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Foreword

The important summarizing work of RENJI TAO appears now in book form.
It is a great pleasure for me to see this happen, especially because I have
known Professor Tao as one of the very early contributors to public-key
cryptography. The research community has missed a book such as the present
one now published by Tsinghua University Press and Springer. The book will
be of special interest for students and researchers in the theories of finite
automata, cryptography and error correcting codes.

One of the phenomena characterizing the second half of the last century is
the rapid growth of computer science and informatics in general. The theory
of finite automata, models of computing devices with a finite non-extensible
memory, was initiated in the 1940s and 1950s, mainly by McCulloch, Pitts
and Kleene. It has found numerous applications in most diverse areas, as
exemplified by the series of yearly international conferences in implemen-
tation and applications of finite automata. The present work by Professor
Tao develops a theory and contains strong results concerning invertible finite
automata: the input sequence can be recovered from the output sequence.
This is a desirable feature both in cryptography and error correcting codes.
The book considers various types of invertibility and, for instance, the effect
of bounded delay to invertibility.

Cryptography, secret writing, has grown enormously both in extent and
importance and quality during the past few decades. This is obvious in view
of the fact that so many transactions and so much confidential information
are nowadays sent over the Internet. After the introduction of public-key
cryptography by Diffie and Hellman in the 1970s, many devices were tried
and applied for the construction of public-key cryptosystems. Professor Tao
was one of such initiators in applying invertible finite automata. Although
mostly in Chinese, his work was known also in the West. I referred to it
already some twenty years ago. Later on, for instance, a PhD thesis was
written about this topic in my university.

Many of the results in this book appear now for the first time in book
form. The book systematizes important and essential results, as well as gives
a comprehensive list of references. It can be used also as a starting point
for further study. Different parts of the book are of varying importance for
students and researchers, depending on their particular interests. Professor
Tao gives useful guidelines about this in his Preface.



ii Foreword

Much of the material in this book has not been previously available for
western researchers. As a consequence, some of the results obtained by Profes-
sor Tao and his group already in the late 1970s have been independently redis-
covered later. This concerns especially shift register sequences, for instance,
the decimation sequence and the linear complexity of the product sequence.

I feel grateful and honored that Professor Tao has asked me to write this
preface. I wish success for the book.

Turku, Finland, January 2008 Arto Salomaa



Preface

Automata theory is a mathematical theory to investigate behavior, structure
and their relationship to discrete and digital systems such as algorithms,
nerve nets, digital circuits, and so on. The first investigation of automata
theory goes back to A. M. Turing in 1936 for the formulation of the informal
idea of algorithms. Finite automata model the discrete and digital systems
with finite “memory”, for example, digital circuits. The theory of finite au-
tomata has received considerable attention and found applications in areas
of computer, communication, automatic control, and biology, since the pio-
neering works of Kleene, Huffman, and Moore in the 1950s. Among others,
autonomous finite automata including shift registers are used to generate
pseudo-random sequences, and finite automata with invertibility are used to
model encoders and decoders for error correcting and cipher as well as to
solve topics in pure mathematics such as the Burnside problem for torsion
groups. This book is devoted to the invertibility theory of finite automata
and its application to cryptography. The book also focuses on autonomous
finite automata and Latin arrays which are relative to the canonical form for
one key cryptosystems based on finite automata.

After reviewing some basic concepts and notations on relation, function
and graph, Chap. 1 gives the concept of finite automata, three types of “in-
vertibility” for finite automata, and proves the equivalence between “feedfor-
ward invertibility” and “boundedness of decoding error propagation” which
is the starting point of studying one key cryptosystems based on finite au-
tomata; a tool using labelled trees to represent states of finite automata is
also given. In addition, some results on linear finite automata over finite fields
are reviewed, in preparation for Chap. 7. Chapter 2 analyzes finite automata
from the aspects of minimal output weight and input set. Results for weakly
invertible finite automata are in return applied to establish the mutual in-
vertibility for finite automata, and to evaluate complexity of searching an
input given an output and an initial state for a kind of weakly invertible
finite automata. In Chap. 3 the Ra Rb transformation method is presented
for generating a kind of weakly invertible finite automata and correspondent
weak inverse finite automata which are used in key generation in Chap. 9;
this method is also used to solve the structure problem for quasi-linear finite
automata over finite fields. Chapter 4 first discusses the relation between two
linear Ra Rb transformation sequences and “composition” of Ra Rb trans-
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formation sequences, then the relation of inversion by Ra Rb transformation
method with inversion by reduced echelon matrix method and by canoni-
cal diagonal matrix polynomial method. Chapter 5 deals with the structure
problem of feedforward inverse finite automata. Explicit expressions of feed-
forward inverse finite automata with delay � 2 are given. The result for delay
0 lays a foundation for the canonical form of one key cryptosystems based on
finite automata in Chap. 8. In Chap. 6, for any given finite automaton which
is invertible (weakly invertible, feedforward invertible, an inverse, or a weak
inverse, respectively), the structure of all its inverses (weak inverses, weak
inverses with bounded error propagation, original inverses, or original weak
inverses, respectively) is characterized. Chapter 7 deals with autonomous lin-
ear finite automata over finite fields. Main topics contain representation of
output sequences, translation, period, linearization, and decimation. The final
two chapters discuss the application to cryptography. A canonical form for
one key cryptosystems which can be implemented by finite automata without
plaintext expansion and with bounded decoding error propagation is given
in Chap. 8. As a component of the canonical form, the theory of Latin array
is also dealt with. Chapter 9 gives a public key cryptosystem based finite
automata and discusses its security. Some generalized cryptosystems are also
given.

The material of this book is mainly taken from the works of our research
group since the 1970s, except some basic results, for example, on linear fi-
nite automata and on partial finite automata. Of course, this book does not
contain all important topics on invertibility of finite automata which our re-
search group have investigated such as decomposition of finite automata and
linear finite automata over finite rings. Results presented here other than
Chaps. 1 and 7 are appearing for the first time in book form; Chapter 7 is
appearing for the first time in English which is originally published in [97]
and in Chap. 3 of the monograph [98]. This book is nearly self-contained,
but algebra is required as a mathematical background in topics on linear fi-
nite automata, linear Ra Rb transformation, and Latin array; the reader is
referred to, for example, [16], or [42] for matrix theory, [142] for finite group.

This book pursues precision in logic, which is extremely important for a
mathematical theory. For automata theorists and other mathematicians in-
terested merely in the invertibility theory of finite automata, the readers may
read Chap. 1 to Chap. 6 and propose easily open problems on topics con-
cerned. For an algebraist interested in the theory of shift register sequences,
taking a glance at Chap. 7 is, at least to avoid overlap of research, harm-
less. A mathematician majoring in combinatory theory may be interested in
Sects. 8.2 and 8.3 of Chap. 8.
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For readers interested merely in one key cryptography, it is enough to
read Chap. 1 (except Subsect. 1.2.3 and Sect. 1.6), the first two sections of
Chap. 5, Chap. 7, and Chap. 8.

For readers interested merely in public key cryptography, they may read
Chap. 1 (except Subsect. 1.2.4 and Sects. 1.3 and 1.5), Chap. 2 (except
Sect. 2.2), Chap. 3 (except Sect. 3.3), Chap. 4, Sects. 6.1 and 6.5 of Chap. 6,
and Chap. 9. They may skip over all proofs if they believe them to be correct;
but a generation algorithm of finite automata satisfying the condition PI is
directly obtained from several proofs in the first two sections of Chap. 3.

I would like to thank Zuliang Huang for his continuous encouragement
and suggestions about the investigation on finite automata since the 1960s.
Thanks also go to Peilin Yan, the late first director of Institute of Comput-
ing Technology, Chinese Academy of Sciences, and to Kongshi Xu, the first
director of Institute of Software, Chinese Academy of Sciences, for their sup-
port and providing a suitable environment for me to do theoretical research
since the 1970s. I am also grateful to many of my colleagues and students for
various helpful discussions and valuable suggestions. My thanks go to Hongji
Wang for his careful reading and commenting on the manuscript. Naturally,
I have to take responsibility for any errors that may occur in this book. My
special thanks go to Hui Xue for her continuing thorough and helpful ed-
itorial commentary, and careful polishing the manuscript. Finally, I thank
my wife Shihua Chen and my daughter Xuemei Chen for their patience and
continuous encouragement.

Beijing, May 2007 Renji Tao
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1. Introduction

Renji Tao

Institute of Software, Chinese Academy of Sciences

Beijing 100080, China trj@ios.ac.cn

Summary.

Finite automata are a mathematical abstraction of discrete and digital
systems with finite “memory”. From a behavior viewpoint, such a system
is a transducer which transforms an input sequence to an output sequence
with the same length. Whenever the input sequence can be retrieved by the
output sequence (and initial internal state), the system is with invertibility
and may be used as an encoder in application to cipher or error correcting.

The invertibility theory of finite automata is dealt within the first six
chapters of this book. In the first chapter, the basic concepts on finite au-
tomata are introduced. The existence of (weak) inverse finite automata and
boundedness of delay for (weakly) invertible finite automata are proven
in Sect. 1.4, and the coincidence between feedforward invertibility and
bounded error propagation is presented in Sect. 1.5. In Sect. 1.7, we char-
acterize the structure of (weakly) invertible finite automata by means of
their state tree. In addition, there is a section that reviews some basic
results of linear finite automata, as an introduction to Chap. 7.

Key words: finite automata, invertible, weakly invertible, feedforward
invertible, inverse, weak inverse, feedforward inverse, error propagation,
state tree

Finite automata are a mathematical abstraction of discrete and digital sys-
tems with finite “memory”. From a structural viewpoint, such a system has
an input and an output as well as an “internal state”. Its time system is
discrete (say, moments 0, 1, . . .). Only finite possible values can be taken by
the input (output and internal state, respectively) at each moment. And, the
output at the current moment and the internal state at the next moment can
be uniquely determined by the input and the internal state at the current
moment. From a behavior viewpoint, such a system is a transducer which
transforms an input sequence to an output sequence with the same length.
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Whenever the input sequence can be retrieved by the output sequence (and
the initial internal state), the system is with invertibility and may be used
as an encoder in application to cipher or error correcting.

The invertibility theory of finite automata is dealt within the first six
chapters. In the first chapter, the basic concepts on finite automata are in-
troduced. The existence of (weak) inverse finite automata and boundedness
of delay for (weakly) invertible finite automata are proven in Sect. 1.4, and
the coincidence between feedforward invertibility and bounded error propa-
gation is presented in Sect. 1.5. In Sect. 1.6, we characterize the structure of
(weakly) invertible finite automata by means of their state tree. In addition,
there is a section that reviews some basic results of linear finite automata, as
an introduction to Chap. 7.

1.1 Preliminaries

We begin with a brief excursion through some fundamental concepts. A reader
acquainted with the notation used may skip this section. We will assume a
familiarity with the most basic notions of set theory, such as membership ∈,
set-builder notation {· · · | · ··} or {· · · : · · ·}, empty set ∅, subset ⊆, union ∪,
intersection ∩, difference \.

1.1.1 Relations and Functions

For any sets A1, A2, . . . , An, the Cartesian product of A1, A2, . . . , An is the
set

{(a1, a2, . . . , an) | ai ∈ Ai, i = 1, 2, . . . , n},

denoted by A1 × A2 × · · · × An (sometimes (a1, a2, . . . , an) is replaced by
〈a1, a2, . . . , an〉). In the case of Ai = A, i = 1, 2, . . . , n, A1 ×A2 × · · · ×An is
called the n-fold Cartesian product of A and is abbreviated to An. For any
i, 1 � i � n, the i-th component of an element (a1, a2, . . . , an) in A1 × A2 ×
· · · × An means ai.

Let A and B be two sets. A relation R from A to B is a subset R of A×B.
If (a, b) is in the relation R, it is written as aRb. If (a, b) is not in the relation
R, it is written as aR/ b. In the case of A = B, R is also called a relation on
A.

A relation R on a set A is an equivalence relation, if the following condi-
tions hold: (a) R is reflexive, i.e., (a, a) ∈ R for any a in A; (b) R is symmetric,
i.e., (a, b) ∈ R implies (b, a) ∈ R for any a and b in A; and (c) R is transitive,
i.e., (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R for any a, b and c in A.
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Let R be an equivalence relation on A. For any a in A, the set [a]R =
{b | b ∈ A, (a, b) ∈ R} is called the equivalence class containing a. The set
{[a]R | a ∈ A} is called the equivalence classes of R.

Let A be a set and π = {Hi | i ∈ I} be a family of subsets of A. If (a)
∪i∈IHi = A and (b) Hi ∩Hj = ∅ for any different i and j in I, π is called a
partition of A, and Hi, i ∈ I are called blocks of the partition π.

Clearly, the equivalence classes of an equivalence relation on A define a
partition. Conversely, a partition {Hi | i ∈ I} of A determines an equivalence
relation R on A in the following way:

(a, b) ∈ R ⇔ ∃i ∈ I(a ∈ Hi & b ∈ Hi),

a, b ∈ A.

It is convenient to identify an equivalence relation with its partition.
Let R be a relation from A to B. The subset

{a ∈ A | ∃b ∈ B((a, b) ∈ R)}

of A is called the domain of R, and the subset

{b ∈ B | ∃a ∈ A((a, b) ∈ R)}

of B is called the range of R.
Suppose that R is a relation from A to B. Define a relation R−1 from B

to A as follows:

(a, b) ∈ R−1 ⇔ (b, a) ∈ R,

a ∈ A, b ∈ B.

R−1 is called the inverse relation of R. Clearly, the domain of R and the
range of R−1 are the same; the domain of R−1 and the range of R are the
same.

Let R be a relation from A to B. If, for any a in A, any b and b′ in B,
(a, b) ∈ R and (a, b′) ∈ R imply b = b′, R is called a partial function from A

to B.
A single-valued function (mapping) from A to B is a partial function R

from A to B such that the domain of R is A. A single-valued function from
a set to itself is also called a function or a transformation on the set.

Let f be a single-valued mapping or partial function from A to B. For
any a in the domain of f , the unique element in B, say b, satisfying (a, b) ∈ f

is written as f(a), and is called the value of f at (the point) a. For any a not
in the domain of f , we say that the value of f at (the point) a is undefined.
For any relation R from A to B and any a in A, we also use R(a) to denote
the set {b ∈ B | (a, b) ∈ R}. Clearly, R−1(b) = {a ∈ A | (b, a) ∈ R−1} =
{a ∈ A | (a, b) ∈ R} for any b in B.
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Let f be a single-valued mapping from A to B. If the range of f is B, f

is called a surjection, or to be surjective, or a single-valued mapping from A

onto B. If f(a) 
= f(a′) holds for any different elements a and a′ in A, f is
called an injection, or to be injective, or to be one-to-one. If f is injective and
surjective, f is called a bijection, or to be bijective, or a one-to-one mapping
from A onto B. If there exists a one-to-one mapping from A onto B, A is
said to be one-to-one correspondent with B. A bijection from a finite set to
itself is also called a permutation on the set, or of its elements.

If f is a partial or single-valued function from A to B, the inverse relation
f−1 is also called the inverse function of f . Thus f−1(b) = {a ∈ A | (a, b) ∈
f} = {a ∈ A | f(a) = b}. For any b in B, whenever |f−1(b)| = 1, we also use
f−1(b) to denote the unique element, say a, in f−1(b), where f(a) = b; from
the context, the reader can easily understand the meaning of the notation
without ambiguity. It is easy to see that if f is a bijection from A to B,
then f−1 is a bijection from B to A and f−1(f(a)) = a for any a ∈ A,
f(f−1(b)) = b for any b ∈ B.

An injection f from A to B is also called an invertible function, or an
invertible transformation in the case of A = B; a partial or single-valued
function g from B to A is called an inverse function, or an inverse transfor-
mation in the case of A = B, of f , if g(f(a)) = a holds for any a ∈ A. For
any partial or single-valued function fi from Ai to Bi, i = 1, 2, if A2 ⊆ A1,
B2 ⊆ B1 and f1(a) = f2(a) for any a ∈ A2, f2 is called a restriction of f1

(on A2). We use f1|A2 to denote a restriction of f1 on A2. Clearly, if g is an
inverse function of f , then the inverse function f−1 of f is a restriction of
g. We also use f−1 to denote an inverse function of f ; from the context, the
reader can easily understand the meaning of the notation without ambiguity.

A vector function of dimension n in s variables over F means a single-
valued function from the s-fold Cartesian product of F (respectively an
s-dimensional vector space over F ) to the n-fold Cartesian product of F (re-
spectively an n-dimensional vector space over F ). For a vector function ϕ of
dimension n in s variables over F , its value at the point (x1, . . . , xs) is usually
expressed as ϕ(x1, . . . , xs); for any i, 1 � i � n, the i-th component function
of ϕ is a single-valued function from the s-fold Cartesian product of F (re-
spectively an s-dimensional vector space over F ) to F of which the value at
each point (x1, . . . , xs) is the i-th component of ϕ(x1, . . . , xs). A vector func-
tion over {0, 1} is called a Boolean vector function. A Boolean function means
a Boolean vector function of dimension 1. A Boolean function ϕ(x1, . . . , xs)
in s variables can be expressed by a polynomial of x1, . . . , xs; if the degree
of the polynomial is greater than 1, ϕ is said to be nonlinear. The Boolean
function in s variables of which all values are 0 is called the zero Boolean
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function in s variables. The function on A of which the value at each a in A

equals a is called the identity function on A.

1.1.2 Graphs

We will discuss some fundamental concepts of graph. (V, Γ ) is called a (di-
rected) graph, if Γ ⊆ V × V for a nonempty set V . V is called the vertex
set, and elements in V are called vertices. Γ is called the arc set or the di-
rected edge set, and elements in Γ are called arcs or directed edges. For an arc
u = (a, b) ∈ Γ , a is called the initial vertex of u, and b the terminal vertex
of u.

Let w = u1u2 . . . ui . . . be a finite or infinite sequence of arcs, where ui ∈
Γ , i = 1, 2, . . . If the terminal vertex of ui is the initial vertex of ui+1 for any
ui, ui+1 in w, w is called a path of the graph (V, Γ ). The number of arcs in w

is called the length of the path w. The initial vertex of u1 is called the initial
vertex of the path w; and the terminal vertex of un is called the terminal
vertex of the path w if the length of the path w is n.

If w = u1u2 . . . un is a path of the graph (V, Γ ) and the terminal vertex of
the arc un is the initial vertex of the arc u1, the path w is called a circuit of
the graph (V, Γ ). Evidently, if there exists a circuit, then there exists a path
of infinite length.

For any vertex a, the set {b|(b, a) ∈ Γ, b ∈ V } is called the incoming vertex
set of a, and the set {b|(a, b) ∈ Γ, b ∈ V } is called the outgoing vertex set of
a.

A vertex of which both the incoming vertex set and the outgoing vertex
set are empty is called an isolated vertex.

We define recurrently the levels of vertices as follows. For any vertex a in
V , if the incoming vertex set of a is empty, the level of a is defined to be 0.
For any vertex a in V , if the levels of all vertices in the incoming vertex set
of a have been defined and the maximum is h, the level of a is defined to be
h + 1.

For any arc u = (a, b), if levels of a and b have been defined, the level of
the arc u is defined to be the level of the vertex a.

If the level of each vertex of (V, Γ ) is defined and the maximum is h, we
say that the graph has level, and the level of the graph is defined to be h− 1.

Clearly, if each vertex of (V, Γ ) is an isolated vertex, then the level of the
graph is −1.

If V is finite, the graph (V, Γ ) is said to be finite.
Notice that for a finite graph, it has no circuit if and only if it has level,

and the maximum of its path-lengths equals its level plus 1 if it has level.
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It is convenient for some applications to introduce the empty graph. The
vertex set and the arc set of the empty graph can be regarded as the empty
set. The level of the empty graph is defined to be −2.

Two graphs (V, Γ ) and (V ′, Γ ′) are said to be isomorphic, if there exists
a one-to-one mapping ϕ from V onto V ′ such that (a, b) is an arc of (V, Γ ) if
and only if (ϕ(a), ϕ(b)) is an arc of (V ′, Γ ′). Any such mapping ϕ is called an
isomorphism from (V, Γ ) to (V ′, Γ ′). An isomorphism from a graph to itself
is called an automorphism of the graph.

A graph (V ′, Γ ′) is called a subgraph of a graph (V, Γ ), if V ′ ⊆ V and
Γ ′ ⊆ Γ .

A graph (V, Γ ) is called a tree with root v, if the following conditions
hold: (a) each vertex (
= v) is a terminal vertex of a unique arc; (b) v is not
a terminal vertex of any arc; and (c) (V, Γ ) has no circuit.

A vertex of a tree is called a leaf, if no arc emits from the vertex, i.e., the
outgoing vertex set of the vertex is empty.

Let (V, Γ ) and (V ′, Γ ′) be two trees. If (V ′, Γ ′) is a subgraph of (V, Γ ),
(V ′, Γ ′) is called a subtree of (V, Γ ).

Let G be a (directed) graph (respectively tree). If an element of some set
is assigned to each arc of G, or if an element of some set is assigned to each
arc of G and an element of some set is assigned to each vertex of G, G is
called a labelled graph (respectively labelled tree). The element assigned to an
arc (respectively a vertex) is referred to as the arc (respectively vertex) label
of the arc (respectively vertex).

1.2 Definitions of Finite Automata

1.2.1 Finite Automata as Transducers

For any set A, the concatenation of elements in A, say a0a1 . . . al−1, is called
a word (or a finite sequence) over A, and l its length, where a0, a1, . . . , al−1

are elements in A. In the case of l = 0, a0a1 . . . al−1 is a void sequence which
contains no element. The void sequence is called the empty word and its
length is 0. We use ε to denote the empty word (void sequence), and |α| the
length of a word α. The set of all the words over A including the empty word
is denoted by A∗. If a0, a1, . . . , an, . . . are elements in A, the concatenation
of the infinite elements a0a1 . . . an . . . is called an infinite-length word or an
ω-word (or an infinite sequence) over A. We use Aω to denote the set of all
infinite-length words over A. We also use An to denote the set of all words
over A of length n for any nonnegative integer n.

Let α = a0a1 . . . am−1 and β = b0b1 . . . bn−1 be two words in A∗. The
concatenation of α and β is a0a1 . . . am−1b0b1 . . . bn−1, which is also a word in
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A∗ of length m+n, and is denoted by α·β, or αβ for short. Clearly, α·ε = ε·α =
α. Similarly, if α = a0a1 . . . am−1 is in A∗ and β = b0b1 . . . bn−1 . . . in Aω,
then the concatenation of α and β is the element a0a1 . . . am−1b0b1 . . . bn−1 . . .

in Aω which is also denoted by α · β, or αβ for short. Clearly, ε · β = β. β is
called a prefix of α, if there exists γ such that α = βγ. β is called a suffix of
α, if there exists γ such that α = γβ. For any U, V ⊆ A∗, the concatenation
of U and V is the set {αβ | α ∈ U, β ∈ V }, denoted by UV .

A finite automaton is a quintuple 〈X, Y, S, δ, λ〉, where X, Y and S are
nonempty finite sets, δ is a single-valued mapping from S ×X to S, and λ is
a single-valued mapping from S × X to Y . X, Y and S are called the input
alphabet, the output alphabet and the state alphabet of the finite automaton,
respectively; and δ and λ are called the next state function and the output
function of the finite automaton, respectively.

Expand the domain of δ to S × X∗ as follows. For any state s0 in S and
any l(> 0) input letters x0, x1, . . . , xl−1 in X, we compute recurrently states
s1, . . . , sl in S by

si+1 = δ(si, xi), i = 0, 1, . . . , l − 1,

and define

δ(s0, x0x1 . . . xl−1) = sl.

In the case of l = 0, we define

δ(s0, ε) = s0.

Expand the domain of λ to S × (X∗ ∪Xω) and the range of λ to Y ∗ ∪ Y ω as
follows. For any state s0 in S and any l(> 0) input letters x0, x1, . . . , xl−1 in
X, we define

λ(s0, x0x1 . . . xl−1) = y0y1 . . . yl−1,

where

yi = λ(δ(s0, x0x1 . . . xi−1), xi), i = 0, 1, . . . , l − 1.

In the case of l = 0, we define

λ(s0, ε) = ε.

For any state s0 in S and any infinite input letters x0, x1, . . . in X, we define

λ(s0, x0x1 . . .) = y0y1 . . . ,

where
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yi = λ(δ(s0, x0x1 . . . xi−1), xi), i = 0, 1, . . .

From the definitions, it is easy to see that

δ(s, αβ) = δ(δ(s, α), β), s ∈ S, α, β ∈ X∗

and

λ(s, αβ) = λ(s, α)λ(δ(s, α), β), s ∈ S, α ∈ X∗, β ∈ X∗ ∪ Xω. (1.1)

Notice that each state s of the finite automaton determines a single-valued
mapping λs from X∗ ∪ Xω to Y ∗ ∪ Y ω, where

λs(α) = λ(s, α), α ∈ X∗ ∪ Xω.

λs is called the automaton mapping of s of which the restriction λs|X∗ is a
single-valued mapping from X∗ to Y ∗ and the restriction λs|Xω is a single-
valued mapping from Xω to Y ω. From (1.1), it is evident that λs|X∗ and
λs|Xω can be determined by each other. A single-valued mapping ϕ from X∗

to Y ∗ is said to be sequential, if |ϕ(α)| = |α| for any α ∈ X∗ and ϕ(β) is a
prefix of ϕ(α) for any α ∈ X∗ and any prefix β of α. From the definition of
λ and (1.1), λs|X∗ is sequential.

Example 1.2.1. Let X = Y = {0, 1} and S = {0, 1}n = {〈a1, . . . , an〉|a1, . . .,
an = 0, 1}. Define

δ(〈a1, . . . , an〉, x) = 〈a2, . . . , an, f(a1, . . . , an, x)〉,
λ(〈a1, . . . , an〉, x) = g(a1, . . . , an, x),

a1, . . . , an, x = 0, 1,

where f and g are two single-valued mappings from {0, 1}n+1 to {0, 1}. Then
〈X, Y, S, δ, λ〉 is a finite automaton. We use BSRf,g to denote the finite
automaton. The name is an abbreviation of the phrase “Binary Shift Register
with feedback function f and mixer g ”. Given s0 = 〈a−n, . . . , a−1〉 ∈ S and
xi ∈ X, i = 0, 1, . . ., let

λ(s0, x0x1 . . . xi . . .) = y0y1 . . . yi . . .

for some yi ∈ Y , i = 0, 1, . . . Then

yi = g(ai−n, . . . , ai−1, xi), i = 0, 1, . . .

and
δ(s0, x0x1 . . . xi−1) = 〈ai−n, . . . , ai−1〉, i = 0, 1, . . . ,

where
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ai = f(ai−n, . . . , ai−1, xi), i = 0, 1, . . .

A special case is of interest, where f(a1, . . . , an, x) does not depend on
x, that is, f is a single-valued mapping from {0, 1}n to {0, 1}, and g can be
expressed as

g(a1, . . . , an, x) = g′(a1, . . . , an) ⊕ x,

⊕ standing for the exclusive-or operation, that is, the addition modulo 2
operation. This automaton is called the binary steam cipher in cryptology
community. The key-sequence is generated by a shift register with feedback
function f and output logic g′; the mixer of the key and the input is the
addition modulo 2. Given s0 = 〈a−n, . . . , a−1〉 ∈ S and xi ∈ X, i = 0, 1, . . .,
let

λ(s0, x0x1 . . . xi . . .) = y0y1 . . . yi . . .

for some yi ∈ Y , i = 0, 1, . . . Then

yi = g′(ai−n, . . . , ai−1) ⊕ xi, i = 0, 1, . . .

and
δ(s0, x0x1 . . . xi−1) = 〈ai−n, . . . , ai−1〉, i = 0, 1, . . . ,

where
ai = f(ai−n, . . . , ai−1), i = 0, 1, . . .

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two finite automata. For any
si ∈ Si, i = 1, 2, s1 and s2 are said to be equivalent, denoted by s1 ∼ s2, if
X1 = X2 and for any α ∈ X∗

1 , λ1(s1, α) = λ2(s2, α) holds.
Let λi,si

be the automaton mapping of si, i = 1, 2. Consider λi,si
|X∗

i
as

a mapping from X∗
i to (Y1 ∪ Y2)∗. Then s1 ∼ s2 if and only if λ1,s1 |X∗

1
=

λ2,s2 |X∗
2
. Consider λi,si

|Xω
i

as a mapping from Xω
i to (Y1∪Y2)ω. Since λi,si

|X∗
i

and λi,si
|Xω

i
are determined by each other, we have that s1 ∼ s2 if and only

if λ1,s1 |Xω
1

= λ2,s2 |Xω
2
. Therefore, s1 ∼ s2 if and only if λ1,s1 = λ2,s2 . In other

words, s1 ∼ s2 if and only if for any α ∈ Xω
1 (= Xω

2 ), λ1(s1, α) = λ2(s2, α)
holds, if and only if for any α ∈ X∗

1 ∪Xω
1 (= X∗

2 ∪Xω
2 ), λ1(s1, α) = λ2(s2, α)

holds.
From the definition, it is easy to show that the relation ∼ is reflexive,

symmetric and transitive.
If s1 ∼ s2 and α ∈ X∗

1 , then δ(s1, α) ∼ δ(s2, α). In fact, since s1 ∼ s2,
for any β ∈ X∗

1 , we have λ1(s1, α) = λ2(s2, α) and λ1(s1, αβ) = λ2(s2, αβ).
From

λi(si, αβ) = λi(si, α)λi(δi(si, α), β), i = 1, 2,

it follows that
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λ1(s1, α)λ1(δ1(s1, α), β) = λ2(s2, α)λ2(δ2(s2, α), β).

Thus

λ1(δ1(s1, α), β) = λ2(δ2(s2, α), β).

We conclude that δ(s1, α) ∼ δ(s2, α).
M2 is said to be stronger than M1, denoted by M1 ≺ M2, if for any state

s1 in S1, there exists a state s2 in S2 such that s1 ∼ s2. M1 and M2 are
said to be equivalent, denoted by M1 ∼ M2, if M1 ≺ M2 and M2 ≺ M1.
Clearly, the relation ≺ is reflexive and transitive, and the relation ∼ on finite
automata is reflexive, symmetric and transitive.

A finite automaton is said to be minimal, if any different states of it are
not equivalent.

M1 and M2 are said to be isomorphic, if X1 = X2, Y1 = Y2 and there
exists a one-to-one mapping ϕ from S1 onto S2 such that

ϕ(δ1(s1, x)) = δ2(ϕ(s1), x), λ1(s1, x) = λ2(ϕ(s1), x), s1 ∈ S1, x ∈ X1.

ϕ is called an isomorphism from M1 to M2.
If M1 and M2 are isomorphic, then M1 and M2 are equivalent. In fact,

since M1 and M2 are isomorphic, there exists an isomorphism ϕ from M1 to
M2. We prove by induction on the length of α that

λ1(s, α) = λ2(ϕ(s), α) (1.2)

holds for any s in S1 and any α in X∗
1 . Basis : |α| = 0, i.e., α = ε. Since

λ1(s, α) = ε = λ2(ϕ(s), α)

holds for any s in S1, (1.2) holds for any s in S1 and α = ε. Induction step :
Suppose that we have proven that (1.2) holds for any s in S1 and any α in
X∗

1 of length n. Given α ∈ X∗
1 of length n + 1, let α = xα′, where x ∈ X1.

Then the length of α′ is n. Since M1 and M2 are isomorphic, we have

ϕ(δ1(s, x)) = δ2(ϕ(s), x)

and

λ1(s, x) = λ2(ϕ(s), x).

From the induction hypothesis, we have

λ1(δ1(s, x), α′) = λ2(ϕ(δ1(s, x)), α′).

Thus
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λ1(s, α) = λ1(s, xα′) = λ1(s, x)λ1(δ1(s, x), α′)

= λ2(ϕ(s), x)λ2(ϕ(δ1(s, x)), α′)

= λ2(ϕ(s), x)λ2(δ2(ϕ(s), x), α′)

= λ2(ϕ(s), xα′) = λ2(ϕ(s), α).

Therefore, (1.2) holds for any s in S1 and any α in X∗
1 of length n + 1. We

conclude that (1.2) holds for any s in S1 and any α in X∗
1 . Thus s ∼ ϕ(s),

s ∈ S1. Since ϕ is surjective, M1 and M2 are equivalent.
Conversely, if M1 and M2 are minimal and equivalent, and Y1 = Y2, then

M1 and M2 are isomorphic. In fact, since M1 and M2 are equivalent, we have
X1 = X2 and for any state s in S1 we can find a state s′ in S2 with s ∼ s′. Let
ϕ be the relation ∼ from S1 to S2. Since M2 is minimal, ϕ is single-valued.
Since M1 and M2 are equivalent, ϕ is a mapping from S1 onto S2. To prove
ϕ is one-to-one, suppose that ϕ(s1) = ϕ(s2). Since si ∼ ϕ(si), i = 1, 2, we
have s1 ∼ s2. Since M1 is minimal, this yields s1 = s2. Thus ϕ is one-to-one.
We conclude that ϕ is a one-to-one mapping from S1 onto S2. To prove that
M1 and M2 are isomorphic, it is sufficient to prove that ϕ is an isomorphism.
Since s ∼ ϕ(s) holds for any s in S1, for any x in X1, we have

λ1(s, x) = λ2(ϕ(s), x)

and δ1(s1, x) ∼ δ2(ϕ(s), x). The latter yields

ϕ(δ1(s1, x)) = δ2(ϕ(s), x).

Therefore, ϕ is an isomorphism from M1 to M2.
M1 is called a finite subautomaton of M2, denoted by M1 � M2, if X1 ⊆

X2, Y1 ⊆ Y2, S1 ⊆ S2, and

δ1(s, x) = δ2(s, x), λ1(s, x) = λ2(s, x),

s ∈ S1, x ∈ X1.

For any finite automaton M = 〈X, Y, S, δ, λ〉, any nonempty subset X ′

of X and any nonempty subset S′ of S, if δ(S′, X ′) = {δ(s, x) | s ∈ S′, x ∈
X ′} ⊆ S′, S′ is said to be closed with respect to X ′ in M . Clearly, given
M2, for any nonempty subset X1 of X2, any nonempty subset S1 of S2, and
any nonempty subset Y1 of Y2, if S1 is closed with respect to X1 in M2 and
λ2(S1, X1) = {λ2(s, x) | s ∈ S1, x ∈ X1} ⊆ Y1, then

〈X1, Y1, S1, δ2|S1×X1 , λ2|S1×X1〉

is a finite subautomaton of M2.
For any states s and s′ of a finite automaton 〈X, Y, S, δ, λ〉, if there exists

x ∈ X such that s′ = δ(s, x), s′ is called a successor state of s; if s′ is a
successor state of s, s is called a predecessor state of s′.
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1.2.2 Special Finite Automata

We give definitions of several special finite automata.
Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. If for any s in S, δ(s, x)

and λ(s, x) do not depend on x, M is said to be autonomous. We abbreviate
the autonomous finite automaton to a quadruple 〈Y, S, δ, λ〉, where δ is a
single-valued mapping from S to S, and λ is a single-valued mapping from S

to Y .

Example 1.2.2. Let Y = {0, 1} and S = {0, 1}n = {〈a1, . . . , an〉|a1, . . . , an =
0, 1}. Define

δ(〈a1, . . . , an〉) = 〈a2, . . . , an, f(a1, . . . , an)〉,
λ(〈a1, . . . , an〉) = g(a1, . . . , an),

a1, . . . , an = 0, 1,

where f and g are two single-valued mappings from {0, 1}n to {0, 1}. Then
〈Y, S, δ, λ〉 is an autonomous finite automaton. We use BASRf,g to denote
the autonomous finite automaton. The name is an abbreviation of the phrase
“Binary Autonomous Shift Register with feedback function f and output
function g”.

Let Mi = 〈Yi, Si, δi, λi〉, i = 1, 2 be two autonomous finite automata. M1

is called an (autonomous) finite subautomaton of M2, denoted by M1 � M2,
if Y1 ⊆ Y2, S1 ⊆ S2 and

δ1(s) = δ2(s), λ1(s) = λ2(s),

s ∈ S1.

For any autonomous finite automaton M = 〈Y, S, δ, λ〉 and any nonempty
subset S′ of S, if δ(S′) = {δ(s) | s ∈ S′} ⊆ S, S′ is said to be closed in
M . Clearly, given M2, for any nonempty subset S1 of S2 and any nonempty
subset Y1 of Y2, if S1 is closed in M2 and λ2(S1) = {λ2(s) | s ∈ S1} ⊆ Y1,
then 〈Y1, S1, δ2|S1 , λ2|S1〉 is an autonomous finite subautomaton of M2.

For any single-valued mapping f from Y k × Xh+1 to Y , where h and k

are nonnegative integers, and X and Y are two nonempty finite sets, we use
Mf to denote a finite automaton defined by

yi = f(yi−1, . . . , yi−k, xi, . . . , xi−h), i = 0, 1, . . .

More precisely, Mf = 〈X, Y, Y k × Xh, δ, λ〉, where

δ(〈y−1, . . . , y−k, x−1, . . . , x−h〉, x0)

= 〈y0, y−1, . . . , y−k+1, x0, x−1, . . . , x−h+1〉,
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λ(〈y−1, . . . , y−k, x−1, . . . , x−h〉, x0) = y0,

y0 = f(y−1, . . . , y−k, x0, x−1, . . . , x−h),

y−1, . . . , y−k ∈ Y, x0, x−1, . . . , x−h ∈ X.

Mf is called the (h, k)-order memory finite automaton determined by f . In
the case of k = 0, Mf is called the h-order input-memory finite automaton
determined by f .

Let f and g be single-valued mappings from Y k × Up+1 × Xh+1 to Y

and U , respectively, where h and k are nonnegative integers, p � −1 is an
integer, X, Y and U are nonempty finite sets. We use Mf,g to denote a finite
automaton defined by

yi = f(yi−1, . . . , yi−k, ui, . . . , ui−p, xi, . . . , xi−h),

ui+1 = g(yi−1, . . . , yi−k, ui, . . . , ui−p, xi, . . . , xi−h),

i = 0, 1, . . .

More precisely, Mf,g = 〈X, Y, Y k × Up+1 × Xh, δ, λ〉, where

δ(s, x0) = 〈y0, . . . , y−k+1, u1, . . . , u−p+1, x0, . . . , x−h+1〉,
λ(s, x0) = y0,

y0 = f(y−1, . . . , y−k, u0, . . . , u−p, x0, . . . , x−h),

u1 = g(y−1, . . . , y−k, u0, . . . , u−p, x0, . . . , x−h),

s = 〈y−1, . . . , y−k, u0, . . . , u−p, x−1, . . . , x−h〉 ∈ Y k × Up+1 × Xh,

x0 ∈ X.

Mf,g is called the (h, k, p)-order pseudo-memory finite automaton determined
by f and g. Clearly, in the case of p = −1, Mf,g degenerates to Mf .

Let Ma = 〈Ya, Sa, δa, λa〉 be an autonomous finite automaton, f a single-
valued mapping from Xc+1 × λa(Sa) to Y . We use SIM(Ma, f) to denote a
finite automaton 〈X, Y,Xc × Sa, δ, λ〉, where

δ(〈x−1, . . . , x−c, sa〉, x0) = 〈x0, x−1, . . . , x−c+1, δa(sa)〉,
λ(〈x−1, . . . , x−c, sa〉, x0) = f(x0, x−1, . . . , x−c, λa(sa)),

x0, x−1, . . . , x−c ∈ X, sa ∈ Sa.

SIM(Ma, f) is referred to as a c-order semi-input-memory finite automaton
determined by Ma and f .

Clearly, if f(x0, . . . , x−c, t) does not depend on t, then SIM(Ma, f)
degenerates to the input-memory finite automaton Mf ′ , where f ′(x0, . . . ,

x−c) = f(x0, . . . , x−c, t), t being an arbitrarily given element in λa(Sa).
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A finite automaton 〈X, Y, S, δ, λ〉 is said to be linear over the finite field
GF (q), if X, Y and S are vector spaces over GF (q) of dimensions l, m and n,
respectively, δ is a linear mapping from S×X to S, and λ is a linear mapping
from S × X to Y , where l, m and n are some nonnegative integers.

In the case where X, Y and S consist of all column vectors over GF (q)
of dimensions l, m and n, respectively, δ may be given by an n×n matrix A

and an n× l matrix B over GF (q), and λ may be given by an m× n matrix
C and an m × l matrix D over GF (q), that is,

δ(s, x) = As + Bx,

λ(s, x) = Cs + Dx,

s ∈ S, x ∈ X.

The matrices A, B, C, D are called structure matrices of the finite automaton
and l, m, n structure parameters of the finite automaton. A is referred to as
the state transition matrix of the finite automaton. In the autonomous case,
its structure matrices are A, C and its structure parameters are m, n.

1.2.3 Compound Finite Automata

For any two finite automata Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 with Y1 = X2,
we use C(M1,M2) to denote the superposition of M1 and M2, i.e., the finite
automaton 〈X1, Y2, S1 × S2, δ, λ〉, where

δ(〈s1, s2〉, x) = 〈δ1(s1, x), δ2(s2, λ1(s1, x))〉,
λ(〈s1, s2〉, x) = λ2(s2, λ1(s1, x)),

s1 ∈ S1, s2 ∈ S2, x ∈ X1.

Another kind of combination of finite automata may be defined as follows.
Let g be a single-valued mapping from Ur ×V p+1 to U , and f a single-valued
mapping from W t+1 to V . C ′(Mf ,Mg) = 〈W,U,Ur×W p+t, δ, λ〉 is a (p+t, r)-
order memory finite automaton defined by

ui = g(ui−1, . . . , ui−r, f(wi, . . . , wi−t), . . . , f(wi−p, . . . , wi−p−t)),

i = 0, 1, . . . ,

that is,

δ(〈u−1, . . . , u−r, w−1, . . . , w−p−t〉, w0)

= 〈u0, . . . , u−r+1, w0, . . . , w−p−t+1〉,
λ(〈u−1, . . . , u−r, w−1, . . . , w−p−t〉, w0) = u0,

u0 = g(u−1, . . . , u−r, f(w0, . . . , w−t), . . . , f(w−p, . . . , w−p−t)),

w0, w−1, . . . , w−p−t ∈ W, u−1, . . . , u−r ∈ U.
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Theorem 1.2.1. Let s = 〈u−1, . . . , u−r, w−1, . . . , w−p−t〉 be a state of
C ′(Mf , Mg). Let sf = 〈w−1, . . . , w−t〉 and sg = 〈u−1, . . . , u−r, v−1, . . . , v−p〉,
where vi = f(wi, . . . , wi−t), i = −1, . . . , −p. Then the state 〈sf , sg〉 of
C(Mf ,Mg) and s are equivalent. Moreover, if

v−p . . . v−1v0v1 . . . = λf (〈w−p−1, . . . , w−p−t〉, w−p . . . w−1w0w1 . . .) (1.3)

and

u0u1 . . . = λg(〈u−1, . . . , u−r, v−1, . . . , v−p〉, v0v1 . . .), (1.4)

then

u0u1 . . . = λ(〈u−1, . . . , u−r, w−1, . . . , w−p−t〉, w0w1 . . .), (1.5)

where λf , λg and λ are output functions of Mf , Mg and C ′(Mf ,Mg), respec-
tively.

Proof. Suppose that (1.3) and (1.4) hold. Then

vi = f(wi, . . . , wi−t), i = −p, . . . ,−1, 0, 1, . . . ,

and

ui = g(ui−1, . . . , ui−r, vi, . . . , vi−p), i = 0, 1, . . .

It immediately follows that

ui = g(ui−1, . . . , ui−r, f(wi, . . . , wi−t), . . . , f(wi−p, . . . , wi−p−t)),

i = 0, 1, . . .

Thus (1.5) holds.
For any w0, w1, . . . in W , suppose that

u0u1 . . . = λg(sg, λf (sf , w0w1 . . .)).

Then there exist v0, v1, . . . in V such that

v0v1 . . . = λf (sf , w0w1 . . .).

It follows that

u0u1 . . . = λg(sg, v0v1 . . .).

Therefore, (1.3) and (1.4) hold. From the result proven in the preceding
paragraph, (1.5) holds. Thus the state 〈sf , sg〉 of C(Mf , Mg) and the state
s of C ′(Mf , Mg) are equivalent. ��

For n � 1, we use C ′(M0,M1, . . . , Mn) to denote C ′(C ′(M0,M1, . . .,
Mn−1),Mn), and C(M0,M1, . . ., Mn) to denote C(C(M0,M1, . . . , Mn−1),
Mn). For n = 0, C ′(M0, . . . , Mn) and C(M0, . . . , Mn) mean M0. Clearly,
C ′(C ′( M0, M1, . . ., Mn−1), Mn) = C ′(M0, C ′(M1, . . ., Mn)), C(C(M0, M1,
. . ., Mn−1), Mn) = C(M0, C(M1, . . ., Mn)); that is, the associative law holds.
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1.2.4 Finite Automata as Recognizers

We have dealt with a finite automaton as a transducer which transforms an
input sequence to an output sequence of the same length.

We also defined a special kind of finite automata, i.e., autonomous finite
automata. Behavior of an autonomous finite automaton is producing periodic
sequences.

In history, a finite automaton is considered as an event (sequence)
recognizer in the early 1950s by S. C. Kleene who introduced the concept
of regular events and proved the equivalence between regular events and
acceptable events by finite automata, an important result in formal language
theory. We review some basic concepts.

For a finite automaton 〈X, Y, S, δ, λ〉, if |Y | = 1, it is called a finite
automaton without output, abbreviated to 〈X, S, δ〉.

If 〈X, S, δ〉 is a finite automaton without output, s0 ∈ S and F ⊆ S,
the quintuple 〈X, S, δ, s0, F 〉 is called a finite automaton recognizer, or finite
recognizer for short. s0 is called its initial state, and F its final state set.

Let M = 〈X, S, δ, s0, F 〉 be a finite automaton recognizer. The set
R(M) = {α | α ∈ X∗, δ(s0, α) ∈ F} is called the recognizing set of M .

For any finite automaton recognizer M = 〈X, S, δ, s0, F 〉 and any set
A ⊆ X∗, if R(M) = A, we say that M recognizes A.

1.3 Linear Finite Automata

We review some properties of linear finite automata and the definition of the
z-transformation for linear finite automata.

Theorem 1.3.1. Let M be a linear finite automaton over GF (q) with
structure matrices A,B, C, D. For any s0 in S and any x0, x1, . . . in X, let
si+1 = δ(si, xi), yi = λ(si, xi), i = 0, 1, . . . Then

si = Ais0 +
i−1∑
j=0

Ai−j−1Bxj ,

yi = CAis0 +
i∑

j=0

Hi−jxj ,

i = 0, 1, . . . ,

where H0 = D, Hj = CAj−1B, j > 0.

Proof. We prove by induction on i that si = Ais0+
∑i−1

j=0 Ai−j−1Bxj holds
for any i � 0. Basis : i = 0. It is trivial that s0 = A0s0 +

∑0−1
j=0 A0−j−1Bxj
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holds. Induction step : Suppose that si = Ais0 +
∑i−1

j=0 Ai−j−1Bxj holds.
Then

si+1 = Asi + Bxi = A
(
Ais0 +

i−1∑
j=0

Ai−j−1Bxj

)
+ Bxi

= Ai+1s0 +
i∑

j=0

Ai−jBxj .

That is, si+1 = Ai+1s0 +
∑i

j=0 Ai−jBxj holds. Therefore, si = Ais0 +∑i−1
j=0 Ai−j−1Bxj holds for any i � 0.
Using the proven result, for any i � 0, we have

yi = Csi + Dxi = C
(
Ais0 +

i−1∑
j=0

Ai−j−1Bxj

)
+ Dxi

= CAis0 +
i−1∑
j=0

CAi−j−1Bxj + Dxi = CAis0 +
i∑

j=0

Hi−jxj .

That is, yi = CAis0 +
∑i

j=0 Hi−jxj holds for any i � 0. ��

Theorem 1.3.2. Let M = 〈X, Y, S, δ, λ〉 be a linear finite automaton over
GF (q) with structure matrices A,B, C, D. For any si ∈ S, any αi ∈ Xω, any
ci ∈ GF (q), i = 1, 2, we have

λ(c1s1 + c2s2, c1α1 + c2α2) = c1λ(s1, α1) + c2λ(s2, α2).

Proof. For any infinite sequence (ω-word) β, denote β = (β)0(β)1 . . .,
where |(β)i| = 1, i = 0, 1, . . . From Theorem 1.3.1, we have

(λ(c1s1 + c2s2, c1α1 + c2α2))i

= CAi(c1s1 + c2s2) +
i∑

j=0

Hi−j(c1α1 + c2α2)j

= CAi(c1s1 + c2s2) +
i∑

j=0

Hi−j((c1α1)j + (c2α2)j)

= c1CAis1 + c2CAis2 + c1

i∑
j=0

Hi−j(α1)j + c2

i∑
j=0

Hi−j(α2)j

= c1(λ(s1, α1))i + c2(λ(s2, α2))i,

i = 0, 1, . . .

Thus λ(c1s1 + c2s2, c1α1 + c2α2) = c1λ(s1, α1) + c2λ(s2, α2). ��
From the proof of Theorem 1.3.2, we have the following corollaries.
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Corollary 1.3.1. Let M = 〈X, Y, S, δ, λ〉 be a linear finite automaton over
GF (q). For any positive integer k, any si ∈ S, any αi ∈ X∗ with |αi| = k,

any ci ∈ GF (q), i = 1, 2, we have

λ(c1s1 + c2s2, c1α1 + c2α2) = c1λ(s1, α1) + c2λ(s2, α2).

Corollary 1.3.2. Let M = 〈X, Y, S, δ, λ〉 be a linear finite automaton over
GF (q). For any s ∈ S and any α ∈ Xω, we have

λ(s, α) = λ(s, 0ω) + λ(0, α),

where 0 stands for the zero vector in S, and 0ω stands for an infinite sequence
consisting of zero vectors in X.

λ(s, 0ω) is called the free response of the state s, and λ(0, α) the force
response of the input α. Corollary 1.3.2 means that any output sequence of
any linear finite automaton can be decomposed into the free response of the
initial state and the force response of the input sequence.

Clearly, all the free responses of a linear finite automaton over GF (q) is
a vector space over GF (q).

Theorem 1.3.3. Let Mi = 〈Xi, Yi, Si, δi, λi〉 be a linear finite automaton
over GF (q), i = 1, 2, and X1 = X2. For any si ∈ Si, i = 1, 2, s1 ∼ s2 if and
only if the zero state of M1 and the zero state of M2 are equivalent and the
free responses of s1 and s2 are the same.

Proof. Suppose that s1 ∼ s2. For any α ∈ Xω
1 , we then have λ1(s1, α) =

λ2(s2, α). Especially, taking α = 0ω, we obtain λ1(s1, 0ω) = λ2(s2, 0ω), that
is, the free responses of s1 and s2 are the same. Since λi(si, α) = λi(si, 0ω)
+λi(0, α), i = 1, 2, λ1(s1, α) = λ2(s2, α) yields λ1(0, α) = λ2(0, α). It follows
that the zero state of M1 and the zero state of M2 are equivalent.

Conversely, suppose that the zero state of M1 and the zero state of M2

are equivalent and the free responses of s1 and s2 are the same. Then for
any α ∈ Xω

1 , λ1(0, α) = λ2(0, α), and λ1(s1, 0ω) = λ2(s2, 0ω). Thus for any
α ∈ Xω

1 , λ1(s1, α) = λ1(s1, 0ω) +λ1(0, α) = λ2(s2, 0ω) +λ2(0, α) = λ2(s2, α).
Therefore, s1 ∼ s2. ��

Corollary 1.3.3. Let M be a linear finite automaton over GF (q). For any
states s1 and s2 of M, s1 ∼ s2 if and only if the free responses of s1 and s2

are the same.

Corollary 1.3.4. Let M1 and M2 be two linear finite automata over GF (q).
Then M1 ∼ M2 if and only if the zero state of M1 and the zero state of M2

are equivalent and the free response spaces of M1 and M2 are the same.
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Corollary 1.3.5. Let M and M ′ be two linear finite automata over GF (q).
If the state si of M and the state s′i of M ′ are equivalent, i = 1, . . . , k, then
for any ci in GF (q), i = 1, . . . , k, the state c1s1 + · · · + cksk of M and the
state c1s

′
1 + · · · + cks′k of M ′ are equivalent.

Let M be a linear finite automaton over GF (q) with structure matrices
A,B, C, D and structure parameters l, m, n. The matrix

Kn =

⎡
⎢⎢⎢⎣

C
CA
...
CAn−1

⎤
⎥⎥⎥⎦

is called the diagnostic matrix of M .
For any states s1 and s2 of M , since s1 ∼ s2 if and only if their free

responses are the same, s1 ∼ s2 if and only if CAis1 = CAis2, i = 0, 1, . . .

Since the degree of the minimal polynomial of A is at most n, s1 ∼ s2 if
and only if CAis1 = CAis2, i = 0, 1, . . . , n − 1. Thus s1 ∼ s2 if and only if
Kns1 = Kns2.

Let T be a matrix consisting of some maximal independent rows of Kn.
Then s1 ∼ s2 if and only if Ts1 = Ts2.

Theorem 1.3.4. Let M be a linear finite automaton over GF (q) with
structure matrices A,B, C, D. Assume that a matrix T over GF (q) satisfies
conditions: rows of T are linear independent and for any states s1 and s2 of M

s1 ∼ s2 if and only if Ts1 = Ts2. Let M ′ be a linear finite automaton over
GF (q) with structure matrices A′, B′, C ′, D′, where A′ = TAR, B′ = TB,

C ′ = CR, D′ = D, R is a right inverse matrix of T . Then M ′ is minimal
and equivalent to M .

Proof. Clearly, for any state s of M , Ts = T (RTs); therefore, s ∼ RTs.
We prove TART = TA. For any state s of M , the input 0 carries states

s and RTs to states As and ARTs, respectively. From RTs ∼ s, we have
ARTs ∼ As. It follows that TARTs = TAs. From arbitrariness of s, we have
TART = TA.

We prove CRT = C. For any state s of M , since s ∼ RTs, the output of
the input 0 on the state s and the output of the input 0 on the state RTs are
the same, namely, Cs = CRTs. From arbitrariness of s, we have C = CRT .

For any state s of M , Ts is a state of M ′. We prove s ∼ Ts. For any input
sequence x0x1 . . ., let the output sequences on s and on Ts be y0y1 . . . and
y′
0y

′
1 . . ., respectively. From Theorem 1.3.1, we have

yi = CAis + Dx0 +
i∑

j=1

CAi−j−1Bxj ,
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y′
i = C ′A′iTs + D′x0 +

i∑
j=1

C ′A′i−j−1B′xj ,

i = 0, 1, . . .

Using TART = TA and CRT = C, this yields

y′
i = (CR)(TAR)iTs + Dx0 +

i∑
j=1

(CR)(TAR)i−j−1(TB)xj

= (CR)TAis + Dx0 +
i∑

j=1

(CR)TAi−j−1Bxj

= CAis + Dx0 +
i∑

j=1

CAi−j−1Bxj = yi,

i = 0, 1, . . .

Thus s ∼ Ts.
Since for any state s′ of M ′ there exists a state s of M such that s′ = Ts,

we have s ∼ s′. On the other hand, for any state s of M , the state Ts of M ′

is equivalent to s. Thus M ′ and M are equivalent.
We prove that M ′ is minimal. Suppose that s′1 and s′2 are two equivalent

states of M ′. Let si = Rs′i, i = 1, 2. Then si and Tsi (=s′i) are equivalent,
i = 1, 2. From s′1 ∼ s′2, we have s1 ∼ s2. It follows that Ts1 = Ts2. That is,
s′1 = s′2. Thus M ′ is minimal. ��

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two linear finite automata over
GF (q). M1 and M2 are said to be similar, if there exists a linear isomorphism
from M1 to M2. From the definition, it is easy to show that the similar relation
is reflexive, symmetric and transitive.

If M1 and M2 are minimal and equivalent, and Y1 = Y2, then M1 and
M2 are similar. In fact, it is proven in Subsect. 1.2.1 that the relation ∼ is
an isomorphism from M1 to M2. Let ϕ be the relation ∼ from S1 to S2. We
prove that ϕ is linear. Let ci ∈ GF (q), si ∈ S1, i = 1, 2. Since si ∼ ϕ(si),
i = 1, 2, from Corollary 1.3.5, we have c1s1 + c2s2 ∼ c1ϕ(s1) + c2ϕ(s2). Thus
ϕ(c1s1 +c2s2) = c1ϕ(s1)+c2ϕ(s2). We conclude that M1 and M2 are similar.

Let f(z) = zk + ak−1z
k−1 + · · · + a1z + a0 be a polynomial over GF (q).

We use Pf(z) to denote the matrix

Pf(z) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −ak−2 −ak−1

⎤
⎥⎥⎥⎥⎥⎦ . (1.6)
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A linear finite automaton is called a linear shift register, if its state transition
matrix is Pf(z) for some f(z).

Let Mi = 〈X, Y, Si, δi, λi〉 be a linear finite automaton over GF (q) with
structure matrices Ai, Bi, Ci, Di and structure parameters l, m, ni, i =
1, . . . , h. The linear finite automaton with structure matrices A, B, C, D is
called the union of M1, . . ., Mh, where

A =

⎡
⎢⎢⎢⎣

A1

A2

. . .
Ah

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

B1

B2

...
Bh

⎤
⎥⎥⎥⎦ ,

C = [C1 C2 . . . Ch], D = D1 + D2 + · · · + Dh.

In the definition, some Mi may be autonomous, where Bi and Di are zero
matrices.

Theorem 1.3.5. Let M be a linear finite automaton over GF (q). Then
there exist linear shift registers M1, . . . , Mh over GF (q) such that M is
similar to the union of M1, . . . , Mh.

Proof. Let A, B, C, D be structure matrices of M . It is known that there
exists a nonsingular matrix P over GF (q) such that

PAP−1 =

⎡
⎢⎢⎢⎣

Pf1(z)

Pf2(z)

. . .
Pfh(z)

⎤
⎥⎥⎥⎦ ,

where f1(z), . . ., fh(z) are the elementary divisors of A. Let M ′ be a linear
finite automaton with structure matrices A′, B′, C ′, D, where A′ = PAP−1,
B′ = PB, C ′ = CP−1. Clearly, M and M ′ are similar. Let Mi be a linear
shift register with structure matrices Pfi(z), Bi, Ci, Di, i = 1, . . . , h, where

PB =

⎡
⎢⎢⎢⎣

B1

B2

...
Bh

⎤
⎥⎥⎥⎦ , CP−1 = [C1 C2 . . . Ch], D = D1 + D2 + · · · + Dh.

Clearly, M ′ is the union of M1, . . ., Mh. ��
Let M = 〈X, Y, S, δ, λ〉 be a linear finite automata over GF (q) with

structure matrices A,B, C, D and structure parameters l, m, n. Let S0 =
{δ(0, α), α ∈ X∗}. Denote the restrictions of δ and λ on S0×X by δ0 and λ0,
respectively. It is easy to verify that δ0 and λ0 are single-valued mappings
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from S0×X to S0 and Y , respectively. Thus M0 = 〈X, Y, S0, δ0, λ0〉 is a finite
subautomaton of M . It is easy to see that S0 is a subspace of S. Denote the
dimension of S0 by n0. Let R be an n × n0 matrix so that columns of R

form a basis of S0. Let T be a left inverse matrix of R. Define A0 = TAR,
B0 = TB, C0 = CR, and D0 = D. Let M ′

0 = 〈X, Y, S′
0, δ

′
0, λ

′
0〉 be a linear

finite automaton over GF (q) with structure matrices A0, B0, C0, D0, where
S′

0 is the vector space of dimension n0 over GF (q). Then M ′
0 and M0 are

isomorphic. In fact, for any s1 and s2 in S0, there exist s′1 and s′2 in S′
0 such

that si = Rs′i, i = 1, 2. Thus Ts1 = Ts2 if and only if s′1 = s′2. It follows that
s1 = s2 if and only if Ts1 = Ts2. Let ϕ be a single-valued mapping from S′

0

to S0 defined by ϕ(s′) = Rs′ for any s′ in S′
0. Clearly, ϕ is bijective. For any

s′ in S′
0 and for any x in X, since Rs′ is in S0, from the definitions of S0 and

δ0, δ0(ϕ(s′), x) is in S0. Clearly, ϕ(δ′0(s
′, x)) is in S0. Since

Tδ0(ϕ(s′), x) = TARs′ + TBx = A0s
′ + B0x

= T (R(A0s
′ + B0x)) = Tϕ(δ′0(s

′, x)),

we have δ0(ϕ(s′), x) = ϕ(δ′0(s
′, x)). We also have

λ0(ϕ(s′), x) = CRs′ + Dx = C0s
′ + D0x = λ′

0(s
′, x).

Thus ϕ is an isomorphism from M ′
0 to M0. Therefore, M ′

0 and M0 are
isomorphic. M ′

0 is referred to as a minimal linear finite subautomaton of
M . Since each of minimal linear finite subautomata of M is isomorphic
to M0, they are isomorphic. Since M ′

0 and M0 are isomorphic, we have
S′

0 = {δ′(0, α), α ∈ X∗}. Let Ma be the linear autonomous finite automa-
ton with structure matrices A,C. Ma is referred to as the maximal linear
autonomous finite subautomaton of M . From Corollary 1.3.2, for any state
〈sa, s′0〉 of the union of Ma and M ′

0, the state sa + Rs′0 of M and 〈sa, s′0〉 are
equivalent. Conversely, for any state s of M , the state 〈s, 0〉 of the union of
Ma and M ′

0 and s are equivalent. Thus M and the union of Ma and M ′
0 are

equivalent.

Take a formal symbol z. Let

F =
{ ∞∑

τ=−∞
aτzτ | aτ ∈ GF (q), τ = 0,±1,±2, . . . , and the number

of nonzero aτ for negative subscript τ is finite
}
.

Any a(z) =
∑∞

τ=−∞ aτzτ in F , max n(aτ = 0 if τ < n) is called the low
degree of a(z). We also denote a(z) by

∑∞
τ=k aτzτ for any integer k � the

low degree of a(z). In the case of aτ = 0 for any integer τ , we use 0 to
denote a(z). Notice that the low degree of 0 is −∞. For any two elements



1.3 Linear Finite Automata 23

a(z) =
∑∞

τ=−∞ aτzτ and b(z) =
∑∞

τ=−∞ bτzτ in F , we define the sum of
a(z) and b(z) as an element

∑∞
τ=−∞(aτ + bτ )zτ in F , denoted by a(z)+ b(z).

We define the product of a(z) and b(z) as an element
∑∞

τ=−∞ cτzτ of F ,
denoted by a(z)b(z), where

cτ =
∑

i+j=τ,i�k,j�h

aibj ,

k and h are lower degrees of a(z) and b(z), respectively. It is easy to verify
that F is a field and GF (q) is its subfield in the isomorphic sense (a0 in
GF (q) corresponds to a0z

0 in F).
Let Ω = [ω0, ω1, . . .] be an infinite sequence over GF (q). The element∑∞

τ=0 ωτzτ in F is called the generating function or z-transformation of Ω.
For any Ω, we use Ω(z) to denote its z-transformation.

Let Φ = [ϕ0, ϕ1, . . .] be an infinite sequence over the column vector space of
dimension k over GF (q). Let ϕτ = [ϕ1τ , . . . , ϕkτ ]T, for any nonnegative inte-
ger τ . We use Φi to denote [ϕi0, ϕi1, . . .], that is, the i-th component sequence
of Φ. [Φ1(z), . . . , Φk(z)]T is called the generating function or z-transformation
of Φ, denoted by Φ(z). It is easy to verify that the z-transformation of the
linear combination of sequences, say a1Φ1 + · · ·+arΦr, is the linear combina-
tion of z-transformations, namely, a1Φ1(z)+ · · ·+arΦr(z),where a1, . . ., ar ∈
GF (q), Φ1, . . ., Φr are r infinite sequences over GF (q) or r infinite sequences
over a column vector space over GF (q).

Let M = 〈X, Y, S, δ, λ〉 be a linear finite automaton over GF (q) with
structure matrices A, B, C, D and structure parameters l, m, n. For any s0

in S and any x0, x1, . . . in X, let si+1 = δ(si, xi), yi = λ(si, xi), i = 0, 1, . . .

Then

sτ+1 = Asτ + Bxτ ,

yτ = Csτ + Dxτ , (1.7)

τ = 0, 1, . . .

We use X(z), Y (z), and S(z) to denote z-transformations of the input se-
quence [x0, x1, . . .], the output sequence [y0, y1, . . .], and the state sequence
[s0, s1, . . .], respectively. We use Xi(z), Yi(z), Si(z), xiτ , yiτ , and siτ to de-
note the i-th components of X(z), Y (z), S(z), xτ , yτ , and sτ , respectively.
From (1.7), we have
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S(z) =

⎡
⎢⎣S1(z)

...
Sn(z)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
τ=0

s1τzτ

...
∞∑

τ=0

snτzτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s10 +
∞∑

τ=1

( n∑
j=1

a1jsj,τ−1 +
l∑

j=1

b1jxj,τ−1

)
zτ

...

sn0 +
∞∑

τ=1

( n∑
j=1

anjsj,τ−1 +
l∑

j=1

bnjxj,τ−1

)
zτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s10 + z
n∑

j=1

a1j

∞∑
τ=1

sj,τ−1z
τ−1 + z

l∑
j=1

b1j

∞∑
τ=1

xj,τ−1z
τ−1

...

sn0 + z
n∑

j=1

anj

∞∑
τ=1

sj,τ−1z
τ−1 + z

l∑
j=1

bnj

∞∑
τ=1

xj,τ−1z
τ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s10 + z
n∑

j=1

a1jSj(z) + z
l∑

j=1

b1jXj(z)

...

sn0 + z
n∑

j=1

anjSj(z) + z
l∑

j=1

bnjXj(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= s0 + zAS(z) + zBX(z),

where aij and bij are elements at row i and column j of A and B, respectively.
It follows that

(E − zA)S(z) = s0 + zBX(z),

where E stands for the n×n identity matrix over GF (q). Since the constant
term of the determinant |E − zA| is 1, we have

(E − zA)−1 = (E − zA)∗/|E − zA|,

where (E − zA)∗ is the adjoint matrix of E − zA, i.e., the matrix of which
the element at row i and column j is the cofactor at row j and column i of
E − zA. Thus
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S(z) = (E − zA)−1s0 + z(E − zA)−1BX(z)

=
(E − zA)∗

|E − zA| s0 +
z(E − zA)∗B
|E − zA| X(z). (1.8)

Since

yiτ =
n∑

j=1

cijsjτ +
l∑

j=1

dijxjτ , i = 1, . . . , m, τ = 0, 1, . . . ,

we have

Yi(z) =
n∑

j=1

cijSj(z) +
l∑

j=1

dijXj(z), i = 1, . . . , m,

where cij and dij are elements at row i and column j of C and D, respectively.
It follows that Y (z) = CS(z) + DX(z). From (1.8), we have

Y (z) = C(E − zA)−1s0 + (zC(E − zA)−1B + D)X(z)

=
C(E − zA)∗

|E − zA| s0 +
(

zC(E − zA)∗B
|E − zA| + D

)
X(z). (1.9)

Let

G(z) = C(E − zA)−1 = C(E − zA)∗/|E − zA|, (1.10)

H(z) = zC(E − zA)−1B + D = zC(E − zA)∗B/|E − zA| + D.

Then (1.9) is

Y (z) = G(z)s0 + H(z)X(z). (1.11)

In (1.11), G(z)s0 is the z-transformation of the free response of the initial
state s0, and H(z)X(z) is the z-transformation of the force response of the
input sequence x0x1 . . . G(z) is called the free response matrix of M , and
H(z) is called the transfer function matrix of M . Clearly, if matrices G(z)
and H(z) over the field F satisfy the condition that (1.11) holds for any s0 and
any X(z), then G(z) and H(z) are the free response matrix and the transfer
function matrix of M , respectively. In other words, the free response matrix
and the transfer function matrix of M are uniquely determined by (1.11).
Notice that from (1.10), each element of G(z) and H(z) may be expressed as
a rational fraction of z with a nonzero constant term of the denominator.

In the case of

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1

⎤
⎥⎥⎥⎥⎥⎦ , (1.12)
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we have

|E − zA| = 1 + an−1z + · · · + a1z
n−1 + a0z

n, (1.13)

(E − zA)∗ =

⎡
⎢⎢⎢⎢⎢⎣

z0ϕn−1(z) z1ϕn−2(z) · · · zn−2ϕ1(z) zn−1

z−1ψn−1(z) z0ϕn−2(z) · · · zn−3ϕ1(z) zn−2

...
...

. . .
...

...
z−(n−2)ψn−1(z) z−(n−3)ψn−2(z) · · · z0ϕ1(z) z1

z−(n−1)ψn−1(z) z−(n−2)ψn−2(z) · · · z−1ψ1(z) z0

⎤
⎥⎥⎥⎥⎥⎦ ,

where

ϕk(z) = 1 +
k∑

i=1

an−iz
i, ψk(z) =

n∑
i=k+1

−an−iz
i, (1.14)

k = 1, . . . , n − 1.

1.4 Concepts on Invertibility

A finite automaton M = 〈X, Y, S, δ, λ〉 is said to be invertible, if for any s, s′

in S, and any α, α′ in Xω, λ(s, α) = λ(s′, α′) yields α = α′. In other words,
M is invertible, if and only if for any s in S and any α in Xω, α can be
uniquely determined by λ(s, α).

Evidently, if M is invertible, then M ′′ = 〈X, Y, S′′, δ′′, λ′′〉 is invertible in
the case where M ′′ ≺ M or M ′′ � M .

M is invertible, if and only if for any s, s′ in S, any x, x′ in X, and any
α, α′ in Xω, λ(s, xα) = λ(s′, x′α′) implies x = x′, that is, for any s in S,
any x in X, and any α in Xω, x can be uniquely determined by λ(s, xα). In
fact, the only if part is trivial. To prove the if part, suppose that λ(s, α) =
λ(s′, α′) for s, s′ in S and α, α′ in Xω. We prove α = α′. Denote α = x0x1 . . .,
α′ = x′

0x
′
1 . . ., for some xi, x′

i in X, i = 0, 1, . . . To prove xi = x′
i for i � 0,

let si = δ(s, x0 . . . xi−1) and s′i = δ(s′, x′
0 . . . x′

i−1). From λ(s, x0x1 . . .) =
λ(s, x′

0x
′
1 . . .), we have λ(si, xixi+1 . . .) = λ(si, x

′
ix

′
i+1 . . .). Since for any t, t′

in S, any x, x′ in X, and any β, β′ in Xω, λ(t, xβ) = λ(t′, x′β) yields x =
x′, we have xi = x′

i. Thus α = α′.
A finite automaton M = 〈X, Y, S, δ, λ〉 is said to be invertible with delay τ ,

τ being a nonnegative integer, if for any s in S and any xi in X, i = 0, 1, . . . , τ ,
x0 can be uniquely determined by λ(s, x0 . . . xτ ), that is, for any s, s′ in S

and any xi, x′
i in X, i = 0, 1, . . . , τ , λ(s, x0 . . . xτ ) = λ(s′, x′

0 . . . x′
τ ) yields

x0 = x′
0.

Evidently, if M is invertible with delay τ , then M ′′ = 〈X, Y, S′′, δ′′, λ′′〉 is
invertible with delay τ in the case where M ′′ ≺ M or M ′′ � M .
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Clearly, if M is invertible with delay τ , then M is invertible. Below we
prove that its converse proposition also holds.

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. Construct a graph GM =
(V, Γ ) as follows. Let

R = {(δ(s, x), δ(s′, x′)) | x 
= x′, λ(s, x) = λ(s′, x′), x, x′ ∈ X, s, s′ ∈ S}.

In the case of R 
= ∅, let the vertex set V of GM be the minimal subset
of S × S satisfying the following conditions: (a) R ⊆ V , (b) if (s, s′) ∈ V

and λ(s, x) = λ(s′, x′) for x, x′ ∈ X, then (δ(s, x), δ(s′, x′)) ∈ V . Let the arc
set Γ of GM be the set of all arcs ((s, s′), (δ(s, x), δ(s′, x′))) satisfying the
following conditions: (s, s′) ∈ V , x, x′ ∈ X, and λ(s, x) = λ(s′, x′). In the
case of R = ∅, let GM be the empty graph.

Theorem 1.4.1. M is invertible if and only if GM has no circuit. Moreover,
if GM has no circuit and the level of GM is ρ − 1, then M is invertible with
delay ρ + 1 and not invertible with delay τ for any τ � ρ.

Proof. Suppose that GM has a circuit, say w. From the construction of
GM , for any vertex on w, there exists a path of which the terminal vertex
is the vertex on w and the initial vertex is in R. Thus there exists a path
u1u2 . . . uk such that the initial vertex of u1 is in R and urur+1 . . . uk is a
circuit for some r, 1 � r � k. Let (si, s

′
i) be the initial vertex of ui, i =

1, 2, . . . , k. Then the terminal vertex of uk is (sr, s
′
r). From the construction

of GM , there exist xi, x′
i ∈ X, i = 1, 2, . . . , k, such that δ(si, xi) = si+1,

δ(s′i, x
′
i) = s′i+1, i = 1, 2, . . . , k−1, δ(sk, xk) = sr, δ(s′k, x′

k) = s′r, and λ(si, xi)
= λ(s′i, x

′
i), i = 1, 2, . . . , k. From (s1, s

′
1) ∈ R, there exist s0, s′0 ∈ S, x0, x′

0 ∈
X, such that δ(s0, x0) = s1, δ(s′0, x

′
0) = s′1, λ(s0, x0) = λ(s′0, x

′
0) and x0 
= x′

0.
Taking

α = x0x1 . . . xr−1xr . . . xkxr . . . xk . . . ,

α′ = x′
0x

′
1 . . . x′

r−1x
′
r . . . x′

kx′
r . . . x′

k . . . ,

we then have λ(s0, α) = λ(s′0, α
′). Since x0 
= x′

0, M is not invertible.
Conversely, suppose that GM has no circuit. Then the level of GM is

an integer, say ρ − 1. In the case of R = ∅, it is evident that ρ = −1
and M is invertible with delay 0 (= ρ + 1). In the case of R 
= ∅, for
any states s0 and s′0 of M , and any input sequences α = x0x1 . . . xρ+1 and
α′ = x′

0x
′
1 . . . x′

ρ+1 of length ρ + 2, xi, x′
i ∈ X, i = 0, 1, . . . , ρ + 1, we prove

by reduction to absurdity that λ(s, α) = λ(s, α′) implies x0 = x′
0. Suppose

to the contrary that λ(s0, x0x1 . . . xρ+1) = λ(s′0, x
′
0x

′
1 . . . x′

ρ+1) and x0 
= x′
0,

for some states s0, s′0 in S and some input letters xi, x′
i, i = 0, 1, . . . , ρ + 1

in X. Denote si = δ(si−1, xi−1), s′i = δ(s′i−1, x
′
i−1), i = 1, 2, . . . , ρ + 2. Since
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λ(s0, x0x1 . . . xρ+1) = λ(s′0, x
′
0x

′
1 . . . x′

ρ+1), we have λ(si, xi) = λ(s′i, x
′
i), i =

0, 1, . . . , ρ+1. From x0 
= x′
0, we have (s1, s

′
1) ∈ R, and for any i, 1 � i � ρ+1,

there exists an arc, say ui, such that the initial vertex of ui is (si, s
′
i) and the

terminal vertex of ui is (si+1, s
′
i+1). Thus u1u2 . . . uρ+1 is a path of GM . Since

the length of the path is ρ + 1, the level of GM is at least ρ. This contradicts
that the level of GM is ρ − 1. We conclude that M is invertible with delay
ρ + 1.

Let 0 � τ � ρ. Since the level of GM is ρ−1, there exists a path of length
τ of GM , say u1u2 . . . uτ . Denote the initial vertex of ui by (si, s

′
i) and the

terminal vertex of ui by (si+1, s
′
i+1), i = 1, 2, . . . , τ . From the construction

of GM , without loss of generality, suppose that (s1, s
′
1) is in R. From the

definition of R, there exist x0, x′
0 in X and s0, s′0 in S, such that δ(s0, x0) =

s1, δ(s′0, x
′
0) = s′1, λ(s0, x0) = λ(s′0, x

′
0) and x0 
= x′

0. From the construc-
tion of GM , there exist xi, x′

i in X, i = 1, 2, . . . , τ , such that δ(si, xi) =
si+1, δ(s′i, x

′
i) = s′i+1, and λ(si, xi) = λ(s′i, x

′
i), i = 1, 2, . . . , τ . Thus we have

λ(s0, x0x1 . . . xτ ) = λ(s′0, x
′
0x

′
1 . . . x′

τ ). From x0 
= x′
0, M is not invertible with

delay τ . ��

Corollary 1.4.1. If M is invertible, then there exists τ � n(n − 1)/2 such
that M is invertible with delay τ, where n is the element number in the state
alphabet of M .

Proof. Suppose that M is invertible. Whenever GM is the empty graph,
M is invertible with delay 0 and 0 � n(n − 1)/2. Whenever GM is not the
empty graph, then GM = 〈V, Γ 〉 has no circuit. This yields that s1 
= s2

for any (s1, s2) in V . Thus |V | � n(n − 1). It is evident that (s1, s2) ∈ R

if and only if (s2, s1) ∈ R. From the construction of GM , this yields that
(s1, s2) ∈ V if and only if (s2, s1) ∈ V , and that ((s1, s2), (s3, s4)) ∈ Γ if and
only if ((s2, s1), (s4, s3)) ∈ Γ . Therefore, the number of vertices with level
i is at least 2, for any i, 0 � i � ρ, where ρ − 1 is the level of GM . Then
we have 2(ρ + 1) � n(n − 1). Take τ = ρ + 1. Then τ � n(n − 1)/2. From
Theorem 1.4.1, M is invertible with delay τ . ��

Let M = 〈X, Y, S, δ, λ〉 and M ′ = 〈Y, X, S′, δ′, λ′〉 be two finite automata.
For any states s in S and s′ in S′, if

(∀α)Xω (∃α0)X∗ [ λ′(s′, λ(s, α)) = α0α & |α0| = τ ],

i.e., for any α ∈ Xω there exists α0 ∈ X∗ such that λ′(s′, λ(s, α)) = α0α and
|α0| = τ , (s′, s) is called a match pair with delay τ or say that s′ τ -matches
s. Clearly, if s′ τ -matches s and β = λ(s, α) for some α in X∗, then δ′(s′, β)
τ -matches δ(s, α).

M ′ is called an inverse with delay τ of M , if for any s in S and any s′ in
S′, (s′, s) is a match pair with delay τ . M is called an original inverse with
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delay τ of M ′, if M ′ is an inverse with delay τ of M . M ′ is called an inverse
with delay τ , if M ′ is an inverse with delay τ of some finite automaton. M ′

is called an inverse, if M ′ is an inverse with delay τ for some τ .
Clearly, if M ′ is an inverse with delay τ of M , then M ′ is an inverse with

delay τ of M ′′ = 〈X, Y, S′′, δ′′, λ′′〉 in the case where M ′′ ≺ M or M ′′ � M . If
M ′ is an inverse with delay τ of M , then M ′′ = 〈Y, X, S′′, δ′′, λ′′〉 is an inverse
with delay τ of M in the case where M ′′ ≺ M ′ or M ′′ � M ′. Therefore, if
M ′ is an inverse with delay τ , then M ′′ = 〈Y, X, S′′, δ′′, λ′′〉 is an inverse with
delay τ in the case where M ′′ ≺ M ′ or M ′′ � M ′.

Theorem 1.4.2. If M is invertible with delay τ, then there exists a τ -order
input-memory finite automaton M ′ such that M ′ is an inverse with delay τ

of M .

Proof. Since M is invertible with delay τ , for any s ∈ S and any x0,
x1, . . ., xτ ∈ X, x0 can be uniquely determined by λ(s, x0x1 . . . xτ ). Thus
we can construct a single-valued mapping f from Y τ+1 to X satisfying the
condition: if y0y1 . . . yτ = λ(s, x0x1 . . . xτ ), s ∈ S and x0, x1, . . . , xτ ∈ X, then
f(yτ , . . . , y1, y0) = x0. Let M ′〈Y, X, S′, δ′, λ′〉 be the τ -order input-memory
finite automaton Mf . From the definition of f and the construction of Mf ,
it is easy to verify that for any s ∈ S, any s′ ∈ S′ and any x0, x1, . . . ∈ X,

λ′(s′, λ(s, x0x1 . . .)) = x−τ . . . x−1x0x1 . . .

holds for some x−τ , . . . , x−1 ∈ X. Therefore, M ′ is an inverse with delay τ

of M . ��

Corollary 1.4.2. M is invertible with delay τ if and only if there exists a
finite automaton M ′ such that M ′ is an inverse with delay τ of M .

A finite automaton M = 〈X, Y, S, δ, λ〉 is said to be weakly invertible, if
for any s in S, and any α, α′ in Xω, λ(s, α) = λ(s, α′) implies α = α′. In
other words, M is weakly invertible, if and only if for any s in S and any α

in Xω, α can be uniquely determined by s and λ(s, α), if and only if for any
s in S, λs|Xω is injective.

Evidently, if M is weakly invertible, then M ′′ = 〈X, Y, S′′, δ′′, λ′′〉 is
weakly invertible in the case where M ′′ ≺ M or M ′′ � M .

M is weakly invertible, if and only if for any s in S, any x, x′ in X, and
any α, α′ in Xω, λ(s, xα) = λ(s, x′α′) implies x = x′, that is, for any s in
S, any x in X, and any α in Xω, x can be uniquely determined by s and
λ(s, xα). In fact, the only if part is trivial. To prove the if part, suppose that
λ(s, α) = λ(s, α′) for s in S and α, α′ in Xω. We prove α = α′. Denote
α = x0x1 . . ., α′ = x′

0x
′
1 . . ., for some xi, x′

i in X, i = 0, 1, . . . We prove
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xi = x′
i by induction on i. Basis : i = 0. Since for any t in S, any x, x′

in X, and any β, β′ in Xω, λ(t, xβ) = λ(t, x′β′) implies x = x′, we have
x0 = x′

0. Induction step : Suppose that xi = x′
i holds for i = 0, 1, . . . , n.

Denote s′′ = δ(s, x0 . . . xn). Then s′′ = δ(s, x′
0 . . . x′

n). From λ(s, x0x1 . . .) =
λ(s, x′

0x
′
1 . . .), we have λ(s′′, xn+1xn+2 . . .) = λ(s′′, x′

n+1x
′
n+2 . . .). Since for

any t in S, any x, x′ in X, and any β, β′ in Xω, λ(t, xβ) = λ(t, x′β′) implies
x = x′, we have xn+1 = x′

n+1. We conclude that xi = x′
i holds for any i � 0,

that is, α = α′.
A finite automaton M = 〈X, Y, S, δ, λ〉 is said to be weakly invertible

with delay τ , τ being a nonnegative integer, if for any s in S and any xi in
X, i = 0, 1, . . . , τ , x0 can be uniquely determined by s and λ(s, x0 . . . xτ ),
that is, for any s in S and any xi, x′

i in X, i = 0, 1, . . . , τ , λ(s, x0 . . . xτ ) =
λ(s, x′

0 . . . x′
τ ) implies x0 = x′

0.
Evidently, if M is weakly invertible with delay τ , then M ′′ = 〈X, Y ,

S′′, δ′′, λ′′〉 is weakly invertible with delay τ in the case where M ′′ ≺ M or
M ′′ � M .

Clearly, if M is weakly invertible with delay τ , then M is weakly invertible.
Below we prove that its converse proposition also holds.

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. Construct a graph G′
M =

(V, Γ ) as follows. Let

R′ = {(δ(s, x), δ(s, x′)) | x 
= x′, λ(s, x) = λ(s, x′), x, x′ ∈ X, s ∈ S}.

In the case of R′ 
= ∅, let the vertex set V of G′
M be the minimal subset of

S × S satisfying the following conditions: (a) R′ ⊆ V , (b) if (s, s′) ∈ V and
λ(s, x) = λ(s′, x′) for x, x′ ∈ X, then (δ(s, x), δ(s′, x′)) ∈ V . Let the arc set Γ

of G′
M be the set of all arcs ((s, s′), (δ(s, x), δ(s′, x′))) satisfying the condition:

(s, s′) ∈ V , x, x′ ∈ X, and λ(s, x) = λ(s′, x′). In the case of R′ = ∅, let G′
M

be the empty graph.

Theorem 1.4.3. M is weakly invertible if and only if G′
M has no circuit.

Moreover, if G′
M has no circuit and the level of G′

M is ρ − 1, then M is
weakly invertible with delay ρ + 1 and not weakly invertible with delay τ for
any τ � ρ.

Proof. Replacing s′0, R, GM , “invertible” in the proof of Theorem 1.4.1
by s0, R′, G′

M , “weakly invertible”, respectively, we obtain a proof of the
theorem. Below we give the details.

Suppose that G′
M has a circuit, say w. From the construction of G′

M , for
any vertex on w, there exists a path of which the terminal vertex is the vertex
on w and the initial vertex is in R′. Thus there exists a path u1u2 . . . uk such
that the initial vertex of u1 is in R′ and urur+1 . . . uk is a circuit for some
r, 1 � r � k. Let (si, s

′
i) be the initial vertex of ui, i = 1, 2, . . . , k. Then
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the terminal vertex of uk is (sr, s
′
r). From the construction of G′

M , there
exist xi, x′

i ∈ X, i = 1, 2, . . . , k, such that δ(si, xi) = si+1, δ(s′i, x
′
i) = s′i+1,

i = 1, 2, . . . , k − 1, δ(sk, xk) = sr, δ(s′k, x′
k) = s′r, and λ(si, xi) = λ(s′i, x

′
i),

i = 1, 2, . . . , k. From (s1, s
′
1) ∈ R′, there exist s0 ∈ S, x0, x′

0 ∈ X, such that
δ(s0, x0) = s1, δ(s0, x

′
0) = s′1, λ(s0, x0) = λ(s0, x

′
0) and x0 
= x′

0. Taking

α = x0x1 . . . xr−1xr . . . xkxr . . . xk . . . ,

α′ = x′
0x

′
1 . . . x′

r−1x
′
r . . . x′

kx′
r . . . x′

k . . . ,

we then have λ(s0, α) = λ(s0, α
′). Since x0 
= x′

0, M is not weakly invertible.
Conversely, suppose that G′

M has no circuit. Then the level of G′
M is an

integer, say ρ − 1. In the case of R′ = ∅, it is evident that ρ = −1 and M is
weakly invertible with delay 0 (= ρ + 1). In the case of R 
= ∅, for any state
s0 of M , and any input sequences α = x0x1 . . . xρ+1 and α′ = x′

0x
′
1 . . . x′

ρ+1

of length ρ + 2, xi, x′
i ∈ X, i = 0, 1, . . . , ρ + 1, we prove by reduction to

absurdity that λ(s, α) = λ(s, α′) implies x0 = x′
0. Suppose to the contrary

that λ(s0, x0x1 . . . xρ+1) = λ(s0, x
′
0x

′
1 . . . x′

ρ+1) and x0 
= x′
0, for some state

s0 in S, and some input letters xi, x′
i, i = 0, 1, . . . , ρ + 1 in X. Denote

si = δ(si−1, xi−1), s′i = δ(s′i−1, x
′
i−1), i = 1, 2, . . . , ρ + 2, where s′0 = s0.

Since λ(s0, x0x1 . . . xρ+1) = λ(s0, x
′
0x

′
1 . . . x′

ρ+1), we have λ(si, xi) = λ(s′i, x
′
i),

i = 0, 1, . . . , ρ+1, where s′0 = s0. From x0 
= x′
0, we have (s1, s

′
1) ∈ R′, and for

any i, 1 � i � ρ+1, there exists an arc, say ui, such that the initial vertex of
ui is (si, s

′
i) and the terminal vertex of ui is (si+1, s

′
i+1). Thus u1u2 . . . uρ+1

is a path of G′
M . Since the length of the path is ρ + 1, the level of G′

M is at
least ρ. This contradicts that the level of G′

M is ρ − 1. We conclude that M

is weakly invertible with delay ρ + 1.
Let 0 � τ � ρ. Since the level of G′

M is ρ − 1, there exists a path of
length τ of G′

M , say u1u2 . . . uτ . Denote the initial vertex of ui by (si, s
′
i)

and the terminal vertex of ui by (si+1, s
′
i+1), i = 1, 2, . . . , τ . From the con-

struction of G′
M , without loss of generality, suppose that (s1, s

′
1) is in R′.

From the definition of R′, there exist x0, x′
0 in X and s0 in S, such that

δ(s0, x0) = s1, δ(s0, x
′
0) = s′1, λ(s0, x0) = λ(s0, x

′
0) and x0 
= x′

0. From the
construction of G′

M , there exist xi, x′
i in X, i = 1, 2, . . . , τ , such that δ(si, xi)

= si+1, δ(s′i, x
′
i) = s′i+1, and λ(si, xi) = λ(s′i, x

′
i), i = 1, 2, . . . , τ . Thus we

have λ(s0, x0x1 . . . xτ ) = λ(s0, x
′
0x

′
1 . . . x′

τ ). From x0 
= x′
0, M is not weakly

invertible with delay τ . ��

Corollary 1.4.3. If M is weakly invertible, then there exists τ � n(n−1)/2
such that M is weakly invertible with delay τ, where n is the element number
in the state alphabet of M .
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Proof. Replacing R, GM , “invertible”, “Theorem 1.4.1” in the proof of
Corollary 1.4.1 by R′, G′

M , “weakly invertible”, “Theorem 1.4.3”, respec-
tively, we obtain a proof of the corollary. Below we give the details.

Suppose that M is weakly invertible. Whenever G′
M is the empty graph,

M is invertible with delay 0 and 0 � n(n − 1)/2. Whenever G′
M is not the

empty graph, then G′
M = 〈V, Γ 〉 has no circuit. This yields that s1 
= s2

for any (s1, s2) in V . Thus |V | � n(n − 1). It is evident that (s1, s2) ∈ R′

if and only if (s2, s1) ∈ R′. From the construction of G′
M , this yields that

(s1, s2) ∈ V if and only if (s2, s1) ∈ V , and that ((s1, s2), (s3, s4)) ∈ Γ if and
only if ((s2, s1), (s4, s3)) ∈ Γ . Therefore, the number of vertices with level
i is at least 2, for any i, 0 � i � ρ, where ρ − 1 is the level of G′

M . Then
we have 2(ρ + 1) � n(n − 1). Take τ = ρ + 1. Then τ � n(n − 1)/2. From
Theorem 1.4.3, M is weakly invertible with delay τ . ��

Let M = 〈X, Y, S, δ, λ〉 and M ′ = 〈Y, X, S′, δ′, λ′〉 be two finite automata.
M ′ is called a weak inverse with delay τ of M , if for any s in S there exists
s′ in S′ such that (s′, s) is a match pair with delay τ . M is called an original
weak inverse with delay τ of M ′, if M ′ is a weak inverse with delay τ of M .
M ′ is called a weak inverse with delay τ , if M ′ is a weak inverse with delay τ

of some finite automaton. M ′ is called a weak inverse, if M ′ is a weak inverse
with delay τ for some τ .

Clearly, if M ′ is a weak inverse with delay τ of M , then M ′ is a weak
inverse with delay τ of M ′′ = 〈X, Y, S′′, δ′′, λ′′〉 in the case where M ′′ ≺
M or M ′′ � M . If M ′ is a weak inverse with delay τ of M , then M ′′ =
〈Y, X, S′′, δ′′, λ′′〉 is a weak inverse with delay τ of M in the case where
M ′ ≺ M ′′ or M ′ � M ′′. Therefore, if M ′ is a weak inverse with delay τ ,
then M ′′ = 〈Y, X, S′′, δ′′, λ′′〉 is a weak inverse with delay τ in the case where
M ′ ≺ M ′′ or M ′ � M ′′.

Theorem 1.4.4. If M is weakly invertible with delay τ, then there exists a
finite automaton M ′ such that M ′ is a weak inverse with delay τ of M .

Proof. Let M = 〈X, Y, S, δ, λ〉. Since M is weakly invertible with delay
τ , for any s ∈ S and any x0, x1, . . . , xτ ∈ X, x0 can be uniquely deter-
mined by s and λ(s, x0x1 . . . xτ ). Thus we can construct a single-valued
mapping f from S × Y τ+1 to X satisfying the condition: if y0y1 . . . yτ =
λ(s, x0x1 . . . xτ ), s ∈ S and x0, x1, . . . , xτ ∈ X, then f(s, yτ , . . . , y1, y0) = x0.
Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a finite automaton, where

S′ = {〈c, s, y−1, . . . , y−τ 〉 | c = 0, 1, . . . , τ, s ∈ S, y−1, . . . , y−τ ∈ Y },
δ′(〈c, s, y−1, . . . , y−τ 〉, y0)

=

{
〈c + 1, s, y0, y−1, . . . , y−τ+1〉, if 0 � c < τ,

〈c, δ(s, f(s, y0, y−1, . . . , y−τ )), y0, . . . , y−τ+1〉, if c = τ,



1.4 Concepts on Invertibility 33

λ′(〈c, s, y−1, . . . , y−τ 〉, y0) = f(s, y0, y−1, . . . , y−τ ),

c = 0, 1, . . . , τ, s ∈ S, y0, y−1, . . . , y−τ ∈ Y.

We prove that M ′ is a weak inverse with delay τ of M . Given any state
s0 in S, take any τ elements y−1, . . . , y−τ in Y and let s′0 be the state
〈0, s0, y−1, . . . , y−τ 〉 in S′. To prove that s′0 τ -matches s0, for any x0, x1, . . .

∈ X, let

λ(s0, x0x1 . . .) = y0y1 . . .

for some y0, y1, . . . in Y . Denote

δ(s0, x0x1 . . . xi) = si+1, i = 0, 1, . . .

From the definition of f , we have

f(si, yi+τ , . . . , yi+1, yi) = xi, i = 0, 1, . . .

Let

δ′(s′0, y0y1 . . . yi) = s′i+1, i = 0, 1, . . .

Clearly,

s′i = 〈i, s0, yi−1, . . . , yi−τ 〉, i = 0, 1, . . . , τ.

We prove by induction on i that s′i = 〈τ, si−τ , yi−1, . . . , yi−τ 〉 holds for
any i � τ . Basis : i = τ . The result has proven above. Induction step :
Suppose that s′i = 〈τ, si−τ , yi−1, . . . , yi−τ 〉 holds. We prove that s′i+1 =
〈τ, si+1−τ ,yi,. . .,yi+1−τ 〉 holds. Since s′i+1 = δ′(s′i, yi), from the definition of
δ′ and the induction hypothesis, we have

s′i+1 = 〈τ, δ(si−τ , f(si−τ , yi, yi−1, . . . , yi−τ )), yi, . . . , yi+1−τ 〉
= 〈τ, δ(si−τ , xi−τ ), yi, . . . , yi+1−τ 〉
= 〈τ, si−τ+1, yi, . . . , yi+1−τ 〉.

We conclude that s′i = 〈τ, si−τ , yi−1, . . . , yi−τ 〉 holds for any i � τ . Let

λ′(s′i, yi) = x′
i, i = 0, 1, . . .

Then for any i � τ , from the definition of λ′, we have

x′
i = f(si−τ , yi, yi−1, . . . , yi−τ ) = xi−τ .

It follows that λ′(s′0, λ(s0, x0x1 . . .)) = x′
0x

′
1 . . . x′

τ−1x0x1 . . . Thus s′0 τ -
matches s0. Therefore, M ′ is a weak inverse with delay τ of M . ��
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Corollary 1.4.4. M is weakly invertible with delay τ if and only if there
exists a finite automaton M ′ such that M ′ is a weak inverse with delay τ of
M .

Theorem 1.4.5. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. If M is
weakly invertible with delay τ, then |X| � |Y |.

Proof. Denote l = |X| and m = |Y |. We prove by reduction to absurdity
that |X| � |Y |. Suppose to the contrary that |X| > |Y |. Take any s in S. Let
Vh = {λ(s, x0 . . . xτ−1+h) | xi ∈ X, i = 0, . . . , τ−1+h}. Clearly, |Vh| � mτ+h.
On the other hand, since M is weakly invertible with delay τ , x0 . . . xh−1

can be determined by s and λ(s, x0 . . . xτ−1+h). Thus we have lh � |Vh|.
Therefore, mτ+h � lh. It follows that mτ (m/l)h � 1. From |X| > |Y |, we
have m/l < 1. Thus limh→+∞ mτ (m/l)h = 0. From mτ (m/l)h � 1, we have
0 � 1. This is a contradiction. We conclude that |X| � |Y |. ��
Theorem 1.4.6. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. If |X| = |Y |
and M is weakly invertible with delay τ, then λ(S,Xr)(i.e., {λ(s, α) | s ∈
S, α ∈ Xr}) = Y r holds for any nonnegative integer r.

Proof. In the case of r = 0, λ(S,Xr) = {ε} = Y r. For any positive
integer r, we prove by reduction to absurdity that λ(S,Xr) = Y r. Sup-
pose to the contrary that λ(S,Xr) 
= Y r. Clearly, λ(S,Xr) ⊆ Y r. It follows
that |λ(S,Xr)| � mr − 1, where m = |Y |. Take any s in S. Let Vr,h =
{λ(s, x0 . . . xτ−1+hr) | xi ∈ X, i = 0, . . . , τ − 1+hr}. It is easy to see that for
any y0 . . . yτ−1+hr ∈ Vr,h, yτ+ir . . . yτ−1+(i+1)r is in λ(S,Xr), i = 0, . . . , h−1.
Thus we have |Vr,h| � mτ (mr − 1)h. On the other hand, since M is weakly
invertible with delay τ , we have |Vr,h| � lhr, where l = |X|. Therefore,
mτ (mr − 1)h � lhr. From l = m, we have mτ ((mr − 1)/mr)h � 1. It follows
that limh→+∞ mτ ((mr−1)/mr)h � 1. That is, 0 � 1. This is a contradiction.
We conclude that λ(S,Xr) = Y r. ��

1.5 Error Propagation and Feedforward Invertibility

Let M ′ = 〈Y, X, S′, δ′, λ′〉 be an inverse finite automaton with delay τ of
M = 〈X, Y, S, δ, λ〉. For any infinite input sequence α ∈ Xω and any state s

∈ S, let β = λ(s, α). Then for any state s′ ∈ S of M ′, there exists α0 ∈ X∗

of length τ such that λ′(s′, β) = α0α. Suppose that β = β1β2 and β′ = β′
1β2

with |β1| = |β′
1|. Let α = α1α2 with |α1| = |β′

1|. Then

λ′(s′, β′) = λ′(s′, β′
1)λ

′(δ′(s′, β′
1), β2)

= λ′(s′, β′
1)λ

′(δ′(s′, β′
1), λ(δ(s, α1), α2))

= λ′(s′, β′
1)α

′
0α2
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for some sequence α′
0 of length τ in X∗. Since |α0α1| = |λ′(s′, β′

1)α
′
0|, the

i-th letter of λ′(s′, β) equals the i-th letter of λ′(s′, β′) whenever i > |β′
1|+ τ .

This means that propagation of decoding errors of the inverse M ′ to M is at
most τ letters.

For the weak inverse case, one letter error could cause infinite decoding
errors. For example, let X and Y be {0, 1}, and M a 1-order input-memory
finite automaton Mf , where f is a single-valued mapping from X2 to Y

f(x0, x−1) = x0 ⊕ x−1,

where ⊕ stands for addition modulo 2. Let M ′ be a (0,1)-order memory finite
automaton Mg, where g is a single-valued mapping from X × Y to X

g(x−1, y0) = x−1 ⊕ y0.

It is easy to verify that any state x−1 of M ′ 0-matches the state x−1 of M .
Thus M ′ is a weak inverse of M with delay 0. For the zero input sequence,
i.e., 00 . . . 0 . . ., and the initial state 0 of M , the output sequence of M is the
zero sequence 00 . . . 0 . . . Since (0,0) is a match pair with delay 0, for the zero
input sequence 00 . . . 0 . . . and the initial state 0 of M ′, the output sequence
of M ′ is the zero sequence 00 . . . 0 . . . On the other hand, we can verify that
for the input sequence 10 . . . 0 . . ., all zero but the first letter 1, and the initial
state 0 of M ′, the output sequence of M ′ is the 1 sequence, i.e., 11 . . . 1 . . .

Thus propagation of decoding errors of the weak inverse M ′ to M is infinite.
We use R(−n, α) to denote the suffix of α of length |α| − n in the case of

|α| � n or the empty word in the case of |α| < n. For any α, β in Y ∗ with
|α| = |β| and any nonnegative integer k, we use α =k β to denote R(−k, α) =
R(−k, β).

Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a weak inverse finite automaton with delay
τ of M = 〈X, Y, S, δ, λ〉. For any s in S and any s′ in S′, if s′ τ -matches
s, and if for any α in X∗ and any β in Y ∗ with |α| = |β|, and any k,
0 � k � |β| − c, λ(s, α) =k β implies λ′(s′, λ(s, α)) =k+c λ′(s′, β), (s, s′)
is called a (τ, c)-match pair. If for any s in S there exists s′ in S′ such that
(s, s′) is a (τ, c)-match pair, we say that propagation of weakly decoding errors
of M ′ to M is bounded with length of error propagation � c. The minimal
nonnegative integer c satisfying the above condition is called the length of
error propagation.

Theorem 1.5.1. Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a weak inverse finite automa-
ton with delay τ of M = 〈X, Y, S, δ, λ〉. Assume that propagation of weakly
decoding errors of M ′ to M is bounded with length of error propagation � c,
where c � τ . Then we can construct a c-order semi-input-memory finite
automaton SIM(M ′′, f) such that SIM(M ′′, f) is a weak inverse finite au-
tomaton with delay τ of M .
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Proof. Since M ′ is a weak inverse finite automaton with delay τ of M and
propagation of weakly decoding errors of M ′ to M is bounded with length
of error propagation � c, for each s in S, we can choose a state of M ′, say
ϕ(s), such that (s, ϕ(s)) is a (τ, c)-match pair.

Given s in S, let Ts,0 = {s}, Ts,i+1 = {δ(si, x) | x ∈ X, si ∈ Ts,i}, T ′
s,0 =

{ϕ(s)}, and T ′
s,i+1 = {δ′(s′i, y) | y ∈ Y, s′i ∈ T ′

s,i}, i = 0, 1, . . . Since X, Y , S

and S′ are finite, it is easy to see that the sequence

(Ts,0, T
′
s,0), (Ts,1, T

′
s,1), . . . , (Ts,i, T

′
s,i), . . .

is ultimately periodic, i.e., there exist ts � 0 and es � 1 such that Ts,i+es
=

Ts,i and T ′
s,i+es

= T ′
s,i, i = ts, ts+1, . . . Let ts and es be the least integers

satisfying the above condition. Let Ms = 〈Ys, Ss, δs, λs〉 be an autonomous
finite automaton, where

Ys = Ss = {ws,i, i = 0, 1, . . . , ts + c + es − 1},

δs(ws,i) =

{
ws,i+1, if 0 � i < ts + c + es − 1,

ws,ts+c, if i = ts + c + es − 1,

λs(w) = w, w ∈ Ss.

Take a subset I of S with ∪i�0,s∈ITs,i = S, i.e., {δ(s, α) | s ∈ I, α ∈ X∗} = S.
Let the autonomous finite automaton M ′′ be the juxtaposition of all Ms,
s ranging over I, i.e., M ′′ = 〈Y ′′, S′′, δ′′, λ′′〉, where Y ′′ = ∪s∈IYs, S′′ =
∪s∈ISs, and δ′′(w) = δs(w), λ′′(w) = λs(w), for any w in Ss and any s in I.

For any subset T of S, let R(T ) = {λ(t, α) | t ∈ T, α ∈ X∗}. To define the
single-valued mapping f from Y c+1 × S′′ to X, we need the following result.

For any s in S and any nonnegative n, states in T ′
s,n are c-carelessly-

equivalent regarding R(Ts,n), i.e., for any s′, s′′ in T ′
s,n and any β in R(Ts,n),

λ′(s′, β) =c λ′(s′′, β) holds.
To prove this result, let β be in R(Ts,n). From the definition of R(Ts,n),

there exist sn in Ts,n and α in X∗ such that λ(sn, α) = β. From the definition
of Ts,n, there exists αn in X∗ of length n such that δ(s, αn) = sn. Let βn =
λ(s, αn), s′n = δ′(ϕ(s), βn), α′

n = λ′(ϕ(s), βn) and α′ = λ′(s′n, β). Suppose
that s′′n is a state in T ′

s,n. Then there exists β′′
n in Y ∗ of length n such that

δ′(ϕ(s), β′′
n) = s′′n. Let α′′

n = λ′(ϕ(s), β′′
n) and α′′ = λ′(s′′n, β). Since (s, ϕ(s))

is a (τ, c)-match pair, we have

α′′
nα′′ =n+c α′

nα′.

It follows that α′′ =c α′. Since R(−c, α′) is independent of the choice of s′′n,
states in T ′

s,n are c-carelessly-equivalent regarding R(Ts,n).
Given a state ws,i of M ′′ and yi, . . . , yi−c in Y , we define f(yi, . . .,

yi−c, ws,i) as follows. When i � c and yi−c . . . yi ∈ R(Ts,i−c), we define
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f(yi, . . . , yi−c, ws,i) = λ′(δ′(s′i−c, yi−c . . . yi−1), yi), s′i−c being a state in T ′
s,i−c.

From the result proven above, states in T ′
s,i−c are c-carelessly-equivalent re-

garding R(Ts,i−c). Thus the above value of f is independent of the choice
of s′i−c. When τ � i < c and y0 . . . yi ∈ R(Ts,0), for any x0, . . . , xi ∈ X,
λ(s, x0 . . . xi) = y0 . . . yi implies λ′(ϕ(s), y0 . . . yi) = x−τ . . . x−1x0 . . . xi−τ for
some x−τ , . . ., x−1 in X. Evidently, xi−τ is uniquely determined by i and
y0, . . ., yi. Since y0 . . . yi ∈ R(Ts,0), such x0, . . . , xi are existent. We define
f(yi, . . . , yi−c, ws,i) = xi−τ . Otherwise, the value of f(yi, . . . , yi−c, ws,i) may
be arbitrarily chosen from X.

To prove that SIM(M ′′, f) is a weak inverse with delay τ of M , we first
prove that for any s in I, there exists a state s′′′ of SIM(M ′′, f) such that
s′′′ τ -matches s. Let s be in I. Take s′′′ = 〈y−c, . . . , y−1, ws,0〉, where y−1,
. . ., y−c are arbitrary elements in Y . For any x0, . . . , xj in X, let y0 . . . yj =
λ(s, x0 . . . xj) and z0 . . . zj = λ′′′(s′′′, y0 . . . yj), where λ′′′ is the output func-
tion of SIM(M ′′, f). We prove that zi = xi−τ holds for any i, τ � i � j.
In the case of τ � i < c, since y0 . . . yi ∈ R(Ts,0), from the construction of
SIM(M ′′, f) and the definition of f , it immediately follows that zi = xi−τ .
In the case of i � c, take h = i if i < ts + c + es, and take h = ts + c + d

if i = ts + c + d + kes for some k > 0 and d, 0 � d < es. Since h − c � ts
and h = i (mod es), or h = i, we have (Ts,i−c, T

′
s,i−c) = (Ts,h−c, T

′
s,h−c). Let

si−c = δ(s, x0 . . . xi−c−1) and s′i−c = δ′(ϕ(s), y0 . . . yi−c−1). Then we have
si−c ∈ Ts,h−c, s′i−c ∈ T ′

s,h−c, and yi−c . . . yi ∈ R(Ts,h−c). From the construc-
tion of SIM(M ′′, f) and the definition of f , it is easy to show that

δ′′′(s′′′, y0 . . . yi−1) = 〈yi−1, . . . , yi−c, ws,h〉,
zi = λ′′′(〈yi−1, . . . , yi−c, ws,h〉, yi)

= f(yi, yi−1, . . . , yi−c, ws,h)

= λ′(δ′(s′i−c, yi−c . . . yi−1), yi),

where δ′′′ is the next state function of SIM(M ′′, f). Since (s, ϕ(s)) is a
(τ, c)-match pair, we have

λ′(δ′(s′i−c, yi−c . . . yi−1), yi) = λ′(δ′(ϕ(s), y0 . . . yi−1), yi) = xi−τ .

It follows that zi = xi−τ . Therefore, for any s in I, there exists a state s′′′ of
SIM(M ′′, f) such that s′′′ τ -matches s. It follows that δ′′′(s′′′, β) τ -matches
δ(s, α), if β = λ(s, α). From S = {δ(s, α) | s ∈ I, α ∈ X∗}, for any s in
S, there exists a state s′′′ of SIM(M ′′, f) such that s′′′ τ -matches s. Thus
SIM(M ′′, f) is a weak inverse finite automaton with delay τ of M . ��

Corollary 1.5.1. In the above theorem, if M is a linear finite automaton
over GF (q) and S = {δ(0, α) | α ∈ X∗}, then SIM(M ′′, f) can be equivalent
to a linear c-order input-memory finite automaton.
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Proof. In the proof of the above theorem, take I = {0}. We use Rj(T0,i)
to denote the set of all elements in R(T0,i) of length j. Since M is linear
over GF (q), for any j, Rj(T0,0) is a vector space over GF (q). Evidently,
there exists a linear mapping from Ri+j(T0,0) onto Rj(T0,i). It follows that
Rj(T0,i) is a vector space over GF (q). Clearly, T0,i ⊆ T0,i+1. This yields that
Rj(T0,i) ⊆ Rj(T0,i+1). Denote n = t0 + c + e0 − 1. In the case of yi−c . . . yi ∈
R(T0,i−c) & c � i � n, or in the case of y0 . . . yi ∈ R(T0,0) & τ � i < c &
yi−c = . . . = y−1 = 0, we define the value of f(yi, . . . , yi−c, w0,i) as identical
as that in the proof of the above theorem. Taking

s′′′ = 〈y−c, . . . , y−c+τ−1, 0, . . . , 0, w0,0〉,

where y−c, . . . , y−c+τ−1 are arbitrarily chosen from Y , from the proof of the
above theorem, y0 . . . yi = λ(0, x0 . . . xi) and z0 . . . zi = λ′′′(s′′′, y0 . . . yi) im-
ply zτ . . . zi = x0 . . . xi−τ . In the case of yi−c . . . yi ∈ R(T0,i−c) & c � i � n,
there exist s̄ ∈ T0,i−c and xi−c, . . . , xi in X such that λ(s̄, xi−c . . . xi) =
yi−c . . . yi. Therefore, for any α in X∗, δ(0, α) = s̄ and λ(0, α) = β yield
xi−τ = λ′′′(δ′′′(s′′′, βyi−c . . . yi−1), yi). Since s̄ ∈ T0,i−c ⊆ T0,n−c, we may
take α such that |α| = i − c or n − c. Then δ′′′(s′′′, βyi−c . . . yi−1) equals
〈yi−c, . . . , yi−1, w0,i〉 or 〈yi−c, . . . , yi−1, w0,n〉. It follows that f(yi, . . ., yi−c,
w0,i) = xi−τ = f(yi, . . . , yi−c, w0,n). In the case of y0 . . . yi ∈ R(T0,0) &
τ � i < c & yi−c = . . . = y−1 = 0, there exist x0, . . . , xi in X such
that λ(0, x0 . . . xi) = y0 . . . yi. From the definition of f , f(yi, . . . , yi−c, w0,i) =
xi−τ . Let α′ = 0 . . . 0x0 . . . xi and β′ = y′

0 . . . y′
n = 0 . . . 0y0 . . . yi with |α′| =

|β′| = n. Since λ(0, x0 . . . xi) = y0 . . . yi, we have λ(0, α′) = β′. It follows that
λ(0, 0c−ix0 . . . xi) = y′

n−c . . . y′
n ∈ R(T0,n−c). Thus f(yi, . . . , yi−c, w0,n) =

f(y′
n, . . . , y′

n−c, w0,n) = xi−τ . Therefore, f(yi, . . . , yi−c, w0,i) = f(yi, . . ., yi−c,
w0,n). Noticing that in the proof of the above theorem, y−1, . . . , y−c in s′′′

are arbitrarily chosen, we can choose values of f at the other points such
that f(yi, . . . , yi−c, w0,i) = f(yi, . . . , yi−c, w0,n) holds for any yi, . . . , yi−c in
Y and any i, 0 � i � n. That is, the value f(y′

c, . . . , y
′
0, w) does not de-

pend on w; therefore, f can be regarded as a function f ′ from Y c+1 to X,
where f ′(y′

c, . . . , y
′
0) = f(y′

c, . . . , y
′
0, w0,n), y′

c, . . . , y
′
0 ∈ Y . Thus SIM(M ′′, f)

is equivalent to the c-order input-memory finite automaton Mf ′ .
We prove that f ′ is linear on Rc+1(T0,n−c). For any yn−c . . . yn and

y′
n−c . . . y′

n in Rc+1(T0,n−c), from the definitions, there exist x0, . . ., xn,
x′

0, . . . , x
′
n in X and y0, . . . , yn−c−1, y′

0, . . . , y
′
n−c−1 in Y such that y0 . . . yn =

λ(0, x0 . . . xn) and y′
0 . . . y′

n = λ(0, x′
0 . . . x′

n). For any a, a′ in GF (q), let
x′′

i = axi + a′x′
i, y′′

i = ayi + a′y′
i, i = 0, 1, . . . , n. Since M is linear, we

have y′′
0 . . . y′′

n = λ(0, x′′
0 . . . x′′

n). Taking s′′′ = 〈0, . . . , 0, w0,0〉, from the proof
of the above theorem, s′′′ τ -matches the state 0 of M . It follows that

f ′(y′′
n, . . . , y′′

n−c) = f(y′′
n, . . . , y′′

n−c, w0,n)
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= λ′′′(δ′′′(s′′′, y′′
0 . . . y′′

n−1), y
′′
n)

= x′′
n−τ = axn−τ + a′x′

n−τ

= aλ′′′(δ′′′(s′′′, y0 . . . yn−1), yn) + a′λ′′′(δ′′′(s′′′, y′
0 . . . y′

n−1), y
′
n)

= af(yn, . . . , yn−c, w0,n) + a′f(y′
n, . . . , y′

n−c, w0,n)

= af ′(yn, . . . , yn−c) + a′f ′(y′
n, . . . , y′

n−c).

Since Rc+1(T0,n−c) is a subspace of Y c+1, we can expand f such that f ′ is
linear. Therefore, Mf ′ is linear. ��
Corollary 1.5.2. Let M ′ be a weak inverse finite automaton with delay τ of
a linear finite automaton M over GF (q). Assume that propagation of weakly
decoding errors of M ′ to M is bounded with length of error propagation � c,

where c � τ . Then we can construct a linear c-order semi-input-memory
finite automaton SIM(M ′′, f) over GF (q) such that SIM(M ′′, f) is a weak
inverse finite automaton with delay τ of M .

Proof. Since M is linear, M is equivalent to the union of Ma and M0,
where Ma is the maximal linear autonomous finite subautomaton of M and
M0 is a minimal linear finite subautomaton of M . Using Corollary 1.5.1,
there exists a linear c-order input-memory finite automaton Mf which is a
weak inverse of M0 with delay τ . From automata Ma = 〈Y, Sa, δa, λa〉 and
Mf = 〈Y, X, Sf , δf , λf 〉 construct a finite automaton, say M ′′ = 〈Y, X, Sa ×
Sf , δ′′, λ′′〉, where

δ′′(〈sa, sf 〉, y) = 〈δa(sa), δf (sf , y + λa(sa))〉,
λ′′(〈sa, sf 〉, y) = λf (sf , y + λa(sa)),

sa ∈ Sa, sf ∈ Sf , y ∈ Y.

For any state s of M , s and the state 〈s, 0〉 of the union of Ma and M0 are
equivalent. Let the state sf of Mf τ -matches the state 0 of M0. It is easy to
see that the state 〈−s, sf 〉 of M ′′ τ -matches the state 〈s, 0〉. Thus 〈−s, sf 〉
τ -matches s. Therefore, M ′′ is a weak inverse with delay τ of M .

From Ma construct a linear autonomous finite automaton M ′
a = 〈Y c+1,

Sa × Y c, δ′a, λ′
a〉, where

δ′a(〈sa, y′
−1, . . . , y

′
−c〉) = 〈δa(sa), λa(sa), y′

−1, . . . , y
′
−c+1〉,

λ′
a(〈sa, y′

−1, . . . , y
′
−c〉) = 〈λa(sa), y′

−1, . . . , y
′
−c〉,

sa ∈ Sa, y′
−1, . . . , y

′
−c ∈ Y.

Let f ′ be a function from Y 2c+2 to X defined by

f ′(y0, y−1, . . . , y−c, y
′
0, y

′
−1, . . . , y

′
−c)

= f(y0 + y′
0, y−1 + y′

−1, . . . , y−c + y′
−c),

yi, y
′
i ∈ Y, i = 0,−1, . . . ,−c.
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It is easy to see that for any state s′′ = 〈sa, sf 〉 = 〈sa, y′′
−1, . . . , y

′′
−c〉 of

M ′′ and any state s′ = 〈y−1, . . . , y−c, 〈sa, y′
−1, . . . , y

′
−c〉〉 of SIM(M ′

a, f ′), if
yi + y′

i = y′′
i , i = −1, . . . ,−c, then s′′ and s′ are equivalent. Thus M ′′ and

SIM(M ′
a, f ′) are equivalent. It follows that SIM(M ′

a, f ′) is a weak inverse
with delay τ of M . Clearly, SIM(M ′

a, f ′) is linear. Thus the corollary holds.
��

A finite automaton M is said to be feedforward invertible with delay τ ,
if there exists a finite order semi-input-memory finite automaton which is a
weak inverse with delay τ of M . A finite automaton M ′ is said to be a feed-
forward inverse with delay τ , if M ′ is a finite order semi-input-memory finite
automaton which is a weak inverse with delay τ of some finite automaton.

Theorem 1.5.2. A finite automaton M is feedforward invertible with delay
τ, if and only if there exists a finite automaton M ′ such that M ′ is a weak
inverse with delay τ of M and propagation of weakly decoding errors of M ′

to M is bounded.

Proof. if : Assume that M ′ is a weak inverse with delay τ of M and
propagation of weakly decoding errors of M ′ to M is bounded. Let c′ be
the length of error propagation. Denote c = max(c′, τ). Then propagation of
weakly decoding errors of M ′ to M is bounded with length of error propa-
gation � c. From Theorem 1.5.1, there exists a c-order semi-input-memory
finite automaton M ′′′ such that M ′′′ is a weak inverse finite automaton with
delay τ of M . Thus M is feedforward invertible with delay τ .

only if : Assume that M is feedforward invertible with delay τ . Then
there exist a nonnegative integer c and a c-order semi-input-memory finite
automaton SIM(M ′′, f) such that SIM(M ′′, f) is a weak inverse finite
automaton with delay τ of M . Thus for each state s of M , we can choose a
state of SIM(M ′′, f), say ϕ(s), such that ϕ(s) τ -matches s. We prove the
following result: for any α in X∗ and any β in Y ∗ with |α| = |β|, any k,
0 � k � |β| − c, λ(s, α) =k β implies λ′′′(ϕ(s), λ(s, α)) =k+c λ′′′(ϕ(s), β),
where λ′′′ is the output function of SIM(M ′′, f). Denote |α| = l. In the case
of l � k + c, R(−k − c, λ′′′(ϕ(s), λ(s, α))) = ε = R(−k − c, λ′′′(ϕ(s), β)). In
the case of l > k + c, let ϕ(s) = 〈y−c, . . . , y−1, s

′′
0〉 and λ(s, α) = y0y1 . . . yl−1,

where y−c, . . . , y−1, y0, y1, . . . , yl−1 ∈ Y . Then β = y′
0 . . . y′

k−1 yk . . . yl−1, for
some y′

0, . . . , y
′
k−1 ∈ Y . Since SIM(M ′′, f) is a c-order semi-input-memory

finite automaton, we have

δ′′′(ϕ(s), y0 . . . yk+c−1) = 〈yk+c−1, . . . , yk, s′′k+c〉
= δ′′′(ϕ(s), y′

0 . . . y′
k−1yk . . . yk+c−1),

where s′′i+1 = δ′′(s′′i ), i = 0, 1, . . ., δ′′ and δ′′′ are the next state functions of
M ′′ and SIM(M ′′, f), respectively. Thus
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R(−k − c, λ′′′(ϕ(s), λ(s, α))) = λ′′′(〈yk+c−1, . . . , yk, s′′k+c〉, yk+c . . . yl−1)

= R(−k − c, λ′′′(ϕ(s), β)).

We conclude that propagation of weakly decoding errors of SIM(M ′′, f) to
M is bounded. ��

Using Corollary 1.5.2, we have the following equivalent definition for linear
finite automata.

Corollary 1.5.3. Let M be a linear finite automaton. Then M is feedfor-
ward invertible with delay τ if and only if there exists a linear finite order
semi-input-memory finite automaton which is a weak inverse with delay τ of
M .

1.6 Labelled Trees as States of Finite Automata

Let X and Y be two finite nonempty sets and τ a nonnegative integer. Define
a kind of labelled trees with level τ as follows. Each vertex with level � τ

emits |X| arcs and each arc has a label of the form (x, y), where x ∈ X

and y ∈ Y . x and y are called the input label and the output label of the
arc, respectively. Input labels of arcs with the same initial vertex are distinct
from each other, they constitute the set X. Output labels of arcs with the
same initial vertex are not restricted. We use T (X, Y, τ) to denote the set
of all such trees. For any vertex with level i + 1, if the labels of arcs in the
path from the root to the vertex are (x0, y0), (x1, y1), . . ., (xi, yi), x0 . . . xi

is called the input label sequence of the path or of the vertex, and y0 . . . yi is
called the output label sequence of the path or of the vertex.

Let T be a tree in T (X, Y, τ). If for any two paths wi of length τ +1 in T ,
i = 1, 2, that the output label sequence of w1 and of w2 are the same implies
that arcs of w1 and of w2 are joint, T is said to be compatible. Noticing that
the initial vertex of wi is the root, i = 1, 2, the condition that arcs of w1 and
of w2 are joint is equivalent to the condition: the first arc of w1 and of w2

are the same. This condition is also equivalent to a condition: the first letter
of the input label sequence of w1 and of w2 are the same.

Let T1 and T2 be two trees in T (X, Y, τ). If for any path wi of length τ +1
in Ti, i = 1, 2, that the output label sequence of w1 and of w2 are the same
implies that the first letter of the input label sequence of w1 and of w2 are
the same, T1 and T2 are said to be strongly compatible.

For any F ⊆ T (X, Y, τ), if each tree in F is compatible, F is said to be
compatible; if any two trees in F are strongly compatible, F is said to be
strongly compatible.
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For any T in T (X, Y, τ), in the case of τ > 0, we use T to denote the set
of |X| subtrees of T of which roots are the terminal vertices of arcs emitted
from the root of T and arcs contain all arcs of T with level � 1. We use T

to denote the subtree of T which is obtained from T by deleting all vertices
with level τ + 1 and all arcs with level τ . Clearly, T ⊆ T (X, Y, τ − 1) and
T ∈ T (X, Y, τ − 1). For any F ⊆ T (X, Y, τ), let F = ∪T∈FT and F =
{T | T ∈ F}.

If τ = 0 or F ⊆ F , F is said to be closed. For any Ti in T (X, Y, τ),
i = 1, 2, if T2 and the subtree of T1 in T1−, of which the root is the terminal
vertex of an arc emitted from the root of T1 with input label x, are the same,
T2 is called an x-successor of T1. Clearly, if F ⊆ T (X, Y, τ) is closed, then
for any T1 in F and any x in X, there exists T2 in F such that T2 is an
x-successor of T1.

Let F be a closed nonempty subset of T (X, Y, τ), and ν a single-valued
mapping from F to the set of positive integers. We construct a finite automa-
ton M = 〈X, Y, S, δ, λ〉, where

S = {〈T, i〉 | T ∈ F , i = 1, . . . , ν(T )},

and δ and λ are defined as follows. For any T in F and any x in X, define

δ(〈T, i〉, x) = 〈T ′, j〉,

λ(〈T, i〉, x) = y,

where T ′ is an x-successor of T , j is an integer with 1 � j � ν(T ′), and (x, y)
is a label of an arc emitted from the root of T . Notice that given T and x,
from the construction of T , the value of y is unique, and from the closedness
of F , values of T ′ and j are existent but not necessary to be unique. Since M

is determined by F , ν and δ, we use M(F , ν, δ) to denote the finite automaton
M .

For any finite automaton M = 〈X, Y, S, δ, λ〉 and any state s of M , con-
struct a labelled tree with level τ , denoted by TM

τ (s), as follows. The root
of TM

τ (s) is temporarily labelled by s. For each vertex v with level � τ of
TM

τ (s) and any x in X, an arc with label (x, λ(s′, x)) is emitted from v, and
we use δ(s′, x) to label the terminal vertex of the arc temporarily, where s′

is the label of v. Finally, deleting all labels of vertices, we obtain the tree
TM

τ (s).
Clearly, TM

τ (s) ∈ T (X, Y, τ). It is easy to see that for any s in S and any x

in X, TM
τ (δ(s, x)) is an x-successor of TM

τ (s). And for any path of length τ +1
of TM

τ (s), if the input label sequence and the output label sequence of the
path are x0 . . . xτ and y0 . . . yτ , respectively, then we have λ(s, x0 . . . xτ ) =
y0 . . . yτ .

From the construction of M(F , ν, δ), we have the following lemma.
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Lemma 1.6.1. For any state 〈T, i〉 of M(F , ν, δ), T
M(F,ν,δ)
τ (〈T, i〉) and T

are the same.

Lemma 1.6.2. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton and F =
{TM

τ (s) | s ∈ S}. Then M is weakly invertible with delay τ if and only if
F is compatible, and M is invertible with delay τ if and only if F is strongly
compatible.

Proof. Suppose that M is weakly invertible with delay τ . For any s in S

and any path wi of length τ + 1 in TM
τ (s), i = 1, 2, suppose that the output

label sequence of w1 and of w2 are the same, say y0 . . . yτ . Let x0 . . . xτ and
x′

0 . . . x′
τ be the input label sequence of w1 and of w2, respectively. Then we

have λ(s, x0 . . . xτ ) = y0 . . . yτ and λ(s, x′
0 . . . x′

τ ) = y0 . . . yτ . It follows that
x0 = x′

0. Thus TM
τ (s) is compatible. It follows that F is compatible.

Conversely, suppose that F is compatible. Let λ(s, x0 . . . xτ ) = λ(s, x′
0 . . .

x′
τ ) for s in S and xi, x′

i ∈ X, i = 0, 1, . . . , τ . From the construction of TM
τ (s),

there exist two paths w1 and w2 of length τ +1 in TM
τ (s) such that the input

label sequence of w1 and of w2 are x0 . . . xτ and x′
0 . . . x′

τ , respectively, and the
output label sequence of w1 and of w2 are λ(s, x0 . . . xτ ) and λ(s, x′

0 . . . x′
τ ),

respectively. Since TM
τ (s) is compatible and λ(s, x0 . . . xτ ) = λ(s, x′

0 . . . x′
τ ),

we have x0 = x′
0. Thus M is weakly invertible with delay τ .

Suppose that M is invertible with delay τ . For any s1 and s2 in S and
any path wi of length τ + 1 in TM

τ (si), i = 1, 2, suppose that the output
label sequence of w1 and of w2 are the same, say y0 . . . yτ . Let x0 . . . xτ and
x′

0 . . . x′
τ be the input label sequence of w1 and of w2, respectively. Then we

have λ(s1, x0 . . . xτ ) = y0 . . . yτ and λ(s2, x
′
0 . . . x′

τ ) = y0 . . . yτ . It follows that
x0 = x′

0. Thus TM
τ (s1) and TM

τ (s2) are strongly compatible. And it follows
that F is strongly compatible.

Conversely, suppose that F is strongly compatible. Let λ(s1, x0 . . . xτ ) =
λ(s2, x

′
0 . . . x′

τ ) for s1, s2 in S and xi, x′
i ∈ X, i = 0, 1, . . . , τ . From the

construction of TM
τ (si), there exist two paths w1 in TM

τ (s1) and w2 in TM
τ (s2)

of length τ +1 such that the input label sequence of w1 and of w2 are x0 . . . xτ

and x′
0 . . . x′

τ , respectively, and the output label sequence of w1 and of w2 are
λ(s1, x0 . . . xτ ) and λ(s2, x

′
0 . . . x′

τ ), respectively. Since TM
τ (s1) and TM

τ (s2)
are strongly compatible and λ(s1, x0 . . . xτ ) = λ(s2, x

′
0 . . . x′

τ ), we have x0 =
x′

0. Thus M is invertible with delay τ . ��

Theorem 1.6.1. For any finite automaton M(F , ν, δ), M(F , ν, δ) is weakly
invertible with delay τ if and only if F is compatible, and M(F , ν, δ) is in-
vertible with delay τ if and only if F is strongly compatible.

Proof. From Lemma 1.6.1, F = {TM(F,ν,δ)
τ (s′)| s′ is a state of M(F , ν, δ)}.

Using Lemma 1.6.2, the theorem follows. ��
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Lemma 1.6.3. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. Then there
exists a finite automaton M(F , ν, δ′) such that M and M(F , ν, δ′) are iso-
morphic.

Proof. Take F = {TM
τ (s) | s ∈ S}. Partition S into blocks so that s1 and

s2 belong to the same block if and only if TM
τ (s1) = TM

τ (s2). Let S1, . . ., Sr

be the blocks of the partition. Define ν(TM
τ (s)) = |Si| for any s in Si. Let

S′ = {〈TM
τ (s), i〉 | s ∈ S, i = 1, . . . , ν(TM

τ (s))}.

For any j, 1 � j � r, let sj
1, . . . , s

j
|Sj | be a permutation of elements in Sj .

Define a single-valued mapping η from S to S′:

η(sj
k) = 〈TM

τ (sj
k), k〉, j = 1, . . . , r, k = 1, . . . , |Sj |.

It is easy to verify that η is bijective. Define

δ′(s′, x) = η(δ(η−1(s′), x)), s′ ∈ S′, x ∈ X.

It is easy to show that η is an isomorphism from M to M(F , ν, δ′). Therefore,
M and M(F , ν, δ′) are isomorphic. ��

Theorem 1.6.2. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. Then there
exists a finite automaton M(F , ν, δ′) such that M and M(F , ν, δ′) are iso-
morphic and M is weakly invertible (respectively invertible) with delay τ if
and only if F is compatible (respectively strongly compatible).

Proof. From Lemma 1.6.3, there exists a finite automaton M(F , ν, δ′)
such that M and M(F , ν, δ′) are isomorphic. Thus M is weakly invertible
with delay τ if and only if M(F , ν, δ′) is weakly invertible with delay τ , and
M is invertible with delay τ if and only if M(F , ν, δ′) is invertible with delay
τ . From Theorem 1.6.1, the theorem follows. ��

In Sect. 6.5 of Chap. 6, we will deal with trees with arc label and vertex
label. Let X, Y and S′ be three finite nonempty sets and τ a nonnegative
integer. Let T be a tree in T (X, Y, τ). We assign an element in S′ to each
vertex of T , the element is referred to as the label of the vertex. We use
T ′(X, Y, S′, τ) to denote the set of all such trees with arc label and vertex
label.

The concept of closedness for T (X, Y, τ) may be naturally generalized to
T ′(X, Y, S′, τ). For any T in T ′(X, Y, S′, τ), in the case of τ > 0, we use T

to denote the set of |X| subtrees of T of which roots are the terminal vertices
of arcs emitted from the root of T and arcs contain all arcs of T with level �
1. We use T to denote the subtree of T which is obtained from T by delet-
ing all vertices with level τ + 1 and all arcs with level τ . Clearly, T ⊆
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T ′(X, Y, S′, τ − 1) and T ∈ T ′(X, Y, S′, τ − 1). For any F ⊆ T ′(X, Y, S′, τ),
let F = ∪T∈FT and F = {T | T ∈ F}.

For any F ⊆ T ′(X, Y, S′, τ), if τ = 0 or F ⊆ F , F is said to be closed.
For any Ti in T ′(X, Y, S′, τ), i = 1, 2, if T2 and the subtree of T1 in T1−, of
which the root is the terminal vertex of an arc emitted from the root of T1

with input label x, are the same, T2 is called an x-successor of T1.
Let F be a closed nonempty subset of T ′(X, Y, S′, τ). Let ν be a single-

valued mapping from F to the set of positive integers. Similar to the case of
T (X, Y, τ), we construct a finite automaton M = 〈X, Y, S, δ, λ〉, where

S = {〈T, i〉 | T ∈ F , i = 1, . . . , ν(T )},
and δ and λ are defined as follows. For any T in F and any x in X, define

δ(〈T, i〉, x) = 〈T ′, j〉,
λ(〈T, i〉, x) = y,

where T ′ is an x-successor of T , j is an integer with 1 � j � ν(T ′), and (x, y)
is a label of an arc emitted from the root of T . Notice that given T and x,
from the construction of T , the value of y is unique, and from the closedness
of F , values of T ′ and j are existent but not necessary to be unique. Since
M is determined by F , ν and δ, we still use M(F , ν, δ) to denote the finite
automaton M .

Historical Notes

The original development of finite automata is found in [62, 58, 78]. In [78],
the output function of a finite automaton is independent of the input. In this
book we adopt the definition in [73]. In [62], finite automata are regarded as
recognizers and their equivalence with regular sets is first proven. The com-
pound finite automaton C ′(M, M ′) of finite automata M and M ′ is intro-
duced in [112] for application to cryptography. References [59, 40, 24, 25, 47]
deal with linear finite automata. Section 1.3 is in part based on [25], Theo-
rem 1.3.5 is due to [35], and the material of z-transformation is taken from
[98].

Finite order information lossless finite automata, that is, weakly invertible
finite automata with finite delay in this book, are first defined in [60]. Finite
order invertible finite automata are first defined in [96]. Most of Sect. 1.4
are taken from Sect. 2.1 of [98], where the decision method is based on [36].
In [71], feedforward invertible linear finite automata are defined by means of
transfer function matrix. Section 1.5 is based on [99], in which semi-input-
memory finite automata and feedforward invertible finite automata in general
case are first defined. Section 1.6 is based on Sects. 2.7 and 2.8 of [98].
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Summary.

In this chapter, we first discuss the weights of output sets and input
sets of finite automata and prove that for any weakly invertible finite au-
tomaton and its states with minimal output weight, the distribution of
input sets is uniform. Then, using a result on output set, mutual invert-
ibility of finite automata is proven. Finally, for a kind of compound finite
automata, we give weights of output sets and input sets explicitly, and a
characterization of their input-trees; this leads to an evaluation of search
amounts of an exhausting search algorithm in average case and in worse
case, and successful probabilities of a stochastic search algorithm.

The search problem is proposed in cryptanalysis for a public key cryp-
tosystem based on finite automata in Chap. 9.

Key words: minimal output weight, input tree, exhausting search, sto-
chastic search, mutual invertibility

According to the definition of weakly invertible finite automata with delay
τ , from the initial state and the output sequence we can uniquely determine
the input sequence except the last τ letters by means of exhausting search.
The exhausting search method is effective, but not feasible in general. How to
evaluate the complexity of the search amount? In parallel, for the stochastic
search, what is the successful probability? These problems are proposed in
cryptanalysis for a public key cryptosystem based on finite automata (see
Subsect. 9.5.4).

In this chapter, we deal with these problems by studying the weights
of output sets and input sets of finite automata. It is proved that for any
weakly invertible finite automaton and its states with minimal output weight,
the distribution of input sets is uniform. Then for a kind of alternatively
compound finite automata of weakly invertible finite automata with delay 0
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and “delayers”, we give weights of output sets and input sets explicitly, and
a characterization of their input-trees. This leads to an evaluation of search
amounts of an exhausting search algorithm in average case and in worse case,
and successful probabilities of a stochastic search algorithm.

In addition, mutual invertibility of finite automata is also proven using a
result on output set.

2.1 Minimal Output Weight and Input Set

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. For any s ∈ S and any positive
integer r, the set

{λ(s, x0 . . . xr−1) | x0, . . . , xr−1 ∈ X}

is called the r-output set of s in M , denoted by WM
r,s. |WM

r,s|, the number of
elements in WM

r,s, is called the r-output weight of s in M . And mins∈S |WM
r,s|

is called the minimal r-output weight in M , denoted by wr,M . In the case of
r > 1, for any s ∈ S and x ∈ X, λ(s, x)WM

r−1,δ(s,x) is called the x-branch
of WM

r,s. If for any two states s and s′ of M there exists α ∈ X∗ such that
s′ = δ(s, α), M is said to be strongly connected.

Theorem 2.1.1. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay
r − 1 and |X| = |Y | = q.

(a) q|wr,M .
(b) For any s ∈ S, if wr,M = |WM

r,s|, then the number of elements in any
x-branch of WM

r,s is wr,M/q.
(c) For any s ∈ S, if wr,M = |WM

r,s| and s′ is a successor of s, then
wr,M = |WM

r,s′ |.
(d) For any s ∈ S, if wr,M = |WM

r,s|, s′ is a successor of s, and βr−1 ∈
WM

r−1,s′ , then βr−1y ∈ WM
r,s′ for each y ∈ Y .

(e) For any s ∈ S, if wr,M = |WM
r,s|, then WM

r+n,s = WM
r,sY

n for any n � 0.
(f) For any s ∈ S, if wr,M = |WM

r,s| and s′ is a successor of s, then
WM

r−1+n,s′ = WM
r−1,s′Y n for any n � 0.

(g) If M is strongly connected, then wr,M = |WM
r,s| holds for any s ∈ S.

Proof. (b) Assume that wr,M = |WM
r,s|. First of all, since M is weakly

invertible with delay r − 1, it is easy to see that for any different elements
x and x′ in X, the x-branch of WM

r,s and the x′-branch of WM
r,s are disjoint.

Thus all distinct x-branches of WM
r,s constitute a partition of WM

r,s. It follows
that

wr,M = |WM
r,s| =

∑
x∈X

|WM
r−1,δ(s,x)|. (2.1)
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We prove |WM
r−1,δ(s,x)| � wr,M/q for any x ∈ X by reduction to ab-

surdity. Suppose to the contrary that there is an element x ∈ X satisfying
|WM

r−1,δ(s,x)| < wr,M/q. It is evident that |WM
r,δ(s,x)| � q|WM

r−1,δ(s,x)|. Thus
|WM

r,δ(s,x)| < q(wr,M/q) = wr,M . This contradicts the definition of the mini-
mal r-output weight. Therefore, |WM

r−1,δ(s,x)| � wr,M/q.
Next, we prove |WM

r−1,δ(s,x)| = wr,M/q for any x ∈ X. Since |WM
r−1,δ(s,x)| �

wr,M/q for any x ∈ X, it is sufficient to prove that |WM
r−1,δ(s,x)| 
> wr,M/q

for any x ∈ X. We prove this fact by reduction to absurdity. Suppose to the
contrary that there is an element x′ ∈ X satisfying |WM

r−1,δ(s,x′)| > wr,M/q.
From (2.1), we have

wr,M =
∑
x∈X

|WM
r−1,δ(s,x)| >

∑
x∈X

wr,M/q = q(wr,M/q) = wr,M .

Thus wr,M > wr,M ; this is a contradiction. Therefore, |WM
r−1,δ(s,x)| 
> wr,M/q

holds for any x ∈ X.
(a) Let s be a state of M and |WM

r,s| = wr,M . From (b), wr,M/q is the
number in elements of x-branch of WM

r,s. Since the number of elements in
x-branch of WM

r,s is an integer, we have q|wr,M .
(c) Let s′ be a successor of s and wr,M = |WM

r,s|. Then we have s′ = δ(s, x)
for some x ∈ X. From (b), the number of elements in x-branch of WM

r,s is
wr,M/q. This yields that |WM

r−1,s′ | = wr,M/q. Thus |WM
r,s′ | � q|WM

r−1,s′ | =
q(wr,M/q) = wr,M , that is, |WM

r,s′ | � wr,M . On the other hand, from the
definition of the minimal r-output weight, we have |WM

r,s′ | � wr,M . Thus
|WM

r,s′ | = wr,M .
(d) Let s′ be a successor of s, wr,M = |WM

r,s|, and βr−1 ∈ WM
r−1,s′ . From

(c), we obtain wr,M = |WM
r,s′ |. Since s′ is a successor of s, we have s′ = δ(s, x)

for some x ∈ X. Then the x-branch of WM
r,s is λ(s, x)WM

r−1,s′ . From (b), we
have |WM

r−1,s′ | = wr,M/q. This yields that |WM
r,s′ | < q(wr,M/q) in case of

βr−1y 
∈ WM
r,s′ for some y ∈ Y . Since |WM

r,s′ | = wr,M = q(wr,M/q), we have
βr−1y ∈ WM

r,s′ for each y ∈ Y .
(e) Let wr,M = |WM

r,s|. We prove by induction on n that WM
r+n,s = WM

r,sY
n

for any n � 0. Basis : n = 0. It is trivial. Induction step : Suppose that
WM

r+n,s = WM
r,sY

n. Let y0 . . . yr+n be an arbitrary element in WM
r,sY

n+1.
Clearly, y0 . . . yr+n−1 ∈ WM

r,sY
n. From the induction hypothesis, it follows

that y0 . . . yr+n−1 ∈ WM
r+n,s. Thus there are x0, . . . , xr+n−1 ∈ X such that

y0 . . . yr+n−1 = λ(s, x0 . . . xr+n−1). Denote si+1 = δ(s, x0 . . . xi) for i =
0, 1, . . . , r + n − 1. From wr,M = |WM

r,s|, using (c), we have wr,M = |WM
r,si

|,
i = 1, . . . , r + n. Since yn+1 . . . yr+n−1 ∈ WM

r−1,sn+1
and wr,M = |WM

r,sn+1
|,

from (d), yn+1 . . . yr+n ∈ WM
r,sn+1

. It follows that there are x′
n+1, . . . , x

′
r+n ∈

X such that yn+1 . . . yr+n = λ(sn+1, x′
n+1 . . . x′

r+n). Thus
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y0 . . . yr+n = λ(s, x0 . . . xn)λ(sn+1, x
′
n+1 . . . x′

r+n)

= λ(s, x0 . . . xnx′
n+1 . . . x′

r+n).

This yields y0 . . . yr+n ∈ WM
r+n+1,s. Thus WM

r,sY
n+1 ⊆ WM

r+n+1,s. On the
other hand, it is evident that WM

r,sY
n+1 ⊇ WM

r+n+1,s. We conclude that
WM

r,sY
n+1 = WM

r+n+1,s.
(f) Let s′ be a successor of s and wr,M = |WM

r,s|. To prove WM
r−1+n,s′ ⊇

WM
r−1,s′Y n, let y1 . . . yr−1+n be an arbitrary element in WM

r−1,s′Y n. It fol-
lows that y1 . . . yr−1 ∈ WM

r−1,s′ . Thus there exist x1, . . . , xr−1 ∈ X such
that y1 . . . yr−1 = λ(s′, x1 . . . xr−1). Since s′ is a successor of s, there
exists x0 ∈ X such that s′ = δ(s, x0). Denoting y0 = λ(s, x0), then
y0y1 . . . yr−1 = λ(s, x0x1 . . . xr−1). It follows that y0y1 . . . yr−1 ∈ WM

r,s. From
(e), y0 y1 . . . yr−1+n ∈ WM

r+n,s. Thus there exist x′
0, x

′
1, . . . , x

′
r−1+n ∈ X

such that y0y1 . . . yr−1+n = λ(s, x′
0x

′
1 . . . x′

r−1+n). This yields y0 . . . yr−1 =
λ(s, x′

0 . . . x′
r−1). Since y0 . . . yr−1 = λ(s, x0 . . . xr−1) and M is weakly in-

vertible with delay r − 1, we obtain x′
0 = x0. It follows immediately that

y1 . . . yr−1+n = λ(s′, x′
1 . . . x′

r−1+n). That is, y1 . . . yr−1+n ∈ WM
r−1+n,s′ . We

conclude that WM
r−1+n,s′ ⊇ WM

r−1,s′Y n. Clearly, WM
r−1+n,s′ ⊆ WM

r−1,s′Y n.
Thus WM

r−1+n,s′ = WM
r−1,s′Y n.

(g) Assume that M is strongly connected. Let s̄ in S satisfy wr,M = |WM
r,s̄|.

For any s ∈ S, since M is strongly connected, there are x0, . . ., xn in X such
that s = δ(s̄, x0 . . . xn). Denote si+1 = δ(s̄, x0 . . . xi), for 0 � i � n. From
(c), we have wr,M = |WM

r,si
|, i = 1, . . . , n + 1. From sn+1 = s, it follows that

wr,M = |WM
r,s|. ��

For any β ∈ Y r, IM
β,s = {α | α ∈ X∗, λ(s, α) = β} is called the β-input set

of s in M .
Let

w′
r,M = min{ |IM

β,s| : s ∈ S, |WM
r,s| = wr,M , β ∈ WM

r,s}.
w′

r,M is called the minimal r-input weight in M .

Lemma 2.1.1. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r − 1
and |X| = |Y |. Let wr,M = |WM

r,s|. For any x0, . . . , xr−1 ∈ X, if |IM
y0...yr−1,s| =

w′
r,M , then for any y ∈ Y , |IM

y1...yr−1y,δ(s,x0)
| = w′

r,M , where y0 . . . yr−1 =
λ(s, x0 . . . xr−1).

Proof. Assume that |IM
y0...yr−1,s| = w′

r,M . Let s′ = δ(s, x0). Since M is
weakly invertible with delay r − 1, x0 is uniquely determined by s and
y0 . . . yr−1. Thus |IM

y0y1...yr−1,s| = |IM
y1...yr−1,s′ |. Since |IM

y0...yr−1,s| = w′
r,M , we

have |IM
y1...yr−1,s′ | = w′

r,M . Denoting |X| = q, it follows that∑
y∈Y

|IM
y1...yr−1y,s′ | = qw′

r,M . (2.2)
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We prove |IM
y1...yr−1y,s′ | = w′

r,M for each y ∈ Y . From Theorem 2.1.1
(d), for any y ∈ Y , y1 . . . yr−1y ∈ WM

r,s′ . From wr,M = |WM
r,s|, using Theo-

rem 2.1.1 (c), we have wr,M = |WM
r,s′ |. From the definition of w′

r,M , we then
obtain |IM

y1...yr−1y,s′ | � w′
r,M for each y ∈ Y . We prove |IM

y1...yr−1y,s′ | � w′
r,M

for each y ∈ Y by reduction to absurdity. Suppose to the contrary that
|IM

y1...yr−1y′,s′ | > w′
r,M for some y′ ∈ Y . From |IM

y1...yr−1y,s′ | � w′
r,M for

each y ∈ Y , it follows that
∑

y∈Y |IM
y1...yr−1y,s′ | > qw′

r,M , this contradicts
(2.2). We conclude that |IM

y1...yr−1y,s′ | � w′
r,M for each y ∈ Y . Therefore,

|IM
y1...yr−1y,s′ | = w′

r,M for each y ∈ Y . ��

Lemma 2.1.2. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r − 1
and |X| = |Y |. Let wr,M = |WM

r,s|. For any x0, . . . , xr−1 ∈ X, if |IM
y0...yr−1,s| =

w′
r,M , then for any β ∈ WM

r,δ(s,x0...xr−1)
, |IM

β,δ(s,x0...xr−1)
| = w′

r,M , where
y0 . . . yr−1 = λ(s, x0 . . . xr−1).

Proof. Applying repeatedly Theorem 2.1.1 (c) r times, we obtain

|WM
r,δ(s,x0...xi)

| = wr,M

for any i, 0 � i � r−1. Let β = yr . . . y2r−1 ∈ WM
r,δ(s,x0...xr−1)

. Then there are
xr, . . . , x2r−1 ∈ X such that β = λ(δ(s, x0 . . . xr−1), xr . . . x2r−1). It follows
that λ(s, x0 . . . x2r−1) = y0 . . . y2r−1. Applying repeatedly Lemma 2.1.1 r

times, we obtain |IM
yi+1...yr+i,δ(s,x0...xi)

| = w′
r,M for any i, 0 � i � r − 1. The

case i = r − 1 gives |IM
β,δ(s,x0...xr−1)

| = w′
r,M . ��

Lemma 2.1.3. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r − 1
and |X| = |Y | = q. Then w′

r,M = qr/wr,M .

Proof. Let s in S and x0, . . . , xr−1 in X satisfy wr,M = |WM
r,s| and

|IM
λ(s,x0...xr−1),s

| = w′
r,M . Since⋃

β∈W M
r,δ(s,x0...xr−1)

IM
β,δ(s,x0...xr−1)

= Xr,

we have ∑
β∈W M

r,δ(s,x0...xr−1)

|IM
β,δ(s,x0...xr−1)

| = qr.

From Lemma 2.1.2, |IM
β,δ(s,x0...xr−1)

| = w′
r,M for any β ∈ WM

r,δ(s,x0...xr−1)
. It

follows that

|WM
r,δ(s,x0...xr−1)

|w′
r,M =

∑
β∈W M

r,δ(s,x0...xr−1)

w′
r,M

=
∑

β∈W M
r,δ(s,x0...xr−1)

|IM
β,δ(s,x0...xr−1)

| = qr.
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Since |WM
r,s| = wr,M , from Theorem 2.1.1 (c), we have |WM

r,δ(s,x0...xr−1)
| =

wr,M . It follows immediately that wr,Mw′
r,M = qr. Therefore, w′

r,M =
qr/wr,M . ��

Let
w′′

r,M = max{ |IM
β,s| : s ∈ S, |WM

r,s| = wr,M , β ∈ WM
r,s}.

w′′
r,M is called the maximal r-input weight in M .

Lemma 2.1.4. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r − 1
and |X| = |Y |. Let wr,M = |WM

r,s|. For any x0, . . . , xr−1 ∈ X, if |IM
y0...yr−1,s| =

w′′
r,M , then for any y ∈ Y , |IM

y1...yr−1y,δ(s,x0)
| = w′′

r,M , where y0 . . . yr−1 =
λ(s, x0 . . . xr−1).

Proof. The proof of this lemma is similar to Lemma 2.1.1 but replacing
w′

r,M , �,� and > by w′′
r,M , �,� and <, respectively. ��

Lemma 2.1.5. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r − 1
and |X| = |Y |. Let wr,M = |WM

r,s|. For any x0, . . . , xr−1 ∈ X, if |IM
y0...yr−1,s| =

w′′
r,M , then for any β ∈ WM

r,δ(s,x0...xr−1)
, |IM

β,δ(s,x0...xr−1)
| = w′′

r,M , where
y0 . . . yr−1 = λ(s, x0 . . . xr−1).

Proof. The proof of this lemma is similar to Lemma 2.1.2 but replacing
Lemma 2.1.1 and w′

r,M by Lemma 2.1.4 and w′′
r,M , respectively. ��

Lemma 2.1.6. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r − 1
and |X| = |Y | = q. Then w′′

r,M = qr/wr,M .

Proof. The proof of this lemma is similar to Lemma 2.1.3 but replacing
Lemma 2.1.2 and w′

r,M by Lemma 2.1.5 and w′′
r,M , respectively. ��

Theorem 2.1.2. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r−1
and |X| = |Y | = q. Then wr,M | qr and for any s ∈ S and any β ∈ WM

r,s, if
wr,M = |WM

r,s|, then |IM
β,s| = qr/wr,M .

Proof. From Lemma 2.1.3, w′
r,M = qr/wr,M . Since w′

r,M is an integer, we
have wr,M | qr.

Let s ∈ S, β ∈ WM
r,s and wr,M = |WM

r,s|. By definitions of w′
r,M and

w′′
r,M , w′

r,M � |IM
β,s| � w′′

r,M . From Lemma 2.1.3 and Lemma 2.1.6, we have
w′

r,M = qr/wr,M = w′′
r,M . It follows that w′

r,M = |IM
β,s| = w′′

r,M . Therefore,
|IM

β,s| = qr/wr,M . ��

Corollary 2.1.1. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay r−1
and |X| = |Y | = q. Let wr,M = |WM

r,s|. Then for any x0, . . . , xr−1 ∈ X and
any y ∈ Y, |IM

y1...yr−1y,δ(s,x0)
| = qr/wr,M , where y0 . . . yr−1 = λ(s, x0 . . . xr−1).
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Proof. From Theorem 2.1.2 and Lemmas 2.1.3, |IM
y0...yr−1,s| = qr/wr,M =

w′
r,M . Using Lemmas 2.1.1 and 2.1.3, |IM

y1...yr−1y,δ(s,x0)
| = w′

r,M = qr/ωr,M .

��
Theorem 2.1.3. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay τ

and |X| = |Y | = q.
(a) wτ+1,M = qwτ,M and wτ,M |qτ .
(b) For any s in S, if |WM

τ,s| = wτ,M and s′ is a successor of s, then
|WM

τ,s′ | = wτ,M .
(c) For any s in S, if |WM

τ,s| = wτ,M , then |WM
τ+1,s| = wτ+1,M .

(d) For any s in S, if s is a successor state of s̄ and |WM
τ+1,s̄| = wτ+1,M ,

then |WM
τ,s| = wτ,M .

(e) For any s in S, if |WM
τ,s| = wτ,M and β ∈ WM

τ,s, then |IM
β,s| = qτ/wτ,M .

(f) If M is strongly connected, then |WM
τ,s′ | = wτ,M holds for any s′ in S.

(g) If M is strongly connected and β ∈ WM
τ,s′ , then |IM

β,s′ | = qτ/wτ,M .

Proof. (a) Let s′ be a state of M satisfying the condition: there exist
s ∈ S and x ∈ X such that s′ = δ(s, x) and |WM

τ+1,s| = wτ+1,M . From
Theorem 2.1.1 (c), we have |WM

τ+1,s′ | = wτ+1,M . From Theorem 2.1.1 (f), for
any n � 0, WM

τ+n,s′ = WM
τ,s′Y n holds. Taking n = 1, it follows that wτ+1,M =

|WM
τ+1,s′ | = |WM

τ,s′ |q. Thus we obtain wτ,M � |WM
τ,s′ | = wτ+1,M/q. We prove

wτ,M = wτ+1,M/q by reduction to absurdity. Suppose to the contrary that
wτ,M 
= wτ+1,M/q. Since wτ,M � wτ+1,M/q, we have wτ,M < wτ+1,M/q.
Therefore, there is s̄ ∈ S such that |WM

τ,s̄| < wτ+1,M/q. Clearly, |WM
τ+1,s̄| �

|WM
τ,s̄|q. It follows that |WM

τ+1,s̄| < wτ+1,M ; this is a contradiction. Thus the
hypothesis wτ,M 
= wτ+1,M/q does not hold. That is, wτ,M = wτ+1,M/q.

From Theorem 2.1.2, we have wτ+1,M |qτ+1. Using wτ+1,M = qwτ,M , it
follows that wτ,M |qτ .

(b) Let s′ be a successor of s and |WM
τ,s| = wτ,M . Clearly, |WM

τ+1,s| �
q|WM

τ,s| = qwτ,M . On the other hand, from (a), |WM
τ+1,s| � wτ+1,M = qwτ,M .

Thus we have |WM
τ+1,s| = qwτ,M = wτ+1,M . From Theorem 2.1.1 (f) (for

the case of n = 1 and r = τ + 1), it follows that WM
τ+1,s′ = WM

τ,s′Y . Using
Theorem 2.1.1 (c), |WM

τ+1,s′ | = wτ+1,M . Therefore, wτ+1,M = q|WM
τ,s′ |. From

(a), we obtain |WM
τ,s′ | = wτ+1,M/q = wτ,M .

(c) From the proof of (b).
(d) Let s be a successor state of s̄ and |WM

τ+1,s̄| = wτ+1,M . From Theo-
rem 2.1.1 (f) (for the case of n = 1 and r = τ +1), we have WM

τ+1,s = WM
τ,sY .

It follows immediately that |WM
τ+1,s| = |WM

τ,s|q. Next, we have |WM
τ+1,s| =

wτ+1,M from Theorem 2.1.1 (c), and wτ+1,M = qwτ,M from (a). Therefore,
|WM

τ,s| = |WM
τ+1,s|/q = wτ+1,M/q = wτ,M .

(e) Let |WM
τ,s| = wτ,M and β ∈ WM

τ,s. From (c), |WM
τ+1,s| = wτ+1,M

holds. From Theorem 2.1.2, for any y ∈ Y , if βy ∈ WM
τ+1,s, then |IM

βy,s| =
qτ+1/wτ+1,M . Using (a), it immediately follows that |IM

βy,s| = qτ/wτ,M .
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We prove |IM
β,s| = qτ/wτ,M by reduction to absurdity. Suppose to the

contrary that |IM
β,s| 
= qτ/wτ,M . There are two cases to consider. In the case

of |IM
β,s| > qτ/wτ,M , it is evident that

∑
y∈Y |IM

βy,s| = q|IM
β,s| > qτ+1/wτ,M .

Therefore, there is y ∈ Y such that βy ∈ WM
τ+1,s and |IM

βy,s| > qτ/wτ,M . This
contradicts |IM

βy,s| = qτ/wτ,M proven in the preceding paragraph. In the case
of |IM

β,s| < qτ/wτ,M , we have
∑

y∈Y |IM
βy,s| = q|IM

β,s| < qτ+1/wτ,M . Therefore,
there is y ∈ Y such that βy 
∈ WM

τ+1,s, or βy ∈ WM
τ+1,s and |IM

βy,s| < qτ/wτ,M .
In the preceding paragraph, we have proven that |IM

βy,s| = qτ/wτ,M if βy ∈
WM

τ+1,s. Thus there is y ∈ Y such that βy 
∈ WM
τ+1,s. On the other hand,

from (a), wτ+1,M = qwτ,M . It follows that |WM
τ+1,s| = wτ+1,M = qwτ,M =

q|WM
τ,s|. Thus we have WM

τ+1,s = WM
τ,sY . Since β ∈ WM

τ,s, it follows that
βy ∈ WM

τ+1,s holds for any y ∈ Y . This is a contradiction. Therefore, the
hypothesis |IM

β,s| 
= qτ/wτ,M does not hold, that is, |IM
β,s| = qτ/wτ,M .

(f) Assume that M is strongly connected. For any s′ in S, since M is
strongly connected, there is s in S such that s′ is a successor of s. From
Theorem 2.1.1 (g), we have wτ+1,M = |WM

τ+1,s|. Using (d), it follows that
wτ,M = |WM

τ,s′ |.
(g) This is immediate from (e) and (f). ��

2.2 Mutual Invertibility of Finite Automata

Lemma 2.2.1. Let M = 〈X, Y, S, δ, λ〉 and M ′ = 〈Y, X, S′, δ′, λ′〉 be two
finite automata. Assume that s0 in S and y0, . . . , yτ−1 in Y satisfy the con-
dition y0 . . . yτ+n ∈ WM

τ+n+1,s0
for any n � 0 and any yτ , . . . , yτ+n in Y . If

s′0 ∈ S′ τ -matches s0 and s′τ = δ′(s′0, y0 . . . yτ−1), then s0 τ -matches s′τ .

Proof. Assume that s′0 τ -matches s0 and s′τ = δ′(s′0, y0 . . . yτ−1). Let
yτ , . . ., yτ+n be arbitrary elements in Y , n � 0, and

x′′
0 . . . x′′

n = λ′(s′τ , yτ . . . yτ+n). (2.3)

From the assumption, y0 . . . yτ+n ∈ WM
τ+n+1,s0

. Thus there exist x′
0, . . ., x′

τ+n

∈ X such that
y0 . . . yτ+n = λ(s0, x

′
0 . . . x′

τ+n). (2.4)

Since s′0 τ -matches s0, from (2.4), there exist x′
−τ , . . . , x′

−1 ∈ X such that

x′
−τ . . . x′

−1x
′
0 . . . x′

n = λ′(s′0, y0 . . . yτ+n).

Noticing s′τ = δ′(s′0, y0 . . . yτ−1), it follows that

x′
0 . . . x′

n = λ′(s′τ , yτ . . . yτ+n). (2.5)
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From (2.5) and (2.3), we obtain x′
0 . . . x′

n = x′′
0 . . . x′′

n. Using this result, (2.4)
yields

y0 . . . yτ+n = λ(s0, x
′′
0 . . . x′′

nx′
n+1 . . . x′

τ+n).

It immediately follows that

y0 . . . yn = λ(s0, x
′′
0 . . . x′′

n). (2.6)

From (2.3) and (2.6), we conclude that s0 τ -matches s′τ . ��

Notice that λ(s0, x
′′
0 . . . x′′

τ−1) equals y0 . . . yτ−1 which is independent of
yτ , . . ., yτ+n.

Theorem 2.2.1. Assume that M ′ = 〈Y, X, S′, δ′, λ′〉 is a weak inverse with
delay τ of M = 〈X, Y, S, δ, λ〉 and |X| = |Y |. Let

S′
s = {δ′(s′, β) | s′ ∈ S′, β ∈ WM

τ,sY
∗, s′ τ -matches s} (2.7)

for each s ∈ S, and S′′ =
⋃

s∈Sτ
S′

s, where

Sτ = {δ(s, x) | s ∈ S, x ∈ X, wτ+1,M = |WM
τ+1,s|}.

Then M ′′ = 〈Y, X, S′′, δ′′, λ′′〉 is a finite subautomaton of M ′ of which M is
a weak inverse with delay τ, where δ′′ and λ′′ are the restrictions of δ′ and
λ′ on S′′ × Y, respectively.

Proof. Clearly, Sτ is nonempty. It follows that S′′ is nonempty. For any
state s′′ in S′′, from the definitions, there exist s in Sτ , s′ in S′, and β in
WM

τ,sY
∗ such that s′ τ -matches s and s′′ = δ′(s′, β). For any β′ in Y ∗, from

β ∈ WM
τ,sY

∗, we have ββ′ ∈ WM
τ,sY

∗. Thus δ′(s′′, β′) = δ′(s′, ββ′) is in S′
s. It

follows that δ′(s′′, β′) is in S′′. Thus S′′ is closed with respect to Y . Therefore,
M ′′ is a finite subautomaton of M ′.

For any state s′′ ∈ S′′, from the definition, there exists s in Sτ such that
s′′ ∈ S′

s. From the definition of S′
s, there exist s′ in S′ and β in WM

τ,sY
∗ such

that s′ τ -matches s and s′′ = δ′(s′, β). Denoting β = y0 . . . yτ−1y
′
τ . . . y′

l, from
the definition of Sτ , using Theorem 2.1.1 (f), we have y0 . . . yτ+n ∈ WM

τ+n+1,s

for any n � 0 and any yτ , . . . , yτ+n in Y . Denoting s′τ = δ′(s′, y0 . . . yτ−1),
from Lemma 2.2.1, s τ -matches s′τ . Letting α = λ′(s′τ , y′

τ . . . y′
l), it follows

that δ(s, α) τ -matches δ′(s′τ , y′
τ . . . y′

l) = s′′. We conclude that M is a weak
inverse of M ′′ with delay τ . ��

Corollary 2.2.1. If M is weakly invertible with delay τ and the input al-
phabet and the output alphabet of M have the same size, then M is a weak
inverse with delay τ .
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Corollary 2.2.2. If M is a weak inverse with delay τ and the input alphabet
and the output alphabet of M have the same size, then there exists a finite
subautomaton of M which is weakly invertible with delay τ and has the same
input alphabet and the same output alphabet with M .

Lemma 2.2.2. Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a weak inverse with delay τ of
M = 〈X, Y, S, δ, λ〉 and |X| = |Y |. If M ′ is strongly connected, then M is a
weak inverse with delay τ of M ′.

Proof. From Theorem 2.2.1 and its proof, it is enough to prove S′′ = S′.
Take s ∈ S with |WM

τ+1,s| = wτ+1,M . Since M ′ is a weak inverse with
delay τ of M , we can find s′ ∈ S′ such that s′ τ -matches s. Take arbitrary
α0 ∈ X∗ of length τ . Let β0 = λ(s, α0) and s′1 = δ′(s′, β0). For any s′2 ∈ S′,
since M ′ is strongly connected, there exists β1 ∈ Y ∗ such that s′2 = δ′(s′1, β1).
It follows that s′2 = δ′(s′, β0β1). Since β0 ∈ WM

τ,s, we have β0β1 ∈ WM
τ,sY

∗.
From (2.7), it follows that s′2 ∈ S′

s. From the arbitrariness of s′2, we obtain
S′ ⊆ S′

s. This deduces S′ ⊆ S′′. On the other hand, it is evident that S′′ ⊆ S′.
Therefore, S′′ = S′. ��

Theorem 2.2.2. Let M ′ = 〈Y, X, S′, δ′, λ′〉 be strongly connected and |X| =
|Y |. Then M ′ is weakly invertible with delay τ if and only if M ′ is a weak
inverse with delay τ .

Proof. only if : This is immediate from Corollary 2.2.1.
if : Suppose that M ′ is a weak inverse with delay τ . Then there exists

M = 〈X, Y, S, δ, λ〉 such that M ′ is a weak inverse with delay τ of M . Using
Lemma 2.2.2, M is a weak inverse with delay τ of M ′. Therefore, M ′ is weakly
invertible with delay τ . ��

2.3 Find Input by Search

2.3.1 On Output Set and Input Tree

For a weakly invertible finite automaton M with delay τ , an approach to
finding x0 . . . xl−τ from s and λ(s, x0 . . . xl) is guessing a value x′

0 . . . x′
l

and comparing λ(s, x′
0 . . . x′

l) with λ(s, x0 . . . xl). As soon as λ(s, x′
0 . . . x′

l) =
λ(s, x0 . . . xl), we obtain x0 . . . xl−τ = x′

0 . . . x′
l−τ . This is so-called “search”.

To evaluate the complexity of exhausting search or the successful probability
of stochastic search, we need to know input-trees or input sets of M .

In this section, we suppose |X| = |Y | = |Z| = q, |F | = p and q = pm. Let
M = 〈X, Y, S, δ, λ〉 be a finite automaton.

In this section, we also use Fn to denote the set of all column vectors of
dimension n over F for any set F and any nonnegative integer n. In the case
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of Y = Fm, we use DY,r, or Dr for short, to denote the finite automaton
〈Y, Y, F r, δD, λD〉, for any r, 0 � r � m, where

δD([s1, . . . , sr]T, [y1, . . . , ym]T) = [ym−r+1, . . . , ym]T,

λD([s1, . . . , sr]T, [y1, . . . , ym]T) = [y1, . . . , ym−r, s1, . . . , sr]T,

s1, . . . , sr, y1, . . . , ym ∈ F.

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. For any s ∈ S and any
n � 0, we use P1(M, s, n) to denote the following condition:

∀β ∈ WM
n,s(|IM

β,s| = qn/|WM
n,s|).

And for any t < n, we use P2(M, s, n, t) to denote the following condition:

∀y0 · · · ∀yn−1 ( y0 . . . yn−1 ∈ WM
n,s

→ ∀y′
t · · · ∀y′

n−1(y0 . . . yt−1y
′
t . . . y′

n−1 ∈ WM
n,s ) ).

Lemma 2.3.1. Let M = 〈X, Y, S, δ, λ〉, M ′ = C(M, Dr), and s′ = 〈s, sD〉
be a state of M ′.

(a) If z0 . . . zn−1 ∈ WM ′
n,s′ , then z0 =

[
z′
0

sD

]
for some z′0 ∈ Fm−r.

(b) For any γ =
[

z′
0

sD

] [
z′
1

z′′
1

]
. . .
[

z′
n−1

z′′
n−1

]
, we have

IM ′
γ,s′ =

⋃
z′′

n∈F r

IM
γ′,s, (2.8)

where γ′ =
[

z′
0

z′′
1

] [
z′
1

z′′
2

]
. . .
[

z′
n−1

z′′
n

]
.

(c) If M satisfies conditions P1(M, s, n) and P2(M, s, n, t), then |WM ′
n,s′ | =

|WM
n,s|/pr holds and M ′ satisfies conditions P1(M ′, s′, n) and P2(M ′, s′, n, t+

1) in the case of t + 1 < n.

Proof. (a) It is evident from the definition of Dr.
(b) Let γ =

[
z′
0

sD

] [
z′
1

z′′
1

]
. . .
[

z′
n−1

z′′
n−1

]
. Suppose that x0 . . . xn−1 ∈

⋃
z′′

n∈F r IM
γ′,s,

where γ′ =
[

z′
0

z′′
1

] [
z′
1

z′′
2

]
. . .
[

z′
n−1

z′′
n

]
. Then there is z′′n ∈ F r such that x0 . . . xn−1

∈ IM
γ′,s. Thus γ′ = λ(s, x0 . . . xn−1). From the definition of Dr, we have

γ = λD(sD, γ′). It follows immediately that x0 . . . xn−1 ∈ IM ′
γ,s′ . Therefore,

IM ′
γ,s′ ⊇ ⋃z′′

n∈F r IM
γ′,s. On the other hand, suppose that x0 . . . xn−1 ∈ IM ′

γ,s′ .
Then γ = λ′(s′, x0 . . . xn−1), where λ′ is the output function of M ′. Since
s′ = 〈s, sD〉, denoting

y0 . . . yn−1 = λ(s, x0 . . . xn−1), (2.9)
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we have γ = λD(sD, y0 . . . yn−1). From the definition of Dr, it follows that
y0 . . . yn−1 = γ′ for some z′′n ∈ F r, where γ′ =

[
z′
0

z′′
1

] [
z′
1

z′′
2

]
. . .
[

z′
n−1

z′′
n

]
. Thus

(2.9) yields x0 . . . xn−1 ∈ ⋃z′′
n∈F r IM

γ′,s. It follows immediately that IM ′
γ,s′ ⊆⋃

z′′
n∈F r IM

γ′,s. Therefore, (2.8) holds.
(c) Suppose that P1(M, s, n) and P2(M, s, n, t) hold.
For any element y ∈ Y = Fm, we use y′ and y′′ to denote the first m − r

components and the last r components of y, respectively, that is, y = [y′, y′′]T.
To prove |WM ′

n,s′ | = |WM
n,s|/pr, partition the set WM

n,s into blocks so that
y0 . . . yn−1 and z0 . . . zn−1 belong to the same block if and only if y0 . . . yn−2 =
z0 . . . zn−2 and y′

n−1 = z′n−1. Since P2(M, s, n, t) holds, the number of ele-
ments in each block is pr. It follows that the number of blocks is |WM

n,s|/pr.
From the definition of Dr, for any β, β′ ∈ WM

n,s, λD(sD, β) = λD(sD, β′) if
and only if β and β′ belong to the same block. Thus the number of elements
in WM ′

n,s′ equals the number of blocks. Therefore, |WM ′
n,s′ | = |WM

n,s|/pr holds.
To prove P1(M ′, s′, n), let s′ = 〈s, sD〉 be a state of M ′ and γ ∈ WM ′

n,s′ .
Clearly, IM

β,s ∩ IM
β′,s = ∅ if β 
= β′. Using (b) and P1(M, s, n), we have

|IM ′
γ,s′ | =

∑
z′′

n∈F r

|IM
γ′,s| =

∑
z′′

n∈F r

qn/|WM
n,s| = prqn/|WM

n,s|, (2.10)

where γ =
[

z′
0

sD

] [
z′
1

z′′
1

]
. . .
[

z′
n−1

z′′
n−1

]
and γ′ =

[
z′
0

z′′
1

] [
z′
1

z′′
2

]
. . .
[

z′
n−1

z′′
n

]
. Using the

result |WM ′
n,s′ | = |WM

n,s|/pr proven in the preceding paragraph, (2.10) yields

|IM ′
γ,s′ | = qn/(|WM

n,s|/pr) = qn/|WM ′
n,s′ |.

Therefore, P1(M ′, s′, n) holds.
We prove P2(M ′, s′, n, t + 1) if t + 1 < n. Suppose further that t + 1 < n.

Let γ =
[

z′
0

sD

] [
z′
1

z′′
1

]
. . .
[

z′
n−1

z′′
n−1

]
∈ WM ′

n,s′ . Since M ′ = C(M, Dr), there is z′′n ∈ F r

such that γ′ ∈ WM
n,s, where γ′ =

[
z′
0

z′′
1

] [
z′
1

z′′
2

]
. . .
[

z′
n−1

z′′
n

]
. From P2(M, s, n, t), it

follows immediately that[
z′0
z′′1

] [
z′1
z′′2

]
. . .

[
z′t−1

z′′t

] [
z′t
v′′t+1

] [
v′t+1

v′′t+2

]
. . .

[
v′n−1

v′′n

]
∈ WM

n,s (2.11)

for any v′t+1, . . . , v
′
n−1 ∈ Fm−r, v′′t+1, . . . , v

′′
n ∈ F r. Since M ′ = C(M, Dr),

from the definition of Dr, (2.11) yields[
z′0
sD

] [
z′1
z′′1

]
. . .

[
z′t
z′′t

] [
v′t+1

v′′t+1

]
. . .

[
v′n−1

v′′n−1

]
∈ WM ′

n,s′

for any v′t+1, . . ., v′n−1 ∈ Fm−r, v′′t+1, . . ., v′′n−1 ∈ F r. Therefore, P2(M ′, s,
n, t + 1) holds. ��
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A single-valued mapping ϕ from Y ∗ to Z∗ is said to be sequential, if
|ϕ(β)| = |β| for any β ∈ Y ∗ and ϕ(β) is a prefix of ϕ(β′) for any β′ ∈ Y ∗ and
any prefix β of β′.

Lemma 2.3.2. Let M̄ = 〈Y, Z, S̄, δ̄, λ̄〉 be weakly invertible with delay 0,
M = 〈X, Y, S, δ, λ〉 and M ′ = 〈X, Z, S′, δ′, λ′〉 = C(M, M̄). Suppose |Y | =
|Z|.

(a) For any state s̄ of M̄ , there is a sequential bijection ϕs̄ from Y ∗ to Z∗

such that for any state s of M and any n > 0, we have WM ′
n,〈s,s̄〉 = ϕs̄(WM

n,s),

|WM ′
n,〈s,s̄〉| = |WM

n,s| and IM ′
ϕs̄(β),〈s,s̄〉 = IM

β,s for any β ∈ WM
n,s.

(b) For any state s′ = 〈s, s̄〉 of M ′, if M satisfies the condition P1(M, s, n),
then M ′ satisfies the condition P1(M ′, s′, n).

(c) For any state s′ = 〈s, s̄〉 of M ′, if M satisfies the condition P2(M , s,
n, t), then M ′ satisfies the condition P2(M ′, s′, n, t).

Proof. (a) Let ϕs̄(β) = λ̄(s̄, β), for any β ∈ Y ∗. Clearly, ϕs̄ is sequential.
Since M̄ is weakly invertible with delay 0 and |Y | = |Z|, ϕs̄ is bijective.

To prove WM ′
n,〈s,s̄〉 = ϕs̄(WM

n,s), let β ∈ WM
n,s. Then there is α ∈ X∗ such

that β = λ(s, α). Thus

ϕs̄(β) = λ̄(s̄, λ(s, α)) = λ′(〈s, s̄〉, α) ∈ WM ′
n,〈s,s̄〉.

It immediately follows that ϕs̄(WM
n,s) ⊆ WM ′

n,〈s,s̄〉. On the other hand, suppose

that γ ∈ WM ′
n,〈s,s̄〉. Then there is α ∈ X∗ such that γ = λ′(〈s, s̄〉, α). Denoting

β = λ(s, α), we have β ∈ WM
n,s and

γ = λ̄(s̄, λ(s, α)) = λ̄(s̄, β) = ϕs̄(β) ∈ ϕs̄(WM
n,s).

Thus WM ′
n,〈s,s̄〉 ⊆ ϕs̄(WM

n,s). We conclude that WM ′
n,〈s,s̄〉 = ϕs̄(WM

n,s).

Since WM ′
n,〈s,s̄〉 = ϕs̄(WM

n,s) and ϕs̄ is bijective, we have |WM ′
n,〈s,s̄〉| = |WM

n,s|.
For any β ∈ WM

n,s, we prove IM ′
ϕs̄(β),〈s,s̄〉 = IM

β,s. Suppose that α ∈ IM
β,s.

Then β = λ(s, α). It follows that

λ′(〈s, s̄〉, α) = λ̄(s̄, λ(s, α)) = λ̄(s̄, β) = ϕs̄(β).

Thus α ∈ IM ′
ϕs̄(β),〈s,s̄〉. Therefore, IM

β,s ⊆ IM ′
ϕs̄(β),〈s,s̄〉. On the other hand, sup-

pose that α ∈ IM ′
ϕs̄(β),〈s,s̄〉. Then ϕs̄(β) = λ′(〈s, s̄〉, α). This yields

ϕs̄(β) = λ̄(s̄, λ(s, α)) = ϕs̄(λ(s, α)).

Since ϕs̄ is bijective, it follows that β = λ(s, α). Thus α ∈ IM
β,s. Therefore,

IM ′
ϕs̄(β),〈s,s̄〉 ⊆ IM

β,s. We conclude IM ′
ϕs̄(β),〈s,s̄〉 = IM

β,s.
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(b) Suppose that P1(M, s, n) holds, that is, ∀β ∈ WM
n,s(|IM

β,s| = qn/|WM
n,s|).

To prove P1(M ′, s′, n), let γ ∈ WM ′
n,s′ . From (a), there is a bijection ϕs̄ such

that WM ′
n,s′ = ϕs̄(WM

n,s), |WM ′
n,s′ | = |WM

n,s| and IM ′
ϕs̄(β),s′ = IM

β,s for any β ∈ WM
n,s.

Taking β = ϕ−1
s̄ (γ), we have β ∈ WM

n,s and IM ′
γ,s′ = IM

β,s. Thus

|IM ′
γ,s′ | = |IM

β,s| = qn/|WM
n,s| = qn/|WM ′

n,s′ |.

We conclude that P1(M ′, s′, n) holds.
(c) Suppose that P2(M, s, n, t) holds, that is, t < n and ∀y0 . . .∀yn−1

(y0 . . . yn−1 ∈ WM
n,s → ∀y′

t . . .∀y′
n−1 (y0 . . . yt−1y

′
t . . . y′

n−1 ∈ WM
n,s)). To prove

P2(M ′, s′, n, t), let z0, . . . , zn−1 be in Z with z0 . . . zn−1 ∈ WM ′
n,s′ . Con-

sider any elements z′t, . . . , z
′
n−1 in Z. We prove z0 . . . zt−1 z′t . . . z′n−1 ∈

WM ′
n,s′ . From (a), there is a bijection ϕs̄ such that WM ′

n,s′ = ϕs̄(WM
n,s). Since

z0 . . . zn−1 ∈ WM ′
n,s′ and ϕs̄ is surjective, there are y0, . . . , yn−1 ∈ Y such that

y0 . . . yn−1 ∈ WM
n,s and z0 . . . zn−1 = ϕs̄(y0 . . . yn−1). Denoting y′

0 . . . y′
n−1 =

ϕ−1
s̄ (z0 . . . zt−1z

′
t . . . z′n−1), since ϕs̄ is sequential and bijective, we have y′

0 . . .

y′
t−1 = y0 . . . yt−1. Since P2(M, s, n, t) holds, this yields y′

0 . . . y′
n−1 ∈ WM

n,s.
Using WM ′

n,s′ = ϕs̄(WM
n,s), we obtain

z0 . . . zt−1z
′
t . . . z′n−1 = ϕs̄(y′

0 . . . y′
n−1) ∈ ϕs̄(WM

n,s) = WM ′
n,s′ .

Therefore, P2(M ′, s′, n, t) holds. ��

Lemma 2.3.3. Let Mi, i = 0, 1, . . . , h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh−1 ,Mh−1, DX,rh
,Mh).

Then for any n � h, any state s of M , and any β ∈ WM
n,s, we have

(a) P1(M, s, n) and P2(M, s, n, t + h) for t < n − h hold; (b) |WM
n,s| =

|F |nm−r1−···−rh ; and (c) |IM
β,s| = |F |r1+···+rh .

Proof. We prove the lemma by induction on h. Basis : h = 0, that is,
M = M0. Since M is weakly invertible with delay 0, it is easy to see that
for any n � 0 and any state s of M we have |WM

n,s| = |X|n = |F |nm, and
that for any β ∈ WM

n,s we have |IM
β,s| = 1 = |F |0. It follows immediately that

P1(M, s, n) holds. Notice that WM
n,s contains all elements of length n in X∗.

Thus for any t < n, P2(M, s, n, t) is evident. Induction step : Suppose that
the lemma holds for the case of h. To prove the case of h + 1, assume that
Mi, i = 0, 1, . . . , h+ 1 are weakly invertible finite automata with delay 0 and
their input alphabets and output alphabets are X = Fm. Let

M ′ = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1).
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Denote

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh−1 ,Mh−1, DX,rh
,Mh).

Then M ′ = C(M, DX,rh+1 ,Mh+1). Let s′ be a state of M ′ and n � h + 1.
Denote s′ = 〈s, sD, sh+1〉, where s, sD and sh+1 are states of M, DX,rh+1

and Mh+1, respectively. From the induction hypothesis, P1(M, s, n) and
P2(M, s, n, t+h) for t < n−h hold. From Lemma 2.3.1 (c), P1(C(M, DX,rh+1),
〈s, sD〉, n) holds, and P2(C(M, DX,rh+1), 〈s, sD〉, n, t+h+1) holds for t+h+
1 < n (i.e., t < n−(h+1)). From Lemma 2.3.2 (b), P1(C(M, DX,rh+1 ,Mh+1),
〈s, sD, sh+1〉, n) (i.e., P1(M ′, s′, n)) holds. From Lemma 2.3.2 (c), P2(C(M ,
DX,rh+1 , Mh+1), 〈s, sD, sh+1〉, n, t + h + 1) (i.e., P2(M ′, s′, n, t + h + 1))
holds for t < n − (h + 1). We conclude that (a) holds for the case h + 1. We

prove (b) for the case of h + 1. From Lemma 2.3.1 (c), |WC(M,DX,rh+1 )

n,〈s,sD〉 | =
|WM

n,s|/|F |rh+1 . Using Lemma 2.3.2 (a), it follows that

|WM ′
n,s′ | = |WC(M,DX,rh+1 ,Mh+1)

n,〈s,sD,sh+1〉 | = |WC(M,DX,rh+1 )

n,〈s,sD〉 | = |WM
n,s|/|F |rh+1 .

From the induction hypothesis,

|WM ′
n,s′ | = |WM

n,s|/|F |rh+1 = |F |nm−r1−···−rh/|F |rh+1 = |F |nm−r1−···−rh+1 .

We prove (c) for the case of h + 1. Using the result P1(M ′, s′, n) proven
above, for any β ∈ WM ′

n,s′ we obtain |IM ′
β,s′ | = |X|n/|WM ′

n,s′ |. Since |WM ′
n,s′ | =

|F |nm−r1−···−rh+1 , it follows that |IM ′
β,s′ | = |F |mn/|F |nm−r1−···−rh+1 =

|F |r1+···+rh+1 . Thus (c) holds for the case of h + 1. ��
For any finite automaton M = 〈X, Y, S, δ, λ〉, if X = Y = Fm and for any

s ∈ S and any x ∈ X the first t components of λ(s, x) are coincided with the
corresponding components of x, M is said to be t-preservable.

Lemma 2.3.4. Let M ′ = C(M, Dr). If M = 〈X, Y, S, δ, λ〉 is (m − r)-
preservable, then for any state s′ = 〈s, w0〉 of M ′ and any input α =[

u0
v0

]
. . .
[

ul

vl

]
with (m − r)-dimensional ui, the output λ′(s′, α) of M ′ is in

the form
[

u0
w0

]
. . .
[

ul

wl

]
and wi is determined by s and

[
u0
v0

]
. . .
[

ui−1
vi−1

]
for any

i, 0 < i � l.

Proof. Denote λ(s, α) =
[

u′
0

w1

]
. . .
[

u′
l

wl+1

]
with (m − r)-dimensional u′

i.

Clearly, wi is determined by s and
[

u0
v0

]
. . .
[

ui−1
vi−1

]
for any i, 0 < i � l + 1.

Since M is (m − r)-preservable, we have u′
0 . . . u′

l = u0 . . . ul. From the def-

inition of Dr, the output λ′(s′, α) of M ′ is
[

u′
0

w0

] [
u′

1
w1

]
. . .
[

u′
l

wl

]
, which equals[

u0
w0

]
. . .
[

ul

wl

]
. ��
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Lemma 2.3.5. Let Mi, i = 0, 1, . . . , h be finite automata of which input
alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh−1 ,Mh−1, DX,rh
,Mh, DX,rh+1)

with r1 � r2 � · · · � rh+1, h � 0. If Mi is (m − ri+1)-preservable,
i = 0, 1, . . . , h, then for any state s = 〈s0, d1, s1, d2, . . . , sh, dh+1〉 of M and
any two inputs α = u0 . . . ul and α′ = u′

0 . . . u′
l, if l � h, u0 . . . ul−h−1 =

u′
0 . . . u′

l−h−1, and the first m− ri components of ui+l−h−1 are coincided with
the corresponding components of u′

i+l−h−1, i = 1, . . . , h + 1, then outputs on
s for α and α′ are the same.

Proof. Denote λ(s, α) = w0 . . . wl and λ(s, α′) = w′
0 . . . w′

l, where λ is the
output function of M . We prove w0 . . . wl = w′

0 . . . w′
l by induction on h.

Basis : h = 0. From the hypothesis of the theorem, u0 . . . ul−1 = u′
0 . . . u′

l−1

and the first m − r1 components of ul are coincided with the correspond-
ing components of u′

l. Using Lemma 2.3.4, we have w0 . . . wl = w′
0 . . . w′

l.
Induction step : Suppose that the lemma holds for the case of h − 1 with
h − 1 � 0. (That is, replacing h by h − 1 in the lemma, the result holds.)
To prove the case of h, let α = u0 . . . ul and α′ = u′

0 . . . u′
l be two in-

puts with l � h. Assume that u0 . . . ul−h−1 = u′
0 . . . u′

l−h−1 and the first
m − ri components of ui+l−h−1 are coincided with the corresponding com-
ponents of u′

i+l−h−1, i = 1, . . . , h + 1. Denote the outputs of C(M0, Dr1)
on the state 〈s0, d1〉 for the inputs α and α′ by v0 . . . vl and v′0 . . . v′l, re-
spectively. Since u0 . . . ul−h−1 = u′

0 . . . u′
l−h−1 and the first m − r1 com-

ponents of ul−h are coincided with the corresponding components of u′
l−h,

applying Lemma 2.3.4 to C(M0, Dr1), we obtain v0 . . . vl−h = v′0 . . . v′l−h.
Applying Lemma 2.3.4 to C(M0, Dr1) again, the first m − r1 components
of vi+l−h are coincided with the corresponding components of ui+l−h, and
the first m − r1 components of v′i+l−h are coincided with the correspond-
ing components of u′

i+l−h, i = 1, . . . , h. Since the first m − ri+1 compo-
nents of ui+l−h are coincided with the corresponding components of u′

i+l−h,
i = 0, 1, . . . , h, using r1 � r2 � · · · � rh+1, it follows that the first m − ri+1

components of vi+l−h are coincided with the corresponding components of
v′i+l−h, i = 1, . . . , h. Noticing h − 1 � 0, from the induction hypothesis
on M̄ = C(M1, DX,r2 ,M2, . . . , DX,rh−1 ,Mh−1, DX,rh

,Mh, DX,rh+1) and its
state s̄ = 〈s1, d2, . . . , sh, dh+1〉, outputs of M̄ on s̄ for inputs v0 . . . vl and
v′0 . . . v′l are the same, that is, w0 . . . wl = w′

0 . . . w′
l. ��

For any x0, . . . , xn+h ∈ X and any 0 � r1 � · · · � rh+1 � m, we
use Ex0...xn+h,r1,...,rh+1 to denote the set of all x0 . . . xn−1x

′
n . . . x′

n+h in X∗ of
length n+h+1 such that the first m−ri+1 components of x′

n+i are coincided
with the corresponding components of xn+i, i = 0, 1, . . . , h.
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Lemma 2.3.6. Let Mi, i = 0, 1, . . . , h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh−1 ,Mh−1, DX,rh
,Mh, DX,rh+1)

with r1 � r2 � · · · � rh+1, h � 0. If Mi is (m − ri+1)-preservable,
i = 0, 1, . . . , h, then for any state s of M , any β ∈ WM

n+h+1,s and any
x0 . . . xn+h ∈ IM

β,s, we have IM
β,s = Ex0...xn+h,r1,...,rh+1 .

Proof. From Lemma 2.3.5, we have IM
β,s ⊇ Ex0...xn+h,r1,...,rh+1 . Clearly, the

number of elements in Ex0...xn+h,r1,...,rh+1 is pr1+···+rh+1 which is the number
of elements in IM

β,s from Lemma 2.3.3 (c) (Mh+1 implements the identical
transformation). Thus IM

β,s = Ex0...xn+h,r1,...,rh+1 . ��
We use IIM

β,s to denote the set {x ∈ X|∃α(xα ∈ IM
β,s)}.

Lemma 2.3.7. Let Mi, i = 0, 1, . . . , h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1)

with r1 � r2 � · · · � rh+1, h � 0. If Mi is (m − ri+1)-preservable,
i = 0, 1, . . . , h, then for any state s of M , any β ∈ WM

n+h+1,s and any
x0 . . . xn+h ∈ IM

β,s, we have IIM
β,s = Ex0,r1 if n = 0, {x0} if n > 0.

Proof. This is immediate from Lemma 2.3.6. ��
From the definitions, it is easy to show the following lemma.

Lemma 2.3.8. Let M̄ = 〈X, X, S̄, δ̄, λ̄〉 and M = 〈X, Y, S, δ, λ〉 be two finite
automata, and M̄ be weakly invertible with delay 0. Let M ′=〈X, Y, S′, δ′, λ′〉=
C(M̄,M). Then for any state s′ = 〈s̄, s〉 of M ′ and any n � 0, we have
WM ′

n,s′ = WM
n,s, |IM ′

β,s′ | = |IM
β,s| and |IIM ′

β,s′ | = |IIM
β,s| for any β ∈ WM

n,s.

Using Lemma 2.3.2 (a) and Lemma 2.3.8, Lemma 2.3.6 and Lemma 2.3.7
yield the following.

Theorem 2.3.1. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � · · · � rh+1, h � 0. If Mi is (m − ri+1)-preservable, i =
1, . . . , h, then for any state s of M and any β ∈ WM

n+h+1,s, we have |IM
β,s| =

pr1+···+rh+1 , and |IIM
β,s| = pr1 if n = 0, 1 if n > 0.
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Lemma 2.3.9. Let Mi, i = 0, 1, . . . , h be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1)

with r1 � r2 � · · · � rh+1, h � 0. If Mi is (m − ri+1)-preservable, i =
0, 1, . . . , h, then for any state s of M and any β ∈ WM

l+1,s, l < h, IM
β,s =

Ex0...xl,rh+1−l,...,rh+1 and IIM
β,s = Ex0,rh+1−l

hold for any x0 . . . xl ∈ IM
β,s.

Proof. Denote M ′ = C(M0, DX,r1 , . . ., Mh−l−1, DX,rh−l
) and M ′′ =

C(Mh−l, DX,rh−l+1 , . . ., Mh, DX,rh+1). Then M = C(M ′,M ′′). Let s =
〈s′, s′′〉, where s′ and s′′ are states of M ′ and M ′′, respectively. Below, we
use λ, λ′ and λ′′ to denote output functions of M , M ′ and M ′′, respectively.
Let x0 . . . xl ∈ IM

β,s and

E′ = {λ′(s′, α)|α ∈ Ex0...xl,rh+1−l,...,rh+1}.

Since r1 � r2 � · · · � rh−l � rh+1−l and Mi is (m − ri+1)-preservable,
i = 0, 1, . . . , h − l, we obtain E′ ⊆ Ex0...xl,rh+1−l,...,rh+1 . It follows that
λ′(s′, x0 . . . xl), denoted by x′

0 . . . x′
l, is in Ex0...xl,rh+1−l,...,rh+1 . Thus

Ex′
0...x′

l,rh+1−l,...,rh+1 = Ex0...xl,rh+1−l,...,rh+1 .

Since λ′′(s′′, x′
0 . . . x′

l) = β, using Lemma 2.3.6 to M ′′, we have

IM ′′
β,s′′ = Ex′

0...x′
l,rh+1−l,...,rh+1 = Ex0...xl,rh+1−l,...,rh+1 .

This yields E′ ⊆ IM ′′
β,s′′ . It follows that Ex0...xl,rh+1−l,...,rh+1 ⊆ IM

β,s. On the
other hand, suppose that α 
∈ Ex0...xl,rh+1−l,...,rh+1 . Since r1 � r2 � · · · �
rh−l � rh+1−l and Mi is (m − ri+1)-preservable, i = 0, 1, . . . , h − l, we
have λ′(s′, α) 
∈ Ex0...xl,rh+1−l,...,rh+1 . From IM ′′

β,s′′ = Ex0...xl,rh+1−l,...,rh+1 , we
have λ′′(s′′, λ′(s′, α)) 
= β, namely, λ(s, α) 
= β. Thus α 
∈ IM

β,s. Therefore,
Ex0...xl,rh+1−l,...,rh+1 = IM

β,s. Moreover, from the definitions of IIM
β,s and E,

this equation yields Ex0,rh+1−l
= IIM

β,s. ��
Using Lemma 2.3.2 (a) and Lemma 2.3.8, this lemma yields the following

result.

Theorem 2.3.2. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � · · · � rh+1, h � 0. If Mi is (m − ri+1)-preservable, i =
1, . . . , h, then for any state s of M and any β ∈ WM

l+1,s, l < h, we have
|IM

β,s| = prh+1−l+···+rh+1 and |IIM
β,s| = prh+1−l .
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Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. For any s ∈ S and any
α ∈ Y ∗ of length h + 1, we use TM,s,α to denote a labelled tree defined as
follows. We assign to the root of TM,s,α a label s. Denoting α = y0 . . . yh, for
any i, 0 � i � h, and any vertex v with level i and label s′, if x ∈ X and
λ(s′, x) = yi, then an arc labelled x is emitted from v and we assign to its
terminal vertex a label δ(s′, x). Clearly, for any i, 0 � i � h, λ(s, x0 . . . xi) =
y0 . . . yi if and only if there is a vertex with level i+1 to which from the root
the unique path has the arc label sequence x0 . . . xi.

For a vertex v, the maximal length of paths with initial vertex v in TM,s,α

is called the depth of v. The depth of an arc means the depth of its ter-
minal vertex. Clearly, if the level and label of v are i and s′, respectively,
then the depth of v is max j ( j > 0 → ∃xi . . .∃xi+j−1 ( λ(s′, xi . . . xi+j−1) =
yi . . . yi+j−1 ) ).

Theorem 2.3.3. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � ··· � rh+1, h � 0. If Mi is (m−ri+1)-preservable, i = 1, . . . , h,

then for any state s of M and any α ∈ WM
h+1,s, the number of arcs emitted

from the root of TM,s,α with depth � l is prh+1−l for 0 � l � h, therefore, the
number of arcs emitted from the root of TM,s,α with depth l is prh+1−l − prh−l

for 0 � l � h − 1, and the number of arcs emitted from the root of TM,s,α

with depth h is pr1 .

Proof. Let α = y0 . . . yh and 0 � l � h. From Theorem 2.3.1 and The-
orem 2.3.2, |IIM

y0...yl,s
| = prh+1−l . It is easy to see that the depth of an arc

emitted from the root of TM,s,α with label x is at least l if and only if
x ∈ IIM

y0...yl,s
. Thus the number of arcs emitted from the root of TM,s,α with

depth � l is prh+1−l ��

Corollary 2.3.1. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � ··· � rh+1, h � 0. If Mi is (m−ri+1)-preservable, i = 1, . . . , h,
then for any state s of M and any α ∈ WM

h′+1,s, h′ < h, the number of arcs
emitted from the root of TM,s,α with depth � l is prh+1−l for 0 � l � h′,
therefore, the number of arcs emitted from the root of TM,s,α with depth l is
prh+1−l − prh−l for 0 � l � h′ − 1 and the number of arcs emitted from the
root of TM,s,α with depth h′ is prh+1−h′ .
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Proof. Take α′ ∈ WM
h+1,s of which α is a prefix. Applying Theorem 2.3.3

to α′, the number of arcs emitted from the root of TM,s,α′ with depth � l is
prh+1−l for 0 � l � h′. Since TM,s,α is the first h′ + 1 levels of TM,s,α′ , the
number of arcs emitted from the root of TM,s,α with depth � l is prh+1−l for
0 � l � h′. It follows that the number of arcs emitted from the root of TM,s,α

with depth l is prh+1−l − prh−l for 0 � l � h′ − 1 and the number of arcs
emitted from the root of TM,s,α with depth h′ is prh+1−h′ . ��

For any x ∈ X, the x-branch of TM,s,α, denoted by T x
M,s,α, means the

subtree of TM,s,α with the same root obtained by deleting all arcs emitted
from the root but one with label x. Clearly, the level of a tree is equal to
the depth of its root minus one. From Theorem 2.3.3 and Corollary 2.3.1, we
have the following result.

Corollary 2.3.2. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � ··· � rh+1, h � 0. If Mi is (m−ri+1)-preservable, i = 1, . . . , h,
then for any state s of M and any α ∈ WM

h′+1,s, h′ � h, the number of
branches of TM,s,α with level l is prh+1−l − prh−l for 0 � l � h′ − 1, and the
number of branches of TM,s,α with level h′ is prh+1−h′ .

Theorem 2.3.4. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Assume that Mi is (m − ri+1)-preservable, i = 1, . . . , h. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � · · · � rh+1, h � 0.
(a) For any state s of M and any α ∈ WM

n+h+1,s, the number of arcs in

TM,s,α is
∑h+1

j=2 p
∑h+1

i=j ri + (n + 1)p
∑h+1

i=1 ri .
(b) For any state s of M and any α ∈ WM

l+1,s, l < h, the number of arcs

in TM,s,α is
∑h+1

j=h+1−l p
∑h+1

i=j ri .

Proof. (a) Let α = y0 . . . yn+h. From Theorem 2.3.1 and Theorem 2.3.2,
we have |IM

y0...yj+h,s| = pr1+···+rh+1 for 0 � j � n, and |IM
y0...yj ,s| =

prh+1−j+···+rh+1 for 0 � j � h−1. Since the number of vertices with level j+1
of TM,s,α is equal to |IM

y0...yj ,s| for 0 � j � n+h, the number of arcs of TM,s,α

is equal to
∑n+h

j=0 |IM
y0...yj ,s| which equals

∑h+1
j=2 p

∑h+1
i=j ri + (n + 1)p

∑h+1
i=1 ri .

(b) Similar to (a), let α = y0 . . . yl, l < h. From Theorem 2.3.2, we have
|IM

y0...yj ,s| = prh+1−j+···+rh+1 for 0 � j � l. Since the number of vertices with
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level j + 1 of TM,s,α is equal to |IM
y0...yj ,s| for 0 � j � l, the number of arcs of

TM,s,α is equal to
∑l

j=0 |IM
y0...yj ,s| which equals

∑h+1
j=h+1−l p

∑h+1
i=j ri . ��

Corollary 2.3.3. Let Mi, i = 0, 1, . . . , h + 1 be weakly invertible finite
automata with delay 0 of which input alphabets and output alphabets are
X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , DX,rh
,Mh, DX,rh+1 ,Mh+1)

with r1 � r2 � ··· � rh+1, h � 0. If Mi is (m−ri+1)-preservable, i = 1, . . . , h,
then for any state s of M and any α ∈ WM

h′+1,s, h′ � h, the number of the arcs

of an x-branch with level l+1 of TM,s,α, 0 � l < h′, is 1+
∑h+1

j=h+1−l p
∑h+1

i=j ri .

Proof. Let T x
M,s,α be a branch with level l + 1 of TM,s,α and l < h′. Let

T be a tree obtained by deleting the root of T x
M,s,α. It is easy to see that

T = TM,δ(s,x),y1...yl+1 , where α = y0 . . . yh′ . From Theorem 2.3.4 (b), the

number of the arcs of TM,δ(s,x),y1...yl+1 is
∑h+1

j=h+1−l p
∑h+1

i=j ri . It follows that

the number of the arcs of a T x
M,s,α is 1 +

∑h+1
j=h+1−l p

∑h+1
i=j ri . ��

We point out that Lemmas 2.3.5 – 2.3.7, 2.3.9, Theorems 2.3.1 – 2.3.4 and
Corollaries 2.3.1 – 2.3.3 still hold if we change the definition of preservation
as follows. For a finite automaton M = 〈X, Y, S, δ, λ〉, if X = Y = Fm and
for any s ∈ S and any k, 1 � k � t � m, the first k components of λ(s, x) are
independent of s and the last m − k components of x, and λk is a bijection,
where λk(x′) is the first k components of λ(s, x), x′ is the first k components
of x, M is said to be t-preservable.

2.3.2 Exhausting Search

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton. An exhausting search algorithm
to find an input sequence from an output sequence is the like of the following.

Algorithm 1 (exhausting search algorithm)
Input : a state s of M , an output sequence y0y1 . . . yl ∈ WM

l+1,s.
Output : an input sequence x0x1 . . . xl ∈ IM

y0y1...yl,s
.

Procedure :
1. Set i = 0.
2. Set Xs,x′

0x′
1...x′

i−1
= {x|x ∈ X, yi = λ(δ(s, x′

0x
′
1 . . . x′

i−1), x)} in the
case of i > 0, or {x|x ∈ X, yi = λ(s, x)} otherwise.

3. If Xs,x′
0...x′

i−1

= ∅, then choose an element in it as x′

i, delete this
element from it, increase i by 1 and go to Step 4; otherwise, de-
crease i by 1 and go to Step 5.
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4. If i > l, then output x′
0 . . . x′

l as the input x0 . . . xl and stop; other-
wise, go to Step 2.

5. If i � 0, go to Step 3; otherwise, prompt a failure information and
stop.

Algorithm 1 is a so-called backtracking. It is convenient to understand the
execution of this algorithm for an input, say s and y0 . . . yl, by means of the
tree TM,s,y0...yl

; the output x0 . . . xl is the arc label sequence of a longest path
in TM,s,y0...yl

. To find one of the longest path in TM,s,y0...yl
, the algorithm

attempts to exhaust all possible paths from the root to leaves. Whenever the
level of a searched leaf is less than l+1, i.e., the path is not one of the longest,
the search process comes back until an arc which is not searched yet is met,
then the search process goes forward again. Whenever the level of a searched
leaf is l + 1, i.e., the path from the root to this leaf is the longest, the search
process finishes and the arc label sequence of this path is the output.

How do we evaluate search amounts or accurate lower bounds in worse
case or in average case of this algorithm? This is a rather difficult problem,
as the structure of the input-trees for general finite automata has not been
investigated yet except the case of finite automata discussed in the preceding
subsection and the case of C(M1,M0), where M0 is linear and M1 is weakly
invertible with delay 0. We point out that the quantity |IM

β,s| may be used
to evaluate a loose lower bound in worse case of the search amount. We use
the number of arcs in TM,s,y0...yl

passed in an execution of Algorithm 1 to
express the search amount of that execution. Let M be weakly invertible
with delay τ and τ � l. Although the track of an execution of Algorithm 1
for an instance y0 . . . yl is not clear for us, we may tentatively omit all parts
but the part corresponding to IM

y0...yl−τ ,s in TM,s,y0...yl
. It is evident that the

minimal search amount is l+1 which can be reached by guessing x′
0, . . . , x

′
l as

x0, . . . , xl, respectively. Meanwhile, in worse cases, the last guessed values of
x′

0, . . . , x
′
l−τ are x0, . . . , xl−τ , respectively. The search amount in worse case

is at least l+ |IM
y0...yl−τ ,s|, as the search amount between two distinct elements

of IM
y0...yl−τ ,s is at least 1. Therefore, if |IM

y0...yl−τ ,s| is large enough, then the
exhausting search is very difficult.

Below we confine X and Y to Fm and the automaton M in Algorithm 1
to the form

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ ,Mτ )

with 0 � r1 � r2 � · · · � rτ � m, and assume that Mi = 〈X, X, Si, δi, λi〉,
i = 0, 1, . . . , τ are weakly invertible finite automata with delay 0 and that Mi

is (m − ri+1)-preservable, i = 1, . . . , τ − 1.
We first discuss the case of l � τ . Since y0y1 . . . yl ∈ WM

l+1,s, the level of
TM,s,y0...yl

is l. Since M is weakly invertible with delay τ , it is easy to see
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that there exists a unique branch of TM,s,y0...yl
with level � τ . This branch

is T x0
M,s,y0...yl

. Notice that any other branch, say T
x′
0

M,s,y0...yl
, coincides with

T
x′
0

M,s,y0...yτ−1
. If the level of a branch of TM,s,y0...yl

, say h− 1, is greater than
0 and less than l, then 2 � h � τ and, from Corollary 2.3.3 (with values τ−1,
τ − 1, h − 2 for parameters h, h′, l, respectively), the number of its arcs is

th = 1 +
τ∑

j=τ−h+2

p
∑τ

i=j ri .

Denoting t1 = 1, it is trivial to see that a branch with level 0 has t1 arcs.
Consider the search process when Algorithm 1 is executing. Arcs in the
tree TM,s,y0...yl

are searched branch by branch. Let levels of the first i − 1
searched branches in TM,s,y0...yl

be less than τ and the i-th searched branch
be T x0

M,s,y0...yl
. Let vj be the number of branches with level j − 1 in the first

i − 1 searched branches, j = 1, . . . , τ . Then the search amount of searching
such i − 1 branches is

∑τ
j=1 vjtj . Denote

N = prτ , mj = prτ−j+1 − prτ−j , j = 1, . . . , τ, (2.12)

where r0 = 0. From Corollary 2.3.2 (with values τ − 1, τ − 1, j − 1 for
parameters h, h′, l, respectively), the number of branches of TM,s,y0...yτ−1

with level j − 1 is mj if 1 � j < τ , mj + 1 if j = τ . Since the level of the
branch T x0

M,s,y0...yl
is at least τ and for any x′

0 
= x0, the branch T
x′
0

M,s,y0...yl

coincides with the branch T
x′
0

M,s,y0...yτ−1
, it follows that the number of branches

of TM,s,y0...yl
with level j − 1 is mj , j = 1, . . . , τ ; therefore, the number of

branches of TM,s,y0...yl
is N . Fixing i and vj , j = 1, . . . , τ , then

(i − 1)!(N − i)!
(
m1
v1

)
. . .
(
mτ

vτ

)
is the number of all different permutations of N branches of TM,s,y0...yl

in
which the i-th branch is T x0

M,s,y0...yl
and the first i − 1 branches consist of vj

branches with level j − 1, j = 1, . . . , τ . Thus the average search amount for
searching branches of TM,s,y0...yl

with level � l − 1 is

c′′τ = (N !)−1
N∑

i=2

∑
d(i,v1,...,vτ )

(i − 1)!(N − i)!
(
m1
v1

)
. . .
(
mτ

vτ

) τ∑
j=1

vjtj ,

where d(i, v1, . . . , vτ ) represents the condition v1 + · · · + vτ = i − 1 & 0 �
v1 � m1 & · · · & 0 � vτ � mτ . Letting mj = 0 for l � j > τ and m̄l+1 = 1,
we have c′′τ = c′′l , where

c′′l = (N !)−1

N−m̄l+1+1∑
i=2

∑
d(i,v1,...,vl)

(i − 1)!(N − i)!m̄l+1

(
m1
v1

)
. . .
(
ml

vl

) l∑
j=1

vjtj ,
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0
0

)
= 1, and d(i, v1, . . . , vl) ⇔ v1 + · · ·+vl = i−1 & 0 � v1 � m1 & · · · & 0 �

vl � ml.
The search process for the branch T x0

M,s,y0...yl
with level l is reduced to the

search process for TM,δ(s,x0),y1...yl
. In the case of l−1 � τ , we can analogously

discuss as above. Repeat this discussion, until we reach a tree with level τ−1.
Now we consider the search process for TM,s,y0...yl

with l < τ . Similar to
the case of TM,s,y0...yl

with l � τ , its arcs are searched branch by branch. Let
the first i − 1 searched branches in TM,s,y0...yl

be with level � l − 1 and the
i-th searched branch be with level l. If the level of a branch of TM,s,y0...yl

,
say h− 1, satisfies 2 � h � l, from Corollary 2.3.3 (with values τ − 1, l, h− 2
for parameters h, h′, l, respectively), then the number of its arcs is

th = 1 +
τ∑

j=τ−h+2

p
∑τ

i=j ri .

Clearly, the number of arcs of a branch with level 0 is t1(= 1). Let vj be
the number of branches with level j − 1 in the first i − 1 searched branches,
j = 1, . . . , l. Then the search amount of searching such i − 1 branches is∑l

j=1 vjtj . From Corollary 2.3.2 (with values τ − 1, l, j − 1 for parameters
h, h′, l, respectively), the number of branches of TM,s,y0...yl

with level j − 1
is mj , j = 1, . . . , l, and the number of branches with level l is m̄l+1, where
mj is defined in (2.12), and m̄l+1 = prτ−l . Fixing i and vj , j = 1, . . . , l, then

(i − 1)!
(
m1
v1

)
. . .
(
ml

vl

)(
m̄l+1

1

)
(N − i)!

is the number of all different permutations of N branches of TM,s,y0...yl
of

which the i-th branch is T x0
M,s,y0...yl

and the first i − 1 branches consist of vj

branches with level j − 1, j = 1, . . . , l. Thus the average search amount for
searching branches with level � l − 1 is

c′′l = (N !)−1

N−m̄l+1+1∑
i=2

∑
d(i,v1,...,vl)

(i − 1)!(N − i)!m̄l+1

(
m1
v1

)
. . .
(
ml

vl

) l∑
j=1

vjtj ,

where d(i, v1, . . . , vl) represents the condition v1 + · · ·+ vl = i−1 & 0 � v1 �
m1 & · · · & 0 � vl � ml.

The average search amount for executing Algorithm 1 is the sum of the av-
erage search amounts for TM,δ(s,x0...xk−1),yk...yl

before searching its xk-branch
with level l − k, k = 0, 1, . . . , l − 1, because these search processes are inde-
pendent. Therefore, the average search amount for executing Algorithm 1
is

l∑
k=1

c′′k + l
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= (N !)−1
l∑

k=1

N−m̄k+1+1∑
i=2

∑
d(i,v1,...,vk)

(i−1)! (N−i)! m̄k+1

(
m1
v1

)
. . .
(
mk

vk

) k∑
j=1

vjtj + l,

where d(i, v1, . . . , vk) represents the condition v1 + · · · + vk = i − 1 & 0 �
v1 � m1 & · · · & 0 � vk � mk. We state this result as a theorem.

Theorem 2.3.5. Let Mi, i = 0, 1, . . . , τ be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ ,Mτ )

with 0 � r1 � r2 � · · · � rτ � m, and Mi be (m − ri+1)-preservable,
i = 1, . . . , τ − 1. If y0 . . . yl ∈ WM

l+1,s, then the average search amount for
executing Algorithm 1 is

(N !)−1
l∑

k=1

N−m̄k+1+1∑
i=2

∑
d(i,v1,...,vk)

(i − 1)! (N − i)! m̄k+1

(
m1
v1

)
. . .
(
mk

vk

) k∑
j=1

vjtj + l,

where N = prτ , mj = prτ−j+1 − prτ−j for j = 1, . . . , l, m̄k = prτ−k+1 for
k = 1, . . . , l + 1, rj = 0 if j � 0, th = 1 +

∑τ
j=τ−h+2 p

∑τ
i=j ri for h =

1, . . . ,min(τ, l), and d(i, v1, . . . , vk) ⇔ v1 + · · · + vk = i − 1 & 0 � v1 �
m1 & · · · & 0 � vk � mk.

Consider TM,s,y0...yl
with level l � τ . Let

jmax = max j ( mj 
= 0 & 1 � j � l )

and
tmax = tjmax .

The main branch means the unique branch of TM,s,y0...yl
with level l. A next

maximal branch means a branch of TM,s,y0...yl
with level jmax − 1. Fixing a

next maximal branch, let Pmax be the set of all permutations of N branches
of TM,s,y0...yl

in which the next maximal branch is before the main branch.
It is easy to see that

|Pmax| =
N∑

i=2

(N − 2)!
(
i−1
1

)
= N !/2.

Corresponding to a permutation in Pmax, the search amount for executing
Algorithm 1 is greater than tmax. Notice that the average search amount for
searching branches of TM,δ(s,x0...xk−1),yk...yl

before searching its xk-branch
with level � l − k is c′′τ , for k = 0, 1, . . . , l − τ . It follows that

c′′τ > (N !)−1(N !/2)tmax = tmax/2.
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In the case of r1 � 1, we have jmax = τ . Therefore,

c′′τ > tτ/2 =
(
1 +

τ∑
j=2

prj+···+rτ
)
/2, if r1 � 1.

Since the average search amount for executing Algorithm 1 on TM,s,y0...yl
is

greater than (l+1−τ)c′′τ , it is greater than (l+1−τ)
(
1+
∑τ

j=2 prj+···+rτ
)
/2

in the case of r1 � 1. We state this result as a theorem.

Theorem 2.3.6. Let Mi, i = 0, 1, . . . , τ be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ
,Mτ )

with 1 � r1 � r2 � · · · � rτ � m, and Mi be (m − ri+1)-preservable,
i = 1, . . . , τ − 1. If y0 . . . yl ∈ WM

l+1,s and l � τ , then the average search
amount for executing Algorithm 1 is greater than

(l + 1 − τ)
(
1 +

τ∑
j=2

prj+···+rτ
)
/2.

Finally, we evaluate the search amount in worse case. Consider the search
process when Algorithm 1 is executing. For searching the tree TM,s,y0...yl

with
y0 . . . yl ∈ WM

l+1,s and l � τ , in worse cases, all arcs in TM,s,y0...yl
except some

arcs mentioned below are searched. According to Corollary 2.3.2 (with val-
ues τ − 1, τ − 1 for parameters h, h′, respectively), there are pr1 branches
of TM,δ(s,x0...xl−τ ),yl−τ+1...yl

with level τ − 1; only one in such branches, say
T

xl−τ+1

M,δ(s,x0...xl−τ ),yl−τ+1...yl
, is searched, because only one path of length l + 1

in TM,s,y0...yl
is searched. Next, according to Corollary 2.3.2 (with values

τ − 1, τ − 2 for parameters h, h′, respectively), there are pr2 branches
of TM,δ(s,x0...xl−τ+1),yl−τ+2...yl

with level τ − 2; only one in such branches,
say T

xl−τ+2

M,δ(s,x0...xl−τ+1),yl−τ+2...yl
, is searched, because only one path of length

l + 1 in TM,s,y0...yl
is searched; and so on. According to Corollary 2.3.2

(with values τ − 1, 2 for parameters h, h′, respectively), there are prτ−2

branches of TM,δ(s,x0...xl−3),yl−2yl−1yl
with level 2; only one in such branches,

say T
xl−2

M,δ(s,x0...xl−3),yl−2yl−1yl
is searched, because only one path of length

l + 1 in TM,s,y0...yl
is searched. Finally, according to Corollary 2.3.2 (with

values τ −1, 1 for parameters h, h′, respectively), there are prτ−1 branches of
TM,δ(s,x0...xl−2),yl−1yl

with level 1; only two arcs in such a branch are searched,
because only one path of length l + 1 in TM,s,y0...yl

is searched. For any k,
2 � k � τ , from Corollary 2.3.3 (with value τ − 1, k− 1, k− 2 of the parame-
ter h, h′, l), the numbers of arcs of a branch of TM,δ(s,x0...xl−k),yl−k+1...yl

with
level k − 1 is 1 +

∑τ
j=τ−k+2 p

∑τ
i=j ri . Thus the number of arcs which are not

searched is
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τ∑
k=3

(prτ−k+1 − 1)(1 +
τ∑

j=τ−k+2

prj+···+rτ ) + (prτ−1(1 + prτ ) − 2)

=
τ−2∑
k=1

(prk − 1)(1 +
τ∑

j=k+1

prj+···+rτ ) + prτ−1(1 + prτ ) − 2

=
τ∑

k=1

(prk − 1) +
τ−1∑
k=1

(prk − 1)
τ∑

j=k+1

prj+···+rτ

=
τ∑

k=1

(prk − 1) +
τ∑

j=2

(
j−1∑
k=1

prk − (j − 1))prj+···+rτ

=
τ∑

k=1

(prk − 1) +
τ−1∑
k=1

(
k∑

j=1

prj − k)prk+1+···+rτ

=
τ∑

k=1

(
k∑

j=1

prj − k)prk+1+···+rτ .

From Theorem 2.3.4 (a) (with values τ − 1, l + 1 − τ for parameters h, n,
respectively), the number of arcs in TM,s,y0...yl

is

τ∑
j=2

p
∑τ

i=j ri + (l − τ + 2)p
∑τ

i=1 ri .

Then the search amount in worse case for executing Algorithm 1 is

τ∑
j=2

prj+···+rτ + (l − τ + 2)pr1+···+rτ −
τ∑

k=1

(
k∑

j=1

prj − k)prk+1+···+rτ

= (l − τ + 2)pr1+···+rτ −
τ∑

k=1

(
k∑

j=1

prj − k − 1)prk+1+···+rτ − 1

= (l−τ +1)pr1+···+rτ +
τ∑

k=0

(k+1)prk+1+···+rτ −
τ∑

k=1

(
k∑

j=1

prj )prk+1+···+rτ −1

= (l − τ + 1)pr1+···+rτ +
τ+1∑
k=1

kprk+···+rτ −
τ∑

k=1

(
k∑

j=1

prj )prk+1+···+rτ − 1

= (l − τ + 1)pr1+···+rτ +
τ∑

k=1

(kprk −
k∑

j=1

prj )prk+1+···+rτ + τ.

We state this result as a theorem.

Theorem 2.3.7. Let Mi, i = 0, 1, . . . , τ be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let
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M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ
,Mτ )

with 0 � r1 � r2 � · · · � rτ � m, and Mi be (m − ri+1)-preservable,
i = 1, . . . , τ − 1. If y0 . . . yl ∈ WM

l+1,s and l � τ , then the search amount in
worse case for executing Algorithm 1 is

(l − τ + 1)pr1+···+rτ +
τ∑

k=1

(
kprk −

k∑
j=1

prj
)
prk+1+···+rτ + τ.

Using Theorem 2.3.1, this theorem yields the following.

Corollary 2.3.4. Let Mi, i = 0, 1, . . . , τ be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ
,Mτ )

with 0 � r1 � r2 � · · · � rτ � m, and Mi be (m − ri+1)-preservable,
i = 1, . . . , τ − 1. If y0 . . . yl ∈ WM

l+1,s and l � τ , then (l− τ + 1)pr1+···+rτ + τ ,
i.e., (l − τ + 1)|IM

y0...yl,s
| + τ is a positive lower bound of the search amount

in worse case for executing Algorithm 1 and this bound can be reached if and
only if r1 = · · · = rτ .

2.3.3 Stochastic Search

Algorithm 2 (stochastic search algorithm)
Input : a state s of M = 〈X, Y, S, δ, λ〉, an output sequence y0y1 . . . yl ∈

WM
l+1,s.

Output : an input sequence x0x1 . . . xl ∈ IM
y0y1...yl,s

.
Procedure :
1. Set i = 0.
2. Set Xs,x′

0x′
1...x′

i−1
= {x|x ∈ X, yi = λ(δ(s, x′

0x
′
1 . . . x′

i−1), x)} in the
case of i > 0, or {x|x ∈ X, yi = λ(s, x)} otherwise.

3. If Xs,x′
0...x′

i−1

= ∅, then choose an element in it as x′

i, increase i

by 1 and go to Step 4; otherwise, prompt a failure information
and stop.

4. If i > l, then output x′
0 . . . x′

l as the input x0 . . . xl and stop; other-
wise, go to Step 2.

Let py0...yl

i be the probability of successfully choosing x′
0, . . . , x

′
i in Algo-

rithm 2.
Let pr(x′

i|x′
0 . . . x′

i−1, s, y0 . . . yl) be the conditional probability of suc-
cessfully choosing x′

i in Algorithm 2, 0 � i � l. It is easy to see that

py0...yl

i = py0...yl

i−1 pr(x′
i|x′

0 . . . x′
i−1, s, y0 . . . yl), i = 0, 1, . . . , l,
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where py0...yl

−1 = 1. Thus

py0...yl

l =
l∏

i=0

pr(x′
i|x′

0 . . . x′
i−1, s, y0 . . . yl).

Below we confine X and Y to Fm and the automaton M in Algorithm 2
to the form

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ
,Mτ )

with 0 � r1 � r2 � · · · � rτ � m, and assume that Mi = 〈X, X, Si, δi, λi〉,
i = 0, 1, . . . , τ are weakly invertible finite automata with delay 0 and that
Mi is (m − ri+1)-preservable, i = 1, . . . , τ − 1. Notice that Xs,x′

0x′
1...x′

i−1
=

IM
yi,δ(s,x′

0...x′
i−1)

and

pr(x′
i|x′

0 . . . x′
i−1, s, y0 . . . yl) = |IIM

yi...yl,δ(s,x′
0...x′

i−1)
|/|IM

yi,δ(s,x′
0...x′

i−1)
|.

Using Theorem 2.3.1 (with values τ − 1, l − τ − i + 1 for parameters h, n,
respectively), we have |IIM

yi...yl,δ(s,x′
0...x′

i−1)
| = 1 if τ − l + i � 0, or pr1 if

τ − l + i = 1. Using Theorem 2.3.2 (with values τ − 1, l − i for parameters
h, l, respectively), we have |IIM

yi...yl,δ(s,x′
0...x′

i−1)
| = prτ−l+i if τ − l + i > 1.

Using Theorem 2.3.2 (with values τ − 1, 0 for parameters h, l, respectively),
we have |IM

yi,δ(s,x′
0...x′

i−1)
| = prτ , for i = 0, 1, . . . , l. It follows that

pr(x′
i|x′

0 . . . x′
i−1, s, y0 . . . yl) = prτ−l+i/prτ = prτ−l+i−rτ , i = 0, 1, . . . , l,

where rj = 0, for j � 0. Therefore,

py0...yl

l =
l∏

i=0

pr(x′
i|x′

0 . . . x′
i−1, s, y0 . . . yl)

=
l∏

i=0

prτ−l+i−rτ

= p
∑l

i=0(rτ−l+i−rτ )

= p
∑l

i=0 rτ−l+i−(l+1)rτ

= p
∑min(l,τ−1)

i=0 rτ−i−(l+1)rτ .

We obtain the following.

Theorem 2.3.8. Let Mi, i = 0, 1, . . . , τ be weakly invertible finite automata
with delay 0 of which input alphabets and output alphabets are X = Fm. Let

M = C(M0, DX,r1 ,M1, DX,r2 ,M2, . . . , Mτ−1, DX,rτ
,Mτ )
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with 0 � r1 � r2 � · · · � rτ � m, and Mi be (m − ri+1)-preservable,
i = 1, . . . , τ − 1. If y0 . . . yl ∈ WM

l+1,s, then the probability of successfully
choosing x′

0, . . . , x
′
l of Algorithm 2 is

py0...yl

l = p
∑min(l,τ−1)

i=0 rτ−i−(l+1)rτ .

Historical Notes

The concepts of the r-output set, the r-output weight and β-input set are
first defined in [4] for r = |β| = 1 and in [8] for the general case, and the
minimal 1-output weight is also defined in [4]. The minimal r-output weight
for general r, the minimal r-input weight and the maximal r-input weight
are introduced in [128]. And the input-tree TM,s,α is introduced in [120]. The
material of this chapter is based on [128].
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Summary.

For characterization of the structure of weakly invertible finite au-
tomata, the state tree method is presented in Chap. 1. However, from
an algorithmic viewpoint, it is rather hard to manipulate such state trees
for large state alphabets and delay steps. In this chapter, the Ra Rb trans-
formation is presented and used to generate a kind of weakly invertible
finite automata and their weak inverses. This result paves the way for the
key generation of a public key cryptosystem based on finite automata in
Chap. 9. For weakly invertible quasi-linear finite automata over finite fields,
the structure problem is also solved by means of the Ra Rb transformation
method.

This chapter may be regarded as an introduction to Chap. 9.

Key words: Ra Rb transformation, inversion method, quasi-linear finite
automata

For characterization of the structure of weakly invertible finite automata,
the state tree method is presented in Chap. 1. However, from an algorithmic
viewpoint, it is rather hard to manipulate such state trees for large state
alphabets and delay steps. In this chapter, the Ra Rb transformation is pre-
sented and used to generate a kind of weakly invertible finite automata and
their weak inverses. This result paves the way for the key generation of a
public key cryptosystem based on finite automata in Chap. 9. For weakly in-
vertible quasi-linear finite automata over finite fields, the structure problem
is also solved by means of the Ra Rb transformation method.



78 3. Ra Rb Transformation Method

3.1 Sufficient Conditions and Inversion

Throughout this chapter, for any integer i, any nonnegative integer k and any
symbol string z, we use z(i, k) to denote the symbol string zi, zi−1, . . . , zi−k+1

(void string in the case of k = 0). Let X and U be two finite nonempty sets.
Let Y be a column vector space of dimension m over a finite commutative
ring R with identity, where m is a positive integer. For any integer i, we use
xi (x′

i), yi (y′
i, y′′

i ) and ui to denote elements in X, Y and U , respectively.
Let r and t be two nonnegative integers, and p an integer with p � −1.

For any nonnegative integer k, let fk and f ′
k be two single-valued mappings

from Xr+1 × Up+1 × Y k+t+1 to Y .
Rule Ra : Let eqk(i) be an equation in the form

fk(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = 0.

Let ϕk be a transformation on eqk(i), and eq′k(i) the transformational result
in the form

f ′
k(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = 0.

If eqk(i) and eq′k(i) are equivalent (viz. their solutions are the same), eq′k(i)
is said to be obtained from eqk(i) by Rule Ra using ϕk, denoted by

eqk(i)
Ra[ϕk]−→ eq′k(i).

Rule Rb : Assume that eq′k(i) is an equation in the form

f ′
k(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = 0

and that the last m−rk+1 components of the left side of eq′k(i) do not depend
on ui and xi. Let eqk+1(i) be the equation[

E′
kf ′

k(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1))
E′′

k f ′
k(x(i + 1, r + 1), u(i + 1, p + 1), y(i + 1 + k, k + t + 1))

]
= 0,

where E′
k and E′′

k are the submatrix of the first rk+1 rows and the submatrix
of the last m− rk+1 rows of the m×m identity matrix, respectively. eqk+1(i)
is said to be obtained from eq′k(i) by Rule Rb with respect to variables x and
u, denoted by

eq′k(i)
Rb[rk+1]−→ eqk+1(i).

Notice that the result equation eqk+1(i) of applying Rule Rb to eq′k(i) is
still in the form

fk+1(x(i, r + 1), u(i, p + 1), y(i + k + 1, k + 1 + t + 1)) = 0
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on which Rule Ra should be applied.

Assume that

eqk(i)
Ra[ϕk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1.

It is easy to prove the following properties.
Property (a) For any k, 0 � k < τ , eqk(i) if and only if eq′k(i).
Property (b) For any k, 0 � k < τ , if eq′k(i), i = b, b + 1, . . ., then

eqk+1(i), i = b, b + 1, . . .

Property (c) For any k, 0 � k < τ , if eqk+1(i), i = b, b + 1, . . ., then
eq′k(i), i = b + 1, b + 2, . . .

From Property (a) and Property (b), we have the following.
Property (d) If eq0(i), i = b, b + 1, . . ., then eqτ (i), i = b, b + 1, . . .

From Property (a) and Property (c), we have the following.
Property (e) If eqτ (i), i = b, b+1, . . ., then eq0(i), i = b+τ, b+τ +1, . . .

Letting C be a matrix with m columns, we use Ceq′k(i) to denote the
equation obtained by multiplying two sides of eq′k(i) on the left by C. Using
Property (a), it is easy to show the following property.

Property (f) For any k, 0 � k < τ , and any b < e, eqk(i), i = b, b + 1,
. . ., e if and only if

eqk+1(i), i = b, b + 1, . . . , e − 1,

E′
keq′k(e),

E′′
k eq′k(b).

Applying Property (f) repeatedly, we have the following.
Property (g) eq0(i), i = 0, 1, . . . , τ if and only if

eqτ (0),

E′
0eq

′
0(τ), E′

1eq
′
1(τ − 1), . . . , E′

τ−1eq
′
τ−1(1),

E′′
0 eq′0(0), E′′

1 eq′1(0), . . . , E′′
τ−1eq

′
τ−1(0).

Let M = 〈X, Y, Y t × Up+1 × Xr, δ, λ〉 be a finite automaton defined by

δ(〈y(i − 1, t), u(i, p + 1), x(i − 1, r)〉, xi)

= 〈y(i, t), u(i + 1, p + 1), x(i, r)〉,
λ(〈y(i − 1, t), u(i, p + 1), x(i − 1, r)〉, xi) = yi,

where

yi = f(y(i − 1, t), u(i, p + 1), x(i, r + 1)),

ui+1 = g(y(i − 1, t), u(i, p + 1), x(i, r + 1)), (3.1)
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f and g are two single-valued mappings from Y t ×Up+1 ×Xr+1 to Y and U ,
respectively. Assume that eq0(i) is the equation

−yi + f(y(i − 1, t), u(i, p + 1), x(i, r + 1)) = 0 (3.2)

and that

eqk(i)
Ra[ϕk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

is an Ra Rb transformation sequence.
Let f∗

τ be a single-valued mapping from Xr ×Up+1 ×Y τ+t+1 to X. From
f∗

τ and g in (3.1), construct a finite automaton M∗ = 〈Y, X,Xr × Up+1 ×
Y τ+t, δ∗, λ∗〉 by

δ∗(〈x(i − 1, r), u(i, p + 1), y′(i − 1, τ + t)〉, y′
i)

= 〈x(i, r), u(i + 1, p + 1), y′(i, τ + t)〉,
λ∗(〈x(i − 1, r), u(i, p + 1), y′(i − 1, τ + t)〉, y′

i) = xi,

where

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y′(i, τ + t + 1)),

ui+1 = g(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)).

Lemma 3.1.1. Assume that for any parameters xi−1, . . ., xi−r, ui, . . .,
ui−p, yi+τ , . . ., yi−t, eqτ (i) has a solution xi

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)).

Let
s∗0 = 〈x(−1, r), u(0, p + 1), y′(−1, τ + t)〉

be a state of M∗. For any y′
0, y

′
1, . . . ∈ Y , if

x0x1 . . . = λ∗(s∗0, y
′
0y

′
1 . . .),

then
y′
0y

′
1 . . . = λ(sτ , xτxτ+1 . . .),

where

sτ = 〈y′(−1, t), u(τ, p + 1), x(τ − 1, r)〉,
ui+1 = g(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)), i = 0, 1, . . . , τ − 1.

Proof. Denoting

ui+1 = g(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)),

i = τ, τ + 1, . . . , (3.3)
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since x0x1 . . . = λ∗(s∗0, y
′
0y

′
1 . . .), we have

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y′(i, τ + t + 1)), i = 0, 1, . . .

Denoting yi+τ = y′
i for any integer i, this yields that

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)), i = 0, 1, . . .

From the hypothesis of the lemma, for any parameters xi−1, . . ., xi−r, ui, . . .,
ui−p, yi+τ , . . ., yi−t, such a value of xi is a solution of eqτ (i), i.e.,

fτ (x(i, r + 1), u(i, p + 1), y(i + τ, τ + t + 1)) = 0,

for i = 0, 1, . . . Thus eqτ (i), i = 0, 1, . . . hold. From Property (e), we have
eq0(i), i = τ, τ + 1, . . . It immediately follows that

yi = f(y(i − 1, t), u(i, p + 1), x(i, r + 1)), i = τ, τ + 1, . . .

Using (3.3), we then have

y′
i−τ = f(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)),

ui+1 = g(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)),

i = τ, τ + 1, . . .

From the definition of M , this yields y′
0y

′
1 . . . = λ(sτ , xτxτ+1 . . .). ��

Theorem 3.1.1. Assume that for any parameters xi−1, . . . , xi−r, ui, . . . ,

ui−p, yi+τ , . . . , yi−t, eqτ (i) has a solution xi

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)).

Let M∗∗ = 〈Y, X, S∗∗, δ∗|S∗∗×Y , λ∗|S∗∗×Y 〉 be a finite subautomaton of M∗,
where

S∗∗ = {δ∗(s∗, y0 . . . yτ−1) | s∗ ∈ Xr × Up+1 × Y τ+t, y0, . . . , yτ−1 ∈ Y }.

For any state
s∗0 = 〈x(−1, r), u(0, p + 1), y′(−1, τ + t)〉

of M∗∗, if
s0 = 〈y′(−τ − 1, t), u(0, p + 1), x(−1, r)〉,

then the state s0 of M matches s∗0 with delay τ and λ(s0, α) = y′
−τ . . . y′

−1

for any α ∈ λ∗(s∗0, Y
τ ). Therefore, M is a weak inverse with delay τ of M∗∗.
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Proof. For any y′
0, y

′
1 . . . ∈ Y, let

x0x1 . . . = λ∗(s∗0, y
′
0y

′
1 . . .).

From the definition of S∗∗, since s∗ ∈ S∗∗, there are x−r−1, . . . , x−r−τ ∈ X,
u−p−1, . . ., u−p−τ ∈ U , and y′

−τ−t−1, . . . , y
′
−2τ−t ∈ Y such that

δ∗(s∗−τ , y′
−τ . . . y′

−1) = s∗0,

where
s∗−τ = 〈x(−τ − 1, r), u(−τ, p + 1), y′(−τ − 1, τ + t)〉.

It follows that

x−τ . . . x−1x0x1 . . . = λ∗(s∗−τ , y′
−τ . . . y′

−1y
′
0y

′
1 . . .),

ui+1 = g(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)),

i = −τ, . . . ,−1,

where x−τ . . . x−r−1 = λ∗(s∗−τ , y′
−τ . . . y′

−r−1) in the case of τ > r. From
Lemma 3.1.1, we obtain

y′
−τ . . . y′

−1y
′
0y

′
1 . . . = λ(s0, x0x1 . . .).

Thus, s0 matches the state s∗0 with delay τ and λ(s0, α) = y′
−τ . . . y′

−1 for any
α ∈ λ∗(s∗0, Y

τ ). ��

Corollary 3.1.1. If for any parameters xi−1, . . . , xi−r, ui, . . . , ui−p,

yi+τ , . . . , yi−t, eqτ (i) has a solution xi, then M is a weak inverse with delay
τ .

Theorem 3.1.2. Assume that t = 0 and that for any parameters xi−1, . . . ,

xi−r, ui, . . . , ui−p, yi+τ , . . . , yi−t, eqτ (i) has a solution xi

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)).

For any state
s∗0 = 〈x(−1, r), u(0, p + 1), y′(−1, τ + t)〉

of M∗, if
s0 = 〈u(0, p + 1), x(−1, r)〉,

then the state s0 of M matches s∗0 with delay τ . Therefore, M is a weak
inverse with delay τ of M∗.
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Proof. For any y′
0, y

′
1 . . . ∈ Y , let

x0x1 . . . = λ∗(s∗0, y
′
0y

′
1 . . .).

Let
sτ = 〈u(τ, p + 1), x(τ − 1, r)〉,

where
ui+1 = g(u(i, p + 1), x(i, r + 1)), i = 0, 1, . . . , τ − 1.

From Lemma 3.1.1, we obtain

y′
0y

′
1 . . . = λ(sτ , xτxτ+1 . . .).

Since t = 0, it is easy to see that δ(s0, x0 . . . xτ−1) = sτ . Thus

y′′
0 . . . y′′

τ−1y
′
0y

′
1 . . . = λ(s0, x0x1 . . .)

for some y′′
0 , . . . , y′′

τ−1 ∈ Y . Therefore, s0 matches s∗0 with delay τ . ��

Theorem 3.1.3. If for any parameters xi−1, . . . , xi−r, ui, . . . , ui−p, yi+τ , . . . ,

yi−t, eqτ (i) has at most one solution xi, then M is weakly invertible with delay
τ .

Proof. Assume that for any parameters xi−1, . . ., xi−r, ui, . . ., ui−p,
yi+τ , . . ., yi−t, eqτ (i) has at most one solution xi. For any initial state s0 =
〈y(−1, t), u(0, p + 1), x(−1, r) 〉, and any input x0x1 . . . of M , let

y0y1 . . . = λ(s0, x0x1 . . .).

From the definition of M , (3.1) holds for i = 0, 1, . . . Since eq0(i) is defined
by (3.2), from (3.1), eq0(i) holds for i = 0, 1, . . . Using Property (d), eqτ (i)
holds for i = 0, 1, . . . It immediately follows that for such values of xi−1, . . .,
xi−r, ui, . . ., ui−p, yi+τ , . . ., yi−t, eqτ (i) has a unique solution xi, i = 0,
1, . . . Thus x0 is uniquely determined by the initial state s0 and the output
sequence y0 . . . yτ . Therefore, M is weakly invertible with delay τ . ��

Lemma 3.1.2. Assume that for any xi, . . ., xi−r, ui, . . ., ui−p, yi+τ , . . .,
yi−t, if they satisfy the equation eqτ (i) then xi = f∗

τ ( x(i− 1, r), u(i, p + 1),
y(i+ τ, τ + t+1)). For any state s0 = 〈y(−1, t), u(0, p+1), x(−1, r)〉 and any
input x0x1 . . . of M , if

y0y1 . . . = λ(s0, x0x1 . . .),

then

λ∗(〈x(−1, r), u(0, p + 1), y(τ − 1, τ + t)〉, yτyτ+1 . . .) = x0x1 . . .
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Proof. Suppose that y0y1 . . . = λ(s0, x0x1 . . .). From the definition of M ,
we have

yi = f(y(i − 1, t), u(i, p + 1), x(i, r + 1)),

ui+1 = g(y(i − 1, t), u(i, p + 1), x(i, r + 1)), (3.4)

i = 0, 1, . . .

From the proof of Theorem 3.1.3, eqτ (i) holds for i = 0, 1, . . . Using the
hypothesis of the lemma, for any xi, . . ., xi−r, ui, . . ., ui−p, yi+τ , . . ., yi−t,
if they satisfy the equation eqτ (i) then xi = f∗

τ ( x(i − 1, r), u(i, p + 1),
y(i+ τ, τ + t+1)). Thus for such values of xi,. . ., xi−r, ui, . . ., ui−p, yi+τ , . . .,
yi−t, we have

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)), i = 0, 1, . . . (3.5)

Denote y′
j−τ = yj for any j. Using (3.5) and (3.4), it immediately follows

that

xi = f∗
τ (x(i − 1, r), u(i, p + 1), y′(i, τ + t + 1)),

ui+1 = g(y′(i − τ − 1, t), u(i, p + 1), x(i, r + 1)),

i = 0, 1, . . .

From the definition of M∗, we have

x0x1 . . . = λ∗(〈x(−1, r), u(0, p + 1), y′(−1, τ + t)〉, y′
0y

′
1 . . .)

= λ∗(〈x(−1, r), u(0, p + 1), y(τ − 1, τ + t)〉, yτyτ+1 . . .). ��

Theorem 3.1.4. Assume that each state of M has a predecessor state and
that for any xi, . . . , xi−r, ui, . . . , ui−p, yi+τ , . . . , yi−t, if they satisfy the
equation eqτ (i) then xi = f∗

τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)). Then
M∗ is a weak inverse with delay τ of M .

Proof. For any state s0 = 〈y(−1, t), u(0, p + 1), x(−1, r)〉 of M, since
any state of M has a predecessor state, there exist x−r−1, . . . , x−r−τ ∈ X,

u−p−1, . . . , u−p−τ ∈ U, y−t−1, . . . , y−t−τ ∈ Y such that

λ(s−τ , x−τ . . . x−1) = y−τ . . . y−1,

δ(s−τ , x−τ . . . x−1) = s0,

where
s−τ = 〈y(−τ − 1, t), u(−τ, p + 1), x(−τ − 1, r)〉.

For any input x0x1 . . . of M , let
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y0y1 . . . = λ(s0, x0x1 . . .).

Then
y−τ . . . y−1y0y1 . . . = λ(s−τ , x−τ . . . x−1x0x1 . . .).

From Lemma 3.1.2, we have

λ∗(s∗0, y0y1 . . .) = x−τ . . . x−1x0x1 . . . ,

where
s∗0 = 〈x(−τ − 1, r), u(−τ, p + 1), y(−1, τ + t)〉.

It immediately follows that s∗0 matches s0 with delay τ . Thus M∗ is a weak
inverse with delay τ of M . ��

Corollary 3.1.2. Assume that t = 0 and that for any parameters x0, . . . ,

x−r+1, u0, . . . , u−p+1, g(u0, . . . , u−p, x0, . . . , x−r) as a function of the
variables u−p and x−r is surjective.1 Assume that for any xi, . . ., xi−r,
ui, . . ., ui−p, yi+τ , . . ., yi−t, if they satisfy the equation eqτ (i) then xi =
f∗

τ (x(i − 1, r), u(i, p + 1), y(i + τ, τ + t + 1)). Then M∗ is a weak inverse with
delay τ of M .

Proof. Since t = 0 and for any parameters x0, . . ., x−r+1, u0, . . ., u−p+1,
g(u0, . . ., u−p, x0, . . ., x−r) as a function of the variables u−p and x−r is
surjective, it is easy to show that each state of M has a predecessor state.
From Theorem 3.1.4, M∗ is a weak inverse with delay τ of M . ��

For any finite automaton M ′ = 〈Y, X, S′, δ′, λ′〉 so that S′ = S̄ × Y k for
some k � 0 and δ′(〈s, y−1, . . . , y−k〉, y0) is in the form 〈s′, y0, . . . , y−k+1〉, the
finite automaton M ′′ = 〈Y, X, S̄ × Y k × Nτ , δ′′, λ′′〉 is called the τ -stay of
M ′, where

Nτ = {0, 1, . . . , τ},
δ′′(〈s, y−1, . . . , y−k, c〉, y0)

=

{
〈s, y0, . . . , y−k+1, c + 1〉, if c < τ ,
〈δ′(〈s, y−1, . . . , y−k〉, y0), c〉, if c = τ ,

λ′′(〈s, y−1, . . . , y−k, c〉, y0) = λ′(〈s, y−1, . . . , y−k〉, y0).

From the definition of τ -stay, it is easy to verify the following lemma.

Lemma 3.1.3. Assume that M ′′ is the τ -stay of M ′. For any state s′ of
M ′, the state 〈s′, τ〉 of M ′′ and s′ are equivalent.
1 Precisely speaking, g(u0, . . ., u−p, x0, . . ., x−r) as a function of the variables u−p

and x−r means the restriction of g on the set { (u0, . . ., u−p, x0, . . ., x−r) :
u−p ∈ U, x−r ∈ X }.
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From Lemma 3.1.3 and the definition of τ -stay, it is easy to prove the
following lemma.

Lemma 3.1.4. Assume that M ′′ is the τ -stay of M ′. For any state s′′ =
〈s, y−1, . . ., y−k, 0〉 of M ′′ and any y0, y1, . . . ∈ Y , there are x0, . . ., xτ−1 ∈
X such that

λ′′(s′′, y0y1 . . .) = x0 . . . xτ−1λ
′(s′, yτyτ+1 . . .),

where s′ = 〈s, yτ−1, . . . , yτ−k〉.

Theorem 3.1.5. Assume that for any xi, . . . , xi−r, ui, . . . , ui−p, yi+τ , . . . ,

yi−t, if they satisfy the equation eqτ (i) then xi = f∗
τ (x(i − 1, r), u(i, p + 1),

y(i + τ, τ + t + 1)). Let M ′′ be the τ -stay of M∗. Then M ′′ is a weak inverse
with delay τ of M . Moreover, for any state s0 = 〈y(−1, t), u(0, p+1), x(−1, r)〉
of M, the state s′′ = 〈x(−1, r), u(0, p + 1), y(−1, τ + t), 0〉 of M ′′ matches s0

with delay τ, for any y−t−1, . . . , y−τ−t in Y .

Proof. For the state s0 = 〈y(−1, t), u(0, p + 1), x(−1, r)〉 and any input
x0x1 . . . of M , let

y0y1 . . . = λ(s0, x0x1 . . .).

From Lemma 3.1.2,

λ∗(s∗τ , yτyτ+1 . . .) = x0x1 . . . ,

where
s∗τ = 〈x(−1, r), u(0, p + 1), y(τ − 1, τ + t)〉.

Using Lemma 3.1.4, there are x′
0, . . . , x

′
τ−1 ∈ X such that

λ′′(s′′, y0y1 . . .) = x′
0 . . . x′

τ−1λ
∗(s∗τ , yτyτ+1 . . .).

It follows that
λ′′(s′′, y0y1 . . .) = x′

0 . . . x′
τ−1x0x1 . . .

Thus, s′′ matches s0 with delay τ . ��

3.2 Generation of Finite Automata with Invertibility

Let X and U be two finite nonempty sets. Let m be a positive integer, and
Y a column vector space of dimension m over a finite commutative ring R

with identity.
For any integer i, we use xi, ui and yi to denote elements in X, U and Y ,

respectively. We use R[yi+k, . . . , yi−t] to denote the polynomial ring consisting
of all polynomials of components of yi+k, . . . , yi−t with coefficients in R.
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Let r, t and τ be nonnegative integers with τ � r, and p an integer with
p � −1. Let fk and f ′

k be two single-valued mappings from Xr+1 × Up+1 ×
Y k+t+1 to Y for any nonnegative integer k. We use eqk(i) to denote the
equation

fk(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = 0

and use eq′k(i) to denote the equation

f ′
k(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = 0.

Let ψl
μν be a column vector of dimension l of which each component is a

single-valued mapping from Uμ+1 × Xν+1 to R, for integers μ � −1, ν � 0
and l � 1. For any integers h � 0 and i, let

ψlh
μν(u, x, i) =

⎡
⎢⎣

ψl
μν(u(i, μ + 1), x(i, ν + 1))

...
ψl

μν(u(i − h, μ + 1), x(i − h, ν + 1))

⎤
⎥⎦ .

Assume that fk can be expressed in the following form

fk(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) (3.6)

=
r∑

j=0

Gjk(y(i + k, k + t + 1))ψl
μν(u(i − j, μ + 1), x(i − j, ν + 1)),

where Gjk(y(i + k, k + t + 1)) is an m × l matrix over R[yi+k, . . . , yi−t],
0 � j � r. Let

Gk(i) = [G0k(y(i + k, k + t + 1)), . . . , Grk(y(i + k, k + t + 1))].

Then (3.6) can be rewritten as follows

fk(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = Gk(i)ψlr
μν(u, x, i).

Notice that the right side of the above equation does not depend on xi−j

for j > r and ui−j for j > p. The matrix Gk(i) in such an expression is not
unique for general ψl

μν . Gk(i) is referred to as a coefficient matrix of fk or
eqk(i). Similarly, assume that f ′

k can be expressed in the form

f ′
k(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1))

=
r∑

j=0

G′
jk(y(i + k, k + t + 1))ψl

μν(u(i − j, μ + 1), x(i − j, ν + 1))

or
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f ′
k(x(i, r + 1), u(i, p + 1), y(i + k, k + t + 1)) = G′

k(i)ψlr
μν(u, x, i),

where G′
jk(y(i + k, k + t + 1)) is an m × l matrix over R[yi+k, . . . , yi−t],

0 � j � r, and

G′
k(i) = [G′

0k(y(i + k, k + t + 1)), . . . , G′
rk(y(i + k, k + t + 1))];

G′
k(i) is referred to as a coefficient matrix of f ′

k or eq′k(i).
In the case where the transformation ϕk on eqk(i) is multiplying two sides

of eqk(i) on the left by a matrix polynomial Pk(y(i + k, k + t + 1)), we also

denote eqk(i)
Ra[Pk]−→ eq′k(i) instead of eqk(i)

Ra[ϕk]−→ eq′k(i). In this case, the rule
Ra can be restated as follows.

Rule Ra : Let Gk(i) be an m× l(r+1) matrix over R[yi+k, . . . , yi−t]. Let
Pk(y(i + k, k + t + 1)) be an invertible m×m matrix over R[yi+k, . . . , yi−t].
Assume that

G′
k(i) = Pk(y(i + k, k + t + 1))Gk(i).

G′
k(i) is said to be obtained from Gk(i) by Rule Ra using Pk, denoted by

Gk(i)
Ra[Pk]−→ G′

k(i).

Clearly, if Gk(i) and G′
k(i) are coefficient matrices of eqk(i) and eq′k(i),

respectively, then eqk(i)
Ra[Pk]−→ eq′k(i) and Gk(i)

Ra[Pk]−→ G′
k(i) are the same.

The Rule Rb can be restated as follows.
Rule Rb : Let G′

k(i) be an m × l(r + 1) matrix over R[yi+k, . . . , yi−t].
Assume that the submatrix of the last m− rk+1 rows and the first l columns
of G′

k(i) has zeros whenever rk+1 < m. Let Gk+1(i) be the matrix obtained
by shifting the last m−rk+1 rows of G′

k(i) l columns to the left entering zeros
to the right and replacing each variable yj of elements in the last m − rk+1

rows by yj+1 for any j. Gk+1(i) is said to be obtained from G′
k(i) by Rule Rb,

denoted by

G′
k(i)

Rb[rk+1]−→ Gk+1(i).

Clearly, if Gk+1(i) and G′
k(i) are coefficient matrices of eqk+1(i) and

eq′k(i), respectively, then eq′k(i)
Rb[rk+1]−→ eqk+1(i) and G′

k(i)
Rb[rk+1]−→ Gk+1(i)

are the same.
It is easy to see that the condition that for any parameters xi−1, . . ., xi−ν ,

ui, . . ., ui−μ, yi+τ , . . ., yi−t,

G0τ (y(i + τ, τ + t + 1))ψl
μν(u(i, μ + 1), x(i, ν + 1))

as a function of the variable xi is a surjection yields the condition in Theo-
rem 3.1.1 that for any parameters xi−1, . . ., xi−r, ui, . . ., ui−p, yi+τ , . . ., yi−t,



3.2 Generation of Finite Automata with Invertibility 89

eqτ (i) has a solution xi(the reverse proposition is also true in some case, see
[135]). 1 And for any parameters xi−1, . . ., xi−ν , ui, . . ., ui−μ, yi+τ , . . ., yi−t,

G0τ (y(i + τ, τ + t + 1))ψl
μν(u(i, μ + 1), x(i, ν + 1))

as a function of the variable xi is an injection, if and only if the condition in
Theorem 3.1.3 holds, that is, for any parameters xi−1, . . ., xi−r, ui, . . ., ui−p,
yi+τ , . . ., yi−t, eqτ (i) has at most one solution xi.

We now modify the above rules Ra and Rb to deal with incomplete spec-
ified matrices.

Let G be an m × l(τ + 1) incomplete specified matrix. Let 0 � k � τ . If
there exist r0, r1 . . . , rk, 0 = r0 � r1 � · · · � rk � m, such that whenever
ri < ri+1 in row ri + 1 to row ri+1 of G elements of the first l(τ + 1 − i)
columns are defined and elements of the last li columns are undefined for
i = 0, 1, . . . , k, where rk+1 = m, G is called an (l, k)-echelon matrix. It is
easy to see that r0, r1, . . . , rk satisfying the above condition are unique. ri is
referred to as the i-height of G, 0 � i � k.

Example 3.2.1. τ = 5, k = 3. The matrix G3

G3 =

⎡
⎢⎢⎣

G10 G11 G12 G13 G14 G15

G20 G21 G22 G23 G24 ∗
G30 G31 G32 G33 ∗ ∗
G40 G41 G42 ∗ ∗ ∗

⎤
⎥⎥⎦

is an (l, 3)-echelon matrix, where Gij is an (ri − ri−1) × l complete specified
matrix, i = 1, 2, 3, 4, j = 0, 1, . . . , 6 − i, ∗ stands for “undefined”, and 0 =
r0 � r1 � r2 � r3 � r4 = m. Clearly, ri is the i-height of G3, 0 � i � 3.

Notice that if G is an (l, k)-echelon matrix with i-height ri for 0 � i � k,
then G is an (l, k + 1)-echelon matrix with i-height ri for 0 � i � k and with
(k + 1)-height m.

Rule Ra(modified): Let Gk(i) be an m×l(τ +1) (l, k)-echelon matrix over
R[yi+k, . . . , yi−t], and 0 � k � τ . Let Pk(y(i + k, k + t + 1)) be an invertible
m × m matrix over R[yi+k, . . . , yi−t] in the form

Pk(y(i + k, k + t + 1)) =
[

Erk
0

Pk1(y(i + k, k + t + 1)) Pk2(y(i + k, k + t + 1))

]
,

where Erk
is the rk × rk identity matrix, rk is the k-height of Gk(i). Assume

that
G′

k(i) = Pk(y(i + k, k + t + 1))Gk(i).

1 Precisely speaking, G0τ (yi+τ , . . . , yi−t)ψ
l
μν(ui, . . . , ui−μ, xi, . . . , xi−ν) as a func-

tion of the variable xi means its restriction on the set {(yi+τ , . . ., yi−t, ui, . . .,
ui−μ, xi, . . ., xi−ν) | xi ∈ X}.
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G′
k(i) is said to be obtained from Gk(i) by Rule Ra using Pk, denoted by

Gk(i)
Ra[Pk]−→ G′

k(i).

In computing elements of Pk(y(i + k, k + t + 1))Gk(i), we define u · u =
u+u = u, x·u = u·x = u, 0·u = u·0 = 0 and y+u = u+y = u, where u stands
for undefined symbol, x(
= 0) and y are any elements in R[yi+k, . . . , yi−t].

Let Gk(i) be an m × l(τ + 1) (l, k)-echelon matrix over R[yi+k, . . . , yi−t],

and 0 � k � τ . If Gk(i)
Ra[Pk]−→ G′

k(i), then G′
k(i) is also an m × l(τ + 1)

(l, k)-echelon matrix over R[yi+k, . . . , yi−t], and the j-height of G′
k(i) is the

same as the j-height of Gk(i) for any j, 0 � j � k.
Rule Rb(modified): Let G′

k(i) be an m×l(τ +1) (l, k)-echelon matrix over
R[yi+k, . . . , yi−t], and 0 � k < τ . Assume that for some rk+1, m � rk+1 � rk,
the submatrix of the last m− rk+1 rows and the first l columns of G′

k(i) has
zeros whenever rk+1 < m. Let Gk+1(i) be the matrix obtained by shifting
the last m − rk+1 rows of G′

k(i) l columns to the left entering “undefined”
to the right and replacing each variable yj of elements in the last m − rk+1

rows by yj+1 for any j. Gk+1(i) is said to be obtained from G′
k(i) by Rule Rb,

denoted by

G′
k(i)

Rb[rk+1]−→ Gk+1(i).

Let G′
k(i) be an m× l(τ +1) (l, k)-echelon matrix over R[yi+k, . . . , yi−t]. If

G′
k(i)

Rb[rk+1]−→ Gk+1(i), then Gk+1(i) is an m×l(τ +1) (l, k+1)-echelon matrix
over R[yi+k+1, . . . , yi−t] of which the j-height is the same as the j-height of
G′

k(i) for any j, 0 � j � k and the (k + 1)-height is rk+1.

Lemma 3.2.1. Let eq0(i) be

r∑
j=0

Gj0(y(i, t + 1))ψl
μν(u(i − j, μ + 1), x(i − j, ν + 1)) = 0,

and G0(i) the m × l(τ + 1) (l, 0)-echelon matrix

[G00(y(i, t + 1)), . . . , Gτ0(y(i, t + 1))],

τ � r. If

Gk(i)
Ra[Pk]−→ G′

k(i), G′
k(i)

Rb[rk+1]−→ Gk+1(i), k = 0, 1, . . . , τ − 1

is a modified Ra Rb transformation sequence, then

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

is an Ra Rb transformation sequence, and the first l columns of Gτ (i) and
the first l columns of the coefficient matrix of eqτ (i) are the same.
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Proof. We use Ḡk(i) and Ḡ′
k(i) to denote the coefficient matrices of eqk(i)

and eq′k(i), respectively. It is sufficient to show that

Ḡk(i)
Ra[Pk]−→ Ḡ′

k(i), Ḡ′
k(i)

Rb[rk+1]−→ Ḡk+1(i), k = 0, 1, . . . , τ − 1

is an Ra Rb transformation sequence in the original sense and that corre-
sponding matrices (between Gk and Ḡk, and between G′

k and Ḡ′
k) are com-

patible.1 This can be proved by simple induction as follows. It is evident that
G0(i) and Ḡ0(i) are compatible. Suppose that Gk(i) and Ḡk(i) are compati-

ble and Gk(i)
Ra[Pk]−→ G′

k(i) in the modified sense for k < τ . Letting Ḡ′
k(i) =

PkḠk(i), we have Ḡk(i)
Ra[Pk]−→ Ḡ′

k(i) in the original sense. Since Gk(i) is an
(l, k)-echelon matrix and Pk has special shape, it is easy to verify that G′

k(i)
and Ḡ′

k(i) are compatible. Suppose that G′
k(i) and Ḡ′

k(i) are compatible and

G′
k(i)

Rb[rk+1]−→ Gk+1(i) in the modified sense for k < τ . From G′
k(i)

Rb[rk+1]−→
Gk+1(i), the submatrix of the last m − rk+1 rows and the first l columns of
G′

k(i) has zeros whenever rk+1 < m. Since G′
k(i) and Ḡ′

k(i) are compatible,
it follows that the submatrix of the last m−rk+1 rows and the first l columns

of Ḡ′
k(i) has zeros whenever rk+1 < m. Thus we have Ḡ′

k(i)
Rb[rk+1]−→ Ḡk+1(i)

in the original sense. Clearly, Gk+1(i) and Ḡk+1(i) are compatible. ��
Rule R−1

a : Let G′
k(i) be an m × l(τ + 1) (l, k)-echelon matrix over

R[yi+k, . . ., yi−t], and 0 � k � τ . Let P ′
k(y(i + k, k + t + 1)) be an invertible

m × m matrix over R[yi+k, . . ., yi−t] in the form

P ′
k(y(i + k, k + t + 1)) =

[
Erk

0
P ′

k1(y(i + k, k + t + 1)) P ′
k2(y(i + k, k + t + 1))

]
,

where Erk
is the rk × rk identity matrix, rk is the k-height of G′

k(i). Let

Gk(i) = P ′
k(y(i + k, k + t + 1))G′

k(i).

Gk(i) is said to be obtained from G′
k(i) by Rule R−1

a using P ′
k, denoted by

G′
k(i)

R−1
a [P ′

k]−→ Gk(i).

In computing elements of P ′
k(y(i + k, k + t + 1))G′

k(i), we define u · u =
u+u = u, x·u = u·x = u, 0·u = u·0 = 0 and y+u = u+y = u, where u stands
for undefined symbol, x(
= 0) and y are any elements in R[yi+k, . . . , yi−t].

Let G′
k(i) be an m × l(τ + 1) (l, k)-echelon matrix over R[yi+k, . . . , yi−t],

and 0 � k � τ . If G′
k(i)

R−1
a [P ′

k]−→ Gk(i), then Gk(i) is also an m × l(τ + 1)

1 Two matrices are compatible, if for any position (i, j), elements of the two ma-
trices are the same whenever they are defined.
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(l, k)-echelon matrix over R[yi+k, . . . , yi−t], and the j-height of Gk(i) is the
same as the j-height of G′

k(i) for any j, 0 � j � k.
Rule R−1

b : Let Gk+1(i) be an m × l(τ + 1) (l, k + 1)-echelon matrix
over R[yi+k+1, . . . , yi−t], and 0 � k < τ . Assume that elements in the first
rk+1 rows of Gk+1(i) do not depend on yi+k+1 and that elements in the
last m − rk+1 rows of Gk+1(i) do not depend on yi−t, where rk+1 is the
(k + 1)-height of Gk+1(i). Let G′

k(i) be the matrix obtained by shifting the
last m−rk+1 rows of Gk+1(i) l columns to the right entering zeros to the left
and replacing each variable yj of elements in the last m− rk+1 rows by yj−1

for any j. G′
k(i) is said to be obtained from Gk+1(i) by Rule R−1

b , denoted by

Gk+1(i)
R−1

b [rk+1]−→ G′
k(i).

Let Gk+1(i) be an m× l(τ +1) (l, k+1)-echelon matrix over R[yi+k+1, . . .,

yi−t], and 0 � k < τ . If Gk+1(i)
R−1

b [rk+1]−→ G′
k(i), then G′

k(i) is an m× l(τ +1)
(l, k)-echelon matrix over R[yi+k, . . . , yi−t], and the j-height of G′

k(i) is the
same as the j-height of Gk+1(i) for any j, 0 � j < k, and the k-height of
G′

k(i) is the sum of the k-height and the (k + 1)-height of Gk+1(i).

Lemma 3.2.2.

Gk(i)
Ra[Pk]−→ G′

k(i), G′
k(i)

Rb[rk+1]−→ Gk+1(i), k = 0, 1, . . . , τ − 1 (3.7)

is a modified Ra Rb transformation sequence if and only if

Gk+1(i)
R−1

b [rk+1]−→ G′
k(i), G′

k(i)
R−1

a [P−1
k ]−→ Gk(i), k = τ − 1, . . . , 1, 0 (3.8)

is an R−1
a R−1

b transformation sequence.

Proof. For any k, 0 � k < τ and any invertible matrix Pk(y(i+k, k+t+1))
over R[yi+k, . . . , yi−t], it is easy to see that Pk(y(i + k, k + t + 1)) is in the
form

Pk(y(i + k, k + t + 1)) =
[

Erk
0

Pk1(y(i + k, k + t + 1)) Pk2(y(i + k, k + t + 1))

]
if and only if P−1

k (y(i + k, k + t + 1)) is in the form

P−1
k (y(i+k, k+ t+1)) =

[
Erk

0
P ′

k1(y(i + k, k + t + 1)) P ′
k2(y(i + k, k + t + 1))

]
.

From the definitions of Ra and R−1
a , it follows that Gk(i)

Ra[Pk]−→ G′
k(i) if and

only if G′
k(i)

Ra[P−1
k ]−→ Gk(i). Similarly, from the definitions of Rb and R−1

b , it

is easy to verify that G′
k(i)

Rb[rk+1]−→ Gk+1(i) if and only if Gk+1(i)
R−1

b [rk+1]−→
G′

k(i). Therefore, (3.7) is a modified Ra Rb transformation sequence if and
only if (3.8) is an R−1

a R−1
b transformation sequence. ��
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Lemma 3.2.3. Assume that eq0(i) is

r∑
j=0

Gj0(y(i, t + 1))ψl
μν(u(i − j, μ + 1), x(i − j, ν + 1)) = 0

and G0(i) = [G00(y(i, t+1)), . . . , Gτ0(y(i, t+1))], τ � r. For any m× l(τ +1)
(l, τ)-echelon matrix Gτ (i) over R[yi+τ , . . . , yi−t], if

Gk+1(i)
R−1

b [rk+1]−→ G′
k(i), G′

k(i)
R−1

a [P ′
k]−→ Gk(i), k = τ − 1, . . . , 1, 0 (3.9)

is an R−1
a R−1

b transformation sequence, then

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1 (3.10)

is an Ra Rb transformation sequence and the first l columns of Gτ (i) and
the first l columns of the coefficient matrix of eqτ (i) are the same, where
Pk(y(i + k, k + t + 1)) = (P ′

k(y(i + k, k + t + 1)))−1, 0 � k < τ .

Proof. Assume that (3.9) is an R−1
a R−1

b transformation sequence. From
Lemma 3.2.2,

Gk(i)
Ra[Pk]−→ G′

k(i), G′
k(i)

Rb[rk+1]−→ Gk+1(i), k = 0, 1, . . . , τ − 1

is a modified Ra Rb transformation sequence. From Lemma 3.2.1, (3.10) is
an Ra Rb transformation sequence, and the first l columns of Gτ (i) and the
first l columns of the coefficient matrix of eqτ (i) are the same. ��

Theorem 3.2.1. Let f and g be two single-valued mappings from Y t ×
Up+1 ×Xr+1 to Y and U, respectively. Let M = 〈X, Y, Y t ×Up+1 ×Xr, δ, λ〉
be a finite automaton defined by

δ(〈y(i − 1, t), u(i, p + 1), x(i − 1, r)〉, xi)

= 〈y(i, t), u(i + 1, p + 1), x(i, r)〉,
λ(〈y(i − 1, t), u(i, p + 1), x(i − 1, r)〉, xi) = yi,

where

yi = f(y(i − 1, t), u(i, p + 1), x(i, r + 1)),

ui+1 = g(y(i − 1, t), u(i, p + 1), x(i, r + 1)).

Let eq0(i) be the equation

−yi + f(y(i − 1, t), u(i, p + 1), x(i, r + 1)) = 0.
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Assume that

−yi + f(y(i − 1, t), u(i, p + 1), x(i, r + 1))

=
r∑

j=0

Gj0(y(i, t + 1))ψl
μν(u(i − j, μ + 1), x(i − j, ν + 1))

and G0(i) = [G00(y(i, t + 1)), . . . , Gτ0(y(i, t + 1))], τ � r.
(a) If there exist an m×l(τ+1) (l, τ)-echelon matrix Gτ (i) over R[yi+τ , . . . ,

yi−t] and an R−1
a R−1

b transformation sequence (3.9) such that for any para-
meters xi−1, . . . , xi−ν , ui, . . . , ui−μ, yi+τ , . . . , yi−t,

G0τ (y(i + τ, τ + t + 1))ψl
μν(u(i, μ + 1), x(i, ν + 1)) (3.11)

as a function of the variable xi is a surjection, then M is a weak inverse with
delay τ .

(b) If there exist an m×l(τ+1) (l, τ)-echelon matrix Gτ (i) over R[yi+τ , . . . ,

yi−t] and an R−1
a R−1

b transformation sequence (3.9) such that for any para-
meters xi−1, . . . , xi−ν , ui, . . . , ui−μ, yi+τ , . . . , yi−t, (3.11) as a function of
the variable xi is an injection, then M is weakly invertible with delay τ .

Proof. (a) Assume that (3.9) is an R−1
a R−1

b transformation sequence and
that for any parameters xi−1, . . ., xi−ν , ui, . . ., ui−μ, yi+τ , . . ., yi−t, (3.11)
as a function of the variable xi is a surjection. From Lemma 3.2.3, (3.10)
is an Ra Rb transformation sequence, and the first l columns of Gτ (i) and
the first l columns of the coefficient matrix of eqτ (i) are the same, where
Pk(y(i + k, k + t + 1)) = (P ′

k(y(i + k, k + t + 1)))−1, 0 � k < τ . Clearly,
the condition that for any parameters xi−1, . . ., xi−ν , ui, . . ., ui−μ, yi+τ , . . .,
yi−t, (3.11) as a function of the variable xi is a surjection yields the condition
that for any parameters xi−1, . . ., xi−r, ui, . . ., ui−p, yi+τ , . . ., yi−t, eqτ (i)
has a solution xi. From Corollary 3.1.1, M is a weak inverse with delay τ .

(b) This part is similar to part (a) but using Theorem 3.1.3 instead of
Corollary 3.1.1. ��

We point out that the matrices Pk(y(i + k, k + t + 1)) in the definition
of Ra and P ′

k(y(i + k, k + t + 1)) in the definition of R−1
a could be extended

by replacing Ek in Pk(y(i + k, k + t + 1)) and P ′
k(y(i + k, k + t + 1)) as an

invertible quasi-lower-triangular matrix over R[yi+k, . . . , yi−t] of which the
block at position (i, j) is an (ri − ri−1) × (rj − rj−1) matrix. In this case,
results in this section still hold.
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3.3 Invertibility of Quasi-Linear Finite Automata

3.3.1 Decision Criteria

Assume that X and Y are column vector spaces over GF (q) of dimension l

and m, respectively. For any integer i, we use xi (x′
i) and yi (y′

i) to denote
column vectors over GF (q) of dimensions l and m, respectively. Assume that
r and τ are two nonnegative integers with τ � r.

Let M = 〈X, Y, Y t ×Xr, δ, λ〉 be an (r, t)-order memory finite automaton
over GF (q). If M is defined by

yi =
τ∑

j=0

Bjxi−j + g(x(i − τ − 1, r − τ), y(i − 1, t)),

i = 0, 1, . . . , (3.12)

where Bj is an m × l matrix over GF (q), j = 0, 1, . . . , τ , g is a single-valued
mapping from Xr−τ × Y t to Y , M is said to be τ -quasi-linear over GF (q).

In this section, for any k, 0 � k � τ , we use eqk(i) to denote an equation

τ−k∑
j=0

Bjkxi−j − A−kyi+k

+ gk(x(i − τ + k − 1, k + r − τ), y(i + k − 1, k + t)) = 0 (3.13)

and eq′k(i) to denote an equation

τ−k∑
j=0

B′
jkxi−j − A′

−kyi+k

+ g′k(x(i − τ + k − 1, k + r − τ), y(i + k − 1, k + t)) = 0, (3.14)

where A−k, A′
−k, Bjk and B′

jk are m×m, m×m, m× l and m× l matrices
over GF (q), respectively, and gk and g′k are two single-valued mappings from
Xk+r−τ × Y k+t to Y .

eqk(i)
Ra[Pk]−→ eq′k(i) is said to be linear over GF (q), if Pk is a matrix over

GF (q) and for some rk+1 � 0 the first rk+1 rows of B′
0k is linearly independent

over GF (q) and B′
0k has zeros in the last m− rk+1 rows whenever rk+1 < m.

eq′k(i)
Rb[rk+1]−→ eqk+1(i) is said to be linear over GF (q), if the first rk+1 rows of

B′
0k is linearly independent over GF (q). An Ra Rb transformation sequence

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , h (3.15)

is said to be linear over GF (q), if eqk(i)
Ra[Pk]−→ eq′k(i) and eq′k(i)

Rb[rk+1]−→
eqk+1(i) are linear over GF (q) for k = 0, 1, . . . , h.
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Lemma 3.3.1. Let

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

be linear over GF (q). If the rank of the matrix [B00, A−0] is m, then the rank
of the matrix [B0τ , A−τ ] is m.

Proof. For any k, 0 � k < τ , since eqk(i)
Ra[Pk]−→ eq′k(i), the rank of

[B0k, A−k] and the rank of [B′
0k, A′

−k] are the same. Since eq′k(i)
Rb[rk+1]−→

eqk+1(i) is linear over GF (q), the first rk+1 rows of B′
0k is linearly inde-

pendent and B′
0k has zeros in the last m − rk+1 rows whenever rk+1 < m.

Therefore, if the rank of [B′
0k, A′

−k] is m, then the rank of the last m − rk+1

rows of A′
−k is m − rk+1 and the rank of [B0,k+1, A−k−1] is m. By simple

induction, the rank of [B0τ , A−τ ] is m. ��
Let eq0(i) be the equation

τ∑
j=0

Bjxi−j − yi + g(x(i − τ − 1, r − τ), y(i − 1, t)) = 0, (3.16)

that is, the equation (3.13) with k = 0, where Bj0 = Bj , j = 0, 1, . . . , τ , A−0

is the identity matrix, and g0 = g.

Theorem 3.3.1. Let eq0(i) be (3.16). Let

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

be linear over GF (q). Then M is a weak inverse with delay τ if and only if
the rank of B0τ is m.

Proof. if : Suppose that the rank of B0τ is m. Then there is a right inverse
matrix of B0τ , say B−1

0τ . Thus for any parameters xi−1, . . ., xi−r, yi+τ , . . .,
yi−t, eqτ (i) has a solution xi

xi = B−1
0τ A−τyi+τ − B−1

0τ gτ (x(i − 1, r), y(i + τ − 1, τ + t)).

From Corollary 3.1.1, M is a weak inverse with delay τ .
only if : Suppose that M is a weak inverse with delay τ . Then there is

a finite automaton M1 such that M is a weak inverse with delay τ of M1.
Therefore, for any state s1 of M1 there is a state s = 〈y(−1, t), x(−1, r)〉 of
M such that s matches s1 with delay τ . For any input y′

0 y′
1 . . . of M1, let

x0x1 . . . = λ1(s1, y
′
0y

′
1 . . .)

and
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y0y1 . . . = λ(s, x0x1 . . .), (3.17)

where λ1 is the output function of M1. Since s matches s1 with delay τ ,
we have yj+τ = y′

j , j = 0, 1, . . . Meanwhile, from (3.17), eq0(i) holds for
i = 0, 1, . . . Using Property (d), it follows that eqτ (i) holds for i = 0, 1, . . .

We prove by reduction to absurdity that the rank rτ+1 of B0τ is m.

Suppose to the contrary that rτ+1 < m. Since eq′τ−1(i)
Rb[rτ ]−→ eqτ (i) is linear

over GF (q), the first rτ rows of B0τ are linearly independent and rτ � rτ+1.

Then a linear Ra transformation can be applied to eqτ (i), say eqτ (i)
Ra[Pτ ]−→

eq′τ (i). Thus eq′τ (i) holds for i = 0, 1, . . . It follows that E
′′
τ eq′τ (i) holds for

i = 0, 1, . . ., that is,

E′′
τ PτB0τxi − E′′

τ PτA−τyi+τ + E′′
τ Pτgτ (x(i − 1, r), y(i + τ − 1, τ + t)) = 0,

i = 0, 1, . . . , (3.18)

where E′′
τ is the submatrix of the last m − rτ+1 rows of the m × m identity

matrix. Noticing that E′′
τ PτB0τ = 0 and yj+τ = y′

j for j � 0, from (3.18), we
have

E′′
τ PτA−τy′

i − E′′
τ Pτgτ (x(i − 1, r), y′(i − 1, τ + t)) = 0,

i = τ + t, τ + t + 1, . . . (3.19)

From Lemma 3.3.1, the rank of [B0τ , A−τ ] is m. Since m > rτ+1 and
E′′

τ PτB0τ = 0, rows of E′′
τ PτA−τ are linearly independent. Thus the for-

mula (3.19) gives constraint equations, that is, when i � τ + t, the input
y′

i of M1 depends on the past inputs y′
i−1, . . . , y

′
i−τ−t and the past outputs

xi−1, . . . , xi−r. This is a contradiction. Therefore, the hypothesis rτ+1 < m

does not hold. We conclude that rτ+1 = m. ��
Notice that if eq0(i) is defined by (3.16), then a linear Ra Rb transforma-

tion sequence of length 2τ beginning at eq0(i) is existent.
Let M̄ be a τ -order input-memory finite automaton defined by

yi =
τ∑

j=0

Bjxi−j , i = 0, 1, . . . , (3.20)

where Bj is an m × l matrix over GF (q), j = 0, 1, . . . , τ .

Corollary 3.3.1. Let eq0(i) be the equation

τ∑
j=0

Bjxi−j − yi = 0, (3.21)

that is, the equation (3.13) with k = t = 0 and r = τ , where Bj0 = Bj , j =
0, 1, . . . , τ , A−0 is the identity matrix, and g0 = 0. Let
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eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

be linear over GF (q). Then M̄ is a weak inverse with delay τ if and only if
the rank of B0τ is m.

Corollary 3.3.2. Let eq0(i) be (3.21). Let

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

be linear over GF (q). Then M̄ is an inverse with delay τ if and only if the
rank of B0τ is m.

Corollary 3.3.3. Assume that Bj in (3.12) is the same as Bj in (3.20) for
0 � j � τ . Then M is a weak inverse with delay τ if and only if M̄ is a weak
inverse with delay τ, if and only if M̄ is an inverse with delay τ .

Proof. Notice that in Theorem 3.3.1 B0τ depends only on B0, . . . , Bτ .
Since linear Ra Rb transformation sequence is existent, from Theorem 3.3.1,
Corollary 3.3.1 and Corollary 3.3.2, the corollary follows. ��

Theorem 3.3.2. Let eq0(i) be (3.16). Let

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

be linear over GF (q). Then M is weakly invertible with delay τ if and only
if the rank of B0τ is l.

Proof. if : Suppose that the rank of B0τ is l. Then there is a left inverse
matrix of B0τ , say B−1

0τ . Thus for any parameters xi−1, . . ., xi−r, yi+τ , . . .,
yi−t, eqτ (i) has at most one solution xi

xi = B−1
0τ A−τyi+τ − B−1

0τ gτ (x(i − 1, r), y(i + τ − 1, τ + t)).

From Theorem 3.1.3, M is weakly invertible with delay τ .
only if : Suppose that the rank of B0τ is less than l. We prove that M is

not weakly invertible with delay τ .
For any state s0 = 〈y(−1, t), x(−1, r)〉 of M , and any input sequence

x0 . . . xτ of length τ + 1 of M , let

y0 . . . yτ = λ(s0, x0 . . . xτ ). (3.22)

Since eq0(i) is (3.16), from (3.12), (3.22) is equivalent to the system of equa-
tions

eq0(i), i = 0, 1, . . . , τ. (3.23)
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Using Property (g), the system (3.23) is equivalent to the system of equations

eqτ (0),

E′
0eq

′
0(τ), E′

1eq
′
1(τ − 1), . . . , E′

τ−1eq
′
τ−1(1), (3.24)

E′′
0 eq′0(0), E′′

1 eq′1(0), . . . , E′′
τ−1eq

′
τ−1(0),

where E′
k and E′′

k are submatrices of the first rk+1 rows and the last m−rk+1

rows of the m × m identity matrix, respectively. Therefore, M is not weakly
invertible with delay τ if and only if there are two solutions of (3.24) in which
the corresponding values of x−1, . . . , x−r, yτ , . . . , y−t are the same and the
corresponding values of x0 are different.

Given an arbitrary initial state s′0 = 〈y′(−1, t), x′(−1, r)〉 of M , and any
input sequence x′

0 . . . x′
τ of length τ + 1 of M , let

y′
0 . . . y′

τ = λ(s′0, x
′
0 . . . x′

τ ).

Then yτ = y′
τ , . . . , y−t = y′

−t, xτ = x′
τ , . . . , x−r = x′

−r is a solution of (3.24).
Notice that the equation eqτ (0) depends only on x0, . . . , x−r and yτ , . . . , y−t,
and in the polynomial expression of eqτ (0) the variable x0 only occurs in
linear term with coefficient B0τ . Since the rank of B0τ is less than l, there
is a column vector Δ 
= 0 such that B0τΔ = 0. To find another solution
of (3.24), take yτ = y′

τ , . . . , y−t = y′
−t, x−1 = x′

−1, . . . , x−r = x′
−r, and

x0 = x′
0 + Δ. Clearly, such new values satisfy the equation eqτ (0). Notice

that the equation E′′
k eq′k(0) depends only on x−1, . . . , x−r and yk, . . . , y−t,

k = 0, 1, . . . , τ − 1. Thus yτ = y′
τ , . . . , y−t = y′

−t, x−1 = x′
−1, . . . , x−r = x′

−r

satisfy the system of equations E′′
k eq′k(0), k = 0, 1, . . . , τ − 1. We seek

new values of x1, . . . , xτ step by step. Suppose that we have sought the
new values of x0, . . . , xτ−k−1 such that the equations eqτ (0), E′

τ−1eq
′
τ−1(1),

E′
τ−2eq

′
τ−2(2), . . ., E′

k+1eq
′
k+1(τ − k − 1) hold, and 0 � k � τ − 1. Since

E′
keq′k(τ − k) depends only on xτ−k, . . . , xτ−k−r, yτ , . . . , yτ−k−t and in

the polynomial expression of E′
keq′k(τ − k) the variable xτ−k only occurs

in linear term with a coefficient matrix E′
kPkB0k of which rows are lin-

early independent, we can seek a value of xτ−k from the new values of
xτ−k−1, . . . , x−r, yτ , . . . , y−t by solving the equation E′

keq′k(τ − k). (If so-
lutions for xτ−k are not unique, then take arbitrarily such a solution as the
new value of xτ−k. If the number of rows of E′

k is 0, then the new value
of xτ−k can be arbitrarily taken.) Since equations eqτ (0), E′

τ−1eq
′
τ−1(1),

E′
τ−2eq

′
τ−2(2), . . ., E′

k+1eq
′
k+1(τ − k − 1) do not depend on xτ−k, from

the hypothesis that new values x0, . . . , xτ−k−1 satisfy the system of equa-
tions eqτ (0), E′

τ−1eq
′
τ−1(1), . . ., E′

k+1eq
′
k+1(τ − k − 1), the new values of

x0, . . . , xτ−k−1, xτ−k satisfy the system of equations eqτ (0), E′
τ−1eq

′
τ−1(1),

E′
τ−2eq

′
τ−2(2), . . ., E′

k+1eq
′
k+1(τ − k− 1), E′

keq′k(τ − k). Repeating the above
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process for k from τ−1 to 0, we can obtain new values of x0, . . . , xτ such that
the equations eqτ (0), E′

τ−1eq
′
τ−1(1), E′

τ−2eq
′
τ−2(2), . . ., E′

0eq
′
0(τ) hold. Thus

we obtain a new solution of the system (3.24) in which yτ = y′
τ , . . . , y−t = y′

−t,
x−1 = x′

−1, . . . , x−r = x′
−r, and x0 = x′

0 + Δ. Therefore, there are two solu-
tions of (3.24) in which the corresponding values of x−1, . . . , x−r, yτ , . . . , y−t

are the same and the corresponding values of x0 are different. We conclude
that M is not weakly invertible with delay τ . ��

Corollary 3.3.4. Let eq0(i) be (3.21). Let

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

be linear over GF (q). Then M̄ is weakly invertible with delay τ if and only
if the rank of B0τ is l.

Corollary 3.3.5. Assume that Bj in (3.12) is the same as Bj in (3.20) for
any j, 0 � j � τ . Then M is weakly invertible with delay τ if and only if M̄

is weakly invertible with delay τ .

Proof. Notice that in Theorem 3.3.2 B0τ depends only on B0, . . . , Bτ .
Since linear Ra Rb transformation sequence is existent, from Theorem 3.3.2
and Corollary 3.3.4, the corollary follows. ��

3.3.2 Structure Problem

In this subsection, unless otherwise stated, Gk(i) and G′
k(i) in modified

Rules Ra, Rb and Rules R−1
a , R−1

b defined in Sect. 3.2 do not depend on
yi+k, . . . , yi−t and are abbreviated to Gk and G′

k, respectively. Let R be a
finite field GF (q).

Gk
Ra[Pk]−→ G′

k is said to be linear over GF (q), if Pk is a matrix over
GF (q) and for some rk+1 � the k-height of Gk, the first rk+1 rows of B′

0k is
linearly independent over GF (q) and B′

0k has zeros in the last m− rk+1 rows
whenever rk+1 < m, where B′

0k is the submatrix of the first l columns of G′
k.

G′
k

Rb[rk+1]−→ Gk+1 is said to be linear over GF (q), if the first rk+1 rows of B′
0k

is linearly independent over GF (q). An Ra Rb transformation sequence

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , h (3.25)

is said to be linear over GF (q), if Gk
Ra[Pk]−→ G′

k and G′
k

Rb[rk+1]−→ Gk+1 are
linear over GF (q) for k = 0, 1, . . . , h.

Let
G0 = [B0, . . . , Bτ ]
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be an m × l(τ + 1) matrix over GF (q) determined by M which is defined
by (3.12). Clearly, G0 is an (l, 0)-echelon matrix and there exists a linear
modified Ra Rb transformation sequence

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1.

Lemma 3.3.2. Let G0 = [B0, . . . , Bτ ]. If

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1

is a linear modified Ra Rb transformation sequence, then

eqk(i)
Ra[Pk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1

is a linear Ra Rb transformation sequence and the submatrix of the first l

columns of Gτ is the same as the coefficient matrix B0τ of xi in eqτ (i),
where eq0(i) is (3.16).

Proof. Suppose that Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1 are linear over GF (q),
0 � k < τ and that [B0k, . . . , Bτ−k,k], determined by the coefficients of eqk(i),
is the leftmost l(τ −k+1) columns of Gk, where eqk(i) is expressed as (3.13).
Then the first rk+1 rows of B′

0k are linearly independent over GF (q), and B′
0k

has zeros in the last m− rk+1 rows whenever rk+1 < m, where B′
0k = PkB0k

is the leftmost l columns of G′
k. Thus eqk(i)

Ra[Pk]−→ eq′k(i) is linear over GF (q),
where eq′k(i) is Pkeqk(i) and is expressed as (3.14). Clearly, [B′

0k, . . . , B′
τ−k,k],

determined by the coefficients of eq′k(i), is the leftmost l(τ − k + 1) columns

of G′
k. It is easy to see that eq′k(i)

Rb[rk+1]−→ eqk+1(i) is linear over GF (q) and
[B0,k+1, . . . , Bτ−k−1,k+1], determined by the coefficients of eqk+1(i), is the
leftmost l(τ − (k + 1) + 1) columns of Gk+1. By simple induction, the lemma
follows. ��

Theorem 3.3.3. Let G0 = [B0, . . . , Bτ ], and

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1

be a linear modified Ra Rb transformation sequence. Then M is a weak in-
verse with delay τ if and only if the rank of B0τ is m, and M is weakly
invertible with delay τ if and only if the rank of B0τ is l, where B0τ is the
submatrix of the first l columns of Gτ .

Proof. This theorem immediately follows from Theorem 3.3.1, Theo-
rem 3.3.2 and Lemma 3.3.2. ��
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G′
k

R−1
a [P ′

k]−→ Gk is said to be linear over GF (q), if P ′
k is a matrix over

GF (q) and for some rk+1 � the k-height of G′
k, the first rk+1 rows of B′

0k

is linearly independent over GF (q) and B′
0k has zeros in the last m − rk+1

rows whenever rk+1 < m, where B′
0k is the submatrix of the first l columns

of G′
k. Gk+1

R−1
b [rk+1]−→ G′

k is said to be linear over GF (q), if the first rk+1

rows of B′
0k is linearly independent over GF (q). An R−1

a R−1
b transformation

sequence

Gk+1
R−1

b [rk+1]−→ G′
k, G′

k

R−1
a [P ′

k]−→ Gk, k = h, . . . , 1, 0 (3.26)

is said to be linear over GF (q), if Gk+1
R−1

b [rk+1]−→ G′
k and G′

k

R−1
a [P ′

k]−→ Gk are
linear over GF (q) for k = h, . . . , 1, 0.

Lemma 3.3.3.

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1

is a linear modified Ra Rb transformation sequence if and only if

Gk+1
R−1

b [rk+1]−→ G′
k, G′

k

R−1
a [P−1

k ]−→ Gk, k = τ − 1, . . . , 1, 0

is a linear R−1
a R−1

b transformation sequence.

Proof. From Lemma 3.2.2,

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1

is a modified Ra Rb transformation sequence if and only if

Gk+1
R−1

b [rk+1]−→ G′
k, G′

k

R−1
a [P−1

k ]−→ Gk, k = τ − 1, . . . , 1, 0

is an R−1
a R−1

b transformation sequence. It is easy to see that Gk
Ra[Pk]−→ G′

k

is linear if and only if G′
k

Ra[P−1
k ]−→ Gk is linear and that G′

k

Rb[rk+1]−→ Gk+1 is

linear if and only if Gk+1
R−1

b [rk+1]−→ G′
k is linear. From the definition of linear

transformation sequence, the lemma follows. ��

Theorem 3.3.4. Let M be a finite automaton defined by (3.12) and G0 =
[B0, . . . , Bτ ], τ � r.

(a) M is a weak inverse finite automaton with delay τ if and only if there
exist an m × l(τ + 1) (l, τ)-echelon matrix Gτ over GF (q) and a linear R−1

a

R−1
b transformation sequence

Gk+1
R−1

b [rk+1]−→ G′
k, G′

k

R−1
a [P ′

k]−→ Gk, k = τ − 1, . . . , 1, 0 (3.27)
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such that the rank of the submatrix B0τ of the first l columns of Gτ is m.
(b) M is weakly invertible finite automaton with delay τ if and only if

there exist an m× l(τ + 1) (l, τ)-echelon matrix Gτ over GF (q) and a linear
R−1

a R−1
b transformation sequence (3.27) such that the rank of the submatrix

B0τ of the first l columns of Gτ is l.

Proof. (a) Suppose that M is a weak inverse with delay τ . Clearly, there
exists a linear modified Ra Rb transformation sequence

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1.

From Theorem 3.3.3, the rank of B0τ is m, where B0τ is the submatrix of
the first l columns of Gτ . From Lemma 3.3.3, taking P ′

k = P−1
k for k =

0, 1, . . . , τ − 1, (3.27) is a linear R−1
a R−1

b transformation sequence.
Conversely, suppose that (3.27) is a linear R−1

a R−1
b transformation se-

quence and the rank of B0τ is m. Let Pk = (P ′
k)−1, k = 0, 1, . . . , τ − 1. From

Lemma 3.3.3,

Gk
Ra[Pk]−→ G′

k, G′
k

Rb[rk+1]−→ Gk+1, k = 0, 1, . . . , τ − 1

is a linear modified Ra Rb transformation sequence. Using Theorem 3.3.3, M

is a weak inverse with delay τ .
(b) This part is similar to part (a). ��
We use Rc to denote an operator: shift the last c rows l columns to the

right entering zeros to the left.
Clearly, (3.27) is a linear R−1

a R−1
b transformation sequence if and only if

the following conditions hold:

G′
k = Rm−rk+1Gk+1, Gk = P ′

kG′
k,

k = τ − 1, . . . , 1, 0,

P ′
k is an m × m invertible matrix over GF (q) in the form

P ′
k =
[

Erk
0

P ′
k1 P ′

k2

]
,

rk is the k-height of G′
k, Gk+1 is an (l, k+1)-echelon matrix over GF (q) with

(k + 1)-height rk+1 � rk and the first rk+1 rows of the submatrix of the first
l columns of Gk+1 are linear independent over GF (q), k = τ − 1, . . . , 1, 0,
where Erk

is the rk × rk identity matrix. In computing elements of P ′
kG′

k, we
define u ·u = u+u = u, v ·u = u ·v = u, 0 ·u = u ·0 = 0 and w+u = u+w =
u, where u stands for undefined symbol, v(
= 0) and w are any elements in
GF (q). Notice that the k-height of Gk is the same as the k-height of Gτ and
the submatrices consisting of the first l columns and the first rk rows of Gk

and Gτ are the same, for k < τ . From Theorem 3.3.4, we obtain the following.
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Theorem 3.3.5. Let M be a finite automaton defined by (3.12).
(a) M is a weak inverse finite automaton with delay τ if and only if there

exist an m×l(τ +1) (l, τ)-echelon matrix Gτ and m×m nonsingular matrices

P ′
k =
[

Erk
0

P ′
k1 P ′

k2

]
, k = 0, 1, . . . , τ − 1

such that the rank of the submatrix B0τ of the first l columns of Gτ is m,

and

[B0, . . . , Bτ ] = P ′
0Rm−r1(P

′
1Rm−r2(. . . (P

′
τ−1Rm−rτ

(Gτ )) . . .))

if τ > 0 and [B0, . . . , Bτ ] = Gτ otherwise, where Erk
is the rk × rk identity

matrix, and rk is the k-height of Gτ .
(b) M is a weakly invertible finite automaton with delay τ if and only if

there exist an m × l(τ + 1) (l, τ)-echelon matrix Gτ and m × m nonsingular
matrices

P ′
k =
[

Erk
0

P ′
k1 P ′

k2

]
, k = 0, 1, . . . , τ − 1

such that the rank of the submatrix B0τ of the first l columns of Gτ is l, the
first rτ rows of B0τ are linearly independent over GF (q), and

[B0, . . . , Bτ ] = P ′
0Rm−r1(P

′
1Rm−r2(. . . (P

′
τ−1Rm−rτ

(Gτ )) . . .))

if τ > 0 and [B0, . . . , Bτ ] = Gτ otherwise, where Erk
is the rk × rk identity

matrix, and rk is the k-height of Gτ .

Denote rτ+1 = m. Let h = min k { rk = m, 1 � k � τ + 1 }. Notice that
in the case of rk = m, Rm−rk

is the identity operator and P ′
k is the identity

matrix. In the case of h � τ , we have

P ′
0Rm−r1(P

′
1Rm−r2(. . . (P

′
τ−1Rm−rτ (Gτ )) . . .))

= P ′
0Rm−r1(P

′
1Rm−r2(. . . (P

′
h−2Rm−rh−1(P

′
h−1Gτ )) . . .)).

Since P ′
h−1 is nonsingular, the rank of the submatrix of the first l columns of

P ′
h−1Gτ is the same as the rank of the submatrix of the first l columns of Gτ .

Since h � τ , we have rτ = m. Therefore, the first rτ rows of the submatrix of
the first l columns of P ′

h−1Gτ are linearly independent over GF (q) if and only
if the first rτ rows of the submatrix of the first l columns of Gτ are linearly
independent over GF (q). Clearly, P ′

h−1Gτ is also an m×l(τ +1) (l, τ)-echelon
matrix over GF (q) of which the i-height is the same as the i-height of Gτ for
any i, 0 � i � τ . From Theorem 3.3.5, taking G = P ′

h−1Gτ , we then have
the following theorem.



3.3 Invertibility of Quasi-Linear Finite Automata 105

Theorem 3.3.6. Let M be a finite automaton defined by (3.12).
(a) M is a weak inverse finite automaton with delay τ if and only if there

exist an m× l(τ +1) (l, τ)-echelon matrix G and m×m nonsingular matrices

P ′
k =
[

Erk
0

P ′
k1 P ′

k2

]
, k = 0, 1, . . . , h − 2

such that the rank of the submatrix of the first l columns of G is m, and

[B0, . . . , Bτ ] = P ′
0Rm−r1(P

′
1Rm−r2(. . . (P

′
h−2Rm−rh−1(G)) . . .))

if h > 1 and [B0, . . . , Bτ ] = G otherwise, where Erk
is the rk × rk identity

matrix, rk is the k-height of G, and h = min k { rk = m, 1 � k � τ + 1 }
(rτ+1 = m by convention).

(b) M is a weakly invertible finite automaton with delay τ if and only if
there exist an m × l(τ + 1) (l, τ)-echelon matrix G and m × m nonsingular
matrices

P ′
k =
[

Erk
0

P ′
k1 P ′

k2

]
, k = 0, 1, . . . , h − 2

such that the rank of the submatrix Gl
0 of the first l columns of G is l, the

first rτ rows of Gl
0 are linearly independent over GF (q), and

[B0, . . . , Bτ ] = P ′
0Rm−r1(P

′
1Rm−r2(. . . (P

′
h−2Rm−rh−1(G)) . . .))

if h > 1 and [B0, . . . , Bτ ] = G otherwise, where Erk
is the rk × rk identity

matrix, rk is the k-height of G, and h = min k { rk = m, 1 � k � τ + 1 }
(rτ+1 = m by convention).

Let G be an m × l(τ + 1) incompletely specified matrix over GF (q). If
there are km, . . . , k1 such that 0 � km � · · · � k1 � τ , and for each j,
1 � j � m, in row j of G elements in the first l(1 + kj) columns are defined
and in the last l(τ − kj) columns are undefined, that is, G is in the form⎡

⎢⎢⎢⎢⎣
G10 . . . G1,km

G1,km+1 . . . G1,kj
G1,kj+1 . . . G1,k1 ∗ . . . ∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gj0 . . . Gj,km Gj,km+1 . . . Gj,kj ∗ . . . ∗ ∗ . . . ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gm0 . . . Gm,km

∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗

⎤
⎥⎥⎥⎥⎦ ,

where ∗ stands for the 1 × l “undefined matrix”, Gij is a 1 × l completely
specified matrix, G is called an echelon matrix and kj is called the j-length of
G, for j = 1, . . . , m.

Let G be an m × l(τ + 1) (l, τ)-echelon matrix over GF (q) with i-height
ri, i = 0, 1, . . . , τ . Let
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kj = τ − min i { 0 � i � τ, ri < j � ri+1 }, j = 1, . . . , m, (3.28)

where rτ+1 = m. Then G is an echelon matrix with j-length kj , j = 1, . . . , m.
In fact, for any j, 1 � j � m, when ri < j � ri+1 for some i, 0 � i � τ ,
from the definition of i-height, we have that in row j of G elements in the
first l(τ + 1 − i) columns are defined and elements in the last li columns
are undefined. From (3.28), kj = τ − i. Then in row j of G elements in
the first l(1 + kj) columns are defined and elements in the last l(τ − kj)
columns are undefined. Since r0 � r1 � · · · � rτ , it is easy to verify that
0 � km � · · · � k1 � τ .

Conversely, let G be an m × l(τ + 1) echelon matrix over GF (q) with
j-length kj , j = 1, . . . , m. Let

ri = min c { 0 � c � m, kj < τ + 1 − i if c < j � m }, i = 1, . . . , τ.

Then G is an (l, τ)-echelon matrix with i-height ri, i = 1, . . . , τ .
Since 0 = r0 � r1 � · · · � rτ � rτ+1 = m, using km = τ − min i { 0 �

i � τ, ri < m � ri+1 }, we have km = τ − min i { 0 � i � τ, m = ri+1 }. It
follows immediately that

min k { 1 � k � τ + 1,m = rk } − 1 = min i { 0 � i � τ, m = ri+1 }
= τ − km.

From the above discussion, Theorem 3.3.6 can be restated as follows.

Theorem 3.3.7. Let M be a finite automaton defined by (3.12).
(a) M is a weak inverse finite automaton with delay τ if and only if there

exist an m × l(τ + 1) echelon matrix G with j-length kj, j = 1, . . . , m, and
m × m nonsingular matrices

P ′
k =
[

Erk−1 0
P ′

k1 P ′
k2

]
, k = 1, 2, . . . , τ − km

such that the rank of the submatrix of the first l columns of G is m, and

[B0, . . . , Bτ ] = P ′
1Rm−r1(P

′
2Rm−r2(. . . (P

′
τ−km

Rm−rτ−km
(G)) . . .))

if km < τ and [B0, . . . , Bτ ] = G otherwise, where Erk−1 is the rk−1 × rk−1

identity matrix, r0 = 0,

ri = min c { 0 � c � m, kj < τ + 1 − i if c < j � m }, i = 1, . . . , τ.

(b) M is a weakly invertible finite automaton with delay τ if and only if
there exist an m × l(τ + 1) echelon matrix G with j-length kj , j = 1, . . . , m,

and m × m nonsingular matrices
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P ′
k =
[

Erk−1 0
P ′

k1 P ′
k2

]
, k = 1, 2, . . . , τ − km

such that the rank of the submatrix Gl
0 of the first l columns of G is l, the

first rτ rows of Gl
0 are linearly independent over GF (q), and

[B0, . . . , Bτ ] = P ′
1Rm−r1(P

′
2Rm−r2(. . . (P

′
τ−km

Rm−rτ−km
(G)) . . .))

if km < τ and [B0, . . . , Bτ ] = G otherwise, where Erk−1 is the rk−1 × rk−1

identity matrix, r0 = 0,

ri = min c { 0 � c � m, kj < τ + 1 − i if c < j � m }, i = 1, . . . , τ.

Historical Notes

The Ra Rb transformation method is first proposed in [96, 98] to deal with the
invertibility problem of linear finite automata over finite fields. The method is
then used to quasi-linear finite automata over finite fields in [21]. References
[135, 136] use the Ra Rb transformation method to finite automata over rings,
and [22] to quadratic finite automata. The Ra Rb transformation method is
also generalized to generate a kind of weakly invertible finite automata and
their weak inverses in [118, 127]. Sections 3.1 and 3.2 are based on [127] and
Sect. 3.3 is based on [21].



4. Relations Between Transformations

Renji Tao

Institute of Software, Chinese Academy of Sciences

Beijing 100080, China trj@ios.ac.cn

Summary.

In application to public key cryptosystems, for finite automata in public
keys no feasible inversion algorithm had been found. In Sect. 3.1 of the
preceding chapter, an inversion method by Ra Rb transformation was given
implicitly. In this chapter, a relation between two Ra Rb transformation
sequences beginning at the same equation is derived. It means that in
the inversion process it is enough to choose any one of the linear Ra Rb

transformation sequences. Then, by exploring properties of “composition”
of two Ra Rb transformation sequences, it is shown that the inversion
method by Ra Rb transformation works for some special compound finite
automata.

Other two inversion methods are by reduced echelon matrices, and by
canonical diagonal matrix polynomials. Results in the last two sections
show that the two inversion methods are “equivalent” to the inversion
method by Ra Rb transformation.

This chapter provides a foundation for assertions on the weak key of
the public key cryptosystem based on finite automata in Sect. 9.4.

Key words: Ra Rb transformation, reduced echelon matrix, canonical di-
agonal matrix polynomial

In application to public key cryptosystems, for finite automata in public keys
no feasible inversion algorithm had been found. In Sect. 3.1 of the preceding
chapter, an inversion method by Ra Rb transformation was given implicitly.
That is, from a given finite automaton M make an equation eq0(i), choose
an Ra Rb transformation sequence of length 2τ beginning at eq0(i), check
whether the variable xi in the equation eqτ (i) has at most one solution (re-
spectively a solution), if so, then an weak inverse (respectively original weak
inverse) finite automaton with delay τ of M can be feasibly constructed from
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eqτ (i). In the first section of this chapter, a relation between two Ra Rb trans-
formation sequences beginning at the same equation is derived. It means that
in the inversion process it is enough to choose any one of the linear Ra Rb

transformation sequences.
By exploring properties of “composition” of two Ra Rb transformation

sequences, it is shown that the inversion method by Ra Rb transformation
works for some special compound finite automata, for example, one com-
ponent belongs to quasi-linear finite automata, and another component is a
weakly invertible or weak inverse finite automaton generated by linear Ra Rb

transformation or with delay 0.
Another inversion method is to solve equations corresponding to an output

sequence of length τ + 1 by means of finding the reduced echelon matrix of
the coefficient matrix of the equations. Section 4.3 proves that for a weakly
invertible finite automaton with delay τ , its weak inverse can be found by
the reduced echelon matrix method if and only if it can be found by the Ra

Rb transformation method.
Using a “time shift” operator z, coefficient matrices of pseudo-memory

finite automata may be expressed by matrix polynomials of z. By means
of reducing to canonical diagonal matrix polynomials, an inversion method
was derived. In Sect. 4.4, relations between terminating and elementary Ra

Rb transformation sequences and canonical diagonal matrix polynomials and
the existence of such Ra Rb transformation sequence are investigated. From
presented results, it is easy to see that the inversion method by canonical
diagonal matrix polynomial works if and only if the inversion method by Ra

Rb transformation works.
This chapter provides a foundation for assertions on the weak key of the

public key cryptosystem based on finite automata in Sect. 9.4.

4.1 Relations Between Ra Rb Transformations

Throughout this chapter, for any integer i, any nonnegative integer k and any
symbol string z, we use z(i, k) to denote the symbol string zi, zi−1, . . . , zi−k+1.
Let X and U be two finite nonempty sets. Let Y be a column vector space
of dimension m over a finite commutative ring R with identity, where m is
a positive integer. In this section, for any integer i, we use xi, ui and yi to
denote elements in X, U and Y , respectively.

Let ψl
μν be a column vector of dimension l of which each component is

a single-valued mapping from Uμ+1 × Xν+1 to Y for some integers μ � −1,
ν � 0 and l � 1. For any integers h � 0 and i, let
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ψlh
μν(u, x, i) =

⎡
⎢⎣

ψl
μν(u(i, μ + 1), x(i, ν + 1))

...
ψl

μν(u(i − h, μ + 1), x(i − h, ν + 1))

⎤
⎥⎦ .

In the case of μ = −1, ψl
μν(u, x) and ψlh

μν(u, x, i) are abbreviated to ψl
ν(x)

and ψlh
ν (x, i), respectively.

In this section, for any nonnegative integer c, let eqc(i) be an equation

ϕc(y(i + c, c + t + 1)) + [B0c, . . . , Bhc]ψlh
μν(u, x, i) = 0,

and let eq′c(i) be an equation

ϕ′
c(y(i + c, c + t + 1)) + [B′

0c, . . . , B
′
hc]ψ

lh
μν(u, x, i) = 0,

where ϕc and ϕ′
c are two single-valued mappings from Y c+t+1 to Y , Bjc and

B′
jc are m× l matrices over R, j = 0, 1, . . . , h. Similarly, for any nonnegative

integer c, let ēqc(i) be an equation

ϕ̄c(y(i + c, c + t + 1)) + [B̄0c, . . . , B̄hc]ψlh
μν(u, x, i) = 0,

and let ēq′c(i) be an equation

ϕ̄′
c(y(i + c, c + t + 1)) + [B̄′

0c, . . . , B̄
′
hc]ψ

lh
μν(u, x, i) = 0,

where ϕ̄c and ϕ̄′
c are two single-valued mappings from Y c+t+1to Y , B̄jc and

B̄′
jc are m × l matrices over R, j = 0, 1, . . . , h.

For such expressions, eqc(i)
Ra[Pc]−→ eq′c(i) is said to be linear over R, if Pc

is a matrix over R, and for some rc+1 � 0 the first rc+1 rows of B′
0c is linearly

independent over R and B′
0c has zeros in the last m − rc+1 rows whenever

rc+1 < m. eq′c(i)
Rb[rc+1]−→ eqc+1(i) is said to be linear over R, if the first

rc+1 rows of B′
0c is linearly independent over R. An Ra Rb transformation

sequence

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , n (4.1)

is said to be linear over R, if eqc(i)
Ra[Pc]−→ eq′c(i) and eq′c(i)

Rb[rc+1]−→ eqc+1(i)
are linear over R for c = 0, 1, . . . , n. The Ra Rb transformation sequence (4.1)
is said to be elementary over R, if (4.1) is linear over R and Pc is in the form

Pc =
[

Erc
0

Pc1 Pc2

]
,

c = 0, 1, . . . , n, where Er stands for the r × r identity matrix for any r, and
r0 = 0.
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For any integers n and r with 0 � r � n, we use En,r to denote the n×n

matrix
[

0
En−r

Er

0

]
, and En,−r to denote En,n−r. Denote the n×r zero matrix

by 0n,r. Also we use DIAP,n to denote the quasi-diagonal matrix
[

P . . .
P

]
with n occurrences of P .

Below the ring R is restricted to a finite field GF (q), and the Ra trans-
formation means multiplying two sides of an equation on the left by a matrix
over GF (q).

Lemma 4.1.1. Let c > 0, and let

eqc−1(i)
Ra[Pc−1]−→ eq′c−1(i), eq

′
c−1(i)

Rb[rc]−→ eqc(i) (4.2)

be linear over GF (q) and

ēqc−1(i)
Ra[P̄c−1]−→ ēq′c−1(i), ēq

′
c−1(i)

Rb[r̄c]−→ ēqc(i). (4.3)

If
h∑

j=0

B̄j,c−1z
j =
( c−1∑

j=0

Qj,c−1z
j
)( h∑

j=0

Bj,c−1z
j
)

(4.4)

for some m × m matrices Qj,c−1 over GF (q), j = 0, 1, . . . , c − 1, then there
exist m × m matrices Qjc over GF (q), j = 0, 1, . . ., c such that

h∑
j=0

B̄jcz
j =
( c∑

j=0

Qjcz
j
)( h∑

j=0

Bjcz
j
)
. (4.5)

Moreover, if Q0,c−1 is nonsingular and (4.3) is linear over GF (q), then Q0c

is nonsingular and r̄c = rc.

Proof. Let R1 = Em,r̄c
, R2 = [0m,r̄c

Em0m,m−r̄c
], R3 = DIAP̄c−1,2,

R4 =

[
Q0,c−1 Q1,c−1 . . . Qc−1,c−1 0 0
0 Q0,c−1 . . . Qc−2,c−1 Qc−1,c−1 0

]
,

R5 = DIAP−1
c−1,c+2, R6 = Em(c+2),rc

, R7 = DIAEm,−rc ,c+2. Then we have

R−1
5 = DIAPc−1,c+2, R−1

6 = Em(c+2),−rc
, R−1

7 = DIAEm,rc ,c+2.

Let Q = R1R2R3R4R5R6R7. Partition Q = [Q0c, . . ., Qc+1,c], where Qjc

has m columns, j = 0, 1, . . . , c + 1. We prove that Qc+1,c is 0. For any j,

0 � j � c − 1, let Q′
j,c−1 = P̄c−1Qj,c−1P

−1
c−1 and Q′

j,c−1 =
[

Q1
j,c−1

Q3
j,c−1

Q2
j,c−1

Q4
j,c−1

]
,
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or
[

Q1
j

Q3
j

Q2
j

Q4
j

]
for short, where Q1

j,c−1 and Q4
j,c−1 are r̄c × rc and (m− r̄c) ×

(m − rc) matrices, respectively. Then we have

R3R4R5 =

[
Q′

0,c−1 Q′
1,c−1 . . . Q′

c−1,c−1 0 0
0 Q′

0,c−1 . . . Q′
c−2,c−1 Q′

c−1,c−1 0

]
.

It follows that

R2R3R4R5R6 =

[
Q4

0 Q3
1 Q4

1 Q3
2 . . . Q4

c−1 0 0 0 0 Q3
0

0 Q1
0 Q2

0 Q1
1 . . . Q2

c−2 Q1
c−1 Q2

c−1 0 0 0

]
.

Let R2R3R4R5R6 = [Q̄0c, . . ., Q̄c+1,c], where Q̄jc has m columns, j =
0, 1, . . . , c+1. To prove Q3

0,c−1 = 0, from (4.4), we have B̄0,c−1 = Q0,c−1B0,c−1.
Thus

P̄c−1B̄0,c−1 = P̄c−1Q0,c−1P
−1
c−1(Pc−1B0,c−1) = Q′

0,c−1(Pc−1B0,c−1). (4.6)

Since (4.2) is linear over GF (q), the first rc rows of Pc−1B0,c−1 are linearly
independent over GF (q) and the last m− rc rows of Pc−1B0,c−1 are 0. From
(4.3), the last m − r̄c rows of P̄c−1B̄0,c−1 are 0. Using (4.6), it follows that
Q3

0,c−1, the submatrix of the first rc columns and the last m − r̄c rows of
Q′

0,c−1, is 0. Since Q3
0,c−1 = 0 yields Q̄c+1,c = 0, we obtain Q̄c+1,c = 0;

therefore, Qc+1,c = R1Q̄c+1,cEm,−rc
= 0.

Let B̄j,c−1 = B̄′
j,c−1 = 0m,m, j = h + 1, . . ., h + c − 1, and

Ωr
k =

⎡
⎢⎢⎢⎣

B0r B1r . . . . . . Bhr

B0r B1r . . . . . . Bhr

. . . . . . . . . . . . . . .
B0r B1r . . . . . . Bhr

⎤
⎥⎥⎥⎦

with mk rows, for any r and any k. From (4.4), we have

h+c−1∑
j=0

B̄j,c−1z
j =
( c−1∑

j=0

Qj,c−1z
j
)( h∑

j=0

Bj,c−1z
j
)
.

It follows immediately that[
B̄0,c−1 B̄1,c−1 . . . B̄h+c−1,c−1 0 0
0 B̄0,c−1 . . . B̄h+c−2,c−1 B̄h+c−1,c−1 0

]
= R4Ω

c−1
c+2 . (4.7)

Let B̄jc = 0m,m, j = h + 1, . . ., h + c. From (4.3), we have
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R1R2R3

[
B̄0,c−1 B̄1,c−1 . . . B̄h+c−1,c−1 0 0
0 B̄0,c−1 . . . B̄h+c−2,c−1 B̄h+c−1,c−1 0

]

= R1R2

[
B̄′

0,c−1 B̄′
1,c−1 . . . B̄′

h+c−1,c−1 0 0
0 B̄′

0,c−1 . . . B̄′
h+c−2,c−1 B̄′

h+c−1,c−1 0

]

=
[
0 B̄0c . . . B̄h+c−2,c B̄h+c−1,c B̄h+c,c

]
.

Using (4.7), we have[
0 B̄0c . . . B̄h+c−2,c B̄h+c−1,c B̄h+c,c

]
= R1R2R3R4Ω

c−1
c+2

= R1R2R3R4R5R6R7R
−1
7 R−1

6 R−1
5 Ωc−1

c+2 = Q(R−1
7 R−1

6 R−1
5 Ωc−1

c+2).

From (4.2), it follows that

[
0 B̄0c . . . B̄h+c−2,c B̄h+c−1,c B̄h+c,c

]
= Q

[
0 Ωc

c+1

G′ G′′

]
(4.8)

for some matrices G′ and G′′ with m rows. Since Q = [Q0c, . . ., Qc+1,c] and
Qc+1,c = 0, (4.8) yields

[B̄0c, . . . , B̄h+c,c] = [Q0c, . . . , Qcc]Ωc
c+1,

which is equivalent to (4.5) because B̄jc = 0 for h + 1 � j � h + c. That is,
(4.5) holds.

Now we suppose that Q0,c−1 is nonsingular and (4.3) is linear over GF (q).
Since (4.3) and (4.2) are linear over GF (q), r̄c and rc are the ranks of B̄0,c−1

and B0,c−1, respectively. Since B̄0,c−1 = Q0,c−1B0,c−1 and Q0,c−1 is nonsin-
gular, we have r̄c = rc.

Since P̄c−1, Pc−1 and Q0,c−1 are nonsingular, Q′
0,c−1 = P̄c−1Q0,c−1P

−1
c−1

is nonsingular. Noticing r̄c = rc and Q3
0,c−1 = 0, it follows that Q4

0,c−1 and

Q1
0,c−1 are nonsingular. Thus Q̄0c =

[
Q4

0,c−1
0

Q3
1,c−1

Q1
0,c−1

]
is nonsingular. Therefore,

Q0c = R1Q̄0cEm,−rc
is nonsingular. ��

Theorem 4.1.1. Assume that eq0(i) and ēq0(i) are the same. Assume that

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , τ − 1 (4.9)

is a linear Ra Rb transformation sequence and

ēqc(i)
Ra[P̄c]−→ ēq′c(i), ēq′c(i)

Rb[r̄c+1]−→ ēqc+1(i), c = 0, 1, . . . , τ − 1 (4.10)

is an Ra Rb transformation sequence. Then there exist m×m matrices Qjτ ,

j = 0, 1, . . . , τ over GF (q) such that
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h∑
j=0

B̄jτzj =
( τ∑

j=0

Qjτzj
)( h∑

j=0

Bjτzj
)
.

Moreover, if (4.10) is linear over GF (q), then r̄j = rj holds for any j, 1 �
j � τ and Q0τ is nonsingular.

Proof. Since ēq0(i) and eq0(i) are the same, (4.4) holds in the case of
c = 1, where Q00 is the identity matrix. Applying Lemma 4.1.1 τ times, c

from 1 to τ , we obtain the theorem. ��
Theorem 4.1.2. Let eq0(i) and ēq0(i) be the same and equivalent to the
equation

ϕ0(y(i, t + 1)) + [B00, . . . , Bh0]ψlh
μν(u, x, i) = 0.

(a) If (4.10) is an Ra Rb transformation sequence and B̄0τψl
μν(u(i, μ + 1),

x(i, ν +1)) as a function of the variable xi is an injection, then for any linear
Ra Rb transformation sequence (4.9), B0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a
function of the variable xi is an injection.

(b) If (4.10) is an Ra Rb transformation sequence and B̄0τψl
μν(u(i, μ + 1),

x(i, ν +1)) as a function of the variable xi is a surjection, then for any linear
Ra Rb transformation sequence (4.9), B0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a
function of the variable xi is a surjection.

Proof. (a) Suppose that (4.10) is an Ra Rb transformation sequence and
B̄0τψl

μν(u(i, μ+1), x(i, ν +1)) as a function of the variable xi is an injection.
For any linear (4.9), from Theorem 4.1.1, there exists an m × m matrix Q0τ

such that B̄0τ = Q0τB0τ . It follows immediately that for any parameters
xi−1, . . ., xi−ν , ui, . . ., ui−μ, B0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a function of
the variable xi is an injection.

(b) The proof of part (b) is similar to part (a), just by replacing“injection”
by “surjection”. ��

Notice that if for any linear Ra Rb transformation sequence (4.9), B0τψl
μν

(u(i, μ+1), x(i, ν +1)) as a function of the variable xi is a surjection, then for
any parameters xi−1, . . ., xi−h−ν , ui, . . ., ui−h−μ, yi+τ , . . ., yi−t, the equation
eqτ (i) has a solution xi. If for any linear Ra Rb transformation sequence (4.9),
B0τψl

μν(u(i, μ+1), x(i, ν +1)) as a function of the variable xi is an injection,
then for any parameters xi−1, . . ., xi−h−ν , ui, . . ., ui−h−μ, yi+τ , . . ., yi−t, the
equation eqτ (i) has at most one solution xi.

4.2 Composition of Ra Rb Transformations

Let X and U be two finite nonempty sets. Let Y ′ and Y be two column vector
spaces over a finite field GF (q) of dimensions m′ and m, respectively, where
m′ and m are two positive integers.
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For any nonnegative integer c, let 1eqc(i) be an equation

ξc(y(i + c, c + 1)) + [F0c, . . . , Fh1c]ψlh1
μν (u, x, i) = 0

and let 1eq′c(i) be an equation

ξ′c(y(i + c, c + 1)) + [F ′
0c, . . . , F

′
h1c]ψ

lh1
μν (u, x, i) = 0,

where ξc and ξ′c are two single-valued mappings from Y ′c+1 to Y ′, Fjc and
F ′

jc are m′ × l matrices over GF (q), j = 0, 1, . . . , h1.
For any nonnegative integer c, let 0eqc(i) be an equation

ηc(y(i + c, c + k + 1)) + [B0c, . . . , Bh0c]

⎡
⎢⎣xi

...
xi−h0

⎤
⎥⎦ = 0

and let 0eq′c(i) be an equation

η′
c(y(i + c, c + k + 1)) + [B′

0c, . . . , B
′
h0c]

⎡
⎢⎣xi

...
xi−h0

⎤
⎥⎦ = 0,

where ηc and η′
c are two single-valued mappings from Y c+k+1 to Y , Bjc and

B′
jc are m × m′ matrices over GF (q), j = 0, 1, . . . , h0.

Let h = h0 + h1. In this section, for any nonnegative integer c, let eqc(i)
be an equation

ϕc(y(i + c, c + k + 1)) + [C0c, . . . , Chc]ψlh
μν(u, x, i) = 0

and let eq′c(i) be an equation

ϕ′
c(y(i + c, c + k + 1)) + [C ′

0c, . . . , C
′
hc]ψ

lh
μν(u, x, i) = 0,

where ϕc and ϕ′
c are two single-valued mappings from Y c+k+1to Y , Cjc and

C ′
jc are m × l matrices over GF (q), j = 0, 1, . . . , h.

For any nonnegative integer r, let

Γh+r =

⎡
⎢⎢⎢⎣

F0 F1 . . . . . . Fh1

F0 F1 . . . . . . Fh1

. . . . . . . . . . . . . . .
F0 F1 . . . . . . Fh1

⎤
⎥⎥⎥⎦ (4.11)

be an (h0 + r)m′ × (h + r)l matrix, where Fj , j = 0, 1, . . . , h1 are m′ × l

matrices over GF (q).
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Lemma 4.2.1. Let c > 0 and

[C0,c−1, . . . , Ch,c−1] = [B0,c−1, . . . , Bh0,c−1]Γh+1. (4.12)

If

0eqc−1(i)
Ra[Pc−1]−→ 0eq′c−1(i), 0eq′c−1(i)

Rb[rc]−→ 0eqc(i), (4.13)

then
eqc−1(i)

Ra[Pc−1]−→ eq′c−1(i), eq′c−1(i)
Rb[rc]−→ eqc(i) (4.14)

and
[C0c, . . . , Chc] = [B0c, . . . , Bh0c]Γh+1. (4.15)

Proof. Let R1 = Em,rc
, R2 = [0m,rc

Em 0m,m−rc
], R3 = DIAPc−1,2. By

(4.13), we have

R1R2R3

[
B0,c−1 B1,c−1 . . . Bh0,c−1 0
0 B0,c−1 . . . Bh0−1,c−1 Bh0,c−1

]

= R1R2

[
B′

0,c−1 B′
1,c−1 . . . B′

h0,c−1 0
0 B′

0,c−1 . . . B′
h0−1,c−1 B′

h0,c−1

]
(4.16)

=
[
0 B0c . . . Bh0−1,c Bh0c

]
.

We prove that (4.14) is an Ra Rb transformation sequence. It is suffi-
cient to prove that the last m − rc rows of Pc−1C0,c−1 are 0. Let C ′

0,c−1 =
Pc−1C0,c−1. Since (4.12) yields C0,c−1 = B0,c−1F0, we have C ′

0,c−1 =
B′

0,c−1F0. From (4.13), it is easy to see that the last m − rc rows of B′
0,c−1

are 0. It follows immediately that the last m − rc rows of C ′
0,c−1 are 0.

Since (4.14) holds, we have

R1R2R3

[
C0,c−1 C1,c−1 . . . Ch,c−1 0
0 C0,c−1 . . . Ch−1,c−1 Ch,c−1

]

= R1R2

[
C ′

0,c−1 C ′
1,c−1 . . . C ′

h,c−1 0
0 C ′

0,c−1 . . . C ′
h−1,c−1 C ′

h,c−1

]

=
[
0 C0c . . . Ch−1,c Chc

]
.

From (4.12) and (4.16), it follows that[
0 C0c . . . Ch−1,c Chc

]
= R1R2R3

[
B0,c−1 B1,c−1 . . . Bh0,c−1 0
0 B0,c−1 . . . Bh0−1,c−1 Bh0,c−1

]
Γh+2

=
[
0 B0c . . . Bh0−1,c Bh0c

]
Γh+2.
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Therefore, (4.15) holds. ��
For any nonnegative integers c and r, let Γ c

h+r be an (h0 + r)m′× (h+ r)l
matrix

Γ c
h+r =

⎡
⎢⎢⎢⎣

F0c F1c . . . . . . Fh1c

F0c F1c . . . . . . Fh1c

. . . . . . . . . . . . . . .
F0c F1c . . . . . . Fh1c

⎤
⎥⎥⎥⎦ . (4.17)

Lemma 4.2.2. Assume that τ0 � 0, c > 0,

[C0,τ0+c−1, . . . , Ch+c−1,τ0+c−1] = [Q0,c−1, . . . , Qh0+c−1,c−1]Γ c−1
h+c , (4.18)

Ch+j,τ0+c−1 = 0 for j > 0, where Qj,c−1 is an m × m′ matrix over GF (q),
j = 0, 1, . . . , h0 + c − 1. If

1eqc−1(i)
Ra[Pc−1]−→ 1eq′c−1(i), 1eq′c−1(i)

Rb[rc]−→ 1eqc(i), (4.19)

then there exist an m×m invertible matrix P̄τ0+c−1 over GF (q) and a non-
negative integer r̄τ0+c such that

eqτ0+c−1(i)
Ra[P̄τ0+c−1]−→ eq′τ0+c−1(i), eq′τ0+c−1(i)

Rb[r̄τ0+c]−→ eqτ0+c(i) (4.20)

and there exist m × m′ matrices Q0c, . . ., Qh0+c,c over GF (q) such that

[C0,τ0+c, . . . , Ch+c,τ0+c] = [Q0c, . . . , Qh0+c,c]Γ c
h+c+1

and the rank of Q0c is not less than the rank of Q0,c−1, where Ch+j,τ0+c = 0
for j > 0.

Proof. Let Q′
0,c−1 be the reduced echelon matrix of Q0,c−1P

−1
c−1, and

P̄τ0+c−1 an m × m invertible matrix with Q′
0,c−1 = P̄τ0+c−1Q0,c−1P

−1
c−1. Let

r̄τ0+c be the rank of the submatrix of the first rc columns of Q′
0,c−1.

Let R1 = Em,r̄τ0+c , R2 = [0m,r̄τ0+cEm0m,m−r̄τ0+c ], R3 = DIAP̄τ0+c−1,2,

R4 =

[
Q0,c−1 Q1,c−1 . . . Qh0+c−1,c−1 0 0
0 Q0,c−1 . . . Qh0+c−2,c−1 Qh0+c−1,c−1 0

]
,

R5 = DIAP−1
c−1,h0+c+2, R6 = Em′(h0+c+2),rc

, R7 = DIAEm′,−rc
,h0+c+2. It

follows that R−1
5 = DIAPc−1,h0+c+2, R−1

6 = Em′(h0+c+2),−rc
, and R−1

7 =
DIAEm′,rc

,h0+c+2. Let Q = R1R2R3R4R5R6R7. Partition Q = [Q0c, . . .,
Qh0+c+1,c], where Qjc has m′ columns, j = 0, 1, . . . , h0 + c + 1.

For any j, 1 � j � h0 + c− 1, let Q′
j,c−1 = P̄τ0+c−1Qj,c−1P

−1
c−1. For any j,

0 � j � h0 + c − 1, let Q′
j,c−1 =

[
Q1

j,c−1

Q3
j,c−1

Q2
j,c−1

Q4
j,c−1

]
, or
[

Q1
j

Q3
j

Q2
j

Q4
j

]
for short, where
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Q1
j,c−1 and Q4

j,c−1 are r̄τ0+c × rc and (m− r̄τ0+c) × (m′− rc) matrices,
respectively. We prove Q3

0,c−1 = 0 and Qh0+c+1,c = 0. Since Q′
0,c−1 is the

reduced echelon matrix of Q0,c−1P
−1
c−1, from the definition of r̄τ0+c, we have

Q3
0,c−1 = 0. Clearly,

R3R4R5 =

[
Q′

0,c−1 Q′
1,c−1 . . . Q′

h0+c−1,c−1 0 0
0 Q′

0,c−1 . . . Q′
h0+c−2,c−1 Q′

h0+c−1,c−1 0

]
.

Therefore, we have

R2R3R4R5R6 =

[
Q4

0 Q3
1 Q4

1 Q3
2 . . . Q4

h0+c−1 0 0 0 0 Q3
0

0 Q1
0 Q2

0 Q1
1 . . . Q2

h0+c−2 Q1
h0+c−1 Q2

h0+c−1 0 0 0

]
.

Let R2R3R4R5R6 = [Q̄0c, . . ., Q̄h0+c+1,c], where Q̄jc has m′ columns, j = 0,
1, . . ., h0+c+1. Since Q3

0,c−1 = 0 yields Q̄h0+c+1,c = 0, we obtain Q̄h0+c+1,c =
0 and Qh0+c+1,c = R1Q̄h0+c+1,cEm′,−rc = 0.

We prove that (4.20) is an Ra Rb transformation sequence. It is suffi-
cient to prove that the last m − r̄τ0+c rows of P̄τ0+c−1C0,τ0+c−1 are 0. Let
C ′

0,τ0+c−1 = P̄τ0+c−1C0,τ0+c−1. Since (4.18) yields C0,τ0+c−1 = Q0,c−1F0,c−1,
we have

C ′
0,τ0+c−1 = P̄τ0+c−1Q0,c−1F0,c−1

= (P̄τ0+c−1Q0,c−1P
−1
c−1)(Pc−1F0,c−1)

= Q′
0,c−1F

′
0,c−1.

Since Q3
0,c−1 = 0 and the last m′− rc rows of F ′

0,c−1 are 0, the last m− r̄τ0+c

rows of C ′
0,τ0+c−1 are 0.

To prove [C0,τ0+c, . . . , Ch+c,τ0+c] = [Q0c, . . . , Qh0+c,c]Γ c
h+c+1, using (4.19),

it is easy to verify that R−1
5 Γ c−1

h+c+2 equals

⎡
⎢⎢⎢⎣

F ′
0,c−1 F ′

1,c−1 · · · · · · F ′
h1,c−1

F ′
0,c−1 F ′

1,c−1 · · · · · · F ′
h1,c−1

. . . . . . . . . . . . . . .
F ′

0,c−1 F ′
1,c−1 · · · · · · F ′

h1,c−1

⎤
⎥⎥⎥⎦

and R−1
7 R−1

6 R−1
5 Γ c−1

h+c+2 =
[

0
G′

Γ c
h+c+1

G′′

]
for some matrices G′ and G′′ with m′

rows. Since Q = [Q0c, . . ., Qh0+c+1,c] and Qh0+c+1,c = 0, we have

QR−1
7 R−1

6 R−1
5 Γ c−1

h+c+2 = [Q0c, . . . , Qh0+c,c] [0, Γ c
h+c+1]. (4.21)

From (4.20) and Ch+j,τ0+c−1 = 0 for j > 0, we have
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R1R2R3

[
C0,τ0+c−1 C1,τ0+c−1 . . . Ch+c−1,τ0+c−1 0 0
0 C0,τ0+c−1 . . . Ch+c−2,τ0+c−1 Ch+c−1,τ0+c−1 0

]

= R1R2

[
C ′

0,τ0+c−1 C ′
1,τ0+c−1 . . . C ′

h+c−1,τ0+c−1 0 0
0 C ′

0,τ0+c−1 . . . C ′
h+c−2,τ0+c−1 C ′

h+c−1,τ0+c−1 0

]

=
[
0 C0,τ0+c . . . Ch+c−2,τ0+c Ch+c−1,τ0+c 0

]
(4.22)

and Ch+j,τ0+c = 0 for j > 0. On the other hand, from (4.18), we obtain

R1R2R3

[
C0,τ0+c−1 C1,τ0+c−1 . . . Ch+c−1,τ0+c−1 0 0
0 C0,τ0+c−1 . . . Ch+c−2,τ0+c−1 Ch+c−1,τ0+c−1 0

]

= R1R2R3R4Γ
c−1
h+c+2 = R1R2R3R4R5R6R7R

−1
7 R−1

6 R−1
5 Γ c−1

h+c+2

= QR−1
7 R−1

6 R−1
5 Γ c−1

h+c+2.

Using (4.22) and (4.21), it follows immediately that

[0, C0,τ0+c, . . . , Ch+c,τ0+c] = QR−1
7 R−1

6 R−1
5 Γ c−1

h+c+2

= [Q0c, . . . , Qh0+c,c] [0, Γ c
h+c+1],

where Ch+c,τ0+c = 0. Therefore,

[C0,τ0+c, . . . , Ch+c,τ0+c] = [Q0c, . . . , Qh0+c,c]Γ c
h+c+1.

Finally, we prove that the rank of Q0c is not less than the rank of Q0,c−1.
It is easy to see that the rank of Q0,c−1 is equal to the rank of Q′

0,c−1.
From Q0c = R1Q̄0cEm′,−rc

, the rank of Q0c is equal to the rank of Q̄0c. Since

Q′
0,c−1 =

[
Q1

0,c−1
0

Q2
0,c−1

Q4
0,c−1

]
and r̄τ0+c is the rank of

[
Q1

0,c−1
0

]
, the rows of Q1

0,c−1

are linearly independent. It follows that the rank of Q′
0,c−1 is equal to the

sum of the rank of Q1
0,c−1 and the rank of Q4

0,c−1. On the other hand, Q̄0c =[
Q4

0,c−1
0

Q3
1,c−1

Q1
0,c−1

]
deduces that the rank of Q̄0c is equal to or greater than the

sum of the rank of Q1
0,c−1 and the rank of Q4

0,c−1. Therefore, the rank of Q̄0c

is equal to or greater than the rank of Q′
0,c−1. It follows that the rank of Q0c

is equal to or greater than the rank of Q0,c−1. ��

Theorem 4.2.1. Let

[C00, . . . , Ch0] = [B00, . . . , Bh00]Γ
0
h+1. (4.23)

Assume that

0eqc(i)
Ra[Pc]−→ 0eq′c(i), 0eq′c(i)

Rb[rc+1]−→ 0eqc+1(i), c = 0, 1, . . . , τ0 − 1 (4.24)
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and

1eqc(i)
Ra[P ′

c]−→ 1eq′c(i), 1eq′c(i)
Rb[r

′
c+1]−→ 1eqc+1(i), c = 0, 1, . . . , τ1 − 1 (4.25)

are two Ra Rb transformation sequences. Then there exist an Ra Rb trans-
formation sequence

eqc(i)
Ra[P̄c]−→ eq′c(i), eq′c(i)

Rb[r̄c+1]−→ eqc+1(i), c = 0, 1, . . . , τ − 1

and m × m′ matrices Q0τ1 , . . ., Qh0+τ1,τ1 over GF (q) such that

[C0τ , . . . , Ch+τ1,τ ] = [Q0τ1 , . . . , Qh0+τ1,τ1 ]Γ
τ1
h+τ1+1 (4.26)

and the rank of Q0τ1 is not less than the rank of B0τ0 in 0eqτ0(i), where
τ = τ0+τ1, Ch+j,τ = 0 for j > 0. Therefore, if the rank of B0τ0 is min(m,m′),
then the rank of Q0τ1 is min(m,m′).

Proof. From (4.23), (4.12) for c = 1 in Lemma 4.2.1 holds, where Fj = Fj0,
j = 0, 1, . . . , h1. From (4.24), using Lemma 4.2.1 τ0 times, c from 1 to τ0, we
obtain

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , τ0 − 1 (4.27)

and
[C0τ0 , . . . , Chτ0 ] = [B0τ0 , . . . , Bh0τ0 ]Γ

0
h+1. (4.28)

Let Qj0 = Bjτ0 for any j, 0 � j � h0. Then the rank of B0τ0 is the rank
of Q00. Clearly, (4.28) yields (4.18) for c = 1 in Lemma 4.2.2. From (4.25),
using Lemma 4.2.2 τ1 times, c from 1 to τ1, we obtain that there exist

eqc(i)
Ra[P̄c]−→ eq′c(i), eq′c(i)

Rb[r̄c+1]−→ eqc+1(i), c = τ0, τ0 + 1, . . . , τ − 1 (4.29)

and Q0τ1 , . . ., Qh0+τ1,τ1 such that (4.26) holds and the rank of Q0τ1 is not
less than the rank of Q00, where τ = τ0 + τ1, Ch+j,τ = 0 for j > 0. Thus the
rank of Q0τ1 is not less than the rank of B0τ0 . Letting P̄j = Pj and r̄j = rj

for any j, 0 � j � τ0 − 1, from (4.27) and (4.29),

eqc(i)
Ra[P̄c]−→ eq′c(i), eq′c(i)

Rb[r̄c+1]−→ eqc+1(i), c = 0, 1, . . . , τ − 1

is an Ra Rb transformation sequence. This completes the proof of the theo-
rem. ��

Let M0 = 〈Y ′, Y , Y k × Y ′h0 , δ0, λ0〉 be a special h0-quasi-linear finite
automaton defined by
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yi = ϕout(y(i − 1, k)) + [B0, . . . , Bh0 ]

⎡
⎢⎣ y′

i
...
y′

i−h0

⎤
⎥⎦ , i = 0, 1, . . . (4.30)

Let M1 = 〈X, Y ′, Up+1 ×Xh1 , δ1, λ1〉 be a pseudo-memory finite automa-
ton defined by

y′
i = f(u(i, p + 1), x(i, h1 + 1)),

ui+1 = g(u(i, p + 1), x(i, h1 + 1)), (4.31)

i = 0, 1, . . . ,

and suppose that f can be expressed in the form

f(u(i, p + 1), x(i, h1 + 1)) = [F0, . . . , Fh1 ]ψ
lh1
μν (u, x, i).

Let h = h0 + h1 and

[C0, C1, . . . , Ch] = [B0, B1, . . . , Bh0 ]Γh+1, (4.32)

where Γh+1 is defined by (4.11).
From M0 and M1, a finite automaton 〈X, Y, Y k × Up+1 × Xh, δ, λ〉 is

defined by

yi = ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
μν(u, x, i),

ui+1 = g(u(i, p + 1), x(i, h1 + 1)),

i = 0, 1, . . .

Theorem 4.2.2. Let M0 and M1 be finite automata defined by (4.30) and
(4.31), respectively. Let 1eq0(i) be equivalent to the equation

−yi + [F0, . . . , Fh1 ]ψ
lh1
μν (u, x, i) = 0,

and eq0(i) be equivalent to the equation

−yi + ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
μν(u, x, i) = 0. (4.33)

Assume that (4.25) is an Ra Rb transformation sequence.
(a) If F0τ1ψ

l
μν(u(i, μ + 1), x(i, ν + 1)) in 1eqτ1(i) as a function of the

variable xi is an injection and M0 is weakly invertible with delay τ0, then for
any linear Ra Rb transformation sequence

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , τ − 1 (4.34)

with τ = τ0 + τ1, C0τψl
μν(u(i, μ + 1), x(i, ν + 1)) in eqτ (i) as a function of

the variable xi is an injection.
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(b) If F0τ1ψ
l
μν(u(i, μ + 1), x(i, ν + 1)) in 1eqτ1(i) as a function of the

variable xi is a surjection and M0 is a weak inverse with delay τ0, then
for any linear Ra Rb transformation sequence (4.34) with τ = τ0 + τ1,
C0τψl

μν(u(i, μ + 1), x(i, ν + 1)) in eqτ (i) as a function of the variable xi is a
surjection.

Proof. (a) Suppose that M0 is weakly invertible with delay τ0. Then m �
m′. Let 0eq0(i) be equivalent to the equation

−yi + ϕout(y(i − 1, k)) + [B0, . . . , Bh0 ]

⎡
⎢⎣xi

...
xi−h0

⎤
⎥⎦ = 0.

Let (4.24) be a linear Ra Rb transformation sequence. From Theorem 3.3.2
in Chap. 3, the rank of B0τ0 in 0eqτ0(i) is m′. Using (4.32), (4.33), (4.11) and
(4.17), it is easy to see that (4.23) holds. From Theorem 4.2.1, there exist an
Ra Rb transformation sequence

ēqc(i)
Ra[P̄c]−→ ēq′c(i), ēq′c(i)

Rb[r̄c+1]−→ ēqc+1(i), c = 0, 1, . . . , τ − 1

with τ = τ0 + τ1 and m×m′ matrices Q0τ1 , . . . , Qh0+τ1,τ1 over GF (q) such
that

[C̄0τ , . . . , C̄h+τ1,τ ] = [Q0τ1 , . . . , Qh0+τ1,τ1 ]Γ
τ1
h+τ1+1 (4.35)

holds and the rank of Q0τ1 is m′, where ēq0(i) is eq0(i), ēqτ (i) is in the form

ϕ̄τ (y(i + τ, τ + k + 1)) + [C̄0τ , . . . , C̄hτ ]ψlh
μν(u, x, i) = 0,

and C̄h+j,τ = 0 for j > 0. Clearly, (4.35) yields C̄0τ = Q0τ1F0τ1 . Since
F0τ1ψ

l
μν (u(i, μ + 1), x(i, ν + 1)) in 1eqτ1(i) as a function of the variable xi is

an injection and the rank of Q0τ1 is m′, C̄0τψl
μν(u(i, μ+1), x(i, ν+1)) in ēqτ (i)

as a function of the variable xi is an injection. From Theorem 4.1.2, for any
linear Ra Rb transformation sequence (4.34), C0τψl

μν(u(i, μ + 1), x(i, ν + 1))
in eqτ (i) as a function of the variable xi is an injection.

(b) The proof of part (b) is similar to part (a). What we need to do is to
replace the phrases “weakly invertible”, “is m′”, “Theorem 3.3.2” and “injec-
tion” in the proof of part (a) by “a weak inverse”, “is m”, “Theorem 3.3.1”
and “surjection”, respectively. ��

Below M1 is restricted to an h1-order input-memory finite automaton.

Lemma 4.2.3. For any (h0, k)-order memory finite automaton M0 =
〈Y ′, Y, S0, δ0, λ0〉 and any h1-order input-memory finite automaton M1 =
〈X, Y ′, S1, δ1, λ1〉 with |X| = |Y ′|, if M1 is weakly invertible with delay 0,

then for any state s0 of M0 there exist a state s of C ′(M1,M0) and a state
s1 of M1 such that s and the state 〈s1, s0〉 of C(M1,M0) are equivalent.
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Proof. Denote s0 = 〈y(−1, k), y′(−1, h0)〉. From Theorem 1.4.6, since M1

is weakly invertible with delay 0, there exist x−1, . . ., x−h0−h1 ∈ X, such
that

λ1(〈x(−h0 − 1, h1)〉, x−h0 . . . x−1) = y′
−h0

. . . y′
−1.

Let s = 〈y(−1, k), x(−1, h0+h1)〉 and s1 = 〈x(−1, h1)〉. From Theorem 1.2.1,
s and 〈s1, s0〉 are equivalent. ��

Lemma 4.2.4. Let M0 = 〈Y ′, Y, S0, δ0, λ0〉 be an (h0, k)-order memory fi-
nite automaton, and M1 = 〈X, Y ′, S1, δ1, λ1〉 an h1-order input-memory finite
automaton with |X| = |Y ′|. Assume that M1 is weakly invertible with delay
0.

(a) C ′(M1,M0) is weakly invertible with delay τ if and only if M0 is weakly
invertible with delay τ .

(b) C ′(M1,M0) is a weak inverse with delay τ if and only if M0 is a weak
inverse with delay τ .

Proof. (a) Suppose that C ′(M1,M0) is weakly invertible with delay τ . For
any state s0 of M0, from Lemma 4.2.3, there exist a state s of C ′(M1,M0)
and a state s1 of M1 such that s and the state 〈s1, s0〉 of C(M1,M0) are
equivalent. Since M1 is weakly invertible with delay 0, there exists a finite
automaton M ′

1 = 〈Y ′, X, S′
1, δ

′
1, λ

′
1〉 such that M ′

1 is a weak inverse with
delay 0 of M1. Since |X| = |Y ′|, for any state s′′ of M1 and any state s′

of M ′
1, s′′ 0-matches s′ if and only if s′ 0-matches s′′. Thus there exists a

state s′1 of M ′
1 such that s1 0-matches s′1. It follows that the state s0 of M0

and the state 〈s′1, 〈s1, s0〉〉 of C(M ′
1, C(M1,M0)) are equivalent. Clearly, the

state 〈s′1, 〈s1, s0〉〉 of C(M ′
1, C(M1,M0)) is equivalent to the state 〈s′1, s〉 of

C(M ′
1, C

′(M1,M0)). It follows that the state s0 of M0 is equivalent to the
state 〈s′1, s〉 of C(M ′

1, C
′(M1,M0)). Suppose that M ′ is a weak inverse of

C ′(M1,M0) with delay τ and the state s′ of M ′ τ -matches s. Let M̄1 be
the τ -stay of M1 and s̄1 = 〈s1, 0〉. It is easy to see that the state 〈s′, s̄1〉 of
C(M ′, M̄1) τ -matches the state 〈s′1, s〉 of C(M ′

1, C
′(M1,M0)). Therefore, the

state 〈s′, s̄1〉 of C(M ′, M̄1) τ -matches the state s0 of M0. Thus C(M ′, M̄1) is
a weak inverse of M0 with delay τ . We conclude that M0 is weakly invertible
with delay τ .

Conversely, suppose that M0 is weakly invertible with delay τ . Let M ′
0 be

a weak inverse of M0 with delay τ . Since M1 is weakly invertible with delay
0, there exists M ′

1 such that M ′
1 is a weak inverse with delay 0 of M1. Let

M̄ ′
1 be the τ -stay of M ′

1. We prove that C(M ′
0, M̄

′
1) is a weak inverse with

delay τ of C ′(M1,M0). Let s be a state of C ′(M1,M0). Clearly, there is a
state 〈s1, s0〉 of C(M1,M0) such that s and 〈s1, s0〉 are equivalent. Since M ′

0

is a weak inverse of M0 with delay τ , there is a state s′0 of M ′
0 such that s′0 τ -

matches s0. Since M ′
1 is a weak inverse of M1 with delay 0, there is a state s′1
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of M ′
1 such that s′1 0-matches s1. Letting s̄′1 = 〈s′1, 0〉, it follows that the state

〈s′0, s̄′1〉 of C(M ′
0, M̄

′
1) τ -matches the state 〈s1, s0〉 of C(M1,M0). Therefore,

the state 〈s′0, s̄′1〉 of C(M ′
0, M̄

′
1) τ -matches the state s of C ′(M1,M0). Thus

C(M ′
0, M̄

′
1) is a weak inverse of C ′(M1,M0) with delay τ . We conclude that

C ′(M1,M0) is weakly invertible with delay τ .
(b) Suppose that C ′(M1,M0) is a weak inverse with delay τ . Then there

exists M ′ such that C ′(M1,M0) is a weak inverse with delay τ of M ′. It follows
that C(M1,M0) is a weak inverse with delay τ of M ′. For any state s′ of M ′,
choose a state 〈ϕ(s′), s0〉 of C(M1,M0) such that 〈ϕ(s′), s0〉 τ -matches s′. Let
M ′

0 be the finite subautomaton of C(M ′,M1) of which the state alphabet is
the set {δ′′(〈s′, ϕ(s′)〉, β)|s′ ∈ S′, β ∈ Y ∗} and the input alphabet and the
output alphabet are Y and Y ′, respectively, where S′ is the state alphabet
of M ′, δ′′ is the next state function of C(M ′,M1). Since for any state s′ of
M ′, there exists a state s0 of M0 such that the state 〈ϕ(s′), s0〉 of C(M1,M0)
τ -matches s′, it is easy to prove that s0 τ -matches the state 〈s′, ϕ(s′)〉 of
M ′

0. From the construction of M ′
0, for any state of M ′

0 there exists a state of
M0 τ -matching it. Therefore, M0 is a weak inverse with delay τ of M ′

0. We
conclude that M0 is a weak inverse with delay τ .

Conversely, suppose that M0 is a weak inverse with delay τ . Then there
exists M ′

0 such that M0 is a weak inverse with delay τ of M ′
0. Since M1 is

weakly invertible with delay 0, there exists M ′
1 such that M ′

1 is a weak inverse
with delay 0 of M1. Since |X| = |Y ′|, for any state s′′ of M1 and any state s′

of M ′
1, s′′ 0-matches s′ if and only if s′ 0-matches s′′. For any state s′0 of M ′

0,
let s0 be a state of M0 such that s0 τ -matches s′0. From Lemma 4.2.3, there
exist a state s of C ′(M1,M0) and a state s1 of M1 such that s and the state
〈s1, s0〉 of C(M1,M0) are equivalent. Let s′1 be a state of M ′

1 such that s1

matches s′1 with delay 0. For each s′0 fix such an s′1, denoted by ϕ′(s′0). Let
M ′ be the finite subautomaton of C(M ′

0,M
′
1) of which the state alphabet is

the set {δ′′(s′′, β) | s′′ ∈ S′′, β ∈ Y ∗} and the input alphabet and the output
alphabet are Y and X, respectively, where S′′ = {〈s′0, ϕ′(s′0)〉 | s′0 ∈ S′

0}, S′
0

is the state alphabet of M ′
0, δ′′ is the next state function of C(M ′

0,M
′
1). From

the above discussion, for each state 〈s′0, ϕ′(s′0)〉 in S′′ there exists a state
〈s1, s0〉 of C(M1,M0) such that 〈s1, s0〉 τ -matches 〈s′0, ϕ′(s′0)〉 and 〈s1, s0〉
is equivalent to some state s of C ′(M1,M0). It follows that s τ -matches
〈s′0, ϕ′(s′0)〉. From the construction of M ′, for any state s′ of M ′ there is a
state s̄ of C ′(M1,M0) such that s̄ τ -matches s′. Thus C ′(M1,M0) is a weak
inverse with delay τ of M ′. We conclude that C ′(M1,M0) is a weak inverse
with delay τ . ��

Since M1 is an h1-order input-memory finite automaton, that is, p = −1
in (4.31), M1 = 〈X, Y ′, Xh1 , δ1, λ1〉 is defined by
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y′
i = f(x(i, h1 + 1)), (4.36)

i = 0, 1, . . . ,

and f is expressed in the form

f(x(i, h1 + 1)) = [F0, . . . , Fh1 ]ψ
lh1
ν (x, i).

From the definition of compound finite automata, C ′(M1,M0) = 〈X, Y,

Y k × Xh, δ, λ〉 is a finite automaton defined by

yi = ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
ν (x, i),

i = 0, 1, . . . ,

where Cj , j = 0, 1, . . . , h are defined by (4.32), and h = h0 + h1.

Theorem 4.2.3. Let M0 be an (h0, k)-order memory finite automaton de-
fined by (4.30), and M1 an h1-order memory finite automaton defined by
(4.36) with |X| = |Y ′|. Let eq0(i) be equivalent to the equation

−yi + ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
ν (x, i) = 0,

and

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , τ − 1

a linear Ra Rb transformation sequence, where Cj , j = 0, 1, . . . , h are defined
by (4.32). Assume that M1 is weakly invertible with delay 0.

(a) C ′(M1,M0) is a weak inverse with delay τ if and only if for any
parameters xi−1, . . . , xi−h, yi+τ , . . . , yi−k, eqτ (i) has a solution xi.

(b) C ′(M1,M0) is weakly invertible with delay τ if and only if for any
parameters xi−1, . . . , xi−h, yi+τ , . . . , yi−k, eqτ (i) has at most one solution
xi.

Proof. (a) The if part is a special case of Corollary 3.1.1. To prove the
only if part we suppose that C ′(M1,M0) is a weak inverse with delay τ . It
follows that qm = |Y | � |X|. From Lemma 4.2.4, M0 is a weak inverse with
delay τ . Let

0eqc(i)
Ra[P̄c]−→ 0eq′c(i), 0eq′c(i)

Rb[r̄c+1]−→ 0eq′c+1(i), c = 0, 1, . . . , τ − 1 (4.37)

be a linear Ra Rb transformation sequence, where 0eq(i) is equivalent to the
equation

−yi + ϕout(y(i − 1, k)) + [B0, . . . , Bh0 ]

⎡
⎢⎣xi

...
xi−h0

⎤
⎥⎦ = 0,
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where xi, . . . , xi−h0 take values in Y ′. Applying Lemma 4.2.1 τ times, c from
1 to τ , we obtain an Ra Rb transformation sequence

ēqc(i)
Ra[P̄c]−→ ēq′c(i), ēq′c(i)

Rb[r̄c+1]−→ ēqc+1(i), c = 0, 1, . . . , τ − 1 (4.38)

satisfying

[C̄0c, . . . , C̄hc] = [B0c, . . . , Bh0c]Γh+1, c = 0, 1, . . . , τ,

where ēq0(i) is eq0(i), ēqc(i) is in the form

ϕc(y(i + c, c + k + 1)) + [C̄0c, . . . , C̄hc]ψlh
ν (x, i) = 0,

ēq′c(i) is in the form

ϕ′
c(y(i + c, c + k + 1)) + [C̄ ′

0c, . . . , C̄
′
hc]ψ

lh
ν (x, i) = 0,

ϕc and ϕ′
c are two single-valued mappings from Y c+k+1to Y , C̄jc and C̄ ′

jc are
m × l matrices over GF (q). It follows that

C̄0c = B0cF0, c = 0, 1, . . . , τ.

Thus
C̄ ′

0c = B′
0cF0, c = 0, 1, . . . , τ − 1.

Since M1 is weakly invertible with delay 0, the rank of F0 is m′. Noticing
that (4.37) is linear over GF (q), from the definition (on p.111), using these
facts, it is easy to see that (4.38) is linear over GF (q). Since eq0(i) and ēq0(i)
are the same, using Theorem 4.1.1, there exists an m×m nonsingular matrix
Q0τ such that C̄0τ = Q0τC0τ . Thus we have C0τ = Q−1

0τ B0τF0. Notice that
(4.37) is also linear in the sense of Sect. 3.3 (see p.95). Using Theorem 3.3.1,
since M0 is a weak inverse with delay τ , the rank of B0τ is m. It follows that
the rank of Q−1

0τ B0τ is m. Since M1 is weakly invertible with delay 0, for any
parameters xi−1, . . ., xi−ν , F0ψ

l
ν(x(i, ν + 1)) as a function of the variable

xi is injective. From |X| = |Y ′|, this function is bijective. Since the rank
of Q−1

0τ B0τ is m and qm � |X| = |Y ′|, for any parameters xi−1, . . ., xi−ν ,
Q−1

0τ B0τF0ψ
l
ν(x(i, ν+1)), i.e., C0τψl

ν(x(i, ν+1)), as a function of the variable
xi is surjective. It follows that for any parameters xi−1, . . ., xi−h, yi+τ , . . .,
yi−k, the equation eqτ (i) has a solution xi.

(b) The if part is a special case of Theorem 3.1.3. To prove the only if
part we suppose that C ′(M1,M0) is weakly invertible with delay τ . From
Lemma 4.2.4, M0 is weakly invertible with delay τ . Let (4.37) be a linear Ra

Rb transformation sequence. Applying Lemma 4.2.1 τ times, c from 1 to τ ,
we obtain an Ra Rb transformation sequence (4.38) satisfying



128 4. Relations Between Transformations

[C̄0c, . . . , C̄hc] = [B0c, . . . , Bh0c]Γh+1, c = 0, 1, . . . , τ.

It follows that
C̄0c = B0cF0, c = 0, 1, . . . , τ.

Similar to the proof of (a), (4.38) is linear and there exists an m×m nonsin-
gular matrix Q0τ such that C̄0τ = Q0τC0τ . Thus we have C0τ = Q−1

0τ B0τF0.
Using Theorem 3.3.2, since M0 is weakly invertible with delay τ , the rank
of B0τ is m′. It follows that the rank of Q−1

0τ B0τ is m′. Since M1 is weakly
invertible with delay 0, for any parameters xi−1, . . ., xi−ν , F0ψ

l
ν(x(i, ν + 1))

as a function of the variable xi is injective. From |X| = |Y ′|, this function is
bijective. Since the rank of the m × m′ matrix Q−1

0τ B0τ is m′, for any para-
meters xi−1, . . ., xi−ν , Q−1

0τ B0τF0ψ
l
ν(x(i, ν + 1)), i.e., C0τψl

ν(x(i, ν + 1)), as
a function of the variable xi is injective. It follows that for any parameters
xi−1, . . ., xi−h, yi+τ , . . ., yi−k, the equation eqτ (i) has at most one solution
xi. ��

From the proof of the above theorem, we have the following.

Corollary 4.2.1. Let M0 be an (h0, k)-order memory finite automaton de-
fined by (4.30), and M1 an h1-order memory finite automaton defined by
(4.36) with |X| = |Y ′|. Let eq0(i) be equivalent to the equation

−yi + ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
ν (x, i) = 0,

and

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , τ − 1

a linear Ra Rb transformation sequence, where Cj , j = 0, 1, . . . , h are defined
by (4.32). Assume that M1 is weakly invertible with delay 0.

(a) C ′(M1,M0) is a weak inverse with delay τ if and only if C0τψl
ν(x(i,

ν + 1)) as a function of the variable xi is surjective.
(b) C ′(M1,M0) is weakly invertible with delay τ if and only if C0τψl

ν(x(i,
ν + 1)) as a function of the variable xi is injective.

4.3 Reduced Echelon Matrix

For any nonnegative integer c, let eqc(i) be an equation

ϕc(y(i + c, c + k + 1)) + [C0c, . . . , Chc]ψlh
μν(u, x, i) = 0

and let eq′c(i) be an equation

ϕ′
c(y(i + c, c + k + 1)) + [C ′

0c, . . . , C
′
hc]ψ

lh
μν(u, x, i) = 0,

where ϕc and ϕ′
c are two single-valued mappings from Y c+k+1 to Y , Cjc and

C ′
jc are m × l matrices over a finite field GF (q), j = 0, 1, . . . , h.
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Theorem 4.3.1. Let eq0(i) be equivalent to the equation

−yi + ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
μν(u, x, i) = 0,

and

Γ =

⎡
⎢⎢⎢⎣

C0 C1 . . . . . . Ch

C0 C1 . . . . . . Ch

. . . . . . . . . . . . . . .
C0 C1 . . . . . . Ch

⎤
⎥⎥⎥⎦

be an m(τ + 1) × l(τ + h + 1) matrix, where ϕout is a single-valued mapping
from Y k to Y . Let

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , τ (4.39)

be a linear Ra Rb transformation sequence. Assume that the reduced echelon
matrix of Γ is expressed in the form⎡

⎣D11 D12 D13

0 D22 D23

0 0 D33

⎤
⎦ ,

where D11 and D22 are row independent and have lτ and l columns, respec-
tively. Then D22 and the submatrix of the first rτ+1 rows of C ′

0τ in eq′τ (i) are
row equivalent.1

Proof. Using Properties (g) and (a) of Ra Rb transformations in Sect. 3.1,
from (4.39), the system of equations eq0(i), i = 0, 1,. . .,τ is equivalent to
the system of equations E′

0eq
′
0(τ), E′

1eq
′
1(τ −1), . . ., E′

τ−1eq
′
τ−1(1), E′

τeq′τ (0),
E′′

0 eq′0(0), E′′
1 eq′1(0), . . ., E′′

τ eq′τ (0), where E′
j and E′′

j are the submatrices
of the first rj+1 rows and the last m − rj+1 rows of the m × m identity
matrix, respectively, j = 0, 1, . . . , τ . Since, for any ψl

μν , Γ is the coefficient
matrix with respect to ψl,τ+h

μν (u, x, τ) in the system of equations eq0(i), i =
τ ,τ − 1,. . .,0, it follows that Γ is row equivalent to a matrix Γ ′:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E′
0C

′
00 E′

0C
′
10 . . .

E′
1C

′
01 E′

1C
′
11 . . .

. . . . . . . . .
E′

τC ′
0τ E′

τC ′
1τ . . .

E′′
0 C ′

10 . . .
E′′

1 C ′
11 . . .

. . . . . .
E′′

τ C ′
1τ . . .

E′
0C

′
h0

E′
1C

′
h1

. . .
E′

τC ′
hτ

E′′
0 C ′

h0

E′′
1 C ′

h1

. . .
E′′

τ C ′
hτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

1 Two matrices A and B are row equivalent, if there exists a nonsingular matrix
T such that B = TA.
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Since (4.39) is linear over GF (q), E′
jC

′
0j is row independent for any j, 0 �

j � τ . Thus there is a nonsingular matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P00 P01 . . . P0,τ−1 P0τ P0,τ+1

0 P11 . . . P1,τ−1 P1τ P1,τ+1

. . . . . . . . . . . . . . . . . .
0 0 . . . Pτ−1,τ−1 Pτ−1,τ Pτ−1,τ+1

0 0 . . . 0 Pττ Pτ,τ+1

0 0 . . . 0 0 Pτ+1,τ+1

⎤
⎥⎥⎥⎥⎥⎥⎦

such that PΓ ′ is the reduced echelon matrix of Γ , where Pcc is an rc+1 ×
rc+1 matrix and PccE

′
cC

′
0c is the reduced echelon matrix of E′

cC
′
0c, for c =

0, 1, . . . , τ . Let

PΓ ′ =

⎡
⎣D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎦ ,

where D11 and D22 are (r1 + · · ·+rτ )× lτ and rτ+1× l matrices, respectively.
It is easy to see that D11 is row independent, D21 = 0, D22 = PττE′

τC ′
0τ ,

D31 = 0 and D32 = 0. Noticing that Pττ is nonsingular, E′
τC ′

0τ , the submatrix
of the first rτ+1 rows of C ′

0τ , is row equivalent to D22. Since the reduced
echelon matrix is unique, the theorem holds. ��

Corollary 4.3.1. Under the hypothesis of Theorem 4.3.1, for any parame-
ters xi−1, . . . , xi−ν , ui, . . . , ui−μ, C0τψl

μν(u(i, μ+1), x(i, ν+1)) as a function
of the variable xi is an injection if and only if D22ψ

l
μν(u(i, μ+1), x(i, ν+1)) as

a function of the variable xi is an injection, and C0τψl
μν(u(i, μ+1), x(i, ν+1))

as a function of the variable xi is a surjection if and only if D22ψ
l
μν(u(i,

μ+1), x(i, ν+1)) as a function of the variable xi is a surjection and rτ+1 = m.

Proof. Since eqτ (i)
Ra[Pτ ]−→ eq′τ (i) and eq′τ (i)

Rb[rτ+1]−→ eqτ+1(i) are linear,

C ′
0τ = PτC0τ =

[
E′

τ C′
0τ

0

]
has rank rτ+1. Therefore, C0τψl

μν(u(i, μ + 1), x(i,

ν + 1)) as a function of the variable xi is an injection if and only if C ′
0τψl

μν

(u(i, μ + 1), x(i, ν + 1)) as a function of the variable xi is an injection, if
and only if E′

τC ′
0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a function of the variable xi

is an injection. From Theorem 4.3.1, D22 and E′
τC ′

0τ are row equivalent. It
follows that C0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a function of the variable xi is
an injection if and only if D22 ψl

μν (u(i, μ + 1), x(i, ν + 1)) as a function of
the variable xi is an injection. Similarly, C0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a
function of the variable xi is a surjection if and only if C ′

0τψl
μν (u(i, μ + 1),

x(i, ν + 1)) as a function of the variable xi is a surjection, if and only if
E′

τC ′
0τψl

μν(u(i, μ+1), x(i, ν+1)) as a function of the variable xi is a surjection
and rτ+1 = m. Since E′

τC ′
0τψl

μν(u(i, μ + 1), x(i, ν + 1)) as a function of the
variable xi is a surjection if and only if D22ψ

l
μν(u(i, μ + 1), x(i, ν + 1)) as a
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function of the variable xi is a surjection, we obtain that C0τψl
μν(u(i, μ + 1),

x(i, ν + 1)) as a function of the variable xi is a surjection if and only if
D22ψ

l
μν(u(i, μ + 1), x(i, ν + 1)) as a function of the variable xi is a surjection

and rτ+1 = m. ��
From this observation, if some inversion method by reduced echelon ma-

trix based on injectiveness or surjectiveness of D22ψ
l
μν(u(i, μ+1), x(i, ν +1))

is applicable to a finite automaton M , so is the Ra Rb transformation method
described in Sect. 3.1. But the method of reduced echelon matrix for finding
weak inverse of M is a bit more complex than the Ra Rb transformation
method, τ + 1 equations v. one equation.

As to finding weak inverse of a finite automaton by reduced echelon ma-
trix, assume that M = 〈X, Y, Y k × Uh+μ+1 × Xh+ν , δ, λ〉 is defined by

yi = ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
μν(u, x, i),

ui+1 = g(u(i, h + μ + 1), x(i, h + ν + 1)),

i = 0, 1, . . .

We can multiply Γ on the left by a nonsingular matrix P̄ to obtain its reduced
echelon matrix. Because the reduced echelon matrix of a matrix is unique, we

obtain D22 and D23 in Theorem 4.3.1. Let P̄ =

[
P̄1
P̄2
P̄3

]
, where the numbers of

rows of P̄1 and D11 are the same, and the numbers of rows of P̄2 and D22 are

the same. Denote P̄2

[
−yi+τ+ϕout(y(i+τ−1,k))
···
−yi+ϕout(y(i−1,k))

]
by ϕ̄(y(i + τ, τ + k + 1)). If for

any parameters xi−1, . . ., xi−ν , ui, . . ., ui−μ, D22ψ
l
μν(u(i, μ+1), x(i, ν+1)) as

a function of the variable xi is an injection, then for any parameters xi−1, . . .,
xi−h−ν , ui, . . ., ui−h−μ, yi+τ , . . ., yi−k, the equation

ϕ̄(y(i + τ, τ + k + 1)) + [D22, D23]ψlh
μν(u, x, i) = 0

has at most one solution xi. Let f∗ be a single-valued mapping from Xh+ν ×
Uh+μ+1 × Y τ+k+1 to X so that if such a solution xi exists, then

xi = f∗(x(i − 1, h + ν), u(i, h + μ + 1), y(i + τ, τ + k + 1)).

Construct a finite automaton M∗ = 〈Y, X,Xh+ν × Uh+μ+1 × Y τ+k, δ∗, λ∗〉,
where

δ∗(〈x(i − 1, h + ν), u(i, h + μ + 1), y′(i − 1, τ + k)〉, y′
i)

= 〈x(i, h + ν), u(i + 1, h + μ + 1), y′(i, τ + k)〉,
λ∗(〈x(i − 1, h + ν), u(i, h + μ + 1), y′(i − 1, τ + k)〉, y′

i) = xi,
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xi = f∗(x(i − 1, h + ν), u(i, h + μ + 1), y′(i, τ + k + 1)),

ui+1 = g(u(i, h + μ + 1), x(i, h + ν + 1)).

Similar to the discussions in Sect. 3.1, the τ -stay of M∗ is a weak inverse
with delay τ of M .

4.4 Canonical Diagonal Matrix Polynomial

4.4.1 Ra Rb Transformations over Matrix Polynomial

Let F be a field, z an indeterminate, and F [z] the polynomial ring over F . A
matrix, of which elements are polynomials of z, is called a matrix polynomial.
Let Mm,n(F [z]) be the set of all m × n matrix polynomials, and GLk(F [z])
the set of all k × k invertible matrix polynomials. 1

We use DIAm,n(g1(z), . . . , gmin(m,n)(z)) to denote the m × n matrix of
which main diagonal elements are g1(z), . . ., gmin(m,n)(z) in turn and zero
elsewhere. If m × n matrices are partitioned into r × s blocks, we also use
DIAm,n(A1(z), . . ., Amin(r,s)(z)) to denote the matrix of which main diagonal
blocks are A1(z), . . ., Amin(r,s)(z) in turn and zero elsewhere. Denote the n×n

identity matrix by En. For any m � n � 0, denote DIAm,m(En, zEm−n) by
Im,n. For any matrix A and any matrix polynomial A(z), we use A(i1, . . .,
ir; j1, . . ., jr) and A(i1, . . ., ir; j1, . . ., jr; z) to denote their r-order minors
of rows i1, . . . , ir and columns j1, . . . , jr, and call them (i1, . . ., ir; j1, . . ., jr)
minors of A and A(z), respectively.

A matrix polynomial can be transformed into the canonical diagonal form
by elementary transformations. That is, for any C(z)∈Mm,n(F [z]) with rank
r, there exist P (z)∈GLm(F [z]), Q(z)∈GLn(F [z]), r nonnegative integers
a1, . . . , ar and r polynomials f1(z), . . . , fr(z) such that

C(z) = P (z)DIAm,n(za1f1(z), . . . , zarfr(z), 0, . . . , 0)Q(z),

0 � a1 � · · · � ar, fj(z) | fj+1(z) for j = 1, . . . , r − 1, and fj(0) 
= 0 for
j = 1, . . . , r.

Let C(z) in Mm,n(F [z]) be
∑h

j=0 Cj0z
j . We can expand the definitions of

Ra Rb transformations on matrices over GF (q) to the matrix [C00, . . . , Ch0]
over the field F . In parallel, we define Ra Rb transformations for matrix
polynomial as follows.

Rule Ra : Let k � 0, Ck(z) ∈ Mm,n(F [z]) and Ck(z) =
∑h

j=0 Cjkzj . Let
Pk be a nonsingular matrix over F , and
1 A matrix polynomial is said to be invertible, if its determinant is a nonzero

constant.
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C ′
jk = PkCjk, j = 0, 1, . . . , h.

C ′
k(z) =

∑h
j=0 C ′

jkzj is said to be obtained from Ck(z) by Rule Ra using Pk,
denoted by

Ck(z)
Ra[Pk]−→ C ′

k(z).

Rule Rb : Let k � 0, C ′
k(z) ∈ Mm,n(F [z]) and C ′

k(z) =
∑h

j=0 C ′
jkzj . If

the last m − rk+1 rows of C ′
0k are 0 in the case of rk+1 < m, Ck+1(z) =

I−1
m,rk+1

C ′
k(z) ∈ Mm,n(F [z]) is said to be obtained from C ′

k(z) by Rule Rb,
denoted by

C ′
k(z)

Rb[rk+1]−→ Ck+1(z).

An Ra Rb transformation sequence

Ck(z)
Ra[Pk]−→ C ′

k(z), C ′
k(z)

Rb[rk+1]−→ Ck+1(z), k = 0, 1, . . . , t − 1 (4.40)

is said to be elementary, if for any k, 0 � k � t − 1, Pk is in the form

Pk =
[

Erk
0

Pk1 Pk2

]
,

and the first rk+1 rows of C ′
0k is linearly independent over F , where r0 = 0.

Notice that if (4.40) is an elementary Ra Rb transformation sequence,
then rj � rj−1 for j = 2, . . . , t.

The Ra Rb transformation sequence (4.40) is said to be terminating, if
the last m− rt rows of Ct(z) are 0 in the case of rt < m and the first rt rows
of C0t are linearly independent over F .

From the definitions of Ra and Rb transformations, we have the following.

Lemma 4.4.1. If (4.40) is an Ra Rb transformation sequence, then

Ct(z) = I−1
m,rt

Pt−1I
−1
m,rt−1

Pt−2 . . . I−1
m,r1

P0C0(z).

Lemma 4.4.2. Let (4.40) be an elementary Ra Rb transformation sequence.
Let m1 = r1, mj = rj − rj−1, j = 2, . . . , t. Then there exists an m × m

invertible matrix polynomial P̄ (z) such that degrees of elements in columns
r′k + 1 to r′k+1 of P̄ (z) are at most t − k − 1 for k = 0, 1, . . . , t − 1, and

P−1
0 Im,r1P

−1
1 Im,r2 . . . P−1

t−2Im,rt−1P
−1
t−1Im,rt

= P̄ (z)DIAm,m(Em1 , zEm2 , . . . , z
t−1Emt

, ztEm−rt
),

where r′0 = 0, r′i = ri, i = 1, . . . , t − 1, and r′t = m.
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Proof. It is easy to verify that for any k, 1 � k � t,

Im,r1Im,r2 . . . Im,rk
= DIAm,m(Em1 , zEm2 , . . . , z

k−1Emk
, zkEm−rk

).

Denote

Pj =

⎡
⎢⎢⎢⎣

Em1

. . .
Emj

Pj1 · · · Pjj Pj,j+1

⎤
⎥⎥⎥⎦ , j = 1, . . . , t − 1.

Clearly, P−1
j is in the form

P−1
j =

⎡
⎢⎢⎢⎣

Em1

. . .
Emj

P ′
j1 · · · P ′

jj P ′
j,j+1

⎤
⎥⎥⎥⎦ , j = 1, . . . , t − 1.

Let

P ′
j(z) =

⎡
⎢⎢⎢⎣

Em1

. . .
Emj

zjP ′
j1 · · · zP ′

jj P ′
j,j+1

⎤
⎥⎥⎥⎦ , j = 1, . . . , t − 1. (4.41)

It is easy to see that

Im,r1Im,r2 . . . Im,rk
P−1

k = P ′
k(z)Im,r1Im,r2 . . . Im,rk

, k = 1, . . . , t − 1.

Using this observation, it is easy to prove, by induction on k, the following
proposition

Im,r1P
−1
1 Im,r2P

−1
2 . . . Im,rk

P−1
k = P ′

1(z)P ′
2(z) . . . P ′

k(z)Im,r1Im,r2 . . . Im,rk

holds for k = 1, 2, . . . , t − 1. This yields

P−1
0 Im,r1P

−1
1 Im,r2P

−1
2 . . . Im,rt−1P

−1
t−1Im,rt

= P−1
0 P ′

1(z)P ′
2(z) . . . P ′

t−1(z)Im,r1Im,r2 . . . Im,rt−1Im,rt

= P̄ (z)DIAm,m(Em1 , zEm2 , . . . , z
t−1Emt

, ztEm−rt
),

where P̄ (z) = P−1
0 P ′

1(z)P ′
2(z) . . . P ′

t−1(z).
From (4.41), the determinant of P ′

j(z) is a nonzero constant for any j, 1 �
j � t − 1. It follows immediately that the determinant of P−1

0 P ′
1(z)P ′

2(z) . . .

P ′
t−1(z) is a nonzero constant. Therefore, P̄ (z) is invertible.

Partition P ′
1(z) . . . P ′

j(z) into [P ′′
j1(z), . . ., P ′′

j,j+1(z)], where P ′′
jk(z) has

mk columns for k = 1, . . . , j. From (4.41), it is easy to prove by induction
on j that degrees of elements of P ′′

jk(z) are at most j − k + 1 for any k, j,
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1 � k � j + 1 and 1 � j � t − 1. It follows immediately that degrees
of elements in columns r′k + 1 to r′k+1 of P̄ (z) are at most t − k − 1 for
k = 0, 1, . . . , t − 1. ��

Theorem 4.4.1. Let (4.40) be an elementary Ra Rb transformation se-
quence. Let m1 = r1, mj = rj − rj−1, j = 2, . . . , t. Then there exists an
m × m invertible matrix polynomial P̄ (z) such that degrees of elements in
columns r′k + 1 to r′k+1 of P̄ (z) are at most t − k − 1 for k = 0, 1, . . . , t − 1,
and

C0(z) = P̄ (z)DIAm,m(Em1 , zEm2 , . . . , z
t−1Emt

, ztEm−rt
)Ct(z),

where r′0 = 0, r′i = ri, i = 1, . . . , t − 1, and r′t = m.

Proof. From Lemma 4.4.1,

Ct(z) = I−1
m,rt

Pt−1I
−1
m,rt−1

Pt−2 . . . I−1
m,r1

P0C0(z).

Thus

C0(z) = P−1
0 Im,r1P

−1
1 Im,r2 . . . P−1

t−2Im,rt−1P
−1
t−1Im,rtCt(z).

Using Lemma 4.4.2, it follows immediately that there exists an m×m invert-
ible matrix polynomial P̄ (z) such that degrees of elements in columns r′k + 1
to r′k+1 of P̄ (z) are at most t − k − 1 for k = 0, 1, . . . , t − 1, and

C0(z) = P̄ (z)DIAm,m(Em1 , zEm2 , . . . , z
t−1Emt

, ztEm−rt
)Ct(z). ��

Corollary 4.4.1. Let (4.40) be a terminating and elementary Ra Rb trans-
formation sequence. Let m1 = r1, mj = rj−rj−1, j = 2, . . . , t. Then there ex-
ists an m×m invertible matrix polynomial P̄ (z) such that degrees of elements
in columns r′k +1 to r′k+1 of P̄ (z) are at most t−k−1 for k = 0, 1, . . . , t−1,
and

C0(z) = P̄ (z)DIAm,rt
(Em1 , zEm2 , . . . , z

t−1Emt
)Q̄(z), (4.42)

where r′0 = 0, r′i = ri, i = 1, . . . , t − 1, r′t = m, and Q̄(z) is the first rt rows
of Ct(z).

Corollary 4.4.2. Let (4.40) be a terminating and elementary Ra Rb trans-
formation sequence. Then the rank of C0(z) is rt.

Proof. Let r be the rank of C0(z). Since P̄ (z) is invertible, from (4.42),
the rank of C ′(z) = DIAm,rt

(Em1 , zEm2 , . . ., zt−1Emt
) Q̄(z) is r. It is

easy to see that any k-order minor of C ′(z) equals 0 if k > rt. On the
other hand, since Q̄(0) is row independent, there exists a nonzero rt-order
minor Q̄(1, . . . , rt; j1, . . . , jrt

; z) of Q̄(z). It follows that the rt-order minor
C ′(1, . . . , rt; j1, . . . , jrt ; z) is nonzero. Thus rt is the rank of C ′(z). It follows
that r = rt. ��
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4.4.2 Relations Between Ra Rb Transformation and Canonical
Diagonal Form

Given C0(z) in Mm,n(F [z]) with rank r, there exist P (z) ∈ GLm(F [z]),
Q(z) ∈ GLn(F [z]), r nonnegative integers a1, . . . , ar, and r polynomials
f1(z), . . . , fr(z) such that

C0(z) = P (z)DIAm,n(za1f1(z), . . . , zarfr(z), 0, . . . , 0)Q(z), (4.43)

0 � a1 � · · · � ar, fj(z) | fj+1(z) for j = 1, . . . , r − 1, and fj(0) 
= 0 for
j = 1, . . . , r.

Let (4.40) be a terminating and elementary Ra Rb transformation se-
quence. From Corollaries 4.4.1 and 4.4.2, we can construct an m×m invertible
matrix polynomial P̄ (z) such that (4.42) holds, that is,

C0(z) = P̄ (z)DIAm,r(Em1 , zEm2 , . . . , z
t−1Emt

)Q̄(z),

where m1 = r1, mj = rj − rj−1, j = 2, . . . , t, and Q̄(z) is the first r rows
of Ct(z). Denote bi = k − 1 for rk−1 < i � rk, 1 � k � t, i = 1, . . . , r.
Then DIAm,r(Em1 , zEm2 , . . . , z

t−1Emt
) = DIAm,r(zb1 , zb2 , . . . , zbr ). It fol-

lows that
C0(z) = P̄ (z)DIAm,r(zb1 , zb2 , . . . , zbr )Q̄(z). (4.44)

Notice that Q̄(z) has r rows and rank r and Q̄(0) is row independent.
Thus there exist M̄(z)∈GLr(F [z]), R̄(z)∈GLn(F [z]), and r polynomials
g1(z), . . . , gr(z) such that

Q̄(z) = M̄(z)DIAr,n(g1(z), . . . , gr(z))R̄(z),

gj(z) | gj+1(z) for j = 1, . . . , r − 1, and gj(0) 
= 0 for j = 1, . . . , r. From
(4.44), it follows that

C0(z) = P̄ (z)DIAm,r(zb1 , zb2 , . . . , zbr )M̄(z)DIAr,n(g1(z), . . . , gr(z))R̄(z).
(4.45)

Since P , Q, P̄ and R̄ are invertible, from (4.43) and (4.45), Daf and
DbM̄(z)Dg are equivalent 1 and their determinant factors are the same, where

Daf = DIAm,n(za1f1(z), . . . , zarfr(z), 0, . . . , 0),

Db = DIAm,r(zb1 , zb2 , . . . , zbr ),

Dg = DIAr,n(g1(z), . . . , gr(z)).

1 A(z) and B(z) in Mm,n(F [z]) are equivalent if and only if there exist P ′(z) in
GLm(F [z]) and Q′(z) in GLn(F [z]) such that A(z) = P ′(z)B(z)Q′(z).
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Lemma 4.4.3. For any A(z) ∈ GLn(F [z]) and any r � n, let

di1,...,ir
= gcd{A(i1, . . . , ir; j1, . . . , jr; z), 1 � j1 < · · · < jr � n},

d′j1,...,jr
= gcd{A(i1, . . . , ir; j1, . . . , jr; z), 1 � i1 < · · · < ir � n}.

Then di1,...,ir
and d′j1,...,jr

are nonzero constants.

Proof. Using Laplace expansion theorem, for any t < n, we have

A(i1, . . . , it+1; j1, . . . , jt+1; z)

=
t+1∑
k=1

(−1)t+1+kait+1jk
(z)A(i1, . . . , it; j1, . . . , jk−1, jk+1, . . . , jt+1; z)

= a(z)di1,...,it

for some a(z) ∈ F [z], where aij(z) is the element at row i and column j

of A(z). Thus di1,...,it+1 = a(z)di1,...,it
for some a(z) ∈ F [z]. It follows that

di1,...,in
= a(z)di1,...,ir

for some a(z) ∈ F [z]. Therefore, |A(z)| = a(z)di1,...,ir

for some a(z) ∈ F [z]. Since A(z) ∈ GLn(F [z]), |A(z)| is a nonzero element
in F . Thus di1,...,ir

is a nonzero element in F .
Similarly, expanding A(i1, . . . , it+1; j1, . . . , jt+1; z) by the (t + 1)-th col-

umn, we can prove that d′j1,...,jr
is a nonzero element in F . ��

Lemma 4.4.4. For any i, 1 � i � r, we have a1 + · · · + ai = b1 + · · · + bi.

Proof. Consider the (1, . . . , i; j1, . . . , ji) minor of DbM̄(z)Dg, ji � r. Notic-
ing the shape of matrices, this minor is equal to zb1+···+bi M̄(1, . . . , i; j1, . . . , ji;
z) gj1(z) . . . gji

(z). Consider the set

S = {M̄(1, . . . , i; j1, . . . , ji; z), 1 � j1 < · · · < ji � r}.

Denote the greatest common divisor of polynomials in S by d(z). From
Lemma 4.4.3, d(z) is a nonzero constant. By ϕ1,...,i(z) we denote the greatest
common divisor of all (1, . . . , i; j1, . . . , ji) minors of DbM̄(z)Dg for 1 � j1 <

· · · < ji � r. It follows that

ϕ1,...,i(z) = zb1+···+biϕ′
1,...,i(z),

for some ϕ′
1,...,i with ϕ′

1,...,i(0) 
= 0.
On the other hand, for any 1 � k1 < · · · < ki � m and 1 � j1 < · · · <

ji � n, ki > r or ji > r, the (k1, . . . , ki; j1, . . . , ji) minor of DbM̄(z)Dg

is 0. For any 1 � k1 < · · · < ki � r and 1 � j1 < · · · < ji � r, the
(k1, . . . , ki; j1, . . . , ji) minor of DbM̄(z)Dg has a factor zbk1+···+bki . Clearly,
bk1 + · · ·+ bki � b1 + · · ·+ bi holds. Thus the multiplicity of z in the i-order
determinant factor of DbM̄(z)Dg is b1 + · · ·+ bi. Notice that the determinant
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factors of Daf and of DbM̄(z)Dg are the same. Since the i-order determinant
factor of Daf is za1+···+ai f1(z) . . . fi(z) and fj(0) 
= 0 for any j, 1 � j � i,
we have za1+···+ai = zb1+···+bi . ��
Lemma 4.4.5. For any i, 1 � i � r, we have f1(z) . . . fi(z) = g1(z) . . . gi(z).

Proof. Similar to the discussion in the proof of Lemma 4.4.4, the (j1, . . .,
ji; 1, . . ., i) minor of Db M̄(z)Dg equals zbj1+···+bji M̄(j1, . . . , ji; 1, . . . , i; z)
g1(z) . . . gi(z) if ji � r. Consider the set

S′ = {M̄(j1, . . . , ji; 1, . . . , i; z), 1 � j1 < · · · < ji � r},

and denote the greatest common divisor of polynomials in S′ by d′(z). From
Lemma 4.4.3, d′(z) is a nonzero constant. By ψ1,...,i(z) we denote the greatest
common divisor of all (j1, . . . , ji; 1, . . . , i) minors of DbM̄(z)Dg for 1 � j1 < ···
< ji � r. It follows that

ψ1,...,i(z) = zbg1(z) . . . gi(z)

for some nonnegative integer b.
On the other hand, for any 1 � k1 < · · · < ki � n and 1 � j1 < · · · <

ji � m, ki > r or ji > r, the (j1, . . . , ji; k1, . . . , ki) minor of DbM̄(z)Dg

is 0. For any 1 � k1 < · · · < ki � r and 1 � j1 < · · · < ji � r, the
(j1, . . . , ji; k1, . . . , ki) minor of DbM̄(z)Dg has a factor gk1(z) . . . gki(z) which
has the factor g1(z) . . . gi(z). Thus the non z factor in the i-order determinant
factor of DbM̄(z)Dg is g1(z) . . . gi(z). Notice that the determinant factors of
Daf and of DbM̄(z)Dg are the same. Since the i-order determinant factor of
Daf is za1+···+ai f1(z) . . . fi(z) and fj(0) 
= 0 for any j, 1 � j � i, we have
f1(z) . . . fi(z) = g1(z) . . . gi(z). ��
Lemma 4.4.6. aj = bj and fj(z) = gj(z) for j = 1, . . . , r.

Proof. From Lemmas 4.4.4 and 4.4.5. ��
Theorem 4.4.2. Let DIAm,n(za1f1(z), . . . , zarfr(z), 0, . . . , 0) be the canon-
ical diagonal form of C0(z) ∈ Mm,n (F [z]), where fj(0) 
= 0, j = 1, . . . , r.
Let (4.40) be a terminating and elementary Ra Rb transformation sequence,
and Q̄(z) the first r rows of Ct(z).

(a) There exists P̄ (z) ∈ GLm(F [z]) such that degrees of elements in
columns r′k + 1 to r′k+1 of P̄ (z) are at most t − k − 1 for k = 0, 1, . . . , t − 1,

and
C0(z) = P̄ (z)DIAm,r(za1 , . . . , zar )Q̄(z),

where r′0 = 0, r′i = ri, i = 1, . . . , t − 1, and r′t = m.
(b) DIAr,n(f1(z), . . . , fr(z)) is the canonical diagonal form of Q̄(z).

Proof. (a) From Corollaries 4.4.1 and 4.4.2, and Lemma 4.4.6.
(b) From Lemma 4.4.6 and Corollary 4.4.2. ��
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4.4.3 Relations of Right-Parts

From now on, we denote

D(z) = DIAr,r(za1 , . . . , zar )

with 0 � a1 � · · · � ar = t − 1. Let mi = max j [∃k(1 � k � r & ak =
ak+1 = · · · = ak+j−1 = i − 1)], i = 1, . . . , t. Then

D(z) = DIAr,r(Em1 , zEm2 , . . . , z
t−1Emt).

Lemma 4.4.7. For any L(z) ∈ Mr,r(F [z]), Q̄(z), Q∗(z) ∈ Mr,n(F [z]), as-
sume that

L(z)D(z)Q∗(z) = D(z)Q̄(z) (4.46)

and Q∗(0) is row independent. If L(z) = L0 + zL1 + z2L2 + · · ·+ zt−1Lt−1 +
ztLt(z) and for any h, 0 � h < t, Lh is partitioned into blocks Lh =
[Lhij ]1�i,j�t with mi × mj Lhij, then Lhij = 0 whenever i − j > h.

Proof. Denote D(z)Q̄(z) = A0 + zA1 + z2A2 + · · · + zt−1At−1 + ztAt(z)
and D(z)Q∗(z) = A∗

0 + zA∗
1 + z2A∗

2 + · · · + zt−1A∗
t−1 + ztA∗

t (z). For any k,
0 � k < t, partition Ak and A∗

k into t blocks

Ak =

⎡
⎢⎣A1,k+1

...
At,k+1

⎤
⎥⎦ , A∗

k =

⎡
⎢⎣

A∗
1,k+1

...
A∗

t,k+1

⎤
⎥⎦ ,

where Ai,k+1 and A∗
i,k+1 have mi rows, i = 1, . . . , t. Since D(z) = DIAr,r

(Em1 , zEm2 , . . ., zt−1Emt
), we have Aij = A∗

ij = 0 for any i, j, 1 � j < i � t.
Since Q∗(0) is row independent, rows of A∗

11, . . ., A∗
tt are linearly independent.

For any k, 0 � k < t, we prove, by induction on k, the proposition P (k):
Lhij = 0 if t � i � j + h + 1, 1 � j � k − h + 1 and 0 � h � k. Basis : k = 0.
Comparing constant terms in two sides of (4.46), we have

L0

⎡
⎢⎢⎢⎣

A∗
11

0
...
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A11

0
...
0

⎤
⎥⎥⎥⎦ .

It follows immediately that ⎡
⎢⎣L021

...
L0t1

⎤
⎥⎦A∗

11 = 0.
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Noticing that A∗
11 is row independent, we have L0i1 = 0 for any i, 2 � i � t.

Thus P (0) holds. Induction step : Suppose that P (k − 1) holds and k < t.
That is, Lhij = 0 for t � i � j + h + 1, 1 � j � k − h and 0 � h � k − 1.
Comparing coefficients of zk in two sides of (4.46), we have

Lk

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11

0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ Lk−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
12

A∗
22

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ · · · + L1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
1k

...
A∗

kk

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ L0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
1,k+1

...
A∗

k+1,k+1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,k+1

...
Ak+1,k+1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows immediately that⎡
⎢⎢⎢⎣

Ak+1,k+1

0
...
0

⎤
⎥⎥⎥⎦

= L
(k)
k

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11

0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ L
(k)
k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
12

A∗
22

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · + L
(k)
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
1k

...
A∗

kk

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ L
(k)
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
1,k+1

...
A∗

k+1,k+1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

L
(k)
h =

⎡
⎢⎢⎣

Lh,k+1,1 . . . Lh,k+1,t

Lh,k+2,1 . . . Lh,k+2,t

. . . . . . . . .
Lht1 . . . Lhtt

⎤
⎥⎥⎦ , h = 0, 1, . . . , k.

From the induction hypothesis, this yields⎡
⎢⎢⎢⎣

Ak+1,k+1

0
...
0

⎤
⎥⎥⎥⎦



4.4 Canonical Diagonal Matrix Polynomial 141

= L
(k)
k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11

0
0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ L
(k)
k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
A∗

22

0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · + L
(k)
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
A∗

kk

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ L
(k)
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
A∗

k+1,k+1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since rows of A∗
11, . . ., A∗

k+1,k+1 are linear independent, we have Lh,i,k−h+1 =
0 for t � i � k + 2 and 0 � h � k. From P (k − 1), this yields P (k).

From P (t − 1), Lhij = 0 for any 0 � h < t and i − j > h. ��

Lemma 4.4.8. For any L(z) ∈ Mr,r(F [z]), Q̄(z), Q∗(z) ∈ Mr,n(F [z]),
assume that (4.46) holds and Q∗(0) is row independent. Then there exists
R(z) ∈ Mr,r(F [z]) such that

Q̄(z) = R(z)Q∗(z).

Proof. Denote L(z) = L0+zL1+z2L2+ · · ·+zt−1Lt−1+ztLt(z). Partition
Lk into blocks (Lkij)1�i,j�t with mi × mj Lkij , k = 0, 1, . . . , t − 1. Partition
zkLkD(z) into blocks (L′

kij(z))1�i,j�t with mi×mj L′
kij(z), k = 0, 1, . . . , t−1.

From Lemma 4.4.7, it is easy to see that

L′
kij(z) =

{
zk+j−1Lkij , if i − j � k,

0, otherwise.

It follows that for any k, 0 � k � t − 1,

zkLkD(z) = D(z)Rk(z),

where

Rk(z) = [Rkij(z)]1�i,j�t,

Rkij(z) =

{
zk+j−iLkij , if i − j � k,

0, otherwise.

Clearly, there exists a matrix polynomial Rt(z) such that

ztLt(z)D(z) = D(z)Rt(z).

Let

R(z) =
t−1∑
k=0

Rk(z) + Rt(z).
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We then have
L(z)D(z) = D(z)R(z).

Using (4.46), this yields

D(z)R(z)Q∗(z) = D(z)Q̄(z).

It follows that R(z)Q∗(z) = Q̄(z). ��

Lemma 4.4.9. For any R(z), R′(z) ∈ Mr,r(F [z]) and Q̄(z), Q∗(z) ∈
Mr,n(F [z]), if

Q∗(z) = R(z)Q̄(z), Q̄(z) = R′(z)Q∗(z) (4.47)

hold and Q̄(0) or Q∗(0) are row independent, then

R′(z)R(z) = R(z)R′(z) = Er,

therefore, R(z) and R′(z) are invertible.

Proof. Suppose that Q̄(0) is row independent. From (4.47), we have

Q̄(z) = R′(z)R(z)Q̄(z).

Let T (z) = Er − R′(z)R(z). Denote T (z) = T0 + zT1 + · · · + ztTt. Then we
have

(T0 + zT1 + · · · + ztTt)Q̄(z) = 0. (4.48)

We prove Ti = 0 for any i, 0 � i � t by induction on i. Denote Q̄(z) =
Q0 + zQ1 + · · · + zsQs. In the case of i = 0, from (4.48), we have T0Q0 = 0.
Since Q0 = Q̄(0) is row independent, we obtain T0 = 0. Suppose that we
have proven Tj = 0 for 0 � j � i−1 � t−1. Using (4.48), we have TiQ0 = 0.
Since Q0 is row independent, we obtain Ti = 0. We conclude T (z) = 0. It
immediately follows that R′(z)R(z) = Er. Therefore, R(z)R′(z) = Er.

The proof is similar in the case where Q∗(0) is row independent. ��
For any C(z)∈Mm,n(F [z]) with rank r, P (z)∈GLm(F [z]) and Q(z)∈

GLn(F [z]), if P−1(z) C(z) Q−1(z) is the canonical diagonal form of C(z),
say DIAm,n(za1f1(z), . . ., zarfr(z), 0, . . ., 0), with fj(0) 
= 0, j = 1, . . . , r,
DIAr,n(f1(z), . . ., fr(z)) Q(z) is called a right-part of C(z).

Notice that the constant term of a right-part of C(z) is row independent.

Theorem 4.4.3. Given C0(z) in Mm,n(F [z]) with rank r, assume that
Q∗(z) is a right-part of C0(z) and DIAm,n(za1f1(z), . . . , zarfr(z), 0, . . . , 0) is
the canonical diagonal form of C0(z), where 0 � a1 � ··· � ar, fj(z) | fj+1(z)
for j = 1, . . . , r − 1, and fj(0) 
= 0 for j = 1, . . . , r. Let (4.40), i.e.,

Ck(z)
Ra[Pk]−→ C ′

k(z), C ′
k(z)

Rb[rk+1]−→ Ck+1(z), k = 0, 1, . . . , t − 1
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be a terminating and elementary Ra Rb transformation sequence, and Q̄(z)
the submatrix of the first r rows of Ct(z). Then there exists R(z) ∈ GLr(F [z])
such that

Q∗(z) = R(z)Q̄(z).

Proof. Assume that

C0(z) = P (z)DIAm,n(za1f1(z), . . . , zarfr(z), 0 . . . , 0)Q(z)

and
Q∗(z) = DIAr,n(f1(z), . . . , fr(z))Q(z)

for some P (z) ∈ GLm(F [z]) and Q(z)∈GLn(F [z]). Then we have

C0(z) = P (z)DIAm,r(za1 , . . . , zar )Q∗(z).

From Theorem 4.4.2 (a), there exists P̄ (z) ∈ GLm(F [z]) such that

C0(z) = P̄ (z)DIAm,r(za1 , . . . , zar )Q̄(z).

It follows that

P (z)DIAm,r(za1 , . . . , zar )Q∗(z) = P̄ (z)DIAm,r(za1 , . . . , zar )Q̄(z).

Thus there exists P ′(z)∈GLm(F [z]) such that

P ′(z)DIAm,r(za1 , . . . , zar )Q∗(z) = DIAm,r(za1 , . . . , zar )Q̄(z).

Let L(z) be the submatrix of the first r rows and the first r columns of P ′(z).
Then we have

L(z)DIAr,r(za1 , . . . , zar )Q∗(z) = DIAr,r(za1 , . . . , zar )Q̄(z),

that is,
L(z)D(z)Q∗(z) = D(z)Q̄(z).

Symmetrically, there exists L′(z) ∈ Mr,r(F [z]) such that

L′(z)D(z)Q̄(z) = D(z)Q∗(z).

From Corollary 4.4.2, we have r = rt. It follows that Q̄(0) is row inde-
pendent. Since Q(0) is row independent, Q∗(0) is row independent. From
Lemmas 4.4.8, there exist R(z) and R′(z) in Mr,r(F [z]) such that

Q∗(z) = R(z)Q̄(z), Q̄(z) = R′(z)Q∗(z).

Using Lemmas 4.4.9, R(z) is invertible. This completes the proof of the the-
orem. ��
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Corollary 4.4.3. Under the hypothesis of Theorem 4.4.3, Q∗(0) and Q̄(0)
are row equivalent.

Corollary 4.4.4. Let ψ(x1, . . . , xs) be a vector function of dimension n in s

variables over F . Under the hypothesis of Theorem 4.4.3, the following results
hold.

(a) For any parameters xl+1, . . ., xs, Q∗(0)ψ(x1, . . . , xs) is injective if
and only if for any parameters xl+1, . . ., xs, Q̄(0)ψ(x1, . . . , xs) is injective.

(b) For any parameters xl+1, . . ., xs, Q∗(0)ψ(x1, . . . , xs) is surjective if
and only if for any parameters xl+1, . . ., xs, Q̄(0)ψ(x1, . . . , xs) is surjective.

Corollary 4.4.5. For any C0(z) in Mm,n(F [z]) with rank r. Assume that
P (z)−1 C0(z) Q(z)−1 is the canonical diagonal form of C0(z) for some P (z) ∈
GLm(F [z]) and Q(z) ∈ GLn(F [z]) and that

Ck(z)
Ra[Pk]−→ C ′

k(z), C ′
k(z)

Rb[rk+1]−→ Ck+1(z), k = 0, 1, . . . , t − 1

is a terminating and elementary Ra Rb transformation sequence. Let Q̃(z)
and Q̄(z) be the submatrix of the first r rows of Q(z) and Ct(z), respectively.
Let ψ(x1, . . . , xs) be a vector function of dimension n in s variables over F .

(a) For any parameters xl+1, . . . , xs, Q̃(0)ψ(x1, . . . , xs) is injective if and
only if for any parameters xl+1, . . . , xs, Q̄(0)ψ(x1, . . . , xs) is injective.

(b) For any parameters xl+1, . . . , xs, Q̃(0)ψ(x1, . . . , xs) is surjective if
and only if for any parameters xl+1, . . . , xs, Q̄(0)ψ(x1, . . . , xs) is surjective.

4.4.4 Existence of Terminating Ra Rb Transformation Sequence

Recall some notations in Sect. 4.1, but R is restricted to a finite field GF (q).
Let U and X be two finite nonempty sets. Let Y be a column vector space
of dimension m over GF (q), where m is a positive integer. Let lX = logq |X|.
For any integer i, we use xi (x′

i), ui and yi (y′
i) to denote elements in X, U

and Y , respectively.
Let ψl

μν be a column vector of dimension l of which each component is
a single-valued mapping from Uμ+1 × Xν+1 to Y for some integers μ � −1,
ν � 0 and l � 1. For any integers h � 0 and i, let

ψlh
μν(u, x, i) =

⎡
⎢⎣

ψl
μν(u(i, μ + 1), x(i, ν + 1))

...
ψl

μν(u(i − h, μ + 1), x(i − h, ν + 1))

⎤
⎥⎦ .

For any nonnegative integer c, let eqc(i) be an equation

ϕc(y(i + c, c + k + 1)) + [B0c, . . . , Bhc]ψlh
μν(u, x, i) = 0
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and let eq′c(i) be an equation

ϕ′
c(y(i + c, c + k + 1)) + [B′

0c, . . . , B
′
hc]ψ

lh
μν(u, x, i) = 0,

where ϕc and ϕ′
c are two single-valued mappings from Y c+k+1 to Y , Bjc and

B′
jc are m × l matrices over GF (q), j = 0, 1, . . . , h.

An Ra Rb transformation sequence

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , e (4.49)

is said to be (t, e) circular, if 0 � t � e and Bj,e+1 = Bjt, j = 0, 1, . . . , h.
(4.49) is said to be circular, if it is (t, e) circular, for some t. The Ra Rb

transformation sequence (4.49) is said to be terminating, if the last m− re+1

rows of Bj,e+1 are 0 in the case of rt < m, j = 0, 1, . . . , h, and the first re+1

rows of B0,e+1 are linearly independent over GF (q).
Let M = 〈X, Y, Y k × Uh+μ+1 × Xh+ν , δ, λ〉 be a finite automaton over

GF (q) defined by

δ(〈y(i − 1, k), u(i, h + μ + 1), x(i − 1, h + ν)〉, xi)

= 〈y(i, k), u(i + 1, h + μ + 1), x(i, h + ν)〉,
λ(〈y(i − 1, k), u(i, h + μ + 1), x(i − 1, h + ν)〉, xi) = yi,

where

yi = ϕ(y(i − 1, k)) + [B0, . . . , Bh]ψlh
μν(u, x, i),

ui+1 = g(u(i, h + μ + 1), x(i, h + ν + 1)),

ϕ is a single-valued mapping from Y k to Y , B0, . . ., Bh are m × l matrices
over GF (q), and g is a single-valued mapping from Uh+μ+1 × Xh+ν+1 to U .

Let eq0(i) be the equation

−yi + ϕ(y(i − 1, k)) + [B0, . . . , Bh]ψlh
μν(u, x, i) = 0. (4.50)

For any state s = 〈y(−1, k), u(0, h + μ + 1), x(−1, h + ν)〉 of M and any
nonnegative integer n, let

Y s
n = {λ(s, x0 . . . xn) | x0, . . . , xn ∈ X},

W s
n ={w0 . . . wn | wi = yi − ϕ(yi−1, . . . , yi−k), i = 0, 1, . . . , n, y0 . . . yn ∈ Y s

n }.
Lemma 4.4.10. |W s

n| = |Y s
n |.

Proof. From the definition of W s
n, we have |W s

n| � |Y s
n |. Let Mw = 〈Y ,

Y , Y k, δw, λw〉 be a k-order input-memory finite automaton defined by

wi = yi − ϕ(yi−1, . . . , yi−k), i = 0, 1, . . .

Clearly, w0 . . . wn ∈ W s
n if and only if w0 . . . wn = λw(〈y−1, . . . , y−k〉, y0 . . . yn)

for some y0 . . . yn ∈ Y s
n . Since Mw is weakly invertible with delay 0, we have

|W s
n| 
< |Y s

n |. Thus |W s
n| = |Y s

n |. ��
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Lemma 4.4.11. (a) If M is weakly invertible with delay τ , then |Y s
n | �

qlX(n−τ+1).
(b) If M is a weak inverse with delay τ and a state s of M τ -matches

some state, then |Y s
n | � qm(n−τ+1).

Proof. (a) We prove |Y s
n | � qlX(n−τ+1) by reduction to absurdity. Suppose

to the contrary that |Y s
n | < qlX(n−τ+1). Then there exist x0, . . . , xn, x′

0, . . .,
x′

n ∈ X such that
x0 . . . xn−τ 
= x′

0 . . . x′
n−τ (4.51)

and
λ(s, x0 . . . xn) = λ(s, x′

0 . . . x′
n). (4.52)

Since M is weakly invertible with delay τ , (4.52) yields x0 . . . xn−τ =
x′

0 . . . x′
n−τ . This contradicts (4.51). Thus |Y s

n | � qlX(n−τ+1).
(b) Assume that M is a weak inverse with delay τ of M ′ = 〈Y, X, S′, δ′, λ′〉

and a state s of M τ -matches some state s′ of M ′. Then for any y′
0, . . . , y

′
n ∈

Y there exist y0, . . . , yτ−1 ∈ Y such that

λ(s, λ′(s′, y′
0 . . . y′

n)) = y0 . . . yτ−1y
′
0 . . . y′

n−τ .

Since y′
0 . . . y′

n−τ may take qm(n−τ+1) values, we have |Y s
n | � qm(n−τ+1). ��

Lemma 4.4.12. (a) If M is weakly invertible with delay τ , then |W s
n| �

qlX(n−τ+1).
(b) If M is a weak inverse with delay τ and a state s of M τ -matches

some state, then |W s
n| � qm(n−τ+1).

Proof. From Lemmas 4.4.10 and 4.4.11, the lemma holds. ��
Consider the Ra Rb transformation sequence (4.49), where eq0(i) is (4.50).

Let s = 〈y(−1, k), u(0, h+μ+1), x(−1, h+ν)〉 be a state of M . For any n � 0
and any c, 0 � c � e + 1, let

W s
nc = {w0c . . . wnc | wic = [B0c, . . . , Bhc]ψlh

μν(u, x, i), i = 0, 1, . . . , n,

uj+1 = g(u(j, h + μ + 1), x(j, h + ν + 1)),

j = 0, 1, . . . , n − 1, x0, x1, . . . , xn ∈ X},

and for any n � 0 and any c, 0 � c � e, let

W ′s
nc = {w′

0c . . . w′
nc | w′

ic = [B′
0c, . . . , B

′
hc]ψ

lh
μν(u, x, i), i = 0, 1, . . . , n,

uj+1 = g(u(j, h + μ + 1), x(j, h + ν + 1)),

j = 0, 1, . . . , n − 1, x0, x1, . . . , xn ∈ X}.

Lemma 4.4.13. W s
n0 = W s

n.
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Lemma 4.4.14. |W s
nc| = |W ′s

nc|.

Proof. From the definition of Ra, we have

W ′s
nc = {w′

0c . . . w′
nc | w′

ic = Pcwic, i = 0, 1, . . . , n, w0c . . . wnc ∈ W s
nc}.

Since Pc is nonsingular, we obtain |W s
nc| = |W ′s

nc|. ��

Lemma 4.4.15. |W s
n−1,c+1| � |W s

nc|q−m.

Proof. For any element w′
0c . . . w′

nc in W ′s
nc, denoting the first rc+1 rows

and the last m−rc+1 rows of w′
ic by w′u

ic and w′b
ic, respectively, i = 0, 1, . . . , n,

from the definition of Rb, we have w0,c+1 . . . wn−1,c+1 ∈ W s
n−1,c+1, where

the first rc+1 rows and the last m − rc+1 rows of wi,c+1 are w′u
ic and w′b

i+1,c,
respectively, i = 0, 1, . . . , n − 1. Since the number of elements in W ′s

nc which
have the same value of w′u

0c . . . w′u
n−1,c w′b

1c . . . w′b
nc is at most qm (the number

of values of w′b
0c w′u

nc), we have |W s
n−1,c+1| � |W ′s

nc|q−m. Using Lemma 4.4.14,
it immediately follows that |W s

n−1,c+1| � |W s
nc|q−m. ��

Lemma 4.4.16. |W s
n−j,c+j | � |W s

nc|q−jm, for any j, 1 � j � n, e − c + 1.

Proof. We prove the lemma by induction on j. Basis : j = 1. The result
holds from Lemma 4.4.15. Induction step : suppose that |W s

n−j+1,c+j−1| �
|W s

nc|q−(j−1)m. From Lemma 4.4.15, we have |W s
n−j,c+j | � |W s

n−j+1,c+j−1|
q−m. It follows from induction hypothesis that |W s

n−j,c+j | � |W s
nc|q−jm. ��

Lemma 4.4.17. (a) If M is weakly invertible with delay τ , then for any j,
1 � j � n, e + 1,

|W s
n−j,j | � qlX(n−τ+1)−jm.

(b) If M is a weak inverse with delay τ and a state s of M τ -matches
some state, then for any j, 1 � j � n, e + 1,

|W s
n−j,j | � qm(n−τ−j+1).

Proof. From Lemma 4.4.16 for c = 0, we have |W s
n−j,j | � |W s

n0|q−jm for
any j, 1 � j � n, e + 1. Using Lemma 4.4.13, it follows that |W s

n−j,j | �
|W s

n|q−jm. In the case where M is weakly invertible with delay τ , using
Lemma 4.4.12 (a), we have |W s

n−j,j | � qlX(n−τ+1)q−jm = qlX(n−τ+1)−jm. In
the case where M is a weak inverse with delay τ , using Lemma 4.4.12 (b),
we have |W s

n−j,j | � qm(n−τ+1)q−jm = qm(n−τ−j+1). ��

Lemma 4.4.18. Assume that the Ra Rb transformation sequence (4.49) is
elementary and (t, e) circular. Then we have rt+1 = rt+2 = · · · = re+1 and
wit = wi,e+1, i � 0, where

wic = [B0c, . . . , Bhc]ψlh
μν(u, x, i), i = 0, 1, . . . (4.53)



148 4. Relations Between Transformations

Proof. Since (4.49) is elementary, we have rt+1 � rt+2 � · · · � re+1.
Since (4.49) is (t, e) circular, we have Bj,e+1 = Bjt, j = 0, 1, . . . , h. Thus

there exists an elementary Ra Rb transformation eqe+1(i)
Ra[Pt]−→ eq′e+1(i),

eq′e+1(i)
Rb[rt+1]−→ eqe+2(i). It follows that re+1 � rt+1. Therefore, rt+1 =

rt+2 = · · · = re+1. From the definition, using Bj,e+1 = Bjt for j = 0, 1, . . . , h,
we have wit = wi,e+1 for i � 0. ��

Let (4.49) be an elementary and (t, e) circular Ra Rb transformation se-
quence. Taking

Pt+c(e−t+1)+j =Pt+j , rt+c(e−t+1)+j+1 =rt+j+1, c=1, 2, . . . , j=0, 1, . . . , e − t,

it is evident that for any n � e,

eqc(i)
Ra[Pc]−→ eq′c(i), eq′c(i)

Rb[rc+1]−→ eqc+1(i), c = 0, 1, . . . , n (4.54)

is an elementary Ra Rb transformation sequence. Such an Ra Rb transforma-
tion sequence (4.54) is called a natural expansion of (4.49).

Let wic be defined by (4.53) for any nonnegative integer c. From the
definition of the natural expansion, it is easy to see that wi,t+c(e−t+1)+j =
wi,t+j , for any c � 1 and any j, 0 � j � e − t.

Lemma 4.4.19. Assume that the Ra Rb transformation sequence (4.49)
is elementary and (t, e) circular. Then for any c, 1 � c � e − t + 1, there
exist a single-valued mapping fc from (GF (q)rt+1)c to GF (q)m−rt+1 and an
(m − rt+1) × (m − rt+1) nonsingular matrix P̄c over GF (q) such that

wu
i,t+c = wu

it,

wb
i,t+c = fc(wu

i+1,t, . . . , w
u
i+c,t) + P̄cw

b
i+c,t, (4.55)

i = 0, 1, . . . ,

where wu
p,t+j and wb

p,t+j are the first rt+1 rows and the last m− rt+1 rows of
wp,t+j which is defined by (4.53), respectively.

Proof. We prove the result for the case of rt = rt+1. First at all, we have
the following proposition: for any j, 0 � j � e − t,

wu
i,t+j+1 = wu

i,t+j ,

wb
i,t+j+1 = P ′

t+jw
u
i+1,t+j + P ′′

t+jw
b
i+1,t+j , (4.56)

i = 0, 1, . . . ,

where

Pt+j =
[

Ert+j
0

P ′
t+j P ′′

t+j

]
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in (4.49). In fact, denoting

w′
ic = [B′

0c, . . . , B
′
hc]ψ

lh
μν(u, x, i), i = 0, 1, . . . ,

from Lemma 4.4.18 and the definitions of Ra and Rb, we have

w′
i,t+j = Pt+jwi,t+j =

[
wu

i,t+j

P ′
t+jw

u
i,t+j + P ′′

t+jw
b
i,t+j

]

and

wi,t+j+1 =

[
wu

i,t+j

P ′
t+jw

u
i+1,t+j + P ′′

t+jw
b
i+1,t+j

]
.

Thus (4.56) holds. We now prove the lemma by induction on c. Basis : c = 1.
From (4.56) with j = 0, (4.55) holds in the case of c = 1. Induction step :
suppose that (4.55) holds in the case of c and 1 � c � e− t. From (4.56) with
j = c and the induction hypothesis, we have

wu
i,t+c+1 = wu

i,t+c = wu
it,

wb
i,t+c+1 = P ′

t+cw
u
i+1,t+c + P ′′

t+cw
b
i+1,t+c

= P ′
t+cw

u
i+1,t + P ′′

t+c(fc(wu
i+2,t, . . . , w

u
i+1+c,t) + P̄cw

b
i+1+c,t).

Taking

fc+1(wu
i+1,t, . . . , w

u
i+(c+1),t) = P ′

t+cw
u
i+1,t + P ′′

t+cfc(wu
i+2,t, . . . , w

u
i+1+c,t)

and
P̄c+1 = P ′′

t+cP̄c,

it follows that

wu
i,t+(c+1) = wu

it,

wb
i,t+(c+1) = fc+1(wu

i+1,t, . . . , w
u
i+(c+1),t) + P̄c+1w

b
i+(c+1),t.

Thus (4.55) holds in the case of c + 1.
Below we prove the lemma for the case of rt < rt+1. Take a natural

expansion of (4.49), say (4.54), with n = e + (e − t + 1). Denote e′ = n and
t′ = e + 1. Clearly, (4.54) is elementary and (t′, e′) circular. Noticing that
(4.54) is also (t, e′) circular, from Lemma 4.4.18, we have ri+1 = rt+1 for
any i, t < i � e′. It follows that rt′ = rt′+1. Since the lemma for the case
of rt = rt+1 is true, replacing (4.49) by (4.54), we obtain that for any c,
1 � c � e′− t′ +1, there exist a single-valued mapping fc from (GF (q)rt′+1)c

to GF (q)m−rt′+1 and an (m−rt′+1)× (m−rt′+1) nonsingular matrix P̄c over
GF (q) such that
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wu
i,t′+c = wu

it′ , wb
i,t′+c = fc(wu

i+1,t′ , . . . , w
u
i+c,t′) + P̄cw

b
i+c,t′ , i = 0, 1, . . .

Notice that e′ − t′ + 1 = e − t + 1, rt+1 = rt′+1, and wi,t+j = wi,t′+j for any
j, 0 � j � e − t + 1. Thus for any c, 1 � c � e − t + 1, fc is a single-valued
mapping from (GF (q)rt+1)c to GF (q)m−rt+1 , P̄c is an (m−rt+1)×(m−rt+1)
nonsingular matrix over GF (q), and

wu
i,t+c = wu

it, wb
i,t+c = fc(wu

i+1,t, . . . , w
u
i+c,t) + P̄cw

b
i+c,t, i = 0, 1, . . .

That is, (4.55) holds. ��
Lemma 4.4.20. Let (4.49) be an elementary and (t, e) circular Ra Rb

transformation sequence. Then there exist a single-valued mapping f from
(GF (q)rt+1)e−t+1 to GF (q)m−rt+1 and an (m − rt+1) × (m − rt+1) nonsin-
gular matrix P over GF (q) such that

wb
i+e−t+1,t = f(wu

i+1,t, . . . , w
u
i+e−t+1,t) + Pwb

it, i = 0, 1, . . . ,

where wu
jt and wb

jt are the first rt+1 rows and the last m − rt+1 rows of wjt

which is defined by (4.53), respectively.

Proof. From Lemma 4.4.18, wit = wi,e+1, i = 0, 1, . . . Using Lemma 4.4.19
with c = e − t + 1, there exist a single-valued mapping fe−t+1 from
(GF (q)rt+1)e−t+1 to GF (q)m−rt+1 and an (m−rt+1)×(m−rt+1) nonsingular
matrix P̄e−t+1 over GF (q) such that

wb
it =wb

i,e+1 =fe−t+1(wu
i+1,t, . . . , w

u
i+e−t+1,t) + P̄e−t+1w

b
i+e−t+1,t,

i = 0, 1, . . .

It follows that

wb
i+e−t+1,t =−P̄−1

e−t+1fe−t+1(wu
i+1,t, . . . , w

u
i+e−t+1,t) + P̄−1

e−t+1w
b
it,

i = 0, 1, . . . ��

Lemma 4.4.21. Assume that the Ra Rb transformation sequence (4.49) is
elementary and (t, e) circular. Let (4.54) be a natural expansion of (4.49).
Then we have |W s

nt| � qm(e+1)+rt+1(n−e).

Proof. Assume that wic is defined by (4.53) for any nonnegative integer
c. Then wi,t+c(e−t+1)+j = wi,t+j , for any c � 1 and any j, 0 � j � e − t.
Denote the first rt+1 rows and the last m− rt+1 rows of wij by wu

ij and wb
ij ,

respectively. From Lemma 4.4.20, wb
i+e−t+1,t can be uniquely determined by

wb
it and wu

i+1,t, . . ., wu
i+e−t+1,t, for i = t, t+1, . . . , n−(e−t+1). It follows that

wb
e+1,t . . . wb

n,t can be uniquely determined by wb
tt, . . ., wb

et and wu
t+1,t, . . .,

wu
nt. Since the number of values of w0t . . . wet wu

e+1,t . . . wu
nt is at most

(qm)e+1(qrt+1)n−e, we have

|W s
nt| � (qm)e+1(qrt+1)n−e = qm(e+1)+rt+1(n−e). ��
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Theorem 4.4.4. Assume that the Ra Rb transformation sequence (4.49) is
elementary and (t, e) circular.

(a) If M is weakly invertible, then lX � re+1.
(b) If M is a weak inverse, then re+1 = m.

Proof. (a) Assume that M is weakly invertible with delay τ . From
Lemma 4.4.17 (a) (with values t, n + t for parameters j, n, respectively)
and Lemma 4.4.21, we have

qlX(n+t−τ+1)−tm � |W s
nt| � qm(e+1)+rt+1(n−e),

whenever n is large enough. It follows that

qn(lX−rt+1) � qlX(τ−t−1)+m(t+e+1)−rt+1e,

whenever n is large enough. We prove lX � rt+1 by reduction to absurdity.
Suppose to the contrary that rt+1 < lX . Then we have

∞ = lim
n→∞ qn(lX−rt+1) � qlX(τ−t−1)+m(t+e+1)−rt+1e.

This is a contradiction. We conclude rt+1 � lX . From Lemma 4.4.18, re+1 =
rt+1. It follows that re+1 � lX .

(b) Assume that M is a weak inverse with delay τ . From Lemma 4.4.17 (b)
(with values t, n+ t for parameters j, n, respectively) and Lemma 4.4.21, we
have

qm(n−τ+1) � |W s
nt| � qm(e+1)+rt+1(n−e),

whenever n is large enough. It follows that

qn(m−rt+1) � qm(τ+e)−rt+1e,

whenever n is large enough. We prove m � rt+1 by reduction to absurdity.
Suppose to the contrary that rt+1 < m. Then we have

∞ = lim
n→∞ qn(m−rt+1) � qm(τ+e)−rt+1e.

This is a contradiction. We conclude rt+1 � m. From m � re+1 = rt+1, it
follows that re+1 = m. ��

Corollary 4.4.6. Assume that the elementary Ra Rb transformation se-
quence (4.49) is (t, e) circular.

(a) If M is invertible, then lX � re+1;
(b) If M is an inverse, then re+1 = m.
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Theorem 4.4.5. (a) If m = lX and M is invertible or weakly invertible,
then there exists an elementary and terminating Ra Rb transformation se-
quence of which eq0(i) is (4.50).

(b) If M is an inverse or a weak inverse, then there exists an elementary
and terminating Ra Rb transformation sequence of which eq0(i) is (4.50).

Proof. Clearly, there exists an elementary and circular Ra Rb transforma-
tion sequence (4.49) of which eq0(i) is (4.50). Since re+1 � m, from Corol-
lary 4.4.6 or Theorem 4.4.4, we have m = re+1. It follows that (4.49) is
terminating. ��

Historical Notes

References [107, 108] give a feasible inversion method using linear Ra Rb

transformation for some kind of finite automata, and [108] derives a relation
between linear Ra Rb transformation sequences. Section 4.1 is based on [108]
but extends the scope of objects. Section 4.2 is based on [108] (but extends
the scope of objects) and [107], where Lemma 4.2.2 is enhanced according
to Lemmas 5.5 and 5.6 in [135]. From the viewpoint of automata, [83] pro-
poses an inversion method by reduced echelon matrix and [28] proposes an
inversion method by canonical diagonal matrix polynomial; these methods
are feasible for some kind of finite automata. The equivalence between the
inversion method by reduced echelon matrix and the linear Ra Rb transfor-
mation method is given in [108, 135, 137]. Section 4.3 is based on [108]. The
equivalence between the inversion method by canonical diagonal matrix poly-
nomial and the linear Ra Rb transformation method is given in [132], and
Sect. 4.4 is based on [132, 121].
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Summary.

In Chaps. 1 and 3, we have adopted two methods, the state tree method
and the Ra Rb transformation method, to deal with the structure problem.
The former is suitable for general finite automata but not easy to manip-
ulate for large parameters. Contrarily, the latter is easy to manipulate but
only suitable for very special finite automata — linear or quasi-linear ones.
For nonlinear finite automata, the investigation meets with difficulties.

A feedforward invertible finite automaton is more complex in structure
as compared with its feedforward inverse. We first explore the structure
problem for the simple. This chapter presents two approaches to the inves-
tigation for small delay cases. A decision criterion for feedforward inverse
finite automata with delay τ is proven and used to derive an explicit ex-
pression for ones of delay 0 which lays a foundation of a canonical form for
one key cryptosystems in Chap. 8. In another approach based on mutual
invertibility of finite automata, we give an explicit expression for feed-
forward inverse finite automata with delay 1 and for binary feedforward
inverse finite automata with delay 2.

Key words: semi-input-memory finite automata, feedforward inverse,
weakly invertible

In Chaps. 1 and 3, we have adopted two methods, the state tree method
and the Ra Rb transformation method, to deal with the structure problem.
The former is suitable for general finite automata but not easy to manipulate
for large parameters. Contrarily, the latter is easy to manipulate but only
suitable for very special finite automata — linear or quasi-linear ones over
finite fields. In general, for nonlinear finite automata, the investigation meets
up with difficulties for lack of mathematical tools.

Although semi-input-memory finite automata are nonlinear, they have
simpler structure as compared with general finite automata. So a feedforward
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invertible finite automaton is more complex in structure as compared with its
feedforward inverse. We first explore the structure problem for the simple. In
this chapter, we present two approaches to the investigation for small delay
cases. A decision criterion for feedforward inverse finite automata with delay
τ is proven and used to derive an explicit expression for ones of delay 0 which
lays a foundation of a canonical form for one key cryptosystems in Chap. 8.
In another approach based on mutual invertibility of finite automata, we give
an explicit expression for feedforward inverse finite automata with delay 1
and for binary feedforward inverse finite automata with delay 2.

5.1 A Decision Criterion

Let M ′ = 〈Y , X, S′, δ′, λ′〉 be a c-order semi-input-memory finite automaton
SIM(Ma, f), where S′ = Y c × Sa, Ma = 〈Ya, Sa, δa, λa〉 is an autonomous
finite automaton, and f is a single-valued mapping from Y c+1 × λa(Sa) to
X. The restriction of f on a subset of Y c+1 × λa(Sa) is still denoted by f .

Let u1, . . . , un be n ( � 1 ) different states of Ma = 〈Ya, Sa, δa, λa〉. If
δa(ui) = ui+1, i = 1, . . . , n − 1, δa(un) = u1, {u1, . . . , un} is called a cycle of
Ma.

Ma = 〈Ya, Sa, δa, λa〉 is said to be cyclic , if Sa is a cycle of Ma. Ma is
said to be strongly cyclic , if Ya = Sa, λa(sa) = sa holds for any sa ∈ Sa, and
Ma is cyclic.

Theorem 5.1.1. M ′ is a feedforward inverse with delay τ if and only if
there exists a finite subautomaton M̄a of Ma such that M̄a is cyclic and
SIM(M̄a, f) is a feedforward inverse with delay τ .

Proof. Since SIM(M̄a, f) is a finite subautomaton of M ′, the if part is
evident. To prove the only if part, suppose that M ′ is a feedforward inverse
with delay τ . Then there exists a finite automaton M = 〈X, Y, S, δ, λ〉 such
that M ′ is a weak inverse with delay τ of M . Let s be in S. Then there
exists s′ = 〈y−1, . . . , y−c, t〉 in S′ such that s′ τ -matches s. Let δ0

a(t) = t

and δi+1
a (t) = δa(δi

a(t)) for any i � 0. Consider the infinite sequence t,
δa(t), δ2

a(t), . . . Since Sa is finite, some states occur repetitively in the se-
quence. Let the earliest repetitive states be δp

a(t) and δp+r
a (t). Take S̄a =

{δp
a(t), δp+1

a (t), . . . , δp+r−1
a (t)}. Clearly, S̄a is closed in Ma. Thus there exists

a finite subautomaton M̄a of Ma such that the state alphabet of M̄a is S̄a.
On the other hand, let S̄ = {δ(s, α) | α ∈ X∗, |α| � p}. It is evident that S̄

is closed with respect to X in M . Thus there exists a finite subautomaton
M̄ of M such that the input, output and state alphabets of M̄ are X, Y

and S̄, respectively. We prove SIM(M̄a, f) is a weak inverse with delay τ
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of M̄ . Let s̄ be in S̄. Then there exists α in X∗ such that |α| � p and s̄ =
δ(s, α). Let λ(s, α) = β = y0 . . . yk−1, where k = |α|. Clearly, δ′(s′, β) =
〈yk−1, . . . , yk−c, δ

k
a(t)〉. From k � p, δk

a(t) is in S̄a. It follows that δ′(s′, β) is
also a state of the finite subautomaton SIM(M̄a, f) of M ′. Since the state s′

of M ′ τ -matches the state s of M and β = λ(s, α), the state δ′(s′, β) of M ′ τ -
matches the state δ(s, α) (= s̄) of M . Thus the state δ′(s′, β) of SIM(M̄a, f)
τ -matches the state s̄ of M̄ . We conclude that SIM(M̄a, f) is a feedforward
inverse with delay τ of M̄ . Therefore, SIM(M̄a, f) is a weak inverse with
delay τ . ��

For any t in Sa, we use ft to denote a single-valued mapping from Y c+1

to X, defined by ft(yc, . . . , y0) = f(yc, . . . , y0, λa(t)), y0, . . . , yc ∈ Y . For any
τ , 0 � τ � c, and any t ∈ Sa, let

F
(τ)
ft

={x0 . . . xcy0 . . . yc|x0, . . . , xc ∈ X, y0, . . . , yc ∈ Y, ft(yc, . . . , y0) = xc−τ}.

Algorithm of F
(τ)
t , t ∈ Sa

Input : An autonomous finite automaton Ma = 〈Ya, Sa, δa, λa〉, a single-
valued mapping f from Y c+1 × λa(Sa) to X.

Output : Sets F
(τ)
t , t ∈ Sa.

Procedure :
1. Take Ft = F

(τ)
ft

, t ∈ Sa.
2. For each t ∈ Sa, each xi ∈ X, each yi ∈ Y , i = 1, . . . , c, if there exists

xc+1 ∈ X such that x1 . . . xc+1y1 . . . yc+1 
∈ Ft holds for any yc+1 ∈ Y ,
then delete elements x0 . . . xcy0 . . . yc, x0 ∈ X, y0 ∈ Y from Fft′ , for
any t′ ∈ δ−1

a (t) (= {t0 ∈ Sa | δa(t0) = t}).
3. Repeat Step 2 until no element can be deleted.
4. Output F

(τ)
t = Ft, t ∈ Sa, and stop.

From the algorithm of F
(τ)
t , t ∈ Sa, it is easy to show the following lemma.

Lemma 5.1.1. (a) F
(τ)
t ⊆ F

(τ)
ft

, t ∈ Sa.

(b) If t = δa(u) and F
(τ)
t = ∅, then F

(τ)
u = ∅.

(c) For any t ∈ Sa, any x0 . . . xcy0 . . . yc ∈ F
(τ)
t and any xc+1 ∈ X, there

exists yc+1 ∈ Y such that x1 . . . xc+1y1 . . . yc+1 is in F
(τ)
v , where v = δa(t).

Theorem 5.1.2. M ′ is a feedforward inverse with delay τ if and only if
there exists t in Sa such that F

(τ)
t 
= ∅.

Proof. only if : Suppose that M ′ is a feedforward inverse with delay τ .
Then there exists a finite automaton M = 〈X, Y, S, δ, λ〉 such that M ′ is a
weak inverse with delay τ of M . Let s be a state of M . Then there exists
a state s′ = 〈y−1, . . . , y−c, t〉 of M ′ such that s′ τ -matches s. Thus for any
x0, x1, . . . in X and any y0, y1, . . . in Y , if y0y1 . . . = λ(s, x0x1 . . .), then there
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exist x−τ , . . . , x−1 in X such that λ′(s′, y0y1 . . .) = x−τ . . . x−1x0x1 . . . From
the construction of M ′, it is easy to see that xi−τ = f(yi, . . . , yi−t, λa(δi

a(t))),
i = 0, 1, . . . Thus for any i � c, xi−c . . . xiyi−c . . . yi is in F

(τ)
fu

, where u = δi
a(t).

For any u ∈ {δi
a(t), i = c, c+1, . . .}, define F ′

u = {xi−c . . . xiyi−c . . . yi | i � c,
xi−c, . . ., xi ∈ X, u = δi

a(t), there exist x0, . . ., xi−c−1 ∈ X such that
λ(δ(s, x0 . . . xi−c−1), xi−c . . . xi) = yi−c . . . yi }. Then we have F ′

u ⊆ F
(τ)
fu

for any u ∈ {δi
a(t), i = c, c + 1, . . .}. We prove the proposition: for any u ∈

{δi
a(t), i = c, c + 1, . . .}, any a0 . . . acb0 . . . bc ∈ F ′

u, and any ac+1 ∈ X, there
exists bc+1 ∈ Y such that a1 . . . ac+1b1 . . . bc+1 ∈ F ′

v, where v = δa(u).
In fact, from the definition of F ′

u, there exist i � c, x0, . . . , xi ∈ X, and
y0, . . . , yi ∈ Y such that λ(s, x0 . . . xi) = y0 . . . yi, xi−c . . . xiyi−c . . . yi =
a0 . . . acb0 . . . bc, and u = δi

a(t). Let bc+1 = λ(δ(s, x0 . . . xi), ac+1). Clearly,
λ(s, x0 . . . xi ac+1) = y0 . . . yibc+1. Since v = δa(u) = δi+1

a (t), from the defin-
ition of F ′

v, we have xi−c+1 . . . xiac+1yi−c+1 . . . yibc+1 = a1 . . . ac+1b1 . . . bc+1

∈ F ′
v.
Since {δi

a(t), i = c, c + 1, . . .} is finite, there exist different elements
u1, . . . , un in {δi

a(t), i = c, c + 1, . . .} such that δa(ui) = ui+1, i = 1, . . . , n− 1
and δa(un) = u1. Since F ′

u ⊆ F
(τ)
fu

holds for any u ∈ {u1, . . . , un}, using the

above proposition, by induction on steps of the algorithm of F
(τ)
t , t ∈ Sa, it

is easy to prove that F ′
u ⊆ F

(τ)
u holds for any u ∈ {u1, . . . , un}. For any u ∈

{u1, . . . , un}, from F ′
u 
= ∅, we have F

(τ)
u 
= ∅.

if : Suppose that F
(τ)
t 
= ∅ for some t in Sa. From Lemma 5.1.1 (b),

it is easy to see that F
(τ)
u 
= ∅ for any u in {δi

a(t), i = 0, 1, . . .}. Since
{δi

a(t), i = 0, 1, . . .} is finite, there exist different elements u1, . . . , un in
{δi

a(t), i = 0, 1, . . .} such that δa(ui) = ui+1, i = 1, . . . , n−1 and δa(un) = u1.
We construct M = 〈X, Y, S, δ, λ〉 as follows. Take S = {〈x0 . . . xcy0 . . . yc, u〉 |
x0 . . . xcy0 . . . yc ∈ F

(τ)
u , u = u1, . . . , un}. Let 〈x0 . . . xcy0 . . . yc, u〉 be in S.

Then x0 . . . xcy0 . . . yc ∈ F
(τ)
u and u ∈ {u1, . . . , un}. From Lemma 5.1.1 (c),

for any xc+1 ∈ X, there exists yc+1 ∈ Y such that x1 . . . xc+1y1 . . . yc+1 ∈ F
(τ)
v ,

where v = δa(u). Clearly, v ∈ {u1, . . . , un}. It follows that 〈x1 . . . xc+1y1 . . .

yc+1, v〉 is in S. Choose arbitrarily such a yc+1, and define δ(〈x0 . . . xcy0 . . .

yc, u〉, xc+1) = 〈x1 . . . xc+1y1 . . . yc+1, δa(u)〉 and λ(〈x0 . . . xcy0 . . . yc, u〉,
xc+1) = yc+1. We prove that M ′ is a weak inverse with delay τ of M . For any
state s = 〈x−c−1 . . . x−1 y−c−1 . . . y−1, u〉 of M , let s′ = 〈y−1, . . . , y−c, δa(u)〉
which is a state of M ′. For any x0, x1, . . . in X, let λ(s, x0x1 . . .) = y0y1 . . .,
where y0, y1, . . . ∈ Y . From the construction of M , it is easy to see that
δ(s, x0 . . . xi) = 〈xi−c . . . xiyi−c . . . yi, δ

i+1
a (u)〉, i = 0, 1, . . . Therefore, for any

i � 0, we have xi−c . . . xiyi−c . . . yi ∈ F
(τ)
v , where v = δi+1

a (u). From F
(τ)
v

⊆ F
(τ)
fv

, it follows that f(yi, . . ., yi−c, λa(δi+1
a (u))) = xi−τ , i = 0, 1, . . .

Let δ′(s′, y0 . . . yi−1) = s′i, i = 0, 1, . . . Then s′i = 〈yi−1, . . ., yi−c, δi+1
a (u)〉,

i = 0, 1, . . . Thus λ′(s′i, yi) = f(yi, . . . , yi−c, λa(δi+1
a (u))) = xi−τ , i = 0, 1, . . .
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It follows that λ′(s′, y0y1 . . .) = x−τ . . . x−1x0x1 . . . Thus s′ τ -matches s. We
conclude that M ′ is a weak inverse with delay τ of M . Therefore, M ′ is a
feedforward inverse with delay τ . ��
Corollary 5.1.1. If there exists a cycle C of Ma such that for any u ∈ C

and any y−1, . . . , y−c ∈ Y, |f(Y, y−1, . . . , y−c, λa(u))| = |X| holds, then for
any τ, 0 � τ � c,M ′ is a feedforward inverse with delay τ .

Proof. It is easy to verify that for any u ∈ C, any x0 . . . xcy0 . . . yc ∈ F
(τ)
fu

and any xc+1 ∈ X, there exists yc+1 ∈ Y such that f(yc+1, . . . , y1, λa(δa(u))) =
xc−τ+1. It follows that x1 . . . xc+1y1 . . . yc+1 ∈ F

(τ)
fv

, where v = δa(u) ∈ C.

For any u ∈ C, from the algorithm of F
(τ)
t , t ∈ Sa, we have F

(τ)
u = F

(τ)
fu


=
∅. From Theorem 5.1.2, M ′ is a feedforward inverse with delay τ . ��

5.2 Delay Free

Lemma 5.2.1. Let M = 〈X, Y , S, δ, λ〉, M ′ = 〈Y , X, S′, δ′, λ′〉 and
M ′′ = 〈Y , X, S′, δ′′, λ′′〉 be finite automata, and s′ ∈ S′. Assume that
|λ′(s′, Y )| < |X| and that λ′(s′′, y) = λ′′(s′′, y) holds for any s′′ ∈ S′ \ {s′}
and any y ∈ Y . If M ′ is a weak inverse with delay 0 of M , then M ′′ is a
weak inverse with delay 0 of M .

Proof. Suppose that M ′ is a weak inverse with delay 0 of M . Let s

be a state of M . Then there exists a state ϕ(s) of M ′ such that ϕ(s) 0-
matches s. Clearly, ϕ(s) is also a state of M ′′. We prove that the state
ϕ(s) of M ′′ 0-matches the state s of M . For any x0, x1, . . . ∈ X, let
y0y1 . . . = λ(s, x0x1 . . .), where y0, y1, . . . ∈ Y . We prove by reduction to
absurdity a proposition: δ′(ϕ(s), y0 . . . yj) 
= s′ holds for j = −1, 0, 1, . . . Sup-
pose to the contrary that δ′(ϕ(s), y0 . . . yj) = s′ holds for some j � −1.
From y0y1 . . . yj = λ(s, x0x1 . . . xj), for any x ∈ X there exists yx ∈ Y such
that y0y1 . . . yjyx = λ(s, x0x1 . . . xjx). Since the state ϕ(s) of M ′ 0-matches
the state s of M , we have λ′(ϕ(s), y0y1 . . . yjyx) = x0x1 . . . xjx. It follows
that λ′(s′, yx) = λ′(δ′(ϕ(s), y0y1 . . . yj), yx) = x. Since x may take any el-
ement in X, we have |λ′(s′, Y )| = |X|. This contradicts the assumption of
the theorem. Thus the proposition holds. Since λ′(s′′, y) = λ′′(s′′, y) holds
for any s′′ ∈ S′ \ {s′} and y ∈ Y , using the above proposition, we have
λ′(ϕ(s), y0y1 . . .) = λ′′(ϕ(s), y0y1 . . .). Since λ′(ϕ(s), y0y1 . . .) = x0x1 . . ., we
have λ′′(ϕ(s), y0y1 . . .) = x0x1 . . . Thus the state ϕ(s) of M ′′ 0-matches the
state s of M . Therefore, M ′′ is a weak inverse with delay 0 of M . ��

Theorem 5.2.1. M is a feedforward invertible with delay 0 if and only if
there exists SIM(Ma, f) such that SIM(Ma, f) is a weak inverse with delay
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0 of M and |f(Y, y−1, . . . , y−c, λa(t))| = |X| holds for any state t of Ma and
any y−1, . . . , y−c in Y .

Proof. The if part is trivial. The only if part can be obtained by applying
repeatedly Lemma 5.2.1. ��

Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a c-order semi-input-memory finite au-
tomaton SIM(Ma, f), where S′ = Y c × Sa, Ma = 〈Ya, Sa, δa, λa〉 is
an autonomous finite automaton, and f is a single-valued mapping from
Y c+1 × λa(Sa) to X.

From Corollary 5.1.1, if |f(Y, y−1, . . . , y−c, λa(t))| = |X| holds for any
state t of Ma and any y−1, . . . , y−c in Y , then M ′ is a feedforward inverse
with delay 0. Below we prove that the sufficient condition is also necessary
in the case of |X| = |Y |.

Lemma 5.2.2. Let Ma be cyclic, and |X| = |Y |. If there exist v in Sa and
y0, . . . , yc−1 in Y such that |f(Y, yc−1, . . . , y0, λa(v))| < |X|, then M ′ is not
a feedforward inverse with delay 0.

Proof. Let v ∈ Sa and y0, . . . , yc−1 ∈ Y . Suppose that |f(Y, y0, . . . , yc−1,

λa(v))| < |X|. Then X \ f(Y, yc−1, . . . , y0, λa(v)) 
= ∅ holds and for any
x0, . . . , xc−1 in X, any xc in X \ f(Y, yc−1, . . . , y0, λa(v)) and any yc in Y ,
x0 . . . xcy0 . . . yc is not in F

(0)
fv

. Therefore, for any x0, . . . , xc−1 in X, any xc

in X \ f(Y, yc−1, . . . , y0, λa(v)) and any yc in Y , x0 . . . xcy0 . . . yc is not in
F

(0)
v . Let u ∈ Sa with δa(u) = v. From the algorithm of F

(τ)
t , t ∈ Sa, for any

x−1, x0, . . . , xc−1 in X and any y−1 in Y , x−1x0 . . . xc−1y−1y0 . . . yc−1 is not
in F

(0)
u .
We prove a proposition: for any j, 1 � j � c, and any p, q ∈ Sa, if δa(p) = q

and x−j . . . xc−jy−j . . . yc−j 
∈ F
(0)
q holds for any x−j , . . . , xc−j in X and any

y−j , . . . , y−1 in Y , then x−j−1 . . . xc−j−1y−j−1 . . . yc−j−1 
∈ F
(0)
p holds for any

x−j−1, . . ., xc−j−1 in X and any y−j−1, . . . , y−1 in Y . In fact, from the algo-
rithm of F

(τ)
t , t ∈ Sa, it is sufficient to prove that for any x−j , . . . , xc−j−1 in

X and any y−j , . . . , y−1 in Y , there exists xc−j in X such that x−j . . . xc−j

y−j . . . yc−j−1y 
∈ F
(0)
q holds for any y in Y . There are two cases to consider.

In the case of |f(Y , yc−j−1, . . ., y−j , λa(q))| < |X|, we choose an element in
X \ f(Y, yc−j−1, . . . , y−j , λa(q)) as xc−j . Then x−j . . . xc−jy−j . . . yc−j−1y 
∈
F

(0)
fq

holds for any y in Y . Therefore, x−j . . . xc−jy−j . . . yc−j−1y 
∈ F
(0)
q holds

for any y in Y . In the case of |f(Y, yc−j−1, . . ., y−j , λa(q))| = |X|, from |X| =
|Y |, it is easy to see that for any x in X there exists uniquely y in Y such
that f(y, yc−j−1, . . . , y−j , λa(q)) = x. Let xc−j = f(yc−j , . . . , y−j , λa(q)).
Then for any y in Y \ {yc−j}, we have f(y, yc−j−1, . . . , y−j , λa(q)) 
= xc−j .
Thus x−j . . . xc−jy−j . . . yc−j−1y 
∈ F

(0)
fq

holds for any y in Y \{yc−j}. There-

fore, x−j . . . xc−jy−j . . . yc−j−1y 
∈ F
(0)
q holds for any y in Y \ {yc−j}. Since
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x−j . . . xc−jy−j . . . yc−j 
∈ F
(0)
q holds, x−j . . . xc−jy−j . . . yc−j−1y 
∈ F

(0)
q holds

for any y in Y .
We have proven in the first paragraph of the proof that x−1 x0 . . . xc−1

y−1 y0 . . . yc−1 
∈ F
(0)
u holds for any x−1, x0, . . ., xc−1 in X and any y−1 in

Y . Using the above proposition c times, we have that there exists w ∈ Sa

such that x−c−1 . . . x−1y−c−1 . . . y−1 
∈ F
(0)
w holds for any x−1, . . . , x−c−1 in

X and any y−1, . . . , y−c−1 in Y . It follows that F
(0)
w = ∅ holds. Since Ma is

cyclic, from Lemma 5.1.1 (b), we have F
(0
t = ∅ holds for any t ∈ Sa. From

Theorem 5.1.2, M ′ is not a feedforward inverse with delay 0. ��

Theorem 5.2.2. If |X| = |Y |, then M ′ is a feedforward inverse with delay 0
if and only if there exists a cycle C of Ma such that |f(Y, y−1, . . . , y−c, λa(u))|
= |X| holds for any u ∈ C and any y−1, . . . , y−c ∈ Y .

Proof. From Corollary 5.1.1, the if part holds.
To prove the only if part, suppose that M ′ is a feedforward inverse

with delay 0. From Theorem 5.1.1, there exists a cycle C of Ma such
that SIM(M̄a, f) is a feedforward inverse with delay 0, where M̄a =
〈Ya, C, δa|C , λa|C〉. From Lemma 5.2.2, |f(Y, y−1, . . . , y−c, λa(u))| = |X| holds
for any u ∈ C and any y−1, . . . , y−c ∈ Y . ��

Theorem 5.2.2 can be proven using mutual invertibility (Theorem 2.2.2)
as follows.

It is easy to verify the following proposition.

Proposition 5.2.1. For any finite automaton M = 〈X, Y, S, δ, λ〉, M is
weakly invertible with delay 0 if and only if for any state s of M , λs|X is
an injection from X to Y .

Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a c-order semi-input-memory finite automa-
ton SIM(Ma, f) with |X| = |Y |. From Theorem 5.1.1, M ′ is a feedforward
inverse with delay 0 if and only if there exists a finite subautomaton M̄a of Ma

such that M̄a is cyclic and SIM(M̄a, f) is a feedforward inverse with delay 0.
Since SIM(M̄a, f) is strongly connected, using Theorem 2.2.2, SIM(M̄a, f)
is a feedforward inverse with delay 0 if and only if SIM(M̄a, f) is weakly in-
vertible with delay 0. From |X| = |Y |, using Proposition 5.2.1, SIM(M̄a, f)
is a feedforward inverse with delay 0 if and only if |f(Y, y−1, . . . , y−c, λa(u))| =
|X| holds for any state u of M̄a and any y−1, . . . , y−c in Y . Let C be the state
alphabet of M̄a. Clearly, C is a cycle of Ma. Thus M ′ is a feedforward inverse
with delay 0 if and only if |f(Y, y−1, . . . , y−c, λa(u))| = |X| holds for any u ∈
C and any y−1, . . . , y−c ∈ Y . This completes another proof of Theorem 5.2.2.
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5.3 One Step Delay

Let M = 〈X, Y,Xc × Sa, δ, λ〉 be a c-order semi-input-memory finite au-
tomaton SIM(Ma, f), where Ma = 〈Ya, Sa, δa, λa〉 is an autonomous finite
automaton, and f is a single-valued mapping from Xc+1 × λa(Sa) to Y .

Lemma 5.3.1. Let M = 〈X, Y ,S, δ, λ〉 be a semi-input-memory finite
automaton SIM(Ma, f).

(a) M is strongly connected if and only if Ma is cyclic.
(b) If Ma is cyclic, |X| = |Y | and M is weakly invertible with delay τ ,

then |WM
τ+1,s| = wτ+1,M and |WM

τ,s| = wτ,M hold for any s ∈ S.

Proof. (a) It is trivial from definitions.
(b) From (a), M is strongly connected. From Theorem 2.1.3 (f), |WM

τ,s| =
wτ,M holds for any s ∈ S. Using Theorem 2.1.3 (c), it immediately follows
that |WM

τ+1,s| = wτ+1,M holds. ��

Lemma 5.3.2. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay 1, and
|X| = |Y | = q. Let |WM

1,s| = w1,M . Divide q successors of s into blocks such
that δ(s, xi) and δ(s, xj) belong to the same block if and only if λ(s, xi) =
λ(s, xj). Then the number of blocks is w1,M , each block consists of q/w1,M

different states, the set of the outputs of length 1 on each state in a block has
w1,M elements and such q/w1,M sets for the block constitute a partition of
Y .

Proof. Denote the successors δ(s, x), x ∈ X of s by s1, . . . , sq (they are
not necessary to be different from each other). From Theorem 2.1.3 (b),
we have |WM

1,sj
| = w1,M , j = 1, . . . , q. Divide s1, . . . , sq into blocks such

that si = δ(s, xi) and sj = δ(s, xj) belong to the same block if and only if
λ(s, xi) = λ(s, xj). Since |WM

1,s| = w1,M , the number of blocks is w1,M . From
Theorem 2.1.3 (e), |IM

y,s| = q/w1,M holds for any y ∈ WM
1,s. Thus each block

consists of q/w1,M elements. Since M is weakly invertible with delay 1, the
sets of the outputs of length 1 on any two elements in a block are disjoint. It
follows that any two elements in a block are different states. For any block
T , from |WM

1,sj
| = w1,M , j = 1, . . . , q, we have |WM

1,t | = w1,M for any t ∈ T .
From |T | = q/w1,M and WM

1,t ∩ WM
1,t′ = ∅ for any different t and t′ in T , it

follows that the sets WM
1,t , t ∈ T constitute a partition of Y . ��

We use Y 〈w〉 to denote the set of all subsets with w elements of Y , that
is, Y 〈w〉 = {T |T ⊆ Y, |T | = w}.

Let ϕ be a single-valued mapping from X to Y 〈w〉 and |X| = |Y |. Let ψ

be a uniform mapping from X to {1, . . . , w}, that is, w is a divisor of |X|
and |ψ−1(j)| = |X|/w for any j, 1 � j � w. If

⋃
x∈ψ−1(j) ϕ(x) = Y holds for
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any j, 1 � j � w, ψ is called a valid partition of ϕ. We use Pϕ to denote
the set of all valid partitions of ϕ. Denote nϕ = |Pϕ|; nϕ = 0 means no valid
partition of ϕ.

We make an order of elements in Y . It leads to an ordering of elements
in each subset of Y . We use m(j, T ) to denote the j-th element of T in the
ordering.

Lemma 5.3.3. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory fi-
nite automaton SIM(Ma, f), and Ma be strongly cyclic. Let M be weakly
invertible with delay 1, and |X| = |Y |. Then f can be expressed as

f(x0, x−1, . . . , x−c, sa) = m(ψx−c,...,x−1,sa
(x0), ϕx−c,...,x−2,sa

(x−1)),

where ψx−c,...,x−1,sa
∈ Pϕx−c+1,...,x−1,δa(sa) , and ϕx−c,...,x−2,sa

is a single-
valued mapping from X to Y 〈w1,M 〉.

Proof. Define ϕx−c,...,x−2,sa
(x−1) = λ(〈x−1, . . . , x−c, sa〉, X). From Lemma

5.3.1 (a), M is strongly connected. From Lemma 5.3.1 (b), we have |WM
1,s| =

w1,M for any s ∈ S. Thus for any x−c, . . . , x−2 ∈ X and sa ∈ Sa, ϕx−c,...,x−2,sa

is a single-valued mapping from X to Y 〈w1,M 〉. For any state s = 〈x−1, . . . ,

x−c, sa〉 of M , define ψx−c,...,x−1,sa
(x0) = j, where λ(s, x0) is the j-th element

of λ(s,X). Since |λ(s,X)| = |WM
1,s| = w1,M , ψx−c,...,x−1,sa is a single-valued

mapping from X to {1, . . . , w1,M}. Noticing that ψ−1
x−c,...,x−1,sa

(j) = IM
yj ,s

when the j-th element of WM
1,s is yj , from Theorem 2.1.3 (g), we have

|ψ−1
x−c,...,x−1,sa

(j)| = |IM
yj ,s| = q/w1,M . Therefore, ψx−c,...,x−1,sa

is uniform.
From the definitions, it is easy to verify that

f(x0, x−1, . . . , x−c, sa) = m(ψx−c,...,x−1,sa
(x0), ϕx−c,...,x−2,sa

(x−1)).

To prove ψx−c,...,x−1,sa
∈ Pϕx−c+1,...,x−1,δa(sa) , take arbitrarily an integer

j, 1 � j � w1,M . From the definition, x ∈ ψ−1
x−c,...,x−1,sa

(j) if and only if
λ(s, x) = yj , where s = 〈x−1, . . . , x−c, sa〉, yj is the j-th element of WM

1,s.
Since M is weakly invertible with delay 1, λ(〈x0, x−1, . . ., x−c+1, δa(sa)〉, X)
and λ(〈x′

0, x−1, . . ., x−c+1, δa(sa)〉, X) are disjoint if λ(s, x0) = λ(s, x′
0) = yj

and x0 
= x′
0. That is, ϕx−c+1,...,x−1,δa(sa)(x0) and ϕx−c+1,...,x−1,δa(sa) (x′

0) are
disjoint, if x0, x

′
0 ∈ ψ−1

x−c,...,x−1,sa
(j) and x0 
= x′

0. Since |ψ−1
x−c,...,x−1,sa

(j)| =
|IM

yj ,s| = q/w1,M , |ϕx−c+1,...,x−1,δa(sa)(x)| = w1,M and |Y | = q, we have⋃
x∈ψ−1

x−c,...,x−1,sa (j)

ϕx−c+1,...,x−1,δa(sa)(x) = Y.

Thus ψx−c,...,x−1,sa is a valid partition of ϕx−c+1,...,x−1,δa(sa). ��
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Lemma 5.3.4. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory fi-
nite automaton SIM(Ma, f), Ma be strongly cyclic, and |X| = |Y |. If f can
be expressed as

f(x0, x−1, . . . , x−c, sa) = m(ψx−c,...,x−1,sa
(x0), ϕx−c,...,x−2,sa

(x−1)),

where ψx−c,...,x−1,sa
∈ Pϕx−c+1,...,x−1,δa(sa) , and ϕx−c,...,x−2,sa

is a single-
valued mapping from X to Y 〈w〉, then M is weakly invertible with delay 1
and w1,M = w.

Proof. For any state s = 〈x−1, . . . , x−c, sa〉 of M , any x0, x1, x′
0, x

′
1 ∈ X,

let y0y1 = λ(s, x0x1) and y′
0y

′
1 = λ(s, x′

0x
′
1), where y0, y1, y

′
0, y

′
1 ∈ Y . Suppose

that y0y1 = y′
0y

′
1. To prove that M is weakly invertible with delay 1, it is

sufficient to prove x0 = x′
0. Suppose to the contrary that x0 
= x′

0. Since
y0 = y′

0, we have f(x0, x−1, . . . , x−c, sa) = f(x′
0, x−1, . . . , x−c, sa). Therefore,

the values of ψx−c,...,x−1,sa
(x0) and ψx−c,...,x−1,sa

(x′
0) are the same; we denote

the value by j. On the other hand, since ψx−c,...,x−1,sa is a valid partition of
ϕx−c+1,...,x−1,δa(sa), we have⋃

x∈ψ−1
x−c,...,x−1,sa (j)

ϕx−c+1,...,x−1,δa(sa)(x) = Y.

From |ψ−1
x−c,...,x−1,sa

(j)| = q/w, |ϕx−c+1,...,x−1,δa(sa)(x)| = w and |Y | = q, it
follows that ϕx−c+1,...,x−1,δa(sa)(x), x ranging over elements in ψ−1

x−c,...,x−1,sa
(j),

constitute a partition of Y . Since x0 
= x′
0, ϕx−c+1,...,x−1,δa(sa)(x0) and

ϕx−c+1,...,x−1,δa(sa) (x′
0) are disjoint. It follows that

m(ψx−c+1,...,x−1,x0,δa(sa)(x1), ϕx−c+1,...,x−1,δa(sa)(x0))


= m(ψx−c+1,...,x−1,x′
0,δa(sa)(x′

1), ϕx−c+1,...,x−1,δa(sa)(x′
0)).

Therefore,

f(x1, x0, x−1, . . . , x−c+1, δa(sa)) 
= f(x′
1, x

′
0, x−1, . . . , x−c+1, δa(sa)),

that is, y1 
= y′
1. This contradicts y0y1 = y′

0y
′
1. Thus the hypothesis x0 
= x′

0

does not hold. We conclude that x0 = x′
0.

From the definition of the valid partition, it is easy to see that for
any state s = 〈x−1, . . . , x−c, sa〉 of M , the number of the elements in
f(X, x−1, . . . , x−c, sa) is w, that is, |λ(s,X)| = w. From Lemma 5.3.1 (a), M

is strongly connected. Using Lemma 5.3.1 (b), we have w1,M = |λ(s,X)| =
w. ��

Theorem 5.3.1. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory
finite automaton SIM(Ma, f), Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic, and
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|X| = |Y |. Then M is weakly invertible with delay 1 if and only if there exist
single-valued mappings ϕx−c,...,x−2,sa

from X to Y 〈w〉, x−c, . . . , x−2 ∈ X, sa ∈
Sa such that (a) for any x−c, . . . , x−2 ∈ X and any sa ∈ Sa, Pϕx−c,...,x−2,sa

is
non-empty, and (b) for any x−c, . . . , x−1 ∈ X and any sa ∈ Sa, there exists
ψx−c,...,x−1,sa ∈ Pϕx−c+1,...,x−1,δa(sa) such that

f(x0, x−1, . . . , x−c, sa) = m(ψx−c,...,x−1,sa
(x0), ϕx−c,...,x−2,sa

(x−1)) (5.1)

holds for any x0 ∈ X. Moreover, whenever the above condition holds, w in
the condition is equal to w1,M .

Proof. only if : from Lemma 5.3.3.
if and w = w1,M : from Lemma 5.3.4. ��
Remark In the case of w1,M = 1, in the condition (b), we have

ψx−c,...,x−1,sa
(x0) = 1. Therefore, the equation (5.1) can be simplified into

f(x0, x−1, . . . , x−c, sa) = ϕx−c,...,x−2,sa(x−1).

Meanwhile, the condition (a) is equivalent to the condition: for any x−c, . . . ,

x−2 ∈ X and any sa ∈ Sa, ϕx−c,...,x−2,sa
is a surjection (or an injection, or a

bijection).
In the case of w1,M = |X|, ϕx−c,...,x−2,sa

(x−1) = Y and ψx−c,...,x−1,sa
is

bijective. It follows that the right-side of the equation (5.1) as a function
of x0 defines a bijection from X to Y . In this case, the condition in Theo-
rem 5.3.1 is equivalent to the condition: for any x−c, . . . , x−1 ∈ X and any
sa ∈ Sa, f(x0, x−1, . . . , x−c, sa) as a function of x0 is a bijection from X to Y .
Therefore, this case degenerates to the case of weakly invertible with delay
0.

To sum up, for the cases of w1,M = 1, |X|, the expressions of semi-input-
memory finite automata with strongly cyclic autonomous finite automata are
very succinct, and their synthesization is clear. Below we present synthesizing
method for the case where w1,M is a proper divisor of |X| other than 1.

Synthesizing method Given |X| = |Y | = q, c � 1 and a strongly cyclic
autonomous finite automaton Ma = 〈Ya, Sa, δa, λa〉. Suppose that w|q and
w 
= 1, q. Find f , a single-valued mapping from Xc+1 × Sa to Y , such that
SIM(Ma, f) is weakly invertible with delay 1.

Step 1. For any x−c, . . . , x−2 ∈ X and any sa ∈ Sa, choose arbitrarily a
single-valued mapping ϕx−c,...,x−2,sa

from X to Y 〈w〉, of which a valid par-
tition is existent, that is, there exists a single-valued mapping ψ from X to
{1, . . . , w} such that for any j, 1 � j � w, |ψ−1(j)| = |X|/w and

⋃
x∈ψ−1(j)

ϕx−c,...,x−2,sa(x) = Y . Denote the set of all valid partitions of ϕx−c,...,x−2,sa

by Pϕx−c,...,x−2,sa
.
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Step 2. For any x−c, . . . , x−1 ∈ X and any sa ∈ Sa, choose arbitrarily a
valid partition, say ψx−c,...,x−1,sa

, in Pϕx−c+1,...,x−1,δa(sa) .
Step 3. Define

f(x0, x−1, . . . , x−c, sa) = m(ψx−c,...,x−1,sa
(x0), ϕx−c,...,x−2,sa

(x−1))

for x−c, . . . , x1, x0 ∈ X, sa ∈ Sa, where m(j, T ) denotes the j-th element in
T . (The order of elements of T ⊆ Y is naturally induced by a given order of
elements in Y .)

According to Theorem 5.3.1, each SIM(Ma, f) obtained by the above
synthesizing method is weakly invertible with delay 1, and all c-order semi-
input-memory finite automata with strongly cyclic autonomous finite au-
tomata which are weakly invertible with delay 1 can be found by the above
synthesizing method.

Example 5.3.1. Let X = Y = {0, 1, 2, 3}. Take c � 1, w = 2. Suppose that
Ma = 〈Ya, Sa, δa, λa〉 is a strongly cyclic autonomous finite automaton. Find
a single-valued mapping from Xc+1×Sa to Y , say f , such that SIM(Ma, f)
is weakly invertible with delay 1.

According to the synthesizing method mentioned above, for any x−c, . . . ,

x−2 ∈ X and any sa ∈ Sa, we define ϕx−c,...,x−2,sa(x) = ϕ(x), where ϕ(x) =
{0, 1} if x = 0, 2, ϕ(x) = {2, 3} if x = 1, 3. Define ψi as in Table 5.3.1.

Table 5.3.1 Definition of ψi

x ψ1(x) ψ2(x) ψ3(x) ψ4(x)

0 1 1 2 2
1 1 2 2 1
2 2 2 1 1
3 2 1 1 2

It is easy to verify that ψ1, ψ2, ψ3 and ψ4 are all valid partitions of ϕ. For
any x−c, . . . , x−1 ∈ X and any sa ∈ Sa, take ψx−c,...,x−1,sa = ψ1 if x−c = 0,
or ψ2 if x−c 
= 0. Take an order for elements in Y : the first to the fourth
elements are 0, 1, 2, 3. We then have

f(x0, x−1, . . . , x−c, sa) =

{
m(ψ1(x0), ϕ(x−1)), if x−c = 0,

m(ψ2(x0), ϕ(x−1)), if x−c 
= 0.

It follows that
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f(x0, x−1, . . . , x−c, sa) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x−c = 0, x−1 = 0, 2, x0 = 0, 1,

1, if x−c = 0, x−1 = 0, 2, x0 = 2, 3,

2, if x−c = 0, x−1 = 1, 3, x0 = 0, 1,

3, if x−c = 0, x−1 = 1, 3, x0 = 2, 3,

0, if x−c 
= 0, x−1 = 0, 2, x0 = 0, 3,

1, if x−c 
= 0, x−1 = 0, 2, x0 = 1, 2,

2, if x−c 
= 0, x−1 = 1, 3, x0 = 0, 3,

3, if x−c 
= 0, x−1 = 1, 3, x0 = 1, 2.

Theorem 5.3.2. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory
finite automaton SIM(Ma, f), Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic, and
|X| = |Y |. Then M is a feedforward inverse with delay 1 if and only if
there exist single-valued mappings ϕx−c,...,x−2,sa

, x−c, . . . , x−2 ∈ X, sa ∈ Sa

from X to Y 〈w〉 such that (a) for any x−c, . . . , x−2 ∈ X and any sa ∈ Sa,

Pϕx−c,...,x−2,sa
is non-empty, and (b) for any x−c, . . . , x−1 ∈ X and any sa ∈

Sa, there exists ψx−c,...,x−1,sa ∈ Pϕx−c+1,...,x−1,δa(sa) such that (5.1) holds for
any x0 ∈ X. Moreover, whenever the above condition holds, w in the condition
is equal to w1,M .

Proof. Since M , i.e. SIM(Ma, f), is a semi-input-memory finite automa-
ton and Ma is strongly cyclic, M is strongly connected. Using Theorem 2.2.2,
M is a feedforward inverse with delay 1 if and only if M is weakly invertible
with delay 1. From Theorem 5.3.1, the theorem holds. ��

It should be pointed out that any SIM(Ma, f) can be expressed as
SIM(M̄a, f̄) such that the output function of M̄a is the identity function. In
fact, let Ma = 〈Ya, Sa, δa, λa〉. Take M̄a = 〈Sa, Sa, δa, λ̄a〉,where λ̄a(sa) = sa

for any sa ∈ Sa. Take f̄(x0, x−1, . . ., x−c, sa) = f(x0, x−1, . . . , x−c, λa(sa)).
Then SIM(M̄a, f̄) = SIM(M̄a, f̄).

5.4 Two Step Delay

For any finite automaton M = 〈X, Y, S, δ, λ〉 and any state s of M , if for any
α = x0 . . . xl of length l + 1 in X∗, x0 can be uniquely determined by s and
λ(s, α), s is called a � l-step state; for l > 0, if s is a � l-step state and not
a � (l − 1)-step state, s is called an l-step state; if s is a � 0-step state, s is
called a 0-step state. Clearly, if M is weakly invertible with delay τ and s is
a state of M , then s is an l-step state for some l, 0 � l � τ .

Lemma 5.4.1. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton, and |X| = 2.
Let |WM

2,s| = 2. If s is a 0-step state and s′ a successor state of s, then s′ is
not a 0-step state.
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Proof. Assume that s is a 0-step state and s′ a successor state of s. We
prove by reduction to absurdity that s′ is not a 0-step state. Suppose to the
contrary that s′ is a 0-step state. Since s and s′ are 0-step states, we have
|λ(s,X)| = |λ(s′, X)| = 2. Since s′ is a successor state of s, it is easy to see
that |WM

2,s| � 3. This contradicts |WM
2,s| = 2. We conclude that s′ is not a

0-step state. ��

Lemma 5.4.2. Let M = 〈X, Y, S, δ, λ〉 be a finite automaton, and |X| = 2.
(a) If s in S is a 1-step state and s′ a successor state of s, then s′ is not

a 0-step state.
(b) Let s′ and s′′ be two different successor states of s ∈ S. If s, s′ and

s′′ are not 0-step states and |WM
2,s| = 2, then |λ(s′, X)| = |λ(s′′, X)| = 1 and

λ(s′, X) 
= λ(s′′, X), therefore, s is a 1-step state.

Proof. (a) Assume that s in S is a 1-step state and s′ a successor state of
s. We prove by reduction to absurdity that s′ is not a 0-step state. Suppose to
the contrary that s′ is a 0-step state. Since s is a 1-step state and s′ a 0-step
state, we have |λ(s,X)| = 1 and |λ(s′, X)| = 2. Since s′ is a successor state
of s, it is easy to see that there exist x0, x

′
0, x1, x

′
1 ∈ X such that x0 
= x′

0 and
λ(s, x0x1) = λ(s, x′

0x
′
1). This contradicts that s is a 1-step state. We conclude

that s′ is not a 0-step state.
(b) Since s, s′ and s′′ are not 0-step states, we have |λ(s,X)| = |λ(s′, X)| =

|λ(s′′, X)| = 1. From |WM
2,s| = 2, it follows that λ(s′, X) 
= λ(s′′, X). There-

fore, s is a 1-step state. ��

Lemma 5.4.3. Let M = 〈X, Y, S, δ, λ〉 be weakly invertible with delay 2,
and w2,M = |X| = |Y | = 2. Let S0 = {s|s ∈ S, |WM

2,s| = w2,M}.
(a) If s′ and s′′ are two different successor states of s ∈ S0, then s′ is a

0-step state if and only if s′′ is a 0-step state.
(b) If s in S0 is a 2-step state and s′ a successor state of s, then s′ is a

0-step state.

Proof. (a) Assume that s′ and s′′ are two different successor states of
s ∈ S0. We prove by reduction to absurdity that s′ is a 0-step state if and
only if s′′ is a 0-step state. Suppose to the contrary that one state in {s′, s′′}
is a 0-step state and the other is not. Without loss of generality, suppose
that s′ is a 0-step state and s′′ is not. Then we have |λ(s′, X)| = 2 and
|λ(s′′, X)| = 1. Since s′ and s′′ are two different successor states of s and
|wM

2,s| = 2, we have |λ(s,X)| = 1. (Otherwise, we obtain |wM
2,s| = 3, which

contradicts s ∈ S0.) Since s is in S0, from Theorem 2.1.3 (b), s′′ is in S0. Thus
we have λ(s3, X)∪λ(s4, X) = Y , where s3 and s4 are two different successors
of s′′. Let x1 in X satisfy λ(s′, x1) = λ(s′′, x1). Since s′ is a 0-step state, such
an x1 is existent. Denote s1 = δ(s′, x1). From λ(s3, X) ∪ λ(s4, X) = Y , we
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can find x2 and x′
2 in X and s′′′ in {s3, s4} such that λ(s1, x2) = λ(s′′′, x′

2).
Let x0, x′

0, x′
1 in X satisfy s′ = δ(s, x0), s′′ = δ(s, x′

0) and s′′′ = δ(s′′, x′
1).

Then x0 
= x′
0 and λ(s, x0x1x2) = λ(s, x′

0x
′
1x

′
2). This contradicts that M is

weakly invertible with delay 2. We conclude that s′ is a 0-step state if and
only if s′′ is a 0-step state.

(b) Assume that s in S0 is a 2-step state and s′ a successor state of s.
We prove by reduction to absurdity that s′ is a 0-step state. Suppose to the
contrary that s′ is not a 0-step state. Then |λ(s′, X)| = 1. Since s is a 2-step
state, we have |λ(s,X)| = 1. Let s′′ be a successor state of s other than
s′. From (a), s′′ is not a 0-step state. Thus |λ(s′′, X)| = 1. From s ∈ S0,
we obtain λ(s′, X) ∩ λ(s′′, X) = ∅. It immediately follows that s is a 1-step
state. This contradicts that s is a 2-step state. We conclude that s′ is a 0-step
state. ��

Lemma 5.4.4. Let M = 〈X, Y, S, δ, λ〉 be a weakly invertible finite automa-
ton with delay 2. Let w2,M = |X| = |Y | = 2 and S0 = {s|s ∈ S, |WM

2,s| =
w2,M}.

(a) Let s and s′ be two different successor states of s−1 ∈ S0. Let s1

and s2 be two different successor states of s, and s′1 and s′2 be two different
successor states of s′. Assume that s1 and s2 are not 0-step states and s

is a 0-step state. Then s′1 and s′2 are not 0-step states and s′ is a 0-step
state. Moreover, λ(s1, X) = λ(s2, X) if and only if λ(s′1, X) = λ(s′2, X); if
λ(s1, X) = λ(s2, X), then λ(s′1, X) = λ(s′2, X) 
= λ(s1, X); and if λ(s1, X) 
=
λ(s2, X), then λ(s1, X) = λ(s′1, X) if and only if λ(s, x1) 
= λ(s′, x′

1), where
x1 and x′

1 in X satisfy δ(s, x1) = s1 and δ(s′, x′
1) = s′1.

(b) Let s1 and s2 be two different successor states of s, and s′1 and s′2 be
two different successor states of s′, where s and s′ are two different successor
states of a state in S0. If λ(s1, X) = λ(s2, X) and |λ(s1, X)| = 1, then
|λ(s′1, X)| = 1 and λ(s′1, X) = λ(s′2, X) 
= λ(s1, X).

Proof. (a) Since s is a 0-step state, using Lemma 5.4.3 (a), s′ is a 0-step
state. Since s is a 0-step state, using Lemma 5.4.1 and Lemma 5.4.2 (a), s−1

is a 2-step state. We prove that s′1 and s′2 are not 0-step states. For any i ∈
{1, 2}, since s′ a successor state of s−1 and s′i a successor state of s′, there
exist x′

0, x′
1 ∈ X such that δ(s−1, x

′
0) = s′ and δ(s−1, x

′
0x

′
1) = s′i. Since s−1 is

a 2-step state and s a 0-step state, there exist x0, x1 ∈ X such that x′
0 
= x0

and λ(s−1, x0x1) = λ(s−1, x
′
0x

′
1). Clearly, δ(s−1, x0x1) = sj for some j ∈

{1, 2}. Since M is weakly invertible with delay 2, λ(sj , X) ∩ λ(s′i, X) = ∅.
It immediately follows that |λ(s′i, X)| = 1, that is, s′i is not a 0-step state.

Denote λ(si, X) = {ei} and λ(s′i, X) = {e′i} for i = 1, 2. Suppose e1 = e2.
We prove by reduction to absurdity that e′1 = e′2 
= e1, that is, e′i 
= e1 for
i = 1, 2. Suppose to the contrary that e′i = e1 for some i ∈ {1, 2}. Since s−1 is
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a 2-step state and s is a 0-step state, there exist x0, x1, x′
0, x′

1 ∈ X such that
x′

0 
= x0, λ(s−1, x0x1) = λ(s−1, x
′
0x

′
1), δ(s−1, x0) = s and δ(s−1, x

′
0x

′
1) = s′i.

Let δ(s−1, x0x1) = sj . Noticing e1 = e2, we have ej = e′i, that is, λ(sj , x2) =
λ(s′i, x2) for any x2 ∈ X. It follows that λ(s−1, x0x1x2) = λ(s−1, x

′
0x

′
1x2).

This contradicts that s−1 is a 2-step state. We conclude that e′1 = e′2 
= e1.
Using this result, we obtain that e1 = e2 implies e′1 = e′2. From symmetry,
e′1 = e′2 implies e1 = e2. Therefore, e1 = e2 if and only if e′1 = e′2.

Suppose e1 
= e2. We then have e′1 
= e′2. It follows that there exists
i ∈ {1, 2} such that e1 = e′i. Let x1, x′

1 and x′
2 ∈ X satisfy δ(s, x1) = s1 and

δ(s′, x′
j) = s′j , j = 1, 2. We prove by reduction to absurdity that λ(s, x1) 
=

λ(s′, x′
i). Suppose to the contrary that λ(s, x1) = λ(s′, x′

i). Since e1 = e′i,
for any x2 ∈ X we have λ(s1, x2) = λ(s′i, x2). It follows that λ(s, x1x2) =
λ(s′, x′

ix2). Since s and s′ be two different successor states of s−1 and s−1 is
a 2-step state, we obtain λ(s−1, x0x1x2) = λ(s−1, x

′
0x

′
ix2), where x0 and x′

0

are different elements in X satisfying δ(s−1, x0) = s and δ(s−1, x
′
0) = s′. This

contradicts that s−1 is a 2-step state. We conclude that λ(s, x1) 
= λ(s′, x′
i).

In the case of e1 = e′1, we have i = 1. This yields λ(s, x1) 
= λ(s′, x′
1). In

the case of e1 
= e′1, we have i = 2. This yields λ(s, x1) 
= λ(s′, x′
2). Since

s′ is a 0-step state, we have λ(s′, x′
1) 
= λ(s′, x′

2). Thus λ(s, x1) = λ(s′, x′
1).

Therefore, e1 = e′1 if and only if λ(s, x1) 
= λ(s′, x′
1).

(b) Suppose that λ(s1, X) = λ(s2, X) and |λ(s1, X)| = 1. Then s1 and s2

are not 0-step states. Since s is a successor state of a state in S0, from Theo-
rem 2.1.3 (b), s is a state in S0, that is, |WM

2,s| = 2. From Lemma 5.4.2 (b), s

is a 0-step state. From (a), s′1 is not a 0-step state. Thus |λ(s′1, X)| = 1. Since
λ(s1, X) = λ(s2, X), using (a), we obtain λ(s′1, X) = λ(s′2, X) 
= λ(s1, X).

��

Lemma 5.4.5. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory fi-
nite automaton SIM(Ma, f), and Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic.
If c � 2 = w2,M , X = Y = {0, 1} and M is weakly invertible with delay 2,
then there exist single-valued mappings h0 from Xc−1 ×Sa to {0, 1}, h1 from
Xc−2 ×Sa to {0, 1}, f0 from Xc ×Sa to Y , f1 from Xc−1 ×Sa to Y , and f2

from Xc−2 × Sa to Y , such that

h0(x−2, . . . , x−c, sa) = 0 → h0(x−1, . . . , x−c+1, δa(sa)) = 1,

h1(x−3, . . . , x−c, sa) = 1 → h0(x−3, . . . , x−c−1, δ
−1
a (sa)) = 0, (5.2)

and
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f(x0, . . . , x−c, sa)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2(x−3, . . . , x−c, sa) ⊕ x−2,
if h0(x−2, . . . , x−c, sa) = 1 & h1(x−3, . . . , x−c, sa) = 1,

f1(x−2, . . . , x−c, sa) ⊕ x−1,
if h0(x−2, . . . , x−c, sa) = 1 & h1(x−3, . . . , x−c, sa) = 0,

f0(x−1, . . . , x−c, sa) ⊕ x0,
if h0(x−2, . . . , x−c, sa) = 0 & h1(x−2, . . . , x−c+1, δa(sa)) = 1,

f1(x−2, . . . , x−c, sa) ⊕ x0 ⊕ x−1 ⊕ x−1h2(x−2, . . . , x−c+1, δa(sa)),
if h0(x−2, . . . , x−c, sa) = 0 & h1(x−2, . . . , x−c+1, δa(sa)) = 0,

(5.3)

where

h2(x−3, . . . , x−c, sa) = f1(0, x−3, . . . , x−c, sa)⊕f1(1, x−3, . . . , x−c, sa). (5.4)

Proof. Define

f0(x−1, . . . , x−c, sa) = f(0, x−1, . . . , x−c, sa),

f1(x−2, . . . , x−c, sa) = f(0, 0, x−2, . . . , x−c, sa),

f2(x−3, . . . , x−c, sa) = f(0, 0, 0, x−3, . . . , x−c, sa).

Define h0 and h1 as follows. h0(x−2, . . . , x−c, sa) = 1 if and only if 〈0, x−2, . . .,
x−c, sa〉 is not a 0-step state. h1(x−3, . . . , x−c, sa) = 1 if and only if
f(x0, x−1, 0, x−3, . . . , x−c, sa) does not depend on x−1 and x0. Since M is a
semi-input-memory finite automaton SIM(Ma, f) and Ma is strongly cyclic,
M is strongly connected. From Theorem 2.1.3 (f), it follows that |WM

2,s| = 2
holds for any state s of M . From Lemma 5.4.4 (b), h1(x−3, . . . , x−c, sa) = 1
if and only if f(x0, x−1, 1, x−3, . . . , x−c, sa) does not depend on x−1 and x0.

To prove h0(x−2, . . . , x−c, sa) = 0 → h0(x−1, . . . , x−c+1, δa(sa)) = 1, sup-
pose h0(x−2, . . ., x−c, sa) = 0. Since M is weakly invertible with delay 2,
any state of M is a j-step state for some j, 0 � j � 2. From the defin-
ition of h0, 〈0, x−2, . . . , x−c, sa〉 is a 0-step state. Using Lemma 5.4.3 (a),
this yields that 〈1, x−2, . . . , x−c, sa〉 is a 0-step state. From Lemma 5.4.1,
〈x0, x−1, . . . , x−c+1, δa(sa)〉 is not a 0-step state for any x−1, x0 ∈ X. There-
fore, h0(x−1, . . . , x−c+1, δa(sa)) = 1.

To prove h1(x−3, . . . , x−c, sa) = 1 → h0(x−3, . . . , x−c−1, δ
−1
a (sa)) = 0,

suppose h1(x−3, . . . , x−c, sa) = 1. Then f(x0, . . . , x−c, sa) does not depend
on x0 and x−1 for any x−2 ∈ X. It follows that 〈x−1, . . . , x−c, sa〉 is not
a 0-step state for any x−2, x−1 ∈ X. We prove by reduction to absurdity
that h0(x−3, . . . , x−c−1, δ

−1
a (sa)) = 0 holds for any x−c−1 ∈ X. Suppose to

the contrary that h0(x−3, . . ., x−c−1, δ−1
a (sa)) = 1 for some x−c−1 ∈ X.

From the definition of h0, 〈0, x−3, . . ., x−c−1, δ−1
a (sa)〉 is not a 0-step
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state. From Lemma 5.4.3 (a), 〈1, x−3, . . . , x−c−1, δ
−1
a (sa)〉 is not a 0-step

state. Using Lemma 5.4.2 (b), we have λ(〈0, x−2, . . . , x−c, sa〉, X) 
= λ(〈1,
x−2, . . ., x−c, sa〉, X). Thus f(x0, . . . , x−c, sa) depends on x−1. Therefore,
h1(x−3, . . . , x−c, sa) = 0. This contradicts h1(x−3, . . . , x−c, sa) = 1. We con-
clude that h0(x−3, . . . , x−c−1, δ

−1
a (sa)) = 0 holds for any x−c−1.

Below we prove that f can be expressed by f0, f1, f2, h0, and h1. There
are four cases to consider.

Case h0(x−2, . . . , x−c, sa) = 1 & h1(x−3, . . . , x−c, sa) = 1 :
Let sx′

−2,x′
−1

= 〈x′
−1, x

′
−2, x−3, . . . , x−c, sa〉. Since h1(x−3, . . ., x−c, sa) =

1, λ(sx−2,x−1 , x0) does not depend on x−1 and x0, that is, |λ(sx−2,0, X)| =
|λ(sx−2,1, X)| = 1 and λ(sx−2,0, X) = λ(sx−2,1, X). Letting e = λ(sx−2,0, 0),
we have λ(sx−2,x−1 , x0) = e for any x−1, x0 ∈ X. Let x̄−2 ∈ X \ {x−2}.
From Lemma 5.4.4 (b), |λ(sx̄−2,0, X)| = 1 and λ(sx̄−2,0, X) = λ(sx̄−2,1, X) 
=
λ(sx−2,0, X). It follows that λ(sx̄−2,x−1 , x0) = e ⊕ 1 for any x−1, x0 ∈ X.
Therefore,

f(x0, x−1, . . . , x−c, sa) = λ(〈x−1, x−2, x−3, . . . , x−c, sa〉, x0)

= λ(〈0, x−2, x−3, . . . , x−c, sa〉, 0)

= λ(〈0, 0, x−3, . . . , x−c, sa〉, 0) ⊕ x−2

= f2(x−3, . . . , x−c, sa) ⊕ x−2.

Case h0(x−2, . . . , x−c, sa) = 1 & h1(x−3, . . . , x−c, sa) = 0 :
Since h0(x−2, . . . , x−c, sa) = 1, from the definition of h0, sx−2,0 is not

a 0-step state. Using Lemma 5.4.3 (a), sx−2,1 is not a 0-step state. It fol-
lows that λ(sx−2,x−1 , 0) = λ(sx−2,x−1 , 1) holds for any x−1 ∈ X. Since
h1(x−3, . . . , x−c, sa) = 0, we have λ(sx−2,0, 0) 
= λ(sx−2,1, 0). Therefore,

f(x0, x−1, . . . , x−c, sa) = λ(〈x−1, x−2, . . . , x−c, sa〉, x0)

= λ(〈x−1, x−2, . . . , x−c, sa〉, 0)

= λ(〈0, x−2, . . . , x−c, sa〉, 0) ⊕ x−1

= f1(x−2, . . . , x−c, sa) ⊕ x−1.

Case h0(x−2, . . . , x−c, sa) = 0 & h1(x−2, . . . , x−c+1, δa(sa)) = 1 :
Since h0(x−2, . . . , x−c, sa) = 0, from the definition of h0, sx−2,0 is a 0-

step state. Using Lemma 5.4.3 (a), sx−2,1 is a 0-step state. It follows that
λ(sx−2,x−1 , x0) = λ(sx−2,x−1 , 0) ⊕ x0. Therefore,

f(x0, x−1, . . . , x−c, sa) = λ(〈x−1, . . . , x−c, sa〉, x0)

= λ(〈x−1, . . . , x−c, sa〉, 0) ⊕ x0

= f0(x−1, . . . , x−c, sa) ⊕ x0.

Case h0(x−2, . . . , x−c, sa) = 0 & h1(x−2, . . . , x−c+1, δa(sa)) = 0 :
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Since h0(x−2, . . . , x−c, sa) = 0, as proven in the preceding case, sx−2,0 and
sx−2,1 are 0-step states. It follows that λ(sx−2,x−1 , x0) = λ(sx−2,x−1 , 0) ⊕ x0

for any x−1, x0 ∈ X. Using Lemma 5.4.1, 〈x0, x−1, x−2, . . . , x−c+1, δa(sa)〉,
denoted by sx−2,x−1,x0 , is not a 0-step state for any x−1, x0 ∈ X. It fol-
lows that λ(sx−2,x−1,x0 , 0) = λ(sx−2,x−1,x0 , 1) for any x−1, x0 ∈ X. On the
other hand, from h1(x−2, . . ., x−c+1, δa(sa)) = 0, we have λ(sx−2,x−1,0, 0) 
=
λ(sx−2,x−1,1, 0) for any x−1 ∈ X. Using Lemma 5.4.4 (a), λ(sx−2,0,0, 0) =
λ(sx−2,1,0, 0) if and only if λ(sx−2,0, 0) 
= λ(sx−2,1, 0). It follows that

λ(sx−2,0, 0) ⊕ λ(sx−2,1, 0) = λ(sx−2,0,0, 0) ⊕ λ(sx−2,1,0, 0) ⊕ 1

= f(0, 0, 0, x−2, . . . , x−c+1, δa(sa))⊕f(0, 0, 1, x−2, . . . , x−c+1, δa(sa))⊕1

= f1(0, x−2, . . . , x−c+1, δa(sa)) ⊕ f1(1, x−2, . . . , x−c+1, δa(sa)) ⊕ 1

= h2(x−2, . . . , x−c+1, δa(sa)) ⊕ 1.

Thus λ(sx−2,0, 0)⊕λ(sx−2,x−1 , 0) = x−1(h2(x−2, . . . , x−c+1, δa(sa))⊕1). This
yields

λ(sx−2,x−1 , 0) = λ(sx−2,0, 0) ⊕ x−1(h2(x−2, . . . , x−c+1, δa(sa)) ⊕ 1)

= f1(x−2, . . . , x−c, sa) ⊕ x−1(h2(x−2, . . . , x−c+1, δa(sa)) ⊕ 1).

Therefore,

f(x0, x−1, . . . , x−c, sa) = λ(〈x−1, x−2, . . . , x−c, sa〉, x0)

= λ(〈x−1, x−2, . . . , x−c, sa〉, 0) ⊕ x0

= f1(x−2, . . . , x−c, sa) ⊕ x−1(h2(x−2, . . . , x−c+1, δa(sa)) ⊕ 1) ⊕ x0. ��

Lemma 5.4.6. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory fi-
nite automaton SIM(Ma, f), and Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic. If
c � 2, w2,M = 1, X = Y = {0, 1} and M is weakly invertible with delay 2,
then there exists a single-valued mapping f2 from Xc−2 × Sa to Y such that

f(x0, . . . , x−c, sa) = f2(x−3, . . . , x−c, sa) ⊕ x−2.

Proof. Since M is a semi-input-memory finite automaton SIM(Ma, f)
and Ma is strongly cyclic, M is strongly connected. From Theorem 2.1.3
(f), it follows that |WM

2,s| = 1 holds for any state s of M . This yields
that λ(〈x−1, x−2, . . . , x−c, sa〉, x0), x−1, x0 = 0, 1 are the same. Since M

is weakly invertible with delay 2, we have λ(〈0, 0, x−3, . . . , x−c, sa〉, 0) 
=
λ(〈0, 1, x−3, . . . , x−c, sa〉, 0). Thus

f(x0, x−1, . . . , x−c, sa) = λ(〈x−1, . . . , x−c, sa〉, x0)

= λ(〈0, x−2, . . . , x−c, sa〉, 0)

= λ(〈0, 0, x−3, . . . , x−c, sa〉, 0) ⊕ x−2

= f2(x−3, . . . , x−c, sa) ⊕ x−2,
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where f2(x−3, . . . , x−c, sa) = f(0, 0, 0, x−3, . . . , x−c, sa). ��

Lemma 5.4.7. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory fi-
nite automaton SIM(Ma, f), and Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic. If
c � 2, w2,M = 4, X = Y = {0, 1} and M is weakly invertible with delay 2,
then there exists a single-valued mapping f0 from Xc × Sa to Y such that

f(x0, . . . , x−c, sa) = f0(x−1, . . . , x−c, sa) ⊕ x0.

Proof. Since M is a semi-input-memory finite automaton SIM(Ma, f)
and Ma is strongly cyclic, M is strongly connected. From Theorem 2.1.3
(f), it follows that |WM

2,s| = 4 holds for any state s of M . This yields that
λ(〈x−1, . . . , x−c, sa〉, 0) 
= λ(〈x−1, . . . , x−c, sa〉, 1). Thus f(x0, x−1, . . . , x−c,

sa) = λ(〈x−1, . . . , x−c, sa〉, x0) = λ(〈x−1, . . ., x−c, sa〉, 0) ⊕ x0 = f0(x−1, . . . ,

x−c, sa) ⊕ x0, where f0(x−1, . . . , x−c, sa) = f(0, x−1, . . . , x−c, sa). ��

Theorem 5.4.1. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory
finite automaton SIM(Ma, f), and Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic.
Let c � 2 and X = Y = {0, 1}. Then M is weakly invertible with delay 2 if
and only if one of the following conditions holds:

(a) There exists a single-valued mapping f0 from Xc × Sa to Y such that

f(x0, . . . , x−c, sa) = f0(x−1, . . . , x−c, sa) ⊕ x0.

(b) There exists a single-valued mapping f2 from Xc−2 × Sa to Y such
that

f(x0, . . . , x−c, sa) = f2(x−3, . . . , x−c, sa) ⊕ x−2.

(c) There exist single-valued mappings h0 from Xc−1 × Sa to {0, 1}, h1

from Xc−2×Sa to {0, 1}, f0 from Xc×Sa to Y , f1 from Xc−1×Sa to Y , and
f2 from Xc−2 × Sa to Y , such that (5.2) and (5.3) hold, where h2 is defined
by (5.4).

Proof. only if : From Theorem 2.1.3 (a), w2,M is in {1, 2, 4}. In the case of
w2,M = 4, from Lemma 5.4.7, the condition (a) holds. In the case of w2,M = 1,
from Lemma 5.4.6, the condition (b) holds. In the case of w2,M = 2, from
Lemma 5.4.5, the condition (c) holds.

if : Suppose that one of conditions (a), (b) and (c) holds. In the case of
(a), clearly, M is weakly invertible with delay 0. Thus M is weakly invertible
with delay 2. In the case of (b), it is easy to verify that M is weakly invertible
with delay 2.

Below we discuss the case (c). Suppose that the condition (c) holds.
Let s = 〈x−1, x−2, . . . , x−c, sa〉, si = 〈i, x−1, . . . , x−c+1, δa(sa)〉 and si,j =
〈j, i, x−1, . . ., x−c+2, δ2

a(sa)〉, i, j = 0, 1. To prove s is a t-step state for some
t, 0 � t � 2, there are several cases to consider.



5.4 Two Step Delay 173

In the case of h0(x−2, . . . , x−c, sa) = 0, from (5.3) in the condition (c),
λ(s, x0) = f(x0, . . . , x−c, sa) = f ′

0(x−1, . . . , x−c, sa) ⊕ x0 for any x0 ∈ X,
where f ′

0(x−1, . . ., x−c, sa) = f0(x−1, . . . , x−c, sa) or f1(x−2, . . . , x−c, sa) ⊕
x−1 ⊕ x−1h2(x−2, . . ., x−c+1, δa(sa)). It follows that s is a 0-step state.

In the case of h0(x−2, . . . , x−c, sa) = 1, from (5.2) in the condition (c),
h1(x−2, . . ., x−c+1, δa(sa)) = 0 holds; and from (5.3) in the condition (c),
we have λ(s, 0) = λ(s, 1). We further consider h0(x−1, . . . , x−c+1, δa(sa)) and
h1(x−1, . . ., x−c+2, δ2

a(sa)). In the subcase of h0(x−1, . . . , x−c+1, δa(sa)) =
1, from (5.3) in the condition (c), h0(x−1, . . . , x−c+1, δa(sa)) = 1 &
h1(x−2, . . . , x−c+1, δa(sa)) = 0 yields λ(s0, 0) = λ(s0, 1) 
= λ(s1, 0) =
λ(s1, 1). Thus s is a 1-step state. In the subcase of h0(x−1, . . ., x−c+1,
δa(sa)) = 0 & h1(x−1, . . ., x−c+2, δ2

a(sa)) = 1, from (5.2) in the condi-
tion (c), h0(x−1, . . ., x−c+1, δa(sa)) = 0 yields h0(x0, . . ., x−c+2, δ2

a(sa)) = 1
for any x0 ∈ X. From (5.3) in the condition (c), h0(x0, . . ., x−c+2, δ2

a(sa))
= 1 & h1(x−1, . . . , x−c+2, δ

2
a(sa)) = 1 yields λ(sx0,0, 0) = λ(sx0,0, 1) =

λ(sx0,1, 0) = λ(sx0,1, 1) for any x0 ∈ X and λ(s0,0, 0) 
= λ(s1,0, 0). Thus s is a
� 2-step state. It follows that s is a 2-step or 1-step state. In the subcase of
h0(x−1, . . . , x−c+1, δa(sa)) = 0 & h1(x−1, . . . , x−c+2, δ

2
a(sa)) = 0, from (5.3)

in the condition (c), λ(si, 0) 
= λ(si, 1) for i = 0, 1. From (5.2) in the condi-
tion (c), h0(x−1, . . . , x−c+1, δa(sa)) = 0 yields h0(x0, . . . , x−c+2, δ

2
a(sa)) =

1 for any x0 ∈ X. For any x0 ∈ X, since h0(x0, . . . , x−c+2, δ
2
a(sa)) =

1 & h1(x−1, . . . , x−c+2, δ
2
a(sa)) = 0, from (5.3) in the condition (c), we

have λ(sx0,0, 0) = λ(sx0,0, 1) 
= λ(sx0,1, 0) = λ(sx0,1, 1) and λ(sx0,0, 0) =
f1(x0, x−1, . . . , x−c+2, δ

2
a(sa)). Since h0(x−1, . . . , x−c+1, δa(sa)) = 0 &

h1(x−1, . . . , x−c+2, δ
2
a(sa)) = 0, from (5.3) and (5.4) in the condition (c),

we have λ(s0, 0) = f1(x−1, . . . , x−c+1, δa(sa)) and

λ(s1, 0) = f1(x−1, . . . , x−c+1, δa(sa)) ⊕ 1 ⊕ h2(x−1, . . . , x−c+2, δ
2
a(sa))

= f1(x−1, . . . , x−c+1, δa(sa)) ⊕ 1 ⊕ f1(0, x−1, . . . , x−c+2, δ
2
a(sa))

⊕ f1(1, x−1, . . . , x−c+2, δ
2
a(sa)).

It follows that λ(s0, 0) = λ(s1, 0) if and only if f1(0, x−1, . . . , x−c+2, δ2
a(sa)) 
=

f1(1, x−1, . . . , x−c+2, δ
2
a(sa)). Since λ(sx0,0, 0) = f1(x0, x−1, . . . , x−c+2, δ

2
a(sa))

for x0 = 0, 1, λ(s0, 0) = λ(s1, 0) if and only if λ(s0,0, 0) 
= λ(s1,0, 0). Noticing
that λ(s, 0) = λ(s, 1), λ(sx0 , 0) 
= λ(sx0 , 1) and λ(sx0,0, 0) = λ(sx0,0, 1) 
=
λ(sx0,1, 0) = λ(sx0,1, 1) for x0 = 0, 1, thus s is a 2-step state.

To sum up, if the condition (c) holds, then any state s of M is a t-step
state for some t, 0 � t � 2. Thus M is weakly invertible with delay 2. ��
Theorem 5.4.2. Let M = 〈X, Y, S, δ, λ〉 be a c-order semi-input-memory
finite automaton SIM(Ma, f), and Ma = 〈Ya, Sa, δa, λa〉 be strongly cyclic.
Let c � 2 and X = Y = {0, 1}. Then M is a feedforward inverse with delay
2 if and only if one of the following conditions holds:
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(a) There exists a single-valued mapping f0 from Xc × Sa to Y such that

f(x0, . . . , x−c, sa) = f0(x−1, . . . , x−c, sa) ⊕ x0.

(b) There exists a single-valued mapping f2 from Xc−2 × Sa to Y such
that

f(x0, . . . , x−c, sa) = f2(x−3, . . . , x−c, sa) ⊕ x−2.

(c) There exist single-valued mappings h0 from Xc−1 × Sa to {0, 1}, h1

from Xc−2×Sa to {0, 1}, f0 from Xc×Sa to Y, f1 from Xc−1×Sa to Y , and
f2 from Xc−2 × Sa to Y , such that (5.2) and (5.3) hold, where h2 is defined
by (5.4).

Proof. Since M , i.e., SIM(Ma, f), is a semi-input-memory finite automa-
ton and Ma is strongly cyclic, M is strongly connected. Using Theorem 2.2.2,
M is a feedforward inverse with delay 2 if and only if M is invertible with
delay 2. From Theorem 5.4.1, M is a feedforward inverse with delay 2 if and
only if one of the conditions (a), (b) and (c) holds. ��

We discuss briefly h0 and h1 in (5.2). Suppose that (5.2) holds for any
x−1, . . ., x−c in X and any sa in Sa. Then we have

h0(x−2, . . . , x−c, sa) = h0(x−2, . . . , x−c, sa)

∨ (h0(0, x−2, . . . , x−c+1, δa(sa)) ⊕ 1)

∨ (h0(1, x−2, . . . , x−c+1, δa(sa)) ⊕ 1),

h1(x−3, . . . , x−c, sa) = h1(x−3, . . . , x−c, sa)

& (h0(x−3, . . . , x−c, 0, δ−1
a (sa)) ⊕ 1)

& (h0(x−3, . . . , x−c, 1, δ−1
a (sa)) ⊕ 1),

where ∨ stands for the logical-or operation, that is, 1 ∨ 1 = 1 ∨ 0 = 0 ∨ 1 =
1, 0 ∨ 0 = 0. Conversely, given arbitrarily single-valued mappings h′

0 from
Xc−1 × Sa to {0, 1} and h′

1 from Xc−2 × Sa to {0, 1}, define

h0(x−2, . . . , x−c, sa) = h′
0(x−2, . . . , x−c, sa)

∨ (h′
0(0, x−2, . . . , x−c+1, δa(sa)) ⊕ 1)

∨ (h′
0(1, x−2, . . . , x−c+1, δa(sa)) ⊕ 1),

h1(x−3, . . . , x−c, sa) = h′
1(x−3, . . . , x−c, sa) (5.5)

& (h0(x−3, . . . , x−c, 0, δ−1
a (sa)) ⊕ 1)

& (h0(x−3, . . . , x−c, 1, δ−1
a (sa)) ⊕ 1).

It is easy to see that h0 and h1 satisfy (5.2). We conclude that h0 and h1

satisfy (5.2) if and only if h0 and h1 can be defined by (5.5).
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Historical Notes

The structure of feedforward inverse finite automata is first studied in [100]
for delay 0 and for delay 1 in binary case. References [4, 5, 146] present a
characterization for feedforward inverse finite automata with delay 1 of which
sizes of the input and output alphabets are the same, and [129] introduces
another characterization of them by means of mutual invertibility. Reference
[153] gives the first characterization for binary feedforward inverse finite au-
tomata with delay 2, and [130] gives another characterization of them by
means of mutual invertibility. Reference [141] deals with the structure of bi-
nary feedforward inverse finite automata with delay 3. Sections 5.1 and 5.2
are based on [100]. Section 5.3 is based on [129]. And Sect. 5.4 is based on
[130].
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This chapter investigates the following problem: given an invertible

(respectively inverse, weakly invertible, weak inverse, and feedforward in-
vertible) finite automaton, characterize the structure of the set of all its in-
verses (respectively original inverses, weak inverses, original weak inverses
and weak inverses with bounded error propagation).

To characterize the set of all inverses (or weak inverses, or weak inverses
with bounded error propagation) of a given finite automaton, the measures
are, loosely speaking, first taking one member in the set and making a
partial finite automaton by restricting its inputs, then constructing the
set from this partial finite automaton. As an auxiliary tool, partial finite
automata and partial semi-input-memory finite automata are defined.

To characterize the set of all original inverses (or original weak inverses)
of a given finite automaton, we use the state tree method and results in
Sect. 1.6 of Chap. 1.
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This chapter investigates the following problem: given an invertible (respec-
tively inverse, weakly invertible, weak inverse, feedforward invertible) finite
automaton, characterize the structure of the set of all its inverses (respec-
tively original inverses, weak inverses, original weak inverses, weak inverses
with bounded error propagation).

To characterize the set of all inverses (or weak inverses, or weak inverses
with bounded error propagation) of a given finite automaton, the measures
are, loosely speaking, first taking one member in the set and making a partial
finite automaton by restricting its inputs, then constructing the set from this
partial finite automaton. As an auxiliary tool, partial finite automata and
partial semi-input-memory finite automata are defined.
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To characterize the set of all original inverses (or original weak inverses) of
a given finite automaton, we use the state tree method and results in Sect. 1.6
of Chap. 1.

6.1 Some Variants of Finite Automata

6.1.1 Partial Finite Automata

A partial finite automaton is a quintuple 〈X, Y, S, δ, λ〉, where X, Y and S are
nonempty finite sets, δ is a single-valued mapping from a subset of S ×X to
S, and λ is a single-valued mapping from a subset of S×X to Y . X, Y and S

are called the input alphabet, the output alphabet and the state alphabet of the
partial finite automaton, respectively; and δ and λ are called the next state
function and the output function of the partial finite automaton, respectively.

A partial finite automaton may naturally be expanded to a finite automa-
ton. Taken a special symbol, say , to stand for the “undefined symbol”, which
is not in S or Y . Denote the domain of δ by Δ and the domain of λ by Λ.
Let

δ(s, x) = , if (s, x) ∈ (S × X) \ Δ or s = ,

λ(s, x) = , if (s, x) ∈ (S × X) \ Λ or s = .

〈X, Y ∪ { }, S ∪ { }, δ, λ〉 is a finite automaton, and is called the trivial ex-
pansion of M .

By expanding domains of δ and λ of the trivial expansion of the partial
finite automaton M , the domain of δ of M may be expanded to (S∪{ })×X∗;
the domain of λ of M may be expanded to (S ∪ { }) × (X∗ ∪ Xω).

Let s ∈ S and α ∈ X∗. If |α| > 0 yields δ(s, α1) ∈ S, where α1 is the prefix
of α of length |α|−1, we say that α is applicable to s. Clearly, if |α| � 1, then
α is applicable to s.

Let α = a1 . . . ar and β = b1 . . . br, where a1, b1, . . . , ar, br ∈ Y ∪ { }. If
for any i, 1 � i � r, ai 
= and bi 
= implies ai = bi, we say that α and
β are compatible, denoted by α ≈ β. If for any i, 1 � i � r, bi 
= implies
ai = bi, we say that α is stronger than β, denoted by β ≺ α. Notice that
the relation ≈ over words is reflexive and symmetric and the relation ≺ over
words is reflexive and transitive. It is easy to see that α ≺ β and β ≺ α if
and only if α = β.

Let M = 〈X, Y, S, δ, λ〉 be a partial finite automaton. For any states s1

and s2 of M , if for any α in X∗, that α is applicable to s1 and s2 implies
that λ1(s1, α) ≈ λ2(s2, α), we say that s1 and s2 are compatible, denoted by
s1 ≈ s2. Notice that the relation ≈ over states is reflexive and symmetric. It
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is easy to see that for any s1, s2 in S and any α in X∗, if s1 ≈ s2 and δ(si, α)
is defined, i = 1, 2, then δ(s1, α) ≈ δ(s2, α). For any nonempty subset T of S,
if any two states in T are compatible, T is called a compatible set of M . If T

is a compatible set of M and for any T ′, T ⊂ T ′ ⊆ S, T ′ is not a compatible
set of M , T is called a maximum compatible set of M .

Let C1, . . ., Ck be k compatible sets of M . If ∪k
i=1Ci = S, and for any i,

1 � i � k, and any x in X, there exists j, 1 � j � k, such that δ(Ci, x), i.e.,
{δ(s, x) | s ∈ Ci, δ(s, x) is defined}, is a subset of Cj , the sequence C1, . . .,
Ck is called a closed compatible family of M . Notice that Ci and Ch may be
the same set, i 
= h.

Let C1, . . ., Ck be a closed compatible family of M = 〈X, Y, S, δ, λ〉. Let
X ′ = X, Y ′ = Y , S′ = {c1, . . . , ck},

δ′(ci, x) =

{
cj , if δ(Ci, x) 
= ∅,

undefined, if δ(Ci, x) = ∅,

λ′(ci, x) =

{
λ(s, x), if ∃s1(s1 ∈ Ci & λ(s1, x) is defined),
undefined, otherwise,

i = 1, . . . , k, x ∈ X,

where j is an arbitrary integer satisfying δ(Ci, x) ⊆ Cj , and s is an arbitrary
state in Ci such that λ(s, x) is defined. Since Ci is compatible, the value
of λ′(ci, x) is independent of the selection of s. Let M ′ = 〈X ′, Y ′, S′, δ′, λ′〉.
Then M ′ is a partial finite automaton. We use M(C1, . . . , Ck) to denote the
set of all such M ′.

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two partial finite automata with
X1 = X2. Let si be in Si, i = 1, 2. If for any α in X∗

1 , that α is applicable to
s1 implies that α is applicable to s2 and λ1(s1, α) ≺ λ2(s2, α), we say that
s2 is stronger than s1, denoted by s1 ≺ s2. If for any s1 in S1, there exists s2

in S2 such that s1 ≺ s2, we say that M2 is stronger than M1, denoted by M1

≺ M2. If for any α in X∗
1 , α is applicable to s1 if and only if α is applicable

to s2, and λ1(s1, α) = λ2(s2, α) whenever α is applicable to s1, s1 and s2 are
said to be equivalent, denoted by s1 ∼ s2. If for any s1 in S1, there exists s2

in S2 such that s1 ∼ s2, and for any s2 in S2, there exists s1 in S1 such that
s2 ∼ s1, M1 and M2 are said to be equivalent, denoted by M1 ∼ M2.

Similar to the case of finite automata, for any s1 in S1, any s2 in S2, and
any α in X∗

1 , if δi(si, α), i = 1, 2 are defined and s1 ∼ s2, then δ1(s1, α) ∼
δ2(s2, α). And for any s1 in S1, any s2 in S2, and any α in X∗

1 , if δi(si, α),
i = 1, 2 are defined and s1 ≺ s2, then δ1(s1, α) ≺ δ2(s2, α).

From the definition, it is easy to show that for any positive integer k, any
s1 in S1 and any s2 in S2, a sufficient and necessary condition of s1 ∼ s2 is



180 6. Some Topics on Structure Problem

the following: for any α ∈ X∗
1 with |α| � k, α is applicable to s1 if and only

if α is applicable to s2, λ1(s1, α) = λ2(s2, α) whenever α is applicable to s1,
and for any α ∈ X∗

1 with |α| = k, δ1(s1, α) is defined if and only if δ2(s2, α)
is defined, and δ1(s1, α) ∼ δ2(s2, α) whenever δ1(s1, α) is defined.

Notice that both the relation ≺ over states and the relation ≺ over partial
finite automata are reflexive and transitive, and both the relation ∼ over
states and the relation ∼ over partial finite automata are reflexive, symmetric
and transitive. It is easy to see that s1 ∼ s2 if and only if s1 ≺ s2 and s2 ≺
s1.

We point out that in the case of finite automata, relations s1 ≺ s2, s1 ≈
s2 and s1 ∼ s2 are the same.

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two partial finite automata with
X1 = X2. Assume that for any i, 1 � i � 2, any si in Si and any x in X1,
δi(si, x) is defined if and only if λi(si, x) is defined. Then for any si in Si,
i = 1, 2, s1 ∼ s2 if and only if for any α in X∗

1 , λ1(s1, α) is defined (i.e., each
letter in λ1(s1, α) is defined) if and only if λ2(s2, α) is defined, and λ1(s1, α) =
λ2(s2, α) whenever they are defined. In fact, s1 ∼ s2 if and only if for any α in
X∗

1 and any x in X1, αx is applicable to s1 if and only if αx is applicable to s2,
and for any α in X∗

1 and any x in X1, λ1(s1, αx) = λ2(s2, αx) whenever αx

is applicable to s1. From the assumption that λi(si, α) is defined if and only
if δi(si, α) is defined, αx is applicable to si if and only if λi(si, α) is defined.
Thus the condition that for any α in X∗

1 and any x in X1, αx is applicable
to s1 if and only if αx is applicable to s2, is equivalent to the condition
that for any α in X∗

1 , λ1(s1, α) is defined if and only if λ2(s2, α) is defined.
Similarly, the condition that for any α in X∗

1 and any x in X1, λ1(s1, αx) =
λ2(s2, αx) whenever αx is applicable to s1, is equivalent to the condition that
for any α in X∗

1 and any x in X1, λ1(s1, αx) = λ2(s2, αx) whenever λ1(s1, α)
is defined. Therefore, s1 ∼ s2 if and only if for any α ∈ X∗

1 , λ1(s1, α) is
defined if and only if λ2(s2, α) is defined, and for any α ∈ X∗

1 and x ∈ X1,
λ1(s1, αx) = λ2(s2, αx) whenever λ1(s1, α) is defined. Thus s1 ∼ s2 if and
only if for any α ∈ X∗

1 , λ1(s1, α) is defined if and only if λ2(s2, α) is defined,
and for any α ∈ X∗

1 and x ∈ X1, λ1(s1, αx) = λ2(s2, αx) whenever λ1(s1, α)
and λ2(s2, α) are defined. We conclude that s1 ∼ s2 if and only if for any α

in X∗
1 , λ1(s1, α) is defined if and only if λ2(s2, α) is defined, and λ1(s1, α) =

λ2(s2, α) whenever they are defined.
Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two partial finite automata with

X1 = X2. Assume that for any i, 1 � i � 2, any si in Si and any x in X1,
δi(si, x) is defined if and only if λi(si, x) is defined. Then for any si in Si,
i = 1, 2, s1 ≺ s2 if and only if for any α in X∗

1 , λ2(s2, α) is defined and
λ1(s1, α) = λ2(s2, α) whenever λ1(s1, α) is defined. In fact, s1 ≺ s2 if and
only if for any α in X∗

1 and any x in X1, αx is applicable to s2 and λ1(s1, αx)
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≺ λ2(s2, αx) whenever αx is applicable to s1. Thus s1 ≺ s2 if and only if for
any α in X∗

1 and any x in X1, λ2(s2, α) is defined and λ1(s1, αx) ≺ λ2(s2, αx)
whenever λ1(s1, α) is defined. Therefore, s1 ≺ s2 if and only if for any α in X∗

1

and any x in X1, λ2(s2, αx) is defined and λ1(s1, αx) = λ2(s2, αx) whenever
λ1(s1, αx) is defined. It follows that s1 ≺ s2 if and only if for any α in X∗

1 ,
λ2(s2, α) is defined and λ1(s1, α) = λ2(s2, α) whenever λ1(s1, α) is defined.

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two partial finite automata with
X1 = X2. Assume that for any i, 1 � i � 2, any si in Si and any x in X1,
δi(si, x) is defined if and only if λi(si, x) is defined. It is easy to show that
for any positive integer k, any s1 in S1 and any s2 in S2, a sufficient and
necessary condition of s1 ∼ s2 is the following: for any α ∈ X∗

1 with |α| � k,
λ1(s1, α) is defined if and only if λ2(s2, α) is defined, λ1(s1, α) = λ2(s2, α)
whenever they are defined, and δ1(s1, α) ∼ δ2(s2, α) whenever δ1(s1, α) is
defined and |α| = k.

Lemma 6.1.1. Let Mi = 〈X, Yi, Si, δi, λi〉 be a partial finite automaton and
si ∈ Si, i = 1, 2.

(a) For any si ∈ Si, i = 1, 2, and any α ∈ X∗, if s1 ≺ s2 and δ1(s1, α)
is defined, then δ2(s2, α) is defined and δ1(s1, α) ≺ δ2(s2, α).

(b) For any s0, s1 ∈ S1, and any s2 ∈ S2, if s0 ≺ s2 and s1 ≺ s2, then
s0 ≈ s1.

Proof. (a) Let β ∈ X∗ be applicable to δ1(s1, α). Then αβ is applicable
to s1. From s1 ≺ s2, αβ is applicable to s2 and λ1(s1, αβ) ≺ λ2(s2, αβ).
Take β1 ∈ X. Clearly, β1 is applicable to δ1(s1, α). Thus αβ1 is applicable
to s2. It follows that δ2(s2, α) is defined. Since αβ is applicable to s2, β is
applicable to δ2(s2, α). Since λ1(s1, αβ) ≺ λ2(s2, αβ), we have λ1(δ1(s1, α), β)
≺ λ2(δ2(s2, α), β). Therefore, δ1(s1, α) ≺ δ2(s2, α).

(b) Let α in X∗ be applicable to s0 and s1. Since s0 ≺ s2 and s1 ≺ s2, α

is applicable to s2 and λ1(si, α) ≺ λ2(s2, α), i = 0, 1. It follows that λ1(s0, α)
≈ λ1(s1, α). Therefore, s0 ≈ s1. ��

Lemma 6.1.2. Let M = 〈X, Y, S, δ, λ〉 be a partial finite automaton, and
C1, . . ., Ck a closed compatible family of M . For any M ′ = 〈X, Y, {c1, . . . , ck},
δ′, λ′〉 in M(C1, . . . , Ck) and any s in Ci, 1 � i � k, we have s ≺ ci.

Proof. We prove by induction on the length of α that for any i, 1 � i � k,
any s in Ci, and any α in X∗, if α is applicable to s, then α is applicable
to ci and λ(s, α) ≺ λ′(ci, α). Basis : |α| � 1. Clearly, α is applicable to
s and ci. From the definition of λ′, it is evident that λ(s, α) ≺ λ′(ci, α).
Thus s ≺ ci. Induction step : Suppose that for any α of length j(� 1) the
proposition has been proven. To prove the case j + 1, let s ∈ Ci and α ∈
X∗ with |α| = j + 1. Suppose that α is applicable to s. Let α = xα′, where
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x ∈ X. Then |α′| = j. Since |α′| � 1, δ(s, x) is defined. From the definition
of δ′, δ′(ci, x) is defined and δ(s, x) ∈ Ch, where ch = δ′(ci, x). Since α is
applicable to s, α′ is applicable to δ(s, x). From the induction hypothesis,
α′ is applicable to δ′(ci, x) and λ(δ(s, x), α′) ≺ λ′(δ′(ci, x), α′). Since s ∈ Ci,
we have λ(s, x) ≺ λ′(ci, x). It follows that λ(s, α) = λ(s, x)λ(δ(s, x), α′) ≺
λ′(ci, x)λ′(δ′(ci, x), α′) = λ′(ci, α). ��

Theorem 6.1.1. Let M be a partial finite automaton, and C1, . . ., Ck a
closed compatible family of M . For any M ′ in M(C1, . . . , Ck), we have M ≺
M ′.

Proof. Let M ′ = 〈X, Y, {c1, . . . , ck}, δ′, λ′〉. Since ∪k
i=1Ci is the state al-

phabet of M , for any state s of M , there exists i, 1 � i � k, such that s ∈
Ci. From Lemma 6.1.2, we have s ≺ ci. Therefore, M ≺ M ′. ��

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two partial finite automata. If
X1 ⊆ X2, Y1 ⊆ Y2, S1 ⊆ S2, and for any s in S1 and any x in X1, that δ1(s, x)
is defined implies that δ2(s, x) is defined and δ1(s, x) = δ2(s, x), and that
λ1(s, x) is defined implies that λ2(s, x) is defined and λ1(s, x) = λ2(s, x), M1

is called a partial finite subautomaton of M2, denoted by M1 � M2. For any
nonempty subset S′

2 of S2 and any nonempty subset X ′
2 of X2, if δ2(S′

2, X
′
2) =

{s′ | there exist s2 ∈ S′
2 and x ∈ X2 such that s′ = δ2(s2, x) ∈ S2} ⊆ S′

2, S′
2

is said to be closed with respect to X ′
2 in M2. Clearly, if S′

2 is closed with
respect to X ′

2 in M2, then 〈X ′
2, Y2, S′

2, δ2|S′
2×X′

2
, λ2|S′

2×X′
2
〉 is a partial finite

subautomaton of M2, where δ2|S′
2×X′

2
and λ2|S′

2×X′
2

are restrictions of δ2 and
λ2 on S′

2 × X ′
2 , respectively.

Notice that the relation � on partial finite automata is reflexive and
transitive. It is easy to see that M1 � M2 implies M1 ≺ M2 in the case of
X1 = X2.

Let Mi = 〈Xi, Yi, Si, δi, λi〉, i = 1, 2 be two partial finite automata. M1

and M2 are said to be isomorphic, if X1 = X2, Y1 = Y2 and there exists
a one-to-one mapping ϕ from S1 onto S2 such that for any s1 in S1 and
any x in X1, δ1(s1, x) is defined if and only if δ2(ϕ(s1), x) is defined, and
ϕ(δ1(s1, x)) = δ2(ϕ(s1), x) whenever they are defined, and λ1(s1, x) is defined
if and only if λ2(ϕ(s1), x) is defined, and λ1(s1, x) = λ2(ϕ(s1), x) whenever
they are defined. ϕ is called an isomorphism from M1 to M2.

Notice that the isomorphic relation on partial finite automata is reflexive,
symmetric and transitive. Clearly, if M1 and M2 are isomorphic, then M1 ∼
M2 and M1 ≺ M2.

Theorem 6.1.2. Let M = 〈X, Y, S, δ, λ〉 and M ′′ = 〈X ′′, Y ′′, S′′, δ′′, λ′′〉 be
two partial finite automata. If M ≺ M ′′ and Y = Y ′′, then there exist a
partial finite subautomaton M ′′′ of M ′′, a closed compatible family C1, . . . ,
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Ck of M, and a partial finite automaton M ′ in M(C1, . . . , Ck) such that M ′

and M ′′′ are isomorphic.

Proof. Suppose that M ≺ M ′′. Then X = X ′′. Let S′′′ = {s′′ | s′′ ∈
S′′,∃s(s ∈ S & s ≺ s′′)}. For any s′′′ in S′′′, let ψ(s′′′) = {s | s ∈ S, s ≺ s′′′}.
Clearly, ψ(s′′′) 
= ∅. From M ≺ M ′′, we have ∪s′′′∈S′′′ψ(s′′′) = S. From
Lemma 6.1.1 (b), for any s′′′ in S′′′, ψ(s′′′) is a compatible set of M . Let s′′′

∈ S′′′, x ∈ X, and δ(ψ(s′′′), x) 
= ∅. Let s be in ψ(s′′′), so that δ(s, x) is
defined. Since s ≺ s′′′, from Lemma 6.1.1 (a), δ′′(s′′′, x) is defined and δ(s, x)
≺ δ′′(s′′′, x). Thus δ(ψ(s′′′), x) ⊆ ψ(δ′′(s′′′, x)). Let states of S′′′ be s′′′1 , . . .,
s′′′k , where k = |S′′′|. Let Ci = ψ(s′′′i ), i = 1, . . . , k. We conclude that the
sequence C1, . . ., Ck is a closed compatible family of M .

We construct a partial finite automaton M ′′′ = 〈X ′′, Y ′′, S′′′, δ′′′, λ′′′〉 as
follows. For any s′′′i in S′′′ and any x in X, whenever δ(Ci, x) 
= ∅, there
exists s in ψ(s′′′i ) such that δ(s, x) is defined. In the preceding paragraph,
we have proven that for any s′′′ ∈ S′′′ and any x ∈ X, δ(ψ(s′′′), x) 
= ∅

yields δ(ψ(s′′′), x) ⊆ ψ(δ′′(s′′′, x)). Thus δ(ψ(s′′′i ), x) ⊆ ψ(δ′′(s′′′i , x)). Since
δ(ψ(s′′′i ), x) = δ(Ci, x) 
= ∅, δ′′(s′′′i , x) is defined and in S′′′. If δ(Ci, x) 
= ∅,
we define δ′′′(s′′′i , x) = δ′′(s′′′i , x); otherwise, δ′′′(s′′′i , x) is undefined. Whenever
there exists s in Ci such that λ(s, x) is defined, since x is applicable to s and
s ≺ s′′′i , we have λ(s, x) ≺ λ′′(s′′′i , x). It follows that λ′′(s′′′i , x) is defined and
λ(s, x) = λ′′(s′′′i , x). If there exists s in Ci such that λ(s, x) is defined, we
define λ′′′(s′′′i , x) = λ′′(s′′′i , x); otherwise, λ′′′(s′′′i , x) is undefined. It is easy to
see that M ′′′ is a partial finite subautomaton of M ′′.

Take a partial finite automaton 〈X, Y, S′, δ′, λ′〉 in M(C1, . . . , Ck) as M ′,
where S′ = {c1, . . . , ck},

δ′(ci, x) =

{
cj , if δ(Ci, x) 
= ∅,

undefined, if δ(Ci, x) = ∅,

λ′(ci, x) =

{
λ(s, x), if ∃s1(s1 ∈ Ci & λ(s1, x) is defined),
undefined, otherwise,

i = 1, . . . , k, x ∈ X,

j is the integer satisfying δ′′(s′′′i , x) = s′′′j , and s is an arbitrary state in Ci

such that λ(s, x) is defined. In the first paragraph of the proof, we have proven
that for any s′′′ ∈ S′′′ and any x ∈ X, δ(ψ(s′′′), x) 
= ∅ yields δ(ψ(s′′′), x) ⊆
ψ(δ′′(s′′′, x)). From δ′′(s′′′i , x) = s′′′j , we have δ(ψ(s′′′i ), x) ⊆ ψ(δ′′(s′′′i , x)) =
ψ(s′′′j ), that is, δ(Ci, x) ⊆ Cj . Thus M ′ is in M(C1, . . . , Ck) indeed.

We prove that M ′ and M ′′′ are isomorphic. Let ϕ(ci) = s′′′i , i = 1, . . . , k.
Clearly, ϕ is a one-to-one mapping from S′ onto S′′′. From the constructions
of M ′′′ and M ′, it is easy to see that δ′′′(s′′′i , x) is defined if and only if
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δ′(ci, x) is defined, and that whenever they are defined, δ′′′(s′′′i , x) = s′′′j if
and only if δ′(ci, x) = cj . Similarly, λ′′′(s′′′i , x) is defined if and only if λ′(ci, x)
is defined, and whenever they are defined, λ′′′(s′′′i , x) = λ′(ci, x). Thus ϕ is an
isomorphism from M ′ to M ′′′. We conclude that M ′ and M ′′′ are isomorphic.

��

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton, and M ′ = 〈Y, X, S′, δ′, λ′〉
a partial finite automaton. For any states s in S and s′ in S′, if

(∀α)Xω (∃α0)(X∪{ })∗ [ λ′(s′, λ(s, α)) = α0α & |α0| = τ ],

(s′, s) is called a match pair with delay τ or say that s′ τ -matches s. Clearly,
if s′ τ -matches s and β = λ(s, α) for some α in X∗, then δ′(s′, β) τ -matches
δ(s, α). M ′ is called a weak inverse with delay τ of M , if for any s in S, there
exists s′ in S′ such that (s′, s) is a match pair with delay τ .

Let M = 〈X, Y, S, δ, λ〉 be a partial finite automaton. The states of M

is said to be reachable from a state s (respectively from a subset I of S),
if for any state s′ in S, there exists α in X∗ such that s′ = δ(s, α) holds
(respectively holds for some s in I).

6.1.2 Nondeterministic Finite Automata

A nondeterministic finite automaton is a quintuple 〈X, Y, S, δ, λ〉, where X,
Y and S are nonempty finite sets, δ is a single-valued mapping from S × X

to 2S \{∅}, and λ is a single-valued mapping from S×X to 2Y \{∅}, where
2T stands for the power set of a set T , that is, 2T = {T ′ | T ′ ⊆ T}. X, Y and
S are called the input alphabet, the output alphabet and the state alphabet of
the nondeterministic finite automaton, respectively; and δ and λ are called
the next state function and the output function of the nondeterministic finite
automaton, respectively.

The domain of δ may be expanded to S × X∗ as follows.

δ(s, ε) = {s},
δ(s, αx) = δ(δ(s, α), x), i.e.,∪s′∈δ(s,α)δ(s′, x),

s ∈ S, α ∈ X∗, x ∈ X.

It is easy to see that for any s0, sl ∈ S and any x0, . . . , xl−1 ∈ X, sl ∈
δ(s0, x0 . . . ll−1) if and only if there exist s1, . . . , sl−1 ∈ S such that si+1 ∈
δ(si, xi), i = 0, 1, . . . , l − 1.

The domain of λ may be expanded to S × (X∗ ∪Xω) as follows. For any
state s0 ∈ S and any l input letters x0, x1, . . . , xl−1 ∈ X, λ(s0, x0x1 . . . xl−1)
is a subset of the set of all the sequences of length l over Y satisfying the
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condition: for any y0, y1, . . ., yl−1 in Y , y0y1 . . . yl−1 is in λ(s0, x0x1 . . . xl−1)
if and only if there exist si, i = 1, 2, . . . , l − 1 in S such that

si+1 ∈ δ(si, xi), i = 0, 1, . . . , l − 2

and

yi ∈ λ(si, xi), i = 0, 1, . . . , l − 1.

In the case of l = 0, x0x1 . . . xl−1 and y0y1 . . . yl−1 mean the empty word
ε. For any state s0 ∈ S and any infinite input letters x0, x1, . . . ∈ X,
λ(s0, x0x1 . . .) is a subset of Y ω satisfying the condition: for any y0, y1, . . .

in Y , y0y1 . . . is in λ(s0, x0x1 . . .) if and only if for any l � 0, y0y1 . . . yl−1 is
in λ(s0, x0x1 . . . xl−1).

Let M = 〈X, Y, S, δ, λ〉 be a nondeterministic finite automaton, and M ′ =
〈Y , X, S′, δ′, λ′〉 a finite automaton. For any states s in S and s′ in S′,
(s′, s) is called a match pair with delay τ or say that s′ τ -matches s, if
for any l � τ , any x0, x1, . . . , xl, z0, z1, . . . , zl in X and any y0, y1, . . . , yl

in Y , y0y1 . . . yl ∈ λ(s, x0x1 . . . xl) and z0z1 . . . zl = λ′(s′, y0y1 . . . yl) yield
zτzτ+1 . . . zl = x0x1 . . . xl−τ . M ′ is called an inverse with delay τ of M , if for
any s in S and any s′ in S′, (s′, s) is a match pair with delay τ . M ′ is called
a weak inverse with delay τ of M , if for any s in S, there exists s′ in S′ such
that (s′, s) is a match pair with delay τ .

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton, and M ′ = 〈Y, X, S′, δ′, λ′〉
a nondeterministic finite automaton. For any states s in S and s′ in S′,
(s′, s) is called a match pair with delay τ or say that s′ τ -matches s, if
for any l � τ , any x0, x1, . . . , xl, z0, z1, . . . , zl in X and any y0, y1, . . . , yl

in Y , y0y1 . . . yl = λ(s, x0x1 . . . xl) and z0z1 . . . zl ∈ λ′(s′, y0y1 . . . yl) yield
zτzτ+1 . . . zl = x0x1 . . . xl−τ . M ′ is called an inverse with delay τ of M , if for
any s in S and any s′ in S′, (s′, s) is a match pair with delay τ .

Let M = 〈X, Y, S, δ, λ〉 be a finite automaton, and M ′ = 〈X, Y ′, S′, δ′, λ′〉
a nondeterministic finite automaton. For any states s in S and s′ in S′, if for
any α ∈ X∗, λ(s, α) is in λ′(s′, α), s′ is said to be stronger than s, denoted by
s ≺ s′. If for any s in S, there exists s′ in S′ such that s ≺ s′, we say that M ′

is stronger than M , denoted by M ≺ M ′. It is easy to verify that whenever
M ′ is a finite automaton also, s ≺ s′ if and only if s ∼ s′, and the definition
of M ≺ M ′ here coincides with the definition in Sect. 1.2 of Chap. 1.

6.2 Inverses of a Finite Automaton

For any finite automaton M = 〈X, Y, S, δ, λ〉, let δM be a single-valued map-
ping from 2S × Y to 2S , defined by
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δM (T, y) = {δ(s, x) | s ∈ T, x ∈ X, y = λ(s, x)},
T ⊆ S, y ∈ Y.

Notice that δM (T, y) = ∅ holds if y 
= λ(s, x) holds for any s ∈ T and any
x ∈ X. Expand the domain of δM to 2S × Y ∗ as follows:

δM (T, ε) = T,

δM (T, βy) = δM (δM (T, β), y),

T ⊆ S, β ∈ Y ∗, y ∈ Y.

It is easy to prove by induction on l that for any T0,Tl ⊆ S, and any y0, . . .,
yl−1 ∈ Y , δM (T0, y0 . . . yl−1) = Tl if and only if there exist subsets T1, . . .,
Tl−1 of S such that Ti+1 = δM (Ti, yi), i = 0, 1, . . . , l − 1. It immediately
follows that δM (T, αβ) = δM (δM (T, α), β) holds for any T ⊆ S and any α,
β ∈ Y ∗. Moreover, we can prove by induction on l the following assertion:
for any T0 ⊆ S and any y0, . . ., yl−1 ∈ Y , if δM (T0, y0 . . . yl−1) 
= ∅, then for
any sl in δM (T0, y0 . . . yl−1) there exist s0 in T0 and α in X∗ of length l such
that sl = δ(s0, α) and y0 . . . yl−1 = λ(s0, α). Conversely, it is evident that for
any T0 ⊆ S and any y0, . . ., yl−1 ∈ Y , if there exist s0 in T0 and α in X∗

of length l such that y0 . . . yl−1 = λ(s0, α), then δM (T0, y0 . . . yl−1) 
= ∅ and
δ(s0, α) ∈ δM (T0, y0 . . . yl−1).

Given an invertible finite automaton M = 〈X, Y, S, δ, λ〉 with delay τ ,
without loss of generality, we assume λ(S,X) = Y .

Let RM = {λ(s, α) | s ∈ S, α ∈ X∗}. Let Mout = 〈Y, 2S , δM , S, SM \
{∅}〉 be a finite automaton recognizer, where SM = {δM (S, β) | β ∈ Y ∗}.
We prove that Mout recognizes RM . Suppose y0 . . . yl−1 ∈ RM . Then there
exist s0 ∈ S and α ∈ X∗ such that y0 . . . yl−1 = λ(s0, α). It follows that
δM (S, y0 . . . yl−1) 
= ∅. Thus δM (S, y0 . . . yl−1) ∈ SM . Conversely, suppose
δM (S, y0 . . . yl−1) ∈ SM . Then δM (S, y0 . . . yl−1) 
= ∅. Take arbitrarily a state
sl in δM (S, y0 . . . yl−1). Then there exist s0 in S and α in X∗ of length l such
that sl = δ(s0, α) and y0 . . . yl−1 = λ(s0, α). It follows that y0 . . . yl−1 ∈ RM .
We conclude that Mout recognizes RM . Point out that if β ∈ RM , then there
exists y ∈ Y such that βy ∈ RM .

Let M ′ = 〈Y, X, S′, δ′, λ′〉 be an inverse finite automaton with delay τ of
M . We construct a partial finite automaton M̄ ′ = 〈Y, X, S̄′, δ̄′, λ̄′〉 from M ′

and M , where

S̄′ = {〈δM (S, β), δ′(s′, β)〉 | s′ ∈ S′, β ∈ Y ∗, δM (S, β) 
= ∅},

δ̄′(〈t, s′〉, y) =

{
〈δM (t, y), δ′(s′, y)〉, if δM (t, y) 
= ∅,

undefined, otherwise,
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λ̄′(〈t, s′〉, y) =

{
λ′(s′, y), if δM (t, y) 
= ∅,

undefined, otherwise,

〈t, s′〉 ∈ S̄′, y ∈ Y.

M̄ ′ is referred to as the input restriction of M ′ by M .
Clearly, for any state 〈t, s′〉 of M̄ ′ and any β ∈ Y ∗, δ̄′(〈t, s′〉, β) =

〈δM (t, β), δ′(s′, β)〉 and λ̄′(〈t, s′〉, β) = λ′(s′, β) whenever δM (t, β) 
= ∅;
δ̄′(〈t, s′〉, β) and λ̄′(〈t, s′〉, β) are undefined whenever δM (t, β) = ∅, where
λ̄′(〈t, s′〉, β) is defined if and only if each letter of λ̄′(〈t, s′〉, β) is defined.
Thus we have 〈t, s′〉 ≺ s′.

It is easy to show that S1 ⊆ S2 yields 〈S1, s
′〉 ≺ 〈S2, s

′〉, s′ ∈ S′, S1, S2 ∈
SM \ {∅}.

States of M̄ ′ are reachable from {〈S, s′〉, s′ ∈ S′}. In fact, from the de-
finition of S̄′, for any state s̄′ of M̄ ′, there exist s′ ∈ S′ and β ∈ Y ∗ such
that s̄′ = 〈δM (S, β), δ′(s′, β)〉 and δM (S, β) 
= ∅. From 〈δM (S, β), δ′(s′, β)〉 =
δ̄′(〈S, s′〉, β), for any state s̄′ of M̄ ′, there exist a state 〈S, s′〉 of M̄ ′ and
β ∈ Y ∗ such that s̄′ = δ̄′(〈S, s′〉, β).

Let S̄′
τ = {δ̄′(s̄′, β) | s̄′ ∈ S̄′, β ∈ Y ∗, |β| = τ}. Clearly, S̄′

τ is closed with
respect to Y in M̄ ′. We use M̄ ′

τ to denote the partial finite subautomaton
〈Y , X, S̄′

τ , δ̄′|S̄′
τ×Y , λ̄′|S̄′

τ×Y 〉 of M̄ ′. M̄ ′
τ is referred to as the τ -successor of

M̄ ′.
Let M ′′ = 〈Y, X, S′′, δ′′, λ′′〉 be an inverse finite automaton with delay τ .

Similarly, from M ′′ and M we can construct M̄ ′′, the input restriction of M ′′

by M , and M̄ ′′
τ , the τ -successor of M̄ ′′.

Lemma 6.2.1. If M ′ and M ′′ are inverse finite automata with delay τ of
M , then M̄ ′

τ and M̄ ′′
τ are equivalent.

Proof. Let s̄′ be a state of M̄ ′
τ . Then there exist s̄′0 in S̄′ and βτ of length

τ in Y ∗ such that s̄′ = δ̄′(s̄′0, βτ ). From the construction of M̄ ′, there exist
s′ in S′ and β of length � τ in RM such that s̄′ = δ̄′(〈S, s′〉, β). Let s̄′′ =
δ̄′′(〈S, s′′〉, β), where s′′ is an arbitrarily fixed state in S′′. We prove s̄′ ∼ s̄′′.
For any β1 in Y ∗, we have

λ̄′(〈S, s′〉, ββ1) =

{
λ′(s′, β)λ′(δ′(s′, β), β1), if δM (S, ββ1) 
= ∅,

undefined, otherwise,

λ̄′′(〈S, s′′〉, ββ1) =

{
λ′′(s′′, β)λ′′(δ′′(s′′, β), β1), if δM (S, ββ1) 
= ∅,

undefined, otherwise,

where “undefined” means that some letter is undefined. Noticing that Mout

recognizes RM , when δM (S, ββ1) 
= ∅, there exist s in S and α in X∗ such
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that λ(s, α) = ββ1. Since M ′ and M ′′ are inverse finite automata with delay
τ of M , we have

λ′(s′, β)λ′(δ′(s′, β), β1) = λ′(s′, ββ1)

= λ′(s′, λ(s, α)) = x′
−τ . . . x′

−1x0x1 . . . xr−τ

and

λ′′(s′′, β)λ′′(δ′′(s′′, β), β1) = λ′′(s′′, ββ1)

= λ′′(s′′, λ(s, α)) = x′′
−τ . . . x′′

−1x0x1 . . . xr−τ ,

for some x′
−τ , . . ., x′

−1, x′′
−τ , . . ., x′′

−1 in X, where r = |α| − 1, x0, x1, . . .,
xr−τ ∈ X, and x0x1 . . . xr−τ is a prefix of α. From |β| � τ , it follows that
λ′(δ′(s′, β), β1) = λ′′(δ′′(s′′, β), β1). Since λ̄′(s̄′, β1) = λ′(δ′(s′, β), β1) and
λ̄′′(s̄′′, β1) = λ′′(δ′′(s′′, β), β1), we obtain λ̄′(s̄′, β1) = λ̄′′(s̄′′, β1). When
δM (S, ββ1) = ∅, λ̄′(〈S, s′〉, ββ1) and λ̄′′(〈S, s′′〉, ββ1) are undefined. Since
δ̄′(〈S, s′〉, β) = s̄′ and δ̄′′(〈S, s′′〉, β) = s̄′′, λ̄′(〈S, s′〉, β) and λ̄′′(〈S, s′′〉, β) are
defined. Therefore, λ̄′(s̄′, β1) and λ̄′′(s̄′′, β1) are undefined. We conclude that
s̄′ and s̄′′ are equivalent.

From symmetry, for any s̄′′ in S̄′′
τ there exists s̄′ in S̄′

τ such that s̄′ and s̄′′

are equivalent. Thus M̄ ′
τ and M̄ ′′

τ are equivalent. ��
Since M is invertible with delay τ , there exists a τ -order input-memory

finite automaton which is an inverse with delay τ of M . Given a τ -order
input-memory finite automaton, say M ′, assume that M ′ is an inverse with
delay τ of M . Let M̄ ′ be the input restriction of M ′ by M , and M̄ ′

τ the
τ -successor of M̄ ′.

We use T ′(Y, τ − 1) to denote a labelled tree with level τ − 1 in which
any vertex with level < τ emits |Y | arcs labelled by different letters in Y ,
respectively. Such labels are called input labels of arcs. For each vertex v of
T ′(Y, τ −1), the sequence of labels of arcs in the unique path from the root of
T ′(Y, τ − 1) to the vertex v is called the input label sequence of the vertex v.
Let T (Y, τ−1) be the subtree of T ′(Y, τ−1) satisfying the following condition:
a vertex of T ′(Y, τ − 1) is a vertex of T (Y, τ − 1) if and only if its input label
sequence is in RM . From the definition of RM , βy ∈ RM yields β ∈ RM for
any β ∈ Y ∗ and any y ∈ Y . Therefore, T (Y, τ − 1) is a tree indeed and the
root of T (Y, τ − 1) is the root of T ′(Y, τ − 1). Since for any β ∈ Y ∗, β ∈ RM

yields βy ∈ RM for some y ∈ Y , any vertex with level < τ of T (Y, τ − 1)
emits at least one arc. It is easy to see that in the case of λ(S,X) = Y , the
root of T (Y, τ − 1) emits |Y | arcs of which input labels consist of different
letters in Y . For each arc of T (Y, τ − 1), we assign a letter in X to it as its
output label. Different assignments of the output labels give different trees;
the set of all such trees is denoted by T ′(Y, X, τ − 1). Let T ′

0 (Y, X, τ − 1) be
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a non-empty subset of T ′(Y, X, τ − 1). We “join” trees in T ′
0 (Y, X, τ − 1) to

the partial finite automaton M̄ ′
τ to get a partial finite automaton, say M ′′′ =

〈Y, X, S′′′, δ′′′, λ′′′〉, as follows. The state alphabet S′′′ of M ′′′ is the union set
of S̄′

τ and all vertices with level < τ of all trees in T ′
0 (Y, X, τ − 1); we assume

that states in S̄′
τ and such vertices are different from each other. For any state

t in S′′′ and any y in Y , we define δ′′′(t, y) and λ′′′(t, y) as follows. In the case
of t ∈ S̄′

τ , define δ′′′(t, y) = δ̄′(t, y) and λ′′′(t, y) = λ̄′(t, y). In the case where t

is a vertex with level < τ −1 of some tree in T ′
0 (Y, X, τ −1), if there is an arc

with input label y emitted from t, then define δ′′′(t, y) = t′ and λ′′′(t, y) = x,
where t′ is the terminal vertex of the arc and x is the output label of the arc;
if there is no arc with input label y emitted from t, then δ′′′(t, y) and λ′′′(t, y)
are undefined. In the case where t is a vertex with level τ − 1 of some tree in
T ′

0 (Y, X, τ − 1), let y0, y1, . . ., yτ−2 be the input label sequence of arcs in the
path from the root to t. If there is an arc with input label y emitted from t,
then define δ′′′(t, y) = 〈δM (S, y0 . . . yτ−2y), 〈y, yτ−2, . . . , y0〉〉, a state of M̄ ′

τ ,
and λ′′′(t, y) = x, where x is the output label of the arc; if there is no arc
with input label y emitted from t, then δ′′′(t, y) and λ′′′(t, y) are undefined.
The states corresponding to roots of trees in T ′

0 (Y, X, τ − 1) are called root
states of M ′′′. We use J ′(M, M ′) to denote the set of all such M ′′′.

For any M ′′′ in J ′(M, M ′), states of M ′′′ are reachable from root states
of M ′′′. In fact, for any state t of M ′′′, in the case where t is a vertex of
some tree with root t0, it is evident that there exists β ∈ Y ∗ such that
δ′′′(t0, β) = t. Suppose that t ∈ S̄′

τ . From the definition of M̄ ′
τ , there ex-

ist a state s̄′ of M̄ ′ and β2 in Y ∗ such that |β2| = τ and δ̄′(s̄′, β2) = t.
From the definition of M̄ ′, there exist a state 〈S, s′〉 of M̄ ′ and β1 in Y ∗

such that s̄′ = 〈δM (S, β1), δ′(s′, β1)〉. Thus s̄′ = δ̄′(〈S, s′〉, β1). It follows that
δ̄′(〈S, s′〉, β1β2) = t. Let β1β2 = β3β4 with |β3| = τ , and δ̄′(〈S, s′〉, β3) = s̄′0.
Then s̄′0 is a state of M̄ ′

τ , s̄′0 = 〈δM (S, β3), 〈yτ−1, . . . , y0〉〉, and δ̄′(s̄′0, β4) = t,
where β3 = y0 . . . yτ−1. Let t0 be any root state of M ′′′. From the construc-
tion of M ′′′, noticing that β3 ∈ RM and β3 is an input label sequence of trees
in T ′(Y, X, τ − 1), we have δ′′′(t0, β3) = s̄′0. This yields that δ′′′(t0, β3β4) =
δ′′′(δ′′′(t0, β3), β4) = δ′′′(s̄′0, β4) = δ̄′(s̄′0, β4) = t. We conclude that for any
state t of M ′′′ there exist a root state t0 and β in Y ∗ such that δ′′′(t0, β) = t.

Let M̃ = 〈Y, X, S̃, δ̃, λ̃〉 be a partial finite automaton such that λ̃(s, y)
is defined if and only if δ̃(s, y) is defined. Each state s0 of M̃ determines a
labelled tree with level τ − 1, denoted by T M̃

τ−1(s0), which can be recurrently
constructed from M̃ and s0 as follows. We assign s0 to the root of T M̃

τ−1(s0)
temporarily. For any vertex with level < τ of T M̃

τ−1(s0) and any y in Y , let s

be the label of the vertex. If δ̃(s, y) is defined, then an arc is emitted from the
vertex and y, called the input label, and λ̃(s, y), called the output label, are
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assigned to the arc, and δ̃(s, y) is temporarily assigned to the terminal vertex
of the arc. Finally, deleting all labels of vertices results the tree T M̃

τ−1(s0).
We use J (M, M ′) to denote the set of M̃ in J ′(M, M ′) satisfying the

following condition: for any states s1 and s2 of M̃ , if s1 is a root state and
s2 is a successor state of s1, then there exists a root state s0 of M̃ such that
T M̃

τ−1(s2) is a subtree of T M̃
τ−1(s0).

Lemma 6.2.2. For any partial finite automaton M̃ = 〈Y, X, S̃, δ̃, λ̃〉 in
J (M, M ′) and any state s̃ of M̃ , there exists a root state t̃ of M̃ such that
s̃ ≺ t̃.

Proof. Since states of M̃ are reachable from root states of M̃ , for any state
s̃ of M̃ , there exist a root state t̃0 of M̃ and β ∈ Y ∗ such that δ̃(t̃0, β) = s̃.
It is sufficient to prove the following proposition: for any state s̃ of M̃ , any
root state t̃0 of M̃ and any β ∈ Y ∗, if δ̃(t̃0, β) = s̃, then there exists a root
state t̃ of M̃ such that s̃ ≺ t̃. We prove the proposition by induction on the
length of β. Basis : |β| = 0. s̃ is a root state of M̃ . Take t̃ = s̃. Then s̃ ≺ t̃.
Induction step : Suppose that for any state s̃ of M̃ , any root state t̃0 of M̃

and any β of length l in Y ∗, if δ̃(t̃0, β) = s̃, then there exists a root state t̃ of
M̃ such that s̃ ≺ t̃. To prove the case of |β| = l+1, suppose that δ̃(t̃0, β) = s̃,
|β| = l +1 and t̃0 is a root state of M̃ . Let β = yβ1, y ∈ Y , and δ̃(t̃0, y) = s̃1.
Since M̃ ∈ J (M, M ′), there exists a root state t̃1 of M̃ such that T M̃

τ−1(s̃1) is a
subtree of T M̃

τ−1(t̃1). We prove s̃1 ≺ t̃1. Let β2 be in Y ∗. Suppose that λ̃(s̃1, β2)
is defined. In the case of |β2| � τ , since T M̃

τ−1(s̃1) is a subtree of T M̃
τ−1(t̃1),

λ̃(t̃1, β2) is defined and λ̃(s̃1, β2) = λ̃(t̃1, β2). In the case of |β2| > τ , let
β2 = β3β4 with |β3| = τ . Then λ̃(s̃1, β3) is defined. Since T M̃

τ−1(s̃1) is a subtree
of T M̃

τ−1(t̃1), λ̃(t̃1, β3) is defined and λ̃(s̃1, β3) = λ̃(t̃1, β3). Let δ̃(s̃1, β3) = s̃2

and δ̃(t̃1, β3) = s̃3. Then δ̃(t̃0, yβ3) = s̃2. From the construction of M̃ , we
have s̃3 = 〈δM (S, β3), 〈yτ−1, . . . , y0〉〉 and s̃2 = 〈δM (S, yβ3), 〈yτ−1, . . . , y0〉〉 =
〈δM (S1, β3), 〈yτ−1, . . . , y0〉〉, where S1 = δM (S, y), and β3 = y0 . . . yτ−1. From
S1 ⊆ S, we have δM (S1, β3) ⊆ δM (S, β3). Notice that for any states 〈S2, s

′〉
and 〈S3, s

′〉 of M̃ , if S2 ⊆ S3, then 〈S2, s
′〉 ≺ 〈S3, s

′〉. Thus s̃2 ≺ s̃3. Since
λ̃(s̃1, β3β4) is defined and s̃2 = δ̃(s̃1, β3), λ̃(s̃2, β4) is defined. From s̃2 ≺ s̃3,
λ̃(s̃3, β4) is defined and λ̃(s̃2, β4) = λ̃(s̃3, β4). Therefore, λ̃(s̃1, β2) = λ̃(s̃1, β3)
λ̃(s̃2, β4) = λ̃(t̃1, β3) λ̃(s̃3, β4) = λ̃(t̃1, β2). We conclude that s̃1 ≺ t̃1. Since s̃1

≺ t̃1 and s̃ = δ̃(s̃1, β1), δ̃(t̃1, β1) is defined. Denoting s̃4 = δ̃(t̃1, β1), then s̃ ≺
s̃4. Since |β1| = l, from the induction hypothesis, there exists a root state t̃2
of M̃ such that s̃4 ≺ t̃2. Using s̃ ≺ s̃4, we have s̃ ≺ t̃2. ��

Lemma 6.2.3. For any finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉, M ′′ is
an inverse with delay τ of M if and only if there exists M̃ in J (M, M ′) such
that M̄ ′′ and M̃ are equivalent, where M̄ ′′ is the input restriction of M ′′ by
M .
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Proof. only if : Suppose that M ′′ is an inverse with delay τ of M . Let
TM̄ ′′ = {T M̄ ′′

τ−1(〈S, s′′〉) | s′′ ∈ S′′}. Clearly, TM̄ ′′ ⊆ T ′(Y, X, τ − 1). Joining
trees in TM̄ ′′ to M̄ ′

τ results a partial finite automaton, say M̃ = 〈Y, X, S̃, δ̃, λ̃〉,
where M̄ ′

τ is the τ -successor of M̄ ′, and M̄ ′ is the input restriction of M ′ by
M . Clearly, M̃ is in J ′(M, M ′).

Below, the root state of M̃ corresponding to the root of T M̄ ′′
τ−1(〈S, s′′〉)

is called the root state of M̃ corresponding to s′′. (Root states of M̃

corresponding to s′′ and s′′′ may be the same for different s′′ and s′′′.)
For any s′′ in S′′, if s̃ is the root state of M̃ corresponding to s′′, then
the state s̃ of M̃ and the state 〈S, s′′〉 of M̄ ′′ are equivalent. To prove
this assertion, notice that the following fact is evident: for any β in Y ∗

with |β| � τ , λ̄′′(〈S, s′′〉, β) is defined if and only if λ̃(s̃, β) is defined,
and λ̄′′(〈S, s′′〉, β) = λ̃(s̃, β) whenever they are defined. We prove the fact
that δ̄′′(〈S, s′′〉, β) ∼ δ̃(s̃, β) holds for any β of length τ in RM . Let-
ting β ∈ RM and |β| = τ , from the proof of Lemma 6.2.1, we have
δ̄′′(〈S, s′′〉, β) ∼ δ̄′(〈S, s′〉, β) for any state s′ of M ′. From the construction of
M̃ , we have δ̃(s̃, β) = 〈δM (S, β), 〈yτ−1, . . . , y0〉〉, where β = y0 . . . yτ−1. Since
δ̄′(〈S, s′〉, β) = 〈δM (S, β), 〈yτ−1, . . . , y0〉〉, from the construction of M̃ , it fol-
lows that δ̄′(〈S, s′〉, β) ∼ δ̃(s̃, β). Therefore, δ̄′′(〈S, s′′〉, β) ∼ δ̃(s̃, β). Using the
two facts mentioned above, since δ̄′′(〈S, s′′〉, β) and δ̃(s̃, β) are undefined for
β 
∈ RM , the state s̃ of M̃ and the state 〈S, s′′〉 of M̄ ′′ are equivalent.

Using the above assertion, for any state 〈S, s′′〉 of M̄ ′′, there exists a
state s̃ of M̃ such that s̃ ∼ 〈S, s′′〉. Since states of M̄ ′′ are reachable from
{〈S, s′′〉, s′′ ∈ S′′}, for any state of M̄ ′′, there exists a state of M̃ such that
they are equivalent. Conversely, for any root state s̃ of M̃ , there exists a state
〈S, s′′〉 of M̄ ′′ such that s̃ ∼ 〈S, s′′〉. Since states of M̄ ′ are reachable from
{〈S, s′〉, s′ ∈ S′}, states of M̄ ′

τ are reachable from

{δ̄′(〈S, s′〉, β), s′ ∈ S′, β ∈ RM , |β| = τ}
= {〈δM (S, y0 . . . yτ−1), 〈yτ−1, . . . , y0〉〉, y0 . . . yτ−1 ∈ RM}.

From the construction of M̃ , states in {〈δM (S, y0 . . . yτ−1), 〈yτ−1, . . . , y0〉〉,
y0 . . . yτ−1 ∈ RM} are reachable from root states of M̃ . It follows that states
of M̃ are reachable from its root states. Thus for any state of M̃ , there exists
a state of M̄ ′′ such that they are equivalent. We conclude M̄ ′′ ∼ M̃ .

We prove M̃ ∈ J (M, M ′). Suppose that s̃ is a root state of M̃ . From
the assertion shown previously, there exists s′′ in S′′ such that s̃ ∼ 〈S, s′′〉.
For any y in Y , if δ̃(s̃, y) is defined, then δ̃(s̃, y) ∼ δ̄′′(〈S, s′′〉, y). Clearly,
δ̄′′(〈S, s′′〉, y) = 〈δM (S, y), δ′′(s′′, y)〉 ≺ 〈S, δ′′(s′′, y)〉. Let t̃ be the root state
of M̃ corresponding to δ′′(s′′, y). Then we have t̃ ∼ 〈S, δ′′(s′′, y)〉. Thus
δ̃(s̃, y) ≺ t̃. It follows that T M̃

τ−1(δ̃(s̃, y)) is a subtree of T M̃
τ−1(t̃). Therefore,

M̃ ∈ J (M, M ′).
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if : Suppose that M̃ = 〈Y, X, S̃, δ̃, λ̃〉 ∈ J (M, M ′) and M̄ ′′ ∼ M̃ . For any s

in S, any s′′ in S′′ and any α = x0 . . . xl, let y0 . . . yl = λ(s, α) and z0 . . . zl =
λ′′(s′′, y0 . . . yl), where x0, . . ., xl ∈ X, y0, . . ., yl ∈ Y , and z0, . . ., zl ∈ X. We
prove zτ . . . zl = x0 . . . xl−τ if l � τ . Suppose that l � τ . Let β1 = y0 . . . yτ−1,
β2 = yτ . . . yl, and s̄′′ = 〈S, s′′〉. Since M̄ ′′ and M̃ are equivalent, there exists
s̃ in S̃ such that s̃ ∼ s̄′′. Noticing that domains of δ̄′′ and λ̄′′ are the same and
that domains of δ̃ and λ̃ are the same, for any β in Y ∗, λ̄′′(s̄′′, β) is defined if
and only if λ̃(s̃, β) is defined, and λ̄′′(s̄′′, β) = λ̃(s̃, β) holds whenever they are
defined. Since β1β2, i.e., λ(s, α), is in RM , λ̄′′(s̄′′, β1β2) is defined. It follows
that λ̄′′(s̄′′, β1β2) = λ̃(s̃, β1β2). From λ′′(s′′, β1β2) = λ̄′′(s̄′′, β1β2), it follows
that λ̃(s̃, β1) λ̃(δ̃(s̃, β1), β2) = λ′′(s′′, β1β2) = z0 . . . zl. Therefore, we have
λ̃(δ̃(s̃, β1), β2) = zτ . . . zl. On the other hand, from the construction of M̃ ,
δ̃(s̃, β1) = 〈s̄, 〈yτ−1, . . . , y0〉〉 for some state 〈s̄, 〈yτ−1, . . . , y0〉〉 in S̄′

τ . Thus
we have λ̃(δ̃(s̃, β1), β2) = λ̄′(〈s̄, 〈yτ−1, . . . , y0〉〉, β2) = λ′(〈yτ−1, . . . , y0〉, β2).
Since M ′ is an inverse with delay τ of M , for any state s′ of M ′, we have
λ′(s′, β1β2) = x−τ . . . x−1x0 . . . xl−τ for some x−τ , . . . , x−1 in X. Since M ′ is a
τ -order input-memory finite automaton, it follows that λ′(〈yτ−1, . . . , y0〉, β2) =
x0 . . . xl−τ . Thus zτ . . . zl = λ̃(δ̃(s̃, β1), β2) = λ′(〈yτ−1, . . . , y0〉, β2) = x0 . . .

xl−τ . Therefore, M ′′ is an inverse with delay τ of M . ��

For any partial finite automaton M̃ = 〈Y, X, S̃, δ̃, λ̃〉 in J (M, M ′), each
root state t̃ determines a compatible set C(t̃) = {s̃ | s̃ ∈ S̃, s̃ ≺ t̃}. For
any two different root states t̃ and t̃′ of M̃ , if t̃ ≺ t̃′, then trees with
roots t̃ and t̃′ are the same. Thus each C(t̃) only contains one root state.
From Lemma 6.1.1 (b), C(t̃) is compatible. We use C(M̃) to denote the set
{C(t̃) | t̃ is a root state of M̃}. For any C(t̃) in C(M̃) and any y in Y , us-
ing Lemma 6.1.1 (a), if δ̃(C(t̃), y) 
= ∅, then s̃ ≺ δ̃(t̃, y) holds for any s̃ in
δ̃(C(t̃), y). Since M̃ is in J (M, M ′), from Lemma 6.2.2, there exists a root
state t̃1 of M̃ such that δ̃(t̃, y) ≺ t̃1. It follows that s̃ ≺ t̃1 holds for any s̃

in δ̃(C(t̃), y). Thus δ̃(C(t̃), y) ⊆ C(t̃1). Moreover, from Lemma 6.2.2, for any
state s̃ of M̃ , there exists a root state t̃ of M̃ such that s̃ ∈ C(t̃). This yields
∪C∈C(M̃)C = S̃. Therefore, for any C1, . . ., Ck, (it is not necessary that i 
= j

implies Ci 
= Cj ,) if the set {C1, . . ., Ck} equals C(M̃), then the sequence
C1, . . ., Ck is a closed compatible family of M̃ . It is easy to see that in case
of λ(S,X) = Y , each partial finite automaton in M(C1, . . . , Ck) is a finite
automaton whenever {C1, . . ., Ck} = C(M̃). We use M0(M̃) to denote the
union set of all M(C1, . . . , Ck), C1, . . ., Ck ranging over all sequences so that
the set {C1, . . . , Ck} is equal to C(M̃).

Theorem 6.2.1. If M = 〈X, Y, S, δ, λ〉 is an invertible finite automaton
with delay τ and λ(S,X) = Y, then the set of all inverse finite automata
with delay τ of M is ∪M̃∈J (M,M ′) M0(M̃) up to equivalence, i.e., for any
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finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉, M ′′ is an inverse with delay τ of
M, if and only if there exist M̃ in J (M, M ′) and M ′′′ in M0(M̃) such that
M ′′′ ∼ M ′′.

Proof. only if : Suppose that M ′′ is an inverse finite automaton with delay
τ of M . In the proof of the only if part of Lemma 6.2.3, we construct a partial
finite automaton M̃ = 〈Y, X, S̃, δ̃, λ̃〉 in J (M, M ′) such that M̃ and M̄ ′′ are
equivalent, where M̄ ′′ is the input restriction of M ′′ by M . Especially, any
state 〈S, s′′〉 of M̄ ′′ and the root state of M̃ corresponding to s′′ are equivalent;
any root state of M̃ is a root state of M̃ corresponding to s′′ for some state
s′′ in S′′, and for any s′′ in S′′ there exists a root state of M̃ corresponding
to s′′.

Let S′′ = {s′′1 , . . . , s′′h} and C̄i = {s̄ | s̄ is a state of M̄ ′′, s̄ ≺ 〈S, s′′i 〉}, i =
1, . . . , h. Noticing that 〈S1, s

′′〉 ≺ 〈S, s′′〉 and δ̄′′(〈S, s′′〉, y) ≺ 〈S, δ′′(s′′, y)〉,
using Lemma 6.1.1, it is easy to show that the sequence C̄1, . . . , C̄h is a closed
compatible family of M̄ ′′.

Let Ci = {s̃ | s̃ is a state of M̃ , there exists s̄ ∈ C̄i such that s̃ ∼ s̄},
i = 1, . . . , h. We prove that for any root state t̃ of M̃ and any i, 1 � i � h,
if t̃ is a root state of M̃ corresponding to s′′i , then C(t̃) = Ci. Suppose that
t̃ is a root state of M̃ corresponding to s′′i . Then t̃ is equivalent to the state
〈S, s′′i 〉 of M̄ ′′. Therefore, for any s̃ ∈ S̃, s̃ ∈ C(t̃) if and only if s̃ ≺ t̃, if and
only if s̃ ≺ 〈S, s′′i 〉, if and only if there exists a state s̄ of M̄ ′′ such that s̃ ∼ s̄

and s̄ ≺ 〈S, s′′i 〉, if and only if there exists s̄ in C̄i such that s̃ ∼ s̄, if and only
if s̃ ∈ Ci. It follows that C(t̃) = Ci. Since for any s′′ in S′′ there exists a root
state of M̃ corresponding to s′′, we have {C1, . . . , Ch} ⊆ C(M̃). Since any
root state of M̃ is a root state of M̃ corresponding to s′′ for some state s′′ in
S′′, we have C(M̃) ⊆ {C1, . . . , Ch}. Thus {C1, . . . , Ch} = C(M̃). It follows
that C1, . . . , Ch is a closed compatible family of M̃ .

From M̃ ∼ M̄ ′′, it is easy to prove that C̄i = {s̄ | s̄ is a state of M̄ ′′,
there exists s̃ ∈ Ci such that s̃ ∼ s̄}, i = 1, . . . , h. We prove that δ̄′′(C̄i, y) ⊆
C̄j if and only if δ̃(Ci, y) ⊆ Cj . Suppose δ̄′′(C̄i, y) ⊆ C̄j . For any s̃ ∈ Ci, there
exists s̄ in C̄i such that s̃ ∼ s̄. When δ̃(s̃, y) is defined, from s̃ ∼ s̄, δ̄′′(s̄, y) is
defined and δ̃(s̃, y) ∼ δ̄′′(s̄, y). From δ̄′′(C̄i, y) ⊆ C̄j , we have δ̄′′(s̄, y) ∈ C̄j . It
follows that δ̃(s̃, y) ∈ Cj . Thus δ̃(Ci, y) ⊆ Cj . Conversely, from the symmetry,
δ̃(Ci, y) ⊆ Cj implies δ̄′′(C̄i, y) ⊆ C̄j . We conclude that δ̄′′(C̄i, y) ⊆ C̄j if and
only if δ̃(Ci, y) ⊆ Cj .

Construct M̄ ′′′ = 〈Y, X, {c̄1, . . . , c̄h}, δ̄′′′, λ̄′′′〉, where

δ̄′′′(c̄i, y) = c̄j ,

λ̄′′′(c̄i, y) = λ̄′′(〈S, s′′i 〉, y),

i = 1, . . . , h, y ∈ Y,
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j is the integer satisfying s′′j = δ′′(s′′i , y). Using Lemma 6.1.1 (a), s̄′′ ≺ 〈S, s′′i 〉
implies δ̄′′(s̄′′, y) ≺ 〈δM (S, y), δ′′(s′′i , y)〉, therefore, implies δ̄′′(s̄′′, y) ≺ 〈S, s′′j 〉,
that is, δ̄′′(s̄′′, y) ∈ C̄j . It follows that δ̄′′(C̄i, y) ⊆ C̄j . Since λ(S,X) = Y ,
for any y ∈ Y , δ̄′′(〈S, s′′i 〉, y) and λ̄′′(〈S, s′′i 〉, y) are defined. It follows that
δ̄′′(C̄i, y) 
= ∅. Noticing 〈S, s′′i 〉 ∈ C̄i, we obtain M̄ ′′′ ∈ M(C̄1, . . . , C̄h).
Defining ϕ(c̄i) = s′′i , i = 1, . . . , h, using λ̄′′(〈S, s′′i 〉, y) = λ′′(s′′i , y), it is easy
to verify that ϕ is an isomorphism from M̄ ′′′ to M ′′. Therefore, M̄ ′′′ and M ′′

are isomorphic.
Let M ′′′ = 〈Y, X, {c1, . . . , ch}, δ′′′, λ′′′〉, where δ′′′(ci, y) = cj for the inte-

ger j satisfying δ̄′′′(c̄i, y) = c̄j , and λ′′′(ci, y) = λ̄′′′(c̄i, y). Since δ̄′′′(c̄i, y) = c̄j

implies δ̄′′(C̄i, y) ⊆ C̄j , δ′′′(ci, y) = cj implies δ̄′′(C̄i, y) ⊆ C̄j . It follows that
δ′′′(ci, y) = cj implies δ̃(Ci, y) ⊆ Cj . Let t̃ be a root state corresponding to
s′′i . Then t̃ ∼ 〈S, s′′i 〉. From 〈S, s′′i 〉 ∈ C̄i, we have t̃ ∈ Ci. Since δ̄′′(〈S, s′′i 〉, y)
is defined, δ̃(t̃, y) is defined. It follows that δ̃(Ci, y) 
= ∅. From t̃ ∼ 〈S, s′′i 〉,
we have λ̄′′(〈S, s′′i 〉, y) = λ̃(t̃, y). Since λ̄′′′(c̄i, y) = λ̄′′(〈S, s′′i 〉, y), we have
λ′′′(ci, y) = λ̄′′′(c̄i, y) = λ̃(t̃, y). Thus M ′′′ is in M(C1, . . . , Ch). Clearly, M ′′′

and M̄ ′′′ are isomorphic. Thus M ′′′ and M ′′ are isomorphic. Therefore, M ′′′

and M ′′ are equivalent. We conclude that for any inverse finite automaton
M ′′ with delay τ of M , there exist M̃ in J (M, M ′) and M ′′′ in M0(M̃) such
that M ′′′ ∼ M ′′.

if : Suppose that M ′′ ∼ M ′′′ for some M ′′′ ∈ M0(M̃), where M̃ ∈
J (M, M ′). Then there exists a closed compatible family C1, . . . , Ch of M̃

such that {C1, . . . , Ch} = C(M̃) and M ′′′ ∈ M(C1, . . . , Ch). Thus M ′′′ =
〈Y, X, {c1, . . . , ch}, δ′′′, λ′′′〉, where δ′′′(ci, y) = cj for some j satisfying the
condition ∅ 
= δ̃(Ci, y) ⊆ Cj , and λ′′′(ci, y) = λ̃(s̃, y), s̃ being the root state
in Ci. For any state s of M , any state ci of M ′′′, 1 � i � h, and any x0, . . .,
xl in X, let λ(s, x0 . . . xl) = y0 . . . yl and λ′′′(ci, y0 . . . yl) = z0 . . . zl. We prove
zτ . . . zl = x0 . . . xl−τ in case of τ � l. Suppose τ � l and let s̃ be the root
state in Ci. Since y0 . . . yl ∈ RM , we have δM (S, y0 . . . yl) 
= ∅. It follows that
λ̃(s̃, y0 . . . yl) is defined. Thus we have

λ′′′(ci, λ(s, x0 . . . xl)) = λ̃(s̃, y0 . . . yl)

= λ̃(s̃, y0 . . . yτ−1)λ̃(δ̃(s̃, y0 . . . yτ−1), yτ . . . yl)

= λ̃(s̃, y0 . . . yτ−1)λ̄′(〈δM (S, y0 . . . yτ−1), 〈yτ−1, . . . , y0〉〉, yτ . . . yl)

= λ̃(s̃, y0 . . . yτ−1)λ′(〈yτ−1, . . . , y0〉, yτ . . . yl)

= λ̃(s̃, y0 . . . yτ−1)x0 . . . xl−τ .

It follows that zτ . . . zl = x0 . . . xl−τ . Thus M ′′′ is an inverse finite automaton
with delay τ of M . Since M ′′ ∼ M ′′′, M ′′ is an inverse with delay τ of M .

��
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Joining all trees in T ′(Y, X, τ − 1) to the partial finite automaton M̄ ′
τ ,

we get a partial finite automaton, denoted by M̃max. It is easy to see that
M̃max ∈ J (M, M ′).

Theorem 6.2.2. If M = 〈X, Y, S, δ, λ〉 is an invertible finite automaton
with delay τ and λ(S,X) = Y, then a finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉
is an inverse with delay τ of M if and only if there exist a finite automaton
M ′′′′ in M0(M̃max) and a finite subautomaton M ′′′ of M ′′′′ such that M ′′′ ∼
M ′′.

Proof. if : Suppose that M ′′′′ ∈ M0(M̃max) and M ′′′ ∼ M ′′ for some finite
subautomaton M ′′′ of M ′′′′. From λ(S,X) = Y , M ′′′′ is a finite automaton.
Since M̃max ∈ J (M, M ′), from Theorem 6.2.1, M ′′′′ is an inverse with delay
τ of M . It follows that M ′′′ is an inverse with delay τ of M . From M ′′′ ∼
M ′′, M ′′ is an inverse with delay τ of M .

only if : Suppose that M ′′ is an inverse with delay τ of M . From Theo-
rem 6.2.1, there exist M̃ in J (M, M ′) and M ′′′ in M0(M̃) such that M ′′′ ∼
M ′′. Clearly, M̃ is a partial finite subautomaton of M̃max and any root state
of M̃ is a root state of M̃max. Let M ′′′ = 〈Y, X, {c1, . . . , ch}, δ′′′, λ′′′〉 ∈
M(C1, . . . , Ch) for some closed compatible family C1, . . . , Ch of M̃ with
{C1, . . . , Ch} = C(M̃). Let t̃i be the root state in Ci, i = 1, . . . , h. It is easy
to prove that there exists a closed compatible family C ′

1, . . . , C
′
h′ of M̃max

with {C ′
1, . . . , C

′
h′} = C(M̃max) such that h � h′ and t̃i is the root state in

C ′
i for any i, 1 � i � h. Clearly, Ci = {s̃ | s̃ is a state of M̃, s̃ ≺ t̃i} and

C ′
i = {s̃ | s̃ is a state of M̃max, s̃ ≺ t̃i}, i = 1, . . . , h. Since M̃ is a partial

finite subautomaton of M̃max, we have Ci ⊆ C ′
i, i = 1, . . . , h. And for any

y ∈ Y , δ̃(Ci, y) ⊆ Cj implies δ̃max(t̃i, y) = δ̃(t̃i, y) ∈ Cj ⊆ C ′
j , therefore, us-

ing Lemma 6.1.1 (a), δ̃(Ci, y) ⊆ Cj implies δ̃max(C ′
i, y) ⊆ C ′

j , i, j = 1, . . . , h,
where δ̃ and δ̃max are the next functions of M̃ and M̃max, respectively. Thus we
can construct M ′′′′ = 〈Y, X, {c1, . . . , ch′}, δ′′′′, λ′′′′〉 in M(C ′

1, . . . , C
′
h′) such

that M ′′′ is a finite subautomaton of M ′′′′. Clearly, M ′′′′ ∈ M0(M̃max). This
completes the proof of the theorem. ��

Noticing that the condition “there exist a finite automaton M ′′′′ in
M0(M̃max) and a finite subautomaton M ′′′ of M ′′′′ such that M ′′′ ∼ M ′′ ”
is equivalent to the condition “there exists a finite automaton M ′′′′ in
M0(M̃max) such that M ′′ ≺ M ′′′′ ”, the theorem can be restated as the
following corollary.

Corollary 6.2.1. If M = 〈X, Y, S, δ, λ〉 is an invertible finite automaton
with delay τ and λ(S,X) = Y , then a finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉
is an inverse with delay τ of M if and only if there exists a finite automaton
M ′′′ in M0(M̃max) such that M ′′ ≺ M ′′′.
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We deal with the case |X| = |Y |. In this case, from Theorem 1.4.6, since
M is invertible with delay τ , we have RM = Y ∗. Thus we can construct
a finite automaton recognizer Mout = 〈Y, {S}, δM , S, {S}〉 to recognize RM ,
where δM (S, y) = S for any y in Y . It is easy to see that both M̄ ′ and
M̄ ′

τ are finite automata. Therefore, the partial finite automaton M̃max is a
finite automaton. Using Lemma 6.1.2, it follows that each finite automaton in
M0(M̃max) is equivalent to M̃max. Therefore, finite automata in M0(M̃max)
are equivalent to each other. From Corollary 6.2.1, we obtain the following
corollary.

Corollary 6.2.2. If M = 〈X, Y, S, δ, λ〉 is an invertible finite automaton
with delay τ and |X| = |Y |, then a finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉
is an inverse with delay τ of M if and only if M ′′ ≺ M ′′′, where M ′′′ is any
finite automaton in M0(M̃max) or M ′′′ = M̃max.

Corollary 6.2.2 means that in the case of |X| = |Y |, the finite automaton
M̃max and each finite automaton in M0(M̃max) are a “universal” inverse with
delay τ of M . And in the general case of |X| � |Y |, Theorem 6.2.2 means
that all finite automata in the set M0(M̃max), not one finite automaton in it,
constitute the “universal” inverses with delay τ of M . But a nondeterministic
finite automaton can be constructed as follows, which is a “universal” inverse
with delay τ of the finite automaton M .

From M̃max = 〈Y, X, S̃, δ̃, λ̃〉, we construct a nondeterministic finite au-
tomaton M ′′′ = 〈Y, X,C(M̃max), δ′′′, λ′′′〉 as follows. For any T in C(M̃max)
and any y in Y , define δ′′′(T, y) = {W | W ∈ C(M̃max), δ̃(T, y) ⊆ W} and
λ′′′(T, y) = {λ̃(s̃, y)}, where s̃ is the root state of M̃max in T .

Theorem 6.2.3. The nondeterministic finite automaton M ′′′ is an inverse
with delay τ of the finite automaton M .

Proof. Let C0 be a state of M ′′′, and s a state of M . We prove that C0

τ -matches s. That is, for any l � τ , any x0, x1, . . . , xl, z0, z1, . . . , zl in X

and any y0, y1, . . . , yl in Y , y0 y1 . . . yl = λ(s, x0x1 . . . xl) and z0z1 . . . zl ∈
λ′′′(C0, y0y1 . . . yl) imply zτzτ+1 . . . zl = x0x1 . . . xl−τ . Suppose y0y1 . . . yl =
λ(s, x0x1 . . . xl) and z0z1 . . . zl ∈ λ′′′(C0, y0y1 . . . yl), where l � τ , x0, x1, . . .,
xl, z0, z1, . . . , zl ∈ X, and y0, y1, . . . , yl ∈ Y . We prove zτzτ+1 . . . zl =
x0x1 . . . xl−τ . From the definition of λ′′′, there exist states C1, . . . , Cl of M ′′′

such that Cj+1 ∈ δ′′′(Cj , yj) holds for j = 0, 1, . . . , l − 1 and zj ∈ λ′′′(Cj , yj)
holds for j = 0, 1, . . . , l. From the construction of M ′′′, it follows that
δ̃(Cj , yj) ⊆ Cj+1 holds for j = 0, 1, . . . , l − 1 and zj = λ̃(t̃j , yj) holds
for j = 0, 1, . . . , l, where t̃j is the root state of M̃ in Cj , j = 0, 1, . . . , l.
Let s̃0 = t̃0. Since y0 . . . yl ∈ RM , we can recursively define s̃j+1 =
δ̃(s̃j , yj), j = 0, 1, . . . , l − 1. Since y0 . . . yl ∈ RM , λ̃(s̃j , yj) is defined,
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j = 0, 1, . . . , l. From s̃0 ∈ C0 and δ̃(Cj , yj) ⊆ Cj+1, j = 0, 1, . . . , l − 1,
we have s̃j ∈ Cj , j = 1, . . . , l. It follows that s̃j ≺ t̃j , j = 1, . . . , l. Thus
zj = λ̃(t̃j , yj) = λ̃(s̃j , yj), j = 0, 1, . . . , l. From the construction of M̃max,
λ̃(s̃j , yj) = λ′(〈yj−1, . . . , yj−τ 〉, yj), j = τ, . . . , l. Since M ′ is an inverse of M

and y0y1 . . . yl = λ(s, x0x1 . . . xl), we have λ′(〈yj−1, . . . , yj−τ 〉, yj) = xj−τ ,
j = τ, . . . , l. It follows that zj = λ̃(s̃j , yj) = λ′(〈yj−1, . . . , yj−τ 〉, yj) = xj−τ ,
j = τ, . . . , l. That is, zτzτ+1 . . . zl = x0x1 . . . xl−τ . We conclude that C0

τ -matches s. Therefore, M ′′′ is an inverse with delay τ of M . ��

Theorem 6.2.4. If M = 〈X, Y, S, δ, λ〉 is an invertible finite automaton
with delay τ and λ(S,X) = Y, then a finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉
is an inverse with delay τ of M if and only if M ′′ ≺ M ′′′.

Proof. only if : Suppose that M ′′ is an inverse finite automaton with
delay τ of M . From Corollary 6.2.1, there exist a closed compatible family
C1, . . . , Ch of M̃max and a finite automaton M̄ ′′′ = 〈Y, X, {c1, . . . , ch}, δ̄′′′, λ̄′′′〉
in M(C1, . . . , Ch) such that M ′′ ≺ M̄ ′′′ and {C1, . . . , Ch} = C(M̃max), where

δ̄′′′(ci, y) =

{
cj , if δ̃(Ci, x) 
= ∅,

undefined, if δ̃(Ci, x) = ∅,

λ̄′′′(ci, y) =

{
λ̃(s, y), if ∃s1(s1 ∈ Ci & λ̃(s1, y) is defined),
undefined, otherwise,

i = 1, . . . , h, y ∈ Y,

j is an arbitrary integer satisfying δ̃(Ci, y) ⊆ Cj , and s is an arbitrary state
in Ci such that λ̃(s, y) is defined.

We prove that M̄ ′′′ ≺ M ′′′. For any i, 1 � i � h, ci and Ci are states of
M̄ ′′′ and M ′′′, respectively. We prove ci ≺ Ci. For any y0, y1, . . . , yl ∈ Y , let
λ̄′′′(ci, y0y1 . . . yl) = x0x1 . . . xl, where x0, x1, . . . , xl ∈ X. Then there exist
states cij

, j = 0, 1, . . . , l of M̄ ′′′ such that ci0 = ci, and

cij+1 = δ̄′′′(cij
, yj), j = 0, 1, . . . l − 1,

xj = λ̄′′′(cij
, yj), j = 0, 1, . . . l.

Thus we have δ̃(Cij
, yj) ⊆ Cij+1 , j = 0, 1, . . . , l − 1. It follows that Cij+1

∈ δ′′′(Cij , yj), j = 0, 1, . . . , l − 1. From the definitions of λ̄′′′ and λ′′′, we
have {λ̄′′′(cij

, yj)} = {λ̃(tj , yj)} = λ′′′(Cij
, xj), therefore, λ′′′(Cij

, yj) = {xj},
j = 0, 1, . . . , l, where tj is the root state of M̃ in Cj . This yields x0 x1 . . .

xl ∈ λ′′′(Ci, y0y1 . . . yl). We conclude that ci ≺ Ci.
For any state s′′ of M ′′, from M ′′ ≺ M̄ ′′′, there exists a state ci of M̄ ′′′

such that s′′ ≺ ci. Using ci ≺ Ci, it is easy to verify that s′′ ≺ Ci. We conclude
M ′′ ≺ M ′′′.
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if : Suppose that M ′′ ≺ M ′′′. For any state s′′ of M ′′, we can choose a
state s′′′ of M ′′′ such that s′′ ≺ s′′′. For any state s of M , from Theorem 6.2.3,
s′′′ τ -matches s. Using s′′ ≺ s′′′, it is easy to verify that s′′ τ -matches s. Thus
M ′′ is an inverse with delay τ of M . ��

6.3 Original Inverses of a Finite Automaton

Given an inverse finite automaton M ′ = 〈Y, X, S′, δ′, λ′〉 with delay τ , let

f(yτ , . . . , y0)=

{
λ′(δ′(s′, y0 . . . yτ−1), yτ ), if |λ′(δ′(S′, y0 . . . yτ−1), yτ )| = 1,

undefined, otherwise,

y0, . . . , yτ ∈ Y,

where s′ is an arbitrarily fixed element in S′. We construct a labelled tree
with level τ . Each vertex with level i, 0 � i � τ , emits |X| arcs. Each arc
has a label of the form (x, y), where x ∈ X and y ∈ Y . x and y are called
the input label and the output label, respectively. The input labels of |X| arcs
emitted from the same vertex are different letters in X. If the labels of arcs
in a path from the root of length τ +1 are (x0, y0), (x1, y1), . . ., (xτ , yτ ), then
f(yτ , . . . , y0) = x0 holds. We use T̄ to denote the set of all such trees.

We use M(M ′) to denote the set of all M(T , ν, δ), T ranging over all
nonempty closed subset of T̄ . (For the construction of the finite automaton
M(T , ν, δ), see Sect. 1.6 of Chap. 1.)

Lemma 6.3.1. If M ′ = 〈Y, X, S′, δ′, λ′〉 is an inverse finite automaton with
delay τ , then M ′ is an inverse of any finite automaton in M(M ′).

Proof. Let M(T , ν, δ) be a finite automaton in M(M ′). Denote M(T , ν, δ)
= 〈X, Y , S, δ, λ〉. For any s in S and any xi in X, i = 0, 1, . . . , τ , let
y0y1 . . . yτ = λ(s, x0x1 . . . xτ ), where yi ∈ Y , i = 0, 1, . . . , τ . From the con-
struction of M(T , ν, δ), it is easy to show that if s = 〈T, j〉, where T ∈ T ,
then y0y1 . . . yτ is the output label of a path from the root of T of length
τ + 1 with input label x0x1 . . . xτ . Therefore, f(yτ , . . . , y0) = x0 holds. From
the definition of f , for any s′ in S′, we have λ′(δ′(s′, y0y1 . . . yτ−1), yτ ) =
f(yτ , . . . , y0). It follows that

λ′(s′, λ(s, x0x1 . . . xτ )) = λ′(s′, y0y1 . . . yτ )

= λ′(s′, y0y1 . . . yτ−1)λ′(δ′(s′, y0y1 . . . yτ−1), yτ )

= λ′(s′, y0y1 . . . yτ−1)f(yτ , . . . , y0)

= λ′(s′, y0y1 . . . yτ−1)x0.

We conclude that M ′ is an inverse of M(T , ν, δ) with delay τ . ��
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We use Tm to denote the maximum closed subset of T̄ . Notice that Tm is
unique. We use M̄(M ′) to denote the set of all M(Tm, ν, δ).

Lemma 6.3.2. If M ′ = 〈Y, X, S′, δ′, λ′〉 is an inverse finite automaton with
delay τ of M = 〈X, Y, S, δ, λ〉, then there exists M2 in M̄(M ′) such that M

and some finite subautomaton of M2 are isomorphic.

Proof. We construct M(T1, ν1, δ1) as follows. Partition S so that s1 and s2

belong to the same block if and only if TM
τ (s1) = TM

τ (s2). (For the definition
of TM

τ (s), see Sect. 1.6 of Chap. 1.) We use C1, . . ., Cr to denote such blocks.
In the case of s ∈ Cj , we take ν1(TM

τ (s)) = |Cj |. Take T1 = {TM
τ (s) | s ∈ S}

and S1 = {〈T, j〉 | T ∈ T1, j = 1, . . . , ν1(T )}.
Fix a one-to-one mapping ϕ from S onto S1 such that ϕ(s) = 〈TM

τ (s), j〉
for some j. From the definition of ν1, such a ϕ is existent. Define δ1(ϕ(s), x) =
ϕ(δ(s, x)). It is easy to verify that M(T1, ν1, δ1) is a finite automaton and ϕ

is an isomorphism from M to M(T1, ν1, δ1). Therefore, M and M(T1, ν1, δ1)
are isomorphic.

For any s in S and any x0, . . ., xτ in X, let y0 . . . yτ = λ(s, x0 . . . xτ ),
where y0, . . ., yτ ∈ Y . Since M ′ is an inverse finite automaton with delay
τ of M , for any s′ in S′, we have λ′(δ′(s′, y0 . . . yτ−1), yτ ) = x0. It follows
that f(yτ , . . . , y0) = x0. Thus TM

τ (s) is in T̄ . This yields T1 ⊆ T̄ . Since T1 is
closed, we have T1 ⊆ Tm. Let

ν2(T ) =

{
ν1(T ), if T ∈ T1,

1, if T ∈ Tm \ T1,

δ2(〈T, i〉, x) =

{
δ1(〈T, i〉, x), if T ∈ T1,

〈T̄ , 1〉, if T ∈ Tm \ T1,

where T̄ is an arbitrarily fixed x-successor of T in Tm. Then M(Tm, ν2, δ2) ∈
M̄(M ′). Choose M(Tm, ν2, δ2) as M2. Clearly, M(T1, ν1, δ1) is a finite sub-
automaton of M2. ��

From the proof of the above lemma, we have the following corollary.

Corollary 6.3.1. If M ′ = 〈Y, X, S′, δ′, λ′〉 is an inverse finite automaton
with delay τ of M = 〈X, Y, S, δ, λ〉, then there exists M1 in M(M ′) such that
M and M1 are isomorphic.

From Lemmas 6.3.1 and 6.3.2, we obtain the following theorem.

Theorem 6.3.1. M ′ is an inverse finite automaton with delay τ of a finite
automaton M if and only if there exist M2 in M̄(M ′) and a finite subau-
tomaton M1 of M2 such that M and M1 are isomorphic.
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Similarly, from Lemma 6.3.1 and Corollary 6.3.1, we obtain the following
theorem.

Theorem 6.3.2. M ′ is an inverse finite automaton with delay τ of a finite
automaton M if and only if there exists M1 in M(M ′) such that M and M1

are isomorphic.

Let M(Tm) = 〈X, Y, Tm, δ, λ〉 be a nondeterministic finite automaton,
where

δ(T, x) = {T̄ | T̄ ∈ Tm, T̄ is an x-successor of T},
λ(T, x) = {y},

T ∈ Tm, x ∈ X,

and (x, y) is the label of an arc emitted from the root of T . Notice that δ(T, x)
and λ(T, x) are nonempty.

Theorem 6.3.3. (a) M ′ is an inverse finite automaton with delay τ of the
nondeterministic finite automaton M(Tm).

(b) If M ′ is an inverse finite automaton with delay τ of a finite automaton
M, then M ≺ M(Tm).

Proof. (a) For any state T0 of M(Tm) and any x0, x1, . . . , xl in X, let
y0y1 . . . yl ∈ λ(T0, x0x1 . . . xl), where l � τ , and y0, y1, . . . ∈ Y . Then there
exist states T1, T2, . . . , Tl+1 of M(Tm) such that Ti+1 ∈ δ(Ti, xi) and yi ∈
λ(Ti, xi) hold for i = 0, 1, . . . , l. From the definition of δ, it is easy to see
that for any i, 0 � i � l − τ , (xi, yi), (xi+1, yi+1), . . . , (xi+τ , yi+τ ) are labels
of arcs in a path from the root to a leaf of Ti. This yields f(yi+τ , . . . , yi) =
xi, i = 0, 1, . . . , l − τ . It follows that λ′(δ′(s′, yi . . . yi+τ−1), yi+τ ) = xi holds
for any state s′ of M ′. Thus for any state s′0 of M ′, λ′(s′0, y0y1 . . . yl) =
x′

0 . . . x′
τ−1x0x1 . . . xl−τ holds for some x′

0, . . . , x
′
τ−1 in X. Therefore, M ′ is

an inverse finite automaton with delay τ of M(Tm).
(b) Suppose that M ′ is an inverse finite automaton with delay τ of a

finite automaton M . From Lemma 6.3.2, there exist M2 = M(Tm, ν, δ2)
and a finite subautomaton M1 of M2 such that M and M1 are isomor-
phic. We prove M2 ≺ M(Tm). For any state 〈T0, j0〉 of M2, T0 is a state
of M(Tm). To prove 〈T0, j0〉 ≺ T0, let x0, x1, . . . , xl be in X, and y0y1 . . . yl =
λ2(〈T0, j0〉, x0x1 . . . xl), where y0, y1, . . . , yl are in Y , and λ2 is the output
function of M2. Thus there exist states 〈Ti, ji〉, i = 1, . . . , l+1 of M2 such that
δ2(〈Ti, ji〉, xi) = 〈Ti+1, ji+1〉 and λ2(〈Ti, ji〉, xi) = yi, i = 0, 1, . . . , l, where δ2

is the next state function of M2. From the definition of M(Tm, ν, δ2), Ti+1 is
an xi-successor of Ti and (xi, yi) is the label of an arc emitted from the root
of Ti. From the definition of M(Tm), we have y0y1 . . . yl ∈ λ(T0, x0x1 . . . xl).
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Thus 〈T0, j0〉 ≺ T0. We conclude that M2 ≺ M(Tm). Since M1 is a finite
subautomaton of M2, this yields M1 ≺ M(Tm). Since M is isomorphic to
M1, we have M ≺ M(Tm). ��

Theorem 6.3.3 means that M(Tm) is a “universal” nondeterministic finite
automaton for finite automata of which M ′ is an inverse with delay τ .

6.4 Weak Inverses of a Finite Automaton

Given a weakly invertible finite automaton M = 〈X, Y, S, δ, λ〉 with delay τ ,
there exists a weak inverse finite automaton with delay τ of M . Let M ′ =
〈Y, X, S′, δ′, λ′〉 be a weak inverse finite automaton with delay τ of M . For
each s in S, we choose a state of M ′, say ϕ(s), such that ϕ(s) τ -matches s.

For any s in S, let Ms = 〈Y, 2S , δM , {s}, Ss \ {∅}〉 be a finite automaton
recognizer, where Ss = {δM ({s}, β) | β ∈ Y ∗}, δM is defined in the beginning
of Sect. 6.2. Let Rs = {λ(s, α) | α ∈ X∗}. It is easy to verify that Ms

recognizes Rs.
We construct a partial finite automaton M ′

0 = 〈Y, X, S′
0, δ

′
0, λ

′
0〉 from M ′

and M as follows. Let

S′
0 = T�τ ∪ T 0,

where

T0 =
⋃
s∈S

T 0
s ,

T�τ =
⋃
s∈S

T�τ
s ,

T 0
s = {〈s, β〉 | β ∈ Rs, |β| < τ},

T�τ
s = {〈δM ({s}, β), δ′(ϕ(s), β)〉 | β ∈ Rs, |β| � τ}.

For any 〈t, s′〉 in T�τ and any y in Y , let

δ′0(〈t, s′〉, y) =

{
〈δM (t, y), δ′(s′, y)〉, if 〈δM (t, y), δ′(s′, y)〉 ∈ T�τ ,

undefined, otherwise,

λ′
0(〈t, s′〉, y) =

{
λ′(s′, y), if 〈δM (t, y), δ′(s′, y)〉 ∈ T�τ ,

undefined, otherwise.

For any 〈s, β〉 in T 0
s , |β| < τ − 1 and any y in Y , let

δ′0(〈s, β〉, y) =

{
〈s, βy〉, if 〈s, βy〉 ∈ T 0

s ,

undefined, otherwise,

λ′
0(〈s, β〉, y) = undefined.
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For any 〈s, β〉 in T 0
s , |β| = τ − 1 and any y in Y , let

δ′0(〈s, β〉, y)

=

{
〈δM ({s}, βy), δ′(ϕ(s), βy)〉, if 〈δM ({s}, βy), δ′(ϕ(s), βy)〉 ∈ T�τ

s ,

undefined, otherwise,

λ′
0(〈s, β〉, y) = undefined.

From the construction of M ′
0, for any β ∈ Y ∗ with |β| < τ , δ′0(〈s, ε〉, β) =

〈s, β〉 if β ∈ Rs, δ′0(〈s, ε〉, β) is undefined otherwise. For any β ∈ Y ∗ with
|β| = τ , δ′0(〈s, ε〉, β) = 〈δM ({s}, β), δ′(ϕ(s), β)〉 if β ∈ Rs, δ′0(〈s, ε〉, β)
is undefined otherwise. For any β ∈ Y ∗ with |β| > τ , δ′0(〈s, ε〉, β) =
δ′0(〈δM ({s}, β′), δ′(ϕ(s), β′)〉, β′′) = 〈δM ({s}, β), δ′(ϕ(s), β)〉 if β ∈ Rs, δ′0(〈s, ε〉,
β) is undefined otherwise, where β = β′β′′ with |β′| = τ . Therefore,
δ′0(〈s, ε〉, β) is defined if and only if β ∈ Rs.

Lemma 6.4.1. If M ′ is a weak inverse finite automaton with delay τ of M ,
then the partial finite automaton M ′

0 is a weak inverse with delay τ of M .

Proof. Suppose that M ′ is a weak inverse finite automaton with delay τ

of M . In the construction of M ′
0, for any s in S, we choose a state ϕ(s) of

M ′ such that ϕ(s) τ -matches s. Let α = x0x1 . . ., where xi ∈ X, i = 0, 1, . . .

Then we have

λ′(ϕ(s), λ(s, α)) = x−τ . . . x−1x0x1 . . . ,

for some x−τ ,. . ., x−1 in X. Denote λ(s, α) = β1β, |β1| = τ . Then β1 and any
prefix of β1β are in Rs. It follows that for any prefix β′ of β1β, δ′0(〈s, ε〉, β′) is
defined. From the construction of M ′

0, this yields that for any prefix β′′ of β,
λ′

0(δ
′
0(〈s, ε〉, β1), β′′), i.e., λ′

0(〈δM ({s}, β1), δ′(ϕ(s), β1)〉, β′′), is defined and it
equals λ′(δ′(ϕ(s), β1), β′′). Thus λ′

0(〈δM ({s}, β1), δ′(ϕ(s), β1)〉, β) is defined
and it equals λ′(δ′(ϕ(s), β1), β). It follows that

λ′
0(〈s, ε〉, λ(s, α)) = λ′

0(〈s, ε〉, β1β)

= λ′
0(〈s, ε〉, β1)λ′

0(δ
′
0(〈s, ε〉, β1), β)

= λ′
0(〈s, ε〉, β1)λ′

0(〈δM ({s}, β1), δ′(ϕ(s), β1)〉, β)

= x′
−τ . . . x′

−1λ
′(δ′(ϕ(s), β1), β)

= x′
−τ . . . x′

−1x0x1 . . . ,

where x′
−τ = · · · = x′

−1 = . Therefore, 〈s, ε〉 τ -matches s. It follows that
M ′

0 is a weak inverse with delay τ of M . ��

Lemma 6.4.2. Let M ′ be a weak inverse finite automaton with delay τ of
M . For any partial finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉, M ′′ is a weak
inverse with delay τ of M if and only if M ′

0 ≺ M ′′.
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Proof. only if : Suppose that M ′′ is a weak inverse with delay τ of M .
Given any s in S and any s′0 in T�τ

s ∪ T 0
s , from the definitions of δ′0 and S′

0,
there exists β̄ in Rs such that s′0 = δ′0(〈s, ε〉, β̄). Since M ′′ is a weak inverse
with delay τ of M , there exists s′′ in S′′ such that s′′ τ -matches s. We prove
that δ′′(s′′, β̄) is defined. From the definition of Rs, there exists β in Y ∗ such
that β 
= ε, β̄β ∈ Rs and |β̄β| > τ . It follows that β̄β = λ(s, α) for some α of
length |β̄β| in X∗. Denote α = x0 x1 . . . xn, where x0, x1, . . ., xn ∈ X, and
n = |β̄β| − 1. Since s′′ τ -matches s, we have

λ′′(s′′, β̄β) = λ′′(s′′, λ(s, α)) = x−τ . . . x−1x0 . . . xn−τ ,

for some x−τ , . . ., x−1 in X ∪{ }. From β 
= ε and xn−τ ∈ X, it follows that
δ′′(s′′, β̄) is defined.

Let s′′0 = δ′′(s′′, β̄). We prove s′0 ≺ s′′0 . Assume that β in Y ∗ is applicable
to s′0. In the case of β = ε, it is obvious that β is applicable to s′′0 and
λ′

0(s
′
0, β) ≺ λ′′(s′′0 , β). In the case of β 
= ε, let β = β1y, where y ∈ Y . Since β

is applicable to s′0, δ′0(s
′
0, β1), i.e., δ′0(〈s, ε〉, β̄β1) is defined. Thus β̄β1 ∈ Rs. It

immediately follows that λ(s, x0x1 . . . xn−1) = β̄β1 for some x0, x1, . . ., xn−1

in X, where n = |β̄β1|. Let r = max(τ, n). Take arbitrarily xn, xn+1, . . ., xr

in X. Let λ(s, x0x1 . . . xr) = β̄β1β2yr, for some β2 in Y ∗ and yr in Y . Since
s′′ τ -matches s, we have

λ′′(s′′, β̄β1β2yr) = λ′′(s′′, λ(s, x0x1 . . . xr)) = x−τ . . . x−1x0 . . . xr−τ ,

for some x−τ , . . ., x−1 in X ∪ { }. Since r � τ , we have xr−τ ∈ X. It
follows that δ′′(s′′, β̄β1β2) is defined. From δ′′(s′′, β̄β1β2) = δ′′(s′′0 , β1β2) =
δ′′(δ′′(s′′0 , β1), β2), δ′′(s′′0 , β1) is defined. Therefore, β is applicable to s′′0 .
We have proven that λ(s, x0x1 . . . xn−1) = β̄β1 and λ′′(s′′, β̄β1β2yr) =
x−τ . . . x−1x0 . . . xr−τ . From r � n, we have λ′′(s′′, β̄β1) = x−τ . . . x−1

x0 . . . xn−τ−1. It follows that λ′′(s′′, β̄β) = x−τ . . . x−1 x0 . . . xn−τ−1 x̄n−τ ,
for some x̄n−τ in X ∪ { }. From the proof of Lemma 6.4.1, 〈s, ε〉 τ -matches
s. When λ′

0(δ
′
0(s

′
0, β1), y) is undefined, we have

λ′
0(〈s, ε〉, β̄β) = λ′

0(〈s, ε〉, β̄β1)λ′
0(δ

′
0(〈s, ε〉, β̄β1), y)

= x′
−τ . . . x′

−1x0 . . . xn−τ−1x
′
n−τ ,

where x′
−τ = · · · = x′

−1 = x′
n−τ = . Since x′

i ≺ xi, i = −τ, . . . ,−1, and x′
n−τ

≺ x̄n−τ , we have λ′
0(〈s, ε〉, β̄β) ≺ λ′′(s′′, β̄β). This yields that λ′

0(s
′
0, β) =

λ′
0(δ

′
0(〈s, ε〉, β̄), β) ≺ λ′′(δ′′(s′′, β̄), β) = λ′′(s′′0 , β). When λ′

0(δ
′
0(s

′
0, β1), y) is

defined, from the construction of M ′
0, δ′0(δ

′
0(s

′
0, β1), y), i.e., δ′0(〈s, ε〉, β̄β), is

defined. It follows that β̄β ∈ Rs. Thus λ(s, x0x1 . . . xn) = β̄β for some x0,
x1, . . ., xn in X. Since 〈s, ε〉 τ -matches s, we have

λ′
0(〈s, ε〉, β̄β) = λ′

0(〈s, ε〉, λ(s, x0x1 . . . xn)) = x′
−τ . . . x′

−1x0 . . . xn−τ ,



204 6. Some Topics on Structure Problem

where x′
−τ = · · · = x′

−1 = . Since s′′ τ -matches s, we have

λ′′(s′′, β̄β) = λ′′(s′′, λ(s, x0x1 . . . xn)) = x−τ . . . x−1x0 . . . xn−τ ,

for some x−τ , . . ., x−1 in X∪{ }. Therefore, λ′
0(〈s, ε〉, β̄β) ≺ λ′′(s′′, β̄β). This

yields that λ′
0(s

′
0, β) ≺ λ′′(s′′0 , β). We conclude s′0 ≺ s′′0 .

Since for any s′0 in S′
0, we can find s′′0 in S′′ such that s′0 ≺ s′′0 , we have

M ′
0 ≺ M ′′.
if : Suppose that M ′

0 ≺ M ′′. From Lemma 6.4.1, M ′
0 is a weak inverse

with delay τ of M . Thus for each s in S, there exists s′0 in S′
0 such that

s′0 τ -matches s. From M ′
0 ≺ M ′′, there exists s′′ in S′′ such that s′0 ≺ s′′.

We prove that s′′ τ -matches s. Let α = x0x1 . . ., where xi ∈ X, i = 0, 1, . . .

Denote y0y1 . . . = λ(s, x0x1 . . .), where yi ∈ Y , i = 0, 1, . . . Then we have
λ′

0(s
′
0, y0y1 . . .) = x−τ . . . x−1 x0x1 . . ., for some x−τ , . . ., x−1 ∈ X∪{ }. Since

xj ∈ X for any j � 0, y0y1 . . . yi is applicable to s′0 for any i � 0. From s′0 ≺
s′′, y0y1 . . . yi is applicable to s′′, and λ′

0(s
′
0, y0y1 . . . yi) ≺ λ′′(s′′, y0y1 . . . yi),

i.e., x−τ x−τ+1 . . . xi−τ ≺ λ′′(s′′, y0y1 . . . yi), i = 0, 1, . . . Noticing that xi ∈ X

for any i � 0, it follows that λ′′(s′′, λ(s, α)) = λ′′(s′′, y0y1 . . .) = x′′
−τ . . . x′′

−1

x0x1 . . ., for some x′′
−τ , . . ., x′′

−1 ∈ X ∪ { }. Therefore, s′′ τ -matches s. It
follows that M ′′ is a weak inverse with delay τ of M . ��

Since M is weakly invertible with delay τ , there is a finite automaton M ′

such that M ′ is a weak inverse with delay τ of M . Given a weak inverse finite
automaton M ′ with delay τ of M , from M and M ′, we construct a partial
finite automaton M ′

0 as mentioned above.
For any closed compatible family C1, . . ., Ck of M ′

0, according to the dis-
cussion in Subsect. 6.1.1, we can construct a set M(C1, . . . , Ck) of partial fi-
nite automata. We use M1(M ′

0) to denote the union set of all M(C1, . . . , Ck),
C1, . . ., Ck ranging over all closed compatible family of M ′

0.

Theorem 6.4.1. If M = 〈X, Y, S, δ, λ〉 is a weakly invertible finite automa-
ton with delay τ, then a finite automaton M ′′ = 〈Y, X, S′′, δ′′, λ′′〉 is a weak
inverse with delay τ of M if and only if there exist a partial finite automaton
M̃ in M1(M ′

0) and a partial finite subautomaton M ′′′ of M ′′ such that M̃

and M ′′′ are isomorphic.

Proof. From Lemma 6.4.2, for any (partial) finite automaton M ′′, M ′′ is a
weak inverse with delay τ of M if and only if M ′

0 ≺ M ′′. From Theorems 6.1.1
and 6.1.2, M ′

0 ≺ M ′′ if and only if there exist a partial finite automaton M̃

in M1(M ′
0) and a partial finite subautomaton M ′′′ of M ′′ such that M̃ and

M ′′′ are isomorphic. We then obtain the result of the theorem. ��
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6.5 Original Weak Inverses of a Finite Automaton

Given a weak inverse finite automaton M ′ = 〈Y, X, S′, δ′, λ′〉 with delay τ ,
let

f(yτ , . . . , y0, s
′) = λ′(δ′(s′, y0 . . . yτ−1), yτ ),

s′ ∈ S′, y0, . . . , yτ ∈ Y.

For any s′ in S′, construct a set T ′
s′ of labelled trees with level τ as follows. In

any tree in T ′
s′ , each vertex with level � τ emits |X| arcs and each arc has a

label of the form (x, y), where x ∈ X and y ∈ Y . x and y are called the input
label and the output label of the arc, respectively. Input labels of |X| arcs
emitted from the same vertex are different letters in X. Each vertex of the
tree has a label also. The label of the root vertex is s′. For any vertex other
than the root, if the labels of arcs in the path from the root to the vertex are
(x0, y0), (x1, y1), . . ., (xi, yi), then the label of the vertex is δ′(s′, y0 . . . yi).
For any path from the root to a leaf, if the labels of arcs in the path are
(x0, y0), (x1, y1), . . ., (xτ , yτ ), then f(yτ , . . . , y0, s

′) = x0 holds.
Let T̄ ′ = ∪s′∈S′T ′

s′ .
We use M′(M ′) to denote the set of all M(T , ν, δ), T ranging over

all nonempty closed subset of T̄ ′. We use T ′
m to denote the maximum

closed subset of T̄ ′. Clearly, T ′
m is unique. Let M̄′(M ′) = {M(T ′

m, ν, δ) |
M(T ′

m, ν, δ) ∈ M′(M ′)}. (For the construction of the finite automaton
M(T , ν, δ), see the end of Sect. 1.6 of Chap. 1.)

Lemma 6.5.1. If M ′ is a weak inverse finite automaton with delay τ , then
M ′ is a weak inverse with delay τ of any finite automaton in M′(M ′).

Proof. Let M(T , ν, δ) be a finite automaton in M′(M ′). Let M ′ = 〈Y , X,
S′, δ′, λ′〉 and M(T , ν, δ) = 〈X, Y, S, δ, λ〉. For any s = 〈T, j〉 in S and any
xi in X, i = 0, 1, . . ., let y0y1 . . . = λ(s, x0x1 . . .), where yi ∈ Y , i = 0, 1, . . .

Let s′0 be the label of the root of the tree T . Given i � 0, we use 〈T ′, j′〉 to
denote δ(〈T, j〉, y0 . . . yi−1). From the construction of M(T , ν, δ), it is easy to
show that the label of the root of T ′ is δ′(s′0, y0 . . . yi−1), which is abbreviated
to s′i. From the construction of M(T , ν, δ), (xi, yi), . . ., (xi+τ , yi+τ ) are the
labels of arcs in some path from the root of T ′. Since T ′ ∈ T ′

s′
i
, we have

f(yi+τ , . . . , yi, s
′
i) = xi. Thus

λ′(s′i, yi . . . yi+τ ) = λ′(s′i, yi . . . yi+τ−1)λ′(δ′(s′i, yi . . . yi+τ−1), yi+τ )

= λ′(s′i, yi . . . yi+τ−1)f(yi+τ , . . . , yi, s
′
i)

= λ′(s′i, yi . . . yi+τ−1)xi.

It follows that λ′(s′0, y0y1 . . .) = x−τ . . . x−1x0x1 . . ., for some x−τ , . . ., x−1

in X. Therefore, s′0 τ -matches s. We conclude that M ′ is a weak inverse of
M(T , ν, δ) with delay τ . ��
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Lemma 6.5.2. If M ′ is a weak inverse finite automaton with delay τ of a
finite automaton M , then there exists M(T1, ν1, δ1) in M′(M ′) such that M

and M(T1, ν1, δ1) are equivalent.

Proof. Let M ′ = 〈Y, X, S′, δ′, λ′〉 and M = 〈X, Y, S, δ, λ〉. For any s in S

and any s′ in S′, we assign labels to vertices of the tree TM
τ (s) as follows.

s′ is assigned to the root. For any vertex other than the root, if the labels
of arcs in the path from the root to the vertex are (x0, y0), (x1, y1), . . .,
(xi, yi), we assign δ′(s′, y0 . . . yi) to the vertex. We use Tτ (s, s′) to denote
the tree, with arc label and vertex label, as mentioned above. To construct
M(T1, ν1, δ1), take T1 = {Tτ (s, s′) | s ∈ S, s′ ∈ S′, s′ matches s with delay τ}.
Clearly, for any x in X, Tτ (δ(s, x), δ′(s′, λ(s, x))) is an x-successor of Tτ (s, s′).
Thus T1 is closed. For any T in T1, we use s′ to denote the label of the
root of T and take ν1(T ) as the number of elements in the set {s | s ∈
S, Tτ (s, s′) = T, s′ matches s with delay τ}. For any s′′ in S′

0, fix a one-to-
one mapping ϕs′′ from the set {s | s ∈ S, s′′ matches s with delay τ} onto
the set {〈T, j〉 | T ∈ T1, 1 � j � ν1(T ), the label of the root of T is s′′},
where S′

0 = {s′ ∈ S′, there exists s ∈ S such that s′ τ -matches s}. From the
definition of ν1, such a ϕs′′ is existent. For any T in T1, any j, 1 � j � ν1(T ),
and any x in X, let δ1(〈T, j〉, x) = ϕs′′(δ(s, x)), where s = ϕ−1

s′ (〈T, j〉), s′′ =
δ′(s′, λ(s, x)), and s′ is the label of the root of T . It is easy to verify that if
δ1(〈T, j〉, x) = 〈T ′, j′〉, then T ′ is the x-successor of T .

Denote M(T1, ν1, δ1) = 〈X, Y, S1, δ1, λ1〉. For any s in S, any s′ in S′ and
any t in S1, if ϕs′(s) = t, then there exists j such that t = 〈Tτ (s, s′), j〉.
From the definition of Tτ (s, s′) and the construction of M(T1, ν1, δ1), for any
x in X, we have λ(s, x) = λ1(t, x). And from the definition of δ1, we have
δ1(t, x) = ϕs′′(δ(s, x)), where s′′ = δ′(s′, λ(s, x)). To sum up, for any s in
S, any s′ in S′ and any t in S1, if ϕs′(s) = t, then for any x in X, we have
λ(s, x) = λ1(t, x) and ϕs′′(δ(s, x)) = δ1(t, x). Using this result repeatedly, it
is easy to show that for any s in S, any s′ in S′ and any t in S1, if ϕs′(s) =
t, then s ∼ t. Since M ′ is a weak inverse with delay τ of M , for any s in
S, there exist s′ in S′ and t in S1 such that ϕs′(s) = t. It follows that for
any s in S, there exists t in S1 such that s ∼ t. Thus M ≺ M(T1, ν1, δ1).
Conversely, for any t in S1, there exist s in S and s′ in S′ such that ϕs′(s) =
t. It follows that for any t in S1, there exists s in S such that t ∼ s. Thus
M(T1, ν1, δ1) ≺ M . We conclude that M ∼ M(T1, ν1, δ1).

We prove M(T1, ν1, δ1) ∈ M′(M ′). It is sufficient to prove that for any s

in S and any s′ in S′, if s′ τ -matches s, then Tτ (s, s′) ∈ T ′
s′ . Suppose that

(x0, y0), (x1, y1), . . ., (xτ , yτ ) are the labels of arcs in a path from the root
of Tτ (s, s′). Clearly, for any t = 〈Tτ (s, s′), j〉 in S1, we have λ1(t, x0 . . . xτ ) =
y0 . . . yτ . Since s′ τ -matches s, there exists j such that 〈Tτ (s, s′), j〉 = ϕs′(s).
From the result shown previously, it follows that 〈Tτ (s, s′), j〉 ∼ s. Thus
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λ(s, x0 . . . xτ ) = y0 . . . yτ . Therefore,

λ′(s′, y0 . . . yτ ) = λ′(s′, y0 . . . yτ−1)λ′(δ′(s′, y0 . . . yτ−1), yτ )

= λ′(s′, y0 . . . yτ−1)x0.

It follows that f(yτ , . . . , y0, s
′) = x0. We conclude Tτ (s, s′) ∈ Ts′ . ��

From Lemmas 6.5.1 and 6.5.2, we obtain the following theorem.

Theorem 6.5.1. Let M ′ be a weak inverse finite automaton with delay τ .
Then M ′ is a weak inverse with delay τ of a finite automaton M if and only
if there exists M1 in M′(M ′) such that M and M1 are equivalent.

Theorem 6.5.2. Let M ′ = 〈Y, X, S′, δ′, λ′〉 be a weak inverse finite au-
tomaton with delay τ . Then M ′ is a weak inverse with delay τ of a finite
automaton M = 〈X, Y, S, δ, λ〉 if and only if there exists M2 in M̄′(M ′) such
that M ≺ M2.

Proof. if : Suppose that there exists M2 in M̄′(M ′) such that M ≺ M2.
Clearly, M2 ∈ M′(M ′). From Theorem 6.5.1, M ′ is a weak inverse finite
automaton with delay τ of M2. Since M ≺ M2, M ′ is a weak inverse finite
automaton with delay τ of M .

only if : Suppose that M ′ is a weak inverse finite automaton with delay τ

of a finite automaton M . From Theorem 6.5.1, there exists M(T1, ν1, δ1) in
M′(M ′) such that M ∼ M(T1, ν1, δ1). Let

ν2(T ) =

{
ν1(T ), if T ∈ T1,

1, if T ∈ T ′
m \ T1,

δ2(〈T, i〉, x) =

{
δ1(〈T, i〉, x), if T ∈ T1,

〈T̄ , 1〉, if T ∈ T ′
m \ T1,

where T̄ is an arbitrarily fixed x-successor of T in T ′
m. Then M(T ′

m, ν2, δ2) ∈
M̄′(M ′). Choose M(T ′

m, ν2, δ2) as M2. Clearly, M(T1, ν1, δ1) is a finite sub-
automaton of M2. From M ∼ M(T1, ν1, δ1), this yields M ≺ M2. ��

Construct M(T ′
m) = 〈X, Y, T ′

m, δ, λ〉 as follows:

δ(T, x) = {T̄ | T̄ ∈ T ′
m is an x-successor of T},

λ(T, x) = {y},
T ∈ T ′

m, x ∈ X,

where (x, y) is the label of an arc emitted from the root of T . Clearly, M(T ′
m)

is a nondeterministic finite automaton.
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Theorem 6.5.3. (a) M ′ is a weak inverse with delay τ of the nondeter-
ministic finite automaton M(T ′

m).
(b) If M ′ is a weak inverse with delay τ of M, then M ≺ M(T ′

m).

Proof. (a) For any state T0 of M(T ′
m) and any x0, x1, . . . , xl in X, let

y0y1 . . . yl ∈ λ(T0, x0x1 . . . xl), where y0, y1, . . . , yl ∈ Y . Then there exist
states T1, T2, . . . , Tl+1 of M(T ′

m) such that Ti+1 ∈ δ(Ti, xi) and yi ∈ λ(Ti, xi)
hold for i = 0, 1, . . . , l. From the definition of δ, it is easy to see that for
any i, 0 � i � l − τ , (xi, yi), (xi+1, yi+1), . . ., (xi+τ , yi+τ ) are labels of arcs
in a path from the root to a leaf of Ti. This yields f(yi+τ , . . . , yi, s

′
i) = xi,

i = 0, 1, . . . , l− τ , where s′i is the label of the root vertex of Ti, i = 0, 1, . . . , l.
It follows that λ′(δ′(s′i, yi . . . yi+τ−1), yi+τ ) = xi, i = 0, 1, . . . , l− τ . From the
definition of M(T ′

m), it is easy to show that s′i+1 = δ′(s′i, yi), i = 0, 1, . . . , l.
Thus λ′(s′i+τ , yi+τ ) = xi, i = 0, 1, . . . , l − τ . Therefore, λ′(s′0, y0y1 . . . yl) =
x−τ . . . x−1x0x1 . . . xl−τ holds for some x−τ , . . . , x−1 in X. We conclude that
M ′ is a weak inverse finite automaton with delay τ of M(T ′

m).
(b) Similar to the proof of Theorem 6.3.3 (b), from Theorem 6.5.2, there

exists M2 = M(T ′
m, ν, δ2) such that M ≺ M2. We prove M2 ≺ M(T ′

m).
For any state 〈T0, j0〉 of M2, T0 is a state of M(T ′

m). To prove 〈T0, j0〉 ≺
T0, let x0, x1, . . . , xl ∈ X and y0y1 . . . yl = λ2(〈T0, j0〉, x0x1 . . . xl), where
y0, y1, . . . , yl are in Y , and λ2 is the output function of M2. Then there exist
states 〈Ti, ji〉, i = 1, . . . , l + 1 of M2 such that δ2(〈Ti, ji〉, xi) = 〈Ti+1, ji+1〉
and λ2(〈Ti, ji〉, xi) = yi, i = 0, 1, . . . , l, where δ2 is the next state function
of M2. From the definition of M(T ′

m, ν, δ2), Ti+1 is an xi-successor of Ti and
(xi, yi) is the label of an arc emitted from the root of Ti. From the definition
of M(T ′

m), y0y1 . . . yl ∈ λ(T0, x0x1 . . . xl). Thus 〈T0, j0〉 ≺ T0. We conclude
M2 ≺ M(T ′

m). From M ≺ M2, we have M ≺ M(T ′
m). ��

This theorem means that M(T ′
m) is a “universal” nondeterministic finite

automaton for finite automata of which M ′ is a weak inverse with delay τ .

6.6 Weak Inverses with Bounded Error Propagation of a
Finite Automaton

Let Ma = 〈Ya, Sa, δa, λa〉 be an autonomous finite automaton, and f a partial
function from Xc+1 × λa(Sa) to Y . We also use SIM(Ma, f) to denote a
partial finite automaton 〈X, Y,Xc × Sa, δ, λ〉, where

δ(〈x−1, . . . , x−c, sa〉, x0) = 〈x0, . . . , x−c+1, δa(sa)〉,
λ(〈x−1, . . . , x−c, sa〉, x0) = f(x0, x−1, . . . , x−c, λa(sa)),

x0, x−1, . . . , x−c ∈ X, sa ∈ Sa.
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SIM(Ma, f) is called a c-order semi-input-memory partial finite automa-
ton determined by Ma and f . Clearly, a c-order semi-input-memory finite
automaton is a special c-order semi-input-memory partial finite automaton.

Let M = 〈X, Y, S, δ, λ〉 and M ′ = 〈Y, X, S′, δ′, λ′〉 be two finite automata.
Assume that M ′ is a weak inverse finite automaton with delay τ of M and that
propagation of weakly decoding errors of M ′ to M is bounded with length of
error propagation � c, where c � τ . Similar to the proof of Theorem 1.5.1,
we can construct a c-order semi-input-memory partial finite automaton as
follows.

Since M ′ is a weak inverse finite automaton with delay τ of M and prop-
agation of weakly decoding errors of M ′ to M is bounded with length of
error propagation � c, for each s in S, we can choose a state of M ′, say
ϕ(s), such that (s, ϕ(s)) is a (τ, c)-match pair. Take a subset I of S with
{δ(s, α) | s ∈ I, α ∈ X∗} = S.

We first construct an autonomous finite automaton M ′′ = 〈Y ′′, S′′, δ′′, λ′′〉
mentioned in the proof of Theorem 1.5.1.

For any subset T of S, let R(T ) = {λ(t, α) | t ∈ T, α ∈ X∗}. For any
state ws,i of M ′′ and any yi, . . . , yi−c in Y , we define f(yi, . . . , yi−c, ws,i) as
follows. When i � c and yi−c . . . yi ∈ R(Ts,i−c), define f(yi, . . . , yi−c, ws,i) =
λ′(δ′(s′i−c, yi−c . . . yi−1), yi), s′i−c being a state in T ′

s,i−c. From the proof of
Theorem 1.5.1, this value of f is independent of the choice of s′i−c. When
τ � i < c and y0 . . . yi ∈ R(Ts,0), define f(yi, . . . , yi−c, ws,i) = xi−τ , where
y0 . . . yi = λ(s, x0 . . . xi) for some x0, . . ., xi in X. From the proof of The-
orem 1.5.1, the value of xi−τ is uniquely determined by i and y0, . . ., yi.
Otherwise, the value of f(yi, . . . , yi−c, ws,i) is undefined. We then construct
a c-order semi-input-memory partial finite automaton SIM(M ′′, f) from M ′′

and f .

Lemma 6.6.1. SIM(M ′′, f) is a weak inverse partial finite automaton with
delay τ of M . Furthermore, for any s in I, the state s′′′ = 〈y−c, . . . , y−1, ws,0〉
of SIM(M ′′, f) τ -matches s, where y−1, . . ., y−c are arbitrary elements in
Y .

Proof. Similar to the proof of Theorem 1.5.1, for any x0, . . . , xj in X, let
y0 . . . yj = λ(s, x0 . . . xj) and z0 . . . zj = λ′′′(s′′′, y0 . . . yj), where λ′′′ is the
output function of SIM(M ′′, f). We prove that zi = xi−τ holds for any τ �
i � j. In the case of τ � i < c, since y0 . . . yi ∈ R(Ts,0), from the construction
of SIM(M ′′, f) and the definition of f , it immediately follows that zi = xi−τ .
In the case of i � c, take h = i if i < ts + c + es, and take h = ts + c + d if
i = ts + c + d + kes for k > 0 and 0 � d < es. Since h − c � ts and h = i

(mod es), or h = i, we have (Ts,i−c, T
′
s,i−c) = (Ts,h−c, T

′
s,h−c). Let si−c =

δ(s, x0 . . . xi−c−1) and s′i−c = δ′(ϕ(s), y0 . . . yi−c−1). Then we have si−c ∈
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Ts,h−c, s′i−c ∈ T ′
s,h−c, and yi−c . . . yi ∈ R(Ts,h−c). From the construction of

SIM(M ′′, f) and the definition of f , it is easy to show that

δ′′′(s′′′, y0 . . . yi−1) = 〈yi−1, . . . , yi−c, ws,h〉,
zi = λ′′′(〈yi−1, . . . , yi−c, ws,h〉, yi)

= f(yi, yi−1, . . . , yi−c, ws,h) = λ′(δ′(s′i−c, yi−c . . . yi−1), yi),

where δ′′′ is the next state function of SIM(M ′′, f). Since (s, ϕ(s)) is a
(τ, c)-match pair, we have

λ′(δ′(s′i−c, yi−c . . . yi−1), yi) = λ′(δ′(ϕ(s), y0 . . . yi−1), yi) = xi−τ .

It follows that zi = xi−τ . Therefore, s′′′ τ -matches s. It follows that δ′′′(s′′′, β)
τ -matches δ(s, α), if β = λ(s, α). From S = {δ(s, α) | s ∈ I, α ∈ X∗}, for any
s in S, there exists a state s′ of SIM(M ′′, f) such that s′ τ -matches s. Thus
SIM(M ′′, f) is a weak inverse partial finite automaton with delay τ of M .

��

Lemma 6.6.2. SIM(M ′′, f) ≺ M ′.

Proof. For any state s′′′ = 〈y−1, . . . , y−c, ws,0〉 of SIM(M ′′, f), where
s ∈ I and y−1, . . ., y−c ∈ Y , we prove s′′′ ≺ ϕ(s). Let y0, . . ., yj ∈ Y , j � 0.
From the construction of SIM(M ′′, f), y0 . . . yj is applicable to s′′′, i.e.,
j = 0 or δ′′′(s′′′, y0 . . . yj−1) is defined, where δ′′′ is the next state function
of SIM(M ′′, f). Let λ′′′(s′′′, y0 . . . yj) = x′′′

0 . . . x′′′
j and λ′(ϕ(s), y0 . . . yj) =

x′
0 . . . x′

j , where λ′′′ is the output function of SIM(M ′′, f), and x′′′
i ∈ X∪{ },

x′
i ∈ X, i = 0, 1, . . . , j. We prove x′′′

i ≺ x′
i, i.e., x′′′

i = x′
i whenever x′′′

i is
defined, for i = 0, 1, . . . , j. There are three cases to consider.

In the case of τ � i < c and y0 . . . yi ∈ R(Ts,0), there exist x0, . . ., xi in X

such that λ(s, x0 . . . xi) = y0 . . . yi. From the construction of SIM(M ′′, f),
we have x′′′

i = xi−τ . Since (s, ϕ(s)) is a match pair with delay τ , there exist
x−τ , . . ., x−1 in X such that λ′(ϕ(s), y0 . . . yi) = x−τ . . . x−1x0 . . . xi−τ . It
immediately follows that x′

i = xi−τ . Therefore, we have x′′′
i = x′

i. This yields
x′′′

i ≺ x′
i.

In the case of i � c and yi−c . . . yi ∈ R(Ts,i−c), from the construction
of SIM(M ′′, f), we have x′′′

i = λ′(δ′(s′i−c, yi−c . . . yi−1), yi), for any s′i−c in
T ′

s,i−c. Since yi−c . . . yi is in R(Ts,i−c), there exist si−c in Ts,i−c and xi−c, . . .,
xi in X such that λ(si−c, xi−c . . . xi) = yi−c . . . yi. From the definition of
Ts,i−c, there exist x0, . . ., xi−c−1 in X such that δ(s, x0 . . . xi−c−1) = si−c. Let
λ(s, x0 . . . xi−c−1) = y′

0 . . . y′
i−c−1, where y′

0, . . ., y′
i−c−1 ∈ Y . Then we have

λ(s, x0 . . . xi) = y′
0 . . . y′

i−c−1 yi−c . . . yi. Take s′i−c = δ′(ϕ(s), y′
0 . . . y′

i−c−1).
Clearly, s′i−c is in T ′

s,i−c. Thus for this s′i−c, λ′(δ′(s′i−c, yi−c . . . yi−1), yi) =
x′′′

i . Since (s, ϕ(s)) is a (τ, c)-match pair, we have
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x′′′
i = λ′(δ′(s′i−c, yi−c . . . yi−1), yi)

= λ′(δ′(ϕ(s), y′
0 . . . y′

i−c−1yi−c . . . yi−1), yi)

= λ′(δ′(ϕ(s), y0 . . . yi−1), yi)

= x′
i.

It immediately follows that x′′′
i ≺ x′

i.
Otherwise, from the construction of SIM(M ′′, f), x′′′

i is undefined. It
immediately follows that x′′′

i ≺ x′
i.

We have proven that 〈y−1, . . . , y−c, ws,0〉 ≺ ϕ(s) for any s ∈ I and any
y−1, . . ., y−c ∈ Y . For any state s̄′′′ of SIM(M ′′, f), from the construction of
SIM(M ′′, f), there exist s in I and yi−c, . . ., yi−1 in Y , 0 � i � ts+c+es−1,
such that s̄′′′ = 〈yi−1, . . . , yi−c, ws,i〉. Let s′′′ = 〈y−1, . . . , y−c, ws,0〉 be a state
of SIM(M ′′, f). Then δ′′′(s′′′, y0 . . . yi−1) = s̄′′′ holds for any y0, . . ., yi−c−1

in Y . Since s′′′ ≺ ϕ(s), we have δ′′′(s′′′, y0 . . . yi−1) ≺ δ′(ϕ(s), y0 . . . yi−1), i.e.,
s̄′′′ ≺ δ′(ϕ(s), y0 . . . yi−1). We conclude that SIM(M ′′, f) ≺ M ′. ��

Let M̄ ′ = 〈Y, X, S̄′, δ̄′, λ̄′〉 be a finite automaton. Assume that M̄ ′ is a
weak inverse with delay τ of M and that propagation of weakly decoding
errors of M̄ ′ to M is bounded with length of error propagation � c̄, where
c̄ � τ . Similar to the constructing method of SIM(M ′′, f) from M and
M ′, we can construct a c̄-order semi-input-memory partial finite automaton
SIM(M̄ ′′, f̄) from M and M̄ ′, replacing ϕ, T ′

s,i, M ′′, f , c, δ′, λ′, . . . by ϕ̄,
T̄ ′

s,i, M̄ ′′, f̄ , c̄, δ̄′, λ̄′, . . ., respectively.

Lemma 6.6.3. If c̄ � c, then SIM(M ′′, f) ≺ SIM(M̄ ′′, f̄).

Proof. From the construction of SIM(M ′′, f) and SIM(M̄ ′′, f̄), it is
sufficient to prove that for any s ∈ I and any y−1, . . ., y−c ∈ Y , the state s̄′′′

of SIM(M̄ ′′, f̄) is stronger than the state s′′′ of SIM(M ′′, f), where s′′′ =
〈y−1, . . . , y−c, ws,0〉, s̄′′′ = 〈y−1, . . . , y−c̄, ws,0〉. Since any β in Y ∗ is applicable
to s′′′ and s̄′′′, s′′′ ≺ s̄′′′ if and only if for any β in Y ∗, λ′′′(s′′′, β) ≺ λ̄′′′(s̄′′′, β),
where λ′′′ and λ̄′′′ are output functions of SIM(M ′′, f) and SIM(M̄ ′′, f̄),
respectively.

For any y0, . . ., yj in Y , j � 0, let x′′′
0 . . . x′′′

j = λ′′′(s′′′, y0 . . . yj) and
x̄′′′

0 . . . x̄′′′
j = λ̄′′′(s̄′′′, y0 . . . yj), where x′′′

i , x̄′′′
i , i = 0, 1, . . . , j are in X ∪ { }.

We prove x′′′
i ≺ x̄′′′

i , i = 0, 1, . . . , j. There are four cases to consider.
In the case of τ � i < c̄ and y0 . . . yi ∈ R(Ts,0), there exist x0, . . ., xi in

X such that λ(s, x0 . . . xi) = y0 . . . yi. From the construction of SIM(M ′′, f)
and SIM(M̄ ′′, f̄), using c̄ � c, we have x′′′

i = xi−τ and x̄′′′
i = xi−τ . It

immediately follows x′′′
i = x̄′′′

i , therefore, x′′′
i ≺ x̄′′′

i .
In the case of c̄ � i < c and y0 . . . yi ∈ R(Ts,0), there exist x0, . . ., xi in X

such that λ(s, x0 . . . xi) = y0 . . . yi. From the construction of SIM(M ′′, f),
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we have x′′′
i = xi−τ . Using Lemma 6.6.1 (in the version of SIM(M̄ ′′, f̄)),

we have λ̄′′′(s̄′′′, y0 . . . yi) = x−τ . . . x−1x0 . . . xi−τ for some x−τ , . . ., x−1 in
X ∪ { }. It immediately follows that x̄′′′

i = xi−τ . Therefore, x′′′
i = x̄′′′

i . This
yields x′′′

i ≺ x̄′′′
i .

In the case of i � c and yi−c . . . yi ∈ R(Ts,i−c), there exist si−c in
Ts,i−c and xi−c, . . ., xi in X such that λ(si−c, xi−c . . . xi) = yi−c . . . yi. From
si−c ∈ Ts,i−c, there exist x0, . . ., xi−c−1 in X such that δ(s, x0 . . . xi−c−1) =
si−c. Let λ(s, x0 . . . xi−c−1) = y′

0 . . . y′
i−c−1, where y′

0, . . ., y′
i−c−1 ∈ Y . Then

we have λ(s, x0 . . . xi) = y′
0 . . . y′

i−c−1yi−c . . . yi. Using Lemma 6.6.1, it is
easy to see that λ′′′(δ′′′(s′′′, y′

0 . . . y′
i−c−1yi−c . . . yi−1), yi) = xi−τ . Similarly,

using Lemma 6.6.1 (in the version of SIM(M̄ ′′, f̄)), we have λ̄′′′(δ̄′′′(s̄′′′,
y′
0 . . . y′

i−c−1 yi−c . . . yi−1), yi) = xi−τ . Since

λ′′′(δ′′′(s′′′, y0 . . . yi−1), yi) = λ′′′(〈yi−1, . . . , yi−c, δ
′′i(ws,0)〉, yi)

= λ′′′(δ′′′(s′′′, y′
0 . . . y′

i−c−1yi−c . . . yi−1), yi) = xi−τ ,

we have x′′′
i = xi−τ . Similarly, we can show x̄′′′

i = xi−τ . Therefore, x′′′
i = x̄′′′

i .
This yields x′′′

i ≺ x̄′′′
i .

Otherwise, from the construction of SIM(M ′′, f), x′′′
i is undefined. It

immediately follows that x′′′
i ≺ x̄′′′

i . ��

Theorem 6.6.1. Let M = 〈X, Y, S, δ, λ〉 and M ′ = 〈Y, X, S′, δ′, λ′〉 be two
finite automata. Assume that M ′ is a weak inverse finite automaton with
delay τ of M and that propagation of weakly decoding errors of M ′ to M is
bounded with length of error propagation � c, where c � τ . Let SIM(M ′′, f)
be a c-order semi-input-memory partial finite automaton constructed from
M and M ′. Then for any finite automaton M̄ ′ = 〈Y, X, S̄′, δ̄′, λ̄′〉, M̄ ′ is a
weak inverse finite automaton with delay τ of M and propagation of weakly
decoding errors of M̄ ′ to M is bounded with length of error propagation � c,

if and only if SIM(M ′′, f) ≺ M̄ ′.

Proof. only if : Suppose that M̄ ′ is a weak inverse finite automaton with
delay τ of M and that propagation of weakly decoding errors of M̄ ′ to
M is bounded with length of error propagation � c. Let SIM(M̄ ′′, f̄) be
a c-order semi-input-memory partial finite automaton constructed from M

and M̄ ′. From Lemma 6.6.2 (in the version of SIM(M̄ ′′, f̄) and M̄ ′), we
have SIM(M̄ ′′, f̄) ≺ M̄ ′. From Lemma 6.6.3, SIM(M ′′, f) ≺ SIM(M̄ ′′, f̄)
holds. It follows that SIM(M ′′, f) ≺ M̄ ′.

if : Suppose SIM(M ′′, f) ≺ M̄ ′. From Theorem 6.1.2, there exist a closed
compatible family C1, . . ., Ck of SIM(M ′′, f), a partial finite automaton
M1 in M(C1, . . . , Ck), and a partial finite subautomaton M2 of M̄ ′ such that
M1 and M2 are isomorphic. It follows that there exists a finite automaton
M3 = 〈Y, X, S3, δ3, λ3〉 such that M1 is a partial finite subautomaton of M3
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and M3 is isomorphic to M̄ ′. Therefore, proving the if part is equivalent to
proving that M3 is a weak inverse finite automaton with delay τ of M and
propagation of weakly decoding errors of M3 to M is bounded with length
of error propagation � c. Since S = {δ(s, α) | s ∈ I, α ∈ X∗}, it is sufficient
to prove that for any s in I, there exists a state s3 of M3 such that (s, s3) is
a (τ, c)-match pair.

Given arbitrarily s in I, we fix arbitrary c elements in Y , say y−c, . . ., y−1,
and use s′′′ to denote the state 〈y−1, . . . , y−c, ws,0〉 of SIM(M ′′, f). Suppose
that s′′′ ∈ Ch for some h, 1 � h � k. Since ∪1�i�kCi is the state alphabet
of SIM(M ′′, f), such an h is existent. From Lemma 6.6.1, s′′′ τ -matches s.
From Lemma 6.1.2, we have s′′′ ≺ ch, where ch is a state of M1 corresponding
to Ch. Since M1 is a partial finite subautomaton of M3, ch is also a state of
M3 and s′′′ ≺ ch also holds. This yields that ch τ -matches s.

We consider the error propagation. Given arbitrarily x0, . . ., xl in X,
l � 0, let λ(s, x0 . . . xl) = y0 . . . yl and λ3(ch, y0 . . . yl) = x′′

0 . . . x′′
l , where yi ∈

Y , x′′
i ∈ X, i = 0, 1, . . . , l. Given arbitrarily y′

0, . . ., y′
n−1 ∈ Y , n � l, let

λ3(ch, y′
0 . . . y′

n−1yn . . . yl) = x′
0 . . . x′

l, where x′
i ∈ X, i = 0, 1, . . . , l. We prove

x′′
n+c . . . x′′

l = x′
n+c . . . x′

l. In the case of n+ c > l, this is trivial. In the case of
n+ c � l, let W = {w | ∃ȳ−c, . . . , ȳ−1 ∈ Y (〈ȳ−1, . . . , ȳ−c, w〉 ∈ Ch)}. For any
r, n+ c � r � l, we have r− c � n. Since M1 is a partial finite subautomaton
of M3 and M1 ∈ M(C1, . . . , Ck), from the construction of M1, it is easy to
see that

Ci ⊇ δ′′′(Ch, y0 . . . yr−1) = {〈yr−1, . . . , yr−c, δ
′′r(w)〉, w ∈ W},

Cj ⊇ δ′′′(Ch, y′
0 . . . y′

n−1yn . . . yr−1) = {〈yr−1, . . . , yr−c, δ
′′r(w)〉, w ∈ W},

where Ci and Cj correspond to ci = δ1(ch, y0 . . . yr−1) and cj = δ1(ch,y′
0 . . .

y′
n−1 yn . . . yr−1), respectively, and δ′′′ and δ1 are the next state functions

of SIM(M ′′, f) and M1, respectively. Let s′′′r = δ′′′(s′′′, y0 . . . yr−1). From
r − c � n, we have s′′′r = δ′′′(s′′′, y′

0 . . . y′
n−1yn . . . yr−1). It follows that s′′′r ∈

Ci and s′′′r ∈ Cj . Since s′′′ τ -matches s, we have λ′′′(s′′′r , yr) = xr−τ , where
λ′′′ is the output function of SIM(M ′′, f). From the construction of M1, we
have λ1(ci, yr) = λ′′′(s′′′r , yr) = xr−τ and λ1(cj , yr) = λ′′′(s′′′r , yr) = xr−τ ,
where λ1 is the output function of M1. It follows that λ1(ci, yr) = λ1(cj , yr).
Since M1 is a partial finite subautomaton of M3, we have λ1(ci, yr) = x′′

r and
λ1(cj , yr) = x′

r. Therefore, x′
r = x′′

r .
We conclude that (s, ch) is a (τ, c)-match pair. Taking s3 = ch, then s3

satisfies the condition: (s, s3) is a (τ, c)-match pair. ��

Corollary 6.6.1. Let M = 〈X, Y, S, δ, λ〉 and M ′ = 〈Y, X, S′, δ′, λ′〉 be two
finite automata. Assume that M ′ is a weak inverse finite automaton with
delay τ of M and that propagation of weakly decoding errors of M ′ to M is
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bounded with length of error propagation � c, where c � τ . Let SIM(M ′′, f)
be a c-order semi-input-memory partial finite automaton constructed from
M and M ′. Then for any finite automaton M̄ ′ = 〈Y, X, S̄′, δ̄′, λ̄′〉, M̄ ′ is a
weak inverse finite automaton with delay τ of M and propagation of weakly
decoding errors of M̄ ′ to M is bounded with length of error propagation � c, if
and only if there exist a closed compatible family C1, . . . , Ck of SIM(M ′′, f),
a partial finite automaton M1 in M(C1, . . . , Ck), and a finite automaton M3

such that M1 is a partial finite subautomaton of M3 and M3 is isomorphic
to M̄ ′.

Historical Notes

Partial finite automata are first discussed in [58, 73]. The concept of ≺ is
introduced in [48], and the concept of compatibility is introduced in [3]. Sub-
section 6.1.1 is based on [80]. Nondeterministic finite automata are defined
in [86] for the proof of Kleene Theorem, and a systematic development first
appears in [94], see also [95]. Structures of some kinds of finite automata with
invertibility are studied in [64]. Given a finite automaton, the structures of
its inverses, its original inverses, its weak inverses, its original weak inverses,
and its weak inverses with bounded error propagation are characterized in
[111, 18, 19, 20]. Sections 6.2 and 6.4 are based on [19]. Sections 6.3 and 6.5
are based on [18]. Section 6.6 is based on [20].
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combinatory theory, we deal with representation, translation, period, and
linearization for output sequences of linear autonomous finite automata.
A result of decimation of linear shift register sequences is also presented.
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Autonomous finite automata are regarded as sequence generators. For the
general case, the set of output sequences of an autonomous finite automa-
ton consists of ultimately periodic sequences and is closed under translation
operation. From a mathematical viewpoint, such sets have been clearly char-
acterized, although such a characterization is not very useful to cryptology.
On the other hand, nonlinear autonomous finite automata can be linearized.
So we confine ourself to the linear case in this chapter. Notice that each lin-
ear autonomous finite automaton with output dimension 1 is equivalent to a
linear shift register and that linear shift registers as a special case of linear au-
tonomous finite automata have been so intensively and extensively studied.
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In this chapter, we focus on the case of arbitrary output dimension. After
reviewing some preliminary results of combinatory theory, we give several
representations for output sequences of linear autonomous finite automata.
Then translation, period, and linearization for output sequences of linear
autonomous finite automata are discussed. Finally, we present a result of
decimation of linear shift register sequences.

7.1 Binomial Coefficient

Let n and r be two integers. We define(
n
r

)
= n(n − 1) . . . (n − r + 1)/r!, if r > 0,(

n
0

)
= 1,(

n
r

)
= 0, if n � 0, r < 0,

where r! stands for the factorial of r, that is, r! =
∏r

i=1 i for r > 0, and
0! = 1.

Clearly, (
n
r

)
=
(

n
n−r

)
, if n � r � 0. (7.1)

We prove (
n
r

)
=
(
n−1

r

)
+
(
n−1
r−1

)
, if r > 0 or n > 0. (7.2)

In the case of r = 1, (7.2) is evident. In the case of r > 1,(
n−1

r

)
+
(
n−1
r−1

)
= (n − 1)(n − 2) . . . (n − r)/r! + (n − 1)(n − 2) . . . (n − r + 1)/(r − 1)!

= (n − 1)(n − 2) . . . (n − r + 1)(n − r + r)/r!

=
(
n
r

)
.

In the case of r � 0 and n > 0, we have
(
n−1
r−1

)
= 0 and

(
n
r

)
=
(
n−1

r

)
; therefore,

(7.2) holds.
We prove by induction on j the following formula:

j∑
i=0

(
i+r−1

i

)
=
(
j+r

j

)
, if j � 0. (7.3)

Basis : j = 0. We have
∑j

i=0

(
i+r−1

i

)
=
(
r−1
0

)
= 1 and

(
j+r

j

)
=
(
r
0

)
= 1. Thus

the equation in (7.3) holds. Induction step : Suppose that the equation in
(7.3) holds and j � 0. From the induction hypothesis and (7.2), we have
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j+1∑
i=0

(
i+r−1

i

)
=

j∑
i=0

(
i+r−1

i

)
+
(
j+r
j+1

)
=
(
j+r

j

)
+
(
j+r
j+1

)
=
(
j+1+r

j+1

)
.

That is, the equation in (7.3) holds for j + 1. We conclude that (7.3) holds.
From (7.3) and (7.1), we obtain

j∑
i=0

(
i+r−1
r−1

)
=
(
j+r

r

)
, if j � 0, r > 0. (7.4)

A polynomial f(x) over the real field is called an integer-valued polynomial
if for any integer n, f(n) is an integer.

For any nonnegative integer r, let
(
x+r

r

)
= (x+ r)(x+ r− 1) . . . (x+1)/r!

if r > 0, and
(
x
0

)
= 1. Clearly,

(
x+r

r

)
is an integer-valued polynomial of

degree r. It follows that if a0, . . ., ak are integers, then
∑k

r=0 ar

(
x+r

r

)
is an

integer-valued polynomial. Below we prove that its reverse proposition also
holds.

We define a difference operator ∇: ∇g(x) = g(x)−g(x−1). Let ∇0g(x) =
g(x), ∇r+1g(x) = ∇(∇rg(x)). It is easy to verify that

∇
(
x+i

i

)
=
(
x+i−1

i−1

)
, if i > 0, (7.5)

∇
(
x
0

)
= 0.

From (7.5), it is easy to prove by induction on r that for any nonnegative
integers r and i,

∇r
(
x+i

i

)
=

{(
x+i−r

i−r

)
, if i � r,

0, if i < r.
(7.6)

We prove

∇rg(x) =
r∑

i=0

(−1)i
(
r
i

)
g(x − i), if r � 0 (7.7)

by induction on r. Basis : r = 0. Clearly, the two sides of the equation in (7.7)
are g(x). Thus the equation in (7.7) holds. Induction step : Suppose that the
equation in (7.7) holds. From the induction hypothesis and (7.2), we have

∇r+1g(x) = ∇rg(x) −∇rg(x − 1)

=
r∑

i=0

(−1)i
(
r
i

)
g(x − i) −

r∑
i=0

(−1)i
(
r
i

)
g(x − i − 1)
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=
r∑

i=0

(−1)i
(
r
i

)
g(x − i) −

r+1∑
i=1

(−1)i−1
(

r
i−1

)
g(x − i)

=
r+1∑
i=0

(−1)i
[(

r
i

)
+
(

r
i−1

)]
g(x − i)

=
r+1∑
i=0

(−1)i
(
r+1

i

)
g(x − i).

Thus the equation in (7.7) holds for r + 1. We conclude that (7.7) holds.

Theorem 7.1.1. Any integer-valued polynomial f(x) of degree k can be

uniquely expressed in form
∑k

r=0 ar

(
x+r

r

)
, where a0, a1, . . . , ak are integers

and ak 
= 0, and

ar = ∇rf(x)|x=−1 =
r∑

i=0

(−1)i
(
r
i

)
f(−1 − i), (7.8)

r = 0, 1, . . . , k.

Proof. It is easy to prove by induction on the degree k of f(x) that f(x)

can be expressed in the form
∑k

r=0 ar

(
x+r

r

)
with ak 
= 0.

Now suppose that

f(x) =
k∑

r=0

ar

(
x+r

r

)
. (7.9)

We prove (7.8). Using (7.6), taking ∇ operation r times on two sides of (7.9)
gives

∇rf(x) =
k∑

i=r

ai

(
x+i−r

i−r

)
,

r = 0, 1, . . . , k.

It follows that

∇rf(x)|x=−1 =
k∑

i=r

ai

(
i−r−1

i−r

)
= ar,

r = 0, 1, . . . , k.

From (7.7), (7.8) holds. ��
Applying Theorem 7.1.1 to f(τ) =

(
τ+c+k−1

k−1

)
for k � 1, since

∇r
(
τ+c+k−1

k−1

)
=
(
τ+c+k−1−r

k−1−r

)
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and
(
τ+c+k−1

k−1

)
is a degree k − 1 polynomial of the variable τ , we have

(
τ+c+k−1

k−1

)
=

k−1∑
r=0

(−1+c+k−1−r
k−1−r

)(
τ+r

r

)

=
k∑

h=1

(
k−h+c−1

k−h

)(
τ+h−1

h−1

)
, (7.10)

k = 1, 2, . . .

Applying Theorem 7.1.1 to f(τ) =
(
uτ+k−1

k−1

)
, we have

(
uτ+k−1

k−1

)
=

k−1∑
r=0

[ r∑
i=0

(−1)i
(
r
i

)(−u(i+1)+k−1
k−1

)](
τ+r

r

)

=
k∑

a=1

[ a−1∑
i=0

(−1)i
(
a−1

i

)(−u(i+1)+k−1
k−1

)](
τ+a−1

a−1

)
, (7.11)

k = 1, 2, . . .

Expanding two sides of the equation (7.11) into polynomials of the variable τ

and comparing the coefficients of the highest term τk−1, we obtain that the

coefficient of the highest term
(
τ+k−1

k−1

)
in the right side of (7.11) is uk−1.

Applying Theorem 7.1.1 to f(τ) =
∏h

a=1

(
τ+ka−1

ka−1

)
, we have

h∏
a=1

(
τ+ka−1

ka−1

)
=

k1+···+kh−h∑
r=0

[ r∑
c=0

(−1)c
(
r
c

) h∏
a=1

(−1−c+ka−1
ka−1

)](
τ+r

r

)

=
k1+···+kh−h+1∑

k=1

[ k−1∑
c=0

(−1)c
(
k−1

c

) h∏
a=1

(
ka−2−c

ka−1

)](
τ+k−1

k−1

)
, (7.12)

k1, . . . , kh = 1, 2, . . .

Since ka − 1 > ka − 2− c � ka − 1− k � 0 whenever 0 � c < k < ka, we have(
ka−2−c

ka−1

)
= 0. Thus (7.12) can be written as

h∏
a=1

(
τ+ka−1

ka−1

)
=

k1+···+kh−h+1∑
k=max(k1,...,kh)

[ k−1∑
c=0

(−1)c
(
k−1

c

) h∏
a=1

(
ka−2−c

ka−1

)](
τ+k−1

k−1

)
,

k1, . . . , kh = 1, 2, . . . (7.13)

In the case of h = 2, for computing the value in the square brackets in
(7.13), we may use the following formula.

r∑
c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)(−1−c+r2
r2

)
= (−1)r1+r2+r

(
r2

r−r1

)(
r
r2

)
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= (−1)r1+r2+r
(

r1
r−r2

)(
r
r1

)
(7.14)

=
(−1)r1+r2+rr!

(r − r1)!(r − r2)!(r1 + r2 − r)!
,

r, r1, r2 = 0, 1, . . . ,

where (−n)! = ∞ if n > 0 by convention. We prove (7.14) by induction on r.
Basis : r = 0. The two sides of the equation (7.14) take 0 whenever r1 
= 0
or r2 
= 0, take 1 otherwise. Thus (7.14) holds. Induction step : Suppose that
(7.14) holds for r − 1 (� 0), that is,

r−1∑
c=0

(−1)c
(
r−1

c

)(−1−c+r1
r1

)(−1−c+r2
r2

)
= (−1)r1+r2+r−1

(
r2

r−1−r1

)(
r−1
r2

)
= (−1)r1+r2+r−1

(
r1

r−1−r2

)(
r−1
r1

)
. (7.15)

We prove that (7.14) holds for r. There are four cases to consider. In the case
of r1, r2 > 0, using (7.2) and (7.15), we have

r∑
c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)(−1−c+r2
r2

)

=
r∑

c=0

(−1)c
[(

r−1
c

)
+
(
r−1
c−1

)](
r1−1−c

r1

)(
r2−1−c

r2

)

=
r∑

c=0

(−1)c
(
r−1

c

)(
r1−1−c

r1

)(
r2−1−c

r2

)
−

r−1∑
c=−1

(−1)c
(
r−1

c

)(
r1−2−c

r1

)(
r2−2−c

r2

)

=
r−1∑
c=0

(−1)c
(
r−1

c

)(
r1−1−c

r1

)(
r2−1−c

r2

)

−
r−1∑
c=0

(−1)c
(
r−1

c

)[(
r1−1−c

r1

)
−
(
r1−2−c

r1−1

)][(
r2−1−c

r2

)
−
(
r2−2−c

r2−1

)]

=
r−1∑
c=0

(−1)c
(
r−1

c

)(
r1−2−c

r1−1

)(
r2−1−c

r2

)
+

r−1∑
c=0

(−1)c
(
r−1

c

)(
r1−1−c

r1

)(
r2−2−c

r2−1

)

−
r−1∑
c=0

(−1)c
(
r−1

c

)(
r1−2−c

r1−1

)(
r2−2−c

r2−1

)
= (−1)r1+r2+r

[(
r2

r−r1

)(
r−1
r2

)
+
(

r2−1
r−1−r1

)(
r−1
r2−1

)
+
(
r2−1
r−r1

)(
r−1
r2−1

)]
= (−1)r1+r2+r

(
r2

r−r1)

)(
r
r2

)
.

In the case of r1 = r2 = 0, using (7.2) and (7.15), we have
r∑

c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)(−1−c+r2
r2

)
=

r∑
c=0

(−1)c
[(

r−1
c

)
+
(
r−1
c−1

)]
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=
r∑

c=0

(−1)c
(
r−1

c

)
−

r−1∑
c=−1

(−1)c
(
r−1

c

)

=
r−1∑
c=0

(−1)c
(
r−1

c

)
−

r−1∑
c=0

(−1)c
(
r−1

c

)
= 0 = (−1)r1+r2+r

(
r2

r−r1

)(
r
r2

)
.

In the case of r1 > 0 and r2 = 0, using (7.2) and (7.15), we have

r∑
c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)(−1−c+r2
r2

)
=

r∑
c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)

=
r∑

c=0

(−1)c
[(

r−1
c

)
+
(
r−1
c−1

)](−1−c+r1
r1

)

=
r−1∑
c=0

(−1)c
(
r−1

c

)(−1−c+r1
r1

)
+

r∑
c=1

(−1)c
(
r−1
c−1

)(−1−c+r1
r1

)

=
r−1∑
c=0

(−1)c
(
r−1

c

)(−1−c+r1
r1

)
−

r−1∑
c=0

(−1)c
(
r−1

c

)[(−1−c+r1
r1

)
−
(−2−c+r1

r1−1

)]

=
r−1∑
c=0

(−1)c
(
r−1

c

)(−1−c+r1−1
r1−1

)

=
r−1∑
c=0

(−1)c
(
r−1

c

)(−1−c+r1−1
r1−1

)(−1−c+r2
r2

)
= (−1)r1+r2+r−2

(
r2

r−1−(r1−1)

)(
r−1
r2

)
= (−1)r1+r2+r

(
r2

r−r1

)(
r
r2

)
.

In the case of r2 > 0 and r1 = 0, from symmetry, the above case yields

r∑
c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)(−1−c+r2
r2

)
= (−1)r1+r2+r

(
r1

r−r2

)(
r
r1

)
.

We conclude that (7.14) holds for r, r1, r2 � 0.
Taking r2 = 0, (7.14) is reduced to

r∑
c=0

(−1)c
(
r
c

)(−1−c+r1
r1

)
= (−1)r1+r

(
0

r−r1

)(
r
0

)

=

{
1, if r = r1,

0, if r 
= r1,

r, r1 = 0, 1, . . .
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Taking r1 = r2 = 0, (7.14) is reduced to

r∑
c=0

(−1)c
(
r
c

)
= (−1)r

(
0
r

)(
r
0

)
=

{
1, if r = 0,

0, if r 
= 0.

From (7.12),(7.13) and (7.14), we have

(
τ+k1−1

k1−1

)(
τ+k2−1

k2−1

)
=

k1+k2−1∑
k=1

(−1)k1+k2+k−1
(

k2−1
k−k1

)(
k−1
k2−1

)(
τ+k−1

k−1

)

=
k1+k2−1∑

k=max(k1,k2)

(−1)k1+k2+k−1
(

k2−1
k−k1

)(
k−1
k2−1

)(
τ+k−1

k−1

)
,

k1, k2 = 1, 2, . . .

Similar to Theorem 7.1.1, we can prove the following theorem.

Theorem 7.1.2. Any integer-valued polynomial f(x) of degree k can be

uniquely expressed in the form
∑k

r=0 ar

(
x
r

)
, where a0, a1, . . . , ak are integers

and ak 
= 0, and

ar = ∇rf(x)|x=r =
r∑

i=0

(−1)r−i
(
r
i

)
f(i),

r = 0, 1, . . . , k.

Applying Theorem 7.1.2 to f(w) =
(
a+we

h

)
, e being a positive integer, we

have

(
a+we

h

)
=

h∑
k=0

[ k∑
i=0

(−1)k−i
(
k
i

)(
a+ie

h

)](
w
k

)
, (7.16)

h = 0, 1, . . .

Expanding the two sides of the equation (7.16) into polynomials of w and
comparing the coefficients of the highest term wh, we obtain that the coeffi-

cients of the highest term
(
w
h

)
in the right side of (7.16) is eh.

Let p be a prime number. Since gcd(r, p) = 1 for any r, 0 < r < p, we
have (

p
r

)
= 0 (mod p), 0 < r < p . (7.17)

It is easy to see that

(x + y)n =
n∑

r=0

(
n
r

)
xryn−r. (7.18)
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From (7.17) and (7.18), we have

(x + y)p = xp + yp (mod p), if p is prime.

Theorem 7.1.3. (Lucas) Let p be a prime number. If

n =
k∑

i=0

nip
i, 0 � ni < p , r =

k∑
i=0

rip
i, 0 � ri < p , (7.19)

then

(
n
r

)
=

k∏
i=0

(
ni

ri

)
(mod p). (7.20)

Proof. Since (1 + x)p = 1 + xp(mod p), we have (1 + x)mp+a = (1 + xp)m

(1 + x)a(mod p). Using (7.18), this yields

mp+a∑
i=0

(
mp+a

i

)
xi =

( m∑
i=0

(
m
i

)
xpi
)( a∑

i=0

(
a
i

)
xi
)

(mod p).

Expanding two sides of the above equation and comparing the coefficients of
the term xhp+b, we obtain

(
mp+a
hp+b

)
=

{
0 (mod p), if 0 � a < b < p ,(

m
h

)(
a
b

)
(mod p), if 0 � b � a < p .

Therefore, (
mp+a
hp+b

)
=
(
m
h

)(
a
b

)
(mod p), if 0 � a, b < p . (7.21)

We prove by induction on k that (7.20) holds for any k, n and r satisfying

(7.19). Basis : k = 0. That is, n = n0 and r = r0. Thus
(
n
r

)
=
(
n0
r0

)
(mod p).

Induction step : Suppose that (7.20) holds for any n and r satisfying (7.19).

Let

n′ =
k+1∑
i=0

nip
i, 0 � ni < p , r′ =

k+1∑
i=0

rip
i, 0 � ri < p .

Then n′ = np + n0 and r′ = rp + r0, where

n =
k∑

i=0

ni+1p
i, r =

k∑
i=0

ri+1p
i.

From (7.21) and the induction hypothesis, we have
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n′

r′
)

=
(
np+n0
rp+r0

)
=
(
n
r

)(
n0
r0

)
(mod p)

=
( k∑

i=0

(
ni+1
ri+1

))(
n0
r0

)
(mod p)

=
k+1∑
i=0

(
ni

ri

)
(mod p).

We conclude that (7.20) holds for any k, n and r satisfying (7.19). ��

7.2 Root Representation

Consider (generalized) polynomials over GF (q). Let ψ(z) =
∑h

i=k aiz
i be a

(generalized) polynomials over GF (q), where h, k are integers, h � k, and
ai ∈ GF (q), i = k, k+1, . . . , h. max i [ ai 
= 0 ] is referred to as the high degree
of ψ, and min i [ ai 
= 0 ] is referred to as the low degree of ψ. In the case of the
zero polynomial, its high degree is ∞ and its low degree is −∞. Clearly, if the
high degree and the low degree of ψi(z) are hi and ki, respectively, i = 1, 2,
then the high degree and the low degree of the product of ψ1(z) and ψ2(z)
are h1 + h2 and k1 + k2, respectively. For any polynomial ψ and any nonzero
polynomial ϕ, it is easy to show that there exist uniquely polynomials q(z)
and r(z) such that

ψ(z) = q(z)ϕ(z) + r(z),

r(z) = 0 or the low degree of r(z) � the low degree of ϕ(z), and q(z) = 0 or the
high degree of q(z) < 0. Denote the unique q(z) and r(z) by Quo′(ψ(z), ϕ(z))
and Res′(ψ(z), ϕ(z)), respectively. It is easy to verify that for any nonzero
polynomial χ(z), we have Quo′(χ(z)ψ(z), χ(z)ϕ(z)) = Quo′(ψ(z), ϕ(z)) and
Res′(χ(z)ψ(z), χ(z)ϕ(z)) = χ(z) Res′(ψ(z), ϕ(z)).

Let M = 〈Y, S, δ, λ〉 be a linear autonomous finite automaton over GF (q)
with structure parameters m,n and structure matrices A, C. That is, Y and
S are column vector spaces of dimensions m and n over GF (q), respectively,
δ(s) = As, λ(s) = Cs, and A and C are n × n and m × n matrices over
GF (q), respectively. A and C are referred to as the state transition matrix
and the output matrix of M , respectively.

For any s ∈ S, the infinite output sequence generated by s means the
sequence y0y1 . . . yi . . ., where yi = λ(δi(s)) for i � 0. We use ΦM (s) to
denote [y0, y1, . . ., yi, . . .], and use ΦM (s, z) to denote its z-transformation∑∞

i=0 yiz
i. For any i, 1 � i � m, we use Φ

(i)
M (s) and Φ

(i)
M (s, z) to denote the

i-th row of ΦM (s) and the i-th component of ΦM (s, z), respectively. Clearly,
Φ

(i)
M (s, z) is the z-transformation of Φ

(i)
M (s).
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Similarly, for any s ∈ S, we use ΨM (s) to denote the infinite state sequence
generated by s

ΨM (s) = [s, δ(s), . . . , δi(s), . . .],

and use ΨM (s, z) to denote its z-transformation
∑∞

i=0 δi(s)zi. For any i,
1 � i � n, we use Ψ

(i)
M (s) and Ψ

(i)
M (s, z) to denote the i-th row of ΨM (s)

and the i-th component of ΨM (s, z), respectively. Clearly, Ψ
(i)
M (s, z) is the

z-transformation of Ψ
(i)
M (s). Notice that the elements of ΦM (s, z) and ΨM (s, z)

are formal power series of z and can be expressed as rational fractions of z.
Define

ΦM = {ΦM (s), s ∈ S}, ΦM (z) = {ΦM (s, z), s ∈ S},
ΨM = {ΨM (s), s ∈ S}, ΨM (z) = {ΨM (s, z), s ∈ S},
Ψ

(1)
M = {Ψ (1)

M (s), s ∈ S}, Ψ
(1)
M (z) = {Ψ (1)

M (s, z), s ∈ S}.

Let f(z) = zn + an−1z
n−1 + · · · + a1z + a0 be a polynomial over GF (q).

Recall that Pf(z) is used to denote the n × n matrix⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1

⎤
⎥⎥⎥⎥⎥⎦ .

If A = Pf(z) for some f(z), M is called a shift register. If M is a shift register
and A = Pf(z), then f(z) = |zE − A|, where E stands for the n × n identity
matrix. f(z) is referred to as the characteristic polynomial of M .

Theorem 7.2.1. Let M be a linear shift register over GF (q), and f(z) the
characteristic polynomial of M . Let g(z) be the reverse polynomial of f(z),
i.e., g(z) = znf(z−1). Then for any state s of M , we have

Ψ
(1)
M (s, z) =

n−1∑
k=0

hkzk/g(z), (7.22)

where

⎡
⎢⎢⎢⎣

h0

h1

...
hn−1

⎤
⎥⎥⎥⎦ = Qf(z)s, Qf(z) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
an−1 1 · · · 0 0
...

...
. . .

...
...

a2 a3 · · · 1 0
a1 a2 · · · an−1 1

⎤
⎥⎥⎥⎥⎥⎦ . (7.23)
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Proof. Let M ′ be a linear shift register with structure parameters n, n

and structure matrices A, E. Then ΨM (s) = ΦM ′(s). Since the free response
matrix of M ′ is E(E−zA)−1 = (E−zA)−1, we have ΨM (s, z) = (E−zA)−1s.
Since |zE − A| = f(z), we have g(z) = |E − zA|. Letting s = [s0, . . . , sn−1]T

and an = 1, using (1.12),(1.13) and (1.14) in Sect. 1.3 of Chap. 1, we have

Ψ
(1)
M (s, z) =

n−1∑
j=0

(
1 +

n−1−j∑
i=1

an−iz
i
)
zjsj / |E − zA|

=
n−1∑
j=0

( n−1−j∑
i=0

an−iz
i
)
zjsj/g(z)

=
n−1∑
j=0

( n−1∑
k=j

an−k+jsj

)
zk/g(z)

=
n−1∑
k=0

( k∑
j=0

an−k+jsj

)
zk/g(z)

=
n−1∑
k=0

hkzk/g(z).

Thus (7.22) holds. ��

Corollary 7.2.1. Let M be a linear shift register over GF (q), and g(z)
the reverse polynomial of the characteristic polynomial of M . Then 1/g(z),
z/g(z), . . ., zn−1/g(z) form a basis of Ψ

(1)
M (z).

Proof. Let h = [h0, . . . , hn−1]T. From Theorem 7.2.1, for any Ψ
(1)
M (s, z) in

Ψ
(1)
M (z), we have Ψ

(1)
M (s, z) =

∑n−1
k=0 hkzk/g(z), where h = Qf(z)s. Conversely,

for any h0, . . . , hn−1 in GF (q), since Qf(z) is nonsingular, there is s in S such
that h = Qf(z)s. From Theorem 7.2.1, we have Ψ

(1)
M (s, z) =

∑n−1
k=0 hkzk/g(z),

Thus
n−1∑
k=0

hkzk/g(z) ∈ Ψ
(1)
M (z).

Clearly, if h0, . . . , hn−1 are not identically equal to zero, then
∑n−1

k=0 hkzk/g(z)

= 0. We conclude that 1/g(z), z/g(z), . . ., zn−1/g(z) form a basis of Ψ

(1)
M (z).

��

The basis [1/g(z), z/g(z), . . . , zn−1/g(z)] is referred to as the polynomial
basis of Ψ

(1)
M (z) and [h0, . . . , hn−1]T is referred to as the polynomial coordinate

of
∑n−1

k=0 hkzk/g(z).
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Let

ci(z) =
n∑

k=1

cikz1−k, i = 1, . . . , m,

where C = [cij ]m×n is the output matrix of M . ci(z), i = 1, . . . , m are referred
to as the output polynomials of M , and

f ′(z) = f(z)/ gcd(f(z), c1(z−1), . . . , cm(z−1))

is called the second characteristic polynomial of M .
For any infinite sequence Ω = [b0, b1, . . . , bi, . . .], we use D(Ω) to denote

the sequence [b1, b2, . . . , bi, . . .], the (one digit) translation of Ω. Similarly, we
use D(

∑∞
i=0 biz

i) to denote
∑∞

i=0 bi+1z
i. We define D0(Ω) = Ω, Dc+1(Ω) =

D(Dc(Ω)), D0(Ω(z)) = Ω(z), Dc+1(Ω(z)) = D(Dc(Ω(z))).

Theorem 7.2.2. Let M be a linear shift register over GF (q) with structure
parameters m,n. Let g(z) be the reverse polynomial of the characteristic poly-
nomial of M , and ck(z), k = 1, . . . , m the output polynomials of M . Let n′ be
the degree of the second characteristic polynomial of M . Then the dimension
of ΦM (z) is n′, and Ω(z) ∈ ΦM (z) if and only if there exists a polynomial
h(z) of degree < n over GF (q) such that zn−n′ |h(z) and

Ω(z) =

⎡
⎢⎣Res′(c1(z)h(z), g(z))/g(z)

...
Res′(cm(z)h(z), g(z))/g(z)

⎤
⎥⎦ . (7.24)

Proof. We first prove the following result: for any s ∈ S and any polyno-
mial h(z) =

∑n−1
i=0 hiz

i, if [h0, . . . , hn−1]T = Qf(z)s, then

ΦM (s, z) =

⎡
⎢⎣Res′(c1(z)h(z), g(z))/g(z)

...
Res′(cm(z)h(z), g(z))/g(z)

⎤
⎥⎦ , (7.25)

where f(z) is the characteristic polynomial of M . In fact, from Theo-
rem 7.2.1, Ψ

(1)
M (s, z) = h(z)/g(z). It follows that ΨM (s, z) = [D0(h(z)/g(z)),

D1(h(z)/g(z)), . . . , Dn−1(h(z)/g(z))]T. Thus

ΦM (s, z) = C[D0(h(z)/g(z)), D1(h(z)/g(z)), . . . , Dn−1(h(z)/g(z))]T

= [c1(D−1)(h(z)/g(z)), . . . , cn−1(D−1)(h(z)/g(z))]T.

Clearly, Dk(h(z)/g(z)) is the nonnegative power part of z−k(h(z)/g(z)). Thus
for any i, 1 � i � m,

∑n
k=1 cikDk−1(h(z)/g(z)) is the nonnegative power

part of
∑n

k=1 cikz1−k (h(z)/g(z)) = ci(z)h(z)/g(z). Therefore, ΦM (s, z) is
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the nonnegative power part of [c1(z)h(z)/g(z), . . ., cm(z)h(z)/g(z)]T, that is,
(7.25) holds.

Suppose that (7.24) holds for a polynomial h(z) of degree < n over GF (q).
Let s = Q−1

f(z)[h0, . . . , hn−1]T, where h(z) =
∑n−1

i=0 hiz
i. From (7.24) and

(7.25), we have Ω(z) = ΦM (s, z); therefore, Ω(z) ∈ ΦM (z).
We prove a proposition: If h(z) =

∑n−1
i=0 hiz

i and h̄(z) =
∑n−1

i=0 h̄iz
i are

two polynomials over GF (q), then⎡
⎢⎣Res′(c1(z)h(z), g(z))/g(z)

...
Res′(cm(z)h(z), g(z))/g(z)

⎤
⎥⎦ =

⎡
⎢⎣Res′(c1(z)h̄(z), g(z))/g(z)

...
Res′(cm(z)h̄(z), g(z))/g(z)

⎤
⎥⎦ (7.26)

holds if and only if f ′(z)|(h̄′(z)−h′(z)), where h′(z) = zn−1h(1/z) and h̄′(z) =
zn−1h̄(1/z). In fact, since for any i, 1 � i � m, c′i(z) = ci(1/z) is a common
polynomial, there exist uniquely common polynomials q′i(z) and r′i(z) such
that c′i(z)h′(z) = q′i(z)f(z) + r′i(z), r′i(z) = 0 or the degree of r′i(z) < n.
It follows that ci(z)h(z) = zn−1c′i(1/z)h′(1/z) = (z−1q′i(1/z))(znf(1/z)) +
zn−1r′i(1/z) = (z−1q′i(1/z))g(z) + zn−1r′i(1/z). Thus

z−1q′i(1/z) = Quo′(ci(z)h(z), g(z)), zn−1r′i(1/z) = Res′(ci(z)h(z), g(z)).

Similarly, there exist uniquely common polynomials q̄′i(z) and r̄′i(z) such that
c′i(z)h̄′(z) = q̄′i(z)f(z) + r̄′i(z), r̄′i(z) = 0 or the degree of r̄′i(z) < n. It follows
that z−1q̄′i(1/z) = Quo′(ci(z)h̄(z), g(z)), zn−1r̄′i(1/z) = Res′(ci(z)h̄(z), g(z)).
Thus for any i, 1 � i � m, Res′(ci(z)h(z), g(z)) = Res′(ci(z)h̄(z), g(z)) if and
only if zn−1r′i(1/z) = zn−1r̄′i(1/z), if and only if f(z)|c′i(z)(h̄′(z) − h′(z)).
Thus (7.26) holds if and only if f(z)|c′i(z)(h̄′(z) − h′(z)), i = 1, . . . , m. Let
d′(z) = gcd(c′1(z), . . . , c′m(z)). It is easy to see that

gcd(c′1(z)(h̄′(z) − h′(z)), . . . , c′m(z)(h̄′(z) − h′(z))) = d′(z)(h̄′(z) − h′(z)).

It follows that (7.26) holds if and only if f(z)|d′(z)(h̄′(z)−h′(z)), if and only
if f ′(z)|(h̄′(z) − h′(z)).

Suppose that Ω(z) ∈ ΦM (z). We prove that there exists a polynomial
h(z) of degree < n over GF (q) such that zn−n′ |h(z) and (7.24) hold. Let
Ω(z) = Φ(s̄, z) for some s̄ ∈ S. Denote [h̄0, . . . , h̄n−1]T = Qf(z)s̄ and
h̄(z) =

∑n−1
i=0 h̄iz

i. Let r̄′(z) be a common polynomial of degree < n′,
and r̄′(z) = h̄′(z) (mod f ′(z)), where h̄′(z) = zn−1h̄(1/z). Take h(z) =
zn−1r̄′(1/z). Then zn−n′ |h(z) and h′(z) = zn−1h(1/z) = r̄′(z). It follows that
f ′(z)|(h̄′(z)−h′(z)). From the proposition proven in the preceding paragraph,
(7.26) holds. From Ω(z) = Φ(s̄, z) and using (7.25) (in version of s̄ and h̄),
this yields
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Ω(z) =

⎡
⎢⎣Res′(c1(z)h̄(z), g(z))/g(z)

...
Res′(cm(z)h̄(z), g(z))/g(z)

⎤
⎥⎦ =

⎡
⎢⎣Res′(c1(z)h(z), g(z))/g(z)

...
Res′(cm(z)h(z), g(z))/g(z)

⎤
⎥⎦ .

In the case where h̄(z) and h(z) have divisor zn−n′
, degrees of h̄′(z) and

h′(z) are < n′. Thus f ′(z) 
 |(h̄′(z) − h′(z)). Therefore, (7.26) does not hold.
Since the number of polynomials of degree < n over GF (q) which have divisor
zn−n′

is qn′
, the dimension of ΦM (z) is n′. ��

Corollary 7.2.2. Let n′ be the dimension of ΦM (z), then⎡
⎢⎣Res′(c1(z)zn−n′+k, g(z))/g(z)

...
Res′(cm(z)zn−n′+k, g(z))/g(z)

⎤
⎥⎦ , k = 0, 1, . . . , n′ − 1

form a basis of ΦM (z).

This basis is called the polynomial basis of ΦM (z). If (7.24) holds and
h(z) =

∑n′−1
i=0 hiz

n−n′+i, [h0, . . . , hn′−1]T is called the polynomial coordinate
of Ω(z).

Corollary 7.2.3. For any s ∈ S, if

n′−1∑
i=0

h′
iz

n′−1−i =
n−1∑
i=0

hiz
n−1−i (mod f ′(z))

and [h0, . . . , hn−1]T = Qf(z)s, then [h′
0, . . . , h

′
n′−1]

T is the polynomial coordi-
nate of ΦM (s, z), where f(z) and f ′(z) are the characteristic polynomial and
the second characteristic polynomial of M , respectively, and n′ is the degree
of f ′(z).

Assume that GF (q∗) is a splitting field of the second characteristic poly-
nomial f ′(z) of M . Let M∗ be the natural extension of M over GF (q∗), i.e.,
the state transition matrices and the output matrices of M and M∗ are the
same, respectively.

Theorem 7.2.3. Assume that the second characteristic polynomial f ′(z) of
the linear shift register M has the factorization

f ′(z) = zl0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )li , (7.27)

where ε1, . . . , εr are nonzero elements in GF (q∗) of which minimal polyno-
mials over GF (q) are coprime and have degrees n1, . . . , nr, respectively, and
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l0 � 0, l1 > 0, . . . , lr > 0. Then there exist uniquely column vectors R0k,
k = 1, . . . , l0, Rijk, i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li of dimension m

over GF (q∗) such that⎡
⎢⎣ c1(z)zn−1/g(z)

...
cm(z)zn−1/g(z)

⎤
⎥⎦ =

l0∑
k=1

R0kzk−1 +
r∑

i=1

ni∑
j=1

li∑
k=1

Rijk/(1 − εqj−1

i z)k, (7.28)

where g(z) = znf(1/z), f(z) is the characteristic polynomial of M . Moreover,
if (7.28) holds, then R0(k)Γ0(z), k = 1, . . . , l0, Rij(k)Γij(z), i = 1, . . ., r,
j = 1, . . ., ni, k = 1, . . ., li form a basis of ΦM∗(z), where R0(k) and Rij(k)
are matrices of dimension m × l0 and m × li, respectively, and

R0(k) = [R0(l0+1−k) . . . R0l0 0 . . . 0], k = 1, . . . , l0,

Rij(k) = [Rij(li+1−k) . . . Rijli 0 . . . 0],

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li,

Γ0(z) =

⎡
⎢⎢⎢⎣

1
z
...
zl0−1

⎤
⎥⎥⎥⎦ ,

Γij(z) =

⎡
⎢⎢⎢⎢⎣

1/(1 − εqj−1

i z)
1/(1 − εqj−1

i z)2
...
1/(1 − εqj−1

i z)li

⎤
⎥⎥⎥⎥⎦ , i = 1, . . . , r, j = 1, . . . , ni.

(7.29)

Proof. Let g′(z) = zn′
f ′(1/z), where n′ is the degree of f ′(z). From (7.27),

we have n′ = l0 +
∑r

i=1 nili and

g′(z) =
r∏

i=1

ni∏
j=1

(1 − εqj−1

i z)li . (7.30)

Let c′i(1/z) = ci(1/z)/d(z), i = 1, . . . , m, where d(z) = gcd(f(z), c1(1/z),
. . ., cm(1/z)). Since g(z) = znf(1/z) = (zn′

f ′(1/z)) (zn−n′
d(1/z)) =

g′(z) (zn−n′
d(1/z)) and ci(z)zn−1 = c′i(z)zn′−1 (zn−n′

d(1/z)), i = 1, . . . , m,
we have ci(z)zn−1/g(z) = c′i(z)zn′−1/g′(z), i = 1, . . . , m. From (7.30), there
exists uniquely column vectors R0k, k = 1, . . . , l0, Rijk, i = 1, . . . , r,
j = 1, . . . , ni, k = 1, . . . , li of dimension m over GF (q∗) such that⎡

⎢⎣ c1(z)zn−1/g(z)
...
cm(z)zn−1/g(z)

⎤
⎥⎦ =

⎡
⎢⎣ c′1(z)zn′−1/g′(z)

...
c′m(z)zn′−1/g′(z)

⎤
⎥⎦ (7.31)
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=
l0∑

k=1

R0kzk−1 +
r∑

i=1

ni∑
j=1

li∑
k=1

Rijk/(1 − εqj−1

i z)k

= RΓ (z),

where

R = [R0 R11 . . . R1n1 . . . . . . Rr1 . . . Rrnr
],

R0 = [R01 . . . R0l0 ],

Rij = [Rij1 . . . Rijli ], i = 1, . . . , r, j = 1, . . . , ni,

Γ (z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0(z)
Γ11(z)
...
Γ1n1(z)
...
Γr1(z)
...
Γrnr

(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let

T0 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ ,

Ti =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
1 1 . . . 0 0
...

...
. . .

...
...

1 1 . . . 1 0
1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎦ , Tij = εqj−1

i Ti,

i = 1, . . . , r, j = 1, . . . , ni,

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0

T11

. . .
T1n1

. . .
Tr1

. . .
Trnr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the dimension of Ti is li× li, i = 0, 1, . . . , r. Since 1/z(1−εz)k = 1/z +∑k
i=1 ε/(1−εz)i, the nonnegative term part of 1/z(1−εz)k is

∑k
i=1 ε/(1−εz)i.

It follows that the nonnegative term part of z−1Γij(z) is TijΓij(z). Clearly,
the nonnegative term part of z−1Γ0(z) is T0Γ0. Thus the nonnegative term
part of z−1Γ (z) is TΓ (z). From (7.31), it is easy to prove by simple induction
that⎡
⎢⎣Res′(c1(z)zn−n′+k, g(z))/g(z)

...
Res′(cm(z)zn−n′+k, g(z))/g(z)

⎤
⎥⎦ = RTn′−1−kΓ (z), k = 0, . . . , n′ − 1.

From Corollary 7.2.2, RTn′−1−kΓ (z), k = 0, . . . , n′ − 1 form the polynomial
basis of ΦM∗(z).

Suppose that Ω(z) ∈ ΦM∗(z) has the polynomial coordinate [h0, . . .,
hn′−1]T. Then

Ω(z) =
n′−1∑
k=0

hkRTn′−1−kΓ (z) = R
( n′−1∑

k=0

hkTn′−1−k
)
Γ (z).

We use Res(a(z), b(z)) to denote the remainder of a(z) on division by b(z).
Let hij(z) = Res(

∑n′−1
k=0 hkzn′−1−k, (z− εqj−1

i )li), i = 1, . . ., r, j = 1, . . ., ni.
Let h0(z) = Res(

∑n′−1
k=0 hkzn′−1−k, zl0). Since the minimal polynomial of Tij

is (z − εqj−1

i )li , i = 1, . . ., r, j = 1, . . ., ni and the minimal polynomial of T0

is zl0 , we have

Ω(z) = R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0(T0)
h11(T11)

. . .
h1n1(T1n1)

. . .
hr1(Tr1)

. . .
hrnr (Trnr )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ (z).

It follows that

Ω(z) = R0h0(T0)Γ0(z) +
r∑

i=1

ni∑
j=1

Rijhij(Tij)Γij(z).

Define the li × li matrix Hi
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Hi =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ , i = 0, 1, . . . , r. (7.32)

Then we have H0 = T0, εqj−1

i

∑li−1
k=0 Hk

i = Tij , i = 1, . . ., r, j = 1, . . ., ni. It
is evident that the minimal polynomial of Hi is zli , i = 1, . . ., r. Let h′

ij(z) =

Res(hij(ε
qj−1

i

∑li−1
k=0 zk), zli), i = 1, . . ., r, j = 1, . . ., ni, h′

0(z) = h0(z). Then
we have

Ω(z) = R0h
′
0(H0)Γ0(z) +

r∑
i=1

ni∑
j=1

Rijh
′
ij(Hi)Γij(z).

Since l0+
∑r

i=1 nili = n′ and the dimension of ΦM∗(z) is n′, R0H
k−1
0 Γ0(z),k =

1, . . . , l0, RijH
k−1
i Γij(z), i = 1, . . ., r, j = 1, . . ., ni, k = 1, . . ., li form a

basis of ΦM∗(z). Since Rijk is the k-th column of Rij and R0k is the k-th
column of R0, we have

R0H
k−1
0 = [R0k . . . R0l0 0 . . . 0] = R0(l0 + 1 − k), k = 1, . . . , l0,

RijH
k−1
i = [Rijk . . . Rijli 0 . . . 0] = Rij(li + 1 − k),

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li.

Therefore, R0(k)Γ0(z),k = 1, . . . , l0, Rij(k)Γij(z), i = 1, . . ., r, j = 1, . . ., ni,
k = 1, . . ., li form a basis of ΦM∗(z). ��

The basis mentioned in the theorem is called the (ε1, . . . , εr) root basis of
ΦM∗(z). For any state s of M∗, any βk ∈ GF (q∗), k = 0, . . ., l0 − 1, any βijk

∈ GF (q∗), i = 1, . . ., r, j = 1, . . ., ni, k = 1, . . ., li,

β = [β0, . . . , βl0−1, β111, . . . , β1n11, . . . , β11l1 , . . . , β1n1l1 ,

. . . . . . , βr11, . . . , βrnr1, . . . , βr1lr , . . . , βrnrlr ]
T

is called the (ε1, . . . , εr) root coordinate of ΦM∗(s, z), if

ΦM∗(s, z) =
l0∑

k=1

βk−1R0(k)Γ0(z) +
r∑

i=1

ni∑
j=1

li∑
k=1

βijkRij(k)Γij(z).

Let

Γk = [0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0, . . .], k = 0, . . . , l0 − 1,

Γk(εqj−1

i ) =
[
1,
(

k
k−1

)
εqj−1

i , . . . ,
(
τ+k−1

k−1

)
ετqj−1

i , . . .
]
,

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li.
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Clearly, the generating function of Γk is zk, k = 0, . . . , l0 − 1. We prove

by induction on k that 1/(1 − εz)k =
∑∞

τ=0

(
τ+k−1

k−1

)
ετzτ . Basis : k = 1.

1/(1 − εz) =
∑∞

τ=0(εz)τ =
∑∞

τ=0

(
τ+0
0

)
ετzτ . Induction step : Suppose that

1/(1 − εz)k =
∑∞

τ=0

(
τ+k−1

k−1

)
ετzτ . Using (7.4), we then have

1/(1 − εz)k+1 = (1/(1 − εz)k)(1/(1 − εz))

=
( ∞∑

τ=0

(
τ+k−1

k−1

)
ετzτ

)( ∞∑
τ=0

ετzτ
)

=
∞∑

τ=0

τ∑
i=0

(
i+k−1
k−1

)
ετzτ

=
∞∑

τ=0

(
τ+k

k

)
ετzτ .

Therefore, the generating function of Γk(εqj−1

i ) is 1/(1 − εqj−1

i z)k, i = 1, . . .,
r, j = 1, . . ., ni, k = 1, . . ., li. Then

R0(k)

⎡
⎢⎣Γ0

...
Γl0−1

⎤
⎥⎦ , k = 1, . . . , l0,

Rij(k)

⎡
⎢⎢⎣

Γ1(ε
qj−1

i )
...
Γli(ε

qj−1

i )

⎤
⎥⎥⎦ ,

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li

form a basis of ΦM∗ , which is referred to as the (ε1, . . . , εr) root basis of
ΦM∗ . Similarly, coordinates relative to the (ε1, . . . , εr) root basis are called
(ε1, . . . , εr) root coordinates.

Let β be the (ε1, . . . , εr) root coordinate of Ω = [y0, y1, . . . , yτ , . . .] in
ΦM∗ . Then

Ω =
l0∑

k=1

βk−1R0(k)

⎡
⎢⎣Γ0

...
Γl0−1

⎤
⎥⎦+

r∑
i=1

ni∑
j=1

li∑
k=1

βijkRij(k)

⎡
⎢⎢⎣

Γ1(ε
qj−1

i )
...
Γli(ε

qj−1

i )

⎤
⎥⎥⎦

=
l0∑

k=1

βk−1

k∑
h=1

R0(l0+h−k)Γh−1+
r∑

i=1

ni∑
j=1

li∑
k=1

βijk

k∑
h=1

Rij(li+h−k)Γh(εqj−1

i )

=
l0∑

h=1

( l0∑
k=h

βk−1R0(l0+h−k)

)
Γh−1
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+
r∑

i=1

ni∑
j=1

li∑
h=1

( li∑
k=h

βijkRij(li+h−k)

)
Γh(εqj−1

i )

=
l0∑

h=1

( l0∑
k=h

βl0+h−k−1R0k

)
Γh−1

+
r∑

i=1

ni∑
j=1

li∑
h=1

( li∑
k=h

βij(li+h−k)Rijk

)
Γh(εqj−1

i ).

Thus we have

yτ =
l0∑

k=τ+1

βl0+τ−kR0k+
r∑

i=1

ni∑
j=1

li∑
h=1

( li∑
k=h

βij(li+h−k)Rijk

)(
τ+h−1

h−1

)
ετqj−1

i ,

τ = 0, 1, . . . (7.33)

Clearly, whenever (7.33) holds, β is the (ε1, . . . , εr) root coordinate of Ω.
We discuss a special case, where m = 1 and the output matrix of M

is [1, 0, . . . , 0]. Thus we have c1(z) = 1. It follows that the second charac-
teristic polynomial and the characteristic polynomial of M are the same.
Since R0(1)Γ0(z) and Rij(1)Γij(z) are basis vectors, they are not zero;
therefore, R0l0 
= 0 and Rijli 
= 0. Noticing m = 1, from Theorem 7.2.3,
R′

0(k)Γ0(z),k = 1, . . . , l0, R′
ij(k)Γij(z), i = 1, . . ., r, j = 1, . . ., ni, k = 1, . . .,

li form a basis of ΦM∗(z), where

R′
0(k) = [0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
l0−k

], k = 1, . . . , l0,

R′
ij(k) = [0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
li−k

],

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li.

That is, 1, z, . . . , zl0−1, 1/(1 − εqj−1

i z)k, i = 1, . . ., r, j = 1, . . ., ni, k = 1,
. . ., li form a basis of ΦM∗(z). We complete a proof of the following.

Corollary 7.2.4. Assume that the characteristic polynomial f(z) of the
linear shift register M has the factorization

f(z) = zl0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )li ,

where ε1, . . . , εr are nonzero elements in GF (q∗) of which minimal polyno-
mials over GF (q) are coprime and have degrees n1, . . . , nr, respectively, and
l0 � 0, l1 > 0, . . . , lr > 0. Then 1, z, . . . , zl0−1, 1/(1− εqj−1

i z)k, i = 1, . . ., r,
j = 1, . . ., ni, k = 1, . . ., li form a basis of Ψ

(1)
M∗(z).



236 7. Linear Autonomous Finite Automata

The basis mentioned in the corollary is called the (ε1, . . . , εr) root basis
of Ψ

(1)
M∗(z). For any Ω(z) ∈ Ψ

(1)
M∗(z), any βk ∈ GF (q∗), k = 0, . . ., l0 − 1, any

βijk ∈ GF (q∗), i = 1, . . ., r, j = 1, . . ., ni, k = 1, . . ., li,

β = [β0, . . . , βl0−1, β111, . . . , β1n11, . . . , β11l1 , . . . , β1n1l1 ,

. . . . . . , βr11, . . . , βrnr1, . . . , βr1lr , . . . , βrnrlr ]
T

is called the (ε1, . . . , εr) root coordinate of Ω(z), if

Ω(z) =
l0∑

k=1

βk−1z
k−1 +

r∑
i=1

ni∑
j=1

li∑
k=1

βijk/(1 − εqj−1

i z)k.

Corresponding to Ψ
(1)
M∗ , Γ0, . . . , Γl0−1, Γk(εqj−1

i ), i = 1, . . . , r, j = 1, . . .,
ni, k = 1, . . ., li form a basis of Ψ

(1)
M∗ which is referred to as the (ε1, . . . , εr)

root basis of Ψ
(1)
M∗ . Similarly, coordinates relative to the (ε1, . . . , εr) root basis

are called (ε1, . . . , εr) root coordinates.
Let β be the (ε1, . . . , εr) root coordinate of Ω = [s0, s1, . . . , sτ , . . .] in Ψ

(1)
M∗ .

Then

Ω =
l0∑

k=1

βk−1Γk−1 +
r∑

i=1

ni∑
j=1

li∑
k=1

βijkΓk(εqj−1

i ).

Thus we have

sτ = βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

βijk

(
τ+k−1

k−1

)
ετqj−1

i ,

τ = 0, 1, . . . , (7.34)

where βτ = 0 whenever τ � l0.
We define matrices over GF (q∗)

Ai =

⎡
⎢⎢⎢⎢⎣

1 1 . . . 1
εi εq

i . . . εqni−1

i
...

...
. . .

...
εn−1

i ε
(n−1)q
i . . . ε

(n−1)qni−1

i

⎤
⎥⎥⎥⎥⎦ , i = 1, . . . , r,

Bk =

⎡
⎢⎢⎢⎢⎣
(
k−1
k−1

) (
k

k−1

)
. . . (

n−2+k
k−1

)

⎤
⎥⎥⎥⎥⎦ , k = 1, 2, . . . , (7.35)

D0 = [B1A1, . . . , Bl1A1, . . . , B1Ar, . . . , BlrAr],

E′
0 =
[

El0

0

]
,

D(ε1, . . . , εr,M) = [E′
0, D0],
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where El0 is the l0 × l0 identity matrix over GF (q), and the dimension of E′
0

is n × l0. It is easy to verify that

sτ = βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

βijk

(
τ+k−1

k−1

)
ετqj−1

i , τ = 0, 1, . . . , n − 1

can be written as [s0, . . . , sn−1]T = D(ε1, . . . , εr,M)β. Since [s0, s1, . . . , sτ , . . .]
= Ψ

(1)
M∗(s) implies s = [s0, . . . , sn−1]T, Ψ

(1)
M∗(s) = Ψ

(1)
M∗(s′) if and only if s = s′.

Thus D(ε1, . . . , εr,M) is nonsingular.

Corollary 7.2.5. For any state s of M∗, the (ε1, . . . , εr) root coordinate
of Ψ

(1)
M∗(s) is D(ε1, . . ., εr,M)−1s.

We turn to characterizing sequences over GF (q). For any integer u, let

Fu(εi) =
{ ni∑

j=1

bjε
u+j
i | b1, . . . , bni ∈ GF (q)

}
, i = 1, . . . , r. (7.36)

It is easy to verify that Fu(εi) is a subfield of GF (q∗) of which elements
consist of all roots of zqni − z. Thus Fu(εi) = GF (qni). Since elements in
GF (q) consist of all roots of zq − z and zq − z is a divisor of zqni − z, GF (q)
is a subfield of Fu(εi).

Theorem 7.2.4. Let Ω ∈ Ψ
(1)
M∗ . Then Ω ∈ Ψ

(1)
M if and only if in the

(ε1, . . . , εr) root coordinate β of Ω, βk ∈ GF (q), k = 0, . . ., l0 − 1, βijk

∈ GF (qni) and βijk = βqj−1

i1k , i = 1, . . ., r, j = 1, . . ., ni, k = 1, . . ., li.

Proof. Suppose that the condition in the theorem holds. Then there exist
bihk ∈ GF (q), i = 1, . . . , r, h = 1, . . . , ni, k = 1, . . . , li such that βi1k =∑ni

h=1 bihkεu+h
i , i = 1, . . . , r, k = 1, . . . , li. Let Ω = [s0, s1, . . ., sτ ,. . .]. From

(7.34), we have

sτ = βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

βqj−1

i1k

(
τ+k−1

k−1

)
ετqj−1

i

= βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

ni∑
h=1

bihk

(
τ+k−1

k−1

)
ε
(u+h+τ)qj−1

i ,

τ = 0, 1, . . . ,

where βτ = 0 if τ � l0. From εqni

i = εi,
∑ni

j=1 ε
(u+h+τ)qj

i =
∑ni

j=1 ε
(u+h+τ)qj−1

i

holds; this yields
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sq
τ = βτ +

r∑
i=1

ni∑
j=1

li∑
k=1

ni∑
h=1

bihk

(
τ+k−1

k−1

)
ε
(u+h+τ)qj

i

= βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

ni∑
h=1

bihk

(
τ+k−1

k−1

)
ε
(u+h+τ)qj−1

i ,

= sτ ,

τ = 0, 1, . . .

Thus sτ ∈ GF (q), τ = 0, 1, . . . We conclude that Ω ∈ Ψ
(1)
M .

Since the number of β’s which satisfy the condition in the theorem is equal
to ql0+

∑r
i=1 nili = qn and the dimension of Ψ

(1)
M is n, such β’s determine the

subset Ψ
(1)
M of Ψ

(1)
M∗ ; this completes the proof of the theorem. ��

Corollary 7.2.6. Assume that the characteristic polynomial f(z) of the
linear shift register M has the factorization

f(z) = zl0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )li ,

where ε1, . . . , εr are nonzero elements in GF (q∗) of which minimal polyno-
mials over GF (q) are coprime and have degrees n1, . . . , nr, respectively, and
l0 � 0, l1 > 0, . . . , lr > 0. Let u be an integer. Then

Γk =
[
0, . . . , 0︸ ︷︷ ︸

k

, 1, 0, . . . , 0, . . .
]
, k = 0, . . . , l0 − 1,

Γhk(εi, u) =
[ ni∑

j=1

ε
(u+h)qj−1

i ,
(

k
k−1

) ni∑
j=1

ε
(u+h+1)qj−1

i , . . . ,

(
τ+k−1

k−1

) ni∑
j=1

ε
(u+h+τ)qj−1

i , . . .
]
,

i = 1, . . . , r, h = 1, . . . , ni, k = 1, . . . , li

form a basis of Ψ
(1)
M .

Proof. From Theorem 7.2.4 and its proof, for any Ω = [s0, s1, . . . , sτ , . . .]
in Ψ

(1)
M , there uniquely exist b0, . . . , bl0−1, bihk, i = 1, . . . , r, h = 1, . . . , ni,

k = 1, . . . , li in GF (q) such that

sτ = bτ +
r∑

i=1

ni∑
j=1

li∑
k=1

ni∑
h=1

bihk

(
τ+k−1

k−1

)
ε
(u+h+τ)qj−1

i ,

τ = 0, 1, . . . ,

where bτ = 0 if τ � l0. That is,
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Ω =
l0∑

k=1

bk−1Γk−1 +
r∑

i=1

ni∑
h=1

li∑
k=1

bihkΓhk(εi, u). (7.37)

On the other hand, since each Γhk(εi, u) is a sequence over GF (q), such Ω

with the above expression is in Ψ
(1)
M . Thus Γk, k = 0, . . . , l0 − 1, Γhk(εi, u),

i = 1, . . . , r, h = 1, . . . , ni, k = 1, . . . , li form a basis of Ψ
(1)
M . ��

The basis mentioned in the corollary is called the (ε1, . . . , εr, u) root basis
of Ψ

(1)
M . If Ω is expressed as (7.37),

b = [b0, . . . , bl0−1, b111, . . . , b1n11, . . . , b11l1 , . . . , b1n1l1 ,

. . . . . . , br11, . . . , brnr1, . . . , br1lr , . . . , brnrlr ]
T

is called the (ε1, . . . , εr, u) root coordinate of Ω.
Using Corollary 7.2.5, we have the following.

Corollary 7.2.7. Let

Gi(u) =

⎡
⎢⎢⎢⎢⎣

εu+1
i εu+2

i . . . εu+ni
i

ε
(u+1)q
i ε

(u+2)q
i . . . ε

(u+ni)q
i

...
...

. . .
...

ε
(u+1)qni−1

i ε
(u+2)qni−1

i . . . ε
(u+ni)q

ni−1

i

⎤
⎥⎥⎥⎥⎦ , i = 1, . . . , r,

G(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

El0

G1(u)
. . .

G1(u)
. . .

Gr(u)
. . .

Gr(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.38)

with li Gi(u) for i = 1, . . . , r, where El0 is the l0 × l0 identity matrix. Then
DG(u) is a nonsingular matrix over GF (q) and for any Ω in Ψ

(1)
M with

(ε1, . . . , εr, u) root coordinate b, Ω=Ψ
(1)
M (s) holds, where s=D(ε1, . . . , εr,M)

G(u)b, D(ε1, . . . , εr,M) is defined in (7.35).

The following corollary is a z-transformational version for Theorem 7.2.4.

Corollary 7.2.8. Assume that the characteristic polynomial f(z) of the
linear shift register M has the factorization

f(z) = zl0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )li ,
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where ε1, . . . εr are nonzero elements in GF (q∗) of which minimal polynomials
over GF (q) are coprime and have degrees n1, . . . , nr, respectively, and l0 � 0,

l1 > 0, . . . , lr > 0. For any Ω(z) ∈ Ψ
(1)
M∗(z), Ω(z) is in Ψ

(1)
M (z) if and only

if there exist βk ∈ GF (q), k = 0, . . ., l0 − 1, βik ∈ GF (qni) , i = 1, . . ., r,
k = 1, . . ., li such that

Ω(z) =
l0−1∑
k=0

βkzk +
r∑

i=1

ni∑
j=1

li∑
k=1

βqj−1

ik /(1 − εqj−1

i z)k.

Moreover, whenever such β’s exist, they are unique.

Using Theorem 7.2.1, Corollary 7.2.8 implies the following corollary.

Corollary 7.2.9. Let f(z) be a polynomial of degree n over GF (q), and
g(z) = znf(1/z). Assume that

f(z) = zl0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )li ,

where ε1, . . . , εr are nonzero elements in GF (q∗) of which minimal polyno-
mials over GF (q) are coprime and have degrees n1, . . . , nr, respectively, and
l0 � 0, l1 > 0, . . . , lr > 0. For any polynomial h(z) of degree < n over
GF (q∗), h(z) is a polynomial over GF (q) if and only if there exist βk ∈
GF (q), k = 0, . . ., l0 − 1, βik ∈ GF (qni), i = 1, . . ., r, k = 1, . . ., li such
that

h(z)/g(z) =
l0−1∑
k=0

βkzk +
r∑

i=1

ni∑
j=1

li∑
k=1

βqj−1

ik /(1 − εqj−1

i z)k.

Moreover, whenever such β’s exist, they are unique.

Theorem 7.2.5. Let Ω ∈ ΦM∗ . Then Ω is in ΦM if and only if in the
(ε1, . . . , εr) root coordinate β of Ω, βk ∈ GF (q), k = 0, . . ., l0 − 1, βijk ∈
GF (qni) and βijk = βqj−1

i1k , i = 1, . . ., r, j = 1, . . ., ni, k = 1, . . ., li.

Proof. Suppose that the condition in the theorem holds. Let Ω =
[y0, y1, . . ., yτ , . . .] and yτ = [yτ1, . . . , yτm]T, τ = 0, 1, . . . Let R0k =
[r0k1, . . . , r0km]T, k = 1, . . . , l0, Rijk = [rijk1, . . . , rijkm]T, i = 1, . . . , r,
j = 1, . . . , ni, k = 1, . . . , li. From (7.33), we have

yτc =
l0∑

k=τ+1

βl0+τ−kr0kc +
r∑

i=1

ni∑
j=1

li∑
h=1

( li∑
k=h

βij(li+h−k)rijkc

)(
τ+h−1

h−1

)
ετqj−1

i ,

τ = 0, 1, . . . , c = 1, . . . , m.



7.2 Root Representation 241

From βi1k ∈ GF (qni), there exist bidk, i = 1, . . . , r, d = 1, . . ., ni, k = 1, . . . , li
such that

βi1k =
ni∑

d=1

bidkεu+d
i , i = 1, . . . , r, k = 1, . . . , li.

From (7.28), using Corollary 7.2.9, we have r0kc ∈ GF (q), k = 1, . . ., l0,
c = 1, . . ., m, and rijkc = rqj−1

i1kc ∈ GF (qni), i = 1, . . ., r, j = 1, . . ., ni,
k = 1, . . ., li, c = 1, . . . , m. Thus there exist piekc in GF (q), i = 1, . . . , r,
e = 1, . . . , ni, k = 1, . . . , li, c = 1, . . . , m such that

ri1kc =
ni∑

e=1

piekcε
u+e
i , i = 1, . . . , r, k = 1, . . . , li, c = 1, . . . , m.

It follows that

yτc =
l0∑

k=τ+1

βl0+τ−kr0kc

+
r∑

i=1

ni∑
j=1

li∑
h=1

li∑
k=h

ni∑
d=1

ni∑
e=1

bid(li+h−k)piekc

(
τ+h−1

h−1

)
ε
(2u+d+e+τ)qj−1

i ,

τ = 0, 1, . . . , c = 1, . . . , m.

From εqni

i = εi and βk, r0kc, bidk, piekc ∈ GF (q), we have

yq
τc =

l0∑
k=τ+1

βq
l0+τ−krq

0kc

+
r∑

i=1

ni∑
j=1

li∑
h=1

li∑
k=h

ni∑
d=1

ni∑
e=1

bq
id(li+h−k)p

q
iekc

(
τ+h−1

h−1

)q
ε
(2u+d+e+τ)qj

i

=
l0∑

k=τ+1

βl0+τ−kr0kc

+
r∑

i=1

ni∑
j=1

li∑
h=1

li∑
k=h

ni∑
d=1

ni∑
e=1

bid(li+h−k)piekc

(
τ+h−1

h−1

)
ε
(2u+d+e+τ)qj−1

i

= yτc,

τ = 0, 1, . . . , c = 1, . . . , m.

Thus yτc ∈ GF (q), τ = 0, 1, . . ., c = 1, . . . , m. We conclude that Ω ∈ ΦM .
Since the number of β’s which satisfy the condition in the theorem is equal

to ql0+
∑r

i=1 nili = qn′
and the dimension of ΦM is n′, such β’s determine the

subset ΦM of ΦM∗ ; this completes the proof of the theorem. ��
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Let M be a linear autonomous finite automaton over GF (q), with struc-
ture parameters m,n and structure matrices A, C. It is well known that there
exists a nonsingular matrix P over GF (q) such that

PAP−1 =

⎡
⎢⎣

Pf(1)(z)

. . .
Pf(v)(z)

⎤
⎥⎦ ,

where f (1)(z), . . . , f (v)(z) are elementary divisors of A. Let M ′ be the au-
tonomous linear finite automaton over GF (q) with structure parameters m,n

and structure matrices PAP−1, CP−1. It is easy to show that M and M ′

are equivalent. Thus ΦM (z) = ΦM ′(z). Let CP−1 = [C1, . . . , Cv], where
Ci has n(i) columns, n(i) is the degree of f (i)(z), i = 1, . . . , v. For each i,
1 � i � v, define a linear autonomous finite automaton M ′

i with structure
parameters m,ni and structure matrices Pf(i)(z), Ci. It is easy to show that
ΦM (z) = ΦM ′(z) = ΦM1(z) + · · · + ΦMv (z). In the case where M is minimal,
the space sum is the direct sum; therefore, all bases of ΦM1(z), . . ., ΦMv

(z)
together form a basis of ΦM (z).

We discuss how to obtain a basis of ΦM (z) from bases of ΦM1(z), . . .,
ΦMv

(z) for general M . Let g(i)(z) = zn(i)
f (i)(1/z), i = 1, . . ., v. We use

f (i)′(z) to denote the second characteristic polynomial of M (i), and n(i)′ the
degree of f (i)′(z), i = 1, . . . , v. Let g(i)′(z) = zn(i)′

f (i)′(1/z), i = 1, . . ., v.
We use f ′(z) to denote the least common multiple of f (1)′(z), . . ., f (v)′(z).
Assume that GF (q∗) is a splitting field of f ′(z) and that (7.27) holds. Then

f (h)′(z) = zl
(h)
0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )l
(h)
i , h = 1, . . . , v, (7.39)

for some l
(h)
i � 0, i = 0, 1, . . . , r, h = 1, . . . , v. It follows that

n(h) = l
(h)
0 +

r∑
i=1

nil
(h)
i , h = 1, . . . , v.

Let⎡
⎢⎢⎣

c
(h)
1 (z)zn(h)−1/g(h)(z)
...
c
(h)
m (z)zn(h)−1/g(h)(z)

⎤
⎥⎥⎦ =

l
(h)
0∑

k=1

R
(h)
0k zk−1 +

r∑
i=1

ni∑
j=1

l
(h)
i∑

k=1

R
(h)
ijk/(1 − εqj−1

i z)k,

R
(h)
0 (k) = [R(h)

0(l
(h)
0 +1−k)

. . . R
(h)

0l
(h)
0

0 . . . 0], k = 1, . . . , l
(h)
0 , h = 1, . . . , v,

R
(h)
ij (k) = [R(h)

ij(l
(h)
i +1−k)

. . . R
(h)

ijl
(h)
i

0 . . . 0], (7.40)

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , l
(h)
i , h = 1, . . . , v,
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where c
(h)
k (z), k = 1, . . . , m are the output polynomials of M (h), h = 1, . . ., v.

We use M (h)∗ to denote the natural extension of M (h) over GF (q∗), h = 1, . . .,
v. From Theorem 7.2.3, R

(h)
0 (k)Γ0(z), k = 1, . . . , l

(h)
0 , R

(h)
ij (k)Γij(z), i = 1, . . .,

r, j = 1, . . ., ni, k = 1, . . ., l
(h)
i form a basis of ΦM(h)∗(z), h = 1, . . ., v, where

Γ0(z), Γij(z) are defined in (7.29). We use S0 to denote the set consisting
of R

(h)
0 (k)Γ0(z), k = 1, . . . , l

(h)
0 , h = 1, . . ., v, R

(h)
ij (k)Γij(z), i = 1, . . ., r,

j = 1, . . ., ni, k = 1, . . ., l
(h)
i , h = 1, . . ., v. Clearly, S0 generates ΦM∗(z). We

use S00 to denote the set consisting of R
(h)
0 (k)Γ0(z),k = 1, . . . , l

(h)
0 , h = 1, . . .,

v, use Sij0 to denote the set consisting of R
(h)
ij (k)Γij(z), k = 1, . . ., l

(h)
i ,

h = 1, . . ., v for any i, 1 � i � r, and any j, 1 � j � ni. Evidently, elements
in S0 are linearly independent over GF (q∗) if and only if elements in S00

are linearly independent over GF (q∗) and for any i, 1 � i � r and any j,
1 � j � ni, elements in Sij0 are linearly independent over GF (q∗).

Proposition 7.2.1. Elements in S00 are linearly dependent over GF (q∗) if
and only if R

(h)

0l
(h)
0

, h = 1, . . ., v are linearly dependent over GF (q).

Proof. Suppose that R
(h)

0l
(h)
0

, h = 1, . . ., v are linearly dependent over

GF (q). Since all columns of R
(h)
0 (1) are 0 except the first column R

(h)

0l
(h)
0

,

R
(h)
0 (1)Γ0(z), h = 1, . . ., v are linearly dependent over GF (q). From R

(h)
0 (1)

Γ0(z) ∈ S00, elements in S00 are linearly dependent over GF (q); therefore,
elements in S00 are linearly dependent over GF (q∗).

Suppose that elements in S00 are linearly dependent over GF (q∗). Then
there exist ahk ∈ GF (q∗), h = 1, . . ., v, k = 1, . . ., l

(h)
0 such that ahk 
= 0 for

some h, k and
v∑

h=1

l
(h)
0∑

k=1

ahkR
(h)
0 (k)Γ0(z) = 0.

It follows that
v∑

h=1

l
(h)
0∑

k=1

ahkR
(h)
0 (k) = 0.

We use k′ to denote the maximum k satisfying the condition ahk 
= 0 for
some h, 1 � h � v. Then we have

v∑
h=1

ahk′R
(h)

0l(h) = 0.

Thus R
(h)

0l
(h)
0

, h = 1, . . ., v are linearly dependent over GF (q∗). Since elements

in R
(h)

0l
(h)
0

, h = 1, . . ., v are in GF (q), R
(h)

0l
(h)
0

, h = 1, . . ., v are linearly dependent

over GF (q). ��
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Similarly, we can prove the following.

Proposition 7.2.2. For any i, 1 � i � r and any j, 1 � j � ni, elements
in Sij0 are linearly dependent over GF (q∗) if and only if R

(h)

ijl
(h)
i

, h = 1, . . .,

v are linearly dependent over GF (qni).

Proposition 7.2.3. For any i, 1 � i � r and any j, 1 � j � ni, R
(h)

ijl
(h)
i

,

h = 1, . . . , v are linearly dependent over GF (qni) if and only if R
(h)

i1l
(h)
i

,

h = 1, . . ., v are linearly dependent over GF (qni). Moreover, for any ah in
GF (qni), h = 1, . . ., v,

∑v
h=1 ahR

(h)

i1l
(h)
i

= 0 implies
∑v

h=1 aqj−1

h R
(h)

ijl
(h)
i

= 0,

and
∑v

h=1 ahR
(h)

ijl
(h)
i

= 0 implies
∑v

h=1 aqni−j+1

h R
(h)

i1l
(h)
i

= 0.

Proof. Let R
(h)

i1l
(h)
i

= [r1h, . . . , rmh]T. Using Corollary 7.2.9, rkh is in

GF (qni), for k = 1, . . ., m, and R
(h)

ijl
(h)
i

= [rqj−1

1h , . . . , rqj−1

mh ]T. Suppose that∑v
h=1 ahR

(h)

i1l
(h)
i

= 0 for some a1, . . ., av ∈ GF (qni). Then

v∑
h=1

ahrkh = 0, k = 1, . . . , m.

Thus
v∑

h=1

aqj−1

h rqj−1

kh = 0, k = 1, . . . , m,

that is,
∑v

h=1 aqj−1

h R
(h)

ijl
(h)
i

= 0.

Conversely, suppose that
∑v

h=1 ahR
(h)

ijl
(h)
i

= 0 for some a1, . . ., av ∈
GF (qni). Then

v∑
h=1

ahrqj−1

kh = 0, k = 1, . . . , m.

From aqni = a for any a ∈ GF (qni), we have

v∑
h=1

aqni−j+1

h rqni

kh =
v∑

h=1

aqni−j+1

h rkh = 0, k = 1, . . . , m,

that is,
∑v

h=1 aqni−j+1

h R
(h)

i1l
(h)
i

= 0. ��

For any i, 1 � i � r, construct Sij1 from Sij0, j = 1, . . ., ni, as follows.
Whenever elements in Si10 are linearly independent, from Propositions 7.2.2
and 7.2.3, elements in Sij0 are linearly independent; we take Sij1 = Sij0,
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j = 1, . . ., ni. Whenever elements in Si10 are linearly dependent, from Propo-
sition 7.2.2, R

(h)

i1l
(h)
i

, h = 1, . . ., v are linearly dependent over GF (qni); there-

fore, there exist ah ∈ GF (qni), h = 1, . . ., v such that ah 
= 0 for some h and∑v
h=1 ahR

(h)

i1l
(h)
i

= 0. From Proposition 7.2.3, this yields
∑v

h=1 aqj−1

h R
(h)

ijl
(h)
i

=

0, j = 1, . . ., ni. Let I = {h | ah 
= 0, h = 1, . . . , v}. Take arbitrarily an inte-
ger h′ in I with l

(h′)
i � l

(h)
i for any h in I. Let R′

ij(k) =
∑

h∈I aqj−1

h R
(h)
ij (k),

k = 1, . . ., l
(h′)
i . Since R

(h)
ij (k) = [R(h)

ij(l
(h)
i +1−k)

. . . R
(h)

ijl
(h)
i

0 . . . 0], k = 1, . . .,

l
(h)
i , we have R′

ij(1) = 0. Let l̄
(h′)
i = 0 whenever R′

ij(l
(h′)
i ) = 0, and

l̄
(h′)
i = max k{the k-th column of R′

ij(l
(h′)
i ) 
= 0} otherwise. It is easy to ver-

ify that R
(h′)
ij (k) = R

(h′)
ij (l(h

′)
i )H l(h′)−k

i , that is, shifting R
(h′)
ij (l(h

′)
i ) l(h

′) − k

columns to the left, k = 1, . . ., l
(h′)
i , where Hi is defined by (7.32). Therefore,

R′
ij(k) = 0 if and only if k � l(h

′)−l̄(h
′). Since R′

ij(1) = 0, we have l̄(h
′) < l(h

′).

Let Sij1 be the set obtained from Sij0 by deleting R
(h′)
ij (k)Γij(z), k = 1, . . .,

l
(h′)
i and adding R′

ij(k)Γij(z), k = l(h
′)− l̄(h

′) +1, . . ., l
(h′)
i . Clearly, the space

generated by Sij0 and the space generated by Sij1 are the same, j = 1, . . .,
ni. Since R

(h)
ij (k) can be obtained by taking each element in R

(h)
i1 (k) to the

qj−1-th power, R′
ij(k) is equal to the matrix obtained by taking each element

in R′
i1(k) to the qj−1-th power. Thus the fashion of Sij1 is the same as the

fashion of Sij0, but the number of elements in Sij1 is less than the number of
Sij0. Similarly, from Sij1 we construct Sij2, and so on. We stop the process
until some Sijc in which elements are linearly independent.

Similar to constructing Sij1, from S00 we can construct S01. Repeatedly,
we obtain S02, S03, . . ., until some S0c in which elements are linearly inde-
pendent.

To sum up, by this method we can obtain a basis of ΦM∗(z).

7.3 Translation and Period

7.3.1 Shift Registers

For any nonnegative integer c, the c-translation of an infinite sequence
(a0, a1, . . .) means the infinite sequence (ac, ac+1, . . .). Correspondingly,∑∞

i=0 ai+cz
i is called the c-translation of

∑∞
i=0 aiz

i.
Let M be a linear shift register over GF (q). Let GF (q∗) be a splitting field

of the second characteristic polynomial of M , and M∗ the natural extension
of M over GF (q∗).

Theorem 7.3.1. Let β be the (ε1, . . . , εr) root coordinate of Ω(z) in ΦM∗(z).
If Ω′(z) is the c-translation of Ω(z) and
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β′
k = βc+k, k = 0, 1, . . . , l0 − c − 1,

β′
k = 0, k = l0 − c, . . . , l0 − 1, (7.41)

β′
ijh =

li∑
k=h

(
k−h+c−1

k−h

)
βijkεcqj−1

i ,

i = 1, . . . , r, j = 1, . . . , ni, h = 1, . . . , li,

then

β′ = [β′
0, . . . , β

′
l0−1, β′

111, . . . , β
′
1n11, . . . , β′

11l1 , . . . , β
′
1n1l1 ,

. . . . . . , β′
r11, . . . , β

′
rnr1, . . . , β′

r1lr , . . . , β
′
rnrlr ]

T

is the (ε1, . . . , εr) root coordinate of Ω′(z).

Proof. Let Ω(z) =
∑∞

τ=0 yτzτ and Ω′(z) =
∑∞

τ=0 y′
τzτ . From (7.33), we

have

yτ =
l0∑

k=τ+1

βl0+τ−kR0k +
r∑

i=1

ni∑
j=1

li∑
h=1

( li∑
k=h

βij(li+h−k)Rijk

)(
τ+h−1

h−1

)
ετqj−1

i ,

τ = 0, 1, . . .

Thus

y′
τ = yc+τ =

l0∑
k=c+τ+1

βl0+c+τ−kR0k

+
r∑

i=1

ni∑
j=1

li∑
k=1

(
li∑

d=k

βij(li+k−d)Rijd)
(
c+τ+k−1

k−1

)
ε
(c+τ)qj−1

i ,

τ = 0, 1, . . .

Using (7.10), we have

y′
τ =

l0∑
k=c+τ+1

βl0+c+τ−kR0k

+
r∑

i=1

ni∑
j=1

li∑
k=1

( li∑
d=k

βij(li+k−d)Rijd

) k∑
h=1

(
k−h+c−1

k−h

)(
τ+h−1

h−1

)
ε
(c+τ)qj−1

i .

Thus

y′
τ =

l0∑
k=c+τ+1

βl0+c+τ−kR0k

+
r∑

i=1

ni∑
j=1

∑
1�h�k�d�li

βij(li+k−d)Rijd

(
k−h+c−1

k−h

)(
τ+h−1

h−1

)
ε
(c+τ)qj−1

i
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=
l0∑

k=c+τ+1

βl0+c+τ−kR0k

+
r∑

i=1

ni∑
j=1

li∑
h=1

li∑
d=h

d∑
k=h

(
k−h+c−1

k−h

)
βij(li+k−d)ε

cqj−1

i Rijd

(
τ+h−1

h−1

)
ετqj−1

i

=
l0∑

k=c+τ+1

βl0+c+τ−kR0k

+
r∑

i=1

ni∑
j=1

li∑
h=1

[ li∑
d=h

( li∑
k=li+h−d

(
k−li−h+d+c−1

k−li−h+d

)
βijkεcqj−1

i

)
Rijd

](
τ+h−1

h−1

)
ετqj−1

i

=
l0∑

k=τ+1

β′
l0+τ−kR0k +

r∑
i=1

ni∑
j=1

li∑
h=1

[ li∑
d=h

β′
ij(li+h−d)Rijd

](
τ+h−1

h−1

)
ετqj−1

i ,

τ = 0, 1, . . .

Therefore, β′ is the (ε1, . . . , εr) root coordinate of Ω′(z). ��

For an (ε1, . . . , εr) root coordinate β, let lij = min h [ h � 0, βijk = 0 if
h < k � li ], i = 1, . . . , r, j = 1, . . . , ni. max { lij , i = 1, . . . , r, j = 1, . . . , ni }
is called the efficient multiplicity of β. Let i1, . . . , ir1 be different elements
in {i | 1 � i � r, ∃j(1 � j � ni & lij > 0)}. Denote the order of εi by ei,
i = 1, . . . , r. The least common multiple of ei1 , . . ., eir1

is called the basic
period of β.

M is said to be nonsingular, if its state transition matrix is nonsingular.

Theorem 7.3.2. Assume that M is nonsingular. Then any Ω(z) in ΦM∗(z)
is periodic and its period is epa, where p is the characteristic of GF (q), e is
the basic period of the (ε1, . . . , εr) root coordinate β of Ω(z), a = �logp l� 1

and l is the efficient multiplicity of β.

Proof. Let Ω′(z) be the c-translation of Ω(z), i.e., Ω′(z) = Dc(Ω(z)). Let
β and β′ be the (ε1, . . . , εr) root coordinates of Ω(z) and Ω′(z), respectively.
From Theorem 7.3.1, noticing l0 = 0, we have

β′
ijh =

li∑
k=h

(
k−h+c−1

k−h

)
βijkεcqj−1

i , (7.42)

i = 1, . . . , r, j = 1, . . . , ni, h = 1, . . . , li.

Without loss of generality, assume that there exists j such that lij > 0 when-
ever 1 � i � r1 and that lij = 0 whenever r1 < i � r. Then

1 �x� stands for the minimal integer � x.
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β′
ijh = 0, i = 1, . . . , r1, j = 1, . . . , ni, h = lij + 1, . . . , li,

β′
ijh = 0, i = r1 + 1, . . . , r, j = 1, . . . , ni, h = 1, . . . , li.

From (7.42), Ω′(z) = Ω(z) is equivalent to the equations

βijh =
lij∑

k=h

(
k−h+c−1

k−h

)
βijkεcqj−1

i , (7.43)

i = 1, . . . , r1, j = 1, . . . , ni, h = 1, . . . , lij .

Equations for h = lij in (7.43) are

βijlij
= βijlij

εcqj−1

i , i = 1, . . . , r1, j = 1, . . . , ni. (7.44)

Since βijlij

= 0 whenever lij > 0, (7.44) is equivalent to the equations

εc
i = 1, i = 1, . . . , r1.

Since εc
i = 1 if and only if ei|c, this yields that (7.44) is equivalent to e|c.

Thus (7.43) is equivalent to the equations

e|c,
lij∑

k=h+1

(
k−h+c−1

k−h

)
βijk = 0,

i = 1, . . . , r1, j = 1, . . . , ni, h = 1, . . . , lij − 1.

It is equivalent to the equations

e|c,

(
lij−h+c−1

lij−h

)
= −β−1

ijlij

lij−1∑
k=h+1

(
k−h+c−1

k−h

)
βijk,

i = 1, . . . , r1, j = 1, . . . , ni, h = 1, . . . , lij − 1,

that is,

e|c,

(
h+c−1

h

)
= −β−1

ijlij

lij−1∑
k=lij−h+1

(
k−lij+h+c−1

k−lij+h

)
βijk,

i = 1, . . . , r1, j = 1, . . . , ni, h = 1, . . . , lij − 1.

Clearly,
(
h+c−1

h

)
= −β−1

ijlij

∑lij−1
k=lij−h+1

(
k−lij+h+c−1

k−lij+h

)
βijk, h = 1, . . ., lij − 1 if

and only if
(
h+c−1

h

)
= 0(mod p), h = 1, . . . , lij − 1. Thus (7.43) is equivalent

to the equations
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e|c,(
h+c−1

h

)
= 0 (mod p), h = 1, . . . , l − 1. (7.45)

Let

c = c0 + we, 0 � c0 < e.

Then (7.45) is equivalent to the equations

c0 = 0,(
h+c0−1+we

h

)
= 0 (mod p), h = 1, . . . , l − 1. (7.46)

Since gcd(e, p) = 1, e−1(mod p) exists. From (7.16), we have

(
h+c0−1+we

h

)
=

h∑
k=0

[ k∑
i=0

(−1)k−i
(
k
i

)(
h+c0−1+ie

h

)](
w
k

)
,

h = 1, . . . , l − 1.

Thus (7.46) is equivalent to the equations

c0 = 0,

h∑
k=0

[ k∑
i=0

(−1)k−i
(
k
i

)(
h+c0−1+ie

h

)](
w
k

)
= 0 (mod p), (7.47)

h = 1, . . . , l − 1.

Since the coefficient of the term
(
w
h

)
in (7.47) is eh, (7.47) is equivalent to the

equations

c0 = 0,

(
w
h

)
= −e−h

h−1∑
k=0

[ k∑
i=0

(−1)k−i
(
k
i

)(
h−1+ie

h

)](
w
k

)
(mod p),

h = 1, . . . , l − 1. (7.48)

It is easy to prove by induction on h that (7.48) is equivalent to the equations

c0 = 0,(
w
h

)
= qh (mod p), h = 1, . . . , l − 1, (7.49)

where 0 � q1, . . . , ql−1 < p, and

q0 = 1,

qh = −e−h
h−1∑
k=0

[ k∑
i=0

(−1)k−i
(
k
i

)(
h−1+ie

h

)]
qk (mod p),

h = 1, . . . , l − 1.
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Therefore, (7.43) is equivalent to (7.49). Let

w =
a∑

i=1

wip
i−1 + w′pa,

0 � w1, . . . , wa < p, w′ � 0.

From Theorem 7.1.3, since h < l � pa, (7.49) is equivalent to the system of
equations c0 = 0 and(∑a

i=1 wip
i−1

h

)
= qh (mod p), h = 1, . . . , l − 1. (7.50)

From Theorem 7.1.3, we have wi =
(∑a

j=1 wjpj−1

pi−1

)
(mod p), i = 1, . . . , a. Thus

(7.50) implies

wi = qpi−1 , i = 1, . . . , a. (7.51)

Conversely, (7.51) implies (7.50). In fact, since Ω(z) is periodic, we may take
a positive integer c such that Dc(Ω(z)) = Ω(z). Then (7.50) holds for such
a c. It follows that (7.51) holds for such a c. From (7.50) and (7.51), we have

(∑a
i=1 qpi−1pi−1

h

)
= qh (mod p), h = 1, . . . , l − 1, (7.52)

which is independent of c. Using (7.52), (7.51) implies (7.50). Thus (7.50)
and (7.51) are equivalent. Clearly, (7.51) is equivalent to the equation

c = c0 + e

a∑
i=1

qpi−1pi−1 + w′epa.

Therefore, (7.43) is equivalent to the equations

c = e
a∑

i=1

qpi−1pi−1 + w′epa. (7.53)

We conclude that Dc(Ω(z)) = Ω(z) if and only if (7.53) holds for some
nonnegative integer w′.

Since Ω(z) is periodic, there exists a positive integer c1 such that Dc1(Ω(z))
= Ω(z). It follows that there exists w′

1 such that c1 = e
∑a

i=1 qpi−1pi−1 +
w′

1ep
a. Therefore, for any nonnegative integer c, Dc(Ω(z)) = Ω(z) if and

only if c = c1 (mod epa). From D0(Ω(z)) = Ω(z), it follows that 0 =
c1 (mod epa). Thus for any nonnegative integer c, Dc(Ω(z)) = Ω(z) if and
only if c = 0 (mod epa). This yields that the period of Ω(z) is epa. ��

From the definitions, whenever β = 0, the efficient multiplicity l of β is 0
and the basic period e of β is 1; whenever β 
= 0,
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l = max k (∃i∃j (1 � i � r & 1 � j � ni & 1 � k � li & bijk 
= 0)), (7.54)

e is the least common multiple of ei1 , . . ., eir1
, where eij

is the order of εij
,

j = 1, . . . , r1,

{i1, . . . , ir1} = {i | 1 � i � r,∃j ∃k (1 � j � ni & 1 � k � li & bijk 
= 0)}.

Corollary 7.3.1. Assume that the state transition matrix of M is nonsin-
gular. Let βi and ui be the (ε1, . . . , εr) root coordinate and the period of Ωi(z)
∈ ΦM∗(z), respectively, i = 1, . . . , h. If the number of nonzero components of
β1, . . ., βh at each position is at most one, then the period of Ω1(z) + · · · +
Ωh(z) is the least common multiple of u1, . . ., uh.

If the maximum period of the sequences in ΦM (z) is h and the number of
the sequences in ΦM (z) with period i is ci, i = 1, . . . , h,

∑h
i=1 ciz

i is called the
period distribution polynomial of ΦM (z), denoted by ξM (z). For any subset
of ΦM (z), we define similarly its period distribution polynomial. We define
an addition operation on period distribution polynomials similar to common
polynomials, and define ∗ operation:

( k∑
i=1

ciz
i
)
∗
( h∑

j=1

djz
j
)

=
k∑

i=1

h∑
j=1

cidjz
lcm(i,j). (7.55)

Take an (ε1, . . . , εr) root basis of ΦM∗(z). Let β be the root coordinate
of Ω(z) ∈ ΦM (z). If components of β are zero but βijk, j = 1, . . ., ni for
some i and k, then the period of β is eip


logp k�, where ei is the order of εi.
Clearly, given i and k, 1 � i � r, 1 � k � li, the number of such βijk is
qni − 1. Consider the subset of ΦM (z) in which in components of the root
coordinate β of any sequence, βi′jk′ = 0 holds whenever i′ 
= i or k′ 
= k.
Then the subset’s period distribution polynomial is z + (qni − 1)zeip

�logp k�
.

From Corollary 7.3.1, we have

ξM (z) =
r∏

i=1

li∏
k=1

(z + (qni − 1)zeip
�logp k�

), (7.56)

where
∏1

i=1 ϕ(i) = ϕ(1),
∏n+1

i=1 ϕ(i) = (
∏n

i=1 ϕ(i)) ∗ ϕ(n + 1). Since for any
u � 1, any c and any d, (z + (c − 1)zu) ∗ (z + (d − 1)zu) = z + (cd − 1)zu

holds, we have

ph−1+t∏
k=ph−1+1

(z + (qni − 1)zeip
h

) = z + (qnit − 1)zeip
h

. (7.57)

Since p
logp k� = ph for k = ph−1 +1, . . ., ph, using (7.56) and (7.57), we have
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ξM (z) =
r∏

i=1

[(z + (qni − 1)zei) ∗

logp li�−1∏

h=1

(z + (qni(p
h−ph−1) − 1)zeip

h

)

∗ (z + (qni(li−p�logp li�−1) − 1)zeip
�logp li�)]. (7.58)

It is easy to prove by induction on k that

(z + (qni − 1)zei) ∗
k∏

h=1

(z + (qni(p
h−ph−1) − 1)zeip

h

) (7.59)

= z + (qni − 1)zei +
k∑

h=1

(qnip
h − qnip

h−1
)zeip

h

.

Using (7.58) and (7.59), it is easy to show that

ξM (z) =
r∏

i=1

[
z + (qni − 1)zei +


logp li�−1∑
h=1

(qnip
h − qnip

h−1
)zeip

h

+ (qnili − qnip
�logp li�−1

)zeip
�logp li�]

. (7.60)

Let fi(z) be the minimal polynomial of εi, i = 1, . . . , r. It is easy to show
that f1(z), . . ., fr(z) are coprime with each other of which degrees are n1,
. . ., nr, respectively, and that the second characteristic polynomial of M is∏r

i=1 fi(z)li . Notice that the period of fi(z), i.e., min c[c > 0, fi(z)|(zc − 1)],
equals the order of εi. We then obtain the following theorem.

Theorem 7.3.3. Assume that M is nonsingular. Let
∏r

i=1 fi(z)li be the
second characteristic polynomial of M , where f1(z), . . ., fr(z) are irreducible
polynomials over GF (q) and coprime with each other, and l1, . . ., lr are pos-
itive integers. Let ni and ei be the degree and the period of fi(z), respectively,
i = 1, . . . , r. Then the period distribution polynomial of M is given by (7.56)
or (7.60).

7.3.2 Finite Automata

For any linear autonomous finite automaton M , From Theorems 1.3.4 and
1.3.5, we can find linear autonomous registers M (1), . . ., M (v) such that the
union of M (1), . . ., M (v) is minimal and equivalent to M . It follows that
ΦM (z) equals the direct sum of ΦM(1)(z), . . ., ΦM(v)(z).

Let GF (q∗) be a splitting field of the second characteristic polynomial of
M (h), h = 1, . . . , v. Let M∗ be the natural extension of M over GF (q∗), and
M (h)∗ the natural extension of M (h) over GF (q∗), h = 1, . . . , v. Clearly, the
union of M (1)∗, . . ., M (v)∗ is minimal and equivalent to M∗. It follows that
ΦM∗(z) equals the direct sum of ΦM(1)∗(z), . . ., ΦM(v)∗(z).
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Let η
(h)
1 , . . ., η

(h)

n(h) be a basis of ΦM(h)∗(z), h = 1, . . . , v. Then η
(h)
1 , . . .,

η
(h)

n(h) , h = 1, . . . , v together form a basis of ΦM∗(z). For any Ω(z) ∈ ΦM∗(z),
there uniquely exist Ω(h)(z) ∈ ΦM(h)∗(z), h = 1, . . . , v such that Ω(z) =
Ω(1)(z) +···+ Ω(v)(z). Thus Dc(Ω(z)) = Dc(Ω(1)(z)) +···+ Dc(Ω(v)(z)). Let
β be the coordinate of Ω(z), and β(h) the coordinate of Ω(h)(z), h = 1, . . . , v.
Then we have β = [β(1), . . . , β(v)]T.

It is easy to show that Dc(Ω(z)) = Ω(z) if and only if Dc(Ω(h)(z)) =
Ω(h)(z), h = 1, . . . , v. From the proof of Theorem 7.3.2, Dc(Ω(z)) = Ω(z) if
and only if

c = 0 (mod e(h)pa(h)
), h = 1, . . . , v, (7.61)

where e(h) and l(h) are the basic period and the efficient multiplicity of the
(ε(h)

1 , . . ., ε
(h)

r(h)) root coordinate of Ω(h)(z), respectively, h = 1, . . . , v. Let e be
the least common multiple of e1, . . ., ev, and a = max(a(1), . . . , a(v)). Then
the least common multiple of e(1)pa(1)

, . . ., e(v)pa(v)
is epa. Thus (7.61) is

equivalent to the equation

c = 0 (mod epa). (7.62)

It follows that Dc(Ω(z)) = Ω(z) if and only if (7.62) holds. We obtain the
following Theorem.

Theorem 7.3.4. Assume that M is a nonsingular linear autonomous finite
automaton and that the union of linear registers M (1), . . ., M (v) is minimal
and equivalent to M . Let Ω(z) = Ω(1)(z) +···+ Ω(v)(z), Ω(h)(z) ∈ ΦM(h)∗(z),
h = 1, . . . , v. Let e be the least common multiple of e1, . . ., ev, and a =
max(a(1), . . . , a(v)), where e(h) and l(h) are the basic period and the efficient
multiplicity of the (ε(h)

1 , . . . , ε
(h)

r(h)) root coordinate of Ω(h)(z), respectively, h =
1, . . . , v. Then Dc(Ω(z)) = Ω(z) if and only if c = 0 (mod epa). Therefore,
the period of Ω(z) is epa.

Using Theorem 7.3.2 and Theorem 7.3.4, we obtain the following.

Corollary 7.3.2. Assume that M is a nonsingular linear autonomous finite
automaton and that the union of linear registers M (1), . . ., M (v) is minimal
and equivalent to M . Let Ω(z) = Ω(1)(z) +···+ Ω(v)(z), Ω(h)(z) ∈ ΦM(h)∗(z),
h = 1, . . . , v. Let uh be the period of Ω(h)(z), h = 1, . . . , v. Then the period
of Ω(z) is the least common multiple of u1, . . ., uv.

From Corollary 7.3.2, it is easy to show the following.

Corollary 7.3.3. Assume that M is a nonsingular linear autonomous finite
automaton and that the union of linear registers M (1), . . ., M (v) is minimal
and equivalent to M . Then we have



254 7. Linear Autonomous Finite Automata

ξM (z) =
v∏

i=1

ξM(i)(z). (7.63)

Since the union of linear registers M (1), . . ., M (v) is minimal, M (h) is
minimal, h = 1, . . . , v. Therefore, the characteristic polynomial and the sec-
ond characteristic polynomial of M (h) are the same, say f (h)(z), h = 1, . . . , v.
Clearly, we can take f (h)(z), h = 1, . . . , v as the elementary divisors of the
state transition matrix of the union of M (1), . . ., M (v). Since elementary divi-
sors of the state transition matrix of a linear finite automaton keep unchanged
under similarity transformation, f (h)(z), h = 1, . . . , v are the elementary di-
visors of the state transition matrix of any minimal linear finite automaton
of M . From Theorem 7.3.3 and Corollary 7.3.3, noticing that any elementary
divisor is a positive power of a irreducible polynomial, we have the following
theorem.

Theorem 7.3.5. Assume that M is a nonsingular linear autonomous finite
automaton and that f (i)(z), i = 1, . . . , v are the elementary divisors of the
state transition matrix of any minimal linear finite automaton of M . Let
f (i)(z) = fi(z)li , where fi(z) is an irreducible polynomial over GF (q) of
degree ni and with period ei, i = 1, . . . , v. Then we have

ξM (z) =
v∏

i=1

li∏
k=1

(z + (qni − 1)zeip
�logp k�

)

=
v∏

i=1

[
z + (qni − 1)zei +


logp li�−1∑
h=1

(qnip
h − qnip

h−1
)zeip

h

+ (qnili − qnip
�logp li�−1

)zeip
�logp li�]

.

7.4 Linearization

We use � to denote the set of all linear shift registers over GF (q) of which
the output is the first component of the state. It is evident that any linear
shift register in � is uniquely determined by its characteristic polynomial.
We define two operations on �.

Let Mi ∈ �, i = 1, . . . , h. For any i, 1 � i � h, let fi(z) be the charac-
teristic polynomial of Mi and G(Mi), or Gi for short, the set of all different
roots of fi(z); let li(ε) be the multiplicity of ε whenever ε is a root of fi(z),
li(ε) = 0 otherwise. Let

fΣ(z) =
∏

ε∈G1∪···∪Gh

(z − ε)max(l1(ε),...,lh(ε)). (7.64)
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It is easy to show that fΣ(z) is the least common multiple of f1(z), . . ., fh(z)
with leading coefficient 1. The linear shift register in � with characteristic
polynomial fΣ(z) is called the sum of M1, . . ., Mh, denoted by M1 + · · · +
Mh or

∑h
i=1 Mi. Clearly, the sum is independent of the order of M1, . . ., Mh

and we have

(M1 + · · · + Mh) + (Mh+1 + · · · + Mk) = M1 + · · · + Mk, (7.65)

M + · · · + M = M.

This yields

M1 + (M1 + · · · + Mh) = M1 + · · · + Mh. (7.66)

We use p to denote the characteristic of GF (q). Let

Q = Q(M1, . . . , Mh) =
{ h∏

i=1

εi | εi ∈ Gi, i = 1, . . . , h
}
,

l(0) = max(l1(0), . . . , lh(0)),

v(k) = min v(v � 0 & k � pv), k = 1, 2, . . . ,

v(k1, . . . , kh) = max(v(k1), . . . , v(kh)),

l(k1, . . . , kh) = min(k1 + · · · + kh − h + 1, pv(k1,...,kh)), (7.67)

k1, . . . , kh = 1, 2, . . . ,

l(ε) = max
{
l(l1(ε1), . . . , lh(εh)) | ε =

h∏
i=1

εi, εi ∈ Gi, i = 1, . . . , h
}
,

ε ∈ Q \ {0}.

Clearly, whenever fi(z) has no nonzero repeated root for any i, 1 � i � h,
l(ε) = 1 if 0 
= ε ∈ Q. It is easy to see that ε ∈ Q implies εq ∈ Q and
l(ε) = l(εq). Let

fΠ(z) =
∏
ε∈Q

(z − ε)l(ε). (7.68)

It is easy to show that fΠ(z) is a polynomial over GF (q). The linear shift
register in � with characteristic polynomial fΠ(z) is called the product of
M1, . . ., Mh, denoted by M1 . . . Mh or

∏h
i=1 Mi. Clearly, the product is

independent of the order of M1, . . ., Mh. It is easy to verify that

M(M1 + · · · + Mh) = MM1 + · · · + MMh. (7.69)

We use ME to denote the linear shift register in � with characteristic poly-
nomial z − 1. Then we have
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MME = MEM = M. (7.70)

Notice that for any M1, M2 in �, M1 ≺ M2 if and only if Ψ
(1)
M1

(z) ⊆ Ψ
(1)(z)
M2

,
if and only if f1(z)|f2(z). Thus M1 ≺ M2 if and only if M1 +M2 = M2. From
(7.65) and (7.69), we have M1 + M3 ≺ M2 + M3 and M1M3 ≺ M2M3, if
M1 ≺ M2.

Point out that the associative law does not hold.

Theorem 7.4.1. For any M1, M2 in �, we have

Ψ
(1)
M1+M2

(z) = Ψ
(1)
M1

(z) + Ψ
(1)
M1

(z), (7.71)

therefore, M1 + M2 is equivalent to the union of M1 and M2.

Proof. Let f(z) be the characteristic polynomial of M1+M2, and fi(z) the
characteristic polynomial of Mi, i = 1, 2. Let g(z) be the reverse polynomial
of f(z), and gi(z) the reverse polynomial of fi(z), i = 1, 2. It is easy to prove
that for any polynomials ϕ and ψ, ψ(z)|ϕ(z) implies ψ̄(z)|ϕ̄(z), where ψ̄(z)
and ϕ̄(z) are the reverse polynomials of ψ(z) and ϕ(z), respectively. Using
the result, it is easy to show that g(z) is the least common multiple of g1(z)
and g2(z).

Any Ω(z) ∈ Ψ
(1)
M1+M2

(z), Ω(z) can be expressed as the sum of a polynomial
b0(z) and a proper fraction h(z)/g(z), where the degree of b0(z) is less than
the multiplicity of the divisor z of f(z). Since g(z) is the least common
multiple of g1(z) and g2(z), h(z)/g(z) can be decomposed into a sum of proper
fractions h1(z)/g1(z) and h2(z)/g2(z). Since the multiplicity of the divisor z of
f(z) equals the multiplicity of the divisor z of f1(z) or of f2(z), we have b0(z)+
h1(z)/g1(z) + h2(z)/g2(z) ∈ Ψ

(1)
M1

(z) + Ψ
(1)
M2

(z). Thus Ψ
(1)
M1+M2

(z) ⊆ Ψ
(1)
M1

(z) +

Ψ
(1)
M2

(z). On the other hand, let Ωi(z) ∈ Ψ
(1)
Mi

(z), i = 1, 2. Then Ωi(z) can be
expressed as the sum of a polynomial bi(z) and a proper fraction hi(z)/gi(z),
where the degree of bi(z) is less than the multiplicity of the divisor z of fi(z),
i = 1, 2. Thus Ω1(z) + Ω2(z) = b1(z) + b2(z) + h1(z)/g1(z) + h2(z)/g2(z) =
b1(z) + b2(z) + h(z)/g(z), where h(z)/g(z) is a proper fraction. Since the
degree of b1(z)+b2(z) is less than the multiplicity of the divisor z of f(z), we
have Ω1(z)+Ω2(z) ∈ Ψ

(1)
M1+M2

(z). Therefore, Ψ
(1)
M1

(z) + Ψ
(1)
M2

(z) ⊆ Ψ
(1)
M1+M2

(z).

We conclude Ψ
(1)
M1+M2

(z) = Ψ
(1)
M1

(z) + Ψ
(1)
M2

(z). ��
Let Ωj(z) =

∑∞
i=0 ωjiz

i, j = 1, . . . , n.
∑∞

i=0(ω1i . . . ωri)zi is called the
product of Ω1(z), . . . , Ωr(z), denoted by Ω1(z) . . . Ωr(z).

Theorem 7.4.2. Assume that M , M (1), . . ., M (h) ∈ � and M (1) . . . M (h) ≺
M . Let β(a) be the (ε(a)

1 , . . . , ε
(a)

r(a)) root coordinate of Ωa(z) in Ψ
(1)

M(a)(z),

a = 1, . . . , h. Then Ω1(z) . . . Ωh(z) is in Ψ
(1)
M (z) and the (ε1, . . . , εr) root

coordinate β of Ω1(z) . . . Ωh(z) is determined by
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βk =
h∏

a=1

s
(a)
k −

h∏
a=1

(s(a)
k − β

(a)
k ), k = 0, . . . , l0 − 1,

βijk = ψ(i, j, k, β(1), . . . , β(h)) =
∑

(i1,j1,...,ih,jh)∈Pij

ϕ(i1, j1, . . . , ih, jh, k),

i = 1, . . . , r, j = 1, . . . , ni, k = 1, . . . , li, (7.72)

where s
(a)
k is the coefficient of zk in Ωa(z), k = 0, 1, . . ., β

(a)
k = 0 in the case

of k � l
(a)
0 , a = 1, . . . , h,

Pij =
{
(i1, j1, . . . , ih, jh) |

h∏
a=1

(ε(a)
ia

)qja−1
= εqj−1

i , ia = 1, . . . , r(a),

ja = 1, . . . , n
(a)
ia

, a = 1, . . . , h
}
,

i = 1, . . . , r, j = 1, . . . , ni,

ϕ(i1, j1, . . . , ih, jh, k) (7.73)

=

l
(1)
i1∑

k1=1

· · ·
l
(h−1)
ih−1∑

kh−1=1

l
(h)
ih∑

kh=max(1,k−k1−···−kh−1+h−1)

d(k − 1, k1 − 1, . . . , kh − 1)
h∏

a=1

β
(a)
iajaka

,

ia = 1, . . . , r(a), ja = 1, . . . , n
(a)
ia

, a = 1, . . . , h, k = 1, 2, . . . ,

d(k − 1, k1 − 1, . . . , kh − 1) =
k−1∑
c=0

(−1)c
(
k−1

c

) h∏
a=1

(
ka−2−c

ka−1

)
,

k, k1, . . . , kh = 1, 2, . . .

Proof. Let Ω(z) = Ω1(z) . . . Ωh(z) =
∑∞

i=0 siz
i. For any a, 1 � a � h,

since the (ε(a)
1 , . . . , ε

(a)

r(a)) root coordinate of Ωa(z) is β(a), we have

s(a)
τ = β(a)

τ +
r(a)∑
ia=1

n
(a)
ia∑

ja=1

l
(a)
ia∑

ka=1

β
(a)
iajaka

(
τ+ka−1

ka−1

)
(ε(a)

ia
)τqja−1

, τ = 0, 1, . . . ,

where β
(a)
τ = 0 in the case of τ � l

(a)
0 . Noticing l

(a)
0 � l0 for a = 1, . . . , h, it

follows that

sτ =
h∏

a=1

s(a)
τ

= βτ +
r(1)∑
i1=1

· · ·
r(h)∑
ih=1

n
(1)
i1∑

j1=1

· · ·
n

(h)
ih∑

jh=1

l
(1)
i1∑

k1=1

· · ·
l
(h)
ih∑

kh=1

h∏
a=1

β
(a)
iajaka

h∏
a=1

(
τ+ka−1

ka−1

)
(

h∏
a=1

(ε(a)
ia

)qja−1
)τ,
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τ = 0, 1, . . . ,

where βτ = 0 in the case of τ � l0. Since G(M (a)) \ {0} = {(ε(a)
ia

)qja−1 | ia =
1, . . . , r(a), ja = 1, . . . , n

(a)
ia

} and M (1) . . . M (h) ≺ M , we have

Q(M (1), . . . , M (h)) \ {0}

=
{ h∏

a=1

(ε(a)
ia

)qja−1 | ia = 1, . . . , r(a), ja = 1, . . . , n
(a)
ia

, a = 1, . . . , h
}

⊆ {εqj−1

i | i = 1, . . . , r, j = 1, . . . , ni}.

Thus

sτ = βτ +
r∑

i=1

ni∑
j=1

∑
(i1,j1,...,ih,jh)∈Pij

l
(1)
i1∑

k1=1

· · ·
l
(h)
ih∑

kh=1

h∏
a=1

β
(a)
iajaka

h∏
a=1

(
τ+ka−1

ka−1

)
ετqj−1

i ,

τ = 0, 1, . . . (7.74)

From (7.12), i.e.,

h∏
a=1

(
τ+ka−1

ka−1

)
=

k1+···+kh−h+1∑
k=1

d(k − 1, k1 − 1, . . . , kh − 1)
(
τ+k−1

k−1

)
,

ka = 1, . . . , l
(a)
ia

, a = 1, . . . , h, (7.75)

we have

l
(1)
i1∑

k1=1

· · ·
l
(h)
ih∑

kh=1

h∏
a=1

β
(a)
iajaka

h∏
a=1

(
τ+ka−1

ka−1

)

=

l
(1)
i1∑

k1=1

· · ·
l
(h)
ih∑

kh=1

k1+···+kh−h+1∑
k=1

d(k − 1, k1 − 1, . . . , kh − 1)
h∏

a=1

β
(a)
iajaka

(
τ+k−1

k−1

)

=

l
(1)
i1

+···+l
(h)
ih

−h+1∑
k=1

[ l
(1)
i1∑

k1=1

· · ·
l
(h−1)
ih−1∑

kh−1=1

l
(h)
ih∑

kh=max(1,k−k1−···−kh−1+h−1)

(7.76)

d(k − 1, k1 − 1, . . . , kh − 1)
h∏

a=1

β
(a)
iajaka

](
τ+k−1

k−1

)
,

ia = 1, . . . , r(a), ja = 1, . . . , n
(a)
ia

, a = 1, . . . , h.

Clearly, in (7.73), ϕ(i1, j1, . . . , ih, jh, k) = 0 whenever k > l
(1)
i1

+···+l
(h)
ih

−h+1.

We prove ϕ(i1, j1, . . . , ih, jh, k) = 0 whenever k > p
v(l

(1)
i1

,...,l
(h)
ih

). From (7.73),
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it is sufficient to prove that d(k− 1, k1 − 1, . . . , kh − 1) = 0(mod p) whenever

k1 + · · · + kh − h + 1 � k > p
v(l

(1)
i1

,...,l
(h)
ih

), ka = 1, . . . , l
(a)
ia

, ia = 1, . . . , r(a),
a = 1, . . . , h. For any positive integer k, let Δk(z) =

∑∞
τ=0

(
τ+k−1

k−1

)
zτ over

GF (q). It is known that the period of Δk(z) is pv(k), where v(k) is defined
in (7.67). Let

Δ(z) =
h∏

a=1

Δka(z),

Δ′(z) =
k1+···+kh−h+1∑

k=1

d(k − 1, k1 − 1, . . . , kh − 1)Δk(z).

From (7.75), we have Δ(z) = Δ′(z). It follows that the period u of Δ(z)
and the period u′ of Δ′(z) are the same. Since ka � l

(a)
ia

, we have v(ka) �
v(l(a)

ia
). Thus pv(ka), the period of Δka(z), is a divisor of pv(l

(a)
ia

), a = 1, . . . , h.
Clearly, u is a divisor of the least common multiple of pv(k1), . . ., pv(kh).

From v(l(1)i1
, . . . , l

(h)
ih

) = max(v(l(1)i1
), . . . , v(l(h)

ih
)), u is a divisor of p

v(l
(1)
i1

,...,l
(h)
ih

).
Suppose to the contrary that there exists k, k1 + · · · + kh − h + 1 � k >

p
v(l

(1)
i1

,...,l
(h)
ih

) such that d(k − 1, k1 − 1, . . . , kh − 1) 
= 0 (mod p). Then the
period u′ of Δ′(z) is a multiple of pv(k) and v(k) � v(l(1)i1

, . . . , l
(h)
ih

) + 1. It

follows that u′ is a multiple of p
v(l

(1)
i1

,...,l
(h)
ih

)+1. Thus u < u′. This contradicts
u = u′. We conclude that d(k − 1, k1 − 1, . . . , kh − 1) = 0(mod p) whenever

k1 + · · · + kh − h + 1 � k > p
v(l

(1)
i1

,...,l
(h)
ih

). Since k > p
v(l

(1)
i1

,...,l
(h)
ih

) implies
ϕ(i1, j1, . . . , ih, jh, k) = 0, from (7.76), we have

l
(1)
i1∑

k1=1

· · ·
l
(h)
ih∑

kh=1

h∏
a=1

β
(a)
iajaka

h∏
a=1

(
τ+ka−1

ka−1

)

=

l(l
(1)
i1

,...,l
(h)
ih

)∑
k=1

ϕ(i1, j1, . . . , ih, jh, k)
(
τ+k−1

k−1

)
,

ia = 1, . . . , r(a), ja = 1, . . . , n
(a)
ia

, a = 1, . . . , h,

where l(l(1)i1
, . . . , l

(h)
ih

) is defined in (7.67). Replacing the leftside by the right-
side of the above equation in (7.74), we obtain

sτ = βτ +
r∑

i=1

ni∑
j=1

∑
(i1,j1,...,ih,jh)∈Pij

l(l
(1)
i1

,...,l
(h)
ih

)∑
k=1

ϕ(i1, j1, . . . , ih, jh, k)
(
τ+k−1

k−1

)
ετqj−1

i ,

τ = 0, 1, . . .
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From M (1) . . . M (h) ≺ M , we have l(l(1)i1
, . . . , l

(h)
ih

) � li whenever (i1, j1, . . . ,

ih, jh) ∈ Pij . Noticing ϕ(i1, j1, . . . , ih, jh, k) = 0 whenever k > l(l(1)i1
, . . . , l

(h)
ih

),
this yields

sτ = βτ +
r∑

i=1

ni∑
j=1

∑
(i1,j1,...,ih,jh)∈Pij

li∑
k=1

ϕ(i1, j1, . . . , ih, jh, k)
(
τ+k−1

k−1

)
ετqj−1

i

= βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

[ ∑
(i1,j1,...,ih,jh)∈Pij

ϕ(i1, j1, . . . , ih, jh, k)
] (

τ+k−1
k−1

)
ετqj−1

i ,

τ = 0, 1, . . .

We conclude that Ω(z) ∈ Ψ
(1)
M (z) and its (ε1, . . . , εr) root coordinate β is

determined by (7.72). ��

Since Ω = Ω1 . . . Ωh is a sequence over GF (q), in its (ε1, . . . , εr) root
coordinate β, components satisfy βijk = βqj−1

i1k . Therefore, it is not necessary
to compute βijk using (7.72) for j > 1.

It is easy to see that all characteristic polynomials of M (1), . . . , M (h)

have no nonzero repeated root if and only if the characteristic polynomial of
M (1) . . . M (h) has no nonzero repeated root. Assume that the characteristic
polynomial of M has no nonzero repeated root. Then we have

ϕ(i1, j1, . . . , ih, jh, k) =
h∏

a=1

β
(a)
iajaka

for k = 1, and ϕ(i1, j1, . . . , ih, jh, k) = 0 for k > 1. Thus the formula (7.72)
for computing βi1k may be simplified into the following

βij1 = ψ(i, j, 1, β(1), . . . , β(h)) =
∑

(i1,j1,...,ih,jh)∈Pij

h∏
a=1

β
(a)
iaja1,

βijk = 0, k = 2, . . . , li, (7.77)

i = 1, . . . , r, j = 1, . . . , ni.

For any autonomous finite automaton M = 〈Y, S, δ, λ〉, if Y and S are
the column vector spaces over GF (q) of dimensions m and n, respectively,
and δ(s) = As for some n × n matrix A over GF (q), M is called a linear
backward autonomous finite automaton over GF (q). A is referred to as the
state transition matrix of M , and |zE −A| is referred to as the characteristic
polynomial of M , where E stands for the n × n identity matrix.

Below we discuss the problem: given a linear backward autonomous finite
automaton M , find linear autonomous finite automaton M̄ with M ≺ M̄ .
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Let M be a linear backward autonomous finite automaton over GF (q)
with state transition matrix

A =

⎡
⎢⎣

Pf(1)(z)

. . .
Pf(v)(z)

⎤
⎥⎦ , (7.78)

where f (i) is a polynomial of degree n(i) with leading coefficient 1, i =
1, . . . , v. Let Mi be in � with characteristic polynomial f (i), i = 1, . . . , v.
Given c, 1 � c � m, assume that the c-th component function λc of the
output function λ of M is given by

λc(s11, . . . , s1n(1) , . . . , sv1, . . . , svn(v)) (7.79)

=
∑

hij=0,...,q−1
i=1,...,v

j=1,...,n(i)

ch11...h
1n(1) ...hv1...h

vn(v) s
h11
11 . . . s

h
1n(1)

1n(1) . . . shv1
v1 . . . s

h
vn(v)

vn(v) ,

where ch11...h
1n(1) ...hv1...h

vn(v) ∈ GF (q), hij = 0, . . . , q − 1, i = 1, . . . , v, j =
1, . . . , n(i). Let

Mλc
=

∑
hij=0,...,q−1

i=1,...,v, j=1,...,n(i)
ch11...h

1n(1) ...hv1...h
vn(v)

�=0

M
h11+···+h

1n(1)

1 . . . M
hv1+···+h

vn(v)
v , (7.80)

where M0
i = ME . Let Φ

(c)
M (z) = {Φ(c)

M (s, z) | s ∈ S}.

Theorem 7.4.3. Assume that M̄ ∈ � and Mλc
≺ M̄ . Then we have Φ

(c)
M (z)

⊆ Ψ
(1)

M̄
(z). Moreover, if the (ε(a)

1 , . . . , ε
(a)

r(a)) root coordinate of Ψ
(1)
Ma

(s(a), z) is

β(a), a = 1, . . . , v and the (ε̄1, . . . , ε̄r̄) root coordinate of Φ
(c)
M ([s(1), . . . , s(v)]T,

z) in Ψ
(1)

M̄
(z) is β̄, then

β̄ =
∑

hij=0,...,q−1
i=1,...,v

j=1,...,n(i)

ch11...h
1n(1) ...hv1...h

vn(v) β
[h11...h

1n(1) ...hv1...h
vn(v) ],

where

β
[h11...h

1n(1) ...hv1...h
vn(v) ]

k =
v∏

a=1

n(a)∏
b=1

(s(a)
b−1+k)hab−

v∏
a=1

n(a)∏
b=1

(s(a)
b−1+k − β

(a)
b−1+k)hab ,

k = 0, . . . , l̄0 − 1,
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β
[h11...h

1n(1) ...hv1...h
vn(v) ]

ijk = ψ(i, j, k, β[11], . . . , β[11]︸ ︷︷ ︸
h11

, . . . , β[1n(1)], . . . , β[1n(1)]︸ ︷︷ ︸
h
1n(1)

,

. . . , β[v1], . . . , β[v1]︸ ︷︷ ︸
hv1

, . . . , β[vn(v)], . . . , β[vn(v)]︸ ︷︷ ︸
h

vn(v)

),

i = 1, . . . , r̄, j = 1, . . . , n̄i, k = 1, . . . , l̄i, (7.81)

β
[ab]
k = β

(a)
b−1+k, k = 0, . . . , l

(a)
0 − b,

β
[ab]
k = 0, k = l

(a)
0 − b + 1, . . . , l

(a)
0 − 1,

β
[ab]
ijh =

l
(a)
i∏

k=h

β
(a)
ijk

(
k−h+b−2

k−h

)
(ε(a)

i )(b−1)qj−1
,

i = 1, . . . , r(a), j = 1, . . . , n
(a)
i , h = 1, . . . , l

(a)
i ,

a = 1, . . . , v, b = 1, . . . , n
(a)
i ,

Ψ
(1)
Ma

(s(a), z) =
∑∞

i=0 s
(a)
i zi, β

(a)
τ = 0 whenever τ � l

(a)
0 , a = 1, . . . , v, and ψ

is defined by (7.72) and (7.73).

Proof. Since Ma is a shift register, from (7.79) we have

Φ
(c)
M ([s(1), . . . , s(v)]T, z) (7.82)

=
∑

hij=0,...,q−1
i=1,...,v

j=1,...,n(i)

ch11...h
1n(1) ...hv1...h

vn(v)

v∏
a=1

n(a)∏
b=1

(Db−1(Ψ (1)
Ma

(s(a), z)))hab ,

where the 0-th power of any sequence is the 1 sequence. From Theorem 7.4.1
and Theorem 7.4.2, we have Φ

(c)
M (z) ⊆ Ψ

(1)
Mλc

(z). Since Mλc
≺ M̄ , Φ

(c)
M (z) ⊆

Ψ
(1)

M̄
(z) holds.
We give some explanation on root basis mentioned in the theorem. Let

GF (q∗) be a splitting field of f (1)(z), . . ., f (v)(z) and the characteristic poly-
nomial f̄(z) of M̄ . Then the factorizations

f̄(z) = z l̄0

r̄∏
i=1

n̄i∏
j=1

(z − ε̄qj−1

i )l̄i ,

f (a)(z) = zl
(a)
0

r(a)∏
i=1

n
(a)
i∏

j=1

(z − (ε(a)
i )qj−1

)l
(a)
i ,

a = 1, . . . , v

determine the (ε̄1, . . . , ε̄r̄) root basis of Ψ
(1)

M̄∗(z), the (ε(a)
1 , . . . , ε

(a)

r(a)) root basis

of Ψ
(1)
M∗

a
(z), a = 1, . . . , h, where M∗ is the natural extension of M over GF (q∗),
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and M∗
a is the natural extension of Ma over GF (q∗), a = 1, . . . , v. Since the

(ε(a)
1 , . . . , ε

(a)

r(a)) root coordinate of Ψ
(1)
Ma

(s(a), z) is β(a), from Theorem 7.3.1,

β[ab] is the (ε(a)
1 , . . . , ε

(a)

r(a)) root coordinate of Db−1(Ψ (1)
Ma

(s(a), z)), where com-
ponents of β[ab] are given in (7.81), a = 1, . . . , v, b = 1, . . . , n(a). Suppose that
ch11...h

1n(1) ...hv1...h
vn(v) 
= 0. Then M

h11+···+h
1n(1)

1 . . . M
hv1+···+h

vn(v)
v ≺ Mλc

≺
M̄ . From Theorem 7.4.2,

∏v
a=1

∏n(a)

b=1 (Db−1(Ψ (1)
Ma

(s(a), z)))hab is in Ψ
(1)

M̄
(z),

and its (ε̄1, . . . , ε̄r̄) root coordinate is β[h11...h
1n(1) ...hv1...h

vn(v) ], of which com-
ponents are given in (7.81). From (7.82), we have

Φ
(c)
M ([s(1), . . . , s(v)]T, z) ∈ Ψ

(1)

M̄
(z)

and its (ε̄1, . . . , ε̄r̄) root coordinate is given by (7.81). ��

Corollary 7.4.1. Let M be a linear backward shift register over GF (q), of
which the c-th component function of the output function is given by

λc(s1, . . . , sn) =
q−1∑

h1,...,hn=0

ch1...hnsh1
1 . . . shn

n . (7.83)

Assume that M1 ∈ � and characteristic polynomials of M and M1 are the
same. Assume that M̄ ∈ � and Mh1+···+hn

1 ≺ M̄ whenever ch1...hn

= 0,

h1, . . . , hn = 0, . . . , q − 1. Then we have Φ
(c)
M (z) ⊆ Ψ

(1)

M̄
(z). Moreover, if the

(ε1, . . . , εr) root coordinate of Ψ
(1)
M1

(s, z) is β, and the (ε̄1, . . . , ε̄r̄) root coor-

dinate of Φ
(c)
M (s, z) in Ψ

(1)

M̄
(z) is β̄, then

β̄ =
q−1∑

h1,...,hn=0

ch1...hn
β[h1...hn], (7.84)

where

β
[h1...hn]
k =

n∏
b=1

shb

b−1+k −
n∏

b=1

(sb−1+k − βb−1+k)hb , k = 0, . . . , l̄0 − 1,

β
[h1...hn]
ijk = ψ(i, j, k, β[1], . . . , β[1]︸ ︷︷ ︸

h1

, . . . , β[n], . . . , β[n]︸ ︷︷ ︸
hn

),

i = 1, . . . , r̄, j = 1, . . . , n̄i, k = 1, . . . , l̄i, (7.85)

β
[b]
k = βb−1+k, k = 0, . . . , l0 − b,

β
[b]
k = 0, k = l0 − b + 1, . . . , l0 − 1,

β
[b]
ijh =

li∏
k=h

βijk

(
k−h+b−2

k−h

)
ε
(b−1)qj−1

i ,

i = 1, . . . , r, j = 1, . . . , ni, h = 1, . . . , li, b = 1, . . . , n,
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Ψ
(1)
M1

(s, z) =
∑∞

i=0 siz
i, βτ = 0 whenever τ � l0, and ψ is defined by (7.72)

and (7.73).

For a linear backward autonomous finite automaton M ′ = 〈Y, S, δ′, λ′〉
over GF (q) of which the state transition matrix A′ is not in the form of (7.78),
we can transform it to the form of (7.78) by similarity transformation, that
is, we can find a nonsingular matrix P over GF (q) such that A = P−1A′P
can be expressed in the form of (7.78). Let M = 〈Y, S, δ, λ〉, where δ(s) = As,
λ(s) = λ′(Ps). Then M is a linear backward autonomous finite automaton
over GF (q). It is easy to verify that M and M ′ are isomorphic and the state
s′ of M ′ and the state P−1s′ of M are equivalent.

Notice that if the (ε1, . . . , εr) root coordinate of a periodic Ω in ΦM is β,
then the linear complexity of Ω equals to

∑r
i=1 nili1, where li1 = min h[h � 0,

βi1k = 0 if h < k � li], i = 1, . . . , r, the linear complexity of Ω means the
minimal state space dimension of linear shift registers over GF (q) which
generate Ω.

We finish this section by the following theorem.

Theorem 7.4.4. For any autonomous finite automaton M = 〈Y, S, δ, λ〉, if
Y is a column vector space over GF (q), then there exists a linear autonomous
finite automaton M̄ = 〈Y, S̄, δ̄, λ̄〉 over GF (q) such that the dimension of S̄ �
|S| and M is isomorphic to a finite subautomaton of M̄ .

Proof. Let S = {s1, . . . , sn} and

δ(si) = sji ,

λ(si) =

⎡
⎢⎣ y1i

...
ymi

⎤
⎥⎦ , (7.86)

i = 1, . . . , n,

where yji ∈ GF (q), i = 1, . . . , n, j = 1, . . . , m. Let S̄ be the column vector
space over GF (q) of dimension n. Let γ̄i be the column vector of dimension
n of which the i-th component is 1 and 0 elsewhere, i = 1, . . . , n. Define

δ̄(s̄) = Ās̄, λ̄(s̄) = C̄s̄, s̄ ∈ S̄, (7.87)

where

Ā = [γ̄j1 , . . . , γ̄jn
],

C̄ =

⎡
⎢⎢⎢⎣

y11 y12 . . . y1n

y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn

⎤
⎥⎥⎥⎦ . (7.88)
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Take

S̃ = {γ̄1, . . . , γ̄n}.

From (7.87) and (7.88), δ̄(γ̄i) = γ̄ji
, i = 1, . . . , n. Therefore, S̃ is closed in

M̄ . It follows that M̃ = 〈Y, S̃, δ̃, λ̃〉 is a finite subautomaton of M̄ , where
δ̃(s̄) = δ̄(s̄), λ̃(s̄) = λ̄(s̄), for s̄ ∈ S̃. Let

ϕ(si) = γ̄i, i = 1, . . . , n.

Clearly, ϕ is a bijection from S to S̃. From δ̄(ϕ(si)) = δ̄(γ̄i) = γ̄ji
= ϕ(sji

) =
ϕ(δ(si)), we have

δ̄(ϕ(s)) = ϕ(δ(s)), s ∈ S.

Since λ̄(ϕ(si)) = λ̄(γ̄i) = [y1i, . . . , ymi]T = λ(si), we have

λ̄(ϕ(s)) = λ(s), s ∈ S.

Thus ϕ is an isomorphism from M to M̃ . We conclude that M and M̃ are
isomorphic. ��

7.5 Decimation

For any sequence ω = [w0, w1, . . . , wτ , . . .] and any positive integer u, the
sequence [w0, wu, . . . , wuτ , . . .] is called the u-decimation of ω.

Let M be a linear shift register over GF (q) with structure parameters m,
n and structure matrices A, C. Let f(z) be the characteristic polynomial of
M .

Assume that GF (q∗) is a splitting field of f(z). Let M∗ be the natural
extension of M over GF (q∗). Take an (ε1, . . . , εr) root basis of Ψ

(1)
M∗(z), where

f(z) = zl0

r∏
i=1

ni∏
j=1

(z − εqj−1

i )li .

Given a positive integer u, let R be a relation on {1, . . . , r}, where iRj

if and only if εu
i and εu

j are conjugate on GF (q), i.e., εu
i = (εu

j )qk

for some
nonnegative integer k . Clearly, the relation R is reflexive, symmetric and
transitive. Let

P1, P2, . . . , Pr̄ (7.89)

be the equivalence classes of R. For each h, 1 � h � r̄, fix an integer mh in
Ph. Let
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ε̄h = εu
mh

. (7.90)

From the definition of Ph, for any i in Ph, εu
i and εu

mh
are conjugate on

GF (q); therefore, there exists k � 0 such that εu
i = εuqk

mh
, i.e., εu

i = ε̄qk

h . Let

vi = min k(k � 0 & εu
i = ε̄qk

h ), (7.91)

i ∈ Ph, h = 1, . . . , r̄.

We use n̄h to denote the degree of the minimal polynomial over GF (q) of ε̄h.
Then ε̄qn̄h

h = ε̄h. Thus

vi < n̄h, i ∈ Ph, h = 1, . . . , r̄. (7.92)

Let i ∈ Ph. Then the minimal polynomials over GF (q) of εu
i and ε̄h are the

same. Thus n̄h = min k(k > 0 & εuqk

i = εu
i ). Since εuqni

i = (εqni

i )u = εu
i , we

have n̄h|ni. Let

qi = ni/n̄h, i ∈ Ph, h = 1, . . . , r̄. (7.93)

Then qi is a positive integer. Let u = pwu′, where u′ and p are coprime. Take1

l̄0 = min k ( ku � l0 ),

l̄h = max k ( k − 1 = �(li − 1)/pw�, i ∈ Ph ), (7.94)

h = 1, . . . , r̄.

Let

f̄(z) = z l̄0

r̄∏
h=1

n̄h∏
j=1

(z − ε̄qj−1

h )l̄h . (7.95)

It is easy to show that f̄(z) is a polynomial over GF (q) with leading coefficient
1. Let M̄ be a linear autonomous shift register over GF (q) with characteristic
polynomial f̄(z). Let M̄∗ be the natural extension of M̄ over GF (q∗). Then
ε̄1, . . . , ε̄r̄ determine an (ε̄1, . . . , ε̄r̄) root basis of Ψ

(1)

M̄∗ .

Assume that Ω = [s0, s1, . . . , sτ , . . .] is in Ψ
(1)
M and its (ε1, . . . , εr) root

coordinate is β. Then

sτ = βτ +
r∑

i=1

ni∑
j=1

li∑
k=1

βijk

(
τ+k−1

k−1

)
ετqj−1

i ,

τ = 0, 1, . . . ,

1 �x� stands for the maximal integer � x.
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where βτ = 0 whenever τ � l0. Let Ω̄ = [s̄0, s̄1, . . . , s̄τ , . . .] be the u-
decimation of Ω. Then

s̄τ = suτ = βuτ +
r∑

i=1

ni∑
j=1

li∑
k=1

βijk

(
uτ+k−1

k−1

)
εuτqj−1

i

= βuτ +
r̄∑

h=1

∑
i∈Ph

ni∑
j=1

li∑
k=1

βijk

(
uτ+k−1

k−1

)
ε̄τqvi+j−1

h

= βuτ +
r̄∑

h=1

∑
i∈Ph

n̄h∑
j=1

qi−1∑
c=0

li∑
k=1

βi,cn̄h+j,k

(
uτ+k−1

k−1

)
ε̄τqvi+cn̄h+j−1

h

= βuτ +
r̄∑

h=1

∑
i∈Ph

n̄h∑
j=1

qi−1∑
c=0

li∑
k=1

βi,cn̄h+j,k

(
uτ+k−1

k−1

)
ε̄τqvi+j−1

h (7.96)

= βuτ +
r̄∑

h=1

∑
i∈Ph

vi+n̄h∑
j=vi+1

qi−1∑
c=0

li∑
k=1

βi,cn̄h+j−vi,k

(
uτ+k−1

k−1

)
ε̄τqj−1

h

= βuτ +
r̄∑

h=1

∑
i∈Ph

n̄h∑
j=1

qi−1∑
c=0

li∑
k=1

βi,cn̄h+(j−vi)( mod n̄h),k

(
uτ+k−1

k−1

)
ε̄τqj−1

h

= β′
τ +

r̄∑
h=1

n̄h∑
j=1

l̃h∑
k=1

β′
hjk

(
uτ+k−1

k−1

)
ε̄τqj−1

h ,

τ = 0, 1, . . . ,

where a(mod n̄h) = min b(b > 0 & a = b (mod n̄h)), l̃h = max{li, i ∈ Ph},
h = 1, . . . , r̄,

β′
τ = 0, if τ � l̄0,

β′
τ = βuτ , τ = 0, . . . , l̄0 − 1, (7.97)

β′
hjk =

∑
i∈Ph

qi−1∑
c=0

βi,cn̄h+(j−vi)( mod n̄h),k ,

h = 1, . . . , r̄, j = 1, . . . , n̄h, k = 1, . . . , l̃h,

and βijk = 0 for i ∈ Ph, h = 1, . . . , r̄, j = 1, . . . , ni, k = li + 1, . . . , l̃h. We use
θ(c) to denote �c/pw�. From Theorem 7.1.3, it is easy to show that(

uτ+k−1
k−1

)
=
(
pw(u′τ+θ(k−1))+ν

pwθ(k−1)+ν

)
=
(
u′τ+θ(k−1)

θ(k−1)

)(
ν
ν

)
(mod p)

=
(
u′τ+θ(k−1)

θ(k−1)

)
(mod p),

where 0 � ν < pw and ν = k − 1(mod pw). From (7.11), for any k, we have



268 7. Linear Autonomous Finite Automata

(
u′τ+k−1

k−1

)
=

k∑
a=1

c(u′, k − 1, a − 1)
(
τ+a−1

a−1

)
,

c(u′, k − 1, a − 1) =
a−1∑
i=1

(−1)i
(
a−1

i

)(−u′(i+1)+k−1
k−1

)
,

a = 1, . . . , k.

Thus

(
u′τ+θ(k−1)

θ(k−1)

)
=

θ(k−1)+1∑
a=1

c(u′, θ(k − 1), a − 1)
(
τ+a−1

a−1

)
.

It follows that

(
uτ+k−1

k−1

)
=

θ(k−1)+1∑
a=1

c(u′, θ(k − 1), a − 1)
(
τ+a−1

a−1

)
(mod p).

Replacing the leftside by the rightside of the above equation in (7.96), letting
c(u′, k′, a) = 0 for a > k′, we have

s̄τ = β′
τ +

r̄∑
h=1

n̄h∑
j=1

l̃h∑
k=1

β′
hjk

θ(k−1)+1∑
a=1

c(u′, θ(k − 1), a − 1)
(
τ+a−1

a−1

)
ε̄τqj−1

h

= β′
τ +

r̄∑
h=1

n̄h∑
j=1

l̃h∑
k=1

β′
hjk

k∑
a=1

c(u′, θ(k − 1), a − 1)
(
τ+a−1

a−1

)
ε̄τqj−1

h

= β′
τ +

r̄∑
h=1

n̄h∑
j=1

l̃h∑
a=1

( l̃h∑
k=a

c(u′, θ(k − 1), a − 1)β′
hjk

)(
τ+a−1

a−1

)
ε̄τqj−1

h (7.98)

= β′
τ +

r̄∑
h=1

n̄h∑
j=1

θ(l̃h−1)+1∑
a=1

( l̃h∑
k=a

c(u′, θ(k − 1), a − 1)β′
hjk

)(
τ+a−1

a−1

)
ε̄τqj−1

h ,

τ = 0, 1, . . .

Since l̃h = max{li, i ∈ Ph}, from (7.94), we have l̄h = θ(l̃h − 1) + 1, h =
1, . . . , r̄. Let

β̄τ = β′
τ , τ = 0, . . . , l̄0 − 1,

β̄hja =
l̃h∑

k=a

c(u′, θ(k − 1), a − 1)β′
hjk, (7.99)

h = 1, . . . , r̄, j = 1, . . . , n̄h, a = 1, . . . , l̄h.

Then (7.98) can be written as
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s̄τ = β̄τ +
r̄∑

h=1

n̄h∑
j=1

l̄h∑
a=1

β̄hja

(
τ+a−1

a−1

)
ε̄τqj−1

h ,

τ = 0, 1, . . . ,

where β̄τ = 0 whenever τ � l̄0. Therefore, Ω̄ is a sequence in Ψ
(1)

M̄
of which

the (ε̄1, . . . , ε̄r̄) root coordinate is β̄.
(7.97) and (7.99) can be written in matrix form. We use Ei to denote the

i × i identity matrix, 0ij to denote the i × j zero matrix; and the leftmost
j columns and the rightmost i − j columns of Ei are denoted by Ei(j) and
Ei(−j), respectively. Let

I0(i) = [En̄h
(−vi), En̄h

, . . . , En̄h︸ ︷︷ ︸
ni/n̄h−1

, En̄h
(vi)], i ∈ Ph, h = 1, . . . , r̄,

I0 =

⎡
⎢⎢⎢⎣

I0(0)
DIAI0(1),l1

. . .
DIAI0(r),lr

⎤
⎥⎥⎥⎦ ,

Ihkic =

{
En̄h

, if i ∈ Ph, k = c,

0n̄hn̄h′ , if i ∈ Ph′ , h 
= h′or k 
= c,

h = 1, . . . , r̄, k = 1, . . . , l̃h, i = 1, . . . , r, c = 1, . . . , li, (7.100)

Ihk = [Ihk11 . . . Ihk1l1 . . . Ihkr1 . . . Ihkrlr ], h = 1, . . . , r̄, k = 1, . . . , l̃h,

I ′1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11

...
I1l̃1
...
Ir̄1

...
Ir̄l̃r̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, I1 =
[

El̄0
I ′1

]
,

I2(h) =

⎡
⎢⎢⎢⎣

c(0, 0) c(1, 0) . . . c(l̄h − 1, 0) . . . c(l̃h − 1, 0)
0 c(1, 1) . . . c(l̄h − 1, 1) . . . c(l̃h − 1, 1)
...

...
. . .

...
. . .

...
0 0 . . . c(l̄h − 1, l̄h − 1) . . . c(l̃h − 1, l̄h − 1)

⎤
⎥⎥⎥⎦ ,

h = 1, . . . , r̄,



270 7. Linear Autonomous Finite Automata

I2 =

⎡
⎢⎢⎢⎢⎢⎣

El̄0
I2(1)

I2(2)
. . .

I2(r̄)

⎤
⎥⎥⎥⎥⎥⎦ ,

where the definition of the symbol DIA is in Sect. 4.1 of Chap. 4, I0(0) is
an l̄0 × l0 matrix of which the element at row i and column u(i − 1) + 1 is
1 and 0 elsewhere, and c(i, j) stands for c(u′, θ(i), j)En̄h

. It is easy to verify
that (7.97) can be written as β′ = I1I0β and that (7.99) can be written as
β̄ = I2β

′. Therefore, β̄ = I2I1I0β. We complete the proof of the following
theorem.

Theorem 7.5.1. Let Ω be a sequence in Ψ
(1)
M , and β the (ε1, . . . , εr) root

coordinate of Ω. If Ω̄ is the u-decimation of Ω, then Ω̄ is in Ψ
(1)

M̄
and its

(ε̄1, . . . , ε̄r̄) root coordinate β̄ is determined by

β̄ = I2I1I0β.

Corollary 7.5.1. Let

J = D(ε̄1, . . . , ε̄r̄, M̄)I2I1I0D(ε1, . . . , εr,M)−1,

where D(·) is defined by (7.35). Then Ψ
(1)

M̄
(s̄) is the u-decimation of Ψ

(1)
M (s)

if and only if s̄ = Js; therefore, J is a matrix over GF (q).

By the way, if the characteristic polynomial f(z) of M has no nonzero
repeated root, then l̃h = l̄h = 1, h = 1, . . . , r̄. Thus I2(h) in (7.100) equals
En̄h

; therefore I2 is the identity matrix.

Theorem 7.5.2. Each sequence in Ψ
(1)

M̄
is u-decimations of qn−n̄ sequences

in Ψ
(1)
M , and u-decimations of Ψ

(1)
M (s1) and Ψ

(1)
M (s2) are the same if and only

if Js1 = Js2, where n̄ = l̄0 +
∑r̄

h=1 n̄h l̄h.

Proof. It is easy to see that the rank of I0 is n′ = l̄0 +
∑r̄

h=1

∑
i∈Ph

n̄hli

and the rank of I1 is ñ = l̄0 +
∑r̄

h=1 n̄h l̃h. Since u′ and p are coprime, we have
c(u′, a, a) = (u′)a 
= 0 (mod p). Using this fact, noticing c(u′, k′, a) = 0 for
k′ < a, we can prove that the rank of I2(h) is n̄h l̄h; therefore, the rank of I2 is
n̄. Clearly, D(ε̄1, . . . , ε̄r̄, M̄) and D(ε1, . . . , εr,M) are nonsingular matrices.
Using Sylvester inequality, that is, “the rank of G + the rank of H − the
number of rows of H � the rank of GH � the rank of G, the rank of H”, it is
easy to see that the rank of J is n̄. Since n̄ is the number of rows of J , for any
state s̄ of M̄ , the equation s̄ = Js has qn−n̄ solutions. From Corollary 7.5.1,
Ψ

(1)

M̄
(s̄) is u-decimations of qn−n̄ sequences in Ψ

(1)
M , i.e., Ψ

(1)
M (s), s ∈ S, s̄ = Js.

From Corollary 7.5.1, u-decimations of Ψ
(1)
M (s1) and Ψ

(1)
M (s2) are the same

if and only if Js1 = Js2. ��
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Corollary 7.5.2. If n̄ = n, then each sequence in Ψ
(1)

M̄
is the u-decimation

of one sequence in Ψ
(1)
M ; therefore, the u-decimation of any nonzero sequence

in Ψ
(1)

M̄
is nonzero.

It is easy to prove that in the case of u > 1, n̄ = n holds if and only if the
following conditions hold: εu

1 , . . . , εu
r are not conjugate on GF (q) with each

other, degrees of minimal polynomials of εi and εu
i are the same, i = 1, . . . , r,

0 is not a repeated root of f(z), f(z) has no nonzero repeated root or u and
p are coprime. In particular, whenever u > 1 and f(z) is irreducible other
than z, n̄ = n holds if and only if degrees of minimal polynomials of ε1 and
εu
1 are the same.

Historical Notes

Each component sequence of an output sequence of a linear autonomous
finite automaton over a finite field is equivalent to a linear shift register
sequence over a finite field. A great deal of work has been done on linear shift
register sequences (equivalently, linear autonomous finite automata with 1-
dimensional output), see [51] and its references for example. In particular, a
root representation for linear shift register sequences is found in [54], pp. 20–
22. References [97, 98] devote mainly to general (viz. the output dimension
� 1) linear autonomous finite automata over finite fields. The material of this
chapter is taken out from Appendix III and Chap. 3 of [98], but Theorem 7.3.2
is narrowed and its proof is slightly simplified.
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Summary.
In the first seven chapters, theory of finite automata is developed. From

now on, some applications to cryptography are presented. This chapter
proposes a canonical form for one key cryptosystems in the sense: for any
one key cryptosystem without data expansion and with bounded error
propagation implementable by a finite automaton, we always find a one
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In the first seven chapters, theory of finite automata is developed. From now
on, some applications to cryptography are presented. This chapter proposes
a canonical form for one key cryptosystems in the sense: for any one key
cryptosystem without data expansion and with bounded error propagation
implementable by a finite automaton, we always find a one key cryptosystem
in canonical form such that they are equivalent in behavior. This assertion is
affirmative by results concerned on feedforward invertibility in Sects. 1.5 and
5.2. Under the framework of the canonical form, the next is to study its three
components: an autonomous finite automaton, a family of permutations, and
a nonlinear transformation. Theory of autonomous finite automata has been
discussed in the preceding chapter. As to permutational family, theory of
Latin arrays, a topic on combinatory theory, is presented in this chapter
also.
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8.1 Canonical Form for Finite Automaton One Key

Cryptosystems

From a mathematical viewpoint, a cryptographic system, or cryptosystem for
short, is a family of transformations {fk, k ∈ K} depended on a parameter k

called the key, where K is called the key space, fk is called the cryptographic
transformation which is an injective mapping from a set P (the plaintext
space) to a set C (the ciphertext space). For sending a message α which is re-
ferred to as plaintext through an insecure channel, where it may be tapped by
an adversary, using this cryptosystem, the sender first encrypts α by applying
fk to it and then sends the result fk(α) which is referred to as ciphertext
over the channel. The receiver decrypts the ciphertext fk(α) by applying f−1

k

to it and retrieves the plaintext α, where f−1
k is an inverse transformation of

fk. The receiver and the sender share the key k; this cryptosystem is referred
to as a one key cryptosysyem.

An example of cryptosystems is the stream cipher of which the key string
is a pseudorandom sequence generated by a binary shift register of order n.
The key space is the vector space of dimension n over GF (2), the plaintext
space and the ciphertext space consist of all words over GF (2), and the cryp-
tographic transformation fk is defined by fk(x0x1 . . . xl−1) = y0y1 . . . yl−1,
where yi = si ⊕ xi, i = 0, 1, . . . , l − 1, and the key string s0s1 . . . sl−1 is the
first l digits of the output of the shift register for the initial state k. It is
well known that shift register sequences have received extensive attentions in
cryptology community since the 1950s. Although shift registers are impor-
tant sequence generators in stream ciphers, they are merely a special kind of
autonomous finite automata. Finite automata have been regarded as a nat-
ural mathematical model of cryptosystems from an implementing viewpoint,
where the plaintext space and the ciphertext space consist of all words over
some finite sets, and the cryptographic transformation fk(α) equals λ(k, α),
λ being the output function of some weakly invertible finite automaton, and
the key space is a set of weakly invertible finite automata and their initial
states.

Assume that a finite automaton M = 〈X, Y, S, δ, λ〉 is chosen as an en-
coder to implement encryption. Then M must satisfy some conditions on
invertibility. In the case where M is invertible with delay τ , we may choose
its inverse finite automaton with delay τ , say a τ -order input-memory finite
automaton M ′ = 〈Y, X, S′, δ′, λ′〉, as the corresponding decoder to imple-
ment decryption. To encrypt a plaintext x0 . . . xl−1 in X∗, we first expand
randomly τ letters xl, . . . , xl+τ−1 in X to its end and choose randomly a state
s of M , then compute



8.1 Canonical Form for Finite Automaton One Key Cryptosystems 275

y0 . . . yl+τ−1 = λ(s, x0 . . . xl+τ−1).

y0 . . . yl+τ−1 is a ciphertext of x0 . . . xl−1. For decryption, we compute

x′
0 . . . x′

l+τ−1 = λ′(s′, y0 . . . yl+τ−1)

for any state s′ of M ′, then the plaintext x0 . . . xl−1 equals x′
τ . . . x′

l+τ−1. In
this case, the key is the structure of M . In general, the variable structure
of the encoder leads its implementation to inconvenient. In the case where
M is weakly invertible with delay τ , we may choose its weak inverse finite
automaton with delay τ , say M ′ = 〈Y, X, S′, δ′, λ′〉, as the corresponding
decoder. To encrypt a plaintext x0 . . . xl−1 in X∗, we first expand randomly
τ letters xl, . . . , xl+τ−1 in X to its end, then compute

y0 . . . yl+τ−1 = λ(s, x0 . . . xl+τ−1).

y0 . . . yl+τ−1 is a ciphertext of x0 . . . xl−1. For decryption, we compute

x′
0 . . . x′

l+τ−1 = λ′(s′, y0 . . . yl+τ−1),

where the state s′ of M ′ τ -matches s with delay τ . Then the plaintext
x0 . . . xl−1 equals x′

τ . . . x′
l+τ−1. In this case, the key is the state s of M

if the structure of M is fixed.
In invertible case, since M ′ is an input-memory finite automaton, an er-

ror letter in cipher causes at most τ + 1 error letters in decryption. But in
weakly invertible case, sometimes an error letter in cipher can cause infinite
error letters in decryption as pointed out in p.35. From Theorem 1.5.2, to
guarantee bounded propagation of decoding errors, encoders must be feedfor-
ward invertible and their feedforward inverses are taken as the corresponding
decoders.

From Theorem 1.4.5, if M = 〈X, Y, S, δ, λ〉 is taken as an encoder, then
|Y | � |X|. To represent all ciphertexts for all plaintexts of length l (l log2 |X|
bits), we need (l+τ) log2 |Y | bits. Thus l log2 |X| � (l+τ) log2 |Y |. Therefore,
there is no plaintext expansion if and only if l log2 |X| = (l + τ) log2 |Y |, if
and only if |Y | = |X| and the delay step τ = 0.

For one key cryptosystems implemented by finite automata without plain-
text expansion and with bounded propagation of decoding errors, decoders
may be chosen from weakly inverse semi-input-memory finite automata with
delay 0 in which the input alphabet and the output alphabet of a finite au-
tomaton have the same size. Theorem 5.2.2 characterizes the structure of
feedforward inverses with delay 0; using this result, we give a canonical form
of such cryptosystems as follows.

The decoder M ′ = 〈Y, X, S′, δ′, λ′〉 is a c-order semi-input-memory finite
automaton SIM(Ma, f), where X = Y , Ma = 〈Ya, Sa, δa, λa〉 is an au-
tonomous finite automaton, f is a single-valued mapping from Y c+1×λa(Sa)
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to X with |f(Y, yc−1, . . . , y0, λa(sa))| = |X| for any sa ∈ Sa and any
y0, . . . , yc−1 ∈ Y . For any ya ∈ λa(Sa) and any y0, . . . , yc−1 ∈ Y , let
fyc−1,...,y0,ya be a single-valued mapping from Y to X defined by

fyc−1,...,y0,ya
(yc) = f(yc, . . . , y0, ya), yc ∈ Y.

Clearly, fyc−1,...,y0,ya
is a permutation on Y (or X). Then there exists a single-

valued mapping h from Y c × λa(Sa) to W such that

f(yc, yc−1, . . . , y0, ya) = g−1
h(yc−1,...,y0,ya)(yc),

ya ∈ λa(Sa), y0, . . . , yc ∈ Y

for some finite set W , where g−1
w is a bijection from Y to X, for any w in

W . Fig.8.1.1 (b) gives a pictorial form of the decoder M ′. For any initial
state s′0 = 〈y−1, . . . , y−c, sa0〉 and any input sequence (ciphertext) y0 . . . yl−1

of M ′, the output sequence (plaintext) x0 . . . xl−1 of M ′ can be computed by

sa,i+1 = δa(sai),

ti = λa(sai),

wi = h(yi−1, . . . , yi−c, ti),

xi = g−1
wi

(yi),

i = 0, 1, . . . , l − 1.

Among others, a corresponding encoder may be chosen as a finite au-
tomaton M = 〈X, Y , Y c × Sa, δ, λ〉, of which a pictorial form is given by
Fig.8.1.1 (a), where

δ(〈y−1, . . . , y−c, sa〉, x0) = 〈y0, y−1, . . . , y−c+1, δa(sa)〉,
λ(〈y−1, . . . , y−c, sa〉, x0) = y0,

w0 = h(y−1, . . . , y−c, λa(sa)),

y0 = gw0(x0),

〈y−1, . . . , y−c, sa〉 ∈ Y c × Sa, x0 ∈ X.

That is to say, for any initial state s0 = 〈y−1, . . . , y−c, sa0〉 and any in-
put sequence (plaintext) x0 . . . xl−1 of M , the output sequence (ciphertext)
y0 . . . yl−1 of M can be computed by

sa,i+1 = δa(sai),

ti = λa(sai),

wi = h(yi−1, . . . , yi−c, ti),

yi = gwi
(xi),

i = 0, 1, . . . , l − 1.
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Ma

�

h(yi−1, . . . , yi−c, ti) � g−1
wi

(yi) �
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(b) Decoder M ′

Ma

�

h(yi−1, . . . , yi−c, ti) � gwi(xi) �

�

� · · ·

�

�

�

� �yi−c yi−2 yi−1 yi

xiwi

ti

(a) Encoder M

Figure 8.1.1

Other decoders are possible; results in Sect. 6.6 of Chap. 6 show that, from
a behavior viewpoint, they are slightly different from the above decoder.

On the other hand, other encoders are possible. We may even take nonde-
terministic encoders from results in Sect. 6.5 of Chap. 6. But they are more
complex than the above encoder from a structural viewpoint.

As a special case (c = 0), for one key cryptosystems implemented by
finite automata without expansion of the plaintext and without propagation
of decoding errors, the canonical form is as follows.

The decoder M ′ = 〈Y, X, Sa, δ′, λ′〉 is a 0-order semi-input-memory finite
automaton SIM(Ma, g′), where X = Y ,

δ′(sa, y) = δa(sa),

λ′(sa, y) = g−1
w (y),

w = λa(sa),



278 8. One Key Cryptosystems and Latin Arrays

sa ∈ Sa, y ∈ Y,

Ma = 〈W,Sa, δa, λa〉 is an autonomous finite automaton, g−1
w is a bijection

from Y to X for any w in W , and g−1
w (y) = g′(y, w). For any initial state sa0

and any input sequence (ciphertext) y0 . . . yl−1 of M ′, the output sequence
(plaintext) x0 . . . xl−1 of M ′ can be computed by

sa,i+1 = δa(sai),

wi = λa(sai),

xi = g−1
wi

(yi),

i = 0, 1, . . . , l − 1.

A corresponding encoder may be chosen as a finite automaton M = 〈X,
Y , Sa, δ, λ〉, where X = Y ,

δ(sa, x) = δa(sa),

λ(sa, x) = gw(x),

w = λa(sa),

sa ∈ Sa, x ∈ X.

That is to say, M = 〈X, Y, Sa, δ, λ〉 is also a 0-order semi-input-memory
finite automaton SIM(Ma, g), where g(x,w) = gw(x). For any initial state
sa0 and any input sequence (plaintext) x0 . . . xl−1 of M , the output sequence
(ciphertext) y0 . . . yl−1 of M can be computed by

sa,i+1 = δa(sai),

wi = λa(sai),

yi = gwi(xi),

i = 0, 1, . . . , l − 1.

Fig. 8.1.2 gives a pictorial form of the canonical form.

Ma

�

gwi(xi)� �xi yi

wi

(a) Encoder M

Ma

�

g−1
wi

(yi)� �yi xi

wi

(b) Decoder M ′

Figure 8.1.2
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Block ciphers and stream ciphers (in the narrow sense) are special cases
of the above canonical form. For block ciphers, δa is the identity function.
For binary stream ciphers, gw(v) = g−1

w (v) = w ⊕ v.

Example 8.1.1. To give a cipher pictorialized by Fig. 8.1.1, let X and Y be
the set of all 8 bits 0,1 strings. Take c = 6. Ma consists of a binary shift
register with characteristic polynomial x128 ⊕ x8 ⊕ x and an autonomous
finite automaton MI of which the next state function is the identity function.
ti is 〈si, ϕ〉, where si is the state of the shift register and ϕ is the output
of MI which represents an involution (i.e., ϕ−1 = ϕ) of 8 bits 0,1 strings.
wi is 〈wi1, wi2, ϕ〉, where wi1 and wi2 are 8 bits 0,1 strings. g〈w1,w2,ϕ〉(x) is
ϕ(w1 − (w2 ⊕ (w1 − ϕ(x)))), where − stands for subtraction modulo 256;
therefore, g−1

〈w1,w2,ϕ〉(y) = g〈w1,w2,ϕ〉(y). The key consists of the initial state
of Ma.

If the characteristic polynomial of the binary shift register is variable
which may be taken as the product of x and any primitive polynomial of
degree 127 over GF (2), then the key consists of the initial state of Ma and
the characteristic polynomial, in other words, the key consists of Ma and its
initial state. Formally, the structure of Ma is variable; but after redefining
the autonomous finite automaton Ma by expanding its state to include the
coefficient of the characteristic polynomial, the key still consists of the initial
state of Ma.

8.2 Latin Arrays

8.2.1 Definitions

The problem of designing one key cryptosystems implemented by finite au-
tomata without plaintext expansion and with bounded propagation of decod-
ing errors may be reduced to choosing suitable parameters such as the size
of alphabets and the length c of the ciphertext history and designing three
components in the above canonical form (Fig.8.1.1) – an autonomous finite
automaton Ma, a transformation h and a permutational family {gw, w in W}
– so that the systems are both efficient and secure.

Assume that the distribution of elements in the derived key sequence w0

w1 . . . in the above canonical form is uniform. Let {gw, w in W} be a family
of permutations on X. For resisting the known plaintext attack, under the
above assumption, the requirement in Property 1 is very natural.

Property 1. For any x, y in X, |{w|w in W, gw(x) = y}| = constant.

From the viewpoint of uniformity for permutations, the following property
is also desired.
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Property 2. For any w′ in W , |{w|w in W, gw = gw′}| = constant.

Specify an order for elements of X, say x1, . . ., xn, and an order for el-
ements of W , say w1, . . ., wm. Let A be an n × m matrix, of which the
element at row i and column j is gwj

(xi). Then each column of A is a per-
mutation of elements in X. Clearly, fixing orders of elements for X and W ,
the family of permutations {gw, w in W} is one-to-one correspondent with
A. Corresponding to Property 1, we introduce the following concept.

Let A be an n × nk matrix over N = {1, . . . , n}. If each element of N

occurs exactly once in each column of A and k times in each row of A, A is
called an (n, k)-Latin array.

Corresponding to Properties 1 and 2, we introduce the following concept.
Let A be an (n, k)-Latin array. If each column of A occurs exactly r times

in columns of A, A is called an (n, k, r)-Latin array.
Notice that (n, 1)-Latin arrays are n-order Latin squares in literature.
Let A and B be n×m matrices over N . If B can be obtained from A by

rearranging rows, rearranging columns and renaming elements, we say that
A and B are isotopic; and the transformation 〈α, β, γ〉 is called an isotopism
from A to B, where α, β and γ are the row arranging, the renaming and the
column arranging, respectively. It is easy to verify that the isotopy relation is
reflexive, symmetric and transitive. Clearly, if A is an (n, k)-Latin array and
if A and B are isotopic, then B is an (n, k)-Latin array. Similarly, if A is an
(n, k, r)-Latin array and if A and B are isotopic, then B is an (n, k, r)-Latin
array.

For (n, k)-Latin arrays or (n, k, r)-Latin arrays, any equivalence class of
the isotopy relation is also called an isotopy class.

8.2.2 On (n, k, r)-Latin Arrays

We use U(n, k) to denote the number of all (n, k)-Latin arrays, U(n, k, r)
the number of all (n, k, r)-Latin arrays, I(n, k) the number of all isotopy
classes of (n, k)-Latin arrays, and I(n, k, r) the number of all isotopy classes
of (n, k, r)-Latin arrays.

Let Ai be an n×mi matrix, i = 1, . . ., t. The n × (m1 + · · · + mt) matrix
[A1, . . ., At] is called the concatenation of A1, . . ., At. The concatenation of t

identical matrices A is called the t-fold concatenation of A, denoted by A(t).
It is easy to see that the concatenation [A1, . . ., At] of the (n, ki)-Latin

array Ai, i = 1, . . . , t is an (n, k1 + · · · + kt)-Latin array.
Let A and B be n×m matrices over N . If B can be obtained from A by

rearranging A’s columns, we say that A and B are column-equivalent.
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Clearly, the column-equivalence relation is reflexive, symmetric, and tran-
sitive. For (n, k)-Latin arrays or (n, k, r)-Latin arrays, the equivalence classes
of the column-equivalence relation are called the column-equivalence classes.

For any matrix A, we use b(A) to denote the matrix obtained from A by
deleting repeated columns but the leftmost ones.

Lemma 8.2.1. (a) Let A be an (n, k, 1)-Latin array. Then A(r) is an
(n, k, r)-Latin array.

(b) Let A be an (n, k, r)-Latin array. Then r|k, b(A) is an (n, k/r, 1)-
Latin array, and A and the r-fold concatenation of b(A) are isotopic and
column-equivalent.

Proof. (a) From the definition, the result is evident.
(b) From the definitions, it is easy to see that A and b(A)(r), the r-fold

concatenation of b(A), are column-equivalent; therefore, A and b(A)(r) are
isotopic. Let k′ be the number of occurrences of an element y in row i of
b(A). Then the number of occurrences of the element y in row i of b(A)(r)

is rk′. Since b(A)(r) and A are column-equivalent and A is an (n, k, r)-Latin
array, b(A)(r) is an (n, k, r)-Latin array. It follows that k = rk′. Thus r|k.
Since k′ = k/r, k′ is independent of y. Therefore, b(A) is an (n, k/r, 1)-Latin
array. ��

Lemma 8.2.2. Let A and B be two (n, k, r)-Latin arrays.
(a) A and B are isotopic if and only if b(A) and b(B) are isotopic.
(b) A and B are column-equivalent if and only if b(A) and b(B) are

column-equivalent.

Proof. (a) Suppose that b(A) and b(B) are isotopic. It is easy to see that
b(A)(r) and b(B)(r) are isotopic. From Lemma 8.2.1(b), b(A)(r) and A are
isotopic, and b(B)(r) and B are isotopic. Therefore, A and B are isotopic.

Conversely, suppose that A and B are isotopic. Then there is an isotopism
〈α, β, γ〉 from A to B. Let A′ be the result obtained by applying row arrang-
ing α and renaming β to A. Then B can be obtained by applying column
arranging γ from A′. Clearly, columns i and j of A are the same if and only
if columns i and j of A′ are the same. This yields that if b(A) consists of
columns j1, . . ., jk/r of A, then b(A′) consists of columns j1, . . ., jk/r of A′.
Thus applying row arranging α and renaming β to b(A) results b(A′). Since
A′ and B are column-equivalent, it is easy to see that b(A′) and b(B) are
column-equivalent. It follows that b(A) and b(B) are isotopic.

(b) The proof of part (b) is similar to part (a). ��

Theorem 8.2.1. (a) I(n, k, r) = I(n, k/r, 1).
(b) U(n, k, r) = U(n, k/r, 1)(nk)!/((nk/r)!(r!)nk/r).
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Proof. (a) We define a mapping ϕ from the isotopy classes of (n, k/r, 1)-
Latin arrays to the isotopy classes of (n, k, r)-Latin arrays by taking ϕ(C)
as the isotopy class containing A(r), where A is an arbitrary element in C.
From Lemma 8.2.1(a), A(r) is an (n, k, r)-Latin array. Noticing b(A(r)) = A

for any (n, k, 1)-Latin array A, from Lemma 8.2.2 (a), it is easy to show that
ϕ is single-valued and injective. From Lemma 8.2.1 (b), ϕ is surjective. Thus
we have I(n, k, r) = I(n, k/r, 1).

(b) Let C be an isotopy class of (n, k/r, 1)-Latin array, and C ′ = ϕ(C).
Since no column occurs repeatedly within any Latin array in C, each column-
equivalence class of C has (nk/r)! elements. Denote the number of column-
equivalence classes of C by x. Then the number of Latin arrays in C is
|C| = (nk/r)!x.

We define a mapping ψ from the column-equivalence classes of C to the
column-equivalence classes of C ′ by taking ψ(D) as the column-equivalence
class containing A(r), where A is an arbitrary element in D. From Lemma
8.2.2(b), it is easy to show that ψ is single-valued and injective. From
Lemma 8.2.1(b), ψ is surjective. Thus the number of column-equivalence
classes of C is equal to the number of column-equivalence classes of C ′.

For any column-equivalence class D′ of C ′, it is easy to see that all el-
ements of D′ can be obtained from an arbitrary specific element of D′ by
rearranging columns. Since any Latin array in D′ has nk columns and each
column occurs exactly r times, there are (nk)! ways to rearrange columns of
a specific Latin array of D′, and there are exactly (r!)nk/r ways generating
the same result. Therefore, the number of elements in D′ is (nk)!/(r!)nk/r.

Using proven results, we conclude that the number of Latin arrays in C ′

is

|C ′| = ((nk)!/(r!)nk/r)x

= ((nk)!/(r!)nk/r)|C|/(nk/r)!

= |C|(nk)!/((nk/r)!(r!)nk/r).

From (a), it follows that U(n, k, r) = U(n, k/r, 1)(nk)!/((nk/r)!(r!)nk/r). ��

Let A be an (n, k, 1)-Latin array, and A′ an (n, (n−1)!−k, 1)-Latin array.
If the columns of the concatenation of A and A′ consist of all permutations
on N , A′ is called a complement of A.

Clearly, if A′ is a complement of A, then A is a complement of A′. Any
two complements of A are column-equivalent.

Lemma 8.2.3. Let Ai be an (n, k, 1)-Latin array, and A′
i a complement of

Ai, i = 1, 2.
(a) A1 and A2 are isotopic if and only if A′

1 and A′
2 are isotopic.
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(b) A1 and A2 are column-equivalent if and only if A′
1 and A′

2 are column-
equivalent.

Proof. (a) Suppose that A1 and A2 are isotopic. Then there is an isotopism
from A1 to A2, say 〈α, β, γ〉. Let γ′ be a column arranging of n×(n!) matrices
so that the restriction of γ′ on the first nk columns is γ and γ′ keeps the
last n! − nk columns unchanged. Let [A3, A

′
3] be the result of applying the

transformation 〈α, β, γ′〉 to [A1, A
′
1]. Then we have A3 = A2 and that 〈α, β, e〉

is an isotopism from A′
1 to A′

3, where e stands for the identical transformation.
Since the columns of [A1, A

′
1] consist of all permutations on N , the columns

of [A3, A
′
3] consist of all permutations on N . Thus A′

3 is a complement of
A2. If follows that there exists a column arranging γ′′ from A′

3 to A′
2. Thus

〈α, β, γ′′〉 is an isotopism from A′
1 to A′

2. Therefore, A′
1 and A′

2 are isotopic.
From symmetry, if A′

1 and A′
2 are isotopic, then A1 and A2 are isotopic.

(b) From the proof of (a), taking α and β as the identity transformation
results a proof of (b). ��

Theorem 8.2.2. Let 1 � k < (n − 1)!.
(a) I(n, k, 1) = I(n, (n − 1)! − k, 1).
(b) U(n, (n − 1)! − k, 1) = U(n, k, 1)(n! − nk)!/(nk)!.
(c) I(n, (n − 1)!, 1) = 1, U(n, (n − 1)!, 1) = (n!)!.

Proof. (a) We define a mapping ϕ from the isotopy classes of (n, k, 1)-Latin
arrays to the isotopy classes of (n, (n−1)!−k, 1)-Latin arrays so that ϕ maps
the isotopy class containing A to the isotopy class containing a complement of
A. From Lemma 8.2.3(a), ϕ is single-valued and injective. Since complements
of any (n, (n− 1)!− k, 1)-Latin array are existent, ϕ is surjective. Therefore,
we have I(n, k, 1) = I(n, (n − 1)! − k, 1).

(b) For any isotopy class of (n, k, 1)-Latin arrays C, let C ′ = ϕ(C).
Clearly, the number of elements of any column-equivalence class of C is (nk)!.
Denote the number of column-equivalence classes of C by x. Then the number
of Latin arrays in C is |C| = (nk)!x.

We define a mapping ψ from the column-equivalence classes of C to the
column-equivalence classes of C ′ so that ψ maps the column-equivalence class
containing A to the column-equivalence class containing a complement of
A. From Lemma 8.2.3(b), ψ is single-valued and injective. Since for each
(n, (n − k)! − k, 1)-Latin array in C ′ there is an (n, k, 1)-Latin array in C as
its complement, ψ is surjective. Therefore, the number of column-equivalence
classes of C is equal to the number of column-equivalence classes of C ′.
Clearly, the number of elements of any column-equivalence class of C ′ is
(n!−nk)!. It follows that the number of Latin arrays in C ′ is |C ′| = (n!−nk)!x.
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Using proven results, we conclude that the number of Latin arrays in C ′

is |C ′| = (n!−nk)!x = (n!−nk)!(|C|/(nk)!) = |C|(n!−nk)!/(nk)!. From (a),
it follows that U(n, (n − 1)! − k, 1) = U(n, k, 1)(n! − nk)!/(nk)!.

(c) Evident. ��

8.2.3 Invariant

Let A be an (n, k)-Latin array.
For any column in a matrix, the multiplicity of the column means the oc-

currence number of the column in the matrix. We use ci to denote the number
of distinct columns of A with multiplicity i, for i = 1, . . . , k. ckck−1 . . . c2 is
called the column characteristic value of A.

For any sequence (x1, . . . , xk), xi taking value from an arbitrary set with
n − 1 elements, nknk−1 . . . n2 is called the type of the sequence, where nj is
the number of distinct xi’s with multiplicity j. In the case of k = 2, possible
types are 1 and 0 which are referred to as twins and all different, respectively.
In the case of k = 3, possible types are 10, 01 and 00 which are referred to as
trio, twins and all different, respectively. In the case of k = 4, possible types
are 100, 010, 002 and 001 which are referred to as quad, trio, double twins
and twins, respectively.

For any different i and j, we use A(i, j, a) to denote the j-th row of the
submatrix consisting of A’s columns of which the elements at row i are a.
Let ct be the number of a, 1 � a � n, such that the type of A(i, j, a) is t;
denote T1(i, j) =

∑
t · ct, t ranging over all types. Noting

∑
ct = n, any

ch can be determined by other ct’s. Fixing a permutation of all types, say
tr, . . . , t1, T1(i, j) is also represented by ctrctr−1 . . . ct2 . For example, in the
case of (4, 2)-Latin array, we permute types as 1, 0 and represent T1(i, j) by
c1; in the case of (4, 3)-Latin array, we permute types as 10, 01, 00 and rep-
resent T1(i, j) by c10c01; in the case of (4, 4)-Latin array, we permute types
as 100, 010, 002, 001 and represent T1(i, j) by c100c010c002. Given different i

and j, i 
= j, for any a, 1 � a � n, if in the type nknk−1 . . . n2 of A(i, j, a) the
nonzero nh with the maximal subscript h takes value 1, then we define π(a)
as the element in A(i, j, a) with the maximal multiplicity. If the mapping π

is bijective, π is called the derived permutation from row i to row j, denoted
by π(i, j). A derived permutation can be expressed as a product of disjoint
cycles of length > 1. The distribution of these lengths of cycles is called the
type of the derived permutation, denoted by T2(i, j). If the derived permuta-
tion does not exist and if the maximal multiplicity of elements occurring in
A(i, j, 1), . . . , A(i, j, n), say r, is great than k/2, |I ∩ J | is called the intersec-
tion number from row i to row j, denoted by T3(i, j), where I = {a | a ∈ N ,
the maximal multiplicity of elements in A(i, j, a) is r}, and J = {b | there
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is an a ∈ I, such that the multiplicity of b in A(i, j, a) is r}. Let T (i, j) =
(T1(i, j), T2(i, j), T3(i, j)); T2(i, j) and T3(i, j) may be undefined. The set
consisting of T (i, j), i, j = 1, . . . , n, i 
= j (repetition allowable) is called the
row characteristic set of A. Let GRA be a (directed) graph with vertex set N

and arc set (N × N) \ {(i, i), i ∈ N}, of which each arc, say (i, j), is labelled
by T (i, j); GRA is called the row characteristic graph of A. GRA is said to
be symmetric, if T (i, j) = T (j, i) holds for any i 
= j; it is considered as
undirected, that is, the two arcs (i, j) and (j, i) are merged into an edge with
endpoints i and j, which is also denoted by (i, j) or (j, i).

Theorem 8.2.3. Let A and B be two (n, k)-Latin arrays. If A and B are
isotopic, then (a) the column characteristic values of A and B are the same,
(b) the row characteristic graphs of A and B are isomorphic, and (c) the row
characteristic sets of A and B are the same.

Proof. (a) Since the identity between two columns keeps unchanged under
row arrangings and renamings and the column characteristic value keeps
unchanged under column arrangings, the column characteristic values of A

and B are the same.
(b) Since the type of a sequence (x1, . . . , xk) keeps unchanged under col-

umn arrangings and renamings, for any two rows i and j of an (n, k)-Latin
array, T1(i, j) keeps unchanged under column arrangings and renamings.
Clearly, π(i, j) keeps unchanged under column arrangings, and a renaming
for A yields the same renaming for π(i, j). Thus T2(i, j) keeps unchanged un-
der column arrangings and renamings. It is easy from the definition to prove
that T3(i, j) keeps unchanged under column arrangings and renamings. Let
〈α, β, γ〉 be an isotopism from A to B. Let A′ be the result of transforming
A by renaming β and column arranging γ. From the above results, GRA and
GRA′ are the same. Since row arranging α transforms A′ to B, α transforms
GRA (= GRA′) to GRB . It follows that the row characteristic graphs of A

and B are isomorphic.
(c) Immediately obtained from (b). ��

Corollary 8.2.1. For any two (n, k)-Latin arrays, if the column character-
istic values or the row characteristic sets of them are distinct, then they are
not isotopic.

Theorem 8.2.4. For n = 4, 2 � k � 4, the row characteristic graph of any
(n, k)-Latin array is symmetric.

Proof. Let A be a (4, k)-Latin array. For any i, j, 1 � i, j � 4, i 
= j, we
use Aij to denote the submatrix of A consisting of its rows i, j.

Case k = 2: For any i, j, 1 � i, j � 4, i 
= j, let c be the number of
different columns of Aij with column multiplicity > 1. It is easy to see that
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T1(i, j) = T1(j, i) = 1 · c + 0 · (4− c). Whenever c = 4, π(i, j) and π(j, i) exist
and π(j, i) is the inverse permutation of π(i, j); therefore T2(i, j) = T2(j, i).
Whenever c < 4, π(i, j) and π(j, i) do not exist. In the case of 0 < c < 4,
it is easy to see that T3(i, j) is equal to the number of the elements in the
intersection of the elements in the two rows of the submatrix of Aij consisting
of columns with column multiplicity 2. Thus T3(i, j) = T3(j, i). To sum up,
we obtain T (i, j) = T (j, i).

Case k = 3: For any i, j, 1 � i, j � 4, i 
= j, it is easy to see that the
number of different columns of Aij with column multiplicity 3 is equal to
the the number of Aija, a = 1, . . . , 4 with type trio and that the number of
different columns of Aij with column multiplicity 2 is equal to the number of
Aija, a = 1, . . . , 4 with type twins. Since Aij and Aji are the same, we have
T1(i, j) = T1(j, i). Let c3 (respectively c2) be the numbers of Aija, a = 1, . . . , 4
with type trio (respectively twins). Clearly, π(i, j) is existent if and only if
c3 +c2 = 4. Thus π(i, j) is existent if and only if π(j, i) is existent, and π(j, i)
is the inverse permutation of π(i, j) whenever they are existent. It follows that
T2(i, j) = T2(j, i) whenever c3 + c2 = 4. In the case of 0 < c3 + c2 < 4, let A′

ij

be the submatrix of Aij consisting of its columns with column multiplicity
3 if c3 
= 0, with column multiplicity 2 if c3 = 0. It is easy to see that
T3(i, j) is equal to the number of the elements in the intersection of the
elements in the two rows of A′

ij . Thus T3(i, j) = T3(j, i). To sum up, we
obtain T (i, j) = T (j, i).

Case k = 4: For any i, j, 1 � i, j � 4, i 
= j, it is easy to see that the
number of different columns of Aij with column multiplicity 4 (respectively 3)
is equal to the the number of Aija, a = 1, . . . , 4 with type quad (respectively
trio). Since Aij and Aji are the same, the number of Aija, a = 1, . . . , 4 with
type quad (respectively trio) and the number of Ajia, a = 1, . . . , 4 with type
quad (respectively trio) are the same. We prove the following proposition.
If Aija has type double twins and consists of b, b, c, c, and if Ajib and Ajic

have no type double twins, then Ajib and Ajic have type twins and one of the
following conditions holds: (a) Aijb and Aijd have type twins, Aijc has type
trio, Ajia has type double twins, and Ajid has type trio; (b) Aijb has type trio,
Aijc and Aijd have type twins, Ajia has type double twins, and Ajid has type
trio; (c) Aijb, Aijc, Aijd and Ajia have type twins, and Ajid has type double
twins, where {a, b, c, d} = {1, 2, 3, 4}. In fact, since Aija consists of b, b, c, c

and Ajib (respectively Ajic) has no type double twins, Ajib (respectively Ajic)
consists of a, a, c, d (respectively a, a, b, d). Since d does not occur in Ajid and
occurs 4 times in each row of A, Ajia consists of d, d, b, b, or d, d, c, c, or
d, d, b, c. In the case where Ajia consists of d, d, b, b, Ajid consists of b, c, c, c;
therefore, the condition (a) holds. In the case where Ajia consists of d, d, c, c,
Ajid consists of b, b, b, c; therefore, the condition (b) holds. In the case where
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Ajia consists of d, d, b, c, Ajid consists of b, b, c, c; therefore, the condition
(c) holds. Let S2(i, j) = {a| Aija has type double twins, a = 1, . . . , 4} and
n2(i, j) = |S2(i, j)|. From the proposition, for any i, j, 1 � i, j � 4, i 
= j,
if n2(i, j) = 1, then n2(j, i) � 1. We prove that for any i, j, 1 � i, j � 4,
i 
= j, if n2(i, j) = 2, then n2(j, i) � 2. In fact, suppose that Aija has type
double twins and consists of b, b, c, c and that Aije has type double twins and
consists of f, f, g, g, where {a, b, c, d} = {1, 2, 3, 4} and e ∈ {b, c, d}. Consider
the intersection set S = {b, c}∩{f, g}. In the case of |S| = 2, we have {b, c} =
{f, g}. Thus Ajib and Ajic have type double twins. Therefore, n2(j, i) � 2.
In the case of |S| = 1, without loss of generality, we suppose that S = {b}. It
follows that {f, g} = {a, b} or {f, g} = {b, d}. Whenever {f, g} = {a, b}, we
have e = c or e = d. We prove e 
= c by reduction to absurdity. Suppose to
the contrary that e = c. Since Aijd does not contain d and b, Aijd consists of
a, a, c, c. Thus n2(i, j) � 3. This contradicts n2(i, j) = 2. Thus we have e = d.
Since Aijc contains no c, Aijb has two occurrences of c. Therefore, Ajib and
Ajic have type double twins; that is, n2(j, i) � 2. Whenever {f, g} = {b, d},
we have e = c. Since Aijd contains no d, Aijb has two occurrences of d.
Therefore, Ajib and Ajid have type double twins; that is, n2(j, i) � 2. In the
case of |S| = 0, we have {f, g} = {a, d}. It follows that e = b or e = c.
Without loss of generality, we suppose that e = b. Since Aijc contains no
c, Aijd has two occurrences of c; since Aijd contains no d, Aijc has two
occurrences of d. Therefore, Ajic and Ajid have type double twins; that is,
n2(j, i) � 2. This completes the proof of that n2(i, j) = 2 implies n2(j, i) � 2.
It is easy to prove that for any i, j, 1 � i, j � 4, i 
= j, if n2(i, j) = 3 and
{1, 2, 3, 4} \ S2(i, j) = {a′}, then Aija′ has type quad; therefore, n2(j, i) = 3.
Clearly, for any i, j, 1 � i, j � 4, i 
= j, if n2(i, j) = 4, then n2(j, i) = 4.
To sum up, for any i, j, 1 � i, j � 4, i 
= j, we have n2(i, j) � n2(j, i). This
yields that n2(j, i) � n2(i, j). Thus n2(i, j) = n2(j, i). Noticing that for k = 4
types of any Aija are quad, trio, double twins, and twins, from results proven
above, we conclude that T1(i, j) = T1(j, i).

We prove T2(i, j) = T2(j, i). From the definition, if π(i, j) exists, then the
type of Aija is not double twins, a = 1, . . . , 4. For any i, j, 1 � i, j � 4, i 
= j,
suppose that π(i, j) exists. We prove that π(j, i) is the inverse permutation
of π(i, j); since types of a permutation and its inverse permutation are the
same, from the definition, this yields T2(i, j) = T2(j, i). Let r be the number
of a such that Aija has type quad or type trio, a = 1, . . . , 4. In the case
of r = 4, it is evident that π(j, i) is the inverse permutation of π(i, j). In
the case of r = 3, suppose that Aija, Aijb and Aijc have type quad or type
trio, where {a, b, c, d} = {1, 2, 3, 4}. Then Aijd has type twins. Without loss
of generality, Aijd consists of a, b, c, c. It follows that Aija and Aijb contain
one c. It reduces to two cases: (a) Aijc consists of d, d, d, d, Aija consists of
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b, b, b, c, and Aijb consists of a, a, a, c; or (b) Aija consists of d, d, d, c, Aijb

consists of a, a, a, c, and Aijc consists of b, b, b, d. It is easy to verify that
π(i, j) = π(j, i) = (ab)(cd) in case (a) and that π(i, j) = (dcba) and π(j, i) =
(abcd) in case (b). Thus π(j, i) is the inverse permutation of π(i, j). In the
case of r = 2, suppose that Aija and Aijb have type quad or type trio,
where {a, b, c, d} = {1, 2, 3, 4}. Then Aijc and Aijd have type twins. Thus
Aijc contains a, b, d and Aijd contains a, b, c. This yields that Aija and Aijb

have type trio; therefore, without loss of generality, Aija consists of c, c, c, b

and Aijb consists of d, d, d, a. Then two cases are possible: (a) Aijc consists
of a, a, b, d, and Aijd consists of a, b, b, c; or (b) Aijc consists of a, b, b, d, and
Aijd consists of a, a, b, c. It is easy to verify that π(i, j) = π(j, i) = (ac)(bd) in
case (a) and that π(i, j) = (acbd) and π(j, i) = (dbca) in case (b). Thus π(j, i)
is the inverse permutation of π(i, j). In the case of r = 1, suppose that Aija

has type quad or type trio, where {a, b, c, d} = {1, 2, 3, 4}. Then Aijb, Aijc

and Aijd have type twins. Thus Aijb contains a, c, d, Aijc contains a, b, d,
and Aijd contains a, b, c. Since the number of occurrences of each element
in a row of A is 4, the number of occurrences of any element in Aija is at
most 2; this contradicts that Aija has type quad or type trio. Thus, the case
r = 1 should not happen. In the case of r = 0, Aije, e = 1, 2, 3, 4 have type
twins. Let π(e) be the element which occurs two times in Aije, e = 1, . . . , 4.
Then Aije consists of π(e) and elements in {1, 2, 3, 4} \ {e}, e = 1, . . . , 4.
Since the number of occurrences of each element in a row of A is 4, we have
{π(e) | e = 1, 2, 3, 4} = {1, 2, 3, 4}. Clearly, π(i, j) = π. It is easy to verify
that π(j, i) = π−1. Thus π(j, i) is the inverse permutation of π(i, j). To sum
up, we conclude T2(i, j) = T2(j, i).

In final, from the definition of T3(i, j), it is easy to see that for any i, j,
1 � i, j � 4, i 
= j, T3(i, j) = T3(j, i) holds. Since for any i, j, 1 � i, j � 4,
i 
= j, Ta(i, j) = Ta(j, i) holds for a = 1, 2, 3, we obtain T (i, j) = T (j, i) for
any i, j, 1 � i, j � 4, i 
= j. ��

8.2.4 Autotopism Group

For any n and any k, the group consisting of all isotopisms of (n, k)-Latin
arrays equipped with the composition operation is called the isotopism group
of (n, k)-Latin arrays, denoted by G. Clearly, G can be represented as Sn ×
Sn × Snk, where Sr stands for the symmetric group of degree r for any
positive integer r. We denote an element of G by 〈α, β, γ〉, where α (the row
arranging), β (the renaming) and γ (the column arranging) are permutations
of the first n, n and nk positive integers, respectively.

For any (n, k)-Latin array A, an isotopism from A to itself is called an
autotopism on A. All autotopisms on A constitute a subgroup of G, denoted
by GA, which is referred to as the autotopism group of A.
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Using a result in group theory, see Theorem 3.2 in [142] for exam-
ple, we have |GA||AG| = |G|, where AG stands for the isotopy class con-
taining A. Since the order of the isotopism group G of (n, k)-Latin ar-
rays is (n!)2(nk)!, the cardinal number of the isotopy class containing A is
|AG| = (n!)2(nk)!/|GA|. Therefore, for enumeration of (n, k)-Latin arrays, we
may first find out all isotopy classes of (n, k)-Latin arrays, then evaluate the
cardinal number of each isotopy class by means of computing the autotopism
group of any Latin array in the isotopy class. The following results are useful
in computing autotopism groups.

We use e to denote the identity element of G, and (i1i2 . . . ik) to denote
the cyclic permutation which carries ij into ij+1 for j < k and ik into i1.
Therefore, (1) denotes the identity permutation.

Given an arbitrary (n, k)-Latin array A, let

G′′′
A = {〈α, β, γ〉 ∈ GA | α = (1), β = (1)},

G′′
A = {〈α, β, γ〉 ∈ GA | α = (1)},

G′
A = {〈α, β, γ〉 ∈ GA | α(1) = 1}.

It is easy to see that G′′′
A � G′′

A � G′
A � GA, where the symbol � in group

theory stands for “is a subgroup of”. Similarly, let

G′′′ = {〈α, β, γ〉 ∈ G | α = (1), β = (1)},
G′′ = {〈α, β, γ〉 ∈ G | α = (1)},
G′ = {〈α, β, γ〉 ∈ G | α(1) = 1}.

Clearly, we have G′′′ � G′′ � G′ � G, and G′′′
A � G′′′, G′′

A � G′′, G′
A � G′.

GA can be obtained by computing G′′′
A , G′′

A, G′
A and GA in turn. The

subgroup G′′′
A can be determined as follows. Partition the column labels of

A into equivalence classes according to the identity relation of columns, i.e.,
i and j belong to the same equivalence class if and only if the i-th column
and the j-th column of A are the same. Denote the equivalence classes with
cardinal number > 1 by I1, . . . , Ir. We use SIj to denote the symmetric group
on Ij . It is easy to show that G′′′

A is isomorphic to SI1 × SI2 × . . .× SIr . Let
ck . . . c2 be the column characteristic value of A. Then ci = |{j | 1 � j � r,
|Ij | = i}|. It follows that the order of G′′′

A is
∏k

i=2(i!)
ci .

For any subgroup H of a group H ′, and any elements h1 and h2 in H ′,
we use h1 ≡ h2(mod H) to denote the condition h1h

−1
2 ∈ H.

Similar to the case of Latin square, we can prove the following.

Theorem 8.2.5. Let 〈αi, βi, γi〉 ∈ GA, i = 1, 2.
(a) If α1 = α2 and β1 = β2, then γ1 ≡ γ2 (mod SI1 × SI2 × · · · × SIr ).
(b) If α1 = α2 and γ1 ≡ γ2 (mod SI1 × SI2 × · · · × SIr ), then β1 = β2.
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(c) If rows of A are distinct from each other, β1 = β2 and γ1 ≡ γ2

(mod SI1 × SI2 × · · · × SIr ), then α1 = α2.

Proof. Let 〈α, β, γ〉 = 〈α1α
−1
2 , β1β

−1
2 , γ1γ

−1
2 〉. Then 〈α, β, γ〉 ∈ GA.

(a) Since α1 = α2 and β1 = β2, we have α = (1) and β = (1). It follows
that 〈α, β, γ〉 ∈ G′′′

A . Therefore, we have γ ∈ SI1 × SI2 × · · · × SIr . That is,
γ1 ≡ γ2 (mod SI1 × SI2 × · · · × SIr ).

(b) Since α1 = α2 and γ1 ≡ γ2 (mod SI1 × SI2 × · · · × SIr ), we have
α = (1) and γ ∈ SI1 × SI2 × · · · × SIr . Thus A keeps unchanged under row
arranging α and column arranging γ. From 〈α, β, γ〉 ∈ GA, this yields that A

keeps unchanged under renaming β. Since each column of A is a permutation
of elements in N , we have β = (1). This yields β1 = β2.

(c) Since β1 = β2 and γ1 ≡ γ2 (mod SI1 × SI2 × · · · × SIr ), we have
β = (1) and γ ∈ SI1 × SI2 × · · · × SIr . Thus A keeps unchanged under
renaming β and column arranging γ. From 〈α, β, γ〉 ∈ GA, this yields that A

keeps unchanged under row arranging α. Since rows of A are distinct from
each other, we have α = (1). Thus α1 = α2. ��
Theorem 8.2.6. (a) Let G1 be a subgroup of G2 and of GA. For any g in
G2, the (right) coset gG1 ⊆ GA if and only if g ∈ GA.

(b) Let gi = 〈αi, βi, γi〉, i = 1, 2. If g1, g2 ∈ G′′
A, then g1G

′′′
A = g2G

′′′
A if

and only if β1 = β2.
(c) If g1, g2 ∈ G′

A, then g1G
′′
A = g2G

′′
A if and only if α1 = α2.

(d) If g1, g2 ∈ GA, then g1G
′
A = g2G

′
A if and only if α1(1) = α2(1).

Proof. (a) Evident from the definition.
(b) Suppose g1, g2 ∈ G′′

A. Then α1 = α2 = (1). Thus g−1
2 g1 = 〈(1),

β−1
2 β1, γ−1

2 γ1〉. Therefore, β1 = β2 if and only if g−1
2 g1 ∈ G′′′

A , if and only if
g1G

′′′
A = g2G

′′′
A .

(c) Suppose g1, g2 ∈ G′
A. Since g−1

2 g1 = 〈α−1
2 α1, β

−1
2 β1, γ

−1
2 γ1〉, α1 = α2

if and only if g−1
2 g1 ∈ G′′

A, if and only if g1G
′′
A = g2G

′′
A.

(d) Suppose g1, g2 ∈ GA. Clearly, α1(1) = α2(1) if and only if α−1
2 α1(1) =

1 (i.e., α−1
2 (α1(1)) = 1), if and only if g−1

2 g1 ∈ G′
A, if and only if g1G

′
A =

g2G
′
A. ��
Although parallel results for left coset hold, in this section, it is enough

to use right coset; hereafter, “coset” means “right coset”.
An (n, k)-Latin array A is said to be canonical, if the first row of A is 1 . . . 1

2 . . . 2 . . . n . . . n. Partition a canonical (n, k)-Latin array A into n blocks such
that all the elements in the first row of the h-th block of A, denoted by Ah, are
h, h = 1, . . . , n. For any block Ah, let ci be the number of distinct columns of
Ah which occur exactly i times in Ah; ckck−1 . . . c2 is called the column type
of Ah. Let pi be the type of the i-th row of Ah; the sequence (p2, p3, . . . , pn)
is called the row type of Ah.
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Theorem 8.2.7. Assume that (n, k)-Latin arrays A and B are canonical
and that A can be transformed into B by an isotopism 〈(1), β, γ〉. Then for
any i, 1 � i � n, column types (row types) of blocks Ai and Bβ(i) are the
same. Moreover, if there is a block of A, say Ah, such that the pair of the
row type and the column type of Ah is distinct from the ones of other blocks
and that for some positive integer r there is only one column of Ah with
multiplicity r, then β can be determined by such a column.

Proof. Clearly, for any i, 1 � i � n, the block Ai can be transformed into
the block Bβ(i) by some renaming and some column arranging within block.
Since the column type and the row type of a block keep unchanged under
renamings and column arrangings within block, the column type and the row
type of Ai are the same with ones of Bβ(i), respectively.

Suppose that Ah satisfies the conditions mentioned in the theorem. For
any isotopism 〈(1), β, γ〉 which transforms A into B, using the first part of
the theorem, there is only one block of B of which the column type and the
row type are the same with ones of Ah, respectively, and such a block is
the block Bβ(h). Clearly, there is only one column in the block Bβ(h) with
column multiplicity r, and such a column can be obtained from transforming
the column of Ah with multiplicity r by renaming β. Since each column of A

is a permutation, such two corresponding columns determine β. ��

8.2.5 The Case n = 2, 3

From the definitions, it is easy to see that any (2, k)-Latin array is a (2, k, k)-
Latin array. Therefore, if A is a (2, k, r)-Latin array, then r = k holds.

Theorem 8.2.8. For any positive integer k, we have I(2, k) = 1, U(2, k) =(
2k
k

)
.

Proof. Let A be a canonical (2, k)-Latin array. Since each column of A is
a permutation of 1 and 2, elements in the second row of A are 2 at the first k

columns and 1 at the last k columns. Such a Latin array is denoted by A12k.
Clearly, any (2, k)-Latin array can be transformed into A12k by some column
arranging. Consequently, (2, k)-Latin arrays have a unique isotopy class.

Since a (2, k)-Latin array can be uniquely determined by any row and the
multiplicity of 1 and of 2 in any row are k, the number of distinct (2, k)-Latin
arrays is

(
2k
k

)
. ��

Theorem 8.2.9. For any positive integer k, we have

I(3, k) =

{
(k + 1)/2, if k is odd,
k/2 + 1, otherwise,
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U(3, k) =

{∑k
h=(k+1)/2 2(3k)!/(h!(k − h)!)3, if k is odd,∑k
h=k/2+1 2(3k)!/(h!(k − h)!)3 + (3k)!/((k/2)!)6, otherwise,

and I(3, k, 1) = U(3, k, 1) = 0 if k > 2, I(3, 2, 1) = 1, U(3, 2, 1) = 6!,
I(3, 1, 1) = 1, U(3, 1, 1) = 3!2!.

Proof. For any h, 1 � h � k, let A(k−h+1)3k be a canonical (3, k)-Latin
array of the form⎡

⎣1 . . . 1
2 . . . 2
3 . . . 3︸ ︷︷ ︸

h

1 . . . 1
3 . . . 3
2 . . . 2︸ ︷︷ ︸

k−h

2 . . . 2
3 . . . 3
1 . . . 1︸ ︷︷ ︸

h

2 . . . 2
1 . . . 1
3 . . . 3︸ ︷︷ ︸

k−h

3 . . . 3
1 . . . 1
2 . . . 2︸ ︷︷ ︸

h

3 . . . 3
2 . . . 2
1 . . . 1

⎤
⎦

︸ ︷︷ ︸
k−h

.

We first prove that for any (3, k)-Latin array A there exists h, 1 � h � k, such
that A and A(k − h + 1)3k are isotopic. We transform A into its canonical
form, say A′, by some column arranging. Then using column arranging within
block we transform the second row of A′ in the form 2 . . . 2 3 . . . 3 3 . . . 3 1 . . . 1
1 . . . 1 2 . . . 2 and denote the result by A′′. Let h be the number of 2 in block
1 row 2 of A′′. Then the number of 3 in block 1 row 2 of A′′ is k − h. Since
each row of a (3, k)-Latin array contains exactly k elements i, 1 � i � 3, the
number of 3 in block 2 row 2 of A′′ is h and the number of 2 in block 3 row 2 of
A′′ is k−h. Consequently, the number of 1 in block 2 row 2 of A′′ is k−h, and
the number of 1 in block 3 row 2 of A′′ is h. Therefore, the first two rows of A′′

and of A(k−h+1)3k are the same. Since each column of a (3, k)-Latin array
is a permutation of 1, 2 and 3, row 3 is uniquely determined by rows 1 and 2.
Thus A′′ is equal to A(k− h + 1)3k. We conclude that A and A(k− h + 1)3k
are isotopic. Notice that A(h + 1)3k and A(k − h + 1)3k can be mutually
obtained by applying renaming (23) and some column arranging. From the
above results, any (3, k)-Latin array A is isotopic to A(k−h+1)3k, for some h,
k � h � �k/2�. We next prove that A(k−h+1)3k, h = k, k−1, . . . , �k/2� are
not isotopic to each other. Whenever h = k/2 and k is even, in the column
characteristic value of A(k − h + 1)3k, namely, ck . . . c2, we have ch = 6,
and ci = 0 for i 
= h. Whenever h = k, in the column characteristic value
ck . . . c2 of A(k − h + 1)3k, we have ch = 3, and ci = 0 for i 
= h. Whenever
h = k− 1, . . . , �k/2� and h > k/2, in the column characteristic value ck . . . c2

of A(k−h+1)3k, we have ch = ck−h = 3, and ci = 0 for i 
= h, k−h. Therefore,
column characteristic values of A(k − h + 1)3k, h = k, k − 1, . . . , �k/2� are
different from each other. From Corollary 8.2.1, they are not isotopic to each
other. To sum up, I(3, k) = (k + 1)/2 if k is odd, and k/2 + 1 otherwise.

For U(3, k), we compute the order of the autotopism group of A(k − h +
1)3k. Clearly, the order of G′′′

A(k−h+1)3k is (h!(k−h)!)3. We now compute coset
representatives of G′′′

A(k−h+1)3k in G′′
A(k−h+1)3k. In the case of h > k − h,
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it is easy to see that there is a column arranging γ = (3k, 3k − 1, . . . , 1)k

such that the isotopism g = 〈(1), (321), γ〉 keeps A(k − h + 1)3k unchanged.
Consequently, g2 and g3 = e also keep A(k − h + 1)3k unchanged, where e

stands for the identity isotopism. Since h 
= k − h, for any transposition β

and any column arranging γ the isotopism 〈(1), β, γ〉 is not an autotopism of
A(k − h + 1)3k. From Theorem 8.2.6 (b), the coset representatives are g, g2

and e. It follows that the order of G′′
A(k−h+1)3k is equal to 3|G′′′

A(k−h+1)3k| =
3(h!(k−h)!)3. In the case of h = k−h, we have h = k/2. It is easy to prove that
there exist column arrangings γ1, γ2 such that 〈(1), (23), γ1〉 and 〈(1), (12), γ2〉
are autotopisms of A(k−h+1)3k. Since transpositions (23) and (12) can gen-
erate all permutations of 1, 2 and 3, for any renaming β there exists a column
arranging γ such that 〈(1), β, γ〉 is an autotopism of A(k−h+1)3k. Using The-
orem 8.2.6 (b), we have |G′′

A(k−h+1)3k| = 3!|G′′′
A(k−h+1)3k| = 6(h!)6. We turn

to computing coset representatives of G′′
A(k−h+1)3k in G′

A(k−h+1)3k. It is easy
to see that there exists a column arranging γ such that 〈(23), (23), γ〉 keeps
A(k − h + 1)3k unchanged. From Theorem 8.2.6 (c), it is easy to prove that
|G′

A(k−h+1)3k| = 2|G′′
A(k−h+1)3k|. We finally compute coset representatives of

G′
A(k−h+1)3k in GA(k−h+1)3k. It is easy to show that there exists a column ar-

ranging γ such that g = 〈(321), (1), γ〉 keeps A(k−h+1)3k unchanged. From
Theorem 8.2.6 (d), we have that g, g2 and e are the all coset representatives.
It immediately follows that |GA(k−h+1)3k| = 3|G′

A(k−h+1)3k|. To sum up, the
order of GA(k−h+1)3k is equal to 3 · 2 · 3(h!(k − h)!)3 in the case of h > k − h,
or 3 · 2 · 6(h!)6 in the case of h = k−h. Therefore, the cardinal number of the
isotopy class containing A(k−h+1)3k is equal to (3!)2(3k)!/(3 ·2 ·3(h!(k−h)!)3)
= 2(3k)!/(h!(k − h)!)3 in the case of h > k − h, or (3!)2(3k)!/(3 · 2 · 6(h!)6)
= (3k)!/((k/2)!)6 in the case of h = k−h. In the preceding paragraph we have
proven that the isotopy classes containing A(k−h+1)3k, h = k, k−1, . . . , �k/2�
are all isotopy classes of (3, k)-Latin array. Thus the formula of U(3, k) in the
theorem holds.

Since the number of columns of a (3, k)-Latin array is 3k and the number
of permutations on {1, 2, 3} is 3!=6, for any (3, k, 1)-Latin array we have
3k � 6, that is, k � 2. Thus I(3, k, 1) = U(3, k, 1) = 0 if k > 2.

It is easy to see that the columns of any (3, 2, 1)-Latin array consists of
all permutations on {1, 2, 3}. Thus any two (3, 2, 1)-Latin arrays are column-
equivalent. Therefore, I(3, 2, 1) = 1 and U(3, 2, 1) = 6!.

Consider a (3, 1, 1)-Latin array of which the first row and the first column
are x1, x2, x3. Then the Latin array is uniquely determined by these elements.
In fact, since any row and any column are some permutations of x1, x2 and
x3, its elements at the positions (2,3) and (3,2) take x1. It follows that its
elements at the positions (2,2) and (3,3) are x3 and x2, respectively.
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Since any (3, 1, 1)-Latin array can be transformed by rearranging rows and
columns into a (3, 1, 1)-Latin array of which the first row and the first column
are 1, 2, 3, from the result in the preceding paragraph, we have I(3, 1, 1) = 1.
Since the number of permutations on {1, 2, 3} is 3!, we have U(3, 1, 1) =
3!2!. ��

8.2.6 The Case n = 4, k � 4

Enumeration of (4, 2)-Latin Arrays

It is known that the number of isotopy classes of Latin squares of order 4 is 2
and the number of Latin squares of order 4 is (4!)2, see [31] for example. Since
both (4,1)-Latin arrays and (4,1,1)-Latin arrays coincide with Latin squares
of order 4, we have I(4, 1) = I(4, 1, 1) = 2 and U(4, 1) = U(4, 1, 1) = (4!)2.
Another proof of the results using Theorem 8.2.1 will be given later.

Let A142, . . . , A1142 be (4,2)-Latin arrays as follows:⎡
⎢⎢⎣

11223344
22114433
34341212
43432121

⎤
⎥⎥⎦

A142

⎡
⎢⎢⎣

11223344
22334411
34411223
43142132

⎤
⎥⎥⎦

A242

⎡
⎢⎢⎣

11223344
22134413
34341221
43412132

⎤
⎥⎥⎦

A342

⎡
⎢⎢⎣

11223344
22341413
34432121
43114232

⎤
⎥⎥⎦

A442⎡
⎢⎢⎣

11223344
22341413
34412132
43134221

⎤
⎥⎥⎦

A542

⎡
⎢⎢⎣

11223344
23144123
34431212
42312431

⎤
⎥⎥⎦

A642

⎡
⎢⎢⎣

11223344
22114433
33441122
44332211

⎤
⎥⎥⎦

A742

⎡
⎢⎢⎣

11223344
22114433
33441221
44332112

⎤
⎥⎥⎦

A842⎡
⎢⎢⎣

11223344
22114433
33442211
44331122

⎤
⎥⎥⎦

A942

⎡
⎢⎢⎣

11223344
22134413
33441221
44312132

⎤
⎥⎥⎦

A1042

⎡
⎢⎢⎣

11223344
22344113
33412421
44131232

⎤
⎥⎥⎦

A1142

.

Lemma 8.2.4. A142, . . . , A1142 are not isotopic to each other.

Proof. We compute the column characteristic value and the row charac-
teristic set of Ax42 and represent them in the format:“x: the column charac-
teristic value of Ax42; the row characteristic sets of Ax42”, where the column
characteristic value is in the form c2, the row characteristic set is in the form
T1(i, j) T2(i, j), in order of ij = 12, 13, 14, 23, 24, 34, T3(i, j) is not listed. We
list the results of column characteristic values and row characteristic sets of
A142, . . ., A1142 as follows:
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1 : 0; 42, 00, 00, 00, 00, 42 2 : 0; 44, 00, 00, 00, 00, 00

3 : 0; 20, 00, 00, 00, 00, 20 4 : 0; 10, 00, 10, 10, 00, 10

5 : 0; 10, 00, 00, 10, 10, 00 6 : 0; 00, 00, 00, 00, 00, 00

7 : 4; 42, 42, 42, 42, 42, 42 8 : 2; 42, 20, 20, 20, 20, 42

9 : 4; 42, 44, 44, 44, 44, 42 10 : 1; 20, 20, 10, 10, 20, 20

11 : 1; 10, 10, 10, 10, 10, 10

where T2(i, j) = 4, 2, 0 mean “a cycle of length 4”, “two transpositions”,
“no derived permutation”, respectively. It is easy to verify that for any two
distinct Ai42’s either their column characteristic values are different, or their
row characteristic sets are different. From Corollary 8.2.1, it immediately
follows that A142, . . . , A1142 are not isotopic to each other. ��
Lemma 8.2.5. Any (4, 2)-Latin array is isotopic to one of A142, . . . , A1142;
any (4, 2, 1)-Latin array is isotopic to one of A142, . . . , A642 and any (4, 2, 2)-
Latin array is isotopic to A742 or A942.

Proof. Let A be a (4,2)-Latin array. In the proof, by A(i, j) denote the
element of A at row i column j; by A(i, j − h) denote elements of A at
row i columns j to h. Since Latin arrays can be reduced to canonical ones
by rearranging columns, without loss of generality, we suppose that A is
canonical. From Theorem 8.2.4, instead of “from row i to row j” we can say
“between rows i and j”, for example, the intersection number between rows
i and j; and from T1(i, j) = T1(j, i) = 1 · c1 + 0 · c0, we can say “the number
of twins between rows i and j is c1”, and so on.

We prove by exhaustion that A is isotopic to Ai42 for some i, 1 � i � 11.
There are two cases to consider. Case 1: columns of A are different. Case 2:
otherwise.

Case 1: no repeated columns in A. There are five alternatives according to
the numbers of twins between rows. Case 11: there are two rows of A between
which the number of twins is 4. Case 12: not the case 11 and there are two
rows of A between which the number of twins is 3. Case 13: not the cases 11
and 12 and there are two rows of A between which the number of twins is 2.
Case 14: not the cases 11 to 13 and there are two rows of A between which
the number of twins is 1. Case 15: there is no twins between any two rows of
A.

In case 11, in the sense of row arranging and column arranging we assume
that the number of twins between rows 1 and 2 of A is 4. We subdivide this
case into two subcases according to the derived permutation from row 1 to
row 2 of A. Case 111: the derived permutation can be decomposed into a
product of two disjoint transpositions. Case 112: the derived permutation is
a cycle of length 4.
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In case 111, in the sense of isotopy we assume that A(2, 1−8) = 22114433.
Note that for the last two rows of any block of A, whenever one has type twins,
so has the other. This yields that A has repeated columns. But this is impos-
sible in case 1. Therefore, in the sense of column transposition within block
we have A(3, 1−8) = 34341212. Since each column of A is a permutation, for
any column of A the element at any row can be uniquely determined by others
in that column. It follows that A(4, 1−8) = 43432121. [Hereafter, this deduc-
tion and the like are abbreviated to the form: “since last element(s), . . .”.]
Therefore, A is isotopic to A142.

In case 112, in the sense of isotopy we assume that A(2, 1−8) = 22334411.
Since A has no repeated columns, in the sense of column transposition
within block we have A(3, 1 − 8) = 34411223. Since last elements, we ob-
tain A(4, 1 − 8) = 43142132. Therefore, A is isotopic to A242.

In case 12, since each element occurs exactly two times in any row of A,
between any two rows of A if the number of twins is at least 3 then it is equal
to 4. This contradicts not the case 11. Therefore, this case can not occur.

In case 13, in the sense of isotopy we suppose that the number of twins
between rows 1 and 2 of A is 2. We subdivide this case into three subcases
according to the intersection number between rows 1 and 2 of A. Case 131:
the intersection number is 2. Case 132: the intersection number is 1. Case 133:
the intersection number is 0.

In case 131, in the sense of isotopy we assume A(2, 1 − 4) = 2211. Since
each element occurs exactly once in each column and 2 times in each row of A,
elements in block 3 row 2 of A are uniquely determined, namely, A(2, 5−6) =
44. [Hereafter, this deduction and the like are abbreviated to the form: “since
unique value(s), . . .”.] This contradicts not the cases 11 and 12. Therefore,
this case can not occur.

In case 132, in the sense of isotopy we assume A(2, 1 − 4) = 2233. Since
unique values, we have A(2, 7 − 8) = 11. This contradicts not the cases 11
and 12. Therefore, this case can not occur.

In case 133, in the sense of isotopy we assume A(2, 1−2) = 22, A(2, 5−6) =
44. Since row 2 has already two occurrences of 2 and of 4, elements in blocks
2 and 4 row 2 are 1 or 3. Since block 2 row 2 and block 4 row 2 are not
twins, in the sense of column transposition within block we have A(2, 3−4) =
A(2, 7−8) = 13. [Hereafter, this deduction and the like are abbreviated to the
form: “since no twins, . . .”. ] Since each element occurs once in each column,
in the sense of row transposition we have A(4, 3) = 4. Since last element, we
have A(3, 3) = 3. Since A has no repeated columns, in the sense of column
transposition within block we have A(3, 1 − 2) = 34, A(3, 5 − 6) = 12. Since
last elements, we obtain A(4, 1 − 2) = 43, A(4, 5 − 6) = 21. Consider the
columns in which the elements at row 3 are not determined yet and the



8.2 Latin Arrays 297

elements determined so far do not contain 4. Since such a column is unique,
the place in row 3 which can take value 4 is unique. It immediately follows
that A(3, 4) = 4. [Hereafter, this deduction and the like are abbreviated to
the form: “since unique place(s), . . .”.] Since unique value, we have A(3, 7) =
2. Since unique value, we have A(3, 8) = 1. Since last elements, we obtain
A(4, 4) = 1, A(4, 7 − 8) = 32. Therefore, A is isotopic to A342.

In case 14, in the sense of isotopy we assume that there is one twins
between rows 1 and 2, say A(2, 1− 2) = 22. Since no twins, we have A(2, 5−
6) = 14 and A(2, 7 − 8) = 13. Since each element occurs exactly two times
in each row of A, elements 3 and 4 in row 2 which are not determined yet
so far can only occur in block 2 row 2. Consequently, in the sense of column
transposition we have A(2, 3−4) = 34. [Hereafter, this deduction and the like
are abbreviated to the form: “since row sum, . . .”.] Since each element occurs
once in each column, in the sense of row transposition we have A(4, 3) = 1.
Since last element, we obtain A(3, 3) = 4. Since A has no repeated columns,
in the sense of column transposition within block we have A(3, 1 − 2) = 34.
Since last elements, we have A(4, 1 − 2) = 43. Since unique place, we have
A(4, 5) = 4. Since last element, we have A(3, 5) = 2. At this point, there are
two alternatives according to the value of A(3, 4), 3 for the case 141, and 1
for the case 142.

In case 141, since unique places, we have A(3, 6) = A(3, 8) = 1, A(4, 7) =
3. Since last elements, we have A(4, 4) = 1, A(4, 6) = A(4, 8) = A(3, 7) = 2.
Therefore, A is isotopic to A442.

In case 142, since unique place, we have A(3, 7) = 3. Since last elements,
we have A(4, 4) = 3, A(4, 7) = 2. Denoting A(4, 8) = a, it is easy to see that a

takes values 1 or 2. Since row sum, we have A(4, 6) = a′, where 1′ = 2, 2′ = 1.
Since last elements, we have A(3, 8) = a′, A(3, 6) = a. Whenever a = 1, A is
isotopic to A542. Whenever a = 2, A can be transformed into A542 by row
transposition (12), renaming (12)(34) and some column arranging.

In case 15, in the sense of isotopy we assume A(2, 1 − 2) = 23. We have
A(2, 8) = 3 in the sense of isotopy. (In fact, when 3 does not occur in block 4
row 2, 2 occurs in it since no twins. Thus we can transform A in advance by
renaming (23) and some column arranging.) Since no twins, we have A(2, 3−
4) = 14. Since unique places, in the sense of column transposition we have
A(2, 5) = 4. Denoting A(2, 7) = b, it is easy to see that b takes values 1 or
2. Since row sum, we have A(2, 6) = b′. In the sense of row transposition
we assume A(3, 1) = 3, A(4, 1) = 4. Since no twins, we have A(4, 2) = 2.
Since last element, we have A(3, 2) = 4. We prove A(3, 3) 
= 3 by reduction
to absurdity. Suppose to the contrary that A(3, 3) = 3. Since last element,
we have A(4, 3) = 4. It follows that there is a twins between rows 3 and
4. This contradicts the case 15. Therefore, we obtain A(3, 3) = 4. Since
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last element, we have A(4, 3) = 3. Since no twins, we have A(4, 4) = 1.
Since no twins between rows 2 and 4 exists, we have A(4, 8) = 1. Since last
elements, we have A(3, 4) = 3, A(3, 8) = 2. Since unique places, we have
A(4, 6) = 4, A(4, 7) = 3. Since row sum, we have A(4, 5) = 2. Since last
elements, we have A(3, 5 − 7) = 1bb′. Since no twins between rows 2 and 4
exists, we have b 
= 1. It immediately follows that b = 2. Therefore, A is
isotopic to A642.

Case 2: A has repeated columns. Subdivide this case into three subcases
according to the number of twins between rows. Case 21: there are two rows
of A between which the number of twins is 4. Case 22: not the case 21 but
there are two rows of A between which the number of twins is 2. Case 23:
otherwise.

In case 21, in the sense of isotopy we assume that there are four twins
between rows 1 and 2. We subdivide this case into two subcases according
to the derived permutation from rows 1 to 2 of A. Case 211: the derived
permutation can be decomposed into a product of two disjoint transpositions.
Case 212: the derived permutation is a cycle of length 4.

In case 211, in the sense of isotopy we assume A(2, 1 − 8) = 22114433,
A(3, 1 − 2) = 33, A(4, 1 − 2) = 44. Since unique values, we have A(3, 3 −
4) = 44, A(4, 3 − 4) = 33. Denoting A(4, 7 − 8) = ab, clearly, a and b take
values 1 or 2. Since row sum, in the sense of column transposition we have
A(4, 5 − 6) = a′b′. Since last elements, we have A(3, 5 − 8) = aba′b′. In the
sense of column transposition ab may take three values 11,12 and 22, it follows
that A is isotopic to A742, A842 and A942, respectively.

In case 212, in the sense of isotopy we assume A(2, 1 − 8) = 22334411,
A(3, 1− 2) = 33, A(4, 1− 2) = 44. Since unique values, we have A(4, 3− 4) =
11, A(3, 7−8) = 22. Since last elements, we have A(3, 3−4) = 44, A(4, 7−8) =
33. Since row sum, we have A(3, 5−6) = 11, A(4, 5−6) = 22. It is easy to see
that A can be transformed into A942 by row transposition (23), renaming
(23) and some column arranging.

In case 22, in the sense of isotopy we assume that there are two twins
between rows 1 and 2 of A. We subdivide this case into three subcases ac-
cording to the intersection number between rows 1 and 2 of A. Case 221: the
intersection number is 2. Case 222: the intersection number is 1. Case 223:
the intersection number is 0.

In case 221, in the sense of isotopy we assume A(2, 1 − 4) = 2211. Since
unique places, we have A(2, 5 − 6) = 44, A(2, 7 − 8) = 33. This contradicts
not the case 21. Therefore, this case can not occur.

In case 222, in the sense of isotopy we assume A(2, 1−2) = 22, A(2, 3−4) =
33. Since unique values, we have A(2, 7 − 8) = 11. Since row sum, we have
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A(2, 5 − 6) = 44. This contradicts not the case 21. Therefore, this case can
not occur.

In case 223, in the sense of isotopy we assume A(2, 1−2) = 22, A(2, 5−6) =
44, A(3, 1 − 2) = 33, A(4, 1 − 2) = 44. Since no twins, we have A(2, 3 − 4) =
A(2, 7 − 8) = 13. Since unique values, we have A(4, 3 − 4) = 31, A(3, 7) = 2.
Since last elements, we have A(3, 3 − 4) = 44, A(4, 7) = 3. Since no twins,
we have A(3, 8) = 1. Since row sum, in the sense of column transposition
we have A(3, 5 − 6) = 12. Since last elements, we have A(4, 5 − 6) = 21 and
A(4, 8) = 2. Therefore, A is isotopic to A1042.

In case 23, it is easy to show that the number of twins between two rows
of A is equal to 4 whenever it is at least 3. Thus in this case the number of
twins between some two rows of A is equal to 1. In the sense of isotopy we
assume that columns 1 and 2 are the same and A(2, 1−2) = 22, A(3, 1−2) =
33, A(4, 1−2) = 44. Since no twins, we have A(2, 5−6) = 41, A(2, 7−8) = 13.
Since row sum, in the sense of column transposition we have A(2, 3−4) = 34.
Since unique values, we have A(3, 4) = 1, A(3, 7) = A(4, 6) = 2. Since last
elements, we have A(4, 4) = A(4, 7) = 3, A(3, 6) = 4. Since no twins, we have
A(3, 8) = 1. Since unique places, we have A(3, 3) = 4, A(3, 5) = 2. Since last
elements, we have A(4, 8) = 2, A(4, 3) = A(4, 5) = 1. Therefore, A is isotopic
to A1142.

Since the column characteristic value of any (4, 2, 2)-Latin array is 4, A742
and A942 are all distinct isotopy class representatives of (4, 2, 2)-Latin array.
That is, any (4, 2, 2)-Latin array is isotopic to A742 or A942. ��

Theorem 8.2.10. I(4, 2) = 11, I(4, 2, 1) = 6, I(4, 2, 2) = 2.

Proof. This is immediate from Lemmas 8.2.4 and 8.2.5. ��

Theorem 8.2.11. U(4, 2) = 12640320, U(4, 2, 1) = 10281600, U(4, 2, 2) =
60480.

Proof. Denote the order of autotopism group GAi42 of Ai42 by ni, i =
1, . . . , 11. Then the number of elements in the isotopy class containing Ai42
is 4!4!8!/ni. Therefore, we have

U(4, 2) =
11∑

i=1

4!4!8!/ni, U(4, 2, 1) =
6∑

i=1

4!4!8!/ni, U(4, 2, 2) =
∑

i=7,9

4!4!8!/ni.

We compute GA142. In GRA142, labels of edges (1, 2) and (3, 4) are the
same, say “red”; labels of other edges are the same and not red, say “green”.

Since columns of A142 are different, we have G′′′
A142 = {e}, where e stands

for the identity isotopism. It immediately follows that its order is 1.
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To compute the coset representatives of G′′′
A142 in G′′

A142, note that an
isotopism 〈α, β, γ〉 on a Latin array can be decomposed into a product
of 〈α, (1), (1)〉 (the row arranging α), 〈(1), β, (1)〉 (the renaming β), and
〈(1), (1), γ〉 (the column arranging γ), independent of their order. Clearly,
for any isotopism in G′′ its row arranging component is (1). We then con-
sider the renaming component β so that the renaming β and some column
arranging γ keep A142 unchanged. Since each column of A142 is a permu-
tation, β can be uniquely determined by any two columns, say j and h, of
A142 such that β transforms column h into column j. For each h ∈ {1, . . . , 8},
take β as the permutation which transforms column h into column 1. For ex-
ample, in the case of h = 3, the renaming β transforms the column 2134
into the column 1234; that is, β = (12). In this way, we obtain eight candi-
dates for β: (1), (34), (12), (12)(34), (13)(24), (1423), (1324) and (14)(23),
which can be generated by (34) and (1324) for example. It is easy to verify
that β transforms A142 into a (4, 2)-Latin array which can be further trans-
formed into A142 by some column arranging, for β = (34) and (1324). It
follows that β transforms A142 into a (4, 2)-Latin array which can be further
transformed into A142 by some column arranging, for all eight candidates.
From Theorem 8.2.6 (b), autotopisms with different renamings correspond
to different cosets, and autotopisms with the same renaming correspond to
the same coset. Therefore, the coset representatives of all different cosets are
(〈(1), (34), ·〉, 〈(1), (1423), ·〉), here and elsewhere a dot · in an isotopism repre-
sents some column arranging, and (g1, . . . , gr) stands for the set generated by
g1, . . . , gr (the column arranging component is neglected in the case of coset
representatives of G′′′

A in G′′
A). That is, G′′

A142 = (〈(1), (34), ·〉, 〈(1), (1423), ·〉)
G′′′

A142 = (〈(1), (34), ·〉, 〈(1), (1423), ·〉). It immediately follows that the order
of G′′

A142 is 8.
To compute the coset representatives of G′′

A142 in G′
A142, let 〈α, β, γ〉 ∈ G′,

where the row arranging α is a permutation of 2,3,4. From the proof of Theo-
rem 8.2.3 (b), if 〈α, β, γ〉 is an autotopism of A142, then the row arranging α

is an automorphism of GRA142. It follows that edges (1, 2) and (α(1), α(2)),
that is, (1, α(2)), have the same color. Since the edge (1, 2) is the unique
red edge with endpoint 1, we have α(2) = 2 whenever 〈α, β, γ〉 ∈ G′

A142.
Thus candidates of α are (34) and (1) in this case. Transform rows of A142
by row transposition (34). Clearly, the result can be further transformed
into A142 by some column arranging. We then obtain a coset representa-
tive 〈(34), (1), ·〉. Together with another coset representative e, from Theo-
rem 8.2.6 (c), they are coset representatives of all distinct cosets; that is,
G′

A142 = (〈(34), (1), ·〉) G′′
A142, here and elsewhere (g1, . . . , gr) stands for the

set generated by g1, . . . , gr but redundant autotopisms with identical row ar-
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ranging component are omitted except one in the case of coset representatives
of G′′

A in G′
A. Consequently, the order of G′

A142 is 2 · 8.
To compute the coset representatives of G′

A142 in GA142, let 〈α, β, γ〉 ∈
GA142. Thus α is an automorphism of PRA142. Try α(3) = 1. Since the edge
(3, 4) is red, the edge (α(3), α(4)), that is, (1, α(4)), is red. Since the edge
(1, 2) is the unique red edge with endpoint 1, we have α(4) = 2. It follows
that α = (1423) or (13)(24). Try α = (1423). A142 can be transformed into

A′ =

⎡
⎢⎢⎣

33 44 11 22
44 33 22 11
12 12 34 34
21 21 43 43

⎤
⎥⎥⎦

by row arranging (1423) and some column arranging. It is evident that
A′ can be transformed into A142 by some column arranging. Therefore,
g = 〈(1423), (1), ·〉 is an autotopism of A142. It follows from Theorem 8.2.6 (d)
that g, g2, g3 and g4 = e are coset representatives of all distinct cosets of
G′

A142 in GA142. That is, GA142 = (〈(1423), (1), ·〉) G′
A142, here and elsewhere

(g1, . . . , gr) stands for the set generated by g1, . . . , gr but redundant auto-
topisms with identical value of the row arranging at 1 are omitted except one
in the case of coset representatives of G′

A in GA. Consequently, the order of
GA142 is 4 · 2 · 8.

We turn to computing n11. From the column characteristic value, the
order of G′′′

A1142 is 2! =2.
To compute coset representatives of G′′′

A1142 in G′′
A1142, since the row ar-

ranging is restricted to be (1), from Theorem 8.2.7, for the result obtained
from A1142 by applying a renaming β and reducing to a canonical form, the
distribution of column types and row types of its blocks are coincided with
ones for A1142, in particular, β transforms repeated columns of A1142 into
repeated columns of the result. Since there is only one block of A1142 with
repeated columns, β transforms the block with repeated columns into itself.
It follows that β = (1). Therefore, there is only one coset and e is a coset
representative. It immediately follows that G′′

A1142 = G′′′
A1142.

To compute coset representatives of G′′
A1142 in G′

A1142, let 〈α, β, γ〉 ∈ G′,
where the row arranging α is a permutation of 2,3,4. Try α = (234). The row
arranging (234) transforms A1142 into

A′ =

⎡
⎢⎢⎣

11 22 33 44
44 13 12 32
22 34 41 13
33 41 24 21

⎤
⎥⎥⎦ .

Suppose that A′ can be transformed into A1142 by a renaming β and some
column arranging. Since column types of the first block of A′ and the first
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block of A1142 are the same and different from column types of other blocks,
from Theorem 8.2.7, the first block of A′ is transformed into the first block of
A1142 by renaming β and some column arranging. Thus β transforms the col-
umn 1423 into the column 1234; that is, β = (234). It is easy to verify that
〈(1), (234), ·〉 transforms A′ into A1142 indeed. Thus 〈(234), (234), ·〉 keeps
A1142 unchanged. Similarly, it is easy to see that 〈(34), (34), ·〉 keeps A1142
unchanged. Note that the autotopisms generated by the two autotopisms con-
tain six different autotopisms of which row arrangings are all the possible.
From Theorem 8.2.6 (c), (〈(234), (234), ·〉, 〈(34), (34), ·〉) are coset representa-
tives of all distinct cosets. That is, G′

A1142 = (〈(234), (234), ·〉, 〈(34), (34), ·〉)
G′′

A1142. Therefore, the order of G′
A1142 is 6 · 2.

To compute coset representatives of G′
A1142 in GA1142, let 〈α, β, γ〉 ∈ G.

Try α = (1234). A1142 can be transformed into

A′′ =

⎡
⎢⎢⎣

11 22 33 44
23 34 24 11
34 13 41 22
42 41 12 33

⎤
⎥⎥⎦

by row arranging (1234) and some column arranging. Suppose that A′′ can be
transformed into A1142 by a renaming β and some column arranging. Since
column types of the fourth block of A′′ and the first block of A1142 are the
same and different from column types of other blocks, from Theorem 8.2.7, the
fourth block of A′′ is transformed into the first block of A1142 by renaming
β and some column arranging. Thus β transforms the column 4123 into the
column 1234; that is, β = (1234). It is easy to verify that 〈(1), (1234), ·〉 trans-
forms A′′ into A1142 indeed. Thus 〈(1234), (1234), ·〉 keeps A1142 unchanged.
From Theorem 8.2.6 (d), (〈(1234), (1234), ·〉) are coset representatives of all
distinct cosets; that is, GA1142 = (〈(1234), (1234), ·〉) G′

A1142. Therefore, n11,
the order of GA1142, is 4 · 6 · 2.

Similarly, we can compute values of n2, . . . , n10.
The following is the computing results in the format: “x: the order of

G′′′
Ax42, the number of cosets of G′′′

Ax42 in G′′
Ax42, the number of cosets of

G′′
Ax42 in G′

Ax42, the number of cosets of G′
Ax42 in GAx42 (the product of the

four numbers is nx); the set of coset representatives of G′′′
Ax42 in G′′

Ax42; the
set of coset representatives of G′′

Ax42 in G′
Ax42; the set of coset representatives

of G′
Ax42 in GAx42.” γ in a coset representative 〈α, β, γ〉 is omitted.

1 : 1, 8, 2, 4; (〈(1), (34)〉, 〈(1), (1423)〉); (〈(34), (1)〉); (〈(1423), (1)〉).
2 : 1, 4, 2, 2; (〈(1), (1234)〉); (〈(34), (1)〉); (〈(12), (12)(34)〉).
3 : 1, 2, 1, 4; (〈(1), (13)(24)〉); e; (〈(13)(24), (1)〉, 〈(14)(23), (12)(34)〉).
4 : 1, 2, 2, 4; (〈(1), (34)〉); (〈(24), (12)〉); (〈(4321), (1)〉).
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5 : 1, 1, 2, 3; e; (〈(34), (34)〉); (〈(431), (234)〉).
6 : 1, 4, 6, 4; (〈(1), (12)(34)〉, 〈(1), (14)(23)〉); (〈(34), (23)〉, 〈(234), (234)〉);

(〈(4321), (12)〉).
7 : 24, 4, 6, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉); (〈(234), (234)〉, 〈(34), (34)〉);

(〈(4321), (24)〉).
8 : 22, 2, 2, 4; (〈(1), (12)(34)〉); (〈(34), (34)〉); (〈(1423), (1423)〉).
9 : 24, 4, 2, 4; (〈(1), (1423)〉); (〈(34), (34)〉); (〈(1423), (1)〉).
10 : 2, 1, 2, 4; e; (〈(23), (23)〉); (〈(1243), (1243)〉).
11 : 2, 1, 6, 4; e; (〈(234), (234)〉, 〈(34), (34)〉); (〈(1234), (1234)〉).

Using the formulae at the beginning of the proof, we then have

U(4, 2) =
11∑

i=1

4!4!8!/ni

= 4!4!8!(1/(8 · 2 · 4) + 1/(4 · 2 · 2) + 1/(2 · 4) + 1/(2 · 2 · 4) + 1/(2 · 3)

+ 1/(4 · 6 · 4) + 1/(24 · 4 · 6 · 4) + 1/(22 · 2 · 2 · 4)

+ 1/(24 · 4 · 2 · 4) + 1/(2 · 2 · 4) + 1/(2 · 6 · 4))

= 3 · 4!7! + 3!3!8! + 4!4!7! + 3!3!8! + 4 · 4!8! + 3!8!

+3 · 7! + 2 · 3!3!7! + 9 · 7! + 3!3!8! + 2 · 3!8!

= 7!(72 + 576 + 3 + 72 + 9) + 8!(36 + 36 + 96 + 6 + 36 + 12)

= 7!732 + 8!222 = 7!2508 = 12640320,

U(4, 2, 1) =
6∑

i=1

4!4!8!/ni

= 3 · 4!7! + 3!3!8! + 4!4!7! + 3!3!8! + 4 · 4!8! + 3!8!

= 7!(72 + 576) + 8!(36 + 36 + 96 + 6)

= 7!648 + 8!174 = 7!2040 = 10281600,

U(4, 2, 2) = 4!4!8!/n7 + 4!4!8!/n9

= 4!4!8!/(24 · 4 · 6 · 4) + 4!4!8!/(24 · 4 · 2 · 4)

= 3 · 7! + 9 · 7! = 60480.

We obtain the results of the theorem. ��

Corollary 8.2.2. I(4, 1) = I(4, 1, 1) = 2 , U(4, 1) = U(4, 1, 1) = (4!)2.

Proof. From Theorem 8.2.1, we have I(4, 1) = I(4, 1, 1) = I(4, 2, 2) = 2,
and U(4, 1, 1) = U(4, 2, 2)4!(2!)4/8!. Thus U(4, 1) = U(4, 1, 1) = 60480/105 =
576 = (4!)2. ��
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Enumeration of (4, 3)-Latin Arrays

Let A143, . . . , A4643 be (4,3)-Latin arrays as follows:⎡
⎢⎢⎣

111222333444
222111444333
333444111222
444333222111

⎤
⎥⎥⎦

A143

⎡
⎢⎢⎣

111222333444
222111444333
333444222111
444333111222

⎤
⎥⎥⎦

A243

⎡
⎢⎢⎣

111222333444
222111444333
333444112221
444333221112

⎤
⎥⎥⎦

A343

⎡
⎢⎢⎣

111222333444
222111444333
333444221112
444333112221

⎤
⎥⎥⎦

A443⎡
⎢⎢⎣

111222333444
222133444113
333444112221
444311221332

⎤
⎥⎥⎦

A543

⎡
⎢⎢⎣

111222333444
222131444313
333444112221
444313221132

⎤
⎥⎥⎦

A643

⎡
⎢⎢⎣

111222333444
222434141133
333141424212
444313212321

⎤
⎥⎥⎦

A743

⎡
⎢⎢⎣

111222333444
222431144133
333144421221
444313212312

⎤
⎥⎥⎦

A843⎡
⎢⎢⎣

111222333444
222111444333
334443112221
443334221112

⎤
⎥⎥⎦

A943

⎡
⎢⎢⎣

111222333444
222111444333
334443221112
443334112221

⎤
⎥⎥⎦

A1043

⎡
⎢⎢⎣

111222333444
222333444111
334441112322
443114221233

⎤
⎥⎥⎦

A1143

⎡
⎢⎢⎣

111222333444
222331444113
334443112221
443114221332

⎤
⎥⎥⎦

A1243⎡
⎢⎢⎣

111222333444
222313444113
334441112232
443134221321

⎤
⎥⎥⎦

A1343

⎡
⎢⎢⎣

111222333444
222313444113
334441212231
443134121322

⎤
⎥⎥⎦

A1443

⎡
⎢⎢⎣

111222333444
222131444331
334443212112
443314121223

⎤
⎥⎥⎦

A1543

⎡
⎢⎢⎣

111222333444
222131444331
334443112212
443314221123

⎤
⎥⎥⎦

A1643⎡
⎢⎢⎣

111222333444
222113444331
334441112223
443334221112

⎤
⎥⎥⎦

A1743

⎡
⎢⎢⎣

111222333444
222443114133
334111442322
443334221211

⎤
⎥⎥⎦

A1843

⎡
⎢⎢⎣

111222333444
222314441331
334441222113
443133114222

⎤
⎥⎥⎦

A1943

⎡
⎢⎢⎣

111222333444
222134441331
334413114222
443341222113

⎤
⎥⎥⎦

A2043⎡
⎢⎢⎣

111222333444
222341441331
334413114222
443134222113

⎤
⎥⎥⎦

A2143

⎡
⎢⎢⎣

111222333444
222334441113
334441212321
443113124232

⎤
⎥⎥⎦

A2243

⎡
⎢⎢⎣

111222333444
222334441113
334411124322
443143212231

⎤
⎥⎥⎦

A2343

⎡
⎢⎢⎣

111222333444
222334441113
334411224321
443143112232

⎤
⎥⎥⎦

A2443⎡
⎢⎢⎣

111222333444
222314441133
334431124221
443143212312

⎤
⎥⎥⎦

A2543

⎡
⎢⎢⎣

111222333444
222314441133
334431224211
443143112322

⎤
⎥⎥⎦

A2643

⎡
⎢⎢⎣

111222333444
222314441133
334443112221
443131224312

⎤
⎥⎥⎦

A2743

⎡
⎢⎢⎣

111222333444
222314441133
334443122211
443131214322

⎤
⎥⎥⎦

A2843
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⎢⎢⎣

111222333444
222314441133
334143214221
443431122312

⎤
⎥⎥⎦

A2943

⎡
⎢⎢⎣

111222333444
223443421311
334114242132
442331114223

⎤
⎥⎥⎦

A3043

⎡
⎢⎢⎣

111222333444
223114144233
334443211122
442331422311

⎤
⎥⎥⎦

A3143

⎡
⎢⎢⎣

111222333444
223114144233
334443212121
442331421312

⎤
⎥⎥⎦

A3243⎡
⎢⎢⎣

111222333444
223441124331
334134241212
442313412123

⎤
⎥⎥⎦

A3343

⎡
⎢⎢⎣

111222333444
223441114332
334134242121
442313421213

⎤
⎥⎥⎦

A3443

⎡
⎢⎢⎣

111222333444
223443114123
334314242211
442131421332

⎤
⎥⎥⎦

A3543

⎡
⎢⎢⎣

111222333444
234134124123
342341241231
423413412312

⎤
⎥⎥⎦

A3643⎡
⎢⎢⎣

111222333444
234134124123
342413241312
423341412231

⎤
⎥⎥⎦

A3743

⎡
⎢⎢⎣

111222333444
234134124123
423341241231
342413412312

⎤
⎥⎥⎦

A3843

⎡
⎢⎢⎣

111222333444
332441124123
424313241231
243134412312

⎤
⎥⎥⎦

A3943

⎡
⎢⎢⎣

111222333444
332441124123
424313241312
243134412231

⎤
⎥⎥⎦

A4043⎡
⎢⎢⎣

111222333444
332441124123
424313412231
243134241312

⎤
⎥⎥⎦

A4143

⎡
⎢⎢⎣

111222333444
234334114221
423141242313
342413421132

⎤
⎥⎥⎦

A4243

⎡
⎢⎢⎣

111222333444
234331441221
423414212313
342143124132

⎤
⎥⎥⎦

A4343

⎡
⎢⎢⎣

111222333444
224113442331
343434121212
432341214123

⎤
⎥⎥⎦

A4443⎡
⎢⎢⎣

111222333444
224113441332
343434212121
432341124213

⎤
⎥⎥⎦

A4543

⎡
⎢⎢⎣

111222333444
224113442331
343341214212
432434121123

⎤
⎥⎥⎦

A4643

.

Lemma 8.2.6. A143, . . . , A4643 are not isotopic to each other.

Proof. We compute the column characteristic value and the row charac-
teristic set of Ax43 and represent them in the format: “x: the column charac-
teristic value of Ax43; the row characteristic set of Ax43”, where the column
characteristic value is in the form c3c2, the row characteristic set is in the
form T1(i, j) T ′(i, j), in order of ij = 12, 13, 14, 23, 24, 34, T ′(i, j) = T2(i, j)
if the derived permutation from row i to row j exists, T ′(i, j) = T3(i, j) oth-
erwise. T2(i, j) = 4 means “a cycle of length 4”; T2(i, j) = 2 means “two
transpositions”. We list the results of column characteristic values and row
characteristic sets of A143, . . ., A4643 as follows:

1 : 40; 402, 402, 402, 402, 402, 402 2 : 40; 402, 404, 404, 404, 404, 402

3 : 22; 402, 222, 222, 222, 222, 402 4 : 22; 402, 224, 224, 224, 224, 402

5 : 13; 224, 222, 134, 134, 222, 224 6 : 12; 222, 222, 120, 120, 222, 222

7 : 12; 134, 134, 120, 120, 134, 134 8 : 10; 120, 120, 120, 120, 120, 120
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9 : 04; 402, 042, 042, 042, 042, 402 10 : 04; 402, 044, 044, 044, 044, 402

11 : 04; 404, 042, 044, 044, 042, 044 12 : 04; 224, 042, 044, 044, 042, 224

13 : 02; 224, 042, 020, 020, 042, 042 14 : 02; 224, 032, 032, 032, 032, 042

15 : 03; 222, 044, 032, 032, 044, 222 16 : 02; 222, 042, 020, 020, 042, 222

17 : 04; 222, 042, 042, 042, 042, 222 18 : 04; 134, 134, 042, 042, 134, 134

19 : 03; 120, 134, 134, 032, 032, 042 20 : 03; 120, 120, 120, 042, 042, 042

21 : 03; 120, 120, 120, 120, 120, 120 22 : 02; 134, 032, 033, 044, 020, 032

23 : 01; 134, 032, 020, 020, 032, 020 24 : 02; 134, 033, 032, 032, 033, 020

25 : 01; 120, 020, 020, 020, 020, 120 26 : 03; 120, 032, 032, 032, 032, 120

27 : 02; 120, 042, 032, 032, 042, 120 28 : 02; 120, 044, 033, 033, 044, 120

29 : 01; 120, 020, 020, 032, 032, 042 30 : 02; 033, 033, 044, 044, 033, 033

31 : 04; 042, 042, 042, 042, 042, 042 32 : 02; 042, 044, 020, 020, 044, 042

33 : 01; 032, 020, 020, 032, 032, 020 34 : 01; 044, 032, 020, 020, 032, 044

35 : 01; 032, 032, 032, 032, 032, 032 36 : 00; 000, 000, 000, 044, 044, 044

37 : 00; 000, 000, 000, 000, 000, 000 38 : 00; 000, 000, 000, 033, 033, 033

39 : 00; 020, 020, 000, 033, 032, 032 40 : 00; 020, 020, 000, 044, 020, 020

41 : 00; 020, 020, 000, 000, 020, 020 42 : 00; 032, 032, 000, 000, 032, 032

43 : 00; 033, 033, 000, 000, 033, 033 44 : 00; 042, 042, 000, 000, 042, 042

45 : 00; 042, 044, 000, 000, 044, 042 46 : 00; 042, 020, 020, 020, 020, 042

It is easy to verify that for any two distinct Ai43’s either their column char-
acteristic values are different, or their row characteristic sets are different.
From Corollary 8.2.1, it immediately follows that A143, . . . , A4643 are not
isotopic to each other. ��

Lemma 8.2.7. Any (4, 3)-Latin array is isotopic to one of A143, . . . , A4643;
and any (4, 3, 1)-Latin array is isotopic to one of A3643, . . . , A4643.

Proof. The proof of this lemma is similar to Lemma 8.2.5 but more tedious.
We omit the details of the proof for the sake of space. ��

Theorem 8.2.12. I(4, 3) = 46, I(4, 3, 1) = 11.

Proof. This is immediate from Lemmas 8.2.6 and 8.2.7. ��

Theorem 8.2.13. U(4, 3, 1) = 306561024000, U(4, 3) = 805929062400.

Proof. For any Ax43, G′′′
Ax43 is easy to determine from positions of re-

peated columns. For computing the order of GAx43, we find out the set of



8.2 Latin Arrays 307

coset representatives of G′′′
Ax43 in G′′

Ax43, the set of coset representatives of
G′′

Ax43 in G′
Ax43 and the set of coset representatives of G′

Ax43 in GAx43.
Below we give an example for GA1743

A1743 =

⎡
⎢⎢⎣

111 222 333 444
222 113 444 331
334 441 112 223
443 334 221 112

⎤
⎥⎥⎦ .

In GRA1743, labels of edges (1, 2) and (3, 4) are the same, say “red”; labels
of other edges are the same and not red, say “green”.

G′′′
A1743 consists of the product of the following permutations: permuta-

tions of columns 1 and 2, permutations of columns 4 and 5, permutations of
columns 7 and 8, permutations of columns 10 and 11; its order is (2!)4.

Let 〈(1), β, γ〉 ∈ G′′
A1743. Although the column types of various blocks of

A1743 are the same, the first block and the third block have the same row
type which is different from row types of other blocks. From Theorem 8.2.7,
the first block should be transformed into itself or the third block by renaming
β and some column arranging. In the case of being transformed into itself, the
renaming β transforms the repeated column 1234 into itself; that is, β = (1).
This gives the coset representative e. In the case of being transformed into
the third block, β transforms the repeated column 1234 into the repeated
column 3412; that is, β = (13)(24). It is easy to verify that 〈(1), (13)(24), ·〉
keeps A1743 unchanged indeed; this gives another coset representative. From
Theorem 8.2.6 (b), it follows that G′′

A1244 = (〈(1), (13)(24), ·〉) G′′′
A1244, of

which the order is 2 · (2!)4.
To find G′

A1743, let 〈α, β, γ〉 ∈ G′, where the row arranging α is a permuta-
tion of 2,3,4. From the proof of Theorem 8.2.3 (b), if 〈α, β, γ〉 is an autotopism
of A1743, then the row arranging α is an automorphism of GRA1743. It fol-
lows that edges (1, 2) and (α(1), α(2)), that is, (1, α(2)), have the same color.
Since the edge (1, 2) is the unique red edge with endpoint 1, we have α(2) = 2
whenever 〈α, β, γ〉 ∈ G′

A244. Thus the candidates of α are (34) and (1). Try
α = (34). The row arranging (34) transforms A1743 into

A′ =

⎡
⎢⎢⎣

111 222 333 444
222 113 444 331
443 334 221 112
334 441 112 223

⎤
⎥⎥⎦ .

If A′ can be transformed into A1743 by a renaming β and some column
arranging, from Theorem 8.2.7, then the first block of A′ should be trans-
formed into the first block or the third block of A1743 by renaming β and
some column arranging. In the case of being transformed into the first block,
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β transforms the repeated column 1243 into the repeated column 1234; that
is, β = (34). It is easy to see that β transforms the column 2341 into the
column 2431, which is not a column of A1743. It follows that A′ can not be
transformed into A1743 by 〈(1), (34), ·〉. In the case of being transformed into
the third block, β transforms the repeated column 1243 into the repeated col-
umn 3412; that is, β = (1324). It is easy to see that β transforms the column
2143 into the column 4312, which is not a column of A1743. It follows that A′

can not be transformed into A1743 by 〈(1), (1324), ·〉. To sum up, 〈(34), β, ·〉
can not keep A1743 unchanged for any β. Therefore, from Theorem 8.2.6 (c),
e is a coset representative of the unique coset. That is, G′

A1743 = G′′
A1743, of

which the order is 2 · (2!)4.
To find GA1743, let 〈α, β, γ〉 ∈ GA1743. Thus α is an automorphism of

PRA1743. Try α(3) = 1. Since the edge (3, 4) is red, the edge (α(3), α(4)),
that is, (1, α(4)), is red. Since the edge (1, 2) is the unique red edge with
endpoint 1, we have α(4) = 2. It follows that α = (1423) or (13)(24). Try
α = (1423). A1743 can be transformed into

A′′ =

⎡
⎢⎢⎣

111 222 333 444
422 111 442 333
344 433 221 211
233 344 114 122

⎤
⎥⎥⎦

by row arranging (1423) and some column arranging. If A′′ can be trans-
formed into A1743 by a renaming β and some column arranging, from The-
orem 8.2.7, then the second block of A′′ should be transformed into the first
block or the third block of A1743 by renaming β and some column arrang-
ing. In the case of being transformed into the first block, β transforms the
repeated column 2134 into the repeated column 1234; that is, β = (12). It is
easy to see that β transforms the column 1432 into the column 2431, which is
not a column of A1744. In the case of being transformed into the third block,
β transforms the repeated column 2134 into the repeated column 3412; that
is, β = (1423). It is easy to see that β transforms the column 1432 into the
column 4213, which is not a column of A1744. To sum up, for any renaning β,
〈(1), β, ·〉 can not transform A′′ into A1743. Thus 〈(1324), β, ·〉 can not keep
A1743 unchanged for any β. Try α = (13)(24). A1743 can be transformed
into

A′′′ =

⎡
⎢⎢⎣

111 222 333 444
422 111 442 333
233 344 114 122
344 433 221 211

⎤
⎥⎥⎦

by row arranging (13)(24) and some column arranging. If A′′′ can be trans-
formed into A1743 by a renaming β and some column arranging, from The-
orem 8.2.7, then the second block of A′′′ should be transformed into the first
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block or the third block of A1743 by renaming β and some column arranging.
Try the first block. In this case, β transforms the repeated column 2143 into
the repeated column 1234; that is, β = (12)(34). It is easy to verify that
A′′′ can be transformed into A1743 by 〈(1), (12)(34), ·〉 indeed. Therefore,
〈(13)(24), (12)(34), ·〉 keeps A1743 unchanged. Similarly, Try α(2) = 1. Since
the edge (1, 2) is red, the edge (α(1), α(2)), that is, (α(1), 1), is red. Since the
edge (2, 1) is the unique red edge with endpoint 1, we have α(1) = 2. It fol-
lows that α = (12)(34) or (12). Try α = (12)(34). A1743 can be transformed
into

A′′′′ =

⎡
⎢⎢⎣

111 222 333 444
224 111 244 333
332 443 411 221
443 334 122 112

⎤
⎥⎥⎦

by row arranging (12)(34) and some column arranging. Suppose that A′′′′

can be transformed into A1743 by a renaming β and some column ar-
ranging. From Theorem 8.2.7, the second block of A′′′′ should be trans-
formed into the first block or the third block of A1743 by renaming β

and some column arranging. Try the first block. In this case, β trans-
forms the repeated column 2143 into the repeated column 1234; that is,
β = (12)(34). It is easy to verify that A′′′′ can be transformed into A1743
by 〈(1), (12)(34), ·〉 indeed. Therefore, 〈(12)(34), (12)(34), ·〉 keeps A1743 un-
changed. From (13)(24) · (12)(34) = (14)(23) and (12)(34) · (12)(34) = (1),
〈(14)(23), (1), ·〉 keeps A1743 unchanged. From Theorem 8.2.6 (d), we then
have GA1743 = (〈(13)(24), (12)(34), ·〉, 〈(12)(34), (12)(34), ·〉) G′

A1743, of which
the order is 4 · 2 · (2!)4.

Similarly, we can compute other GAx43, using GRAx43 to reduce the trying
scope for row arranging, and using column types and row types of blocks to
reduce the trying scope for renaming.

Denote the order of autotopism group GAi43 of Ai43 by ni, i = 1, . . . , 46.
On autotopism group of Ax43 and its order nx, the computing results are
represented in the format: “x: the order of G′′′

Ax43, the number of cosets of
G′′′

Ax43 in G′′
Ax43, the number of cosets of G′′

Ax43 in G′
Ax43, the number of

cosets of G′
Ax43 in GAx43 (the product of the four numbers is nx); the set of

coset representatives of G′′′
Ax43 in G′′

Ax43; the set of coset representatives of
G′′

Ax43 in G′
Ax43; the set of coset representatives of G′

Ax43 in GAx43.” γ in a
coset representative 〈α, β, γ〉 is omitted.

1 : (3!)4, 4, 6, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉);
(〈(234), (234)〉, 〈(23), (23)〉); (〈(1234)〉, 〈(4321)〉).

2 : (3!)4, 4, 2, 4; (〈(1), (1423)〉); (〈(34), (34)〉); (〈(1423), (1)〉).
3 : (3!2!)2, 2, 2, 4; (〈(1), (12)(34)〉); (〈(34), (34)〉); (〈(1324), (1423)〉).
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4 : (3!2!)2, 2, 2, 4; (〈(1), (12)(34)〉); (〈(34), (34)〉); (〈(1324), (1324)〉).
5 : 3!23, 1, 1, 4; e; e; (〈(12)(34), (12)(34)〉, 〈(14)(23), (14)(23)〉).
6 : 3!22, 1, 2, 4; e; (〈(23), (23)〉); (〈(1243), (1243)〉).
7 : 3!22, 1, 2, 4; e; (〈(23), (23)〉); (〈(1243), (1243)〉).
8 : 3!, 1, 6, 4; e; (〈(234), (234)〉, 〈(34), (34)〉); (〈(1234), (1234)〉).
9 : 24, 4, 2, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉); (〈(34), (34)〉); (〈(1324), (34)〉).
10 : 24, 4, 2, 4; (〈(1), (1423)〉); (〈(34), (34)〉); (〈(1324), (1)〉).
11 : 24, 4, 1, 2; (〈(1), (1234)〉); e; (〈(12)(34), (12)(34)〉).
12 : 24, 2, 1, 4; (〈(1), (13)(24)〉); e; (〈(12)(34), (12)(34)〉, 〈(13)(24), (1)〉).
13 : 22, 2, 1, 2; (〈(1), (13)(24)〉); e; (〈(12)(34), (12)(34)〉).
14 : 22, 1, 2, 2; e; (〈(34), (13)(24)〉); (〈(12), (14)(23)〉).
15 : 23, 1, 1, 4; e; e; (〈(12)(34), (12)(34)〉, 〈(13)(24), (13)(24)〉).
16 : 22, 2, 1, 4; (〈(1), (13)(24)〉); e; (〈(12)(34), (12)(34)〉, 〈(13)(24), (1)〉).
17 : 24, 2, 1, 4; (〈(1), (13)(24)〉); e; (〈(13)(24), (12)(34)〉, 〈(12)(34), (12)(34)〉).
18 : 24, 1, 2, 4; e; (〈(23), (12)(34)〉); (〈(1243), (1)〉).
19 : 23, 1, 2, 1; e; (〈(34), (34)〉); e.

20 : 23, 1, 6, 1; e; (〈(23), (14)〉, 〈(34), (34)〉); e.

21 : 23, 1, 6, 4; e; (〈(234), (143)〉, 〈(34), (34)〉); (〈(1234), (4321)〉).
22 : 22, 1, 1, 1; e; e; e.

23 : 2, 1, 1, 2; e; e; (〈(12)(34), (12)(34)〉).
24 : 22, 1, 1, 2; e; e; (〈(12)(34), (12)(34)〉).
25 : 2, 1, 2, 4; e; (〈(34), (34)〉); (〈(1423), (1423)〉).
26 : 23, 1, 2, 4; e; (〈(34), (34)〉); (〈(1423), (1423)〉).
27 : 22, 1, 1, 4; e; e; (〈(12)(34), (12)(34)〉, 〈(14)(23), (12)(34)〉).
28 : 22, 1, 1, 4; e; e; (〈(13)(24), (34)〉, 〈(14)(23), (12)〉).
29 : 2, 1, 2, 1; e; (〈(34), (34)〉); e.

30 : 22, 1, 2, 4; e; (〈(23), (12)(34)〉); (〈(1243), (1243)〉).
31 : 24, 4, 3, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉);

(〈(234), (234)〉); e, 〈(143), (143)〉, 〈(13)(24), (13)(24)〉, 〈(123), (123)〉.
32 : 22, 2, 1, 4; (〈(1), (12)(34)〉); e; (〈(12)(34), (1)〉, 〈(14)(23), (14)(23)〉).
33 : 2, 1, 1, 3; e; e; (〈(134), (134)〉).
34 : 2, 1, 1, 4; e; e; (〈(12)(34), (12)(34)〉, 〈(14)(23), (14)(23)〉).
35 : 2, 1, 3, 4; e; (〈(234), (234)〉);

e, 〈(124), (124)〉, 〈(421), (421)〉, 〈(132), (132)〉.
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36 : 1, 4, 6, 1; (〈(1), (1234)〉); (〈(23), (24)〉, 〈(24), (24)〉); e.

37 : 1, 12, 6, 4; 〈(1), π〉, π is an even permutation;
(〈(234), (1)〉, 〈(23), (1234)〉); (〈(1234), (1234)〉).

38 : 1, 3, 6, 1; (〈(1), (124)〉); (〈(234), (1)〉, 〈(23), (24)〉); e.

39 : 1, 1, 2, 1; e; (〈(23), (12)〉); e.

40 : 1, 2, 2, 2; (〈(1), (12)(34)〉); (〈(23), (34)〉); (〈(14)(23), (13)(24)〉).
41 : 1, 2, 2, 4; (〈(1), (12)(34)〉); (〈(23), (12)〉); (〈(1342), (1423)〉).
42 : 1, 1, 2, 4; e; (〈(23), (23)〉); (〈(1243), (14)〉).
43 : 1, 3, 2, 4; (〈(1), (234)〉); (〈(23), (34)〉); (〈(1342), (1)〉).
44 : 1, 4, 2, 4; (〈(1), (12)(34)〉, 〈(1), (14)(23)〉); (〈(23), (23)〉); (〈(1342), (1342)〉).
45 : 1, 4, 1, 4; (〈(1), (1423)〉); e; (〈(12)(34), (12)〉, 〈(14)(23), (1)〉).
46 : 1, 2, 2, 4; (〈(1), (14)(23)〉); (〈(34), (12)(34)〉); (〈(1423), (1)〉).

Thus n1, . . . , n46 are

3529, 3429, 3228, 3228, 3 · 26, 3 · 26, 3 · 26, 3224, 29, 29,

27, 27, 24, 24, 25, 25, 27, 27, 24, 3 · 24,

3 · 26, 22, 22, 23, 24, 26, 24, 24, 22, 25,

3 · 28, 25, 3 · 2, 23, 3 · 23, 3 · 23, 3225, 322, 2, 23,

24, 23, 3 · 23, 25, 24, 24,

respectively. Since the number of elements in the isotopy class containing
Ai43 is 4!4!12!/ni, noticing 4!4!12! = 322612! = 372147700, we have

U(4, 3, 1) =
46∑

i=36

4!4!12!/ni

= 12!(24 + 2 + 32 + 288 + 72 + 36 + 72 + 24 + 18 + 36 + 36)

= 12!640 = 479001600 · 640 = 306561024000,

U(4, 3) =
46∑

i=1

4!4!12!/ni = 805929062400.

��

Enumeration of (4, 4)-Latin Arrays

Notice that the first row of any canonical (4,4)-Latin array is 111122223333
4444. Since each column of any canonical (4,4)-Latin array is a permutation
of 1,2,3 and 4, any canonical (4,4)-Latin array may be determined by its rows
2 and 3. For example, if rows 2 and 3 of a canonical (4,4)-Latin array A are
2222111144443333 and 3333444411112222, respectively, then we have
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A =

⎡
⎢⎢⎣

1111222233334444
2222111144443333
3333444411112222
4444333322221111

⎤
⎥⎥⎦ .

We give a (4,4)-Latin array Ax44 in the format: “x: the second row of
Ax44, the third row of Ax44”. Let A144, . . . , A20144 be 201 (4,4)-Latin arrays
given as follows:

1 : 2222111144443333, 3333444411112222
2 : 2222111144443333, 3333444422221111
3 : 2222111144443333, 3333444411122221
4 : 2222111144443333, 3333444422211112
5 : 2222111144443333, 3333444411222211
6 : 2222111144443333, 3334444311122221
7 : 2222111144443333, 3334444322211112
8 : 2222111144443333, 3334444311222211
9 : 2222111144443333, 3344443311222211

10 : 2222333344441111, 3334444111122223
11 : 2222333344441111, 3344441111223322
12 : 3333444421111222, 4444333112222113
13 : 3333444422211112, 4444333111122223
14 : 3333444422111122, 4444333111222213
15 : 3333444422112211, 4444331111223322
16 : 3333444411122221, 4442333122241113
17 : 3333444411222211, 4442333122141123
18 : 3333444412222111, 4442333121141223
19 : 3333444421111222, 4442333112242113
20 : 3333444422111122, 4442333111242213
21 : 3333444422211112, 4442333111142223
22 : 3333444411121222, 4442111322243331
23 : 3333444421121221, 4442111312243332
24 : 3333444412221211, 4442331121143322
25 : 3333444412121212, 4442331121243321
26 : 3333444411121222, 4442331122243311
27 : 3333444412212211, 4442331121143322
28 : 3333444411212221, 4442331122143312
29 : 3333444411122122, 2244113344211233
30 : 3333444411221122, 2244113344112233
31 : 3333444412122121, 2244113344211233
32 : 3333444412221121, 2244113344112233
33 : 2222333444411113, 3333444121142221
34 : 2222113444413331, 3333444111242212
35 : 2222113444413331, 3333444112242112
36 : 2222331444413311, 3333444122141122
37 : 2222443311441133, 3333114444222211
38 : 2222333444411113, 3334444111222231
39 : 2222333444411113, 3334444111122232
40 : 2222333444411113, 3334444311122221
41 : 2222333444411113, 3334441112242231
42 : 2222333444411113, 3334441111242232
43 : 2222113444413331, 3334434122241112
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44 : 2222113444413331, 3334434122141122
45 : 2222113444413331, 3334434121141222
46 : 2222113444413331, 3334434111142222
47 : 2222113444413331, 3334444322121112
48 : 2222113444413331, 3334444321121122
49 : 2222113444413331, 3334444311121222
50 : 2222113444413331, 3334441322141122
51 : 2222113444413331, 3334441321141222
52 : 2222113444413331, 3334441311142222
53 : 2222133444411133, 3334344122142211
54 : 2222133444411133, 3334344121142212
55 : 2222133444411133, 3334344111142222
56 : 2222133444411133, 3334414312142221
57 : 2222133444411133, 3334414322142211
58 : 2222133444411133, 3334414121142322
59 : 2222133444411133, 3334414121242321
60 : 2222133444411133, 3334414122242311
61 : 2222133444411133, 3334444311122212
62 : 2222133444411133, 3334444321122211
63 : 2222133444411133, 3334444111122322
64 : 2222334444111122, 3334413121442221
65 : 2222334444111133, 3334413122442211
66 : 2222334444111133, 3334443111422221
67 : 2222334444111133, 3334443121422211
68 : 2222334444111133, 3334441111423222
69 : 2222333444411113, 3344411122143322
70 : 2222333444411113, 3344411122243321
71 : 2222333444411113, 3344411321142322
72 : 2222113444413331, 3344334121141222
73 : 2222113444413331, 3344334121241212
74 : 2222113444413331, 3344334122241112
75 : 2222113444413331, 3344431121242213
76 : 2222113444413331, 3344434111221223
77 : 2222133444411133, 3344344321122211
78 : 2222133444411133, 3344314321142221
79 : 2222133444411133, 3344314322142211
80 : 2222133444411133, 3344314121142322
81 : 2222133444411133, 3344314122142312
82 : 2222133444411133, 3344314122242311
83 : 2222334444111133, 3344443311222211
84 : 2222334444111133, 3344413311422221
85 : 2222334444111133, 3344413111422322
86 : 2222334444111133, 3344413121422312
87 : 2222334444111133, 3344441111223322
88 : 2222334444111133, 3344441112223312
89 : 2223111444413332, 3334444311122221
90 : 2223111444413332, 3334444311222211
91 : 2223111444413332, 3334444312222111
92 : 2223111444413332, 4332443321242111
93 : 2223111444413332, 4332443321142121
94 : 2223111444423331, 4332443121242113
95 : 2223111444413332, 4332443121242113
96 : 2223111444413332, 4332443121142123
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97 : 2223111444423331, 4332443121142123
98 : 2223111444413332, 3344443321121221
99 : 2223333444411112, 3334441122143221

100 : 2224333144421113, 3332441411243221
101 : 2223333444411112, 3444411112222333
102 : 2223333444411112, 3444411321123223
103 : 2223333444411112, 3444411312222331
104 : 2224333144421113, 4333411412143222
105 : 2224333144421113, 4333411412243221
106 : 2224333144421113, 4433114421213232
107 : 2224333144421113, 4433414321212231
108 : 2224333144411123, 3332144421142312
109 : 2224333144411123, 3332144422142311
110 : 2224333144411123, 3342444311222311
111 : 2224333144411123, 3343444311222211
112 : 2224333144411123, 3442411412123332
113 : 2224333144411123, 3442411412223331
114 : 2224333144411123, 3442414312123231
115 : 2224333144411123, 3442411312143232
116 : 2224333144411123, 3442411312243231
117 : 2224333144411123, 3442414312123312
118 : 2224333144411123, 3442414312223311
119 : 2224333144411123, 3443411312242231
120 : 2224333144411123, 3443411312242312
121 : 2224333144411123, 3432414312142231
122 : 2224333144411123, 3432411412142332
123 : 2224333444111123, 3332441122443211
124 : 2224333444111123, 3332444121423211
125 : 2224333444111123, 4333411321442212
126 : 2224333444111123, 4333411322442211
127 : 2224333444111123, 4333411122442312
128 : 2224333444111123, 4333411122442231
129 : 2224333444111123, 4333441321422211
130 : 2224333444111123, 4333441121422312
131 : 2224333444111123, 4333441122422311
132 : 2224333444111123, 4333441112422231
133 : 2224333444111123, 4433144312222311
134 : 2224333444111123, 3342144311242231
135 : 2224333444111123, 3342144312243211
136 : 2224333444111123, 3342114321443212
137 : 2224333444111123, 3342441122243311
138 : 2223311444411332, 3334444311222121
139 : 2223311444411332, 3334444111223221
140 : 2223311444411332, 4332434121142123
141 : 2223311444411332, 4332434321142121
142 : 2223311444411332, 4332434121143221
143 : 2223311444411332, 4332144321143221
144 : 2223311444411332, 4332434122142113
145 : 2223311444411332, 4332434322142111
146 : 2223311444411332, 4332434122143211
147 : 2223311444411332, 4332144122143213
148 : 2223311444411332, 4332444311223211
149 : 2223311444411332, 3344144311223221
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150 : 2223311444411332, 3344434311222121
151 : 2223331444411132, 3334144122143221
152 : 2223331444411132, 4332144321142213
153 : 2223331444411132, 4332144121243321
154 : 2223331444411132, 4332144321143221
155 : 2223331444411132, 4332144321243211
156 : 2223331444411132, 4332144121242313
157 : 2223331444411132, 4332443121242311
158 : 2223331444411132, 4332443121142213
159 : 2223331444411132, 4332444121123321
160 : 2223331444411132, 3344443311222211
161 : 2223331444411132, 3344414311222321
162 : 2223331444411132, 3344143122142321
163 : 2223113444421133, 4332434112142321
164 : 2223113444421133, 4332441112143322
165 : 2223113444421133, 4332444112113322
166 : 2223113444421133, 3344434321112212
167 : 2223113444421133, 3344441321112322
168 : 2223113444421133, 3344341311242212
169 : 2224113344421133, 4333434421212211
170 : 2224113344421133, 4333434121242211
171 : 2224113344421133, 3342441111243322
172 : 2224113344421133, 3342434111243212
173 : 2223314444123311, 4332141321441232
174 : 2223314444123311, 4332441321411232
175 : 2223314444123311, 4332441311241223
176 : 2223314444123311, 4332431121441232
177 : 2223314444123311, 3344431112241232
178 : 2223314444123311, 3344143311241222
179 : 2223314444123311, 3344141311242232
180 : 2223314444123311, 3344141312242132
181 : 2223314444111332, 3334441312242211
182 : 2223314444111332, 4332431122442113
183 : 2223314444111332, 3344443311222211
184 : 2223314444111332, 3344441311223221
185 : 2223314444111332, 3344441312223211
186 : 2223314444111332, 3344433111422221
187 : 2223314444111332, 3344433121422211
188 : 2223314444111332, 3344141321423221
189 : 2223334444113211, 3344141321422132
190 : 2233441111442233, 3344334422111122
191 : 2233314444211123, 3344141312423212
192 : 2233314444211123, 3442133112442231
193 : 2233314444211123, 3442433112142231
194 : 2234334144121123, 3342413411242312
195 : 2234114344123321, 3342443111242213
196 : 3344334411221122, 2423141324142313
197 : 3344114411222233, 2423341324141312
198 : 3344134411221322, 2423411324143213
199 : 3344113412241223, 2423341141423132
200 : 3344113412241223, 2423341341422131
201 : 2344133412241123, 4223314141422331
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Lemma 8.2.8. A144, . . . , A20144 are not isotopic to each other.

Proof. We compute the column characteristic value and the row charac-
teristic set of Ax44 and represent them in the format: “x: the column charac-
teristic value of Ax44; the row characteristic set of Ax44”, where the column
characteristic value is in the form c4c3c2, the row characteristic set is in the
form T1(i, j) T ′(i, j), in order of ij = 12, 13, 14, 23, 24, 34, T ′(i, j) = T2(i, j)
if the derived permutation from row i to row j exists, T ′(i, j) = T3(i, j) oth-
erwise. T2(i, j) = 4 means “a cycle of length 4”; T2(i, j) = 2 means “two
transpositions”. We list the results of column characteristic values and row
characteristic sets of A144, . . ., A19544 as follows:

1 : 400; 4002, 4002, 4002, 4002, 4002, 4002
2 : 400; 4002, 4004, 4004, 4004, 4004, 4002
3 : 220; 4002, 2202, 2202, 2202, 2202, 4002
4 : 220; 4002, 2204, 2204, 2204, 2204, 4002
5 : 204; 4002, 2020, 2020, 2020, 2020, 4002
6 : 040; 4002, 0402, 0402, 0402, 0402, 4002
7 : 040; 4002, 0404, 0404, 0404, 0404, 4002
8 : 024; 4002, 0220, 0220, 0220, 0220, 4002
9 : 008; 4002, 0040, 0040, 0040, 0040, 4002

10 : 040; 4004, 0402, 0404, 0404, 0402, 0404
11 : 008; 4004, 0040, 0040, 0040, 0040, 0040
12 : 121; 2202, 1202, 2202, 2202, 1202, 2202
13 : 130; 2204, 1304, 2202, 2202, 1304, 2204
14 : 113; 2020, 1110, 2202, 2202, 1110, 2020
15 : 106; 2020, 1030, 2020, 2020, 1030, 2020
16 : 040; 2202, 0402, 0402, 0402, 0402, 2202
17 : 022; 2020, 0202, 0402, 0402, 0202, 0402
18 : 022; 2204, 0204, 0402, 0402, 0204, 0220
19 : 022; 2202, 0202, 0402, 0402, 0202, 2202
20 : 022; 2020, 0204, 0402, 0402, 0204, 2020
21 : 040; 2204, 0404, 0402, 0402, 0404, 2204
22 : 031; 2202, 0404, 0304, 0304, 0404, 2202
23 : 022; 2020, 0304, 0304, 0304, 0304, 0402
24 : 014; 2204, 0120, 0210, 0210, 0120, 0220
25 : 013; 2020, 0110, 0210, 0210, 0110, 0402
26 : 023; 2202, 0220, 0210, 0210, 0220, 2202
27 : 015; 2020, 0120, 0220, 0220, 0120, 2020
28 : 014; 2202, 0110, 0220, 0220, 0110, 2202
29 : 006; 2202, 0020, 0040, 0040, 0020, 2202
30 : 008; 2020, 0040, 0040, 0040, 0040, 2020
31 : 004; 2020, 0020, 0020, 0020, 0020, 0402
32 : 006; 2204, 0040, 0020, 0020, 0040, 0220
33 : 121; 1304, 1202, 1304, 1304, 1202, 1304
34 : 103; 1202, 1202, 1202, 1202, 1202, 1202
35 : 103; 1202, 1110, 1110, 1110, 1110, 1202
36 : 104; 1110, 1110, 1030, 1030, 1110, 1110
37 : 106; 1030, 1030, 1030, 1030, 1030, 1030
38 : 022; 1304, 0210, 0211, 0404, 0202, 0304
39 : 031; 1304, 0402, 0304, 1304, 1202, 0304
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40 : 040; 1304, 0402, 1304, 1304, 0402, 1304
41 : 013; 1304, 0110, 0120, 0120, 0110, 0110
42 : 013; 1304, 0210, 0204, 0204, 0210, 0110
43 : 030; 1202, 0304, 0304, 0304, 0304, 1202
44 : 012; 1202, 0110, 0110, 0110, 0110, 1202
45 : 012; 1202, 0202, 0202, 0202, 0202, 1202
46 : 030; 1202, 1202, 1202, 1202, 1202, 1202
47 : 022; 1202, 0404, 0211, 0211, 0404, 1202
48 : 013; 1202, 0220, 0110, 0110, 0220, 1202
49 : 022; 1202, 0402, 0210, 0210, 0402, 1202
50 : 013; 1202, 0110, 0110, 0304, 0304, 0402
51 : 013; 1202, 0202, 0202, 0210, 0210, 0402
52 : 031; 1202, 1202, 1202, 0402, 0402, 0402
53 : 014; 1110, 0110, 0120, 0120, 0110, 0110
54 : 013; 1110, 0202, 0204, 0204, 0202, 1110
55 : 023; 1110, 1202, 1110, 1110, 1202, 1110
56 : 012; 1110, 0202, 0204, 0110, 0210, 0210
57 : 013; 1110, 0110, 0120, 0211, 0304, 0210
58 : 012; 1110, 0210, 0202, 0202, 0210, 0202
59 : 011; 1110, 0110, 0110, 0110, 0110, 0202
60 : 021; 1110, 0211, 0304, 0304, 0211, 0202
61 : 022; 1110, 0402, 0304, 0304, 0402, 1110
62 : 014; 1110, 0220, 0211, 0211, 0220, 1110
63 : 022; 1110, 0402, 0210, 1110, 1202, 0210
64 : 012; 1030, 0204, 0204, 0110, 0110, 0110
65 : 014; 1030, 0120, 0120, 0211, 0211, 0110
66 : 013; 1030, 0202, 0304, 0304, 0202, 0204
67 : 013; 1030, 0110, 0211, 0211, 0110, 0204
68 : 014; 1030, 0210, 0210, 1110, 1110, 0110
69 : 005; 1304, 0120, 0020, 0020, 0120, 0110
70 : 014; 1304, 0211, 0210, 0210, 0211, 0110
71 : 005; 1304, 0110, 0120, 0010, 0040, 0020
72 : 005; 1202, 0110, 0110, 0110, 0110, 1202
73 : 005; 1202, 0020, 0020, 0020, 0020, 1202
74 : 023; 1202, 0210, 0210, 0210, 0210, 1202
75 : 004; 1202, 0010, 0040, 0040, 0010, 1202
76 : 004; 1202, 0020, 0020, 0110, 0110, 0402
77 : 006; 1110, 0040, 0120, 0120, 0040, 1110
78 : 004; 1110, 0110, 0120, 0010, 0020, 0210
79 : 005; 1110, 0020, 0040, 0110, 0110, 0210
80 : 004; 1110, 0110, 0110, 0110, 0110, 0202
81 : 003; 1110, 0010, 0020, 0020, 0010, 0202
82 : 013; 1110, 0110, 0210, 0210, 0110, 0202
83 : 008; 1030, 0040, 1030, 1030, 0040, 1030
84 : 005; 1030, 0110, 0211, 0120, 0020, 0110
85 : 004; 1030, 0110, 0110, 0110, 0110, 0002
86 : 002; 1030, 0010, 0010, 0010, 0010, 0002
87 : 008; 1030, 0040, 0040, 1030, 1030, 0040
88 : 006; 1030, 0120, 0120, 0120, 0120, 0040
89 : 040; 0402, 0402, 0402, 0402, 0402, 0402
90 : 022; 0402, 0220, 0202, 0202, 0220, 0402
91 : 022; 0402, 0404, 0204, 0204, 0404, 0402
92 : 004; 0402, 0110, 0110, 0110, 0110, 0402
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93 : 004; 0402, 0020, 0202, 0202, 0020, 0402
94 : 004; 0402, 0004, 0404, 0040, 0004, 0402
95 : 004; 0402, 0004, 0220, 0220, 0004, 0402
96 : 004; 0402, 0002, 0402, 0402, 0002, 0402
97 : 004; 0402, 0002, 0220, 0220, 0002, 0402
98 : 004; 0402, 0040, 0002, 0002, 0040, 0402
99 : 013; 0404, 0110, 0211, 0211, 0110, 0120

100 : 013; 0404, 0202, 0120, 0120, 0202, 0404
101 : 004; 0404, 0404, 0002, 0040, 0004, 0004
102 : 004; 0404, 0120, 0010, 0120, 0010, 0010
103 : 004; 0404, 0204, 0020, 0020, 0204, 0004
104 : 004; 0404, 0210, 0010, 0010, 0210, 0040
105 : 004; 0404, 0110, 0110, 0110, 0110, 0040
106 : 004; 0404, 0040, 0002, 0002, 0040, 0404
107 : 004; 0404, 0020, 0020, 0020, 0020, 0040
108 : 012; 0304, 0202, 0204, 0110, 0210, 0110
109 : 012; 0304, 0204, 0120, 0211, 0110, 0110
110 : 012; 0304, 0110, 0120, 0120, 0110, 0304
111 : 013; 0304, 0220, 0204, 0204, 0220, 0304
112 : 004; 0304, 0120, 0110, 0020, 0010, 0110
113 : 004; 0304, 0211, 0202, 0210, 0004, 0110
114 : 003; 0304, 0010, 0110, 0040, 0004, 0110
115 : 003; 0304, 0010, 0304, 0020, 0010, 0020
116 : 003; 0304, 0004, 0210, 0210, 0004, 0020
117 : 004; 0304, 0010, 0110, 0110, 0211, 0020
118 : 004; 0304, 0110, 0210, 0210, 0110, 0020
119 : 004; 0304, 0010, 0110, 0110, 0010, 0020
120 : 003; 0304, 0010, 0110, 0002, 0120, 0110
121 : 004; 0304, 0002, 0120, 0120, 0002, 0304
122 : 003; 0304, 0020, 0110, 0110, 0020, 0020
123 : 013; 0211, 0120, 0120, 0211, 0211, 0120
124 : 020; 0211, 0204, 0211, 0211, 0204, 0211
125 : 004; 0211, 0204, 0211, 0010, 0040, 0010
126 : 005; 0211, 0120, 0120, 0120, 0120, 0010
127 : 004; 0211, 0211, 0010, 0004, 0120, 0120
128 : 005; 0211, 0211, 0010, 0211, 0010, 0010
129 : 003; 0211, 0110, 0204, 0110, 0020, 0004
130 : 002; 0211, 0110, 0004, 0004, 0110, 0010
131 : 003; 0211, 0211, 0010, 0010, 0010, 0010
132 : 003; 0211, 0110, 0004, 0211, 0002, 0004
133 : 003; 0211, 0110, 0110, 0110, 0110, 0010
134 : 004; 0211, 0002, 0211, 0211, 0002, 0211
135 : 002; 0211, 0004, 0120, 0010, 0010, 0004
136 : 003; 0211, 0004, 0120, 0004, 0120, 0010
137 : 004; 0211, 0120, 0110, 0110, 0120, 0010
138 : 012; 0202, 0220, 0110, 0110, 0220, 0202
139 : 013; 0202, 0210, 0202, 0210, 0202, 0210
140 : 002; 0202, 0002, 0202, 0202, 0002, 0202
141 : 002; 0202, 0020, 0204, 0002, 0020, 0202
142 : 003; 0202, 0002, 0202, 0210, 0110, 0210
143 : 004; 0202, 0002, 0202, 0202, 0040, 0202
144 : 003; 0202, 0004, 0110, 0110, 0004, 0202
145 : 003; 0202, 0110, 0120, 0004, 0110, 0202
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146 : 002; 0202, 0004, 0110, 0020, 0010, 0210
147 : 003; 0202, 0010, 0220, 0220, 0010, 0202
148 : 003; 0202, 0110, 0110, 0002, 0020, 0210
149 : 004; 0202, 0020, 0002, 0002, 0020, 0202
150 : 002; 0202, 0040, 0004, 0004, 0040, 0202
151 : 011; 0204, 0110, 0110, 0110, 0110, 0204
152 : 003; 0204, 0002, 0204, 0110, 0110, 0110
153 : 003; 0204, 0010, 0110, 0020, 0120, 0110
154 : 002; 0204, 0002, 0204, 0002, 0040, 0002
155 : 002; 0204, 0004, 0120, 0004, 0120, 0002
156 : 002; 0204, 0010, 0110, 0110, 0010, 0002
157 : 003; 0204, 0004, 0120, 0010, 0010, 0110
158 : 004; 0204, 0002, 0204, 0204, 0002, 0204
159 : 004; 0204, 0110, 0110, 0110, 0110, 0040
160 : 004; 0204, 0040, 0204, 0204, 0040, 0204
161 : 002; 0204, 0020, 0004, 0004, 0020, 0002
162 : 002; 0204, 0010, 0010, 0010, 0010, 0204
163 : 002; 0210, 0002, 0110, 0110, 0002, 0210
164 : 005; 0210, 0020, 0220, 0220, 0020, 0210
165 : 005; 0210, 0210, 0210, 0210, 0210, 0210
166 : 003; 0210, 0220, 0004, 0004, 0220, 0210
167 : 004; 0210, 0210, 0002, 0002, 0210, 0210
168 : 003; 0210, 0110, 0010, 0010, 0110, 0210
169 : 005; 0220, 0220, 0010, 0010, 0220, 0220
170 : 004; 0220, 0110, 0110, 0110, 0110, 0220
171 : 006; 0220, 0020, 0040, 0040, 0020, 0220
172 : 002; 0220, 0002, 0020, 0020, 0002, 0220
173 : 001; 0110, 0004, 0110, 0020, 0010, 0002
174 : 001; 0110, 0002, 0110, 0002, 0110, 0002
175 : 002; 0110, 0002, 0110, 0110, 0002, 0110
176 : 002; 0110, 0004, 0110, 0110, 0004, 0110
177 : 002; 0110, 0010, 0004, 0120, 0010, 0110
178 : 004; 0110, 0110, 0004, 0120, 0110, 0110
179 : 003; 0110, 0110, 0002, 0110, 0002, 0002
180 : 001; 0110, 0010, 0004, 0010, 0004, 0002
181 : 010; 0110, 0110, 0110, 0110, 0110, 0110
182 : 005; 0110, 0010, 0110, 0110, 0010, 0110
183 : 004; 0110, 0040, 0110, 0110, 0040, 0110
184 : 004; 0110, 0020, 0020, 0110, 0110, 0020
185 : 002; 0110, 0110, 0010, 0004, 0020, 0020
186 : 003; 0110, 0110, 0110, 0110, 0110, 0110
187 : 001; 0110, 0020, 0004, 0004, 0020, 0110
188 : 002; 0110, 0010, 0002, 0002, 0010, 0110
189 : 001; 0120, 0010, 0004, 0004, 0010, 0004
190 : 008; 0040, 0040, 0040, 0040, 0040, 0040
191 : 002; 0010, 0010, 0010, 0004, 0004, 0004
192 : 001; 0010, 0010, 0010, 0010, 0010, 0010
193 : 001; 0010, 0004, 0004, 0004, 0004, 0010
194 : 002; 0004, 0002, 0004, 0004, 0002, 0004
195 : 004; 0002, 0002, 0002, 0002, 0002, 0002

We can verify that for any two distinct Ax44’s, either their column character-
istic values are different, or their row characteristic sets are different. From
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Corollary 8.2.1, it immediately follows that A144, . . . , A19544 are not iso-
topic to each other. Since A19644, . . ., A20144 are complements of A142, . . .,
A642, respectively, from Lemma 8.2.3 (a) and Lemma 8.2.4, A19644, . . .,
A20144 are not isotopic to each other. For any i, 1 � i � 195, and any j,
196 � j � 201, since Ai44 has repeated columns and columns of Aj44 are
different, Ai44 and Aj44 are not isotopic. Therefore, A144, . . . , A20144 are
not isotopic to each other. ��

Lemma 8.2.9. Any (4, 4)-Latin array is isotopic to one of A144, . . . , A20144;
and any (4, 4, 1)-Latin array is isotopic to one of A19644, . . . , A20144.

Proof. The proof of this lemma is similar to Lemma 8.2.5 but more tedious.
We omit the details of the proof for the sake of space. ��

Theorem 8.2.14. I(4, 4) = 201, I(4, 4, 1) = 6.

Proof. This is immediate from Lemmas 8.2.8 and 8.2.9. I(4, 4, 1) can also
be obtained from Theorem 8.2.2 (a) and Theorem 8.2.10, that is, I(4, 4, 1) =
I(4, 2, 1) = 6. ��

Theorem 8.2.15. U(4, 4, 1) = 5335311421440000,
U(4, 4) = 80306439693480000.

Proof. For any Ax44, G′′′
Ax44 is easy to determine from positions of re-

peated columns. For computing the order of GAx44, we find out the set of
coset representatives of G′′′

Ax44 in G′′
Ax44, the set of coset representatives of

G′′
Ax44 in G′

Ax44 and the set of coset representatives of G′
Ax44 in GAx44. Below

we give three examples for GA144, GA244 and GA4844.⎡
⎢⎢⎣

1111 2222 3333 4444
2222 1111 4444 3333
3333 4444 1111 2222
4444 3333 2222 1111

⎤
⎥⎥⎦

A144

⎡
⎢⎢⎣

1111 2222 3333 4444
2222 1111 4444 3333
3333 4444 2222 1111
4444 3333 1111 2222

⎤
⎥⎥⎦

A244

⎡
⎢⎢⎣

1111 2222 3333 4444
2222 1134 4441 3331
3334 4443 2112 1122
4443 3311 1224 2213

⎤
⎥⎥⎦

A4844

From the form of A144, each block consists of four identical columns.
Thus G′′′

A144 consists of all column permutations within blocks; therefore, its
order is (4!)4.

To find G′′
A144, let 〈(1), β, γ〉 ∈ G′′ and β(ij) = j, where i1, i2, i3, i4 are

a permutation of 1,2,3,4. Whenever 〈(1), β, γ〉 keeps A144 unchanged, from
the form of A144, the renaming β transforms the i1-th block of A144 into
the first block of A144. Thus β transforms the first column of the i1-th block
of A144 into the first column of first block of A144. Therefore, the renam-
ing β is uniquely determined by i1. In the case of i1 = 2, the renaming β

should transform the fifth column 2143 into the first column 1234. Thus
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β should be the permutation (12)(34). It is easy to verify that β trans-
forms the first, the third and the fourth blocks of A144 into the second,
the fourth and the third blocks of A144, respectively. Thus 〈(1), (12)(34), ·〉
keeps A144 unchanged. Recall that a dot · in the place of the column arrang-
ing means “some column arranging γ”. Similarly, in the case of i1 = 3, it
is easy to verify that 〈(1), (13)(24), ·〉 keeps A144 unchanged; in the case of
i1 = 4, it is easy to verify that 〈(1), (14)(23), ·〉 keeps A144 unchanged. Using
(12)(34) · (13)(24) = (14)(23), from Theorem 8.2.6 (b), we have G′′

A144 =
(〈(1), (12)(34), ·〉, 〈(1), (13)(24), ·〉) G′′′

A144, of which the order is 4(4!)4.
To find G′

A144, let 〈α, β, γ〉 ∈ G′, where the row arranging α is a per-
mutation of 2,3,4. Try α = (432). The row arranging (432) transforms A144
into

A′ =

⎡
⎢⎢⎣

1111 2222 3333 4444
3333 4444 1111 2222
4444 3333 2222 1111
2222 1111 4444 3333

⎤
⎥⎥⎦ .

If A′ can be transformed into A144 by a renaming β and some column arrang-
ing, then the first block of A′ is transformed into the β(1)-th block of A144.
From the form of A144 and A′, the first column of A′ is transformed into the
first column of the β(1)-th block of A144. Try β(1) = 1. Then β transforms
the column 1342 into the column 1234; that is, β = (432). It is easy to ver-
ify that 〈(1), (432), ·〉 transforms A′ into A144 indeed. Thus 〈(432), (432), ·〉
keeps A144 unchanged. Similarly, we can choose the row arranging (34) and
the renaming (34) so that 〈(34), (34), ·〉 keeps A144 unchanged. Noticing that
permutations (432) and (34) can generate all permutations on {2, 3, 4}, from
Theorem 8.2.6 (c), we have G′

A144 = (〈(432), (432), ·〉, 〈(34), (34), ·〉) G′′
A144,

of which the order is 6 · 4(4!)4.
To find GA144, let 〈α, β, γ〉 ∈ G. Try α = (4321). The row arranging

(4321) transforms A144 into

A′′ =

⎡
⎢⎢⎣

2222 1111 4444 3333
3333 4444 1111 2222
4444 3333 2222 1111
1111 2222 3333 4444

⎤
⎥⎥⎦ .

If A′′ can be transformed into A144 by a renaming β and some column ar-
ranging, then the first block of A′′ is transformed into the β(2)-th block of
A144. From the form of A144 and A′′, the first column of A′′ is transformed
into the first column of the β(2)-th block of A144. Try β(2) = 1. Then
β transforms the column 2341 into the column 1234; that is, β = (4321).
It is easy to verify that 〈(1), (4321), ·〉 transforms A′′ into A144 indeed.
Thus 〈(4321), (4321), ·〉 keeps A144 unchanged. Noticing that the permuta-
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tion (4321) generates (1234), (13)(24) and (1), from Theorem 8.2.6 (d), we
have GA144 = (〈(4321), (4321), ·〉) G′

A144, of which the order is 4 · 6 · 4(4!)4.
We compute GA244. In GRA244, labels of edges (1, 2) and (3, 4) are the

same, say “red”; labels of other edges are the same and not red, say “green”.
G′′′

A244 coincides with G′′′
A144; its order is (4!)4.

To find G′′
A244, let 〈(1), β, γ〉 ∈ G′′

A244 and β(ij) = j, where (i1, i2, i3, i4) is
a permutation of 1,2,3,4. Similar to the discussion on A144, since 〈(1), β, γ〉
keeps A244 unchanged, the renaming β is uniquely determined by i1. It fol-
lows that there are at most four choices for i1. Try i1 = 3. Similar to the
discussion for A144, β transforms the column 3421 into the column 1234;
that is, β = (1423). It is easy to verify that 〈(1), (1423), ·〉 keeps A244 un-
changed indeed. Since the permutation (1423) generates four permutations
corresponding to four choices for i1, from Theorem 8.2.6 (b), we have G′′

A244 =
(〈(1), (1423), ·〉) G′′′

A244, of which the order is 4 · (4!)4.
To find G′

A244, let 〈α, β, γ〉 ∈ G′, where the row arranging α is a permu-
tation of 2,3,4. From the proof of Theorem 8.2.3 (b), if 〈α, β, γ〉 is an auto-
topism of A244, then the row arranging α is an automorphism of GRA244.
In this case, edges (1, 2) and (α(1), α(2)), that is, (1, α(2)), have the same
color. Since the edge (1, 2) is the unique red edge with endpoint 1, we have
α(2) = 2 whenever 〈α, β, γ〉 ∈ G′

A244. Thus the choices of α are (34) and (1)
in this case. The row arranging (34) transforms A244 into

A′ =

⎡
⎢⎢⎣

1111 2222 3333 4444
2222 1111 4444 3333
4444 3333 1111 2222
3333 4444 2222 1111

⎤
⎥⎥⎦ .

It is easy to verify that A′ can be transformed into A244 by renaming (34) and
some column arranging. Thus 〈(34), (34), ·〉 keeps A244 unchanged. Therefore,
from Theorem 8.2.6 (c), we have G′

A244 = (〈(34), (34), ·〉) G′′
A244, of which the

order is 2 · 4 · (4!)4.
To find GA244, let 〈α, β, γ〉 ∈ GA244. Thus α is an automorphism of

PRA244. Try α(4) = 1. Since the edge (3, 4) is red, the edge (α(3), α(4)),
that is, (α(3), 1), is red. Since the edge (2, 1) is the unique red edge with
endpoint 1, we have α(3) = 2. It follows that α = (1324) or (14)(23). Try
α = (1324). A244 can be transformed into

A′′ =

⎡
⎢⎢⎣

4444 3333 1111 2222
3333 4444 2222 1111
1111 2222 3333 4444
2222 1111 4444 3333

⎤
⎥⎥⎦

by row arranging (1324). It is evident that A′′ can be transformed into A244
by some column arranging. Therefore, 〈(1324), (1), ·〉 keeps A244 unchanged.
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Noticing that the permutation (1324) generates (1423), (12)(34) and (1), from
Theorem 8.2.6 (d), we then have GA244 = (〈(1324), (1), ·〉) G′

A244, of which
the order is 4 · 2 · 4 · (4!)4.

We compute GA4844. In GRA4844, labels of edges (1, 4) and (2, 3) are the
same, say “red”; labels of edges (1, 2) and (3, 4) are the same and not red,
say “green”; labels of edges (1, 3) and (2, 4) are the same, not red and not
green, say “blue”.

G′′′
A4844 consists of the product of the following permutations: permuta-

tions of columns 1,2 and 3, permutations of columns 5 and 6, permutations
of columns 10 and 11, permutations of columns 13 and 14; its order is 3!(2!)3.

To find G′′
A4844, let 〈(1), β, γ〉 ∈ G′′

A4844. Since the column type of the
first block of A4844 are different from the column types of other blocks,
from Theorem 8.2.7 and its proof, the renaming β transforms the column
1234 into itself; that is, β = (1). From Theorem 8.2.6 (b), it follows that
G′′

A1244 = G′′′
A1244, of which the order is 3!(2!)3.

To find G′
A4844, let 〈α, β, γ〉 ∈ G′

A4844, where the row arranging α is a
permutation of 2, 3, 4. Thus α is an automorphism of GRA4844. It follows
that edges (1, i) and (α(1), α(i)), that is, (1, α(i)), have the same color for
i = 2, 3, 4. Since the colors of edges with endpoint 1 are different, we have
α(i) = i for i = 2, 3, 4; that is, α = (1). From Theorem 8.2.6 (c), we have
G′

A4844 = G′′
A4844, of which the order is 3!(2!)3.

To find GA4844, let 〈α, β, γ〉 ∈ GA4844. Thus α is an automorphism of
PRA4844. Try α(4) = 1. Since the edge (1, 4) is red, the edge (α(1), α(4)),
that is, (α(1), 1), is red. Since the edge (4, 1) is the unique red edge with
endpoint 1, we have α(1) = 4. It follows that α = (14) or (14)(23). A4844
can be transformed into

A′ =

⎡
⎢⎢⎣

1111 2222 3333 4444
4322 1111 4442 3332
3443 4433 2111 2221
2234 3344 1224 1113

⎤
⎥⎥⎦

by row arranging (14)(23) and some column arranging. Since no pair of the
row type and the column type of a block of A′ coincides with one of the
first block of A4844, from Theorem 8.2.7, no isotopism 〈(1), β′, γ′〉 from A′

to A4844 exists. It follows that no autotopism of A4844 with row arranging
(14)(23) exists. For the result of transforming A′ by row arranging (23), no
pair of the row type and the column type of a block of its coincides with one
of the first block of A4844. Thus no isotopism 〈(1), β′, γ′〉 from it to A4844
exists. It follows that no autotopism of A4844 with row arranging (14) exists.
We next try α(2) = 1. Since the edge (1, 2) is green, the edge (α(1), α(2)),
that is, (α(1), 1), is green. Since the edge (2, 1) is the unique green edge with
endpoint 1, we have α(1) = 2. It follows that α = (12) or (12)(34). A4844



324 8. One Key Cryptosystems and Latin Arrays

can be transformed into

A′′ =

⎡
⎢⎢⎣

1111 2222 3333 4444
2234 1111 2444 2333
3343 4443 1221 1122
4422 3334 4112 3211

⎤
⎥⎥⎦

by row arranging (12)(34) and some column arranging. From Theorem 8.2.7
and its proof, since the column with multiplicity 3 is unique in A′′ and in
A4844, the renaming β should transform the column 2143 of A′′ into the
column 1234 of A4844. It follows that β = (12)(34). It is easy to verify that
A′′ can be transformed into A4844 by renaming β and some column arranging
indeed. Thus 〈(12)(34), (12)(34), ·〉 keeps A4844 unchanged. Finally, for any
row arranging α with α(3) = 1, the product α · (12)(34) brings row 4 to row
1. Thus such 〈α, β, ·〉 is not an autotopism of A4844; otherwise there exists
an autotopism of A4844 in which the row arranging bring row 4 to row 1,
this is impossible as shown previously. From Theorem 8.2.6 (d), we obtain
GA4844 = (〈(12)(34), (12)(34), ·〉) G′

A4844, of which the order is 2 · 3(2!)3.
Similarly, we can compute other GAx44, using GRAx44 to reduce the trying

scope for row arranging, and using column types and row types of blocks to
reduce the trying scope for renaming.

Denote the order of autotopism group GAi44 of Ai44 by ni, i = 1, . . . , 201.
On the autotopism group of Ax44 and its order nx, the computing results
are represented by the format: “x: the order of G′′′

Ax44, the number of cosets
of G′′′

Ax44 in G′′
Ax44, the number of cosets of G′′

Ax44 in G′
Ax44, the number of

cosets of G′
Ax44 in GAx44 (the product of the four numbers is nx); the set of

coset representatives of G′′′
Ax44 in G′′

Ax44; the set of coset representatives of
G′′

Ax44 in G′
Ax44; the set of coset representatives of G′

Ax44 in GAx44.” γ in a
coset representative 〈α, β, γ〉 is omitted. For the sake of space, we only list a
part of results as follows:

1 : (4!)4, 4, 6, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉);
(〈(432), (432)〉, 〈(34), (34)〉); (〈(4321), (4321)〉).

2 : (4!)4, 4, 2, 4; (〈(1), (1423)〉); (〈(34), (34)〉); (〈(1324), (1)〉).
3 : (4!3!)2, 2, 2, 4; (〈(1), (12)(34)〉); (〈(34), (34)〉); (〈(1423), (1423)〉).
4 : (4!3!)2, 2, 2, 4; (〈(1), (12)(34)〉); (〈(34), (34)〉); (〈(1324), (1324)〉).
5 : (4!)224, 2, 2, 4; (〈(1), (12)(34)〉); (〈(34), (34)〉); (〈(1324), (1324)〉).
6 : (3!)4, 4, 2, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉); (〈(34), (34)〉);

(〈(1423), (1423)〉).
7 : (3!)4, 4, 2, 4; (〈(1), (1423)〉); (〈(34), (34)〉); (〈(1423), (1423)〉).
. . . . . . . . . . . .
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195 : 24, 4, 6, 4; (〈(1), (12)(34)〉, 〈(1), (13)(24)〉);
(〈(234), (234)〉, 〈(34), (34)〉); (〈(4321), (4321)〉).

196 : 1, 8, 2, 4; (〈(1), (34)〉, 〈(1), (1423)〉); (〈(34), (1)〉); (〈(1423), (1)〉).
197 : 1, 4, 2, 2; (〈(1), (1234)〉); (〈(34), (1)〉); (〈(12), (12)(34)〉).
198 : 1, 2, 1, 4; (〈(1), (13)(24)〉); e; (〈(13)(24), (1)〉, 〈(14)(23), (12)(34)〉).
199 : 1, 2, 2, 4; (〈(1), (34)〉); (〈(24), (12)〉); (〈(4321), (1)〉).
200 : 1, 1, 2, 3; e; (〈(34), (34)〉); (〈(431), (234)〉).
201 : 1, 4, 6, 4; (〈(1), (12)(34)〉, 〈(1), (14)(23)〉);

(〈(34), (23)〉, 〈(234), (234)〉); (〈(4321), (12)〉).

Thus we have

n1 = 35217, n89 = 3528, n2 = 34217, n3 = n4 = 34212, n6 = n7 = 3429,

n13 = 3428, ni = 3427, i = 10, 16, 21, 40, n46 = 3426, n52 = 3425,

n12 = n33 = 3329, n22 = n43 = 3326, n39 = 3325,

n5 = 32214, n37 = 32212, n8 = 32210, n14 = n34 = 3229,

n55 = n74 = 3228, ni = 3227, i = 19, 20, 26, 90, 91,

ni = 3226, i = 17, 18, 23, 47, 49, 61, ni = 3225, i = 63, 124,

ni = 3224, i = 38, 60, 123, 139, n181 = 3223,

n190 = 31213, n15 = 31212, n36 = 31210, ni = 3129, i = 35, 87, 195,

n27 = 3128, ni = 3127, i = 28, 53, 165,

ni = 3126, i = 24, 44, 45, 54, 62, 65, 68, 70, 100, 111, 128,

ni = 3125, i = 25, 41, 42, 48, 50, 51, 66, 67, 82, 99, 110, 138, 186, 201,

ni = 3124, i = 57, 58, 64, 151, 179, 184, 192,

ni = 3123, i = 56, 59, 108, 109, 191, n174 = 3122, n200 = 3121,

n9 = 214, n11 = n83 = 212, n30 = 211, ni = 29, i = 29, 96, 171,

ni = 28, i = 32, 72, 73, 77, 88, 98, 106, 158, 160, 169, 182,

ni = 27, i = 31, 75, 92, 93, 94, 95, 97, 101, 107, 134, 143, 149, 164, 167, 183,

ni = 26, i = 69, 85, 103, 105, 121, 126, 140, 194, 196,

ni = 25, i = 71, 76, 79, 80, 84, 86, 102, 104, 118, 119, 125, 127, 137, 144, 147,

150, 159, 162, 166, 168, 170, 172, 178,

ni = 24, i = 78, 81, 112, 113, 115, 116, 117, 122, 131, 132, 133, 136, 141, 142,

145, 152, 154, 161, 163, 175, 188, 193, 197, 199,

ni = 23, i = 114, 120, 129, 130, 148, 153, 155, 156, 157, 176, 177, 185, 187, 198,

ni = 22, i = 135, 146, 180, 189, n173 = 2.
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Since the number of elements in the isotopy class containing Ai44 is 4!4!16!/ni,
noticing 4!4!16! = 322616! = 382187007000, we have

U(4, 4, 1) =
201∑

i=196

4!4!16!/ni

= 16!3226(1/26 + 1/24 + 1/23 + 1/24 + 1/(3 · 2) + 1/(3 · 25))

= 16!(32 + 3222 + 3223 + 3222 + 3 · 25 + 3 · 2)

= 16!255 = 5335311421440000,

U(4, 4) =
201∑
i=1

4!4!16!/ni = 11460887640 · 7007000 = 80306439693480000.

We point out that U(4, 4, 1) can also be obtained from Theorem 8.2.2 (b)
and Theorem 8.2.11, that is, U(4, 4, 1) = U(4, 2, 1)(4! − 4 · 2)!/(4 · 2)! =
10281600 · 16!/8! = 5335311421440000. ��

Enumerating high order Latin arrays is not easy. Among others, sev-
eral useful permutational families corresponding to (2r, 2r)-Latin arrays are
gw1w2(x) = ϕ(w1−(w2⊕(w1−ϕ(x)))), gw1w2(x) = ϕ(w1⊕(w2−(w1⊕ϕ(x)))),
gw1w2(x) = w1 ⊕ ϕ(w2 − ϕ(w1 ⊕ x)), gw1w2(x) = w1 − ϕ(w2 ⊕ ϕ(w1 − x)),
where ϕ is a bijection. In the case where ϕ is an involution (i.e., ϕ−1 = ϕ),
such gw’s are involutions.

We return to giving an application of (4, 4)-Latin array to cryptography.
It is known that the following binary steam cipher is insecure: a plaintext
x0 . . . xl−1 is encrypted into a ciphertext y0 . . . yl−1 by

yi = xi ⊕ wi, i = 0, . . . , l − 1,

where the key string w0 . . . wl−1 is generated by a binary linear shift register.
In fact, this cipher can not resist the plain-chosen attack. Assume that the
key string satisfies the equation

wi = a1wi−1 ⊕ · · · ⊕ anwi−n, i = 0, . . . , l − 1. (8.1)

The key of the cipher is a1, . . . , an, w−n, . . . , w−1. If one can obtain a segment
of plaintext of length 2n, say xj . . . xj+2n−1, then wj . . . wj+2n−1 may be
evaluated by

wi = xi ⊕ yi, i = j, . . . , j + 2n − 1;

therefore, by solving the equation

wi = a1wi−1 ⊕ · · · ⊕ anwi−n, i = j + n, . . . , j + 2n − 1,

the coefficients a1, . . . , an can be easily found. By (8.1), the key bits wj+2n, . . . ,

wl−1 can be easily computed from wj+n . . . wj+2n−1, and the key bits w0, . . . ,
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wj−1 can be easily computed from wj . . . wj+n−1. If we describe this cipher
in the form in Fig.8.1.2, then Ma is a binary linear shift register and the
permutational family {gw, w = 0, 1} is {w ⊕ x,w = 0, 1} which corresponds
to a (2,2)-Latin array. The permutational family is too small! To improve this
situation, one may adopt a more complex shift register or a permutational
family corresponding to a higher order Latin array. For the latter, we give an
example using (4,4)-Latin array which can resist the plain-chosen attack.

Example 8.2.1. A maximal linear shift register sequence plus (4,4)-Latin ar-
ray cipher.

In Fig.8.1.2, let X and Y be GF (22) = {00, 01, 10, 11}. Let Ma be an
n-order maximal linear shift register sequence generator (i.e., a linear shift
register over GF (2) with characteristic polynomial period 2n −1) with 4 bits
output. And the permutation gw on GF (22) corresponds to a (4,4)-Latin
array A in such a way: for any w = w3w2w1w0 ∈ GF (24), if the element
of A at column (w323 + w222 + w12 + w0) + 1 and row (x12 + x0) + 1 is
(y12 + y0) + 1, then gw(x1x0) = y1y0. The key consists of gw, Ma and its
initial state; the amount of keys is the product of the number of (4,4)-Latin
arrays, the number of the primitive polynomials of degree n over GF (2) and
2n −1. An analysis in [104] shows that this cipher can resist the plain-chosen
attack.

If we use Latin arrays with larger order and if the family of permutations
corresponding to the Latin array satisfies the following condition: for any x

and y, components of w with gw(x) = y can not satisfy any linear equation,
where w is represented as a vector of dimension �log2 nk� over GF (2), then
for the counterpart of the above cipher in the case of (n, k)-Latin array, the
characteristic polynomial of Ma may be excluded from the key, in other words,
the structure of Ma can be fixed and the key consists of the Latin array and
the initial state of Ma. In the following section, we will give the definition
of such a kind Latin arrays, so-called Latin arrays with independence degree
� 1, and discuss their generation problem by means of invertible Boolean
vector functions with independence degree � 1.

8.3 Linearly Independent Latin Arrays

8.3.1 Latin Arrays of Invertible Functions

Let n and k be two positive integers. Denote r = �log2 nk� and N =
{1, . . . , n}. Let A be an (n, k)-Latin array. The vector [u1, . . . , ur] over GF (2)
is called the column label of column (u12r−1 +u22r−2 + · · ·+ur)+1 of A. Let
x, y ∈ N . If components of column labels of columns of A in which the ele-
ments at row x are y satisfy some nonzero polynomial in r variables of degree
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� c over GF (2), A is said to be c-dependent with respect to (x, y), other-
wise A is said to be c-independent with respect to (x, y). If A is c-dependent
with respect to (x, y) for any x, y ∈ N , A is said to be c-dependent. If A

is c-independent with respect to (x, y) for any x, y ∈ N , A is said to be
c-independent. If A is c-dependent and not (c− 1)-dependent, c is called the
dependent degree of A, denoted by cA. If A is c-independent and not (c + 1)-
independent, c is called the independent degree of A, denoted by IA. Clearly,
cA � IA + 1.

Proposition 8.3.1. Let A be an (n, k)-Latin array and r = �log2 nk�. Then
we have

cA � min c [ 1 +
(
r
1

)
+ · · · +

(
r
c

)
> k ].

Proof. Let c be a positive integer with 1 +
(
r
1

)
+ · · · +

(
r
c

)
> k. For any

x, y ∈ N , let the element at row x column jh of A be y, h = 1, . . . , k. Denote
the column label of column jh by [wh1, . . . , whr]. Let αh be the row vector

[1, wh1, . . . , whr, wh1wh2, . . . , wh,r−1whr,

. . . . . . , wh1 . . . whc, . . . , wh,r−c+1 . . . whr],

for h = 1, . . . , k. Let C be a matrix of which the h-th row is αh, h = 1, . . . , k.
Since the number of C’s columns is greater than the number of C’s rows,
columns of C are linearly dependent. Thus there is a nonzero column vector
γ such that Cγ = 0. It follows that A is c-dependent with respect to (x, y).
Thus A is c-dependent. Therefore, cA � c. ��

We use Rr
2 to denote the row vector space of dimension r over GF (2). For

any positive integer m, let fm be a one-to-one mapping from Rm
2 onto {0,

1, . . ., 2m − 1} defined by fm(x1, . . . , xm) = x12m−1 + x22m−2 + · · · + xm.
Let ϕ1 and ϕ2 be two permutations on Rr

2, and ϕ a transformation on Rr
2.

Denote Φ = (ϕ1, ϕ, ϕ2). Construct a 2r × 22r matrix AΦ over {1, . . . , 2r} as
follows: for any x,w1, w2 ∈ Rr

2, the element at row fr(x) + 1 and column
f2r(w1, w2) + 1 is fr(ϕ1(w1) ⊕ ϕ(ϕ2(w2) ⊕ x)) + 1, where ⊕ stands for the
vector addition over GF (2).

Proposition 8.3.2. AΦ is a (2r, 2r)-Latin array if and only if ϕ is a per-
mutation.

Proof. Whenever ϕ is a permutation, it is easy to prove that each column
of AΦ is a permutation on N and that for any x, y ∈ N , any w2 ∈ Rr

2 there
exists uniquely w1 ∈ Rr

2 such that the element at row x column f(w1, w2)+1
of AΦ is y. Thus AΦ is a (2r, 2r)-Latin array.

Whenever ϕ is not a permutation, it is easy to prove that each column of
AΦ is not a permutation on N . Thus AΦ is not a (2r, 2r)-Latin array. ��
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Whenever ϕ is a permutation, AΦ is called the (2r, 2r)-Latin array of Φ.
Let ϕ be a transformation on Rr

2 with component functions ϕ1, . . . , ϕr.
For any nonnegative integer c, if there is a nonzero polynomial h of degree
� c in 2r variables over GF (2) such that

h(x1, . . . , xr, ϕ1(x1, . . . , xr), . . . , ϕr(x1, . . . , xr)) = 0, x1, . . . , xr ∈ GF (2),

ϕ is said to be c-dependent, and h is called a dependent polynomial of ϕ. If
ϕ is not c-dependent, ϕ is said to be c-independent. If ϕ is c-dependent and
(c−1)-independent, c is called the dependent degree of ϕ, denoted by cϕ, and
c − 1 is called the independent degree of ϕ, denoted by Iϕ. In the case where
ϕ is 1-dependent, ϕ is said to be linearly dependent. In the case where ϕ is
1-independent, ϕ is said to be linearly independent.

An affine transformation on Rr
2 means a mapping xC ⊕ b, where C is an

r × r matrix over GF (2), b is a row vector of dimension r over GF (2).

Lemma 8.3.1. Let ϕ be a transformation on Rr
2, and p and q two invertible

affine transformations on Rr
2. Let ϕ′(x) = p(ϕ(q(x))), x ∈ Rr

2. Then we have
cϕ = cϕ′ and Iϕ = Iϕ′ .

Proof. Suppose that h is a dependent polynomial of ϕ. Since p and q are
invertible affine transformations, p−1 and q−1 are invertible affine transfor-
mations. Let

h′(x, y) = h(q(x), p−1(y)), x, y ∈ Rr
2.

Since h is a dependent polynomial of ϕ and q is invertible, it is easy to verify
that h′ is a dependent polynomial of ϕ′. Since q and p−1 are affine transfor-
mations, the degree of h′ is not greater than the degree of h. Therefore, we
have cϕ′ � cϕ. Since p−1 and q−1 are invertible affine transformations and
ϕ(x) = p−1(ϕ′(q−1(x))), from symmetry, we have cϕ � cϕ′ . Thus cϕ′ = cϕ.
From Iϕ′ = cϕ′ − 1 and Iϕ = cϕ − 1, we have Iϕ′ = Iϕ. ��

Theorem 8.3.1. Let ϕ be a transformation on Rr
2, and ϕ1 and ϕ2 two

invertible affine transformations on Rr
2. Let Φ = (ϕ1, ϕ, ϕ2), and AΦ be the

(2r, 2r)-Latin array of Φ. Then we have cAΦ
= cϕ, IAΦ

= Iϕ, and cAΦ
=

IAΦ
+ 1.

Proof. For any x, y, w1, w2 ∈ Rr
2, from the definition of AΦ, the element

of AΦ at row fr(x) + 1 column f2r(w1, w2) + 1 is fr(y) + 1 if and only if
y = ϕ1(w1) ⊕ ϕ(ϕ2(w2) ⊕ x), if and only if w1 = ϕ′

xy(w2), where ϕ′
xy(u) =

py(ϕ(qx(u))), py(u) = ϕ−1
1 (u ⊕ y), qx(u) = ϕ2(u) ⊕ x, u ∈ Rr

2. It follows
that AΦ is cϕ′

xy
-dependent with respect to (fr(x) + 1, fr(y) + 1) and that AΦ

is Iϕ′
xy

-independent with respect to (fr(x) + 1, fr(y) + 1). Since ϕ1 and ϕ2

are invertible affine transformations on Rr
2, py and qx are invertible affine
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transformations on Rr
2. From Lemma 8.3.1, we have cϕ′

xy
= cϕ. Thus Iϕ′

xy
=

Iϕ. Therefore, AΦ is cϕ-dependent and Iϕ-independent. Since cϕ = Iϕ + 1,
we have cAΦ

= cϕ, IAΦ
= Iϕ and cAΦ

= IAΦ
+ 1. ��

Denote c(r) = min c [ 1 +
(
2r
1

)
+ · · · +

(
2r
c

)
> 2r ]. We have the following.

Proposition 8.3.3. For any transformation ϕ on Rr
2, we have cϕ � c(r).

Proof. We give a proof analogous to Proposition 8.3.1. For any x ∈ Rr
2,

let αx be the row vector

[1, w1, . . . , w2r, w1w2, . . . , w2r−1w2r, . . . , w1 . . . wc(r), . . . , w2r−c(r)+1 . . . w2r],

where [ x, ϕ(x)] = [w1, . . . , w2r], w1, . . . , w2r ∈ GF (2). Let C be a matrix
of which row fr(x) + 1 is αx, x ∈ Rr

2. Since the number of C’s columns is
greater than the number of C’s rows, columns of C are linearly dependent.
Thus there is a nonzero column vector γ such that Cγ = 0. It follows that ϕ

is c(r)-dependent. Therefore, cϕ � c(r). ��

Theorem 8.3.2. Let r � 3. Then there is a permutation ϕ on Rr
2 such that

cϕ � 2.

Proof. Denote ti = x1 . . . xi−1xi+1 . . . xr, i = 1, . . . , r. Define a function ϕ

on Rr
2 so that ϕ(x1, . . . , xr) = [y1, . . . , yr], where

y1 = x1 ⊕ t1 ⊕ t2,

y2 = x2 ⊕ t2 ⊕ t3,

. . . . . . . . . , (8.2)

yr−1 = xr−1 ⊕ tr−1 ⊕ tr,

yr = xr ⊕ tr.

It is easy to verify that if the weight (number of 1) of [x1, . . . , xr] is less than
r−1 then ϕ(x1, . . . , xr) = [x1, . . . , xr], and that on the points of weights r−1
and r, ϕ is the cyclic permutation

(11 . . . 110, 11 . . . 101, . . . , 101 . . . 11, 011 . . . 11, 111 . . . 11).

Therefore, ϕ is invertible. We prove that ϕ is linearly independent. Suppose
to the contrary that ϕ is linearly dependent. Then there exist c0, . . ., cr,
d1, . . ., dr ∈ GF (2) such that at least one of them is nonzero and

c0 ⊕ c1x1 ⊕ · · · ⊕ crxr ⊕ d1y1 ⊕ · · · ⊕ dryr = 0

holds for any x1, . . . , xr in GF (2), where y1, . . . , yr are defined by (8.2). No-
tice that for the zero Boolean function all the coefficients of its polynomial
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expression are zero. From the coefficients of t1, we have d1 = 0. From the
coefficients of t2, we have d2 = 0. And so forth, from the coefficients of tr, we
have dr = 0. It follows that c0 = · · · = cr = 0. This is a contradiction. So ϕ

is linearly independent. ��

Corollary 8.3.1. For any r, 1 � r � 6, there is a permutation ϕ on Rr
2

such that cϕ = c(r).

Proof. Whenever r = 1, 2, we have c(r) = 1. Since any permutation ϕ on
Rr

2 is 0-independent, from Proposition 8.3.3, cϕ = c(r) holds.
Whenever r = 3, . . . , 6, we have c(r) = 2. From Theorem 8.3.2, there is

a permutation ϕ on Rr
2 such that cϕ � 2. From Proposition 8.3.3, we have

cϕ � c(r) = 2. Therefore, cϕ = 2 holds. ��

8.3.2 Generation of Linearly Independent Permutations

Truth Table

Given r > 0, let ϕ be a transformation on Rr
2. Let Wi be a

(
r
i

)
× r matrix

over GF (2) of which rows consist of all difference vectors of dimension r with
weight i, i = 0, 1, . . ., r. We use It to denote the column vector of dimension(
r
t

)
of which each component is 1. For any i, 0 � i � r, define a

(
r
i

)
×r matrix

Ui over GF (2) of which row j is the value of ϕ at row j of Wi, 1 � j �
(
r
i

)
.

Define a 2r × (1 + 2r) matrix

Φ =

⎡
⎢⎢⎢⎣

I0 W0 U0

I1 W1 U1

...
...

...
Ir Wr Ur

⎤
⎥⎥⎥⎦ .

In this section, we refer to Φ as the truth table of ϕ, and denote the submatrix
of the last r columns of Φ by Uϕ. Notice that W0 = 0. For convenience, we
arrange rows of W1 so that it is the identity matrix.

From the definitions, we have the following.

Proposition 8.3.4. (a) cϕ > 1 if and only if columns of Φ are linearly
independent.

(b) ϕ is invertible if and only if rows of Uϕ are distinct.

By Et denote the
(
r
t

)
×
(
r
t

)
identity matrix. Let the 2r × 2r matrix
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I0 W0

I1 W1

I2 W2 E2

0 W3 0 E3

I4 W4 0 0 E4

...
...

...
...

...
. . .

I ′r−1 Wr−1 0 0 0 . . . Er−1

I ′r Wr 0 0 0 . . . 0 Er

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where I ′j = Ij if j is even, I ′j = 0 otherwise. It is easy to verify that P is
nonsingular and

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I0 W0

I1 W1

I2 W2 E2

I3 W3 0 E3

I4 W4 0 0 E4

...
...

...
...

...
. . .

Ir−1 Wr−1 0 0 0 . . . Er−1

Ir Wr 0 0 0 . . . 0 Er

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Noticing that the first 1 + r columns of P−1 and of Φ are the same, we have
the following.

Lemma 8.3.2. PΦ is in the form

PΦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I0 0 V0

0 E1 V1

0 0 V2

...
...

...
0 0 Vr

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where V0 = U0, Vi is a
(
r
i

)
× r matrix, i = 1, . . ., r.

Let

Vϕ =

⎡
⎢⎣V0

...
Vr

⎤
⎥⎦ , Vϕ− =

⎡
⎢⎣V2

...
Vr

⎤
⎥⎦ .

Since P is nonsingular, columns of Φ are linearly independent if and only if
columns of PΦ are linearly independent. Using Lemma 8.3.2, columns of PΦ

are linearly independent if and only if columns of Vϕ− are linearly indepen-
dent. From Proposition 8.3.4 (a), we obtain the following proposition.
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Proposition 8.3.5. cϕ > 1 if and only if columns of Vϕ− are linearly in-
dependent.

Lemma 8.3.3. For any i, 1 � i � r, and any r × r permutation matrix Q

over GF (2), there exists uniquely a
(
r
i

)
×
(
r
i

)
permutation matrix PiQ such

that PiQWi = WiQ.

Proof. Notice that rows of Wi consist of all row vectors of dimension r

with weight i. Since arranging columns of Wi keeps the weight of each row
and sameness between rows unchanged, rows of WiQ consist of all row vectors
of dimension r with weight i. Therefore, there exists uniquely a permutation
matrix PiQ such that PiQWi = WiQ. ��

For any r × r permutation matrix Q over GF (2), let

DQ =

⎡
⎢⎢⎢⎢⎢⎣

I0

Q
P2Q

. . .
PrQ

⎤
⎥⎥⎥⎥⎥⎦ .

Let G′
r = {DQ | Q is an r×r permutation matrix over GF (2)}. Clearly, in the

case where Q is the identity matrix, PiQ is the identity matrix. In the case of
PiQWi = WiQ, we have WiQ

−1 = P−1
iQ (PiQWi)Q−1 = P−1

iQ (WiQ)Q−1 =
P−1

iQ Wi; therefore, PiQ−1 = P−1
iQ . In the case of PiQ′Wi = WiQ

′ and
PiQWi = WiQ, we have PiQPiQ′Wi = PiQWiQ

′ = WiQQ′; therefore,
PiQPiQ′ = Pi(QQ′). Thus G′

r is a group.
Let Gr = {〈DQ, δ, C〉 | Q is an r × r permutation matrix over GF (2), δ

is a row vector of dimension r over GF (2), C is an r × r nonsingular matrix
over GF (2) }.

For any 2r × r matrix V , partition it into blocks

V =

⎡
⎢⎢⎢⎣

V0

V1

...
Vr

⎤
⎥⎥⎥⎦ ,

where Vi has
(
r
i

)
rows, i = 0, 1, . . . , r. For any 〈DQ, δ, C〉 in Gr, define

V 〈DQ,δ,C〉 = DQ(V ⊕

⎡
⎢⎢⎢⎣

δ
0
...
0

⎤
⎥⎥⎥⎦)C = DQV C ⊕

⎡
⎢⎢⎢⎣

δC
0
...
0

⎤
⎥⎥⎥⎦ .
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For any 2r × r matrices V and V ′ over GF (2), V and V ′ are said to be
equivalent if there is 〈DQ, δ, C〉 in Gr such that V 〈DQ,δ,C〉 = V ′. It is easy to
verify that the equivalence relation is reflexive, symmetric and transitive.

Lemma 8.3.4. Assume that V 〈DQ,δ,C〉 = V ′. Then we have

P−1V ′ = DQ(P−1V )C ⊕

⎡
⎢⎢⎢⎣

δC
δC
...
δC

⎤
⎥⎥⎥⎦ .

Proof. Since PiQ is a permutation matrix, we have PiQIi = Ii. Using
PiQWi = WiQ, it follows that

P−1DQ =

⎡
⎢⎢⎢⎢⎢⎣

I0

I1 Q

I2 W2Q P2Q

...
...

...
. . .

Ir WrQ 0 . . . PrQ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

I0

I1 Q

I2 P2QW2 P2Q

...
...

...
. . .

Ir PrQWr 0 . . . PrQ

⎤
⎥⎥⎥⎥⎥⎦ = DQP−1.

Since V ′ = V 〈DQ,δ,C〉, we have

V ′ = DQV C ⊕

⎡
⎢⎢⎢⎣

δC
0
...
0

⎤
⎥⎥⎥⎦ .

Therefore,

P−1V ′ = P−1DQV C ⊕ P−1

⎡
⎢⎢⎢⎣

δC
0
...
0

⎤
⎥⎥⎥⎦ = DQ(P−1V )C ⊕

⎡
⎢⎢⎢⎣

δC
δC
...
δC

⎤
⎥⎥⎥⎦ . ��

For any 2r × r matrices V and V ′, denote the submatrices of V and of V ′

obtained by deleting their first 1 + r rows by V− and V ′
−, respectively.
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Lemma 8.3.5. Assume that two 2r × r matrices V and V ′ are equivalent.
(a) Columns of V− are linearly independent if and only if columns of V ′

−
are linearly independent.

(b) Rows of P−1V are distinct if and only if rows of P−1V ′ are distinct.

Proof. (a) Since V and V ′ are equivalent, there exists 〈DQ, δ, C〉 in Gr

such that V ′ = V 〈DQ,δ,C〉. Thus

V ′
− =

⎡
⎢⎣P2Q

. . .
PrQ

⎤
⎥⎦V−C.

Therefore, columns of V− are linearly independent if and only if columns of
V ′
− are linearly independent.

(b) Since DQ is a permutation matrix, rows of P−1V are distinct if
and only if rows of DQ(P−1V ) are distinct. Since C is nonsingular, rows
of DQ(P−1V ) are distinct if and only if rows of DQ(P−1V )C are distinct.
From Lemma 8.3.4, P−1V are distinct if and only if rows of P−1V ′ are dis-
tinct. ��

Theorem 8.3.3. Let ϕ and ϕ′ be two transformations on Rr
2, and Vϕ and

Vϕ′ be submatrices of the last r columns of PΦ and PΦ′, respectively, where Φ

and Φ′ are truth tables of ϕ and ϕ′, respectively. If Vϕ and Vϕ′ are equivalent,
then the condition that cϕ > 1 and ϕ is invertible holds if and only if the
condition that cϕ′ > 1 and ϕ′ is invertible holds.

Proof. From Lemma 8.3.5, Proposition 8.3.4(b) and Proposition 8.3.5. ��

On S(V0, V1)

For any row vector V0 of dimension r over GF (2) and any r × r matrix V1

over GF (2), we use S(V0, V1) to denote a set of 2r × r matrices over GF (2)
such that V ∈ S(V0, V1) if and only if the following conditions hold: the first
row of V is V0, the submatrix of rows 2 to 1 + r of V is V1, columns of V−
are linearly independent, and rows of P−1V are distinct.

For any transformation ϕ on Rr
2, let Vϕ be the last r columns of PΦ,

where Φ is the truth table of ϕ. Denote the first row of Vϕ by Vϕ0, and the
submatrix consisting of rows 2 to r + 1 of Vϕ by Vϕ1. From Propositions
8.3.4 (b) and 8.3.5, if cϕ > 1 and ϕ is invertible, then Vϕ ∈ S(Vϕ0, Vϕ1).
Conversely, from Propositions 8.3.4 (b) and 8.3.5, for any V ∈ S(V0, V1), if
ϕ is the transformation on Rr

2 with Vϕ = V , then cϕ > 1 and ϕ is invertible.
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Theorem 8.3.4. Let δ be a row vector of dimension r over GF (2), Q an
r × r permutation matrix over GF (2), and C an r × r nonsingular matrix
over GF (2). Then we have

S((V0 ⊕ δ)C, QV1C) = {V 〈DQ,δ,C〉 | V ∈ S(V0, V1)},

and |S((V0 ⊕ δ)C, QV1C)| = |S(V0, V1)|.

Proof. For any V ∈ S(V0, V1), from the definitions, using Lemma 8.3.5,
we have V 〈DQ,δ,C〉 ∈ S((V0 ⊕ δ)C,QV1C). Thus S((V0 ⊕ δ)C, QV1C) ⊇
{V 〈DQ,δ,C〉 | V ∈ S(V0, V1)}. Clearly, for any V, V̄ ∈ S(V0, V1), if V 
=
V̄ , then V 〈DQ,δ,C〉 
= V̄ 〈DQ,δ,C〉. It follows that |S((V0 ⊕ δ)C, QV1C)| �
|S(V0, V1)|. On the other hand, we have S(V0, V1) ⊇ {V 〈DQ−1 ,δC,C−1〉 | V ∈
S((V0 ⊕ δ)C, QV1C)} and |S((V0 ⊕ δ)C, QV1C)| � |S(V0, V1)|. Thus we have
|S((V0 ⊕ δ)C, QV1C)| = |S(V0, V1)|. It follows that S((V0 ⊕ δ)C,QV1C) =
{V 〈DQ,δ,C〉 | V ∈ S(V0, V1)}. ��

For any positive integer r, denote G
′′
r = { 〈Q,C〉 | Q is an r×r permutation

matrix over GF (2), C is an r×r nonsingular matrix over GF (2 }. Let · be an
operation on G

′′
r defined by 〈Q,C〉 · 〈Q′, C ′〉 = 〈QQ′, C ′C〉. It is easy to verify

that 〈G′′
r , ·〉 is a group. For any r×r matrix V1 over GF (2) and any 〈Q,C〉 in

G
′′
r , denote V

〈Q,C〉
1 = QV1C. V1 and V

〈Q,C〉
1 are said to be equivalent under

G
′′
r . It is easy to verify that the equivalence relation is reflexive, symmetric

and transitive. Any equivalence class of the equivalence relation under G
′′
r

includes r × r matrices in the form
[

E 0
B 0

]
, where E is the identity matrix,

columns of B are in decreasing order in some ordering. The minimum one in
the ordering is called the canonical form of the equivalence class under G

′′
r .

Notice that the property that rows of V1 are nonzero and the distinct
keeps unchanged under equivalence. Clearly, S(0, V1) 
= ∅ implies that rows
of V1 are nonzero and distinct. From Theorem 8.3.4, generation of linear inde-
pendent permutations can be reduced to generating S(0, V1), where V1 ranges
over canonical forms under G

′′
r , and rows of V1 are nonzero and distinct. For

example, in the case of r = 4, V1 has only three alternatives (see [38] for more
details): ⎡

⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 0

⎤
⎥⎥⎦ .

Lemma 8.3.6. Let

R =

⎡
⎣ I0 0 0

0 E1 0
0 W ∗ P ′

R

⎤
⎦ , PR =

⎡
⎣ I0

E1

P ′
R

⎤
⎦ ,
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where P ′
R is a (2r −1− r)× (2r −1− r) permutation matrix over GF (2), and

W ∗ = W ⊕ P ′
RW, W =

⎡
⎢⎣W2

...
Wr

⎤
⎥⎦ .

Then we have PRP−1 = P−1R, and R satisfying this equation is uniquely
determined by PR.

Proof. Partition P−1 into blocks with 1, r, 2r − 1 − r rows and columns
in turn

P−1 =

⎡
⎣ I0 0 0

I1 E1 0
I ′ W E′

⎤
⎦ ,

where I ′ is the column vector of dimension 2r−1−r of which each component
is 1, and E′ is the (2r − 1 − r) × (2r − 1 − r) identity matrix. It is easy to
verify that both PRP−1 and P−1R are equal to⎡

⎣ I0 0 0
I1 E1 0
I ′ P ′

RW P ′
R

⎤
⎦ .

Therefore, PRP−1 = P−1R. We prove that if PRP−1 = P−1R′ then R = R′.
Partition R′ into blocks with 1, r, 2r − 1 − r rows and columns in turn

R′ =

⎡
⎣R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ .

Since P−1R′ = PRP−1, we have R11 = I0, R12 = 0, R13 = 0. It follows that
R21 = 0, R22 = E1, R23 = 0. Furthermore, we have I ′ ⊕ R31 = I ′, W ⊕
R32 = P ′

RW , R33 = P ′
R. It follows that R31 = 0, R32 = W ⊕ P ′

RW = W ∗.
Therefore, R′ = R. ��

Lemma 8.3.7. For any 2r×r matrices V and V ′ over GF (2), the following
two conditions are equivalent: (a) the first r +1 rows of P−1V and of P−1V ′

are the same, and rows of P−1V ′ are a permutation of rows of P−1V ; (b) the
first r +1 rows of V and of V ′ are the same, and there exists a (2r − 1− r)×
(2r − 1− r) permutation matrix P ′

R such that V ′
− = (E′ ⊕ P ′

R)WV1 ⊕ P ′
RV−,

where V− and V ′
− are the submatrices consisting of the last 2r − 1 − r rows

of V and V ′, respectively, V1 is the submatrix consisting of rows 2 to r +1 of

V , E′ is the (2r − 1 − r) × (2r − 1 − r) identity matrix, and W =

[
W2...
Wr

]
.



338 8. One Key Cryptosystems and Latin Arrays

Proof. From the form of P−1, it is easy to verify that the first r + 1 rows
of P−1V and P−1V ′ are the same if and only if the first r + 1 rows of V and
of V ′ are the same.

Suppose that the first r + 1 rows of V and of V ′ are the same and that
V ′
− = (E′ ⊕ P ′

R)WV1 ⊕ P ′
RV−. Let

R =

⎡
⎢⎣ I0 0 0

0 E1 0
0 (E′ ⊕ P ′

R)W P ′
R

⎤
⎥⎦ .

Then we have V ′ = RV . Therefore, P−1V ′ = P−1RV . Let

PR =

⎡
⎣ I0

E1

P ′
R

⎤
⎦ .

From Lemma 8.3.6, we obtain P−1V ′ = P−1RV = PRP−1V . That is, rows
of P−1V ′ are a permutation of rows of P−1V .

Conversely, suppose that rows of P−1V ′ are a permutation of rows of
P−1V and the first r + 1 rows of them are the same. Then there exists a

permutation matrix PR =
[

I0
E1

P ′
R

]
such that P−1V ′ = PRP−1V . From

Lemma 8.3.6, we obtain P−1V ′ = P−1RV . It follows that V ′ = RV . There-
fore, V ′

− = (E′ ⊕ P ′
R)WV1 ⊕ P ′

RV−. ��

Theorem 8.3.5. Let V0 and V1 be 1 × r and r × r matrices over GF (2),
respectively. Assume that rows of V1 are distinct and nonzero. Let U− be a
(2r − 1− r)× r matrix over GF (2) of which rows consist of all different row
vectors of dimension r except V0 and rows of I1V0 ⊕ V1. Then S(V0, V1) is
the set of all ⎡

⎢⎣V0

V1

WV1 ⊕ P ′
R(I ′V0 ⊕ U−)

⎤
⎥⎦ ,

P ′
R ranging over (2r − 1 − r) × (2r − 1 − r) permutation matrices such that

columns of WV1 ⊕ P ′
R(I ′V0 ⊕ U−) are linearly independent, where I1 and I ′

are column vectors of dimensions r and 2r − 1 − r of which each component
is 1, respectively.

Proof. Let

V = P

⎡
⎢⎣V0

I1V0 ⊕ V1

U−

⎤
⎥⎦ .
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Clearly, the first row of V is V0, the submatrix consisting of rows 2 to r + 1
of V is V1, and rows of P−1V are distinct. Since U− = I ′V0 ⊕WV1 ⊕ V−, we
have WV1 ⊕ V− = I ′V0 ⊕ U−.

Suppose that V ′ ∈ S(V0, V1). Then the first row of V ′ is V0, the submatrix
consisting of rows 2 to r+1 of V ′ is V1, columns of V ′

− are linearly independent,
and rows of P−1V ′ are distinct. Thus V and V ′ satisfy the condition (a)
in Lemma 8.3.7. From Lemma 8.3.7, there exists a permutation matrix P ′

R

such that V ′
− = (E′ ⊕ P ′

R) WV1 ⊕ P ′
RV− = WV1 ⊕ P ′

R(WV1 ⊕ V−). Since
WV1 ⊕ V− = I ′V0 ⊕ U−, we have V ′

− = WV1 ⊕ P ′
R(I ′V0 ⊕ U−). Therefore,

columns of WV1 ⊕ P ′
R(I ′V0 ⊕ U−) are linearly independent.

Conversely, suppose that P ′
R is a permutation matrix and that columns

of WV1 ⊕ P ′
R(I ′V0 ⊕ U−) are linearly independent. Let

V ′ =

⎡
⎢⎣V0

V1

WV1 ⊕ P ′
R(I ′V0 ⊕ U−)

⎤
⎥⎦ .

Then columns of V ′
− are linearly independent. Since WV1 ⊕ V− = I ′V0 ⊕U−,

we have V ′
− = WV1 ⊕ P ′

R(WV1 ⊕ V−). Thus V and V ′ satisfy the condi-
tion (b) in Lemma 8.3.7; therefore, the condition (a) in Lemma 8.3.7 holds.
Since rows of P−1V are distinct, rows of P−1V ′ are distinct. Therefore, V ′ ∈
S(V0, V1). ��

Problem P (a1, . . . , ak, b1, . . . , bk)

Given a row vector V0 of dimension r over GF (2) and an r × r matrix V1

over GF (2) with distinct and nonzero rows, we fix a (2r − 1 − r) × r matrix
U− over GF (2) such that rows of V0, I1V0 ⊕ V1 and U− are all different
row vectors of dimension r. Denoting A = WV1 and B = I ′V0 ⊕ U−, from
Theorem 8.3.5, the problem on generation of S(V0, V1) is reduced to choosing
(2r − 1 − r) × (2r − 1 − r) permutation matrices P ′

R’s such that columns
of A ⊕ P ′

RB are linearly independent. The latter can be generalized to the
following problem.

Problem P (a1, . . . , ak, b1, . . . , bk): given row vectors a1, . . . , ak, b1, . . . , bk

of dimension r over GF (2), find all permutations, say π, on {1, 2, . . . , k} such
that columns of Vπ are linearly independent, where

Vπ =

⎡
⎢⎢⎢⎢⎣

a1 ⊕ bπ(1)

a2 ⊕ bπ(2)

...
ak ⊕ bπ(k)

⎤
⎥⎥⎥⎥⎦ .
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Clearly, if k < r, then Problem P (a1, . . . , ak, b1, . . . , bk) has no solution.
Below we assume k � r.

For any sequences (c1, . . . , cr) and (d1, . . . , dr), if there exists i, 1 � i � r,
such that c1 = d1, . . ., ci−1 = di−1 and ci < di, (c1, . . . , cr) is said to be
less than (d1, . . . , dr). For any solution π of Problem P (a1, . . . , ak, b1, . . . , bk),
consider the set of all sequences (c1, . . . , cr) such that 1 � c1 < c2 < . . . <

cr � k, rows c1, . . . , cr of Vπ are linearly independent. The minimum sequence
in the set is called the rank-spectrum of π. Since columns of Vπ are linearly
independent, the rank-spectrum of π is defined.

Denote the set of all solutions of Problem P (a1, . . . , ak, b1, . . . , bk) with
rank-spectrum (c1, . . . , cr) by V (c1, . . . , cr). Let

V (c1, . . . , cr; d1, . . . , dr) = {π | π ∈ V (c1, . . . , cr), π(c1) = d1, . . . , π(cr) = dr}.

Let π ∈ V (c1, . . . , cr; d1, . . . , dr). Then a1 ⊕ bπ(1) = . . . = ac1−1 ⊕
bπ(c1−1) = 0 and ac1 ⊕ bd1 
= 0. Therefore, if for some i < c1, ai is differ-
ent from each bj , j = 1, . . . , k, then V (c1, . . . , cr) = ∅.

We use R(c1, . . . , ci, d1, . . . , di) to denote the vector space generated by
ac1 ⊕ bd1 , . . ., aci

⊕ bdi
, which is the 0-dimensional space {0} in the case of

i = 0. For any I ⊆ {1, . . ., k}, let

Π(I, h, c1, . . . , ci, d1, . . . , di)

= {j | j ∈ {1, . . . , k} \ I, bj ∈ ah ⊕ R(c1, . . . , ci, d1, . . . , di)}.

Given c1, . . . , cr and d1, . . . , dr such that 1 � c1 < c2 < · · · < cr � k and
that d1, . . . , dr are distinct elements in {1, . . ., k}, denote c0 = 0, cr+1 = k+1.
Let

Hi = {h | ci < h < ci+1}, i = 0, 1, . . . , r.

Define a relation ∼i on Hi

h ∼i h′ ⇔ ah ⊕ ah′ ∈ R(c1, . . . , ci, d1, . . . , di),

0 � i � r. Clearly, ∼i is reflexive, symmetric and transitive. We use Hi1,
Hi2, . . ., Hiti

to denote all equivalence classes of ∼i on Hi.

Lemma 8.3.8. Assume that 1 � c1 < c2 < · · · < cr � k and that
d1, . . . , dr are distinct elements in {1, . . ., k}. Let I ⊆ {1, . . ., k}. Then
for any i, 0 � i � r, and any h, h′ ∈ Hi we have (a) if h ∼i h′ holds,
then Π(I, h, c1, . . . , ci, d1, . . . , di) = Π(I, h′, c1, . . . , ci, d1, . . . , di), and (b) if
h ∼i h′ does not hold, then Π (I, h, c1, . . ., ci, d1, . . ., di) and Π (I, h′,
c1, . . ., ci, d1, . . ., di) are disjoint.
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Proof. (a) Since h ∼i h′ holds, we have ah ⊕ah′ ∈ R(c1, . . . , ci, d1, . . . , di).
Therefore, ah ⊕ R(c1, . . . , ci, d1, . . . , di) = ah′ ⊕ R(c1, . . . , ci, d1, . . . , di). It
follows that Π(I, h, c1, . . ., ci, d1, . . ., di) = Π(I, h′, c1, . . ., ci, d1, . . ., di).

(b) Since h ∼i h′ does not hold, ah ⊕ah′ is not in R(c1, . . . , ci, d1, . . . , di).
It follows that the coset ah ⊕ R(c1, . . . , ci, d1, . . . , di) and the coset ah′ ⊕
R(c1, . . ., ci, d1, . . ., di) are disjoint. Therefore, Π (I, h, c1, . . ., ci, d1, . . .,
di) and Π (I, h′, c1, . . ., ci, d1, . . ., di) are disjoint. ��

Lemma 8.3.9. Assume that 1 � c1 < c2 < · · · < cr � k and that d1, . . . , dr

are distinct elements in {1, . . ., k}. Let I ⊆ {1, . . ., k}. Then for any i and i′,
0 � i′ < i � r, any h ∈ Hi and any h′ ∈ Hi′ , Π(I, h′, c1, . . . , ci′ , d1, . . . , di′)
is a subset of Π(I, h, c1, . . . , ci, d1, . . . , di) or they are disjoint.

Proof. Suppose that the intersection set of Π(I, h′, c1, . . . , ci′ , d1, . . . , di′)
and Π(I, h, c1, . . . , ci, d1, . . . , di) is nonempty. Then the intersection set of
ah′⊕ R(c1, . . . , ci′ , d1, . . . , di′) and ah ⊕ R(c1, . . . , ci, d1, . . . , di) is nonempty.
This yields h ∼i h′, since R(c1, . . ., ci′ , d1, . . ., di′) is a subspace of
R(c1, . . . , ci, d1, . . . , di). Thus ah′ ⊕ R(c1, . . ., ci′ , d1, . . ., di′) ⊆ ah′ ⊕
R(c1, . . ., ci, d1, . . ., di) = ah ⊕ R(c1, . . . , ci, d1, . . . , di). It follows that
Π(I, h′, c1, . . . , ci′ , d1, . . . , di′) ⊆ Π(I, h, c1, . . ., ci, d1, . . ., di). ��

Let N0j = ∅ for any j. For any i, j, 1 � i � r, 1 � j � ti, let

Nij = { (i′, j′) | 0 � i′ < i, 1 � j′ � ti′ ,

(∃h)Hij
(∃h′)Hi′j′ [Π(I, h′, c1, . . . , ci′ , d1, . . . , di′)

⊆ Π(I, h, c1, . . . , ci, d1, . . . , di)] }.

Theorem 8.3.6. Assume that 1 � c1 < c2 < · · · < cr � k and that
d1, . . . , dr ∈ {1, . . . , k} are distinct. Let I = {d1, . . ., dr}. Then for any
transformation π on {1, . . ., k}, π is in V (c1, . . . , cr; d1, . . . , dr) if and only
if the following conditions hold:

(a) π(cj) = dj, j = 1, . . . , r;
(b) ac1 ⊕ bd1 , . . ., acr

⊕ bdr
are linearly independent;

(c) any i, j, 0 � i � r, 1 � j � ti, |π(Hij)| = |Hij | and

π(Hij) ⊆ Π(I, hij , c1, . . . , ci, d1, . . . , di) \
⋃

(i′,j′)∈Nij

π(Hi′,j′),

where hij is an arbitrary element in Hij.

Proof. only if : Suppose that π ∈ V (c1, . . . , cr; d1, . . . , dr). From the de-
finition of V (c1, . . . , cr; d1, . . . , dr), (a) and (b) are obvious. Since π is a
permutation, numbers of elements of Hij and π(Hij) are the same. For
any i, i′, 0 � i′ < i � r, since Hi and Hi′ are disjoint, π(Hi) and



342 8. One Key Cryptosystems and Latin Arrays

π(Hi′) are disjoint. It follows that π(Hij) and
⋃

(i′,j′)∈Nij
π(Hi′,j′) are dis-

joint. On the other hand, for any h in Hij , since (c1, . . . , cr) is the rank-
spectrum of π, ah ⊕ bπ(h) is in R(c1, . . . , ci, d1, . . . , di). Since π is a permuta-
tion, π(h) is not in I. Therefore, π(h) ∈ Π(I, h, c1, . . . , ci, d1, . . . , di). Since
h ∼i hij , from Lemma 8.3.8, we obtain Π(I, h, c1, . . ., ci, d1, . . ., di) =
Π(I, hij , c1, . . . , ci, d1, . . . , di). Thus π(h) ∈ Π(I, hij , c1, . . . , ci, d1, . . . , di). It
follows that π(Hij) ⊆ Π(I, hij , c1, . . . , ci, d1, . . . , di). Therefore, (c) holds.

if : Suppose that the transformation π satisfies conditions (a), (b) and
(c). First of all, we prove a proposition by reduction to absurdity: for any
i, i′, 0 � i′ < i � r, π(Hi) and π(Hi′) are disjoint. Suppose to the con-
trary that there exist i and i′, 0 � i′ < i � r, such that π(Hi) and π(Hi′)
intersect. Then there exist j and j′, 1 � j � ti, 1 � j′ � ti′ , such that
π(Hij) and π(Hi′j′) intersect. Since (c) holds, Π(I, h, c1, . . . , ci, d1, . . . , di)
and Π(I, h′, c1, . . . , ci′ , d1, . . . , di′) intersect, for any h ∈ Hij , h′ ∈ Hi′j′ . Using
Lemma 8.3.9, Π(I, h′, c1, . . . , ci′ , d1, . . . , di′) is a subset of Π(I, h, c1, . . . , ci,

d1, . . . , di). Therefore, (i′, j′) ∈ Nij . Since π(Hij) and π(Hi′j′) intersect,
π(Hij) and

⋃
(s,t)∈Nij

π(Hst) intersect. This contradicts the condition (c).
Thus the proposition holds. From (a), (c) and the proposition, it is easy to
show that π is a permutation if and only if for any i, 0 � i � r, any j and
j′, 1 � j′ < j � ti, π(Hij) and π(Hij′) are disjoint. Using Lemma 8.3.8,
whenever h ∼i h′ does not hold, Π (I, h, c1, . . ., ci, d1, . . ., di) and Π (I,
h′, c1, . . ., ci, d1, . . ., di) are disjoint. From (c), it is easy to see that for
any i, 0 � i � r, any j and j′, 1 � j′ < j � ti, π(Hij) and π(Hij′) are
disjoint. Thus π is a permutation. From (b) and (c), it is easy to prove that
(c1, . . . , cr) is the rank-spectrum of π. It immediately follows, using (a), that
π ∈ V (c1, . . . , cr, d1, . . . , dr). ��

Solutions π and π′ of Problem P (a1, . . . , ak, b1, . . . , bk) are said to be
equivalent, if rank-spectra of π and π′ are the same, say (c1, . . . , cr), and
π(ci) = π′(ci) for i = 1, . . ., r, π(Hij) = π′(Hij) for i = 0, 1, . . ., r and
j = 1, . . ., ti. (In the definition of Hij , the value of di is taken as π(ci),
i = 1, . . ., r.) It is easy to verify that the equivalent relation is reflexive,
symmetric and transitive.

Corollary 8.3.2. If V (c1, . . . , cr; d1, . . . , dr) 
= ∅, then the number of so-
lutions in each equivalence class is

∏
0�i�r,1�j�ti

|Hij |!, and the equivalence
class containing π can be obtained by changing the restriction of π on Hij to
bijections from Hij to π(Hij) for i = 0, 1, . . ., r and j = 1, . . ., ti.

Corollary 8.3.3. Assume that 1 � c1 < c2 < · · · < cr � k and that
d1, . . . , dr ∈ {1, . . . , k} are distinct. Let I = {d1, . . . , dr}. If there exist
i, j, 0 � i < r, 1 � j � ti, such that |Hij | +

∑
(i′,j′)∈Nij

|Hi′j′ | >
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|Π(I, hij , c1, . . . , ci, d1, . . . , di)|, where hij ∈ Hij, then V (c1, . . . , cr; d1, . . . , dr)
= ∅.

Noticing that Hij and Π(I, hij , c1, . . . , ci, d1, . . . , di) do not depend on
parameters ci+2, . . . , cr, di+1, . . . , dr, Corollary 8.3.3 can be generalized to
the following.

Corollary 8.3.4. Let 0 � i < r. Assume that 1 � c1 < c2 < · · · < ci+1 �
k − r + i + 1 and that d1, . . . , di ∈ {1, . . . , k} are distinct. Let I = {d1, . . .,
di }. If there exists j, 1 � j � ti such that |Hij | +

∑
(i′,j′)∈Nij

|Hi′j′ | >

|Π(I, hij , c1, . . . , ci, d1, . . . , di)|, where hij ∈ Hij, then for any ci+2, . . ., cr,
di+1, . . ., dr, we have V (c1, . . ., cr; d1,. . ., dr) = ∅.

Theorem 8.3.6 and Corollaries 8.3.3 and 8.3.4 give criteria to decide
whether V (c1, . . ., cr; d1, . . ., dr) is empty and a method of enumerat-
ing its elements in nonempty case. The first step is computing acj

⊕ bdj
,

j = 1, . . ., r and deciding whether they are linear independent; in the case of
V (c1, . . . , cr; d1, . . . , dr) 
= ∅, they must be linearly independent. The second
step is, for each i from 1 to r in turn, choosing π(Hij), 1 � j � ti, so that the
condition (c) in Theorem 8.3.6 holds. In the case of V (c1, . . . , cr; d1, . . . , dr) 
=
∅, this process can go on, that is, the circumstances without enough elements
for choosing mentioned in Corollaries 8.3.3 and 8.3.4 can not happen. Point
out that tr = 1 and Π(I, h, c1, . . ., cr, d1, . . ., dr) = {1, . . ., k} − I, so
π(Hr1) is unique, i.e., π(Hr1) = {1, . . ., k} − {π(i), i = 1, . . ., cr}. The third
step is choosing π so that π(ci) = di for i = 1, . . ., r and that the restriction
of π on Hij is a surjection from Hij to π(Hij) (in fact, a bijection because of
|Hij | = |π(Hij)|) for i = 0, 1, . . ., r and j = 1, . . ., ti.

Notice that in the sense of equivalence π is determined by π(Hij), i = 0, 1,
. . ., r, j = 1, . . ., ti. From the method mentioned above we have the following.

Corollary 8.3.5. Assume that 0 � c1 < c2 < · · · < cr � k and that
d1, . . . , dr ∈ {1, . . . , k} are distinct. Let I = {d1, . . ., dr}. For any i, j,
1 � i � r, 1 � j � ti, let qij = |Hij | and

sij = |Π(I, h, c1, . . . , ci, d1, . . . , di)| −
∑

(i′,j′)∈Nij

qi′j′ ,

where h is an arbitrary element in Hij.
(a) V (c1, . . . , cr; d1, . . . , dr) 
= ∅ if and only if ac1 ⊕ bd1 , . . ., acr ⊕ bdr are

linearly independent and (∀i)(∀j)[0 � i � r & 1 � j � ti → qij � sij ].
(b) For nonempty V (c1, . . . , cr; d1, . . . , dr), the number of its equivalence

classes is ∏
0�i<r,1�j�ti

(
sij

qij

)
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and the number of its elements is( ∏
0�i<r,1�j�ti

(
sij

qij

)
· qij !

)
· (k − cr)!.

Example 8.3.1. Let ai and bi be the i-th row of A and B, respectively, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0
1 0 0 0
0 1 1 0
0 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 0
1 1 1 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Find V (2, 6, 8, 9; 5, 11, 1, 9).
We first compute

C =

⎡
⎢⎢⎣

a2 ⊕ b5

a6 ⊕ b11

a8 ⊕ b1

a9 ⊕ b9

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 1
0 1 1 1
1 1 0 1

⎤
⎥⎥⎦ .

Let Rj be the vector space spanned by the first j rows of C, j = 1, 2, 3.
Let R0 = {0} be the vector space of dimension 0. We use Πij to denote the
set of all h ∈ I ′ such that ak ⊕ bh ∈ Ri, where I ′ = {1, . . . , 11} \ {5, 11, 1, 9},
k is an arbitrarily given element in Hij . We compute Hij and Πij .

H0 = H01 = {1}, Π01 = {10}.
H1 = {3, 4, 5}, H11 = {3}, H12 = {4}, H13 = {5}, Π11 = {4, 7}, Π12 =

{3}, Π13 = {6, 8}.
H2 = H21 = {7}, Π21 = {6, 8}.
H3 = ∅.
H4 = H41 = {10, 11}, Π01 = I ′.
We define the permutation π on {1, . . . , 11}.
First define π(2) = 5, π(6) = 11, π(8) = 1, π(9) = 9.
Then for points with |Hij | = |Πij |, define π(1) = 10, π(4) = 3. Similarly,

define π({5, 7}) = {6, 8}.
Now define π(3) ∈ {4, 7}. In the case where π(3) = 4, define π({10, 11}) =

{2, 7}. In the case where π(3) = 7, define π({10, 11}) = {2, 4}.
To sum up, the solutions of π(1), . . . , π(11) are:
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10, 5, 4, 3, 6, 11, 8, 1, 9, 2, 7;

10, 5, 4, 3, 6, 11, 8, 1, 9, 7, 2;

10, 5, 7, 3, 6, 11, 8, 1, 9, 2, 4;

10, 5, 7, 3, 6, 11, 8, 1, 9, 4, 2;

10, 5, 4, 3, 8, 11, 6, 1, 9, 2, 7;

10, 5, 4, 3, 8, 11, 6, 1, 9, 7, 2;

10, 5, 7, 3, 8, 11, 6, 1, 9, 2, 4;

10, 5, 7, 3, 8, 11, 6, 1, 9, 4, 2.

For any solution π in the example, let

V0 =
[
0 0 0 0

]
, V1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 0

⎤
⎥⎥⎦ ,

and P ′
R be the 11 × 11 permutation matrix of which the element at row i

column π(i) is 1. From Theorem 8.3.5,⎡
⎣V0

V1

WV1 ⊕ P ′
R(I ′V0 ⊕ U−)

⎤
⎦

is in S(V0, V1), where WV1 = A, U− = B, and rows of Wi in W are arranged
in increasing order, that is,

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore,

P−1

⎡
⎣V0

V1

WV1 ⊕ P ′
R(I ′V0 ⊕ U−)

⎤
⎦ =

⎡
⎣0

V1

P ′
RB

⎤
⎦

gives the last 4 columns of the truth table of a permutation ϕ on R4
2 with

cϕ > 1.
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Historical Notes

Finite automata are regarded as mathematical models of ciphers in [91, 88, 33]
for example. Based on [99, 100], a one key cryptosystem is proposed in [101]
to model the ciphers which can be realized by finite automata and possess
features of bounded error propagation and no plaintext expansion. Section 8.1
is based on [101]. This model consists of four part: a segment of recent ci-
phertext history, an autonomous finite automaton, a discrete function, and
a permutational family. In [115], the concept of Latin array is introduced for
studying permutational families, which is a generalization of Latin square.
Section 8.2 is based on [115, 116, 43] and an unpublished manuscript [114];
the omitted parts in the proofs of Lemmas 8.2.7 and 8.2.9 and Theorem 8.2.15
can be found in [114]. And Sect. 8.3 is based on [119].
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Since the introduction of the concept of public key cryptosystems by

Diffie and Hellman[32], many concrete cryptosystems had been proposed
and found applications in the area of information security; almost all are
block. In this chapter, we present a sequential one, the so-called finite
automaton public key cryptosystem; it can be used for encryption as well
as for implementing digital signatures. The public key is a compound finite
automaton of n + 1 ( � 2 ) finite automata and states, the private key is
the n + 1 weak inverse finite automata of them and states; no feasible
inversion algorithm for the compound finite automaton is known unless
its decomposition is known. Chapter 3 gives implicitly a feasible method
to construct the 2n + 2 finite automata. We restrict the 2n + 2 finite
automata to memory finite automata in the first five sections; in the last
section, we use pseudo-memory finite automata to construct generalized
cryptosystems.
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Sects. 9.4 and 9.5, which is heavily dependent on Chap. 4 and Sect. 2.3.
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Since the introduction of the concept of public key cryptosystems by Diffie
and Hellman[32], many concrete cryptosystems had been proposed and found
applications in the area of information security; almost all are block. In this
chapter, we present a sequential one, the so-called finite automaton public
key cryptosystem; it can be used for encryption as well as for implement-
ing digital signatures. The public key is a compound finite automaton of
n + 1(� 2) finite automata and states, the private key is the n + 1 weak in-
verse finite automata of them and states; no feasible inversion algorithm for
the compound finite automaton is known unless its decomposition is known.
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Chapter 3 gives implicitly a feasible method to construct the 2n + 2 finite
automata. We restrict the 2n+2 finite automata to memory finite automata
in the first five sections; in the last section, we use pseudo-memory finite
automata to construct generalized cryptosystems.

Security of finite automaton public key cryptosystems is discussed in
Sects. 9.4 and 9.5, which is heavily depend on Chap. 4 and Sect. 2.3.

9.1 Theoretical Fundamentals

Throughout this chapter, for any integer i, any positive integer k and any
symbol string z, we still use z(i, k) to denote the symbol string zi, zi−1, . . . ,

zi−k+1. For any (r, t)-order memory finite automaton M = 〈X, Y, S, δ, λ〉,
any (r′, t′)-order memory finite automaton M ′ = 〈Y, X, S′, δ′, λ′〉, and any
nonnegative integer τ , we use PI(M, M ′, τ) to denote the following condition:

For any state s = 〈y(−1, t), x(−1, r)〉 of M and any state s′ =
〈x(−1, t′), y(τ − 1, r′)〉 of M ′, and any x0, x1, . . . ∈ X, yτ , yτ+1, . . . ∈
Y , if y0y1 . . . = λ(s, x0x1 . . .), then x0x1 . . . = λ′(s′, yτyτ+1 . . .).

For any i, 0 � i � n, let Xi be the column vector space over GF (q) of
dimension li. Let Y be the column vector space over GF (q) of dimension m,
and X = Xn.

For any i, 1 � i � n, let Mi = 〈Xi, Xi−1, X
ri
i , δi, λi〉 be an ri-order input-

memory finite automaton, M∗
i = 〈Xi−1, Xi, X

ri
i ×Xτi

i−1, δ
∗
i , λ∗

i 〉 a (τi, ri)-order
memory finite automaton, and τi � ri.

Let M0 = 〈X0, Y, Y t0 × Xr0
0 , δ0, λ0〉 be an (r0, t0)-order memory finite

automaton, M∗
0 = 〈Y, X0, X

t∗0
0 × Y r∗

0 , δ∗0 , λ∗
0〉 an (r∗0 , t∗0)-order memory finite

automaton, and τ0 � r0.

Theorem 9.1.1. Assume that M∗
i , Mi and τi satisfy PI(M∗

i ,Mi, τi), i = 0,
1, . . . , n. Let s

(i)∗
−bi−1

= 〈x(i)(−bi−1 − 1, ri), x̄(i−1)(−bi−1 − 1, τi)〉 be a state of

M∗
i , i = 1, . . . , n, and let x

(0)
−b0

, . . . , x
(0)
−1 ∈ X0,

x
(i)
−bi−1

. . . x
(i)
−1 = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 ),

s
(i)∗
0 = δ∗i (s(i)∗

−bi−1
, x

(i−1)
−bi−1

. . . x
(i−1)
−1 ), (9.1)

i = 1, . . . , n,

where b0 = r0 − τ0, bi = bi−1 + ri − τi, i = 1, . . . , n. Let s
(0)∗
0 = 〈x(0)(−1, t∗0),

y(−1, r∗0)〉 be a state of M∗
0 . If

x
(0)
0 x

(0)
1 . . . = λ∗

0(s
(0)∗
0 , y0y1 . . .),

x
(i)
0 x

(i)
1 . . . = λ∗

i (s
(i)∗
0 , x

(i−1)
0 x

(i−1)
1 . . .), (9.2)

i = 1, . . . , n,
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then
y0y1 . . . = λ′(s′, x(n)

τ x
(n)
τ+1 . . .), (9.3)

where λ′ is the output function of C ′(Mn, . . . , M1,M0), s′ = 〈y(−1, t0),
x(n)(τ − 1, r)〉, r = r0 + · · · + rn, and τ = τ0 + · · · + τn.

Proof. Suppose that (9.2) holds. From (9.1) and (9.2), it is easy to obtain
that

x
(i)
−bi−1

. . . x
(i)
−1x

(i)
0 x

(i)
1 . . . = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 x

(i−1)
0 x

(i−1)
1 . . .),

i = 1, . . . , n. Since PI(M∗
i ,Mi, τi) holds, this yields that

x
(i−1)
−bi−1

. . . x
(i−1)
−1 x

(i−1)
0 x

(i−1)
1 . . . = λi(s(i), x

(i)
−bi−1+τi

x
(i)
−bi−1+τi+1 . . .), (9.4)

i = 1, . . . , n, where s(i) = 〈x(i)(−bi−1 + τi − 1, ri)〉. Since PI(M∗
0 ,M0, τ0)

holds, from the part on M∗
0 in (9.2), we have

y0y1 . . . = λ0(s(0), x(0)
τ0

x
(0)
τ0+1 . . .), (9.5)

where s(0) = 〈y(−1, t0), x(0)(τ0 − 1, r0)〉.
For 1 � i � n− 1, let λ′

i be the output function of C ′(Mn, . . . , Mi). From
(9.4) for i = n − 1, n, by Theorem 1.2.1 we have

x
(n−2)
−bn−2

x
(n−2)
−bn−2+1 . . . = λ′

n−1(〈x(n)(−bn−2 + τn−1 + τn − 1, rn−1 + rn)〉,

x
(n)
−bn−2+τn−1+τn

x
(n)
−bn−2+τn−1+τn+1 . . .).

Suppose that we have proven that

x
(i)
−bi

x
(i)
−bi+1 . . . = λ′

i+1(〈x(n)(−bi + τi+1 + · · · + τn − 1, ri+1 + · · · + rn)〉,
x

(n)
−bi+τi+1+···+τn

x
(n)
−bi+τi+1+···+τn+1 . . .)

for i � 1, we prove the case of λ′
i. From the above equation and (9.4), noticing

−bi = −bi−1 + τi − ri, applying Theorem 1.2.1, we obtain

x
(i−1)
−bi−1

x
(i−1)
−bi−1+1 . . . = λ′

i(〈x(n)(−bi−1 + τi + · · · + τn − 1, ri + · · · + rn)〉,

x
(n)
−bi−1+τi+···+τn

x
(n)
−bi−1+τi+···+τn+1 . . .).

Thus the above equation holds for the case of i = 1, that is,

x
(0)
−b0

x
(0)
−b0+1 . . . = λ′

1(〈x(n)(−b0 + τ1 + · · · + τn − 1, r1 + · · · + rn)〉,
x

(n)
−b0+τ1+···+τn

x
(n)
−b0+τ1+···+τn+1 . . .).

Since (9.5) holds, from Theorem 1.2.1 it immediately follows that

y0y1 . . . = λ′(s′, x(n)
τ x

(n)
τ+1 . . .),

that is, (9.3) holds. ��
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Theorem 9.1.2. Assume that PI(Mi,M
∗
i , τi), i = 0, 1, . . ., n hold. Let

s′ = 〈y(−1, t0), x(n)(−1, r)〉 be a state of C ′(Mn, . . . , M1,M0) with output
function λ′, where r = r0 + · · · + rn. Let

x
(i−1)
−r0−···−ri−1

. . . x
(i−1)
−1

= λi(〈x(i)(−r0 − · · · − ri−1 − 1, ri)〉, x(i)
−r0−···−ri−1

. . . x
(i)
−1) (9.6)

for i = n, n − 1, . . . , 1, and

y0y1 . . . = λ′(s′, x(n)
0 x

(n)
1 . . .). (9.7)

If
x

(0)
0 x

(0)
1 . . . = λ∗

0(〈x(0)(−1, t∗0), y(τ0 − 1, r∗0)〉, yτ0yτ0+1 . . .), (9.8)

and

x
(i)
0 x

(i)
1 . . . = λ∗

i (〈x(i)(−1, ri), x(i−1)(τi − 1, τi)〉, x(i−1)
τi

x
(i−1)
τi+1 . . .) (9.9)

for i = 1, . . . , n − 1, then

x
(n)
0 x

(n)
1 . . . = λ∗

n(〈x(n)(−1, rn), x(n−1)(τn − 1, τn)〉, x(n−1)
τn

x
(n−1)
τn+1 . . .). (9.10)

Proof. Let si = 〈x(i)(−1, ri)〉 for 1 � i � n, s′n = s′ and s′i = 〈 y(−1,
t0), x(i)(−1, r0 + · · · + ri)〉 for 0 � i � n − 1. For any i, 0 < i � n, since
(9.6) holds, from Theorem 1.2.1, the state s′i of C ′(Mi, . . ., M1, M0) and
the state 〈si, s

′
i−1〉 of C(Mi, C

′(Mi−1, . . ., M1, M0)) are equivalent. Thus,
the state s′(= s′n) of C ′(Mn, . . ., M1, M0) and the state 〈sn, . . . , s1, s

′
0〉 of

C(Mn, . . . , M1,M0) are equivalent.
Suppose that (9.7) holds. Let

x̄
(n−1)
0 x̄

(n−1)
1 . . . = λn(sn, x

(n)
0 x

(n)
1 . . .), (9.11)

and
x̄

(i−1)
0 x̄

(i−1)
1 . . . = λi(si, x̄

(i)
0 x̄

(i)
1 . . .) (9.12)

for i = n − 1, n − 2, . . . , 1. Since s′ and 〈sn, . . . , s1, s
′
0〉 are equivalent, (9.7)

yields
y0y1 . . . = λ0(s′0, x̄

(0)
0 x̄

(0)
1 . . .). (9.13)

To show x
(n−1)
0 x

(n−1)
1 . . . = x̄

(n−1)
0 x̄

(n−1)
1 . . ., we now prove by simple in-

duction that x
(i)
0 x

(i)
1 . . . = x̄

(i)
0 x̄

(i)
1 . . . for 0 � i � n− 1. Since PI(M0,M

∗
0 , τ0)

holds, by (9.13) we have

x̄
(0)
0 x̄

(0)
1 . . . = λ∗

0(〈x(0)(−1, t∗0), y(τ0 − 1, r∗0)〉, yτ0yτ0+1 . . .).

From (9.8) it follows that x
(0)
0 x

(0)
1 . . . = x̄

(0)
0 x̄

(0)
1 . . . Suppose that

x
(i−1)
0 x

(i−1)
1 . . . = x̄

(i−1)
0 x̄

(i−1)
1 . . . is true and i � n − 1. We prove that
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x
(i)
0 x

(i)
1 . . . = x̄

(i)
0 x̄

(i)
1 . . . Since PI(Mi,M

∗
i , τi) holds, noticing x

(i−1)
j = x̄

(i−1)
j ,

(9.12) yields

x̄
(i)
0 x̄

(i)
1 . . . = λ∗

i (〈x(i)(−1, ri), x(i−1)(τi − 1, τi)〉, x(i−1)
τi

x
(i−1)
τi+1 . . .).

From (9.9), we have x
(i)
0 x

(i)
1 . . . = x̄

(i)
0 x̄

(i)
1 . . .

Since PI(Mn,M∗
n, τn) holds, noticing x

(n−1)
j = x̄

(n−1)
j , (9.11) yields

x
(n)
0 x

(n)
1 . . . = λ∗

n(〈x(n)(−1, rn), x(n−1)(τn − 1, τn)〉, x(n−1)
τn

x
(n−1)
τn+1 . . .),

that is, (9.10) holds. ��

Corollary 9.1.1. If condition (9.6) is replaced by

x
(i−1)
−r′

0−r1−···−ri−1
. . . x

(i−1)
−1

= λi(〈x(i)(−r′0 − r1 − · · · − ri−1 − 1, ri)〉, x(i)
−r′

0−r1−···−ri−1
. . . x

(i)
−1),

where r′0 = min(r0, t
∗
0), −r′0 − r1 − · · · − ri−1 means −r′0 in the case of i = 1,

then Theorem 9.1.2 still holds.

Proof. Since Mi, i = 1, . . . , n are input-memory finite automata, x
(0)
−1, . . . ,

x
(0)
−t∗0

in (9.8), x
(i)
−1, . . . , x

(i)
−ri

, i = 1, . . . , n in (9.9) and (9.10) are independent

of x
(n)
−r , x

(n)
−r+1, . . ., x

(n)
−r+r0−r′

0−1. ��

9.2 Basic Algorithm

A conventional cryptosystem, namely, a one key cryptosystem, is a family of
pairs of encryption algorithms and decryption algorithms, each algorithm in
any pair is indexed by its key. The key of an encryption algorithm and the
key of its corresponding decryption algorithm are the same, or the latter can
be easily derived from the former. Conventional cryptosystems require the
sender and the receiver to share a key in secret.

According to Diffie and Hellman[32], a public key cryptosystem is a family
of pairs of algorithms, say {(Ek, Dk), k ∈ K}, satisfying conditions: (a) for
any k ∈ K, Dk is an inverse of Ek (for confidence application), and/or Ek is
an inverse of Dk (for authenticity application), (b) for any k ∈ K, Ek and Dk

are easy to compute, (c) for almost every k ∈ K, it is infeasible to derive an
easily computed algorithm equivalent to Dk from Ek, and (d) for any k ∈ K,
it is feasible to compute the pair of Ek and Dk. In applications of a public
key cryptosystem, each user chooses a pair of Ek, the user’s public key, and
Dk, the user’s private key, the user makes Ek public and keeps Dk secret.
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Based on the results of the preceding section, a public key cryptosys-
tem for both confidence and authenticity applications can be proposed. It is
required that m = l0 = · · · = ln.1 We denote Xi by X for short.

Choose a common q and m for all users. Let both the alphabets X and Y

be the same column vector space over GF (q) of dimension m. The plaintext
space X∗ and the ciphertext space Y ∗ are the same.

A user, say A, choose his/her own public key and private key as follows.
(a) Construct an (r∗0 , t∗0)-order memory finite automaton M∗

0 = 〈Y , X, S∗
0 ,

δ∗0 , λ∗
0〉 and an (r0, t0)-order memory finite automaton M0 = 〈X, Y, S0, δ0,

λ0〉 satisfying conditions PI(M∗
0 ,M0, τ0) and PI(M0,M

∗
0 , τ0).

(b) For each i, 1 � i � n, construct an ri-order input-memory finite
automaton Mi = 〈X, X, Si, δi, λi〉 and a (τi, ri)-order memory finite au-
tomaton M∗

i = 〈X, X, S∗
i , δ∗i , λ∗

i 〉 satisfying conditions PI(M∗
i ,Mi, τi) and

PI(Mi,M
∗
i , τi).

(c) Construct the finite automaton C ′(Mn, . . . , M1,M0) = 〈X, Y, S, δ, λ〉
from M0, . . ., Mn.

(d) Let b0 = r0−τ0, bi = bi−1+ri−τi, i = 1, . . . , n. Assume that b0 = . . . =
bc−1 = 0, i.e., rj = τj , j = 0, . . . , c−1, for some c, 0 � c � n. Choose arbitrary
y−1, . . . , y−t0 ∈ Y , x

(c)
−1, . . . , x

(c)
−bc

∈ X. For each i, c + 1 � i � n, choose an

arbitrary state s
(i)∗
−bi−1

= 〈x(i)
−bi−1−1, . . . , x

(i)
−bi−1−ri

, x̄
(i−1)
−bi−1−1, . . . , x̄

(i−1)
−bi−1−τi

〉 of
M∗

i . Compute

x
(i)
−bi−1

. . . x
(i)
−1 = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 )

and

s
(i)∗
0 = δ∗i (s(i)∗

−bi−1
, x

(i−1)
−bi−1

. . . x
(i−1)
−1 ),

for i = c + 1, . . . , n. Take s
(0),in
s = 〈y−1, . . . , y−min(t0,r∗

0 )〉, s
(c),out
s = 〈x(c)

−1, . . .,

x
(c)
−bc

〉, s
(i)
s =s

(i)∗
0 , i=c+1, . . . , n, sout

v =〈y−1, . . . , y−t0〉, sin
v = 〈x(n)

−1 , . . . , x
(n)
−bn

〉.
(e) Choose arbitrarily y−1, . . . , y−r∗

0+τ0 ∈ Y , and x
(n)
−1 , . . . , x

(n)
−r′ ∈ X,

where r′ = r′0 + r1 + · · · + rn, r′0 = min(r0, t
∗
0). Compute

x
(i−1)
−r′

0−r1−···−ri−1
. . . x

(i−1)
−1

= λi(〈x(i)
−r′

0−r1−···−ri−1−1, . . . , x
(i)
−r′

0−r1−···−ri
〉, x(i)

−r′
0−r1−···−ri−1

. . . x
(i)
−1),

i = n, n − 1, . . . , 1.

1 If the public key system is only for the confidence application, ln � · · · � l0 � m
is enough. If it is only for the authenticity application, ln � · · · � l0 � m suffices.
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Take sout
e = 〈y−1, . . . , y−min(r∗

0−τ0,t0)〉, sin
e = 〈x(n)

−1 , . . ., x
(n)
−r′ 〉, s

(0),out
d =

〈 x
(0)
−1, . . ., x

(0)
−min(r0,t∗0)〉, s

(0),in
d = 〈y−1, . . . , y−r∗

0+τ0〉, s
(i),out
d = 〈x(i)

−1, . . . , x
(i)
−ri

〉,
i = 1, . . . , n. 1

(f) The public key of the user A is

C ′(Mn, . . . , M1,M0), sout
v , sin

v , sout
e , sin

e , τ0 + · · · + τn.

The private key of the user A is

M∗
0 , . . . , M∗

n, s(0),in
s , s(c),out

s , s(c+1)
s , . . . , s(n)

s ,

s
(0),out
d , s

(0),in
d , s

(1),out
d , . . . , s

(n),out
d , τ0, . . . , τn.

Encryption

Any user, say B, wants to send a plaintext x0 . . . xl to a user A. B first suffixes
any τ0 + · · · + τn digits, say xl+1 . . . xl+τ0+···+τn

, to the plaintext. Then
using A’s public key C ′(Mn, . . . , M1,M0), sout

e = 〈y−1, . . . , y−min(r∗
0−τ0,t0)〉

and sin
e = 〈x(n)

−1 , . . . , x
(n)
−r′〉, B computes the ciphertext y0 . . . yn+τ0+···+τn

as
follows:

y0 . . . yl+τ0+···+τn = λ′(s′, x0 . . . xl+τ0+···+τn),
where

s′ = 〈y−1, . . . , y−t0 , x
(n)
−1 , . . . , x

(n)
−r 〉,

x
(n)
−r+r0−t∗0−1, . . . , x

(n)
−r are arbitrarily chosen from X when t∗0 < r0, and

y−r∗
0+τ0−1, . . ., y−t0 are arbitrarily chosen from Y when r∗0 − τ0 < t0.

Decryption

From the ciphertext y0 . . . yl+τ0+···+τn
, A can retrieve the plaintext as fol-

lows. Using M∗
0 , . . . , M∗

n, s
(0),out
d = 〈x(0)

−1, . . . , x
(0)
−min(r0,t∗0)〉, s

(0),in
d = 〈y−1, . . . ,

y−r∗
0+τ0〉, s

(i),out
d = 〈x(i)

−1, . . . , x
(i)
−ri

〉, i = 1, . . . , n in his/her private key, A

computes

x
(0)
0 x

(0)
1 . . . x

(0)
l+τ1+···+τn

= λ∗
0(〈x

(0)
−1, . . . , x

(0)
−t∗0

, yτ0−1, . . . , yτ0−r∗
0
〉, yτ0yτ0+1 . . . yl+τ0+···+τn),

x
(i)
0 x

(i)
1 . . . x

(i)
l+τi+1+···+τn

= λ∗
i (〈x

(i)
−1, . . . , x

(i)
−ri

, x
(i−1)
τi−1 , . . . , x

(i−1)
0 〉, x(i−1)

τi
x

(i−1)
τi+1 . . . x

(i−1)
l+τi+···+τn

),
i = 1, . . . , n,

where x
(0)
−r0−1, . . . , x

(0)
−t∗0

may be arbitrarily chosen when r0 < t∗0. From Corol-

lary 9.1.1, the plaintext x0 . . . xl is equal to x
(n)
0 x

(n)
1 . . . x

(n)
l .

1 For the simplicity of symbolization, we use the same symbols y−j and x
(i)
−j in (d)

and in (e), but their intentions are different.
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Signature

To sign a message y0 . . . yl, the user A first suffixes any τ0 + · · · + τn digits,
say yl+1 . . . yl+τ0+···+τn

, to the message. Then using his/her private key

M∗
0 , . . ., M∗

n, s
(0),in
s = 〈y−1, . . ., y−min(t0,r∗

0 ) 〉, s
(c),out
s = 〈x(c)

−1, . . . , x
(c)
−bc

〉, s
(i)
s ,

i = c + 1, . . . , n, A computes

x
(0)
0 x

(0)
1 . . . x

(0)
l+τ0+···+τn

= λ∗
0(s

(0)
s , y0y1 . . . yl+τ0+···+τn

),

x
(i)
0 x

(i)
1 . . . x

(i)
l+τ0+···+τn

= λ∗
i (s

(i)
s , x

(i−1)
0 x

(i−1)
1 . . . x

(i−1)
l+τ0+···+τn

),

i = 1, . . . , n,

where

s(0)
s = 〈x(0)

−1, . . . , x
(0)
−t∗0

, y−1, . . . , y−r∗
0
〉,

s(i)
s = 〈x(i)

−1, . . . , x
(i)
−ri

, x̄
(i−1)
−1 , . . . , x̄

(i−1)
−τi

〉,
i = 1, . . . , c,

x
(0)
−b0−1, . . . , x

(0)
−t∗0

are arbitrarily chosen from X in the case of c = 0,

x
(0)
−1, . . . , x

(0)
−t∗0

, x
(i)
−1, . . . , x

(i)
−ri

, i = 1, . . . , c−1, x
(c)
−bc−1, . . . , x

(c)
−rc

, and x̄
(i−1)
−1 , . . .,

x̄
(i−1)
−τi

, i = 1, . . . , c, are arbitrarily chosen from X in the case of c > 0, and
y−t0−1, . . . , y−r∗

0
are arbitrarily chosen from Y in the case of t0 < r∗0 . Then

x
(n)
0 x

(n)
1 . . . x

(n)
l+τ0+···+τn

is a signature of the message y0 . . . yl.

Validation

Any user, say B, can verify the validity of the signature x
(n)
0 x

(n)
1 . . . x

(n)
l+τ0+···+τn

as follows. Using C ′(Mn, . . . , M1,M0), sout
v = 〈y−1, . . . , y−t0〉, sin

v = 〈x(n)
−1 , . . .,

x
(n)
−r+τ 〉 in A’s public key, B computes

λ′(s′, x(n)
τ x

(n)
τ+1 . . . x

(n)
l+τ ),

which would coincide with the message y0 . . . yl from Theorem 9.1.1, where
s′ = 〈y−1, . . . , y−t0 , x

(n)
τ−1, . . ., x

(n)
τ−r〉, r = r0 + · · ·+ rn, and τ = τ0 + · · ·+ τn.

The public key cryptosystem based on finite automata mentioned above is
abbreviated to FAPKC. Notice that a plaintext may have many ciphertexts
and that a message may have many signatures. In encryption or signing,
some digits of the initial state(s) may take arbitrary values. The number of
such digits is referred to as the freedom, which depends on the choice of
parameters. For example, in FAPKC3, a special case of FAPKC with n = 1,
r∗0 = t0+τ0, and t∗0 = r0 (cf. [131]), the freedom for signature is 2τ0 if τ0 < r0,
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2τ0+2τ1 if τ0 = r0, and the freedom for encryption is 0. In FAPKC4, a special
case of FAPKC with n = 1, r0 = t∗0 + τ0, and t0 = r∗0 (cf. [122]), the freedom
for signature is 0 if τ0 < r0, 2τ1 if τ0 = r0, and the freedom for encryption is
2τ0.

We point out that finite automata Mi and M∗
i satisfying conditions

PI(M∗
i , Mi, τi) and PI(Mi,M

∗
i , τi) do exist. Recall some results in Chap. 3.

Taking p = −1, let M be an (r, t)-order memory finite automaton Mf defined
by

yi = f(yi−1, . . . , yi−t, xi, . . . , xi−r), i = 0, 1, . . . (9.14)

Assume that eq0(i) is the equation

−yi + f(yi−1, . . . , yi−t, xi, . . . , xi−r) = 0 (9.15)

and that

eqk(i)
Ra[ϕk]−→ eq′k(i), eq′k(i)

Rb[rk+1]−→ eqk+1(i), k = 0, 1, . . . , τ − 1 (9.16)

is an Ra Rb transformation sequence. Let f∗
τ be a single-valued mapping from

Xr×Y τ+t+1 to X, and M∗ = 〈Y, X,Xr×Y τ+t, δ∗, λ∗〉 be a finite automaton
Mf∗

τ
defined by

xi = f∗
τ (xi−1, . . . , xi−r, y

′
i, . . . , y

′
i−τ−t), i = 0, 1, . . .

If eqτ (i) has a solution f∗
τ , i.e., for any parameters xi−1, . . ., xi−r, yi+τ , . . .,

yi−t, eqτ (i) has a solution xi

xi = f∗
τ (xi−1, . . . , xi−r, yi+τ , . . . , yi−t),

then from Lemma 3.1.1 we have PI(M∗,M, τ). If eqτ (i) has at most one
solution f∗

τ , i.e., for any xi, . . ., xi−r, yi+τ , . . ., yi−t, eqτ (i) implies xi =
f∗

τ (xi−1, . . . , xi−r, yi+τ , . . ., yi−t), then from Lemma 3.1.2 we have PI(M, M∗, τ).
Thus if eqτ (i) determines a single-valued function f∗

τ , then we have PI(M∗,M,

τ) and PI(M, M∗, τ). Using R−1
a R−1

b transformation, in Sect. 3.2 of Chap. 3
a generation procedure of such a finite automaton M and such an Ra Rb

transformation sequence are given. For example, choose an m× l(τ +1) (l, τ)-
echelon matrix Gτ (i) over GF (q) and an R−1

a R−1
b transformation sequence

Gk+1(i)
R−1

b [rk+1]−→ G′
k(i), G′

k(i)
R−1

a [P ′
k]−→ Gk(i), k = τ − 1, . . . , 1, 0 (9.17)

such that for any parameters xi−1, . . ., xi−ν ,

G0τψl
−1,ν(xi, . . . , xi−ν)

as a function of the variable xi is a bijection. Take
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f(yi−1, . . . , yi−t, xi, . . . , xi−r)

= f ′(yi−1, . . . , yi−t) +
r∑

j=0

Gj0ψ
l
−1,ν(xi−j , . . . , xi−j−ν),

where f ′ and Gj0, j = τ + 1, . . . , r are arbitrarily chosen such that the right
side of the equation does not depend on xi−r−1, . . . , xi−r−ν . Taking M as
Mf and the Ra Rb transformation sequence corresponding to the reverse
transformation sequence of (9.17), then the finite automaton and the Ra Rb

transformation sequence satisfy the conditions mentioned above.

9.3 An Example of FAPKC

We give a pedagogical example with q = 2, m = 8, n = 1 and c = 0. Thus the
alphabets X and Y are the column vector spaces over GF (2) of dimension 8.

M0 is an (r0, t0)-order nonlinear finite automaton, defined by

yi =
t0∑

j=1

Ajyi−j ⊕
r0∑

j=0

Bjx
′
i−j ⊕

r0−1∑
j=0

B′
jt

′(x′
i−j , x

′
i−j−1),

i = 0, 1, . . . ,

and M∗
0 is a nonlinear (t0 + τ0, r0)-order memory finite automaton, defined

by

x′
i =

r0∑
j=1

A∗
jx

′
i−j ⊕

r0−1∑
j=1

A∗∗
j t′(x′

i−j , x
′
i−j−1) ⊕

t0+τ0∑
j=0

B∗
j yi−j ,

i = 0, 1, . . . ,

where t′ is a nonlinear function from X2 to X,

t′(x0, x−1) = β3+j ,

j = 23j3 + 22j2 + 2j1 + j0,

j3 = p8(β20 & x0),

j2 = p8(β21 & x0)),

j1 = p8(β20 & x−1),

j0 = p8(β21 & x−1),

p8([b7, b6, . . . , b0]T) = b7 ⊕ b6 ⊕ · · · ⊕ b0,

[a7, a6, . . . , a0]T & [b7, b6, . . . , b0]T = [a7 & b7, a6 & b6, . . . , a0 & b0]T,

x0, x−1 ∈ X, ai, bi ∈ GF (2), i = 0, . . . , 7.
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M1 is a nonlinear r1-order input-memory finite automaton, defined by

x′
i =

r1∑
j=0

Fjxi−j ⊕
r1−2∑
j=0

F ′
jt(xi−j , xi−j−1, xi−j−2),

i = 0, 1, . . . ,

and M∗
1 is a nonlinear (τ1, r1)-order memory finite automaton, defined by

xi =
r1∑

j=1

F ∗
j xi−j ⊕

r1−2∑
j=1

F ∗∗
j t(xi−j , xi−j−1, xi−j−2) ⊕

τ1∑
j=0

D∗
j x′

i−j ,

i = 0, 1, . . . ,

where t is a nonlinear function from X3 to X,

t(x0, x−1, x−2) = β3+j ⊕ (β19 & ψ(x0) & ψ(x−1) & ψ(x−2)),

j = 23j3 + 22j2 + 2j1 + j0,

j3 = p8((β0 & x0) ⊕ (β2 & x−1)),

j2 = p8(β1 & x−1),

j1 = p8((β0 & x−1) ⊕ (β2 & x−2)),

j0 = p8(β1 & x−2),

x0, x−1, x−2 ∈ X.

β0, . . . , β21 are in X, and ψ is a single-valued mapping from X to X. In this
example, β0, β1, . . ., β21 are f1, a2, 57, 00, 00, 00, 00, 01, 01, 01, 01, 00, 20,
40, 64, 80, a8, d0, fe, 04, 79, 39, respectively, and ψ([0, 0, 0, 0, 0, 0, 0, 0]T)
ψ([0, 0, 0, 0, 0, 0, 0, 1]T) . . . ψ([1, 1, 1, 1, 1, 1, 1, 1]T) are

30 31 33 34 35 36 37 38 05 06 07 08 09 0a 0b 0c

0d 0e 0f 02 00 01 03 04 10 11 13 14 15 16 17 18

19 1a 1b 1c 1d 1e 1f 12 29 2a 2b 2c 20 21 23 24

25 26 27 28 2d 2e 2f 22 39 3a 3b 3c 3d 3e 3f 32

70 71 73 74 75 76 77 78 45 46 47 48 49 4a 4b 4c

4d 4e 4f 42 40 41 43 44 50 51 53 54 55 56 57 58

59 5a 5b 5c 5d 5e 5f 52 69 6a 6b 6c 60 61 63 64

65 66 67 68 6d 6e 6f 62 79 7a 7b 7c 7d 7e 7f 72

b0 b1 b3 b4 b5 b6 b7 b8 85 86 87 88 89 8a 8b 8c

8d 8e 8f 82 80 81 83 84 90 91 93 94 95 96 97 98

99 9a 9b 9c 9d 9e 9f 92 a9 aa ab ac a0 a1 a3 a4

a5 a6 a7 a8 ad ae af a2 b9 ba bb bc bd be bf b2
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f0 f1 f3 f4 f5 f6 f7 f8 c5 c6 c7 c8 c9 ca cb cc

cd ce cf c2 c0 c1 c3 c4 d0 d1 d3 d4 d5 d6 d7 d8

d9 da db dc dd de df d2 e9 ea eb ec e0 e1 e3 e4

e5 e6 e7 e8 ed ee ef e2 f9 fa fb fc fd fe ff f2

respectively. In this example, to save space, we use symbols 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, a, b, c, d, e, f to denote 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001 1010, 1011 1100, 1101 1110, 1111 in matrices, and to denote
column vectors [0, 0, 0, 0]T, [0, 0, 0, 1]T, [0, 0, 1, 0]T, [0, 0, 1, 1]T, [0, 1, 0, 0]T,
[0, 1, 0, 1]T, [0, 1, 1, 0]T, [0, 1, 1, 1]T, [1, 0, 0, 0]T, [1, 0, 0, 1]T, [1, 0, 1, 0]T,
[1, 0, 1, 1]T, [1, 1, 0, 0]T, [1, 1, 0, 1]T, [1, 1, 1, 0]T, [1, 1, 1, 1]T in states and se-
quences (words), respectively. The concatenation of two such symbols, say
s1s2, denotes t1t2t3t4t5t6t7t8 when s1 denotes t1t2t3t4 and s2 denotes t5t6t7t8,
or denotes [t1, t2, t3, t4, t5, t6, t7, t8]T when s1 denotes [t1, t2, t3, t4]T and s2 de-
notes [t5, t6, t7, t8]T, where ti ∈ GF (2), i = 1, 2, . . . , 8.

C ′(M1,M0) is a nonlinear (r0 + r1, t0)-order memory finite automaton.
In this example, take τ0 = 4, τ1 = 6, r0 = 5, t0 = 3, r1 = 8, and

C ′(M1,M0) in the public key can be expressed as

yi =
t0∑

j=1

Ajyi−j ⊕
r0+r1∑
j=0

Cjxi−j ⊕
r0+r1−2∑

j=0

C ′
jt(xi−j , xi−j−1, xi−j−2),

i = 0, 1, . . . ,

where

[C0 . . . C13] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

00 00 a2 00 db dd 21 3c 91 d3 bc cd 7d 69
00 00 a2 00 92 6a 42 8a a6 d8 6b 47 9e 25
00 f1 a6 1e 5c 52 39 1e bd ef 3c 85 18 01
00 00 00 f1 6c e0 d8 b7 ab d1 c3 8a 2f ff
00 f1 57 00 d0 73 76 ba 05 2e d6 cb 52 41
00 00 00 a2 42 ed f8 c9 00 70 7f c5 26 25
00 00 53 57 1a c1 97 99 b1 26 3b a2 a6 90
00 00 a2 00 68 6c e0 30 85 0b dc f2 51 b3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[C ′
0 . . . C ′

11] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

00 b8 b2 10 c1 b8 f3 6a a6 38 9e 67
00 b8 b2 69 d0 65 22 25 1b 5f 90 64
00 81 ca 23 2c 0c e2 b9 88 97 39 4d
00 39 8b a0 b2 77 a7 b8 9b 89 d2 d4
00 b8 38 8a 19 aa 8b 97 7e b4 41 e6
00 00 00 90 aa 4e fe 72 38 5e bc 64
00 81 b8 78 d1 dd fa 6e 98 eb 25 ad
00 b8 33 b9 70 77 9e 52 e4 fd 15 d7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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[A1 A2 A3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

00 43 80
00 21 c0
00 10 e0
00 08 70
00 04 38
00 02 1c
00 01 0e
00 00 87

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the public key,

sout
v = sout

e = 〈74, d1, 4a〉,
sin

v = 〈17, 06, d2〉,
sin

e = 〈17, 06, d2, ef, 52, a5, 0c, de, 58, 37, 9b, 80, 4d〉.

In the private key, M∗
0 is a nonlinear (7, 5)-order memory finite automa-

ton, defined by

x′
i =

5∑
j=1

A∗
jx

′
i−j ⊕

4∑
j=1

A∗∗
j t′(x′

i−j , x
′
i−j−1),⊕

7∑
j=0

B∗
j yi−j ,

i = 0, 1, . . . ,

where

[B∗
0 . . . B∗

7 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

00 c2 df 82 23 ef 27 00
c0 29 2b 1d 7a 5a 7f 00
c0 eb 62 c2 11 78 4b 00
00 00 d5 14 68 a1 6c 00
c0 6e f4 ca 0b bf 11 7f
00 47 49 8a 70 28 58 00
00 47 0a 9e 50 6b 34 00
00 00 00 a8 00 57 58 00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[A∗
1 . . . A∗

5] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41 5e 1a 6e 00
89 80 1d 81 00
8a 92 52 7a 00
2f 67 09 14 00
01 f0 4e 67 81
8f 3d e1 ef 00
da 2d 8f fb 00
58 86 60 ef 00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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[A∗∗
1 . . . A∗∗

4 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ba d3 11 00
7b 62 38 00
ab d3 09 00
7b c8 18 00
68 38 6b 38
40 81 29 00
63 41 31 00
40 b9 29 00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

M∗
1 is a nonlinear (6, 8)-order, (6, 6)-order in essential, memory finite au-

tomaton, defined by

xi =
6∑

j=1

F ∗
j xi−j ⊕

4∑
j=1

F ∗∗
j t(xi−j , xi−j−1, xi−j−2) ⊕

6∑
j=0

D∗
j x′

i−j ,

i = 0, 1, . . . ,

where

[D∗
0 . . . D∗

6 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2 eb 04 59 59 40 79
c2 58 59 42 1b 00 00
00 b3 5d 1b 22 00 00
00 b3 42 59 22 39 00
c2 eb 1b 1b 42 39 00
00 b3 eb 00 39 79 79
c2 58 59 42 7b 79 79
00 b3 42 59 42 79 00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[F ∗
1 . . . F ∗

6 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

26 b5 6e 99 e1 be
23 b6 ff 29 aa 4b
bb 0b 4a 6d b6 4b
00 26 05 3d 43 4b
df 34 a4 5e e9 f5
ea 69 2c 90 00 00
9d be 24 f4 57 f5
e9 2e 7c 42 1c f5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[F ∗∗
1 . . . F ∗∗

4 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b9 ba 96 32
2f 28 0d d1
d8 6c be 50
bd 96 dc 50
01 91 1a 62
25 2c 00 00
61 d6 28 62
f3 e9 78 62

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the private key,



9.3 An Example of FAPKC 361

s(0),in
s = 〈74, d1, 4a〉,

s(0),out
s = 〈69〉,

s(1)
s = 〈17, 06, d2, 70, 7f, a1, 65, 75; 69, ec, bf, cc, c9, 3e〉,

s
(0),in
d = 〈74, d1, 4a〉,

s
(0),out
d = 〈59, c2, 37, 81, b6〉,

s
(1),out
d = 〈17, 06, d2, ef, 52, a5, 0c, de〉.

Let α be the sequence

4e 6f 20 70 61 69 6e 73 2c 6e 6f 20 67 61 69 6e 73 2e

over X, which is the ASCII code of the sentence “No pains,no gains.”.
For encryption, taking randomly α10 = 89 b4 70 2a 92 07 ce cd 2a 4c,

then

λ(se, αα10) = 6f df a8 59 94 99 80 d7 91 d8 7f 65 ff 39 6d

a6 36 fe a6 7b 8b fc 08 78 03 75 13 e5

is a ciphertext of α, where λ is the output function of C ′(M1,M0), and
se = 〈sout

e , sin
e 〉 = 〈74, d1, 4a; 17, 06, d2, ef, 52, a5, 0c, de, 58, 37, 9b, 80, 4d〉.

For decryption, first compute

λ0(s
(0)
d , β1) = 14 d9 c2 26 af 38 fe 74 c2 2b 3b 74 1f 49 a0

69 c0 d7 15 43 58 a4 6a 55,

where β1 = 94 99 80 d7 91 d8 7f 65 ff 39 6d a6 36 fe a6 7b 8b fc 08 78

03 75 13 e5, s
(0)
d = 〈59, c2, 37, 81, b6; 59, a8, df, 6f, 74, d1, 4a〉. Then compute

λ1(s
(1)
d , β2) = 4e 6f 20 70 61 69 6e 73 2c 6e 6f 20 67 61 69 6e 73 2e

which is equal to the plaintext α, where β2 = fe 74 c2 2b 3b 74 1f 49 a0 69

c0 d7 15 43 58 a4 6a 55, s
(1)
d = 〈17, 06, d2, ef, 52, a5, 0c, de; 38, af, 26, c2,

d9, 14〉.
For signing, taking randomly c9, c8, 02, 95, 2e, 76, b0, 8d and α′

10 = 2d 49

df fb 14 69 63 d7 e6 8d, first compute

λ0(s
(0)
s , αα′

10) = 35 2e 1a 75 74 92 9e 1c b0 14 4c a4 b0 3c 60

02 25 7d 9b 70 fb 62 11 88 c2 ec 76 b3

where s
(0)
s = 〈69, c9, c8, 02, 95; 74, d1, 4a, 2e, 76, b0, 8d〉. Then compute

λ1(s
(1)
s , λ0(s

(0)
s , αα′

10)) = 33 bb bc 7b 95 95 87 2a 9d ec 1e 54 7a 18 fb

31 1f 4c 9c d8 4d a1 82 17 7a ce 25 2b
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which is a digital signature of α.
For verifying, compute

λ(sv, β3) = 4e 6f 20 70 61 69 6e 73 2c 6e 6f 20 67 61 69 6e 73 2e

which is equal to α, where

β3 = 1e 54 7a 18 fb 31 1f 4c 9c d8 4d a1 82 17 7a ce 25 2b,

sv = 〈74, d1, 4a; ec, 9d, 2a, 87, 95, 95, 7b, bc, bb, 33, 17, 06, d2〉.

9.4 On Weak Keys

9.4.1 Linear Ra Rb Transformation Test

Notice that C ′(Mn, . . . , M0) in the public key of FAPKC is an (r0+···+rn, t0)-
order memory finite automaton. Let C ′(Mn, . . . , M0) be Mf defined by (9.14),
where r = r0+···+rn, and t = t0. Let (9.16) be a linear Ra Rb transformation
sequence, where τ = τ0 + · · · + τn, and eq0(i) is defined by (9.15). If for any
parameters xi−1, . . ., xi−r, yi+τ , . . ., yi−t, the equation eqτ (i) has a (or at
most one) solution xi, then from results in Sect. 3.1 of Chap. 3 a (τ+t, r)-order
memory finite automaton M̄ can be feasibly constructed from eqτ (i) such that
C ′(Mn, . . . , M0) is a weak inverse (or an original weak inverse) with delay
τ of M̄ . Therefore, a check process should be included in a key-generator of
FAPKC to sieve out such a C ′(Mn, . . . , M0), of which an original weak inverse
(or a weak inverse) can be obtained by linear Ra Rb transformation method.
If there is a linear Ra Rb transformation satisfying the condition mentioned
above, then C ′(Mn, . . . , M0) is sieved out. Although the number of those
linear Ra Rb transformations is huge, only one linear Ra Rb transformation
sequence is enough to check due to the following results in Sect. 4.1 of Chap. 4:
if for a linear Ra Rb transformation sequence (9.16) the condition holds, then
for any linear Ra Rb transformation sequence (9.16) the condition holds too.

The key of FAPKC of which C ′(Mn, . . . , M0) is sieved out by linear Ra

Rb transformation method is called a weak key. For n = 1, from results in
Sect. 4.2 of Chap. 4, the following cases are weak key: linear M0, 0 step delay
M1; linear M0, quasi-linear M1; linear M0, nonlinear M1 of which a weak
inverse can be obtained by linear Ra Rb transformation method. The latter
is a more general case.

9.4.2 On Attack by Reduced Echelon Matrix

In Sect. 4.3 of Chap. 4, a method by reduced echelon matrix to construct
a weak inverse of a finite automaton is discussed, and it is shown that if
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some inversion method by reduced echelon matrix based on injectiveness or
surjectiveness of D22ψ

l
ν(x(i, ν+1)) is applicable to a finite automaton M , so is

the linear Ra Rb transformation method, where M = 〈X, Y, Y k ×Xh+ν , δ, λ〉
is defined by

yi = ϕout(y(i − 1, k)) + [C0, . . . , Ch]ψlh
ν (x, i), (9.18)

i = 0, 1, . . . ,

D22 is described in Theorem 4.3.1. From this result, it is not necessary to
include a check process based inversion method by reduced echelon matrix in
a key-generator of FAPKC. Only weak keys of FAPKC can be broken using
the method by reduced echelon matrix!

9.4.3 On Attack by Canonical Diagonal Matrix Polynomial

Let M = 〈X, Y, Y k ×Xh+ν , δ, λ〉 be a finite automaton defined by (9.18). Let

C(z) =
h∑

j=0

Cjz
j .

Formally, we use zjψl
ν(xi, . . . , xi−ν) to denote ψl

ν(xi−j , . . . , xi−j−ν), and zjx′
i

to denote x′
i−j . Then

[C0, . . . , Ch]ψlh
ν (x, i) =

h∑
j=0

Cjψ
l
ν(xi−j , . . . , xi−j−ν)

=
h∑

j=0

Cj(zjψl
ν(xi, . . . , xi−ν)) = C(z)ψl

ν(xi, . . . , xi−ν).

Suppose that C(z) = D(z)F (z). Let M1 be a finite automaton defined by

x′
i = F (z)ψl

ν(xi, . . . , xi−ν),

i = 0, 1, . . . ,

and M0 a finite automaton defined by

yi = ϕout(y(i − 1, k)) + D(z)x′
i,

i = 0, 1, . . .

It is easy to see that M = C ′(M1,M0). Since M0 is quasi-linear, its weak
inverse can be easily constructed whenever it exists. Thus there is a feasible
inversion method for M whenever there is a feasible inversion method for
M1. Therefore, if for any parameters x−1, . . ., x−ν , F (0)ψl

ν(x0, . . . , x−ν) as a
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function of the variable x0 is an injection, then M1 is weakly invertible with
delay 0 and a weak inverse with delay 0 of M1 can be feasibly constructed.

It is well known that the process of reducing canonical diagonal form for
matrix polynomials is feasible. We can feasibly find 0 � a1 � · · · � ar, fj(z),
j = 1, . . . , r, and two invertible matrix polynomials P (z) and Q(z) such that

C(z) = P (z)DIAm,m(za1f1(z), . . . , zarfr(z), 0, . . . , 0)Q(z),

fj(z) | fj+1(z) for j = 1, . . . , r−1 and fj(0) 
= 0 for j = 1, . . . , r. Take D(z) =
P (z)DIAm,r(za1 , . . . , zar ) and F (z) = DIAr,m(f1(z), . . . , fr(z))Q(z). Then
C(z) = D(z)F (z) is referred to as the derived factorization of type 2 by
canonical diagonal matrix polynomial. Similar, C(z) = D′(z)F ′(z) is referred
to as the derived factorization of type 1 by canonical diagonal matrix poly-
nomial, where D′(z) = P (z)DIAm,r(za1f1(z), . . ., zarfr(z)) and F (z) =
DIAr,m(1, . . . , 1)Q(z). If C(z) = D(z)F (z) is a derived factorization of type
1 or 2 by canonical diagonal matrix polynomial and F (0)ψl

ν(x0, . . . , x−ν) as
a function of the variable x0 is an injection for any parameters x−1, . . ., x−ν ,
then a weak inverse of M can be feasibly constructed as mentioned in the
preceding paragraph. On the other hand, from Theorem 4.4.5, there exists a
terminating and elementary Ra Rb transformation sequence

Ck(z)
Ra[Pk]−→ C ′

k(z), C ′
k(z)

Rb[rk+1]−→ Ck+1(z), k = 0, 1, . . . , τ ′ − 1,

where C0(z) = C(z). Let Q̄(z) be the submatrix of the first r rows of
Cτ ′(z). From Corollaries 4.4.4 and 4.4.5, if F (0)ψl

ν(x0, . . . , x−ν) as a func-
tion of the variable x0 is an injection for any parameters x−1, . . ., x−ν , then
Q̄(0)ψl

ν(x0, . . . , x−ν) as a function of the variable x0 is an injection for any
parameters x−1, . . ., x−ν . It follows that a weak inverse of M can be feasibly
constructed by linear Ra Rb transformation method. We conclude that keys
of FAPKC which can be broken by canonical diagonal matrix polynomial
method are weak keys. Thus it is not necessary to include a check process
based on reducing canonical diagonal matrix polynomial in a key-generator
of FAPKC.

9.5 Security

Since no theory exists to prove whether a public key system is secure or not,
the only approach is to evaluate all ways to break it that one can think.
We first consider ways that a cryptanalyst tries to deduce the private key
from the public key, and then ways of deducing the plaintext (respectively
signature) from the ciphertext (respectively message).
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9.5.1 Inversion by a General Method

If one can find a finite automaton M∗ which is a weak inverse of C ′(Mn, . . . ,

M0) with delay τ0+···+τn, then one can retrieve plaintexts from ciphertexts.
For general nonlinear finite automata, the proof of Theorem 1.4.4 provides
an inversion algorithm which requires computing each output for each state
and for each input of length τ0 + · · · + τn + 1. For a state, the computing
amount is O(qm(τ0+···+τn)) (O(2160) for n = 1, q = 2, m = 8, τ0 + τ1 = 20).
Therefore, this method is impractical for moderate τ0 + · · · + τn.

Similarly, if one can find a finite automaton M∗ of which C ′(Mn, . . . , M0)
is a weak inverse with delay τ0 + · · · + τn, then one can forge signatures for
messages. For general nonlinear finite automata, in Sect. 6.5 of Chap. 6 an
inversion algorithm is provided, which requires computing an input-tree with
level τ0+···+τn for each state and each output of length τ0+···+τn+1. So this
method spends more computing time and storage amount than the method
mentioned in the preceding paragraph. We prefer to construct an original
weak inverse of a finite automaton by means of constructing a weak inverse
of the finite automaton based on mutual invertibility, see Theorem 2.2.1.

9.5.2 Inversion by Decomposing Finite Automata

From the finite automaton C ′(Mn, . . . , M0) in a public key of FAPKC, if one
can feasibly find finite automata M̄n, . . ., M̄0 so that C ′(Mn, . . ., M0) =
C ′(M̄n, . . ., M̄0) and a weak inverse finite automaton of M̄i can be feasibly
constructed for each j, 0 � j � n, then a weak inverse finite automaton
of C ′(Mn, . . . , M0) can be feasibly constructed. No feasible decomposition
method is known.

In some special cases, for example, in the example of FAPKC mentioned
in Sect. 9.3, if M0 is linear (i.e., B′

j = 0 for j = 0, 1, . . . , r0 − 1), then
decomposing C ′(M1,M0) is reduced to factorizing the matrix polynomial

C̄(z) =
r0+r1∑
j=0

[ Cj , C ′
j ] zj ,

where C ′
r0+r1−1 = C ′

r0+r1
= 0. If C̄(z) = B̄(z)F̄ (z), then C ′(M1, M0) =

C ′(M̄1, M̄0), where M̄0 is defined by

yi =
t0∑

j=1

Ajyi−j ⊕
r̄0∑

j=0

B̄jx
′
i−j ,

i = 0, 1, . . . ,

M̄1 is defined by
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x′
i =

r̄1∑
j=0

F̄jxi−j ⊕
r̄1∑

j=0

F̄ ′
jt(xi−j , xi−j−1, xi−j−2),

i = 0, 1, . . . ,

B̄(z) =
∑r̄0

j=0 B̄jz
j , and F̄ (z) =

∑r̄1
j=0[F̄j , F̄

′
j ]z

j . Thus a weak inverse finite
automaton of C ′(M1,M0) can be feasibly found whenever a weak inverse
finite automaton of M̄1 can be feasibly constructed.

Although polynomial time algorithms for factorization of polynomials over
GF (q) are existent, no feasible algorithm is known for factorizing matrix
polynomials over GF (q). Some specific factorizing algorithms of matrix poly-
nomials over GF (q) are known, such as factorization by linear Ra Rb trans-
formation and factorization by reducing canonical diagonal form for matrix
polynomials. But those specific factorizations never lead to breaking the key
except the weak key.

Let F be a finite field. H(z) in Mm,n(F [z]) is said to be linearly primitive,
if for any H1(z) in Mm,m(F [z]) with rank m and any H2(z) in Mm,n(F [z]),
H(z) = H1(z)H2(z) implies H1(z) ∈ GLm(F [z]).

H(z) in Mm,n(F [z]) is said to be left-primitive, if for any positive integer
r, any H1(z) in Mm,r(F [z]) with rank r and any H2(z) in Mr,n(F [z]), H(z) =
H1(z)H2(z) implies that the rank of H1(0) is r.

Two factorizations A(z) = G(z)H(z) and A(z) = G′(z)H ′(z) are equiv-
alent, if there is an invertible matrix polynomial R(z) such that G′(z) =
G(z)R(z)−1 and H ′(z) = R(z)H(z).

It is known that the linearly primitive factorizations of A(z) and the
derived factorizations of type 1 by canonical diagonal matrix polynomial of
A(z) are coincided with each other and unique under equivalence and that
the left-primitive factorizations of A(z), the derived factorizations by linear
Ra Rb transformations of A(z) and the derived factorizations of type 2 by
canonical diagonal matrix polynomial of A(z) are coincided with each other
and unique under equivalence. No other algorithm to give linearly primitive
factorization or left-primitive factorization is known except ones by reducing
canonical diagonal form and by linear Ra Rb transformation.

9.5.3 Chosen Plaintext Attack

A chosen plaintext attack for FAPKC is reduced to the problem of solving
a nonlinear system of equations over GF (q). We explain the claim for the
example in Sect. 9.3.

Since the public key is available for anyone, one can encrypt any plain-
text x0x1. . .xn and obtain corresponding ciphertext y0y1 . . . yn+τ0+τ1 using
C ′(M1,M0) and its initial state se. Suppose that se is equivalent to the state
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〈s1, s0〉 of C(M1,M0). Let x′
0x

′
1 . . . x′

n be the output of M1 for the input
x0x1 . . . xn on the state s1. Then we have

x′
0 . . . x′

n−τ0
= λ∗

0(〈x′
−1, . . . , x

′
−r0

, yτ0−1, . . . , y−t0〉, yτ0 . . . yn)

for some x′
−1, . . . , x

′
−r0

and y−1, . . . , y−t0 . It follows that

r1∑
j=0

Fjxi−j ⊕
r1−2∑
j=0

F ′
jt(xi−j , xi−j−1, xi−j−2)

=
r0∑

j=1

A∗
jx

′
i−j ⊕

r0−1∑
j=1

A∗∗
j t′(x′

i−j , x
′
i−j−1) ⊕

t0+τ0∑
j=0

B∗
j yi+τ0−j , (9.19)

i = 0, 1, . . . , n − τ0,

where s1 = 〈x−1, . . . , x−r1〉. In (9.19), values of xi and yi are known, and
unknown variables are Fj ’s, F ′

j ’s, A∗
j ’s, A∗∗

j ’s, B∗
j ’s, and x′

j ’s. In the case of
r0 > 0, (9.19) is nonlinear in essential. Finding out M1 and M∗

0 by solving
the system of equations seems difficult, even if M∗

0 is linear.

9.5.4 Exhausting Search and Stochastic Search

Exhausting Search Attack

Since the encryption algorithm is known for anyone, one may guess possible
plaintexts and can encrypt them. When the result of encrypting some guessed
plaintext coincides with the ciphertext, the guessed plaintext is the virtual
plaintext. Notice that the public key cryptosystem based finite automata is
sequential. Its block length m is small in order to provide a small key size.
But small block length causes the cryptosystem fragile for the divide and
conquer attack. In fact, the guess process can be reduced to guessing a piece
of plaintext of length τ0 + · · · + τn + 1 and deciding its first digit. That is,
guess a value of the first τ0 + · · · + τn + 1 digits of the plaintext first, and
then encrypt it using the public key and compare the result with the first
τ0 + · · ·+τn +1 digits of the virtual ciphertext. If they coincide, then the first
digit of the guessed plaintext is indeed the first digit of the virtual plaintext.
Repeat this process for guessing next digit of the plaintext, and so on. In
Sect. 2.3 of Chap. 2, Algorithm 1 is such an exhausting search algorithm for
encryption, where M is the finite automaton C ′(Mn, . . . , M1,M0) in a user’s
public key, and s is a state of M of which part of components is given by
sout

e and sin
e in the public key. In the case of the example in Sect. 9.3, s is

〈sout
e , sin

e 〉.
Formulae of the search amounts in average case and in worse case are

deduced in Sect. 2.3 of Chap. 2 for a finite automaton M , which is equivalent
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to C(M̄0, DX,r1 , M̄1, DX,r2 , M̄2, . . ., M̄τ−1, DX,rτ
, M̄τ ), where 0 � r1 �

r2 � · · · � rτ � m, M̄i is a weakly invertible finite automaton with delay 0
for i = 0, 1, . . . , τ , and M̄i is (m−ri+1)-preservable, i = 1, . . . , τ−1. We point
out that a finite automaton M = C ′(M ′

1,M
′
0) satisfies the above condition,

where M ′
0 is a weakly invertible finite automaton with delay 0, and M ′

1 is
generated by linear Ra Rb transformation method. A formula of the lower
bound for the search amounts in average case is also given there, that is,

(l + 1 − τ)
(
1 +

τ∑
j=2

qrj+···+rτ
)
/2.

According to the formula, in the case of the example, (l+1−τ)(2r2+···+rτ−1+
2r3+···+rτ−1) is a lower bound for the search amounts in average case, taking
l = τ = 15, which is equal to 258 + 256 whenever r1, . . ., r15 are 1, 2, 2, 3, 3,
3, 4, 4, 4, 5, 5, 5, 6, 6, 7, respectively, or 267 + 265 whenever r1, . . ., r15 are
1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, respectively.

Similarly, to forge a signature of a given message, one may guess a pos-
sible signature first, and then computes using the public key for verification
and checks whether the computing result coincides with the message or not.
Repeat this process until a coincident one is met. An attacker may adopt
an exhausting search attack to forge a signature for a given message using a
search algorithm like the following.

Algorithm 3
Input : a message y0y1 . . . yl.
Output : the signature x0x1 . . . xτ+l which satisfies

y0y1 . . . yl = λ(sx0,...,xτ−1 , xτ . . . xτ+l),

where sx0,...,xτ−1 is a state 〈y−1, . . . , y−t0 , xτ−1, . . ., xτ−r〉 determined
by sout

v = 〈y−1, . . . , y−t0〉 and sin
v = 〈x−1, . . ., x−r+τ 〉 in the public

key and x0, . . . , xτ−1.
Procedure :
1. Guess the prefix of length τ of the signature.
1.1. Take Xτ = Xτ .
1.2. If Xτ 
= ∅, then choose an element in it as x′

0, . . . , x
′
τ−1, delete

this element from it and go to Step 2.1; otherwise (impossibly
occurs) stop.

2. Guess the main part of the signature.
2.1. Set i = 0 and s′ = sx′

0,...,x′
τ−1

.
2.2. Set Xs′,x′

τ x′
τ+1...x′

τ+i−1
= {x|x ∈ X, yi = λ(δ(s′, x′

τ x′
τ+1 . . .

x′
τ+i−1), x)} in the case of i > 0, or {x|x ∈ X, yi = λ(s′, x)}

otherwise.
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2.3. If Xs′,x′
τ x′

τ+1...x′
τ+i−1


= ∅, then choose an element in it as x′
τ+i,

delete this element from it, increase i by 1 and go to Step 2.4;
otherwise, decrease i by 1 and go to Step 2.5.

2.4. If i > l, then output x′
0 . . . x′

τ+l as a signature x0 . . . xτ+l and
stop; otherwise, go to Step 2.2.

2.5. If i � 0, go to Step 2.3; otherwise, go to Step 1.2.

An execution of Algorithm 3 consists of two phases. The first phase is
to search several such initial states, say s′ = sx′

0...x′
τ−1

, for some values of
x′

0, . . . , x
′
τ−1 ∈ X with y0y1 . . . yl 
∈ WM

l+1,s′ . The second phase is to search an
initial state s′ = sx′

0...x′
τ−1

with y0y1 . . . yl ∈ WM
l+1,s′ . We evaluate the search

amount for the second phase. We point out that the phase 2 and Algorithm 1
in Sect. 2.3 of Chap. 2 are the same except the subscripts of x′

i in Algorithm 3
with offset τ . Thus for a valid x′

0 . . . x′
τ−1, we can evaluate the search amount

of the phase 2 in Algorithm 3 as well as to evaluate the search amount of
Algorithm 1. Taking account of the search amount of the first phase of an
execution of Algorithm 3, the complexity for signature is a little more than
the complexity for encryption.

By the way, the initial state for encryption may be variable, whenever
M0 = 〈X, Y, S0, δ0, λ0〉 is defined by

yi =
t0∑

j=1

Ajyi−j + f0(x′
i, . . . , x

′
i−r0

),

i = 0, 1, . . .

and M∗
0 = 〈Y, X, S∗

0 , δ∗0 , λ∗
0〉 is defined by

x′
i = f∗

0 (x′
i−1, . . . , x

′
i−r0

) +
t0+τ0∑
j=0

B∗
j yi−j ,

i = 0, 1, . . . ,

where f0(0, . . . , 0) = f∗
0 (0, . . . , 0) = 0. Suppose that ȳ−1, . . ., ȳ−t0 satisfy the

condition

λ∗
0(〈0, . . . , 0, 0, . . . , 0, ȳ−1, . . . , ȳ−t0〉, 00 . . .) = 00 . . . (9.20)

Let

λ0(〈ȳ−1, . . . , ȳ−t0 , 0, . . . , 0, 〉, 00 . . .) = ȳ0ȳ1 . . . (9.21)

From PI(M0,M
∗
0 , τ0), this yields

λ∗
0(〈0, . . . , 0, ȳτ0−1, . . . , ȳ0, ȳ−1, . . . , ȳ−t0〉, ȳτ0 ȳτ0+1 . . .) = 00 . . .
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Subtracting two sides of (9.20) from two sides of the above equation, from
the definition of M∗

0 , we have

λ∗
0(〈0, . . . , 0, ȳτ0−1, . . . , ȳ0, 0, . . . , 0〉, ȳτ0 ȳτ0+1 . . .) = 00 . . . (9.22)

Let

λ0(〈y−1, . . . , y−t0 , x
′
−1, . . . , x

′
−r0

〉, x′
0x

′
1 . . .) = y0y1 . . . , (9.23)

and y′
i = yi + ȳi, i = 0, 1, . . . Adding two sides of (9.21) to two sides of (9.23),

from the definition of M0, we have

λ0(〈y−1 + ȳ−1, . . . , y−t0 + ȳ−t0 , x
′
−1, . . . , x

′
−r0

〉, x′
0x

′
1 . . .) = y′

0y
′
1 . . .

On the other hand, from PI(M0,M
∗
0 , τ0), (9.23) yields

λ∗
0(〈x′

−1, . . . , x
′
−r0

, yτ0−1, . . . , y0, y−1, . . . , y−t0〉, yτ0yτ0+1 . . .) = x′
0x

′
1 . . .

Adding two sides of (9.22) to two sides of the above equation, from the
definition of M∗

0 , we have

λ∗
0(〈x′

−1, . . . , x
′
−r0

, y′
τ0−1, . . . , y

′
0, y−1, . . . , y−t0〉, y′

τ0
y′

τ0+1 . . .) = x′
0x

′
1 . . .

We conclude that an offset 〈ȳ−1, . . . , ȳ−t0〉 which satisfies (9.20) may be added
to the output part of the initial state for encryption.

The equation (9.20) is equivalent to⎡
⎢⎢⎢⎢⎣

B∗
τ0+1 B∗

τ0+2 . . . B∗
τ0+t0−1 B∗

τ0+t0
B∗

τ0+2 B∗
τ0+3 . . . B∗

τ0+t0 0
. . . . . . . . . . . . . . .
B∗

τ0+t0−1 B∗
τ0+t0 . . . 0 0

B∗
τ0+t0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ȳ−1

ȳ−2

...
ȳ−t0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ (9.24)

which can be further reduced by row transformation. For example, in the
example of FAPKC given in Sect. 9.3, the equation (9.24) can be further
reduced to ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01101011 00010001 01111111

00010001 01111111 00000000
10111111 00110100 00000000
01010000 00010011 00000000

01111111 00000000 00000000
00110100 00000000 00000000
00010011 00000000 00000000
00000010 00000000 00000000
10001100 00000000 00000000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

ȳ−1

ȳ−2

ȳ−3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
0
0

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There are 224−1−3−5 = 215 different solutions of [ȳ−1, ȳ−2, ȳ−3]. This increases
the complexity of the exhause search for encryption, because the virtual initial
state for encryption is unknown.
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Stochastic search attack

The above attack by exhausting search is a deterministic algorithm. It can be
modified to a stochastic one. Algorithm 2 in Sect. 2.3 of Chap. 2 is a stochastic
search algorithm to retrieve a plaintext x0x1 . . . xl from a ciphertext y0y1 . . . yl

(= λ(s, x0x1 . . . xl)), where M is the finite automaton C ′(Mn, . . ., M1, M0)
in a user’s public key, and s is a state of M in which partial components are
given by sout

e and sin
e in the public key. In the case of the example in Sect. 9.3,

s is 〈sout
e , sin

e 〉.
A formula of the successful probability is deduced in Sect. 2.3 of Chap. 2

for a finite automaton M which is equivalent to C(M̄0, DX,r1 , M̄1, DX,r2 ,
M̄2, . . ., M̄τ−1, DX,rτ

, M̄τ ), where 0 � r1 � r2 � · · · � rτ � m, M̄i is a
weakly invertible finite automaton with delay 0 for i = 0, 1, . . . , τ , and M̄i

is (m − ri+1)-preservable for i = 1, . . . , τ − 1. According to the formula, in
the case of the example, the probability of successfully choosing x′

0, . . . , x
′
l of

Algorithm 2 is 2
∑min(l,τ−1)

i=0 rτ−i−(l+1)rτ . Taking l = τ = 15, the probability
is 2−52 whenever r1, . . ., r15 are 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7,
respectively, or 2−43 whenever r1, . . ., r15 are 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 6, 7, respectively.

Similar to Algorithm 2, an attacker may adopt a stochastic search attack
to forge a signature for a given message using a stochastic search algorithm
like the following.

Algorithm 4
Input : a message y0y1 . . . yl.
Output : the signature x0x1 . . . xτ+l which satisfies

y0y1 . . . yl = λ(sx0,...,xτ−1 , xτ . . . xτ+l),

where sx0,...,xτ−1 is a state 〈y−1, . . . , y−t0 , xτ−1, . . ., xτ−r〉 determined
by sout

v = 〈y−1, . . . , y−t0〉 and sin
v = 〈x−1, . . ., x−r+τ 〉 in the public

key and x0, . . . , xτ−1.
Procedure :
1. Guess the prefix of length τ of the signature.

Choose randomly x′
0, . . . , x

′
τ−1 ∈ X.

2. Guess the main part of the signature.
2.1. Set i = 0 and s′ = sx′

0,...,x′
τ−1

.
2.2. Set Xs′,x′

τ x′
τ+1...x′

τ+i−1
= {x|x ∈ X, yi = λ(δ(s′,x′

τ x′
τ+1 . . .

x′
τ+i−1), x)} in the case of i > 0, or {x|x ∈ X, yi = λ(s′, x)}

otherwise.
2.3. If Xs′,x′

τ x′
τ+1...x′

τ+i−1

= ∅, then choose randomly an element in

it as x′
τ+i, increase i by 1 and go to Step 2.4; otherwise, prompt

a failure information and stop.
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2.4. If i > l, then output x′
0 . . . x′

τ+l as a signature x0 . . . xτ+l and
stop; otherwise, go to Step 2.2.

Let py0...yl

ix be the probability of successfully choosing an initial part
x′

0 . . . x′
τ−1 in Step 1 of Algorithm 4. Let Xy0...yl

valid = {x′
0 . . . x′

τ−1|
IM
y0y1...yl,sx′

0,...,x′
τ−1


= ∅}. Then py0...yl

ix = |Xy0...yl

valid |/qmτ .

We point out that the phase 2 and Algorithm 2 in Sect. 2.3 of Chap. 2
are the same except the subscripts of x′

i in Algorithm 4 with offset τ and
replacing s by s′. From Theorem 2.3.8, the probability of successfully execut-
ing Algorithm 4 is py0...yl

ix q
∑min(l,τ−1)

i=0 rτ−i−(l+1)rτ , for a finite automaton M

which is equivalent to C(M̄0, DX,r1 , M̄1, DX,r2 , M̄2, . . . , M̄τ−1, DX,rτ
, M̄τ ),

where 0 � r1 � r2 � · · · � rτ � m, M̄i is weakly invertible finite au-
tomata with delay 0 for i = 0, 1, . . . , τ , and M̄i is (m − ri+1)-preservable for
i = 1, . . . , τ − 1.

9.6 Generalized Algorithms

9.6.1 Some Theoretical Results

In this section, we deal with pseudo-memory finite automata instead of mem-
ory finite automata. Notice that a generation method of pseudo-memory finite
automata with invertibility is discussed in Chap. 3.

Let M = 〈X, Y, (U (1))p1+1 × · · · × (U (c))pc+1 × Xr, δ, λ〉 be a finite au-
tomaton defined by

yi = f(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)),

u
(j)
i+1 = gj(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)),

j = 1, . . . , c, i = 0, 1, . . .

Let M ′ = 〈Y, Z, Zk × (W (1))n1+1 × · · · × (W (d))nd+1 × Y h, δ′, λ′〉 be a finite
automaton defined by

zi = ϕ(z(i − 1, k), w(1)(i, n1 + 1), . . . , w(d)(i, nd + 1), y(i, h + 1)),

w
(j)
i+1 = ψj(z(i − 1, k), w(1)(i, n1 + 1), . . . , w(d)(i, nd + 1), y(i, h + 1)),

j = 1, . . . , d, i = 0, 1, . . .

From M and M ′, a finite automaton 〈X, Z, Zk × (W (1))n1+1 × · · · ×
(W (d))nd+1 × (U (1))h+p1+1 × · · · × (U (c))h+pc+1 × Xh+r, δ′′, λ′′〉 is defined
by
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zi = ϕ(z(i − 1, k), w(1)(i, n1 + 1), . . . , w(d)(i, nd + 1),

f(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)), . . . ,

f(u(1)(i − h, p1 + 1), . . . , u(c)(i − h, pc + 1), x(i − h, r + 1))),

w
(j)
i+1 = ψj(z(i − 1, k), w(1)(i, n1 + 1), . . . , w(d)(i, nd + 1),

f(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)), . . . , (9.25)

f(u(1)(i − h, p1 + 1), . . . , u(c)(i − h, pc + 1), x(i − h, r + 1))),

j = 1, . . . , d,

u
(j)
i+1 = gj(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)),

j = 1, . . . , c,

i = 0, 1, . . .

We still use C ′(M, M ′) to denote this finite automaton in this section.

Theorem 9.6.1. For any state

s′′ = 〈z(−1, k), w(1)(0, n1 + 1), . . . , w(d)(0, nd + 1),

u(1)(0, h + p1 + 1), . . . , u(c)(0, h + pc + 1), x(−1, h + r)〉

of C ′(M, M ′), let

s = 〈u(1)(0, p1 + 1), . . . , u(c)(0, pc + 1), x(−1, r)〉,
s′ = 〈z(−1, k), w(1)(0, n1 + 1), . . . , w(d)(0, nd + 1), y(−1, h)〉,

where

yi = f(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)), (9.26)

i = −h, . . . ,−1.

Then the state 〈s, s′〉 of C(M, M ′) and s′′ are equivalent.

Proof. Taking arbitrary x0, x1, . . . ∈ X, let

z0z1 . . . = λ′′(s′′, x0x1 . . .).

Then there exist w(1)(i), . . ., w(d)(i), u(1)(i), . . ., u(c)(i), i = 1, 2, . . . such
that (9.25) holds. Denoting

yi = f(u(1)(i, p1 + 1), . . . , u(c)(i, pc + 1), x(i, r + 1)), i = 0, 1, . . . (9.27)

and using (9.26), (9.25) yields

zi = ϕ(z(i − 1, k), w(1)(i, n1 + 1), . . . , w(d)(i, nd + 1), y(i, h + 1)),

w
(j)
i+1 = ψj(z(i − 1, k), w(1)(i, n1 + 1), . . . , w(d)(i, nd + 1), y(i, h + 1)),

j = 1, . . . , d, i = 0, 1, . . .
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From the definition of M ′, we have

z0z1 . . . = λ′(s′, y0y1 . . .).

Using (9.25) and (9.27), from the definition of M , we obtain

y0y1 . . . = λ(s, x0x1 . . .).

Thus

λ′′(s′′, x0x1 . . .) = z0z1 . . . = λ′(s′, λ(s, x0x1 . . .)) = λ′′′(〈s, s′〉, x0x1 . . .),

where λ′′′ is the output function of C(M, M ′). Therefore, 〈s, s′〉 and s′′ are
equivalent. ��

Let M = 〈V, Z, Zk × Wn+1 × V h, δ, λ〉 be a finite automaton, where

λ(〈z(−1, k), w(0, n + 1), v(−1, h)〉, v0) = z0,

δ(〈z(−1, k), w(0, n + 1), v(−1, h)〉, v0) = 〈z(0, k), w(1, n + 1), v(0, h)〉,
z0 = ϕ(z(−1, k), w(0, n + 1), v(0, h + 1)),

w1 = ψ(z(−1, k), w(0, n + 1), v(0, h + 1)).

Let M∗ = 〈Z, V, V h × Wn+1 × Zτ+k, δ∗, λ∗〉 be a finite automaton, where

λ∗(〈v(−1, h), w(0, n + 1), z(−1, τ + k)〉, z0) = v0,

δ∗(〈v(−1, h), w(0, n + 1), z(−1, τ + k)〉, z0)

= 〈v(0, h), w(1, n + 1), z(0, τ + k)〉,
v0 = ϕ∗

τ (v(−1, h), w(0, n + 1), z(0, τ + k + 1)),

w1 = ψ(z(−τ − 1, k), w(0, n + 1), v(0, h + 1)).

We use PI1(M, M∗, τ) to denote the following condition: for any state

s0 = 〈z(−1, k), w(0, n + 1), v(−1, h)〉

of M and any v0, v1, . . . ∈ V , if

z0z1 . . . = λ(s0, v0v1 . . .),

then
v0v1 . . . = λ∗(s∗τ , zτzτ+1 . . .),

where
s∗τ = 〈v(−1, h), w(0, n + 1), z(τ − 1, τ + k)〉.

We use PI2(M∗,M, τ) to denote the following condition: for any state
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s∗0 = 〈v(−1, h), w(0, n + 1), z(−1, τ + k)〉

of M∗ and any z0, z1, . . . ∈ Z, if

v0v1 . . . = λ∗(s∗0, z0z1 . . .),

then
z0z1 . . . = λ(sτ , vτvτ+1 . . .),

where

sτ = 〈z(−1, k), w(τ, n + 1), v(τ − 1, h)〉,
wi+1 = ψ(z(i − τ − 1, k), w(i, n + 1), v(i, h + 1)),

i = 0, 1, . . . , τ − 1.

For any i, 0 � i � n, let Xi be the column vector space over GF (q) of
dimension li. Let Y be the column vector space over GF (q) of dimension m,
and X = Xn.

For any i, 1 � i � n, let Mi = 〈Xi, Xi−1, U
pi+1
i × Xri

i , δi, λi〉 be an
(ri, 0, pi)-order pseudo-memory finite automaton determined by fi and gi,
where

λi(〈u(i)(0, pi + 1), x(i)(−1, ri)〉, x(i)
0 ) = x

(i−1)
0 ,

δi(〈u(i)(0, pi + 1), x(i)(−1, ri)〉, x(i)
0 ) = 〈u(i)(1, pi + 1), x(i)(0, ri)〉, (9.28)

x
(i−1)
0 = fi(u(i)(0, pi + 1), x(i)(0, ri + 1)),

u
(i)
1 = gi(u(i)(0, pi + 1), x(i)(0, ri + 1)),

and let M∗
i = 〈Xi−1, Xi, X

ri
i × Upi+1

i × Xτi
i−1, δ

∗
i , λ∗

i 〉 be a (τi, ri, pi)-order
pseudo-memory finite automaton determined by f∗

i and gi, where

λ∗
i (〈x(i)(−1, ri), u(i)(0, pi + 1), x(i−1)(−1, τi)〉, x(i−1)

0 ) = x
(i)
0 ,

δ∗i (〈x(i)(−1, ri), u(i)(0, pi + 1), x(i−1)(−1, τi)〉, x(i−1)
0 )

= 〈x(i)(0, ri), u(i)(1, pi + 1), x(i−1)(0, τi)〉, (9.29)

x
(i)
0 = f∗

i (x(i)(−1, ri), u(i)(0, pi + 1), x(i−1)(0, τi + 1)),

u
(i)
1 = gi(u(i)(0, pi + 1), x(i)(0, ri + 1)).

Assume that τi � ri for 1 � i � n.
Let M0 = 〈X0, Y, Y t0×Up0+1

0 ×Xr0
0 , δ0, λ0〉 be an (r0, t0, p0)-order pseudo-

memory finite automaton determined by f0 and g0, where

λ0(〈y(−1, t0), u(0)(0, p0 + 1), x(0)(−1, r0)〉, x(0)
0 ) = y0,

δ0(〈y(−1, t0), u(0)(0, p0 + 1), x(0)(−1, r0)〉, x(0)
0 )
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= 〈y(0, t0), u(0)(1, p0 + 1), x(0)(0, r0)〉, (9.30)

y0 = f0(y(−1, t0), u(0)(0, p0 + 1), x(0)(0, r0 + 1)),

u
(0)
1 = g0(y(−1, t0), u(0)(0, p0 + 1), x(0)(0, r0 + 1)).

Let M∗
0 = 〈Y, X0, X

r0
0 × Up0+1

0 × Y τ0+t0 , δ∗0 , λ∗
0〉 be a (τ0 + t0, r0, p0)-order

pseudo-memory finite automaton determined by f∗
0 and g0 where

λ∗
0(〈x(0)(−1, r0), u(0)(0, p0 + 1), y(−1, τ0 + t0)〉, y0) = x

(0)
0 ,

δ∗0(〈x(0)(−1, r0), u(0)(0, p0 + 1), y(−1, τ0 + t0)〉, y0)

= 〈x(0)(0, r0), u(0)(1, p0 + 1), y(0, τ0 + t0)〉, (9.31)

x
(0)
0 = f∗

0 (x(0)(−1, r0), u(0)(0, p0 + 1), y(0, τ0 + t0 + 1)),

u
(0)
1 = g0(y(−τ0 − 1, t0), u(0)(0, p0 + 1), x(0)(0, r0 + 1)).

Assume that τ0 � r0.
Abbreviate τi,j = τi + τi+1 + · · · + τj , ri,j = ri + ri+1 + · · · + rj and

pi,j = ri +ri+1 + · · ·+rj−1 +pj for any integer i and j with i � j. Let τi,j = 0
in the case of i > j. Thus pj,j = pj , τj,j = τj and rj,j = rj . Let fn,n = fn

and gn,n = gn. For any i, 1 � i � n − 1, let

fi,n(u(i)(0, pi,i+1), u(i+1)(0, pi,i+1+1), . . . , u(n)(0, pi,n+1), x(n)(0, ri,n+1))

= fi(u(i)(0, pi + 1),

fi+1,n(u(i+1)(0, pi+1,i+1 + 1), u(i+2)(0, pi+1,i+2 + 1), . . . ,

u(n)(0, pi+1,n + 1), x(n)(0, ri+1,n + 1)),
. . . . . . ,

fi+1,n(u(i+1)(−ri, pi+1,i+1 + 1), u(i+2)(−ri, pi+1,i+2 + 1), . . . ,

u(n)(−ri, pi+1,n + 1), x(n)(−ri, ri+1,n + 1)))

and

gi,n(u(i)(0, pi,i+1), u(i+1)(0, pi,i+1+1), . . . , u(n)(0, pi,n+1), x(n)(0, ri,n+1))

= gi(u(i)(0, pi + 1),

fi+1,n(u(i+1)(0, pi+1,i+1 + 1), u(i+2)(0, pi+1,i+2 + 1), . . . ,

u(n)(0, pi+1,n + 1), x(n)(0, ri+1,n + 1)),
. . . . . . ,

fi+1,n(u(i+1)(−ri, pi+1,i+1 + 1), u(i+2)(−ri, pi+1,i+2 + 1), . . . ,

u(n)(−ri, pi+1,n + 1), x(n)(−ri, ri+1,n + 1))).

Let

f0,n(y(−1, t0), u(0)(0, p0,0 + 1), u(1)(0, p0,1 + 1), . . . ,

u(n)(0, p0,n + 1), x(n)(0, r0,n + 1))
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= f0(y(−1, t0), u(0)(0, p0 + 1),

f1,n(u(1)(0, p1,1 + 1), u(2)(0, p1,2 + 1), . . . ,

u(n)(0, p1,n + 1), x(n)(0, r1,n + 1)),
. . . . . . ,

f1,n(u(1)(−r0, p1,1 + 1), u(2)(−r0, p1,2 + 1), . . . ,

u(n)(−r0, p1,n + 1), x(n)(−r0, r1,n + 1)))

and

g0,n(y(−1, t0), u(0)(0, p0,0 + 1), u(1)(0, p0,1 + 1), . . . ,

u(n)(0, p0,n + 1), x(n)(0, r0,n + 1))

= g0(y(−1, t0), u(0)(0, p0 + 1),

f1,n(u(1)(0, p1,1 + 1), u(2)(0, p1,2 + 1), . . . ,

u(n)(0, p1,n + 1), x(n)(0, r1,n + 1)),
. . . . . . ,

f1,n(u(1)(−r0, p1,1 + 1), u(2)(−r0, p1,2 + 1), . . . ,

u(n)(−r0, p1,n + 1), x(n)(−r0, r1,n + 1))).

Let Mn,n = Mn and Mi,n = C ′(Mi+1,n,Mi) for 0 � i � n − 1. From the
definition of compound finite automata, for any i, 1 � i � n, we have

Mi,n = 〈Xn, Xi−1, U
pi,i+1
i × U

pi,i+1+1
i+1 × · · · × Upi,n+1

n × Xri,n
n , δi,n, λi,n〉,

where

λi,n(〈u(i)(0, pi,i + 1), . . . , u(n)(0, pi,n + 1), x(n)(−1, ri,n)〉, x(n)
0 ) = x

(i−1)
0 ,

δi,n(〈u(i)(0, pi,i + 1), . . . , u(n)(0, pi,n + 1), x(n)(−1, ri,n)〉, x(n)
0 )

= 〈u(i)(1, pi,i + 1), . . . , u(n)(1, pi,n + 1), x(n)(0, ri,n)〉,

and

x
(i−1)
0 = fi,n(u(i)(0, pi,i + 1), . . . , u(n)(0, pi,n + 1), x(n)(0, ri,n + 1)),

u
(c)
1 = gc,n(u(c)(0, pc,c + 1), . . . , u(n)(0, pc,n + 1), x(n)(0, rc,n + 1)),

c = i, . . . , n.

And we have

M0,n = 〈Xn, Y, Y t0 × U
p0,0+1
0 × U

p0,1+1
1 × · · · × Up0,n+1

n × Xr0,n
n , δ0,n, λ0,n〉,

where

λ0,n(〈y(−1, t0), u(0)(0, p0,0+1), . . . , u(n)(0, p0,n+1), x(n)(−1, r0,n)〉, x(n)
0 )= y0,

δ0,n(〈y(−1, t0), u(0)(0, p0,0 + 1), . . . , u(n)(0, p0,n + 1), x(n)(−1, r0,n)〉, x(n)
0 )

= 〈y(0, t0), u(0)(1, p0,0 + 1), . . . , u(n)(1, p0,n + 1), x(n)(0, r0,n)〉,
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and

y0 = f0,n(y(−1, t0), u(0)(0, p0,0 + 1), u(1)(0, p0,1 + 1), . . . ,

u(n)(0, p0,n + 1), x(n)(0, r0,n + 1)),

u
(0)
1 = g0,n(y(−1, t0), u(0)(0, p0,0 + 1), u(1)(0, p0,1 + 1), . . . ,

u(n)(0, p0,n + 1), x(n)(0, r0,n + 1)),

u
(c)
1 = gc,n(u(c)(0, pc,c + 1), u(c+1)(0, pc,c+1 + 1), . . . ,

u(n)(0, pc,n + 1), x(n)(0, rc,n + 1)),

c = 1, . . . , n.

Theorem 9.6.2. Assume that M∗
i , Mi and τi satisfy PI2(M∗

i ,Mi, τi), i =
0, 1, . . . , n. Let s

(i)∗
−bi−1

= 〈x(i)(−bi−1−1, ri), u(i)(−bi−1, pi+1), x̄(i−1)(−bi−1−
1, τi)〉 be a state of M∗

i , i = 1, . . . , n. Let x
(0)
−b0

, . . . , x
(0)
−1 ∈ X0,

x
(i)
−bi−1

. . . x
(i)
−1 = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 ),

s
(i)∗
0 = δ∗i (s(i)∗

−bi−1
, x

(i−1)
−bi−1

. . . x
(i−1)
−1 ), (9.32)

i = 1, . . . , n,

and
u

(i)
j+1 = gi(u(i)(j, pi + 1), x(i)(j, ri + 1)) (9.33)

for i = 1, . . . , n and j = −bi−1, . . . ,−1, where b−1 = max{τ0,−
∑i−1

j=0 rj +∑i
j=0 τj, i = 1, . . . , n}, and bi = bi−1 + ri − τi for 0 � i � n. Let s

(0)∗
0 =

〈x(0)(−1, r0), u(0)(0, p0 + 1), y(−1, τ0 + t0)〉 be a state of M∗
0 . If

x
(0)
0 x

(0)
1 . . . = λ∗

0(s
(0)∗
0 , y0y1 . . .),

x
(i)
0 x

(i)
1 . . . = λ∗

i (s
(i)∗
0 , x

(i−1)
0 x

(i−1)
1 . . .), (9.34)

i = 1, . . . , n,

then
y0y1 . . . = λ0,n(s, x(n)

τ0,n
x

(n)
τ0,n+1 . . .),

where s = 〈y(−1, t0), u(0)(τ0,0, p0,0 + 1), u(1)(τ0,1, p0,1 + 1), . . ., u(n)(τ0,n,
p0,n +1), x(n)(τ0,n − 1, r0,n)〉, and u

(i)
j in s for 0 < j � τ0,i are computed out

according to the following formulae

u
(i)
j+1 = gi,n(u(i)(j, pi,i + 1), u(i+1)(j + τi+1,i+1, pi,i+1 + 1), . . . ,

u(n)(j + τi+1,n, pi,n + 1), x(n)(j + τi+1,n, ri,n + 1)),

j = 0, 1, . . . , τ0,i − 1,

i = n, n − 1, . . . , 1, (9.35)
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u
(0)
j+1 = g0,n(y(j − τ0 − 1, t0), u(0)(j, p0,0 + 1), u(1)(j + τ1,1, p0,1 + 1), . . . ,

u(n)(j + τ1,n, p0,n + 1), x(n)(j + τ1,n, r0,n + 1)),

j = 0, 1, . . . , τ0,0 − 1.

Proof. Suppose that (9.34) holds. From (9.32) and the part on M∗
i in

(9.34), it is easy to obtain that

x
(i)
−bi−1

. . . x
(i)
−1x

(i)
0 x

(i)
1 . . . = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 x

(i−1)
0 x

(i−1)
1 . . .),

i = 1, . . . , n. Since bi−1 � τi and (9.33) holds for i = 1, . . . , n and j =
−bi−1, . . . ,−1, from PI2(M∗

i ,Mi, τi), it follows that

x
(i−1)
−bi−1

. . . x
(i−1)
−1 x

(i−1)
0 x

(i−1)
1 . . . = λi(s(i), x

(i)
−bi−1+τi

x
(i)
−bi−1+τi+1 . . .), (9.36)

i = 1, . . . , n, where s(i) = 〈u(i)(−bi−1 + τi, pi + 1), x(i)(−bi−1 + τi − 1, ri)〉,
i = 1, . . . , n. For any i, 1 � i � n, letting (9.33) for j = 0, 1, . . ., since (9.33)
holds for j = −bi−1, . . . ,−1, we have

u
(i)
j+1 = gi(u(i)(j, pi + 1), x(i)(j, ri + 1)), (9.37)

j = −bi−1,−bi−1 + 1, . . .

For such u(i)’s which satisfy (9.37), from the definition of Mi and (9.36), we
obtain

x
(i−1)
j = fi(u(i)(j + τi, pi + 1), x(i)(j + τi, ri + 1)), (9.38)

j = −bi−1,−bi−1 + 1, . . . ,

i = 1, . . . , n. Since PI2(M∗
0 ,M0, τ0) holds, from the part on M∗

0 in (9.34), we
have

y0y1 . . . = λ0(s(0), x(0)
τ0

x
(0)
τ0+1 . . .), (9.39)

where s(0) = 〈y(−1, t0), u(0)(τ0, p0 + 1), x(0)(τ0 − 1, r0)〉, and

u
(0)
j+1 = g0(y(j − τ0 − 1, t0), u(0)(j, p0 + 1), x(0)(j, r0 + 1)) (9.40)

for j = 0, . . . , τ0 − 1.
We prove by induction on i that for any i, 1 � i � n, we have

x
(i−1)
−bi−1

x
(i−1)
−bi−1+1 . . .

= λi,n(〈u(i)(−bi−1 + τi,i, pi,i + 1), u(i+1)(−bi−1 + τi,i+1, pi,i+1 + 1), . . . ,

u(n)(−bi−1 + τi,n, pi,n + 1), x(n)(−bi−1 + τi,n − 1, ri,n)〉, (9.41)

x
(n)
−bi−1+τi,n

x
(n)
−bi−1+τi,n+1 . . .)

and
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x
(i−1)
j = fi,n(u(i)(j + τi,i, pi,i + 1), u(i+1)(j + τi,i+1, pi,i+1 + 1), . . . ,

u(n)(j + τi,n, pi,n + 1), x(n)(j + τi,n, ri,n + 1)), (9.42)

u
(c)
j+τi,c+1 = gc,n(u(c)(j + τi,c, pc,c + 1), u(c+1)(j + τi,c+1, pc,c+1 + 1), . . . ,

u(n)(j + τi,n, pc,n + 1), x(n)(j + τi,n, rc,n + 1)),

c = i, . . . , n, j = −bi−1,−bi−1 + 1, . . .

Basis : i = n. The formula (9.41) is

x
(n−1)
−bn−1

x
(n−1)
−bn−1+1 . . .

= λn,n(〈u(n)(−bn−1 + τn,n, pn,n + 1), x(n)(−bn−1 + τn,n − 1, rn,n)〉,
x

(n)
−bn−1+τn,n

x
(n)
−bn−1+τn,n+1 . . .)

which is deduced by (9.36), using λn,n = λn, rn,n = rn, pn,n = pn and
τn,n = τn. Similarly, the formula (9.42) is

x
(n−1)
j = fn,n(u(n)(j + τn,n, pn,n + 1), x(n)(j + τn,n, rn,n + 1)),

u
(n)
j+τn,n+1 = gn,n(u(n)(j + τn,n, pn,n + 1), x(n)(j + τn,n, rn,n + 1)),

j = −bn−1,−bn−1 + 1, . . .

which is deduced by (9.37) and (9.38), using fn,n = fn, gn,n = gn, rn,n = rn,
pn,n = pn, and τn,n = τn. Induction step : Suppose that for i � 1 we have
proven that

x
(i)
−bi

x
(i)
−bi+1 . . .

= λi+1,n(〈u(i+1)(−bi + τi+1,i+1, pi+1,i+1 + 1),

u(i+2)(−bi + τi+1,i+2, pi+1,i+2 + 1), . . . , (9.43)

u(n)(−bi + τi+1,n, pi+1,n + 1), x(n)(−bi + τi+1,n − 1, ri+1,n)〉,
x

(n)
−bi+τi+1,n

x
(n)
−bi+τi+1,n+1 . . .)

and

x
(c−1)
j = fc,n(u(c)(j + τc,c, pc,c + 1), u(c+1)(j + τc,c+1, pc,c+1 + 1), . . . ,

u(n)(j + τc,n, pc,n + 1), x(n)(j + τc,n, rc,n + 1)) (9.44)

for c = i + 1 and j = −bi,−bi + 1, . . .,

u
(c)
j+τi+1,c+1 = gc,n(u(c)(j+τi+1,c, pc,c+1), u(c+1)(j+τi+1,c+1, pc,c+1+1), . . . ,

u(n)(j + τi+1,n, pc,n + 1), x(n)(j + τi+1,n, rc,n + 1))(9.45)

for c = i+ 1, . . . , n and j = −bi,−bi + 1, . . . We prove (9.41) and (9.42) hold.
Since −bi = −bi−1 + τi − ri, (9.44) holds for c = i + 1 and −bi−1 + τi − ri �
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j < −bi−1 + τi. From (9.43) and (9.36), noticing −bi � −bi + ri = −bi−1 + τi,
applying Theorem 9.6.1, (9.41) holds. Since (9.37) holds and (9.44) holds for
c = i + 1 and j � −bi = −bi−1 + τi − ri, from the definition of gc,n, we have

u
(c)
j+τi,c+1 = gc,n(u(c)(j + τi,c, pc,c + 1), u(c+1)(j + τi,c+1, pc,c+1 + 1), . . . ,

u(n)(j + τi,n, pc,n + 1), x(n)(j + τi,n, rc,n + 1)) (9.46)

for c = i and j � −bi−1. From −bi = −bi−1 − ri + τi � −bi−1 + τi, (9.45)
holds for c = i + 1, . . . , n and j � −bi−1 + τi. Replacing j in (9.45) by j + τi,
it follows immediately that (9.46) holds for c = i + 1, . . . , n and j � −bi−1.
Therefore, (9.46) holds for c = i, . . . , n and j � −bi−1. From (9.41), (9.44)
holds for c = i and j � −bi−1; therefore, (9.44) holds for c = i, . . . , n and
j � −bi−1. We conclude that (9.42) holds.

Especially, equation (9.41) and (9.42) hold for the case of i = 1, that is,

x
(0)
−b0

x
(0)
−b0+1 . . .

= λ1,n(〈u(1)(−b0 + τ1,1, p1,1 + 1), u(2)(−b0 + τ1,2, p1,2 + 1), . . . ,

u(n)(−b0 + τ1,n, p1,n + 1), x(n)(−b0 + τ1,n − 1, r1,n)〉, (9.47)

x
(n)
−b0+τ1,n

x
(n)
−b0+τ1,n+1 . . .)

and

x
(0)
j = f1,n(u(1)(j + τ1,1, p1,1 + 1), u(2)(j + τ1,2, p1,2 + 1), . . . ,

u(n)(j + τ1,n, p1,n + 1), x(n)(j + τ1,n, r1,n + 1)), (9.48)

u
(c)
j+τ1,c+1 = gc,n(u(c)(j + τ1,c, pc,c + 1), u(c+1)(j + τ1,c+1, pc,c+1 + 1), . . . ,

u(n)(j + τ1,n, pc,n + 1), x(n)(j + τ1,n, rc,n + 1)),

c = 1, . . . , n, j = −b0,−b0 + 1, . . .

Using Theorem 9.6.1, from (9.47), (9.39) and (9.48), we obtain

y0y1 . . . = λ0,n(s̄, x(n)
τ0,n

x
(n)
τ0,n+1 . . .),

where s̄ = 〈y(−1, t0), u(0)(τ0,0, p0,0+1), u(1)(τ0,1, p0,1+1), . . ., u(n)(τ0,n, p0,n+
1), x(n)(τ0,n − 1, r0,n)〉.

To prove s = s̄, letting (9.40) for j � τ0, since (9.40) holds for 0 � j < τ0,
(9.40) holds for j � 0. From (9.48) and the definition of g0,n, noticing b−1 �
τ0, this yields that

u
(0)
j+τ0+1 = g0,n(y(j − 1, t0), u(0)(j + τ0,0, p0,0 + 1), u(1)(j + τ0,1, p0,1 + 1),

. . . , u(n)(j + τ0,n, p0,n + 1), x(n)(j + τ0,n, r0,n + 1)) (9.49)
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holds for j � −τ0. Notice that for any i, 1 � i � n, (9.46) holds for c = i

and j � −bi−1. The condition j � −bi−1 is equivalent to the condition
j + τi � −bi−1 + τi which can be deduced by the condition j + τi � 0 because
of −bi−1 + τi � 0. Thus for any i, 1 � i � n, (9.46) holds for c = i and
j + τi � 0, that is,

u
(i)
j+τi+1 = gi,n(u(i)(j + τi,i, pi,i + 1), u(i+1)(j + τi,i+1, pi,i+1 + 1), . . . ,

u(n)(j + τi,n, pi,n + 1), x(n)(j + τi,n, ri,n + 1))

holds for j + τi � 0. From (9.49), it follows that (9.35) holds. Therefore,
s = s̄. ��

Let r′0,j = τ0 + t0 + r1 + · · ·+ rj and p′0,j = τ0 + t0 + r1 + · · ·+ rj−1 + pj ,
for j > 0. Let

f ′
0,n(y(−1, r0), u(0)(0, p0 + 1), u(1)(0, p′0,1 + 1), . . . ,

u(n)(0, p′0,n + 1), x(n)(0, r′0,n + 1))

= f∗
0 (y(−1, r0), u(i)(0, p0 + 1),

f1,n(u(1)(0, p1,1 + 1), u(2)(0, p1,2 + 1), . . . ,

u(n)(0, p1,n + 1), x(n)(0, r1,n + 1)),
. . . . . . ,

f1,n(u(1)(−τ0 − t0, p1,1 + 1), u(2)(−τ0 − t0, p1,2 + 1), . . . ,

u(n)(−τ0 − t0, p1,n + 1), x(n)(−τ0 − t0, r1,n + 1)))

and

g′0,n(y(0, r0 + 1), u(0)(0, p0 + 1), u(1)(0, p′0,1 + 1), . . . ,

u(n)(0, p′0,n + 1), x(n)(0, r′0,n + 1))

= g0(f1,n(u(1)(−τ0 − 1, p1,1 + 1), u(2)(−τ0 − 1, p1,2 + 1), . . . ,

u(n)(−τ0 − 1, p1,n + 1), x(n)(−τ0 − 1, r1,n + 1)),
. . . . . . ,

f1,n(u(1)(−τ0 − t0, p1,1 + 1), u(2)(−τ0 − t0, p1,2 + 1), . . . ,

u(n)(−τ0 − t0, p1,n + 1), x(n)(−τ0 − t0, r1,n + 1)),

u(0)(0, p0 + 1), y(0, r0 + 1)).

We use M ′
0,n to denote C ′(M1,n,M∗

0 ), where symbols of the input alphabet
and the output alphabet of M∗

0 are interchanged. Then we have

M ′
0,n = 〈Xn, Y, Y r0 × Up0+1

0 × U
p′
0,1+1

1 × . . . × U
p′
0,n+1

n × X
r′
0,n

n , δ′0,n, λ′
0,n〉,

where
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λ′
0,n(〈y(−1, r0), u(0)(0, p0 + 1), u(1)(0, p′0,1 + 1), . . . ,

u(n)(0, p′0,n + 1), x(n)(−1, r′0,n)〉, x
(n)
0 )

= y0,

δ′0,n(〈y(−1, r0), u(0)(0, p0 + 1), u(1)(0, p′0,1 + 1), . . . ,

u(n)(0, p′0,n + 1), x(n)(−1, r′0,n)〉, x(n)
0 )

= 〈y(0, r0), u(0)(1, p0 + 1), u(1)(1, p′0,1 + 1), . . . ,

u(n)(1, p′0,n + 1), x(n)(0, r′0,n)〉,

and

y0 = f ′
0,n(y(−1, r0), u(0)(0, p0 + 1), u(1)(0, p′0,1 + 1), . . . ,

u(n)(0, p′0,n + 1), x(n)(0, r′0,n + 1)),

u
(0)
1 = g′0,n(y(0, r0 + 1), u(0)(0, p0 + 1), u(1)(0, p′0,1 + 1), . . . ,

u(n)(0, p′0,n + 1), x(n)(0, r′0,n + 1)),

u
(i)
1 = gi,n(u(i)(0, pi,i + 1), . . . , u(n)(0, pi,n + 1), x(n)(0, ri,n + 1)),

i = 1, . . . , n.

Theorem 9.6.3. Assume that M∗
i , Mi and τi satisfy PI2(M∗

i ,Mi, τi),
i = 1, . . . , n and that M∗

0 , M0 and τ0 satisfy PI1(M0,M
∗
0 , τ0). Let s

(i)∗
−bi−1

=
〈x(i)(−bi−1−1, ri), u(i)(−bi−1, pi+1), x̄(i−1)(−bi−1−1, τi)〉 be a state of M∗

i ,
i = 1, . . . , n. Let x

(0)
−b0

, . . . , x
(0)
−1 ∈ X0,

x
(i)
−bi−1

. . . x
(i)
−1 = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 ),

s
(i)∗
0 = δ∗i (s(i)∗

−bi−1
, x

(i−1)
−bi−1

. . . x
(i−1)
−1 ),

i = 1, . . . , n,

and
u

(i)
j+1 = gi(u(i)(j, pi + 1), x(i)(j, ri + 1))

for i = 1, . . . , n and j = −bi−1, . . . ,−1, where b−1 = max{0,−∑i−1
j=1 rj +∑i

j=1 τj, i = 1, . . . , n}, b0 = b−1 + t0, and bi = bi−1 + ri − τi for 1 � i � n.

Let s
(0)
0 = 〈x(0)(−1, t0), u(0)(0, p0 + 1), y(−1, r0)〉 be a state of M0. If

x
(0)
0 x

(0)
1 . . . = λ0(s

(0)
0 , y0y1 . . .),

x
(i)
0 x

(i)
1 . . . = λ∗

i (s
(i)∗
0 , x

(i−1)
0 x

(i−1)
1 . . .), (9.50)

i = 1, . . . , n,

then
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y0y1 . . . = λ′
0,n(s, x(n)

τ0,n
x

(n)
τ0,n+1 . . .),

where s = 〈y(−1, r0), u(0)(0, p0+1), u(1)(τ0,1, p
′
0,1+1), . . ., u(n)(τ0,n, p′0,n+1),

x(n)(τ0,n − 1, r′0,n)〉, and u
(i)
j in s for 0 < j � τ0,i are computed out according

to the following formulae

u
(i)
j+1 = gi,n(u(i)(j, pi,i + 1), u(i+1)(j + τi+1,i+1, pi,i+1 + 1), . . . ,

u(n)(j + τi+1,n, pi,n + 1), x(n)(j + τi+1,n, ri,n + 1)),

i = n, n − 1, . . . , 1, j = 0, 1, . . . , τ0,i − 1.

Proof. The proof of this theorem is similar to Theorem 9.6.2. Suppose
that (9.50) holds. From the proof of Theorem 9.6.2, (9.47) and (9.48) hold.
Since PI1(M0,M

∗
0 , τ0) holds, from the part on M0 in (9.50), we have

y0y1 . . . = λ∗
0(s

(0)∗, x(0)
τ0

x
(0)
τ0+1 . . .), (9.51)

where s(0)∗ = 〈y(−1, r0), u(0)(0, p0 + 1), x(0)(τ0 − 1, τ0 + t0)〉. Using Theo-
rem 9.6.1, from (9.47), (9.51) and (9.48), we obtain

y0y1 . . . = λ′
0,n(s̄, x(n)

τ0,n
x

(n)
τ0,n+1 . . .),

where s̄ = 〈y(−1, r0), u(0)(0, p0+1), u(1)(τ0,1, p
′
0,1+1), . . ., u(n)(τ0,n, p′0,n+1),

x(n)(τ0,n − 1, r′0,n)〉. From the proof of Theorem 9.6.2 (neglecting (9.49)), s̄

coincides with s. ��

Lemma 9.6.1. Assume that PI1(Mi,M
∗
i , τi) holds for any i, 1 � i � n.

Let

s = 〈u(1)(0, p1 + 1), u(2)(0, p1,2 + 1), . . . , u(n)(0, p1,n + 1), x(n)(−1, r1,n)〉

be a state of C ′(Mn, . . . , M1). Let

x
(c−1)
j = fc,n(u(c)(j, pc,c + 1), . . . , u(n)(j, pc,n + 1), x(n)(j, rc,n + 1)),

j = −rc−1, . . . ,−1 (9.52)

for c = 2, . . . , n. If

x
(0)
0 x

(0)
1 . . . = λ1,n(s, x(n)

0 x
(n)
1 . . .), (9.53)

then

x
(n)
0 x

(n)
1 . . . (9.54)

= λ∗
n(〈x(n)(−1, rn), u(n)(0, pn + 1), x(n−1)(τn − 1, τn)〉, x(n−1)

τn
x

(n−1)
τn+1 . . .),

where
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x
(i)
0 x

(i)
1 . . . (9.55)

= λ∗
i (〈x(i)(−1, ri), u(i)(0, pi + 1), x(i−1)(τi − 1, τi)〉, x(i−1)

τi
x

(i−1)
τi+1 . . .)

for i = 1, . . . , n − 1.

Proof. Let si = 〈u(i)(0, pi + 1), x(i)(−1, ri)〉 for i = 1, . . . , n − 1, and
s′i = 〈u(i+1)(0, pi+1 + 1), u(i+2)(0, pi+1,i+2 + 1), . . ., u(n)(0, pi+1,n + 1),
x(n)(−1, ri+1,n)〉 for i = 0, 1, . . . , n − 1. Suppose that (9.53) holds. We prove
by induction on i that

x
(i−1)
0 x

(i−1)
1 . . . = λi,n(s′i−1, x

(n)
0 x

(n)
1 . . .) (9.56)

holds for any i, 1 � i � n. The case of i = 1 is trivial because of s = s′0.
Suppose that (9.56) holds for i and i � n−1. We prove (9.56) holds for i+1,
that is,

x
(i)
0 x

(i)
1 . . . = λi+1,n(s′i, x

(n)
0 x

(n)
1 . . .). (9.57)

Since (9.52) holds for c = i + 1, applying Theorem 9.6.1, the state s′i−1

of C ′(Mn, . . ., Mi) and the state 〈s′i, si〉 of C(C ′(Mn, . . . , Mi+1),Mi) are
equivalent. Letting

x̄
(i)
0 x̄

(i)
1 . . . = λi+1,n(s′i, x

(n)
0 x

(n)
1 . . .), (9.58)

from (9.56), we have

x
(i−1)
0 x

(i−1)
1 . . . = λi(si, x̄

(i)
0 x̄

(i)
1 . . .).

Since PI1(Mi,M
∗
i , τi) holds, the above equation deduces

x̄
(i)
0 x̄

(i)
1 . . . = λ∗

i (〈x(i)(−1, ri), u(i)(0, pi+1), x(i−1)(τi−1, τi)〉, x(i−1)
τi

x
(i−1)
τi+1 . . .).

From (9.55), it follows immediately that x̄
(i)
0 x̄

(i)
1 . . . = x

(i)
0 x

(i)
1 . . . Therefore,

(9.58) implies (9.57).
Since PI1(Mn,M∗

n, τn) holds, from the case i = n of (9.56), (9.54) holds.
��

Theorem 9.6.4. Assume that PI1(Mi,M
∗
i , τi) holds for any i, 0 � i � n.

Let s = 〈y(−1, t0), u(0)(0, p0 + 1), u(1)(0, p0,1 + 1), . . ., u(n)(0, p0,n + 1),
x(n)(−1, r0,n)〉 be a state of C ′(Mn, . . ., M1, M0). Assume that (9.52) holds
for c = 1, . . . , n and

y0y1 . . . = λ0,n(s, x(n)
0 x

(n)
1 . . .). (9.59)

If

x
(0)
0 x

(0)
1 . . . (9.60)

= λ∗
0(〈x(0)(−1, r0), u(0)(0, p0 + 1), y(τ0 − 1, τ0 + t0)〉, yτ0yτ0+1 . . .)

holds and (9.55) holds for i = 1, . . . , n − 1, then (9.54) holds.
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Proof. Let s0 = 〈y(−1, t0), u(0)(0, p0 + 1), x(0)(−1, r0)〉 and s′0 =
〈u(1)(0, p1 + 1), u(2)(0, p1,2 + 1), . . ., u(n)(0, p1,n + 1), x(n)(−1, r1,n)〉. Since
(9.52) holds for c = 1, the state s of C ′(Mn, . . . , M1,M0) and the state 〈s′0, s0〉
of C(C ′(Mn, . . ., M1), M0) are equivalent. Letting

x̄
(0)
0 x̄

(0)
1 . . . = λ1,n(s′0, x

(n)
0 x

(n)
1 . . .), (9.61)

since (9.59) holds, we have

y0y1 . . . = λ0(s0, x̄
(0)
0 x̄

(0)
1 . . .).

From PI1(M0,M
∗
0 , τ0), it follows immediately that

x̄
(0)
0 x̄

(0)
1 . . . = λ∗

0(〈x(0)(−1, r0), u(0)(0, p0 + 1), y(τ0 − 1, τ0 + t0)〉, yτ0yτ0+1 . . .).

Using (9.60), this yields x̄
(0)
0 x̄

(0)
1 . . . = x

(0)
0 x

(0)
1 . . . From (9.61), we obtain

x
(0)
0 x

(0)
1 . . . = λ1,n(s′0, x

(n)
0 x

(n)
1 . . .).

From Lemma 9.6.1, we obtain (9.54). ��

Theorem 9.6.5. Assume that PI2(M∗
0 ,M0, τ0) holds and PI1(Mi,M

∗
i , τi)

holds for any i, 1 � i � n. Let s = 〈y(−1, r0), u(0)(0, p0 + 1), u(1)(0, p′0,1 +
1), . . ., u(n)(0, p′0,n + 1), x(n)(−1, r′0,n)〉 be a state of C ′(Mn, . . . , M1,M

∗
0 ).

Assume that

x
(c−1)
j = fc,n(u(c)(j, pc,c + 1), . . . , u(n)(j, pc,n + 1), x(n)(j, rc,n + 1)),

j = −r′c−1, . . . ,−1 (9.62)

for c = 1, . . . , n and

y0y1 . . . = λ′
0,n(s, x(n)

0 x
(n)
1 . . .), (9.63)

where r′0 = τ0 + t0, r′i = ri, i = 1, . . . , n. If

x
(0)
0 x

(0)
1 . . . = λ0(〈x(0)(−1, t0), u(0)(τ0, p0 + 1), y(τ0 − 1, r0)〉, yτ0yτ0+1 . . .),

u
(0)
j+1 = g0(x(0)(j − τ0 − 1, t0), u(0)(j, p0 + 1), y(j, r0 + 1)), (9.64)

j = 0, 1, . . . , τ0 − 1

hold and (9.55) holds for i = 1, . . . , n − 1, then (9.54) holds.

Proof. Let s0 = 〈y(−1, r0), u(0)(0, p0 + 1), x(0)(−1, τ0 + t0)〉 and s′0 =
〈u(1)(0, p1 + 1), u(2)(0, p1,2 + 1), . . ., u(n)(0, p1,n + 1), x(n)(−1, r1,n)〉. Since
(9.62) holds for c = 1, the state s of C ′(Mn, . . . , M1,M

∗
0 ) and the state 〈s′0, s0〉
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of C(C ′(Mn, . . ., M1), M∗
0 ) are equivalent. Letting (9.61), from (9.63), we

have
y0y1 . . . = λ∗

0(s0, x̄
(0)
0 x̄

(0)
1 . . .).

Since PI2(M∗
0 ,M0, τ0) holds, it follows immediately that

x̄
(0)
0 x̄

(0)
1 . . . = λ0(〈x(0)(−1, t0), u(0)(τ0, p0 + 1), y(τ0 − 1, r0)〉, yτ0yτ0+1 . . .).

From (9.64), this yields x̄
(0)
0 x̄

(0)
1 . . . = x

(0)
0 x

(0)
1 . . . Therefore, (9.61) implies

x
(0)
0 x

(0)
1 . . . = λ1,n(s′0, x

(n)
0 x

(n)
1 . . .).

From Lemma 9.6.1, we obtain (9.54). ��

9.6.2 Two Algorithms

FAPKC3x-n

Using the results of the preceding subsection, we now generalize the so-called
basic algorithm of the public key cryptosysytem based on finite automata in
Sect. 9.2 to two public key cryptosystems so that component finite automata
of the compound finite automata in public keys are finite automata with
auxiliary state discussed in the preceding subsection. The two cryptosystems
are designed for both encryption and signature. Therefore, we require that
all input alphabets and all output alphabets have the same dimension, say
m.

We first propose a cryptosystem relied upon Theorem 9.6.2 and Theo-
rem 9.6.4. Let n � 1. Choose a common q and m for all users. Let all the
alphabets X0, . . . , Xn and Y be the same column vector space over GF (q) of
dimension m.

A user, say A, choose his/her own public key and private key as follows.
(a) Construct pseudo-memory finite automata Mi, M∗

i , i = 0, 1, . . . , n de-
fined by (9.30), (9.28), (9.31) and (9.29), respectively, which satisfy conditions
PI1(Mi,M

∗
i , τi) and PI2(M∗

i ,Mi, τi) for some τi � ri, i = 0, 1, . . . , n.
(b) Construct the finite automaton C ′(Mn, . . . , M1,M0) = 〈X, Y , S, δ0,n,

λ0,n〉 from M0, M1, . . ., Mn.
(c) Let b−1 = max{τ0,−

∑i−1
j=0 rj +

∑i
j=0 τj , i = 1, . . . , n}, and bi = bi−1+

ri − τi, i = 0, 1, . . . , n. Choose arbitrary x
(0)
−b0

, . . . , x
(0)
−1 ∈ X0. For each i,

1 � i � n, choose an arbitrary state

s
(i)∗
−bi−1

= 〈x(i)(−bi−1 − 1, ri), u(i)(−bi−1, pi + 1), x̄(i−1)(−bi−1 − 1, τi)〉

of M∗
i . Compute



388 9. Finite Automaton Public Key Cryptosystems

x
(i)
−bi−1

. . . x
(i)
−1 = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 ),

s
(i)∗
0 = δ∗i (s(i)∗

−bi−1
, x

(i−1)
−bi−1

. . . x
(i−1)
−1 ),

i = 1, . . . , n,

and

u
(i)
j+1 = gi(u(i)(j, pi + 1), x(i)(j, ri + 1)),

i = 1, . . . , n, j = −bi−1, . . . ,−1.

Choose an arbitrary state s
(0)∗
0 = 〈x(0)(−1, r0), u(0)(0, p0 +1), y(−1, τ0 + t0)〉

of M∗
0 . Take s

(i)
s = s

(i)∗
0 , i = 0, 1, . . . , n, sout

v = 〈y−1, . . . , y−τ0−t0〉, saux,i
v =

〈u(i)
0 , u

(i)
−1, . . . , u

(i)

−p(i)〉, i = 0, 1, . . . , n, sin
v = 〈x(n)

−1 , . . . , x
(n)

−r(n)〉, where

r(n) = max(rn, rn−1,n − τn,n, . . . , r1,n − τ2,n, r0,n − τ1,n),

p(0) = p0,

p(i) = max(pi, pi−1,i − τi,i, . . . , p1,i − τ2,i, p0,i − τ1,i), i = 1, . . . , n.

(d) Choose an arbitrary state se = 〈y(−1, t0), u(0)(0, p0 +1), u(1)(0, p0,1 +
1), . . ., u(n)(0, p0,n + 1), x(n)(−1, r0,n)〉 of C ′(Mn, . . . , M1,M0). Compute

x
(c−1)
j = fc,n(u(c)(j, pc,c + 1), . . . , u(n)(j, pc,n + 1), x(n)(j, rc,n + 1)),

c = 1, 2, . . . , n, j = −rc−1, . . . ,−1.

Take s
(0),in
d = 〈y−1, . . . , y−t0〉, s

(i),aux
d = 〈u(i)

0 , u
(i)
−1, . . . , u

(i)
−pi

〉 and s
(i),out
d =

〈x(i)
−1, . . ., x

(i)
−ri

〉, i = 0, 1, . . . , n.1

(e) The public key of the user A is

C ′(Mn, . . . , M1,M0), sout
v , sin

v , saux,0
v , . . . , saux,n

v , se, τ0,n.

The private key of the user A is

M∗
0 , . . . , M∗

n, s(0)
s , . . . , s(n)

s , s
(0),in
d , s

(0),aux
d , . . . , s

(n),aux
d ,

s
(0),out
d , . . . , s

(n),out
d , τ0, . . . , τn.

Encryption Any user, say B, wants to send a plaintext x
(n)
0 x

(n)
1 . . . x

(n)
l to

a user A. B first suffixes any τ0,n digits, say x
(n)
l+1 . . . x

(n)
l+τ0,n

, to the plaintext.
Then using C ′(Mn, . . . , M1,M0) and se in A’s public key, B computes the
ciphertext y0 y1 . . . yl+τ0,n as follows:

y0y1 . . . yl+τ0,n
= λ0,n(se, x

(n)
0 x

(n)
1 . . . x

(n)
l+τ0,n

).

1 For the simplicity of symbolization, we use the same symbols y−j , u
(i)
j , x

(i)
−j in

(c) and in (d), but their intentions are different.



9.6 Generalized Algorithms 389

Decryption From the ciphertext y0y1 . . . yl+τ0,n
, according to Theorem 9.6.4,

A can retrieve the plaintext x
(n)
0 x

(n)
1 . . . x

(n)
l as follows. Using M∗

0 , . . . , M∗
n,

s
(0),in
d s

(i),aux
d , s

(i),out
d , i = 0, 1, . . . , n in his/her private key, A computes

x
(0)
0 x

(0)
1 . . . x

(0)
l+τ1,n

= λ∗
0(〈x(0)(−1, r0), u(0)(0, p0 + 1), y(τ0 − 1, τ0 + t0)〉, yτ0yτ0+1 . . . yl+τ0,n

)

and

x
(i)
0 x

(i)
1 . . . x

(i)
l+τi+1,n

= λ∗
i (〈x(i)(−1, ri), u(i)(0, pi+1), x(i−1)(τi−1, τi)〉, x(i−1)

τi
x

(i−1)
τi+1 . . . x

(i−1)
l+τi,n

),

i = 1, . . . , n,

where s
(0),in
d = 〈y−1, . . . , y−t0〉, s

(i),aux
d = 〈u(i)

0 , u
(i)
−1, . . . , u

(i)
−pi

〉 and s
(i),out
d =

〈x(i)
−1, . . ., x

(i)
−ri

〉, i = 0, 1, . . . , n.

Signature To sign a message y0y1 . . . yl, the user A first suffixes any τ0,n dig-
its, say yl+1 . . . yl+τ0,n , to the message. Then using M∗

0 , . . ., M∗
n, s

(0)
s , . . . , s

(n)
s

in his/her private key, A computes

x
(0)
0 x

(0)
1 . . . x

(0)
l+τ0,n

= λ∗
0(s

(0)
s , y0y1 . . . yl+τ0,n),

x
(i)
0 x

(i)
1 . . . x

(i)
l+τ0,n

= λ∗
i (s

(i)
s , x

(i−1)
0 x

(i−1)
1 . . . x

(i−1)
l+τ0,n

),

i = 1, . . . , n.

Then x
(n)
0 x

(n)
1 . . . x

(n)
l+τ0,n

is a signature of y0y1 . . . yl.

Validation Any user, say B, can verify the validity of the signature
x

(n)
0 x

(n)
1 . . . x

(n)
l+τ0,n

as follows. Using C ′(Mn, . . . , M1,M0), sout
v , sin

v , saux,i
v ,

i = 0, 1, . . . , n in A’s public key, B first computes

u
(i)
j+1 = gi,n(u(i)(j, pi,i + 1), u(i+1)(j + τi+1,i+1, pi,i+1 + 1), . . . ,

u(n)(j + τi+1,n, pi,n + 1), x(n)(j + τi+1,n, ri,n + 1)),

j = 0, 1, . . . , τ0,i − 1, i = n, n − 1, . . . , 1,

u
(0)
j+1 = g0,n(y(j − τ0 − 1, t0), u(0)(j, p0,0 + 1), u(1)(j + τ1,1, p0,1 + 1), . . . ,

u(n)(j + τ1,n, p0,n + 1), x(n)(j + τ1,n, r0,n + 1)),

j = 0, 1, . . . , τ0,0 − 1,

where sout
v = 〈y−1, . . . , y−τ0−t0〉, saux,i

v = 〈u(i)
0 , u

(i)
−1, . . . , u

(i)

−p(i)〉, i=0, 1, . . . , n,

sin
v = 〈x(n)

−1 , . . . , x
(n)

−r(n)〉. Letting s = 〈y(−1, t0), u(0)(τ0,0, p0,0 + 1), u(1)(τ0,1,

p0,1 + 1), . . ., u(n)(τ0,n, p0,n + 1), x(n)(τ0,n − 1, r0,n)〉, A then computes
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λ0,n(s, x(n)
τ0,n

x
(n)
τ0,n+1 . . . x

(n)
l+τ0,n

)

which would coincide with the message y0y1 . . . yl from Theorem 9.6.2.

The special case of n = 1 of the above cryptosystem may be regarded
as a generation of the cryptsystem FAPKC3 (cf. [123]). The cryptosystem is
referred to as FAPKC3x-n.

FAPKC4x-n

Similar to FAPKC3x-n, we propose a cryptosystem relied upon Theorem 9.6.3
and Theorem 9.6.5. Let n � 1. Choose a common q and m for all users. Let
all the alphabets X0, . . . , Xn and Y be the same column vector space over
GF (q) of dimension m.

A user, say A, choose his/her own public key and private key as follows.
(a) Construct pseudo-memory finite automata Mi, M∗

i , i = 0, 1, . . . , n de-
fined by (9.30), (9.28), (9.31) and (9.29), respectively, which satisfy conditions
PI1(Mi,M

∗
i , τi) and PI2(M∗

i ,Mi, τi) for some τi � ri, i = 0, 1, . . . , n.
(b) Construct the finite automaton C ′(Mn, . . . , M1,M

∗
0 ) = 〈X, Y, S′, δ′0,n,

λ′
0,n〉 from M∗

0 , M1, . . ., Mn.
(c) Let b−1 = max{0,−∑i−1

j=0 rj +
∑i

j=0 τj , i = 1, . . . , n}, b0 = b−1 + t0,

and bi = bi−1 + ri − τi, i = 1, . . . , n. Choose arbitrary x
(0)
−b0

, . . . , x
(0)
−1 ∈ X0.

For each i, 1 � i � n, choose an arbitrary state s
(i)∗
−bi−1

= 〈x(i)(−bi−1 − 1, ri),
u(i)(−bi−1, pi + 1), x̄(i−1)(−bi−1 − 1, τi)〉 of M∗

i . Compute

x
(i)
−bi−1

. . . x
(i)
−1 = λ∗

i (s
(i)∗
−bi−1

, x
(i−1)
−bi−1

. . . x
(i−1)
−1 ),

s
(i)∗
0 = δ∗i (s(i)∗

−bi−1
, x

(i−1)
−bi−1

. . . x
(i−1)
−1 ),

i = 1, . . . , n,

and

u
(i)
j+1 = gi(u(i)(j, pi + 1), x(i)(j, ri + 1))

i = 1, . . . , n, j = −bi−1, . . . ,−1.

Choose an arbitrary state s
(0)
0 = 〈x(0)(−1, t0), u(0)(0, p0 + 1), y(−1, r0)〉 of

M0. Take s
(0)
s = s

(0)
0 , s

(i)
s = s

(i)∗
0 , i = 1, . . . , n, sout

v = 〈y−1, . . . , y−r0〉, saux,i
v =

〈u(i)
0 , u

(i)
−1, . . . , u

(i)

−p(i)〉, i = 0, 1, . . . , n, sin
v = 〈x(n)

−1 , . . . , x
(n)

−r(n)〉, where

r(n) = max(rn, rn−1,n − τn,n, . . . , r1,n − τ2,n, r′0,n − τ0,n),

p(0) = p0,

p(i) = max(pi, pi−1,i − τi,i, . . . , p1,i − τ2,i, p′0,i − τ0,i), i = 1, . . . , n.
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(d) Choose an arbitrary state se = 〈y(−1, r0), u(0)(0, p0+1), u(1)(0, p′0,1+
1), . . ., u(n)(0, p′0,n + 1), x(n)(−1, r′0,n)〉 of C ′(Mn, . . . , M1,M

∗
0 ). Compute

x
(c−1)
j = fc,n(u(c)(j, pc,c + 1), . . . , u(n)(j, pc,n + 1), x(n)(j, rc,n + 1)),

c = 1, 2, . . . , n, j = −r′c−1, . . . ,−1,

where r′0 = τ0 + t0, r′i = ri, i = 1, . . . , n. Take s
(0),in
d = 〈y−1, . . . , y−r0〉,

s
(i),aux
d = 〈u(i)

0 , u
(i)
−1, . . . , u

(i)
−pi

〉, i = 0, 1, . . . , n, s
(0),out
d = 〈x(0)

−1, . . ., x
(0)
−τ0−t0〉,

and s
(i),out
d = 〈x(i)

−1, . . ., x
(i)
−ri

〉, i = 1, . . . , n.1

(e) The public key of the user A is

C ′(Mn, . . . , M1,M
∗
0 ), sout

v , sin
v , saux,0

v , . . . , saux,n
v , se, τ0,n.

The private key of the user A is

M0,M
∗
1 , . . . , M∗

n, s(0)
s , . . . , s(n)

s , s
(0),in
d , s

(0),aux
d , . . . , s

(n),aux
d ,

s
(0),out
d , . . . , s

(n),out
d , τ0, . . . , τn.

Encryption Any user, say B, wants to send a plaintext x
(n)
0 x

(n)
1 . . . x

(n)
l to

a user A. B first suffixes any τ0,n digits, say x
(n)
l+1 . . . x

(n)
l+τ0,n

, to the plaintext.
Then using C ′(Mn, . . . , M1,M

∗
0 ) and se in A’s public key, B computes the

ciphertext y0 y1 . . . yl+τ0,n as follows:

y0y1 . . . yl+τ0,n = λ′
0,n(se, x

(n)
0 x

(n)
1 . . . x

(n)
l+τ0,n

).

Decryption From the ciphertext y0y1 . . . yl+τ0,n
, according to Theorem 9.6.5,

A can retrieve the plaintext x
(n)
0 x

(n)
1 . . . x

(n)
l as follows. Using M0, M∗

1 , . . . , M∗
n,

s
(0),in
d s

(i),aux
d , s

(i),out
d , i = 0, 1, . . . , n in his/her private key, A computes

u
(0)
j+1 = g0(x(0)(j − τ0 − 1, t0), u(0)(j, p0 + 1), y(j, r0 + 1)), j = 0, . . . , τ0 − 1,

x
(0)
0 x

(0)
1 . . . x

(0)
l+τ1,n

= λ0(〈x(0)(−1, t0), u(0)(τ0, p0 + 1), y(τ0 − 1, r0)〉, yτ0yτ0+1 . . . yl+τ0,n)

and

x
(i)
0 x

(i)
1 . . . x

(i)
l+τi+1,n

= λ∗
i (〈x(i)(−1, ri), u(i)(0, pi+1), x(i−1)(τi−1, τi)〉, x(i−1)

τi
x

(i−1)
τi+1 . . . x

(i−1)
l+τi,n

),

i = 1, . . . , n,

where s
(0),in
d = 〈y−1, . . . , y−r0〉, s

(i),aux
d = 〈u(i)

0 , u
(i)
−1, . . . , u

(i)
−pi

〉, i = 0, 1, . . . , n,

s
(0),out
d = 〈x(0)

−1, . . ., x
(0)
−τ0−t0〉 and s

(i),out
d = 〈x(i)

−1, . . ., x
(i)
−ri

〉, i = 1, . . . , n.

1 For the simplicity of symbolization, we use the same symbols y−j , u
(i)
j , x

(i)
−j in

(c) and in (d), but their intentions are different.
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Signature To sign a message y0y1 . . . yl, the user A first suffixes any τ0,n

digits, say yl+1 . . . yl+τ0,n
, to the message. Then using M0, M∗

1 , . . ., M∗
n,

s
(0)
s , . . . , s

(n)
s in his/her private key, A computes

x
(0)
0 x

(0)
1 . . . x

(0)
l+τ0,n

= λ0(s(0)
s , y0y1 . . . yl+τ0,n

),

x
(i)
0 x

(i)
1 . . . x

(i)
l+τ0,n

= λ∗
i (s

(i)
s , x

(i−1)
0 x

(i−1)
1 . . . x

(i−1)
l+τ0,n

),

i = 1, . . . , n.

Then x
(n)
0 x

(n)
1 . . . x

(n)
l+τ0,n

is a signature of y0y1 . . . yl.

Validation Any user, say B, can verify the validity of the signature
x

(n)
0 x

(n)
1 . . . x

(n)
l+τ0,n

as follows. Using C ′(Mn, . . . , M1,M
∗
0 ), sout

v , sin
v , saux,i

v ,

i = 0, 1, . . . , n in A’s public key, B first computes

u
(i)
j+1 = gi,n(u(i)(j, pi,i + 1), u(i+1)(j + τi+1,i+1, pi,i+1 + 1), . . . ,

u(n)(j + τi+1,n, pi,n + 1), x(n)(j + τi+1,n, ri,n + 1)),

i = n, n − 1, . . . , 1, j = 0, 1, . . . , τ0,i − 1,

where saux,i
v = 〈u(i)

0 , u
(i)
−1, . . . , u

(i)

−p(i)〉, i = 0, 1, . . . , n, sin
v = 〈x(n)

−1 , . . . , x
(n)

−r(n)〉.
Letting s = 〈y(−1, r0), u(0)(0, p0 +1), u(1)(τ0,1, p

′
0,1 +1), . . ., u(n)(τ0,n, p′0,n +

1), x(n)(τ0,n − 1, r′0,n)〉, A then computes

λ′
0,n(s, x(n)

τ0,n
x

(n)
τ0,n+1 . . . x

(n)
l+τ0,n

)

which would coincide with the message y0y1 . . . yl from Theorem 9.6.3, where
sout

v = 〈y−1, . . . , y−r0〉.

The special case of n = 1 of the above cryptosystem may be regarded
as a generation of the cryptsystem FAPKC4 (cf. [125]). The cryptosystem is
referred to as FAPKC4x-n.

Historical Notes

Since introducing the concept of public key cryptosystems by Diffie and Hell-
man [32], many concrete block cryptosystems are proposed in [89, 74, 72,
34, 50, 76, 63, 90, 93, 1]. A sequential public key cryptosystem based on fi-
nite automata, referred to as FAPKC0, is given in [112] of which a public
key contains a compound finite automaton of an invertible linear (τ, τ)-order
memory finite automaton with delay τ and a weakly invertible nonlinear
input-memory finite automaton with delay 0. Two other schemes, referred to
as FAPKC1 and FAPKC2, are given in [113], where a public key for FAPKC1
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contains a compound finite automaton of an linear inverse τ -order input-
memory finite automaton with delay τ and a weakly invertible nonlinear
input-memory finite automaton with delay 0. Reference [26] first proves that
FAPKC0 is insecure in encryption. Reference [11] proves that FAPKC1 is
insecure in encryption, and proposes a modification using quasi-linear finite
automata, which is shown to be insecure in both encryption and signature
in [108]. From [107], FAPKC0 and FAPKC1 are insecure in both encryption
and signature. In [118] a method for generating a kind of nonlinear weakly in-
vertible finite automata is developed; then two schemes, called FAPKC3 and
FAPKC4, are proposed in [131, 122]. References [123, 125, 126] give some
generalization of FAPKC3 and FAPKC4. In [45, 22], some schemes of pub-
lic key cryptosystems based on finite automata are also proposed. Further
works on security of public key cryptosystems based on finite automata can
be found in [83, 108, 135, 137, 28, 132, 121, 109, 30, 110, 8, 82, 128]. In this
chapter, Sects. 9.1 and 9.2 are based on [126]. Section 9.4 is in part based
on [108, 83, 137, 28, 132, 121]. Section 9.5 is in part based on [45, 128]. And
Sect. 9.6 is a further generalization of [123, 125] in respect of the total number
of component automata.
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