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Designing a Neural Network
from Scratch for Big Data Powered
by Multi-node GPUs

Alcides Fonseca and Bruno Cabral

1 Introduction

Lately, Machine Learning has taken a crucial role in the society in different vertical
sectors. For complex problemswith high-dimensionality, Deep Learning has become
an efficient solution for learning in the context of supervisioned learning. Deep
Learning [1] consists in using Artificial Neural Networks (ANN or NN) with several
hidden layers, typically also with a large number of nodes in each layer.

ANNs have initially been proposed in 1943 [2], but only recently have been
gaining popularity due to decreasing storage costs and the increase of computational
power, both in CPU and GPUs. Nowadays, ANNs are used for several tasks, such as
image classification [3], character recognition in scanned documents [4], predicting
bankruptcy [5] or health complications [6]. More recently, ANNs have been the basis
for the software used in self-driving vehicles [7].

In complex problems, both in terms of diversity in instances and in number of
features/classes, networks also have a more complex structure and more expensive
training process. It is recommended to use a number of instances three orders of
magnitude higher than the number of features [8]. Training an ANN consists on
applying the NN to several batches of multiple instances as many times as necessary
until a good-enough weight distribution is obtained. Thus, training a complex ANN
is a computationally intensive operation in terms of processing, memory and disk
usage. As the amount of data available for training goes above a terabyte, it becomes
Big Data problem [9].
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2 A. Fonseca and B. Cabral

The two most common and efficient approaches for performing this computation
in useful time is to distribute work across different machines, and to use GPUs
to perform ANN training. GPUs are used in ANN training because they are more
efficient than CPUs for matricial operations (what they were designed for, in the field
of Graphical Computation), and ANN application and training can be described in
those operations.

Distributing the computation of the training is also used to train with more
instances that fit a single machine (usually in terms of memory, as CPUs and GPUs
have limited volatile memories). This approach is possible because training can be
subdivided in embarrassingly parallel sub-problems that can be combined at a latter
stage.

This chapter will cover the design and implementation of a distributed CPU
and GPU-backed Deep Artificial Neural Network for classification problems. This
chapter aims to help researchers and practitioners, who are looking to implement
alternative ANN configurations or models, in creating efficient GPU-enabled code.

This approach is an alternative to existing tutorials that focus on the usage of
readily-available ANN toolkits, such as as Tensorflow [10], Theano [11] or Torch
[12], among many others [13]. While these tools make the task of creating ANNs
simple without much effort, the space of possible resulting ANN is limited by the
framework. In this chapter, the goal is to equip practitioners with the tools to develop
new and different approaches to ANNs, so they can explore different research lines
in ANN architecture or training systems.

This chapter will briefly introduce ANNs and the back-propagation training pro-
cess (Sect. 2 briefly introduces ANNs and the back-propagation training process)
along with its mathematical background for ANNs (Sect. 3). Then, we will present
the problem that will serve as an example for developing our customArtificial Neural
Network. Then, we will cover three different phases of the implementation of the
ANN: a single-CPU version (Sect. 5); a parallel, distributed version (Sect. 6); and
a GPU version (Sect. 7). Finally, we will discuss the goodness of the implemented
design (Sect. 8) and conclude this chapter (Sect. 9) with final remarks and future
work.

The runnable source code for this chapter is also made available online at https://
github.com/alcides/bigdatagpunn.

2 A Primer on Neural Networks

Neural Networks are used in classification (and also regression) problems, more
frequently in supervisioned problems. In these cases, there is an existing dataset
with classification labels (classes) in each instance. From this data set, a learning
algorithm should infer how to classify new unlabelled instance from its features.
Features are a set of instance properties (when classifying the type of fruit, the color
and length of the fruit are candidate features. Orange, apple and banana are some of
the possible classes.

https://github.com/alcides/bigdatagpunn
https://github.com/alcides/bigdatagpunn


Designing a Neural Network from Scratch for Big Data … 3

Input Layer Hidden 
Layer

Ouput Layer

Fig. 1 An ANNwith four input neurons, one single hidden layer with four neurons and two output
neurons

When using ANNs as the learning algorithms, features are the input of the ANNs,
and there can be one output for each class.When feeding the features of an unlabelled
new fruit through the ANNs, the highest scoring class output node should be the
correct one (Assuming a correct prediction, which unfortunately is not always the
case).

ANNs have a directional architecture, in which the processing flows from the
input layer to the output layer, passing through several hidden layers. The input layer
has one neuron for each considered feature. Hidden layers can have any number of
neurons that receive as input the output of the previous layer. Finally, the output layer
has as many neurons as desirable for the problem at hand, and receive input from
the previous layer outputs. An example of a very simple neural-network is depicted
in Fig. 1, consisting of four input neurons, four neurons in the hidden layer and two
output neurons.

This is an example of a single-hidden-layer network, but Deep Neural Networks
have a large number of hidden layers, representing the abstraction capability of the
network. The layout of the network consists on the number of layers and the number
of neurons on each layers.

When the number of features increases (high dimensionality), the number of
neurons in the hidden layers increases as well, in order to compensate for the possible
interactions of input neurons [14]. However, a rule of thumb is to use only one
hidden layer [8] with the same number of hidden neurons as there are input neurons.
Nonetheless, one might prefer to explore more recent approaches to this problem
[15, 16], since nowadays computers are much more powerful than they were in
1995, when this rule was first published.
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After defining the layout of a network, it is now necessary to define the weights of
each connection. For each non-input neuron, its value is obtained from the averaged
sum of all the output values from the previous layer. So each connection between two
neurons (of adjacent layers) have a weight. The weights are where the intelligence
lays within the neural network. Typically, weights are randomly initialized, which
does not result in a good classification performance. Thus, it is necessary to tune the
weights to improve the performance of the network.

Supervisioned training with back-propagation is used to obtain better weights.
Labelled instances are fed through the randomly initialized network to obtain the
predicted outcome. The outcome error compared to the expected label is measured
and weights are slightly changed in the direction that reduces error. This process is
repeated several times, using different instances to converge on a best weight config-
uration for the problem. Recently, other alternatives to random weight initialization
have been proposed [17–19] that can be more efficient, depending on the context.

3 A Mathematical Formalization of Neural Networks

The goal of Artificial Neural Networks is to approximate some function f ∗ [20].
In our case, a classification problem, y = f ∗ (x) maps x to a class y. Connections
between neurons are weighted so the neural network produces good results. As
such, we will use f to approximate f ∗, evidencing weights θ with f defined as
y = f (x; θ). This is the definition of a Feed-forward Neural Network, but there are
other types of neural networks, such as Recurrent Neural Networks that use feedback
connections.

Neural Networks can have several layers, each one represented as f (1), f (2), . . . ,

f (n), where n is the number of layers, or depth of the network. DeepNeural Networks
are those that have a high depth. In this paper we will consider just one hidden
layer, but adding more layers is trivial. Layers can be chained, to form f (x) =
f (3)( f (2)( f (1)(x))), where x is the input layer and f (3) is the last layer. Layers
are vector-based, based on the biologic neuron concept, and f (i)(x) is the result of
multiplying x by that layers weights θ(i).

This approach works for linear models, but in order to support non-linear models,
we can introduce φ(x), a non-linear transformation. Our model is now y = ψ(x; θ).
There are several families of functions that can be used as ψ . In this work we
will use one of the simplest, that is also very common: the sigmoid function. Most
sophisticated approaches use a rectified linear unit (ReLU) [21], which prevents
overfitting.

Because during the training process, one has access only to the input and expected
outputs, there is no indication how to distribute weights over the different layers.
First, we identify by how much did our f (x) miss the real f ∗ (x). We will consider
a simple difference, J (θ) = | f ∗ (x) − f (x, θ)|, but other metrics, such asMSE loss
function, are frequently used.
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From the error, one can derive the gradient that needs to be applied to the network
weights, so the next prediction is closer to the expected. Because training is done
during several iterations (epochs), there is no need to obtain the ideal weights in just
one step. This process can be controlled by a learning algorithms, such as Stochastic
Gradient Descend.

Back-propagation is the process of correcting the different layers of an ANN
from its error [22]. The error is multiplied by the derivative of the last layer f (n),
obtaining the gradient ∇x f (n)(x (n), θ (n)) = J (θ (n)) · ∂ψ(θ(n))

∂x (n) , being ε the final error.
This gradient is then added to the current weights to obtain the new, updated,
weights. On the previous layers, back-propagation works via the Chain Rule, that
is applied recursively. The Chain Rule considers not only the derivative of the cur-
rent layer, but of all layers from the output up to the current layer. In this case,
the gradient of the layer n − i is define recursively as ∇x f (n−i)(x (n−i), θ (n−i)) =
∇x f (n−i+1)(x (n−i+1), θ (n−i+1)) · ∂ψ(θ(n−i))

∂x (n−i) . In our example, we consider only the final
layer and one single hidden layer.

4 Problem and Dataset

An ANN by itself has no purpose or usage, it is trained to perform a particular task
with correctly-performedexamples of such task. In this chapter,wewill use a concrete
motivational example to drive our implementation (the methodology is general to
apply to other problems). Because of the lengthy process of training networks with
large datasets, smaller subsets are used in development.

In this example, we will use the Wine Data Set [23], a dataset for classifying
types of wine. This dataset is used to evaluate classifiers in the context of high
dimensionality. The dataset contains 178 instances, enough for our purpose, with
each instance containing 13 features (real and integer) and three output values (one
for each class).

In order to evaluate the performance of our ANN, we will use 20 instances for
training the network, and leave the remaining for evaluating the performance of the
network, as if they were unseen wine instances. In more realistic scenarios, a larger
portion of the dataset (e.g. 70 or 80%) would be used in training.

Given the problem characteristics, the ANN will have 13 input neurons (one for
each feature) and three output neurons (one for each class). A single hidden layer
will be used, also with 13 neurons, to allow some complexity to be abstracted.

Many other network layouts could have been applied for this problem, or any
other. In fact, there are automatic algorithms for designing network layouts, of which
HyperNEAT is a recent example [24].
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5 A Neural Network in Python

This section presents a very simple implementation inPythonof the back-propagation
training our example Neural Network. This example relies on just two existing
libraries: Numpy and Pandas [25]. These libraries are used to store matrices in more
efficient data-structures (similar toC arrays) than Python lists. The code for importing
the dataset and defining the global problem constants is in Listing 1.1.

Listing 1.1 Importing the Dataset and defining global constants
1 import numpy as np
2 import pandas as pd
3
4 df = pd.read_csv("datasets/wine.txt", sep="\t", header=None)
5
6 instances = df.shape [0]
7 train_instances = 20
8 ndims = 13
9 nclasses = 3

The ANN layout for our problem is static (13 input neurons, 13 neurons in a
single hidden layer, and 3 output neurons). Neuron-neuron connection weights are
the dynamic part of the network that will be trained. Listing 1.2 defines the function
that generates the random weights for connections between the input and hidden
layers (weights0) and between the hidden and output layers (weights1). Weights
are uniformly distributed in the [−1, 1[ interval, recommend for use with sigmoid
activation functions.

Listing 1.2 Generation of a random configuration

1 def generate_random_config ():
2 weights0 = 2 * np.random.random ((ndims , ndims )) - 1
3 weights1 = 2 * np.random.random ((ndims , nclasses )) - 1
4 return (weights0 , weights1)

Listing 1.3 defines the training function, based on “A Neural Network in 11 lines”
[26]. This function receives a matrix of features for each instance X (13 by 20 in our
example), an array of known classes for each instance y (one of 3 classes for each 20
instances), the initial configuration conf (obtained from the function in Listing 1.2)
and the number of iterations.
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Listing 1.3 Training the ANN

1 def train(X, y, conf , iterations =6000):
2 weights0 , weights1 = conf

3 for j in xrange(iterations ):
4 # Feed forward
5 l0 = X
6 l1 = sigmoid(np.dot(l0,weights0 ))
7 l2 = sigmoid(np.dot(l1,weights1 ))
8 # Back Propagation
9 l2_error = y - l2
10 l2_delta = l2_error*sigmoid_d(l2)
11 l1_error = l2_delta.dot(weights1.T)
12 l1_delta = l1_error * sigmoid_d(l1)
13 weights1 += l1.T.dot(l2_delta)
14 weights0 += l0.T.dot(l1_delta)
15 return (weights0 , weights1)

The training process is repeated over iterations epochs, improving the perfor-
mance of the network at each step. In each epoch, the training process is a three-part
process. Firstly, the network is applied with the current weights (Feed-forward), then
the measured error is used to understand how the weights have to change in each
layer (Back Propagation), and, finally, that change is applied to the current weights
to obtain new weights for the matrix.

Feed-forward is done through matrix multiplication of the input data X and the
weights for the hidden layer l1 (weights0). Each neuron uses the sigmoid function
as its activation function (other alternative functions exist, but the sigmoid has a
derivative easy to computed (Listing 1.4). In Line 7, the same process occurs in the
output layer l2, using different weights (weights1). Being the output layer, each
neuron contains a value corresponding to whether that instance belongs to that class
or not.

Listing 1.4 The Sigmoid function and its derivative

1 def sigmoid(x):
2 return 1/(1+ np.exp(-x))
3
4 def sigmoid_d(x):
5 return x*(1-x)

Back-propagation occurs after computing the error in the classification (Line 9),
and consists in computing the deltas for each weight matrix. The deltas move the
weights toward a better classification, hence the use of derivatives of the values from
the output layer iteratively to the input layer. Deltas are applied to theweight matrices
and the process is repeated the given number of iterations.

The result of this training process is the trained weights that can now be applied
in the Feed-forward process to perform new classifications of unseen instances.

An example of driving the training process in the Wine Dataset is shown in
Listing 1.5, defining the input matrix X and the expected result y.
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Listing 1.5 An example of a call to the training method
1 conf = generate_random_config ()
2 X = df.iloc [0: train_instances ,0: ndims ]. as_matrix ()
3 y = df.iloc [0: train_instances ,ndims :]. as_matrix ()
4 output_conf = train_fun(X, y, conf_ , iterations)

6 A Distributed Neural Network Using a Message Queue
for Communication

The function presented in the previous section for training an ANN using a given
dataset is concise and understandable. Despite relying on numpy arrays for perfor-
mance, it is limited by the amount of RAM available in the machine. To train datasets
larger than themaximumamount ofRAM, it is necessary to either use batches, subsets
of the dataset that are iteratively used in the training process, or to distribute train-
ing over different machines. Distributed training performs the same training process
as batches, but does it in parallel, which dramatically reduces the training time.

Themost commonprogramming paradigm forBigData problems isMap-Reduce,
popularized by frameworks such as Hadoop and Spark [27]. Map-Reduce is inspired
by the homonymous higher order functions that convert elements using a given
function and combine values together two at a time respectively. Using this method,
a problem is solved in four phases. Firstly, the problem is subdivided in several smaller
problems, each one solvable by a single machine at most. Secondly, each machine
solves one or more of those smaller problems. Next, these results are aggregated in
central machines, which aggregate the partial results. Finally, these partial results are
combined together to produce the final result.

Parallelization of ANNs occurs over subsets of the training dataset [28]. Subsets
are distributed over different machines, each subset used as input in the training
process that occurs on each node. From each of these parallel training processes,
different weight matrices are generated. These matrices can be merged on a central
master node by averaging the values at the same position in all matrices.

Figure 2 shows a master node that controls the training process, and two worker
nodes that are responsible for performing the training process. The master node is
responsible for sending the requests with a dataset subset to eachworker, waits for the
response and merges the results with the current master weight matrices. The most
computationally expensive part of the process is the training that occurs in parallel
in the worker nodes.

To support asynchronous sending of requests and responses across the network,
we propose the usage of a Message Queue, that handles network communication.
Our implementation will rely on Redis [29], an in-memory database that also serves
as a message queue. Redis has a very straightforward API, but more powerful and
complex alternatives are discussed in Sect. 8.

The master node may send different requests to the same node, allowing for
training with more data than fits the sum of all nodes memory, or perform load-
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Worker #1Worker #0Master

Split

TrainTrain

Reduce

RequestRequest

Response Response

Fig. 2 Example of a Master-Worker model with two workers

balancing across a distributed heterogeneous network. The source code for themaster
node is shown inListing 1.6. Themaster node subdivides the range of the input dataset
in as many slices as there are works. Each slice bounds is send to the queue of each
worker (“worker_0” for the first worker), along with the configuration matrices and
metadata to auxiliary queues.

Listing 1.6 Master Splitting
1 master_conf = generate_random_config ()
2 blocks_per_worker = instances /( workers +2)

3 for k in range (10):

4 for i in range(workers ):
5 a = blocks_per_worker * i
6 b = blocks_per_worker * (i+1)
7 print "Scheduling to worker", i, " data from ", a, " to ",
8 b
9 metadata , data , data2 = encode_req(a, b, 60000,
10 master_conf)
11 r.rpush("worker_%d" % i, metadata)
12 r.rpush("worker_data_%d" % i, data)
13 r.rpush("worker_data2_%d" % i, data2)

Because requests and responses contain the same kind of information (matrices),
the same format is used for both, namely the number of iterations, the bounds of the
data subset to use in training, and the configuration matrices.

The matrices sent in requests are the current most up-to-date configurations at the
master node, and the ones received in response are the result of applying the deltas
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locally on the worker node. Matrices are encoded as strings, through an intermediate
flat representation concatenated with the dimensions and data type as metadata. An
example of encoding and decoding is shown in Listing 1.7.

Listing 1.7 Redis encoding functions
1 import redis
2 r = redis.StrictRedis(host=’localhost ’, port =6379, db=0)
3

4 def encode_req(a,b,it,conf):
5 weights0 , weights1 = conf
6 metadata = "|".join(map(str ,[a,b,it , weights0.shape [0],
7 weights0.shape [1], weights0.dtype , weights1.shape [0],
8 weights1.shape [1], weights1.dtype ]))
9 data = conf [0]. ravel (). tostring ()
10 data2 = conf [1]. ravel (). tostring ()
11 return metadata , data , data2
12

13 def decode_req(metadata , data , data2 ):
14 a, b, iterations , l, w, array_dtype , l2, w2 , array_dtype2 =
15 metadata.split(’|’)
16 weights0 = np.fromstring(data , dtype=array_dtype ). reshape(int
17 (l), int(w))
18 weights1 = np.fromstring(data2 , dtype=array_dtype2 ). reshape(
19 int(l2), int(w2))
20 return int(a), int(b), int(iterations), (weights0 , weights1)

Listing 1.8 shows the source code for each worker. Workers can optionally loop
over this code to continuously process new requests, in the case there are more slices
thanworkers. Eachworker decodes the request information and performs the training
a given number of iterations. The resulting configurationmatrices are send back to the
master via symmetrical queues that handle worker-to-master communication (e.g.,
“master_0”).

Listing 1.8 Worker code
1 metadata = r.blpop(’worker_%d’ % wid )[1]
2 data = r.blpop(’worker_data_%d’ % wid )[1]
3 data2 = r.blpop(’worker_data2_%d’ % wid )[1]
4 a, b, iterations , conf = decode_req(metadata , data , data2)
5
6 X = df.iloc[a:b,0: ndims]. as_matrix ()
7 y = df.iloc[a:b,ndims :]. as_matrix ()
8 output_conf = train(X, y, conf , iterations)
9

10 metadata , data , data2 = encode_req(a, b, iterations , output_conf)
11 r.rpush("master_%d" % wid , metadata)
12 r.rpush("master_data_%d" % wid , data)
13 r.rpush("master_data2_%d" % wid , data2)

The master node handles all responses in a similar fashion (Listing 1.9) by aver-
aging the received matrices, and does not need to known which worker the response
originated from.
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Listing 1.9 Master code to received data from workers
1 (...)
2 new_conf = copy.deepcopy(master_conf)

3 for i in range(workers ):
4 metadata = r.blpop(’master_%d’ % i)[1]
5 data = r.blpop(’master_data_%d’ % i)[1]
6 data2 = r.blpop(’master_data2_%d’ % i)[1]
7 a, b, iterations , conf = decode_req(metadata , data , data2)

8 diff = op_configs(master_conf , conf , lambda a,b: a-b)

9 new_conf = op_configs(new_conf , diff , lambda a,b: a+b)
10
11 print "Data from worker", i, "had error:", config_error(df,
12 conf)
13 print "Data from worker", i, " merged had error:",
14 config_error(df, new_conf)
15
16 master_conf = copy.deepcopy(new_conf)

While this map-reduce approach has been presented in the context of distributed
machines, it can be used to distribute work across different cores and processors
within the same machine. On a deca-core machine, 10 workers can be executed
simultaneously, and training will occur in parallel. The limitation of multicore par-
allelism is that system memory is shared across all processes.

7 A GPU-Powered Neural Network

Initially, GPUs were introduced to accelerate the generation of 2 and 3D graph-
ics for design, video and game applications. This hardware was design to perform
matrix operations as fast as possible. However, this capabilities have been exposed
to non-graphics applications through C-like APIs such as Cuda or OpenCL. The
idea of using GPUs for non-graphics related computations is called General Purpose
GPU Computing (GPGPU). Recent efforts have allowed high-level programming
languages to be compiled to the GPU, such as Matlab [30], Haskell [31], Java [32]
or Python [33].

Since ANN training consists mostly on matrix multiplication and scalar multipli-
cations, additions and subtractions, GPUs are used as accelerators to speed training
compared with just using the CPU for this process. GPUs are also used for their
lower power consumption.

In our example, we will use the Numba [34] framework, which supports just-
in-time and ahead-of-time compilation of python functions. One of the compilation
backends is the Cuda API for NVIDIA GPUs, requiring only the installation of the
Numba pythonmodule and CUDASDK. There is also support for HSAAMDGPUs,
which has a very similar API to the one presented here for Cuda.

Programming for GPUs follows a different programming model than program-
ming for CPUs. As such the training function defined previously will not run on
the GPU. Listing 1.10 shows the GPU version of the training function. One of the
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major differences is that GPUs have their own memory and are not able to access
the host RAM memory. In order for the GPU to operate on the weight and neuronal
matrices, it requires explicit memory copying from and to the host. The to_device
and to_host methods take care of memory copies.

Another important aspect of GPGPU is to define the shape of the computation,
i. e., defining how many threads (work-items) and how many thread groups (work-
groups) will perform this computation. On NVIDIA hardware, a generally good
work-group size is the warp size. A warp is the number of hardware threads that
share the same program counter and that, ideally, should all execute the same code.
In this case, the warp size is 32, leading to a matrix of 32 by 32 work-items, totaling
1024 threads. Not all of these threads will be necessary, but matching the physical
layout often improves over having fewer threads.

All of the computation that occurs on the GPU is defined in a special function,
called the kernel. This function is called in line 11 using the number of workgroups
and work-items as special arguments. This is necessary for the GPU scheduler to
start that many threads, each one executing the same kernel function.

Listing 1.10 Host code for driving GPU training of an ANN

1 def train_cuda(X, y, conf , iterations =6000):
2 gpu = cuda.get_current_device ()
3 weights0 , weights1 = conf
4 weights0g = cuda.to_device(weights0)
5 weights1g = cuda.to_device(weights1)
6 Xg = cuda.to_device(X)
7 yg = cuda.to_device(y)
8 rows = X.shape [0]
9 thread_ct = (gpu.WARP_SIZE , gpu.WARP_SIZE)
10 block_ct = [ int(math.ceil (1.0 * rows / gpu.WARP_SIZE)), int(
11 math.ceil (1.0 * ndims / gpu.WARP_SIZE ))]
12 train_kernel[block_ct , thread_ct ](Xg , yg, weights0g , weights1g
13 , iterations)
14 weights0g.to_host ()
15 weights1g.to_host ()
16 return (weights0 , weights1)

Additional auxiliary functions (Listing 1.11) that have to execute on theGPUhave
to be defined using a special decorator that allows the Numba library to compile them
to the Cuda intermediate language (PTX). In this case, function inlining is being
enable to reduce the overhead of function calling on the GPU.

Listing 1.11 Sigmoid function and its derivative for the GPU

1 @cuda.jit(device=True, inline=True)
2 def sigmoidg(x):
3 return 1/(1+math.exp(−x))
4
5 @cuda.jit(device=True, inline=True)
6 def sigmoidg_d(x):
7 return x∗(1−x)
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These functions are used within the main kernel function (Listing 1.12) that per-
forms the parallel training.Given the restrictive nature of theGPUarchitecture, not all
of the Python language is allowed inside GPU functions. NoPython is the name of the
subset allowed in Cuda functions that does not support exception handling or with
blocks. In the particular case of kernel functions, the resulting type should be void.
Inside Cuda functions, it is possible to use GPU-specific features, such as accessing
the indices of the current thread within the GPU (via cuda.grid(2) in line 6.
The 2D coordinates of the read in thework-group grid are returned, so that the current
thread can use different inputs than all other threads. In this case, the only interesting
threads are those with i between 0 and 24, and j between 0 and 16.

Listing 1.12 Kernel function for GPU training of an ANN
1 @cuda.jit()

2 def train_kernel(X, y, weights0 , weights1 , iterations ):
3 l1 = cuda.shared.array(shape =(instances , ndims), dtype=numba.
4 float32)
5 l2_delta = cuda.shared.array(shape =(instances , 3), dtype=
6 numba.float32)
7 l1_delta = cuda.shared.array(shape =(instances , ndims), dtype=
8 numba.float32)
9 i, j = cuda.grid (2)

10 if i < instances and j < ndims:

11 for it in range(iterations ):
12 acc = 0

13 for k in range(ndims ):
14 acc += X[i, k] * weights0[k, j]
15 l1[i, j] = sigmoidg(acc)
16 cuda.syncthreads ()

17 if j < 3:
18 acc = 0

19 for k in range(ndims ):
20 acc += l1[i,k] * weights1[k,j]
21 l2 = sigmoidg(acc)
22 l2_error = y[i, j] - l2
23 l2_delta[i, j] = l2_error * sigmoidg_d(l2)
24 cuda.syncthreads ()
25 acc = 0

26 for k in range (3):
27 acc += l2_delta[i,k] * weights1[j, k]
28 l1_error = acc
29 l1_delta[i, j] = l1_error * sigmoidg_d(l1[i, j])
30 cuda.syncthreads ()

31 if j < 3:
32 acc = 0

33 for k in range(instances ):
34 acc += l1[k, i] * l2_delta[k, j]
35 weights1[i, j] += acc
36 acc = 0

37 for k in range(instances ):
38 acc += X[k, i] * l1_delta[k, j]
39 weights0[i, j] += acc
40 cuda.syncthreads ()
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Fig. 3 Comparison of the execution times between CPU and GPU versions of an ANN training

Another difference in GPU programming is the usage of local arrays that have
much better performance than shared memory. These local arrays are used in lines
3–5 in intermediate matrices that are not required to be read or written to/from the
host.

Because neural network training performs different matrix multiplications, not all
threadswill be used at all steps.To synchronize operations, thecuda.syncthreads()
function is used, acting as a barrier. Code between barriers occurs at the same pace
within the same warp, but not necessarily across warps.

In each matrix multiplication, it is necessary to select only the threads that are
within the same of the output matrix (lines 7, 14 and 28). In order to understand
which threads are used at each stage, Fig. 4 presents a visual representation of the
threads used at each step.

Executing the code above will result in the kernel and auxiliary functions being
compiled to the GPU, while the training function will manage memory copies and
scheduling of the necessary threads, all running the same kernel function.

To understand the possible speedup, without any aggressive optimization, the
GPU version was compared against the previous CPU version (both using CPython
2.7.6, on a machine with an Intel i7-3520M processor and a NVIDIA GeForce GT
640 LE GPU).

Figure 3 shows violin plots of the distribution and quartiles of execution times of
both versions. The GPU version executes faster than the CPU version, showing how
this type of programs can be easily parallelized on the GPU with speedups (Fig. 4).
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Fig. 4 Visual representation
of threads performing neural
network training between
barriers
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8 Discussion and Homework

The presented source code is designed as an educational resource, with its inher-
ent shortcomings and room for further optimization. Different design decisions are
discussed in this section, as well as alternatives that the reader can opt to pursue.

Python is frequently used for prototyping, but not for implementing high-
performance computing applications. Other languages like C, C++ or Fortran are
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frequently preferred. Python introduces overhead in interpretation of code, and fea-
tures dynamic computational expensive data structures, such as lists. Furthermore
parallelization has to occur at the process level, and not at the thread level due to
the Global Interpreter Lock (GIL). In the presented solution, these drawbacks are
not present: matrices are stored in efficient data-structures provided by Numba (pro-
grammed in C) and most of the training process occurs on the GPU side, with Python
code being compiled to efficient PTX intermediate code. Even the CPU version of
training performsmatrix operations within the Numpy library, also programmed in C
to be efficient. In order to write more efficient Python code, one could use the Cython
toolkit to annotate Python functions with the C types to have C-like performance.
Additionally, the Numba JIT compiler can also be used to generate CPU versions of
functions. Finally, our approach uses multicore parallelism using different processes,
thus not being limited by the GIL.

Redis is not the most feature-complete message queue like ActiveMQ [35], but is
frequently used in distribution systems due to its low overhead. 0MQ is another low-
overhead alternative to Redis that has a similar feature set. None of these approaches
is ready to send matrices across the network, all requiring custom encoding and
decoding to raw bytes, using the metadata approach presented before.

A limitation of this work is assuming that all nodes will have access to the original
dataset. If the dataset is bigger than the local storage of this node, this is not an
optimal solution. Alternatives like distributed file systems (NFS) should be used in
that case. Workers would download the relevant slice of the dataset before executing
the training function. In the developed example, if there are different files for each
slice, it is a trivial adaptation.

Regarding the layout of the neural network, our approach had a static layout that
depended on the dataset. Deep-learning can be achieved by increasing the number
of hidden layers, which has more overhead in training and memory copying times,
thus only useful when the problem has that much complexity. Adding more layers
and neurons is left as an exercise for the reader. For dynamically selecting layouts
there are several alternatives, ranging from pruning of useless neurons [36], using
genetic algorithms to evolve ANNs [37] to Monte Carlo methods [38]. In [39] the
reader will find an up-to-date survey on ANN processing. These approaches require
a more extended study of the subjects.

Another area of improvement is the evaluation of the obtained solution. In our
case, we are using 20 instances for training, and the remaining for testing. This is sub-
ject to bias in the division of training-testing datasets. A Cross-validation approach
is preferable, because instances are used as both training and testing in different
iterations. This approach has the advantage of requiring more computation power
for the same dataset.

For the sake of simplicity, a naïve GPU version was presented. This code can
be further optimized in different ways. First is managing the memory being copied
to the GPU. Given the limited amount of GPU memory, it is important to limit the
memory copies. Just like Map-Reduce is used to split a larger dataset is smaller
tasks, the same can be used to schedule tasks to the GPU in chunks. While the GPU
is processing a chunk, it is possible for the CPU to be sending the next chunk to the
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GPU. It is advantageous to overlap data transfers and execution, in order to reduce
latency in GPU operations. The organization of threads in work-groups and work-
items can be improved, since our solution did not utilize all scheduled threads, in
order to maximize the usage of cache locality. One way to do this is change the
layout of the ANN to match the GPU. This allows for more complex ANNs using
the same computational power (excluding memory transfers, assuming they can be
overlapped with processing).

The final GPU optimization can be done in scenarios with multiple GPUs on the
same machine, directly connected among each other (using SLI, for instance). In
those scenarios, it would be necessary to synchronize matrix averaging across GPUs
without requiring the computation to synchronize with the GPU. This would reduce
the communication overhead, since the CPUwould only need the final weights when
the training is complete to pass to the master node.

9 Conclusion

In this chapter, we have covered the creation of a distributed GPU-backed Neural
Network implementation from scratch. Training was developed for execution on the
CPU using back-propagation. A distributed protocol for training in parallel within
the same machine, as well as across any number of machines was presented and
discussed. Finally, a GPU implementation was also discussed, highlighting themajor
differences in the programming model. For this tasks, we have relied on a limited set
of existing software: Python (withNumpy, Pandas andNumba libraries) andRedis for
message communication. All of these tools are open-source, allowing practitioners
to even modify the underlying implementations if they feed it is preventing them
from exploring more radical new ideas.

Additionally,wehavediscussed the shortcomings and advantages of this approach,
mainly the choice of language, parallelization methods and ANN training and layout
methods that could be explored further.
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Abstract With the progress in the field of computer vision, we are moving closer
and closer towards the ultimate aim of human like vision for machines. Scene under-
standing is an essential part of this research. It seeks the goal that any image should be
as understandable and decipherable for computers as it is for humans. The stall in the
progress of the different components of scene understanding, due to the limitations of
the traditional algorithms, has now been broken by the induction of neural networks
for computer vision tasks. The advancements in parallel computational hardware has
made it possible to train very deep and complex neural network architectures. This
has vastly improved the performances of algorithms for all the different components
of scene understanding. This chapter analyses these contributions of deep learning
and also presents the advancements of high level scene understanding tasks, such
as caption generation for images. It also sheds light on the need to combine these
individual components into an integrated system.
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Keywords Scene understanding · Deep learning · Object recognition · Face
detection and recognition · Text detection · Depth map estimation · Scene
classification · Caption generation · Visual question answering (VQA)

1 Introduction

Scene understanding is a major field of computer vision research. The main goal of
scene understanding is to equip computers andmachineswith human like vision i.e., a
computer should be able to extract the same amount of information and understanding
from an image as a human is able to do. When one looks at an image they can tell
whether it is outdoor or indoor, they can infer the location of the scene (e.g., bedroom
or dining room), whether there is text in the image and how it relates to the objects
in the scene. Humans are able to perceive the precise location and depth (distance
from viewpoint) of the objects. We can understand and identify objects and segment
or visually separate them from the background.

Deep learning is the latest trend inmachine learning.With the availability of ample
computational resources and big datasets, it has now become possible to train very
deep networks which was never thought possible only a decade ago. Though there
is still much room for improvement, deep learning has significantly enhanced the
performance of the various components of scene understanding, such as object recog-
nition, text detection in natural scenes, depth map estimation, and face detection and
recognition (Fig. 1). These components are required for human like understanding of
scenes and also aid in achieving higher level tasks, such as scene classification, cap-
tion generation and visual question answering. These sub-tasks are inter-connected
and form the essential elements in the framework for the complete understanding of
a scene (Fig. 2). Despite the achieved progress in the individual components, there
are very few significant works which apply deep learning to develop holistic scene
understanding systems. In the following sections, we will analyse the impact that
deep learning has made on the various components of scene understanding.

2 Object Recognition

The ability to recognize objects plays a crucial role in scene understanding. When
looking at an image of the scene, humans can easily recognize all the objects in a
given scene (e.g., a chair, a desk) and interpret such objects as part of a coherent
geometrical and semantically meaningful structure (e.g., the office). This is achieved
by accomplishing two tasks. First, representations of 3D objects are built that allow
us to identify objects regardless of their location or viewpoint in the image. This
requires that the observer has learnt models that are robust with respect to view-
point changes to assist the identification of object instances/categories in poses that
the observer has not seen before. Second, we need to infer the objects’ geometric



Deep Learning for Scene Understanding 23

attributes such as pose, scale and shape of objects. These geometric characteristics
can provide robust cues for the interpretation of the interactions between objects in
the scene, the estimation of object functionalities, and ultimately, to infer the 3D
layout of the scenes.

This section outlines the different steps involved in object recognition and review
different techniques that are commonly used to recognize objects from images under
various conditions.

2.1 Object Recognition Pipeline

The major steps of a typical object recognition pipeline are shown in Fig. 3.

2.1.1 Image Acquisition

The image of an object is acquired using 2D (e.g., high resolution cameras) or 3D
scanners (e.g., Kinect or Minolta). 2D cameras capture the intensity information of
the object such as colour, while 3D scanners provide point clouds, 3D mesh or depth
image. Each pixel in a depth image represents the distance of a 3D point of the object
from the camera/scanner (as opposed to the intensity information in the case of 2D
cameras).

Fig. 1 Deep learning can detect faces, text and objects in an image, but can it describe a scene and
determine the various interactions between objects?
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Fig. 2 The main components of scene understanding

2.1.2 Object Scan Pre-processing

The 3D images usually contain significant surface noise (e.g., in the case of the low
resolution Kinetic, holes i.e., missing data due to self-occlusion and spikes). Pre-
processing steps are used to remove such noise. Then surface interpolation is used
to fill small holes. The holes may originally be present in the scan or may have been
formed as a result of the removal of data spikes. The final stage of pre-processing is
usually surface smoothing (e.g. smoothing surface with Gaussians).
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Feature 
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Fig. 3 Different steps in feature based object recognition
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2.1.3 Key-Point Detection and Feature Extraction

A set of highly repeatable key-points are first detected and features are then extracted
around those key-points. In 2D images, features usually represent the colours, texture
and appearances. In 3D, features describe the geometry of the key-point of the object.
Features are usually chosen as a trade-off between the descriptiveness of the features
that is required for discrimination, and invariance properties of the features (e.g.,
invariance with respect to rotation or translation). Example of ‘features’ include the
intensity values in the case of 2D, raw depth values for 3D data, surface normals,
curvatures, spin images [1] and Scale-Invariant Feature Transform (SIFT) descriptor
[2] to name a few.

2.1.4 Feature Matching/Classification

The final step of object recognition is the featurematching/classification phase where
machine learning classifiers are used to recognize objects in an image. Some popular
examples include Support Vector Machines (SVM), neural nets and k-nearest neigh-
bours (k-NN). K-NN can also be used along with different subspaces (e.g. LDA or
PCA).

2.2 Hand-Crafted Features for Object Recognition

Hand-crafted features are those which are extracted from an image according to a
certainmanually predefined algorithm based on expert knowledge. Local Binary Pat-
tern (LBP) [3] and SIFT [2] features are popular examples of hand-crafted features.
Here, we shall briefly discuss some of the popular hand-crafted features.

To create LBP feature vector [3], a sliding window is divided into cells. An
8-connected neighbourhood is compared with the centre pixel. The pixels in the
neighbourhood are set to ‘0’ if their respective value is smaller than the centre pixel,
otherwise they are given a value of ‘1’. Next, a binary number is constructed by going
clockwise as shown in Fig. 4. The centre pixel is then replaced with the decimal value
of the binary number (Fig. 4).

LBP is not rotation invariant and the binary number is sensitive to the starting
point. In addition, minor changes in illumination can change the decimal value which
makes LBP less robust to illumination changes.

Fig. 4 Construction of LBP
features
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TheLowe’s Scale Invariant Feature Transform (SIFT) [2] provides a set of features
of an object that are robust to rotation and scale. The first step of the SIFT computation
is “key-point detection”. For this purpose, a Difference of Gaussian (DoG) is first
used to smooth the images at different scales. Next, these images are searched for
local extrema over scale and space. Next, a histogram of the local gradient directions
is created at a selected scale. The canonical orientation at the peak of the smoothed
histogram is next assigned. Gradients of orientations in an area around the key-point
are used to create the orientation histogram which consists of 36 bins with each bin
representing 10°. The samples are weighted by their magnitude and by a ‘Gaussian-
weighted circular window’ and then are added to the bins. Next a region is selected
around a key-point based on scale. Then the gradient information is aligned with
the key-point orientation. 8 orientation bins are calculated at 4 × 4 bin array, which
forms an 8 × 4 × 4 � 128 dimension SIFT feature.

In addition to 2D features, several 3D features have been proposed in the liter-
ature. Tombari et al. [4] proposed a descriptor named Signature of Histograms of
OrienTations (SHOT). A local reference frame is first constructed for a given key-
point p and the neighbourhood space is divided into 3D spherical volumes. A local
histogram is then generated for each volume by accumulating the number of points
according to the angles between the normal at the key-point and the normals at the
neighbouring points. All local histograms are then concatenated to form an over-
all SHOT descriptor. The SHOT descriptor is highly descriptive, computationally
efficient and robust to noise [5]. Guo et al. [6] proposed the ROtational Projection
Statistics (RoPS) as a 3D local feature descriptor. A covariance matrix is formed
using points lying on a local surface. The Eigen-value decomposition of the covari-
ance matrix is used to define a rotation invariant reference frame. The 3D points are
rotationally projected on the neighbouring 2D planes to form the feature descriptor.
Depth kernel descriptors (comprising of up to five different cues including, size, 3D
shape and depth edges, which are extracted from the depth map and RGB images)
were proposed to provide a way of turning any pixel attribute to patch-level features.
Depth kernel descriptors were tested on a low resolution Kinect dataset and achieved
more than 10% increase in accuracy over the-state-of-the-art techniques at that time
[7]. Guo et al. [8] published a comprehensive survey of the feature-based 3D object
recognition methods.

2.3 Deep Learning Techniques for Object Recognition

Deep learning has been found very effective and is actively used in several object
recognition tasks [9]. Hayat et al. proposed autoencoder based Deep Reconstruction
Models (DRM) [10] for image classification. This deep learning framework consists
of encoder and decoder layers, which are used for the reconstruction of input images.
ADNT has been shown to achieve a superior object recognition performance on
the ETH-80 object dataset. Shah et al. proposed Iterative Deep Learning Model
(IDLM) and tested it for the task of object recognition [11]. IDLM consists of Pool
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Convolutional Layer followed by ANNs applied iteratively in a hierarchical fashion
to learn a non-linear feature representation of the input images. The input to IDLM
consists of raw images and it has achieved an accuracy of 98.64% on ETH-80 object
dataset.

A notable advance in deep learning was achieved by AlexNet [12] in the 2012
ImageNet LSVRC contest. The training set consists of 1.2 million high-resolution
images and 1000 different object classes. On the test set, consisting of 150,000
images, AlexNet achieved an error rate considerably lower than the previous state-
of-the-art approach. AlexNet is a very deep network, which consists of 60 million
weights, and 650,000 neurons, and five convolutional layers together with max-
pooling layers [12].

Among the very deep networks, GoogleNet [13]was the first popularmodelwhich
uses quite a complex architecture with several network branches. This model won the
ILSVRC’14 competition with the best top-5 error rate of 6.7% on the classification
task. GoogleNet has now several improved variants. He et al. [14] from Microsoft
proposed the residual net,whichwon the ILSVRC2015 challenge by reducing the top
5 error rate to 3.6% compared to the 6.7% error rate of GoogleNet. The remarkable
feature of the Residual architecture is the identity skips connections in the residual
blocks, which allow it to easily train very deep CNN architectures.

Qi et al. [15] recently proposed PointNet for 3D object recognition. Unlike other
architectures, this new deep learning architecture directly takes point clouds as input,
and outputs either class labels for the entire input or per point segment labels for each
point of the input. The PointNet architecture well respects the permutation invariance
of input 3D points and it has been shown to achieve a comparable performance with
the state-of-the-art techniques for 3D object recognition performance.

3 Face Detection and Recognition

Recognizing aperson is an important requirement for the full understandingof a scene
and obviously the best natural way to identify a person is to recognise his/her face.
Face detection and recognition has received an increasing interest from the computer
vision community in the past several years. This field has also important applications
in biometrics, surveillance and security, crowd analysis and smart user interfaces. The
main challenges in the field of face detection and recognition are illumination and
pose variations, low resolutions, partial occlusions, inter-class similarities, noises,
background similarity, and the availability of sufficient training data. It is to be noted
that face recognition can be thought of as a very fine-grained object recognition
problem, since even humans many times confuse the faces of different persons.
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3.1 Non-deep Learning Techniques for Face Detection
and Recognition

The discussion on face detection techniques cannot be complete without discussing
the Viola and Jones face detection algorithm [16]. The Viola and Jones face detector
consists of three main components: the integral image, a classifier training with
AdaBoost and the cascaded classifiers. First of all the image is transformed to an
integral image. In the integral image, each pixel is the sum of the intensity values
of all pixels above and to the right of it in the original image. The integral image is
used for an efficient calculation of the Haar like rectangular features. These features
are the weighted differences between the sums of intensities of two to four adjacent
rectangles. Then a variant of AdaBoost (Adaptive Boost) is used with selected
rectangular features. In AdaBoost many weak classifiers are combined in a weighted
manner to increase the final classification accuracy and form a strong classifier.
Decision stumps (single node classification trees) are used as weak classifiers and
each node tries to find the optimum threshold for one feature. Then several strong
classifiers of increasing complexity are cascaded to form a degenerate decision tree.
Only the instances detected as positive (face) are passed to the next subsequent
strong classifier in the cascade. In this way each later classifier has less decisions
to make than each of its previous classifiers in the cascade. This ensures that the
processing time is fast and achieves a rate of 15 frames per second. This technique
achieved a comparable accuracy to the state of the art approaches at that time while
achieving a significantly faster computational times.

Face recognition also follows the general pipeline of “feature extraction” and
“classification”. A comprehensive study of the state of the art surface features for
the recognition of the human face is presented in [17]. Modern face recognition
systems consist of four major steps which are detection, alignment, representation
and classification [18]. One of the approaches to the problem of face recognition is
by using image-sets i.e., both the training and testing data contain a set of images.
This is inspired by the fact that due to the wide availability of mobile devices and
CCTV cameras, usually more than one image of the query person is available and
the extra information can be used for better decision making. Ortiz et al. [19] use a
mean sequence sparse representation for an end-to-end video based face recognition
system. Faces are detected and tracked in the input video clip. Then three types of
features, LBP, Gabor and HOG, are extracted. Finally, the extracted features are used
in a modified version of a sparse representation based classification for dictionary
based classification. Shah et al. [20] represent the test images as a linear representation
of the images of gallery sets of each class. Themost accurate representation is decided
as the class of the test image set.



Deep Learning for Scene Understanding 29

3.2 Deep Learning for Face Detection and Recognition

There are many deep learning based approaches for face detection. However, most
of them require high computational resources and time. A cascaded architecture of
CNNs provides a good compromise between the two goals of accuracy and efficiency
[21]. Li et al. [21] propose a CNN cascade of six CNNs for face detection. Three
of the CNNs are binary face/non-face detectors while the other three are used for
calibration. The system operates at multiple resolutions, and similar to the Viola
and Jones algorithm, verifies the different detections in multiple stages of increasing
difficulty. A calibration stage based on CNN is used after every stage to reduce the
number of potential face regions in later stages and to improve localization. This
technique achieves a classification rate of 14 frames per second, while achieving
state of the art results on face detection benchmarks.

Deep learning can effectively be used to learn non-linear transformations for the
mapping of an image set into a shared feature space, while maximizing the distance
between the different classes [22]. Hayat et al. [10] use deep learning to train separate
auto-encoders for each class for image-set based face recognition. The test images
are then reconstructed from each auto-encoder. The minimum reconstruction error
is used as the measure for classification. The nonlinearity of images in image sets
can be modelled by manifolds and deep learning. Depth maps of faces are also
used, wherever available, for face recognition which shows that face recognition
performance can significantly be improved by using depth information along with
RGB face images.

Taigman et al. [18] use a piecewise affine transformation with 3D face modelling.
A deep network consisting of nine layers is used to extract face features. Different
from the conventional CNNs, the deep network uses locally connected layers without
weight sharing. The network involves 120 million parameters which are learned by a
data driven approach. A simple inner product of deep features is used to recognize a
person. This method produced a big gain in accuracy on datasets of face recognition
in unconstrained environments.

Schroff et al. [23] use a deep neural network called FaceNet, to transform face
images to a compact Euclidean Space. A triplet loss is used for training the CNN.
It is motivated by the idea that the distance between the images of the same class
in the transformed Euclidean space should be less than the distance between the
images of different classes. A 128 dimensional vector is used in the transformed
domain to represent each image. The distances in the transformed domain are taken
as a measure of similarity. The features produced by FaceNet can then be used for
the tasks of face clustering, recognition or verification, as required. Two different
architectures are suggested for the CNN based on the previous works. This system
achieves a significantly better performance, compared to the other techniques.
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4 Text Detection in Natural Scenes

The computer vision community has been giving lots of attention to the problem
of text detection and recognition in images over the past decade. Text Detection
problems can be classified into three types: Document Text (OCR), Graphics text
such as text in emails, posters, advertisements and scene text (Fig. 5). Although
optical character recognition (OCR) for documents is mostly considered as a solved
problem, the performance for text detection and recognition in natural scenes is
below par [24]. Text detection in natural scenes suffers from all the problems of
object detection, in addition to the problems which are inherent to text detection.
Challenges in text detection in natural scenes include high variability in size, aspect
ratio, shapes of characters, fonts, uneven illumination and interclass variations.

Text detection in natural scenes is significant for personal assistant devices, data
retrieval, autonomous driving, driver assistance and for scene understanding. Text
recognition can be used to help blind people to read navigation signs, boards and even
books. It can also help in the retrieval of images and text from a large database. The
importance of text makes its detection an important topic in computer vision. Text
detection in images consists of two major steps: text detection (or text localization)
and text recognition. A system which accomplishes both of these tasks is called an
“end to end text detection system”.

Scene text can be classified into “Point and Shoot” and “Incidental Text” [25]
(Fig. 5). In Point and Shoot the image, picture or video is captured with the intention
to focus on the text. Incidental text refers to text that can occur in any randomly taken
pictures or videos and in images where text is usually not prominent.

Stepwise methodologies have four major, distinct steps: localization, verification,
segmentation and recognition [25]. In localization, the components are coarsely clas-
sified into text regions which are improved with a verification step. Characters are
separated using the segmentation approach and fed to the recognition module. In
the case of the integrated approach, it is not possible to subdivide the method into
distinct steps because the steps reinforce each other and the results are intermediate
and incomplete until the final output [26].
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Both methods can use a machine learning classifier, a connected component anal-
ysis or a combination of both. For a machine learning approach, supervised learning
is used to train a classifier to differentiate between text and non-text. The trained
classifier is applied on text images using a sliding window to identify the text regions
in the image. Another classifier is trained to differentiate between different characters
and cases (uppercase or lowercase). The output of the character identifier is used in
combination with a predefined lexicon or general English dictionary to form words.
The work of Wang et al. [27] is a typical example of this approach.

For connected component analysis, hand crafted features are used to discriminate
text from non-text. Feature processing is applied on the whole image and connected
component analysis is used to identify the text regions. Features are also used
to differentiate among characters which are combined with a lexicon for word
formation. Stroke Width Transform [28] is considered as one of the most important
features for text detection. Other features that are usually exploited for text detection
and recognition are edges, colours, contrast, points of inflections and maximally
stable extremal regions (MSER).

4.1 Classical Approaches for Text Detection

Similar to other areas of scene understanding, the classical approaches for Scene text
detection extract various types of features from the images and then train a classifier
based on those features. Ephstein et al. [29] used the property that most of the text
has nearly a constant stroke width to develop the Stroke Width Transform. Many
later works used the Stroke Width Transform in its original or modified form and
it is still one of the main feature detection techniques for text detection in natural
scenes. Another prominent approach is to detectMaximally Stable Extremal Regions
(MSER) to identify potential text regions. The detected regions are then filtered using
geometric and stroke width information to exclude false-positives [30]. Letters are
paired to identify text lines, which are subsequently separated into words. Neumann
and Matas [31] detected extremal regions and used morphological features to filter
out the non-text regions. Then a system for exhaustive search was used for the final
output. Matas and Neumann [32] developed an end to end text detection pipeline by
detecting strokes of particular orientations at specific distances. They used bar filters
to detect the strokes in an image gradient field. Finally a nearest neighbour classifier
was used to achieve the final result of text detection.

Using text for scene understanding is a relatively unexplored topic. Zhu et al.
[33] exploit information from text regions in natural scenes to improve object and
scene classification accuracy. Their system combined visual features extracted from
the full image, with features extracted only from the detected text regions. Karaoglu
et al. [34] demonstrated an improvement in the accuracy of object class recognition
with the help of text detection.
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4.2 Deep Networks for Text Detection

One of the initial applications of convolutional neural networks for the task of text
detection is the work by Wang et al. [27]. They extracted characters and background
patches from popular text detection datasets to train a CNN architecture. The input
images are resized to 32 × 32. This data was augmented by synthetically generated
characters. The network architecture consists of two convolutional layers and one
fully connected layerwith averagepooling layers in-between.They initialized thefirst
layer with unsupervised learning, which was then fixed during the training process.
The network was trained by back propagating the L2-SVM classification error. They
used two similar but separate CNN for text detection and text recognition. The CNN
for text detection was used for a two-way classification (text and non-text) while for
text recognition a 62 way classifier was developed. The detection CNN was applied
on the test images using a sliding window approach. Non maximum suppression was
then used to obtain a set of candidate lines, along with the location of spaces between
characters andwords. Then a character CNNwas used to identify the characters. This
information was combined using beam search to obtain end-to-end results.

Jaderberg et al. [26] developed an end-to-end text detection system and text based
image retrieval system. It involved a region proposal mechanism for the detection
and a deep CNN for recognition. The system uses Edge Boxes and an Aggregate
Channel Feature Detector for fast and computationally less expensive generation of
region proposals, while maximizing the recall at the cost of precision. This avoids the
use of a sliding window for application of the CNN, which is a very computationally
expensive step. Edge boxes are inspired by the idea that objects have sharp boundaries
(edges), so the number of boundaries, which are wholly contained in a box, can
represent the objectiveness of that bounding box. The Aggregate Channel Feature
Detector uses eight channels: normalized gradient magnitudes, raw greyscale images
and 6 channels of Histogram ofOrientedGradients (HOG) features. The channels are
smoothed and divided into blocks. Then the pixels in each block are added together
and smoothed again. An ensemble of decision trees were used as weak classifiers and
trained using adaboost. Since the channels are not scale invariant, the classifier was
applied at different scales along with an approximate calculation of the channels at
scales between the two computed scales. However, this process generates thousands
of false positives. Therefore, a random forest with decision stump, acting on the
HOG features, is used to filter out the generated region proposals. The regions with
a confidence level below a certain threshold are rejected to reduce the number of
bounding boxes. The bounding boxes are regressed using a CNN to improve the
overlap with the ground truth boxes, which completes the text detection part. For
text recognition, a CNN trained on synthetic data is used. Nine million synthetic data
instances are generated from a dictionary of ninety thousand commonly used English
words. The data was generated using 1400 different fonts and involved the steps of
border and shadow rendering, base colouring, projective distortion and natural data
blending. Noise was also introduced to account for distortions and blur in natural
scenes. The convolutional neural network for text recognition has five convolutional
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layers and three fully connected layers. The CNN is trained using the synthetic data
for full word classification. The last layer of the neural network performs 90,000-way
classification i.e., there is an output neuron for each word in the dictionary of ninety
thousand words. This is a major change from earlier text recognition methods, which
recognise characters instead of words, and then use post processing to form those
characters into words. This work of Jaderberg [26] is a major breakthrough in terms
of accuracy. The technique was evaluated on various datasets and provided 10–20%
increase in F-score depending on the dataset.

Zhang et al. [35] applied a fully convolutional network for the taskofmulti oriented
text detection. Their system uses both local and global cues in order to locate text
lines in a coarse to fine approach. Two Fully Convolutional Networks (FCN) are used
in the system. The first FCN called Text-block FCN generates the holistic saliency
map for text regions. It uses the first 5 layers of a VGG-16 Network. These layers
have different filter sizes, so each layer captures contextual information at virtually
different scales. The output of each convolutional stage is also connected to a 1 × 1
convolutional layer and an upsampling layer. This creates feature maps of the same
size, which are then concatenated. This feature concatenation is followed by a 1 × 1
convolutional layer and a sigmoid layer, which generates pixel-level predictions. The
saliency map is then combined with character components to estimate potential text
lines. Scale invariant Maximally Stable Extremal Regions (MSER) are extracted in
the text regions detected by the first FCN.Area and aspect ratio of the detectedMSER
regions are used to filter out the false positives. Then, the component projection is
used to estimate the orientation of the text lines within a text block. The method
assumes that text occurs in straight or nearly straight lines. Character components
which fall across straight lines are counted. A separate count is kept for the various
possible orientations of straight lines. Then the straight line’s orientation with the
maximum number of character components is taken as the orientation of the straight
line. The character components are merged into groups, and height and orientation
of groups are used to combine them into text line candidates. The second FCN
removes the false-positives and predicts the centroid of each character. This second
FCN has a similar structure to Text-block FCN but instead of five, it has the first
three convolutional layers from the VGG-16 Net. It is also trained with a cross-
entropy loss function. Finally confidence levels, number of characters in the text line
and a geometric criterion are used to threshold the false-positives. The framework
is claimed to be suitable for the detection of text in multiple languages, fonts and
orientations. It achieved state of the art F-score on MSRA-TD500, ICDAR 2015
Incidental Scene text and the ICDAR 2013 dataset.

5 Depth Map Estimation

The ability to perceive the distance of objects from viewpoint (depth) is an important
sense for humans. It allows them to analyse and recognise the position of objects
and their surrounding layout. Recovering depth from RGB cameras has many
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applications, including surveillance, robot navigation, autonomous driving and
scene understanding. Depth information can aid in the development of reliable
autonomous driving systems and personal assistant devices. It has also applications
in gaming, surveillance and robotic navigation. The challenges in depth map
estimation include reflections, transparency, occlusions, presence of bland regions,
lighting conditions, repetitive textures and indiscriminative background.

There are two main approaches for the recovery of depth from RGB images: (i)
depth estimation from stereo (two) or more images (or from videos), and (ii) depth
calculation fromsingle (monocular) images (Fig. 6). (i)Astereo vision systemmostly
consists of two horizontally placed cameras. The cameras capture the images, at the
same time, which are then processed and compared with each other. Stereo matching
is a mathematically ill-defined problem. It is particularly challenging for highly
textured or bland scenes. Computer vision and pattern matching techniques are used
to determine the disparity and depth map.

(ii) Recovering depth from a single image is an inherently ambiguous task [36].
It requires the use of cues such as object sizes, image position, lighting perspectives,
shading, relative sizes of objects, and information about the global view. This is an
ill-posed problem since an infinite number of real world scenes can produce the same
RGB image. Humans are able to perceive depth even with one eye because humans
are very good at dropping out impracticable solutions. But computers need a strategy
to do so.

5.1 Methodology of Depth Map Estimation

Depth from stereo depends on the intrinsic and extrinsic parameters of the cam-
era. Computer vision techniques are used to estimate the disparity map from stereo
images. Disparity is measured in the number of pixels that an object (or precisely
each pixel of an object) is displaced in the left image with respect to its location in
the right image. Disparity values can be converted to depth by using the formula:
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Fig. 7 Pipeline for depth map estimation from stereo images

depth � focal length × baseline

disparity value

The state of the art techniques attempt to calculate disparity at a subpixel level.
For stereo matching, epipolar lines are identified to reduce the search space for the
matching cost computation. Then pattern matching techniques are used for disparity
calculation. There are fourmajor steps in a stereomatching algorithm [37]. These are:
Matching cost computation, cost aggregation, disparity computation/optimization
and disparity refinement.However theremay bemodifications in this general pipeline
depending on the used algorithm.

Almost all of the algorithms convert RGB images to grey scale. The matching
cost is a measure of difference between intensity values at a given disparity such as
sum of absolute difference or sum of squared difference. Cost aggregation is done by
accumulating matching cost over windows with constant disparity. The calculation
of disparities is done by selecting the minimum value of the cost at each pixel. Then
the disparity map is refined using several post-processing techniques (Fig. 7).

There are two main types of algorithms: Local and Global (Fig. 6). In a local
approach, the disparity calculation at a point or pixel is only based on the intensity
values in a predefined local area or local window. They have shorter processing
times and complexity. The work of Mattoccia et al. [38] is a typical example of a
local approach.

On the other hand, a global method forms a global energy function and attempts
to minimize it for all disparity values. This type of methods have two terms in their
objective function. One is the usual term which penalizes the output that is inconsis-
tent with the ground truth. The other is a term that smooths the local neighbourhood
of the actual pixel to reduce irregularities in the generated depth map. Global meth-
ods produce better results than the local methods, but are computationally expensive
[39]. They are therefore not suitable for real time systems. These methods usually
skip the step of cost aggregation. Most of the global methods use Markov random
fields.
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5.2 Depth Map Estimation Using Pattern Matching

Before the widespread use of deep learning, depth map estimation techniques used
cumbersome feature extraction and pattern matching techniques, which required a
lot of parameter tuning. Depth map estimation from stereo images is one of the early
ways to recover a depth map. Initially, depth from stereo algorithms did not use
ground truth data for training. But the introduction of suitable datasets has opened
the possibility of supervised learning. Various methods have been used to calculate
the matching cost of the left and right views, such as the sum of squared distances,
sum of absolute distances and normalized cross-correlation. Conditional random
fields are also popularly used for stereo matching. Li and Huttenlocher [40] use a
non-parametric cost function for the conditional random field model and combined
it with a support vector machine to learn the parameters of the model. Spyropoulos
et al. [41] train a random forest classifier to predict the confidence of the matching
cost and used the predictions in a Markov random field to decrease the error of the
stereo method.

Depth estimation from a single image is a much more challenging problem.
As opposed to stereo correspondence, there are no reliable cues. There are sev-
eral approaches towards depth estimation from a single image. Saxena et al. [42]
developed a system for 3D model generation using super pixels and Markov Ran-
dom Field (MRF). Their system relied on the assumption that the environment is
made up of many small planes. Additional sources of information e.g. repetitive
structures, semantic labels or user annotations can help in this task but such infor-
mation is usually not available. Geometric assumptions can effectively be used e.g.
box models are used to estimate a room layout, but these are very simple models
which fail with a slight object complexity and are not suitable for detailed 3D recon-
structions. Some non-parametric systems [43], search for image patches in a set of
known-depth images, which are similar to the input image and combine this infor-
mation with smoothness constraints to estimate the depth map. This approach has
the problem that the smoothness constraints depend on the gradient, which performs
poorly for real 3D scene reconstruction. Ladicky et al. [44] use handcrafted features
and super-pixels to integrate semantic object labels with monocular depth features
to improve performance.

5.3 Deep Learning Networks for Depth Map Estimation

Zbontar and LeCun [45] apply deep learning to estimate depth maps from a recti-
fied image pair. Their work is mainly focussed on the first step of stereo matching
algorithms i.e., on the matching cost computation. Ground truth training data is used
for training a convolutional neural network by constructing a binary classification
dataset. One negative and one positive training example is extracted at the positions
where the true disparity is known in order to create a balanced dataset. Then the CNN
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learns a similaritymeasure on this dataset of small image patches. This work presents
two network architectures, one for fast performance and the other for more precise
results. The network architecture consists of two shared-weight sub-networks joined
together at the head, called the Siamese network. Each sub-network consists of a
number of pairs of a convolutional layer and a layer of rectified linear units. The last
convolutional layer of each sub-network is not followed by the rectified linear units
layer, and outputs a vector describing the properties of the input image patch. In the
fast architecture, the two output vectors are compared using a dot product to produce
the final output of the network. However, in the accurate architecture, the two output
vectors are concatenated and passed throughmany fully connected layers. Each fully
connected layer is followed by a layer of rectified linear units except the last layer
which is followed by a sigmoid layer. The sigmoid layer produces a scalar which is
used as the similarity measure between the two patches. At test time, the disparity
map is initialized by the output of the convolutional neural network. This initial out-
put is later refined by cross-based cost aggregation, semi-global matching, left-right
consistency check, subpixel enhancement, a median filter, and a bilateral filter to
achieve the final output. The accurate architecture achieved the least error rate on
several benchmark datasets while the fast architecture achieved the least execution
time with a reasonable performance.

Information from both global and local cues is required for depth estimation from
a single image. Eigen et al. [36] use two deep network stacks. The first network uses
the entire image for coarse global prediction. It consists of five convolutional layers
and two fully connected layers. The other network is used for the local refinement
of the predicted disparity map and consists of three convolutional layers. The raw
datasets were used to feed the data hungry deep networks. The method achieved the
state-of-the-art results on the NYUDepth and KITTI datasets in 2014, and produced
detailed depth boundaries.

Depth map estimation can also aid in the task of surface normal estimation and
semantic labelling and the three tasks can complement each other. Eigen and Fergus
[46] simultaneously handle three tasks of depth prediction, surface normal estimation,
and semantic labelling using a single multiscale convolutional network architecture.
In the first step, the deep network uses the complete image to produce a coarse
global output. Then local networks refine the initial output. The network involves
several convolutional layers and fully connected layers, and works at three different
scales. The system produced a better performance onmany of the benchmarks for the
three tasks. This shows that combining complementary tasks of scene understanding
improves the performance.

6 Scene Classification

Scene classification is very different from typical object classification. In scene clas-
sification, the images contain numerous objects of different types and in different
spatial layout. The variability in size and the different view angles are some of the
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other challenges involved in the complex task of scene classification. Scene classifi-
cation is an active area of research. In recent years, several different approaches have
been proposed. Some techniques use local distinctive features, while others work
at the global level. However, both types of cues are required for an efficient scene
classification. Apart from these, mid-level representations have emerged as potential
candidates for scene classification (Fig. 8).

The idea is to discover discriminative mid-level image patches. A feature descrip-
tor then encodes the patches. Since the global layout deformation is a characteristic
challenge of scene classification, an important problem is to design layout-invariant
feature descriptors. Oneway is to use locally invariant features such as SIFT followed
by bag-of-visual-words models. However, the features learned by deep learning have
recently outperformed these local feature representations.

6.1 Scene Classification Using Handcrafted-Features

Parizi et al. [47] use a latent variable model for scene recognition. The idea is to rep-
resent the scene in terms of its constituent components e.g., an outdoor scene may
contain grass, trees and clouds. These components may be present in any number
and at any spatial location in the image, but they will essentially constitute the same
type of scene. The image is partitioned into a pre-defined set of regions and a latent
variable is used to specify a region model for the image region. The appearance of
an image region is described using a bag of words approach. Two training methods
are suggested for training: generative and discriminative methods. The Expectation-
Maximization (EM) algorithm is used, in the case of generative methods, in order
to calculate the model parameters in a supervised setting. A latent structural SVM
(LSSVM) is used for the discriminative setting. While the discriminative method
produces better results, LSSVMs are not robust against a bad initialization. The gen-
erative method can provide the parameter initialization for the LSSVM to overcome
this difficulty.

Lin et al. [48] introduced the concept of Important Spatial Pooling Regions
(ISPRs). A unified optimization framework is used to learn distinctive region appear-
ances and ISPRs. This method suppresses the false responses in generated feature
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maps using the statistical information from the training data. Once the false responses
are suppressed, simple techniques such as, max pooling can be used to combine fea-
ture maps. This mid-level representation is combined with global image features to
improve the recognition accuracy.

6.2 Scene Classification Using Deep Features

Previously, it was difficult to use deep learning for scene categorization because suf-
ficient data was not available for training the deep networks. Initial deep learning
attempts used the transfer-learning properties of neural networks by using CNNs
trained for object recognition for the task of scene classification. However, due to
the very different nature of the task, the success of deep learning was not as great as
expected [49]. The introduction of Places database [49] has made it possible to train
CNNs for the task of scene classification. It contains more than 7 million labelled
images of scenes of various categories. This dataset is as dense as other datasets and
contains more diversity. The CNN trained on the Scene database achieved 50%Clas-
sification accuracy and the deep features extracted from the trained CNN produced
state of the art results (using an SVMas classifier) on a number of scene classification
datasets.

Hayat et al. [50] use deep learning to extract the spatial layout and scale invari-
ant features. Instead of local or global features, they use an intermediate level of
information by extracting mid-level patches from the image. Then scale invariance
is achieved by using a pyramidal image representation. This provides multi-level
distinctive features for indoor scenes. A dense and uniform patch extraction ensures
that most of the information is utilized in making the final decision. To overcome the
challenge of spatial layout deformation, the convolutional neural network involves
a new “spatially unstructured layer”. The CNN consists of five convolutional layers
and four fully connected layers. The pyramidal image representation is created by
extracting mid-level patches at three different scales. Two CNNs are used for feature
extraction. One CNN contains a spatially unstructured layer while the other CNN
does not contain that layer. The output vectors of the two CNNs are concatenated to
form the final feature vector. The deep features are used to train an SVM which acts
as the final classifier. The SVM using the deep learning features achieved state of
the art performance on a number of indoor scene classification datasets.

Deep convolutional features have a native ability to retain the global spatial struc-
ture. However due to very high variations in the spatial layout of objects, the structure
preserving property of deep networks becomes a hindrance in the effective training of
the network [51]. A way to overcome this problem is to transform the convolutional
features to some other feature space, which is more descriptive for the task of scene
classification. The transformed feature space should encode the features as general
object categories present in scenes. It should also represent the distinctive aspects
of the data. Khan et al. [51] use mid-level convolutional features along with ‘Deep
Un-structured Convolutional Activations (DUCA)’ to overcome the challenge of
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variability in the spatial layout. First, the dataset is augmented with flipped, cropped
and rotated versions of the original training images at three different spatial reso-
lutions, then a sliding window is used to extract dense mid-level patches. A CNN
with five convolutional layers and three fully connected layers is used to extract deep
features from the images. The resulting feature vectors are highly structured due
to the systematic operations in a CNN. To overcome this challenge, feature vectors
are represented as multiple code books of the Scene representation patches (SRPs).
This increases the effectiveness of deep features. Both supervised and unsupervised
learning are used for the formation of code books. The unsupervised SRPs provide
information about the distinctive aspects of various sceneswhile the supervised SRPs
are good for providing semantic information. Finally, a one-versus-one SVM is used
for classification. This method achieves the best classification accuracy on a number
of indoor scenes datasets.

From a holistic point of view, scene classification requires information about
both objects and scenes. The category of the scenes (especially indoor scenes), is
mainly determined by the objects that are present in those scenes. Therefore, one
important challenge is to devise a way to combine the knowledge about objects
and the knowledge about scenes in order to improve the decision making process.
Since CNNs do not have any inherent ability to cater for significant variations in
scale, removing the scale bias is another important step. Experiments show that by
combining deep features fromPlaces-CNNand ImageNet-CNN, the overall accuracy
of the scene classification increases [52]. However, this boost in accuracy is only
achieved when features are extracted at multiple scales and systematically combined
while keeping in view the different original scales of the two CNNswhich are trained
on the Places Dataset and ImageNet dataset [52].

7 Caption Generation

A recently emerging application is to use deep networks for the task of captioning
images. It is also known as automatic caption generation. This challenging problem
is a big step towards scene understanding, as it is not a typical classification task,
and it merges the fields of computer vision and natural language processing. This
is closer to the human understanding of surroundings. It requires the analysis of the
visual and semantic contents of an image to generate a textual description about
the most salient information in the image. A good description should be accurate,
concise, comprehensive, and also grammatically correct. The techniques for image
caption generation can be classified into three main types [53]: (i) from query image
contents, (ii) by retrieving information from images similar to query image and (iii)
from videos (Fig. 9).

The methods which generate captions directly from the query image first detect
the contents of the image, whose description is generated. This may involve object
detection, scene classification, attribute generation, action recognition and semantic
segmentation. This information is used in natural language processing systems to
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create a description of the image. This approach relies on the accuracy of the used
detectors. However, the detection results are not always correct.

The second type of methods are based on similar image retrieval. These methods
search for images which are similar to the query image in a large training database to
retrieve those images and their respective descriptions (captions). They then create a
caption for the query image based on the retrieved description of similar images. This
approach requires much more training data to generate good descriptions, compared
to the direct caption generation from images.

Caption generation from videos is a much more difficult task as it additionally
requires the analysis of the temporal information, and the recognition of the actions,
events, and interactions in the videos.

7.1 Deep Networks for Caption Generation

The main idea of a system for caption generation based on deep learning is to use
Convolutional Neural Networks to extract visual features from an image, and then
use a Recurrent Neural Network (RNN) to ‘translate’ those features from the visual
domain to the textual language. The Long Short Term Memory (LSTM) model is
the most commonly used RNN for caption generation tasks. A generative model
developed by Vinyals et al. [54] is a representative work of this approach. A deep
recurrent architecture is trained to generate the target description sentence from the
training image. A deep convolutional neural network is trained for the task of image
classification. Then the final classification layer is removed, and RNN is connected
to the output to generate a textual description. The resulting network is trained in
an end to end manner using stochastic gradient descent and back propagation. The
model achieved state of the art performance on many caption generation datasets in
2015.

Word generation using LSTMmainly depends on the current state and last state of
the LSTM. Despite the long term memory in the LSTM, if image information is fed
at the beginning of sentence generation, its effect gets weaker with the length of the
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sentence. Global semantic information has proved to be useful to mitigate this effect.
Jia et al. [55] use an extension of LSTM called gLSTM. This extension involves the
addition of an extra input of semantic features to each block of the LSTM model. In
this way, the LSTM produces sentences which are more relevant to the test image.
Length normalization is applied to compensate for bias towards short sentences.

The inverse problem of caption generation i.e. visual feature generation from
textual descriptions is also an important problem for scene understanding. The idea
behind this problem is that the computers should be able to draw or visualize a
scene given its textual description. Chen and Zitnick [56] explore the bi-directional
transformation between the textual description and visual features of images. A
Recurrent Neural Network (RNN) is used to create a visual representation of images
while reading or generating captions. The modified RNN with latent variables is
capable of retaining long-term visual concepts. Static visual features are fed to the
RNN along with a language model for the task of caption generation. For the task of
image retrieval, the modified RNN contains a special layer, which generates visual
features from the input descriptions. The system can be used for caption generation
and to retrieve images based on a textual description.

Most of the caption generation works involving deep learning rely mainly on the
availability of databases for caption generation, and cannot describe objects which
are not present in the caption generation databases. This limits the type and nature of
caption generation to the style and information that is present in the database. Addi-
tional information from other sources, e.g., web and Wikipedia, can be effectively
used to improve the performance of caption generation systems [57]. Hendricks et al.
harvest information from large object recognition datasets and large sources of textual
information for a deep learning based system called Deep Compositional Captioner
(DCC). It consists of three main components, a lexical classifier, a language model
and a caption model. In the lexical classifier a CNN is used to find the relationship
and structure of objects in images. Most common adjectives, verbs and nouns are
extracted from the caption generation databases. A pre trained CNN, on a large object
recognition dataset, is fine-tuned and used as a lexical classifier. Data from the object
recognition datasets (in addition to the caption generation databases) is also used
for fine tuning. The output features of the CNN correspond to the probability that a
particular concept or object is present in the scene. The language model is trained to
predict the next word in a sentence, given the previous words of the sentence. Text
data from various datasets and sources, such as Wikipedia and the British national
Corpus, is used to train the model. It involves a one-hot-vector embedding layer,
LSTM and a word prediction layer. The caption model combines the features of the
lexical classifier and the languagemodel using a linear affine layer. The simplemulti-
modal combination layer facilitates in comprehending the relationships between the
visual and language features. In this way the system becomes capable of generating
descriptions for even those objects which are not present in the training set of the
caption generation datasets. The system is also used to generate descriptions of video
clips.
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8 Visual Question Answering (VQA)

A further extension of caption generation for images is the task of Visual Ques-
tion Answering. VQA also involves the integration of computer vision and natural
language processing. In VQA, the system is required to answer any arbitrary ques-
tion about an image. The answer should directly be inferable from the contents of
the image, although more advanced systems are also experimenting with questions
whose answers require external information. The scope of the question includes, but
is not limited to, the contents of the image such as, the number and types of objects,
attributes (e.g., colour) identification, scene classification, and the spatial relation-
ships or interactions between objects. The type of questions include both open ended
and multiple choice questions. There has been a recent surge in the efforts of devel-
oping various systems for VQA, especially due to the reason that deep learning has
improved the performance of various individual tasks, which can now be used to
form an integrated system. Generally, a VQA system consists of three main com-
ponents: extracting features from images, a method of understanding the question,
and a methodology to analyse the features for the correct answer [58]. Most of the
methods use a CNN, pre-trained on large scale object recognition datasets, for fea-
ture extraction from images. There are various approaches for the analysis of the
question which include bag-of-words (BOW), recurrent neural networks and long
short term memory (LSTM) models. For the answer generation, most of the systems
treat VQA as a classification task. The features extracted from the image and the
question are used as input features for a classifier, which is trained to output one
of the pre-defined answers. However, this approach limits the answers to only those
fixed during training. An alternative is to use an RNN to generate multiple word
answers.

8.1 Deep Learning Methods for VQA

In order to produce good answers for visual questions, the system should have the
ability to focus on the image area which relates to the question asked, rather than
the whole image. Therefore VQA requires a deeper understanding of the image,
compared to caption generation. Antol et al. [59] developed a large scale VQA
database and provided various baseline results using the multilayer perceptron and
LSTM models.

Gao et al. [60] developed a system for visual question answering for both the
English and Chinese languages. The length of the answers of their system varies
from a single word to a complete sentence. It consists of four major components: a
CNN, two LSTM models and a fusing component. The CNN is used to extract the
visual features from the image. An LSTM model is used to extract the features of
the questions. The other LSTM model, which shares the weight matrix with the first
LSTM, is used for the answer generation. Finally, the information from the first three
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components is combined in the fusion component to generate the answer. One-hot
encoded vectors [61] are used to represent the words in the questions and answers.
A Beginning of Answer <BOA> sign and an End of Answer <EOA> sign are added
as two words in the coded dictionary. These signs are added to each answer during
training. During testing, the system receives an input image and a question and the
<BOA> is passed to the LSTM for the answer generation. Then the model calculates
the probability distribution of the next word. This process is repeated until the system
outputs an <EOA> sign. Human evaluators ranked 64% of the answers of the system
to be at an equal level to answers produced by any human.

The systems which use CNN and LSTM are limited by the nature of the answers
produced during testing, which are limited to the words that are available in the
training data. Most of these systems have very simple mechanisms to combine the
features of images and questions, and do not use high level semantic concepts. Wu
et al. [62] incorporate external knowledge to improve the performance of caption
generation and VQA systems. Their system also fuses an attribute based represen-
tation of high-level concepts into the traditional CNN and RNN based approach. A
dictionary of semantic attributes is constructed by using the most common words in
the captions of the training data. The learned attributes can be any parts of speech
(noun, verb, adjectives, etc.). Then to predict attributes from images, a CNN (pre-
trained on large object recognition datasets) is fine-tuned on a multi-label dataset. At
test time, the image and a number of sub regions of the test image are fed to the CNN,
and the results are aggregated to produce a multi label prediction. This multi label
prediction and a LSTM are used for the caption generation. For VQA, the top five
attributes that are predicted by the CNN are also used to extract information from
external knowledge databases such as DBpedia. The features from the multi-label
CNN, the external knowledge, and the generated captions are fed to an LSTMmodel.
The LSTM model also receives the question as an input and generates an answer
of the question by using all these inputs. This approach has resulted in considerable
improvements in the state of the art performances for caption generation and VQA.

9 Integration of Scene Understanding Components

As discussed in the previous sections, there has been a lot of work on the different
individual components of scene understanding. The success of CNNs has resulted in
networks which can achieve a very high performance on specialized tasks. Despite
these advancements, there have been very few attempts to use deep learning for
holistic scene understanding. The different components can be integrated into a
unified framework to increase the overall performance.

Depth estimation helps in object recognition, face recognition, scene classifi-
cation and scene segmentation. Silberman et al. [63] extracted information about
major surfaces, objects, and support relations from RGB-D images. They used the
depth information in addition to RGB to parse indoor scenes into walls, floor, object
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regions, and recovered support relationships. Similarly, Hayat et al. [10] used depth
information to improve the results for face recognition and object recognition.

Scene text detection can improve the accuracy of object recognition. Karaoglu
et al. [34] used text recognition to help in the task of object class recognition. They
first performed scene text recognition followed by saliency based object recognition
and finally object recognition with the help of the recognized text. There was a clear
improvement in the performance of object recognition when text information was
used, compared to when only saliency-based features were used.

Networks trained for object recognition also aid in the tasks of text detection,
scene classification, caption generation and Visual Question Answering (VQA). In
fact it is a common practice to use large networks, trained for object recognition on
ImageNetDataset, as feature extractors for various other tasks of scene understanding
[62, 64]. Similarly, scene classification is required for caption generation and VQA.
Even caption generation can help to improve the answers of algorithms for VQA
[62].

9.1 Non-deep Learning Works for Holistic Scene
Understanding

Some of the recent works which combine different components of scene understand-
ing include the following:

• Heitz et al. [65] developed a Cascaded Classification Models (CCM) framework,
in which they combined the tasks of 3D reconstruction, scene categorization,
multiclass image segmentation and object detection. The cascaded framework
learned a set of related models which, in addition to performing their tasks, help
each other to improve the output.

• Li et al. [66] extended the work of [65] to Feedback Enabled Cascaded Classifica-
tion Models (FE-CCM) by maximizing the joint likelihood of the sub-tasks. They
introduced a feedback step so that the earlier classifiers could receive feedback
from the later classifiers on the types of errormodes to focus on. This feedback step
improved the performance of the tasks of depth estimation, scene categorization,
event categorization, saliency detection, geometric labelling and object detection.

• Yao et al. [67] devised a system for holistic scene understanding. The system
provides information about regions, location, the class and spatial extent of objects,
the presence of a class in the image, as well as the scene type in an integrated
fashion. Segment level learning is used along with auxiliary variables in order to
decompose a high order potential into pairwise potentials. The maximum number
of states is equal to the number of classes.A convergentmessage-passing algorithm
[67] is used to accomplish the tasks of object detection, scene classification and
semantic segmentation. Prior knowledge can be incorporated in the algorithm as it
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has neither submodularity restrictions nor requires potential specific moves. This
holistic model improved the performance on all the tasks of object detection, scene
classification and semantic segmentation.

9.2 Deep Learning Based Works for Holistic Scene
Understanding

Compared to non-deep learning techniques, the efforts to integrate scene under-
standing components using deep learning are rare and modest. Some of these works
include:

• Eigen et al. [36] employ two deep network stacks for depth estimation, one for a
coarse global prediction based on the entire image and the other to refine the pre-
diction locally. Eigen and Fergus [46] extended [36] to simultaneously handle the
three tasks of depth prediction, surface normal estimation, and semantic labelling
using a single multiscale convolutional network architecture.

• Machines and robots that interact with the physical environment are not only
required to detect and recognize objects in scenes, but they also need to have an
understanding of how to use and work with different objects. Ye et al. [64] use a
two stage pipeline based on deep learning to localize and recognise the functional
areas of various objects in an indoor scene. An attention based selective search
algorithm is used to detect the salient regions in an image, which may contain
functional regions. Then a convolutional neural network, pre-trained on a large
object recognition dataset, is modified by removing the final layer and adding a
new classification layer to decide what functions can be performed on the detected
regions. The network is then fine-tuned in a supervisedmanner to produce the final
system.

• Khan et al. [68] use multiple convolutional networks to automatically learn fea-
tures and the dominant boundaries at super-pixel level for shadow detection and
removal in natural scenes. Then a conditional random field (CRF) model is used
to generate masks for shadows which is followed by a Bayesian formulation to
remove shadows.

• Asif et al. [69] propose a system which uses depth information and RGB chan-
nels to simultaneously achieve the tasks of object recognition and dense scene
reconstruction from videos. First, object proposals are identified which remain
spatio-temporally consistent across multiple frames of the video. CNNs are used
for global feature extraction, while a Bag of Words (BOW) approach is used to
extract mid-level features. These are used for dense scene reconstruction. At the
same time, class probabilities of objects are efficiently determined and this infor-
mation is integrated into a voxel-based prediction hypothesis.

• Object recognition and grasp detection are important for visual perception in robots
which interact with their surroundings. Asif et al. [70] propose a depth-based
framework of CNN and cascaded forests to integrate the tasks of robotic grasp
and object recognition. Pre-trained CNNs are used to extract features from RGBD



Deep Learning for Scene Understanding 47

object data. The probabilities of each class of object are calculated at different
levels of the image hierarchy. A cascaded framework of hierarchical forests is
then used to decide on the class of object and grasp it according to its shape.

Most of these works, which use deep learning for integration, are based on the
combination of depth information and semantic segmentation. The use of deep learn-
ing to combine the tasks of text detection, object recognition, scene classification and
caption generation remains an open research field. The need is to integrate these com-
ponents into a combined framework to aid in the development of a low cost and robust
scene understanding system.

10 Conclusion

Deep learning has made its mark in all the components of scene understanding. This
chapter has presented a concise survey of deep learning-based techniques for the
various components of scene understanding. The evolution of deep learning frame-
works for the high level tasks of scene understanding, such as, textual description
generation and VQA is also discussed in this chapter. These techniques constitute
the state of the art in nearly all the sub-fields of computer vision. Some fields such
as Optical Character Recognition in documents is now considered a solved problem,
because of the deep networks which can achieve human like accuracy. A commercial
application of such systems is the automatic reading of cheques in banks [71] and
the automatic reading of postal codes in post offices [72]. For many other fields,
deep learning has vastly improved the performance of various tasks, such as object
detection and recognition, and face detection and recognition. These advancements
have also contributed to the field of autonomous driving, where full autonomy has
not been achieved, yet, several companies have already introduced human super-
vised driving vehicles. Despite of all these advances, there is still much room for
improvement. As discussed in the previous sections, most of the state of the art of
the deep learning works focus on a single sub-task, rather than on the complete task
of scene understanding. Most of the existing works on the various components of
scene understanding (e.g., segmentation and object recognition) ignore the physical
interactions between objects. A combined neural network architecture which can
integrate the various components will greatly help in creating a human-like vision
system. The performance of deep learning techniques on high level scene under-
standing tasks, such as caption generation, visual question answering and even on
complex scenarios of scene classification is still far below the human performance.

With more focus on the development of better deep learning systems for scene
understanding, many of the current challenges and problems can be solved and many
new technologies will become available in the near future e.g., self-driving cars can
achieve improved performance by integrating techniques for long range depth map
estimation. Such systems also need to read signs and messages on roads to reach
human like performance. The “SeeingAI”Microsoft sunglasses (under development)
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for the blind and the visually impaired will be one of the marvels of advancements in
scene understanding. These glasseswill be able to detect faces and facial expressions,
recognize gender and estimate age, and describe the surrounding environment. It will
also read text, answer various types of questions anddescribe actions being performed
by people in the scene. Scene understanding systems will also aid in the field of
robotics to developmore ‘humanoid’ robots. Hence, a combined framework for scene
understanding using the state of the art deep networks will aid in the development of
low cost and robust scene understanding technologies and will revolutionize many
aspects of our daily life.
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An Application of Deep Learning
in Character Recognition: An Overview

Sana Saeed, Saeeda Naz and Muhammad Imran Razzak

Abstract For automated document analysis, OCR (Optical character recognition)
is a basic building block. The robust automated document analysis system can have
impact over a wider sphere of life. Many of the researchers have been working
hard to build OCR systems in various languages with significant degree of accuracy,
character recognition rate and minimum error rate. Deep learning is the start of
art technique with efficient and accurate result as compared to other techniques.
Every language, moreover every script have its own challenges e.g. scripts where
characters are well separated are less challenging as compared to cursive scripts
where characters are attached with one another. In this chapter, we would take a
detailed account of the state of art deep learning techniques for Arabic like script,
Latin script and symbolic script.

1 Introduction

Technology has introduced new dimensions for document processing that gave rise
to era of automated and paperless office. As automated systems are time saving,
require less human efforts, reduce risk of human errors and increase the financial
savings for an organization. Processing the textual documents is relatively easier
task whereas digital photographic images are complex to deal with. By using the
techniques of DIA (Document Image Analysis), paper documents are represented
in digital processable format. Paper documents are scanned and stored in the form
of digital document images. Document Images are later, converted into their textual
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equivalent before applying any operation over the content of the document. With the
growing trend of paperless offices, there is an urgent need for a robust DIA System.
DIA can be divided into two categories; first one is graphic processing system or
layout processing which aims at recognizing the graphical components including
symbols, lines, graphs, diagrams, section of text and all the non-textual material
in the document. Other one is Textual processing, which includes the locating the
textual content in document and converting them into textual format, this phase is
also referred as OCR (Optical character Recognition). Our focus of study is “textual
processing”. DIA applications are also referred as, intelligent character recognition,
Dynamic character recognition, On-line character recognition, Real-time character
recognition. Gustav Tauschek initially studied OCR in early 1930s. OCR is sub field
of Machine learning, intelligent systems, signal possessing and pattern recognition
systems [1]. OCR is the automated extraction and conversion of the text form into
the digital image. The image may contain printed text, handwritten text, scene text
(text painted in the pictures or signboards etc.). Digital camera or scanner usually
acquires the digital images after certain processing it is converted into required format
i.e. textual form. Input to the OCR application is an image containing text while
output would be plain text. Other names of OCR are intelligent character recognition,
dynamic character recognition, on-line character recognition or real-time character
recognition.

Broadly OCR is classified into two categories off-line character recognition and
on-line character recognition [2]. First one deal with the statically stored digital
images generally scanned or captured through camera. Whereas, the lateral deals
with the recording the handwriting as a time sequence i.e., it is used to record the
handwriting when someone is directly writing on digital surface using some input
device like stylus of light-pen [2]. Generally, OCR technology refers to offline char-
acter recognition only, so in this chapter we will use terminology OCR in the context
of offline character recognition only. As per the nature of the text offline OCR can
be classified into three categories (1) printed text (2) hand written text (3) scene text.

OCR is robust method for digitizing printed texts, as by using OCR digital infor-
mation can be handled, managed, processed and stored in a more efficient way [3,
4]. More over by applying Artificial intelligence and Machine Learning techniques
to this text, the information contained inside the text can be analysis and processed
for example such text can be used for sentiment analyses etc. Almost every language
has huge amount of data which is required to build OCR application, so it is feasible
to create the OCR application that need massive data to train the model and yield
the highest level of accuracy. Over the past few decades, a lot of work has been done
but OCR remained among the hottest and challenging research topic for most of the
scripts.

The motivation of this chapter is to take an account of deep learning based algo-
rithms for document analysis. The study aims at listing the barriers in way of explor-
ing the full potential of deep learning algorithms and indicating possible future direc-
tion in light of presentwork. This chapter elaborates the basic knowledge and the state
of the art deep learning approaches applied for document processing and analysis.
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2 Objectives of Document Analysis

Robust Automated Document analyses system can revolutionize many walks of life.
As these systems would not only help in extracting the text from images but it
also helps to understand the format of the text inside document as well. Few of the
objectives of applying document analysis process are following.

2.1 Extraction of Properties (Metadata) for Indexing
and for the Provision of Filter Criteria for the Search

Digital images contain text but this text is useless for a computer system until it is
properly represented in the computer system in computationally read-able format.
After extracting, the text form image the text can be used by indexing and rank-
ing software for indexing the digital images. Additionally this text can be used for
keywords based searching by search engines.

2.2 Classification of Documents Based on Specific Categories

In an organization there can be multiple types of documents e.g. in a Bank same
person at the same time may be dealing with deposit slips, cash with draw check
and utility bills in such situation if the scanned images of all the documents are
provided to an automated document analysis system it would automatically classify
all the documents in their respective category, Extract the customer credential from
the image and perform the required operation. Moreover, in post office OCR based
techniques can be integrated with automatic sorting and arranging the letters in
different categories as per address specified over envelops.

2.3 Automatic Creation of Company-Specific Dictionaries

A word can be used to convey different meaning in different situations at different
places e.g. the word balance normallymeans tomaintain the condition of equilibrium
but in a bank theword balancemeans “The remaining amount ofmoney in a customer
account”. So deal with such situations after analyzing the text extracted from the
document a company specific dictionary can be built for convenience and avoiding
miss understandings.
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2.4 Statistics on Various Properties of Document Contents

Different statistical operations can be applied in order to manipulate the information
provided in the text in order to utilize it in way that is more effective.

2.5 Automatic Translation

The digital documents may exist in different languages; more over with the advent
of internet technologies the accessibility of digital documents isn’t constrained. it
doesn’t matter in which language the document was originally created it can be
translated automatically without hiring the services of any expert, through auto-
matic translation software, such as, Google translator is the most commonly known
translation software. After converting text successfully form the images using OCR
techniques then this text can be passed to Automatic translation software to make
it accessibility over even more wider sphere. Such a system in [5] is designed for
Arabic to English translation but the translation process performed poorly, because
of recognition errors which propagated to the translation phase.

3 Application of the Automated Document Analysis

The few of the general application of the automated document analysis system are
stated as below.

3.1 Historic Document Analysis

The historic document analysis is a challenging area of OCR, as they are generally
hundreds of years old and under gone through number of degradations affecting
the legibility of the content, hence more robust and especially designed system are
required to deal with such systems. One of the most common degradation which
appeared in the historic documents is Bleed through effect [6]. Which is actually
caused by oozing of ink from the back side of the paper or the situation may happen
when the paper quality is too low. Therefore, text impression from the backside of
the paper would appear on the front side. Such type of degradation would make OCR
for Historic document analysis more challenging [6, 7].
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3.2 Document Layout Analysis

Document layout analysis is another application of OCR, which is used to identify
different regions in the image containing different information. TheDocument layout
analysis is not a big problem if all documents are of the same format e.g. official
documents in specific format as prescribed by organization. However, if there are
irregularities and inconsistency in the document layout, like in the case of dealing
with historic documents and literature books therewould be obviously great variation
in writing style, script and shapes of decorative entities. Previously two approaches
for document layout analysis are used (1) Bottom Up method. (2) Top down method
[7]. Informer the document analysis starts with the small and basic entities likes
pixels and they are slowly grouped into lager region of interests. While in the lateral,
one the analysis starts with the whole document image, which is divided into smaller
regions of interest. Both the supervised and unsupervised learning method can be
used for training the deep learning model here.

3.3 Text Extraction Form Scanned Documents and Digitizing
the Information

A scanned document is stored in the form of digital image in a computer system.
Digital images need more storage space more over such document are in non-textual
format hence they cannot be edited and modified. However, such scanned documents
are quite often required to be edited and modified. Without a robust OCR system
the editing the an image document in is a cumbersome and odd job, because either
the documents are over written using some image editor or they are regenerated in
textual format manually. Among both the approaches former is odd one and lateral is
tiresome and time consuming. A robust OCR systemwould surelymake it possible to
handle the digital document image as textual document after automated conversion,
without significant human effort.

3.4 Automated Traffic Monitoring, Surveillance and Security
Systems

OCR systems can be used for text extraction for the traffic image and License plate
recognition for vehicle recognition. This would help to improving the existing traffic
monitoring and surveillance system such as money tolling and traffic rule enforce-
ment. OCR technologies will also help in controlling crimes including abduction,
traffic violation etc. by analysis the CCTV footages and automated vehicle recogni-
tion based on license plate number.
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3.5 Automated Postal-Mail Sorting

Postal mail sorting is pre-sorting of the mail envelops before their delivery base
on the address on the envelop mails. The automated sorting of the mail in post
offices can drastically reduce the human effort required; hence it reduces the time for
overall delivery and increase the organization’s profit by reducing the expense and
increasing the system efficiency. The OCR systems especially dealing with address
recognition [8], address block localization, address line localization [9] and numeric
digit recognition [10] with reference to the scripts in which addresses are specified
over the envelops, are developed to build for efficient mail sorting in post offices.

4 Significance of Deep Learning over Machine Learning

Deep learning is a representation learning technique, that is in-turn machine learning
techniques in which models by using the vary huge data learns the pattern inside the
data and later on able to make predictions on the basis of that new data [11]. Concept
of deep learning is comparatively newer as compared with its other peer technologies
but traditional techniques have limited capacity to process the raw and deep learning
techniques canHandel the same data inmore robustmanner and surpassed traditional
techniques, in-terms of accuracy. In 2013 Deep learning was listed among the top 10
breakthrough technologies.

The accurate extraction of the text from the image depends upon the quality
of image and nature of patterns to be detected inside image and robustness of the
algorithms used. However, the quality of image can be improved with the better
scanning and imaging techniques and devices. But the quality of objects inside an
image is quite a dynamic and uncontrollable factor, handwriting varies from person
to person additionally the typo style of the old books is usually quite peculiar but the
book may not be in good condition that would obviously results in the low quality
of images. Moreover, the algorithms would return better results for well-separated
languages while in case of languages with script cursive in nature become complex to
process, hence efficiency of the algorithms drops. Though more complex algorithm
are developed to attain the high level of accuracy, but still a robust commercial OCR
is on the way.

The development of more sophisticated artificial neural network that adds more
and more layers and allows higher level of abstraction for the input image analysis in
order to achieve the higher level of accuracy. The development of new mathematical
functions used at different layer improved and self-healing nature is like renaissance
in the field of big data analysis. Hence, deep learning is widely used application in
several fields. Like pattern recognition, weather forecasting application, text analysis
and processing, speech recognition, object detection, image analysis.
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4.1 Deep Learning Techniques and Architecture

Artificial neural networks are the biologically inspired networks, because the learning
process in the human brain is done on the basis of the experience gained from the
environmental stimulus. In humans inside the brain and nervous system there are tiny
cellular bodies, the neurons which are interconnected with each other. The strength
of connection in between the neuron depicts the relationship between the events, this
strength is symbolized by a term synaptic weight: higher the weight, more strengthen
the connection is and vice versa. Like the abstract architecture of the human brain,
ANN consists of neurons and weighted inter connections between the neurons, their
weights are known as “synapticweights”. Theseweights are analogous to the strength
of interconnections between the neurons in the humans’ nervous system. Learning
is achieved by adjusting these synaptic weights, by using values form the previous
layer and a mathematical activation function applied on them.

Oneof the simplest and earliestANNwasPreceptron based upon themathematical
model of the neuron is known as McCulloch and Pitts neurons. McCulloch and Pitts
neuron takes the weighted input and passes them through the adder to get the output
valueswhereas the Preceptron is simply combination ofMcCulloch and Pitts neurons
alongwith an activation function applied to the output of each neuron. The Preceptron
one of the earliest artificial neural network consists of only two layers i.e. an input
layer which is directly connected to the output layer. This is a simple model but
unfortunately, this simple model can work with only simple and linear problems. In
order to handle the complex and nonlinear problem more layer known as “hidden
layers” are introduced. These layers lies in between the input and output layer. Such
ANN is known as deep neural networks. Hidden layers introduce a black box effect
as we does not known exactly how by applying the specified parameters these layers
mange to predict. In deep neural networks the output of each predecessor layer
propagates as input to its successor layer. As the number of hidden layer, increase
the level of abstraction in model and complexity of model increases. But the model
could handle the more complex problem with higher degree of accuracy as it can
diagnose the nonlinear relationships. Though due to massively parallel and complex
processing the learning process (adjustment of synaptic weights) is quite slow but
able to process data more effectively and yields higher degree of accuracy (Fig. 1).

In case ofOCR for different languagesDNNoutperformed all the other techniques
in race of tackling the challenges especially problemof nonewell separated characters
and cursive nature of the text. The deep learning is listed among the popular topic
since the groundbreaking paper [12]. The recent advancements and emergence of
newmodels like Convolutional neural networks and recurrent neural networks along
with its variant LSTRM (Long short term memory network) and BLSTM network
(Bi-directional LSTM) crashed the barriers in the way of growing efficiency for the
OCR applications for Arabic script.
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Fig. 1 Deep neural network
architecture

5 Peculiarities and Challenges for OCR with Deep
Learning

There are number of peculiarities and issues for development of optical character
recognition using machine learning and deep learning techniques. In the following,
we present each challenge in detail.

5.1 Dataset

The availability of data set is life blood for the any machine learning application;
especially for deep learning, as; such application requires huge data sets. The accu-
racy of results produced by the model is mainly dependent upon the amount of data
available; more data, would help the model to set its parameters in more generic
sense, hence better would be the learning of the model will be. Besides quantity,
the quality of the dataset is a major aspect that largely affects the learning process.
Since for many languages like no standard datasets are available. Hence the lack of
suitable dataset for a specific language is the greatest barrier in the way of success
of Deep learning in the field of OCR. Furthermore, every language and every script
has its own peculiarities especially languages with cursive script, where character
are not well-separated, have their own challenges, while the languages with Latin
script may have challenges like similar characters etc. [13] have their own nature
and challenges. Hence document analysis becomes a separate domain for every lan-
guage to language and script to script. In simple words, the dataset used for English
document analysis, can neither be used for Urdu nor for Chinese and vice versa. It
should be used for English document analysis. Hence, for developing a multilingual
system it become reasonably tedious.
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5.2 Data Interoperability and Data Standards

Data interoperability and data standards are the one ofmajor barrier. Currently, nature
of data differ from language to language thus there exist large variation in images
due to device through which data is acquired and format in which data is acquired.
Additionally a single language may fallow more than one script e.g. Urdu script can
be written in Naskh and Nataleeq script. So to coup with the versatility in this context
wouldmean to be able process the data in any of the available format, in any available
script for a given language. Further to make a system suitable for plain hand written
document should be used for hand written documents analysis, for computer printed
document similar dataset should be used in order to get text form the painted images
data set should be used and so on.

5.3 Build and Integrate Big Image Dataset

In order to train a deep learning model massively large datasets are required, but
unfortunately many languages don’t even have any standard data sets. Hence in such
situation whenmodel is trained over fewer amounts of data, the overall systemwould
suffer from the efficiency issue. Though building standard dataset for a particular
script in a particular situation is not a big issue commonly but for many language
the scenario cannot get the due attention and efforts of researcher mainly because
it is tiresome and time consuming job additionally it may become expensive for
any reason too. In some cases it may become a big issue of privacy e.g. if automated
DAS is especially designed to analyses the bank cheques the data for such application
would firstly not openly available. I however available in suitable amount. It could not
be used openly for building any other application by some other person. Therefore,
in such cases, sharing of data is nearly impossible but suitable steps can be taken to
overcome such issues.

5.4 Language and Script Peculiarities

Every language and scripts has its own character set, format, style more generally
script for writing. Every script has its own challenges and peculiarities to deal with
e.g. the Latin script where the characters are well separated are easy to segment
while for the cursive script where characters are not well separated, combined with
certain other issues like, diagonality, bi-directionality and character overlap. Hence
it is hardest task, in the present circumstances to build a robust system which can
fully deal with all types of languages, so a single OCR system is build to deal with
a single language or a single script.
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5.5 Black Box and Deep Learning

No doubt, beep learning revolutionized many areas; the automated document anal-
ysis applications citations also got the benefited from this amazing technique. Deep
learning algorithms opened new avenues for improving the efficiency of the auto-
mated document analysis application. However deep learning techniques by itself
are mysterious one. However, all the mathematics and rules used for deep learning
are quite clear and well defined but how these well-defined rules and laws ultimately
make the system intelligent enough to perform AI tasks like document analysis by
learning patterns is a unknown phenomena. This problem is known as black box
problem. The problem occurs due to the complexities involved during learning and
the complicated output for the given input data. Due to black box nature of deep
learning it is used by researcher without knowing what actually is done for achieving
the desired results.

5.6 Processing Hardware Power

As deep learning system need to process massive amount of data in parallel, this pro-
cessing not only need huge processing power but also were affected by the floating-
point precession of the system. Relatively newer hardware technologies gave birth
to faster GPUs and co-processors. In [14] the author states that GPU works 40 times
faster than microprocessor while processing the massive amount of data during deep
learning process. Author applied inline back propagation algorithm to process the
data over the MNIST dataset. Here in this case just the improved hardware with
floating point precession of single-precession FP over GPU provided better results
over the models with much complex and complicated architectures. If the hardware
is more advance and optimized to perform mathematical calculations additionally
able to provide more floating point precision, the deep learning application can work
better even with relatively small datasets and the techniques for increasing the size of
dataset like degradation would no longer be required to apply, hence programming
overhead reduces. So the impact of advanced hardware on deep learning is no way
less at any stage, for any application either it is handwriting recognition, any other
field of pattern recognition, data mining, computer vision and much more.

5.7 Implementation (Available Libraries) Can Be Hardware
Dependent

The advent of GPU and co-processors had great impact on the machine learning
and deep learning techniques as the new powerful hardware, with more Floating
point precision, the growth in the field of ML and deep learning boomed up. But
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problem is that GPU and co-processors usually are unable to execute the existing set
of libraries as they are especially design have their own instruction set, especially
a GPU firsts translates the set of mathematical operations and algorithms in the
graphical operations. Hence to execute the deep learning algorithms onGPU especial
versions of libraries compatible with GPU processing are created e.g. Tensorflow is
a python library which have both the versions ‘tenserflow with CPU support’ and
‘tenserflow with GPU support’. The code for GPU application is written in a C like
programming language called compute unified Device Architecture (CUDA).

6 Machine Learning, Deep Learning and Optical
Character Recognition

In the following subsections, different studies are presenting for OCR for Arabic
script, Symbolic Script and Latin script using machine learning and deep learning.

6.1 OCR for Arabic like Script

Urdu, Arabic, Persian and Pashto languages spoken over a large area of the largest
continent of Asia including Middle East and south Asia. All the languages though
not same but have common Arabic like scripts [15]. Urdu is the language of the
over 70 million peoples. Besides it is the national language of Pakistan and official
language of 5 states of India as well. All the above stated languages are enrich with
the literature more over the religious holy book of Muslims and the other related
material like Ahadith are in Arabic language [16].

Such popularity of languages invoked the digitization of the literature in order
to keep pace with the current advancement of the technology world. The digitizes
literature would preserve the new the books as well as old books for the longer
period of time and make the searching easy using algorithms later. In this context,
the document image analysis emerged by which the scanned image of a document is
analysis for patterns drawn over it. These patterns may include text, simple figures,
pictures etc. This versatile combinationmakes the analysis even complex. So in order
to interpret the objects in the image a number of techniques are used. For getting the
text a well know technique OCR (optical character recognition is used) the technique
of OCR is used to read the document image and convert them into plain text. Hence, it
can be said that OCR systems, can recognize all the primary and secondary blocks of
write-ups, including characters, words and sentences. OCR has been an active field of
research for a few decades. Different languages based on Latin script (characters are
well separated) have successfully developed the commercial OCR systems with high
accuracies due to the huge progress and evaluation of better methods in the field of
image processing and computational intelligence. The languages with Arabic script,
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which is cursive in nature lags behind, mainly due to the complexity, involved due to
their cursive nature. Themajor challenges and peculiarities of theArabic script can be
listed as Bidirectionality, Diagonality, Graphism multiplication/Context sensitivity,
Cursive style, Characters’ overlap, Upper/lowercases, The number and position of
dots, Complex placement of dots, Stretching, Positioning, Spacing, Filled Loops,
False Loops, Ambiguous Segmentation Cue Point, Direction of segmentation, Text
line Segmentation and Interline Spacing [17]. Many of the complexities arise at
the joining points of the two words (ligatures). Various techniques has been used
for the pattern recognition but deep learning methods out passed all of them in
terms of performance and accuracy. Popular deep learning models used for pattern
recognition include), convolution neural network (CNN), extreme learning model
(ELM), recurrent neural network (RNN) and the variants of RNN like BLSTM and
MDLSTM. Among the stated models many of them suffer from certain problems
including single instance learning, lack of memory and non-cyclic connections of
hidden nodes e.g. ELM, traditional Neural Network and CNN lacks the memory
hence don’t have any ability to store the sequence. Hence HMM and LSTM are
the only models that can handle the sequence learning problems. Different studies
including [18–22] illustrates that LSTM outperformed other techniques.

In [23] combination of line and ligature segmentation techniques are used in order
to extract the connected components. The algorithm relies on baseline detection for
line segmentation and showed significant boost up in locating dots and diacritic with
accuracy of 99.17%.

6.1.1 Feed Forward Neural Network

Feed Forward neural network (FFNN) is simplest form of ANN. FFNNs are just
Multi-layer preceptors (MLP) except the fact that FFNN has additional hidden layer
that are lacking in MLP. The study in [24] elaborates the complex nature of character
and resulting challenges concluded that most of the errors occurred due to the end
characters because there is no proper concept of Capital and small character inArabic
like script except the end characters. To tackle this issue sample of 100 Characters
segmented on the basis of pixel strengths, is feed to a simple Feed forward neural
network with a single hidden layer with 2000 neurons, the which resulted in average
accuracy of 70%.

In another study Seuret et al. [25] adopted PCA (Principal component analy-
sis) initialized Deep neural network approach over the annotated manuscripts form
two datasets including DIVA-HisDB and pages from the manuscripts SG8573,
SG5624, and GW105. The experiments showed an improved accuracy over the
Xavier-initialized networks.
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6.1.2 Convolution Neural Network

Convolutional neural networks is a especial class of deep feed forward neural net-
work in which hidden layer consist of convolutional layers, pooling layers and fully
connected layers. CNN mainly focuses on instance learning; hence CNN can work
better for isolated character recognitions. In [26], convolutional neural network is
used for feature extraction and classification over an Arabic dataset named EAST
(English-ArabicSceneText) dataset. Images contained in the data set are complex and
captured under various illumination conditions; hence robust segmentation of image
is required for the correct classification. The empirical methods for segmentation
failed to deal with such complex cases so the images are for s manually segmented
with respect to the text line or words. The best resulted obtained using the proposed
methodology with the lowest error rate of 0.15%.

Convolutional Neural Network Committees are used for handwritten MIST clas-
sification in [27], where among the 7-CNN committees each committee member is a
CNN, all the Network are provided with the same image but distorted in some form.
The committee averages the results of all the CNN. The lowest error rate reported
by the experiments over MINST is 0.35%.

6.1.3 Auto-encoder

An Auto-encoder is a simple MLP with a restriction that it would have the same
number of inputs and outputs form the network. The hidden layersmay have different
number of neurons then the number of neurons Input and output layer has, if the
number of neurons are less than the previous layer the networks also impart here
a sort of convolutional effect because in this case the next layer would receive the
compressed input. An Auto encoder is actually a hybrid network consisting of feed-
forward and non- recurrent neural network. In [28] Auto encoder is used for Urdu
language character recognition. The network is first trained by using a feed forward
pass after which for adjusting the weights the error propagation is used, where the
difference of values between the input value a1 and a1 is used to measure the error
as there is one correspondence between the input and output value. In order to make
the system more robust the model is passed partially corrupted input. For de-noising
the input the input is passed to MLP after back propagation is applied for further
refinement. The experimental results are comparing with the SVMwith RBF kernel.
The three layered ULR-SD achieved the ligature recognition accuracy of 96%where
the SVM got 95% accuracy for 80 * 80 input dimensions. Further three layered
architecture show higher accuracy as compared to the 2 layered architecture.

6.1.4 Hidden Markov Model

Segmentation of a cursive text is very challenging task and it is found that error
in segmentation process reduces over all accuracy of the system. In order to avoid
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segmentation error the holistic approaches are adopted. Holistic approaches are seg-
mentation free approaches. In [4, 16, 29] author adopted holistic approach and lig-
atures i.e. partial words served as units of recognition instead of characters. The
author applied the HMM to extract the statistical features of the ligatures. The sys-
tem resulted in ligature recognition rate of 92%.

6.1.5 Recurrent Neural Network

In [30], Bi-dimensional Long Short Term Memory (BLSTM) is trained on a Urdu-
Nastaliq handwritten dataset (UNHD) collected from 500 individuals. The system
reported error rate of 6.04–7.93%. In another study [5], BLSTM is trained on 11%
of Arabic handwritten NIST dataset and achieved the recognition rate of 52%. The
results of BLSTM–RNN are comparedwithHMM, the formerwith accuracy of 0.5%
surpassed the lateral onewith the accuracy rate of 0.3%. Two deep learning algorithm
including BLSTM andMDLSTM are applied to the a Pushto dataset “Katib’s Pashto
Text Imagebase” which contains 17,015 images of text in [31]. The results of the
experiments showed that MDLSTM outperformed BLSTM for Pushto script.

In [32], zoning features are used with variant of RNN called 2-Dimensional Long
Short Term Memory (2DLSTM) learning classifier. Zoning features are statistical
features that provide significant information with low complexity and high speed.
Zoning features are extracted by exploiting the sequences learning property of the
LSTM network by applying sliding window of size ‘n’ over a vertical strip of size
‘n’. The character recognition rate of 93.38% is reported on Urdu Nasta’liq UPTI
dataset.

In [33], multi-dimensional recurrent neural networkwith LSTM is connectedwith
output layer of CTC. The model exploited the 15 sets of statistical features by using
a sliding window moving from right to the left direction (MDRNN and LSTM and
CTC output layer) and statistical features. By using UPTI dataset model is trained
on various sets of features and the highest recognition rated reported on the test set
is 94.97% with the training error laying in between 3.72 and 5.03% on various set of
features. In another similar study [34], multi-dimensional recurrent neural network
(MD-RNN) alongwith LSTM is used to extract 12 statistical features by using sliding
windows and which are finally feed to an CTC output layer. The model is feed by
the standard UPTI database and reported the highest recognition rate of 96.4%.

Multidimensional deep learning approach (MDLSTM) is used for automated
extraction of raw pixels by Naz et al. [3, 35, 36] for Urdu Nasta’liq text line recog-
nition. The purposed technique outperformed the manually extracted statistical fea-
tures by reducing the error rate up to 50% over UPIT dataset. In [37], gated LSTM
used pixel values for recognition over degraded UPTI and achieved the recognition
accuracy of 96.71%.

The system in [34] worked better as compared to other systems including HMM-
based OCR, OCRopus and Tesseract (Figs. 2 and 3).
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Fig. 2 Recurrent neural network architecture [37]

Fig. 3 a EAST-dataset image [65]. b Segmented image [65]

6.1.6 Hybrid Approach

In order to exploit the properties of multiple deep learning models are used in com-
bination, which can increase the accuracy of the system over all. A hybrid approach
consisting of multidimensional LSTM combine with connectionist temporal clas-
sification (CTC) and a hierarchical layer structure is used in [19]. The model gets
raw pixel data as input. Model designed in such a flexible way that it can work
with different languages, and tested for English and Arabic dataset. The system
showed 91.4% accuracy over IFN/ENIT database of handwritten Arabic words. In
another study [12] DBN (Dynamic Bayesian Network) are coupled with input from
HMM. The hybrid model exploited, statistical features based on pixel distributions
and local pixel configurations and structured features based on presence of loops,
diacritic points, ascenders and descenders. The model achieved accuracy of 90.42%
over Arabic dataset IFN/ENIT database.
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Low-resolution images are adversely affecting the accuracy of the system. The
study in [15] adopted a sophisticated approach for the recognition of low-resolution
Arabic handwritten word recognition. The model for feature extraction and classifi-
cation exploited theMDRNNwith LSTMandCTC respectively. Themodel was feed
with the data form Arabic printed text image database (APTI). The APTI database
is specially designed with greater variation in data, it contains different types of
data including single-font/single-size, single-font/multi-size, and multi-font/multi-
size [38]. The experimental results depict the best result with multi font/multi size
data as with such data system can generalize its parameters in better way. The model
achieved over all mean word recognition rate of 98.32% and mean character recog-
nition rate of 99.69.

Unlike traditional statistical and holistic features and pixel in [39] CNN is used
to extract low level translational invariant features, that are provided to MDLSTM
classifierwhich extracts the higher order features. Themodel is fedwith Printed Text-
line Image (UPTI) dataset. This hierarchical combination of CNN and MDLSTM
achieved the recognition rate of 98.12% for 44-classes defined in dataset.

Systematic review is presented in Table 1 for Arabic like script based character
recognition systems.

6.2 OCR for Symbolic Script

In the light of fact that languages like Chinese and Japanese have thousands of
character classes. Hence building accurate and fast OCR is extremely challenging
for such scripts. To take with this issue dimensionality reduction could not work
efficiently, so Odate et al. [46] devised candidate reduction techniques for Nearest
neighbor and an improved tree based clustering. Reduced candidate region has high
dimensionally feature vector which is reduced by multiclass Linear Discriminant
Analysis (LDA).

Chinese character recognition for E-commerce plate form is studied in [47]. On
ecommerce platforms more information is presented in the form of images. In order
to extract the information the images are processed by using canny operator, genetic
algorithms and normalization process and them stroke characteristic features are
passed to the OCR font library in MODI attached to office 2003 for identification.
The overall accuracy of the system over a self-generated database of 25 samples is
74.9%.

6.2.1 Convolutional Neural Network

CNN with multi pooling layer with flexible strides and kernel size is used for
3755 classes of Chinese characters in 280 fonts and 120 selected font in [48]. This
modified architecture recognition rates of 94.38% for 280 fonts and 99.74% for
120 selected fonts. In [49, 50] CNN based transfer learning model is applied over
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Table 1 Review of OCR based on Arabic like script

Study Method Text type Model Dataset Results

Ul-Hassan et al. [40] Pixels Printed
Urdu

BLSTM UPTI
(10,000
Urdu
Nastaliq
text lines)

86.4%
(shaped)
94.8%
(unshaped)

Graves et al. [19, 41] Pixels Handwritten
Arabic

MDLSTM IFN/ENIT
(32,492 city
names �
30,000
train-set
and 2492
validation
set)

93.37%

Rashid et al. [15] Pixels Printed
Arabic

MDLSTM APTI 99%

Pam et al. [42] Pixels Handwritten
Arabic

MDLSTM OpenHaRT 90.1%

Morillot et al. [5] Features Handwritten
Arabic

BLSTM NIST
(training set
� 16,000
and testing
set �
12,644)

52% (word)

Chherawala et al.
[43]

Features Handwritten
Arabic

MDLSTM IFN/ENIT
(32,492 city
names)

89%

Rez et al. [44] Features Handwritten
Arabic

BLSTM IFN/ENIT
(32,492 city
names)

87.4%

Ahmed et al. [30] Features Handwritten
Urdu

BLSTM UNDH Error rate of
6.04–7.93%

Naz et al. [19] Statistical
Features

Printed
Urdu

MD RNN
with LSTM

UPTI Recognition
rate of
96.4%

Naz et al. [32] Zooning
features

Printed
Urdu

2D LSTM UPTI 93.38% of
character
recognition
rate

Naz et al. [45] Low level
transla-
tional
invariant
features

Printed
Urdu

CNN and
MDSTM

UPTI Recognition
rate of
98.12%

(continued)
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Table 1 (continued)

Study Method Text type Model Dataset Results

Kh et al. [12] Statistical
and
structured
features

Handwritten
Arabic

DBN with
HMM

IFN/ENIT
database

Accuracy
of 90.42

Rasid et al. [15] Not
specified

Low-
resolution
Arabic
handwritten

MDRNN
with LSTM
and CTC

APTI Mean word
recognition
rate of
98.32% and
mean
character
recognition
rate of
99.69%

historical Chinese character recognition, where output of one CNN is provided
to another CNN [50]. Semi supervised learning approach is test over the Chinese
Printed Dataset. MCDNN is feed with ICDAR 2013 competition on recognizing
offline handwritten Chinese characters in [51], the system robustly classified 3755
classes of Chinese character with low error rate of 4.2%.

Math formula recognition is a challenging task in degraded document images.
Liu et al. [52] in order to achieve the higher accuracy with the CNN the formula
elements are over segmented iteratively into recognizable unit in order to analyze
the mathematical formal structure. The model showed precision of 82.46, recall of
87.85 and F-measure of 85.37 over MFR100 [53].

Multi-spatial-context fully convolutional recurrent network (MC-FCRN) based
implicit model is used in [54] for online hand written Chinese character recognition
on the basis of analytical and statistical properties of pen stroke. The model is tested
over CASIA and ICDAR Dataset, with correction rates of 97.10% and 97.15%,
respectively. In [55], Relaxation CNNmodel is usedwhich varies from the traditional
CNN model in the sense that in traditional model for a single feature map on a
convolutional layer there would be only one convolutional kernel on the other hand
in the case of RCNN to generate a sing feature map for a convolutional layer the
convolutional kernel varies from each stride to stride. The process of relaxation has
improved the overall learning ability of the model as this approach can deal with
the deformation caused by during writing e.g. uncontrolled and slightly irregular
movement of hand muscles.

A special variant of ATR-CNN or Alternate training CNN is used in this method
for each weight matrix an arbitrary learning i rate is selected and during tanning
learning rate varies from i to 0 once the learning has been completed i.e. after the
back-propagation phase the learning rate is back adjusted to i.The alternative training
helps to deal with the sudden increase in number of parameters due to the relaxation
process besides it also improved the accuracy of the system and better parameter
tuning. The model has been designed, implemented and evaluated for handwritten
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digit and Chinese character. For hand written digits MNIST dataset is used and the
Architecture of the model used [55] is In-32Conv5-32MaxP2-64Conv3-64MaxP2-
64RX3-64RX3-Out. The error rate was error rate is 0.24%.

The architecture of the model used for Chinese character is In-64Conv5-
64MaxP2-128Conv3-128MaxP2-128RX3-128MaxP2-256RX3-256Full1-Out.
CASIAHWDB and ICDAR’13 Competition Dataset are used for training Testing
and validating the model. The lowest error rated reported 3.94%. The error rate is
nearly as reported by the human natural senses 3.87% which is very close the error
rated of the model.

6.2.2 Recurrent Neural Network

Multi-Dimensional Long-Short Term Memory Recurrent Neural Networks
(MDLSTM-RNN) is used for handwritten text recognition system for Chinese char-
acters in [56]. As the Chinese characters are already in the segmented form hence the
segmentation would be a useless overhead and leaves the remaining process more
prone to the errors. The model is trained and evaluated using CASIA Off-line Chi-
nese Handwriting Databases. The dataset contains images of isolated characters and
lines of text. The experiments shows character error rate of 16.5% but after applying
character n-gram Language Models (LM) on textual data, then using this language
model at the character level reduces the error rate to 10.6%. However, the proposed
approach cannot perform better than the previous approaches but it is more start of
the art technique. Moreover the errors were mainly due to the characters isolations,
if somehow some characters in isolation could be avoided the overall performance
would certainly boost up.

Handwritten Chinese text without explicit segmentation of the characters is done
with Multi-Dimensional Long-Short Term Memory Recurrent [57]. The model is
feed with data from 4 sources including CASIA database, PH corpus [58] with
newswire texts, the Chinese part of the multi- lingual UN corpus [59] and the Lan-
caster Corpus ofMandarin Chinese [60]. There are total 50,000 characters, hence the
task character recognition for such scripts is extremely challenging. However these
characters usually have similar appearance and share common graphical components
inside the characters. Graphical components of the characters are called Radicals. In
[61] radical extraction network based on CNN is feed with data from CASIA [62]
and the best result reported on the dataset are 93.5%.

Self-OrganizingMap (SOM) andMultiple Timescales Recurrent Neural Network
(MTRNN) are used one after another by author in [63] for online Japanese hand-
written character recognition. SOM is used for feature extraction while MTRNN is
used for dynamics learning. Input data is acquired by pen tablet Intuos4 ptk-640
(WACOM) and character is written 10 times. The experiments depicted the ability
of model to predict the handwriting sequences, affirmatively. The OCR based on
symbolic scripts are reviewing in Table 2.
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Table 2 Review of OCR based on symbolic script

Study Method Text type Model Dataset Results

Messina
et al. [56]

Features Chinese
handwritten

RNN-LSTM CASIA Error rate to
10.6%

Nishide [63] Features Japanese
handwritten
text

Multiple
timescales
recurrent
neural
network
(MTRNN)

Online
recognition

–

Wu et al.
[55]

Features Handwritten
Chinese
characters

CNN CASIAHWDB
and
ICDAR’13
competition
dataset

Error rate
3.94%

6.3 OCR for Latin Script

The hand written digits classification was performed with only 0.35% error over
MINST digits data set. In order to increase the available amount of data for the deep
learning deformation techniques of affine and elastic distortion are applied only.
The author executed the algorithms over Single precision Floating Point GPU in
order to get the better accuracy, which was about 0.4–0.5% better as compared to
the previously published techniques. Hence, it was observed that for implementing
a deep learning model more advanced hardware play significant role in terms of
accuracy of the results.

6.3.1 Convolutional Neural Network

Variants of CNN can tackle challenges of latent script along with Cusie and symbolic
scripts. FuzzyConvolutionNeuralNetwork a variant ofCNN is used in [64] forCzech
Language. The results from FCNN are compared with number of other approaches,
including KNN, Multiple logistic regression (MLP) and ANN. The test set error
rate for each of the approach is stated in Table 3. The results depicts that FHCNN
performed the best with minimum error rate of 0.60%.

In order to evaluate the performance of the CNN system based on a novel voting
method Chen et al. [65] generated a dataset by gathering articles in 5 different lan-
guages from the Internet and translating them into different languages using Google
translate which are then printed and scanned for getting document images. CNN
combined with novel voting mechanism performed language and orientation analy-
sis with up to 99% accuracy.
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Table 3 Error rate for
different methods

Method Error rate (Test set) (%)

KNN 34.65

MLP 31.06

SVM 27.86

ANN (one hidden layer) 27.39

ANN (two hidden layer) 14

FCNN 1.50

HFCNN 0.60

The detailed used architecture used in [66] is 2x48x48-100C5-MP2-100C5-MP2-
100C4-MP2-300N-100N-6N.Where theMCDNN is providedwith two input images
and of size 48 × 48, and terms like 100C5 and 100C4 depicts the convolutional
layer with 100 maps and 5 × 5 and 4 × 4 filter respectively. MP2 refers to Max
Pooling layer with non over lapping region of size 2 × 2. Activation functions
used at different layers are; hyperbolic tangent activation function at fully connected
layers and convolutional layer, linear activation function at max-pooling layers and
finally soft-max activation function at output layer. The architecture is evaluated over
different datasets. Datasets alone with their relative improvement in whole learning
process are; MNIST digits 41%, NIST SD 19 (30–80%), NORB (46%), GTSRB
traffic sign dataset (72%), CIFAR10 natural color images dataset (39%).

A convolutional model is used with activation function Relu at both convolutional
and fully connected layers is used by Kang et al. [67]. Relu activation improved
efficiency and reduced the overall training time required as compared to the Sigmoid
and Tanh activations. Where ReLU is simply f (x) � max(0, x) where x � input
value. The model is employed to learn hand crafted features from the normalized
images. The author evaluated the proposed architecture on two datasets including
Tobacco litigation and NIST tax-form dataset. Few of the images are shown in Fig. 4
dataset consisting of 10 classes including form, report, resume, memo, scientific,
news, advertisements, email letter and different sort of notes note. Table 4 contains
the Class-confusion matrix for genre classification on Tobacco dataset, the overall
performance resulted in accuracy of 65.35% on the Tobacco dataset.

Document images usually contain both graphical and textual information. Image
content analysis can recognize and distinguish both the regions in the document
images. In [68] combination of visual and textual features are used for document’s
image content analysis on twodatasets includingLoandataset, (provided by an Italian
loan comparison website company) and Tobacco dataset. The dataset are tested with
the stated features are tested on the CNN and achieved an accuracy rate of 70% by
using Loan Dataset. “AlexNet” is employed by the author in [69] to specially address
two questions regarding document image analysis

(1) To which book photographed document images belongs to?
(2) What is the type of the book to which the document image belong to?
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Fig. 4 a Advertisement [67]. b Report [67]

Themodel successfully answered the first question with the accuracy of 95.54%
and the second question with accuracy of 95.42%. The author gathered the
dataset consisting of images of 6 categories including picture book, musical
book, Chinese book, English book, mathematical book and newspaper.

CNN with two convolutional layers and two pooling layer connected to one
another alternatively are employed by author in [70]. The results from pooling and

Table 4 Class-confusion matrix for genre classification on Tobacco dataset [67]

Ad Email Form Letter Memo News Note Report Resume Scientific

Ad 104 0 1 1 0 9 2 2 0 3

Email 1 435 7 3 13 0 4 3 1 0

Form 2 0 145 5 37 7 8 7 0 14

Letter 0 8 6 297 43 0 1 14 0 10

Memo 1 7 33 51 294 6 3 9 0 18

News 19 1 21 13 6 45 8 2 0 16

Note 2 10 24 8 31 5 63 0 0 11

Report 1 15 34 65 32 11 5 103 5 38

Resume 0 7 24 13 12 1 1 13 13 6

Scientific 0 16 36 11 52 4 6 12 1 45

Accuracy
(%)

80.0 87.2 43.8 63.6 56.6 51.1 62.4 62.4 65.0 28.0
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convolutional layers are provided to classifier. The model is evaluated using ICDAR
2003 dataset and Street View Text (SVT) datasets. Certain deformation techniques
including affine and elastic deformations are used. The method resulted in precision
of 0.54, recall of this 0.30 and F score of 0.38, with an overall accuracy of 83.9%.

6.3.2 Recurrent Neural Network

A variant of multi-dimensional variant of RNN with multidimensional hidden layer
used in [21] empowered the network to handle the multi-dimensional contextual
information performance of a MDRRN is compared with convolutional neural net-
work over theMINSTDataset the results of the experiment over the wrappedMISTS
showed that MDRNN with error rate 6.8% surpassed the convolutional method with
error rate 11.3%. In another study Dropout layer is carefully employed with the RNN
in [42] such that it does not affect the recurrent connections in the layer, but effec-
tively prevented the over fitting. The model is evaluated over Rimes and OpenHaRT
databases. Addition of dropout at top most layers in RNN showed decrease of error
rate about 10–20% which can reach up to 30–40% with drop out at multiple LSTM
layer. In Table 5, OCR based on Latin Script are summarized.

6.4 OCR for Nagari Script

In [73], Deep Bidirectional LSTM are applied to Oriya script. The author adopted
a script independent and segmentation free approach for Connectionist Temporal
Classification (CTC) for the learning of the un-segmented sequences.With thismodel
lowest error rate reported is 0.1% after 150 epochs of training. Table 6 summarizes
the OCR based on Nagari script.

6.5 OCR for Multiple Scripts

Efforts are being made to build a robust system able to recognize the text of every
script from the image for this different researchers applied different techniques.
Though still no universal system exist able to recognize text of every type but a single
system able to deal with two or more language work with reasonable accuracy.

Deep CNN and named it PHOCNet (Pyramidal Histogram of Characters) for
extracting words from the document images by Sudholt et al. [75]. The architec-
ture of the purposed model is shown in Fig. 5. The model is evaluated on differ-
ent datasets including IFN/ENIT database, Esposalles database, IAM Handwritten
Database, George Washington dataset. The stated techniques out preformed tradi-
tional techniques and showed its robustness for Latin as well as Arabic script.
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Table 5 Review of OCR based on Latin script

Study Method Text type Model Dataset Results

Morillot et al.
[71]

Features Handwritten
French

BLSTM RIMES
(12,107 text
lines, Training
set 10,329,
validation set �
1000 and
Testing set �
778)

43.2% (word)

Lickwi et al.
[18]

Features Online English BLSTM IAM-OnDB 74%

Graves et al.
[22]

Pixels features Online English BLSTM IAM-OnDB 69.9% (word)

BLSTM+LM 77.2% (char)

BLSTM 74% (word)

BLSTM+LM 79.6% (char)

Graves et al.
[72]

Features Online English BLSTM Online
IAM-OnDB
(13,040 text
lines)

86.1 (char)

79.7% (word)

Features Offline
handwritten
English

Offline
handwritten
IAM-DB

81.8% (char)

74.1% (word)

Pam et al. [42] Pixels Handwritten
French

MDLSTM RIMES 91.1%

Handwritten
English

IAM 85.6%

Chaudhuri and
Ghosh [64]

Features Chez
handwritten
text

FHCNN – Error rate of
0.60%

Cen et al. [65] 5 languages CNN – 99% accuracy

Cires and
Meier [66]

Features English MDCNN MNIST digits 41%

NIST SD 19 30–80%

NORB 46%

GTSRB traffic
sign dataset

72%

CIFAR10
natural color
images dataset

39%

Table 6 Review of OCR based on Nagari script

Study Method Text type Model Dataset Results

Anupama
et al. [73]

Pixels Printed Oriya BLSTM – 95.85%

Roy et al. [74] Features Indian
language

HMM with
DBN

– 66.48%
(recognition
rate)
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Fig. 5 Architecture of PHOCNet [75]

A Tandem approach of HMM with DBN is employed by the author in [74]. The
model is trained and evaluated on three different datasets for three different languages
including RIMES dataset for Latin script, IFN/ENIT for Arabic like script, and a
dataset for Indian Devanagari script. The model showed the highest recognition rate
of 76.98% over RIMES, over 89.41% IFN/ENIT and 66.48% on Devanagari script.

BLSTM networks connected with CTC (connectionist temporal classification)
output layers are evaluated on non-Cursive Latina script (English script) and cursive
Urdu script in [45]. Themodel for Latin script resulted with the character recognition
accuracy of 99.17%onUNLV-ISRI database. ForUrdu cursive script do the complex-
ity involved the character recognition accuracy was relatively low on the samemodel
i.e. 88.94% without position information and 88.79% with position information.

7 Open Challenges and Future Directions

OCR for most of the languages in one or another way is still a open area of research
her we would list few of them

• Certain languages including Arabic script languages is an open research are as
no perfect method exist. Building a robust method even for simple text extraction
would be great job [34, 76].

• Challenges associated with camera capture images e.g. detecting cursive text lines,
dealing with painted text in side pictures [13].

• Text extraction from the images taken in outdoor illumination conditions.
• Besides printed text images hand written text recognition is an open challenge.
Writer variation in handwriting recognition makes it more challenging and inters
class variation needed to deal with.
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• For the enhancement of the recognition and accuracy post processing techniques
including dictionary validation and grammar verification can be applied [34].

• A method applied to one language or script can be tested with the dataset from
other script of language. Additionally the same problem with same data set and
model can be evaluated by extracting different set and number of features.

• Applying different language modeling techniques for writer identification and
dealing with other high-level problems.

8 Conclusion

The chapter provided a comprehensive insight to the application of deep learning in
automatic document analysis. Building a robust and perfectOCR system is still on the
way.Deep learning algorithms open avenues for improving the character recognitions
rate, accuracy and efficiency of the OCR system. The automated OCR would make
great progress and efficient management in different walks of life including business
intelligence, efficient surveillance and monitoring systems, preserving the literatures
and digitizing the information. Number of deep learning algorithms including CNN,
LSTM network, gated RNN coupled with certain techniques like CTC and PCA
have shown the higher level of accuracy and character recognition but perfect OCR of
certain languages like Urdu, Persian andArabic is a far cry. Deep learning algorithms
are showing betterment in results by leaps and bounds but they still have their own
issues one of the basic and major issue that deep learning application need huge
datasets, this problemmay not be eliminated but can be overcome by applying certain
techniques to increase the available number of instances. As currently computational
complexity is remained nomore a problemmore andmore computationally intensive
deep learning techniques would possibly result in a perfect OCR application.
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Abstract Automation is becoming a large component of many industries in the 21st
century, in areas ranging from manufacturing, communications and transportation.
Automation has offered promised returns of improvements in safety, productivity and
reduced costs. Many industry leaders are specifically working on the application of
autonomous technology in transportation to produce “driverless” or fully autonomous
vehicles. A key technology that has the potential to drive the future development of
these vehicles is deep learning. Deep learning has been an area of interest in machine
learning for decades now but has only come into widespread application in recent
years. While traditional analytical control systems and computer vision techniques
have in the past been adequate for the fundamental proof of concept of autonomous
vehicles, this review of current and emerging technologies demonstrates these short
comings and the road map for overcoming them with deep learning.
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1 Introduction

Automation is becoming a large component of many industries in the 21st cen-
tury, in areas ranging from manufacturing, communications and transportation.
Automation has offered promised returns of improvements in safety, productivity
and reduced costs. Many industry leaders are specifically working on the applica-
tion of autonomous technology in transportation to produce “driverless” or fully
autonomous vehicles. Motivations for the introduction of automation vary broadly
between different industries and applications although the immediate motivations
for driverless vehicles can be seen in improvements in safety and productivity. The
aim of this chapter is to outline the practical need for this technology and summarise
some of the state of the art approaches to overcome the current technical challenges.

The world’s current obsession with road transport, both freight and personal vehi-
cles, comes at a cost of approximately 3300 deaths per day (2013 data) [1]. A report
by theWorldHealthOrganisation (WHO) listedmajor risk factors towards road fatal-
ities as driver fatigue, poor adherence to road traffic laws and drug and alcohol use [2],
potentially all factors that could be addressed by automation technologies. Amongst
wider society the potential to drastically reduce this figure is one of the most sig-
nificant drivers of the development of driverless vehicles. Safety based motivations
for the development of driverless vehicles are also shared with the Mining industry.
Whilst safety standards in both underground and surface mining have increased sig-
nificantly during the 20th century, it is still considered significantly more dangerous
than other areas of general industry. Data from the United States shows that in 2015
there were approximately 3,500 mining related injuries and 17 deaths [3]. The min-
ing industry thus has become one of the early adopters of fully driverless technology
(Level 4 autonomy) in order to improve safety. Major mining companies such as
BHP Billiton, Rio Tinto and Fortescue Metals Group are all utilising autonomous
mining solutions in their Iron ore operations.

In addition to significant safety improvements the use of automation has also
resulted in some significantly beneficial improvements in productivity. Recently
FortescueMetals Group has demonstrated that its fleet of 54 autonomous haul trucks
operating at its Solomon Hub inWestern Australia have provided a 20% productivity
improvement. This is Compared to when those same trucks were operated by human
operators [4]. This drive for autonomation in mining is not unique to Australia or the
iron ore industry specifically, recently Suncor Energy Inc has also committed to the
introduction of driverless trucks at it’s oil sands operations in Canada [5]. Productiv-
ity improvements of driverless vehicles are also predicted to have a significant effect
on the wider transportation industry. It has been reported that automation to facilitate
slip streaming of road trucks in addition to other technological improvements has
the potential to reduce energy consumption by up to 20% [6].
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Structure of This Book Chapter
Whichever industry or environment driverless vehicles are intended to operate in
the system architecture must address three major operational pillars. These can be
summarised in Positioning, Path planning and control, and Obstacle detection. Prior
to the recent acceptance of deep learning solutions these three elements were con-
sistently addressed with traditional hard coded approaches. In Sect. 2 of this chapter
we will summarise the current solutions used in both industry and academia and the
challenges which are faced inpractice. In Sect. 3 we will outline the current state
of research into deep learning based alternatives that could address many of the
challenges faced with current technology.

2 Summary of Current Technology

2.1 Positioning

Among all the challenges faced in designing a driverless vehicle system perhaps the
most fundamental is that of positioning. Whilst for the human brain perceiving our
own position relatively to the surrounding environment appears to be second nature,
for an autonomous system doing so to a high degree of accuracy is an incredibly
complex task. Current solutions to this can be summarised into three categories;
Global Navigation Satellite System (GNSS) based localisation, inertial navigation
and perception based localisation.

With the phase out of selective availability on the US provided GPS system from
May 2000 onwards positioning accuracy of less than 9 m horizontally is possible
[7]. This when used solely on it’s own can provide sufficient accuracy for many of
today’s applications although cannot be relied upon for driverless vehicle guidance.
As a result of this there has been the development of GNSS systems with improved
accuracy via the use of locally generate corrections [8, 9] known as differential
GPS (DGPS). This approach has allowed for the initial development of autonomous
driving systems in closed environments. Although it is susceptible to inaccuracy in
environments where there is limited visibility of GNSS satellites or deflection of
GNSS signals cause a multi path effect.

To further improve the robustness of GNSS based navigation there have been
many examples of the use of inertial navigation. Systems are already commercially
available from venders such as Canadian based Applanix [8]. They produce a system
to argument the previously mentioned DGPS navigation with a combination of iner-
tial measurement units and distance measurement units (based on wheel rotations)
in order to provide high precision navigation and dead reckoning in the event of
loss of GNSS navigation, a precision of 0.035 m in operation and 0.69 m in GNSS
challenged conditions [8]. This technique for initial aided GNSS has also been the
subject of research in academic groups. Jo et al. [10] demonstrated a proposed model



86 C. Hodges et al.

in which GNSS information is combined with inertial sensors to provide high accu-
racy localisations. The main contribution of this work is to demonstrate the use of
both dynamic and kinematic models to create localisations at different speeds.

2.2 Path Planning and Control Systems

Once an accurate position is determined then the next step is to undertake path
planning andmovement control.With the initial development of autonomous vehicle
systems, the path planning approaches that were developed for traditional robotics
were adapted for use. Algorithms such as [11] as well as variations of A* andD* path
planning models [12] provided an important starting point for the control systems
for autonomous vehicles but had some key limitations. Approaches such as A* [13]
and D* have intrinsic ability to plan around obstacles or area of undrivable ground
although in general do not account for the curvature limits of automotive steering. In
contrast the Reeds-Shepp curves [11] do account for curvature limitations although
they assume the drivable environment is a continuous plane without obstacles.

Broadly planning techniques can be categorized into 2 differing approaches. Local
coordinate systems which determine paths relative to local features detected with a
perception system [14] or in contrast global based coordinates that can have sensor
imports from a positioning system such as GPS or inertial aided GPS [12]. Work
by [14] demonstrates the advantages of the locally based path planning approach
as it allowed for the dynamic planning of paths around detected obstacles. The
proposed algorithm worked in stages to initially propose a base frame path before
creating a selection of alternative paths offset from this base frame. The key fol-
lowing step that distinguishes this approach from the Reeds-Shepp curve [11] is to
assess each alternative path with a cost function that can determine the probability
of collision with detected obstacles. In addition to this improved functionality by
planning dynamically as the vehicle moves it limits the memory consumption that
becomes a significant challenge when utilising a global planning algorithm over a
large environment.

A practical application of these concepts can be seen in [15] who demonstrated
an approach called hybrid A* which was based on a multistage search algorithm.
The fundamental initial step is based around traditional A* [13] although with a
confinement that forced the algorithm to develop pathswhich are driveablewith in the
steering curvature limits of the vehicle. Following this there is an alternating step of
applying a Reed-Shepp curve to determine at which point when approaching the goal
is there an obstacle free path which conforms with the final vehicle heading required.
The author then applies a gradient decent based optimisation step to ‘smooth’ the
final path to limit oversteering of the vehicle. This optimisation step which produces
a more continuous and smooth result introduces some additional complexities. Due
to the nature of the ‘smoothing’ process some precision in the original path can be
lost which can increase the probability of collision with an obstacle in regions where
the optimum path passes close to an obstacle.
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2.3 Obstacle Detection

The third pillar of an autonomous vehicle system is the obstacle detection system.
This is crucial as driverless vehicles are operating in complex environments and they
require a system that will allow them to interact with and respond to a multitude of
hazards, including other vehicles, people, and the elements of the physical environ-
ment. Different forms of these object detection systems have been proposed to utilise
a range of computer vision systems, including laser scanners, visible light/Infrared
cameras and radar. The use of laser scanners (also known as lidar) has become syn-
onymouswith driverless vehicle technology due to their use on theWaymo (Formally
Google Car) project and with the current development of autonomous mining trucks.

There has been a significant amount of literature demonstrating the use of tradi-
tional computer vision based obstacle detection systems, dating as far back as 2000,
with work done by the CSIRO [16]. In these early examples lidar point clouds were
analysed for basic geometry and gradient to assess the driveability of the surface and
detect basic obstacles. This type of approach has been extensively covered in the
years since [17, 18]. This literature review is based on its input data source.

2.3.1 Lidar

Point Cloud Clustering—[19] demonstrated an attempt to detect roadside obstacles.
In this example housing bricks were the target object, by clustering analysis of
lidar point clouds. Raw lidar data was processed through several filters to normalise
for elevation along the contours of the road surface before the application of some
heuristics to pair point clusters with what the author refers to as ‘holes’ or regions
that were shadowed from the lidar. Subsequently from the cluster/hole pairs 16
handcrafted specific features were extracted for classification by a random forest
tree machine learning algorithm. While this was successful under test conditions,
the reliance on handcrafted features can be very labour intensive to code and cannot
guarantee to be effective on a wide range of ambiguous conditions.

Line Segment Extraction—[18] like the previous work by [19] based their object
detection algorithm around lidar data. In contrast to [19], instead of working around
point clusters [18] attempted to extract line segment features from the lidar data. The
observed lidar data is analysed to extract lines based on hard coded thresholds. These
lines are then classified as obstacles or drivable road segments. This functionality is
important when compared with other obstacle detection strategies for 2 key reasons:

1. The ability to positively identify drivable road segments, as opposed to only
seeing them, as an absence of obstacles allows this system to locate itself on the
road and provide left to right vehicle guidance.

2. The utilisation of lidar data relies on the road geometry and therefore is functional
on surfaces without painted road markings and lines.
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The major disadvantage of this type of approach is the reliance on hardcoded
thresholds. For example, the system requires 12 specific thresholds in order to classify
the line segments into only 2 classes (as either obstacles or road).

2.3.2 Single and Stereo RBG Cameras

Selective Search—[20] documented a process referred to as selective search for
object classification. This method takes advantage of the hierarchal nature of images
and proposed a method of segmenting increasingly larger portions of the images
based on several grouping strategies. Initially image regions are grouped based on a
measure of the similarity of pixel colours. While this allows for the segmentation of
homogenous objects it can struggle with more complex classifications. The example
given by the author is a car of which the wheels are of a dramatically different colour
to the car body but are part of the same object for the purposes of classification. To
improve on these shortcomings a subsequent step of grouping by a strategy known
as bag-of-words is used. This is done by classifying objects based on the rate of
occurrence of predefined “vocabulary” of image patches that are matched to known
object classes.

Active Contour Modelling—Work by [21] demonstrated the application of active
contourmodelling for object detection and classification. Using depthmaps extracted
from stereo cameras the author then, by means of the active contour models, a series
of edges were detected from each object in the frame. This allowed the classification
of objects into classes (vehicles, pedestrians or other) based on manually specified
features such as height and aspect ratio to the observer. The study achieved a true
positive rate of 92.2% and a false positive rate of 2.7% in the test cases. This type
of detection and classification can be effective. However, it can be difficult to scale
to more classes as the number of manually coded features becomes unmanageably
large.

While these types of detection strategies have been demonstrated to be effective,
both academically and in practical examples, such as the DARPA Urban Challenge
[22] it is still characterised by the reliance on hard coded thresholds by which data is
analysed. It therefore can be limited in complex environments and produces binary
results, by that obstacles are only determined to be either obstacles or not obstacles.
There is very little context provided to allow for an autonomous system to react
with any nuance. As a result of this a more data driven approach similar to the
current machine learning techniques needs to be proposed in order to address these
shortcomings.
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3 Deep Learning for Driverless Vehicles

A key technology that has the potential to overcome the challenges previously dis-
cussed is deep learning.Deep learning has been an area of interest inmachine learning
for decades now [23, 24] but has only come into widespread application in recent
years. One supervised deep learning approach known as Convolutional Neural Net-
works (CNN) that allows for the recognition of complex patterns based on training
data has become the state of the art approach for many elements of driver vehicle
technologies.

Deep learning based approaches have become the preferred solution for many
problems in driverless vehicles [25]. The basic application of deep learning in driver-
less vehicles can be characterised in two separate ways, a compartmentalised archi-
tecture and an end to end architecture. A compartmentalised architecture can be
described as an approach in which the major functions of the driving system (obsta-
cle detection, positioning and path planning) are designed as discrete processes.
While each process may consist of one or more neural networks the interactions
between each major system is hard coded in a traditional sense. In contrast an end
to end architecture allows all three major functions to be handled by a single neural
network [26]. Next we describe current state of research in the compartmentalised
approach before discussing the end to end architecture in detail.

3.1 Deep Learning Based Approaches for Positioning

As driverless technologies are deployed into an increasingly wide range of environ-
ments the need for robust positioning is becoming evermore important. As previously
detailed the majority of positioning requirements are addressed using GNSS solu-
tion. These are often supplement with inertial based aids although these approaches
are often still challenged in many environments. While the focus of deep learning
for driverless vehicle applications is on areas of control and vision, positioning is
still an area of keen interest.

Work by [27] demonstrated the use of a neural network to define a model for
position based onWIFI signal within an interior space. The author focuses on a two-
phased process, initially during the training phase data samples are taken of the wifi
signal including the environmental induced noise at known locations in the space.
Based on this in the testing phase the receiver’s location is probabilistically deter-
mined based on the known signal characteristics through the space. Zhang et al. [28]
also applied a deep net model and demonstrated some key improvements over tradi-
tional measurement based and machine learning approaches. The proposed method
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allows the training of positioning models based on very large data sets which can
be evaluated by means of a feed forward process by the receiver with very lim-
ited resources. In contrast machine learning processes such as k-nearest neighbour
requires the receiver device to store and evaluated the entire training data set for each
positioning attempt.

These deep learning based approaches have demonstrated positive results in appli-
cations such as localisation of consumer smart devices when compared with tradi-
tional time of flight or direction methods. While these approaches may have some
suitability to the challenges of vehicle positioning there is no significant body ofwork
demonstrating it. In contrast vision based localisation, or sometimes called percep-
tion based localisation, has shown greater promise. Work by [29] demonstrated a
methodology where single monocular images were used as a input for a deep neural
network to estimate pose of the camera. This approach constructs a model of pose
within a 3D environment based on a large volume of training images from which a
3D point model is determined. This 3D point model, with some subsequent com-
pression for efficiency, provides high accuracy localisations in both indoor, outdoor
and freeway driving settings. In the authors experimental evaluation, it is shown that
an accuracy of 37.2 cm is achieved in subsequent trials. The work also illustrated the
approachworking based on images from an automotive dash cam aswewould expect
for a driverless vehicle application, although there is not specific data on accuracy
in this use.

3.2 Deep Learning Based Approaches Obstacle Detection

The requirement to assess and react to complex surrounding environments can be
very difficult to hard code in a control function. Therefore, obstacle detection is
an element of driverless vehicles that is ideally suited to a deep learning solution.
The fundamental process of extracting features on a pixel by pixel basis that was
demonstrated by [23]. It is still core to object detection systems for driverless vehicles
and modern adaptations have significantly improved the performance.

Prior to the current widespread adoption of Convolutional neural networks there
were some attempts at implementations of these for driverless vehicle systems,
although these attempts were considered exceptions to the more standard practice
of hand crafted feature extraction. Work by [30] demonstrated the use of a CNN
for detection of obstacles in a YUV encoded image. The proposed application in
this example was an unmanned rover in off-road terrain including grass and wooded
areas. 3 channel input images were passed through the series of convolutional layers
outputting 20 feature maps followed by max pooling which inputs into an additional
convolutional layer outputting 100 feature maps.

The resurgence of Convolutional Neural Network techniques in the recent time
can be traced to a publication by [31]. In this work the authors proposed an 8 layer
deep network which consisted of 5 convolutional layers and 3 fully connected lay-
ers. With this architecture the authors based their learning process on 1.2 million
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images from the Imagenet data base. These training examples allowed the models
weights to be optimised using a gradient decent type optimisation based on manually
selected learning rates. This literature is particularly pivotal in the development of
deep learning techniques, as it demonstrated the value of CNN architecture for image
recognition based on very large learning data sets. Newer image databases such as
ImageNet [32] have allowed for the training of large deep nets that previously were
not possible due to lack of suitable data and computing power.

The work by [31] was later further improved by [33] with small twists on the
network architecture, these included increase the stride in the first 2 layers, removing
theoverlappingpooling layers andno including contrast normalisation.Aparticularly
important aspect that is first demonstrated by the author is the concept of a sliding
frame to apply the CNN across the entire image. This is in contrast to the [31] which
applied the CNN to the entire image simultaneously. This significantly improved
the efficiency of the classification of the scene as convolutions could be retained
for multiple overlapping bounding boxes. The performance of these networks were
tested in the ILSVRC challenge (Fig. 1).

The work by [34] is a particularly important milestone in the development of deep
learning techniques for obstacle detection because the authorwas able to demonstrate
that the architecture shown by [31], and later developed by [33], could be applied to
object detection within a scene and not only to image classification as demonstrated
in the earlier work. This is particularly important as it allows for the identification of
individual objectswithin a scene,while earlierworkwas limited to labelling the entire
image (although with some elements of localisation within the image). While the
CNN architecture was largely taken from the work of [33] it was applied in a slightly
different manner. In order to identify objects within a scene the input image was
broken into approximately 2000 proposed regions using a selective search method.
From this the CNN extracts features for classification by a Support Vector Machine
(SVM). The performance of this approach was demonstrated with the PASCAL
VOC challenge for object recognition with a mean average precision of 53.7%. The
author coined the term R-CNN to describe this new technique. While this was an
important step in the development of a CNN architecture for detection, it did have
some key limiting factors. Selective search can be described as a traditional computer

Fig. 1 Alexnet architecture demonstrating convolution, pooling and fully connected layers [31]
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vision approach and is slow to generate proposal regions. Additionally, it was a very
computationally intensive process by approaching each of the 2000 proposed regions
individually for feature extraction.

While most studies in this area have focused on network architectures of up to
ten layers [31, 33] the work by [35] demonstrated the value of very deep networks
(up to 19 layers) for image recognition. Based on what is now referred to as the
VGG16 architecture, the author outlined a network of multiple Conv-pooling-ReLU
layers based around a fixed kernel size of 3 × 3 pixels and stride of 1 pixel. This
arrangement is bothmuch deeper than previousworks andworkswith amuch smaller
kernel and stride than typically seen. Upon evaluation of the networking using the
ILSVRC 2012 dataset the authors came to two significant conclusions

1. When comparing multiple network architectures, ranging from 11 layers to 19
layers, it was found that based on this dataset the deep networks performance
was consistently better.

2. The 3× 3 kernel size is important as it provides spatial context of up, down, left
and right, in comparison to a 1 × 1 kernel in 3 layers the 3 × 3 kernel performs
better.

With respect to the first conclusion the authors made a specific qualification that
the network became saturated at 19 layers based on the training dataset. It could be
hypothesised that with a larger training set additional layers could be valuable.

Whilst the body of work already conducted primarily focuses on general image
and scene understanding in contrast work by [36] is an excellent example of the
application of deep learning in driverless vehicles for two critical reasons;

• The work identified key speed improvements compared to the work of [34].
• There is a clear confirmation that the fundamental concepts of object recognition
and segmentation that allow for scene understanding and labelling can provide a
driverless vehicle with perceptive situational awareness (Fig. 2).

In the area of processing speed [36] outlines the shortcomings of the work by [34].
In this previous work the CNN was used for feature extraction on each regions of
interest individually without any attempt to reuse convolution layers for overlapping
regions of interest. By improving this, [36] was able to demonstrate a functional
system at 10 Hz which is suitable for a highway driving environment. In addition,

Fig. 2 Illustration of lane
and vehicle detection
demonstrated by [36]
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this sliding frame approach could classify multiple instances of the same object
within the scene. Moreover, the work also demonstrated the use of actual driving
environment data as opposed to image databases. The system was able to identify
and localise multiple other cars as well as road markings.

Inspired by the work of [34], work by [37] applies a variation of the R-CNN
approach to traffic sign detection in an automotive application. The approach shown
is again a regional proposals type technique in which first regions of interest (ROI)
are proposed, in this case using a RGB space thresholding technique followed by
edge detection and connected component analysis in order to isolate traffic signs
for classification, as seen in Fig. 3. This author acknowledges that this method is
more efficient then the selective search used by [34] although is only acceptable
in the application due to the predictable and consistent design of traffic signs, it is
unclear if this would be suitable for more diverse object recognition. These regional
proposals are then classified using a CNN framework largely taken from earlier work
by [38], this architecture can be seen in Fig. 4: 3 Layer CNN architecture.

Training of the network has two distinct phases. Firstly, initialization of the net-
work is based on randomly generated weightings following by training based on a
dataset of 283,304 images from 96 classes, which is constructed from 3 publicly
available image databases. Following this there is a fine tuning stage based on a
specific Chinese traffic sign image dataset, this dataset contained again 96 classes
across 100,000 samples with a 80:20 split for training and testing. This concluded
with a detection and classification accuracy of 97.6% and 98.6% respectively.

Followpreviouswork [39] proposed an improved approach to the authors previous
work in order to better address the slow speed of the R-CNN algorithm, this is known
as Fast R-CNN. While not a complete architecture it is instead an additional layer to
the VGG16 architecture.

More recent work has demonstrated the expanded capabilities of the CNN archi-
tecture. Zhu et al. [40] used RGB camera data in order to identify multiple classes
of traffic signs (45 different classes in total). The testing dataset included 10,000
images taken in real world street environments. These 10,000 images included a
total of 30,000 individual traffic signs. This training data set was further expanded

Fig. 3 Visual representation ROI proposals for classification [37]
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synthetically through data augmentation (introducing random elements of skew, rota-
tion and scale). Using this dataset, the authors propose an 8 layer fully convolutional
network, this architecture does not include any fully connected layers, to detect and
classify street signs and compared two methods for classification, Fast CNN-R and
their new method. The new method showed consistently higher recall at all accuracy
levels.

The work in [40] demonstrated the CNN architectures ability to classify many
different classes of objects which was a crucial step compared to previous work
such as [36, 41] which only focused on approximately 4 classes or less. The authors
in [42] proposed a parallel algorithm based on the VGG16 deepnet. In which a 2
stageCNNarchitecture allows for obstacle detection, classification and segmentation
based on a common convolution network. This work was particularly important as
it illustrated that using a single convolutional network multiple, perception tasks
that are required for driverless vehicles can be accomplished at a rate required for
real work applications (10 Hz). All training and testing for this network was done
with the KITTI dataset [43]. A comparison work to this can be seen in [44]. The
author documents a multi stage approach to detection of rear automotive brake lights
that is applicable to both driver assistance or driverless applications. This multistage
approach follows a similar framework as seen in earlier object recognition examples
such as [34] in which conventional computer vision methods. In this case a Gaussian
model which takes an initial sample of road surface from immediately in front of
the vehicle which is assumed to be driveable. It then uses the characteristics of this
to segment the surrounding area into either road or no road sections, this initial
segmentation is primarily intended to improve the rate of false positives. Once this

Fig. 4 3 Layer CNN architecture [38]
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step is completed the authors then propose a vanishing point detection method to
propose regions of interest for classification, in contrast [34] used selective search for
this process. By using an assumed vehicle size and aspect ratio the method was able
to propose only regions of interest that had a high probability of containing a vehicle.
This in turn reduced the computation load on the subsequent CNN classifier. The
final stage of the detection process is to apply an 8 layer Alexnet CNN framework as
initially demonstrated by [31] to classify the selected ROI into classes of either brake
lights on or brake lights off. This work demonstrated two important characteristics;

1. Successfully demonstrated detection accuracies of 89%.
2. Operated at a rate of 26–33 FPS which is sufficient for real world driving envi-

ronments.

In addition to the many academic examples, industrial examples of deep learn-
ing for object detection are also beginning to appear. Nvidia Corporation [45] in
their 2016 CES keynote demonstrated their Drivenet architecture. This deepnet was
trained in a two stages process, initially the basic feature extractor was trained using
a modified version of the Imagenet data set. Subsequently it was trained specifically
for a driving environment with the KITTI dataset. This presentation is particularly
important for the development of deep learning in driverless vehicles because it
includes an example of challenging real world data. While most academic exam-
ples, and NVidia’s earlier work, include real world street environments for testing,
they are generally taken in clear weather with very little environmental effects. In
contrast NVidia’s key note demonstration culminates with an example of a highway
environment with heavy fog, snow and road spray which makes the detection task
very difficult. In this environment, the deepnet proves capable of detecting cars are
a distance that is even challenging for the human eye.

3.3 Control Systems/End to End Deep Learning Architecture

Whilst the majority of research thus far into the application of deep learning in
autonomous vehicles has been for segmented systems (i.e. object detection) there is
a new field of research into utilising deep networks for complete vehicle control, this
is known as End to End Architecture. This approach is different in that the specific
functions of the autonomous system are not individually considered, instead the input
to the deep net consists of sensors such as cameras and the weight parameters are
trained based a training signal input from a person driving the vehicle [46]. Some
early examples of this include [24] demonstration of vehicle steering control by deep
learning and the DARPA-IPTO project. In this later example, a small remote control
car was training using a 5 layer, as seen in Fig. 5, CNN network in order to navigate
passed obstacles in a controlled real world environment [47].

This work was limited due to the type of computer hardware that was available
at the time. A more modern demonstration of this concept can be seen in [48] who
worked on a project by the Nvidia Corporation.
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Fig. 5 Basic Deep Net architecture to map input image to two alternative steering outputs
(Left/Right) [47]

This project demonstrated two key aspects;

1. The CNN architecture can be trainedwith limited training data to control steering
of the vehicle.

2. Without specific programming, the algorithm can detect important features (such
as road edges) within a scene with only the steering input signal.

This work used an architecture based on 7 convolutional layers and 4 fully con-
nected layers in order to map the steering angle training signal to the raw pixel input
from a front facing RGB camera.

Nvidia’s demonstration system was trialled on highway conditions and was able
to control the vehicle autonomously 98% of the time. Similar work is also underway
by California based companyDrive AI, the trial vehicles have been operated on roads
around Silicon Valley. Although this application of deep learning is still in its initial
stages with very limited amounts of publicly available literature.

El Sallab et al. [49] provides a more detailed view at a possible End-to-End
reinforcement learning solution for vehicle control. The author is able to provide
two alternative algorithms for mapping a training signal of steering angle to raw
pixel inputs. The two proposed algorithms referred to as Deep Q-network Algorithm
(DQN) and Deep Deterministic Actor critic (DDAC) are based around a series of
discrete inputs and continuous inputs respectively. Based on the works scenario of
controlling the steering input to a car operating in a simulated environment the DQN
algorithm demonstrates the basic function of creating a steering model based on
the raw pixel input which is function on straight sections of road. In contrast as the
model must work with discrete inputs in which the real continuous input must be
approximated to the best fit for the available training examples it’s performance is
degraded in corners as it cannot respond to continuous curves. In contrast to this the
DDAC algorithm allows for a continuously interpretation of the raw pixel input data
and therefore a more continuous response.

Despite these rapid advancements in end-to-end architecture there are still some
challenges for this approach. In an article [25] on the progress of Silicon Valley
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start-up Drive AI who are developing driverless vehicle technologies based around
deep networks they acknowledges some of challenges presented by the black
box nature of deep learning architectures. As the functionality of these networks
are based on an accumulation of huge amounts of training data it is difficult to
conceptualise and challenge its decision-making process. As a result of this the
Drive AI system does not implement an entirely end-to-end architecture but instead
compartmentalises to some degree the core vehicle functions to allow them to be
interrogated independently when testing input data.

4 Conclusion

The development of driverless vehicle technologies has become a key motivation
for the improvement and innovation in deep learning techniques. While traditional
analytical control systems and computer vision techniques have in the past been ade-
quate for the fundamental proof of concept of autonomous vehicles, the exponential
increase in complexity as systems attempt to capture every nuance of the surround-
ing environment is approaching their fundamental limitations. At the current state of
research deep learning techniques are becoming comprehensively part of the state of
the art technology for all elements of autonomous driving. Although development
efforts must still address some challenges in deep learning including the construc-
tion of large application specific training datasets and more robust and transparent
techniques for validating system architectures and functions.
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Deep Learning for Document
Representation

Mehran Kamkarhaghighi, Eren Gultepe and Masoud Makrehchi

Abstract Whilemachines can discover semantic relationships in naturalwritten lan-
guage, they depend on human intervention for the provision of the necessary param-
eters. Precise and satisfactory document representation is the key to supporting com-
puter models in accessing the underlying meaning in written language. Automated
text classification, where the objective is to assign a set of categories to documents, is
a classic problem. The range of studies in text classification is varied, ranging from
studying a sophisticated approach for document representation to developing the
best possible classifiers. A common representation approach in text classification is
bag-of-words, where documents are represented by a vector of the words that appear
in each document. Although bag-of-words is very simple to generate, the main chal-
lenge in such a presentation is that the resulting vector is very large and sparse. This
sparsity and the need to ensure semantic understanding of text documents are the
major challenges in text categorization. Deep learning-based approaches provide a
fixed length vector in a continuous space to represent words and documents. This
chapter reviews the available document representationmethods that include five deep
learning-based approaches: Word2Vec, Doc2Vec, GloVe, LSTM, and CNN.

Keywords Deep learning · Document representation ·Word2Vec · Doc2Vec ·
GloVe · LSTM · CNN

1 Introduction

The current wide ranging application of text mining includes the domains of social
media, information retrieval, legal document processing, and marketing. Document
representation establishes the computational cost and performance of tasks such
as machine-based translation, content analysis, clustering, and classification [1]. In
natural language processing, the well-known bag-of-words approach, in which every

M. Kamkarhaghighi (B) · E. Gultepe · M. Makrehchi
University of Ontario Institute of Technology, Oshawa, ON, Canada
e-mail: mehran.kamkarhaghighi@uoit.ca

© Springer Nature Switzerland AG 2019
V. E. Balas et al. (eds.), Handbook of Deep Learning Applications,
Smart Innovation, Systems and Technologies 136,
https://doi.org/10.1007/978-3-030-11479-4_5

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11479-4_5&domain=pdf
mailto:mehran.kamkarhaghighi@uoit.ca
https://doi.org/10.1007/978-3-030-11479-4_5


102 M. Kamkarhaghighi et al.

document is represented as a bag of words, is heralded as a principal document
representation model [2]. Although offering both speed and a low cost, this approach
fails to focus on either grammar or word order. As a consequence, it is deemed
to carry the “Curse of Dimensionality”, in that even short sized sentence needs a
high dimensional sparse feature vector for representation. In this situation, machine
learning algorithms may lose their power of discrimination because of the curse of
dimensionality. An alternative approach to the bag-of-words is word embedding,
where words are mapped to fixed length dimensional vectors in a continuous space.
Two popular deep learning-based word embedding models are Word2Vec [3] and
Global Vector (GloVe) [4], which present a fixed-length vector for each word of
the training data. In order to work correctly, these models need to be trained with
large-sized corpuses. Moreover, neither the Word2Vec nor GloVe models disregard
the relationship between non-co-occurred terms.

Calculating the summation or the average of a document’s word vectors are com-
mon approaches used to represent a document based on its word vectors. Never-
theless, these approaches cannot reflect the context of the document. For instance,
the word vector for “blackberry” as a company is equivalent to its word vector as a
fruit. For each document or paragraph, the Doc2Vec model [5] offers a vector that
is trained according to the local data. It can comprise the context of the document
without the use of background knowledge. However, the high computational cost
of having to produce a model each time is a major weakness of this approach. In
contrast, Word2Vec and GloVe have the capacity to create one-time only models,
based on the training corpus.

2 Traditional Document Representation Methods

The bag-of-words approach, in which each document is represented as a bag of
words, is the most well-known representation models in natural language processing
(NLP). The n-gram document representation model uses a continuous sequence of
words, which are chunks of words that are used as features to represent a document.
Each element of the document representation vector is a set of two or more neigh-
boring words in a document repository. Another similar approach, known as n-gram,
involves using a fixed sequence of letters where a unique sequence represents ele-
ments in the feature vector for each document. This approach has applications in
spelling error detection and language identification. The bag-of-words approach is
low in computational cost, rapid and naive, although it does not consider word order
and grammar. The bag-of-words approach also suffers from the “Curse of Dimen-
sionality”, causing classifiers to lose their discriminatory power. Such a context
highlights the importance of feature transformation and selection tools, for exam-
ple Latent Dirichlet Allocation (LDA) [6], principal component analysis [7], latent
semantic indexing [8], independent component analysis [9], and document frequency
[10]. For documents with references, such as Internet web pages with hyperlinks as
well as scholarly documents, another method can be used to represent a document,
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as references are related to the document contents. The weight of the references
can be renewed according to frequency of use and location in the document. In this
approach, each reference is one dimension of the feature vector, which has a much
lower dimensionality in examination to the bag-of-words and the n-gram approaches
[11].

Explicit Semantic Analysis (ESA) is a mixed approach based on references and
the contents of a document. In ESA, the similarity of documents is calculated accord-
ing to their reference sets. In the feature vector, each element is weighted in relation
to specific documents within the reference sets [12]. The similarity measure tech-
nique, which is based on compression [13], is another approach for computing the
representation of documents. This approach is on the basis of the hypothesis that the
similarity of two files can be estimated by comparing: (1) the compressed size of
the concatenated version of the two files and (2) the summation of the compressed
size of each file. The elements of the representation vector consist of the similarity
between the documents in the repository.

In an attempt to capture the sentiment meaning and semantic of words, Maas et al.
used aword representationmodel [14], inwhich vectors are formedby aprobabilistic-
based and unsupervised approach. A similar representation of words that congregate
can be found in most documents. The subsequent stage uses a supervised-based
learning method. Here, the sentiment of words is included and the model is trained.

3 Deep Learning-Based Document Representation Models

An alternative approach to bag-of-words is word embedding, where phrases and
words are mapped to fixed-length vectors in a continuous space. Two of the most
successful deep learning-based word embedding models are Word2Vec and GloVe.
These models present a continuous vector for each word in a training data by training
with vast corpuses. In order to represent a document based on its word vectors, two
commonly adopted approaches involve calculating the summation or the average of
word vectors. However, these approaches do not take into account either word order
or the context of the document. As an illustration of the latter issue, the word vector
for “bass” as a fish is equivalent to its word vector as an instrument.

In this chapter, five document representation models that are based on deep learn-
ing, namely Word2Vec, Doc2Vec, GloVe, CNN, and LSTM, are introduced and
compared.

3.1 Word2Vec Model

Word2Vec is a two layer neural network-based approach that learns embedding for
words. Negative sampling has been used in the softmax step of the output layer. The
objective function maximizes the log probability of a context word (wO), given its
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Fig. 1 Word2Vec architectures [15]

input words (wI). By using negative sampling, the objective function is to maximize
the dot product of wI and randomly selected negative words, while minimizing the
dot product of wI and wO. The output is a vocabulary of words from the original
document and an n-dimensional fixed-size vector representation. Co-occur words
in the training corpus are located adjacent to each other in a vector space. It can
be observed in Fig. 1, how Word2Vec creates word vector representation by use of
two architectures: Continuous Bag of Words (CBOW) and Skip-gram. The CBOW
architecture model, which according to the surrounding context words, can predicts
a word and also works faster than Skip-gram, which predicts the surrounding words
by a center word, in a fixed-length window. For infrequent words, the Skip-gram
architecture works better.

Word2Vec generates vector representation only for words, while for document
representation, a representation for the entire document is needed. Averaging or
summation of all the word vectors of a given document can be a naive solution for
creating document representation.

3.2 Doc2Vec Model

Le andMikolov [5] presented Doc2Vec, also known as Paragraph2Vec. An extension
of Word2Vec, the Doc2Vec model represents document, sentence, and paragraph
by a fixed-length vector. The authors described two approaches, both of which are
developed fromvector representation ofwords. The first approach, commonly known
as the ParagraphVectorwithDistributedMemory (PV-DM) and the second approach,
termed the Distributed Bag of Words (PV-DBOW).
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PV-DBOW works in the same way as Skip-gram. The difference is that the input
is a unique vector that represents the document and the order of words is ignored.
PV-DM works in the same way as CBOW. The additional vectors used by PV-DM
are a concatenation of document vectors and several target words. The objective is
to use the concatenated document and word vectors to predict a context word.

Doc2Vec or Paragraph2Vec modifies Word2Vec into an unsupervised learning
approach to create a continuous representation for an entire document. Different to
averagingWord2Vec vectors, the Doc2Vec approach can preserve the order of words
and gain more accurate results [5].

By concatenating of both vectors that were generated from this approach and
employing them as the features, the most effective outcomes is expected. The objec-
tive of a subsequent study by Hong [16] was to better the performance of Para-
graph2Vec by use of two approaches: the addition of both a hidden layer and a
tensor layer to the paragraph vector, such that it can interact with word vectors, both
complexly and non-linearly.

The Doc2Vec model can acknowledge the context of the document, but cannot
benefit the background knowledge. However, the high computational cost of creating
a model each time is a distinct weakness of this model. In comparison, Word2Vec
and GloVe allow pre-trained models to be used multiple times by fine-tuning the
input feature vectors to a specific task.

3.3 Glove Model

Pennington et al. [4] introduced an unsupervised word embedding model, known
as GloVe, for word representation. GloVe captures global corpus statistics (the fre-
quency of word co-occurrences within a specific window in a large text corpus) to
generate linear dimensions of meaning and uses local context window methods and
global matrix factorization. This model, which offers a local cost function, includes
a weighting function that is used to balance the rare co-occurrences. Optimization
methods are used to minimize the cost function.

Based on the hypothesis that similarwords have similar distributions, it is expected
that general word vectors can be used to measure the semantic similarity. As in the
case of Word2Vec, averaging the vectors of words in a document is an option for
generating a fixed length vector for document representation.

3.4 Long-Short Term Memory

Nonetheless, the dependency between words in terms of the syntactic and semantic
meanings is not that clear. There may be long and short term dependencies in a
sentence. As a result, the common approach in neural network methods is to consider
sentences as a sequence of tokens, then process themwith a recurrent neural network
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(RNN). The tokens are processed in a sequential order for which the RNN will learn
the compact feature embedding of the word sequences. A long short-term memory
(LSTM) [17] network is a common type of RNN, commonly used in sentiment
analysis [18, 19]. LSTMs are able to model long-range dependencies for NLP [20,
21]. However, LSTMs are known to be difficult to train since they are sensitive to
hyper parameters such as batch size and hidden dimensions [22]. Also, they are not
specific to language processing; they are only generic sequence learning machines,
which lack task specificity [23].

3.5 Convolutional Neural Networks

However, in deep learning approaches such as convolutional neural networks (CNNs)
[24], deep hierarchical representations can be obtained. The main idea of CNNs is
to perform feature extraction and classification as one task. Typically, there will be
many successive layers of filter convolutions and feature pooling. The convolution
filters are learned from data with the intention of eliminating handcrafted features.
These learned filters are then used to perform the convolution.

For the application of CNNs in NLP, semantically related terms are close in word
embedding space, which enhances the classification performance by keeping the
deep knowledge of relationship between terms. A study by Johnson and Zhang [25]
used one dimensional CNNs directly with sentences represented as one-hot vectors
as inputs. This has the overhead of dealing with sparse features inherent to the data.
Typically, this is not well-suited for convolution networks wherein dense data is
preferred. Tomitigate this issue, others have usedWord2Vec vectors as tunable inputs
into their CNN [26], but this may cause a decrement in classification performance if
the Word2Vec vectors are not domain specific. In other studies [23, 27], very deep
CNNs (up to 29 paired convolution and pooling layers) have been implemented in
sentiment classification by natively learning embedding based on alphanumerical
characters. This type of deep CNN is well suited to texts because characters combine
to formn-grams, stems,words, phrases, and sentences. Figure2demonstrates a part of
a text as input into amodel where there is a vocabulary size of 5. The embedding layer
has an embedding dimension of 3, wherein dropout is performed. This embedding
layer can be trained with either random or pre-trained vectors such as Word2Vec
or GloVe vectors. The one-dimensional convolution also has three filters on which
L2 regularization and dropout is applied before activation with a fully connected
dimension of four. The 1-max pooling layer takes only the single best feature per
feature map. In the final layer, the text is classified with a score from 1 to 5.

Thus, when using CNNs or LSTM networks in NLP, one must be aware of the
advantages anddisadvantages relative to the task. Similar classification resultsmaybe
obtained by the competing methods, but the feature representation may be weak. For
instance, it is commonly accepted that a fully connected one hidden layer may learn
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Fig. 2 Example of one dimensional CNN

any real-valued function. However, a hierarchical representation of multiple layers
will provide more information regarding the interaction among features, which is
represented by the successive layers [23].

3.6 Experimental Results

The described approaches implemented and applied on the “IMDBMovie Reviews”
dataset [28] for the task of sentiment analysis. The training data consists of 25,000
movie reviews and another 25,000 reviews were used as testing data. The results
illustrated in the Table 1.

In these experiments, the methods are applied only on one dataset and the default
parameters and architectures are used, more related results are available in [25, 26,
5].

Table 1 Results of
introduced methods applied
to IMDB Movie Reviews
Dataset

Method Accuracy F_score

Bag-of-words—SVM 0.8406 0.8378

Bag-of-bigram—SVM 0.8746 0.8733

Word2Vec (Averaging)—SVM 0.8357 0.8354

Doc2Vec 0.8540 0.8291

GloVe (Averaging)—SVM 0.8304 0.8291

LSTM (100 training epochs) 0.8378 0.8413

CNN (100 training epochs) 0.8686 0.8638
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4 Combined Studies

In the field of document representation, a relatively recent study by Kim et al. [29]
introduced three approaches that developed the Word2Vec vector of content words.
Average pooling, class-specific Gaussian Mixture distribution, and Semantic Space
Allocation are three considered approaches. The most successful outcomes were
achieved by average pooling. In a Chinese articles classification task, this approach
outperformed the LDA method.

A tagging-based document representationmethodwas used in a study byBernotas
et al. [30], the outcome of which was improved clustering by using ontology. This
study identified the negative effect of the tagging-based representation on short size
documents but offered a better outcome for large scale documents compared to word-
based document representation.

Hong [16] subsequently employed two approaches in an effort to further develop
the capacity of Paragraph2Vec: the addition of a tensor layer for interaction between
paragraph vector and word vectors and addition of a hidden layer. In another study,
Hong and Zhao [31] employed the LDA and the Deep Learning-based approaches
for the task of anomaly detection in legal texts. This involved first using LDA to
extract topics from a EULA corpus, then removing the words in the topics. The next
step was to calculate the Word2Vec vector of all the remaining words, enabling a
Word2Vec vector for each sentence to be created. The process was completed with
the application of agglomerative clustering (which is more successful in comparison
to the K-mean clustering method) and LOF (Local Outlier Factor) in order to detect
abnormal sentences in the EULA text.

A study by Lao and Jagadeesh [32] presented a classification task in which ques-
tions were allocated into 16 legal areas. Bag-of-words, bag-of-bigrams, the TF-IDF
technique, and average Word2Vec vectors of questions were used as features and
compared to five different classifiers: The Linear Support Vector Machine (SVM);
the Logistic Regression; Multi nominal Naïve Bayes; SVM with stochastic gradient
descendent; and the one layerNeural Network. The first classifier, the SVM, achieved
the best results.

In 2017, Lin et al. [33] used an approach, called self-attentive sentence embedding,
which is based on long short-term memory networks with a set of summation weight
vectors provided by a self-attention mechanism and a 2-D matrix to represent the
embedding. Also in 2017, Kamkarhaghighi and Makrehchi [15] introduced content
tree word embedding, which is a framework to improve document representation by
Word2Vec and GloVe. In this framework, the vector for each word is updated based
on the words around it in the given context.
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11. J. SzymańSki, Comparative analysis of text representation methods using classification.
Cybern. Syst. 45, 180–199 (2014)

12. E.Gabrilovich, S.Markovitch,Computing semantic relatedness usingWikipedia-based explicit
semantic analysis, in IJcAI (2007), pp 1606–1611

13. M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications (Springer
Science & Business Media, 2009)

14. A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word vectors for
sentiment analysis, in Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, vol. 1 (Association for Computational
Linguistics, 2011), pp. 142–150

15. M. Kamkarhaghighi, M. Makrehchi, Content tree word embedding for document representa-
tion. Expert Syst. Appl. 90, 241–249 (2017)

16. S. Hong, Improving Paragraph2Vec (2016)
17. S. Hochreiter, J. Schmidhuber, Long short-termmemory. Neural Comput. 9, 1735–1780 (1997)
18. A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and

other neural network architectures. Neural Netw. 18, 602–610 (2005)
19. K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, LSTM: a search space

Odyssey. IEEE Trans. Neural Netw. Learn. Syst. (2016)
20. M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in Thir-

teenth Annual Conference of the International Speech Communication Association (2012)
21. I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, in

Advances in Neural Information Processing Systems (2014), pp. 3104–3112
22. R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in

International Conference on Machine Learning (2013), pp. 1310–1318
23. A. Conneau, H. Schwenk, L. Barrault, Y. Lecun, Very deep convolutional networks for natural

language processing. arXiv:160601781 (2016)
24. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document

recognition. Proc. IEEE 86, 2278–2324 (1998)
25. R. Johnson, T. Zhang, Effective use of word order for text categorization with convolutional

neural networks. arXiv:14121058 (2014)
26. Y. Kim, Convolutional neural networks for sentence classification. arXiv:14085882 (2014)
27. X. Zhang, J. Zhao, Y. LeCun, Character-level convolutional networks for text classification, in

Advances in Neural Information Processing Systems (2015), pp. 649–657

http://arxiv.org/abs/13013781
http://arxiv.org/abs/14054053
http://arxiv.org/abs/160601781
http://arxiv.org/abs/14121058
http://arxiv.org/abs/14085882


110 M. Kamkarhaghighi et al.

28. Kaggle, Bag of Words Meets Bags of Popcorn, vol. 2016 (2015)
29. H.K. Kim, H. Kim, S. Cho, Distributed representation of documents with explicit explanatory

features (2014)
30. M. Bernotas, K. Karklius, R. Laurutis, A. Slotkienė, The peculiarities of the text document
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Applications of Deep Learning
in Medical Imaging

Sanjit Maitra, Ratul Ghosh and Kuntal Ghosh

Abstract Deep Learning techniques have recently been widely used for medical
image analysis, which has shown encouraging results especially for large datasets.
In particular, convolutional neural network has shown better capabilities to segment
and/or classify medical images like ultrasound and CT scan images in comparison
to previously used conventional machine learning techniques. This chapter includes
applications of deep learning techniques in two different image modalities used in
medical image analysis domain. The application of convolutional neural network
in medical images is shown using ultrasound images to segment a collection of
nerves known as Brachial Plexus. Deep learning technique is also applied to classify
different stages of diabetic retinopathy using color fundus retinal photography.

Keywords Deep learning · Medical image analysis · Convolutional neural
network · Brachial plexus segmentation · Diabetic retinopathy detection

1 Introduction

Application of convolutional neural network for pattern recognition is about three
decades old using backpropagation network for handwritten zip code recognition
for U.S. postal service [1]. As the computation power of the systems increased, the
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size of the network grew such that it could handle multiple layers thereby handling
complex machine learning tasks. Convolutional Neural Network (CNN) was used in
medical image analysis in 1995 to detect lung nodule from radiographs of chest and
microcalcifications from digital mammograms [2]. These were originally done with
small dataset having limited number of hidden layers. In 2012, CNN was applied to
a large dataset of about 1.2 million images for a 1000 class classification problem
[3]. This was the first time where it was being shown that how five convolutional
layers, 650 thousand neurons can achieve a considerable high classification accuracy
in comparison to other conventional machine learning classification algorithms. This
opened the gates for Deep CNN for image classification and segmentation in varied
fields.

Applications of CNN in Medical Imaging, a very recently developed research
domain, can be broadly separated into two categories, viz. classification and seg-
mentation problems. In case of classification, from a given set of labelled images,
the model is trained where it establishes a functional relationship between the fea-
tures from the input images and its corresponding class. For example, Anthimopoulos
et al. performed classification using CNN on CT scan lung images to classify image
patches into 7 classes [4]. This includes healthy tissue and six different interstitial lung
disease patterns. CNN is also applied for classification of images of other modalities
like ultrasound imaging for identification of thyroid nodules as malignant or benign
[5], chest X-ray for classification of view orientation [6] and many more. Segmen-
tation of medical images is also a very important task to identify organs, lesions or
substructures of organs for analysis. Examples of CNN in medical image analysis
include segmentation of brain tumors from MRI images [7], pancreas segmentation
using CT scan images [8], segmentation of neuronal membrane using images from
electron microscope [9]. CNN is widely used nowadays in medical image analysis
domain on different modalities of images.

2 Convolutional Neural Network

Convolutional Neural Network (CNN) consists of multilayer architecture that per-
forms multilevel feature extraction [2]. Additional layers of abstract features are
then mapped to get the desired output. Before the use of CNN, researchers used to
connect every neuron in the first hidden layer to each and every node of the input
for computation [3]. This increases the number of parameters to be optimized in
the training procedure. In case of CNN, the input image is convolved with a set of
kernels. The convolution operation forces the hidden neurons in the first layer to have
a less number of connections to the input nodes. Instead of usual fully connected
architecture, CNN can be considered as a locally connected network because of the
convolution function with kernel size much smaller than the input image size. A
basic convolution operation is illustrated in Fig. 1. A simple 2 × 2 kernel is con-
volved with a 3 × 3 image and the result is shown. For the particular example, when
the filter position is as shown by the red square on the image (Fig. 1b), the pixel
values of the image are multiplied with the value of the kernel on the corresponding
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Fig. 1 Convolution
operation demonstrated
using a 2 × 2 kernel on
a 3 × 3 image

(a) 2x2 kernel  (b) 3x3 image (c) output

position. In order to get the first value of the output, the computation is (1 × 1) +
(2 × 1) + (4 × 1) + (5 × 1) which equals to 12. Then the kernel is moved to the
next pixel to get the next value of the output and this keeps on repeating until this
weighted sum is computed throughout the image. These locally connected networks
obtained through convolution actually mimic the visual cortex neurons of human
brain having local receptive field [10]. Input to the convolution layer is m × n × r
dimensional input image. In case of ordinary color image, the value of r is 3. The
convolutional layer will have k kernels/filters of size t × t × s, where s is the number
of bands of the kernel that should be less than equal to the value of r of the original
image. These k filters will produce k feature maps by extracting locally connected
features.

Each convolution operation is followed by an activation functionwhere point wise
non-linear transform is applied to each of the components in the extracted feature
maps. For example, let’s consider a kernel that extracts horizontal edges from the
input image (e.g. Sobel operator) [11]. This transformation gets activated only for
horizontal edges greater than a threshold. The convolution operation is repeated at
different layers to extract additional abstract features.

Output from convolutional layers can be mathematically written as

yk � σ (wk−1 ∗ xk−1 + bk−1) (1)

where, yk is the output from the kth convolutional layer, σ the activation
function, wk−1 is the kernel used for convolution, xk−1 is the feature map from the
previous (k− 1)th layer and bk−1 is the bias added after the feature map is generated.

Each convolutional operation with non-linear transformation is followed by a
pooling operation [3]. The convolutional feature map is divided into disjoint blocks
and pooling operation is performed over the feature values in each of the blocks.
Average and max operations are the most used pooling functions. Figure 2 shows
how pooling operations are computed. The convolutional output (Fig. 2a) is divided
into 2 × 2 blocks shown as blue dotted squares.

Max pooling (Fig. 2b) takes in the maximum feature value from the 2 × 2 blocks
which are then used as inputs to the higher layers. Similarly, average pooling com-
putes the average of the feature values from the disjoint blocks. The output from
pooling layer induces shift invariant property by down-sampling the input feature
maps [12]. This combination of convolution, non-linear transformation and pooling
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(a) Convolutional output  (b) Max Pooling (c) Average Pooling

Fig. 2 Two types of pooling operation on convolutional output

Fig. 3 Architecture of standard CNN

layers are repeated to extract features at different levels or scales which are then
usually followed by fully connected conventional neural network layers for the clas-
sification task [3]. Block diagram of standard CNN used for classification is given
in Fig. 3.

Training of the CNN is usually performed using the gradient descent algorithm
which is widely used in training multi-layer feedforward networks for decades [13].
Stochastic gradient descent [14] is currently gaining popularity specially for training
CNN due to faster convergence and less chances of getting trapped in local minima.
In case of gradient descent algorithm, the cost or error function is computed for
the entire training set and the weights are updated by gradient descent. Stochastic
gradient descent considers the training samples to be arriving one at a time. So
the cost function is computed for each sample of training data on arrival and the
weights are updated using gradient descent [13, 14]. Instead of considering one at
a time arrival of training samples, the training dataset is also divided into batches,
such that the computation of the cost function is done in batches to update the
weights through gradient descent. This is known as mini-batch gradient descent
algorithm [15]. Depending on the optimized choice of the batch size, mini-batch
gradient descent can give faster convergence than gradient descent and stochastic
gradient descent [13–15].

Backpropagation method is usually used to compute the gradient of the cost/error
function in terms of the weights for gradient descent [16]. The weights of the hidden
units are randomly initialized and inputs from the training sample move forward
through the hidden layer of the network to finally give an expected value of the
output. This is compared with the actual output class of the corresponding input to
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get the error function. In case of backpropagation, error information flows backwards
through the network to find the gradient of the error in terms of the weights of the
nodes in the layers [16]. In case of backpropagation, the gradient in one layer is a
product of the gradient from the preceding layer and the derivative of the activation
function [13].

Application of CNN in two different modes of medical imaging is discussed in
the following section that includes segmentation of ultrasound images to identify a
collection of nerves known a brachial plexus and classification problem based on
severity stages of diabetic retinopathy using color fundus images of the retina.

3 Segmentation of Brachial Plexus from Ultrasound Images

Brachial Plexus (BP) is a collection of nerves that goes to the ribs and armpit from
the spinal cord through the neck [17] (Fig. 4). These are responsible for the effect
of sensation in the arm and also control the muscles of the hand, wrist, shoulder and
elbow [18]. Any injury in the BP portions can result in loss of feeling in the arm and
hand area. Severe injury can permanently disable the arm, hand, shoulder, and elbow.
The treatment procedure includes surgical methods that require time to recover [17].
Minor injuries can be cured with therapy by keeping the joints flexible. The usual
process of examining the progress of the treatment procedure is by checking the
presence of sensation in hand, shoulder, elbow area and the strength of muscles.
Tests like MRI or ultrasound scan is done to check the extent of damage and finding
nerve blocks [19].

Fig. 4 Brachial Plexus.
Image from [17]
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In recent years, ultrasound imaging of BP portion has become an important tool
to analyze the extent of damage, location of lesions, and identification of abnormal
growth (tumoral) of tissue in the area [19]. Use of ultrasound imaging in BP is advan-
tageous as well as challenging because it is very difficult to identify the portions due
to its complex structure and obstruction due to the presence of the collar bone. It has
been shown that using ultrasound imaging one can identify and track the intersca-
lene and supraclavicular blocks through specific locations where the BP portions are
located superficially [20]. Experts, during the ultrasound analysis procedure, usually
use some typical anatomical landmarks to identify the difficult-to-detect BP portion
regions [19]. This task of segmenting the ultrasound images to identify the BP por-
tions is discussed using CNNwhere multiple levels of abstract features are extracted
to locate the BP portions.

3.1 Dataset

The dataset used for demonstration of CNN on ultrasound images for nerve seg-
mentation is from “Kaggle Ultrasound Nerve Segmentation” competition [21]. The
training images aremanually annotated by ultra-sonographers tomark the location of
the BP portions in the ultrasound image. Sample of image with manual annotations
(shown in red) is given in Fig. 5. It can be seen that identification of the region is
difficult with different structures throughout the image. The training dataset contains
120 images per 47 patients to capture the BP portions from different orientations and
angles with mask images specifying the location of BP portions by experts. These
mask images are from the manual annotations provided to train the network. Sample
of the mask images are shown in Fig. 6. These masks are actually binary images with
BP portions represented as white pixels and black elsewhere. Each image size is
420× 580 with a total of 5635 training images with corresponding mask images and
5508 test images without the annotations. As these images are taken from different
locations and orientations, there are about 47% (2649 images) of the training images
that do not contain BP portions and their corresponding mask images are completely
black. The task here is to segment the ultrasound images such that the BP portions
can be identified using the training images along with labelled annotations provided,
marking the location of BP. In this case, the output should include classification of
the pixels of ultrasound images to identify the collection of nerves in the images. It
is basically a two class problem where the BP regions identified should be marked as
white and the rest of the image should be black (similar to the mask images provided
for training).
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Fig. 5 Sample of ultrasound image with manual annotation (in red) specifying the location of the
BP portion

Fig. 6 Sample of the mask images representing the annotations specifying the location of the BP
portions

3.2 Network Architecture

The U-Net architecture [22] of CNN for segmentation of medical images is one of
the most popular techniques that won the ISBI cell tracking challenge [23] in 2015
by a significant margin. The basic architecture of U-Net is shown in Fig. 7. This uses
a deep CNNmethod that takes in the input image and gives the segmentation map as
the output, which is one of the crucial tasks in medical image analysis. It has shown
better performance in a limited number of labelled training dataset in comparison
to other standard convolutional networks. The architecture is similar to other deep
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Fig. 7 U-net architecture. Image from [22]

CNN, which is composed of a number of operations which are given as arrows in
Fig. 7. The data from the input image is forward propagated through the network
along the given paths and finally it provides the output segmentation map where
each pixel is belonging to one of the two possible classes which are BP and non-BP.
The blue rectangles are multichannel feature maps shown in Fig. 7. The number of
feature channels is provided on top of each blue box and size of the feature map on
the bottom. For the given example, the dimension of the input image is 572 × 572
with 1 channel. The convolution operations are followed by a non-linear activation
function. The most widely used activation function [24] is Rectified Linear Unit
(ReLU).

The ReLU activation function is given as,

σReLU(x) � max(0, x) (2)

where, x is the input and σReLU is the activation function which was mentioned as
generalized activation function inEq. 1. The plot of theReLU function (also known as
ramp function) is given in Fig. 8. This shows using ReLU implies that the activation
unit is only active when the input is positive and the strength of activation is the
magnitude of the input. The function is deactivated for negative values of input.

The next operation followed by convolution and ReLU is the max pooling oper-
ation with a 2 × 2 window and stride of 2. It extracts the maximum activation from
the 2 × 2 window to the next layer feature map. This reduces the dimensions of
the feature map. The sequence of convolution and max pooling operation extracts



Applications of Deep Learning in Medical Imaging 119

Fig. 8 Rectified Linear Unit as activation function

the features starting from a low level to higher levels. This is used in the conven-
tional CNNmodel. U-Net consists of an additional expansion path to create the final
segmentation map instead of fully connected layers shown in Fig. 3. This path con-
sists of up-convolution operations shown as green up arrows followed by linking
with the corresponding high resolution features shown as grey horizontal arrows.
Up-convolution with a 2 × 2 kernel is mapping each feature vector to a 2 × 2 output
feature map followed by the ReLU activation function. The output segmentationmap
dimension is actually smaller than the input image due to the unpadded convolution
operations. Extrapolation by mirroring the input image is done for predicting the
pixel values in the border region [22].

The basic idea of U-net comes from training larger and deep network using VGG
network architecture [25]. The most important characteristics of the network is pass-
ing the input image through stack of 3 × 3 convolutional layers which mimics the
visual cortex neurons of human brain having local receptive field. VGG network has
shown greater classification accuracy due to greater depth of the network.

The U-net architecture is used to segment the ultrasound images with 3 × 3
convolution followed by activation using ReLU. Max pooling in 2 × 2 window and
2 × 2 up-convolution.

Along with the basic U-net architecture, a modified version of the network is
also applied that uses the inception architecture introduced in 2015 [26, 27]. The
main idea of inception model is that instead of performing fixed 3 × 3 convolutions
throughout the network, perform 1 × 1, 3 × 3, 5 × 5 (total of three) convolution
within the same module of the network. The outputs are concatenated and forwarded
to the next layer. Instead of a single convolution, a combination of 1× 1 convolution,
1 × 1 followed by 3 × 3, 1 × 1 followed by 5 × 5 and 3 × 3 max pooling followed
by 1 × 1 convolution are used. The basic block diagram of the module is given in
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Fig. 9 Inception module. Image from [29]

Fig. 9. In this case, multi-level features are extracted at the same timewithin the same
module and the results are merged using concatenation. This merging of information
adds up all the information like size, texture, color, location at different scales at the
same level. It is already shown that inception model can lead to comparatively lesser
computational cost in comparison to other deep learning network architectures [27].
Modified version of the U-net architecture is applied using the inception module
replacing the conventional 3 × 3 convolution of VGG network architectures.

3.3 Data Augmentation

Increasing number of training sample is required to boost up the performance of deep
networks and incorporate robustness with required invariance properties [22]. Deep
networks need a large variety of datasets for training to develop the ability to identify
complex structures within the images. Standard data augmentation techniques [22,
25, 27] were applied on the ultrasound image dataset like flipping x and y of the
images, random zoom, elastic transformation by moving the pixels around based
on distortion. Same augmentation techniques were applied to mask of the training
dataset images that represent the annotations of the BP region.

3.4 Results

The network is trained using stochastic gradient descent algorithm [15] discussed
before in Sect. 2. From the 5635 training images, 500 images were kept for validation
of the training and 5135 images were used for training the network. The image shown
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Fig. 10 Sample image with actual and predicted annotations in red and green respectively

in Fig. 10 is a sample of validation image after training with the actual and predicted
annotations in red and green respectively. Actual and predicted mask of a sample
validation image is given in Fig. 11. There are many metrics for validating medical
image segmentation results [28]. Dice coefficient is one of the popular metric used
in medical image segmentation that directly compares the overlap of the segmented
annotations.

The dice coefficient between the actual and predicted annotations can be computed
using the relation

Dice (a, b) � (2 ∗ (a ∩ b))/(|a|+ |b|) (3)

Fig. 11 Sample mask image in the left and the corresponding predicted mask in the right
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where, a and b are the actual and predicted annotations, a ∩ b is the number of pixels
having value as 1 in both a and b, and |a|, |b| are the total number of pixels having
value 1 in a and b respectively. In the ultrasound images, the annotations are binary
images with BP portions represented as white pixels (pixel value 1) and black (pixel
value 0) elsewhere. The value of the dice coefficient ranges from 0 to 1. Zero for
non-overlapping masks and perfect score of 1 for perfectly matching segmentations.
There were about 2649 images of the training dataset that do not contain BP potions
and their corresponding mask images are black. For them, if the mask images are
black, i.e., all pixel values are zero for both the actual and predicted masks, the dice
coefficient is considered as 1.

Using the original U-net architecture, the mean dice coefficient was 0.53 while
using the modified architecture with inception module instead of VGG net, the mean
dice coefficient of the validation datasetwas 0.702. For the given problem, calculation
of dice co-efficient is a good measure to compare the segmentation result with the
actual annotations.

It can be clearly seen that using the inception module instead of standard 3 × 3
convolution operation throughout the layers of the network, increases the segmen-
tation performance significantly. From sample and predicted mask in Fig. 11 one
can compare the actual and predicted annotations and conclude how this deep learn-
ing network has performed to identify the collection of nerves from the complex
structures in the ultrasound images.

4 Classification of Diabetic Retinopathy Stages from Color
Fundus Retinal Images

Diabetic Retinopathy (DR) is an eye disease that affects the retina of the patients as
a prolonged effect of diabetes [29]. Current figures tell that about 350 million people
worldwide are affected by DR. Countries like USA, China and India reported the
highest number of diabetes mellitus cases which can lead to high numbers of DR
affected peoples [30]. The identification of DR is usually performed through color
fundus retinal photograph by detection of lesions with vascular abnormalities [29].
Trained analysts are required to identify the lesions from the fundus images and infer
about the severity of DR in the patients. Rural areas of India usually have a large
number of patients suffering from diabetes that can have long term effects on the
retina [30]. Early stage detection is necessary to decrease the spread of damage on
the retina, which otherwise can lead to severe visual impairment.

Color fundus images are usually used to capture the condition of the interior
surface of the eye, especially the retina using fundus camera. Automated method of
classification of the color fundus retinal images based on the severity of damage is
necessary. This task is more important in the areas where there is scarcity of trained
technician to detect the lesionsmanually. The task of classification of the color fundus
images based on the severity of DR is discussed using CNN.
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Fig. 12 Different stages of
Diabetic Retinopathy
illustrated using color fundus
images

4.1 Dataset

The dataset used to demonstrate the classification using CNN is from “Kaggle Dia-
betic Retinopathy Detection” competition [31]. The color fundus images of the
dataset are labelled into one of the four classes based on the severity of the DR.
The four stages of DR are shown in Fig. 12 along with normal negative DR. There
were about 35,000 images which are labelled into one of these five classes for train-
ing a deep network. About 73% of the images are from No-DR class (negative DR).
Proliferative DR is the highest stage of severity that can lead to permanent blindness.
Only 708 images were present that were labelled as Proliferative DR class.

4.2 Network Architecture

The CNN applied to this dataset is the conventional deep network as mentioned
in Fig. 3. The combination of convolution, non-linear transformation and pooling
layers are repeated to extract additional levels of abstract features. The convolution
kernel size was 3 × 3 following the standard VGG network architecture [25]. Each
convolution was followed by a non-linear activation layer that incorporates the non-
linearity in the model. Leaky ReLU function was used as activation function which
is a modified version of the ReLU function described before. Instead of output of
zero when the input is negative, Leaky ReLU gives an output of 0.01 times the
input implying the leakage in the function for negative values of the input. This
modified ReLU function has shown higher efficiency in comparison to standard
sigmoid function for some applications [32]. The activation layer is followed by max
pooling with a kernel size of 2 × 2.
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Dropout is used as a regularization method to tackle the problem of overfitting
[33]. During the training of the network, each unit is retained with a probability
p. While testing, the weights of the units are scaled by a factor of p thereby forcing
the network to extract more information from the active neurons at each phase. The
probability p was taken as 0.5 which showed better predicting performance and
higher generalization capability [34]. The combination of convolution, non-linear
transformation and pooling layers are repeated in seven layers followed by fully
connected layers and classification output layer using softmax function [35]. This
function squeezes n-dimensional arbitrary valued vector to n-dimensional real valued
vector with values between 0 and 1 such that the elements of the vector adds up to
1 [35]. This is required to predict the class of the input image at the output layer of
the network.

To tackle the problem of class imbalance, data augmentation was performed by
rotation of the images from the classes that were having fewer images. Stochastic
gradient descent algorithm [15] was used for training the network.

4.3 Results

About 10% of the images were randomly selected as validation dataset. Confusion
matrix is a good way to visualize the performance of any classification algorithm.
The confusion matrix for the validation dataset is given in Table 1.

The data imbalance is also reflected in the validation dataset where one can find
that about 70% of the images are from No DR (class 0). The algorithm performs
well in predicting images from the No DR class with an accuracy of 95%. Maximum
confusion was found to be between No DR (class 0), mild DR (class 1) and moderate
DR (class 2). A total of 85% accuracy was achieved in this five class classification
case. This might not reflect the actual capability of the model to classify the images
due to the high imbalance of class 0 images in the dataset.We restructured our dataset
to include 100 images per class. The corresponding confusion matrix is given in
Table 2. This drastically reduces the accuracy of the model to 65%, mainly due to the
fact that images from class 1 were predicted as class 0. Instead of classifying into 5
classes based on severity, one can perform a 2-class classification to separate as Non-

Table 1 Confusion matrix of
the validation dataset

Predicted class

Actual class 0 1 2 3 4

0 2186 47 29 31 7

1 84 79 34 3 0

2 197 68 210 18 7

3 5 2 17 51 15

4 6 0 8 37 49
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Table 2 Confusion matrix
with 100 images per class

Predicted class

Actual class 0 1 2 3 4

0 96 3 l 0 0

1 48 46 4 2 0

2 23 3 51 17 6

3 3 0 7 63 27

4 2 0 3 24 71

Severe and Severe class. For the given dataset, the two class problem achieved an
accuracy of 97%. Quadratic weighted kappa is computed that measure the agreement
between actual and predicted class of the images by the model. The final model for
5-class classification problem has a kappa score of 0.74.

5 Conclusions

This chapter presents a basic introduction of convolutional neural network, which is
gaining popularity for analysis of medical images. Preliminary concepts of convo-
lution, pooling and non-linear operations are discussed that constitutes the building
blocks of theCNN.The basic architecture of conventional CNN is explained. The two
major applications of machine learning, i.e., image segmentation and classification
which are currently very important in medical image analysis are demonstrated. Two
completely different modes of imaging are used to demonstrate the application of
deep learning. Image segmentation required amodified version of U-Net architecture
to segment the collection of nerves from the ultrasound images. More conventional
CNN architecture is explained that was used to classify the color fundus images
based on the severity of diabetic retinopathy. Deep learning is already having a great
impact on the medical imaging domain. The importance of deep learning in medical
imaging is sure to increase in the days to come.
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Abstract Research on marine species recognition is an important part of the actions
for the protection of the ocean environment. It is also an under-exploited application
area in the computer vision community. However, with the developments of deep
learning, there has been an increasing interest about this topic. In this chapter, we
present a comprehensive review of the computer vision techniques formarine species
recognition, mainly from the perspectives of both classification and detection. In par-
ticular, we focus on capturing the evolution of various deep learning techniques in
this area. We further compare the contemporary deep learning techniques with tradi-
tional machine learning techniques, and discuss the complementary issues between
these two approaches. This chapter examines the attributes and challenges of a num-
ber of popular marine species datasets (which involve coral, kelp, plankton and fish)
on recognition tasks. In the end, we highlight a few potential future application areas
of deep learning in marine image analysis such as segmentation and enhancement of
image quality.
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1 Introduction

Oceans are the largest ecosystems on Earth. They generate approximately 50% of
the O2 that we breathe and more than 97% of our water. Besides, they provide us
with 1/6 of the animal protein that we consume. They are also home to a myriad of
compounds that could well constitute promising medicines to cure cancer and other
diseases. Furthermore, oceans mitigate the influence of climate change by absorbing
CO2 from the atmosphere. As such, the world’s oceans play a vital role in sustaining
life on Earth. With natural and anthropogenic effects (e.g., global warming, climate
change, overfishing, and pollution) posing severe threats (e.g., coral bleaching, rising
sea temperatures, and changing species distributions) to marine habitats and biodi-
versity, it has become essential to understand the underlying causes of changes in
the ecological processes, for example, to help inform environmental governmental
policies.

Surveys conducted between 2001 and 2015 revealed that, driven by decades
of ocean warming, Australian temperate reef communities lost their defining kelp
forests and became dominated by persistent seaweed turfs and other species that are
characteristic of the subtropical and tropical waters. These species, if not controlled,
would devastate lucrative fishing and tourism industries that are worth billions of
dollars per year. They will also have catastrophic consequences for the thousands of
endemic species which are supported by the kelp forests of Australia’s Great South-
ern Reef [1]. A survey over a four-year (2010–2013) period showed that coral cover
declined from 73 to 59%, while macroalgal cover increased from 11 to 24% at the
Houtman Abrolhos Islands, a high-latitude reef system in Western Australia.

Such significant changes can lead to a regime shift with profound ecological
social and economic consequences [2]. Thus, marine environmental protection has
aroused great attention from all circles of the society, and it also has led to a large
number of collaborative and interdisciplinary programs. Decades ago, marine raw
survey data was collected using satellite, aerial and shipborne sensors or diver held
cameras and towed video sleds. The resulting images were of low-quality, since it
was difficult to precisely control the position and altitude of the acquisition systems.
In recent years, technological developments in underwater imagery acquisition have
enabled the development of high-definition cameras connected to Remotely Oper-
ated Vehicles (ROVs), and Autonomous Underwater Vehicles (AUVs), which can
operate continuously at precise depths and across spatial scales with geolocation.
Such acquisition systems can capture sensor data and stereo images several times
a second. Furthermore, scientists can use the acquired data to produce a 3D visual
map of the surveyed sites [3, 4]. However, with the amount of the collected marine
imagery growing exponentially, the manual annotation of raw data has become an
extremely laborious task for expert analysts. Consequently, only a small fraction
of the collected data can be annotated, which obviously affects the reliability and
accuracy of the conducted studies [5]. The development of an automated annotation
system for marine data recognition analysis, would address this limitation.
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When it comes to object recognition, the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) is the foremost global annual competition, in which
research teams demonstrate their achievements in classifying and detecting objects
and scenes from ImageNet. ImageNet is currently the world’s largest dataset for
image recognition. It contains more than 15 millions high-definition labeled images
of 22,000 classes in total. The dataset for ILSVRC competition is only a subset
of ImageNet. It comprises 1000 classes with around 1000 samples per class. Since
2012, with the increasing popularity of deep learning, we have witnessed a dramatic
increase in its performance, which was accompanied by the growing depth of convo-
lutional neural networks (CNNs). Specifically, in 2012, Krizhevsky et al. [6] trained
an 8-layer convolutional neural network and achieved top-1 and top-5 error rates of
37.5% and 16.4% respectively. In 2014, the runner-up Simonyan and Zisserman [7]
achieved a top-5 error rate of 7.3% by using networks of 19 layers, which are usually
referred to as “VGG-19”, while Google Inception Net, with its 22 layers, earned
the first prize at a top-5 error rate of 6.7%. However, a degradation in performance
occurredwhen the network depth increased. In 2015, He et al. [8] solved this problem
by proposing the residual network, which consists of up to 152 layers and achieves
3.57% error on the ImageNet dataset. Traditional neural networks (e.g., multilayer
perceptron) accomplish “shallow learning” and have been so far unable to match the
performance of deep learning techniques when following the ILSVRC protocols.

Due to its remarkable performance in several visual important recognition tasks,
such as image classification and object detection, deep learning has been widely
used in many application fields. In this chapter, we will discuss how deep learning
techniques can help automate the process of marine species recognition. Recall that
object recognition involves: (i) object classification, which focuses on assigning a
label to a patch or an image of an object. (ii) object detection deals with the detection
of the locations and classes of the possible objects in images and videos. In the
following two sections, we will review and discuss prior works which are related
to the classification and detection of marine species, respectively. Section 4 will
describe future prospects, followed by the conclusion of this chapter.

2 Deep Learning for Marine Species Classification

In this section, we illustrate the uses of deep learning techniques in improvingmarine
species classification. Image classification techniques are often used for mapping
benthic species habitat. Unlikemarinemammals and fishwith clear contours, benthic
species, such as corals, algae, and seagrass, face a challenging obstacle of ambiguous
class boundaries, making recognition more difficult. Moreover, common annotation
techniques, such as images labels and bounding boxes, are inappropriate for benthic
species images. Instead,marine ecologists rely on randompoint sampling as shown in
Fig. 1. Generally, small patches centered around each point annotation are extracted
from an image for classification.
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Fig. 1 Point annotation. Boundaries of benthic species are often ambiguous. Common annotation
techniques, such as images labels and bounding boxes, are inappropriate for benthic species images.
Instead, marine ecologists use point annotation to label a number of chosen locations in an image.
Image from the EFC dataset [37]

2.1 Marine Species Classification Based on Deep
Convolutional Neural Network (CNN) Features

Deep convolutional neural networks perform extremely well when a large amount
of labeled training data is available. However, many visual recognition challenges
have tasks with insufficient training examples. Without enough training data, deep
architectures, such as AlexNet and VGGNet, will be likely to overfit the training
data, since a large number of parameters need to be learnt in these architecture.
Fortunately, deep CNN features have been found to be universal representations for
various applications. Donahue et al. [9] demonstrated that, by leveraging a deep con-
volutional architecture trained on a large labeled dataset, one can learn features that
are sufficiently powerful and generic to a spectrum of visual recognition tasks by
using simple linear classifiers. It has been shown that this can reliably outperform
approaches based on sophisticated multi-kernel learning techniques and traditional
hand-crafted features. Their experimental results of feature visualization are consis-
tent with the common deep learning knowledge that the initial layers learn low-level
features and the latter layers learn semantic or high-level features. The work by
Razavian et al. [10] confirms and extends the results in [9] and strongly suggests that
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features obtained from deep learning with convolutional networks can be the pri-
mary candidates for most visual recognition tasks. In marine species classification,
examples of use of deep CNN features include:

• Jaeger et al. [11] presented a benchmark dataset, called the Croatian Fish Dataset
which contains 794 images of 12 fish species, for fine-grained visual classification
(FGVC) of fish species in unrestricted natural environments. They used the acti-
vations of the 7th hidden layer of AlexNet pre-trained on ImageNet as features,
and a linear SVM for classification. They achieved an accuracy of 66.78% on their
dataset.

• Mahmood et al. [12] used the parameters of the first fully connected layer of a
pre-trained VGGNet as features and a Multi-Layer Perceptron (MLP) network for
classification in a “corals versus non-corals” classification problem. They evalu-
ated their proposedmethod on theWestern Australia (WA) subset of the Australian
benthic dataset (Benthoz15) [13], which contains 407,968 labels of almost 40
classes. This WA subset consists of 237,500 annotated points collected from 2011
to 2013. Their results were shown that the highest accuracy of 97% was achieved
when the training and testing data were from the same year. This result revealed
that the recognition performance was largely affected by the variations between
testing data and training datawhichwas caused by the environmental changes cross
years. Moreover, they pointed out that most of their misclassifications occurred
because of ambiguous class boundaries.

• In another study,Mahmood et al. [14] proposed “ResFeats”, i.e., features extracted
from the pre-trained deep residual networks. By using the outputs of the last
residual unit of the 5th convolutional layer of a 152-layer ResNet as features, and
a PCA-SVM classifier, they achieved the state-of-the-art accuracy of 80.8% on the
MLC dataset, which corresponds to a 6.8% gain over the baseline performance of
[15] and 2.9% over that of [16].

From the above examples, we can observe that deep features generalized well for
the case of marine images. It is true when dealing with simple binary classification
problems. As a matter of fact, when the number and complexity of classes increases,
the performance degrades (as expected). This is because, typical deep models, such
as AlexNet, VGGNet and ResNet (from which the deep features are learned), were
trained on ImageNet, a dataset where most of the marine species are rare or unseen.
Subtle inter-class differences of marine species can be hardly captured by those deep
features.

2.2 Marine Species Classification Based on Hybrid Features

In this section, wewill introduce hybrid features which are constructed by combining
traditional hand-crafted features and deep CNN features. We analyze the strengths
andweaknesses of each kind of features, and further discuss how these hybrid features
affect the recognition performance.
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2.2.1 Traditional Methods Based on Hand-Crafted Features

Before feature learning techniques became prevalent, feature engineeringwas used in
a wide range of visual recognition tasks. The process of feature engineering is com-
plex, time-consuming and requires expert knowledge. However, the hand-crafted
features can explicitly describe the texture, color or shape of objects. Some descrip-
tors, such as HOG [17] and SIFT [18], produced notable performance gains a decade
ago. The quality and quantity of these features have a significant influence on the pre-
diction models. Generally, a combination of hand-crafted features yield better results
than using a single one. Different combinations of features are usually selected based
on the type of data and the recognition tasks. Prior marine species works based on
some popular hand-crafted features are discussed in the following:

• Marcos et al. [19] encoded color information from a normalized chromaticity
coordinate (NCC) space using histograms of mean values, combined with Local
Binary Pattern (LBP) texture descriptors. They used linear discriminant analysis
(LDA) for classification. When training and testing on a dataset of 138 images
with around 40 labels per image, captured at a depth of 1–3 m, their proposed
method achieved a binary classification accuracy ranging from 60 to 77%. The
performance was shown to degrade as the depth increases, because of the resulting
color degradation and poorer image quality. Besides, their results indicated that the
proposed features cannot provide sufficient discriminative information for coral
reef habitat classification.

• In the work of Pizarro et al. [20], the bag of SIFT features approach is applied
to encode the gray scale information. Moreover, histograms of NCC and Gabor
wavelet responses are used to represent the color and texture features, respectively.
The proposed algorithm was evaluated on a dataset with 453 images of 8 classes,
in which 35 images per class were available for training while the rest was used for
testing. The reported results demonstrate noticeable improvements when color and
texture information are included. However, because an entire image is required to
be classified as one class, heterogeneity within the image cannot be classified or
quantified.

• Stokes and Deane [21] introduced their discrimination metrics, which involves the
encoding of the color information with RGB histograms, and texture features with
discrete cosine transform (DCT). For their classification scheme, the probabil-
ity density-weighted mean distance (PDWMD) is calculated between the sample
patch and all the patches in the benthic library, which is generated by manually
selecting over 3,000 images from 18 classes. This methodwas tested on 16 quadrat
images. The reported results show their automated routine is more time-efficient
and has a comparable performance to the manual classification. However, it is not
trivial to determine the weights of the color and texture features when combining
them. Manually trying different options usually leads to suboptimal results. In
addition, the performance is largely limited by the size of the library.
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• Beijbom et al. [15] first introduced a benchmarking marine dataset, called the
Moorea Labeled Corals (MLC), which has 400,000 labels of 9 classes. In their
work, a powerful dictionary-based texture descriptor (texton) was proposed, which
encodes information in each channel of the LAB space usingMaximum Response
(MR) as feature representation. Their results were shown to achieve accuracies
between 67 and 83%. This proposed algorithm is regarded as a strong baseline on
the MLC dataset.

• Bewley et al. [22] presented a solution to a binary classification problem of kelp,
i.e., Kelp versus “Other”. The proposed approach uses a single SVM classifier
with Radial Basis Function (RBF) kernel applied to a large AUV dataset with
62,900 labels. The performance of different descriptors, (e.g., raw pixels, PCA,
GLCM, LBP and HOG), extracted from patches of various scales, was compared.
In addition, they assess whether the color information is useful for recognition by
extending some descriptors (Raw, PCA and GLCM) to work in the RGB space.
Their results revealed that a color extension of any descriptor at any scale could
provide superior results to its grayscale counterpart.

• In [23], the authors of [22] extended the classification problem to 19 classes fol-
lowing a taxonomical hierarchy using the same dataset collected under the IMOS
program [24]. They investigated the performance of PCA, LBP and feature learn-
ing (FL) with logistic regression (LR) classifiers. Their reported results show that a
simple LBP representation achieves the best performance, resulting in an F1-score
of 80.2% at the root node and around 85% at the highest level of the hierarchy.

In summary, texture-based features, including intensity histogram statistics, gray-
level co-occurrence matrix (GLCM) [25–27] statistics, Gabor wavelet response
statistics [28], and local binary pattern (LBP) [29], are the most commonly used
hand-crafted features for marine benthic species classification. For underwater ben-
thic images, the color degradation caused by the physical properties of the water
medium and ambiguous boundaries of benthic species reduce the reliability of indi-
vidual color or shape based features. However, advanced color-based features, such
as the opponent angle and hue color histograms [30], could still be used as comple-
mentary information for marine species classification.

2.2.2 State-of-the-Art Methods Based on Hybrid Features

Deep CNN features have shown their strong discriminative power and transferability
on many datasets. Several studies has revealed that a deep learning architecture
could capture semantic knowledge that is implicit within image features. However,
carefully selected handcrafted features can provide explicit physical descriptions of
certain objects. Therefore, when dealing with challenging datasets of uncommon
objects, such as rare marine species, it is necessary to develop more sophisticated
methods based on hybrid features. Several research groups have considered such
methods formarine species recognition tasks and achieved an improved performance:
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Mahmood et al. [16] combined color and texture based features, texton features
from [15], and CNN features extracted from a pre-trained VGGNet to train a 2-
layer MLP classifier. Under the same experimental settings, the proposed model
achieves accuracies of 77.9, 70.1, 84.5%, outperforming the approach in [15] (the
corresponding accuracies are 74.3, 67.3, 83.1%). It is worth mentioning that the
problem of ambiguous class boundaries of corals is partially alleviated by extracting
features at multiple scales. In addition, the class imbalance problem of the MLC
dataset was taken into account by downsampling the training data and assigning a
weight,which is inversely proportional to the downsampling rate, to the cost function.
However, there is still room for their accuracy to be improved.

Zheng et al. [31] investigated suitable ways to combine CNN features extracted
from the penultimate layer of pre-trained AlexNet and ten different types of hand-
crafted features. The minimal-redundancy maximal-relevance (mRMR) [32] was
used to select suitable feature combinations from all feature candidates. Given that
different features may fit different kernels, multiple kernel learning (MKL) [33] was
applied before using the one-versus-rest SVM classifiers. The proposed method was
evaluated on the same dataset with [34], i.e., the Taiwan sea fish dataset, which has
27,370 fish images of 23 classes from the Fish4Knowledge project. Their reported
results show that CNN features outperform handcrafted features, but are inferior
to hybrid features, which achieve a top accuracy of around 97.91%. However, this
method is highly time-consuming because it uses MKLwith the large computational
complexity. Moreover, high false negatives indicate the detrimental effects of a large
imbalance in data. This highlights the importance of resolving this class imbalance
problem for future research.

Blanchet et al. [35] used three state-of-the-art feature representations: completed
local pattern binary (CLBP) with hue and opponent angle histograms [36], textons
[15] and DeCAF [7]. Instead of combining those features by simply concatenating
them, they trained a one-versus-one SVM, with RBF kernel, for each feature repre-
sentation. Then, a fusion function is used to aggregate the normalized outputs from
the three classifiers. The final prediction corresponds to the one with the maximum
fused score. Experiments were conducted on a dataset with 75,195 labeled patches of
4 classes. The best achieved accuracy was 78.7%. Moreover, the prediction accuracy
was shown to be further enhanced by introducing rejection thresholding to the fused
scores so as to eliminate ambiguous points. Note that, in this work, species appear-
ing in small quantity were filtered out. However, this is not an advisable approach
to deal with the class imbalance problem, as it somehow discards potentially useful
information.

Deep CNN features and hand-crafted features have been shown to describe differ-
ent aspects of natural images. As a general rule, the discriminative ability of a certain
feature may act differently on various datasets. It is possible that these two kinds of
features can complement each other in some respects. Furthermore, an increased
feature dimension due to the combination of multiple features may lead to increased
computation loads. Generally, for a given dataset, deep CNN features could be used
as the first option for recognition tasks, while hybrid features may be used to improve
performance.
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2.3 End-to-End Training for Marine Species Classification
with Deep Convolutional Neural Networks

Classical machine learning methods implement classification tasks in two separate
steps: features extraction and classification. The performance largely depends on
the quality of the feature. Decades ago, machine learning scientists spent much
time designing “good” features. Hence, the previous machine learning approach
had a more suitable name of “feature engineering”. In recent years, researchers
have developed machine learning techniques which allow a system to automatically
capture “optimal” features from raw data. This is referred to as “feature learning”. As
a typical supervised feature learning method, neural networks, which employ end-
to-end training, can learn multi-level features of inputs from the outputs of different
hidden layers. With the number of layers increasing, deep neural networks achieved
a better recognition rate, which led to the emergence of “deep learning”.

End-to-end pattern refers to an approach in which a neural network accepts inputs
from one end and produces outputs at the other end, to solve multi-stage problems
with only one training. The learning process optimizes the network weights by con-
sidering the inputs and outputs directly, i.e., all the weights of the network are train-
able to map the inputs to their corresponding outputs. However, implementing an
end-to-end training for a visual task is challenging, since it requires a proper design
of network, enough training data, and high-performance GPUs. For marine species
classification, there are few examples of previously reported end-to-end training:

• CNNs were first used for the automated annotation of underwater images in [37].
Another contribution of this work was a newly proposed dataset, the Eliat Flu-
orescence Coral (EFC) dataset, which comprises 212 image-pairs of reflectance
and fluorescence images with 200 point annotations per image. They investigated
two methods of training CNNs on that data, with the same network structure of
LeNet [38]. The first method consists of an end-to-end training on the registered
images with five color channels, three from the reflectance image and two from
the fluorescence image, respectively. The second approach firstly trains two sepa-
rate CNNs on each image type and then uses an SVM classifier to consolidate the
outputs of the two CNNs. The results show that the latter achieves a better per-
formance, with a 90.5% accuracy. Theoretically, the five-channel network should
be more effective than the second approach, as it uses all image information. Two
possible factors, including inadequate training data and an imperfect registration
quality, may explain these results. Moreover, additional experimental results also
demonstrate that adding fluorescence information can improve the accuracy of
automated annotation.

• Li and Cui [39] addressed a plankton classification problemwith 30,336 grayscale
images of various sizes from 121 classes. A top-5 accuracy of 95.8%was achieved
by training an end-to-end network based on the structure of deep residual networks
(ResNet). Specifically, by comparing the performance of training ResNet and
VGG-19 net, ResNet outperformed VGG net in terms of both training time and
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testing accuracy. Their reported results confirm the significance of the depth of
convolutional neural networks and that deep residual networks can generalize well
in the case of plankton classification.

• Khan et al. [40] proposed a cost-sensitive deep neural network which can auto-
matically learn robust feature representations for both the majority and minority
classes. The pre-trained model of VGG net (configuration D) was used with two
extra fully connected layers which were added before the output layer. The last
two fully connected layers were initialized by random weights. The full network
was trained with their proposed cost functions. Their method was evaluated on
MLC dataset and achieved an improvement of 0.9 and 1.3% compared with the
baseline method of [15] (which achieved 74.3 and 67.3%).

End-to-end training reduces the need for pre-processing and post-processing, and
the results largely rely on self-learning models based on the data. Therefore, the
outputs can better fit the tasks. Existing underwater datasets are mostly too small to
train an end-to-end deep network. Therefore, it may be a future option to create large-
scale labelled marine datasets for achieving higher performance in deep learning.

3 Deep Learning for Marine Species Detection

Object detection aims at detecting instances of objects of certain classes in images
or videos. Popular applications of object detection include tracking objects, video
surveillance, people counting, and anomaly detection. In marine environments,
underwater video monitoring has been widely used for marine video surveillance
in the recent years. This approach is non-invasive and provides sufficient research
material. However, it is labor intensive and prone to error, since a massive quantity
of video data needs to be manually analyzed. Therefore, it is important to develop
an automated video-based marine species detection system, which can be used in a
range of applications, such as the estimation of the abundance of certain fish and the
study of the behavior and interactions between marine animals.

An object detection system needs to achieve: localization and classification. The
object detectors first look for objects and then use classifiers to test for the presence
of objects of certain classes. The traditional process of object detection comprises
three main steps: (i) region selection, which is often achieved by exhaustive meth-
ods, such as sliding windows; (ii) feature extraction, in which the commonly used
feature extractors are SIFT and HOG [17]; and (iii) classification, with SVM and
Adaboost [41] being the primary classifiers. However, there are two major prob-
lems in traditional object detection. First, the sliding window based region search
is computationally expensive and provides a large number of redundant windows.
Second, handcrafted features have poor robustness to various changes of appearance
of objects. In this section, current top performing object detectors for PASCAL and
ImageNet datasets will be introduced, as well as their applications to marine species
detection.
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An improved detection performance is often the result ofmore complex classifiers,
which leads to dramatically increased computation time. Until recently, this trade off
between computational tractability and high detection quality has been overcome by
the use of “detection proposals”. In the LifeCLEF 2015 fish task evaluation cam-
paign, the approach of [42] achieved the best performance in this video-based fish
recognition task with a sequence of simple but effective techniques. The approach
involves four steps: pre-processing, detection, recognition and post-processing. In
the pre-processing phase, the foreground image is segmented from the background
with a median value method and then smoothed using a bilateral filter. Subsequently,
a selective search is used to extract the candidate fish object window from the fore-
ground image. In the recognition stage, GoogleNet pre-trained on ImageNet is used
and fine-tuned using the fish training data. Finally, the outputs of the recognition
module are refined by considering temporally connected video segments. Although
the pre-processing and post-processing steps clearly help improve the final perfor-
mance, this approach is more likely to achieve a better performance if more advanced
and complex techniques are used.

Girshick et al. [43] presented “R-CNN” as a solution to object detection problems.
This approach involves the use of detection proposals and deep learning based clas-
sifiers. Region proposals, which correspond to possible locations of objects in the
image, were extracted using methods based on texture, edge and color information,
such as selective search [44], edge boxes [45], or binarized normed gradients (BING)
[46]. These methods largely reduce the number of region windows and maintain a
high recall rate. AlexNet was used to extract features of each region proposal. These
extracted features were then fed into SVMs for classification. The last step involves
the use of a bounding-box regression to refine the locations of the region proposals,
making the resulting windows closer to the ground-truth ones.

SPP-Net [47] was proposed to increase the running speed of R-CNN. Instead
of extracting CNN features in each region proposal separately, SPP-Net takes the
whole image as an input to a CNN and generates a feature map, in which region
proposals are projected from the original image. A spatial pyramid pooling layer
is added before the fully connected layers to transfer feature maps of arbitrary size
into a fixed-length feature vector. SPP-Net runs much faster than R-CNN for object
detection.

Combining the advantages of both R-CNN and SPP-Net, Girshick et al. [48]
proposed an improved algorithm: fast R-CNN. Compared with the framework of
R-CNN, a region of interest (RoI) layer is added after the last convolutional layer.
This layer replaces the max pooling layer, and a multi-task loss is adopted in the
fast R-CNN. This is achieved by replacing the last fully connected layer with two
sibling layers, one of which is a softmax layer for classification (instead of SVM
classifiers used in R-CNN), while the other integrates the bounding box regression
in the CNN training. Li et al. [49] applied the fast R-CNN framework to deal with a
more challenging fish dataset of poorer-quality images compared to ImageNet and
VOCdatasets. Their experimental results show that they achieve a better performance
in detection precision and speed over two popular approaches built on HOG-based
Deformable Part Models (DPM) and R-CNN, respectively.
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In the case of region-based CNN frameworks, the quality of the generated pro-
posals directly affects the accuracy of object detection. It is thus required to find
a more efficient way to extract less and higher-quality region proposals. Faster
R-CNN [50] was developed with a region proposal network (RPN) incorporated into
a fast R-CNN. This approach achieved the generation of region proposals by shar-
ing convolutional features with detection network, making region candidates cost-
free. RPN is a two-layer network, with an intermediate layer mapped from a spatial
n× n sliding window of the input feature map from the last convolutional layer, and
the other layer consisting of two sibling layers outputting the probability of object
or not-object and the coordinates for each region proposal, respectively. To generate
region proposals, an n× n window is slided over all the locations in the feature map
and the central position of each sliding window of the feature map is projected to a
point in the input image. Each of k anchors centered at that point is associated with a
scale and aspect ratio. Therefore, a feature map of size w× h can relate to k×w× h
anchors, which are generated proposals. In the pipeline of faster R-CNN, alternat-
ing optimization is used to ensure that RPN and the fast R-CNN are trained with
shared convolutional features. Faster R-CNN unifies the process of region proposal
generation with classification by CNN, achieving a comparable accuracy but a faster
running speed than fast R-CNN. Li et al. [51] adopted the faster R-CNN architecture
to improve the results in [49], demonstrating 15.1% higher Mean Average Precision
(mAP) over DPM baseline and a 3× boost in speed compared to fast R-CNN for
fish detection. Moreover, their results has shown that the high-quality region pro-
posals generated by RPN not only contributed to a higher fish detection precision
over the general proposal generation methods, but also improved the segmentation
performance.

In addition to the series of region proposal based deep learning methods, more
recent works have reported more advanced end-to-end object detection techniques,
such asYOLO[52] andSSD [53]. Thesemethodswill have a strong research potential
in the area of marine species detection.

4 Future Prospects

Although deep learning has achieved breathtaking performance in many aspects
of information processing, a number of challenges still remain. First, the training
of deep neural networks is computationally expensive. It is not easy to train deep
networks as this requires large datasets and a huge computing power. Moreover, it
critically depends on the expertise of the uses for the parameter tuning and it often
converges slowly to an optimal solution, making it a time-consuming process. Sec-
ond, future deep architectures should take into account sensory data transformations,
such as various geometric and photometric transformations, to further improve the
recognition accuracy. Third, there is a need to develop unsupervised feature learning
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approaches. Since the acquired datasets become larger and larger, it is unreasonable
and unrealistic to label most of the data. Based on the latest advances of deep learn-
ing, we will next introduce two techniques that could be applied to marine image
recognition systems to improve their overall performance.

4.1 Deep Learning to Improve Image Quality

The average accuracy of underwater image recognition is far behind the accuracy
of ground image recognition. This is mainly due to the poor quality of underwater
images, which often suffers from low contrast, blurring, and color degradation. These
degradation factors are due to the physical properties of the water medium and they
are not present in images taken on the ground. Several works, have shown good
effects and improved accuracy, when using simple image enhancement techniques
to improve the image contrast [15, 16]. This is a good indication that improved
enhancement techniques would achieve a better performance.

Recently, a number ofworks [54–56], have used deep learningmethods to improve
image quality with ground images. For example, in [54], an end-to-end mapping is
achieved between low-resolution images and high-resolution ones. A lightweight
structure was proposed for their deep convolutional network, which demonstrates a
state-of-the-art restoration quality as well as a fast speed for practical on-line usage.
Sun et al. [55] proposed a deep learning approach to address the problem of complex
non-uniform motion blur, which is usually caused by camera rotations or object
motion. Moreover, Schuler et al. [56] designed an end-to-end trainable model for
blind image deconvolution, which can be adapted to blurry images with strong noise
and enable a competitive performancewith respect to both image quality and runtime.

Overall, deep learning-based approaches have achieved better performance in
addressing image quality problems of normal images, when compared to state-of-
the-art handcrafted ones. For marine images, there is also a need for developing such
techniques in the future research.

4.2 Deep Learning in Segmentation

Traditional convolutional neural network structures, such as AlexNet, are suitable
for image-level classification and regression tasks whereby the final prediction of an
input image is a numerical description. For example, the output of AlexNet for Ima-
geNet dataset is a 1000-dimensional vector. This output vector represents the prob-
abilities of each class, to which the input image belongs. There is high demand for
image pixel-level classification in some application scenarios. This includes seman-
tic image segmentation, which requires classification results corresponding to each
pixel location of an input image, and edge detection, which is equivalent to binary
classification (edge or not edge) for each pixel.
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As to the problems of semantic segmentation and edge detection, the classical
approach is to cut a patch centered around each pixel, and then to train classifiers
using features extracted from the patch. In the testing phase, the learned model is
used to classify the patch around each pixel and assign a label to that pixel. This is the
idea of DeepContour [57] for image contour detection. However, this process which
requires the classification of each pixel one by one is time-consuming. Moreover,
the classification results are limited by the patches, making it difficult to model
contextual information,which thus impacts on the algorithmperformance. Long et al.
[58] proposed fully connected networks (FCNs) for pixel-level classification, which
efficiently address the problem of semantic segmentation. Unlike traditional CNNs,
in which convolutional layers are followed by fully connected layers yielding a fixed-
length feature vector for classification, FCNs accept arbitrary-size input images. In
addition, the deconvolutional layers are used to up-sample the feature map of the last
convolutional layer, outputting an input-size matrix of predictions for each pixel,
while retaining the spatial information of the original input image.

Segmentation techniques are often used inmaritime video surveillance to separate
moving objects (such as fish) from the static background. However, these techniques
are rarely used for marine image classification. Specifically, benthic data is anno-
tated by random point annotation, since the boundaries of benthic species are often
ambiguous. Therefore, the common annotationmethods that are adoptedwith ground
datasets, such as image labels and bounding boxes, cannot provide the required level
of details. For automated point annotation, which is similar to pixel-level classifi-
cation, the goal is to assign labels to a fixed number of randomly chosen points in
the image. Similarly to the methods mentioned above, the feature of each point for
training is extracted from a patch centered around that point. As a result, there are
some problems which are inherent to the patch size selection. Although it is inap-
propriate to identify a point relying on the feature extracted from any single patch, a
multiple scale approach would also not be adequate because it leads to a redundant
computation of features in the patches [15]. In future research, FCNs should be used
to address this problem, which should result in an improved accuracy and efficient
automated annotation.

5 Conclusion

This chapter has covered a broad literature review of deep learning techniques for
marine species recognition. Image classification for marine species is the main focus
of this chapter, as it is the basis of other visual tasks and the key tool for creating
marine species distribution maps. As the core of image classification, feature
extraction and feature combination methods specific for marine species have been
presented in detail. The pros and cons of the deep features and handcrafted features
for marine species have been discussed. In addition, this chapter has explored results
for marine species detection on videos. Marine data with their unique characteristics
such as color degradation and large variations in morphologies, and increasing
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quantity, has been providing computer vision field a great opportunity yet a big
challenge. We also argue that in future, challenges in marine data (e.g., poor image
quality and ambiguous boundaries) can be addressed by deep learning based image
quality enhancement and semantic segmentation techniques.

Acknowledgements This research was partially supported by China Scholarship Council funds
(CSC, 201607565016) andAustralianResearchCouncilGrants (DP150104251 andDE120102960).

References

1. T.Wernberg, S. Bennett, R.C. Babcock et al., Climate-driven regime shift of a temperatemarine
ecosystem. Science 353(6295), 169–172 (2016)

2. T.C. Bridge, R. Ferrari, M. Bryson et al., Variable responses of benthic communities to anoma-
lously warm sea temperatures on a high-latitude coral reef. PLoS ONE 9(11), e113079 (2014)

3. H. Singh, R. Armstrong, G. Gilbes et al., Imaging coral I: imaging coral habitats with the
SeaBED AUV. Subsurf. Sens. Technol. Appl. 5(1), 25–42 (2004)

4. J.W. Nicholson, A.J. Healey, The present state of autonomous underwater vehicle (AUV)
applications and technologies. Mar. Technol. Soc. J. 42(1), 44–51 (2008)

5. O. Beijbom, P.J. Edmunds, C. Roelfsema et al., Towards automated annotation of benthic
survey images: variability of human experts and operational modes of automation. PLoS ONE
10(7), e0130312 (2015)

6. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional
neural networks, inAdvances inNeural InformationProcessing Systems (2012), pp. 1097–1105

7. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion. arXiv:1409.1556 (2014)

8. K. He, X. Zhang, S. Ren et al., Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

9. J. Donahue, Y. Jia, O. Vinyals et al., DeCAF: a deep convolutional activation feature for generic
visual recognition, in Proceedings of the 31st International Conference on Machine Learning
(ICML), Beijing, China, vol. 32, June 2014, pp. 647–655

10. S. Razavian, H. Azizpour, J. Sullivan et al., CNN features off-the-shelf: an astounding base-
line for recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (2014), pp. 806–813

11. J. Jaeger, M. Simon, J. Denzler et al., Croatian Fish dataset: fine-grained classification of fish
species in their natural habitat (2015), pp. 1–7. http://dx.doi.org/10.5244/C.29.MVAB.6

12. A. Mahmood, M. Bennamoun, S. An et al., Automatic annotation of coral reefs using deep
learning, in Proceedings of OCEANS 16, Monterey, California, USA, Sept 2016, pp. 17–23

13. M. Bewley, A. Friedman, R. Ferrari et al., Australian seafloor survey data, with images and
expert annotations. Sci. Data 2 (2015)

14. A.Mahmood,M. Bennamoun, S. An et al., ResFeats: residual network based features for image
classification. arXiv:1611.06656 (2016)

15. O. Beijbom, P.J. Edmunds, D.I. Kline et al., Automated annotation of coral reef survey images,
in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, Rhode Island, June 2012, pp. 16–21

16. A. Mahmood, M. Bennamoun, S. An et al., Coral classification with hybrid feature representa-
tions, in Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix,
Arizona, USA, Sept 2016, pp. 25–28

17. N. Dalal, B. Triggs. Histograms of oriented gradients for human detection, in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1
(IEEE, 2005), pp. 886–893

http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.5244/C.29.MVAB.6
http://arxiv.org/abs/1611.06656


144 L. Xu et al.

18. D.G. Lowe, Object recognition from local scale-invariant features, in The Proceedings of
the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2 (IEEE, 1999),
pp. 1150–1157

19. M. Marcos, S. Angeli, L. David et al., Automated Benthic counting of living and non-living
components in Ngedarrak Reef, Palau via Subsurface Underwater video. Environ. Monit.
Assess. 125(1), 177–184 (2008)

20. A. Pizarro, P. Rigby, M. Johnson-Roberson et al., Towards image-based marine habitat classi-
fication, in Proceedings of OCEANS 08, Quebec City, QC, Canada, Sept 2008, pp. 15–18

21. M.D. Stokes, G.B. Deane, Automated processing of coral reef benthic images. Limnol.
Oceanogr.: Methods 7(2), 157–168 (2009)

22. M. Bewley, B. Douillard, N. Nourani-Vatani et al., Automated species detection: an experi-
mental approach to kelp detection from sea-floor AUV images, in Proceedings of Australasian
Conference on Robotics and Automation (2012)

23. M. Bewley, N. Nourani-Vatani, D. Rao et al., Hierarchical Classification in AUV imagery, in
Springer Tracts in Advanced Robotics, vol. 105, Jan 2015, pp. 3–16

24. IMOS: integrated marine observing system, Sept 2013. http://www.imos.org.au
25. R.M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image Classification. IEEE

Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)
26. L. Soh, C. Tsatsoulis, Texture analysis of SAR sea ice imagery using gray level co-occurrence

matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)
27. D.A. Clausi, An analysis of co-occurrence texture statistics as a function of grey level quanti-

zation. Can. J. Remote Sens. 28(1), 45–62 (2002)
28. G.M. Haley, B.S. Manjunath, Rotation-invariant texture classification using a complete space-

frequency model. IEEE Trans. Image Process. 8(2), 255–269 (1999)
29. Z. Guo, L. Zhang, A completed modeling of local binary pattern operator for texture classifi-

cation. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
30. J. Van de Weijer, C. Schmid, Coloring local feature extraction, in Proceedings of the 9th

European Conference on Computer Vision (ECCV 06), Graz, Austria, May 2006, pp. 334–438
31. Z. Chao, J.C. Principe, B. Ouyang, Marine animal classification using combined CNN and

hand-designed image features, in OCEANS’15 MTS/IEEE, Washington (IEEE, 2015), pp. 1–6
32. H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell.
27(8), 1226–1238 (2005)

33. C. Zheng, Jose C. Principe, B. Ouyang, Group feature selection in image classification with
multiple kernel learning, in 2015 International Joint Conference on Neural Networks (IJCNN)
(IEEE, 2015), pp. 1–5

34. H. Qin, X. Li, J. Liang et al., DeepFish: accurate underwater live fish recognition with a deep
architecture. Neurocomputing 187, 49–58 (2016)

35. J.N. Blanchet et al., Automated annotation of corals in natural scene images using multiple
texture representations. PeerJ Preprints 4, e2026v2 (2016)

36. A.S.M. Shihavuddin, N. Gracias, R. Garcia et al., Image-based coral reef classification and
thematic mapping. Remote Sens. 5(4), 1809–1841 (2013)

37. O. Beijbom, T. Treibitz, D.I. Kline et al., Improving automated annotation of benthic survey
images using wide-band fluorescence. Sci. Rep. 6 (2016)

38. Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, in The
Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)

39. X. Li, Z. Cui, Deep residual networks for plankton classification, inOCEANS 2016MTS/IEEE,
Monterey, Sept 2016, pp. 1–4

40. S.H. Khan, M. Hayat, M. Bennamoun et al., Cost-sensitive learning of deep feature represen-
tations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. (2017) (in press)

41. P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR), vol. 1 (2001), pp. I–I

http://www.imos.org.au


Deep Learning for Marine Species Recognition 145

42. S. Choi, Fish identification in underwater video with deep convolutional neural network:
SNUMedinfo at LifeCLEF fish task 2015, in CLEF (Working Notes) (2015)

43. R. Girshick, J. Donahue, T. Darrell et al., Rich feature hierarchies for accurate object detection
and semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580–587, 2014

44. J.R. Uijlings, K.E. Van De Sande, T. Gevers et al., Selective search for object recognition. Int.
J. Comput. Vis. 104(2), 154–171 (2013)

45. C. Zitnick, P. Dollr, Edge boxes: locating object proposals from edges, inEuropean Conference
on Computer Vision (Springer International Publishing, 2014), pp. 391–405

46. M. Cheng, Z. Zhang,W. Lin et al., BING: binarized normed gradients for objectness estimation
at 300 fps, inProceedings of the IEEEConference on Computer Vision and Pattern Recognition
(2014), pp. 3286–3293

47. K.He,X.Zhang, S.Ren et al., Spatial pyramidpooling in deep convolutional networks for visual
recognition, in European Conference on Computer Vision (Springer International Publishing,
2014), pp. 346–361

48. R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 1440–1448

49. X. Li, M. Shang, H. Qin et al., Fast accurate fish detection and recognition of underwater
images with Fast R-CNN, in OCEANS’15 MTS/IEEE, Washington, Oct 2015, pp. 1–5

50. S. Ren, K. He, R. Girshick et al., Faster R-CNN: towards real-time object detection with region
proposal networks, in Advances in Neural Information Processing Systems (2015), pp. 91–99

51. X. Li, M. Shang, J. Hao et al., Accelerating fish detection and recognition by sharing CNNs
with objectness learning, in OCEANS 2016-Shanghai, 10 Apr 2016 (IEEE, 2016), pp. 1–5

52. J. Redmon, S.Divvala,R.Girshick et al.,Youonly look once: unified, real-time object detection,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016),
pp. 779–788

53. W. Liu, D. Anguelov, D. Erhan et al., SSD: single shot multibox detector, in European Con-
ference on Computer vision (Springer, Cham, 2016), pp. 21–37

54. C. Dong, C.L. Chen, K. He et al., Image super-resolution using deep convolutional networks.
IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

55. J. Sun, W. Cao, Z. Xu et al., Learning a convolutional neural network for non-uniform motion
blur removal, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2015), pp. 769–777

56. C.J. Schuler, M. Hirsch, S. Harmeling et al., Learning to deblur. IEEE Trans. Pattern Anal.
Mach. Intell. 38(7), 1439–1451 (2016)

57. W. Shen, X. Wang, Y. Wang et al., Deepcontour: a deep convolutional feature learned by
positive-sharing loss for contour detection, inProceedings of the IEEEConference onComputer
Vision and Pattern Recognition (2015), pp. 3982–3991

58. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 3431–3440



Deep Molecular Representation
in Cheminformatics

Peng Jiang, Serkan Saydam, Hamed Lamei Ramandi, Alan Crosky
and Mojtaba Maghrebi

Abstract Quantum-chemical descriptors are powerful predictors of discovering and
designing new materials of desired properties. Wave-function-based methods are
often employed to calculate quantum-chemical descriptors, which are time consum-
ing. Recently, machine learning models have been used for predicting quantum-
chemical descriptors because of their computational advantages. However, it is dif-
ficult to generate a proper molecular representation for training. This work reviews
recent molecular representation techniques and then employs variational autoen-
coders to encodeBag-of-Bondmolecular representation. The encoded representation
reduce the dimensionality of features and extract the essential information through
a deep neural network structure. Results on a benchmark dataset show that the deep
encoded molecular representation outperforms Bag-of-Bond representations in pre-
dicting electronic quantum-chemical descriptors.
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1 Introduction

For centuries, chemists have designed and performed time-consuming experiments to
synthesize new materials of desired properties. With the development of computers,
Cheminformatics, a new discipline, has been established and developed. Chemin-
formatics applies state-of-the-art informational and computer techniques to solve a
wide range of problems in fields of Materials and Chemistry such as storing, index-
ing and searching.Moreover, Cheminformatics has absorbedmachine learning-based
and data mining-based techniques to learn the latent knowledge in molecules. The
knowledge can be used by chemists and materials engineers for guiding the devel-
opment of new materials of desired properties.

Quantitative structure-activity relationship (QSAR) is a typical application of
Cheminformatics in predicting properties of materials. For example, QASR mod-
els have been widely used in drug discovery [1–3] and biomedical study [4, 5]
because of their moderate computation cost and advantages in accelerating devel-
opment and testing. Recently, researchers have begun to use QSAR models to solve
problems in different fields. Gómez-Bombarelli et al. [6] developed a data-driven
QSAR model and demonstrated its effectiveness in designing organic light-emitting
diodes. Camacho-Mendoza et al. [7] showed the reliability of QSAR model in pre-
dicting the inhibition performance of organic corrosion inhibitors. Li et al. [8] proved
the effectiveness of QSAR model in predicting performances of corrosion inhibitors
with simulations and experiments, and they also showed that the QSAR-based sim-
ilarity analysis can be employed for developing novel corrosion inhibitors.

To conduct QSAR analysis, a set of features that represent the material is often
needed. Ideal molecular features convey all of the essential information required
for predicting its properties so that the relationship can be well approximated by
mapping these features to the properties of the corresponding material. Most of
the works employing QSAR models for predicting materials properties or discov-
ering new compounds have used quantum-chemical descriptors as the features [9,
10]. Quantum-chemical descriptors, also known as quantum mechanical properties,
deliver simple molecular information that can provide insight into the electronic
and thermochemical structures of molecules. Quantum-chemical descriptors that are
widely used in QSAR studies include atomic charges,molecular orbital energies,
frontier orbital densities, dipole moments and polarity indices. Karelson et al. [9]
gave detailed descriptions of quantum-chemical descriptors and applications. The
correlations between quantum-chemical descriptors and different properties such as
biological activities [11], reactivity of organic compounds [12] and octanol/water
partition coefficients [13] have been established and demonstrated.

In general, most of quantum-chemical descriptors are obtained from compu-
tational chemical methods, which are based on classical molecular force fields
and quantum-chemical methods. Semiempirical quantum-chemical methods based
on simplification and approximation of the molecular orbital theory (SCF MO),
have also been extensively used. Recently, Density functional theory (DFT) has
been becoming one of the most popular methods for calculating quantum-chemical
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descriptors. DFT is an Ab initio quantum-chemical method based solely on quan-
tummechanics. In comparison to experiments, computational chemistrymethods are
easy to perform and less costly. Furthermore, calculations can be performed on any
molecules, even those that do not exist. This offers valuable opportunities to explore
the huge unknown chemical compound space (CCS). However, calculations could
be very costly in terms of the amount of time required. DFT can take up to several
days to perform the calculations for one molecule, which is not an economic means
given the billions of molecules in CCS.

To accelerate the calculation of quantum-chemical descriptors, a few researchers
have tried to use machine learning methods [14, 15]. Though less common in physi-
cal chemistry, they demonstrated that it is possible to estimate the quantum-chemical
descriptors of molecules based on the correspondence principle in quantummechan-
ics and statistical mechanics. Ramakrishnan and von Lilienfeld [16] pointed out that
the success ofmachine learningmethods in producing quantum-chemical descriptors
depends on whether four conditions can be met: (i) there is a rigorous relationship
between the system and the quantum properties; (ii) the representations carry enough
information needed to reconstruct the systems’ Hamiltonian; (iii) the training set and
test set need to be from the same distribution; (iv) the training set is large enough.
Due to the computational advantage and good transferability in machine learning,
more works on machine learning-based quantum-chemical studies have been pub-
lished [16, 17]. However, the four conditions determining the success of machine
learning still act as the main challenges. The most difficult one, to our knowledge,
is the representations of molecules. These representations are often required to be
fixed-size vectors, which are used as the input features in machine learning models.
The elements, length and bonds of molecules in CCS vary dramatically, which add
difficulties in developing a proper representation for machine learning models.

Thiswork is structured as follows: Sect. 2 reviews the recent findings in developing
molecular representations; Sect. 3 introduces the deep learning techniques used in
producing a deep molecular representation, followed by Sects. 4 and 5, where the
database and the model structure are discussed. Section 6 gives the simulation results
and discussion; the conclusions that can be drawn from this work is in Sect. 7.

2 Molecular Representation

Asmentioned previously, a proper representation of molecules is critical for machine
learning models and often requires feature engineering techniques to improve the
calculation performance. In this section, several popular molecular representation
methods are reviewed.
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2.1 Molecular Fingerprint

Molecular fingerprint is an approach for generating a string of binary numbers (0, 1)
that shows the existence of a specific function group [18]. One simple interpretation
of fingerprints is a series of binary numbers. For a given length vector, “1” in one
location of the vector means a predefined function group exists in this compound,
and “0” means the absence of this group. On advantage of this representation method
is that these binary vectors can be effectively processed by computers. In addition,
researchers can customize the predefined vectors based on different scenarios. Fin-
gerprint requires little reconstruction of the original information compared to many
other representations. This helps in improving the calculation efficiencies and more
importantly, similarity tests among molecules can be conducted easily with finger-
print descriptors.However, the searching and designing ofmolecule fingerprintmight
be difficult and time-consuming for some large and complex polymers.

Merck [19] sponsored a competition in 2012 on predicting activities of differ-
ent molecules. This challenge involved 15 datasets of different sizes (2000–50000
molecules) with thousands of descriptors as the features (fingerprints). The first prize
went to a team of researchers who used an ensemble of several machine learning
methods, including the state-of-art deep learning, gradient boosting machine, and
Gaussian process. Their model achieved a mean R2 of 0.49 over the 15 datasets,
which was a remarkable improvement compared to the Merck internal benchmark
(0.42) [20]. Inspired by their work, Unterthiner et al. [21] applied deep learning
in the dataset from the ChEMBL database. They compared the performance of
deep learning to seven target prediction models, demonstrating that deep learning
outperformed other methods regarding the area under receiver operating charac-
teristic (ROC) curve, i.e. one of the useful criteria for assessing the classification
performance.

2.2 Coulomb Matrix

Among all of the available molecular representation methods, fingerprints is one of
themost popularmethods because of its simplicity and low computational cost. How-
ever, to generate a complete fingerprint, a large feature database is required. More-
over, the length of fingerprint might be too long. Coulomb Matrix [14, 15], which
considers only the structural information of molecules, has been proposed to produce
a relatively short and simple representation. Let Z be the nuclear charge and R be the
atomic position in 3D space of each atom in onemolecule.With Z and R as input, the
quantum-chemical descriptors can be estimated through first principles-based DFT
methods.Using the same information as input features,machine learning-basedmod-
els can provide an alternative to time-consuming DFT calculations when sufficient
samples are available. CoulombMatrix serves as a means of feature engineering that
combines both Z and R. Specifically, for a molecule of N atoms, CoulombMatrix is
a symmetric matrix of N × N . Each element M in a Coulomb Matrix is defined as:
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Mi j =
{
0.5Zi

2.4, if i = j
Zi Z j

|Ri−R j | , if i �= j
(1)

In a Coulomb Matrix, the diagonal elements correspond to the estimation of poten-
tial energy of the free atom, while the off-diagonal elements encode the Coulomb
interaction between two atoms. Due to its differentiability with respect to the atomic
position and nuclear charge, Coulomb Matrix is a proper candidate for the input
features used by Machine learning.

Although Coulomb Matrix adequately summarizes the essential information that
is needed for DFT calculation, it fails to represent the unique ordering of a molecule.
In other words, a molecule can be represented by multiple Coulomb matrices by
introducing a permutation in the rows and columns. Several solutions to this problem
have been proposed [22]. A solution is using a sorted Coulomb Matrix based on the
norms of each row. But this method removes the differentiability of a Coulomb
Matrix. Another solution is using a randomly sorted Coulomb Matrices and letting
the machine learning algorithms to learn the invariance from the permuted matrices.
Results [22] showed that the latter solution outperforms the former solution by the
predicted accuracy of atomization energies.

2.3 Bag of Bonds

To compromise the invariance property of Coulomb Matrix, Bag of Bonds (BOB)
was proposed [23]. BOB is inspired by Bag of Words (BOW), which is one of the
natural language processing (NLP) techniques. Similar to Cheminformatics, one of
the biggest challenges in the field of NLP is representing texts with fixed-size vectors
so that algorithms can extract and process the true information. BOW addresses this
through tokenization, counting and normalization. Tokenization is the process of
breaking the texts into possible tokens. The tokens can be words, phrases or any
predefined elements. Then the occurrences of tokens in each text is counted. Finally,
normalization is performed to assign weights to tokens for obtaining the numerical
feature vectors. BOB adopts the three key processes from BOW and produces fixed-
size feature vectors for molecules. Specifically, the elements in Coulomb Matrix
are handled as tokens. These elements are sorted by the combination of nuclear
charges and filled into one bag. Therefore, each token in one bag carries the spatial
information and the nuclear charges.

Though Coulomb Matrix and BOB reduce the feature length dramatically com-
pared to molecular fingerprints, they generate fixed-size features by simply padding.
This makes the features of some molecules very sparse if a complex molecule is
involved in the database. Besides the three molecular representation methods, there
are several interesting methods including scattering transforms [24], atomic dis-
tances [25] and graph models [26, 27]. The choice of a proper representation is a
trade-off among computational efficiency, information complexity and accessibility.
A comparison of molecular representations was reviewed in [28].
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3 Theoretical Background

3.1 Deep Neural Networks

Deep neural networks (DNN) is an advanced version of conventional artificial neural
networks (ANN). An ANN is a multiple-layer network consisting of neurons that
process the raw input information using an activation function f (z). A neuron is
associated with a default bias term b and weights from neurons w in the front layer.
The input features go through each layer of ANN, and then a neuron processes the
information in the following form:

f (z) = f (
N∑
i=1

wi xi + b) (2)

A typical ANN contains three types of layers for different tasks: (i) the input
layer, which is built at the bottom, is for receiving the raw input information; (ii)
the output layer, which is built at the top, is for generating predictions and (iii) the
hidden layers that are built in the middle are for reconstructing the raw information.
Normally, DNN involves two or more hidden layers. In addition, several special
architectures are designed for DNN to process the complex relationship in the raw
input such as spatial and temporal information [29]. DNN has obtained a number
of notable successes in image processing [30], speech recognition [31] and natural
language processing [32].

3.2 Variance Autoencoders

Proposed by Kingma and Welling [33], VAE is a deep learning generative archi-
tecture that attempts to construct a probability distribution of latent variables. An
autoencoder is an algorithm that reproduces original data by encoding and decoding.
A simple autoencoder consists of an encoder and a decoder. Let x be the original
data. An encoder transforms original data into a hidden representation z through a
function f : z = f (x), while a decoder projects the hidden representation from the
encoder into r through function g: r = g( f (x)), where r should be close enough
to x so the raw information can be reserved after the encoding-decoding process.
Figure1 shows a typical structure of VAE.

Since the final output of the decoder is only an approximation of the input, the fea-
ture transformation by encoding is considered. This type of feature transformation is
the essential and effective information extracted from the original data [33]. Another
remarkable ability of VAE is that it produces new data points through sampling from
the distribution in the latent space which enables obtaining the unknown samples
similar to the input. This ability makes VAE a generative model. Generative models
is known as a powerful tool for health diagnosis due to following justifications. The
first reason is that labeling observations, which is costly and time consuming, is
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Fig. 1 Schematic view of VAE

eliminated using generative models. This is performed through allowing for observ-
ing the similar data points by providing a few labeled samples. The second reason is
that for a generative model, architectures of the model, latent distribution and tuning
hyperparameters are modularized. This means that prior knowledge or experience
can be easily integrated in this model.

VAE learns to produce a probabilistic distribution of original data by encod-
ing, which is actually an approximation on a true posterior density pθ (z | x) =
pθ (x | z)pθ (z)/pθ (x). VAE tries to infer a variational approximation qφ(z | x) to
the intractable true posterior. A metric, Kullback-Leibler (KL) divergence (DKL ) is
then introduced to measure the degree of similarity between qφ(z | x) and pθ (z | x).
To obtain an optimal model, i.e. the optimal weights for the encoder and the decoder
networks, with the lowest generalization error, the marginal likelihood needs to be
maximized. This is achieved by summation of the log-likelihood across data points:

log pθ (x) = L (θ, φ; x) + DKL(qφ(z | x) ‖ pθ (z | x)) (3)

where L (θ, φ; x) is the variational lower bound. Since DKL is non-negative, the
variational lower bound can be rewritten as:

L (θ, φ; x) = Eqφ(z|x)[logpθ (x | z)] − DKL(qφ(z | x) ‖ pθ (z | x)) (4)
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The first right hand side (RHS) term is the expected reconstruction error that is used
to force the decoder to reconstruct the data. The second RHS term, KL divergence,
measures how close the produced approximation is to the true posterior, which can
be viewed as a regularizer.

For each input sample x , a set of hidden representations z is generated by sampling
from qφ(z | x). VAE utilize the reparameterization trick to sample z:

z = μ + σ � ε (5)

where μ and σ are the mean value and the standard deviation of the approximate
posterior qφ(z | x). � denotes an element-wise product. ε is a Gaussian noise ε ∼
N (0, I ). This process enables transforming z from a random drawn value to a
deterministic value with noise. Since the mean and standard deviation are obtained
from the encoder’s inference procedure, backpropagation with respect to θ through
the variational lower bound function is employed. In addition to generating new
samples and dimension reduction, VAE can also visualize the high-dimensional data
by projecting it into a low-dimensional latent space. We use this property to discover
the structural similarity of the data in the following case study.

4 Database

In this study, QM9 set [34] is used as a benchmark dataset. QM9 set is a subset of
GDB-13 set. GDB-13 was published by Reymond et al. [35], which contains 166
billion organic small molecules made of CHONF. The atom distribution is shown in

Fig. 2 Atom distributions of QM9 set
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Table 1 Description of the calculated properties in QM9 set

No. Property Unit Description

1 μ Debye Dipole moment

2 α a30 Isotropic polarizability

3 EHOMO Hartree Energy of highest occupied molecular orbital (HOMO)

4 ELUMO Hartree Energy of lowest occupied molecular orbital (LUMO)

5 Egap Hartree Gap, difference between LUMO and HOMO

Fig. 2. Most of the molecules in QM9 set have 18 atoms. The geometric and quantum
chemical properties were obtained for smallest 133885 (around 134k) molecules in
GDB-9 from DFT quantum chemistry calculations at B3LYP/6-31G(2df,p) level of
theory. The electronic quantum-chemical descriptors are chosen as targets in this
work, which are provided in Table1. Properties such as gap energy, EHOMO and
ELUMO have proven to be powerful features for predicting performances of organic
corrosion inhibitors [7] and semiconductors [36].

5 Model

BOB is used as the method for producing the molecular representations for QM9
dataset in this study. As mentioned in Sect. 2, BOB extracts the elements in Coulomb
Matrix and sorts it according to their magnitudes. Therefore, elements in BOB basi-
cally carry information about the positions of atoms and nuclear charges. However,
Hansen et al. [23] found that the inclusion of the diagonal elements from theCoulomb
Matrix contribute little to the improvement of machine learning-based predictions.
Hence, only the off-diagonal elements that carry interatomic interactions are used
for BOB molecular representations. Since BOB simply produce fixed-size represen-
tations by padding, this makes some molecules’ features pretty sparse if a complex
molecule is involved in the database. Moreover, this might introduce redundancy and
lead to a poor prediction performance. Inspired by Rafael’s work [6], VAE is used for
reconstructing BOB molecular representations in this study to address the problem,
and then a three-layer conventionalANN is used to predict several quantum-chemical
descriptors. All of the models are built with Keras [37] and Tensorflow [38]. The
employed VAE consists of an encoder and a decoder. The encoder has two 1D con-
volutional layers and one dense layer (fully connected layer) of dimension 200. The
decoder has a dense layer of dimension 200 for connecting the encoder’s last dense
layer, followed by two recurrent unit networks of dimension 666. With the encoded
representations as the input, a conventional baseline ANN model is built for fitting
the properties. This ANN contains only one hidden layer of dimension 200 and an
output layer of dimension 1. The raw dataset is divided into a training set (80%) and
a test set (20%). The training set is used for training VAE-ANN and ANN, and the
the test set is used for assessing its out-of-sample performance.
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6 Simulation Results and Discussion

During the training for producing VAE-based molecular representations, 20% of the
training data (raw BOB features) is used for validation, and the mean absolute error
(MAE) is employed as an error measure. The MAE loss for training and validation
can be seen in Fig. 3. After almost 80 iterations, both training loss and validation loss
converge although an obvious fluctuation is observed for the validation set. The two
curves are close to each other, demonstrating that training set and validation set are
from the same distribution.

Table2 shows the MAE and the corresponding standard deviation (prediction
errors) of the predicted quantum-chemical descriptors forVAE-ANNand the baseline
ANNmodel. Results show that VAE-ANNoutperforms the baselinemodel regarding
the MAE for all of the electronic quantum-chemical descriptors. This is because of
the deep extraction ability of VAE that removes the redundancies while keeping the
essential information from the raw data.

By adjusting the dimensions for the latent space in VAE’s encoder from 200
to 2, the encoded representations is visualized and in Fig. 4. It is clearly observed
that the 2D molecular representations are clustered according to ELUMO values.
This allows discovering new molecules of desired properties by sampling from the
clusters of similar properties. Then VAE can employ the decoder to reconstruct the
new molecule’s BOB molecular representation.

Fig. 3 MAEloss curves of the training set andvalidation set duringproducingVAE-basedmolecular
representations



Deep Molecular Representation in Cheminformatics 157

Table 2 MAE of electronic quantum-chemical descriptors in the test set for ANN using VAE
encoded molecular representations

No. Property VAE-ANN ANN

1 µ (Debye) 0.6443 (0.9200) 0.9312 (1.2864)

2 α (a30) 0.9870 (1.5538) 2.8997 (4.0793)

3 EHOMO (Hartree) 0.0084 (0.0114) 0.0141 (0.0193)

4 ELUMO (Hartree) 0.0131 (0.0176) 0.0268 (0.0338)

5 Egap (Hartree) 0.0154 (0.0202) 0.0278 (0.0352)

Fig. 4 VAE-based molecular representations in 2D latent space. The color represents the nor-
malized actual ELUMO values. It is clear that the molecular representations are clustered by the
corresponding ELUMO values

7 Conclusion

In this work the applications of machine learning in Cheminformatics are outlined
together with the background of quantum-chemical descriptors in discovering and
designing new materials of desired properties. Currently DFT methods used in pro-
ducing quantum-chemical descriptors is costly in terms of calculation time given the
billions of molecules in CCS. Due to the computation advantages, machine learn-
ing methods have been becoming popular in producing quantum-chemical descrip-
tors. However, a reliable fixed-size molecular representation used as the input fea-
tures is essential for determining the prediction performances. Representations such
as molecular fingerprints, Coulomb Matrix and BOB are popular molecular repre-
sentations used in industry and academia. However, due to the variable lengths of
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molecules in CCS, many of these representations can only generate fixed-size rep-
resentation by simple padding. This makes molecular representations very sparse;
notably, this might introduce redundancies. To produce a more reliable molecular
representation, this work employs VAE to encode BOB features and reduces the
dimensions from 666 to 200. Tests on QM9 set show that the prediction performance
using the encoded molecular representation on several electronic quantum-chemical
descriptors are improved compared to a baseline ANN model using the raw BOB
descriptors. In addition, VAE enables producing new BOB by simply sampling from
the latent space so that new molecules of desired properties can be found in clusters
of molecules of similar properties. In future work, more detailed studies are rec-
ommended to further investigate the methods for transforming the calculated BOB
features back into formats like the SMILE strings to allow for validation of the new
molecules.
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A Brief Survey and an Application
of Semantic Image Segmentation
for Autonomous Driving

Çağrı Kaymak and Ayşegül Uçar

Abstract Deep learning is a fast-growing machine learning approach to perceive
and understand large amounts of data. In this paper, general information about the
deep learning approach which is attracted much attention in the field of machine
learning is given in recent years and an application about semantic image segmen-
tation is carried out in order to help autonomous driving of autonomous vehicles.
This application is implemented with Fully Convolutional Network (FCN) architec-
tures obtained by modifying the Convolutional Neural Network (CNN) architectures
based on deep learning. Experimental studies for the application are utilized 4 differ-
ent FCN architectures named FCN-AlexNet, FCN-8s, FCN-16s and FCN-32s. For
the experimental studies, FCNs are first trained separately and validation accura-
cies of these trained network models on the used dataset is compared. In addition,
image segmentation inferences are visualized to take account of how precisely FCN
architectures can segment objects.

Keywords Deep learning · Convolutional Neural Network · Fully Convolutional
Network · Semantic image segmentation

1 Introduction

With advanced technology, modern camera systems can be placed in many places,
frommobile phones to surveillance systems and autonomous vehicles, to obtain very
high quality images at low cost [1]. This increases the demand for systems that can
interpret and understand these images.

The interpretation of images has been approached in various ways for years.
However, the process involving reviewing images to identify objects and assess their
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importance is the same [2]. Learning problems from visual information are generally
separated into three categories called as image classification [3], object localization
and detection [4], and semantic segmentation [5].

Semantic image segmentation is the process ofmapping and classifying the natural
world for many critical applications such as especially autonomous driving, robotic
navigation, localization, and scene understanding. Semantic segmentation, which
is a pixel-level labeling for image classification, is an important technique for the
scene understanding. Because each pixel is labeled as belonging to a given semantic
class. A typical urban scene consists of classes such as street lamp, traffic light, car,
pedestrian, barrier and sidewalk.

Autonomous driving will be one of the revolutionary technologies in the near
future in terms of the impact on the lives of people living in industrially developed
countries [6]. Many research communities have contributed to the development of
autonomous driving systems thanks to rapidly the increasing performance of vision-
based algorithms such as object detection, road segmentation and recognition of
traffic signals. An autonomous vehicle must sense its surroundings and act safely
to reach a certain target. Such functionality is carried out by using several types of
classifiers.

Approximately up to the end of 2010, the identification of a visual phenomena
was constructed as a two-stage problem. The first of these stages is to extract features
from the image. Extensive efforts have been made to extract the features as visual
descriptors and consequently the descriptors obtained by algorithms such as Scale
Invariant Feature Transform (SIFT) [7], Local Binary Patterns (LBP) [8] and His-
togram of Oriented Gradients (HOG) [9] have become widely accepted. The second
stage includes to use or design classifier. Artificial Neural Networks (ANNs) are
one of the most important classifiers. ANNs are not a new approach and its past
is based on about 60 years ago. Until the 1990s, ANNs used in various fields did
not provide satisfactory achievements on nonlinear systems. Therefore, there are
not many studies about ANNs for a certain period. In 2006, Hinton et al. [10] used
ANNs in speech recognition problems and achieved successful results. Thus, ANNs
have come up again in the scientific world. Henceforth, researchers thought that the
ANNs would be the solution to problems in most areas, but they soon realized that it
was a wrong idea with various reasons, such as failure in the training of multi-layer
ANNs. Then, the researchers turned to new approaches finding the most accurate
class boundaries in feature space and input space such as Support Vector Machine
(SVM) [11], AdaBoost [12], and Spherical and Elliptical classifiers [13] using the
features obtained from the first stage. In addition to over-detailed class models to
facilitate the search for completely accurate boundaries, methods of transforming
feature space such as Principal Component Analysis (PCA) and kernel mapping
have also been developed.

Later, in image recognition competitions such as the ImageNet Large Scale Visual
Recognition Competition (ILSVRC), ANN-based systems took the lead and began
to get first place every year by making a big difference to other systems. As time
progressed, especially through the internet, very large amount of data has begun
to be produced and stored in the digital environment. When processing this huge
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amount of data, Central Processing Units (CPUs) on the computers have been slow.
Along with the developments in GPU technology, the computational operations can
be performedmuch faster by using the parallel computing architecture of the graphics
processor. With this increase in process power, the use of deeper neural networks
has become widespread in practice. By means of this, “Deep Learning” term has
emerged as a new approach in the machine learning.

Deep learning is the whole of the methods consisting of ANNs, which has a deep
architecture with an increased number of hidden layers. At each layer of this deep
architecture, features belonging to the problem is learned and this learned features
create an input into an upper layer. This creates a structure from the bottom layer to
the top layer, where the features are learned from the simplest to the most complex.
It would be useful to analyze the vision system in the human brain to understand this
structure. The signals coming to the eyes through nerves are evaluated in a multi-
layer hierarchical structure. At the first layer where the signal is coming after the
eyes, the local and basic features of the image, such as the edge and corner, are
determined. By combining these features, at the next layer, mouth, nose, etc. details
and at the subsequent layers, features belonging to the overall of image, such as face,
person and location of objects, respectively can also be determined. Convolutional
Neural Networks (CNNs) approach, which combines both feature extraction and
classification capabilities in computer vision applications, work in this way.

Deep learning brings the success of artificial intelligence applications developed
in recent years to very high levels. Deep learning is used in many areas such as
computer vision, speech recognition, natural language processing and embedded
systems. In the ILSVRC, which has been carried out using huge data sets in recent
years, the competitors have been directed to the CNN approaches and achieved great
success [14]. Companies such as Google [15], Facebook [16], Microsoft [17] and
Baidu [18] have realized the progress in deep learning and carried out studies on this
topic with great investments.

Agraphical representation of search interest of the “DeepLearning” on theGoogle
search engine in the last 5 years is shown in Fig. 1.

The advancement of CNNs is based on a high amount of labeled data. In general
terms, CNNs carry out end-to-end learning by predicting class labels from raw image
data by learningmillions of parameters, which ismore successful thanmethods based
on visual descriptors.
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Fig. 1 Search interest of the “Deep Learning” on the Google search engine in the last 5 years [19]
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In semantic image segmentation, a large number of studies have recently been con-
ducted [20–32] to overcome of the supervised semantic segmentation using images
with pixel-pixel annotations to train the CNNs. Some of the semantic segmentation
studies was tried to directly adopt CNN architectures designed for image classi-
fication. However, the results were not very satisfactory. Because standard CNN
architectures are not suitable to the semantic segmentation due to loss of the spatial
position. While on one hand, repeated convolutional and pooling layers reduce the
spatial resolution of feature maps, on the other hand, fully connected layers produce
class probability values by completely discarding spatial information to produce an
output.

In recent years, a lot of network architectures have emerged that are capable
of bringing semantic information to a pixel location [20, 21]. First, Long et al. [20]
converted the pre-trainedVGG-16 [33] CNN architecture for classification into Fully
Convolutional Networks (FCNs). For this, they replaced all fully connected layers
of the CNN architecture with convolutional layers and added deconvolutional layers
that restore the original spatial resolution with the skip connections. Thus, three
different versions of FCN called FCN-8s, FCN-16s and FCN-32s were obtained,
and the spatial resolution at the output was brought to the spatial resolution of the
input image to generate the class probability values for each pixel.

The lack of a deep deconvolutional network trained in a large dataset makes it
difficult to completely reconstruct nonlinear structures of object boundaries. Chen
et al. [21] have contributed to correct this problem by applying the Conditional
Random Field (CRF) method to the output of FCN.

Noh et al. [22] constructed FCN architecture named DeconvNet by using the con-
volutional layers adopted from the VGG-16 network architecture with the proposed
deconvolutional network architecture. DeconvNet performed well on the PASCAL
VOC 2012 [21] dataset.

Badrinarayanan et al. [27] proposed a new and practical FCN architecture called
SegNet for semantic segmentation. This architecture consists of the encoder, which is
the trainable segmentation unit, followed by the corresponding decoder and classifier
layer. In the encoder network architecture, 13 convolutional layers in the VGG-16
network architecture were used likewise. They compared the SegNet architecture
with the original FCNs [20] and DeconvNet [22] architectures on the SUN RGB-D
[34] andCamVid [35] road scene datasets. They provided that the SegNet architecture
has fewer trainable parameters than other FCN architectures and is therefore efficient
both in terms of memory and computational time. In [28], they implemented the
Bayesian SegNet architecture, an extension of SegNet, on the same datasets. The
architecture resulted in improving of the boundary lines, increasing the accuracy of
prediction, and reducing the number of parameters.

Fourure et al. [29] presented an approach that is enhanced by multiple datasets
to improve the semantic segmentation accuracy on the KITTI [36] dataset used
for autonomous driving. To take advantage of training data from multiple datasets
with different tasks including different label sets, they proposed a new selective loss
function that can be integrated into deep networks.
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Treml et al. [30] conducted a study to reduce the computational load of embedded
systems found in autonomous vehicles for autonomous driving. They designed a net-
work architecture that preserves the accuracy of semantic segmentation while reduc-
ing the computational load. This architecture consists of an encoder like SqueezeNet
[37], Exponential Linear Unit (ELU) used instead of Rectified Linear Unit (ReLU)
activation function and a decoder like SharpMask [38].

Hoffman et al. [31] trained three different FCN architectures in [20] on bothGTA5
[39] and SYNTHIA [40] datasets to examine adaptations simulated real images in
CityScapes [41] and compared inference performances.

Marmanis et al. [32] proposed a FCN architecture for the semantic segmentation
of very high resolution aerial images. They initiated the FCN with learned weight
and bias parameters using FCN-PASCAL [20] network model pre-trained on the
PASCAL VOC 2012 dataset.

The rest of this paper is organized as follows. In Sect. 2, the necessary concepts
for a better understanding of deep learning are introduced in detail. In Sect. 3, firstly,
the structures that constitute the CNN architectures are explained, next, information
about the training of the CNN and the necessary parameters affecting its performance
are given. In Sect. 4, it is explained how to make the conversion from CNN to FCN
used in paper by explaining the main differences between image classification and
semantic image segmentation applications. The Sect. 5 gives information about the
dataset used for the semantic image segmentation application and the experimental
results obtained by FCN architectures. In Sect. 6, the paper is concluded.

2 Deep Learning

Deep learning is a fast-growing popular machine learning approach in the artificial
intelligence field to create a model for perceiving and understanding large quantities
of machines, such as images and sound. Basically, this approach is based on deep
architectures, which are the more structurally complex of the ANNs. This deep
architecture term refers to ANNs whose number of hidden layers has been increased.

Deep learning algorithms are separated fromexisting algorithms inmachine learn-
ing; it needs very high amount of data and hardware with very high computational
power that can handle this high data rate. In recent years, the number of labeled
images, especially in the field of computer vision, has increased extremely. Deep
learning approach has attracted much attention thanks to the great progress in the
area ofGPU-based parallel computing power.GPUswith thousands of compute cores
provide 10–100 times the application performance when processing these data com-
pared to CPUs [42]. Nowadays, deep learning has many application areas, mainly
automatic speech recognition, image recognition and natural language processing.

There are many different types of deep learning architecture. Basically, deep
learning architectures can be named as in Fig. 2 [43].

In order to be understand better the deep learning term, it is necessary to adopt
ANN structures in a good way. For this reason, this information will be given first.
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Major Architectures of Deep Learning
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Fig. 2 Major architectures of deep learning

In addition, we will focus on the feedforward ANN because the FCNs are the multi-
layer feedforward neural network type from the deep learning architectures that form
the basis of our paper.

2.1 Artificial Neural Networks

ANNs have been developed in the light of the learning process in the human brain. As
the neurons in the biological nervous system connect with each other, the structures
defined as artificial neurons in the ANN systems are modeled to be related to each
other. ANNs can be used in many areas such as system identification, image and
speech recognition, prediction and estimation, failure analysis, medicine, communi-
cation, traffic, production management and more.

2.1.1 Neuron

ANNs also have artificial neurons, as biological neural networks are neurons. The
neuron in can be called the basic calculation unit in ANN. The neurons can also
called node or unit. The structure of an artificial neuron is shown in Fig. 3.

Fig. 3 The structure of an
artificial neuron
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Inputs are information incoming to a neuron from external world. These are deter-
mined by the samples for which the learning of the network is desired. Weights show
the importance of information incoming to neurons and their effect on neurons.
There are separate weights for each input. For example, W1 weight in Fig. 3 shows
the effect of x1 input on the neuron. The fact that weights are big or small does not
mean that they are important or insignificant. The transfer function calculates the
net input incoming to a neuron. Although there are a large number of transfer func-
tions for this, the most commonly used is weighted sum. Each incoming information
is summed by multiplying its own weight. The activation function determines the
output the neuron will generate in response to this input by processing the net input
incoming to the neuron. The generated output is sent to the external world or another
neuron. In addition, if desired, the neuron may also send its own output as an input
to itself.

The activation function is usually chosen a nonlinear function. The purpose of
the activation function is to transfer the nonlinearity to the output of the neuron as
in (1). A characteristic of ANNs is nonlinearity, which is due to the nonlinearity of
activation functions.

y � f

(
n∑

i�1

Wixi + b

)
(1)

The important thing to note when choosing the activation function is that the
derivative of the function is easy to calculate. This ensures that the calculations take
place quickly.

In the literature, there are many activation functions such as linear, step, sigmoid,
hyperbolic tangent (tanh), Rectified Linear Unit (ReLU) and threshold functions.
However, sigmoid, tanh and ReLU activation functions are usually used in ANN
applications.

The sigmoid activation function, expressed by (2), is a continuous and derivatable
function. It is one of the most used activation functions in ANNs. This function
generates a value between 0 and 1 for each input value.

σ(x) � ex

1 + ex
(2)

The tanh activation function, expressed by (3), is similar to the sigmoid activation
function. However, the output values range from −1 to 1.

tan h(x) � 2σ(2x) − 1 (3)

TheReLU activation function, expressed by (4), generates an output with a thresh-
old value of 0 for each of the input values. It has a characteristic as in Fig. 4. Recently,
the usage in ANNs has become very popular.
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Fig. 4 The characteristic of
ReLU activation function

f(x) � max(0, x) (4)

2.1.2 Feedforward Neural Network

In the feed forward neural network, the flow of information is only in the forward
direction. The neurons in the network are arranged in the form of layers and the out-
puts of the neurons in a layer are input to the next layer via weights. The feedforward
neural networks are basically composed of 3 types of layers. These layers are input,
hidden and output layer. The input layer transmits the information incoming from
the external world to the neurons in the hidden layer without making any changes.
This information is then sequentially processed in the hidden layer/layers, which
are not associated with the external world, and the output layer, which transfers the
information from the network to the external world, to determine the network output
in response to the desired input.

A feedforward neural network may have one or more hidden layers or no hidden
layers. If the network does not contain any hidden layers, it is called single-layer
perceptron, if it contains one ormore hidden layers, it is calledmulti-layer perceptron.

In Fig. 5, a 3-layer feedforward ANN model is shown as an example.
In a multi-layer feedforward neural network, each neuron is only associated with

the next neurons. In other words, there is no connection between the neurons in the
same layer.

The term of depth in a multi-layer feedforward neural network is related to the
number of hidden layers. As the number of hidden layers of the network increases,
the depth increases. In short, a network with multiple hidden layers can be expressed
as a deep neural network. Figure 6 shows a deep feedforward ANN model as an
example.

The ability to learn from an information source is one of the most important
features of ANN. In multi-layer neural networks, learning process takes place by



A Brief Survey and an Application of Semantic Image … 169

changing weights at each step. Therefore, how weights are determined is important.
Since the information is stored in the entire network, the weight value of a neuron
does not make sense by itself. The weights on the whole network should get the most
appropriate values. The process to achieve these weights is to train the network. In
short, the learning of the network occurs by finding themost appropriate values of the
weights. In addition, there are a number of considerations to be takenwhen designing
multi-layer neural networks, such as the number of hidden layers in a network, the
number of neurons to be found in each hidden layer, the optimal solution for the
most reasonable time, and the test of network accuracy [44].

Hidden layerInput layer

Output layer

Inputs

Outputs

Fig. 5 3-layer feedforward ANN model
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Fig. 6 A deep feedforward ANN model
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2.2 Deep Learning Software Frameworks and Libraries

The workflow of deep learning is a multi-stage, iterative process. In this process,
the data must first be collected and preprocessed if necessary. Large-scale datasets
may be needed for to take place a successful deep learning. Nowadays, thanks to
the internet and large data sources, datasets have been growing rapidly. The network
is trained using these datasets. Existing networks can be used to train the network,
or new networks can be developed. The network models created after the training
phase must be tested to confirm that they work as expected. Generally, at this point,
it is necessary to repeat certain operations to improve the results. These operations
include reprocessing the data, arranging the networks, changing the parameters of
the networks or solvers, and retesting until the desired result is obtained. The CPUs
of these computers are insufficient for these intensive computational processes to be
performed in the deep learning process. Because the CPUs with a certain processing
capacity and architecture cannot perform many operations at the same time, the
training and test phases of the model take a lot of time. Because of this, CPUs have
given place to GPUs that allow parallel processing of data. By means of this, deep
learning has begun to be used quickly in real life applications.

In the deep learning applications,NVIDIAprovides aCUDAextension that allows
GPUs to perform parallel computing [45]. CUDA is a parallel computing architecture
that uses NVIDIA’s GPU power to accelerate computing performance at a high level.
CUDA enables the usage of graphics processor cores for general purpose accelerated
computing.

There are many popular software frameworks and libraries, especially including
Caffe, Torch, Theano, TensorFlow, Keras and DIGITS, for the implementation of
deep learning algorithms. Most of them can also run on the GPU.

2.2.1 Caffe

The Caffe deep learning framework, created by Yangqing Jia, is developed by the
Berkeley AI Research (BAIR) and community contributors. Caffe was designed to
be as fast and modular just like the human brain [46].

Caffe is often preferred in industrial and academic research applications. Themost
important reason for this is the ability to process data quickly. Caffe can process over
60 million images per day with a single NVIDIA K40 GPU. Caffe is believed to be
among the fastest accessible CNN implementations available [46].

2.2.2 Torch

Written in LuaJIT language, Torch is a scientific computing structure that provides
extensive support for machine learning algorithms. It is an easy and efficient library
because it is written in LuaJIT and uses the C/CUDA application basis [47]. This
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library, which can use numerical optimization methods, contains various neural net-
works and energy based models. It is also open source and provides fast and efficient
GPU support.

Torch is constantly being developed and is being used by various companies such
as Facebook, Google and Twitter.

2.2.3 Theano

Theano is a Python library that effectively identifies, evaluates, and optimizes math-
ematical expressions containing tensors [48]. Since this library is integrated with
NumPy library, it can easily perform intensivemathematical operations. It also offers
the option to create dynamic C code, allowing user to evaluate expressions more
quickly.

2.2.4 TensorFlow

Tensorflow is an open source deep learning library that performs numerical com-
putations using data flow graphs. This library was developed by Google primarily
to conduct research on machine learning and deep neural networks [49]. With its
flexible architecture, TensorFlow allows you to deploy the computation to one or
more CPUs or GPUs on a server, mobile or desktop device with a single Application
Programming Interface (API).

Snapchat, Twitter, Google and eBay, which are popular nowadays, also benefit
from TensorFlow.

2.2.5 Keras

Keras is a modular Python library built on TensorFlow and Theano deep learning
libraries [50]. These two basic libraries provide the ability to run on the GPU or CPU.
By making minor changes in the configuration file of Keras, it is possible to use the
TensorFlow or Theano in the background.

Keras is very useful as it simplifies the interface of TensorFlow and Theano
libraries, and easier application can be developed than these two libraries. Keras has
a very common usage in image processing applications.

2.2.6 DIGITS

In 2015, NVIDIA introduced the CUDADeepNeural Network library (cuDNN) [51]
due to the growing importance of deep neural networks, both in the industrial and
academia, and the great role of GPUs. In 2016, Jen-Hsun Huang, NVIDIA CEO and
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founder, has brought the Deep Learning GPU Training System (DIGITS) into use at
the GPU Technology Conference.

DIGITS is a deep learningGPU training system that helps users to develop and test
CNNs. This system supports GPU acceleration using cuDNN to greatly reduce train-
ing time while visualizing Caffe, Torch and TensorFlow by providing web interface
support.

DIGITS supports many educational objectives including image classification,
semantic segmentation and object detection. Figure 7 shows the main console win-
dow where datasets can be generated from the images and they can be prepared for
training. In DIGITS, once a dataset is available, the network model can be config-
ured and training can begin. DIGITS also provides the necessary tools for network
optimization. Settings for network configuration can be followed and accuracy can
be maximized by changing parameters such as bias, activation functions and layers.

Create dataset
Configure network

Choose dataset

Choose a default network, 
modify one or create new one

Start training

Fig. 7 DIGITS main console
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3 Convolutional Neural Networks

CNNs, introduced by LeCun in 1989 for computer vision applications, are a type of
multi-layer feedforward-ANN [52]. Nowadays, CNNs become increasingly popular
among in-deep learning methods as they can successfully learn models for many
computer and visual applications such as object detection, object recognition, and
semantic image segmentation.

CNNs can be thought of as classifiers that extract hierarchical features from raw
data. In CNN, images are given as input to the network, and learning takes place
automatically with a feature hierarchy created without using any feature extractor
method.

3.1 Architecture

All neurons in a layer in the feedforward ANNs are connected to all neurons of the
next layer. Such connected layers are called fully connected layers and, in addition
to fully connected layers in the CNN, convolution is applied to the input image to
generate an output. This is caused by the local connection that all regions in the input
layer are bound to neurons in the next layer. Thus, the input image is convolved
with each learned filter used in this layer to generate different feature maps. The
feature maps become more insensitive to rotation and distortion by providing more
and more complex generalizations towards higher layers. In addition, the feature
maps obtained in the convolutional layer are subjected to the pooling layer in order
to perform spatial dimensionality reduction and keeping of important features. A
classifier always is the final layer to generate class probability values as an output.
The final output from the convolutional and pooling layers is transferred to one or
more fully connected layers. Then, the output prediction is obtained by transferring
to the classifier layer where the activation functions such as Softmax are used.

A simple CNN architecture is a combination of convolutional, pooling and fully
connected layers as in Fig. 8.

3.1.1 Convolutional Layer

The purpose of the convolutional layer, which is the most basic layer of CNNs, is
to convolve the input image with learnable filters and extract its features. A feature
map is generated with each filter. CNNs draw attention to the fact that when applied
to RGB images (images used in this paper), the image is a 3D matrix, and each of
the layers is similarly arranged. This is shown in Fig. 9. Each layer of CNN consists
of a set of spatial filters of size d × h × w that are the spatial dimensions of h and
w that appear as volume of the neurons and the number of kernel (or filter) feature
channels of d. Each of these filters is subjected to convolution with a corresponding
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Fig. 8 An example of a simple CNN architecture
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Fig. 9 An illustration of a single convolutional layer [53]

volume of the input image, and slid through the entire image (sized Di × Hi ×
Wi where Hi, Wi are the spatial dimensions and Di is the channel number) across
its spatial dimensions Hi, Wi. Convolution refers to the sum of element by element
multiplication of the neurons in each filter with the corresponding values at the input.
Thus, it can be assumed that the first layer in the CNNs is the input image. Based on
this, convolution with a single filter in each layer provides a 2-dimensional output
with parameters such as stride and padding. This is expressed as a feature map or
activation map for a filter in input. At each convolutional layer of the CNNs, N filters
are used, each resulting in a feature map. These feature maps are stacked together in
a certain volume to obtain the output of a convolutional layer.
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A single neuron in a filter of a certain layer can bemapped to connected neurons in
all previous layers, following such convolutions. This is called the effective receptive
field of the neuron. It is easy to see that convolutions result in very local connections
with neurons in the lower layers (closer to the input) with thosewith smaller receptive
fields than in the higher layer. While the lower layers learn to represent small areas
of the input, the higher layers learn more specific meanings because they respond to
a larger subdivision of the input image. Thus, a feature hierarchy is generated from
the local to the global.

The red and blue areas in Fig. 9 represent the two positions of the same filters of
size d× h×w that are subjected to convolution by sliding through the input volume.
Given that the filter size is 2 × 2, it can be seen that the stride parameter s is 2. For
RGB input image, Di � d � 3.

The stride s of a filter is defined as the intervals at which the filter moves in
each spatial dimension. p padding corresponds to the number of pixels added to the
outer edges of the input. Hence, stride can be considered as an input means of the
subsampling [54]. Typically, square filters of the form h�w� f are used. The output
volume of such a layer is calculated using Eqs. (5), (6) and (7).

Do � N (5)

Ho � Hi − f + 2ps

+
1 (6)

Wo � Wi − f + 2ps

+
1 (7)

Figure 10 shows a 3 × 3 filter to be slid over a 5 × 5 image matrix representing
a binary image. The sliding of the filter is from left to right and continues until the
end of the matrix. In this paper, the stride is taken as 1. By sliding filters in order,
the process is completed and the final state of the feature map is obtained as shown
in Fig. 10.

...

Filter Image

Fig. 10 Image matrix and final state of the feature map [55]
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3.1.2 Pooling Layer

Frequently between the convolutional layers, pooling layers are scattered which help
to spatially subsample the input features. The pooling layers make the subsampling
process of the input image. This is done by sliding a filter over the input image.

The input image (usually non-overlapping) is divided into subregions and each
subregion is sampled by non-linear pooling functions. The best-known of these func-
tions are the maximum and average pooling functions. With the maximum pooling
function used throughout this paper, the maximum value is returned from each sub-
region. The average pooling function returns the average value of the subregion. The
pooling provides robustness to the network by reducing the amount of translational
variance in the image [3]. In addition, unnecessary and redundant features are also
discarded, which reduces the network’s computational cost and, therefore, makes it
more efficient.

The pooling layers also have a stride parameter that provides control over the
output sizes. The same equations used for the output size of the convolutional layers
can be used for this layer. It can be seen in Fig. 11 that the input volume of 64 ×
224 × 224 is subsampled to the volume of 64 × 112 × 112 by 2 × 2 filters and
strides 2. The pooling operation is performed separately for each feature map, and
the size of the feature map is reduced as shown.

Figure 12 shows the pooling operation performed with the maximum pooling
function by sliding the 2 × 2 filter, stride 2.

64×112×112

64×224×224

Pooling

224

224

112

112
Subsampling

Fig. 11 An example of a subsampling [5]
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Fig. 12 The pooling operation with the 2 × 2 filter, stride 2 [5]

3.1.3 Rectified Linear Unit Layer

Generally, the outputs of the convolutional layer are fed into activation functions.
The nonlinearity layers proposed for this purpose can be composed of functions such
as sigmoid, tanh and ReLU. ReLU has been found to be more effective in CNNs and
is often preferred [56].

A ReLU layer thresholds negative inputs to 0 and activates the positive inputs as
described (8) by passing them unchanged.

f(x) �
{
x, x ≥ 0
0, others

}
(8)

where; x is the input of the ReLU, and f(x) is the rectified output.
In the ReLU layer, an operation is performed separately for each pixel value. For

example, the output of the ReLU is as shown in Fig. 13 if it is considered that the
black areas are represented by negative pixels and the white areas are represented by
positive pixels in the input feature map.

3.1.4 Fully Connected Layer

After high-level features are extracted with convolutional, pooling and ReLU layers,
generally the fully connected layer is placed at the end of the network. The neurons
in this layer are completely dependent on all activations in the previous layer. The
most important feature of the fully connected layer is that it allows the neurons in
this layer to determine which features correspond to which classifications. In short,
the fully connected layer can be thought of as the layer that feeds the classifier.

Spatial information is lost as a neuron in the fully connected layer receives activa-
tions from all input neurons. This is not desirable in this semantic image segmentation
paper where spatial information is very important. One way to get over this situation
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Fig. 13 An example of
ReLU operation [57]

ReLU

Feature map of input

Feature map of output

is to see the fully connected layer as a corresponding convolutional layer. It is also
based on the basis of the FCNs that will be mentioned in the following.

3.1.5 Classifier

A classifier is chosen by considering the problem at hand and the data used. In this
paper, the Softmax function is used which allows to predict for a class other than
exclusive classes mutually. For the binary class problem, the Softmax function is
reduced to a logistic regression. The Softmax function gives the probability value in
(9) for a certain input belonging to a certain class c.

pc � e(sc)∑c
i�1 e

(si)
(9)

where; s is the network outputs obtained fromprevious layers ofCNNs for a particular
class. For a single input, the sum of all probabilities between classes is always equal
to 1. The loss metric is defined as the probability of the negative logarithm of the
Softmax function. This is a cross entropy loss.
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3.1.6 Regularization

Overfitting over training data is a big issue. Especially when dealing with deep
neural networks that the network is strong enough to fit the training set alone is a big
problem. The overfitting must be avoided. The methods developed for this are called
regularization methods.

Dropout is a simple and effective regularization strategy integrate into the training
phase. Dropout, introduced for the first time in [58], is implemented as dropout layers
characterized by a probability value. Dropout can be accepted as a reasonable default
value of 0.5 proven to be sufficiently effective [58].

3.2 Training

The learning process in CNNs can be divided into 4 basic steps:

1. Forward computation,
2. Error/loss optimization,
3. Backpropagation,
4. Parameter updates.

Forward computation is usually the case where sublayers composed of convolu-
tional or pooling layers are followed by higher fully connected layers. The network
returns the class output, which encodes the probability of belonging to a particular
class for input. The outputs of the network may be unscaled as in the SVM classifier,
or a negative logarithm probability may be obtained as in the Softmax classifier. For
semantic segmentation, each pixel in the image is provided with a class output.

The set of class outputs provided by the network should be subjected to optimiza-
tion processing by adjusting the values of the learned parameters such asweight filters
and biases. The uncertainty that occurs in determining which set of parameters is
ideal is quantified by the loss function that can be formulated as an optimization
problem. For each vector of the class outputs s, the cross entropy loss is calculated
as given in (10) for the Softmax classifier.

Li � − log

(
e(sc)∑c
i�1 e

(si)

)
(10)

The evaluation function of the cross entropy is calculated by (11).

H(p,q) � −
∑
x

p(x)logq(x) (11)

where; q is the Softmax function defined in (9), and p is the probability distribution.
The total loss is calculated by (12).
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L �
N∑
i�1

Li + λR(W) (12)

where; N is the number of training samples, λ is the regularization strength, L is
the total loss, and R(W) is the regularization term. To minimize L, the problem is
formulated as an optimization step and the loss function is minimized. Thus, the
probability is maximized.

Backpropagation is a fundamental concept in learning with neural networks. The
purpose of backpropagation is to periodically update the initial weight parameters.
The backpropagation of the problem helps to optimize the cost function. The opti-
mization algorithm is generally used to understand the gradient descent and its vari-
ous types. A simple application of the gradient descent may not work well in a deep
network because it is confronted with problems by going and returning around the
local optimum. This situation is fixed by the momentum parameter which helps to
update the gradient descent, which is necessary to reach an optimal point.

One of the crucial parts of developing neural network architecture is the selection
of hyperparameters. The hyperparameters are variables set to specific values before
the training process. In [59], a list of the most effective hyperparameters adopted by
many researchers for model performance has been proposed. This list includes initial
learning rate, mini-batch size, number of training iterations, momentum, number of
hidden units, weight initialization, weight decay, regularization strength and more
hyperparameters.

3.3 Some Known CNN Architectures

LeNet [12], AlexNet [16], VGGNet [33], GoogleNet [60] and ResNet [4] are
among the best- known CNN architectures. AlexNet and VGG16, 16-layer (con-
volutional+fully connected layers) version of VGG-Net, form the basis for the FCN
architectures to be addressed in the next section.

Developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, AlexNet is the
first study to make CNN popular in computer vision [16]. AlexNet was presented at
the ILSVRC in 2012, andwas the first in the competition to perform significantly bet-
ter than the second and third architectures Even though AlexNet has an architecture
similar to LeNet, convolutional layers with deeper and more specific are stacked on
top of each other. AlexNet has been trained on more than 1 million high-resolution
images containing 1000 different classes.

Developed by Simonian and Zisserman, VGGNet has two versions, called VGG-
16 and VGG-19. The VGG-16 architecture was the second in the ILSVRC in 2014,
where GoogleNet was first. Recently, ResNet seems to be a very advanced CNN
model, but VGG-16 is preferred because of its simple architecture. VGG-16 has also
been trained onmore than 1million high-resolution images containing 1000 different
classes like AlexNet.
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4 Semantic Image Segmentation and Fully Convolutional
Networks

Except where it is in the image, there are many situations that need to be learned For
example, you should know the locations of the objects around autonomous vehicles
so that you can move without hitting anywhere. The process of determining the
locations of the objects in the image can be realized by detecting (getting into the
bounding box) or segmenting.Asmentioned before, an application of semantic image
segmentation for the autonomous vehicles will be implemented in this paper.

Image segmentation is the operation of separating images into specific groups that
show similarity and labeling each pixel in an image as belonging to a given semantic
class. In order for the image segmentation process to be considered successful, it is
expected that the objects are independent of the other components in the image, as
well as the creating of regions with the same texture and color characteristics. As
an example in Fig. 14, each pixel in a group corresponds to the object class as a
whole. These classes may represent an urban scene that is important for autonomous
vehicles; traffic signs, cars, pedestrians, street lamps or sidewalks.

As mentioned before, AlexNet and similar standard CNNs perform non-spatial
prediction. For example, in the image classification, the network output is a single
distribution of class probabilities. The CNNmust be converted into the FCN in order
to achieve a density prediction such as semantic image segmentation. Because, as
described in [20], the fully connected layers of the CNNs give information about
location. Therefore, in order to be able to carry out a semantic image segmentation,
it is necessary to convolve the fully connected layers of the CNNs.

In the conversion to the FCN, the convolution part of the CNN can be completely
reused. Fully convolutional versions of existing CNNs predict dense outputs with
efficient inference and learning from arbitrary sized inputs. Both learning and infer-
ence present the whole visual in a single pass through forward computation and
backpropagation, as shown in Fig. 15. The upsampling layers within the network
allow learning on the network via pixel-level prediction and subsampling [20].

road

grass

tree
sky

Fig. 14 A sample of semantic image segmentation [61]
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Inference

Learning

Fig. 15 Pixel-level prediction with FCN [20]

4.1 Semantic Image Segmentation

For semantic image segmentation application for autonomous vehicles, it may be
thought that this can overcome its with the thing coming to mind classification net-
work architectures such as AlexNet, GoogleNet and VGG-16. However, the models
created by image classification architectures give the output of which class is the
dominant object class in the image. That is, the output is a discrete probability dis-
tribution. If the image contains more than one object, the desired result cannot be
obtained. Considering that classification models such as AlexNet are trained with
a data set consisting of more than one million images of only one object in it, it is
quite understandable. In addition, location information of the object in the image
cannot be obtained with the classification networks. The situation can be understood
when they are thought to have never been trained for this aim. The semantic image
segmentation eliminates some of these deficiencies. Instead of estimating a single
probability distribution for an entire image, the image is divided into several blocks
and each block is assigned its own probability distribution. Very commonly, images
are divided into pixel-levels and each pixel is classified. For each pixel in the image,
the network is trained to predict which class the pixel belongs to. This allows the
network not only to identify several object classes in the image but also to determine
the location of the objects.

The datasets used for semantic image segmentation are images that are to be
segmented and usually consist of label images of the same size as these images. The
label image shows the ground truth limits of the image. The shapes in the label images
are coded with colors to represent the class of each object. In some of the datasets,
especially the SYNTHIA-Rand-CVPR16 dataset used in this paper, the label images
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Convolutionalization

‘‘tabby cat’’

tabby cat heatmap

Fig. 16 Converting fully connected layers of CNN to convolutional layers [20]

consist of 24-bit 3 channel RGB images. In this case, the pixels must be indexed by
creating color maps with RGB channel conversion.

4.2 Conversion from CNN to FCN

Semantic image segmentation only adds a spatial dimension to the image classifica-
tion problem. Thus, several minor adjustments are sufficient to convert a classifica-
tion neural network into a semantic segmentation neural network. It is implemented
on AlexNet and VGG-16 architectures using the techniques of conversion to FCN
architecture [20], which is necessary for the conventional image segmentation. The
conversion to FCN is achieved by converting the fully connected layers of the CNN
to convolutional layers. This conversion is shown generally in Fig. 16.

In a fully connected layer, each output neuron calculates the weighted sum of the
values in input, while in a convolutional layer, each filter calculates the weighted
sum of the values in the receptive field. Although these operations seem to be exactly
the same thing, they are the same only when the layer input has the same size as the
receptive field. If the input is larger than the receptive field, then the convolutional
layer slide input window and calculate another weighted sum. This repeats until the
input image is scanned from left to right, from top to bottom. A fully connected layer
must be replaced with a corresponding convolutional layer, the size of the filters must
be set to the input size of the layer, and as many filters as the neurons in the fully
connected layer must be used.
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All connected layers in theAlexNet architecture canbe converted to corresponding
convolutional layers to obtain FCN architecture. This FCN has the same number
of learned parameters as the basic CNN and the same computational complexity.
Convolutionalization of a basic CNNbrings considerable flexibility to the conversion
to FCN. The FCN model is no longer limited to work with fixed input size 224 ×
224, as in AlexNet. The FCN can process large images by scanning throughly, such
as a sliding window, and the model generates one per 224 × 224 window rather than
generating a single probability distribution for the entire input. Thus, the output of
the network has become a tensor in the form of N × H × W.

Where; N is the number of classes, H is the number of sliding windows (filters)
along the vertical axis, and W is the number of sliding windows along the horizontal
axis.

In summary, the first significant step in the design of the FCN is completed by
adding two spatial dimensions to the exit of the classification network.

The window number depends on the size of the input image, the size of the win-
dow, and the stride parameters used between the windows when the input image is
scanned, as will be understood during the design of a FCN that generates a class
probability distribution per window. Ideally, a semantic image segmentation model
should generate a probability distribution per pixel in the image. When the input
image passes through the sequential layers of convolutionalized AlexNet, coarse
features are extracted. The purpose of semantic image segmentation is to interpolate
for these coarse features to reconstruct a fine-tuned classification for each pixel in
the input. This can easily be done with deconvolutional layers. The deconvolutional
layers perform the inverse operation of their convolutional counterparts. Considering
the output of the convolutional layer, the deconvolutional layer finds the input gener-
ating the output. As it can be remembered, the stride parameter in the convolutional
or pooling layer is a measure of how much the window is to be slid when the input
is processed, and how the output is subsampled accordingly. In contrast, the stride
parameter in the deconvolutional layer is a measure of how the output is upsampled.
The output volume of the deconvolutional layer, Do × Ho × Wo, is calculated using
the Eqs. (13), (14) and (15).

Do � N (13)

Ho � s(Hi − 1) + f − 2p (14)

Wo � s(Wi − 1) + f − 2p (15)

where; s stride, p padding, f filter size, Hi and Wi input sizes, and N is the number
of channels.

It is important to know how much of the activation of the last convolutional layer
in the FCN architecture must be upsampled to obtain an output of the same size as
the input image. The upsampling layer added to create FCN-AlexNet is shown to
increase the output of the previous convolutional layer by 32 times. This means that
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Fig. 17 FCN-AlexNet architecture
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Fig. 18 Visualization of FCN-32s, FCN-16s and FCN-8s architectures [20]

in practice, the network has made a single prediction per 32 × 32 pixel block. This
causes the contours of objects in the image to be segmented as rough. Figure 17
shows FCN-AlexNet architecture.

The article in [20] presents the idea of skip architecture for this restriction. The skip
connections in this architecture have been added to redirect the outputs of the pooling
layers pool3 and pool4 of the FCN architecture derived from VGG-16 directly to the
network as shown in Fig. 18. These pooling layers work on low-level features and
can capture more fine details.

The FCN architectures proposed in [20] are called FCN-8s, FCN-16s and FCN-
32 according to the application of skip connections, converted into corresponding
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convolutional layers of fully connected layers in VGG-16. The visualization of these
architectures is shown in Fig. 18.

In Fig. 18, the pooling layers are shown as grids expressing the spatial density,
while the convolutional layers are shown as vertical lines. As it can be seen, the
predictions in FCN-32s is upsampled at stride 32 to pixels in a single step without
skip connection. The predictions in FCN-16s is combined at stride 16 from both
conv7 and pool4 layers, allowing to predict finer details when detecting high-level
semantic information. FCN-8s provides sharper predictions at stride 8 by adding the
pool3 layer. Thus, FCN-8s architecture allows to make fine-tuned predictions up to
8 × 8 pixel blocks.

5 Experimental Studies

In this paper, a semantic image segmentation application, which is useful for
autonomous vehicles, was performed to observe the performance of the FCNs in
semantic image segmentation. Four different popular FCN architectures were used
separately for the application: FCN-AlexNet, FCN-8s, FCN-16s and FCN-32s.

The applications were implemented using Caffe framework in DIGITS platform
onSYNTHIA-Rand-CVPR16 dataset and the segmentation performances of the used
FCN architectures for experimental studies were compared. The studies were carried
out on a desktop computer with 4th Generation Intel® Core i5 3.4 GHz processor,
8GBRAMandNVIDIAGTXTitanXPascal 12GBGDDR5Xgraphics card.Thanks
to the CUDA support of the graphics card, the GPU-based parallel computing power
has been utilized in the computations required for the application.

5.1 SYNTHIA-Rand-CVPR16 Dataset

The SYNTHIA-Rand-CVPR16 dataset [40] has been generated to support semantic
image segmentation in autonomous driving applications. The images in this dataset
were created by portraying a virtual city with the Unity development platform [62].
The virtual environment allows them to freely place the desired components in the
scene image and generate its semantic annotations without additional effort.

The SYNTHIA-Rand-CVPR16 dataset consists of a 13,407 RGB image with a
resolution of 960× 720 taken from a virtual camera array randomly moving through
the city, limited to the range [1.5 m, 2 m] from the ground. It also consists of ground
truth images of the same size as these RGB images. The dataset images, which are
taken under different conditions such as night and day, includes 12 object classes:
sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, cyclist
and void.

Sample images from the SYNTHIA-Rand-CVPR16 dataset are shown in Fig. 19.
For the paper, a total of 13,407 images of the dataset are used to train the network
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Fig. 19 Samples from the SYNTHIA-Rand-CVPR16 dataset: a Sample images, b Ground truth
images with semantic labels

model, and the remaining 2681 (about 20% of the dataset) are used to validate the
model.

5.2 Training and Validations of the Models

The values of the network parameters determined for the application are given in
Table 1. These parameters are generally set to be used for all the used FCN models
in the application.

Stochastic Gradient Descent (SGD) as solver type and GPU as solver mode are
selected. Epoch is set to 30. An epoch is a single pass through the full training set.
Thus, for 10,726 training images, 1 epoch is completed in 10,726 iterations with 1

Table 1 The values of the
network parameters

Parameter Value

Base learning rate 0.0001

Momentum 0.9

Weight decay 10−6

Batch size 1

Gamma 0.1

Maximum iteration 321,780
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Fig. 20 Training/validation loss andvalidation accuracywhen trainingFCN-AlexNet using random
weight initialization

batch size and it is seen that the number of maximum iteration number for 30 epochs
is 321,780, as indicated in Table 1.

Initially, FCN-AlexNet model is trained using random weight initialization in
DIGITS and the results in Fig. 20 are obtained.

As shown in Fig. 20, performance is not satisfactory enough. Validation accuracy
has reached a stationary point of about 35%. This means that only about 35% of the
pixels in the validation set are correctly labeled. The training loss,which indicates that
the network is not suitable for the training set, is parallel to the validation loss. When
the trained model is tested on sample images in the validation set and visualized
in DIGITS, it can be seen in Fig. 21 that the network classifies indiscriminately
everything as building.

With the Fig. 21, it is understood that the building is themost representative object
class in the SYNTHIA-Rand-CVPR16 dataset, and that the network has learned to
achieve approximately 35% accuracy by labeling everything as building.

There are several commonly accepted ways to improve a network that is not suited
to the training set [63]. These:

• Increasing the learning rate, and reducing the batch size,
• Increasing the size of the network model,
• Transfer learning.
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Fig. 21 A sample visualization of semantic image segmentation in DIGITS with FCN-AlexNet
trained using random weight initialization: a Sample image, b Ground truth image, c Inference

Information learned by a deep network can be used to improve the performance of
another network and this process is very successful for computer vision applications
[64]. For this reason, while learning the required models for the application, transfer
learning was used.

Recent developments in machine learning and computer vision are first achieved
through the use of common criteria. It does not have to start from randomly initialized
weights to train a model. Transfer learning is a reuse of information that a network
learns in another dataset to improve the performance of another network [65]. A net-
work is trained on any data and gains knowledge from this data, compiled as weights
of the network. These weights can be transferred to any network. In other words,
instead of training the network from scratch, learned features can be transferred to
the network.

Transfer learning is often preferred in the computer vision field, since many low-
level features such as line, corner, shape, and texture can be immediately applied to
any dataset via CNNs.

Models trained and tested on high-variance standard datasets usually owe their
successes to strong features [65]. Transfer learning allows to use a model that learns
fairly generalized weights trained on a large dataset such as ImageNet and allows
fine-tuning to adapt the situation of the network to be used.

It is very logical to transfer learning from image classification dataset such as Ima-
geNet since the image segmentation has a classification at the pixel level. This pro-
cess is quite easy using Caffe. However, Caffe cannot automatically carry theweights
from AlexNet to FCN-AlexNet because AlexNet and FCN-AlexNet have different
weight formats. Moving these weights can be done using the Python command line
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Fig. 22 Training/validation loss and validation accuracy when training FCN-AlexNet using pre-
trained model

“net_surgery.py” in DIGITS repository in Github. The function of net_surgery.py is
to transfer weights from fully connected layers to convolutional equivalents [63].

Also, another possible problem is how to start the upsampling layer added to
create FCN-AlexNet since the upsampling layer is not part of the original AlexNet
model. In [20], it is recommended that the corresponding weights are first randomly
initiated and the network learns them. Later, however, the authors realized that it is
easy to initialize these weights by doing bilinear interpolation, the way that the layer
just acts like a magnifying glass [63].

As previously mentioned, training of FCN-AlexNet model was performed using
the pre-trained model obtained by adapting the AlexNet model trained on the Ima-
geNet dataset and the results in Fig. 22 were obtained.

Figure 22 shows that using the pre-trained FCN-AlexNet model, the validation
accuracy quickly exceeded 90%, and the model achieved the highest accuracy at
92.4628% in 29th epoch. This means that 92.4628% of the pixels in the validation
set of the model obtained in 29th epoch are labeled correctly. It has been shown to
have fairly high accuracy compared to FCN-AlexNet initialized randomly weights.
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Fig. 23 A sample visualization of semantic image segmentation in DIGITS with FCN-AlexNet
trained using pre-trained model-1: a Sample image, b Ground truth image, c Inference

Fig. 24 A sample visualization of semantic image segmentation in DIGITS with FCN-AlexNet
trained using pre-trained model-2: a Sample image, b Ground truth image, c Inference

When tested for sample images using themodel obtained in 29th epoch, a semantic
image segmentation was performed many times more satisfactorily by detecting
different object classes as shown in Figs. 23 and 24. However, it can be clearly seen
that the object contours are very rough.
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Fig. 25 Training/validation loss and validation accuracy when training FCN-8s using pre-trained
model

FCN-8s network is used to further improve the precision and accuracy of the
segmentation model. Using the pre-trained model in the PASCAL VOC dataset,
validation accuracy of FCN-8s quickly exceeded 94% as shown in Fig. 25. The
model reached to the highest accuracy with 96% in 30th epoch.

More importantly, when tested for sample images using the model obtained in
30th epoch, much sharper object contours are shown, as shown in Figs. 26 and 27.

FCN-8s architecture has been shown to provide segmentation with sharper object
contours than FCN-AlexNet, which makes predictions in 32 × 32 pixel blocks, as it
can make predictions at a fine-tuning down to 8× 8 pixel blocks. Similarly, trainings
of the models have been carried out by FCN-16s and FCN-32s architectures and it
can be seen in Figs. 28 and 29 that the validation accuracy has exceeded 94% rapidly
in a similar manner to FCN-8s. The highest validation accuracy was reached in 30th
epoch as in FCN-8s with 95.4111% and 94.2595% respectively. Besides, Fig. 30
shows the comparison of segmentation inferences on the same images selected using
FCN-AlexNet, FCN-8s, FCN-16s and FCN-32s architectures.
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Fig. 26 A sample visualization of semantic image segmentation in DIGITS with FCN-8s trained
using pre-trained model-1: a Sample image, b Ground truth image, c Inference

Fig. 27 A sample visualization of semantic image segmentation in DIGITS with FCN-8s trained
using pre-trained model-2: a Sample image, b Ground truth image, c Inference
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Fig. 28 Training/validation loss and validation accuracy when training FCN-16s using pre-trained
model

When the segmentation process is analyzed considering the sample and the ground
truth images inFig. 30, it has been seen that the object contours are roughly segmented
in the segmentation process performedwith FCN-AlexNet model. Moreover, the fact
that fine details such as pole could not be made out and segmented showed another
limitation of this model for the application. With FCN-8s model, contrary to FCN-
AlexNet, object contours are segmented sharply and the segmentation inferences
are more similar to the ground truth images. Furthermore, the fact that the object
classes can be detected completely indicates that FCN-8s is useful. Although FCN-
16s model is not as sharp as FCN-8s, it can be seen that the object contours can
be segmented successfully. Finally, when the segmentation inferences of FCN-32s
model are analyzed, it can be said that the segmentations very close to FCN-AlexNet
have been realized but may be a more useful model with small differences.

The training times of the trained models for semantic image segmentation in this
paper are given in Fig. 31.

It was seen that the training time spent on FCN-AlexNet is considerably lower
than the other FCN models with very close training times.
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Fig. 29 Training/validation loss and validation accuracy when training FCN-32s using pre-trained
model

6 Conclusions

For the application, firstly, FCNs are trained separately and the validation accuracy of
these trained network models is compared on the SYNTHIA-Rand-CVPR16 dataset.
Approximately 80% of the images in the dataset are used for the training phase and
the rest are used during validation phase to validate the validity of the models. In
addition, image segmentation inferences in this paper are visualized to see how
precisely the used FCN architectures can segment objects.

Maximumvalidation accuracies of 92.4628%, 96.015%, 95.4111%and94.2595%
are achieved with FCN-AlexNet, FCN-8s, FCN-16 and FCN-32s models trained
using weights in pre-trained models, respectively. Although these models can be
regarded as successful at first sight when the accuracies are over 90% for the four
models, it is seen that the object contours are roughly segmented in the segmentation
process performedwith FCN-AlexNet model. The impossibility of segmenting some
object classes with small pixel areas is another limitation of FCN-AlexNet model.
The segmentation inferences of FCN-32smodel are also very close to FCN-AlexNet,
but with this model it is seen that some better results can be obtained. However,
with FCN-8s model, object contours are sharply segmented and the segmentation
inferences are more similar to the ground truth images. Although FCN-16models are
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not as sharp as FCN-8s, it is seen that the object contours are successfully segmented
according to the others.

When training times of FCN models are compared, it is seen that the training
time spent on FCN-AlexNet is about one-fourth of the other FCN models with very
close training times. However, considering that training of the model is carried out
once for the application, it can be said that it does not have a very important place in
the choice of the appropriate model. Therefore, it can be easily stated that the most
suitable model for the application is FCN-8s.

The obtained experimental results show that the FCNs from deep learning
approaches are suitable for semantic image segmentation applications. In addition,
it has been understood that the FCNs are network structures in models that address
many pixel-level applications, especially semantic image segmentation.
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Phase Identification and Workflow
Modeling in Laparoscopy Surgeries
Using Temporal Connectionism of Deep
Visual Residual Abstractions

Kaustuv Mishra, Rachana Sathish and Debdoot Sheet

Abstract The phase recognition task has been performed on different types of
surgeries which ranges from cataract to neurological to laparoscopic intervention.
The visual features of a surgical video can be used to identify the surgical phases
in laparoscopic interventions. Owing to the significant improvement in performance
exhibited by convolutional neural networks (CNN) on various challenging tasks like
image classification, action recognition etc., they are widely used as feature extrac-
tors. In the proposed framework, features extracted by a CNN are used for phase
recognition. The task of phase recognition in surgical videos is rendered challeng-
ing because of the presence of motion blur produced to the mobile nature of the
recording device and the high variance in scenes observed during the course of the
surgery. Also, blood stains on the camera lens and complete or partial occlusion of
the scene captured by the laparoscopic camera poses additional challenges. These
challenges can be overcome by using temporal features in addition to the spatial
visual features. A long short-termmemory (LSTM) network is used to learn the tem-
poral information of the video. The m2cai16-workflow dataset consisting of videos
of cholecystectomy is used for experimental validation of the performance. Surgical
workflow, which refers to the statistical modelling of activities taking place in an
operating room during a surgery be done in terms of the surgical phases.

K. Mishra · R. Sathish (B) · D. Sheet
Indian Institute of Technology Kharagpur, Kharagpur, India
e-mail: rachana.sathish@iitkgp.ac.in

K. Mishra
e-mail: kaustuvmishra293@gmail.com

D. Sheet
e-mail: debdoot@ee.iitkgp.ernet.in

© Springer Nature Switzerland AG 2019
V. E. Balas et al. (eds.), Handbook of Deep Learning Applications,
Smart Innovation, Systems and Technologies 136,
https://doi.org/10.1007/978-3-030-11479-4_10

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11479-4_10&domain=pdf
mailto:rachana.sathish@iitkgp.ac.in
mailto:kaustuvmishra293@gmail.com
mailto:debdoot@ee.iitkgp.ernet.in
https://doi.org/10.1007/978-3-030-11479-4_10


202 K. Mishra et al.

1 Introduction

Laparoscopic procedures are increasingly being practiced on account of various fac-
tors including reduced discomfort to patients and lesser post-surgical recovery time.
However, these procedures are strenuous as the surgeons only have an indirect visual
access to the area being operated. The surgical site is visualized using endoscopes
and the surgical tools are inserted into the body through small incisions. As a result,
the freedom of movement of the tools is limited. This calls for meticulous training
of the surgeons to acquire the desired dexterity. Traditionally, surgical training is
evaluated by experienced surgeons in person or by using pre-recorded videos of a
trainee surgeon performing the procedure which is evaluated at a later time for work-
flow standards conformity. Both of the methods are time-consuming and tedious.
Tracking of the workflow during the course of a surgery can also help in modeling
the procedural commonalities across surgeons which in turn can be used to opti-
mize the workflow. Automated techniques for surgical skill evaluation and workflow
modeling can save much of the time and efforts wasted in traditional methods and
can also aid in post-surgical quality monitoring. This can be achieved by modeling
the surgical workflow in terms of the surgical phases using the video acquired while
performing the procedure.

The modeling of the surgical procedures involved in laparoscopy surgery can aid
in developing a graphical user interface (GUI) for visualization of the progress of an
ongoing surgery. Typically, the various procedures involved in a laparoscopy surgery
is segregated into certain phases, which enables their modeling in terms of these
phases. Such a model helps in hassle free pre-operative planning of surgeries which
helps in reducing much of the overhead incurred due to lack of proper preparation.
In addition, it serves as a guide for intuitive visualization of the progress of a surgery
during its course. This keeps the surgical staffs informed regarding the progress of a
surgery and helps them prepare for the upcoming phases. Surgical workflow models
also help in the automatic assessment of surgical skill and development of intelligent
context-aware systems that needs information about the ongoing stage of surgery.
Surgical models and their analysis using signals obtained from the operating room
has several uses. Research in these area usually leverages signals which are obtained
automatically, which can be videos, images, tool usage information or signal from
robotic systems or from some additional sensor installed in the surgical instrument.

2 Prior Art

The task of recognition of surgical phases has been carried out for several procedures,
including cataract surgery, neurological and laparoscopic surgeries for the purpose
workflowmodeling andmonitoring. Several types of features like visual signals, sur-
gical action triplets and signals regarding tool usage have been experimented with for
this purpose. A Hidden Markov Model (HMM) based method that combines visual
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features from the frames of laparoscopyvideo and the tool usage signalswas proposed
by Padoy et al. [1]. In this method, surgical phases are recognized using tool usage
signals. The major challenge here is the interrupted and delayed availability of these
signals. On the other hand, tool usage signals were used by Blum et al. [2] to perform
dimensionality reduction using canonical correlation analysis (CCA) on the visual
features. However, this method requires handcrafted visual features. Lalys et al. [3]
proposed a framework using only visual features like shape, color and texture for
surgical phase recognition in cataracts surgery. Usage of such handcrafted features
is inadequate for Cholecystectomy surgeries as they are performed for a longer dura-
tion in comparison with cataract surgeries. Also, additional visual challenges like
camera motions and presence of multiple tools that are more articulated are present
in laparoscopy procedures. Lea et al. [4] used skip-chain conditional random fields
(CRF) combining both kinematics and image features to determine surgical activi-
ties but the shortcoming is that it is tested on a dataset of shorter duration (around
minutes). Further, the visual features used in this method are hand crafted. Klank
et al. [5] proposed automatic learning of visual features from videos to determine
surgical phase. The method uses genetic programming, which is limited by prede-
fined operators which results in worse performance in comparison with hand crafted.
Twinanda et al. [6] proposed to use CNN for surgical phase identification.

3 Mathematical Formulation

The various actvities involved in a laparoscopy may be divided into several phases.
In a typical scenario the phases in a laparoscopic intervention are trocar placement,
preparation, calot’s triangle dissection, clipping and cutting, gallbladder dissection,
gallbladder packaging, cleaning and coagulation and gallbladder retraction. Sample
video frames depicting these phases are shown in Fig. 1. Thus the frames in the
video can be classified as a particular phase pi of the surgery. The problem of phase
identification in a surgical video, comprising of phases P = {p1, p2, . . . , pn}, can
be considered as a multi-class classification task, in which each frame f is to be
classified into one of the phase pi out of the set of phases P occurring in the
procedure.

(a) Preparation (b) Clipping and cutting (c) Cleaning and coagulation

Fig. 1 Sample images at different phases of a laparoscopic surgery as retrieved from the m2cai16-
workflow dataset
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If each frame of the video is annotated with the corresponding phase, a statistical
model can be developed by determining transition probability P(pi |p j ) which indi-
cates the probability of the upcoming phase to be pi given that the ongoing phase
is p j . Though the procedures involved in a particular type of surgery is pre-defined,
the order at which they are executed may vary depending on patient’s anatomy and
the surgeon’s skill. Therefore, once a workflow for a particular surgery is modeled
using a dataset consisting of significant variations in the workflow, the progression
of the workflow in a new unseen surgery can be determined with the knowledge of
the current phase of the surgery.

4 Methodology

4.1 Phase Recognition in Surgical Videos

The appearance of surgical phases is characterized by the various tools used and the
actions performed which are well represented by the visual features. These visual
features can be used for the identification of phases. In the proposed framework, a
CNN [7] is used to learn to extract visual features from the surgical video frames.
These features contains only the spatial information and fails to incorporate temporal
information. As the various surgical procedures are mostly executed methodically,
the temporal information can aid in improving the performance of frameworks for
automatic phase recognition. Therefore, an LSTM [8] network is trained on the visual
features from the CNN to learn the temporal information and thereby improve the
performance of the predictive framework. The problem of surgical phase recognition
can be modeled as a single-label multi-class classification task. Typically, there are 8
phases in the cholecystectomy procedure which is recorded in them2cai16-workflow
dataset. Therefore, each frame can be classified into one out of the 8 phases.

Owing to the success ofCNN in single label classification tasks, a similar approach
is used. Inherently, CNN has a huge number of parameters and thus requires a large
number of labelled training instances which are scarcely available in the domain
of medical images. However, by the method of transfer learning [9], good perfor-
mance on a target domain with fewer labelled data can be achieved by means of
fine-tuning [10]. The pre-trained networks used are AlexNet [11], GoogLeNet [12]
and ResNet-50 [13]. These networks are pre-trained on the Imagenet database. The
final layer is then replacedwith an 8-way log-sigmoid layer followed by finetuning on
them2cai-workflow1 dataset. The proposed framework usingResNet-50 architecture
for surgical phase identification in laparoscopic videos is shown in Fig. 2.

The spatial visual features learnt by the CNN does not encode any temporal
information. However, temporal information is crucial in correctly identifying the
phases in the surgical video. Long Short Term Memory (LSTM) [8] networks are

1http://camma.u-strasbg.fr/datasets.

http://camma.u-strasbg.fr/datasets
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Fig. 2 Illustration of ResNet used for surgical phase identification

Fig. 3 Internal structure of a LSTM is illustrated

recurrent neural networks [14] capable of encoding temporal information in their
internal states. Additionally, there are facilitated with three gates for regulating the
information flow and the internal states. The structure of the LSTM module along
with various gates are shown in Fig. 3.

The various operation at different gates of the LSTM are given below.

at = tanh(Wcxt + Ucht−1) (1)

it = σ(Wixt + Uiht−1) (2)

f t = σ(W f xt + U f ht−1) (3)

ot = σ(Woxt + Uoht−1) (4)
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Fig. 4 Illustration of LSTM network with depth of 3

where xt is the input to the LSTM at time t , ht−1 is the output vector of previous time
step, it , f t , ot are the response of input, forget and output gates respectively,W,U are
the weights associated with the gates and σ(.) represents the sigmoid non-linearity.

The features obtained from the fine-tuned AlexNet, GoogLeNet and ResNet-50
is used to train the LSTM. The depth of LSTM network can be increased by stacking
one LSTMmodule above another. Here 2, 3, and 4 LSTMmodules are used to learn
the temporal information. The sequence length used is 3, 5, 10 and 50 which states
the duration till which the LSTM retains temporal information. The architecture of
LSTM network is shown in Fig. 4. The softsign activation in the last layer is given
as,

f (x) = x

(1 + |x |) (5)

Norm stabilization between the LSTM modules regularizes the hidden states.
Minimization of the difference between L2 norms of each time step is done for
regularization. The associated cost function is given as,

loss = β × 1

T

T∑

t=1

(‖ ht ‖ − ‖ ht−1 ‖)2 (6)

where T is the total number of time steps, β is a constant and h represents the hidden
state.

4.2 Statistical Modeling of Workflow

An intuitive visualization of the surgical workflow of cholecystectomy is presented
using the a set of video recorded during the surgery with the per frame annotation
of the phase. The m2ccai16-workflow dataset consisting of 27 annotated videos of
cholecystectomy consisting of a maximum of eight different phases is used to vali-
date the proposedmodeling and visualization scheme. The total number of transitions
from one phase to the other across 20 videos of the dataset is used to model the work-
flow. It is observed that the first five phases of the surgery are executed sequentially in
almost all the videos with variation in the order of subsequent phases. The transition
probabilities for the different phases is shown in Table1.

The workflow scheme modelled from the dataset is shown in Fig. 5. The different
workflow schemes observed in the dataset is graphically illustrated in Fig. 6.
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Table 1 Transition
probability of phases obtained
on the m2cai-workflow
dataset for laparoscopy
procedure

Current phase Next phase

P1 P2 P3 P4 P5 P6 P7 P8

P1 0 1 0 0 0 0 0 0

P2 0 0 1 0 0 0 0 0

P3 0 0 0 1 0 0 0 0

P4 0 0 0 0 1 0 0 0

P5 0 0 0 0 0 0.71 0.29 0

P6 0 0 0 0 0 0 0.67 0.33

P7 0 0 0 0 0 0.32 0 0.68

P8 0 0 0 0 0 0 1 0

Fig. 5 Workflow model with the transition probabilities shown in different colors

The framework presented in Sect. 4.1 can be used to determine the current phase of
the surgery. It makes use of the video stream recorded during the surgery. Knowledge
of current phase of the surgery can inturn be leveraged to determine the next phase
using the transition probabilities and the workflow model.

5 Experiments and Results

The approach to the problem is based on CNN and LSTM, which learns both the
temporal and spatial features in the videos. CNNs have been proven to be very
successful in object recognition and image classifications tasks where features from
the CNN are used to make the LSTM learn sequence information. Thus spatio-
temporal information is leveraged to identify the surgical phases in a laparoscopic
intervention.

5.1 Dataset Description

The m2cai16-workflow dataset2 is used for performance evaluation. The dataset is
composed of 27 laparoscopic surgery videos which have their phase annotated at

2http://camma.u-strasbg.fr/datasets.

http://camma.u-strasbg.fr/datasets
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(a) Workflow model on video 2

(b) Workflow model on video 4

(c) Workflow model on video 20

(d) Workflow model on video 23

(e) Workflow model on video 27

Fig. 6 Workflow models for a set of selected videos from the m2cai-workflow dataset
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(e) Trocar
placement
frame 5

(c) Trocar
placement
frame 3

(a) Trocar
placement
frame 1

(b) Trocar
placement
frame 2

(d) Trocar
placement
frame 4

(f) Preparation
frame 1

(g) Preparation
frame 2

(h) Preparation
frame 3

(i) Preparation
frame 4

(j) Preparation
frame 5

(k) Callot triangle
dissection
frame 1

(l) Callot triangle
dissection
frame 2

(m) Callot triangle
dissection
frame 3

(n) Callot triangle
dissection
frame 4

(o) Callot triangle
dissection
frame 5

Fig. 7 Sample sequences for trocar placement is shown in a–e, preparation is shown in f–j and
Callot triangle dissection is shown in k–o

(a) Sample frame (b) Cropped frame

Fig. 8 Sample a frame from a video in the dataset and b the cropped region of interest

25 fps. 17 videos are used for training, 4 videos are used for validation and 6 videos
are used for testing purpose. The different phases in laparoscopy are trocar placement,
preparation, calot’s triangle dissection, clipping and cutting, gallbladder dissection,
gallbladder packaging, cleaning and coagulation and gallbladder retraction which is
shown in Fig. 7.

In the videos it is observed that the region of interest (ROI) in the frames of the
videos, where surgical activity takes place is generally confined to a smaller circular
region as compared to the whole image as shown in Fig. 8a. The frames are cropped
to extract the region of interest and reshaped to 224 × 224 as shown in the Fig. 8b
before being fed forward through the CNN.
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(a) Raw data (b) Balanced training data

Fig. 9 Graphical illustration of proportion of frames corresponding to each of the surgical phases
in the a raw and b balanced training data. Each color represents a surgical phase. While the raw
video has class imbalance, the trained data has been balanced

5.2 Compensating Class Imbalance in Training Dataset

The entire duration of the surgery can be divided into eight phases. The phases can
be differentiated on the basis of different tools or tool combinations used during the
surgery. The varied duration of these phase results in severe class imbalance in the
dataset. Some phases occurs for longer duration and some phases occurs for very
short duration. The phases trocar placement, preparation, calot’s triangle dissection,
clipping and cutting, gallbladder dissection, gallbladder packaging, cleaning and
coagulation and gallbladder retraction are labeled as P1, P2, P3, P4, P5, P6, P7
and P8 respectively. The imbalance in class distribution in the dataset is graphically
illustrated in Fig. 9a. Each sector corresponds to one of the phases and the size is
proportional to the number of frames labelled as that phase.

Table 2 Number of frames corresponding to each phase in the training data before and after class
balancing

Phase Raw data Balanced data

Trocar placement (P1) 2,907 14,008

Preparation (P2) 2,029 13,982

Calot’s triangle dissection (P3) 10,805 14,008

Clipping and cutting (P4) 5,108 14,008

Gallbladder dissection (P5) 11,494 14,008

Gallbladder packaging (P6) 891 13,532

Cleaning and coagulation (P7) 5,064 14,008

Gallbladder retraction (P8) 4,693 14,008
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In order to balance distribution of frames corresponding to each phase, the frames
are extracted methodically from the videos. The annotation of the video is given at
25 fps and the training data is created by taking frames at 1 fps so the class balancing
is done by taking into account the additional 24 frames per second for the class which
has lower count. Consider the example case of phase P6 which has 891 frames in
the training set. The data is balanced by extracting the intermediate frames. Table2
shows the number of frames containing each phase before and after class balancing.
The phase distribution balanced data is shown in Fig. 9b.

5.3 Baselines

Evaluation of the proposedmethod is done using the comparing its performance with
the following baselines (BL).

BL1: Multi-class classification using AlexNet [11]. The five convolutional layers
and the first two fully-connected layers of the AlexNet pre-trained on Ima-
geNet dataset were retained. The final classification layer was replaced with
a log-sigmoid layer preceded by a fully-connected layer of length eight.
The network was then fine-tuned on the class balanced m2cai16-workflow
dataset.

BL2: Multi-class classification using deep stacked LSTM network using the fea-
tures extracted by AlexNet fine-tuned on m2cai-workflow dataset. The fea-
tures from the fully-connected layer of length 4096 of the network trained
in BL1 was used to train the LSTM network detailed in Sect. 4.1.

BL3: Multi-class classification using GoogLeNet [12]. Similar to BL1, the fully-
connected linear layer after the fifth inception module was replaced with
a one of length eight followed by a log-sigmoid layer which is detailed in
Sect. 4.1. The modified GoogLeNet with the inception modules pre-trained
on ImageNet dataset was fine-tuned to detect surgical phase in laparoscopy
videos.

BL4: Multi-class classification using deep stacked LSTM network using the fea-
tures extracted by GoogLeNet fine-tuned on m2cai-workflow dataset. The
features from the last inception module of length 1,024 from the network
trained in BL3 was used to train the LSTM network detailed in Sect. 4.1.

BL5: Multi-class classification using ResNet-50. The framework presented in
Sect. 4.1 was trained on the m2cai16-workflow dataset.

Proposed method: Multi-class classification using deep stacked LSTM network
presented in Sect. 4.1 using the features extracted by ResNet-50 fine-tuned
on m2cai-workflow dataset. The baselines are summarized in Table3.
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Table 3 The training and testing times of the different baselines are tabulated

Baseline Description Train. time per
epoch (min)

Test. time per frame
(ms)

BL1 Modified (multi-class) AlexNet [11] 19.50 0.60

BL2 Modified (multi-class) AlexNet [11]
(BL1) + LSTM

20.25 2.34

BL3 Modified (multi-class) GoogLeNet
[12]

27.00 1.54

BL4 Modified (multi-class) GoogLeNet
[12] (BL3) + LSTM

28.17 3.20

BL5 Modified (multi-class) ResNet-50 [13] 39.00 2.35

Proposed
method

Modified (multi-class) ResNet-50 [13]
(BL5) + LSTM

40.30 3.22

5.4 Performance Comparison

Experiments are carried out on the number of LSTM modules and the length of the
input sequence to stackedLSTMnetwork in baselinesBL2,BL4 andproposed frame-
work. Performance evaluation for the baselines is donewith 1, 2 and 3 stacked LSTM
networks and sequence lengths of 3, 5, 10, and 50. Figure10a shows the performance
of BL2with the different configurations. Figure10b shows that of BL4. Performance
of proposed framework is shown in Fig. 10c. Comparison of performance of the best
performing configuration of BL2 and BL4 and the proposed method with BL1, BL3
and BL5 is shown in Fig. 11. Figure12 illustrates the prediction error per frame for
one of the videos in the testing dataset.

5.5 Visualization of Surgical Workflow

The graphical visualization shows the progress of an ongoing surgery in terms of the
modelled workflow for the procedure by augmenting the workflow model presented
in Sect. 4.2 on the surgical video. Sample frames showing the transitions of the phases
in a sample video from the dataset is shown in Fig. 13. This video corresponds to
the model shown in Fig. 6a. The current phase of the surgery in highlighted in red
in the workflow model. The phases that have executed already are in green and the
upcoming phase is shown in white along with the probability.
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Fig. 10 Performance of
BL2, BL4 and proposed
method with different depth
and sequence lengths. The
best performing
configuration is marked with
a red box in each case

(a) Performance of BL2

(b) Performance of BL4

(c) Performance of proposed method
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Fig. 11 Performance of BL1, BL2, BL3, BL4, BL5 and proposed method

Fig. 12 Error in the prediction for each frame on one of the test videos no. 23. Along with the
ground truth of the phase

6 Discussion

Figure9a shows that the occurrence of surgical phases in a laparoscopy is heavily
unbalanced. Among the eight phases P3 and P5 phases occur majority of the times
whereas P2 and P6 has very less occurrence. Training any network with such imbal-
anced data biases the network to the phases which have high number of occurrence.
So the class balancing is done as discussed in Sect. 5.2 and is graphically shown in
Fig. 9b. As shown in Sect. 5.4 the network thus learns to identify the surgical phase
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(a) Transition from phase 1 to 2 (b) Transition from phase 2 to 3

(c) Transition from phase 3 to 4 (d) Transition from phase 4 to 5

(e) Transition from phase 5 to 6 (f) Transition from phase 6 to 8

Fig. 13 Sample frames for the visualization of progress of the surgery in one of the videos of the
dataset.eps

with better accuracy. The improvement in performance can also be attributed to the
incorporation of temporal information in the prediction framework. In Fig. 12, the
red boxes in BL1 and BL5 highlight the frames 1959 (Fig. 14c) and 1388 (Fig. 14h)
respectively. In these frames, there is either a phase change or the video has some
frames which could not be concluded as distinctly belonging to a particular phase.
These transitions result in errors in detection. It has been observed that the error
decreases considerably with the introduction of temporal learning. Figure14 shows
the sequence of frames succeeding and preceding region highlighted by the red box.

The proposed method consists two stages. Stage one comprised of training a
CNN to detect the ongoing phase shown in the frames of the surgical video. In
the next stage, a temporal model consisting of LSTM is trained using the features
extracted by the CNN for identification of surgical phases. It is observed that the
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(a) Frame no.
1957

(b) Frame no.
1958

(c) Frame no.
1959

(d) Frame no.
1960

(e) Frame no.
1961

(f) Frame no.
1386

(g) Frame no.
1387

(h) Frame no.
1388

(i) Frame no.
1389

(j) Frame no.
1390

Fig. 14 Transitions in the video causing causes errors in phase detection as in observed in a–e
corresponding to BL1 and BL2 in Fig. 11 and for f–j corresponding to BL5 and Proposed method
in Fig. 11

accuracy of detection with the second stage (BL2, BL4 and proposed method) is
better than with just stage one (BL1, BL3 and BL5). This could be because, in stage
one, phase detection is done using individual frames of the videowithout considering
the information relayed by the previous frames resulting in incorrect out of context
detections.Whereas, the temporal learning in stage two considers sequence of frames
for the detection of surgical phase in one frame of the video.

7 Conclusion

A framework that uses CNN as a feature extractor followed by temporal learning
using a deep LSTM network is presented in Sect. 4.1. To train the framework to
detect surgical phases in laparoscopy videos, a CNN trained on ILSVRC [15] is first
fine-tuned on a publicly available laparoscopy video dataset. The performance of the
proposed framework has been experimentally verified against a set of baselines. It is
observed that the proposed framework comprising of using visual features of images
extracted using deep residual networks followed by temporal learning with LSTM
outperforms the different baselines in terms of detecting the surgical phase with high
accuracy of {93.09, 95.68, 95.85, 91.01, 95.83, 97.76, 92.05 and 94.00%}for the
surgical phases {Trocar placement, Preparation, Calot’s triangle dissection, Clipping
and curring, Gallbladder dissection, Gallbladder Packaging, Cleaning and coagula-
tion, Gallbladder retraction} and average phase detection accuracy of 94.41%. The
workflowmodeling was done using a dataset consisting of surgical videos along with
the per frame annotation of phase. The phase transitions in individual videos of the
dataset was used to model the overall workflow model for the surgery. Visualiza-
tion of the progress of the surgery was done by first recognizing the current surgical
phase using a deep neural network framework trained to recognize the phase. The
next probable next phase can then be determined using the workflow model for the
surgery.
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Deep Learning Applications
to Cytopathology: A Study
on the Detection of Malaria
and on the Classification of Leukaemia
Cell-Lines

G. Gopakumar and Gorthi R. K. Sai Subrahmanyam

Abstract This chapter discusses a few applications of deep learning networks in
cytopathology. Specifically, the detection of malaria from slide images of blood
smear and classification of leukaemia cell-lines are addressed. The chapter starts
with relevant theory for traditional (deep) multi-layer neural networks with back-
propagation, followed by motivation, theory and training in Convolutional Neu-
ral Networks (CNN), the trending deep-learning based classifier. The detection of
malaria from blood smear slide images using CNN is addressed followed by a dis-
cussion on the transfer learning capability of CNN by taking the classification of
leukaemia cell-lines: K562, MOLT & HL60 as an example. The transfer learning
capability of CNN is of particular interest especially when there are only very limited
number of training samples to come up with a stand alone deep CNN classifier.

1 Introduction

Cytopathology is the cellular level study for the diagnosis of diseases. In cytopathol-
ogy [1], often free cells are analysed unlike histopathology where the tissue as a
whole get analysed. Each cell under investigation has a signature constituted by the
morphology of the cells as well as their behavioural characteristics. The cytologists
look for deviation from standard cell signature to report pathological state of the
subject. The cells for analysis are either prepared as a smear on a glass slide or as
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a fluid suspension. Sometimes cyto-centrifugation is used to concentrate the cells
under investigation without altering the morphology of the cells.

The microscopic examination even today remains as the gold standard for cell
analysis for its low cost and well acceptance. However, the manual microscopic
examination is a laborious task involvingboth slide preparation (fixation and staining)
and analysis. It is a time consuming, repetitive and tedious job. Above all, the results
may vary for the same sample among the clinicians depending on their level of
expertise. In order to overcome these drawbacks, several efforts have been made in
the recent past to automate the process of cytopathology. Research efforts in this
direction have mostly been constrained to two approaches: instrumentation and data
analysis.

In the instrumentation side, past fewdecades have seendevelopments in automated
microscopy systems [2], flow cytometry [3] and imaging flow cytometry [4]. The
automatedmicroscopy systems such as the PathScope has considerably improved the
throughputwhen compared tomanualmicroscopy but is still well behind flow cytom-
etry. Flow cytometry can analyse and identify cells of the order of a few thousands per
second and it became an indispensable tool for clinicians. It uses a flow cell architec-
ture where the cells are interrogated using lasers while they are in flow. A typical flow
cytometry system measures the forward as well as side scatter profiles of the lasers.
The forward scatter is ameasure of the size of the cell and the side scatter is ameasure
of the complexity of the cell, and this knowledge is used to identify and count differ-
ent cells under study. Though the acquisition speed of flow cytometry is very high,
the per cell information it provides is usually low. The reason is that the flow cytome-
try will not capture specific morphological features other than the amount of scatter.
On the other hand, traditional microscopic examination give detailed information
with spatial localisation of components at sub-cellular level but has drawbacks both
in terms of enumeration and speed. Imaging Flow Cytometry (IFC) [4, 5] is a rela-
tively new technology which combines the speed of flow cytometry and the power
of digital microscopy in providing the capability to analyse morphological features.
However, the current commercially available imaging flow cytometry systems are
bulky and are expensive [6] since they employ bulk fluid handling mechanisms for
sample image acquisition and employ expensive and sophisticated image acquisition
methods. Even the automated microscopy system uses automated slide preparation
unit which employs extensive amount of robotic handling, rendering these systems
bulky and expensive [2, 7, 8]. Thus these automated machines are not that affordable
in resource limited settings. The new trend is to use microfluidic sample handling
in combination with microscopy imaging modalities for high-throughput imaging of
cells while they are in flow. These systems, which we call microfluidics microscopy
(Mf-Ms), combine the power of flow cytometry (high throughput) and the power of
digital microscopy (capability to provide spatial and quantitative morphology).

In the direction of developing automated system for point-of-care diagnosis, quite
a large number of works have been done in developing algorithms necessary for pro-
cessing the images and making the diagnostic decision. However, traditional classi-
fication systems are typically modelled to contain steps such as cell segmentation,
feature extraction, followed by decision making using classifiers such as SVM [9].
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It remained always a keen desire to build a decision making system that is as good
as an expert clinician. It is an established fact that the power of human brain comes
from massively interconnected large number of neurons capable of doing parallel
computation [10]. A review on the use of artificial neural network in cytopathology
can be found in [11, 12]. Fully connected normal artificial neural network is also not
that feasible to learn such complex decision problems from big dataset. Such prob-
lems often requires large number of layers and neurons and hence large number of
parameters need to be learned making the learning process slower. Also, the problem
of vanishing of gradients [13] in lower layers of ANN during backpropagation based
training makes the learning problem further difficult, if not impossible. Another dif-
ficulty with ANNs in supervised mode and SVMs is that the data for training need
to have labels and the generalisation capability of the system is greatly dependant on
the amount of labelled data used for training. Recently deep learning systems espe-
cially based on convolutional neural networks are emerging as reliable and default
model for image analysis. Greenspan et al. [14] reviews recent deep learning related
research in medical domain.

In this chapter, the application of convolutional neural network for the diagnosis
of malaria [15] and in the classification of leukaemia cell lines are discussed. The
datasets used in this study are generated, respectively, by cost-effective indigenously
developed automated microscopy system [16] and microfluidic microscopy systems
[17]. Section 2 provides the basic architecture of feed forward neural network and the
backpropagation training algorithm which is instrumental in training convolutional
neural network. Section 3 discusses the basic building blocks of convolutional neural
networks and the mathematical details of associated training algorithm. Section 6
discusses the custom designed CNN operating on focus stack of blood smear slide
images for malaria diagnosis followed by the transfer learning capability of CNN
for the classification of leukaemia cell-lines in Sect. 7.

2 Multilayer Neural Network with Backpropagation

Multi layer feed forward neural networks and backpropagation [18] training algo-
rithm was a milestone in developing a single classifier that automatically learn from
examples just like our brain do. It has made the possibility that keeping the system
architecture and algorithm the very same, we can learn classifiers addressing totally
different classification tasks. Cybenko [19] and Hornick [20] have shown that any
continuous function on compact subsets of Rn can be well approximated by a feed
forward neural network (FFN) with a single hidden layer containing a finite number
of neurons. Thus an FFNwith single hissen layer can find any complex classification
boundary on Rn. Though this universal approximation theorem is very exciting there
is no guarantee for an algorithm which can automatically learn the very high number
of parameters to address a complex classification task in reasonable amount of time
using finite training set and with an architecture having only a single hidden layer.
This constraint has motivated the engineers to design multi-layer neural network.
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Also, human neural system (say, visual system [21]) often works at multiple levels
in making inferences.

The backpropagation, is a widely used method in training artificial FFN. Training
ANN has two steps: error backward propagation and weight update. An input vector
when presented to the network, it is propagated forward through the network, layer
by layer, until it reaches the output layer. Then the desired output corresponding
to this input vector is compared to the generated output and the error value (using
an appropriate loss function) is calculated for each neuron in the output layer. This
error is then propagated backwards (hence the name backpropagation), starting from
the output, until each neuron has an associated error value which is a measure of
its contribution of the error at the output layer. Once the error at each neuron is
determined, the weights are updated using an optimization method like gradient
descent so as to minimize the loss function. The weight update at deeper layers is
usually related to the final error by the use of chain rule and performed layer by
layer. For this, the error backpropagation can be conveniently done in matrix notion
in almost similar manner from layer to layer by observing the decoupling between
the error back propagated and the corresponding weight update by gradient decent.
As discusses here, this is feasible because the weight update term in gradient descent
can be easily computed based on the back propagated error at the rear end of the
connection (carrying the weight) and based on the input to the connection. This
process, that we discuss here, gives a generalized procedure to interpret and derive
the weight update in deep networks. Further, this understanding gives a nice base for
the easy following of back propagation in deep convolutional networks.

Figure 1 shows an arbitrary 4 layer feed forward neural network. There are D
neurons in the input layer, M neurons in 2nd layer, N neurons in 3rd layer and Z
neurons in the output layer. There is a weighted connection between each neuron
in a layer to every other neurons in the layer immediately following it. Also there
is a bias to every neurons in all layers except at the input layer. During training
these parameters (weights and biases) need to be updated so as to minimise the loss

Fig. 1 Typical feed forward 4 layer neural network
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function. A typical loss function could be the half of the sum of squared difference
defined by

E =
∑

z

1

2
(Tz − Oz)

2 (1)

Here Tz and Oz are the desired output and actual output produced at node z of the
output layer for any specific input X = {Xi}Di=1. Note that the notion of input to the
normal feed forward neural network is a D × 1 column vector. If the input is an
image, it has to be vectorised to form the input vector.

All nodes, except at the input layer, compute the weighted sum of inputs from
the previous layer to produce an intermediate output Net. The activation function is
applied to each of this Net to produce the final output at each neuron in an arbitrary
layer L. We will consider the popular Sigmoid activation function defined by

OL
z = f (NetLz ) = 1

1 + exp−NetLz
(2)

where NetLz is the intermediate output produced by node z in layer L and is defined
by

NetLz =
∑

k

WzkO
L−1
k + dz (3)

Here OL−1
k is the output at node k in L − 1th layer and Wzk is the weights of the

connections from node k in layer L − 1 to node z in layer L.
The gradient descent is used to update the parameters. Each parameter is updated

in the negative direction of the gradient of the loss function (Eq. 1) computed with
respect to the parameter to be updated. To generalize this procedure, we first show
that this weight update can be decoupled in two steps: back-propagating the error
computed to lower layers and updating the weights based on the back-propagated
error and input to the specific connection for which the weight update is done.
Section 2.1 discusses the error back propagation procedure while Sect. 2.2 discusses
the parameter updating procedure. In all these discussion, L, is an arbitrary layer,
L − 1 is one layer lower in the hierarchy, then L − 2 and so on. The main theme of
the presented formulation is that either error back propagation or the weight update
based on it can be extended to any number of layers (on similar steps).

The simple update rule based on the gradient descent to update the weight con-
nection WL

zk between kth neuron in L − 1th layer to zth neuron in Lth layer is

Wnew
zk = Wold

zk − η
∂EL+1

WL
zk

(4)

Here η is the learning parameter and EL+1 becomes the error at the final layer (E)
when updating the weights between the final and pre-final layers. The ∂EL+1

WL
zk

can be
computed using chain rule
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∂EL+1

∂WL
zk

=
[
∂EL+1

∂OL
z

∂OL
z

∂NetLz

]
∂NetLz
∂WL

zk

= ΔL
z ∗ OL−1

k (5)

Here in Eq. 5, ∂NetLz
∂WL

zk
turns out to be the input OL−1

k to connection for which the

weight update is seeking for and is due to the definition of NetLz in Eq. 3. The term
in bracket ΔL is the error back propagated at the rear end of the connection. The

term ∂OL
z

∂NetLz
can be denoted as f

′ (
NetLz

)
and by definition (Eq. 2), this turns out to be

OL
z ∗ (

1 − OL
z

)
for Sigmoid. In short, the weight update for the branch connecting

kth neuron in L − 1th layer to zth neuron in Lth layer turns out to be ΔL ∗ OL−1
k ,

which is the product of the error back propagated at the rear end of the connection
(ΔL) and input to the connection from the lower layer neuron (OL−1

k ). This point will
be clearly brought out mathematically in Sects. 2.1 and 2.2.

2.1 Backpropagating the Error Across the Layers

In this section, the error at each node in the output layer is computed and then back
propagated to the layers lower in the hierarchy to determine the contribution of this
error by each node in the network.

2.1.1 Finding Error at Output Layer L

Each node in the output layer contribute to the total error E. The contribution of
Error by a node z at Layer L is due to its output OL

z . Let ΔEL
z denote this quantity

and can be measured by computing ∂E
∂OL

z
. By the definition of the error function

(Eq. 1), this turns out to be

ΔEL
z = ∂E

∂OL
z

= OL
z − Tz (6)

2.1.2 Propagating the Error from Layer L to Layer L− 1

First, an intuitive idea behind the backpropagation of error is provided and is followed
by deriving explicit expressions for it. In order to find the contribution of the final
error E at layer L due to the output of a node k in layer L − 1, the error found out
at each node in L has to be backpropagated. Once the error ΔEL

z at all nodes z in an
arbitrary layer L is computed, it has to cross these neurons during backpropagation
of the error to compute the error at all nodes in the lower layer L − 1. This is done by
weighingΔEL

z by the corresponding derivative of the sigmoid function f
′
(NetLz ), and



Deep Learning Applications to Cytopathology: … 225

Fig. 2 Error backpropagation from nodes in layer L to node k in layer L − 1

then accumulating the shares (ΔL) through the weighted connections at each node k
in layer L − 1. The procedure can be explained better by referring to Fig. 2. It shows
the relationship to each of ΔEL

z from the node k in layer L − 1. It can be seen that
node k in layer L − 1 influences the output at all nodes in L through the respective
weight connections. Thus the error computed at each neuron in layer L contributes
through the respective weight connection to each node k in layer L − 1 and it has
to cross each neuron z in layer L. Thus the Error at a node k in layer L − 1 can be
computed as

ΔL−1
k = f

′ (
NetL−1

k

)
ΔEL−1

k (7)

where f
′ (
NetL−1

k

)
is OL−1

k

(
1 − OL−1

k

)
for Sigmoid and ΔEL−1

k is defined by the
recursive relation

ΔEL−1
k = ∂EL

z

∂OL−1
k

=
∑

z

∂EL
z

∂OL
z

f
′
(NetLz )Wzk (8)

In matrix form, this can be written as

ΔEL−1 = WT ∗
[
ΔEL. ∗ f

′
(NetL)

]
(9)

where ‘.*’ represents the element by elementmultiplication, ‘*’ represents thematrix
multiplication, and T represents the matrix transpose. Equation 9 remains same for
back propagation of error through any number of layers. The weight matrix W
changes from layer to layer. The f

′
of the corresponding activation function (with

associated outputs) and error at current layer are used to backpropagate the error to
its previous layer.
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The expression in Eq. 8 can also be explicitly computed using the normal chain
rule for gradient computation and is shown below.

∂EL
z

∂OL−1
k

=
∑

z

∂EL+1
z

∂OL
z

∂OL
z

∂NetLz

∂NetLz
∂OL−1

k

(10)

where ∂NetLz
∂OL−1

k
can be computed as

∂NetLz
∂OL−1

k

= ∂

∂OL−1
k

∑

k

WzkO
L−1
k = Wzk (11)

When substituted Eq. 11 in Eq. 10, it turns out that

∂EL
z

∂OL−1
k

=
∑

z

∂EL+1
z

∂OL
z

∂OL
z

∂NetLz
Wzk (12)

BeingOL
z = f (NetLz ), f

′
(NetLz ) is another way of writing

∂OL
z

∂NetLz
for notational simplic-

ity. Thus Eq. 12 is exactly the same equation provided in Eq. 8. The consequence of
Eq. 9 is that the error backpropagation can be done independent of gradient update,
and can be propagated back in each layers lower in the hierarchy one by one by
simple matrix multiplication.

2.2 Updating the Parameters

As noted earlier, the optimisation method used to minimise the loss function defined
in Eq. 1 could be gradient descent. The parameters are updated in the negative
direction of the gradient of the error function computed with respect to the parameter
to be updated.

2.2.1 Updating the Weights

The simple update rule based on the gradient descent is

Wnew
zk = Wold

zk − η
∂E

Wzk
(13)

Here η is the learning parameter and ∂E
Wzk

is the gradient of the loss function E with

respect to the parameter Wzk . The ∂E
Wzk

can be computed using chain rule
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∂E

∂Wzk
=

[
∂E

∂Oz

∂Oz

∂Netz

]
∂Netz
∂Wzk

(14)

Here, the term inbracket is already computedby error backpropagation for all neurons
in all layers as discussed in the last section. The second term turns out to be

∂Netz
∂Wzk

= ∂

∂Wzk

∑

k

WzkO
L−1
k = OL−1

k (15)

Wzk is the weight connecting node k in layer L − 1 to node z in layer L, ∂Netz
∂Wzk

turns

out to be the output at the node k at layer L − 1. Thus ∂OL
z

∂Wzk
turns out to be the output

of the neuron k at layer L − 1 weighted by the derivative of the sigmoid with respect
to NetLz at node z in layer L.

2.2.2 Updating the Weights for the Network Shown in Fig. 1

Let WH1 ,WH2 and WH3 be the weight matrices of the network holding respectively
the weights between layer 1 & 2, 2 & 3 and 3 & 4.

WH1 =

⎡

⎢⎢⎢⎢⎣

W11 W12 W13 . . . W1D

. . . . . . .

. . . Wji . . .

. . . . . . .

WM 1 WM 2 WM 3 . . . WMD

⎤

⎥⎥⎥⎥⎦

WH2 =

⎡

⎢⎢⎢⎢⎣

W11 W12 W13 . . . W1M

. . . . . . .

. . . Wkj . . .

. . . . . . .

WN1 WN2 WN3 . . . WNM

⎤

⎥⎥⎥⎥⎦

WH3 =

⎡

⎢⎢⎢⎢⎣

W11 W12 W13 . . . W1N

. . . . . . .

. . . Wzk . . .

. . . . . . .

WZ1 WZ2 WZ3 . . . WZN

⎤

⎥⎥⎥⎥⎦

LetO4 = {Oz}Zz=1,O
3 = {Ok}Nk=1 andO

2 = {Oj}Mj=1 be the output produced at each
node in layers 4th, 3rd and 2nd respectively when an input X = {Xi}Di=1 is fed to the
network. The output at layer 1 is same as the input and henceO1 = {Oi}Di=1 = {Xi}Di=1.
Also let T = {Tz}Zz=1 is the target or desired output at each node in the output layer.
Now the error vector at layer L, ΔL can be computed by error backpropagation.
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Δ4 = O4
[z×1]. ∗

[
1 − O4

]
[z×1] . ∗

[
O4 − T

]
[z×1] (16)

Δ3 = [
WT

H3

]
N×Z

∗ [
Δ4

]
Z×1 . ∗ O3

N×1. ∗ (1 − O3)N×1 (17)

Δ2 = [
WT

H2

]
M×N

∗ [
Δ3

]
N×1 . ∗ O2

M×1. ∗ (1 − O2)M×1 (18)

Note that Eqs. 17 and 18 follow from the Eqs. 7 and 9. Now the gradient at each
neuron with respect to the parameter to be updated can be found and the final update
rule in matrix form will be

Wnew
H3

= Wold
H3

− η
[
Δ4

]
Z×1 ∗ [

O3
]T
1×N (19)

Wnew
H2

= Wold
H2

− η
[
Δ3

]
N×1 ∗ [

O2
]T
1×M (20)

Wnew
H1

= Wold
H1

− η
[
Δ2

]
M×1 ∗ [

O1
]T
1×D (21)

Thus to update the weight (Wkj) between neuron j in layer L − 2 and neuron k in
layer L − 1, the gradient of the error function at the final layer with respect to Wkj

need to be computed. It can be seen from the above set of equations that this gradient
can be interpreted as the product of two terms. The first term is the error computed at
node k in layer L − 1 multiplied by the derivative of the sigmoid activation function
with respect to the output at node k. This can be treated as the error at the rear end
of the connection holding the weight Wkj. The second term is the output at the node
j in layer L − 2, and can be considered as the input to the connection holding the
weight Wkj. Thus, the change for updating the weight for a connection between any
layers can be simply obtained by computing the product of error at rear end of the
connection and input at front end of the connection. This is then weighted by the
learning parameter η and the weight of the connection is updated by gradient descent.

3 Convolution Neural Network (CNN)

In traditional multi-layer feed forward neural network, image based classification
introduces a few serious difficulties. Often feature extraction has to be pre-done and
will be the input to neural network. These features are application dependent and
hand-engineering them is an important but difficult job. Another option is vectorising
the input image and feeding it to the network. However, the input images are typically
bigger in size which leads to a large weight matrix and hence huge number of param-
eters to be learned. Convolution Neural Network (CNN) was introduced to address
these constraints by sharing weights [22] across the neurons of the layer and was
popularised by Lecun with his five layer CNN (LeNet-5 [23]) for digit recognition.

The CNN is a biologically inspired neural network designed to mimic our visual
cortex system by its connectivity pattern. Basically there is a series of feature extrac-
tion layers one working on extracted features at its lower layer for producing certain
inference (such as discriminating inter-class samples) at final layer. Sub-sampling
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Fig. 3 LeNet architecture for digit recognition

of the feature map is done between subsequent feature extraction layers, in order
to mitigate small difference due to shift, scale and noise which are often present
in samples coming from same class (intra-class differences). Lecun has designed
LeNet-5 [23] such that it has five layers as shown in Fig. 3. Feature extraction at first
layer, followed by subsampling, again a feature extraction layer followed by subsam-
pling layer, and a fully connected layer as the last layer. The same backpropagation
algorithm discussed in last section forms the basis to train the convolutional neural
network and it has produced great accuracy for the digit classification problem and
for several other classification tasks.

The architecture was well received by the machine learning community and was
applied to different problems by introducing more feature extraction and subsam-
pling layers. However, extending the architecture by introducing more layers has
a very serious drawback that the learning will not happen during backpropagation
especially at the lower layers. The bottleneck is the activation function used in LeNet-
5 which was the same sigmoid activation function provided in Eq. 2. Note that during
backpropagation, while computing the error contribution Ej at any layer, ΔEj com-
puted need to be weighted by f

′
(Netj). As the maximum value of f (Netj) is 1, the

maximum possible value for f
′
(Netj) = Oj(1 − Oj) turns out to be 0.25. Due to the

chain rule of backpropagation, at a lower layer L, this means that EL will be a very
small quantity (sinceweighted bymany f

′
(Netj) at top layers), andweight updatewill

not happen. In order to mitigate this problem due to vanishing of gradient, another
activation function was introduced and is Rectified Linear Unit (ReLU). Thus the
modern CNN architectures has three basic building blocks : feature extraction layer,
subsampling layer and ReLU activation.

3.1 Feature Extraction Layer

In CNN, the feature extraction layers are designed as convolution layers, since the
convolution operation on an input image with appropriate kernels always leads to
different output feature-maps: just like Sobel kernel detecting edges and Laplacian
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kernel detecting blobs in an input image. Given a D dimensional image, the con-
volution block compute Y which can be thought of K instances of different feature
maps. The operation performed a form of convolution and is done between the D
dimensional image andK set of learned kernels f . Equation 22 depicts this operation
where f T represents the flipped kernel.

X ∈ R
H×W×D, f ∈ R

H
′ ×W

′ ×D×K ,Y ∈ R
H

′′ ×W
′′ ×K (22)

yi′′ j′′ k = bk +
H

′
∑

i′ =1

W
′

∑

j′ =1

D∑

d ′ =1

f Ti′ j′d ′ k × xi′′ +i′ −1,j′′ +j′ −1,d ′

where bk ∈ R are biases for the nodes in the layer.
Note that the weights learned in convolutional block of the CNN forms the kernel

and biases. Intuitively, the learned kernel at convolution layer helps to extract very
local features such as (though not exactly) lowpass and high pass filters, edge features
and corners. Thus during training a CNN, we are actually learning these feature
detectors (not the features) like edge, line, corner detectors and contrast quantifiers
that can be used to extract relevant features when operated on a test image.

Lecun has designed a five layer networ (LeNet-5) [23] with two convolution lay-
ers, two sub sampling (pooling) layers and a fully connected layer and is shown
in Fig. 3. Note that the architecture has designed such that the input image is of
dimension 28 × 28 and the output layer contain 10 nodes as it is addressing digit
classification problem. There are 6 kernels of dimension 5 × 5 in first convolution
layer and 12 kernels of dimension 5 × 5 × 6 in second convolution layers. Thus, the
number of parameters to be learned in the first convolutional layer is only 156: the
5 × 5 = 25 weights each for 6 kernels and their 6 biases. An equivalent layer in fully
connected traditional feed forward neural network, will have 764 (28 × 28) input
neurons and 3456 (24 × 24 × 6) output neurons which leads to 2,640,384 weights
and 3456 biases. Compare the 156 parameters that we are trying to learn in the first
convolutional layer with the 2,643,840 parameters in such a fully connected layer.
However, note that there are almost same number of connections exists in convo-
lutional layer as much as its equivalent fully connected counter part. The reduction
in number of parameters is achieved by sharing the same parameters for multiple
connection as defined by the convolution operation.

3.2 The Activation Function ReLU:

Given an input yijk , the Rectified Linear Unit (ReLU) suppresses an input, if it is
negative else it retains the same value. Thus it is a non-linear activation function and
usually follows the convolution operation. Without ReLU, the non-linear activation
function, the whole network would have reduced to a simple linear transformation.
Also, unlike other non-linear activation functions such as sigmoid, ReLUoffers better
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resistance to slow learning (due to vanishing of gradients [13]) especially at lower
layers of deep networks as its derivative is 0 or 1 depending on input being −ve or
positive !.

y1ijk = max(0, yijk) (23)

3.3 Subsampling:

The sub-sampling typically follows the feature extraction layer and it introduces small
shift invariance as well as scale invariance to the features, as the subsequent feature
extraction is going to operate on the scale down version. In LeNet-5 architecture,
the subsampling is defined by 2 × 2 average pooling. Another popular sub-sampling
operation is by max-pooling as defined by

y2ijk = max
(
y1
i+i′ −1,j+j′ −1,k

)

1 � i
′ � H

′
, 1 � j

′ � W
′ (24)

4 Training CNN Using Backpropagation

The same backpropagation algorithm that discussed in Sect. 2 forms the basis o train
convolutional neural networks as well. In this section, the training is discussed in
detail by taking the architecture shown in Fig. 3 as an example. As noted earlier, it has
two convolution layers (C1,C2), two average pooling layers (P1,P2) and one fully
connected layer (FC1). There are 6 kernels in C1 each of size 5 × 5 and 12 kernels
in C2 each of size 5 × 5 × 6. The average pooling does a 2 × 2 pooling (thus the
kernel weights are fixed as 0.25). The architecture was originally designed for digit
recognition for input images of dimension 28 × 28. The dimensions of corresponding
output maps generated at each layer is shown above the individual blocks. Note that
the output dimension is 10 × 1 since each input has to be mapped to one of the 10
digits. Note that the parameters to be learned in this CNN are (1) the weights of
the kernels and their biases at the convolutional layers (5 × 5 × 6 + 6 = 156 in C1

and 5 × 5 × 6 × 12 + 12 = 1812 in C2) and (2) the weights and biases at the fully
connected layer (4 × 4 × 12 × 10 + 10 = 1930).

4.1 Parameter Initialization

The parameters for each layer are initialised based on the number of input and out-
put connections at that layer. Specifically these are initialised with random numbers
selected from uniform distribution between U [−ζ, ζ ], where the bound ζ is deter-
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Table 1 Parameters for weight initialisation for CNN in Fig. 3

C1 C2 FC1

Fanin 1 × (5 × 5) = 25 6 × (5 × 5) = 150 12 × (4 × 4) = 192

Fanout 6 × (5 × 5) = 150 12 × (5 × 5) = 300 10

ζ 0.0756 0.0471 0.0704

mined by the fanin and fanout of the layer.

ζ =
√

1

fanin + fanout
(25)

Here, for convolutional layers fanin is defined as the product of number of input maps
and kernel size and fanout is defined as the number of output maps and kernel size.
For fully connected layer, fanin is the product of number of input maps and size of
the input map while fanout is the number output nodes. Table 1 shows the parameters
for weight initialisation for the CNN architecture shown in Fig. 3.

4.2 Forward Propagation

The respective operations are performed on the input maps at each layer. At con-
volutional layers, each kernel is used to convolve with the input map, then kernel
bias is used to offset the result, and then the sigmoid activation function is applied
to produce an output map. Note that only valid part of result of convolution is used
to generate the output map. If the output map has to maintain the same dimension as
input, the input need to be appropriately padded before feeding to the layers.

O [i] = 1

1 + exp
−

(∑D
d=1[I(:,:,d)∗Ki(:,:,d)+B(i)]

) (26)

In Eq. 26, ∗ represents the convolution operation (Eq. 22) and B(i) represents the
bias of ith kernel. O[i] is the output map generated for ith kernel when applied on
the d th input map. For convolutional layer 1, D = 1 and i varies from 1 to 6. For
convolutional layer 2, D = 6 and i varies from 1 to 12. At the pooling layers, each
2 × 2 block is averaged to form a single pixel thereby reducing the output map size
by 2 along each dimension. At the fully connected layer, the output is computed just
like normal feed forward neural network as discussed in Sect. 2 (Fig. 4).
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Fig. 4 LeNet architecture for digit recognition

4.3 Backward Error Propagation

The same loss function defined in Sect. 2 is used to compute the error. For any input
image, we compute the result at the output layer which will be the 10 × 1 vector, and
now we can compute ∂E

∂Ok
. Now this error has to be backpropagated across different

layers.

Error backpropagation across fully connected layer FC1 :

The derivative of the loss function with respect to the output at any node k in the
final layer ∂E

∂Ok
is Ok − Tk . Thus the error in fully connected layer FC1 is a 10 × 1

vector holding (Ok − Tk)10k=1.
ΔEFC1 = O − T (27)

The error at nodes in the FC1 has to be backpropagated to the pooling layer 2 (P2)
and this turns out to be ΔES2

ΔEP2 = W. ∗ O. ∗ (1 − O). ∗ ΔEFC1 (28)

Here in Eq. 28, ‘.*’ represents the element by element multiplication. Here W is the
weight matrix connecting 192 × 1 output map at P2 to the 10 × 1 output vector. The
192 × 1 output map at P2 is actually the vectorised representation of 12 maps each
of size 4 × 4. Thus ΔES2 is of dimension ([192, 10] × [10, 1] → [192, 1]). This is
reshaped into (4 × 4)12 for representational convenience in propagating the error
further down the layers.
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Error backpropagation across pooling layer P2 :

Since the pooling operation does an average pooling in 2 × 2 neighbourhood, the
error backpropagation across this layer is just an inverse operation of down-sampling
i.e., up-sampling by 2.

ΔEC2 = US2(ΔEP2) (29)

where US2 represents the operation, upsampling by 2. This leads to ΔEC2 of size
(8 × 8)12.

Error backpropagation across convolutional layer C2:

The error backpropagation across the convolution layer is also governed by the
same error propagation equation used in FFN. But by the special construction of the
convolution operation, the weights are related in a special way while propagating the
error. It turns out to be the correlation of the kernelwith the error to be backpropagated
after weighted by the derivative of the activation function. First, the correspondence
between the correlation operation and the weighted error propagation is shown by
taking an example followed by explicit equation for error backpropgation across
C2. Consider the following convolution operation (only valid part of convolution
is considered) in Eq. 30 and the correlation operation in Eq. 31 (Note that there is
adequate padding by zero to reconstruct the dimension of the input).

In forward propagation of convolution,
⎡

⎢⎢⎣

x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12
x13 x14 x15 x16

⎤

⎥⎥⎦ ∗
⎡

⎣
w1 w2 w3

w4 w5 w6

w7 w8 w9

⎤

⎦ =
[
y1 y2
y3 y4

]
(30)

Here

y1 = w9x1 + w8x2 + w7x3 + w6x5 + w5x6 + w4x7 + w3x9 + w2x10 + w1x11
y2 = w9x2 + w8x3 + w7x4 + w6x6 + w5x7 + w4x8 + w3x10 + w2x11 + w1x12
y3 = w9x5 + w8x6 + w7x7 + w6x9 + w5x10 + w4x11 + w3x13 + w2x14 + w1x15
y4 = w9x6 + w8x7 + w7x8 + w6x10 + w5x11 + w4x12 + w3x14 + w2x15 + w1x16

From the above set of equations/relations, note that x1 only contribute to y1 through
the weight w9, while x2 contribute to y2 through the weight w9 and to y1 through w8.
i.e., x2 is connected to y2 through w9 and to y1 through w8. Thus error in x2 is decided
by the sum of back propagated errors in y2 weighted byw9 and error in y1 weighted by
w8. i.e.,Δx2 = w9Δy2 + w8Δy1. Through similar rational relationship, the following
set of equations can be obtained.

Δx1 = w9Δy1; Δx2 = w9Δy2 + w8Δy1; Δx3 = w8Δy2 + w7Δy1;
Δx4 = w7Δy2; Δx5 = w9Δy3 + w6Δy1; Δx8 = w7Δy4 + w4Δy2;
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Δx13 = w3Δy3; Δx9 = w6Δy3 + w3Δy1; Δx12 = w4Δy4 + w1Δy2;
Δx16 = w1Δy4; Δx14 = w3Δy4 + w2Δy3; Δx15 = w2Δy4 + w1Δy3;

Δx6 = w9Δy4 + w8Δy3 + w6Δy2 + w5Δy1; Δx7 = w8Δy4 + w7Δy3 + w5Δy2 + w4Δy1;
Δx10 = w6Δy4 + w3Δy2 + w5Δy3 + w2Δy1; Δx11 = w5Δy4 + w2Δy2 + w4Δy3 + w1Δy1;

Very interestingly, the backpropagation can be compactly put as the following
error and weight matrix correlation.

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 Δy1 Δy2 0 0
0 0 Δy3 Δy4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
�

⎡

⎣
w1 w2 w3

w4 w5 w6

w7 w8 w9

⎤

⎦ =

⎡

⎢⎢⎣

Δx1 Δx2 Δx3 Δx4
Δx5 Δx6 Δx7 Δx8
Δx9 Δx10 Δx11 Δx12
Δx13 Δx14 Δx15 Δx16

⎤

⎥⎥⎦ (31)

Thus it can be seen that the relationship between the weights and the output
during convolution is reproduced during correlation and hence can be used in back-
propagating the error. For example, input x6 at layer L influences all the output
neurons (y1, y2, y3, y4) at layer L + 1 during convolution operation through weights
w5,w6,w8 and w9 respectively. Therefore, when backpropagating the error Δy com-
puted at layer L + 1, the error contribution at node corresponding to x6 should be the
aggregate sum of the error at Δy1,Δy2,Δy3 and Δy4 weighted exactly by the same
weights w5,w6,w8 and w9. By analysing the expression for Δx6 obtained after the
correlation operation, it can be seen that this relationship is preserved. Thus back
propagating the error across the convolution layers is equivalent to performing the
correlation operation on the weighted error computed for the layer after weighting
the derivative of the activation function. Thus ΔEP1 can be computed as

ΔEFC2 = ΔEC2 . ∗ OC2 . ∗ (1 − OC2) (32)

ΔEP1(:, :, i) =
L∑

l=1

[
ΔEFC2(:, :, l) � Kl(:, :, i)

]
(33)

where � represent the correlation operation, i varies from 1 to 6 and L = 12. This
will result in backpropagated error dimension as (12 × 12)6.

Error backpropagation across pooling layer P1:

As discussed earlier, the back propagated error is just an up-sampled version.

ΔEC1 = US2(ΔEP1) (34)
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4.4 Learning the Parameters by Gradient Descent

Once the error is propagated for all the neurons, the gradient is computedwith respect
to the parameter to be updated and the parameters are then updated in the negative
directionof the gradient tominimise the loss function.Asdiscussedbefore, theweight
update for any connection is done based on the product of the backpropgated error
found for the neuron at the rear end of the connection and input to the connection.

Derivative of gradient with respect to weights at fully connected layer

(ΔW )FC1 = ΔEFC1 . ∗ O. ∗ (1 − O). ∗ IFC1 (35)

In Eq. 35, IFC1 represent the vectorized output map at the pooling layer 2 (P2). Thus
the dimension of the gradient is [10, 1] × [1, 192] → [10, 192]
Derivative of gradient with respect to kernel weights at convolution layers:

ΔEFCl = ΔECl . ∗ OCl . ∗ (1 − OCl ) (36)

(ΔK)l = ΔEFCl ∗ I (37)

In Eq. 37, ‘*’ is the convolution operation. Note that here also weight update is based
on the error back propagated at the neuron placed at the rear end of the connection
for which we are updating the weights and the input to the connection. l = 1 for
convolution layer 1 and l = 2 for convolution layer 2. I is the corresponding input
map to the layer. Since only the valid part of convolution is taken, forC1, the gradient
dimension will be [5, 5]6 ([24, 24]6 ∗ [28, 28] → [5, 5]6). Similarly for convolution
layer 2, the gradient dimension will be [5, 5, 6]12 ([8, 8]12 ∗ [12, 12]6 → [5, 5, 6]12)
Updating the parameters:

Once the gradient is determined with respect to the kernel K , it is updated using
gradient descent.

Knew = Kold − ηΔK (38)

The gradient for the bias term for any node in the output layer, turns out to be the
cumulative weight change computed for all the connections to that neuron. Similarly,
the gradient for the bias of the kernels turns out to be the cumulative weight change
computed for the weights in the respective kernel.

5 CNN in Cytopathology Applications

In last section, we have discussed the power of CNN over the traditional multi-
layer feed forward neural network. CNNs have profound applications in health care
and are widely used for disease screening/diagnosis applications [24]. Mainly they
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are used in two modes: stand alone classifier mode and transfer learning mode. In
stand-alone classifier mode, the CNN is designed and learned from scratch for the
intended application while in transfer learning based setting [25–27], the knowledge
gained (the kernels learned) for a classification task is made use of in a totally
different setting.As stand-alone classifier,CNNshavebeenused in pulmonarynodule
detection from volumetric CT data [28], colorectal cancer detection [29], localizing
the fetal abdominal standard plane in ultrasound [30], cervical cell analysis [31],
prostate cancer detection [32].

In transfer learning based setting pre-trained CNN can be used just as a feature
extractor and a different classifier such as SVM that needs less amount of training
data to learn the classification problem is used for the intended task. Sometimes, the
kernel weights from the pre-trained model is fine tuned by readjusting the weights
learned by using the available training data. Thus, the transfer learning based setting
is particularly useful, when the availability of training data is insufficient to come up
with a stand-alone classifier. Today, transfer learning based setting has found appli-
cations in diverse domains of medical image analysis such as detecting colorectal
cancer [33], interstitial lung diseases [34], localizing the fetal abdominal standard
plane in ultrasound [35], mitosis detection in breast cancer [36].

In following sections we are going to discuss two specific applications of CNNs:
the malaria detection and the leukemia cell-line classification. In Sect. 6, we discuss
on the diagnosis of malaria using a stand-alone CNN classifier, while in Sect. 7,
we discuss the use of CNN transfer learning to address the leukaemia cell-line clas-
sification.

6 Custom Designed CNN for Malaria Detection

In this section, a recent study [16] to assess the capability of the stack of slide images
in different focal plane for the detection of Plasmodium falciparum infected malarial
samples is discussed. Towards this, Leishman stained slide images of blood samples
have been collected using custom-built focus stack collecting microscope [16]. The
use of Leishman’s stain is decided based on the study [37], which analysed the
relative merit and demerit of using Giemsa and Leishman for malaria diagnosis and
proposed that Leishman’s stain is also a good choice particularly for analysing thin
smears. The main reason is that the Leishman gives dark blue color to the chromatin
structures in the nucleus there by allowing us to quickly discard the nucleated white
blood cells from the non-nucleated Red Blood Cells (RBC) when the full blood
sample is analysed.

In the direction of developing automated system for malaria diagnosis, large num-
ber of research works have been carried out both in thick [38–40] and thin [41–44]
smear slide images. These works make use of data samples of different types, size
and employs extensive use of computer vision techniques [45]. A large number of
these techniques extract features at suspected parasite locations and use a classifier
learned on these features to take the final decision. For example, [40] uses genetic
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programming to take the decision based on the statistical features including mean,
variance, kurtosis of intensities at suspected parasite location while [39, 46, 47] use
support vector machine (SVM [48]). Since these methods operate on a wide range
of datasets, the performance measures reported largely varies. For examples, the
reported sensitivity varies between 81.7 and 95% while specificity varies between
92.59 and 100%. More recently, both the transfer learning capability and the stand-
alone classifier ability of CNN are analysed in detecting whether the sample smear
is infected or not by inspecting the blood smear images [49]. The study was per-
formed by analysing Giemsa stained slide image dataset containing 27578 RBCs
and reported that the mean accuracy obtained by the stand alone CNN classifier was
significantly better than that produced by the transfer learning based strategy (97.37
vs. 91.99%). However all the methods considered so far were using single image
to address the parasite detection problem. One difficulty with this is that, parasites
appear quite differently in slides based on which stage they are in their life cycle. It is
also hard to get in a single image, all the parasites infected in focus. Also, if parasite
infection is at its early stage, it may appear like a Gray spot and can be confused
with the appearance of the Gray spot produced by dust particles on the lens/sensor of
the camera. Thus if we are using single focus image, there is a chance that we may
miss out a few true positives, if we want to avoid black spots due to dust or we will
be having many false positives. In these situations it is better to use focus stack of
images since the focus profile of a dust is different from the focus profile of a parasite
infection. Following subsections detail experiments to evaluate the effectiveness of
using focus stack of images for detecting malarial parasite from blood smear slide
images. Because of the inherent capacity of CNN to deal with multi-channel images,
a custom designed CNN is used for the experiments.

6.1 Dataset Collection

The dataset contains stack of images of different field of views, and for each stack
it contains images captured at different focus by sweeping the same field of view
across the depth-of-focus. The slide images are prepared to have thin smear and the
stain used is Leishman. In order to mimic real experiments where full blood sample
is used, the cultured P. falciparum malarial samples (O+ red blood cells) are spiked
with WBCs. The culture is maintained in 5% hematocrit. The prepared thin blood
smear is then imaged using custom-built bright-field transmission microscope. The
details of the microscope and the dataset preparation can be found in [16].

Unlike the methods there in the literature, we have used focus stack of images
(Refer Fig. 7) for analysis. This provides us some additional information which
can be useful while examining very fine details of the parasite that may not be
directly observable if we are using only the best focused image from the focus
stack. This in turn help us to differentiate parasite (especially at its early stage of
infection) from image artefact producing similar features (due to dust on camera
lens/sensor). Altogether the dataset contain 765 FoVs with 62,015 cells. The number
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Fig. 5 One of the best focused image from a stack. Malaria infected are encircled in red, cell with
artefact in black and a WBC in blue

of infected RBCs is 1191 and is decided by the experts working in the field after
manually inspecting the focus stack of images for each FoV. Figure 5 shows one
such slide image with marked infected cells. In order to identify these infected cells
automatically, we use a classifier based system. However, rather than exhaustively
inspecting each and every location on the slide image by the classifier, first we
quickly identify all suspected parasite locations followed by closely examining these
locations using a trained classifier. Following subsections explains the method used
to identify suspected parasite locations and the features/patches to train the classifiers
used to further analyse these locations.

6.2 Identifying Suspected Parasite Locations

It is the best focused image (from each stack) we analyse to identify the candidate
locations for the parasite. The one with highest variance in each focus stack is iden-
tified as the best focused image. This image is then analysed in small neighbourhood
sufficient to span the radius of a typical RBC, and the local minima points in each
neighbourhood is identified as candidate locations for the parasite. This is from the
observation that the parasites appear darker in a Leishman stained image especially
when the parasite is at early stage of its life cycle. The candidate locations identified
are then refined by excluding those candidate locations in the background region. As
there is high contrast between the background and cell region, it is easy to get the
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Fig. 6 Suspected parasite locations identified for the image shown in Fig. 5

masking image for excluding the candidate locations in the background by applying
a threshold like Otsu [50]. The suspected parasite locations identified by this method
for the slide image in Fig. 5 is shown in Fig. 6. Note that the noise such as dust on
camera sensor can produce a candidate parasite location. However, the subsequent
processing by classifier will identify it as an artefact since it is taking the decision
based on the focus stack collected around suspected location and due to the fact that
the focus stack profile of a dust is different from the focus profile of a parasite.

Out of 328,334 local regional minima locations identified from 765 slide images,
1400 locations are identified to be parasite locations (positive class) by experts and
326,934 are identified to be healthy (negative class). However the number of infected
cells can be less since a cell can have more than one infected parasite locations and in
our case there were 1191 infected cells. As the dataset is unbalanced (more negative
class samples than positive samples), we have rotated the positive patches at degrees
90, 180 and 270 to take their total count to 5600.

6.3 Characterising Suspected Parasite Locations

Once the suspected parasite locations are identified, these locations has to be verified
by a trained classifier. In order to facilitate this, RGB patch of size 32 × 32 × 3 are
extracted from the best focused image centred at the parasite location and are fed
to a custom designed CNN. The effectiveness of this classifier is compared against
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SVM classifier trained on hand engineered features extracted from the same set of
patches. We have also assessed the performance of a CNN classifier working on the
stack of image patches centred around the best focused image patches. The patches
for the stack was set up by keeping the patch from the best focused image at centre
and one at either end of the field of focus. It turned out that the CNN working on the
focus stack has produced the best result as discussed in Sect. 6.4.

Statistical and textural features for SVM classifier

For the SVM classifier we have selectively picked fourteen features. In addition
to the usage of regular statistical features [39, 46, 47], we have also used texture
features in our experiment. As we know that there is gradient change and specific
texture pattern in and around parasite locations, we use texture features such as
‘Contrast’, ‘Correlation’, ‘Energy’, and ‘Homogeneity’ calculated from the Gray
level co-occurrence matrix (GLCM) [51] of the region. The mean and standard
deviation (Std) of these features computed for infected and healthy patches are shown
in Table 2. In order to characterise the statistical features at the parasite locations, we
have taken the minimum, maximum, mean and variance of intensities of the patch
and the minimum as well as maximum of gradient magnitude observed in the region.
These features are listed in Table 3. These features reflect the statistical features for
the whole patch. To get the localised feature, 3 × 3 non-overlapping regions are
considered and minimum as well as maximum values of the mean intensity as well
as the standard deviation observed in all subregions are measured. These features
are reported in Table 4. Thus altogether there are 14 features and are used to train an
SVM model.

Table 2 Mean (Std) of GLCM features for 32 × 32 Patches

Contrast Correlation Energy Homogeneity

Healthy 0.5698 (0.2335) 0.9825 (0.0094) 0.1020 (0.0445) 0.8189 (0.0455)

Infected 0.8850 (0.3439) 0.9754 (0.0119) 0.0584 (0.0357) 0.7577 (0.0498)

Table 3 Mean (Std) of global statistical features for 32 × 32 patches

Min_Int Max_Int Mean_Int Var_Int Min_GMag Max_GMag

Healthy 0.5023
(0.0615)

0.8891
(0.0345)

0.6797
(0.0534)

0.0168
(0.0069)

0.0007
(0.0019)

0.6426
(0.1303)

Infected 0.2720
(0.1057)

0.8748
(0.0453)

0.6109
(0.0641)

0.0195
(0.0090)

0.0028
(0.0034)

0.8545
(0.2147)

Table 4 Mean (Std) of local (3 × 3) mean and variance of patches

Min_Mean Max_Mean Min_Var Max_Var

Healthy 0.5095 (0.0620) 0.8817 (0.0337) 3.4520e−6 (2.7481e−6) 0.0061 (0.0160)

Infected 0.2903 (0.1049) 0.8669 (0.0444) 7.2392e−6 (1.2817e−5) 0.0092 (0.0137)
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Fig. 7 First row shows a focus stack of healthy cell with an artefact due to sensor and the last three
show focus stack of infected cell

RGB patches for CNN training

For CNN training we use two dataset: the RGB patches only from the best focused
images, and focus stack of patches. The focus stack dataset was created based on
the idea that the focus profile of an image artefact will be different from the profile
created by a parasite. For example, consider the four focus stacks provided in Fig. 7.
The cells except the one shown in first row are infected. If we closely observe, in the
case parasite infection the parasites are coming into focus and then fades away. This
is not the case with the cell having an artefact due to dust on camera sensor (Fig. 7,
first row) where the artefact appears in constant intensity across the focus profile. In
order to capture this difference in focus profile, we have chosen three images in the
stack with the best focused patch at the centre and two patches far away from it one
on both sides. Thus the dataset used to train the CNN operating on focus stack has
size (32 × 32 × 9) (Fig. 8) and the one operating on the best focused patch contain
RGB patches of dimension 32 × 32 × 3.

Figure 9 shows the basic design of the CNNused in this study. Input is a D channel
image patch of size 32 × 32. The C, R, and P are Convolution, ReLu and Pooling
layers. The size of the kernel used for the convolution layers is provided directly under
each block. The output map size at each block is provided just above the block. The
subsampling is done at 2 × 2 scale by max-pooling. This model architecture was
selected based on the following observations. The input image size was fixed at
32 × 32, since an RBC cell size as per our imaging setup is turned out to be 41 × 41.
The max-pooling was used to avoid the average out behaviour of fine details if we
had used average pooling at parasite locations and the standard size 5 × 5 is selected
for kernels which is decent enough to work on a small image of size 32 × 32. Since
we are addressing a binary classification problem, the number of output neurons is
decided as 2. Note that once the input dimension and output dimension are fixed, a
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Fig. 8 Nine focus stack each containing 3 images (selectively picked from the full stack) used
to train CNN. First row containg infected cells, second and third rows have healthy cells but with
image artefact in second row

Fig. 9 The CNN designed for malaria detection

reasonably deep CNN should work for the problem, and we have selected neither a
shallow nor deep architecture for classification.

As noted, for every input patch, the CNN is designed to produces a binary vector at
the output (C4 in Fig. 9). Towards this goal, theCNN is trained using backpropagation
algorithm, considering the log loss (Eq. 39) error function. The log loss Ji for an ith
input patch is defined as

Ji = −
C∑

k=1

Lik logPik (39)

In Eq. 39, C is the number of output classes (number of output neurons) which is
2 in this case and Li is the boolean vector with value 1 only at the true class location
for the input patch; i.e., output label vector is [1, 0] for an infected patch and [0, 1]
for a healthy patch. Pik is the model probability of assigning label k to the ith input
instance. A perfect classifier should have a log loss of precisely zero.

Equation 39 can also be written as

Ji = − logPiT (40)

where PiT is the model probability of assigning label T (the true class label) to the
ith input instance. Here T is 1 for infected patches and is 2 for healthy patches. The
model probability PiT can be calculated using soft-max function and the final loss
function to be minimised turns out to be the soft-max log loss (Eq. 41).
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Ji = − log

(
expZiT

∑C
t=1 exp

Zit

)

= −ZiT + log
C∑

t=1

expZit (41)

Note that, for each of the class there is one neuron in the output layer and ZiT in Eq. 41
is the response produced at the final layer neuron corresponding to the true class T for
the specific input (ith patch) at the input layer. The aim is to minimise this function
as much as possible. However, there is an instability in evaluating this expression
for any input. It is due to the difficulty in evaluating the second term, the log sum
of exponentials. If any of the value Zit becomes sufficiently large, its exponential
becomes very large and the sum can over flow to positive infinity. Similar is the case,
if any of the Zit value becomes sufficiently smaller, the log sum of exponentials can
underflow. However, we can get rid of this problemwith little algebraic manipulation
by taking Ψ = max (Zit)

C
t=1.

log
C∑

t=1

expZit = log

(
C∑

t=1

expΨ

expΨ
expZit

)

= log

(
expΨ

C∑

t=1

expZit−Ψ

)

= Ψ + log
C∑

t=1

expZit−Ψ (42)

Thus Eqs. 41 and 42 together defines soft-max log-loss (SML) function as

Ji = −ZiT + Ψ + log
C∑

t=1

expZit−Ψ (43)

Equation 43 ensures that the largest value passed to the exponential function is 0.
If there are really tiny values after subtractingΨ , it is forced to 0 and will be dropped
(to deal limited precision arithmetic). This soft-max log loss has a simple derivative.
From Eq. 41

dJi
dZit

= −
(

δt=T − expZiT
∑C

t=1 exp
Zit

)
(44)

Here δt=T is a vector which has value 1 only at the true class location ZiT and
everywhere else it is 0. As noted the CNN is learned by backpropagation algorithm,
in which the error at the final layer is computed for each input image considering
its target class. Then this error is propagated down the layers. Whenever it crosses
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ReLU layer, the derivative of ReLU (i.e., for positive values 1, else 0) is multiplied,
and whenever it crosses the pooling layers, the error matrix gets up-sampled, and
across the convolutional layers it is proportionately multiplied by the corresponding
weight contributions from the kernel (correlation of the error with kernel). Then
the parameters to be learned (the kernel weights and biases) are then updated by
gradient descent, for which the gradient is computed by multiplying the error at the
rear end of the layer and the input to the connection for which the parameters are to
be computed. The explicit equations and the derivations for the weight update can
be found in [52].

During testing we exclude SML layer, and assign for every test sample the label
of the class for which the highest response was obtained during testing.

6.4 Results and Discussion

This section provides performance of the three classifiers thatwe have used to identify
infected cells. The ground truth for the dataset is the marked infected locations (by
experts) along with number of infected cells. The quantitative analysis of parasite
detection is done by assessing the number of false positives and false negatives.

The effectiveness of the cnn working on the focus stack of patches is assessed
by performing 10 fold cross validation experiment on FFN, SVM and on CNNs.
Since we have used 14 hand-engineered features, the number of hidden layers is
one and the number hidden neurons is set as 8. All the positive patches (5600) and
5600 negative patches selected at random are used in the cross validation experiment.
The cross validation accuracy is then measured by considering the number of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).
The specific measures used are sensitivity (TP/(TP + FN)) and specificity (TN/(TN
+ FP)) and MCC. While sensitivity measures the ability of the system to correctly
identify infected cells, specificity measures the ability to correctly classify healthy
cells. Also we have measured a combined metric which is the Matthews correlation
coefficient (MCC) as defined by

MCC = TP × TN − FP × FN√
(FP + TP)(TP + FN )(FN + TN )(TN + FP)

(45)

Table 5 shows the result of 10 fold cross validation experiments which report
average sensitivity, specificity and MCC along with standard deviation and reveals
that the CNNoperating on focus stack has reduced false positives and false negatives.
Note that this is reflected in MCC metric, which gives a measure of 1 for a perfect
classifier, −1 for the worst classification and 0 for a random guess. The Receiver
operator characteristics (ROC) curve drawn for the first fold revels that for CNN
working on the focus stack the area under the curve is very close to the maximum
possible value and is 0.9992. AUC for the one that operate on the best focused patch
is 0.9987, 0.9910 for SVM and 0.9813 for FFN features. In subsequent results, we
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Table 5 Results of 10 fold cross validation : average sensitivity, specificity,MCC and their standard
deviation for 10 fold cross validation experiment on (O) FFN on features (A) SVM on features and
CNN on (B) patches (C) focus stack

Metric Method—O Method—A Method—B Method—C

Sensitivity (%) 92.44 (0.84) 96.38 (0.88) 98.91 (0.36) 99.14 (0.37)

Specificity (%) 97.36 (0.73) 95.43 (0.85) 99.39 (0.31) 99.62 (0.18)

MCC 0.8991 (0.0140) 0.9181 (0.0150) 0.9831 (0.0039) 0.9877 (0.0032)

Fig. 10 ROC for CNNs on
focus stack & best focused
image and ROC for SVM on
features

compare the results of CNNs (one operating on best focused patches and the other
operating on focus stack) since CNN results produced the best results in 10 fold cross
validation (Fig. 10).

Table 7 provides the result of classification experiment when the classifiers (SVM
on features, CNNs on patches) are trained with relatively few samples: 60% positive
samples for training and 20% samples for validation. All the classifiers are trained,
validated and tested with the same input patches for fair comparison. The exact
number of samples used for the training, validation and testing can be found in
Table 6. The learning behaviour of CNN on the best focused patch and on the focus
stack of patches is provided in Fig. 11. The blue plot shows how the network behaves
on the validation set and the network that has produced minimum error was used for
testing.

Table 6 Number of samples used for training, validation and testing

Patches # Un-rotated # Rotated # Train # Validation # Test

+ve 1400 1400 × 4
(5600)

60% of 5600
(3360)

20% of 5600
(1120)

1400

−ve 326,934 – 3360 1120 326,934
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Fig. 11 a Training and validation error across epochs for a CNN on best focused image and b
CNN of focus stack of patches

Fig. 12 a The ground-truth parasite locations in the slide image shown in Fig. 5. The parasite
locations identified by b SVM trained on features c CNN trained on best focused image and d CNN
trained on focus stack

For every test image the suspected locations are identified, patches are extracted
and feature/patch/focus stack are fed directly to the trained classifiers. The classifier
decides whether it is really a parasite location or a healthy location. The results for
the test image shown in Fig. 5 is provided in Fig. 12. When we compare with the
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Table 7 Confusion matrices by different classifiers (A) SVM on hand-engined features, CNNs on
(B) best focused image and (C) on the focus stack of patches

A B C

Infected Healthy Infected Healthy Infected Healthy

Infected 1107 84 1151 40 1156 35

Healthy 3756 57068 1053 59771 912 59912

Fig. 13 a–c are the three true positives (focus stacks) only identified by CNN on focus stack d–f
are three true negatives only identified by CNN on focus stack g–h are two infected cells missed
out by all the classifiers

Table 8 Sensitivity, specificity and MCC computed from the matrix in Table 7

Metric Method—A Method—B Method—C

Sensitivity (%) 92.95 96.64 97.06

Specificity (%) 93.82 98.27 98.50

MCC 0.4430 0.7036 0.7305

ground truth (Fig. 12a), it can be seen that the CNN operated on the focus stack has
produced the best result (Fig. 12d) by producing no false positive and false negative.
The confusion matrix shown in Table 7 also reveals the same result for the CNN
trained on focus stack of patches. Figure 13 shows a few cases where the classifiers
have failed. The first three stack are identified as infected only by the CNN working
on the focus stack and is the case with the healthy cells shows in Fig. 13d–f. However,
all the three classifiersmissed in recognising the last two infected cells. It is clear from
the shown images, that focus stack helps in producing a positive decision. This is also
revealed by relatively high MCCmeasure shown in Table 8. With CNN operating on
focus stack, we could identify 1156 infected cells correctly from 1191 infected cells
producing a sensitivity 97.06% and has produced specificity of 98.50%. We have
also compared the capability of CNN working on focus stack, with one of the state
of the art method reported in [53]. Though the actual method was experimented on
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Giemsa stained dataset, we have run the code provided by [54] to extract LBP/VAR
[55] and SIFT features [56] and then used it for classification. The result is provided
in Table CmpDetAccWithI which also reveals that the CNN working on the focus
stack has produced the best result.

7 Pre-trained CNN for Classification of Leukaemia Cells

In this section we are going to discuss the transfer learning capability of CNN by
addressing the classificationof three important leukaemia cell-linesK562,MOLTand
HL60.As discussed in Sect. 5, the transfer learning setting is particularly useful when
there is insufficient training samples to come up with a stand-alone classifier. We are
going to show that just by using the feature detectors from a pre-trained established
model could extract discriminant features to produce classification accuracy on-par
or much better than the classification result obtained from sophisticated features used
along with traditional classifiers like SVM (Table 9).

7.1 Dataset Collection

Cancer is one of deadly diseases and take around 7–8 millions death worldwide [57].
The cancer treatment greatly depends on what stage it was detected. One important
step in any cancer detection/treatment is the cytopatholoical study where samples are
extracted from suspected tumour locations and are analysed by fine needle aspiration.
The samples are then used to make smear and is inspected under microscope. Thus
the cytopathological testing is very critical but is a skill demanding, time consuming
job. The manual inspection also limit the throughput and is also prone to errors.
Towards making automated system, microfluidics imaging flow cytomatry [17, 51]
along with necessary image analysis turned out to be the need of the hour. For
the present discussion, we use a dataset of leukemia cell-line captured using one
such system. These are the leukaemia cell-lines made available by American Type
CultureCollection (ATCC), andwas of typeK562,MOLTandHL60,which provided
us the ground truth for the present study. Note that these are WBC lines, and in a
real situation there can be RBCs as well. But separating out RBCs from WBCs
in microfluidics system is not that difficult as can be seen in Fig. 14. There were

Table 9 The performance of SIFT, LBP/VAR feature based classification [53]

Infected Healthy Method—[53]

Infected 984 208 Sensitivity 82.55

Healthy 4091 56628 Specificity 93.26
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Fig. 14 a Red blood cells; b Leukaemia cells in Mf-Ms channels

altogether 618 cells in the dataset: 124 K562, 106 MOLT and 388 HL60. Though
at first it seems as a small dataset, it is of significant size considering the fact that
in unit microlitre of blood in healthy man, there are only 4 − 11 × 103 WBCs when
compared to 4 − 5 × 106 RBCs. Hence for a screening tool for leukaemia, we should
give more effort in classifying the abnormal WBCs.

The leukemia cell-lines are then imaged separately using themicrofluidmicroscopy
setup described in [17]. Inorder to enhance the features such as the contrast of the
cell in the background simple background subtraction was done. The cells are then
localised using bounding boxes to form the dataset. The detailed procedure can be
found in [51].

7.2 CNNs in Transfer Learning Mode

In this section, the transfer learning capability of CNN is used in classifying
Leukaemia cell-lines:K562,MOLTandHL60. In transfer learning setting, the knowl-
edge that a CNN has learned for a relatively complex classification task using a large
dataset is effectively transferred to a completely different setting. In such setting,
CNN is used as a feature extractor and not as a classifier. These features are then
used to train a classifier like SVM that needs only training data of moderate size.
The transfer learning capability of CNN is studied in [58] and utilized in [59] to
annotate the gene expression patterns in mouse brain. As noted in Sect. 3, the main
building blocks of a CNN are (i) Convolution (ii) ReLU and (iii) Sub sampling. Note
that, for every convolution layer, a number of Kernels are learned during training.
Normal convolution is performed between the learned kernels and the input instance
but select only valid part of the convolution. We know that the kernels can extract
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features by convolutions. For example, Sobel kernel find edges, Laplacian kernel
detect blobs. Each of these kernel is applied only locally and extract features. Thus
depending on the kernel, convolution can extract features like edges, blobs, corners,
etc. and are valid features for any images. In CNN, the only learned parameters are
the kernel weights and biases, and hence we are learning very local feature detectors
rather than the actual features. Suppose that a CNN has to address a relatively com-
plex classification task and there are sufficiently large number images to train the
network. If the CNN is adequately trained using this large dataset, it is reasonable
to believe that the learned kernels have the capability to extract an exhaustive set of
features even to capture the small inter class variability on the original classification
problem. Since the kernels learned act very locally, these exhaustive sets of feature
detectors are most probably valid for any images irrespective of the classification
problem. This fact is the corner stone of transfer learning capability of CNN.

In a nutshell, a heavily trained CNN for a complex classification task using a
large image data set, must have learned an exhaustive set of feature detectors that
can capture very local features valid for any images, and have the capability to
introduce non-linearity in the detected features due to the architecture involving
intermediate ReLU and sub-sampling layers. This enables us to use such a CNN
as a feature extractor for the leukaemia cell-line classification dataset used in this
experiment, and then use these features to build a suitable classifier using the small
dataset available for training.

Trained CNN can outperform human in many visual recognition task [60]. How-
ever one bottleneck in using CNN as a classifier is the huge amount of labelled
training samples required for training. In the present discussion, we show that cnn
can be used in transfer learning mode in such situation. We make use of the deep cnn
model [52, 61] trained on ImageNet [62] database to classify the leukemia cell-lines.
It has to be noted that the model was not trained on any of these images but was
extensively trained on very complex classification task containing 1000 classes of
categories like animals, birds, etc. The architecture of the model that we have used
is given in Fig. 15 and has 37 layers. In Fig. 15, C represnts convolution layer, R
represents the ReLU activation function MP represents max-pooling based subsam-
pling operation. We apply all the images in our dataset and generated deep features.
Since the intention is to just show that the features are good enough to produce a
fair classification, we have taken the features from 36th layer, which turns out to be
vectors of dimension 4096. The dimensionality of these feature vectors are reduced
to 20 (experimentally set) by PCA [63] and are then used to train number of clas-
sifiers including FFN, SVM, Naive Bayes and K Nearest neighbour classifiers. As
noted earlier, it is reasonable to use these features for our classification task since it
was generated by a deep CNN which was well trained for a complex classification
task involving images from 1000 object categories. The kernels learned are therefore
must be good feature detectors looking for extensive collection of very local features
such as edges, blobs, corners etc which are relevant in any image classification task
irrespective of the domain.
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Fig. 15 CNN architecture pre-trained with ImageNet, used to extract the features for leukaemia
cell-line classification

7.3 Results and Discussion

We compare the result of classification using the features generated by the pretrained
cnn model by employing different classifiers. The results are compared against the
result produced by the SVM model on the same dataset but using hand-engineered
features reflecting size, shape, and texture features [51] generated from fine seg-
mented cell images. The result for the three class leukemia classification problem
that we are addressing when used the deep features from the pretrained model is
shown in Table 10. We assess the accuracy by observing the average and standard
deviation of the accuracy obtained for different cross validation experiments. The
results show that the accuracy is better with less variance across different classi-
fiers. It can also be seen that the accuracy produced on these features are high when
compared to the classification accuracy reported in [51] as can be seen in Table 11.

Table 10 Cross validation accuracy in % (mean (std)) on CNN features

Kfold 10 5 4 3 2

SVM 97.80 (1.82) 97.69 (1.38) 97.62 (1.20) 97.47 (1.02) 97.19 (0.87)

FFN 98.26 (1.57) 98.18 (1.16) 98.16 (1.02) 98.05 (0.93) 97.96 (0.72)

NBS 98.40 (1.51) 98.37 (1.08) 98.36 (0.90) 98.40 (0.78) 98.38 (0.53)

KNN 98.42 (1.49) 98.40 (1.04) 98.37 (0.94) 98.35 (0.81) 98.36 (0.59)
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Table 11 Cross validation accuracy in % (mean (std)) on morphological features [51]

Kfold 10 5 4 3 2

SVM 95.22 (2.83) 94.47 (1.85) 94.63 (1.52) 94.20 (1.40) 93.57 (1.16)

FFN 92.92 (3.48) 92.74 (2.63) 92.57 (2.35) 92.47 (2.23) 91.76 (3.00)

NBS 90.89 (3.60) 90.77 (2.34) 90.70 (2.18) 90.67 (1.74) 90.35 (1.44)

KNN 80.40 (4.81) 79.93 (3.13) 79.48 (2.90) 78.94 (2.63) 77.75 (0.59)

7.4 Comparison with the Classification on Morphometric
Features Discussed in [51]

Table 12 reports the class specific accuracy for the cell-lines for 10 fold cross valida-
tion experiment. It can be seen that the classification is not biased to any particular
cell-line. Table 12 A contain the confusion matrix for the SVM classifier on morpho-
logical features [51] and Table 12 B contain the confusion matrix for the SVM run
on CNN features.The corresponding Precision and Recall measures are provided in
Table 13. We have used one-vesus-all strategy in reporting these measures as they
were primarily meant for binary classification. Thus the Case - I treat HL60 as posi-
tive class, Case II treat K562 as positive class while Case III treats MOLT as positive
class. In each case, the cell-lines not used as positive class together contribute to neg-
ative class. Significant improvement can be found in both measures when compared
to using the features reported in [51] as shown in Table 13. In short we can say that

Table 12 Comparison of class specific accuracy

A. Morphology features [51] B. CNN features

HL60 K562 MOLT HL60 K562 MOLT

HL60 373 8 7 HL60 385 1 2

K562 4 116 4 K562 1 119 4

MOLT 2 5 99 MOLT 1 5 100

Table 13 Comparison of precision and recall in % (One against all)

Case—1 Case—2 Case—3

Precision Recall Precision Recall Precision Recall

SVM on
morphology
features
[51]

98.42 96.13 89.92 93.55 90.00 93.40

SVM on
CNN
features

99.48 99.23 95.20 95.97 94.34 94.34
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the features provided by the pretrained CNN model worked really well when com-
pared to the carefully chosen hand engineered features [51] at least for the leukemia
cell-line dataset that we have considered. This support the very well established field
of transfer learning capability of CNN.

8 Summary

In this chapter, we have discussed the applications of convolutional neural network in
cytopathology.We have provided basic understanding of the CNN training taking the
popular LeNet architecture as an example. Both stand-alone capability of CNNs and
transfer learning capability of CNNs for classification are addressed by specifically
taking malaria detection from focus stack of blood smear images and leukaemia cell-
line classification. The results shows that CNNs has produced better accuracy when
compared to methods on similar problems using traditional classifiers like SVM.
Using focus stack of blood smear images for automated malaria detection is first of
its kind and the methods discussed are part of processing frameworks developed for
custom-built low-cost microscopy and microfluidic microscopy devises meant for
resource limited clinics.
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Application of Deep Neural Networks
for Disease Diagnosis Through Medical
Data Sets

Alper Baştürk, Hasan Badem, Abdullah Caliskan and Mehmet Emin Yüksel

Abstract In this chapter, a novel classification methodology for medical disease
diagnosis is proposed. The proposed classification operator comprises a stacked
autoencoder network cascaded with a softmax layer. The classifier is trained by
applying a special training approach, where each layer of the proposed classifier is
trained individually and sequentially. The performance of the proposed classifier is
compared with a number of representative classification methods from the literature.
The experimental results on medical data sets show that the proposed classifier per-
forms better than or at least competitive with classifiers used in this chapter. It is also
seen that the proposed classifier can efficiently be used for the diagnosis of medical
diseases provided that it is trained with a suitable data set with a sufficient number
of medical features obtained from a sufficient number of patients.

1 Introduction

A great majority of human deaths are due to a number of major diseases such as
cardiovascular diseases and various forms of cancer. The early diagnosis of these
diseases is vitally important regarding the success as well as the cost of the treatment
and survival of the patients. Therefore, it is of high importance to develop and employ
methods that allow accurate diagnosis of diseases as at an early stage as possible.
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The most straightforward way to diagnose a particular disease is to get the patient
to the hospital and perform appropriate medical tests and procedures to acquire
information that enables physicians to reach a decision regarding the presence of
that particular diseases on the patient. This approach of disease diagnosis is very
accurate and results obtained in this way are usually very reliable, which together
make this approach highly desirable.

On the other hand, some of the above mentioned medical tests and procedures
are usually very sophisticated, and in most cases, they can only be conducted in well
established hospitals and health institutions. Sometimes, these procedures involve
invasive operations that can only be practiced by highly trained medical experts.
Furthermore, these procedures are frequently very costly and, in some cases, very
risky regarding patient health. Finally, only very few number of patients living in the
developed countries and regions of the world have access to this facility. Therefore,
it is highly desirable to develop novel, cost effective and easily accessible methods
for disease diagnosis.

In the last few years, the applications of deep neural networks (DNN) in classifica-
tion problems have gained high popularity in various areas of science and technology
[1–7]. One good example of such applications is disease diagnosis by classification,
which is accomplished by acquiring and processing diagnostic information from
medical data sets through intelligent classifiers based on DNNs [8]. In fact, a con-
siderable number of different and well established medical data sets are available in
the literature and DNN based classifiers can easily be utilized to operate on these
data sets to generate diagnostic decisions regarding the presence of a certain dis-
ease related with the database. This approach can greatly eliminate the need for
sophisticated medical diagnosis procedures discussed above and replace them with a
much simpler, cheaper, non-invasive and risk-freemethod as long as suitable network
structures and learning strategies are employed.

Many different algorithms are available in the literature for the solution of clas-
sification problems. Among these algorithms; k-nearest neighbor classifiers (KNN)
[9, 10], decision trees (DT) [9, 11, 12], Naive Bayes classifiers (NB) [10–12], neural
and fuzzy networks [9, 13] and support vector machines (SVM) [10, 14, 15] are
the most commonly used ones. Each of these methods actually represent a group of
similar classification methods with certain advantages and disadvantages.

The KNN is the most basic and well known non-parametric classification algo-
rithm [16]. The algorithm utilizes the information from a training set, which com-
prises a certain number of feature vectors in the feature spacewith known class labels.
The class label of a new feature vector, which is not a member of the training set,
is made equal to the class label of the majority of the k nearest neighboring feature
vectors in the training set. The main advantage of this approach is its computational
efficiency since there is no need for exclusively training the classifier. Despite its sim-
plicity, the KNN yields satisfying results for classification problems that are not too
complex. However, it has usually a relatively low accuracy rate due to its sensitivity
to noise [16].

DT is another class of simple classifiers that are expressed as a recursive partition
of the feature space [17]. There are many different kinds of successful examples
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of decision trees in the literature which generate classifiers such as ID3 [18], C4.5
[19], and CART [20]. DTs have also been successfully used for the classification of
medical data sets [9, 11, 12]. They are capable of handling data sets that may have
errors and missing values. However, this method has a replication problem and over-
sensitivity to the training set. Moreover, its performance is degraded by irrelevant
attributes and noise in the data set [19, 21].

Bayesian classifiers are statistical classifiers which may predict class membership
probabilities. The NB, from the family of the Bayesian statistical classifiers, are
widely studied in machine learning and the classification of data sets from different
fields of science.They have also been applied in the classification of medical data
sets [10–12]. The structure of the NB mechanism is simple in implementation but it
exhibits good performance. However, the NB classifier assumes that the classes are
conditionally independent,which causes a loss of accuracy. In addition, dependencies
existing among variables cannot be modeled by the NB classifier [22].

The SVM is a supervised learning model that is used as a binary classifier. Given
a set of training feature vectors where each vector is labeled in advance as belonging
to one of the two available classes, an SVM classifier is optimized to become amodel
that maps the training vectors with points in the feature space in such a manner that
the training vectors of the two classes are divided by a clear gap as wide as possible.
The SVM constructs a hyperplane or a set of hyperplanes in a high-dimensional
space which functions as a decision boundary in the feature space. The classification
process is performed by determining the appropriate side of this decision boundary
that the input feature vector belongs to [23]. The SVM does not usually gets trapped
in local minima during training [24] and generally yields high accuracy rates in most
classification problems including the classification of medical data sets provided that
a suitable kernel is chosen [10, 14, 15]. However, it has a number of disadvantages
including the difficulty in choosing the most appropriate kernel for a given data set,
high computational complexity, and demand for memory in large scale classification
problems [25, 26].

In addition to the KNN, DT, NB and SVM methods discussed above, a number
of classification methods based on soft computing methodologies have also been
presented [9, 13]. Thesemethods generally offer relatively better classification results
with higher accuracy rates than the KNN, DT, NB and SVMmethods. However, the
structures of these classifiers are much more complicated and their implementation
as well as training is more difficult.

Great majority of the classification methods have some drawbacks as mention
above. In addition, their performances also depend on one or more user-supplied
external parameters such as, the choice of the kernel, inducers and structure; values of
some tuning parameters, and so on. These choices are heuristically made, externally
supplied and experimentally validated by the user for each individual data set since
there is no analytical method to choose best value of these parameters for an effective
classification.

Recently, there has been a huge research in the applications of deep learning
based tools such as DNNs comprising Stacked Autoencoders (sAE) and Softmax
Classifiers to the problems in classification [1–4, 27, 28]. Indeed, DNNs offer the
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ability of sAE to learn feature hierarchies, and the capability of softmax classifiers to
predict the correct class label for efficient disease diagnosis. Therefore, DNNs may
be utilized to classify medical data sets, and diagnose diseases.

In this chapter, we present an efficient general-purpose classification tool and
evaluate its performance on medical data sets. The presented tool is based on a DNN
constructed by appropriately combining a two cascaded autoencoder (AE) layers
and a softmax classifier layer. The performance of the presented DNN classifier is
tested on various medical data sets. In addition the DNN classifiers are compared
with representative conventional and state-of-the-art classification methods, which
is available in the literature. Results of the classification experiments show that the
presented DNN classifier has superior performance over the other classifiers used
in the experiments and is capable of efficiently classifying 7 different medical data
sets.

The rest of this chapter is organized as follows. Section 2 defines the presented
DNN and its training procedure. Section 3 reports the results of the classification
experiments and their discussions. Section 4 presents the conclusions.

2 Method

The proposed method for medical data set classification is based on a DNN operator
having a sAE network and a softmax classifier.

2.1 The Autoencoder

AnAE is a neural network containing three layers, including input, hidden and output.
Although an AE is structurally similar to a feed forward neural network, its puspose
of use is very different. The AE is trained to form its own input at the output. For
this reason, the number of neurons in the output layer is always the same as the size
of the input vector. The main aim of AE is to generate a different representation of
the input in the hidden layer. The generated new feature vector at the hidden layer
is called a code [29]. The number of the neurons in the hidden layer determines the
dimension of the code, which generally is fewer than the dimension of the input. The
AE maps the input space to the code space in order to define the input more clearly
than before [30–32].

Figure 1 demonstrates an AE with three layers. The AE consists basically of two
parts: encoder and decoder. The encoder generates the code space, which represents
the input space in a different manner. The decoder reproduces the input from the
code space. The dimensions of the input and code space areM and N , respectively.

The encoder is given by:
c = f (b + WTx) (1)
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Fig. 1 An autoencoder network

where

c = [c1 c2 . . . cN ]T
x = [x1 x2 . . . xM ]T
b = [b1 b2 . . . bN ]T
W = [w1 w2 . . . wN ]

with f being a sigmoid activation function.
Here the b vector and W matrix contain the biases and weights of the encoder,

respectively. The columns of theW can be defined as follows:

wi = [wi1 wi2 . . . wiM ]T (2)

with i = 1, 2 . . .N .
The encoder part can shortly be given by

c = gE(W,b; x) (3)

where gE is the encoding function.
The decoder part is very similar to encoder which can be defined as follows

x̂ = f̂ (b̂ + ŴTc) (4)

where

x̂ = [x̂1 x̂2 . . . x̂M ]T
b̂ = [b̂1 b̂2 . . . b̂M ]T
Ŵ = [ŵ1 ŵ2 . . . ŵN ]
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Fig. 2 The diagram of the autoencoder network

and f̂ is similar to f . The Ŵ consist of the weights, which can be defined as follows:

ŵi = [ŵi1 ŵi2 . . . ŵiN ]T (5)

with i = 1, 2 . . .M .
The decoder part can shortly be given as

x̂ = gD(Ŵ, b̂; c) (6)

where gD is the decoding function.
The AE complete with its encoder and decoder sections may be illustrated as in

Fig. 2.

2.2 Training Procedure of the Autoencoder

Let {x(1), x(2) . . . x(m)} denote the m input vectors, which are recruited for training
the AE mentioned in the above subsection. Objective function of the AE training
process can be divided into two parts. The first part is the objective function of the
network that corresponds to the error term and it can be defined as follows [32]:

EN = 1

m

m∑

k=1

e2k + λ

2

(
N∑

i=1

‖wi‖ +
M∑

i=1

∥∥ŵi

∥∥
)

(7)

Here, error vector ek is the difference between actual x̂ and the desired x outputs. ek
is defined as follows:

ek = ∥∥x(k) − x̂(k)
∥∥ k = 1, 2, . . . ,m. (8)

λ is a regularization term (also known as a weight decay term) which is utilized to
prevent overfitting [32].

It should be noted that the EN is a function of the weights of the AE.

EN = gAE(W,b, Ŵ, b̂) (9)
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The second part of the objective function is ES , which is employed for imposing
sparsity constraint to AE network. ES defined as follows:

ES = β

N∑

j=1

KL(ρ ‖ ρ̂j) (10)

where β is the weight of the sparsity penalty term. In this expression, the KL is the
Kullback–Leibler divergence [30, 32] given as

KL(ρ ‖ ρ̂j) = ρlog
ρ

ρ̂j
+ (1 − ρ)log

1 − ρ

1 − ρ̂j
(11)

where ρ is a constant named sparsity parameter and ρ̂j is the mean activation value
of jth neuron for all training set, which may be defined as follows

ρ̂j = 1

m

m∑

i=1

fj(x(i)) (12)

Finally, the total cost function of the AE is given as follows:

E = 1

S

S∑

k=1

e2k + λ

2

(
N∑

i=1

‖wi‖ +
M∑

i=1

∥∥ŵi

∥∥
)

+ β

N∑

j=1

KL(ρ ‖ ρ̂j) (13)

2.3 The Stacked Autoencoder

A sAE network, as the name implies, is a network of stacked autoencoder layers. All
layers are actually encoder sections of previously trained autoencoders. The number
of cascaded encoder layers are determined depending on the particular application.
The input-output mapping equation of the sAE with L layers can be conceptually
defined as in the following equation and may be demonstrated as in Fig. 3.

gSAE = g1E ◦ g2E ◦ · · · ◦ gLE (14)

It should be observed that the decoder parts of the trained autoencoders are not
included in the structure when constructing the sAE as they are only needed during
the training.

Fig. 3 A stacked autoencoder with L autoencoder layers
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2.4 The Softmax Classifier

The softmax classifier is based on the softmax function, which is defined as follows:

vj = exp(uj)
∑K

k=1
exp(uk)

(j = 1, 2, . . . K) (15)

It is easily observed from the above equation that the softmax function maps a
K-dimensional vector of arbitrary real values (uj) to another K-dimensional vector
of real values (vj) that are all within the interval [0, 1] and add to 1.

Inspired by the softmax function, the softmax classifier is a classification operator
for general multiclass classification problems [33]. It is constructed by cascading a
neural layer and a normalization layer, as illustrated in Fig. 4a.

The neural layer is the input layer of the softmax classifier and is structurally
very similar to the encoding section of an AE. The only difference is that the neuron
activation function here is the exponential function.

The input-output relationship of the neural layer of a softmax classifier that maps
input code vectors from an N -dimensional space to K classes is as follows:

e = exp(d + STc) (16)

where

(a)

(b)

Fig. 4 a A softmax classifier classifying N -dimensional input vectors into K output classes and b
its short representation
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e = [e1 e2 . . . eK ]T
d = [d1 d2 . . . dK ]T
S = [s1 s2 . . . sK ]
c = [c1 c2 . . . cN ]T

Here, the elements of the d vector are the neuron biases and the columns of the S
matrix are the weights connecting the input nodes to the kth neuron:

sk = [sk1 sk2 . . . skN ]T (17)

with k = 1, 2 . . .K .
The normalization layer is the output layer and it is simply used for normalizing

the output values of the neural layer of the softmax classifier:

yj = ej
∑K

k=1
ek

(j = 1, 2, . . . K) (18)

which may alternatively be expressed in terms of the input vector c as

yj = exp(sTj c)
∑K

k=1
exp(sTk c)

(j = 1, 2, . . . K) (19)

This normalization process ensures that the values obtained at outputs yj of the
softmax classifier are always contained in the interval [0, 1] and their sum is always
equal to 1. Hence, the values obtained at the individual outputs of the softmax clas-
sifier for a given input vector may be regarded as the probabilities of the input vector
being in the classes associated with individual outputs of the softmax classifier.
Based on this interpretation, a given input vector is classified by placing it to the
class represented by the individual softmax classifier output that yields the highest
probability.

The input-output relationship of the softmax classifier may shortly be written as

y = gS(d,S; c) (20)

where
y = [y1 y2 . . . yK ]T (21)

and shortly be depicted as in Fig. 4b.
The training of the softmax classifier is achieved by using following objective

function with respect to training set {c(i), y(i)}mi=1.
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Fig. 5 The deep neural network

J = − 1

m

m∑

i=1

K∑

j=1

1
{
y(i) = j

}
log

exp(sTj c
(i))

∑K
l=1 exp(s

T
l c

(i))
+ λ

2

K∑

i=1

N∑

j=1

sij (22)

In the above equation, 1 {·} is known as indicator function, so that 1 {a true
statement} = 1, and 1 {a false statement} = 0.

2.5 The Deep Neural Network Classifier

The proposed classification operator for processing medical data sets is a DNN
constructed by cascading a sAE network with a softmax classifier layer. The sAE
network contains two AE layers. The structure diagram of the DNN is illustrated in
Fig. 5.

2.6 Training of the DNN Classifier

The training of the DNN is achieved by using a suitable data set (i.e medical data set)
which is {x(1), x(2), . . . , x(m)}with them input vectors and labels {y(1), y(2), . . . , y(m)}.
Each of the labels is equal to either 0 or 1, where the value of 0 represents a negative
decision and 1 represents a positive decision regarding disease diagnosis, respec-
tively. The main purpose of the training is to tune the internal parameters of the DNN
with respect to training data set.

The L-BFGS training algorithm [34] is used to fit the internal parameters of the
proposed classifier to their optimal values. This algorithm is a powerful training
algorithm especially suited to the kind of optimization problems where there are a
large number of model parameters. The algorithm is especially popular because of
its speed and relatively less memory requirements.

A special training procedure is adopted here to obtain the best performance.
For this purpose, each layer of the proposed classifier is trained individually and
sequentially. The training procedure comprises the following steps:

1. At the beginning, the first AE is trained by using the original input vectors x(i) (i =
1, 2, . . . ,m), as shown in Fig. 6a.

2. Then, the second AE is trained with c1,(i) (i = 1, 2, . . . ,m) code vectors, which
is generated by first AE, as shown in Fig. 6b.

3. Following this, the softmax layer is trained with c2,(i) (i = 1, 2, . . . ,m) which is
generated by first AE and targets y(i) (i = 1, 2, . . . ,m), shown in Fig. 6c.
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(a)

(b)

(c)

(d)

Fig. 6 Layer by layer training of the deep neural network based classification operator. a Training
of the first autoencoder layer. b Training of the second autoencoder layer. c Training of the softmax
layer. d Fine-tuning the whole network

4. Finally, an additional fine-tuning procedure is applied to DNN training task in
order to improve the ability of the classification. This is shown in Fig. 6d.

3 Experimental Results and Discussion

In this chapter, the performance of the DNN classifier is tested on 7 medical data
sets, which are taken from UCI repository [35, 36] with a variety of domains, binary
classes, attributes and instances. Details about used data sets are given in following
section. For sake of fair comparison, 10-fold cross-validation is applied to data sets.
The DNN classifier is compared with state-of-the-art methods, which are SVM, NB,
KNN, DT and some soft computing based classifiers for each data set. The DNN
is implemented over a system with Intel i7 2600 3.4 GHz CPU and 12 GB DDR3
RAM.
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3.1 Experimental Setup of the Designed DNN

In order to demonstrate the effectiveness of the proposed classifier, seven experi-
mental setups are designed for each data set. The DNN classifier with two AE and a
softmax layer is designed for the classification of medical data sets. The parameter
settings of the DNN are given in Tables 1, 2 and 3 for each data set. Experimental
setup of the designed DNN is shown in Fig. 7.

3.2 Principal Components Analysis

Dimensionality reduction is an important procedure in the storage, classification,
communication and visualization of high dimensional data. An easy and commonly
used procedure is the principal components analysis (PCA), which detects the ways
of highest variance in the data set and depicts each data point by its coordinates along
each of these directions [29].

For visualization, the first and second principle components are plotted against
each other to acquire a two-dimensional graph of the data that captures the highest
variance that contains relevant information [37]. Third principle component with the
first and second principle components is used for tree-dimensional representation.
Thus analyzing and interpretation the structure of a data set is easy thanks to this
visualization of the data set.

3.3 Data Sets

Seven data sets are chosen to show the effectiveness of the DNN classifier. Medical
data sets used in this chapter, which are binary class, have different number of features
and instances. Detailed information about these data sets are as follows.

3.3.1 Heart Disease Data Sets

Heart diseases or cardiovascular diseases relate to a number of complications which
afflict blood vessels in the heart. In particular, coronary artery disease (CAD) is a
main reason of disorder and death in the contemporary community. When plaque
such as a waxy substance builds up inside the coronary arteries, a serious disease
named CAD emerges. These arteries carry oxygen-rich blood to the heart muscle
[9, 38]. When the narrowing of at least one of the blood vessels in the heart is
more than 50%, the CAD emerges, which is normally detected by using coronary
angiogram or cardiac catheterization. This approach has high acceptance. However
both methods are invasive, costly and not available for large populations. A few
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Table 1 Setting parameters of DNN for heart diseases data sets
Data set 1st Autoencoder 2nd Autoencoder Softmax layer Fine-tuning

Cleveland Number of
neuron

4 Number of
neuron

4 Lambda (λ) 0.003 Lambda (λ) 0.003

Sparsity (ρ) 0.4 Sparsity (ρ) 0.1 Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Lambda (λ) 0.003 Lambda (λ) 0.003 Iteration 400 Iteration 400

Beta (β) 4 Beta (β) 1 Input nor-
malized?

Yes

Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Iteration 400 Iteration 400

Input nor-
malized?

Yes Input nor-
malized?

Yes

Hungarian Number of
neuron

4 Number of
neuron

4 Lambda (λ) 0.003 Lambda (λ) 0.003

Sparsity (ρ) 0.5 Sparsity (ρ) 0.1 Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Lambda (λ) 0.003 Lambda (λ) 0.003 Iteration 400 Iteration 400

Beta (β) 2 Beta (β) 4 Input nor-
malized?

Yes

Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Iteration 400 Iteration 400

Input nor-
malized?

Yes Input nor-
malized?

Yes

Switzerland Number of
neuron

4 Number of
Neuron

4 Lambda (λ) 0.003 Lambda (λ) 0.003

Sparsity (ρ) 0.4 Sparsity (ρ) 0.4 Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Lambda (λ) 0.003 Lambda (λ) 0.003 Iteration 400 Iteration 400

Beta (β) 2 Beta (β) 1 Input nor-
malized?

Yes

Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Iteration 400 Iteration 400

Input nor-
malized?

Yes Input nor-
malized?

Yes

VA Long
Beach

Number of
neuron

4 Number of
neuron

4 Lambda (λ) 0.003 Lambda (λ) 0.003

Sparsity (ρ) 0.2 Sparsity (ρ) 0.2 Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Lambda (λ) 0.003 Lambda (λ) 0.003 Iteration 400 Iteration 400

Beta (β) 3 Beta (β) 3 Input nor-
malized?

Yes

Training
algorithm

L-FBGS Training
algorithm

L-FBGS

Iteration 400 Iteration 400

Input nor-
malized?

Yes Input nor-
malized?

Yes
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Table 2 Setting parameters of DNN for breast cancer data sets

Data set 1st Autoencoder 2nd Autoencoder Softmax layer Fine-tuning

Breast can-
cer

Number of
neuron

4 Number
of
neuron

4 Lambda
(λ)

0.003 Lambda
(λ)

0.003

Sparsity
(ρ)

0.3 Sparsity
(ρ)

0.2 Training
algo-
rithm

L-FBGS Training
algo-
rithm

L-FBGS

Lambda
(λ)

0.003 Lambda
(λ)

0.003 Iteration 400 Iteration 400

Beta (β) 4 Beta (β) 2 Input
normal-
ized?

Yes

Training
algorithm

L-FBGS Training
algo-
rithm

L-FBGS

Iteration 400 Iteration 400

Input nor-
malized?

Yes Input
normal-
ized?

Yes

Wisconsin
breast
cancer

Number of
neuron

8 Number
of
neuron

4 Lambda
(λ)

0.003 Lambda
(λ)

0.003

Sparsity
(ρ)

0.5 Sparsity
(ρ)

0.2 Training
algo-
rithm

L-FBGS Training
algo-
rithm

L-FBGS

Lambda
(λ)

0.003 Lambda
(λ)

0.003 Iteration 400 Iteration 400

Beta (β) 2 Beta (β) 5 Input
normal-
ized?

Yes

Training
algorithm

L-FBGS Training
algo-
rithm

L-FBGS

Iteration 400 Iteration 400

Input nor-
malized?

Yes Input
normal-
ized?

Yes

methods including, electrocardiogram, image and heart sound analysis [9] are applied
to diagnose the CAD in less expensive and non-invasive ways [9].

The main objective is to forecast the existence of CAD from a number of demo-
graphic, detected, and measured patient features by using four different CAD data
sets (i.e Cleveland, Hungarian, LongBeach, Switzerland) received fromDataMining
Repository of University of California, Irvine (UCI) [35].
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Table 3 Setting parameters of DNN for Pima Indian diabetes data set

Data set 1st Autoencoder 2nd Autoencoder Softmax layer Fine-tuning

Diabetes Number
of
neuron

4 Number
of
Neuron

2 Lambda
(λ)

0.001 Lambda
(λ)

0.001

Sparsity
(ρ)

0.15 Sparsity
(ρ)

0.15 Training
algo-
rithm

L-FBGS Training
algo-
rithm

L-FBGS

Lambda
(λ)

0.003 Lambda
(λ)

0.003 Iteration 1000 Iteration 1000

Beta (β) 2 Beta (β) 2 Input
normal-
ized?

Yes

Training
algo-
rithm

L-FBGS Training
algo-
rithm

L-FBGS

Iteration 1000 Iteration 1000

Input
normal-
ized?

Yes Input
normal-
ized?

Yes

The first data set is Cleveland heart disease data set consisting of 14 attributes
with 303 instances [39–42]. Six of the them are removed due to missing values.

The second data set about CAD is Hungarian heart disease data set. Three of
the attributes have been removed because of a large percentage of missing values.
However the form of the data is completely the same as that of the first data set. 34
instances of the database is removed due to missing values and 261 examples were
present [43].

The third data set is VA Long Beach heart disease data set that consists of 14
attributes and also 200 instances are used in this research. Four of the attributes and
67 instances have been removed because of a large percentage of missing values in
the VA Long Beach data sets.

The last data set about CAD is Switzerland heart disease data set which contains
of 14 attributes and also 123 instances are used in this research. Four of the attributes
and 18 instances have been removed because of a large percentage of missing values
in the Switzerland data sets.

3.3.2 Breast Cancer Data Sets

Breast cancer emerges with abnormal growth of breast cells which are either benign
(non-cancerous) or malignant (cancerous). Early detection is very important the
patients suffered form breast cancer [44]. Surgical biopsy is most reliable method
for detection of breast cancer. However, biopsy is a costly and time consuming pro-
cedure. However, Fine Needle Aspiration biopsy (FNA) is one of the most accepted
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(a) (b)

(c) (d)

Fig. 7 a First autoencoder, b second autoencoder, c softmax, d DNN

diagnostic procedure for breast cancer without the adverse effects of surgical biopsy
[45]. A breast FNA is a quick and easy method to make that a fine needle and syringe
is used to take a sample like some fluids or cells from the breast lesion or cyst
[45, 46]. The sample is examined under a microscope to extract the feature of the
tumor. These features can be utilized to detect the breast cancer by using soft com-
puting methods [47].

On the other hand, at present about 40% of all patients who suffer breast cancer
face a recurrence and nearly all of them die due to this fact. Therefore, cancer-related
loss inwomen ismost commonly caused by the breast cancer. The risk of recurrence is
highest in the first 2 or 3 years and then decline steadily, but this risk never disappears
[48]. The prediction of recurrence with machine learning techniques is also possible
like whether tumor is benign or malignant.
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Wisconsin breast cancer data set and breast cancer data set are utilized to apply the
proposed technique. Breast cancer data set is utilized in order to forecast the existence
of recurrence from measured patient features. Th other data set is collected to decide
whether breast cancer tumor is benign or malignant. This data set is received from
Data Mining Repository of University of California, Irvine (UCI) [35].

First data set is breast cancer data set and contains patients with known diagnostic
conditions 5 years after the operation were performed [49, 50]. Data sets with 286
instances and 9 attributions investigate recurrence or non-recurrence of breast cancer.
Nine instances are not used because of missing attributes.

Another data set is Wisconsin breast cancer data set that contains 699 instances
and 9 attributes. Each instance consists of nine cytological attributes of benign or
malignant breast FNA [51, 52]. 16 instances are not used for analysis due to lack of
the some features.

3.3.3 Diabetes Mellitus Data Set

Diabetes mellitus is very dangerous disease which effects all blood vessels particu-
larly capillaries [53]. There exists twomajor different type of diabetes mellitus. Type
I diabetes is commonly diagnosed in young adults and children [54] whose pancreas
can not produce insulin due to loss of the beta cells of the pancreas. Hence these
patients require the exogenous administration of insulin. On the other hand, secretion
of insulin is very limited in type II diabetes, which is not enough to decrease blood
glucose level compared to subjects with healthy body [55]. Beside insulin resistance
occurs in most type II diabetes.

The purpose of the Pima Indians Diabetes (PID) Data Set is to forecast whether
patients are diabetes or not from several demographic, detected, andmeasured patient
features. All patients in this data set are from Phoenix, Arizona, USA. This data set
is received from Data Mining Repository of University of California, Irvine (UCI)
[35, 36]. The data set contains 768 instances and 8 attributes [35].

3.4 Results

In this chapter, the performance of the DNN classifier is measured by 7 medical data
sets. The obtained results related with accuracy rates for each data sets are compared
with the state-of-the-art classifiers. At the same time, PCA is utilized to observe the
ability of the dimensional reduction of the AE.

The comparative results of the DNN classifier with state-of-the-art classifiers are
reported in Sect. 3.4.1 for data sets related heart diseases, Sect. 3.4.2 for data sets
related with breast cancer and in Sect. 3.4.3 for data set related with diabetes.
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Table 4 Comparison of designed DNN with state-of-the-art methods for Cleveland heart disease
data set

Methods Accuracy rate (%)

Designed DNN 85.2a

Navia Bayes [56] 83.8a

SMO [56] 84.4a

IBK [56] 76.9a

AdaBoostM1 [56] 83.5a

J48 [56] 76.5a

PART [56] 81.5a

NPC [57] 84.0a

HNPC (minimum) [58] 84.4a

HNPC (product) [58] 85.0a

Modified HNPC (minimum) [59] 77.4a

Modified HNPC (product) [59] 86.7a

AdaBoostM1 [11] 82.2a

Bagging [11] 83.7a

BayesNet [11] 82.2a

Dagging [11] 82.2a

DecisionTable [11] 83.3a

DTNB [11] 82.5a

FT [11] 82.2a

LMT [11] 82.2a

Logistic [11] 83.7a

MultiClassClassifier [11] 83.7a

NaiveBayes [11] 83.3a

NaiveBayesSimple [11] 82.9a

NveBayesUpdateable [11] 83.3a

RandomCommittee [11] 82.2a

RandomForest [11] 83.7a

RandomSubSpace [11] 82.2a

RBFNetwork [11] 84.0a

RotationForest [11] 82.5a

SimpleLogistic [11] 82.2a

SMO [11] 83.3a

DAM [11] 83.7a

Original SAM [60] 75.7b

GSAM [60] 78.0b

IT2FLS-KMIP [61] 80.7b

IT2FLS-GCCD [61] 81.0b

a10-fold cross validation
b5-fold cross validation
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Table 5 Comparison of designed DNN with state-of-the-art methods for Hungarian heart disease
data set

Methods Accuracy rate (%)

Designed DNN 83.5a

J48 [12] 78.2a

Random forest [12] 80.7a

ABM1 [12] 76.8a

SMO [12] 82.0a

Bagging [12] 81.9a

Naive Bayes [12] 82.8a

FBCDSS [62] 50.5a

NNBDSS [62] 46.4a

Genfis2 [13] 39.5a

Rough-Fuzzy classifier [13] 42.4a

Weighted fuzzy rules and decision tree rules [63] 49.9a

L1/2 [14] 86.8b

Lasso [14] 85.9b

SCAD [14] 86.1b

MCP [14] 85.6b

Elastic net [14] 86.4b

a10-fold cross validation
bAverage of 50 runs (training %60 test %40)

Table 6 Comparison of designed DNN with state-of-the-art methods for long beach heart disease
data set

Methods Accuracy rate (%)

Designed DNN 84.0a

L1/2 [14] 81.6b

SCAD [14] 81.2b

Lasso [14] 80.4b

MCP [14] 81.8b

Elastic net Hungrain_zhang2014 80.1b

FDSS [9] 75.0c

MLP-ANN [9] 76.0c

k-NN [9] 85.0c

C4.5 [9] 53.0c

RIPPER [9] 41.0c

DT [64] 68.4a

KNN [64] 81.1a

SVM [64] 83.4a

a10-fold cross validation
bAverage of 50 runs (training %60 test %40)
cUnknown
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3.4.1 Results of Heart Diseases Data Sets

The results of 10-fold cross validation for DNN and state-of-the-art methods are
presented in Tables 4, 5, 6 and 7 for each heart disease data set. The new features
generated by each AE is visualized in Figs. 8, 9, 10 and 11, respectively, for each
data set.

As can be seen in Tables 5, 6 and 7, the designed DNN is the best classifier with
accuracy rate (83.5), (92.6) and (92.6) for Hungarian heart disease data set, Long
Beach heart disease data set and Switzerland heart disease data set, respectively,
compared with the state-of-the-art methods. On the other hand, according to Table 4,
the designed DNNwith accuracy rate (85.2) is the second classifier among the others
for Cleavland CAD data set. Modified HNPC (product) with accuracy rate (86.7) is
the best one. On the other hand, accuracy rate of designed DNN is lower than L1/2,
Lasso, SCAD and MCP methods for Hungarian heart disease data set. However,
the average accuracies of 50 runs are reported without using 10 cross validation
technique.

In order to understand the dimensional reduction mechanism of the AE, output of
hidden layer of the AE is visualized by using PCA for each of the data sets including
Cleveland heart disease, Hungarian heart disease data set, Long Beach heart disease
data set and Switzerland heart disease data set. The DNN contains two hidden layers,
each with four neurons.

AEs are used to reduce the dimensionality in order of R14 → R
4, R11 → R

4,
R

10 → R
4 and R

10 → R
4 for each CAD data set. The changing of performance of

the AE is recorded in Figs. 8, 9, 10 and 11 one by one when the dimensionality of the
new representation R

4 varies. As clearly seen in these figures, the effect of AE can
be observed. The AE embeds raw features to a new space where features are defined
in a clearer manner than before to classify the data sets.

Table 7 Comparison of designed DNNwith state-of-the-art methods for Switzerland heart disease
data set

Methods Accuracy rate (%)

Designed DNN 92.6a

Genfis2 [13] 62.3a

Rough-Fuzzy classifier [13] 79.8a

weighted fuzzy rules and decision tree rules [63] 52.2a

FDSS [9] 70.0b

MLP-ANN [9] 81.0b

k-NN [9] 62.0b

C4.5 [9] 53.0b

RIPPER [9] 41.0b

DT [64] 86.5a

KNN [64] 88.5a

SVM [64] 92.2a

a10-fold cross validation
bUnknown
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(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 8 Dimensionality reduction: R14 → R
4: a 3D visualization of raw features Cleveland heart

disease data set, b 3D visualization of new features generated by the first autoencoder c 3D visu-
alization of new features generated by the second autoencoder d 2D visualization of new features
generated by second autoencoder projected on X-Y plane e 2D visualization of new features gen-
erated by second autoencoder projected on X-Z plane f 2D visualization of new features generated
by second autoencoder projected on Y-Z plane

3.4.2 Results of Breast Cancer Data Sets

10-fold cross validation of test accuracies of DNN and state-of-the-art methods for
each of the breast cancer data sets are reported in Tables 8 and 9. Effect of AE on
reducing dimension of the features is visualized in Figs. 12 and 13 for each data set,
respectively.
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(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 9 Dimensionality reduction: R11 → R
4: a 3D visualization of raw features Hungarian heart

disease data set, b 3D visualization of new features generated by the first autoencoder c 3D visu-
alization of new features generated by the second autoencoder d 2D visualization of new features
generated by second autoencoder projected on X-Y plane e 2D visualization of new features gen-
erated by second autoencoder projected on X-Z plane f 2D visualization of new features generated
by second autoencoder projected on Y-Z plane



Application of Deep Neural Networks for Disease … 281

(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 10 Dimensionality reduction:R10 → R
4: a 3D visualization of raw features long beach heart

disease data set, b 3D visualization of new features generated by the first autoencoder c 3D visu-
alization of new features generated by the second autoencoder d 2D visualization of new features
generated by second autoencoder projected on X-Y plane e 2D visualization of new features gen-
erated by second autoencoder projected on X-Z plane f 2D visualization of new features generated
by second autoencoder projected on Y-Z plane
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(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 11 Dimensionality reduction:R10 → R
4: a 3D visualization of raw features Switzerland heart

disease data set, b 3D visualization of new features generated by the first autoencoder c 3D visu-
alization of new features generated by the second autoencoder d 2D visualization of new features
generated by second autoencoder projected on X-Y plane e 2D visualization of new features gen-
erated by second autoencoder projected on X-Z plane f 2D visualization of new features generated
by second autoencoder projected on Y-Z plane
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Table 8 Comparison of designed DNN with state-of-the-art methods for breast cancer data set

Methods Accuracy rate (%)

Designed DNN 75.8a

MLP [10] 76.1a

RBF [10] 72.3a

PNN [10] 24.6a

SOM [10] 29.8a

SVM [10] 71.3a

kNN [10] 72.1a

nB [10] 68.8a

MLP/GA [10] 80.4a

PCNN [10] 77.6a

a10-fold cross validation

According to Table 8, designed DNN is the fourth best classifier with accuracy
rate (75.8) after MLP/GAwith accuracy rate (80.4), PCNNwith accuracy rate (77.6)
and MLP with accuracy rate (76.1) for Breast Cancer data set. On the other hand,
it is the fifth best algorithm with accuracy rate (97.2) after GA-KDE, PSO-KDE,
DAM, DTNB with accuracy rates (98.5), (98.5), (97.8) and (97.5), respectively, for
classification of Wisconsin Breast Cancer data set. All of them are run by using
10-fold cross validation technique.

The DNN is designed as two hidden layers with four neurons. AEs are used to
reduce the dimensionallyR9 → R

4 for breast cancer data set. The effect of AE can be
observed form these figures. TheAEmaps raw features to a new spacewhere features
are defined in a clearer manner than before to classify the data sets appropriately.

3.4.3 Results of Diabetes Data Sets

10-fold cross validation of accuracy of the DNN and state-of-the-art classifiers for
PID are listed in Table 10. Effect of each AE on reducing dimension is visualized in
Fig. 14 for effective classification. According to Table 10, designed DNN is the best
algorithm with accuracy rate (78.1).

In order to observe the effect of hidden layers on the performance of AE over PID,
the DNN is designed as two hidden layer with eight and four neurons respectively.
AEs are used to degrade the dimensionallyR8 → R

4 for PID data set. The changing
of performance of the AE is reported in Fig. 14 when the dimensionality of the new
representation as R4.

The effect of AE can be observed from Fig. 14. The AE maps raw features to a
new space where features are defined in a clearer manner than before to classify the
data sets appropriately.
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Table 9 Comparison of designed DNN with state-of-the-art methods for Wisconsin breast cancer
data set

Methods Accuracy rate (%)

Designed DNN 97.2a

MLP [10] 95.8a

RBF [10] 95.2a

PNN [10] 82.5a

SOM [10] 90.1a

SVM [10] 96.9a

kNN [10] 94.1a

nB [10] 96.3a

MLP/GA [10] 91.4a

PCNN [10] 94.2a

AdaBoostM1 [11] 95.6a

Bagging [11] 96.1a

BayesNet [11] 97.2a

Dagging [11] 96.7a

DecisionTable [11] 95.7a

DTNB [11] 97.5a

FT [11] 96.9a

LMT [11] 96.4a

Logistic [11] 96.6a

MultiClassClassifier [11] 96.6a

NaiveBayes [11] 96.1a

NaiveBayesSimple [11] 96.3a

NveBayesUpdateable [11] 96.1a

RandomCommittee [11] 96.4a

RandomForest [11] 97.0a

RandomSubSpace [11] 95.5a

RBFNetwork [11] 95.9a

RotationForest [11] 97.2a

SimpleLogistic [11] 96.6a

SMO [11] 96.9a

DAM [11] 97.8a

PSO-KDE [47] 98.5a

GA-KDE [47] 98.5a

Self-training [65] 85.8a

Random co-training [65] 90.5a

Rough co-training [65] 92.3a

AR1+NN [66] 97.4b

AR2+NN [66] 95.6b

AR1+AR2+NN [66] 98.4b

(continued)
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Table 9 (continued)

Methods Accuracy rate (%)

GA-MOO-ANN [67] 98.1c

WN Bayes [68] 98.5d

a10-fold cross validation
b3-fold cross validation
cAverage of 10 runs (training %50, validation %25 and test %25)
d5-fold cross validation

(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 12 Dimensionality reduction:R9 → R
4: a 3Dvisualization of raw features Breast Cancer data

set, b 3D visualization of new features generated by first autoencoder c 3D visualization of new
features generated by second autoencoder d 2D visualization of new features generated by second
autoencoder based X-Y e 2D visualization of new features generated by second autoencoder based
X-Z f 2D visualization of new features generated by second autoencoder based Y-Z
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(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 13 Dimensionality reduction:R9 → R
4: a 3D visualization of raw features Wisconsin Breast

Cancer data set, b 3D visualization of new features generated by the first autoencoder c 3D visu-
alization of new features generated by the second autoencoder d 2D visualization of new features
generated by second autoencoder projected on X-Y plane e 2D visualization of new features gen-
erated by second autoencoder projected on X-Z plane f 2D visualization of new features generated
by second autoencoder projected on Y-Z plane
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Table 10 Comparison of designed DNN with state-of-the-art methods for PID data set

Methods Accuracy rate (%)

Designed DNN 78.1a

AdaBoostM1 [11] 74.3a

Bagging [11] 74.6a

BayesNet [11] 74.3a

Dagging [11] 74.0a

DecisionTable [11] 71.2a

DTNB [11] 73.8a

FT [11] 77.3a

LMT [11] 77.4a

Logistic [11] 77.2a

MultiClassClassifier [11] 77.2a

NaiveBayes [11] 76.3a

NaiveBayesSimple [11] 76.3a

NveBayesUpdateable [11] 76.3a

RandomCommittee [11] 75.2a

RandomForest [11] 72.3a

RandomSubSpace [11] 75.2a

RBFNetwork [11] 75.3a

RotationForest [11] 76.8a

SimpleLogistic [11] 77.4a

SMO [11] 77.3a

DAM [11] 70.3a

CoABCMiner [69] 75.5a

CORE [69] 74.3a

PGIRLA [69] 73.1a

C4.5Rules [69] 71.7a

SIA [69] 71.4a

HIDER [69] 70.9a

LDWPSO [69] 69.6a

ABCMiner [69] 65.9a

LUkEYK [15] 76.0b

LUkEYK+SVM [15] 76.0b

SVM [15] 73.0b

LDA [15] 72.0b

Bayes [15] 71.0b

kEYK [15] 64.0b

a10-fold cross validation
bUnknown
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(a) (b)

(c) (d)

(e) (f)

Class 0
Class 1

Fig. 14 Dimensionality reduction: R8 → R
4: a 3D visualization of raw features PID Data set,

b 3D visualization of new features generated by the first autoencoder c 3D visualization of new
features generated by the second autoencoder d 2D visualization of new features generated by
second autoencoder projected on X-Y plane e 2D visualization of new features generated by sec-
ond autoencoder projected on X-Z plane f 2D visualization of new features generated by second
autoencoder projected on Y-Z plane

4 Conclusion

In this chapter, we present a DNN based classifier with very good accuracy for clas-
sification of medical data sets, including heart disease, breast cancer and diabetes
mellitus. We demonstrate this fact by reporting the results of a rigorous experimental
testing procedure that we employ for comparing the performance of the presented
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DNN classifier with representative conventional as well as state-of-the-art classi-
fication methods from the literature. Specifically, we evaluate the performance on
three different diseases, on a number of different data sets for each disease and by
conducting 10-fold cross validation for each disease/data set combination.

We also demonstrate the effectiveness of the use of AEs to reduce the dimension-
ality of the input data. We visualize this by using the PCA technique and show that
the use of AEs may be a very efficient strategy to reduce the dimensionality of the
input data. This allows the design of a classifier with lower complexity, which then
results in easier training.

The presented DNN classifier provides the highest accuracy rates in almost all
of the classification experiments with the exception of a few cases. Therefore, the
presented DNN based approach to disease diagnosis may constitute a strong alterna-
tive to currently available methods. As we mention before, this approach is gaining
increasing popularity as it is easier, cheaper, quicker and non-invasive. We there-
fore conclude that the presented DNN based classifier may be used as a different
alternative to currently existing disease diagnosis approaches.
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Why Dose Layer-by-Layer Pre-training
Improve Deep Neural Networks
Learning?
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Abstract Deep perceptron neural networks are capable of implementing a hierarchy
of successive nonlinear conversions. But training these neural networks by conven-
tional learning methods such as the error back-propagation is faced with serious
obstacles owing to local minima. The layer-by-layer pre-training method has been
recently proposed for training these neural networks and has shown considerable
performance. In the pre-training method, the complex problem of training deep neu-
ral networks is broken down into some simple sub-problems in which some cor-
responding single-hidden-layer neural networks are trained through the error back-
propagation algorithm. In this chapter, the theoretical principles regarding how this
method effectively improves the training of deep neural networks are discussed, and
the maximum discrimination theory is proposed as a proper framework for analy-
sis of training convergence in these neural networks. Subsequently, discriminations
of inputs in different layers of two similar deep neural networks, one of which is
directly trained through the conventional error back-propagation algorithm and the
other through layer-by-layer pre-training method, are compared, and results confirm
the validity of the proposed framework.
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1 Introduction

Extracting nonlinear intrinsic manifolds embedded in data and their corresponding
nonlinear components using neural networks (NNs) is an efficientmethod for analysis
of nonlinear data. This usually requires deep and complex structures of NNs [1].

These deepNNs (DNNs) can learnmulti-stage and complex nonlinear transforma-
tions by employing many layers of neurons [2, 3]. In recent years, these structures
have been demonstrated desirable performance in a large number of applications
especially for vision and human language understanding [4]. DNNs have been used
for speech recognition and voice conversion [5–9], bioinformatics [10, 11], face
recognition [12–18], and dimension reduction [19, 20]. In these structures, the pos-
sibility of hierarchical extraction of components is provided [21, 22], in such a way
that high level components are constructed as a combination of low level components
in several layers [23].

A review of some results in machine learning shows that training of these deep
structures faces some serious problems in comparison with shallow structures.When
an attempt ismade to train all the layers of aDNN through an output cost function, the
results are even lower compared to those for shallow ones [24]. This is because with
an increase in the number of layers, in addition to the time-consuming of training
DNNs, the problem of local minima is serious obstacle, such that in most cases,
training does not converge. Studies have shown that in these structures, the number
of local minima, which depends on the architecture and initial values of the DNN
parameters, is high [25].

One of the important reasons for this problem is the high interaction between the
DNN parameters in different layers during training. Throughout training the DNN,
weights are optimized so that two conditions are simultaneously fulfilled; firstly,
tuning of lower layers is done in such a way that they provide proper input for final
adjustment (end of training) of deeper layers. Secondly, adjustment of deeper layers
is done such that in the end of training, they take good advantage of the extracted
components by lower layers.

Adjustment of the weights of deeper layers is easily performed if the weights
of lower layers are determined. But what makes the problem complicated is the
simultaneous adjustment of the weights of deep and lower layers, which makes
the slope of the objective function become limited by the local values provided by
the current adjustments of network parameters. Studies have demonstrated that the
traditional method of training adjusts parameters in a region which leads to low
generalization of the DNN [26].

Therefore, alongside direct and common training of multilayer NNs, which takes
advantage of the error back-propagation method, there are new approaches found
helpful in increasing the complexity of structures and data [27, 28]. Pre-training
methods are the main solution in this area [29–33]. These methods attempt to find
proper initial values for DNN weights, and in this way disentangle the training
from the most of the local minima. Pre-training methods providing the proper initial
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knowledge for getting the desired object through initializing of weights, prepare the
DNNs for the training and fine-tuning of weights.

Recently, the layer-by-layer pre-training is presented as an powerful and efficient
method for solving the problem of deep autoencoders (DAEs) training which takes
advantage of the idea of breaking down the complex problem of training DAEs into
several sub-problems of training single-hidden-layer AEs [1, 31]. The performance
of this method with comparing to previous pre-training methods, the step-by-step
method [32] and the decomposition to the Boltzmann machines method [33] is stud-
ied, and it has been demonstrated to be faster and more powerful. Furthermore, this
method enhances the ability of DAE to extract components with better generalization
for reconstructing and recognizing of test images [1].

In the chapter, analytical fundamentals and the reasons behind capabilities of
the layer-by-layer pre-training method in the convergence of DAEs are discussed.
First, the performance of feed-forward NN neurons in high-dimensional spaces is
investigated. In this regard, the performance of NNs with linear, step nonlinear and
finally soft (sigmoid) nonlinear functions is discussed.

In the following, the training presses of some distinct input samples to DAEs is
studied, and the required conditions for maximum discrimination of a neuron with
the sigmoid function are determined. On this basis, it will be demonstrated why
training randomly initialized DAE does not converge, and the layer-by-layer pre-
training method by stepwisely setting of weights leads to desirable convergence of
training. Finally, in order to evaluate the influence of the layer-by-layer pre-training
method some comparative experiments are performed that their results are reported.

2 Functional Analysis of Linear and Nonlinear
Feed-Forward Neural Networks in High-Dimensional
Spaces

DAEs, used often for nonlinear component extraction and compression of data, aim
at decomposition of input data to nonlinear components and then reconstruction of
the input in the output with the least error [1]. DAEs are capable of reconstructing
the input distinct samples in the output with desired accuracy only if they have
no waste of information during the data analysis in the different layers. Thus, it is
essential to distinctly define the different inputs in the layers, and also, reconstruct
them in the output. If two distinct input samples are represented by a single and
non-distinct description in a layer of the DAE, the nonlinear mappings of the input
up to this layer have not been successful in one-to-one discrimination of these two
samples. Therefore, a part of the discriminative information of the input samples is
lost. To clarify the problem, first, the process of a feed-forward NN in mapping of the
input space to the output is analyzed. Through step by step analysis of DAE neuron
functions, reasons of training non-convergence are discussed and a proper solution
to fix it is purposed.
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Fig. 1 A linear single-layer
feed-forward NN

W  
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Y1 YnYi 

X1 XmXk

X

Y

2.1 Linear Neural Network (A Linear Mapping)

First, a feed-forward single-layer NNwith linear neurons without bias, i.e.Y � XW,
is considered. The components of the input space (X) are assumed orthogonal.

As illustrated in Fig. 1, X and Y are row input and output vectors and W is its
weight matrix.

X � [X1,X2, . . . ,Xm]
Y � [Y1,Y2, . . . ,Yn]

(1)

Here, it is assumed that the weight vectors of the neurons are available according
to Eq. 2, and the aim is the functional analysis of these neurons in the m-dimensional
orthogonal input space X.

W �
⎡
⎢⎣
W11 · · · W1n
...

. . .
...

Wm1 · · · Wmn

⎤
⎥⎦ � [W1,W2, . . . ,Wn] (2)

where Wi is the weight vector of the ith neuron.
Figure 2 shows the vectorWi in the input space. Magnitude of each output com-

ponent Yi equals the scalar product of the input vector X and the weight vector of
the ith linear neuron, and its direction is the same as Wi in the input space X.

Yi � (X · Wi)�aWi (3)

where �aWi is the unit vector along Wi.
In other words, each component Yi is equal to the product of ‖Wi‖ in the X

projected along Wi.

Yi � (
X · �aWi

)�aWi × ‖Wi‖
� (

X · �aWi

) × ‖Wi‖�aWi (4)
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Fig. 2 The vector diagram
of function of a linear neuron
in the input space of a linear
single-layer feed-forward
NN, the hyperplane
perpendicular to the vector
Wi passing from the origin is
the locus of X that
X · Wi � 0

where ‖Wi‖ is the magnitude or Euclidean norm of Wi. Thus, the input vector X
under the linear transformation W is converted to the vector Y with the following
components:

Y � [Y1,Y2, . . . ,Yn] (5)

where Yi|i�1,2,...,n are components of the output space Y. Obviously, having orthog-
onal vectors Wi (the weight vectors of NN linear neurons):

Wi · Wr � 0 ∀ i �� r, i, r � 1, 2, . . . , n (6)

leads to the orthogonal spaceY. If the orthogonality condition of componentsY is not
established, components Yi will be correlated with each other and their inner product
will not be zero. For each vectorWi of a linear neuron, the locus of the input vectors
X whose inner product to Wi are zero (Yi � 0), is a m-1-dimensional hyperplane
perpendicular to the vector Wi passing from the origin in the m-dimensional input
space [34].

2.2 Functional Analysis of Single-Layer Feed-Forward
Neural Networks with a Step Nonlinear Activation
Function and Bias

A single-layer NN as shown in Fig. 3 is considered in which neurons have a step
nonlinear function ( f ) and a bias B as in the following equation:
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Fig. 3 a A single-layer feed-forward NN with a step nonlinear activation function and a bias, b the
model of its neuron with step nonlinear function and bias

Yi � f(X · Wi − Bi), f (z) �
{
1 z > 0
0 z < 0

(7)

For each neuron of the NN with the weight vectorWi and bias Bi, the locus X of
the input space for which Eq. 8 is zero, i.e.:

(X · Wi − Bi) � 0 (8)

is a hyperplane that is perpendicular to the neuron’s weight vector (Wi) and passes
from point Xa (Eq. 9) of the input space as shown in Fig. 4.

Xa � (
X · �aWi

)�aWi (9)

According to Eq. 8, ‖Xa‖ is calculated from Eq. 10.

Fig. 4 The vector diagram of function of a nonlinear neuron with step activation function and bias
in the input space, the hyperplane perpendicular to the vectorWi passing from Xa is the locus of X
that X ·Wi −Bi � 0 (The diagram is drawn for a two-dimensional input space (m � 2), therefore,
here the m-1-dimensional hyperplane is a line.)
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(X · Wi − Bi) � 0 → X · Wi � Bi → ‖Xa‖ � X · �aWi � Bi

‖Wi‖ (10)

The hyperplane is the decision boundary of the neuron in the input space X.
Therefore, the output of the neuron for X of the input space at one side of the
hyperplane is one and for another side is zero.

Yi � 1 ∀(X · Wi − Bi) > 0 (11)

Yi � 0 ∀(X · Wi − Bi) < 0 (12)

Thus, for each neuron with the weight vector Wi and the bias Bi, the location of
the hyperplane in the input space (i.e. the neuron decision boundary) can be exactly
defined. Also, the intersection of the hyperplane with the axis of the input space X
([X1,X2, . . . ,Xm]) can be calculated. As Eq. 8:

X1W1i + X2W2i + · · · + XmWmi − Bi � 0 (13)

Assuming orthogonality of input space X, the intersection of the hyperplane with
the kth component of the input space as shown in Fig. 5 is:

Xr � 0 ∀r �� k

XkWki � Bi

Xk � Bi

Wki
(14)

Fig. 5 Diagram of the
intersections of the
hyperplane with the axes of
the orthogonal input space
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So, for a single-layer NN, for the given input vector X, the output of each neuron
will be zero or one depending on the location of the inputX to the neuron hyperplane.
For example, for input X in Fig. 6, the output of the NN is given by:

Y �
[
0 0 1 0

]
(15)

Thismeans that anygiven input sampleX ismapped to a vector of zeros andones in
the layerY that indicates whereX is located between neuron hyperplanes in the input
space. For each neuron of the NN, the location of the decision boundary hyperplane
of the neuron in the input space is given by Wi and Bi. It should be noted that for
the higher resolution of subspaces separated by the hyperplanes, corresponding to
different codes in the layer Y, more neurons (hyperplanes) are needed.

Also, all of the input samples Xp located in a separated subspace by hyperplanes
as shown in Fig. 7, have same representations in the layer Y and are inseparable
(dimension reduction). For example in Fig. 7, for inputs X1 and X2, the outputs are
given by:

Fig. 6 The quantization of
input space by hyperplanes
corresponding to neurons
with step activation functions
(The diagram is drawn for a
two-dimensional input space
(m � 2), therefore, here the
m-1-dimensional hyperplane
is a line.)

Fig. 7 Two input samples in
a space restricted by
hyperplanes have same
representations in the layer Y
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Y1 � Y2 �
[
0 0 1 1

]
(16)

2.3 Functional Analysis of Single-Layer Feed-Forward
Neural Networks with a Soft Nonlinear Activation
Function (Sigmoid) and Bias

In this section, a single-layer NN in which the step functions of the neurons are
replaced with soft non-linear functions (sigmoid) (as in Eq. 17) is analyzed. Sigmoid
functions and also their derivative functions are given in Fig. 8.

Yi � f(X · Wi − Bi),

f(z) � 1

1 + e−z
(17)

Here also, it is assumed that components of the input space are orthogonal. Due to
the difference of step and soft (sigmoid) functions, the replacement of step functions
with soft (sigmoid) functions change the hard decision boundaries to softened (fuzzy)
decision boundaries. Nevertheless, the locations of the hyperplanes corresponding
to them depended on Wi and Bi, don’t change. In other words, each neuron with
sigmoid function and the fuzzy boundaries has a hyperplane corresponding to the
step functionwhose the location depends onWi andBi onwhichX·Wi−Bi � 0. The
sigmoid nonlinear function has the highest power of discrimination in a neighborhood
of the decision boundary, nearly as the step function. This is because, the slope of
the sigmoid function is maximum at this point referred to the inflection point, as in
Fig. 8. However, by changing the bias (Bi) and weights (Wi), this inflection point is
adjustable, as in Fig. 8.
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0

0.2

0.4
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0.8

1
Sigmoid

Wi=1,Bi=0

Wi=2,Bi=4

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

Derivative of Sigmoid

Wi=1,Bi=0

Wi=2,Bi=4

(a) (b)

Fig. 8 Diagrams of sigmoid functions (a) and their derivatives (b)
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Therefore, the output of a single-layer NN with sigmoid functions for the input X
will be in the interval (0, 1) depending on position of X with respect to hyperplanes
corresponding to the neurons. The output value depends on the distance X from the
hyperplane of the neuron (themembership degree ofX to the two decision boundaries
of the neuron) where by distancingX from the hyperplane of each neuron, the neuron
output becomes closer to one or zero (depending on Wi and Bi). For example, for
the input X as Fig. 6, if functions of neurons are sigmoid, Y will be:

Y �
[
0 .1 0.3 0.9 0.4

]
(18)

In this case, the representations of inputs on the layerY contain more information
than the case where the functions of the neurons were step. Here, by varying X in an
area enclosed by hyperplanes, a single value cannot be achieved in the layer Y, but
these values will be approximately close to each other. By passing a fuzzy boundary,
at least one of the components of Y will quickly change (crossing the steepest slope
of the sigmoid function). Thus, areas enclosed by the hyperplanes are discriminated.

Training of samples (inputs and desired outputs) to the NN means modifying
NN weights (Wi) and biases (Bi) for adjusting the hyperplanes corresponding to the
neurons as the output global error function is optimized. In other words, the outputs
of neurons become closer to the desired outputs as much as possible.

3 Analysis of Training Some Distinct Samples to a DAE
with Nonlinear Activation Functions

For training of a DAE (Fig. 9) with P distinguished samples (Fig. 10 and Eq. 19), it
is necessary to minimize the output global error function.

{
Xp|p � 1, 2, . . . ,P

}
(19)

E � 1

2

P∑
p�1

∥∥Zp − Xp
∥∥2

(20)

where Xp is the input vector to DAE and also the its desired output, and Zp is DAE
output for the input vector Xp. The necessary condition to be minimized the output
global error function (Eq. 20) nearly zeros is maintaining the distinctions of samples
in all of the hidden and also output layers (no dimension reduction). Because, if
two distinct input patterns Xi and Xj are represented in DAE hidden layers by same
descriptions, DAE outputs will be same for them. However, their desired outputs
which are the same as inputs are different. Therefore, minimum of the error function
Emin (Eq. 21) will not be zero, because Xi �� Xj while Zi � Zj.
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Fig. 9 A deep bottleneck
neural network (DAE)

2nW

1W

12nW

2W

Output

Input

Bottleneck layer

Fig. 10 P samples
distinguished by hyperplanes
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Fig. 11 Based on
minimizing sum of squared
error function in the output
layer for samples located in
one area enclosed between
hyperplanes in the input
space, the output error
function is minimum in Zm

X1

X2

X3

Zm

Emin � 1

2

[
‖Xi − Zi‖2 +

∥∥Xj − Zj
∥∥2

]
(21)

3.1 Analysis of Training of Some Distinct Samples
to the DAE with Step Activation Functions

First, it is assumed that the activation functions of all hidden neurons are step and
of the output layer neurons are linear. Therefore, Yji, the output of the i th neuron
of j th layer, is given by Eq. 22 where Wji and Bji are its weight vector and bias,
respectively.

Yji � f (X · Wji − Bji) �
{
1 X · Wji − Bji > 0
0 X · Wji − Bji < 0

(22)

Bymodifying theweights during training, the output global error function (Eq. 20)
can be minimized if all various input samples Xp can be distinctly represented in all
the DAE layers. Samples located in an area enclosed between hyperplanes will be
considered identical in later layers, and their discriminant information will be filtered
(dimension reduction). Therefore, the DAE output descriptions for thesis samples are
not ultimately distinguishable. It can be shown that in training based on minimizing
the sum of squared error function, all of the samples in one area will be expressed by
single representations in the next layers and in the output layer. For instance, their
single representation in the output layer will be Zm, which is their mean, as shown
in Fig. 11.

Therefore, the necessary condition for convergence of DAE training and getting
of output error near zero is maintaining the discriminations of sample descriptions
of in all layers to the output. To discriminate samples, being at least one hyperplane
between each of two sample descriptions in all layers is essential, as shown in Fig. 12.
Here, each hyperplane distinguishing two separate sample descriptions (not duplicate
hyperplanes) in each layer is as a nonlinear binary component.
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Fig. 12 To maintain the
perfect discriminations of
samples, being at least one
hyperplane between each of
two sample descriptions in
all layers is essential

X1

X2

X3

3.2 Analysis of Training of Some Distinct Samples
to the DAE with Continuous (Sigmoid) Activation
Functions

By replacing of the step functions with the sigmoid functions, Eq. 22 is modified as
Eq. 23.

Yji � f (X · Wji − Bji) � 1

1 + e−(X·Wji−Bji)
(23)

Here also, minimizing of the global error function by the back-propagation algo-
rithm depends on maintaining discriminations of sample representations in all of the
layers. However, due to using sigmoid nonlinear functions instead of step, maintain-
ing the discriminations between two samples in the NN layers with step functions is
converted to maximizing discriminations of input sample representations by neurons
of every layer. Necessary conditions for discrimination maximization between the
two samples in a neuron output are determined as following.

3.2.1 Necessary Conditions for Maximizing Discrimination of Two
Distinct Input Samples by a Neuron with Sigmoid Continuous
Function

In this section, we maximize the distance between representations of two samples
X1 and X2 in the output of the ith neuron with distance �X in the input space (as
shown in Fig. 13).

�X � X2 − X1 (24)

Theorem Necessary conditions for maximizing discrimination of two distinct input
samples X1 and X2 in the input space, by a neuron with the weight vector Wi, the
bias Bi, and sigmoid continuous nonlinear function are
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Fig. 13 The ith neuron of a
NN

Fig. 14 The discrimination
of the representations of two
samples will be maximized
in the neuron output, if the
hyperplane corresponding to
it is perpendicular to �X in
the point Xm X2 X1Xm

Hyperplane

Xm · Wi − Bi � 0 (25)

where Xm, the mean of X1 and X2, is

Xm � X1 + X2

2
(26)

and (�X · Wi) is maximized (the weight vector Wi must be at the same direction
of �X).

Proof X1 and X2, two distinct input samples, are assumed as Fig. 14. For the ith
neuron with the weight vector Wi and the bias Bi can be written:

Yi1 � f (X1 · Wi − Bi) (27)

Yi2 � f (X2 · Wi − Bi) (28)

�Yi � Yi2 − Yi1 (29)
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where Yi1 and Yi2 are outputs of the ith neuron for inputs X1 and X2. For the neuron
with the weight vectorWi and bias Bi, in the n-dimensional input space, in general,
the Eq. 8 represents a hyperplane that is perpendicular to Wi and pass from point
Xa � Bi

‖Wi‖ (see Sect. 2.2). If the sigmoid nonlinear function of the neuron is replaced
with a step function, the hyperplanewill be the boundary decision locus of the neuron.
Therefore, for the neuron with the sigmoid function, this hyperplane is called the
hyperplane corresponding to the neuron.

For highest distinction between X1 and X2 at the ith neuron output, �Yi should
be maximized. For this purpose, using the Taylor series expansion, Eqs. (27) and
(28) can be written as:

Yi1 � f (X1 · Wi − Bi)

� f (Xm · Wi − Bi) − 1

2
f

′
(Xm · Wi − Bi)(�X · Wi) + · · · (30)

Yi2 � f (X2 · Wi − Bi)

� f (Xm · Wi − Bi) +
1

2
f

′
(Xm · Wi − Bi)(�X · Wi) + · · · (31)

Assuming that weightsWi and bias Bi are too small at the beginning of training,
the second and higher order terms in Eqs. 30 and 31 can be ignored (The slope
variations of f is negligible in this range).

�Yi � Yi2 − Yi1
∼� (�X · Wi) f

′
(Xm · Wi − Bi) (32)

Therefore, �Yi (the distance of the representations of two samples in the neuron
output) will be maximized if f

′
(Xm · Wi − Bi) and (�X · Wi) are maximized based

onWi and Bi:

maximized(�X · Wi) (33)

maximized
(
f

′
(Xm · Wi − Bi)

)
(34)

For the purposes these are necessary:

1. The weight vector Wi must be at the same direction of �X.
2. (Xm · Wi − Bi) � 0, whereupon the derivative of the sigmoid function is maxi-

mum.

As a result, the hyperplane corresponding to the neuron must pass from Xm and
be perpendicular to�X (as seen Fig. 14). Therefore,Xm must be the inflection point
of the sigmoid function f (the maximum of the sigmoid derivative function).

After determining the conditions for maximizing the neuron’s discrimination
between two input samples, in the following, training some distinct samples to a
DAE with soft (sigmoid) functions will be explained.
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3.2.2 Stagewise Analysis of Training Some Distinct Samples to a DAE

At the beginning of DAE training, starting from small random weights, due to the
small and random values of Wi and Bi and also, uncorrelated input and weight
vectors of each neuron, the outputs of neurons of all the layers will have a value
approximately equal to 0.5 (Eq. 35).

Yji � f
(
Yj−1 · Wji − Bji

) ∼� 0.5 j � 1, 2, . . . , 2n (35)

(The value of phrase in parentheses is nearly equal to zero.) whereYj−1 is the out-
put vector of the previous layer neurons, andY0 is the input vector X. Therefore, the
distinct inputsXwill be represented by nearly the same values and not distinguished
in the next layers. With the start of training, weights are modified to minimize the
error function E in Eq. 22. However, the weights of the last layer W2n are modified
much faster than the weights of the previous layers. Comparing the delta error sig-
nals computed in the back-propagation algorithm (Eqs. 36 and 37) for the output and
previous layers show that by back-propagating and multiplying the delta error signal
vectors by the weight vectors with small and random values (uncorrelated with δ),
their discrimination information is extremely weakened and filtered. Specifically, it
is more severe for earlier layers.

δZ � δY2n � f
′
(Y2n−1 · W2n − B2n)(X − Z) (36)

δY2n−1 � f
′
(Y2n−2 · W2n−1 − B2n−1)

(
δZ · WT

2n

)
(37)

where X is the desired output of the DAE (It is the same as input) and Z is the DAE
output. δZ is the error signal vector at the output layer. Therefore, in order to be
rapidly minimized E, W2n, the weight vectors of the neurons of the last layer, are
modified so that all distinct inputs represented with nearly the same representations
in the 2n − 1th layer are mapped to a single output Z and also E is minimized at
the beginning of training. Due to the minimum of the error function (Eq. 21) for the
same outputs of different samples is at the mean of them Zm, the single output Zwill
converge to Zm, firstly. For example, as shown in Fig. 15, the output of the DAE for
the input samples X1, . . . ,X4 will converge to Zm, firstly.

Then, by back-propagating error to deeper layers, DAE attempts to create the
first discrimination between samples by modifying weights of deeper layers to the

Fig. 15 The minimum of the
error function for the same
outputs of different samples
is at the mean of them Zm

Zm

X1

X2

X4

X3
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input. This is performed by back-propagating δZ to prior layers. The formation of
the output distinctions depends on forming discriminant information of the input
representations (as discriminant nonlinear components for data), primarily in the
first hidden layer Y1 and then in higher layers to the output. The first discrimination
is largely formed aligned with the first linear principal component of data (the largest
variance) during the training, as shown in Fig. 16. Because of the first linear principal
component of some distinct samples functions as�X for two distinct samples during
training to a DAE.

To create the discrimination in the first hidden layer, the delta error signal vector
in this layer δY1 should have significant amounts i.e.

∥∥δY1

∥∥ �� 0 back-propagated
layer-by-layer from the DAE output δZ to Y1. However, during back-propagating of
the error signals δ in layers, due to the small and random weights, the discriminant
information of δZ is filtered and in the lower layers is extremely weakened. While,
in the single-hidden-layer NNs, discriminant information of δZ immediately influ-
ences the weights of the first hidden layer W1 and by modifying of them different
representations in layer Y1 for distinct input samples are provided. Therefore, the
single-hidden-layer NNs can be used to rapidly initialize DAE weights.

Based on this analysis, to train DAEs, by the layer-by-layer pre-training, the
complex problem of training the deep structure of DAE is broken to some simpler
sub-problems; training of single-hidden-layer NNs. Then, their weights are used in
the DAE weights as initial values [1]. In the next section, a summary of the method
is given.

4 Layer-by-Layer Pre-training

In the layer-by-layer pre-training method, the DAE, including 2n layers, is decom-
posed into n single-hidden-layer AEs. Then, each of the AEs is trained to minimize
its loss of input discrimination information, and therefore the outputs are distinctly
reconstructed.

Figure 17 shows how the DAE is decomposed into several single-hidden-layer
AEs. The weights of mapping and demapping sections of the first AE are W1 and
W2n in the first and last layers of the DAE, respectively. The first AE is trained by the
training data in an auto-associative manner using the back-propagation algorithm;

Fig. 16 For the
discrimination between
samples, the first
discrimination is largely
formed aligned with the first
linear principal component
of data

Zm2Zm1

X1

X2

X4

X3

Zm
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which yields the initial weights of the first (W1) and last (W2n) layers. Afterwards,
the non-linear projections of the inputs in the bottleneck (hidden) layer space of the
first AE are calculated, and applied as the inputs for the second AE to determine the
initial values of W2 and W2n−1. This process continues in this way [1].

After the pre-training phases, the obtained weights are considered as the initial
weights in the integrated DAE, and then fine-tuned using the error back-propagation
algorithm over it.

5 Experimental Results and Discussion

In this section, we study the performances of the pre-training method to maintain
distinguishing information of data. In this way, the ability of the method to train
DAEs to extract nonlinear principal components of faces in Bosphorus and ORL
databases is evaluated. In the following, these databases are introduced.

2nW 2nW

1W

Pre-training Stages

1W

1-2nW

2W

2W

3W

1-2nW

2-2nW

Fig. 17 The manner of breaking down DAE to some AEs in the layer-by-layer pre-training method
[1]
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Fig. 18 Random samples from face databases, top to bottom: Bosphorus.E, Bosphorus.P and ORL

5.1 Databases

5.1.1 Bosphorus Database

The Bosphorus data consists of multi-expression (Bosphorus.E) and multi-pose
(Bosphorus.P) 3D and 2D face images in which the 2D images of 95 subjects from
this collection were selected randomly for this study [35]. These images are used in
the gray scale format with 256 levels of gray. Moreover, to reduce the computation
load, the resolution of these images was decreased to 92 * 114.

For each part of the database, two images for test, two images for validation and
the remaining images for training were used for everyone. At the end, the training,
validation and test sets were consisted of 2358, 190 and 190 images for the Bospho-
rus.E dataset and 949, 190 and 190 images for the Bosphorus.P dataset, respectively.

5.1.2 ORL Database

The ORL database contains images of 40 individuals, each person having 10
different images. The size of each image is 92 * 112 pixels, with 256 grey levels
per pixel [36]. For every subject, 2 images for test, 2 images for validation and the
remaining images for training were used. Finally, the training, validation and test
sets were consisted of 240, 80 and 80 images, respectively. Figure 18 illustrates
examples of images of the used databases.
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Table 1 DAE parameters

The number of hidden layers 7

The number of hidden layer neurons 1000-400-200-100-200-400-1000

The activation function of hidden neurons Sigmoid

Learning rate 0.001–0.0001

Momentum rate 0.7

5.2 Training DAE

The DAE structure studied in this research is introduced in Table 1. For any dataset,
the DAE initial weights were assigned by the following two methods before training
occurred: (1) random values, (2) values obtained from the layer-by-layer pre-training
method. In the layer-by-layer pre-training method, the seven-hidden-layer DAEs
were broken down into four single-hidden-layer BNNs. The first BNN was pre-
trained with the input samples, and the 1000-dimensional representations extracted
at its hidden layer were used to pre-train the second BNN with the 1000-400-1000
structure; and the same procedure was continued. In this way, the initial weights of
the DAEs were obtained. Then, the resulting weights were substituted in the DAEs
and fine-tuned.

5.3 The Effect of the Layer-by-Layer Pre-training Method
on Convergence Improvement of Training the DAEs

During the training of DAEs, reconstruction errors of validation datasets were traced
and not improving of them were placed as criteria (the model generalization) for
stopping the train.

Table 2 compares global reconstruction errors (EMSRE [1]) of train and validation
datasets and epochs needed for acceding them by the two methods; randomly initial-
ized and pre-trained DAEs. For each dataset, as Table 2 indicates, the trainings of
pre-trained DAEs were rapidly converged and the training and validation errors were
lower. The weights of the training phase were used in two subsequent experiments.

5.4 Evaluation of Locations of Hyperplanes Corresponding
to Neurons of DAE Hidden Layers

As mentioned earlier, to maintain the full discrimination of samples, being at least
one hyperplane between the representations of the both samples is essential in every
layer. In this section, to evaluate this case, the number of distinct subspaces formed



Why Dose Layer-by-Layer Pre-training … 313

Table 2 EMSRE for DAEs on three databases

Dataset Methods Epochs Train
(EMSRE)

Validation (EMSRE)

Bosphorus.E Randomly initialized
DBNN

1043 0.048 0.048

Pre-trained DBNN 91 0.021 0.026

Bosphorus.P Randomly initialized
DBNN

2175 0.075 0.085

Pre-trained DBNN 37 0.027 0.053

ORL Randomly initialized
DBNN

1106 0.131 0.135

Pre-trained DBNN 3 0.037 0.09

by hyperplanes corresponding to neurons of each layer containing only one sample
representation, have been compared for the randomly initialized and pre-trained
DAEs. A discrimination parameter is defined for this evaluation by Eq. 38.

D( j) � h( j)

N
∗ 100 (38)

where D(j) is the discrimination percentage in the jth layer, N is the total number of
samples and h( j) is the number of subspaces enclosed by hyperplanes of the jth layer
in which only one example exists. Therefore, larger D(j) for a layer is indicative of
the better protection of distinctions between samples in the layer.

In Fig. 19, D(j) for the different layers of the randomly initialized and pre-trained
DAEs for the training (the first column), validation (the second column) and test
(the third column) data of the Bosphorus.E (the first row), the Bosphorus.P (the
second row), the ORL (the third row) databases are shown. As can be seen for
each of the datasets, discrimination parameters D(j) is 100% in all layers of pre-
trained DAE. This means that at least one hyperplane is taken between every two
samples at every layer. In the other words all samples are distinctively represented in
all layers. However, the discrimination percentages are decreased for the randomly
initialized DAE in different layers, and the loss for the third to last hidden layers
is more prominent. With a step forward in the layers, due to the improper training
of randomly initialized DAE, some of the distinguishing information between the
samples were filtered by multiplying in the weights.

Comparing Fig. 19a–c showsmore fall inD(j) of deeper layers in (a). This is due to
the high density of samples in training dataset which makes the number of subspaces
with only one sample to be low. Therefore, the discrimination percentages of the
different layers for the training dataset are lower than validation and test datasets.
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Fig. 19 The discrimination rates (D(j)) of the different layers of the randomly initialized and pre-
trained DAEs for the training (the first column), validation (the second column) and test (the third
column) datasets of the Bosphorus.E (the first rows), the Bosphorus.P (the second rows), the ORL
(the third rows) databases

A confusion may be occurred here, that why the discrimination percentage of
some layers of randomly initialized DAEs are more than the previous layers. If the
neurons with step functions had been used, all of the samples located in a subspace
enclosed by hyperplanes would have a single representation. Therefore, they are
identically represented in this layer and the later layers. However, in our experiments,
neuron functions of the DAEs were the sigmoid continues function. So, the samples
located in a subspace enclosed by hyperplanes corresponding to the neurons do not
necessarily have the exact same representations, but those are close to each other. As
a result, the distinctions of their expressions may be strengthened or weakened in the
next layer. Therefore, due to the strengthening of their slight distinctions, increasing
the discrimination percentage are shown in some later layers.

Diagrams of rows 2 and 3 of Fig. 19 show the results of these evaluations for
Bosphorus.P and ORL databases, respectively. The results for these databases are
similar to Bosphorus.E and the discrimination rates of the different layers of the pre-
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Table 3 Identity recognition
rate for images of the
Bosphorus.E

Hidden
layers

Methods

Randomly initialized
DAE

Pre-trained DAE

Validation Test Validation Test

Layer 1 93.7 91.6 98.9 97.9

Layer 2 85.3 79.5 99.5 97.9

Layer 3 78.4 73.7 98.9 97.9

Layer 4 76.8 71.6 99.5 98.4

Layer 5 77.4 68.9 99.5 97.9

Layer 6 75.3 67.4 99.5 97.9

Layer 7 75.8 66.8 98.4 97.9

trained DAEs are 100% for three sections of each database. However, the discrimi-
nation rates D(j) for the randomly initialized DAEs are very lower on all datasets.

Overall, these experiments showed that in pre-trainedDAEs, sampleswere located
in more discriminated subspaces in all the layers. In other words, through layer-by-
layer setting hyperplanes and accurate tuning of them, more discriminated represen-
tations of all the samples in all the layers are provided.

E. Evaluation of Identity Discriminability of Representations in the Different
Layers of the DAEs

In this section we evaluate discriminability of sample representations in different
layers of the DAEs. For this purpose, we recognize the identities of the face images
using their representations extracted byDAE layers. TheK-Nearest Neighbor (KNN)
classifier is used for recognizing in which its training datasets were representations
of training images and its test datasets were representations of validation or test
images. Therefore, in each hidden layer, for the input images, the output vectors of
the neurons are computed and used for recognition.

Tables 3, 4 and 5 show recognition rates for images mapped in different layers of
the randomly initialized and pre-trained DAEs for Bosphorus.E, Bosphorus.P, and
ORL databases, respectively. As illustrated, by going to outputs of randomly initial-
ized DAEs, distinguishing information of identity for validation and test datasets are
weakened. Whilst, the pre-trained DAEs maintain this information, so that identity
recognition rates at the different layers of DAEs are almost constant and significantly
higher. Low results in Table 4 for Bosphorus.P are due to the dataset. This database
contains images of faces under rotation at 0–90°, which makes the recognition dif-
ficult. However, it is shown that the recognition rates are significantly higher for
pre-trained DAEs.
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Table 4 Identity recognition
rate for images of the
Bosphorus.P

Hidden
layers

Methods

Randomly initialized
DAE

Pre-trained DAE

Validation Test Validation Test

Layer 1 20 16.3 34.2 34.7

Layer 2 11.0 7.9 35.3 36.3

Layer 3 7.4 5.8 37.9 38.4

Layer 4 7.4 5.8 35.8 36.8

Layer 5 7.4 3.7 36.8 35.8

Layer 6 7.4 4.7 37.4 36.3

Layer 7 5.8 4.2 32.6 35.8

Table 5 Identity recognition
rate for images of the ORL

Hidden
layers

Methods

Randomly initialized
DAE

Pre-trained DAE

Validation Test Validation Test

Layer 1 67.5 61.2 96.2 93.7

Layer 2 40 26.2 95 95

Layer 3 25 15 95 95

Layer 4 22.5 13.7 97.5 95

Layer 5 23.7 12.5 97.5 95

Layer 6 23.7 12.5 95 95

Layer 7 23.7 10 95 93.7

6 Conclusion

In this chapter, the theoretical framework of the layer-by-layer pre-training method
for DAE training convergence was presented. In this regard, NNs with linear, step
nonlinear, and soft nonlinear (sigmoid) activation functions in high-dimensional
spaces were studied and analyzed.

Subsequently, autoassociative training of some samples into a DAE was analyzed
and requirements for maximum discrimination by each neuron of the DAE with
sigmoid function were determined. Accordingly, it was shown why the training of
randomly initialized DAEs do not converge and the layer-by-layer pre-training leads
to the training convergence by adjusting the weights layer-wisely.

Our experiments indicated that representations of distinct samples were located
in discriminated subspaces enclosed by hyperplanes corresponding to the neurons
in all layers pre-trained DAEs. Also, it was shown that in different layers of pre-
trained DAEs, sample discriminations were extremely preserved. While in randomly
initialized DAEs, by going to outputs distinguishing information for validation and
test datasets were weakened.
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Springer: Deep Learning in eHealth

Peter Wlodarczak

Abstract In recent years, a lot of advances have been made in data analysis using
Machine Learning techniques, and specifically using Deep Learners. Deep Learners
have been performing particularly well for multimedia mining tasks such as object or
face recognition and Natural Language Processing tasks such as speech recognition
and voice commands. This opens up a lot of new possibilities for medical applica-
tions. Deep Learners can be used for medical imaging, behavioral health analytics,
pervasive sensing, translational bioinformatics or predictive diagnosis. This chapter
provides an introduction in Deep Learning for health informatics and presents some
of its applications for eHealth.

Keywords Deep learning · Predictive analytics ·
Convolutional Neural Networks · eHealth · Biomedicine · Correlation analysis

1 Introduction

In all western societies, the health care systems face many challenges. Increas-
ing health care costs, an aging population, the growing burden of chronic diseases
(Alzheimer’s disease, cancer, Parkinson’s disease, hypertension etc.) and a shortage
of specialists are only some of the problems that seek for a solution. An ever increas-
ing demand for services, underfunding and understaffing, and pressures inflicted by
state and federal government health regulations, hospital based services are forced
to become more efficient in how they provide their services [1]. New approaches in
medical diagnosis, patientmonitoring and personalized treatment promise tomitigate
some of the issues that are currently unsolved.

Electronic health (eHealth) has become an active study field since it promises to
alleviate some of the problems health care systems face today. There is no consistent
definition of eHealth in literature. eHEalth denotes the use of electronic communi-
cation and information technology in the health care sector [2]. Sometimes it also

P. Wlodarczak (B)
University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia
e-mail: wlodarczak@gmail.com

© Springer Nature Switzerland AG 2019
V. E. Balas et al. (eds.), Handbook of Deep Learning Applications,
Smart Innovation, Systems and Technologies 136,
https://doi.org/10.1007/978-3-030-11479-4_14

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11479-4_14&domain=pdf
mailto:wlodarczak@gmail.com
https://doi.org/10.1007/978-3-030-11479-4_14


320 P. Wlodarczak

includes the transmission and storage of clinical data. eHealth makes it possible, at
least partly, to monitor patients in real-time, offer personalized treatments, optimize
resource management, detect emergencies early or before they occur, predict treat-
ment outcomes or improve treatments. Key enablers for eHealth solutions are Big
Data,wireless communication, the Internet of Things (IoT) andArtificial Intelligence
(AI).

1.1 Internet of Things

The basic idea of IoT is to connect all physical things in theworld includingmachines
andhumans to the Internet [3]. Things can be physical such as smart devices, or virtual
such as services. In health, IoT can interconnect medical devices for the purpose of
providing real time information about the health state of patients. IoT produces large
amounts of data called “Big Data”. Big Data needs effective tools for processing and
analyzing and requires a lot of storage and processing power.

1.2 Big Data

Big Data refers to large volumes of data, produced at high velocity in a variety of
formats such as text, image, video or audio. Big Data is the ability of society to
discover actionable knowledge in novel ways to produce useful insights, goods and
services and new business models of significant value [4]. In the health domain the
analysis of Big Data allows to contextualize clinical data to obtain a better picture
of the medical problem and find optimal solutions.

1.3 Artificial Intelligence

Most early research in Artificial Intelligence (AI) was aiming at imitating human
intelligence by giving machines the capability to reason and deduce facts. This is
sometimes called symbolic processing because the computer manipulates symbols
that reflect the environment [5].Other capabilities ofAI include the ability to learn and
self-correct. Due to the ever increasing volumes of data and growing computer power,
AI algorithms can automatically learn rules that are too complex or too numerous for
a developer to program. Automatic learning, or Machine Learning (ML) has been
applied tomany data analysis problems thatwere too complex to be solved in the past.
UsingML computersmodify or adapt their actions (whether these actions aremaking
predictions, or controlling a robot) so that these actions get more accurate. Accuracy
is measured by how close the chosen actions reflect the correct ones [5]. Within
AI, ML has emerged as the method of choice for developing practical solutions for
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computer vision, robot control, speech recognition, natural language processing, and
other applications [6]. ML has also been applied to generate more accurate solutions
for medical problems.

In recent years, so-called deep learning approaches to machine learning have had
a major impact on speech recognition and computer vision [7]. While ML using
shallow learners has been explored for a while for medical applications, using Deep
Learning is a recent phenomenon in clinical research. Deep learners (DL) are a type
of artificial neural networks (ANN) with many data processing layers that learn
representations by increasing the abstraction level from every layer to the next [8].
Each layer consists of many neurons or perceptrons. While using many neurons in
every layer allows for an extensive coverage of the rawdata at hand, the layer-by-layer
pipeline combines their outputs in a nonlinear way and generates a lower dimensional
projection of the input space [9]. DLs take advantage of the hierarchical structures
found in nature. For instance, edges form shapes, shapes form parts, parts form
objects. If a DL is presented with an image for object recognition, it “decomposes”
the image by increasing the abstraction level at each layer. DLs render a high level
abstraction of the raw input data, representing an automatic feature set. The ability
to automatically create a feature set is one of the big advantages of DL over shallow
learners, where a handcrafted feature set is required. Feature extraction is a laborious
task and DL can automatically create much more sophisticated feature sets than
manual feature engineering can provide.

DL have been used in many medical applications. They have been used to:

• Automatically detect structures such as organs or deformations inmedical imaging
• Classify radiographs or CAT scans of tumors
• Reduce radiation dose from X-rays
• Predict the results of a cancer therapy
• Improve the design of biomarkers
• Personalize the treatment for patients with chronic disease such as cancer or HIV
• Predict the effect of new drugs

to name a few.
The biggest disadvantage ofDLs is the carnivorous demand for training data that is

often difficult to get in a medical context. DLs also require a lot of processing power
and the recent advances in the efficient use of Graphics Processing Units (GPU)
and parallelization algorithms has fostered the dissemination of DLs in medical
applications. DL architectures can be highly parallelized by transferring algebraic
calculations to the GPU.

This chapter describes some popular DLs and their applications in eHealth.

2 Deep Learners

Deep learning (DL) is an unsupervised feature learning approach that can be used
to derive higher-level features from low-level data and thus helps to avoid expen-
sive and time-consuming feature engineering tasks to identify relevant features [10].
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Fig. 1 A typical artificial neural network [8]

Unsupervised learning does not require labeled data for learning, for instance X-ray
images with or without a medical condition such as fibrosis or cancer. However, DL
can also be trained using labeled data, which is called supervised learning.

There are many different types of DLs. They are well documented in literature:
[7–9, 11] and to describe them is beyond the scope of this chapter. This section gives
an overview of the basic functioning of DLs.

DLs are in essenceArtificial Neural Networks (ANN)withmultiple hidden layers.
There is no agreed upon definition of when a learner is a shallow learner or a DL.
Some authors consider ANNs with more than two layers DLs [9].

A typical ANN consists of perceptrons, the neurons, organized into layers. The
layers consist of one input and one output layer with one or more hidden layers in
between. It should be noted that having more layers does not necessarily improve
the DLs results. Adding too many layers and perceptrons can lead to an overfitted
learner. An overfitted learner captures noise instead of the features of interest and
can result in poor accuracy. Figure 1 shows a typical ANN.

Some DLs such as Convolutional Neural Networks (CNN) take a fixed size input
vector, for instance a pixel array of a histopathological image, andmap it to an output,
e. g. a type of tumor. During training, the DL is presented with different images with
tumors. Learning happens by assigning and adjusting the weights of the connections
between the perceptrons. After each learning cycle, the error is calculated using a
loss function. The error is then backpropagated and the weights are adjusted until the
loss function converges. This type of ANN is called a feed forward network since
the signal passes from the input layer to the output layer in one direction. Other
types of ANN have foreward and backward connections. They are called Recurrent
Neural Networks (RNN). To decrease the loss function, typically amechanism called
gradient descent is used.
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2.1 Types of Deep Learners

There are many different DL architectures and it is often not obvious from the begin-
ning, which architecture works best for a specific problem. Figure 2 shows some
Learning architectures that have been applied in the area of health informatics.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are inspired by the human visual cortex and
are probably the most popular DLs. They are a type for feed forward network and
consist of many layers. Its architecture can be defined as an interleaved set of feed-
forward layers containing convolutional filters followed by rectification, reduction
or pooling layers [9]. As the signal passes through the network, each layer extracts
a higher level abstraction of the input from the previous layer. The layer-by-layer
pipeline generates a representation of lower dimensionality (dimensionality reduc-
tion) of the input space. The output provides a high level abstraction or automatic
feature set that would otherwise require handcrafted features that are less sophisti-
cated. This is advantageous for instance for medical imaging, where irregularities in
tissue morphology can be used to classify tumors, or in translational bioinformatics,
where a specific sequence of nucleotides can replicate a specific protein. They are
capable of detecting patterns that are difficult do find by human experts, for instance
early stages of diseases in tissue samples.

2.1.2 Deep Recurrent Networks

Recurrent Neural Networks (RNN) can analyze streaming data. A CNN uses fixed
size input vectors. Contrarily, RNN can be used on data such as text, speech or DNA
sequences where the output depends on previous inputs. RNNs maintain an inner
state using a recurrent layer where perceptrons have an additional connection with
themselves, acting as memory that can be used for consecutive inputs. For instance,
a word in a text might only makes sense in the context of a phrase or the whole
sentence. Figure 3 shows a RNN with one recurrent hidden layer.

In eHealth RNNs can be used to analyze medical texts such as anamnesis. For
instance, different patients with the same disease might have different symptoms.
RNNs can scan through thousands of text documents and find similarities to support
a physician in diagnosing an illness.
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Fig. 2 Popular Deep Learning architectures [9]
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Fig. 3 Recurrent neural network [8]

3 Medical Applications of Deep Learners

Whereas ML techniques have been successfully applied to many biomedical appli-
cations, DLs are a recent field of research and the adoption of DL in medicine is slow
and still faces many challenges. However, there has been rapid progress in some
areas and DLs have proven to yield promising results. Medical applications of DL
can be roughly divided in three areas:

• Prediction of biological processes, e. g. for predicting the efficiency of a treatment
or designing new drugs [12, 13]

• Medical decision support, e. g. through early disease detection or DNA analysis
[14–16]

• Personalized treatments, e. g. chemotherapy that has been tailored for a specific
patient [9, 17].

There are other applications of DL in public health or assistive device support [18,
19]. Some of the DL research in biomedicine is still in its infancy and can at best
support medical decision making, but an expert opinion is still needed. Automatic
diagnosis and treatment is still a matter of the future, but in the area of personalized
treatment, treatment effectiveness prediction as well as drug design we are likely to
see a lot of progress.

3.1 Predictive Health Care

Predictive health care has many applications. Predictive health care aims to detect
diseases before they break out or to detect them early and start treatment before
more serious conditions occur. Other areas include predicting the effectiveness of
new drugs or treatments and determine the disease process and patient prognosis.
Some diseases such as Alzheimer’s Disease (AD), are very difficult to detect in the
early pathogeny and an accurate and objective diagnosis is problematic due to their
mild symptoms [15]. DL can be used in such cases since they can detect anomalies
even if they are difficult to see for the human eye, for instance in radiographs or
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CAT scans. Anomaly detection is a task that DL are very suitable for since they
can detect small deviations that remain often undetected by humans in early stages.
Also DL can be trained using, for instance, radiographs of healthy tissue to detect
what is pathological. Since medical images of healthy tissue is generally easier to
obtain, training data is more available and mitigates the problem of sparse data
sets. Behavioral changes in patients can also be used as early indicators for illness,
for instance to determine if a patient becomes symptomatic. DL can tap into these
different data sources and combine them in their prediction model to obtain a more
complete picture of the medical problem at hand.

Predictive health care is also used to predict the efficiency of drug treatments. Dis-
covery and development of new drugs is a costly and time consuming task. Often the
results are disappointing and during development new approaches have to be found.
In silico drug development has evolved over the past decades and provided targeted
and more cost effective approaches for drug development. Modern approaches use
now Data Mining techniques such as DL for predicting the effectiveness of a drug or
treatment.More recently,DLhas also been used for drug repurposing.Drug repurpos-
ing or target extension allows prediction of new potential applications of medications
or even new therapeutic classes of drugs using gene expression data before and after
treatment (e.g., before and after incubation of a cell line with multiple drugs) [12].

3.2 Medical Decision Support

Medical decision support is likely to be one of the main application fields of DL in
medicine in the near future. DLs support the medical expert in various stages of a
medical case. This can span the whole illness life cycle from diagnosing a medical
condition, proposing a treatment, determining the healing progress up to proposing
post disease therapy or life style change suggestions.

DL are often superior in image analysis and disease prediction than humans [15].
DL has also been applied to biomedical text analysis [20]. Since DL schemes are
domain independent, they can analyze and correlate any kind of data.

Correlation analysis can use different data sources, for instance past anamnesis,
the genome and symptoms of other patients, to provide amore accurate diagnosis. DL
are also effective in finding correlations in single data sources, for instance Magnetic
Resonance Imaging (MRI). They have been used to correlate different brain regions
[15], or for histology image segmentation. Isolating glands from the background
tissue is important for analyzing and diagnosing histological images [21]. Usually
CNN architectures are used for correlation analysis. They create abstractions of the
input signals even if the data sources are heterogeneous, that can be more easily
correlated to detect anomalies such as cancer diagnosis. A medical expert cannot
efficiently scan through the amounts of data that a DL can, which makes medical
decision support a likely candidate for early adoption. However, since it is often
difficult to reproduce how a DL came to a conclusion, a physician will likely trust
his intuition and experience and not leave the ultimate decision to a machine.
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3.3 Personalized Treatments

Closely related to medical decision support are personalized treatments. DL can pro-
vide decision-making support based on the prediction and precision of care adapted to
the needs of individual patients and thus provide personalized treatments or stratified
medicine. DL has paved the way for personalized treatments by offering an unprece-
dented efficiency and power in sifting through large, multimodal unstructured data
stored in hospitals, at cloud providers and research organization [9]. Personalized
treatments can be based on various information. It can use behavioral health ana-
lytics [19] or DNA analysis and genome mining [22] to determine biomarkers. A
biomarker is a measurable indicator of a biological state such as a disease. Biomark-
ers allow clinicians and industry professionals to advance more accurate diagnoses
and prognostications by determining the probability that a patient will develop a dis-
ease. Deep Neural Networks demonstrate state-of-the-art performance in classifying
cancer using gene expression data, in extracting features from sparse transcriptomics
data (both mRNA and miRNA data) and in predicting splicing code patterns [12].

Due to the versatility of CNNs, they have been used in many personalized treat-
ment applications.CNNshaveoutperformedbaseline approaches not only in classical
deep learning applications, such as image recognition (gene expression annotation
andmicroarray segmentation), but also in annotation of sequence polymorphism data
in tools such as DeepBind, DeepSEA and Basset [17].

Often many factors influence the outbreak and development of a disease. Genetic
factors, exposure to germs and parasites but also environmental factors contribute
to diseases such as cancer. Genomics aims to identify gene alleles that influence the
development of an illness. Pharmacogenomics evaluates variations in an individuals
drug response to treatment brought about by differences in genes [9]. It is used to
reduce side effects or reduce dosage levels. Combining all the information available
is a laborious task and DLs can effectively analyze the different data sources and
provide personalized medical therapy.

4 Challenges

The adoption of DL and AI in general face many challenges in medicine. On the one
hand, this is due to the nature of medical applications, where high requirements for
security, availability, reliability, privacy and efficiency are demanded. For instance, a
home care application needs to work without interruption so it can alert a health care
center in case of an emergency. On the other hand, research in DL for eHealth is still
facing many technical problems that have to be overcome. DLs can analyze massive
amounts of data and detect useful patterns that cannot effectively be interpreted
by humans. The massive scale of modern biological data is simply too large and
complex for human-led analysis [17]. Due to advances in storage and processor
technologies, DLs can scan massive amounts of data and automatically develop rules
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that are too complex for a developer to implement. But since the rules are generated
automatically, DL also means a loss of control. Also, ML and DL schemes are prone
to overfitting. Overfitting happens when a learner becomes too complex and starts
capturing noise. This can result in false positives, for instance a falsely diagnosed
disease.

DLs need carnivorous amounts of data for training and testing. Since there are high
privacy requirements when it comes to medical data, the required volumes are one of
difficult to obtain. Also, some diseases are rare and only scarce medical datasets are
available. There are learning techniques that can be adopted for scarce datasets, also
in some cases the data sets can be enhanced with synthetic data. Transfer learning
is a technique that applies knowledge from a source domain to a target domain with
considerably less data points. A pre-trained DL can be used and fine tuned using for
instance MRI scans, if the image data set is sparse. But the availability of suitable
data sets remains one of the biggest challenges for the adoption of DL in medicine.

One of the greatest challenges for AI in the health research community still
remains translating research from labs to everyday use in hospitals and medical
practice [1]. In medicine emergencies happen that require immediate action and
there is little scope for experimentation. Also wrong treatments can end in perma-
nent damage or death. In some cases simulators can be a way around this problem,
but to date there are few simulators suitable for DL in the medical context.

5 Future Research

Modern biology has now entered the era of Big Data. Data sets are too large, high-
dimensional, and complex for classical computational methods in biology [12]. Due
to the big progress in ML and more recently the advances using DL schemes for ana-
lyzing these large data sets, particularly CNN for multimedia and RNN for speech
and text analysis, a lot of research in the area of biomedicine and eHealth using
DL has been conducted. There are lots of discussions about whether AI will replace
many traditional brain jobs and cut jobs. We will probably still see much progress
in the areas of AI and DL. But it is to be expected that soon the limitations of DL
will become obvious. ANN are trying to imitate human learning. But ANNs are at
best inspired by nature. There is no evidence of such mechanisms such as back-
propagation or gradient descent in the brain. The inner working of the human brain
is still largely unknown. We do not know how we recall episodes from the past.
Also humans do a lot subconsciously. We do not need to focus to do things such
as walking or moving our arms. We do all these things subconsciously. Yet the big
achievement of the human brain is not our ability to reason. According to Moravecs
paradox contrary to traditional assumptions, high-level reasoning (playing chess and
checkers, abstract thinking, performing Intelligence tests, using mathematics, engi-
neering etc.) requires low computation power compared to low-level sensorimotor
skills that require enormous computational resources [23]. How this is achieved is
largely unknown today. To be able to simulate human brain functionality on a com-
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puter a lot of research is still needed in the area of neuroscience. Trying to imitate
human thinking on a computer can help understand the problems nature has solved
throughout evolution. More research that aims to reproduce brain functionality can
also improve our understanding of how the brain works, but up to date it remains
largely a “black box”.

Whereas the internals of the brain are mostly unknown, the inner workings of DLs
are also difficult to interpret and DLs themselves are a “black box” for researchers
[24]. That is a problem when DLs need to be optimized since it is not clear, which
parts of the DL contribute to what extend to the result.

Automatic feature extraction is one of the predominant feature thatmakes them the
technique of choice over shallow learners in areas such as natural language processing
and object recognition. However, there are many different DL architectures and it
is often difficult to decide which architecture works best. Often several different
DL schemes are trained and compared and the best performing architecture is then
selected for production. This is time and resource consuming. Automatic selection of
shallow learning schemes is already in place, but DL are considerably more complex
and more research is needed to find optimal architectures for DLs.

In the medical context, obtaining enough training data is often a problem. Sparse
and noisy data sets result in considerable drop in performance indicating that there
are several challenges to be addressed [9]. Also, testing a trained DL is often a prob-
lem since humans are not feasible objects for experimenting. Developing effective
simulators and generating synthetic data can mitigate the problem of training and
testing using sparse data sets. But to date there are no tools in place that would
provide satisfying results.

Currently,DLare trained for a specificpurpose, for instance detecting anomalies in
MRI images or blood samples. Future research should focus on creating learners that
can detect many different types of symptoms. Ultimately we want to have DLs that
can detect any kind of disease and propose treatments. This leads to general purpose
learners that do not serve a specific purpose. This area is sometimes called Artificial
General Intelligence (AGI) [25] and some research in this area has already been
conducted, however we need to develop a better understanding of how intelligence
works until we will see anything close to human intelligence on a computer.
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Deep Learning for Brain Computer
Interfaces
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Abstract From playing games with just the mind to capturing and re-constructing
dreams, Brain computer Interfaces (BCIs) have turned fiction into reality. It has set
new standards in the world of prosthetics, be it hearing aids or prosthetic arms, legs or
vision, helping paralyzed or completely locked-in users. Not only can one get a visual
imprint of their own brain activity but the future of BCI will make sharing someone
else’s experience possible. The entire functioning of the BCI can be segmented into
acquiring the signals, processing it, translation of signals, device that gives the output
and the protocol in operation. The translation algorithms can be classical statistical
analysis or non-linear methods such as neural networks. Deep learning might serve
as one of the translation algorithms that converts the raw signals from the brain into
commands that the output devices follow. This chapter aims to give an insight into
the various deep learning algorithms that have served in BCI’s today and helped
enhance their performances.
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1 Introduction

The human brain has stood the test of time with its extreme adaptability, surviving
and excelling in both extreme and moderate conditions since the beginning of exis-
tence. When talking about adaptability nothing can serve better than neural networks
(elaborated later). Understanding the brain is quite a challenge but with recent tech-
nology, nothing seems impossible. It is a known fact that the brain is entirelymade up
of neurons that carry charges throughout the brain and also to and from the receptors
to the brain. Modern devices, like the Scalp electrodes for electroencephalography
(EEG), electrode implants that penetrate the cortex, electrodes placed exactly on
the layer of the cortex—Electrocorticography (ECoG) [1], help to capture the brain
activity in the form of brainwaves that are converted into signals. These signals are
passed through the relevant translation algorithms that convert them into directives
for the output devices. Different parts of the brain process signals from different
receptors in the body, as shown in Fig. 1.

The current applications of BCI range frommoving cursors on the screen without
touching [2], playing games with just the mind [3], accessing ones concentration
levels [4], measures of excitement, focus or calm, moving robotic arms or legs by
just thinking about it [5], typing on screen by thinking about pressing a key [6],
controlling appliances with the mind. Hearing aids and visual aids using BCI are
being worked upon and the possibilities of sharing experiences between humans
over a network, communication without talking, capturing dreams seem a thing of
just the near future. Any BCI can be framed by putting together these parts—ac-
quiring of signals, processing it, translation of signals, device that delivers output
and the protocol in operation [1]. BCIs have to cater to demands like speed, amount
of training required, accuracy, attention requirements, therefore, based on varying

Fig. 1 Frontal lobe is
responsible for logical and
advanced thinking, and
eloquent speech; the parietal
lobe is in charge of
processing pressure, touch,
and pain; the temporal lobe
interprets sounds and the
language we hear, mainly
responsible for retention of
memories; the occipital lobe
is incharge of stimulus of
sight



Deep Learning for Brain Computer Interfaces 335

levels of these with respect to different applications, the translation algorithm and
other parameters are decided [7]. Since every action we carry out is a result of sig-
nals due to activities in the brain, the task of deciding the output signals can as well
be considered to be a pattern recognition problem [8]. In BCI, many times a linear
classifier is used which works good if some assumptions hold true otherwise results
might be highly unsatisfactory. Therefore, non-linear translation algorithms like neu-
ral networks—Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs) and other forms of Deep Neural Networks (DNNs) are used. CNNs have
mostly been used to classify the generated motor images that captured the user brain
activity to perform a certain task. The rest of the chapter focusses on throwing light
into these arenas.

2 Different Parts of a BCI

What a BCI essentially does is, captures the brain activity, converts it into signals,
processes these signals, identifies the action and directs the output device accordingly.
Functioning of the brain is traceable to a large extent, due to the waves it generates
which is caused by the firing up of neurons inside. These wave patterns can be
categorized under five heads—delta waves, theta waves, alpha waves, beta waves
and gamma waves. Human behavior is explained by the concoction of these waves
at any given point, wherein only one is dominant while others, though present, are
not as marked.

• Delta Waves: Being the slowest brain waves, they lie in the frequency range of
0–4 Hz. They are related with the most profound levels of unwinding and ther-
apeutic, recuperating rest and are mainly discovered regularly in newborns and
youngsters. Aging reduces the production of delta waves even during periods of
deep sleep. They are also associated with involuntary bodily actions such as diges-
tion of food, and heart beat. Whereas excessive amount of delta waves might cause
inability to learn and think properly and might be a result of brain injuries, fewer
amounts of it, resulting due to lack of proper sleep, might cause problems in reju-
venation and healing. Sufficient creation of delta waves gives a feeling of complete
revival, after waking up from proper sleep.

• Theta Waves: Lying in the frequency range between 4–8 Hz, these waves are
mainly generated during periods of sub-consciousness, sleep and when profound
and crude feelings are encountered. They are essential for stirring up innovation
and intuition. Though theta wave range is a helpful state, its excessive production
might cause a person to be depressed, extremely hyper or impulsive whereas lack
of theta waves might cause increasing amount of stress and anxiety.

• Alpha Waves: These waves have a moderate frequency range of 8–12 Hz and
crosses over any barrier between our cognizant reasoning and intuitive personality.
It helps to attain a state of calm when essential. Too much of stress might cause
the beta waves to suppress the dominance of alpha waves.
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• Beta Waves: These waves have high frequency, 12–40 Hz, and are prevalent in
states of high focus and consciousness. They are associated with cognizant idea,
legitimate reasoning, and have a tendency to have an invigorating effect. Having
excessive amounts of beta waves causes inability to stay calm and causes huge
amounts of stress and anxiety whereas less amounts of it causes poor thinking
capabilities, depression and lack of consciousness or focus. Therefore, beta waves
are mostly predominant during the day where cognitive tasks like studying, pre-
senting etc. are involved.

• Gamma Waves: Belonging to the highest frequency range of 40–100 Hz, these
waves are associated with advanced cognitive functions, having clear perception,
and intellectual abilities. People who are mentally disabled usually lack gamma
dominance. While an excess of gamma waves might lead to increased excitement
and stress, too little of it may cause difficulty in learning. High occurence of such
waves are usually noticed in people who meditate.

The process of gaining the accurate data from the brain for a particular action is
called Forward Modelling, and determining the action from a given set of data is
called Inverse Modelling [9]. The overall BCI system is demonstrated in Fig. 2.

Data Acquisition is acquiring signals from the brain and digitizing them. The
digitized data is straight away passed on to the Signal Processing unit.

Data from the brain can be acquired in the following ways:

• Electrode implants in the cortex: they give the clearest and best signals but these
implants can be very risky.

• Electroencephalography (EEG): placing electrodes on the scalp that give indistinct
data that may not be very good to give accurate results but involves no risk at all.

• Electrocorticography (ECoG): electrodes placed exactly on the layer of the cortex
which is not that harmful and serves as a balance between risk and clarity.

Fig. 2 Generic brain computer interface [1]
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The Signal Processing module converts the brain signals into commands for the
output device [1, 10]. This task is carried forward by feature extraction, the target
being to reduce the noise to signal ratio, and translation of the extracted features.
Firing rates of neurons or amplitudes ofwavesmight serve as important features. Each
translation algorithm is characterized by transfer function, adaptive capacity, and
output. These algorithms can be linear or non-linear based on the features extracted
and the kind of output required. The linear transfer function could be statistical
methods or simple linear equations whereas the non-linear transfer functions could
be deep neural networks. In many system, a combination of linear and non-linear
transfer functions are used.

The User Application module receives the ultimate commands from the signal
processing module and performs actions such as moving the cursor, playing games,
moving a prosthetic arm, or leg, typing on a screenwithout physically touching a key-
board. The applications of BCIs can be classified into Exogenous and Endogenous.
In endogenous systems the trained user has direct control over the environment and
responses are generated with his/her own intent and hence serves better than exoge-
nous systems that although, do not require extensive training but are constrained with
a structured environment and the user is subjected to external stimuli.

The Operator module makes controls easy for the experimenter by defining the
system parameters, providing a graphical interface and marking the beginning and
end of any operation. It also displays information received from any other module
of the BCI, including real time analysis results which makes it better to visualise the
activities.

3 Deep Neural Networks for Brain Computer Interfaces

Any network with an input layer, more than one hidden layers and an output layer
is said to be a DNN [11]. Deep Learning algorithms are advanced machine learning
algorithms that help achieve better classification or regression accuracies in case of
problems where a linear classifier does not suffice [12]. Deep Belief Networks have
been used in areas of classifying images for calamities [13], DNNs have been used in
the field of security [14], and it has wider applications in the field of text classifica-
tions in the form of spams [15] and the like. DNNs act as non-linear classification or
regression transfer functions in the signal processing module. BCIs work withmotor
imagery [16] in which the user rehearses a particular task mentally without actu-
ally implementing it. In motor imagery the actions of the subject and the computer’s
interpretation of the input signals matter. Classification algorithms using CNN archi-
tecture as demonstrated in Fig. 3, have been applied to new representations of the
motor imagery data. Devising optimum Deep Learning algorithms is challenging
due the high dimensionality of EEG data, channel correlation and presence of noise.
Over the years CNNs have emerged as the best classification algorithmwhen dealing
with images [17].
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Fig. 3 A convolutional network with 3 intermediate layers

To apply CNNs to a data, the correct representation of EEG has to be designed
first. In recent studies about learning Temporal Information for BCI using CNNs
[17], the Filter-Bank Common Spatial Patterns (FBCSP) along with extraction of the
temporal features, have been found to yield considerably good results. These features
are then fed into the CNN layer [18], that is customized to optimize the performance,
as described. In a particular scenario, the features selected are assumed to share a
commonmorphology even if they vary intrinsically, therefore a common convolution
kernel is used to learn by discriminating the classes but preserving the channels and
reducing the temporal dimension and hence called Channel-Wise CNN (CW-CNN).

In another situation when the FBCSP inputs are apriori concoction of the original
EEG signals then a convolution kernel size equal to the number of channels yields a
redundant channel mixing so it is better to use with CW-CNN.

In a third scenario the feature channels are first convoluted and then mixed which
yields a single channel feature. This ultimate signal consists of the summation of all
individual convoluted channels and resembles the 2D CNN architecture.

Like in all other algorithms this technique also has to be optimised by tuning in
the hyperparameters like number of different pooling layers, convolutional layers,
kernel size, dropout and number of hidden nodes.

In another study, Fourier Transform has been embedded with CNNs for the classi-
fication of EEG signals for Steady State Visual Evoked Potential (SSVEP) [19]. This
work has been accomplished in three stages—creation of different channels, signal
transformations to relevant frequency domain and concluded by the classification
step. CNNs allow classification of data without requiring prior knowledge about it
but the addition of a signal processing module in between the hidden layers intro-
duces some prior domain knowledge. In this approach 2 intermediate layers have
been used. In between the two intermediate layers lies the layer which is the result
of Fourier Transformation on the first hidden layer. This step helps in transitioning
from the temporal domain to the frequency domain. Backpropagation along with
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gradient descent has been used as the mode of learning. Classification accuracies on
test data range from 95 to 97%.

In many BCI signal processing units the spatial information is ignored, contrary
to that, in [20], a novel approach has been proposed where the EEG signals have
been converted into multi-spectral images that preserve topology. A Deep Recurrent
Convolutional Network has been chosen to learn EEG representations, that help in
finding features which are more resistant to spatial, spectral and temporal variations.
This serves as a solution to the challenges faced by modern BCI that struggles to
find representations that do not vary in case of different subjects or in different
situations for the same subject. Two major approaches have been evaluated—Single
frame approach where a single image was constructed from measurements over the
complete trial and fed into the CNN, and a Multi frame approach where the entire
trial was divided into frames and images were generated over each frame and fed into
the CNN. In both the cases multiple configurations of CNNs constituting varying
numbers of convolution andpooling layerswere used. In case ofmulti frame approach
Long Short TermMemory (LSTM) layers were added after the Convolution Network
architecture, since images are passed in sequence over the entire trial it can carry
important information in the patterns.

A study, by Guan and Sakhavi [21], makes efforts to reduce or nullify the time
taken by each subject to train the BCI device. It would be easier if the knowledge
gained by a BCI from one user could be transferred to another user to reduce the
training time and promote transfer learning. Here also the FBCSP method has been
used for feature extraction from the motor images. To train the CNN model, data
from many subjects has been used to generalise the algorithm. The CNN has been
used alongside aMultilayer Perceptron Layer (MLP) and features from both are then
concatenated. The K L Divergence loss function is used along with adam optimizer.
The error is backpropagated and weights belonging to both CNN and MLP are
updated simultaneously.

The use ofMultilayer Perceptrons has been demonstrated in a study by [22] where
data was fetched from positions C3, C4, P3, P4, O1, and O2 of four subjects using
the EEG cap as shown in Fig. 4, while each one of them performed five different
tasks mentally.

In this study AR coefficients [23] have been used as features to the MLP. Since
there were five tasks, there are 5 classes. Two hidden layers were used with the
minimum squared error loss function. The accuracies obtainedwith different subjects
varied with the maximum accuracy being 70% with one of the subjects.

The quest for better algorithms lead to the formation of learning algorithms which
when combined with the standard CNNs gave better results as shown in the study
by [24] which focusses on mapping information related to movements to the brain
signals with the help of EEG. The deep CNNs decoding performance has been
elevated by a cropped training strategy combined with batch normalization along
with exponential linear units, to the extent that it surpassed the FBCSP techniques.
The inputs to the CNNs were 2D arrays with width as count of steps in time and
height as count of electrodes. A number of CNN architectures have been explored in
this study—Deep CNNs, Shallow CNNs, Hybrid CNNs and Residual CNNs for raw
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Fig. 4 Electrode positions
in an EEG cap

EEG signals. The Deep CNN had 4max-pooling blocks and the dense layer used was
softmax layer for classification. In the shallow CNN there were only two convolution
layers with larger kernel sizes, squaring nonlinearity, a mean pooling layer and a
logarithmic activation function. The Hybrid CNNwas designed by merging the deep
CNN and the shallow CNN. Residual CNNs are different in that they have a good
number of intermediate layers and the input of a CNN layer is connected to its own
output, so the convolutional layer outputs a residual that changes the previous layers
output. In addition a number of training algorithms have been proposed, for more
details refer [24].

Inmost of the proposed algorithms cross validation is used to improve the accuracy
results as it includes hyperparameter tuning and building different hypothesises. The
use of CNNs is well pronounced as EEG still remains one of the main methods of
data acquisition [25–30].

4 Applications of BCI

One of the main applications of BCI’s so far has been taking control over external
devices like appliances, onscreen keyboards, cursors and the like.Major contributions
have also been made in the field of prosthetics, making crucial changes in the main
principals of signal acquisition. From allowing completely locked in patients to com-
municate, to making hearing through the skin possible, BCI’s can reach crazy limits,
to the extent that someday “hacking into the mind” will be made possible. This could
resolve all problems where language acts as a barrier to effective communication-
deaf and dumb people could communicate using their minds, parents would be able
to understand exactly why their babies cry, lack of vocabulary to express oneself
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would no longer degrade effective understanding. It would be lot more easier for
crime detectors to detect lies when hacking into the mind will be made possible in
the near future. This section aims to elaborate more on few of the successful BCI
implementations so far.

• Onscreen cursor movement using EEG signals: In this case signals are mainly
drawn from the sensorimotor cortex. Users canmove the cursor, after some amount
of training, in either 1 dimensional space or 2 dimensional space and the function
underlying it may differ in being either linear or non-linear, thus allowing 3 differ-
ent combinations i.e.: 1 dimensional linear, 2 dimensional linear and 1 dimensional
non-linear. All these methods give best results with 10–20 features and the best
results are given by the later two. Control of the amplitude of the mu and beta
frequency bands are learned by the users while they try to move the cursor on the
screen around 3 boxes which are aligned vertically and performance is judged by
the number of correct and incorrect boxes selected by the user.

• Game playing: Games have different genres—action, sports, strategic, role-
playing, puzzle, adventure or simulations. The different control strategies involved
are as follows:

– Motor Imagery: this involves detection and monitoring of the wave patterns in
the brain that is generated due to imagination of movement of different parts of
the body thus resulting in differing sesorimotor oscillations.

– Neurofeedback: in some cases it monitors the mental recreational state of the
subject whereas sometimes it also monitors parameters like the fluctuations in
heart rate etc. This is mainly used for passive BCI architectures and it works by
mainly inspecting the theta, alpha, SMR, and the beta waves.

– Visual Evoked Potential (VEP): a measure of the change in electric potential
caused due some alterations in the visual environment and is suitable due to
multiple factors one of which is that the frequencies are unaltered by blinking
of the eyes.

Out of these, motor imagery has been the most widely used control strategy fol-
lowed by Neurofeedback and VEP. For action games, where motor imagery is
used, the subjects task is to move an on-screen object without any constraints in
dimensions. VEP is also used in action games where the subject tries to balance an
avatar on-screen. It has been observed that VEP gives about 90% accuracy. BCI
strategic games include chess or cards where P300 is used as a control method.
While it is not possible to create a fully functioning BCI for role-playing games
because it is a concoction ofmany aspects like exploration, planning etc., the aspect
of agitation and relaxation of a subject is monitored by passive BCI’s. Simulation
and Puzzle games both are very ideal for BCI’s because they are more focussed
on making the users more suited to the BCI environment. In these genres, Motor
imagery and P300 are used respectively.

• Prosthetics:Most of the existing prosthetic devices todaywork by deriving sensory
inputs from the nerve endings at the remnants of the injured part, say the thigh
stump or the shoulder. This principle will fail in cases of total paralysis or cases
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where the nerve endings are damaged or don’t even exist. In such cases taking
direct inputs from the EEG signals generated by the brain works best. These
signals, drawn by placing electrodes over the sensorimotor cortex which is mainly
involved in movement of different body parts, are passed through a classification
algorithm that helps translate the signals into valid output commands to be followed
by the external prosthetic device. There have been successful implementations of
prosthetics aided by BCI like prosthetic arms and legs. Extensions to hearing and
visual aids are also being worked upon.

Mentioned above are few among the innumerable BCI applications [11]. Channeliz-
ing the brain maps to different applications is just a matter of the computer learning
to recognise the brain waves as they are being emitted. The computer is trained to
classify the signals by providing it task labels corresponding to each waves and train-
ing it over a period. So next time when similar waves are generated, it knows exactly
what kind of task is required to be done.

5 Conclusion and Future Work

BCIs are gaining more attention at a fast pace due to its enormous uses in the world
of prosthetics. Invasive techniques such as, implanting a programmable silicon mesh
into the brain which will expand inside and cross the blood brain barrier and give
the purest information about neuron activity, or Neural Dust which are extremely
tiny silicon sensors which could be spread across the cortex and communicate with
an external device through ultrasound, are still in the development stage because the
working of the brain is an extremely complex mechanism and there are problems
related to lasting of external sensors in the body, neurosecurity, among others, to
cater to. Non-invasive techniques such as MRI and EEG are in use today but the
extent to which they are able to measure the crude and accurate brain activity is
still not satisfactory since many a times they generate false alarms. Researchers are
more focussed on extending the number of applications of BCI rather than opti-
mising each algorithm to make it work in real time. The response time, accuracy,
amount of training are the main parameters among the others that has to be opti-
mised. Improvements require work in all the three domains—more accurate signal
acquisition, better methods of representations and signal processing, optimised and
efficient translation algorithms. Machine Learning techniques such as Support Vec-
tor Machines with different kernels, Radial Basis Functions, Linear Discriminant
Analysis, Independent Component Analysis are already used but since a very long
time not much attention had been paid to Deep Learning for classification purpose
and it is still not that widely used though it has commendable potentials that is yet to
be explored. With more applications, it can be hoped that the powers of Deep Learn-
ing are exploited. BCIs will not only serve in prosthetics but will also help in every
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day education, monitoring and controlling conscious and sub-conscious states of the
mind, communication over a network through just the brain, sharing of knowledge
and experiences and “disability” might only be a term in books.
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Reducing Hierarchical Deep Learning
Networks as Game Playing Artefact
Using Regret Matching

Arindam Chaudhuri and Soumya K. Ghosh

Abstract Human behavior prediction in strategic scenarios has been addressed
through hierarchical deep learning networks in the recent past. Here we present
a mathematical framework towards reduction of hierarchical deep learning network
as game centric object. Considering simple game, we show the equivalence between
training problem’s global minimizers and Nash equilibria. Then we extend the game
to hierarchical deep learning networks where the correspondence revolving Nash
equilibria and network’s critical points are addressed. With respect to these connec-
tions other learning methods are investigated. The experiments are done considering
the artificial datasets which are developed from RPS game, CT experiments, Poker
variant games as well as real MNSIT dataset. The experimental evaluation shows
proposed framework’s efficiency. It is concluded that regret matching achieves good
training performance than other deep learning networks.

Keywords Game theory · Hierarchical deep learning networks · Reduction ·
Global minimizers · Nash equilibria

1 Introduction

In this chapter we revisit the human behavior prediction problem in strategic setups
using hierarchical fuzzy deep learning networks (HFDLN) by [1]. A new approach
is envisaged whereby HDFLN is reduced as game playing artefact. Giving due con-
siderations to the well-known reductions [2–4] in literature, duality is not considered
here as a possible candidate even though it allows a flexible perspective. The no-regret
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strategies have been used in the past successfully [5]. They have effective training
methods towards the learning algorithms [6]. In this direction regret matching [7]
has emerged as an efficient stochastic optimization in terms of performance.

Some of the important researchwork for using regret minimization to solve offline
optimization problems are available in [8–11]. Two methods worth mentioning are
adaptive sub-gradient methods and traditional stochastic gradient descent. The loss
simplification appears in either batch gradient or incremental gradient approaches.
In regret minimization the simplification of the losses class by choosing minimizer
from any particular functions family can be found in [12]. Any game can be used
to solve optimal coloring [13]. The regret minimization has also been used in game
theory [14]. Some of the other researchworks revolving around deep neural networks
are available in [15, 16].

The prima face of this research work is to highlight howHDFLN can be presented
as a game playing proposition with associated player actions and utilities. Looking
at the different variations of the learning problem with or without considering the
regularization we coin handshakes through critical points and Nash equilibria in
strategic setups. It has been argued in the past that deep learning-based games are not
straightforward because training deepmodels approximately is difficult in worst case
[17]. It may be stated that regret matching has offered good training performance in
comparisonwith deep learning heuristics providing sparse results. HDFLN reduction
here breaks this juxtaposition. It addresses new situations for training any hierarchical
based deep learning networks that have not been explored earlier.

This chapter has the following structure. In Sect. 2 HFDLN’s reduction is pre-
sented.This follows the experimental evaluationof the proposedmathematical frame-
work in Sect. 3. Finally, conclusions are illustrated in Sect. 4.

2 HFDLN Reduction Computational Framework

Here the mathematical proposition for HFDLN as game centric object is presented.

2.1 Problem Definition

This research work revisits the prediction of human behavior in strategic scenarios.
The proposed HFDLN predictor in [1] is sketched here as a game playing entity
which highlights several interesting insights. Considering the convex problem, the
equivalence between training problem’s global minimizers and game’s Nash equilib-
ria is established. Then the game is extended to hierarchical deep learning networks
where the correspondence between network’s critical points and Nash equilibria is
established. The other learning methods are explored and regret matching achieves
competitive training performance for HFDLN. The simulation experiments are per-
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formed over the RPS game [18], CT experiments [19], Poker variant game [20] and
real MNIST dataset [21]. The entire framework ensures decision-based competitive-
ness.

2.2 Datasets Used

The experiments are performed on both artificial and real datasets. The artificial
datasets are prepared from three different sources vizRPSgame [18], CT experiments
[19] and Poker variant game [20]. Besides this real MNSIT dataset [21] is also used
for performing the experimental evaluations.

RPS is modeled as two-player zero-sum symmetric game. It is prepared from 60
one-shot game threads. The short delay of 9 swas taken into account. For non-reaction
default gesture is adopted. Thus,we have 60× 9 s� 9min duration threads. The game
had one mixed strategy-based equilibrium with identical probability distribution.
Here 700 computer science postgraduates are considered. Their average age was
21 years with 70%male population. The thread was played twice against test person.
The other games were played between two threads. Each victorious player received
$5 and $2 for neutral results. The players are stationed in different locations. For
gestures the players used normal procedures. The information gathered had player’s
last and actual choice, opponent player’s terminal choice, time factor and money
received.

CT experiments dataset contains 7096 single human arguments of 200 participat-
ing topics. The responder’s positive decision edits both players payoff and everything
remains same for negative responds. The responder payoff ranged between $20.70
and $–20.86. For 700 cases there are zero responder edits. Only those proposals are
accepted which increases player’s payoff regardless of his opponent’s payoff.

Poker variant game dataset is prepared by considering the counterfactual regret
minimization to calculate an equilibrium solution in poker’s domain. The poker
variant focusses on tops-up limit Texas Hold’em used at AAAI Computer Poker
Competition [20]. It is case of zero-sum and two-player game with four rounds
of dealt cards, four betting rounds with under 2018 game states. The game is first
abstracted and an equilibrium is populated for the abstracted game. We merge the
information sets and bucket the card sequences. The results quality near equilibrium
solution depends on the abstraction coarseness. As less abstraction is used there
is higher quality of the resulting strategy. Hence solving larger game leads to less
abstraction requirement.

2.3 Simple Games with Embedded Learning

We start our exploration by considering a simple one-layer learning game. This
allows us to highlight the basic aspects which are then extended to hierarchical deep
learning networks. Let us consider the standard supervised learning problem with
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a paired dataset {(ai, bi)}Ni�1 such that (ai, bi) ∈ A × B. Here one desires to learn
a predictor p:A → B. For the sake of simplicity, it is assumed that A � R

m and
B � R

n. Any standard generalized linear model takes the form:

p(a) � ϕ(θa) (1)

Equation (1) is always valid for some output transfer function ϕ:Rn → R
n where

matrix θ ∈ R
n×m denote the model’s training parameters. Inspite the transfer func-

tion’s presence ϕ the objective which has convexity in c � θa is minimized and then
the models are trained.

2.3.1 Learning Problem with One-Layer

Consider the loss function:

υ:Rn × R
n → R (2)

Equation (2) is convex in the first argument. Let us assume υi(c) � υ(c, bi)
and Vi(θ ) � υi(θai). The training problem minimizes V (θ ) � N−1 ∑N

i�1 Vi(θ)

considering the parameters θ . Now we need to figure out a situation where the Nash
equilibria corresponds to global minima. This fundamental correspondence creates
bridge revolving game playing through deep learning. The one-layer case paves the
path to highlight basic concepts which are usedwith deep learning networks. Another
aspect viz one-shot simultaneous move is specified through players’ set, actions’ set
and utility functions’ set which specifies each player value with respect to the joint
action selection. Next, we proceed to define the one-layer learning game.

2.3.2 Learning Game with One-Layer

Consider players as protagonist prt and antagonist ant. The protagonist takes the
parameter matrix θ ∈ R

m×n. The antagonist takes N vectors set and scalars
{xi, yi}Ni�1, xi ∈ R

n, yi ∈ R
n such that xTi c + yi ≤ υi(c)∀c ∈ R

n. For each train-
ing example the antagonist considers an affine minorant of the local loss. So, both
players consider their action choice without having any information regarding the
other player’s choice.

Considering the joint action selection (θ, {xi, yi}), the antagonist’s utility is defined
as:

Want � N−1
N∑

i�1

xTi θai + yi (3)
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The protagonist’s utility is defined as:

Wprt � −Want (4)

This leads us to the situation with continuous actions.

2.3.3 Nash Equilibrium

Nash equilibrium is specified through the joint actions situation. Thus if σ prt � θ rep-
resents the protagonist’s action choice and σ ant � {xi, yi} represents the antagonist’s
action choice then the joint action σ � (

σ prt, σ ant
)
represents the Nash equilibrium

if:

Wprt
(
σ̃ prt, σ ant

) ≤ Wprt
(
σ prt, σ ant

)∀σ̃ prt∧

Want
(
σ prt, σ̃ ant

) ≤ Want
(
σ prt, σ ant

)∀σ̃ ant (5)

With this background we determine the bijection between the one-layer learn-
ing game’s Nash equilibria and the one-layer learning problem’s global minimizers.
If (θ∗, {xi, yi}) represents the one-layer learning game’s Nash equilibrium then θ∗
should be the one-layer learning program’s global minimum. Putting things, the
other way around if θ∗ represents the one-layer learning program’s global mini-
mizer then there is an antagonist strategy {xi, yi} such that (θ∗, {xi, yi}) represents
the one-layer learning game’s Nash equilibrium. The model’s complexity is gen-
erally controlled through regularizing θ , though it is convenient to use constraint
θ ∈ � ∃ �. If (θ∗, {xi, yi}) represents the one-layer learning game’s Nash equilib-
rium then θ∗ should be the one-layer learning program’s constrained global mini-
mum. Putting things, the other way around if θ∗ represents the one-layer learning
program’s constrained global minimizer then there is an antagonist strategy {xi, yi}
such that (θ∗, {xi, yi}) represents the one-layer learning game’s Nash equilibrium.

There are alternative training approaches for finding Nash equilibria which arises
from the earlier stated connection. An appreciable progress has been made towards
on-line algorithms for Nash equilibria [5, 22–24]. Considering the two-person zero-
sum scenario, games are resolved through pitching regret-minimizing learning algo-
rithms against one another. It is to be noted that both players should have ε/2 regret
rate such that their strategies lead to ε-Nash equilibrium [14]. Here action of pro-
tagonist is θ ∈ � and action of antagonist is σant . The game playing is performed in
rounds with joint action as:

σ (j) �
(
θ(j), σ

(j)
ant

)
on round j (6)

The utility function for each player Wi with i ∈ {prt, ant} takes the affine form
considering which the opponent player chooses. In this way each player finds himself
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in an online convex optimization problem [12]. The total regret of player is defined
considering their utility function after J rounds as:

Regp
(
σ (1) . . . σ (J )

) � max
θ∈�

J∑

j�1

Wp
(
θ, σ

(j)
ant

)
− Wp

(
θ(j), σ

(j)
ant

)
(7)

It may be argued that nature can be inducted here considering random training
example. This calls for the regret to be defined in expectations’ terms. In order to
bring regularization here certain constraints � are imposed. A situation happens
when:

� � {θ : ‖θ‖1 ≤ γ } (8)

Here L1 ball constraint imposes L1 regularization. The L1 ball constraint enforces
solution sparsity. Any polytope constraint leads to constrained online convex opti-
mization reduction towards expert advice learning considering a finite number of
experts [12]. This reduction permits expert advice learning towards L1 constrained
online convex optimization. In this direction, two algorithms are worth mention-
ing viz the normalized exponentiated weight algorithm [25, 26] and regret match-
ing algorithm [7]. These algorithms generally operate through gradient’s stochastic
sample in order to achieve their updates. The exponentiated weight algorithm has
better regret bounds. The regret matching algorithm has good regret bounds [27,
28]. Another notable algorithm is the projected stochastic gradient descent and it has
similar regret bound [29, 30]. The utility of the discussion in this section is further
highlighted through experimental evaluation on synthetic and real datasets in Sect. 3.

2.4 HFDLN as Deep Learning Game

With respect to our discussion in previous sections we are now in a position to
approach the problem of training the HFDLN for human behavior prediction to
be reduced to game playing. This reduction leads further insights towards training
complex deep models used for solving massive-scale games. It may be mentioned
at the outset that the feedforward neural network training problem has been studied
by [31]. The feedforward neural network is one of the most commonly used neural
networks during past few decades. It is specified through directed acyclic graph
where vertices and edges are bridged by objects. The training of the network is done
by assuming following facts:

(a) the input features are mapped to the vertices
(b) the output dimensions are mapped to output vertices

It is generally preferable to go for additional inputs’ bias with (0, 1) input fea-
tures. The identity activation functions are considered here. Consider a training input
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datapoint at ∈ R
m and the network N � (V,E, I ,O,F) (with V as vertices set,

E ⊆ V × V is edges set, I ⊂ V is input vertices set, O ⊂ V is output vertices set,
F is activation function set with fw:R → R and training parameters θ :E → R) is
computed through circuit value function cvi considering the vertices’ partial order
such that:

cvi(pk , θ) � fpk (aik) for pk ∈ I (9)

cvi(w, θ) � fw

⎛

⎝
∑

v:(v,w)∈E
cvi(v, θ)θ(v,w)

⎞

⎠ forw ∈ V − I (10)

Let the vector of values at the output be denoted by cvi(o, θ). As such each fw
is differentiable, the output cvi(o, θ) is also differentiable with respect to θ. When
the constraints are imposed on θ it is assumed that vertices have the constraints
factored. For each w ∈ V − I , θ is restricted to Pw and are placed in �w ⊆ RPw

and � � ∏
w∈V−I �w. The network is unconstrained for � � RP and the network

is bounded if � is bounded.

2.4.1 HFDLN Learning Problem

Consider a loss function υ(c, b) which is convex in the first argument such that
0 ≤ υ(c, b) < ∞∀c ∈ R

n. Also let us define define υi(c) � υ(c, bi) and
Vi(θ) � υi(cvi(o, θ)). Here the problem is to figure out θ ∈ � minimizing
V (θ ) � N−1 ∑N

i�1 Vi(θ).

2.4.2 HFDLN Learning Game

Now we present one-shot simultaneous game situation having infinite action sets.
Players: This comprises of protagonist prt ∀w ∈ V − I , antagonist ant and zannis

zw set ∀w ∈ V .
Actions: Here protagonist vertex w selects a parameter function θw ∈ �w. The

antagonist chooses N vectors’ set and scalars {xi, yi}Ni�1, xi ∈ R
n, yi ∈ R

n such that
xTi c+yi ≤ υi(c)∀c ∈ R

n. In this way the antagonist selects for each training exemplar
local loss’s affine minorant. Each zannis zw selects 2N scalars set (rwi, hwi), rwi ∈
R

n, hwi ∈ R
n such that rwic + hwi ≤ fw(c)∀c ∈ R. Thus, for each training example

zanni selects affine minorant corresponding to fw. It is to be noted that players select
their action without another player’s knowledge.
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Utilities: Considering the joint action σ � (θ, {xi, yi}, {rwi, hwi}), the zannis’
utilities can be specified recursively considering the vertices partial order. For each
w ∈ I the zanni zw utility on training exemplar i is:

Wz
wi(σ ) � hwi + rwiawi (11)

For each w ∈ V − I the zanni zw utility on exemplar i is:

Wz
wi(σ ) � hwi + rwi

∑

v:(v,w)∈E
Wz

iv(σ )θ(v,w) (12)

Each zanni zw total utility is given by:

Wz
w(σ ) �

N∑

i�1

Wz
wi(σ ) forw ∈ V (13)

The antagonist ant utility is then given by:

Want � N−1
N∑

i�1

Want
i withWant

i (σ ) � yi +
n∑

k�1

xkiW
z
ok i(σ ) (14)

Likewise, all protagonists maintain the same utility such that:

Wprt(σ ) � −Want(σ ) (15)

Considering protagonist action θ there exists all agents’ unique joint action
σ � (θ, {xi, yi}, {rwi, hwi}) such that zannis and antagonist play positively. Since
Wprt(σ ) � −L(θ) and ∇θWprt(σ ) � −∇L(θ). Now with some protagonist
w ∈ V − I all other agents’ strategies are held fixed Wprt(σ ). Here σ is the joint
action expansion for θ . For each parameter, current cost and partial derivatives are
computed such that affine function for each agent comes into place. This is discussed
as we proceed further. The KKT point satisfies the KKT conditions [32, 33]. This is
either a critical point with zero gradient or boundary point � with gradient points
out of � perpendicularly.

2.4.3 HFDLN Learning Game Nash Equilibrium

The joint actionσ � (θ, {xi, yi}, {rwi, hwi}) is aNash equilibriumofHFDLN learning
game. With this we can argue that if deep network is not bounded, joint action
σ � (θ, {xi, yi}, {rwi, hwi}) is a Nash equilibrium of HFDLN learning game when
it is θ ′s joint action expansion with θ as HFDLN learning problem’s critical point.
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Sometimes it is required to add constraints connecting edges on different nodes.
Considering any deep neural networkwith edges ed and ed

′
theremay be a constraint

satisfying θed � θed ′ . If any two players act simultaneously in a game it becomes
impossible situationwhere a player’s actions depend on their opponent. Hence, as the
parameters become constrained, any of the players’ can take the control. This is true
for both smooth and non-smooth activation functions through certain differentiable
approximations.

Articulating HFDLN as a deep learning game paves the path towards equilibrium
findingmethods. Considering earlier reduction towards intelligent algorithms L1 ball
constraint�w � {θw: ‖θw‖1 ≤ γ } is used at each vertexw. For HFDLN the approach
adopted through training protagonist versus antagonist and zannis [34]. It is to be
noted that best response cases should be selected here. Here it is possible build new
learning strategies based on learning algorithms from certain advice from experts.
A non-convex optimization problem is placed considering protagonist’s action θw.
As a result of this the convergence is not expected to be a joint, globally optimal
strategy for protagonists. There are generic approaches towards utilising the game
in learning algorithm generation. The algorithm is briefly outlined below.

The nature chooses a random training exemplar in each round. Each protagonist
w ∈ V selects his actions θw ∈ �w deterministically. Considering the best responses
to θw and to each other, the antagonist and zannis choose their actions. Then the
protagonist utilities Wprt

w are calculated. The Wprt
w is affine in protagonist’s action

when the zanni and antagonist choices are considered. Corresponding to this each
protagonistw ∈ V update their strategies based on their utilities. It is well known that
Nash equilibrium corresponds to critical point in training problem. This is generally
considered as a local minimum but not a saddle point [35]. The backpropagation of
the sampled sub-gradients computes best response actions from where protagonist
affine utility is obtained. This discussion is further highlighted through experimental
evaluation on the synthetic and real datasets in Sect. 3.

3 Experimental Evaluations

In this section the experimental evaluations of the methods discussed in Sects.
2.3 and 2.4 are highlighted. The experiments are conducted on the three synthetic
datasets [18–20] mentioned in Sect. 2.2 and on real MNIST dataset [21].

We first present the experimental evaluations for the methods discussed in
Sect. 2.3. It is to be noted that projected stochastic gradient descent and exponenti-
ated weight algorithm have performance affected through step size. Optimal regret
bounds are obtained through simple and logarithmic step sizes [30]. The step size
parameters are regularly tuned to have the best results in place. The experiments are
executed after convergence speeds towards lowest global values. Initial experiments
considered the three synthetic datasets. The data dimension considered was 20
and 1000 training points are taken. The univariate prediction produced random
hyperplane with labelled linearly separable data. All the results are shown in Fig. 1.
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Fig. 1 No-regret algorithms training loss for RPS, CT and poker datasets
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Fig. 1 (continued)
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Fig. 2 No-regret algorithms training loss for MNIST dataset

For multivariate prediction all the results are shown in the figures below. The results
for MNIST dataset (with mini-batch size � 200) are shown in Fig. 2. The regret
minimization has proved to be the most effective here. Even after parameter tuning
for projected stochastic gradient descent and exponentiated weight algorithm did
not produce better results than regret minimization.

Now we present the experimental evaluations for the methods discussed in
Sect. 2.4. The experiments are conducted to figure out the scope of applying these
algorithms considering each vertex in HFDLN. To make the results more illustra-
tive HFDLN is trained through models available in [36–39]. These methods do not
impose any constraints in developing the optimization problem solution. However,
they are un-regularized in nature and have weak generalization. The step size param-
eters are regularly tuned towards each comparison method involving each problem.
The regret minimization algorithm produced better results than projected stochas-
tic gradient descent and exponentiated weight algorithms. The regret minimiza-
tion worked well through initialization of the cumulative regret vectors. To make
the results more convincing experiments are first conduced on artificial parity and
folded parity combinatorial problems [40]. The parity is approximated through sin-
gle hidden layer with linearity in threshold gates [41]. The folded parity required at
least two hidden layers [40]. The parity training is performed on fully connected
(m − 8m − 1);m � 10 architecture. The folded parity training is conducted on
(m − 8m − 8m − 8m − 1);m � 10 architecture. The L1 constraint is bounded to
20 and the initialization scale was set as 200. The nonlinear activation function is
used through a smooth approximation of the standard ReLU gate. The results in
Fig. 3 show that regret minimization produces better competitive results for both
parity and folded parity with sparsity models top to bottom.

Next the experiments are performed using MNIST dataset. The initial experi-
ment considered a fully connected 784− 2048− 2048− 10 architecture with regret
minimization execution bounded by 40 with scales of initialization as (60, 240, 60).
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Fig. 3 Parity results for RPS, CT and poker datasets; training loss and testing error for MNIST
dataset
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Fig. 3 (continued)

The second experiment has convolutional architecture 32 × 32 − c(6 × 6, 81) −
−c(6 × 6, 81) − c(6 × 6, 81) − c(6 × 6, 81) − 10 (convolution window 6 × 6 and
depth 81) with regret minimization run bounded by (40, 40, 40, 10) and initializa-
tion scale 600. The mini-batch size considered is 200 with results obtained after 800
mini-batches updates. Figure 4 show the training and test loss. These results highlight
the evolution of training loss and test misclassification errors. The regret minimiza-
tion for both fully connected and convolutional case superseded the results obtained
through other methods. The regret minimization convergence rates are competitive
as compared to other methods. The regret minimization results were sparse in nature
and achieved lower test misclassification errors compared to other deep learning
networks.
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Fig. 4 Folded parity results for RPS, CT and poker datasets; training loss and testing error for
MNIST dataset
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Fig. 4 (continued)

4 Conclusion

We have addressed here the reduction of HFDLN for predicting human behavior
in strategic setups as a game centric object. The reduction presented in this chapter
is the outcome of the research work that reveals the bridge between hierarchical
deep learning networks and game theory. This has paved the way for the correspon-
dence between critical points and Nash equilibria. Regret matching provides a better
option in terms of achieving sparsity giving due consideration for speed or accuracy.
This mathematical framework achieves new performance benchmark. This indicates
higher performance of the hierarchical deep learning networks. The experimental
evaluations highlight superiority of proposed framework. It remains an interesting
work towards investigating alternative frameworks for deep learning games. How-
ever, the question which surfaces is that whether similar successes can be achieved.
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Deep Learning in Gene Expression
Modeling

Dinesh Kumar and Dharmendra Sharma

Abstract Developing computational intelligence algorithms for learning insights
from data has been a growing intellectual challenge. Much advances have already
been made through data mining but there is an increasing research focus on deep
learning to exploit the massive improvement in computational power. This chapter
presents recent advancements in deep learning research and identifies some remain-
ing challenges as drawn from using deep learning in the application area of gene
expression modelling. It highlights deep learning (DL) as a branch of Machine
Learning (ML), the various models and theoretical foundations, its motivations as to
why we need deep learning in the context of evolving Big Data, particularly in the
area of gene expression level classification. We present a review, and strengths and
weaknesses of various DL models and their computational power to specific to gene
expression modeling. Deep learning models are efficient feature selectors and there-
fore work best in high dimension datasets. We present major research challenges in
feature extraction and selection using different deep models. Our case studies are
drawn from gene expression datasets. Hence we report some of the key formats of
gene expression datasets used for deep learning. As ongoing research wewill discuss
the future prospects of deep learning for gene expression modelling.

1 Introduction and Motivations

The world is experiencing enormous growth of data at an unprecedented rate in all
domains of life, industry, education, weather, health and scientific research to name a
few. Extracting patterns and learning insights from this abundance of data is contin-
uing and a developing research frontier. Fascinated by the prospects of patterns and
knowledge hidden in data has motivated practitioners in the area of machine learn-
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ing in developing several ML algorithms to help them extract relevant knowledge
and insights. ML has matured over several decades of research and has churned out
efficient data mining algorithms such as support vector machines, Bayesian models,
decision tress and ANNs; and have been used to solve many interesting real world
problems in various domains [1–3]. These include algorithms such as decision trees,
Naïve Bayes (NB), Apriori rules, fuzzy logic, support vector machines (SVMs) and
artificial neural networks (ANNs). The above algorithms described as conventional
machine learning algorithms were limited in their ability to process data in its natural
raw form [4]. Before using these algorithms serious data pre-processing is required.
Data has to be curated and then transformed into a format suitable for the algorithm to
work on. This also included manual feature extraction in the form of feature vectors
as well. The learning algorithms could then only use these data to detect or classify
patterns. Often this required researchers to have considerable domain knowledge. As
data collection methods improves with the expansion of data storage capacity has
enabled growth of complex high-dimensional datasets, both structured and unstruc-
tured. For existingmachine learning systems to function properly data will need to be
formatted to suit as valid input. This comes as a cost of losing considerable informa-
tion which may have been embedded in the original structure of data. Hence to mine
this huge datasets in their raw form has spawned the birth of new sets of models and
algorithms referred to as Deep Learning (DL). Built on the computational paradigm
of Artificial Neural Network, DL implements multiple hidden nodes and layers in
their architecture. They are also referred to as deep structured learning or hierarchical
learning models.

The need for DL architectures is further motivated by several factors [5] including
shallow nets such as SVMs, NB, K-Nearest Neighbours (KNN) do not provide suf-
ficient depth in their architectures to learn from high dimension data. Most of these
algorithms perform well on labelled data and user-defined features a priori. When
applied to high dimension datasets the number of parameters for the learning function
as well as the computation time may grow very large making these algorithms inef-
ficient for handling such datasets. Secondly AI intends to mimic the functions of the
brain in terms of its reasoning capability. Just as the brain learns through examples,
most machine learning algorithm are ‘taught’ using training data for classification
and clustering purposes. The closest ML algorithm that represents how the neurons
in the brain function is the ANNs. The brain however has deep architecture with sev-
eral million interconnected neurons to process the input signals (features). Shallow
ANNs with few hidden layers do not approximate the brain structure hence the need
for deep learning architectures. Thirdly, the human visual system contains various
levels of cell structures for information processing. Information filters from one cell
layer to the next and in doing so it is able determine areas of importance in the feature
maps that has a higher representational value. This means relevant neurons in the
brain will be active than others for particular features. This simply illustrates that
cognitive processes in the brain are deep. Ideas and concepts are organised hierarchi-
cally, simpler concepts are learnt first then composing them into more abstract ones;
such as lines, circle, colors and curves on an image is detected first before combining
them to learn the higher abstract level feature, the complete face. The solution to the
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problem is broken up into multiple levels of abstraction and processing. DL models
are capable of identifying layers of abstractions or compositions from feature sets
due to their complex deep neuron structures, hence are known be to excellent feature
extractors from feature maps. They are proven to be able to pick features that lead
to improved performance of the deep classifiers [1].

This chapter summarises recent advances on DL, the key models developed for
DL and how they perform feature abstractions in supervised and unsupervised learn-
ing environments. Applications are drawn from the complex area of gene expression
modeling.We first give a formal definition of DL and its origins. Next we discuss var-
ious key deep learning models and their applications. We will state the relevant theo-
retical foundations underpinning these models followed by their strengths and inade-
quacies. Further, we introduce the gene expression modeling problem (GEMP)—the
expression datasets, kinds of questions that researches are seeking answers for from
such data and how DL helps find solutions to these questions. Here we will sum-
marise recent research work where DL is applied on gene expression data. Finally we
will provide overall strengths of deep learning followed by conclusion and explore
possible future investigations.

2 Deep Learning

DL algorithms accept raw data and are automatically able to discover patterns in
them. They are able to do this by creating feature maps from which representations
are discovered for detection of patterns or classification [4]. This leads deep learning
methods to be able to detect higher level features defined in terms of lower level
features. DL utilizes similar concepts from ANNs in machine learning. Since most
ANNs in conventional machine learning are ‘shallow’ implementations (one or two
hidden layers), DL implements ‘deep’ neural architectures (several hidden layers)
which seemingly has proven apt architectures to solve problems in image and video
processing, text analysis and object recognition. Deep learning is also sometimes
referred to as multilayer perceptrons (MLPs) or deep neural networks (DNN). The
implementations of these deep architectures however vary to suit different problems
and goals. The popularity of deep learning has increased so much that many large
companies such as Google, NVidia and Toyota have taken much interest in and have
invested in research and development on deep leaningAI [4]. Figure 1 is a graph from
Google Trends (https://trends.google.com/trends/) that shows the growth of interest
in DL as a field of study in recent times. A rising trend illustrates the popularity of
the term entered as a search-phrase by people d from around the world and in various
languages as well.

Recent breakthroughs in DL research have led to solutions for many problems for
which earlier techniques in machine learning were not quite able to solve or provide
optimal solutions [4]. Many scientific hurdles faced in processing large datasets to
extract insights using conventional shallow machine learning methods have been
greatly reduced. The ability to drive programs to analyze large datasets to extract

https://trends.google.com/trends/
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Fig. 1 Google trend chart showing interest in DL as field of study

meaningful patterns and inferences has always been a goal for researchers in the
field of AI. DL now allows this to happen with higher degree of accuracy in various
fields such as in image and video processing, text processing for sentiment analysis,
object recognition, speech recognition and time series analysis. It is a rich paradigm
to extract insights from experimental data to model and derive solutions through
predictive analytics.

Research interest in DL has been increasing rapidly since a seminal paper on it
in 1998 by LeCun et al. [6]. Significant research has been reported since resulting
in some significant breakthroughs such as those reported in [4, 7, 8]. As explained
by Benjio in [9], DL algorithms scan the input distribution to seek and exploit the
unknown structure in an effort to discover good abstract representations. They aim to
learn lower-level features and then use this as a basis to learn higher-level features.
This allows DL to be used for unsupervised learning where data is unlabeled. Hence
the key advantage of DL is its ability to learn good features automatically without
considerable amount of reengineering or domain expert. Figure 2 extracted from
Yoshua Bengio’s lecture notes [10] on DL shows how different parts of an AI system
relate to each other within different AI disciplines. It demonstrates DL learns features
at multiple levels. At each level abstract features are discovered from features in the
previous level. As features are discovered they are composed together at various
levels to produce the output. The following are the three key DL architectures that
have attracted considerable attention by machine learning enthusiasts;

• Feed Forward Networks (FFNs),
• Convolution Neural Networks (CNNs), and
• Recurrent Neural Networks (RNNs) [11].

In the following sections we describe properties of each of these three types of
architectures, their advantages and disadvantages.

3 Deep Learning Models and Applications

Numerous DL models have been developed motivated by the application problems.
In this section, we summarise the main models namely FFNs, CNNs and RNNs and
their application to various problem domains.
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Fig. 2 Feature learning in
various AI systems [10]

3.1 Feed Forward Networks (FFNs)

A feed forward network (FFN) shares the same architecture as a standard neural
network however having several hidden layers. They are often referred to as MLPs
and use the backpropagation procedure as the learning engine. Their operation is the
same as a standard (ANN) model. They may have several hidden layers with several
neurons in each layer. Each neuron is connected to other neurons in adjacent layers
[12]. The neurons are grouped into 3 distinct layers namely, input, hidden and output
layers. By definition all layers within the input and output layer are called hidden
layers and there are several hidden layers in a deep net. Each input layer neuron is
connected to the each hidden layer in the next level. Similarly hidden layer neurons
are connected to each neuron in the next level hidden layer and so forth till the output
layer neuron, which is usually limited to the number of output variables the learning
algorithm is trying to predict. The inputs neurons get activated by sensors perceiving
the environment. These usually are features discovered at various levels from the raw
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featuremap or dataset. These features filter though the network viaweight activations
from one neuron to the next. Finally the network learns by adjusting the weights
via backpropagation rule over several epochs until the network exhibits desired
behavior, such as achieving desired minimum training error for classification tasks.

Figure 3 shows an illustrative example of a MLP model with different types of
layers. There is one input and output with three hidden layers in between. Training a
MLP involves repetitive invocation of feed forward and backpropagation procedures.
As illustrated in Fig. 3a during feed forward propagation through a network, a dot
product is performed with the inputs and the associated weights connected to each
neuron plus a bias factor and summed across all connections for each neuron. The
output then passes through an activation function. The result is then used as an input
for the next layer neurons. The output (activation) of a given node therefore is simply
a function of its inputs. The summation at each layer is described using Eq. (1).

Sj �
∑

i

Wi jai + bi j (1)

The activation function is defined in Eq. (2) as:
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a j � f (Sj ) (2)

where Sj is the sum of dot products of weights and outputs from the previous layer
u, Wi j are represents the weights connecting layer i with layer j , ai represents the
activations of the nodes in the previous layer i , a j is the activation of the node at
hand, bi j is the bias value between layer i and j ; and f is a non-linear activation
function. The purpose of the activation function is to introduce non-linearity into the
function. In simple terms, activation functions normalize the output of a function to be
within a given range. Several activation functions exist. However popular activation
functions used with neural networks are sigmoid, softmax and ReLU [4]. One may
find the ReLU activation function used for hidden layers in many neural network
architectures. An output of a neuron processed with ReLU activation will return the
same output or zero if input value less than zero; that is f (S) � max(0, S).

During the backward phase as shown in Fig. 3b, the weight formula is applied in
the reverse direction. The weights at level k + 1 are updated before the weights at
level k are updated. This approach allows the use of neurons at layer k +1 to estimate
the errors for neurons at layer k [13]. A cost function (sometimes also referred to
as loss function) measures the magnitude of error; and is given by Eq. (3) with the
following definitions:

• Ep is total error over the training pattern,
• 1/2 is a value applied to simplify the function’s derivative,
• n is the number of classes or output labels,
• t jn is the ground truth value for node n in output layer j , and
• a jn is the predicted output value node n in output layer j .

Ep � 1

2

∑

n

(t jn − a jn )
2 (3)

Backpropagation technique is normally used to train the network. Hence forward
propagation and backpropagation is repeated over several epochs until the network
reaches a minimum threshold error limit or the number of epochs has reached.

A FFN is usually attached at end of the representation model such as the con-
volution neural network CNN. This makes a MLP a directed graph structure where
all neurons are liked to each other in-between layers. Feed forward neural network
architectures are used in many applications of DL [4]. In 2006 the Canadian Insti-
tute for Advanced Research revived interest in deep feed forward networks [4]. They
used the network in unsupervised learning to create layers of feature detectorswithout
requiring labelled data. This allowed them to use the network for reducing the dimen-
sionality of data which could then be fine-tuned using backpropagation [14, 15].

The most notable application of deep FFNs has been in the field of computer
vision and speech recognition. Zeiler et al. in [16] used DNNs for acoustic model-
ing in speech recognition systems. They were able to show improved generalization
of the model and claimed that the training of deep networks was much faster and
using ReLU. The success of usingDNNs in acousticmodeling for speech recognition
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motivated Lopez-Moreno et al. [17] who in their work used DNNs for language iden-
tification tasks. Using short-term acoustic features as input they were able to identify
the language information. They showed with a great deal of success the capability of
the network to identify from speech signals the discriminative language information.

3.2 Convolutional Neural Networks

CNNs orConvNets is aDLmodel that uses convolutional layers for automatic feature
extraction from input data [18]. The architecture of CNNutilizes a set of filters (called
convolution layers) that preprocesses the data identifying key features in the data.
Then these higher level features are fed into fully connected deep nets for training and
classification. The aim of these convolution layers is to reduce the dimensionality of
the data hence allowing fewer and faster calculations when these inputs make their
way into the deep net. Figure 4 shows the architecture of a CNN. A CNN works
well with image and video data. Other uses of CNNs are in the areas of sentence
processing to identify sequence of words or characters for sentiment analysis (in web
mining for example) and DNA sequences. The latter is one of the motivations of this
chapter to use DL for gene expression modeling.

Inspired by how the visual cortex of mammals detects features through studies by
Hubel andWiesel in 1988 [19], algorithms such as theConvolutionalNeuralNetwork
(CNN) have achieved great success in various computer vision tasks such as image
classification, object detection, visual concept discovery, semantic segmentation and
boundary detection. Theywere able to describe that the visual information processing
system of mammals used layers of specialist cells organised in a hierarchical order
with each layer capable of detecting particular stimulus from the retinal image.
They found that cells in animal visual cortex are responsible for detecting light in
receptive fields; and proved that in image detection the receptive fields detect features
in localized areas of the image picking out patterns such as lines and curves (lower-
level features), followed by shapes and colors (high-level features) leading up to
detecting the complete image. This showed that from low-level features higher-level
features are extracted. Using these results LeCun et al. [20] formalized the modern
framework of CNNs. They applied the convolution technique to handwritten digits

i
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k

l

m

car

truck

Convolution + ReLU Max pooling

Convolution + pooling layers Fully connected layers classification

feature maps1 feature maps2

Fig. 4 Architecture of a convolution neural net
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Fig. 5 The convolution process. A 5 × 5 filter convolving around the input space of size 32 × 32,
using stride of 1, producing an activation map of size 27 × 27

recognition of postal zip codes. They later improved the algorithm in [6] and named
it LeNet-5.

The basic underlying structure of a CNN can be divided into two distinct parts
—convolution and fully connected layers (as illustrated in Fig. 4). The first stage
comprised of the convolution layer following by the pooling layer in the next stage.
In the convolution layer a feature map is formed by convoluting the input image with
a filter of size m × n. This filter is simply a series of weights. A filter is designed
to detect a particular feature from the input space. As the filter strides over the input
space dot operation is applied on the input values and the weights. The output of
this local weighted sum is then processed through a non-linear function such as the
ReLU. The purpose of this activation function is to introduce nonlinearity to the
model in order to detect non-linear features and also to avoid overfitting. The result
is added to the feature map. Successive strides from left to right top to bottom forms
a complete feature map using a single filter. Figure 5 explains this process. A feature
map is sometimes also referred as an activation map. Several filters can be applied
on the input space to detect different features (as each filter has different weights)
resulting in multiple feature or activation maps.

The number of filters (also called kernels in some literature) applied in a convo-
lutional layer results in the same number of feature maps produced as output. This
results in a lot of parameters and increases the computation time for the network.
Pooling is therefore applied to down sample the activation map and also avoids over-
fitting. It makes the representation smaller and more manageable and is applied to
each activation map independently. One common pooling method is Max Pooling
which takes the activation map as input and computes the maximum of a local patch
or region of units (as illustrated in Fig. 6). The process of convolution and pooling
can be iterated several times before feeding the final activation map through the fully
connected later.

CNNs are best used on data that are in two-dimensional form; for example 2D
images with one color (grey scale) or three color channels and audio spectrograms
[4]. Hence CNNs have been applied in image classification problems with a great
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activation map

Max pool with 3x3 filter 
and stride of 3

Fig. 6 Max pooling with 3 × 3 filter and stride of 1 is applied on activation map of size 27 × 27
down sampling it to size 9 × 9

success [21, 22]. The AlexNet developed by Krizhevsky et al. [21] achieved the
best performance in the ILSVRC challenge in 2012 [23]. Following suit other deep
CNNs developed over the years were ZFNet (2013) [24], GoogleNet (2014) [25],
VGGNet (2014) [26] and ResNet (2015) designed byMicrosoft Research Team [27].

CNNs have also been used for one dimensional datasets such as signals and
sequences such as in area of text detection [28, 29] and recognition [30]. In three
dimensional data spectrum CNNs have been mainly used for video and volumetric
images such as recognizing actions in video sequences. Since CNNs are designed to
work efficiently on two dimensional data; applying the model on such data has been
a challenge to researches in this field. This is essentially because the video sequences
are temporal. One solution to this problemwas to treat the video composed of images
of consecutive frames and apply two dimensional convolution techniques on it as
proposed in [31]. FinallyGu et al. in [23] provide a good reviewof the recent advances
in CNNs and several of its application areas.

3.3 Recurrent Neural Networks

Recurrent neural nets (RNNs) employs a similar structure as FFN but their repre-
sentation advantages power comes from feedback loops within the hidden neurons.
This allows RNN to work best for time series data as the network remembers the
learnt sequence. Hence these types of nets are well suited for forecasting problems
such as forecasting demand and supply chain planning. Other uses of RNNs are for
clustering, image captioning, sentence classification and embedding, neural-machine
translation and sequence classification. RNNs however are difficult to implement and
suffer from vanishing gradient or exploding gradient.

RNNs allow information to pass from a previous time step to the next, hence
provides for loops within the network. Figure 7 shows the architecture of RNNs. It
shows the hidden neurons grouped under node s with values st at time t and W is
the shared weights.
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Natural language processing is an area where RNNs have gained considerable
success [32]. Given this success, they are now being applied to other areas such as
biomedical text analysis [33].

4 Deep Learning Challenges

The research community widely agrees DLworks best if the problem satisfies certain
specified constraints. Firstly DL requires high volumes of data and this includes
high dimensionality in features. This avoids the model from overfitting. However
acquiring high volumetric data is usually a challenge to acquire or curate. Secondly,
data needed for training deep nets need to be strong and clean. Thirdly deep nets
in the current time work well for only well-defined data structures such as image,
speech, natural language processing and video.

Research in the area of DL attempts to create models to learn features from large-
scale, unlabeled data automatically. DL attempts to model similar learning mecha-
nism of out biological nervous system—the brain learning from examples (training
data). This leads to the main criticism of DL in that it does not truly capture the bio-
logical mechanisms of the brain. Instead DL leans on the concept of Computational
Equivalence and can possibly have equivalent capabilities as a biological brain albeit
using different computational mechanisms. Further a learning system is only able to
derive the Cause while observing the Effect [34] and that it is unable to predict the
Effect from Cause. As such DL suffers from this limitation as well.

Current trends in the areas for image classification and generation are showing
promise by combining CNNs with FFNs and for video modeling by using CNNs
and RNNs. DL however do face some issues such as slow learning and local traps.
Processing time of deep nets have however reduced drastically given they can now
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be offloaded on high performance accelerated graphics processing unit (GPU) cards.
To avoid local traps have been solved to a large extent by using ReLU activation
function. In summary, despite the advancements and the robustness of the model,
deep nets like other machine learning models do suffer from data model uncertainty
and overfitting.

5 Gene Expression Modeling Problem

Since one of the requirements for DL to work is to have a substantial size of dataset,
we are motivated to show results of these techniques and models in one key and
complex area of bioinformatics—gene expression analysis [35] as part of the Gene
ExpressionModeling Problem (GEMP). The advancement ofMicroarray technology
[36] presents an opportunity to identify traits of diseases through analysis of gene
expressions. This has led to the rise of the field of Genomics.

5.1 What Is Gene Expression Analysis?

Genomics is a field of study in statistical data mining. What makes this area interest-
ing to explore is the availability of huge amounts of gene expression data for mining
and the need to get insights and patterns from these data to solve problems such
as identification of cancerous genes, effects of drugs and treatment of an individ-
ual at gene level. A living organism contains millions of genes. Each gene can be
thought of as containing instruction code for the functionality andmake up of various
organs and parts of the body. The translation of information encoded in a gene into
protein produces gene expression data [37]. It provides information regarding the
complex activities within corresponding cells, measured by messenger ribonucleic
acid (mRNA) produced during transcription [38]. We use the term gene expression
to describe the process of transcribing a gene’s DNA sequence into RNA.

5.2 Uses of Gene Expressions Data and Limitations

A gene is said to be expressed when the gene’s RNA is used to produce proteins [39].
Researches have concentrated on studying the change and patterns in the expression
values of genes as an indicator of certain diseases such as various forms of cancer.
Normal cells transform into cancerous cells due to mutations driven by gene expres-
sion level changes. Analysing gene expression data therefore helps in identifying
different gene functions and diagnosis of disease such as cancer.

One of the recent technologies to produce gene expression data is byMicroarrays,
or DNA chips which allows recording of gene expression. Since thousands of genes
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Fig. 8 Translation of
microarray to 2D gene
expression matrix [41]

are analysed in parallel results in huge amounts of data. Typically, a gene expression
matrix (GEM) is extracted frommicroarray image analysis. In this matrix, genes and
samples (tissues or experiments) are represented by rows and columns respectively.
The value in each cell of the GEMdenotes the expression level of that particular gene
in the particular sample [40]. Figure 8 explains the translation of Microarray image
to a n × m dimensional gene expression data. The challenge is the development
of analytical techniques to make sense out of these large amounts of biological data
[41]. By their nature these datasets are quite different from conventional datasets
used for classification algorithms to work on. Amidst this, gene expression data does
have some properties as pointed by Lu and Han in [39] which limit the behavior
of classifiers, namely they have very high dimensionality usually containing tens of
thousands of genes but due to small number of samples the data size is very small.
Further most genes may not be relevant to any particular disease which opens up
the problem of finding the right gene which has malfunctioned.

5.3 Publically Available Data Repositories for Gene
Expressions

TheMicroarray Gene Expression Data society, founded in 1999 by microarray users
and producers—Affymetrix, Stanford andEBI, established standards for data quality,
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Table 1 Official gene expression data repositories

Gene expression repositories URL

• CGAP and SAGEmap https://cgap.nci.nih.gov/

• ExpressDB http://arep.med.harvard.edu/ExpressDB/

• GEO at the NCBI https://www.ncbi.nlm.nih.gov/geo/

• ArrayExpress at the EBI https://www.ebi.ac.uk/arrayexpress/

• CIBEX http://cibex.nig.ac.jp/data/index.html

• Expression Atlas https://www.ebi.ac.uk/gxa/home

• The Cancer Genome Atlas (TCGA) https://cancergenome.nih.gov/

• Ensembl http://www.ensembl.org/index.html

• NIH Roadmap Epigenomics Mapping
Consortium (REMC)

http://www.roadmapepigenomics.org/

storage,management, annotation and exchange at the genomics, transcriptomics, and
proteomics levels. Table 1 shows the links to some current official gene expression
repositories.

5.4 Deep Learning on Gene Expressions

Severalmethods have been developedwhich analyzes gene expression data for cancer
diagnosis and classification, clustering of cancerous cells from normal cells using
standard machine learning methods such as in [39, 42–44]. Siang et al. in [45] in her
review paper provides a detailed list of data mining software used for analysis on
gene expression data based on standard machine learning methods. More recently,
researchers have started to apply DL techniques on the same. Min et al. [35] in their
research analysed the application of DL in three key fields of bioinformatics, namely
omics, biomedical imaging and biomedical signal processing. Then they identified
applications from literaturewithin the above fields and categorized them according to
the type of DL architecture that was used in those researches. Namely they placed the
applications into categoriesDNNs, CNNs, RNNs and emergent architectures. Table 2
shows their analysis. They encompassed DNNs to not only refer to deep multilayer
perceptrons but also to other variants of DNNs such as stacked auto-encoder, deep
belief networks, autoencoders and Restricted Boltzmann Machines. For the purpose
of this chapter we will describe some recent applications of DL on gene expression
data and analysis. Several other papers such as in [46–48] show the emerging use of
DL techniques applied to gene expression data. Angermueller et al. in [49] provides
a comprehensive review of DL in the area of computational biology.

https://cgap.nci.nih.gov/
http://arep.med.harvard.edu/ExpressDB/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
http://cibex.nig.ac.jp/data/index.html
https://www.ebi.ac.uk/gxa/home
https://cancergenome.nih.gov/
http://www.ensembl.org/index.html
http://www.roadmapepigenomics.org/
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Table 2 DL applied research in bioinformatics [35]

Omics Biomedical
imaging

Biomedical signal
processing

Research topics

Deep neural networks Protein structure Anomaly
classification

Brain decoding

Gene expression
regulation

Segmentation Anomaly
classification

Protein
classification

Recognition

Anomaly
classification

Brain decoding

Convolutional neural
networks

Gene expression
regulation

Anomaly
classification

Brain decoding

Segmentation Anomaly
classification

Recognition

Recurrent neural networks Protein structure Brain decoding

Gene expression
regulation

Anomaly
classification

Protein
classification

Emergent architectures Protein structure Brain decoding

5.5 Deep Neural Nets

In terms of gene expression analysis, several variants of deep neural nets have been
used such as deep belief nets, autoencoders and restricted Boltzman machines. Some
have been applied as classifiers to solve prediction problems while others have been
used as feature selectors and extractors during pre-processing step. For example, to
cluster gene expression data of yeasts, Gupta et al. [46] in their research used deep
networks as a pre-processing step. In particular they used deep networks in the form
of denoising autoencoders as a pre-processing step. Their autoencoders were used
in an unsupervised manner to learn a compact representation of input from which
features were extracted for further supervised learning. Their aim was to identify
characteristics of the underlying distribution of gene expression vectors and use it
to explain for example interactions and correlations among two genes. In a similar
manner a fair amount of research has been done on using deep architectures as feature
selectors as a pre-processing step with promising results [48, 50].

In another research D-GEX, a deep multi-task multi-layer feed forward network
was designed to use expression of landmark genes to deduce expressions of tar-
get genes. In biology landmarks genes are a set of genes (approximately 1000)
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than can represent approximately 80% of the information in the CMap data (http://
www.lincscloud.org/). This was discovered by LINCS program researchers (http://
www.lincsproject.org) while analyzing the gene expression profiles from the CMap
data using principal component analysis (PCA). Their experiments were conducted
on the GEO microarray expression data from the GEO database which consisted
of 129,158 gene expression profiles. Each profile contained 22,268 probes corre-
sponding to 978 genes landmark genes and 21,290 target genes. Using microarray
and RNA-seq expression data from the GEO database as input into a MLP model,
LINCS researchers were able to infer expression of up to 21,290 target genes. Chal-
lenged by the high-dimensionality of gene expression datasets, Fakoor et al. [38] in
their research applied principal component analysis (PCA) on their gene expression
microarray data. The resultant low-dimension dataset was then used to train a sparse
autoencoder classifier. Later they were able to use their model to classify various
types of cancers such as acute myeloid leukemia, breast cancer, ovarian cancer and
colon cancer. On one hand where gene expression data is high-dimensional, they are
usually limited by the small sample size present in the dataset. However Fakoor et al.
were able to show that cancer data derived from the same platform with the same
genes can be used as unlabeled data for training classifiers. Such a method allowed
them to generalize the feature sets across different cancers. This means for example
using data from other cancers such as prostrate, colon, lung, they were able to solve
breast cancer detection and classification problems.

5.6 Convolutional Neural Networks

Convolutional neural networks have been designed to work best when data is in the
form of images or in two-dimensional form. As such there have been quite a number
of studies that have used images such as images of tumor signatures for classification
[51]. However few studies have been conducted that directly utilizes convolutional
nets on gene expression or microarray data. This is mostly due to data available only
in biological sequence formats to solve gene expression regulation problems [52–54].
For example in a recent publication by Nguyen et al. [18] the authors used CNNs to
classify DNA sequences by treating DNA sequences as text data. Most of their DNA
sequencing data was sourced from the research of Pokholok et al. [55]. They trans-
lated the DNA sequence into sequence of words using the sliding window technique
(window size � 3, stride � 1). Using these parameters for convolution a dictionary
of 64 words was formed. After not encoding each word resulted in a two dimen-
sional structure which was then used an input for their CNNmodel for classification.
Figure 9 shows their DNA sequence converted as one-hot vector representation.

There have been some researchers that have used other forms of biological data
to predict gene expressions levels instead. Singh et al. [56] proposed a CNN frame-
work to classify expression levels of genes using histone modification data as input.
They emphasized histone modification signal data contained important information
about expression levels of genes. To be able to predict these expression levels using
DL therefore would prove useful in understanding their effects in gene regulation.

http://www.lincscloud.org/
http://www.lincsproject.org
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Fig. 9 One-hot vector
representation of DNA
sequence [18]
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Fig. 10 Gene histone modification marks in bin format [56]

Such knowledge can help in developing ‘epigenetic drugs’ for diseases like can-
cer. In their research they first extracted 5 core histone modification marks from
the REMC database (http://www.roadmapepigenomics.org/). For each histone, they
selected bins of 100 base-pairs (bp) extracted from regions flanking the transcription
start site (TSS) of each gene. The result was a 5 × 100 matrix for each gene where
rows represent the histone modification marks and columns represent different bins.
The expression level of a gene whether it is highly expressed (+) or lowly expressed
(−) could therefore be determined from the signal values of the 5 histone modifica-
tions in bin form. Figure 10 shows the 2D structure of histone modification marks in
bins for single genes and Fig. 11 shows their CNN model for gene expression level
prediction.

http://www.roadmapepigenomics.org/
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Fig. 11 DeepChrome convolutional neural network model [56]

5.7 Recurrent Neural Networks

Gene expression data can also be expressed in the form of time-series expression
data [46]. Xu et al. [57] in their research investigated the gene activities of whole
genomes using time-series gene expression data to infer genetic regulatory networks.
To determine the network parameters they trained their RNN model using particle
swarm optimisation (PSO) technique. Their hybrid RNN/PSO model helped in
understanding the regulatory interactions between genes. In another work Noman
et al. [58] proposed using a variant of the RNN model referred to as “decoupled
RNN” model. Their main aim was to use decoupled RNN to successfully infer gene
expressions from expression profiles. Several other literature report the use of RNNs
(some hybridised with other models) applied on gene related data such as in [59, 60].

6 Conclusion

Much progress has been made through research in learning algorithms. The next
frontier is to investigate and further develop deep learning as it shows much promise
especially with the rising computational power of systems. The chapter has sum-
marized the motivations and theoretical foundations of the significant deep learn-
ing models. Their applications to difficult real world problems are reviewed. Some
promising results from the complex problem of gene expression modeling are pre-
sented. Many future challenges remain and are identified for investigation as future
work. They include investigating algorithms and deep learning structures for incre-
mental learning, enhancement of intelligent algorithms for abstracting ontologies,
intelligent pre-processing of data ensuring minimal loss of information, extracting
information from outliers and possible models for a multi-agent based pattern extrac-
tion through deep learning.

Together with wet-lab techniques, Danaee et al. [61] emphasized the importance
of computer analysis of gene expression data for better understanding of the human
genome. However this requires shifting our attention to finding and recognising those
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subtle patterns in data which may hold the key for the discovery of disease diagnosis
and drug discovery. Although the research community has embraced applying data
mining methods on gene expression data to find causes of diseases such as cancer
there is still a critical need to identify genes that cause mutations in cells leading to
cancer; and ultimately find cures for these diseases.
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