6 e7 e8 ed ee ef e2 £f9 fa fb fc fd fe ff £2

respectively. In this example, to save space, we use symbols 0, 1, 2, 3,4, 5,6, 7,
8,9,a,b,c,d,e, ftodenote 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001 1010, 1011 1100, 1101 1110, 1111 in matrices, and to denote
column vectors [0,0,0,0]T, [0,0,0,1]%, [0,0,1,0]T, [0,0,1,1]%, [0,1,0,0]7,
[0,1,0,1]%, [0,1,1,0]T, [0,1,1,1]T, [1,0,0,0]T, [1,0,0,1]T, [t,0,1,0]7T,
[1,0,1,1]T, [1,1,0,0]", [1,1,0,1]T, [1,1,1,0]T, [1,1,1,1]T in states and se-
quences (words), respectively. The concatenation of two such symbols, say
$182, denotes t1tatstststetzts when s; denotes t1tat3ty and so denotes tstgtrts,
or denotes [t1,t2,t3,t4, 15, t6, t7, 18] T when s; denotes [t1,t2,t3,24]T and so de-
notes [ts, e, t7,ts)T, where t; € GF(2),i=1,2,...,8.

C'(Mj, My) is a nonlinear (rg + 71, tg)-order memory finite automaton.

In this example, take 79 = 4, 74 = 6, 1o = 5, tg = 3, r1 = 8, and
C'(My, Mp) in the public key can be expressed as

ro+T1 ro+ri—2

to
Yi = ZAjyi—j & Z Cjwi—; ® Z Clt(wi—j, Timj_1,Ti—j_2),
Jj=1 3=0 =0
i=0,1,...,

where

00 00 a2 00 db dd 21 3¢ 91 d3 bec cd 7d 69 |
00 00 a2 00 92 6a 42 8a a6 d8 6b 47 9e 25
00 £1 a6 1e 5¢c 52 39 1e bd ef 3c 85 18 01
00 00 00 £1 6¢c €0 d8 b7 ab dl c3 8a 2f ff
00 £1 57 00 dO 73 76 ba 05 2e d6 cb 52 41
00 00 00 a2 42 ed £8 ¢9 00 70 7f c5 26 25
00 00 53 57 1a c1 97 99 bl 26 3b a2 a6 90

| 00 00 a2 00 68 6c €0 30 85 Ob dc £2 51 b3

[00 b8 b2 10 c1 b8 £3 6a a6 38 9e 67 |
00 b8 b2 69 dO 65 22 25 1b 5f 90 64
00 81 ca 23 2c Oc e2 b9 88 97 39 4d
00 39 8b a0 b2 77 a7 b8 9b 89 d2 d4
00 b8 38 8a 19 aa 8b 97 Te b4 41 e6 |’
00 00 00 90 aa 4e fe 72 38 5e bc 64
00 81 b8 78 d1 dd fa 6e 98 eb 25 ad
| 00 b8 33 b9 70 77 9e 52 e4 fd 15 d7

Cy ... Cy) =
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[00 43 80]
00 21 ¢0
00 10 €0
00 08 70
00 04 38
00 02 1c
00 01 Oe
00 00 87

[A] Ay As] =

In the public key,

5ot = s0ut = (74,41, 4a),

v
s = (17,06,d2),
si" = (17,06,d2, ef, 52, a5, Oc, de, 58, 37, 9b, 80, 4d).

In the private key, M{ is a nonlinear (7,5)-order memory finite automa-
ton, defined by

5 4 7
’_ %/ sk /() / o
o= Awi_ ;@Y ATH(rh_j 7l 5 0),®) By,
J=1 j=1 j=0
1=0,1,...,

where

[00 c2 df 82 23 ef 27 00 ]
c0 29 2b 1d 7a 5a 7f 00
c0 eb 62 ¢2 11 78 4b 00
00 00 d5 14 68 al 6¢ 00
c0 6e f4 ca Ob bf 11 7£f
00 47 49 8a 70 28 58 00
00 47 0a 9e 50 6b 34 00

| 00 00 00 a8 00 57 58 00

(41 Be 1a 6e 00 ]
89 80 1d 81 00
8a 92 52 7a 00
(Ax A = 2f 67 09 14 00
Looen 295 01f04e6781|"°
8f 3d el ef 00
da 2d 8f fb 00

| 58 86 60 ef 00




360 9. Finite Automaton Public Key Cryptosystems

[ba d3 11 00|
7b 62 38 00
ab d3 09 00
7b ¢8 18 00
68 38 6b 38
40 81 29 00
63 41 31 00
40 b9 29 00

(A7 .. A =

M7 is a nonlinear (6,8)-order, (6,6)-order in essential, memory finite au-
tomaton, defined by

6 4 6
* ko * !
T = E Fj Ti—j (&3] E Fj t(%i,j,xi,j,1,$¢,j,2) D E Dszej»
j=1 j=1 J=0
i=0,1,...,

where

[c2 eb 04 59 59 40 79 ]
c2 58 59 42 1b 00 00
00 b3 5d 1b 22 00 00
00 b3 42 59 22 39 00
c2 eb 1b 1b 42 39 00
00 b3 eb 00 39 79 79
c2 58 59 42 7b 79 79

| 00 b3 42 59 42 79 00

[ 26 b5 6e 99 el be |
23 b6 £f 29 aa 4b
bb Ob 4a 6d b6 4b
y . 00 26 05 3d 43 4b
By .. Bl = df 34 a4 5e €9 £5 |’
ea 69 2c 90 00 00
9d be 24 f4 57 £5

_e9 2e 7c 42 1c 5

[ b9 ba 96 32]
2f 28 0d d1
d8 6¢ be 50
bd 96 dc 50
01 91 1a 62
25 2¢ 00 00
61 d6 28 62

| £3 €9 7862 |

[Fr . FpY =

In the private key,
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50 = (74,41, 4a),
(0),out <69>
sgw = (17,06,d2,70,7f, al, 65, 75; 69, ec, bf, cc, c9, 3e),
s — (74,41, 4a),
= (59, c2,37,81,b6),
(17,06,d2, ef, 52, a5, Oc, de).

(O),out

1),0ut
S()ou

Let a be the sequence
4e 6f 20 70 61 69 6e 73 2c 6e 6f 20 67 61 69 6e 73 2e

over X, which is the ASCII code of the sentence “No pains,no gains.”.
For encryption, taking randomly a9 = 89 b4 70 2a 92 07 ce cd 2a 4c,
then

A(Se, v1p) = 6f df a8 59 94 99 80 d7 91 d8 7f 65 £f 39 6d
a6 36 fe a6 7b 8b fc 08 78 03 75 13 e5

is a ciphertext of a, where A is the output function of C'(My, Myp), and
se = (sout sty = (74,d1,4a;17,06,d2, ef, 52, a5, Oc, de, 58, 37, 9b, 80, 4d).
For decryption, first compute

Ao(s), B1) = 14 d9 c2 26 af 38 fe 74 c2 2b 3b 74 1f 49 a0
69 cO d7 15 43 58 a4 6a 55,

where 3, = 94 99 80 d7 91 d8 7f 65 ££ 39 6d a6 36 fe a6 7b 8b fc 08 78
0375135, s = (59, c2,37, 81, b6; 59, a8, df, 6£, 74, d1, 4a). Then compute

A1(s), B2) = 4e 6 20 70 61 69 6e 73 2c 6e 6£ 20 67 61 69 e 73 2e

which is equal to the plaintext a;, where §o = fe 74 c2 2b 3b 74 1f 49 a0 69
cO d7 15 43 58 a4 6a 55, s = (17,06,d2, ef, 52, a5, Oc, de; 38, af, 26, c2,
d9, 14).
For signing, taking randomly ¢9, ¢8, 02, 95, 2e,76,b0,8d and o}, = 2d 49
df fb 14 69 63 d7 e6 8d, first compute
Ao(s, at,) = 35 2e 1a 75 74 92 9e 1c b0 14 4c ad bO 3c 60
02 25 7d 9b 70 £b 62 11 88 c2 ec 76 b3

where s\ = (69, c9, 8,02, 95; 74, d1, 4a, 2e, 76, b0, 8d). Then compute

A (587, Mo (2, aay)) = 33 bb be 7b 95 95 87 2a 9d ec le 54 7a 18 fb
31 1f 4c 9c d8 4d al 82 17 7a ce 25 2b
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which is a digital signature of a.
For verifying, compute

A(8y,03) = 4e 6f 20 70 61 69 6e 73 2c 6e 6f 20 67 61 69 6e 73 2e
which is equal to a, where

B3 = 1le 54 7a 18 £b 31 1f 4c 9c d8 4d al 82 17 7a ce 25 2b,
s, = (74,d1, 4a; ec, 94, 2a, 87, 95, 95, 7b, bc, bb, 33, 17, 06, d2).

9.4 On Weak Keys

9.4.1 Linear R, R; Transformation Test

Notice that C'(M,, ..., Mp) in the public key of FAPKC is an (rg+-+-+7,, to)-
order memory finite automaton. Let C'(M,,, ..., My) be My defined by (9.14),
where r = ro+---+7r,, and t = to. Let (9.16) be a linear R, R}, transformation
sequence, where 7 = 79 + - - - + 75, and eqg(¢) is defined by (9.15). If for any
parameters T;_1, ..., Ti—r, Yitr, -- -, Yi—t, the equation egq, (i) has a (or at
most one) solution x;, then from results in Sect. 3.1 of Chap. 3 a (7+t, r)-order
memory finite automaton M can be feasibly constructed from eq, (i) such that
C'(M,,...,Mp) is a weak inverse (or an original weak inverse) with delay
7 of M. Therefore, a check process should be included in a key-generator of
FAPKC to sieve out such a C'(M,, ..., My), of which an original weak inverse
(or a weak inverse) can be obtained by linear R, R} transformation method.
If there is a linear R, R} transformation satisfying the condition mentioned
above, then C’(M,,..., My) is sieved out. Although the number of those
linear R, Ry transformations is huge, only one linear R, R} transformation
sequence is enough to check due to the following results in Sect. 4.1 of Chap. 4:
if for a linear R, Ry transformation sequence (9.16) the condition holds, then
for any linear R, Ry transformation sequence (9.16) the condition holds too.

The key of FAPKC of which C'(M,,,..., M) is sieved out by linear R,
Ry, transformation method is called a weak key. For n = 1, from results in
Sect. 4.2 of Chap. 4, the following cases are weak key: linear My, 0 step delay
My; linear My, quasi-linear M;i; linear My, nonlinear M; of which a weak
inverse can be obtained by linear R, Ry transformation method. The latter
is a more general case.

9.4.2 On Attack by Reduced Echelon Matrix

In Sect. 4.3 of Chap. 4, a method by reduced echelon matrix to construct
a weak inverse of a finite automaton is discussed, and it is shown that if
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some inversion method by reduced echelon matrix based on injectiveness or
surjectiveness of Dagtp! (z(i,v+1)) is applicable to a finite automaton M, so is
the linear R, R transformation method, where M = (X, Y, Y* x X+¥ § )\)
is defined by

Ui = Pout (i — 1,k)) + [Co, ..., Cplp " (x,4), (9.18)
i=0,1,...,

D35 is described in Theorem 4.3.1. From this result, it is not necessary to
include a check process based inversion method by reduced echelon matrix in
a key-generator of FAPKC. Only weak keys of FAPKC can be broken using
the method by reduced echelon matrix!

9.4.3 On Attack by Canonical Diagonal Matrix Polynomial

Let M = (X,Y,Y* x X" § )) be a finite automaton defined by (9.18). Let

h
z) = Z C;z7.
3=0

Formally, we use 271, (z;, ..., z;—,) to denote ¥, (z;—;,...,;—j—,), and 292
to denote zj_;. Then

[Co, ..., Ol (2,i) = ch (Tijye e Tijy)

h
=3 G (@i, miny)) = C2)Uh (i, i),

3=0
Suppose that C(z) = D(z)F(z). Let M; be a finite automaton defined by

J) _F( )1/) (xl7"')xi—l/)7
1=0,1,...,

and My a finite automaton defined by

Yi = (pout(y<i - 1ak)) + D(Z)l‘;,
i=0,1,...

It is easy to see that M = C'(My, Myp). Since My is quasi-linear, its weak
inverse can be easily constructed whenever it exists. Thus there is a feasible
inversion method for M whenever there is a feasible inversion method for
M, . Therefore, if for any parameters z_1, ..., z_,, F(0)¢.(xg,...,z_,) as a
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function of the variable x is an injection, then M; is weakly invertible with
delay 0 and a weak inverse with delay 0 of M7 can be feasibly constructed.
It is well known that the process of reducing canonical diagonal form for
matrix polynomials is feasible. We can feasibly find 0 < a1 < -+ < ar, f;(2),
j=1,...,r, and two invertible matrix polynomials P(z) and Q(z) such that

C(z) = P(2)DIA;, (2% f1(2),. .., 2 fr(2),0,...,0)Q(2),

i) | fit1(z)forj=1,...,r—1and f;(0) #0for j =1,...,r. Take D(z) =
P(2)DIA,, (2, ...,2%) and F(z) = DIA, .,(f1(2),..., fr(2))Q(z). Then
C(z) = D(2)F(z) is referred to as the derived factorization of type 2 by
canonical diagonal matrix polynomial. Similar, C(z) = D’(z)F’'(z) is referred
to as the derived factorization of type 1 by canonical diagonal matrix poly-
nomial, where D'(z) = P(z)DIA;, (2 fi(2), ..., 2% f-(2)) and F(z) =
DIA, n(1,...,1)Q(2). If C(2) = D(2)F(z) is a derived factorization of type
1 or 2 by canonical diagonal matrix polynomial and F(0)y!(xg,...,2_,) as
a function of the variable x is an injection for any parameters x_1, ..., T_,,
then a weak inverse of M can be feasibly constructed as mentioned in the
preceding paragraph. On the other hand, from Theorem 4.4.5, there exists a
terminating and elementary R, R, transformation sequence
Ce(2) B o1 (2), Cp2) T O (2), k=01, 7 = 1,

where Cp(z) = C(z). Let Q(z) be the submatrix of the first 7 rows of
C./(2). From Corollaries 4.4.4 and 4.4.5, if F(0)y(x,...,2_,) as a func-
tion of the variable xg is an injection for any parameters x_1, ..., z_,, then
Q(0)Y! (xg,...,r_,) as a function of the variable x is an injection for any
parameters x_1, ..., x_,. It follows that a weak inverse of M can be feasibly
constructed by linear R, R, transformation method. We conclude that keys
of FAPKC which can be broken by canonical diagonal matrix polynomial
method are weak keys. Thus it is not necessary to include a check process

based on reducing canonical diagonal matrix polynomial in a key-generator
of FAPKC.

9.5 Security

Since no theory exists to prove whether a public key system is secure or not,
the only approach is to evaluate all ways to break it that one can think.
We first consider ways that a cryptanalyst tries to deduce the private key
from the public key, and then ways of deducing the plaintext (respectively
signature) from the ciphertext (respectively message).
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9.5.1 Inversion by a General Method

If one can find a finite automaton M* which is a weak inverse of C'(M,, ...,
My) with delay 79+---+7,, then one can retrieve plaintexts from ciphertexts.
For general nonlinear finite automata, the proof of Theorem 1.4.4 provides
an inversion algorithm which requires computing each output for each state
and for each input of length 79 + - - - + 7, + 1. For a state, the computing
amount is O(q™(0t+7)) (O(2'%0) for n = 1, ¢ = 2, m = 8, 79 + 11 = 20).
Therefore, this method is impractical for moderate 79 + - - - + 7.

Similarly, if one can find a finite automaton M* of which C'(M,,, ..., My)
is a weak inverse with delay 79 + - - - + 7,,, then one can forge signatures for
messages. For general nonlinear finite automata, in Sect. 6.5 of Chap. 6 an
inversion algorithm is provided, which requires computing an input-tree with
level 79+---+7, for each state and each output of length 794---47,,+1. So this
method spends more computing time and storage amount than the method
mentioned in the preceding paragraph. We prefer to construct an original
weak inverse of a finite automaton by means of constructing a weak inverse
of the finite automaton based on mutual invertibility, see Theorem 2.2.1.

9.5.2 Inversion by Decomposing Finite Automata

From the finite automaton C'(M,, ..., My) in a public key of FAPKC, if one
can feasibly find finite automata M,, ..., My so that C'(M,, ..., My) =
C'(M,, ..., My) and a weak inverse finite automaton of M; can be feasibly
constructed for each j, 0 < j < n, then a weak inverse finite automaton
of C'(M,,...,My) can be feasibly constructed. No feasible decomposition
method is known.

In some special cases, for example, in the example of FAPKC mentioned
in Sect. 9.3, if M, is linear (i.e., B; =0for j = 0,1,...,79 — 1), then
decomposing C'(Mj, My) is reduced to factorizing the matrix polynomial

ro+r1
C(z)= > 1C;, Cj14,

=0

where C} .., = Cl ., = 0.1If C(z) = B(2)F(2), then C'(My, My) =

C'(My, My), where My is defined by

to 70
Yi = ZAjyi—j & ZBm_j,
j=1 J=0
i=01,...,

M, is defined by
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T1 T1
! n /
vy =Y Fjwi; ® Y Fjt(xij,wi_j_1,%i_j_2),
=0 =0
i=0,1,...,

B(z) = Z?:o BjzI, and F(z) = Z;;O[F‘j, FJ]z7. Thus a weak inverse finite
automaton of C'(My, My) can be feasibly found whenever a weak inverse
finite automaton of M; can be feasibly constructed.

Although polynomial time algorithms for factorization of polynomials over
GF(q) are existent, no feasible algorithm is known for factorizing matrix
polynomials over GF(q). Some specific factorizing algorithms of matrix poly-
nomials over GF(q) are known, such as factorization by linear R, R} trans-
formation and factorization by reducing canonical diagonal form for matrix
polynomials. But those specific factorizations never lead to breaking the key
except the weak key.

Let F be a finite field. H(z) in My, »(F[z]) is said to be linearly primitive,
if for any Hi(z) in My, m (F[2]) with rank m and any Ha(z) in M, ,(F[z]),
H(z) = Hy(2)Ha(z) implies Hy(z) € GL,,(F[z]).

H(z) in My, »(F[2]) is said to be left-primitive, if for any positive integer
r, any Hq(z) in My, »(F[z]) with rank r and any Hs(z) in M, ,,(F[z]), H(z) =
H,(z)H2(z) implies that the rank of Hy(0) is 7.

Two factorizations A(z) = G(z)H(z) and A(z) = G'(2)H'(z) are equiv-
alent, if there is an invertible matrix polynomial R(z) such that G'(z) =
G(2)R(2)~! and H'(2) = R(2)H(z).

It is known that the linearly primitive factorizations of A(z) and the
derived factorizations of type 1 by canonical diagonal matrix polynomial of
A(z) are coincided with each other and unique under equivalence and that
the left-primitive factorizations of A(z), the derived factorizations by linear
R, R, transformations of A(z) and the derived factorizations of type 2 by
canonical diagonal matrix polynomial of A(z) are coincided with each other
and unique under equivalence. No other algorithm to give linearly primitive
factorization or left-primitive factorization is known except ones by reducing
canonical diagonal form and by linear R, R} transformation.

9.5.3 Chosen Plaintext Attack

A chosen plaintext attack for FAPKC is reduced to the problem of solving
a nonlinear system of equations over GF(q). We explain the claim for the
example in Sect. 9.3.

Since the public key is available for anyone, one can encrypt any plain-
text zoxy...x, and obtain corresponding ciphertext yoyi ... Yntro+r, USING
C'(My, My) and its initial state s.. Suppose that s, is equivalent to the state
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(s1,80) of C(My, My). Let xpa)...x), be the output of M; for the input
Tox1 . ..T, on the state s;. Then we have

/ / * ! /
wo . xy o=@y Y1 Y to)s Yo - YUn)

/

for some 2’ 4,...,2" . and y_1,...,y_¢,. It follows that

70

7‘1—2

T1

!
Y Fizij @ Y Fjt(rioj, wij_1,Timj_2)
i=0 =0

0 ro—1 to+T7o
=3 Al ;@ > A2 ) © Y Biyign-j, (9.19)
j=1 j=1 j=0
1=0,1,...,n— T,
where s1 = (x_1,...,2_p,). In (9.19), values of z; and y; are known, and

unknown variables are F}’s, FJ{’S, A;’s, A;f*’s, B}’s, and x;.’s. In the case of
ro > 0, (9.19) is nonlinear in essential. Finding out M; and M by solving
the system of equations seems difficult, even if M is linear.

9.5.4 Exhausting Search and Stochastic Search
Exhausting Search Attack

Since the encryption algorithm is known for anyone, one may guess possible
plaintexts and can encrypt them. When the result of encrypting some guessed
plaintext coincides with the ciphertext, the guessed plaintext is the virtual
plaintext. Notice that the public key cryptosystem based finite automata is
sequential. Its block length m is small in order to provide a small key size.
But small block length causes the cryptosystem fragile for the divide and
conquer attack. In fact, the guess process can be reduced to guessing a piece
of plaintext of length 79 + - - - + 7, + 1 and deciding its first digit. That is,
guess a value of the first 79 + - - - + 7, + 1 digits of the plaintext first, and
then encrypt it using the public key and compare the result with the first
To+ -+ -+ 7, +1 digits of the virtual ciphertext. If they coincide, then the first
digit of the guessed plaintext is indeed the first digit of the virtual plaintext.
Repeat this process for guessing next digit of the plaintext, and so on. In
Sect. 2.3 of Chap. 2, Algorithm 1 is such an exhausting search algorithm for
encryption, where M is the finite automaton C’'(M,, ..., My, Mp) in a user’s
public key, and s is a state of M of which part of components is given by

s%%t and s in the public key. In the case of the example in Sect. 9.3, s is
<Sout 5in>
e r<e *

Formulae of the search amounts in average case and in worse case are
deduced in Sect. 2.3 of Chap. 2 for a finite automaton M, which is equivalent
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to C(Mo, Dx)rl, Ml) DX,T27 MQ, ceey ]\4—,-_17 DXWTa MT)7 where 0 < 1 <
rg < <1 <, M; is a weakly invertible finite automaton with delay 0
fori =0,1,...,7,and M; is (m—7;41)-preservable, i = 1,...,7—1. We point
out that a finite automaton M = C’'(M], M{)) satisfies the above condition,
where M| is a weakly invertible finite automaton with delay 0, and Mj is
generated by linear R, R; transformation method. A formula of the lower
bound for the search amounts in average case is also given there, that is,

(l T 7_)(1 + zT:qr_7‘+..<+r.,.)/2.

=2

According to the formula, in the case of the example, (I+1—7)(2m2++r=—1 ¢
2rate 47 =1) s a lower bound for the search amounts in average case, taking
I =7 =15, which is equal to 2°® + 2°6 whenever r1, ..., ri5 are 1, 2, 2, 3, 3,
3,4,4,4,5, 5, 5,6, 6,7, respectively, or 267 4 265 whenever rq, ..., r15 are
1,2,3,4,4,4,5,5,5,5,6, 6, 6, 6, 7, respectively.

Similarly, to forge a signature of a given message, one may guess a pos-
sible signature first, and then computes using the public key for verification
and checks whether the computing result coincides with the message or not.
Repeat this process until a coincident one is met. An attacker may adopt
an exhausting search attack to forge a signature for a given message using a
search algorithm like the following.

)

Algorithm 3
Input : a message yoy1 ...y
Output : the signature zoxy ...x,4; which satisfies

Yoyi.-.-Yy1 = )‘(Swo,.‘.,wT,Nx‘r cee xTJrl)v

where sg, ., isastate (y_1,...,Y—ty; Tr—1, - - -, Tr—p) determined
by s9% = (y_1,...,y_s,) and 8" = (z_1,..., T_,4,) in the public
key and xg,..., %, _1.

Procedure :

1. Guess the prefix of length T of the signature.

1.1. Take X, = X7.

1.2. If X, # &, then choose an element in it as zj,...,z._;, delete
this element from it and go to Step 2.1; otherwise (impossibly
occurs) stop.

2. Guess the main part of the signature.

2.1.Set i =0and s’ = Cr

2.2. Set Xgwrar ar,, = {zlz € X, yi = A(s', 27 a7y ...
x,;_1), x)} in the case of i > 0, or {z|z € X,y; = A(s',2)}
otherwise.
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2.3. If XS'@'TI’T+1~~CE'T+FI # @, then choose an element in it as 7,
delete this element from it, increase ¢ by 1 and go to Step 2.4;
otherwise, decrease ¢ by 1 and go to Step 2.5.

2.4. If @ > [, then output xj...2" ; as a signature xo...2,4; and
stop; otherwise, go to Step 2.2.

2.5. If i > 0, go to Step 2.3; otherwise, go to Step 1.2.

An execution of Algorithm 3 consists of two phases. The first phase is
to search several such initial states, say s’ = Sel.al_ for some values of
Ty oo g € X with yoyr ... y1 & Wlﬂr‘/fl)s,. The second phase is to search an
initial state s’ = Sal..al_, with yoy1 ...y € W/_Y_[LS,. We evaluate the search
amount for the second phase. We point out that the phase 2 and Algorithm 1
in Sect. 2.3 of Chap. 2 are the same except the subscripts of z in Algorithm 3
with offset 7. Thus for a valid xf, ... 2/ _1,
of the phase 2 in Algorithm 3 as well as to evaluate the search amount of
Algorithm 1. Taking account of the search amount of the first phase of an
execution of Algorithm 3, the complexity for signature is a little more than
the complexity for encryption.

we can evaluate the search amount

By the way, the initial state for encryption may be variable, whenever
My = (X,Y, S0, 90, Ao) is defined by

to
vi= Y A+ folal,.7i,),
j=1

i=0,1,...

and Mg = (Y, X, 55,05, A;) is defined by

to+7o

! * / / *
zp = fo(Tisg, o Tipy) T E Biyi—j,
Jj=0
i=0,1,...,

where fo(0,...,0) = f3(0,...,0) = 0. Suppose that §_1, ..., §_¢, satisfy the
condition

AL((0, .. .,0,0,. .. ,0,5- 1, §t,),00...) =00... (9.20)
Let
Ao{T-15-+3T—t4,0,...,0,),00...) = GoT1 - - - (9.21)
From PI(My, M§, 7o), this yields

)\8(<07"'707g7’0717"'7@0727717‘"7g7tg>vy‘rog7'o+l ) =00...
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Subtracting two sides of (9.20) from two sides of the above equation, from
the definition of M{, we have

X000, .. ,0, Gro—15- -5 50,0, .., 0), UryUro1 ---) =00...  (9.22)
Let

!

Mo((Y=1 o Ymton @y, x ), 20T ) = Yoy - - -, (9.23)

and ¥, = y; + i, i = 0,1,... Adding two sides of (9.21) to two sides of (9.23),
from the definition of My, we have

/

ANWY—1+ T1s - Ymto + Tmtor T qs @y ) 202 ) = Yoyh - -
On the other hand, from PI(My, M§,70), (9.23) yields

* / / A
)\0(<.’IJ717 e Ty Yro—15- -5 YO Y—15 - - - 7y7t0>1y‘rny7‘0+1 .- ) =Tyl - -

Adding two sides of (9.22) to two sides of the above equation, from the
definition of M{, we have

* / / ! / / / A
Aoy, Y 1 Y Yt s Yto)s Yo Yrg a1 -+ ) = TOTY - - -

We conclude that an offset (§_1,...,7_+,) which satisfies (9.20) may be added
to the output part of the initial state for encryption.
The equation (9.20) is equivalent to

Bzo+1 Bzo+2 Bzotho*l B:(Hrto Y-1 0

BTO+2 BT()+3 Bro+t0 Y_o 0

e e = | . (9.24)
Bzo-&-to—l B:o-&-to ... 0 0 N 0

BT0+t0 0 ... 0 0 Y—to

which can be further reduced by row transformation. For example, in the
example of FAPKC given in Sect. 9.3, the equation (9.24) can be further
reduced to

01101011 00010001 01111111

00010001 01111111 00000000
10111111 00110100 00000000
01010000 00010011 00000000

01111111 00000000 00000000
00110100 00000000 00000000
00010011 00000000 00000000
00000010 00000000 00000000
| 10001100 00000000 00000000 |

224717375

‘@I
—

Qld\ <i:|

w (]

I
SO O OO OO o O

There are = 215 different solutions of [§j_1,%_2,%_3]. This increases
the complexity of the exhause search for encryption, because the virtual initial
state for encryption is unknown.
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Stochastic search attack

The above attack by exhausting search is a deterministic algorithm. It can be
modified to a stochastic one. Algorithm 2 in Sect. 2.3 of Chap. 2 is a stochastic
search algorithm to retrieve a plaintext xox ... z; from a ciphertext yoy1 . ..y
(= M(s,xox1...27)), where M is the finite automaton C'(M,, ..., My, My)
in a user’s public key, and s is a state of M in which partial components are

given by s2“* and s in the public key. In the case of the example in Sect. 9.3,

s is (sout, sim)

A formula of the successful probability is deduced in Sect. 2.3 of Chap. 2
for a finite automaton M which is equivalent to C(M,, Dx My, Dx .,

My, ..., Mr_1, Dx,_, M), where 0 < 7y < rg < - <7, <m, M; is a
weakly invertible finite automaton with delay 0 for i = 0,1,...,7, and M;
is (m — r;41)-preservable for ¢ = 1,...,7 — 1. According to the formula, in
the case of the example, the probability of successfully choosing z, . .., x} of
Algorithm 2 is 25i%0 " rr—i=(+1)rr Taking [ = 7 = 15, the probability
is 2752 whenever 71, ..., ri5 are 1, 2, 2, 3, 3,3, 4,4, 4,5,5,5, 6,6, 7,
respectively, or 2743 whenever 71, ..., 115 are 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 6, 7, respectively.

Similar to Algorithm 2, an attacker may adopt a stochastic search attack
to forge a signature for a given message using a stochastic search algorithm
like the following.

Algorithm 4
Input : a message yoy1 .. .Y-
Output : the signature zoxy ...x,4; which satisfies

Yoyi-.--Yy1 = )‘(Swo,.wa,lax‘r cee xTJrl)v

where sg,, ., isastate (y_1,...,Y—ty; Tr—1, - - -, Tr—p) determined
by s9% = (y_1,...,y_s,) and 8" = (z_1,..., T_,4,) in the public
key and xg,..., %, _1.
Procedure :
1. Guess the prefix of length T of the signature.

Choose randomly zp, ...,z _; € X.

2. Guess the main part of the signature.

2.1.Seti=0and 8" =551 o .

2.2, Set Xggrar ar,, , = {2lz € Xy = AO(s' 27 27y -
x' 1), ®)} in the case of i > 0, or {z|r € X,y; = A(s',2)}
otherwise.

2.3. If Xs/,r;z;ﬂ-.-m;H,I # o, then choose randomly an element in
it as x| ;, increase ¢ by 1 and go to Step 2.4; otherwise, prompt
a failure information and stop.
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2.4. If @ > [, then output xzj...2" ; as a signature zg...2,4; and
stop; otherwise, go to Step 2.2.

Let p?2Y" be the probability of successfully choosing an initial part

zf...x._; in Step 1 of Algorithm 4. Let XY = {af...20_4]
I%yl YSar ot # @}. Then pi ¥ = | X700 /g™

We pomt out that the phase 2 and Algorithm 2 in Sect. 2.3 of Chap. 2
are the same except the subscripts of 2/ in Algorithm 4 with offset 7 and
replacing s by s’. From Theorem 2.3.8, the probability of successfully execut-
ing Algorithm 4 is p?2- S M ”*i_(l“)"*, for a finite automaton M

which is equivalent to C(My, Dx v, M1, Dx ry, Mo, ..., M;_1,Dx ., M),

where 0 < 1 < 79 < -+ < rp < m, M; is weakly invertible finite au-
tomata with delay 0 for i = 0,1,...,7, and M; is (m — r;11)-preservable for
1=1,...,7—1.

9.6 Generalized Algorithms

9.6.1 Some Theoretical Results

In this section, we deal with pseudo-memory finite automata instead of mem-
ory finite automata. Notice that a generation method of pseudo-memory finite
automata with invertibility is discussed in Chap. 3.

Let M = (X,Y,(UM)P1+l 5. (U@)Petl 5 X7 5 \) be a finite au-
tomaton defined by

yi = FD (i, pr + 1), w0 pe + 1), 2 (i, + 1)),
u = g; (M, p1+1) ' (i, pe + 1), 2 (i, 7 + 1)),
i=1,...,¢ 1:0,1,...

Let M' = (Y, Z, ZF x (W)t .o (WD)yratl s yh 5/ N be a finite
automaton defined by

zi = p(z(i = 1,k),wM (i,ny +1),...,wD(i,ng + 1), y(i, h + 1)),
z(jr)l 1/’;( (Z_]-vk)aw(l)(i7n1+1)7~~~7w(d)(iand+1)ay(i7h+1))v
j=1,...,d, i=0,1,...
From M and M’, a finite automaton (X,Z,ZF x (Wm)m+l » ... x

(W(d))nd+1 % (U(l))h+p1+1 N, (U(C))h+pc+1 % Xh+T,(5”,)\”> is defined
by



9.6 Generalized Algorithms 373

2z = (2(1 — 1,k),w(1)(i,n1 +1),... ,w(d)(imd +1),
F@D (@, pr4+1),. ., w9, pe + 1), 20,7+ 1)), ...,
FWM (G —hpr+1),..., 090G — hype + 1), (i — hyr + 1)),
z+1 =, (z(i — 1,k),w(1)(i,n1 + 1),...,w(d)(i,nd +1),
FD,pr+1), .., w96 pe+ 1), 20,7+ 1), ...,  (9.25)
FWM (G —hpr+1),..., w906 — hype 4+ 1), 2(i — hyr + 1)),

ji=1,....d,

U(J) =g (u(l)( pr41),.. w9 pe 4+ 1), 2(i,r + 1)),
J=1....¢
i=0,1,...

We still use C'(M, M’) to denote this finite automaton in this section.

Theorem 9.6.1. For any state

§" = (z(=1,k),wM(0,n1 + 1),..., 0D (0,ng + 1),
u(l)(O7 h+p+1),... ,u(c)(O, h+p.+1),2(=1,h+7))

of C"(M,M"), let

s = (wV(0,p1 +1),...,u90,p. +1),2(—1,7)),
S, = <Z(715 k)vw(l)(oa ni + 1)7 .. 7w(d) (O7nd + 1)7y(71’ h)>7

where

yi = fwP (i, pr +1),...,u 0, pe +1),2(i,7 + 1)), (9.26)
i=—h,...,—1.

Then the state (s,s") of C(M,M') and s" are equivalent.
Proof. Taking arbitrary xg,z1,... € X, let
2021 ... =N (8" zoz1 .. ).

Then there exist w™ (3), ..., w@ (@), uM (), ..., u9@), i = 1,2,... such
that (9.25) holds. Denoting

yi = f i+ 1), ul (pe + 1), 20,7 +1), i =01, (9.27)
and using (9.26), (9.25) yields

zz—w( (i — 1, k), wD(i,n +1), ..., w D (i,ng +1),y(i, h + 1)),
M = (20 — 1,k),wP(i,n1 +1),...,wD(i,ng + 1), y(i, h + 1)),
j=1,....d, i=0,1,...
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From the definition of M’, we have
2021---=N(s, yoy1 - - .)-
Using (9.25) and (9.27), from the definition of M, we obtain
Yoyt - - - = A(8, 2ox7 .. .).
Thus
N'(8" yzoxy...) = 2021 ... = N (", N(s,moz1...)) = N ((s,8"), xom1 . . .),

where X' is the output function of C' (M, M’). Therefore, (s,s’) and s” are
equivalent. O

Let M = (V,Z,ZF x W"*t!1 x V* § X) be a finite automaton, where

A((z(=1,k), w(0,n + 1),v(=1, h)), v0) = 20

6((z(=1,k),w(0,n + 1),v(=1,h)),v0) = <Z(0,k)vw(17n+1)7U(0,h)>,
20 = ¢(2(=1,k), w(0,n +1),v(0, h + 1)),

wy = w(z(—l, k), w(0,n + 1) v(0,h + 1)).

bl

Let M* = (Z,V, VI x Wntl x Z7+F §* \*) be a finite automaton, where

A ((v(=1,h),w(0,n +1),z(—=1,7 + k)), z0) = vo,
5 ((v(=1,h),w(0,n+ 1), 2(=1,7 + k)), 20)
= (v(0,h), w(l,n +1),2(0,7 + k)),
Vo = 90?-(@(_1’}7/)7“)(07” + 1)) 2(077- +k+ 1))a
wy = ’(/}(Z(_T - 1) k),’U)(O,?’L-i- 1)7U(O7h + 1))
We use PI; (M, M*,7) to denote the following condition: for any state
S0 = <Z(717k)7w(07n+ 1)7”(717h)>
of M and any vg,v1,... € V, if
Z0%1 ... = )\(SQ,Uovl . .)7
then
VoU1 ... = AN (S, Zr2rg1 .- ),

where
st = (v(=1,h),w(0,n+1),2(r — 1,7 + k)).

We use PIo(M*, M, 1) to denote the following condition: for any state
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sy = (v(=1,h),w(0,n+1),2(—=1,7 + k))
of M* and any zg, z1,... € Z, if
vov1 - .. = A*(85, 2021 - - -)s
then

2021 -+ = MSr, UrUryy . 2),

where

s; = (z(-1,k),w(r,n+ 1),v(r — 1, h)),
wir1 = Y(z(i — 17— 1,k),w(,n+1),v(i,h + 1)),
1=0,1,...,7—1.

For any 4, 0 < 7 < n, let X; be the column vector space over GF(q) of
dimension [;. Let Y be the column vector space over GF(q) of dimension m,
and X = X,,.

For any i, 1 < i < n, let M; = (Xi,Xl-_l,Uipi+1 x X%, 8;,Ai) be an
(74,0, p;)-order pseudo-memory finite automaton determined by f; and g;,
where

(W0, p; +1), 29 (=1,7)), 1)) = 2f 7Y,

5; (WD (0,p; + 1), 2 (=1, 7)), 2{") = (WD (1, ps + 1),2D(0,74)), (9.28)
:U(()Fl) = fi(uD(0,p; +1),29(0,7; + 1)),
ugi) = gi(u(0,p; + 1), 2(0,r; + 1)),

and let M = (X,_1,X;, X" x Uf”‘1 x X7, 05, 0\F) be a (74,74, p;)-order

i—1>Vi M
pseudo-memory finite automaton determined by f* and g;, where

A (@D (=1,7),u® (0, pi + 1), 20D (~1, 7)), 2§ V) = &),
57 (e (=1,7:),u (0, p; + 1), 20D (=1, 7)), 2 “ Y)
= (29D(0,r;),u? (1, p; + 1), 2070, n)> (9.29)
)

2y = £ (@ (=1,7:),uD(0,p; + 1,200 (0,7 + 1)),
ul? = g; (D (0, p; + 1), 29 (0,r; + 1)).
Assume that 7; < r; for 1 <i < n.
Let My = (X,,Y, Y0 x U(’)’OJrl x X(°, 80, Ao) be an (rg, to, po)-order pseudo-
memory finite automaton determined by fy and gg, where
No((y(=1,t0), ul® (0, po + 1), 2 (=1, 7o), ") = o,
So((y(~1,t0), u@ (0, po + 1), 2@ (~1,70)), )
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= <y(0at0)7u(0)(1ap0 + 1)?1‘(0)(0’7"0»’ (930)
yo = foly(—1,t0), u (0, po + 1), (0,r9 + 1)),
i = g0(y(=1,10),u® (0, p0 + 1), (0,70 +1).
Let Mg = (Y, X0, X(° x UgOH x YTotto 55 A*) be a (19 + to, o, po)-order
pseudo-memory finite automaton determined by f; and go where

A8(<.’E(O)(*1,T‘0),U(O) (Oapo + 1)7y(7177—0 + t0)>a yO) = zg)O)a

55 (2O (=1,70), u® (0, po + 1), y(~1,70 + t0)), o)
= (2©(0,70),u® (1, po 4+ 1), y(0, 70 + t0)), (9.31)
2y = f5 @ (=1,r0),u®(0,po + 1), (0,70 + to + 1)),
ut” = go(y(=70 = 1,t0),u” (0, po + 1), (0,7 + 1)).
Assume that 75 < 7g.

Abbreviate 7;; = T + Tig1 + -+ Tj, rij = T +Tig1 + - - + 1, and
Dij = Ti+7iy1+---+7j_1+p; for any integer ¢ and j with ¢ < j. Let 7, ; = 0
in the case of i > j. Thus p; ; = p;j, 75; = 75 and rj; = ;. Let frn = fn
and gpn =¢gp. Forany 4, 1 <7< n—1, let

Fimn @0, pi i +1), uCV(0, piig1+1), ..., u™ (0, s +1), 200,75, 4+1))
= i (0,pi +1),
Firtn @0, piyrivn + 1), u™2 0, piyr e + 1),
w0, pis1,n + 1), 20, 7541, + 1)),

™ (=1, pisin + 1), 2™ (—ri, Tigin + 1))
and

Gin (D0, pii+1), w0, piiir 1), ., u™ (0, pin+1), 2 (0,75, +1))
= gi(u!(0,p; + 1),
Firtn @0, piyrin + 1,020, piyriv + 1),
u™ (0, pig 1+ 1), 20,751, + 1)),

(i+1)( u(i+2)(

fir1,n(u —7T4s Dit1,i41 + 1), —Ti,Pittit2 1), .0,
U(n)(—mpwlm + 1),x(")(—ri,ri+17n +1))).
Let
f07n(y(_17 tO)a U(O) (05p070 + 1)a u(l)(07p071 + 1)) )
u™(0,p0.n + 1), 2 (0,79, + 1))
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= fo(y(—1,t0), u'®(0,po + 1),
fl,n(u(l)(ovpl,l + 1)a u(2) (07p1,2 + ]-)7 ey
<">(0,p1,n +1),2M(0,71,n + 1)),

fl ( ( )( To,P1,1 + 1)7u(2)(_7‘07p1,2 + 1)) )
u™ (=rg,p1n + 1), 2 (=10, 71,0 + 1))

and
gO,n(y(_la t0)7 U(O) (0,290,0 + 1)7 u(l) (Oap0,1 + 1)7 RS
u™(0,pon + 1), 20 (0,70, + 1))
= gO(y(flatO)ﬂu(O)(Oapo + 1)7

Frn@(0,p11 +1),u®(0,p12 +1),.
u(")(O Pin + 1), (™ (0,71, + 1))

fl,n(u(l)(_rmpl,l + ]-)a U(z)(—TO»P1,2 + 1); ey
U(n)(—TO,an + 1), 2 (=, rin+1))).

Let M, , = M,, and M;,, = C'(M;11n,M;) for 0 < ¢ < n — 1. From the

definition of compound finite automata, for any ¢, 1 < g n, we have
M = (Xp, Xioq, UPH s UPo oo Upin® o XTim 8 00 A ),
where
N (@D 0,91+ 1), ™ (0, pi 4+ 1,2 (<L), ) =
SO0, ps + Vs w0, p + 10,2017},
= (WP (1,pi; + 1), .., u™ (1, i + 1), 2(0,75.0,)),
and
2y = fin (@09 + 1), w0, pi 1), (0,71 + 1)),
uﬁc) = Gen (W0, pec+ 1), .. ,u(”)(O,pc,n +1),20(0,7e.n +1)),
C=1,...,N.
And we have
Mo = (X, Y, Y0 x UEoot s gPonth oo gpom+l s XTom 500 Ao ),
where
Mo (y(1,10), u@ (0, po.0+1), -, u™ (0, po 1), 2 (<1, 70.0)), 25™) = o,

Son((Y(=1,10), @ (0,po.0 + 1), .., u™ (0, po.n + 1), 2 (=1, 70.)), 25™)
= <y(03 tO)a u(o)(]-va,O + ]-)7 ceey u(n)(]-vpo,n + 1)7 x(n) (07 TO,n))v
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and

Yo = fon(y(—1,%0),u (0, poo + 1), uM(0,po1 + 1), ..,
u™(0, po,n + 1), 2 (0,70, + 1)),
u§°) = go.n(y(—1,t0),u?(0,po,0 + 1), u™ (0, po,1 +1),...,
u™(0,po,n + 1), 2 (0,70, + 1)),
ugc) = gcm(u(c)(o,pc,c +1), U(CH)(O,pc,C_H +1),...,
u(”)((ch,n +1), 2™ (0, Ten + 1)),
c=1,...,n.
Theorem 9.6.2. Assume that M}, M; and 7; satisfy PIo(M;, M;,7;), i =
0,1,...,n. Let s( )* = (D (=b;_1—1,7), u®D (=b;_1, pi+1), 20D (=b;_1 —
I,Ti)> be a state of Mr,i=1,...,n. Let m(fgo, . ,3:(_0% € Xo,

i * * i—1 i—1
TG B O S U I Y
* * )% i—1 i—1
sg) = 8"y l,z(_bijl...xil ), (9.32)

1=1,...,n,

and
ul)y = gi(@(j, pi +1), 20 (j,ri + 1) (9.33)
fori=1,...,n and j = —b;_1,...,—1, where b_; = maX{To,*Zéitrg +
(0)+

Z;:()Tj, i=1,...,n}, and b; = b1 +r; — 7, for 0 < i < n. Let s’ =
(#O(=1,70), w(0,po + 1), y(—1,70 + to)) be a state of M. If

w0t = 2556 o ),
s U W (1 AP G P Gt N (9.34)
1=1,...,n,

then

yoyr - = Ao, 2l o 1),

where s = <y(_17t0)7 u(O)(TO 0, Po,0 + 1)7 U( )(TO,lapO,l + ].)7 ey U(n)(TO’n7
Pon + 1)} x(n) (TO,n - la TO,n)>; and u( ?
according to the following formulae

in s for 0 < j < 7o, are computed out

§21 = gin (D (G, pii + 1), u G+ T i1, P 1),
u™ (G4 Tigrmspim + 1), 8™ (G + Tigrn,rin + 1)),
=01, 700 — 1,
t=n,n—1,...,1, (9.35)



9.6 Generalized Algorithms 379

ug?k)l = gO,’ﬂ(y(j —T0 — 17 tO)a u(O) (.jva,O + 1)7 u(l) (] + 71,1, Po,1 + 1)7 sy
u(n) (] + Tl,nva,n + 1), x(n) (] + 7_1,n; rO,n + 1))7
jZO,l,...,T(Lo—L
Proof. Suppose that (9.34) holds. From (9.32) and the part on M in
(9.34), it is easy to obtain that

2 aOalfal? = NG a0 T at Y ),

i = 1,...,n. Since b;—1 > 7; and (9.33) holds for ¢ = 1,...,n and j =
—bi—1,...,—1, from PIy(M;}, M;,1;), it follows that

20D U070 o s @ 0, (9.36)

i=1,...,n, where s) = (u®(=b;_y + 75, p; + 1), 2D (=b;_1 + 7, — 1,7)),
i=1,...,n. For any i,1 < i < n, letting (9.33) for j = 0,1,..., since (9.33)
holds for j = —b;_1,...,—1, we have

u | = gD, pi + 1), 29 (G, i + 1)), (9.37)
] - 7b1—17 7bi—1 + 17 s

For such u()’s which satisfy (9.37), from the definition of M; and (9.36), we
obtain

287V = [+ 7+ 1), + 7+ 1), (9.38)
J=-=bi—1,=bi1+1,...,
i=1,...,n. Since PIy(M{, My, 1) holds, from the part on M in (9.34), we
have

Your ... = Ao(s?, x(Tg)x(Tg)Jrl o), (9.39)
where s(0) = <y(—17t0),u(0)(70,p0 + 1)7x(0) (10 — 1,70)), and

Uﬁzl = gO(y(J —T0 — 17t0)7u(0)(j7p0 + 1),$(0)(], To + 1)) (940)

for j=0,...,79—1.
We prove by induction on ¢ that for any i, 1 < ¢ < n, we have

(i—1) (i—1)
T 1T by +1-

= )\i,n(<u( )(—b;l + 7, pii + 1), (iJrl)(_bifl + Tiit1,Piit1 T 1), ..+,
u(n)( bi—1 + TinsPin + ) (n)( bi—1 + Tion — 1, Ti,n)>7 (941)

(n) (n)
x—bi71+Tq:,nm—bz‘71+7'i,n+1 e )

and
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x;ifl) = Fin@® G+ 7ii,pii + 1D, u G+ T, P + 1),
u (G4 Ty pin + 1), 2™ G+ Tin, i + 1), (9.42)
w1 = Gen WG+ Tie,poe + 1), 0V (G T Peern + 1),
u™ G+ Tims pen + 10,27 (G + i ren + 1),
c=1d,...,n, j=—bi_1,-bi_1+1,...
Basis : i = n. The formula (9.41) is

(n—1) (n-1)
b1 T by 41

== )\n,n(<u(n)(*bn—l + Tn,n,pn,n + ]-)ax(n)(*bn—l + Tn,n - 17Tn,n)>a

(n) (n)
—bn—1+Tn T bp1+Tn 1" )

T

xT

which is deduced by (9.36), using An, = Any Tnon = Tn, Pnn = Ppn and
Tpn = Tp. Similarly, the formula (9.42) is

xgn—l) = fn,n(u(n) (] + Tnn, Pnn + 1)733(71)(] + Tnons Tnon + 1))3

“ﬁ)r,mﬂ = gn,n(u(n)(.j + Tnny Pnn + 1), ™) (J+ Tn,ns T'nyn T 1)),

j = _bnfla _bnfl + 1; e

which is deduced by (9.37) and (9.38), using fn.n = fn, Gn.n = Gn, Tnn = Tn,
Dn,n = Pn, and T, , = Tp. Induction step : Suppose that for 7 > 1 we have
proven that

00
= i1 (@D (b + i1, P + 1),
WD (b + Tig1ive, Dicrite + 1), oo, (9.43)
™ (=i 4 Tig1m Div1n + 1), 2™ (=bi + Tig 10 — 1, 7ig1m)),
x(—nb)i-i-nﬂ,n (—nly)i+f,i+1,n+1 )
and

x;‘671) = fC7n(u(C) (.] + Te,er Pe,c + 1)7 u(c+1)(j + Te,c4+15 Pe,e+1 + 1)7 DR
u™ (4 Tepns Pen + 1), 2 (G + Ten e + 1)) (9.44)
forc=i+1and j=—-b;,—b;+1,...,

u§2T’i+1,c+1 = gC,"(U(C) (j+Ti+1,CvpC,C+1)’ u

u(n) (] + Ti+1,n5Pe,n + 1)7 x(n) (] + Ti+1,n5Ten + 1)) (945)

(C+1)(j+7'i+1,c+1,pc,c+1+1), R

forc=1i+4+1,...,nand j = =b;, —b; +1,... We prove (9.41) and (9.42) hold.
Since —b; = —b;—1 + 7, — 1y, (9.44) holds for c =i+ 1 and —b;—1 +7; — 7; <
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j < —=bj_1+ 7. From (943) and (936)7 noticing —b; < —b; +r; = —b;_1+ 7,
applying Theorem 9.6.1, (9.41) holds. Since (9.37) holds and (9.44) holds for
c=t+1and j > —b; = —b;—1 +7; — r;, from the definition of g, ,, we have

ug‘?nycﬁ-l = gC,n<u(C) (j + Ti,CapC,C + 1)7 u(C+1) (] + Ti,C+1,pC,C+1 + 1)7 ey

u(n)(j + Tins Pen + 1)7 x(n)(] + TinsTen + 1)) (946>

for c =i and j > —b;—1. From —b; = —=b;—1 — 1, + 7, < —bj—1 + 74, (9.45)
holds for ¢ =i+1,...,n and j > —b;_1 + 7;. Replacing j in (9.45) by j + 7,
it follows immediately that (9.46) holds for c =4+ 1,...,n and j > —b;_1.
Therefore, (9.46) holds for ¢ = 4,...,n and j > —b;_;. From (9.41), (9.44)
holds for ¢ = i and j > —b;_1; therefore, (9.44) holds for ¢ = 4,...,n and
j = —b;—1. We conclude that (9.42) holds.

Especially, equation (9.41) and (9.42) hold for the case of i = 1, that is,

0) ,.(0)
T Ty g

= /\1,n(<u(1)(—b0 + 711,011 + 1), U(2)(—bo +Tio,pi2+1),. ..,

u(n)(—bo + 7-1,n7pl,n + 1)?1‘(”)(_1)0 + 7—17” - 1’T17n)>’ (947)

(n) (n)
x7b0+71,7zx7b0+71,n+1 o )

and

:vg'O) = fra@ G+ 7100+ 1, u® G+ 12,12+ 1),

u(n)(] + Tin,Pln + 1); x(n) (.7 + Tin,T1,n + 1))7 (948)

(c) (c+1)(

Ujir) o+1 = gcm(u(c) (J+ Ti,¢) Pe,e + 1),u
U'(n)(j + T1,nyPe,n + 1)7x(n)(] + Tin,Ten + 1))7
c=1,...,n, j3=—bg,—bo+1,...

.j + Tl,c+15Pc,c+1 + l)a RS

Using Theorem 9.6.1, from (9.47), (9.39) and (9.48), we obtain

Yoy1 - -- = Aon(5, x(TZ‘)nx(TZW)nH ce)s
where 5§ = <y(71, to), U(O) (70707p070+1)7 ’ll,(l) (T071,p0,1+1), coey U(n) (TO,naPO,n+
].), x(") (TO,n — 1,7’07n)>.
To prove s = §, letting (9.40) for j > 79, since (9.40) holds for 0 < j < 79,
(9.40) holds for j > 0. From (9.48) and the definition of g ., noticing b_; >
To, this yields that

ug'(-)127'0+1 = go.n(y(j — 1,0), u® (4 + 70,0, p0,0 + 1), uV (j + 70,1, P01 + 1),

. au(n) (.7 + T0,nyPo,n + 1)7 x(N) (] + To,n5T0,n + 1)) (949)
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holds for j > —ry. Notice that for any 4,1 < ¢ < n, (9.46) holds for ¢ = ¢
and j > —b;_1. The condition j > —b;_1 is equivalent to the condition
j+ 7 = —b;—1 +7; which can be deduced by the condition j +7; > 0 because
of —b;—1 + 7; < 0. Thus for any 4,1 < i < n, (9.46) holds for ¢ = i and
j+ 7 =0, that is,

@

Ujpri+1 = 9in (WD (G + 75, pii + 1), w4 T i1, piisr + 1),
u(n) (] + Ti,ny Pin + 1), x(n) (] + Tims Tin + 1))
holds for j + 7; > 0. From (9.49), it follows that (9.35) holds. Therefore,
§=35. O

Let Té,j :To-f—t()‘l—”f’l—f—-.._’_'r-j andpéﬂ. :To+t0+rl+"'+rj71+pj,
for j > 0. Let

Fon@(=1,70),u® (0, po + 1),uM(0,p) , +1),...,
u(")(O,pgm +1), ™ (0, 7“67” +1))
= fo(y(~1, ro> ul(0,po + 1),
Fin@®0,p11 +1),u@0,pr2+1),...,
u(" )(O,pl,n + 1),ac( )(O,Tl,n +1)),

Fin(® (=19 —to,p11 +1),u® (=10 — to,pr2 + 1),...,
u™ (=19 — to,p1,n + 1), 2™ (=79 — to,r1,n +1)))

and

90,0 (0,70 + 1), 00, po + 1), (0, p; + 1),
u™(0,pf,, + 1),z (0,7, +1))
= go(an(u(l)(—To —Lpi1+ 1),u(2)(—7'0 —Lpia+1),...,
u(”)(—TO —Lpin+ 1),96(”)(—70 —1,r1,+1)),

fl,n(u(l)(_TO - thpl,l + 1); U(Q)(_TO - thpl,Q + 1)7 )
U(n)(—To —to,p1,n + 1),I(n)(—7'0 —to, 1.0+ 1)),
U(O) (07]70 + 1)7 y<07r0 + 1))

We use Mg ,, to denote C’'(M ,, M), where symbols of the input alphabet
and the output alphabet of M are interchanged. Then we have

/
/ ro po+1 po1+1 Do, 1 To n
My, = (X,, Y, Y™ x U x U X ...x Uy X Xn"" 00 s No.n)

,n

where
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/0’n<<y(_1,7“0),u(0)(0,p0 + 1)7u(1)(0ap6,1 + 1)a SERE)
w0, 9 + 1), 2 (~L,75,)), ")
= Yo,
66,n(<y(_1a ’I“()), u(O) (07]70 + 1)a u(l)(O,pr + 1)7 teey
(0, 1), 2 (<1, 75,) 25”)
= <y(0,r0),u(0)(1,p0 + 1)a u(l)(17pl0,1 + 1), DR
ul™ (1, pf 4+ 1), 20 (0,75,,,)),

and

Yo = fé,n(y(_lar())a U(O) (07]70 + 1)a u(l)(ovplo,l + 1)) )
ul™ (0, pf, + 1), 2 (0,75, + 1)),
’U’gO) = gé}n(y(O,To + 1)7 U(O) (O7p0 + 1),11/(1)(0,]7671 + 1)a R
ul™ (0, pp + 1), 2 (0,75, + 1)),
ugl) = gz,n(u(Z) (07pi,i + 1)7 CIE ’u(n) (Oapi,n + 1); x(n) (07 ri,n + 1))7
1=1,...,n.

Theorem 9.6.3. Assume that M}, M, and 7; satisfy PI,(M},M;, ),
i=1,...,n and that Mg, My and 7o satisfy PI;(Mo, Mg, o). Let s")" =
(D (=bj_1—1,75), u®D(=b;_1,p; +1), 20D (=b;_; —1,7;)) be a state of M},

1=1,...,n. Letx(_ogo,...,z(_oi € Xo,

i i v ()% i—1 i—1
I(_ii—l .. x(_)l =\ (5(_?)%1,56(_171_7)1 .. .x(_l )),
7)% * 1) % i—1 i—1
sé) =0; (s(_ZF1 , x(_bil .. .x(_l )),

1=1,...,n,

and ‘
) = gD (G, p + 1), 59 (G, i + 1))

i—1
j=1Tj t

Z;:lTj,izl,...,n}, b():bflﬂ-to, andbi:bi,l—i—ri—n— forlgzgn

Let S(()o) = (O (=1,t0), u®(0,po + 1), y(=1,70)) be a state of My. If

fori=1,...,n and j = —b;_1,...,—1, where b_; = max{0,—

202 = 20(s, yoy ..,
D2l = 3, VY ), (9:50)

1=1,...,n,

then
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Yoy - = Ao (s, x'(rg.)nx'(’—:)l,)n"rl o),

where s = (y(—1,70), u(® (0, po+1), u(l)(T&l,p{)’l—i—l), o™ (T0,n5 PO +1),
(™ (19,0 — 1,70.,)), and uéi) in s for 0 < j < 19, are computed out according

to the following formulae

uy-ﬁ)-l = Gim(u (G, pii + 1), u G + i, piig + 1),

u(n) (] + Ti+1,n5Pin + 1)7 x(n) (j + Ti+1,n,Tin + 1));
t=n,n—-1,...,1, 7=0,1,...,70,;— 1.
Proof. The proof of this theorem is similar to Theorem 9.6.2. Suppose

that (9.50) holds. From the proof of Theorem 9.6.2, (9.47) and (9.48) hold.
Since PI;(My, M§, 70) holds, from the part on My in (9.50), we have

Your - .. = Aj(s(O* x(o)xs_gl_l o), (9.51)

» Y710

where s(0* = (y(=1,70),u®(0,po + 1),z (19 — 1,79 + t)). Using Theo-
rem 9.6.1, from (9.47), (9.51) and (9.48), we obtain

Yoy1 - = Ao (5, x(TZ,)nx(TZ,)nH ),

Where §= <y(717 7aO)a U(O) (07p0+1)3 u(l)(7_0717p671+1)7 sy u(n) (TO,nap{),n+]—)7
(™ (19, — 1,75,,))- From the proof of Theorem 9.6.2 (neglecting (9.49)), 5
coincides with s. O

Lemma 9.6.1. Assume that PI;(M;, M}, 1;) holds for any i, 1 < i < n.
Let

s = <7.L(1) (Ovpl + 1)au(2) (07p1,2 + 1)7 ey U(n)(O,Pl,n + 1)ax(n)(717rl,n)>
be a state of C' (M, ..., My). Let

27 = fon@O(, pec+ 1), ul™ (G, pen +1),2™ (G 1em + 1)),
j = _chla"w_]- (952)

forc=2,....,n. If

xéo)asgo) coo=Aials, xén)xgn) o), (9.53)

then
xén)xgn) . (9.54)
= A (@™ (=1,70),u™ (0, p + 1), 27D (7 = 1, 70)), 20 D) ),

where
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a0 (9.55)
= A (D (=1,70),u(0,pi + 1), 20D (7 = 1,7)), 2l Dl L)
fori=1,...,n—1.
Proof. Let s; = (u™(0,p; + 1),z (=1,7;)) for i = 1,...,n — 1, and
s; = (@ 0,pip1 + 1), w0, pig1ipe + 1), . w0, pig10 + 1),

2™ (=1,7;41,)) fori = 0,1,...,n — 1. Suppose that (9.53) holds. We prove
by induction on ¢ that

x(()ifl)xgifl) =Nin(si_q, xén)xgn) . (9.56)

holds for any ¢, 1 < ¢ < n. The case of i = 1 is trivial because of s = sj,.
Suppose that (9.56) holds for ¢ and i < n— 1. We prove (9.56) holds for i + 1,
that is,

xéz)xg) co= )\i+17n(sz,x(() )x§") S (9.57)
Since (9.52) holds for ¢ = i + 1, applying Theorem 9.6.1, the state s;_,
of C'(M,, ..., M;) and the state (s},s;) of C(C'(M,,...,M;+1),M;) are
equivalent. Letting

2020 = Nprn(sh, 2™ ), (9.58)

from (9.56), we have

m(()i_l):cgi_l) o= (8, 1:(() )xg) S
Since PI;(M;, M}, 7;) holds, the above equation deduces
290 = A (@D (< 1,7), 0D (0, pi+1), 20D (7= 1,7)), 2G0T ),
From (9.55), it follows immediately that z{"z{" ... = 2’2(" ... Therefore,

(9.58) implies (9.57).
Since PIy(M,, M}, 1,) holds, from the case i = n of (9.56), (9.54) holds.
O

Theorem 9.6.4. Assume that PI,(M;, M}, 7;) holds for any i, 0 <i < n.
Let s = (y(—1,t0), u(9(0,po + 1), u(l)(07p0’1 +1), ..., u(")(O,pom + 1),
(™ (~1,70.,)) be a state of C"(M,,, ..., My, My). Assume that (9.52) holds
forc=1,...,n and

Yoy1 - -- = Aon(s, ac(() );vg") ). (9.59)
If
2020 (9.60)
= )\*(< O (=1,70),ul®(0,po + 1), y(r0 = 1,70 + t0)), YrgYrg41 - - -)
holds and (9.55) holds fori=1,...,n —1, then (9.54) holds.
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Proof. Let so = (y(—1,t0), u'®(0, po + 1), zO(=1,70)) and s, =
(wM(0,p1 + 1), u®(0,p12 + 1), ..., u™(0,p1, + 1), 2™ (=1,71,)). Since
(9.52) holds for ¢ = 1, the state s of C'(M,, ..., My, My) and the state (s, so)
of C(C'(M,, ..., M1), My) are equivalent. Letting

2020 = A sh, 2P, (9.61)

since (9.59) holds, we have

Yoyi ... = )\0(50, .f(()o)fgo) . )

From PI, (Mo, Mg, 7p), it follows immediately that

73 7" = A (@ (=1,70), 0 (0,po + 1), y(70 = 1,70 +10)) Yro Y41 - -

Using (9.60), this yields f(()o)jgo) S= m(()o)xgo) ... From (9.61), we obtain
2020 = A sh, MM ).

From Lemma 9.6.1, we obtain (9.54). O

Theorem 9.6.5. Assume that PIo(Mg, Mo, o) holds and PI,(M;, M}, T;)
holds for any i, 1 < i < n. Let s = (y(—1,70), u(9(0,py + 1), u(l)(O,p&1 +
1), . ul™(0,p), + 1), 2™ (=1,7(,,)) be a state of C'(My, ..., My, M).
Assume that

2 = fon Gy pec + 1), ™ (G pen + 1), 2 (e + 1)),

j=—rl 4.1 (9.62)
forc=1,...,n and
Yoyi--- = Ao.n(s, :z:(()”)z(ln) o), (9.63)
where rly =19 +to, 1, =1, i =1,...,n. If
272" = X2 (=1,t0),u® (10, p0 + 1), y(70 = 1,70)), YroYros1 - - ),
Uﬁ)l =g0(z©(j = 70 = 1,t0), u ¥ (4, po + 1), y(j, 70 + 1)), (9.64)

j=0,1,...,70—1
hold and (9.55) holds fori=1,...,n — 1, then (9.54) holds.

Proof. Let so = (y(—1,70), u®(0,po + 1), O (=1,75 + t9)) and s}, =
<u(1) (07 D1 + 1)7 ’LL(2) (07101,2 + 1)7 LRRY) u(n) (Oapl,n + 1)7 x(n)(_17rl,n)>~ SiHCQ
(9.62) holds for ¢ = 1, the state s of C'(M,,, ..., My, M) and the state (s, so)
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of C(C'"(M,,..., My), M}) are equivalent. Letting (9.61), from (9.63), we
have

Yoy ... = A8(307i80)£§0) .. )

Since PIy (M, My, 70) holds, it follows immediately that

5:60)5750) o= (@O (=1, t0),u O (10, po + 1), y(T0 — 1,70)), Yry Yros1 - - -)-
From (9.64), this yields 5580)5;50) = xéo)xgo) ... Therefore, (9.61) implies
1:(()0)17(10) = /\17n(36,xén)x(ln) ).
From Lemma 9.6.1, we obtain (9.54). O

9.6.2 Two Algorithms

FAPKC3x-n

Using the results of the preceding subsection, we now generalize the so-called
basic algorithm of the public key cryptosysytem based on finite automata in
Sect. 9.2 to two public key cryptosystems so that component finite automata
of the compound finite automata in public keys are finite automata with
auxiliary state discussed in the preceding subsection. The two cryptosystems
are designed for both encryption and signature. Therefore, we require that
all input alphabets and all output alphabets have the same dimension, say
m.

We first propose a cryptosystem relied upon Theorem 9.6.2 and Theo-
rem 9.6.4. Let n > 1. Choose a common ¢ and m for all users. Let all the
alphabets Xy, ..., X,, and Y be the same column vector space over GF(q) of
dimension m.

A user, say A, choose his/her own public key and private key as follows.

(a) Construct pseudo-memory finite automata M;, M, i =0,1,...,n de-
fined by (9.30), (9.28), (9.31) and (9.29), respectively, which satisfy conditions
PI(M;, M}, ;) and PIy(M}, M;, 7;) for some 7; <r;, i =0,1,...,n.

(b) Construct the finite automaton C'(M,, ..., My, My) = (X, Y, S, do.n,
/\O,n> from Mo, j\417 caey Mn

(C) Let b_1 = HlaX{To, — Z;;é T’j+23-=0 Tj,i = 1, e ,n}, and bz = b¢_1+
r; —Ti, © = 0,1,...,n. Choose arbitrary x(i)go,...,x(_()i € Xy. For each i,
1 < i < n, choose an arbitrary state
S(%* = <£C(i)(—bi,1 — ]., ’f’i), u(i)(—bi,hpi + 1), (E(i_l)(—bi,1 — 1, Tl)>

—Vi-1

of M;. Compute
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i i vy (i)* i—1 i—1
x(fliil x(_)l = \] (S(*?)i—17x(*bi—)l 33(—1 )),
7)% * 7)% i—1 i—1
sé) =0; (sﬂiifl,a:(fbijl 37(—1 )),
1=1,...,n,
and
u? = gD (G, ps + 1), 2D (G i + 1)),
i:17...,n, ]: 71)2'_1,...771.
Choose an arbitrary state séo)* = (20 (=1,70), ul®(0,po +1), y(—1, 70+ o))
of M. Take sgl)_ = sél)*, i=0,1,...,m, % = (Yy_1,.. ., Yorg—ty), ST =
(u(()l), u@l, .. ,ug)m), i=0,1,...,n, s" = (x(f1)7 ... ,x&"r)(n)% where
,r,(n) = max(rn, Tn—1n — Tnmns---sT1n — T2n, TOon — Tl,n)a
P = po,
P(l) = max(pi, Pi—1,i = Tijir--++Pli — T2, Poi — Tii)y 4= 1,..., M.

(d) Choose an arbitrary state s, = (y(—1,t0), u{?) (0, po+1), u™ (0, po 1 +
1), .. u(")(O,pom +1), m(")(—l,rom)) of C'(M,, ..., My, Mp). Compute

2T = oW, pec+ 1) uD (G, pen + 1), 2 (G ren + 1)),
c=1,2,...,n, j=—"re_1,...,—1.

Take s¢"" = (y_1,..., Y1) 54" = (uf’,u'), ... ul),) and s

@9, 2%y i=01,... 0t
(e) The public key of the user A is

(i),out __
d =

! out _in _aux,0 auzr,n
C' (M, ..., My, M), so¥*, s, sS40 0 sg%®™ s, Tom.

The private key of the user A is

* * 0 n (0),in  _(0),aux (n),auz
My,..., M, sg),...,sg), 54 y S ey Sy ,
(0),out (n),out
Sq yer 9 Sq sTOy e+ 9Tn-

Encryption Any user, say B, wants to send a plaintext x(()n)mgn) e xl(n)

a user A. B first suffixes any 79 ,, digits, say xl(z)l . a:l(i)m _, to the plaintext.
Then using C'(M,, ..., M;, My) and s. in A’s public key, B computes the

ciphertext yo y1 ... Yi4r,, as follows:

to

YU - Yitr . = Ao (5e, 2™ .xl(i)m).

! For the simplicity of symbolization, we use the same symbols y_;, ug.i)

(c) and in (d), but their intentions are different.

()
, oy in
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Decryption From the ciphertext yoyi - - - Yi+r,, , according to Theorem 9.6.4,
(n),.(n) (n)

A can retrieve the plaintext xy 'z’ ...x, as follows. Using Mg,..., My,
s((io)’m s((j)’auw, sg)7om, i=0,1,...,n in his/her private key, A computes
(0),,.(0) .(0)
To T Ligry

= )\3(<I( )(713 TO)’U(O)(O,Z)O + 1)7y(TO - 1; 70 + t0)>7y'roy'ro+1 e yl—&-'rom,)

and
x(()l)l‘:(ll) xl(‘zg'rr{»l n
= X (2D (=1,70),u® (0, pi+1), 207D (7 =1, 7)), 20 V207l ),
1=1,...,n,
where s&o)’m = Y-ty Y—to), S (Z) = <u(l) U(z)la T (—Z; ) and s&i)mut -

@, 29 i=0,1,...,n

Signature To sign a message yoyi - . . 1, the user A first suffixes any 79 ,, dig-
its, Sy Y41 - - - Yi+ro.,» t0 the message. Then using M, ..., M, s, s
in his/her private key, A computes

0)_(0 0 X
SE( )xg ) . (El(+).,_0 = Ao(sgo), Yoy1 - - - yl+'ro,n)7
2 7 * 7 i—1 =1 i—1
2P0 a2 X (s, 2V gD )
1=1,...,n.
(n),.(n) () oo g
Then zzy ...z s a signature of yoy1 ...y

Validation Any user, say B, can verify the validity of the signature
x(()n)xgn) ml(i)T as follows. Using C'(M,, ..., My, My), so%, sin, siue:i
1=0,1,...,nin A’ public key, B first computes

ﬁl = gin(u & )(] Diyi + 1)7U(i+1)(j + Tit1it1, Pisit1 + 1)5 0o,

u( )(] + Tit1,n,Din + 1)733(”)(] + Tit1,n,Tin + 1))7
Jj=0,1,...,7,—-1, i=n,n-1,...,1

u_g(.)gl = gO,n(y(] —T0 — 17t0)7u(0)(j7p0,0 + 1),’(1,(1) (] + 71,1, P0,1 + 1)3 sy

u(n)(j + T1,n,P0n + 1),$(n) (.] + Ti,n,T0,n + 1))a
j:Oala"'aTO,O_]-v

) )

out _

where Sy <y 1y "ay*‘l'o*to> sgux7i:<u(1) u(z)lv'”vuq;(i)% 1=0,1,...,n,

sin = (2", L2, Lettmgs—< (=1, t0), u® (10,0, oo + 1), u® (70,1,

poa+ 1), oo u™ (00, Pon + 1), 27 (70 — 1,70.0)), A then computes
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Non(s, 2 2l ol

which would coincide with the message yoy; . .. y; from Theorem 9.6.2.

The special case of n = 1 of the above cryptosystem may be regarded
as a generation of the cryptsystem FAPKC3 (cf. [123]). The cryptosystem is
referred to as FAPKC3x-n.

FAPKC4x-n

Similar to FAPKC3x-n, we propose a cryptosystem relied upon Theorem 9.6.3
and Theorem 9.6.5. Let n > 1. Choose a common ¢ and m for all users. Let
all the alphabets Xg,..., X, and Y be the same column vector space over
GF(q) of dimension m.

A user, say A, choose his/her own public key and private key as follows.

(a) Construct pseudo-memory finite automata M;, M}, i=0,1,...,n de-
fined by (9.30), (9.28), (9.31) and (9.29), respectively, which satisfy conditions
PI(M;, M, 7;) and PIy(M}, M;, ;) for some 7; <r;, i =0,1,...,n.

(b) Construct the finite automaton C'(M,, ..., My, Mg) = (X, Y, S, & .,
Ao,n) from Mg, My, ..., M,.

(c) Let b_; = max{0, —Z;;é ri + Z;ZO Tt =1,...,n}, bp = b_1 + to,

and b; = b;_1 +r; — 7,1 =1,...,n. Choose arb%trary (E(_Ogo, e ,x(f)i € Xp.
For each i, 1 < i < n, choose an arbitrary state 8(_12:_1 = <x(i)(—bi,1 —1,7),

u® (=b;_1,p; + 1), 07V (=b;_; — 1,7;)) of M;. Compute

(@) )\»_k(s(i)* 20D (ifl))’

) _
Ty eeexly = A8y, La, Tl

—bi—1?"=bj_ =1 1

-1
(i)* 6;*(3(%* 20D i)
1

and

W) = gD, pi +1),29 (G, +1)

1= 1,...771, jz—bi_l,...,—l.
i ) _ (0 (_ (0) _
Choose an arbitrary state sy~ = (x'%(=1,%0), ©'“(0,po + 1), y(—1,7)) of
M. Take Sgo) = 560), sgl) = s(()z)*, Pi=1,.,m, 89 = (Y 1, Yy ), SUUTE =
<u((f), u@l, . 7“8;@)% i=0,1,...,n, s" = (x(f1)7 .. ,x(fr)m)% where
T(n) = max(rn, Tn—1,n — Tnms-- - T1,n = T2.n, ré),n - TO,n)a
P = po,

i) __ / .
P( ) = max(ph Pi—1,i — Tiis-- -5 P15 — T2,45 Poy — TO,i)7 t=1,...,n.
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(d) Choose an arbitrary state s. = (y(—1,70), u(?(0,po+1), uM (0, pj , +
1), ... u(")(O,pgm +1), J;(")(—l,r’om)) of C'"(M,, ..., M, M{). Compute

~—1 c)/ » n .
27 = fen O Gopec + 1), u™ (open + 127 (e + 1)),

c=1,2,...,n, j=—rl_1,...,—1,
where 1y, = 79 + to, r, = 14, i = 1,...,n. Take S((io),m = (Y1, ey Ymrp)s
1),aux 7 7 i . 0),out 0 0
fi) :<ué),ui)1,...,uiz,i>,z:O,l,...,n, 351) :<x(_%,..., x&lrto ,
and s( Doout (:E(f)l, e x@), i=1,...,n!

(e ) The public key of the user A is
C'(My, ..., My, M), s, sin s@um0 s8UuTn s 7o m.

The private key of the user A is
Mo, M7, ..., M}, sgo)7 e sg")7 EIO) , SEZO),aum, R sfin)’auz7
s((io)’om, ceey S&n)’out, TOs---3Tn-

(W) 5() | ()

Encryption Any user, say B, wants to send a plaintext z to

a user A. B first suffixes any 79 ,, digits, say xl( +)1 . zl(i)T , to the plaintext.
Then using C'(M,, ..., M1, M) and s, in A’s public key, B computes the

ciphertext yo y1 ... Yi4r,, as follows:

YoYL - - - Yitro, = Ag’n(se, xg")wgn) . xl(i)m n)

Decryption From the ciphertext yoyi ... 414+, ,, according to Theorem 9.6.5,

A can retrieve the plaintext x(()")xg . .xl(n) as follows. Using Mo, M7, ..., M},
8(0)’m s&i)’auz, sy)’om, i =0,1,...,n in his/her private key, A computes
iy = g0(@® (G =70 = Lt0), u@(Gopo + 1),y o + 1) §=0,070 — 1,
x(o)xgo) . :rl(i)ﬁ .
= Xo((z (=1, t0),u (70, p0 + 1), y(70 — 1,70))s YroYro1 - - - Yitro.n)
and
NORCIC I
= A (e, u® (0, pi+1), 207 (=1, 7)), 2l Vali L)l D),
1=1,...,n,
where s((io)’m = (Y1, Y—rg)> s{(;) = (uy () u(z)17 .. ,ugiﬁ},i =0,1,...,n,
820)’01“5 = <x(_0%, - (_020 +,) and S(Z ),out = (z (_1)17 - x@”>, i=1,....n

! For the simplicity of symbolization, we use the same symbols Y—j, uy), (2

(c) and in (d), but their intentions are different.
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Signature To sign a message Yoy ...y;, the user A first suffixes any 79,

digits, say ¥i41 ... Yitr.,» to the message. Then using My, M7, ..., M},
sgo) sgn) in his/her private key, A computes
0) (0 0
2020 .a:l(ﬁm’n =200 your - Yirm )5
~1) (i—1 1
e
1=1,...,n.
Then ™2™ . z™ s a signat f
0 T Ty gnature of Yoy ... Y.

Validation Any user, say B, can verify the validity of the signature
ac(()") acgn) ;vl(i)T . as follows. Using C'(My, ..., My, M), sout, sin, gauei
i=0,1,...,nin A’s public key, B first computes

521 = Gim(u (G, pii + 1), u G + i, piig + 1),

u(n) (] + Ti+1,n5Pin + 1)7$(n) (j + Ti+1,n,Tin + 1));
i=nmn—1,...,1 j=0,1,... 7.1,

@ @)

where s2%%% = (ug” u' 1,...7u(7;(i)>, 1=0,1,...,n, s"

v

= (:U(fl), . 736(:?(”))

Lettlng s = <y(_1a TO)’ U'(O) (07p0 + 1)7 u(l)(TO,lap/O,l + 1)a ceey u(n) (7—07n7 pIO,n +
1), =™ (To,n — 1,70,,)), A then computes
! (s PCORMCD (n) )

0,n TO,n 7'0 ntl- ‘TH-TD n

which would coincide with the message yoy; - - . y; from Theorem 9.6.3, where
out

Sy <y 17--~7y—ro>'

The special case of n = 1 of the above cryptosystem may be regarded
as a generation of the cryptsystem FAPKC4 (cf. [125]). The cryptosystem is
referred to as FAPKC4x-n.

Historical Notes

Since introducing the concept of public key cryptosystems by Diffie and Hell-
man [32], many concrete block cryptosystems are proposed in [89, 74, 72,
34, 50, 76, 63, 90, 93, 1]. A sequential public key cryptosystem based on fi-
nite automata, referred to as FAPKCO, is given in [112] of which a public
key contains a compound finite automaton of an invertible linear (7, 7)-order
memory finite automaton with delay 7 and a weakly invertible nonlinear
input-memory finite automaton with delay 0. Two other schemes, referred to
as FAPKC1 and FAPKC2, are given in [113], where a public key for FAPKC1
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contains a compound finite automaton of an linear inverse 7-order input-
memory finite automaton with delay 7 and a weakly invertible nonlinear
input-memory finite automaton with delay 0. Reference [26] first proves that
FAPKCO is insecure in encryption. Reference [11] proves that FAPKC1 is
insecure in encryption, and proposes a modification using quasi-linear finite
automata, which is shown to be insecure in both encryption and signature
in [108]. From [107], FAPKCO and FAPKC1 are insecure in both encryption
and signature. In [118] a method for generating a kind of nonlinear weakly in-
vertible finite automata is developed; then two schemes, called FAPKC3 and
FAPKC4, are proposed in [131, 122]. References [123, 125, 126] give some
generalization of FAPKC3 and FAPKC4. In [45, 22], some schemes of pub-
lic key cryptosystems based on finite automata are also proposed. Further
works on security of public key cryptosystems based on finite automata can
be found in [83, 108, 135, 137, 28, 132, 121, 109, 30, 110, 8, 82, 128]. In this
chapter, Sects. 9.1 and 9.2 are based on [126]. Section 9.4 is in part based
on [108, 83, 137, 28, 132, 121]. Section 9.5 is in part based on [45, 128]. And
Sect. 9.6 is a further generalization of [123, 125] in respect of the total number
of component automata.
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