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Preface

Books	on	big	data	tend	to	fall	into	one	of	two	categories:	either	they	offer	no	explanation	as	to	how	things
actually	work	or	they	are	highly	mathematical	textbooks	suitable	only	for	graduate	students.	The	aim	of	this
book	is	to	offer	an	alternative	by	providing	an	introduction	to	how	big	data	works	and	is	changing	the	world
about	us;	the	effect	it	has	on	our	everyday	lives;	and	the	effect	it	has	in	the	business	world.

Data	used	to	mean	documents	and	papers,	with	maybe	a	few	photos,	but	it	now	means	much	more	than	that.
Social	networking	sites	generate	large	amounts	of	data	in	the	form	of	images,	videos,	and	movies	on	a	minute
by	minute	basis.	Online	shopping	creates	data	as	we	enter	our	address	and	credit	card	details.	We	are	now	at	a
point	where	the	collection	and	storage	of	data	is	growing	at	a	rate	unimaginable	only	a	few	decades	ago	but,
as	we	will	see	in	this	book,	new	data	analysis	techniques	are	transforming	this	data	into	useful	information.
While	writing	this	book,	I	found	that	big	data	cannot	be	meaningfully	discussed	without	frequent	reference	to
its	collection,	storage,	analysis,	and	use	by	the	big	commercial	players.	Since	research	departments	in
companies	such	as	Google	and	Amazon	have	been	responsible	for	many	of	the	major	developments	in	big	data,
frequent	reference	will	be	made	to	them.

The	first	chapter	introduces	the	reader	to	the	diversity	of	data	in	general	before	explaining	how	the	digital	age
has	led	to	changes	in	the	way	we	define	data.	Big	data	is	introduced	informally	through	the	idea	of	the	data
explosion,	which	involves	computer	science,	statistics,	and	the	interface	between	them.	In	Chapters	2	to	4,	I
have	used	diagrams	quite	extensively	to	help	explain	some	of	the	new	methods	required	by	big	data.	The
second	chapter	explores	what	makes	big	data	special	and,	in	doing	so,	leads	us	to	a	more	specific	definition.	In
Chapter	3,	we	discuss	the	problems	related	to	storing	and	managing	big	data.	Most	people	are	familiar	with
the	need	to	back	up	the	data	on	their	personal	computer.	But	how	do	we	do	this	with	the	colossal	amounts	of
data	that	are	now	being	generated?	To	answer	this	question,	we	will	look	at	database	storage	and	the	idea	of
distributing	tasks	across	clusters	of	computers.	Chapter	4	argues	that	big	data	is	only	useful	if	we	can	extract
useful	information	from	it.	A	flavour	of	how	data	is	turned	into	information	is	given	using	simplified
explanations	of	several	well-established	techniques.

We	then	move	on	to	a	more	detailed	discussion	of	big	data	applications,	starting	in	Chapter	5	with	the	role	of
big	data	in	medicine.	Chapter	6	analyses	business	practices	with	case	studies	on	Amazon	and	Netflix,	each
highlighting	different	features	of	marketing	using	big	data.	Chapter	7	looks	at	some	of	the	security	issues
surrounding	big	data	and	the	importance	of	encryption.	Data	theft	has	become	a	big	problem	and	we	look	at
some	of	the	cases	that	have	been	in	the	news	including	Snowden	and	WikiLeaks.	The	chapter	concludes	by
showing	how	cybercrime	is	an	issue	that	big	data	needs	to	address.	In	the	final	chapter,	Chapter	8,	we
consider	how	big	data	is	changing	the	society	we	live	in,	through	the	development	of	sophisticated	robots	and
their	role	in	the	workplace.	A	consideration	of	the	smart	homes	and	smart	cities	of	the	future	concludes	the
book.

In	a	very	short	introduction	it	is	not	possible	to	mention	everything,	so	I	hope	the	reader	will	pursue	their
interests	through	the	Further	reading	section’s	recommendations.
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Chapter	1
The	data	explosion

What	is	data?
In	431	BCE,	Sparta	declared	war	on	Athens.	Thucydides,	in	his	account	of	the	war,	describes	how	besieged
Plataean	forces	loyal	to	Athens	planned	to	escape	by	scaling	the	wall	surrounding	Plataea	built	by	Spartan-led
Peloponnesian	forces.	To	do	this	they	needed	to	know	how	high	the	wall	was	so	that	they	could	make	ladders
of	suitable	length.	Much	of	the	Peloponnesian	wall	had	been	covered	with	rough	pebbledash,	but	a	section	was
found	where	the	bricks	were	still	clearly	visible	and	a	large	number	of	soldiers	were	each	given	the	task	of
counting	the	layers	of	these	exposed	bricks.	Working	at	a	distance	safe	from	enemy	attack	inevitably
introduced	mistakes,	but	as	Thucydides	explains,	given	that	many	counts	were	taken,	the	result	that	appeared
most	often	would	be	correct.	This	most	frequently	occurring	count,	which	we	would	now	refer	to	as	the	mode,
was	then	used	to	calculate	the	height	of	the	wall,	the	Plataeans	knowing	the	size	of	the	local	bricks	used,	and
ladders	of	the	length	required	to	scale	the	wall	were	constructed.	This	enabled	a	force	of	several	hundred	men
to	escape,	and	the	episode	may	well	be	considered	the	most	impressive	example	of	historic	data	collection	and
analysis.	But	the	collection,	storage,	and	analysis	of	data	pre-dates	even	Thucydides	by	many	centuries,	as	we
will	see.

Notches	have	been	found	on	sticks,	stones,	and	bones	dating	back	to	as	early	as	the	Upper	Paleolithic	era.
These	notches	are	thought	to	represent	data	stored	as	tally	marks,	though	this	is	still	open	to	academic
debate.	Perhaps	the	most	famous	example	is	the	Ishango	Bone,	found	in	the	Democratic	Republic	of	Congo	in
1950,	and	which	is	estimated	to	be	around	20,000	years	old.	This	notched	bone	has	been	variously	interpreted
as	a	calculator	or	a	calendar,	although	others	prefer	to	explain	the	notches	as	being	there	just	to	provide	a
better	grip.	The	Lebombo	Bone,	discovered	in	the	1970s	in	Swaziland,	is	even	older,	dating	from	around
35,000	BCE.	With	twenty-nine	lines	scored	across	it,	this	fragment	of	a	baboon’s	fibula	bears	a	striking
resemblance	to	the	calendar	sticks	still	used	by	bushmen	in	distant	Namibia,	suggesting	that	this	may	indeed
be	a	method	that	was	used	to	keep	track	of	data	important	to	their	civilization.

While	the	interpretation	of	these	notched	bones	is	still	open	to	speculation,	we	know	that	one	of	the	first	well-
documented	uses	of	data	is	the	census	undertaken	by	the	Babylonians	in	3800	BCE.	This	census	systematically
documented	population	numbers	and	commodities,	such	as	milk	and	honey,	in	order	to	provide	the	information
necessary	to	calculate	taxes.	The	early	Egyptians	also	used	data,	in	the	form	of	hieroglyphs	written	on	wood	or
papyrus,	to	record	the	delivery	of	goods	and	to	keep	track	of	taxes.	But	early	examples	of	data	usage	are	by	no
means	confined	to	Europe	and	Africa.	The	Incas	and	their	South	American	predecessors,	keen	to	record
statistics	for	tax	and	commercial	purposes,	used	a	sophisticated	and	complex	system	of	coloured	knotted
strings,	called	quipu,	as	a	decimal-based	accounting	system.	These	knotted	strings,	made	from	brightly	dyed
cotton	or	camelid	wool,	date	back	to	the	third	millennium	BCE,	and	although	fewer	than	a	thousand	are	known
to	have	survived	the	Spanish	invasion	and	subsequent	attempt	to	eradicate	them,	they	are	among	the	first
known	examples	of	a	massive	data	storage	system.	Computer	algorithms	are	now	being	developed	to	try	to
decode	the	full	meaning	of	the	quipu	and	enhance	our	understanding	of	how	they	were	used.

Although	we	can	think	of	and	describe	these	early	systems	as	using	data,	the	word	‘data’	is	actually	a	plural
word	of	Latin	origin,	with	‘datum’	being	the	singular.	‘Datum’	is	rarely	used	today	and	‘data’	is	used	for	both
singular	and	plural.	The	Oxford	English	Dictionary	attributes	the	first	known	use	of	the	term	to	the	17th-
century	English	cleric	Henry	Hammond	in	a	controversial	religious	tract	published	in	1648.	In	it	Hammond
used	the	phrase	‘heap	of	data’,	in	a	theological	sense,	to	refer	to	incontrovertible	religious	truths.	But	although
this	publication	stands	out	as	representing	the	first	use	of	the	term	‘data’	in	English,	it	does	not	capture	its	use
in	the	modern	sense	of	denoting	facts	and	figures	about	a	population	of	interest.	‘Data’,	as	we	now	understand
the	term,	owes	its	origins	to	the	scientific	revolution	in	the	18th	century	led	by	intellectual	giants	such	as
Priestley,	Newton,	and	Lavoisier;	and,	by	1809,	following	the	work	of	earlier	mathematicians,	Gauss	and
Laplace	were	laying	the	highly	mathematical	foundations	for	modern	statistical	methodology.

On	a	more	practical	level,	an	extensive	amount	of	data	was	collected	on	the	1854	cholera	outbreak	in	Broad
Street,	London,	allowing	physician	John	Snow	to	chart	the	outbreak.	By	doing	so,	he	was	able	to	lend	support
to	his	hypothesis	that	contaminated	water	spread	the	disease	and	to	show	that	it	was	not	airborne	as	had	been
previously	believed.	Gathering	data	from	local	inhabitants	he	established	that	those	affected	were	all	using	the
same	public	water	pump;	he	then	persuaded	the	local	parish	authorities	to	shut	it	down,	a	task	they



accomplished	by	removing	the	pump	handle.	Snow	subsequently	produced	a	map,	now	famous,	showing	that
the	illness	had	occurred	in	clusters	around	the	Broad	Street	pump.	He	continued	to	work	in	this	field,
collecting	and	analysing	data,	and	is	renowned	as	a	pioneering	epidemiologist.

Following	John	Snow’s	work,	epidemiologists	and	social	scientists	have	increasingly	found	demographic	data
invaluable	for	research	purposes,	and	the	census	now	taken	in	many	countries	proves	a	useful	source	of	such
information.	For	example,	data	on	the	birth	and	death	rate,	the	frequency	of	various	diseases,	and	statistics	on
income	and	crime	is	all	now	collected,	which	was	not	the	case	prior	to	the	19th	century.	The	census,	which
takes	place	every	ten	years	in	most	countries,	has	been	collecting	increasing	amounts	of	data,	which
eventually	has	resulted	in	more	than	could	realistically	be	recorded	by	hand	or	the	simple	tallying	machines
previously	used.	The	challenge	of	processing	these	ever-increasing	amounts	of	census	data	was	in	part	met	by
Herman	Hollerith	while	working	for	the	US	Census	Bureau.

By	the	1870	US	census,	a	simple	tallying	machine	was	in	operation	but	this	had	limited	success	in	reducing	the
work	of	the	Census	Bureau.	A	breakthrough	came	in	time	for	the	1890	census,	when	Herman	Hollerith’s
punched	cards	tabulator	for	storing	and	processing	data	was	used.	The	time	taken	to	process	the	US	census
data	was	usually	about	eight	years,	but	using	this	new	invention	the	time	was	reduced	to	one	year.	Hollerith’s
machine	revolutionized	the	analysis	of	census	data	in	countries	worldwide,	including	Germany,	Russia,
Norway,	and	Cuba.

Hollerith	subsequently	sold	his	machine	to	the	company	that	evolved	into	IBM,	which	then	developed	and
produced	a	widely	used	series	of	punch	card	machines.	In	1969,	the	American	National	Standards	Institute
(ANSI)	defined	the	Hollerith	Punched	Card	Code	(or	Hollerith	Card	Code),	honouring	Hollerith	for	his	early
punch	card	innovations.

Data	in	the	digital	age
Before	the	widespread	use	of	computers,	data	from	the	census,	scientific	experiments,	or	carefully	designed
sample	surveys	and	questionnaires	was	recorded	on	paper—a	process	that	was	time-consuming	and	expensive.
Data	collection	could	only	take	place	once	researchers	had	decided	which	questions	they	wanted	their
experiments	or	surveys	to	answer,	and	the	resulting	highly	structured	data,	transcribed	onto	paper	in	ordered
rows	and	columns,	was	then	amenable	to	traditional	methods	of	statistical	analysis.	By	the	first	half	of	the	20th
century	some	data	was	being	stored	on	computers,	helping	to	alleviate	some	of	this	labour-intensive	work,	but
it	was	through	the	launch	of	the	World	Wide	Web	(or	Web)	in	1989,	and	its	rapid	development,	that	it	became
increasingly	feasible	to	generate,	collect,	store,	and	analyse	data	electronically.	The	problems	inevitably
generated	by	the	very	large	volume	of	data	made	accessible	by	the	Web	then	needed	to	be	addressed,	and	we
first	look	at	how	we	may	make	distinctions	between	different	types	of	data.

The	data	we	derive	from	the	Web	can	be	classified	as	structured,	unstructured,	or	semi-structured.

Structured	data,	of	the	kind	written	by	hand	and	kept	in	notebooks	or	in	filing	cabinets,	is	now	stored
electronically	on	spreadsheets	or	databases,	and	consists	of	spreadsheet-style	tables	with	rows	and	columns,
each	row	being	a	record	and	each	column	a	well-defined	field	(e.g.	name,	address,	and	age).	We	are
contributing	to	these	structured	data	stores	when,	for	example,	we	provide	the	information	necessary	to	order
goods	online.	Carefully	structured	and	tabulated	data	is	relatively	easy	to	manage	and	is	amenable	to
statistical	analysis,	indeed	until	recently	statistical	analysis	methods	could	be	applied	only	to	structured	data.

In	contrast,	unstructured	data	is	not	so	easily	categorized	and	includes	photos,	videos,	tweets,	and	word-
processing	documents.	Once	the	use	of	the	World	Wide	Web	became	widespread,	it	transpired	that	many	such
potential	sources	of	information	remained	inaccessible	because	they	lacked	the	structure	needed	for	existing
analytic	techniques	to	be	applied.	However,	by	identifying	key	features,	data	that	appears	at	first	sight	to	be
unstructured	may	not	be	completely	without	structure.	Emails,	for	example,	contain	structured	metadata	in
the	heading	as	well	as	the	actual	unstructured	message	in	the	text	and	so	may	be	classified	as	semi-structured
data.	Metadata	tags,	which	are	essentially	descriptive	references,	can	be	used	to	add	some	structure	to
unstructured	data.	Adding	a	word	tag	to	an	image	on	a	website	makes	it	identifiable	and	so	easier	to	search
for.	Semi-structured	data	is	also	found	on	social	networking	sites,	which	use	hashtags	so	that	messages	(which
are	unstructured	data)	on	a	particular	topic	can	be	identified.	Dealing	with	unstructured	data	is	challenging:
since	it	cannot	be	stored	in	traditional	databases	or	spreadsheets,	special	tools	have	had	to	be	developed	to
extract	useful	information.	In	later	chapters	we	will	look	at	how	unstructured	data	is	stored.

The	term	‘data	explosion’,	which	heads	this	chapter,	refers	to	the	increasingly	vast	amounts	of	structured,
unstructured,	and	semi-structured	data	being	generated	minute	by	minute;	we	will	look	next	at	some	of	the
many	different	sources	that	produce	all	this	data.

Introduction	to	big	data
Just	in	researching	material	for	this	book	I	have	been	swamped	by	the	sheer	volume	of	data	available	on	the
Web—from	websites,	scientific	journals,	and	e-textbooks.	According	to	a	recent	worldwide	study	conducted	by
IBM,	about	2.5	exabytes	(Eb)	of	data	are	generated	every	day.	One	Eb	is	1018	(1	followed	by	eighteen	0s)	bytes



(or	a	million	terabytes	(Tb);	see	the	Big	data	byte	size	chart	at	the	end	of	this	book).	A	good	laptop	bought	at
the	time	of	writing	will	typically	have	a	hard	drive	with	1	or	2	Tb	of	storage	space.	Originally,	the	term	‘big
data’	simply	referred	to	the	very	large	amounts	of	data	being	produced	in	the	digital	age.	These	huge	amounts
of	data,	both	structured	and	unstructured,	include	all	the	Web	data	generated	by	emails,	websites,	and	social
networking	sites.

Approximately	80	per	cent	of	the	world’s	data	is	unstructured	in	the	form	of	text,	photos,	and	images,	and	so	it
is	not	amenable	to	the	traditional	methods	of	structured	data	analysis.	‘Big	data’	is	now	used	to	refer	not	just
to	the	total	amount	of	data	generated	and	stored	electronically,	but	also	to	specific	datasets	that	are	large	in
both	size	and	complexity,	with	which	new	algorithmic	techniques	are	required	in	order	to	extract	useful
information	from	them.	These	big	datasets	come	from	different	sources	so	let’s	take	a	more	detailed	look	at
some	of	them	and	the	data	they	generate.

Search	engine	data
In	2015,	Google	was	by	far	the	most	popular	search	engine	worldwide,	with	Microsoft’s	Bing	and	Yahoo	Search
coming	second	and	third,	respectively.	In	2012,	the	most	recent	year	for	which	data	is	publicly	available,	there
were	over	3.5	billion	searches	made	per	day	on	Google	alone.

Entering	a	key	term	into	a	search	engine	generates	a	list	of	the	most	relevant	websites,	but	at	the	same	time	a
considerable	amount	of	data	is	being	collected.	Web	tracking	generates	big	data.	As	an	exercise,	I	searched	on
‘border	collies’	and	clicked	on	the	top	website	returned.	Using	some	basic	tracking	software,	I	found	that	some
sixty-seven	third-party	site	connections	were	generated	just	by	clicking	on	this	one	website.	In	order	to	track
the	interests	of	people	who	access	the	site,	information	is	being	shared	in	this	way	between	commercial
enterprises.

Every	time	we	use	a	search	engine,	logs	are	created	recording	which	of	the	recommended	sites	we	visited.
These	logs	contain	useful	information	such	as	the	query	term	itself,	the	IP	address	of	the	device	used,	the	time
when	the	query	was	submitted,	how	long	we	stayed	on	each	site,	and	in	which	order	we	visited	them—all
without	identifying	us	by	name.	In	addition,	clickstream	logs	record	the	path	taken	as	we	visit	various	websites
as	well	as	our	navigation	within	each	website.	When	we	surf	the	Web,	every	click	we	make	is	recorded
somewhere	for	future	use.	Software	is	available	for	businesses	allowing	them	to	collect	the	clickstream	data
generated	by	their	own	website—a	valuable	marketing	tool.	For	example,	by	providing	data	on	the	use	of	the
system,	logs	can	help	detect	malicious	activity	such	as	identity	theft.	Logs	are	also	used	to	gauge	the
effectiveness	of	online	advertising,	essentially	by	counting	the	number	of	times	an	advertisement	is	clicked	on
by	a	website	visitor.

By	enabling	customer	identification,	cookies	are	used	to	personalize	your	surfing	experience.	When	you	make
your	first	visit	to	a	chosen	website,	a	cookie,	which	is	a	small	text	file,	usually	consisting	of	a	website	identifier
and	a	user	identifier,	will	be	sent	to	your	computer,	unless	you	have	blocked	the	use	of	cookies.	Each	time	you
visit	this	website,	the	cookie	sends	a	message	back	to	the	website	and	in	this	way	keeps	track	of	your	visits.	As
we	will	see	in	Chapter	6,	cookies	are	often	used	to	record	clickstream	data,	to	keep	track	of	your	preferences,
or	to	add	your	name	to	targeted	advertising.

Social	networking	sites	also	generate	a	vast	amount	of	data,	with	Facebook	and	Twitter	at	the	top	of	the	list.
By	the	middle	of	2016,	Facebook	had,	on	average,	1.71	billion	active	users	per	month,	all	generating	data,
resulting	in	about	1.5	petabytes	(Pb;	or	1,000	Tb)	of	Web	log	data	every	day.	YouTube,	the	popular	video-
sharing	website,	has	had	a	huge	impact	since	it	started	in	2005,	and	a	recent	YouTube	press	release	claims
that	there	are	over	a	billion	users	worldwide.	The	valuable	data	produced	by	search	engines	and	social
networking	sites	can	be	used	in	many	other	areas,	for	example	when	dealing	with	health	issues.

Healthcare	data
If	we	look	at	healthcare	we	find	an	area	which	involves	a	large	and	growing	percentage	of	the	world
population	and	which	is	increasingly	computerized.	Electronic	health	records	are	gradually	becoming	the
norm	in	hospitals	and	doctors’	surgeries,	with	the	primary	aim	being	to	make	it	easier	to	share	patient	data
with	other	hospitals	and	physicians,	and	so	to	facilitate	the	provision	of	better	healthcare.	The	collection	of
personal	data	through	wearable	or	implantable	sensors	is	on	the	increase,	particularly	for	health	monitoring,
with	many	of	us	using	personal	fitness	trackers	of	varying	complexity	which	output	ever	more	categories	of
data.	It	is	now	possible	to	monitor	a	patient’s	health	remotely	in	real-time	through	the	collection	of	data	on
blood	pressure,	pulse,	and	temperature,	thus	potentially	reducing	healthcare	costs	and	improving	quality	of
life.	These	remote	monitoring	devices	are	becoming	increasingly	sophisticated	and	now	go	beyond	basic
measurements	to	include	sleep	tracking	and	arterial	oxygen	saturation	rate.

Some	companies	offer	incentives	in	order	to	persuade	employees	to	use	a	wearable	fitness	device	and	to	meet
certain	targets	such	as	weight	loss	or	a	certain	number	of	steps	taken	per	day.	In	return	for	being	given	the
device,	the	employee	agrees	to	share	the	data	with	the	employer.	This	may	seem	reasonable	but	there	will
inevitably	be	privacy	issues	to	be	considered,	together	with	the	unwelcome	pressure	some	people	may	feel
under	to	opt	into	such	a	scheme.



Other	forms	of	employee	monitoring	are	becoming	more	frequent,	such	as	tracking	all	employee	activities	on
the	company-provided	computers	and	smartphones.	Using	customized	software,	this	tracking	can	include
everything	from	monitoring	which	websites	are	visited	to	logging	individual	keystrokes	and	checking	whether
the	computer	is	being	used	for	private	purposes	such	as	visiting	social	network	sites.	In	the	age	of	massive
data	leaks,	security	is	of	growing	concern	and	so	corporate	data	must	be	protected.	Monitoring	emails	and
tracking	websites	visited	are	just	two	ways	of	reducing	the	theft	of	sensitive	material.

As	we	have	seen,	personal	health	data	may	be	derived	from	sensors,	such	as	a	fitness	tracker	or	health
monitoring	device.	However,	much	of	the	data	being	collected	from	sensors	is	for	highly	specialized	medical
purposes.	Some	of	the	largest	data	stores	in	existence	are	being	generated	as	researchers	study	the	genes	and
sequencing	genomes	of	a	variety	of	species.	The	structure	of	the	deoxyribonucleic	acid	molecule	(DNA),
famous	for	holding	the	genetic	instructions	for	the	functioning	of	living	organisms,	was	first	described	as	a
double-helix	by	James	Watson	and	Francis	Crick	in	1953.	One	of	the	most	highly	publicized	research	projects
in	recent	years	has	been	the	international	human	genome	project,	which	determines	the	sequence,	or	exact
order,	of	the	three	billion	base-pairs	that	comprise	human	DNA.	Ultimately,	this	data	is	helping	research	teams
in	the	study	of	genetic	diseases.

Real-time	data
Some	data	is	collected,	processed,	and	used	in	real-time.	The	increase	in	computer	processing	power	has
allowed	an	increase	in	the	ability	to	process	as	well	as	generate	such	data	rapidly.	These	are	systems	where
response	time	is	crucial	and	so	data	must	be	processed	in	a	timely	manner.	For	example,	the	Global	Positioning
System	(GPS)	uses	a	system	of	satellites	to	scan	the	Earth	and	send	back	huge	amounts	of	real-time	data.	A
GPS	receiving	device,	maybe	in	your	car	or	smartphone	(‘smart’	indicates	that	an	item,	in	this	case	a	phone,
has	Internet	access	and	the	ability	to	provide	a	number	of	services	or	applications	(apps)	that	can	then	be
linked	together),	processes	these	satellite	signals	and	calculates	your	position,	time,	and	speed.

This	technology	is	now	being	used	in	the	development	of	driverless	or	autonomous	vehicles.	These	are	already
in	use	in	confined,	specialized	areas	such	as	factories	and	farms,	and	are	being	developed	by	a	number	of
major	manufacturers,	including	Volvo,	Tesla,	and	Nissan.	The	sensors	and	computer	programs	involved	have	to
process	data	in	real-time	to	reliably	navigate	to	your	destination	and	control	movement	of	the	vehicle	in
relation	to	other	road	users.	This	involves	prior	creation	of	3D	maps	of	the	routes	to	be	used	since	the	sensors
cannot	cope	with	non-mapped	routes.	Radar	sensors	are	used	to	monitor	other	traffic,	sending	back	data	to	an
external	central	executive	computer	which	controls	the	car.	Sensors	have	to	be	programmed	to	detect	shapes
and	distinguish	between,	for	example,	a	child	running	into	the	road	and	a	newspaper	blowing	across	it;	or	to
detect,	say,	an	emergency	traffic	layout	following	an	accident.	However,	these	cars	do	not	yet	have	the	ability
to	react	appropriately	to	all	the	problems	posed	by	an	ever-changing	environment.

The	first	fatal	crash	involving	an	autonomous	vehicle	occurred	in	2016,	when	neither	the	driver	nor	the
autopilot	reacted	to	a	vehicle	cutting	across	the	car’s	path,	meaning	that	the	brakes	were	not	applied.	Tesla,
the	makers	of	the	autonomous	vehicle,	in	a	June	2016	press	release	referred	to	the	‘extremely	rare
circumstances	of	the	impact’.	The	autopilot	system	warns	drivers	to	keep	their	hands	on	the	wheel	at	all	times
and	even	checks	that	they	are	doing	so.	Tesla	state	that	this	is	the	first	fatality	linked	to	their	autopilot	in	130
million	miles	of	driving,	compared	with	one	fatality	per	94	million	miles	of	regular,	non-automated	driving	in
the	US.

It	has	been	estimated	that	each	autonomous	car	will	generate	on	average	30	Tb	of	data	daily,	much	of	which
will	have	to	be	processed	almost	instantly.	A	new	area	of	research,	called	streaming	analytics,	which	bypasses
traditional	statistical	and	data	processing	methods,	hopes	to	provide	the	means	for	dealing	with	this	particular
big	data	problem.

Astronomical	data
In	April	2014	an	International	Data	Corporation	report	estimated	that,	by	2020,	the	digital	universe	will	be	44
trillion	gigabytes	(Gb;	or	1,000	megabytes	(Mb)),	which	is	about	ten	times	its	size	in	2013.	An	increasing
volume	of	data	is	being	produced	by	telescopes.	For	example,	the	Very	Large	Telescope	in	Chile	is	an	optical
telescope,	which	actually	consists	of	four	telescopes,	each	producing	huge	amounts	of	data—15	Tb	per	night,
every	night	in	total.	It	will	spearhead	the	Large	Synoptic	Survey,	a	ten-year	project	repeatedly	producing	maps
of	the	night	sky,	creating	an	estimated	grand	total	of	60	Pb	(250	bytes).

Even	bigger	in	terms	of	data	generation	is	the	Square	Kilometer	Array	Pathfinder	(ASKAP)	radio	telescope
being	built	in	Australia	and	South	Africa,	which	is	projected	to	begin	operation	in	2018.	It	will	produce	160	Tb
of	raw	data	per	second	initially,	and	ever	more	as	further	phases	are	completed.	Not	all	this	data	will	be	stored
but	even	so,	supercomputers	around	the	world	will	be	needed	to	analyse	the	remaining	data.

What	use	is	all	this	data?
It	is	now	almost	impossible	to	take	part	in	everyday	activities	and	avoid	having	some	personal	data	collected
electronically.	Supermarket	check-outs	collect	data	on	what	we	buy;	airlines	collect	information	about	our



travel	arrangements	when	we	purchase	a	ticket;	and	banks	collect	our	financial	data.

Big	data	is	used	extensively	in	commerce	and	medicine	and	has	applications	in	law,	sociology,	marketing,
public	health,	and	all	areas	of	natural	science.	Data	in	all	its	forms	has	the	potential	to	provide	a	wealth	of
useful	information	if	we	can	develop	ways	to	extract	it.	New	techniques	melding	traditional	statistics	and
computer	science	make	it	increasingly	feasible	to	analyse	large	sets	of	data.	These	techniques	and	algorithms
developed	by	statisticians	and	computer	scientists	search	for	patterns	in	data.	Determining	which	patterns	are
important	is	key	to	the	success	of	big	data	analytics.	The	changes	brought	about	by	the	digital	age	have
substantially	changed	the	way	data	is	collected,	stored,	and	analysed.	The	big	data	revolution	has	given	us
smart	cars	and	home-monitoring.

The	ability	to	gather	data	electronically	resulted	in	the	emergence	of	the	exciting	field	of	data	science,
bringing	together	the	disciplines	of	statistics	and	computer	science	in	order	to	analyse	these	large	quantities
of	data	to	discover	new	knowledge	in	interdisciplinary	areas	of	application.	The	ultimate	aim	of	working	with
big	data	is	to	extract	useful	information.	Decision-making	in	business,	for	example,	is	increasingly	based	on	the
information	gleaned	from	big	data,	and	expectations	are	high.	But	there	are	significant	problems,	not	least
with	the	shortage	of	trained	data	scientists	capable	of	effectively	developing	and	managing	the	systems
necessary	to	extract	the	desired	information.

By	using	new	methods	derived	from	statistics,	computer	science,	and	artificial	intelligence,	algorithms	are	now
being	designed	that	result	in	new	insights	and	advances	in	science.	For	example,	although	it	is	not	possible	to
predict	exactly	when	and	where	an	earthquake	will	occur,	an	increasing	number	of	organizations	are	using
data	collected	by	satellite	and	ground	sensors	to	monitor	seismic	activity.	The	aim	is	to	determine
approximately	where	big	earthquakes	are	likely	to	occur	in	the	long-term.	For	example,	the	US	Geological
Survey	(USGS),	a	major	player	in	seismic	research,	estimated	in	2016	that	‘there	is	a	76%	probability	that	a
magnitude	7	earthquake	will	occur	within	the	next	30	years	in	northern	California’.	Probabilities	such	as	these
help	focus	resources	on	measures	such	as	ensuring	that	buildings	are	better	able	to	withstand	earthquakes
and	having	disaster	management	programmes	in	place.	Several	companies	in	these	and	other	areas	are
working	with	big	data	to	provide	improved	forecasting	methods,	which	were	not	available	before	the	advent	of
big	data.	We	need	to	take	a	look	at	what	is	special	about	big	data.



Chapter	2
Why	is	big	data	special?

Big	data	didn’t	just	happen—it	was	closely	linked	to	the	development	of	computer	technology.	The	rapid	rate	of
growth	in	computing	power	and	storage	led	to	progressively	more	data	being	collected,	and,	regardless	of	who
first	coined	the	term,	‘big	data’	was	initially	all	about	size.	Yet	it	is	not	possible	to	define	big	data	exclusively	in
terms	of	how	many	Pb,	or	even	Eb,	are	being	generated	and	stored.	However,	a	useful	means	for	talking	about
the	‘big	data’	resulting	from	the	data	explosion	is	provided	by	the	term	‘small	data’—although	it	is	not	widely
used	by	statisticians.	Big	datasets	are	certainly	large	and	complex,	but	in	order	for	us	to	reach	a	definition,	we
need	first	to	understand	‘small	data’	and	its	role	in	statistical	analysis.

Big	data	versus	small	data
In	1919,	Ronald	Fisher,	now	widely	recognized	as	the	founder	of	modern	statistics	as	an	academically	rigorous
discipline,	arrived	at	Rothamsted	Agricultural	Experimental	Station	in	the	UK	to	work	on	analysing	crop	data.
Data	has	been	collected	from	the	Classical	Field	Experiments	conducted	at	Rothamsted	since	the	1840s,
including	both	their	work	on	winter	wheat	and	spring	barley	and	meteorological	data	from	the	field	station.
Fisher	started	the	Broadbalk	project	which	examined	the	effects	of	different	fertilizers	on	wheat,	a	project	still
running	today.

Recognizing	the	mess	the	data	was	in,	Fisher	famously	referred	to	his	initial	work	there	as	‘raking	over	the
muck	heap’.	However,	by	meticulously	studying	the	experimental	results	that	had	been	carefully	recorded	in
leather-bound	note	books	he	was	able	to	make	sense	of	the	data.	Working	under	the	constraints	of	his	time,
before	today’s	computing	technology,	Fisher	was	assisted	only	by	a	mechanical	calculator	as	he,	nonetheless
successfully,	performed	calculations	on	seventy	years	of	accumulated	data.	This	calculator,	known	as	the
Millionaire,	which	relied	for	power	on	a	tedious	hand-cranking	procedure,	was	innovative	in	its	day,	since	it
was	the	first	commercially	available	calculator	that	could	be	used	to	perform	multiplication.	Fisher’s	work	was
computationally	intensive	and	the	Millionaire	played	a	crucial	role	in	enabling	him	to	perform	the	many
required	calculations	that	any	modern	computer	would	complete	within	seconds.

Although	Fisher	collated	and	analysed	a	lot	of	data	it	would	not	be	considered	a	large	amount	today,	and	it
would	certainly	not	be	considered	‘big	data’.	The	crux	of	Fisher’s	work	was	the	use	of	precisely	defined	and
carefully	controlled	experiments,	designed	to	produce	highly	structured,	unbiased	sample	data.	This	was
essential	since	the	statistical	methods	then	available	could	only	be	applied	to	structured	data.	Indeed,	these
invaluable	techniques	still	provide	the	cornerstone	for	the	analysis	of	small,	structured	sets	of	data.	However,
those	techniques	are	not	applicable	to	the	very	large	amounts	of	data	we	can	now	access	with	so	many
different	digital	sources	available	to	us.

Big	data	defined
In	the	digital	age	we	are	no	longer	entirely	dependent	on	samples,	since	we	can	often	collect	all	the	data	we
need	on	entire	populations.	But	the	size	of	these	increasingly	large	sets	of	data	cannot	alone	provide	a
definition	for	the	term	‘big	data’—we	must	include	complexity	in	any	definition.	Instead	of	carefully
constructed	samples	of	‘small	data’	we	are	now	dealing	with	huge	amounts	of	data	that	has	not	been	collected
with	any	specific	questions	in	mind	and	is	often	unstructured.	In	order	to	characterize	the	key	features	that
make	data	big	and	move	towards	a	definition	of	the	term,	Doug	Laney,	writing	in	2001,	proposed	using	the
three	‘v’s:	volume,	variety,	and	velocity.	By	looking	at	each	of	these	in	turn	we	can	get	a	better	idea	of	what	the
term	‘big	data’	means.

Volume
‘Volume’	refers	to	the	amount	of	electronic	data	that	is	now	collected	and	stored,	which	is	growing	at	an	ever-
increasing	rate.	Big	data	is	big,	but	how	big?	It	would	be	easy	just	to	set	a	specific	size	as	denoting	‘big’	in	this
context,	but	what	was	considered	‘big’	ten	years	ago	is	no	longer	big	by	today’s	standards.	Data	acquisition	is
growing	at	such	a	rate	that	any	chosen	limit	would	inevitably	soon	become	outdated.	In	2012,	IBM	and	the
University	of	Oxford	reported	the	findings	of	their	Big	Data	Work	Survey.	In	this	international	survey	of	1,144



professionals	working	in	ninety-five	different	countries,	over	half	judged	datasets	of	between	1	Tb	and	1	Pb	to
be	big,	while	about	a	third	of	respondents	fell	in	the	‘don’t	know’	category.	The	survey	asked	respondents	to
choose	either	one	or	two	defining	characteristics	of	big	data	from	a	choice	of	eight;	only	10	per	cent	voted	for
‘large	volumes	of	data’	with	the	top	choice	being	‘a	greater	scope	of	information’,	which	attracted	18	per	cent.
Another	reason	why	there	can	be	no	definitive	limit	based	solely	on	size	is	because	other	factors,	like	storage
and	the	type	of	data	being	collected,	change	over	time	and	affect	our	perception	of	volume.	Of	course,	some
datasets	are	very	big	indeed,	including,	for	example,	those	obtained	by	the	Large	Hadron	Collider	at	CERN,
the	world’s	premier	particle	accelerator,	which	has	been	operating	since	2008.	Even	after	extracting	only	1	per
cent	of	the	total	data	generated,	scientists	still	have	25	Pb	to	process	annually.	Generally,	we	can	say	the
volume	criterion	is	met	if	the	dataset	is	such	that	we	cannot	collect,	store,	and	analyse	it	using	traditional
computing	and	statistical	methods.	Sensor	data,	such	as	that	generated	by	the	Large	Hadron	Collider,	is	just
one	variety	of	big	data,	so	let’s	consider	some	of	the	others.

Variety
Though	you	may	often	see	the	terms	‘Internet’	and	‘World	Wide	Web’	used	interchangeably,	they	are	actually
very	different.	The	Internet	is	a	network	of	networks,	consisting	of	computers,	computer	networks,	local	area
networks	(LANs),	satellites,	and	cellphones	and	other	electronic	devices,	all	linked	together	and	able	to	send
bundles	of	data	to	one	another,	which	they	do	using	an	IP	(Internet	protocol)	address.	The	World	Wide	Web
(www,	or	Web),	described	by	its	inventor,	T.	J.	Berners-Lee,	as	‘a	global	information	system’,	exploited	Internet
access	so	that	all	those	with	a	computer	and	a	connection	could	communicate	with	other	users	through	such
media	as	email,	instant	messaging,	social	networking,	and	texting.	Subscribers	to	an	ISP	(Internet	services
provider)	can	connect	to	the	Internet	and	so	access	the	Web	and	many	other	services.

Once	we	are	connected	to	the	Web,	we	have	access	to	a	chaotic	collection	of	data,	from	sources	both	reliable
and	suspect,	prone	to	repetition	and	error.	This	is	a	long	way	from	the	clean	and	precise	data	demanded	by
traditional	statistics.	Although	the	data	collected	from	the	Web	can	be	structured,	unstructured,	or	semi-
structured	resulting	in	significant	variety	(e.g.	unstructured	word-processed	documents	or	posts	found	on
social	networking	sites;	and	semi-structured	spreadsheets),	most	of	the	big	data	derived	from	the	Web	is
unstructured.	Twitter	users,	for	example,	publish	approximately	500	million	140-character	messages,	or
tweets,	per	day	worldwide.	These	short	messages	are	valuable	commercially	and	are	often	analysed	according
to	whether	the	sentiment	expressed	is	positive,	negative,	or	neutral.	This	new	area	of	sentiment	analysis
requires	specially	developed	techniques	and	is	something	we	can	do	effectively	only	by	using	big	data
analytics.	Although	a	great	variety	of	data	is	collected	by	hospitals,	the	military,	and	many	commercial
enterprises	for	a	number	of	purposes,	ultimately	it	can	all	be	classified	as	structured,	unstructured,	or	semi-
structured.

Velocity
Data	is	now	streaming	continuously	from	sources	such	as	the	Web,	smartphones,	and	sensors.	Velocity	is
necessarily	connected	with	volume:	the	faster	data	is	generated,	the	more	there	is.	For	example,	the	messages
on	social	media	that	now	‘go	viral’	are	transmitted	in	such	a	way	as	to	have	a	snowball	effect:	I	post	something
on	social	media,	my	friends	look	at	it,	and	each	shares	it	with	their	friends,	and	so	on.	Very	quickly	these
messages	make	their	way	around	the	world.

Velocity	also	refers	to	the	speed	at	which	data	is	electronically	processed.	For	example,	sensor	data,	such	as
that	being	generated	by	an	autonomous	car,	is	necessarily	generated	in	real-time.	If	the	car	is	to	work	reliably,
the	data,	sent	wirelessly	to	a	central	location,	must	be	analysed	very	quickly	so	that	the	necessary	instructions
can	be	sent	back	to	the	car	in	a	timely	fashion.

Variability	may	be	considered	as	an	additional	dimension	of	the	velocity	concept,	referring	to	the	changing
rates	in	flow	of	data,	such	as	the	considerable	increase	in	data	flow	during	peak	times.	This	is	significant
because	computer	systems	are	more	prone	to	failure	at	these	times.

Veracity
As	well	as	the	original	three	‘v’s	suggested	by	Laney,	we	may	add	‘veracity’	as	a	fourth.	Veracity	refers	to	the
quality	of	the	data	being	collected.	Data	that	is	accurate	and	reliable	has	been	the	hallmark	of	statistical
analysis	in	the	past	century.	Fisher,	and	others,	strived	to	devise	methods	encapsulating	these	two	concepts,
but	the	data	generated	in	the	digital	age	is	often	unstructured,	and	often	collected	without	experimental
design	or,	indeed,	any	concept	of	what	questions	might	be	of	interest.	And	yet	we	seek	to	gain	information
from	this	mish-mash.	Take,	for	example,	the	data	generated	by	social	networks.	This	data	is	by	its	very	nature
imprecise,	uncertain,	and	often	the	information	posted	is	simply	not	true.	So	how	can	we	trust	the	data	to	yield
meaningful	results?	Volume	can	help	in	overcoming	these	problems—as	we	saw	in	Chapter	1,	when	Thucydides
described	the	Plataean	forces	engaging	the	greatest	possible	number	of	soldiers	counting	bricks	in	order	to	be
more	likely	to	get	(close	to)	the	correct	height	of	the	wall	they	wished	to	scale.	However,	we	need	to	be	more
cautious,	as	we	know	from	statistical	theory,	greater	volume	can	lead	to	the	opposite	result,	in	that,	given
sufficient	data,	we	can	find	any	number	of	spurious	correlations.



Visualization	and	other	‘v’s
‘V’	has	become	the	letter	of	choice,	with	competing	definitions	adding	or	substituting	such	terms	as
‘vulnerability’	and	‘viability’	to	Laney’s	original	three—the	most	important	perhaps	of	these	additions	being
‘value’	and	‘visualization’.	Value	generally	refers	to	the	quality	of	the	results	derived	from	big	data	analysis.	It
has	also	been	used	to	describe	the	selling	by	commercial	enterprises	of	data	to	firms	who	then	process	it	using
their	own	analytics,	and	so	it	is	a	term	often	referred	to	in	the	data	business	world.

Visualization	is	not	a	characterizing	feature	of	big	data,	but	it	is	important	in	the	presentation	and
communication	of	analytic	results.	The	familiar	static	pie	charts	and	bar	graphs	that	help	us	to	understand
small	datasets	have	been	further	developed	to	aid	in	the	visual	interpretation	of	big	data,	but	these	are	limited
in	their	applicability.	Infographics,	for	example,	provide	a	more	complex	presentation	but	are	static.	Since	big
data	is	constantly	being	added	to,	the	best	visualizations	are	interactive	for	the	user	and	updated	regularly	by
the	originator.	For	example,	when	we	use	GPS	for	planning	a	car	journey,	we	are	accessing	a	highly	interactive
graphic,	based	on	satellite	data,	to	track	our	position.

Taken	together,	the	four	main	characteristics	of	big	data—volume,	variety,	velocity,	and	veracity—present	a
considerable	challenge	in	data	management.	The	advantages	we	expect	to	gain	from	meeting	this	challenge
and	the	questions	we	hope	to	answer	with	big	data	can	be	understood	through	data	mining.

Big	data	mining
‘Data	is	the	new	oil’,	a	phrase	that	is	common	currency	among	leaders	in	industry,	commerce,	and	politics,	is
usually	attributed	to	Clive	Humby	in	2006,	the	originator	of	Tesco’s	customer	loyalty	card.	It’s	a	catchy	phrase
and	suggests	that	data,	like	oil,	is	extremely	valuable	but	must	first	be	processed	before	that	value	can	be
realized.	The	phrase	is	primarily	used	as	a	marketing	ploy	by	data	analytics	providers	hoping	to	sell	their
products	by	convincing	companies	that	big	data	is	the	future.	It	may	well	be,	but	the	metaphor	only	holds	so
far.	Once	you	strike	oil	you	have	a	marketable	commodity.	Not	so	with	big	data;	unless	you	have	the	right	data
you	can	produce	nothing	of	value.	Ownership	is	an	issue;	privacy	is	an	issue;	and,	unlike	oil,	data	appears	not
to	be	a	finite	resource.	However,	continuing	loosely	with	the	industrial	metaphor,	mining	big	data	is	the	task	of
extracting	useful	and	valuable	information	from	massive	datasets.

Using	data	mining	and	machine	learning	methods	and	algorithms,	it	is	possible	not	only	to	detect	unusual
patterns	or	anomalies	in	data,	but	also	to	predict	them.	In	order	to	acquire	this	kind	of	knowledge	from	big
datasets,	either	supervised	or	unsupervised	machine	learning	techniques	may	be	used.	Supervised	machine
learning	can	be	thought	of	as	roughly	comparable	to	learning	from	example	in	humans.	Using	training	data,
where	correct	examples	are	labelled,	a	computer	program	develops	a	rule	or	algorithm	for	classifying	new
examples.	This	algorithm	is	checked	using	the	test	data.	In	contrast,	unsupervised	learning	algorithms	use
unlabelled	input	data	and	no	target	is	given;	they	are	designed	to	explore	data	and	discover	hidden	patterns.

As	an	example	let’s	look	at	credit	card	fraud	detection,	and	see	how	each	method	is	used.

Credit	card	fraud	detection
A	lot	of	effort	goes	into	detecting	and	preventing	credit	card	fraud.	If	you	have	been	unfortunate	enough	to
receive	a	phone	call	from	your	credit	card	fraud	detection	office,	you	may	be	wondering	how	the	decision	was
reached	that	the	recently	made	purchase	on	your	card	had	a	good	chance	of	being	fraudulent.	Given	the	huge
number	of	credit	card	transactions	it	is	no	longer	feasible	to	have	humans	checking	transactions	using
traditional	data	analysis	techniques,	and	so	big	data	analytics	are	increasingly	becoming	necessary.
Understandably,	financial	institutions	are	unwilling	to	share	details	of	their	fraud	detection	methods	since
doing	so	would	give	cyber	criminals	the	information	they	need	to	develop	ways	round	it.	However,	the	broad
brush	strokes	present	an	interesting	picture.

There	are	several	possible	scenarios	but	we	can	look	at	personal	banking	and	consider	the	case	in	which	a
credit	card	has	been	stolen	and	used	in	conjunction	with	other	stolen	information,	such	as	the	card	PIN
(personal	identification	number).	In	this	case,	the	card	might	show	a	sudden	increase	in	expenditure—a	fraud
that	is	easily	detected	by	the	card	issuing	agency.	More	often,	a	fraudster	will	first	use	a	stolen	card	for	a	‘test
transaction’	in	which	something	inexpensive	is	purchased.	If	this	does	not	raise	any	alarms,	then	a	bigger
amount	is	taken.	Such	transactions	may	or	may	not	be	fraudulent—maybe	a	cardholder	bought	something
outside	of	their	usual	purchasing	pattern,	or	maybe	they	actually	just	spent	a	lot	that	month.	So	how	do	we
detect	which	transactions	are	fraudulent?	Let’s	look	first	at	an	unsupervised	technique,	called	clustering,	and
how	it	might	be	used	in	this	situation.

Clustering
Based	on	artificial	intelligence	algorithms,	clustering	methods	can	be	used	to	detect	anomalies	in	customer
purchasing	behaviour.	We	are	looking	for	patterns	in	transaction	data	and	want	to	detect	anything	unusual	or
suspicious	which	may	or	may	not	be	fraudulent.



A	credit	card	company	gathers	lots	of	data	and	uses	it	to	form	profiles	showing	the	purchasing	behaviour	of
their	customers.	Clusters	of	profiles	with	similar	properties	are	then	identified	electronically	using	an	iterative
(i.e.	repeating	a	process	to	generate	a	result)	computer	program.	For	example,	a	cluster	may	be	defined	on
accounts	with	a	typical	spending	range	or	location,	a	customer’s	upper	spending	limit,	or	on	the	kind	of	items
purchased,	each	resulting	in	a	separate	cluster.

When	data	is	collected	by	a	credit	card	provider	it	does	not	carry	any	label	indicating	whether	the	transactions
are	genuine	or	fraudulent.	Our	task	is	to	use	this	data	as	input	and,	using	a	suitable	algorithm,	accurately
categorize	transactions.	To	do	this,	we	will	need	to	find	similar	groups,	or	clusters,	within	the	input	data.	So,
for	example,	we	might	group	data	according	to	the	amount	spent,	the	location	where	the	transaction	took
place,	the	kind	of	purchase	made,	or	the	age	of	the	card	holder.	When	a	new	transaction	is	made,	the	cluster
identification	is	computed	for	that	transaction	and	if	it	is	different	from	the	existing	cluster	identification	for
that	customer,	it	is	treated	as	suspicious.	Even	if	it	falls	within	the	usual	cluster,	if	it	is	sufficiently	far	from	the
centre	of	the	cluster	it	may	still	arouse	suspicion.

For	example,	say	an	83-year-old	grandmother	living	in	Pasadena	purchases	a	flashy	sports	car;	if	this	does	not
cluster	with	her	usual	purchasing	behaviour	of,	say,	groceries	and	visits	to	the	hairdresser,	it	would	be
considered	anomalous.	Anything	out	of	the	ordinary,	like	this	purchase,	is	considered	worthy	of	further
investigation,	usually	starting	by	contacting	the	card	owner.	In	Figure	1	we	see	a	very	simple	example	of	a
cluster	diagram	representing	this	situation.

1.	A	cluster	diagram.

Cluster	B	shows	the	grandmother’s	usual	monthly	expenditure	clustered	with	other	people	who	have	a	similar
monthly	expenditure.	Now,	in	some	circumstances,	for	example	when	taking	her	annual	vacation,	the
grandmother’s	expenditure	for	the	month	increases,	perhaps	grouping	her	with	those	in	Cluster	C,	which	is
not	too	far	distant	from	Cluster	B	and	so	not	drastically	dissimilar.	Even	so,	since	it	is	in	a	different	cluster,	it
would	be	checked	as	suspicious	account	activity,	but	the	purchase	of	the	flashy	sports	car	on	her	account	puts
her	expenditure	into	Cluster	A,	which	is	very	distant	from	her	usual	cluster	and	so	is	highly	unlikely	to	reflect	a
legitimate	purchase.

In	contrast	to	this	situation,	if	we	already	have	a	set	of	examples	where	we	know	fraud	has	occurred,	instead
of	clustering	algorithms	we	can	use	classification	methods,	which	provide	another	data	mining	technique	used
for	fraud	detection.

Classification
Classification,	a	supervised	learning	technique,	requires	prior	knowledge	of	the	groups	involved.	We	start	with
a	dataset	in	which	each	observation	is	already	correctly	labelled	or	classified.	This	is	divided	into	a	training
set,	which	enables	us	to	build	a	classification	model	of	the	data,	and	a	test	set,	which	is	used	to	check	that	the
model	is	a	good	one.	We	can	then	use	this	model	to	classify	new	observations	as	they	arise.

To	illustrate	classification,	we	will	build	a	small	decision	tree	for	detecting	credit	card	fraud.

To	build	our	decision	tree,	let	us	suppose	that	credit	card	transaction	data	has	been	collected	and	transactions
classified	as	genuine	or	fraudulent	based	on	our	historical	knowledge	are	provided,	as	shown	in	Figure	2.



2.	Fraud	dataset	with	known	classifications.

Using	this	data,	we	can	build	the	decision	tree	shown	in	Figure	3,	which	will	allow	the	computer	to	classify
new	transactions	entering	the	system.	We	wish	to	arrive	at	one	of	the	two	possible	transaction	classifications,
genuine	or	fraudulent,	by	asking	a	series	of	questions.

3.	Decision	tree	for	transactions.

By	starting	at	the	top	of	the	tree	in	Figure	3,	we	have	a	series	of	test	questions	which	will	enable	us	to	classify
a	new	transaction.

For	example,	if	Mr	Smith’s	account	shows	that	he	has	reported	his	credit	card	as	lost	or	stolen,	then	any
attempt	to	use	it	is	deemed	fraudulent.	If	the	card	has	not	been	reported	lost	or	stolen,	then	the	system	will
check	to	see	if	an	unusual	item	or	an	item	costing	an	unusual	amount	for	this	customer	has	been	purchased.	If
not,	then	the	transaction	is	seen	as	nothing	out	of	the	ordinary	and	labelled	as	genuine.	On	the	other	hand,	if
the	item	is	unusual	then	a	phone	call	to	Mr	Smith	will	be	triggered.	If	he	confirms	that	he	did	make	the
purchase,	then	it	is	deemed	genuine;	if	not,	fraudulent.

Having	arrived	at	an	informal	definition	of	big	data,	and	considered	the	kinds	of	questions	that	can	be
answered	by	mining	big	data,	let	us	now	turn	to	the	problems	of	data	storage.



Chapter	3
Storing	big	data

The	first	hard	drive,	developed	and	sold	by	IBM	in	San	Jose,	California,	had	a	storage	capacity	of	about	5	Mb,
held	on	fifty	disks,	each	24	inches	in	diameter.	This	was	cutting	edge	technology	in	1956.	The	device	was
physically	massive,	weighed	over	1	ton,	and	was	part	of	a	mainframe	computer.	By	the	time	of	the	Apollo	11
moon	landing	in	1969,	NASA’s	Manned	Spacecraft	Center	in	Houston	was	using	mainframe	computers	that
each	had	up	to	8	Mb	of	memory.	Amazingly,	the	onboard	computer	for	the	Apollo	11	moon	landing	craft,
piloted	by	Neil	Armstrong,	had	a	mere	64	kilobytes	(Kb)	of	memory.

Computer	technology	progressed	rapidly	and	by	the	start	of	the	personal	computer	boom	in	the	1980s,	the
average	hard	drive	on	a	PC	was	5	Mb	when	one	was	included,	which	was	not	always	the	case.	This	would	hold
one	or	two	photos	or	images	today.	Computer	storage	capacity	increased	very	quickly	and	although	personal
computer	storage	has	not	kept	up	with	big	data	storage,	it	has	increased	dramatically	in	recent	years.	Now,
you	can	buy	a	PC	with	an	8	Tb	hard	drive	or	even	bigger.	Flash	drives	are	now	available	with	1	Tb	of	storage,
which	is	sufficient	to	store	approximately	500	hours	of	movies	or	over	300,000	photos.	This	seems	a	lot	until
we	contrast	it	with	the	estimated	2.5	Eb	of	new	data	being	generated	every	day.

Once	the	change	from	valves	to	transistors	took	place	in	the	1960s	the	number	of	transistors	that	could	be
placed	on	a	chip	grew	very	rapidly,	roughly	in	accordance	with	Moore’s	Law,	which	we	discuss	in	the	next
section.	And	despite	predictions	that	the	limit	of	miniaturization	was	about	to	be	reached	it	continues	to	be	a
reasonable	and	useful	approximation.	We	can	now	cram	billions	of	increasingly	faster	transistors	onto	a	chip,
which	allows	us	to	store	ever	greater	quantities	of	data,	while	multi-core	processors	together	with	multi-
threading	software	make	it	possible	to	process	that	data.

Moore’s	Law
In	1965,	Gordon	Moore,	who	became	the	co-founder	of	Intel,	famously	predicted	that	over	the	next	ten	years
the	number	of	transistors	incorporated	in	a	chip	would	approximately	double	every	twenty-four	months.	In
1975,	he	changed	his	prediction	and	suggested	the	complexity	would	double	every	twelve	months	for	five
years	and	then	fall	back	to	doubling	every	twenty-four	months.	David	House,	a	colleague	at	Intel,	after	taking
into	account	the	increasing	speed	of	transistors,	suggested	that	the	performance	of	microchips	would	double
every	eighteen	months,	and	it	is	currently	the	latter	prediction	that	is	most	often	used	for	Moore’s	Law.	This
prediction	has	proved	remarkably	accurate;	computers	have	indeed	become	faster,	cheaper,	and	more
powerful	since	1965,	but	Moore	himself	feels	that	this	‘law’	will	soon	cease	to	hold.

According	to	M.	Mitchell	Waldrop	in	an	article	published	in	the	February	2016	edition	of	the	scientific	journal
Nature,	the	end	is	indeed	nigh	for	Moore’s	Law.	A	microprocessor	is	the	integrated	circuit	responsible	for
performing	the	instructions	provided	by	a	computer	program.	This	usually	consists	of	billions	of	transistors,
embedded	in	a	tiny	space	on	a	silicon	microchip.	A	gate	in	each	transistor	allows	it	to	be	either	switched	on	or
off	and	so	it	can	be	used	to	store	0	and	1.	A	very	small	input	current	flows	through	each	transistor	gate	and
produces	an	amplified	output	current	when	the	gate	is	closed.	Mitchell	Waldrop	was	interested	in	the	distance
between	gates,	currently	at	14-nanometer	gaps	in	top	microprocessors,	and	stated	that	the	problems	of	heat
generation	caused	by	closer	circuitry	and	how	it	is	to	be	effectively	dissipated	were	causing	the	exponential
growth	predicted	by	Moore’s	Law	to	falter,	which	drew	our	attention	to	the	fundamental	limits	he	saw	rapidly
approaching.

A	nanometre	is	10−9	metre,	or	one-millionth	of	a	millimetre.	To	put	this	in	context,	a	human	hair	is	about
75,000	nanometres	in	diameter	and	the	diameter	of	an	atom	is	between	0.1	and	0.5	nanometres.	Paolo	Gargini,
who	works	for	Intel,	claimed	that	the	gap	limit	will	be	2	or	3	nanometres	and	will	be	reached	in	the	not	too
distant	future—maybe	as	soon	as	the	2020s.	Waldrop	speculates	that	‘at	that	scale,	electron	behaviour	will	be
governed	by	quantum	uncertainties	that	will	make	transistors	hopelessly	unreliable’.	As	we	will	see	in	Chapter
7,	it	seems	quite	likely	that	quantum	computers,	a	technology	still	in	its	infancy,	will	eventually	provide	the
way	forward.

Moore’s	Law	is	now	also	applicable	to	the	rate	of	growth	for	data	as	the	amount	generated	appears	to
approximately	double	every	two	years.	Data	increases	as	storage	capacity	increases	and	the	capacity	to



process	data	increases.	We	are	all	beneficiaries:	Netflix,	smartphones,	the	Internet	of	Things	(IoT;	a	convenient
way	of	referring	to	the	vast	numbers	of	electronic	sensors	connected	to	the	Internet),	and	the	Cloud	(a
worldwide	network	of	interconnected	servers)	computing,	among	others,	have	all	become	possible	because	of
the	exponential	growth	predicted	by	Moore’s	Law.	All	this	generated	data	has	to	be	stored,	and	we	look	at	this
next.

Storing	structured	data
Anyone	who	uses	a	personal	computer,	laptop,	or	smartphone	accesses	data	stored	in	a	database.	Structured
data,	such	as	bank	statements	and	electronic	address	books,	are	stored	in	a	relational	database.	In	order	to
manage	all	this	structured	data,	a	relational	database	management	system	(RDBMS)	is	used	to	create,
maintain,	access,	and	manipulate	the	data.	The	first	step	is	to	design	the	database	schema	(i.e.	the	structure	of
the	database).	In	order	to	achieve	this,	we	need	to	know	the	data	fields	and	be	able	to	arrange	them	in	tables,
and	we	then	need	to	identify	the	relationships	between	the	tables.	Once	this	has	been	accomplished	and	the
database	constructed	we	can	populate	it	with	data	and	interrogate	it	using	structured	query	language	(SQL).

Clearly	tables	have	to	be	designed	carefully	and	it	would	require	a	lot	of	work	to	make	significant	changes.
However,	the	relational	model	should	not	be	underestimated.	For	many	structured	data	applications,	it	is	fast
and	reliable.	An	important	aspect	of	relational	database	design	involves	a	process	called	normalization	which
includes	reducing	data	duplication	to	a	minimum	and	hence	reduces	storage	requirements.	This	allows
speedier	queries,	but	even	so	as	the	volume	of	data	increases	the	performance	of	these	traditional	databases
decreases.

The	problem	is	one	of	scalability.	Since	relational	databases	are	essentially	designed	to	run	on	just	one	server,
as	more	and	more	data	is	added	they	become	slow	and	unreliable.	The	only	way	to	achieve	scalability	is	to	add
more	computing	power,	which	has	its	limits.	This	is	known	as	vertical	scalability.	So	although	structured	data
is	usually	stored	and	managed	in	an	RDBMS,	when	the	data	is	big,	say	in	terabytes	or	petabytes	and	beyond,
the	RDBMS	no	longer	works	efficiently,	even	for	structured	data.

An	important	feature	of	relational	databases	and	a	good	reason	for	continuing	to	use	them	is	that	they	conform
to	the	following	group	of	properties:	atomicity,	consistency,	isolation,	and	durability,	usually	known	as	ACID.
Atomicity	ensures	that	incomplete	transactions	cannot	update	the	database;	consistency	excludes	invalid	data;
isolation	ensures	one	transaction	does	not	interfere	with	another	transaction;	and	durability	means	that	the
database	must	update	before	the	next	transaction	is	carried	out.	All	these	are	desirable	properties	but	storing
and	accessing	big	data,	which	is	mostly	unstructured,	requires	a	different	approach.

Unstructured	data	storage
For	unstructured	data,	the	RDBMS	is	inappropriate	for	several	reasons,	not	least	that	once	the	relational
database	schema	has	been	constructed,	it	is	difficult	to	change	it.	In	addition,	unstructured	data	cannot	be
organized	conveniently	into	rows	and	columns.	As	we	have	seen,	big	data	is	often	high-velocity	and	generated
in	real-time	with	real-time	processing	requirements,	so	although	the	RDBMS	is	excellent	for	many	purposes
and	serves	us	well,	given	the	current	data	explosion	there	has	been	intensive	research	into	new	storage	and
management	techniques.

In	order	to	store	these	massive	datasets,	data	is	distributed	across	servers.	As	the	number	of	servers	involved
increases,	the	chance	of	failure	at	some	point	also	increases,	so	it	is	important	to	have	multiple,	reliably
identical	copies	of	the	same	data,	each	stored	on	a	different	server.	Indeed,	with	the	massive	amounts	of	data
now	being	processed,	systems	failure	is	taken	as	inevitable	and	so	ways	of	coping	with	this	are	built	into	the
methods	of	storage.	So	how	are	the	needs	for	speed	and	reliability	to	be	met?

Hadoop	Distributed	File	System
A	distributed	file	system	(DFS)	provides	effective	and	reliable	storage	for	big	data	across	many	computers.
Influenced	by	the	ideas	published	in	October	2003	by	Google	in	a	research	paper	launching	the	Google	File
System,	Doug	Cutting,	who	was	then	working	at	Yahoo,	and	his	colleague	Mike	Cafarella,	a	graduate	student
at	the	University	of	Washington,	went	to	work	on	developing	the	Hadoop	DFS.	Hadoop,	one	of	the	most
popular	DFS,	is	part	of	a	bigger,	open-source	software	project	called	the	Hadoop	Ecosystem.	Named	after	a
yellow	soft	toy	elephant	owned	by	Cutting’s	son,	Hadoop	is	written	in	the	popular	programming	language,
Java.	If	you	use	Facebook,	Twitter,	or	eBay,	for	example,	Hadoop	will	have	been	working	in	the	background
while	you	do	so.	It	enables	the	storage	of	both	semi-structured	and	unstructured	data,	and	provides	a	platform
for	data	analysis.

When	we	use	Hadoop	DFS,	the	data	is	distributed	across	many	nodes,	often	tens	of	thousands	of	them,
physically	situated	in	data	centres	around	the	world.	Figure	4	shows	the	basic	structure	of	a	single	Hadoop
DFS	cluster,	which	consists	of	one	master	NameNode	and	many	slave	DataNodes.



4.	Simplified	view	of	part	of	a	Hadoop	DFS	cluster.

The	NameNode	deals	with	all	requests	coming	in	from	a	client	computer;	it	distributes	storage	space,	and
keeps	track	of	storage	availability	and	data	location.	It	also	manages	all	the	basic	file	operations	(e.g.	opening
and	closing	files)	and	controls	data	access	by	client	computers.	The	DataNodes	are	responsible	for	actually
storing	the	data	and	in	order	to	do	so,	create,	delete,	and	replicate	blocks	as	necessary.

Data	replication	is	an	essential	feature	of	the	Hadoop	DFS.	For	example,	looking	at	Figure	4,	we	see	that	Block
A	is	stored	in	both	DataNode	1	and	DataNode	2.	It	is	important	that	several	copies	of	each	block	are	stored	so
that	if	a	DataNode	fails,	other	nodes	are	able	to	take	over	and	continue	with	processing	tasks	without	loss	of
data.	In	order	to	keep	track	of	which	DataNodes,	if	any,	have	failed,	the	NameNode	receives	a	message	from
each,	called	a	Heartbeat,	every	three	seconds,	and	if	no	message	is	received	it	is	assumed	that	the	DataNode
in	question	has	ceased	to	function.	So	if	DataNode	1	fails	to	send	a	Heartbeat,	DataNode	2	will	become	the
working	node	for	Block	A	operations.	The	situation	is	different	if	the	NameNode	is	lost,	in	which	case	the
inbuilt	backup	system	needs	to	be	employed.

Data	is	written	to	a	DataNode	only	once	but	will	be	read	by	an	application	many	times.	Each	block	is	usually
only	64	Mb,	so	there	are	a	lot	of	them.	One	of	the	functions	of	the	NameNode	is	to	determine	the	best
DataNode	to	use	given	the	current	usage,	ensuring	fast	data	access	and	processing.	The	client	computer	then
accesses	the	data	block	from	the	chosen	node.	DataNodes	are	added	as	and	when	required	by	the	increased
storage	requirements,	a	feature	known	as	horizontal	scalability.

One	of	the	main	advantages	of	Hadoop	DFS	over	a	relational	database	is	that	you	can	collect	vast	amounts	of
data,	keep	adding	to	it,	and,	at	that	time,	not	yet	have	any	clear	idea	of	what	you	want	to	use	it	for.	Facebook,
for	example,	uses	Hadoop	to	store	its	continually	growing	amount	of	data.	No	data	is	lost,	as	it	will	store
anything	and	everything	in	its	original	format.	Adding	DataNodes	as	required	is	cheap	and	does	not	require
existing	nodes	to	be	changed.	If	previous	nodes	become	redundant,	it	is	easy	to	stop	them	working.	As	we	have
seen,	structured	data	with	identifiable	rows	and	columns	can	be	easily	stored	in	a	RDBMS	while	unstructured
data	can	be	stored	cheaply	and	readily	using	a	DFS.

NoSQL	databases	for	big	data
NoSQL	is	the	generic	name	used	to	refer	to	non-relational	databases	and	stands	for	Not	only	SQL.	Why	is
there	a	need	for	a	non-relational	model	that	does	not	use	SQL?	The	short	answer	is	that	the	non-relational
model	allows	us	to	continually	add	new	data.	The	non-relational	model	has	some	features	that	are	necessary	in
the	management	of	big	data,	namely	scalability,	availability,	and	performance.	With	a	relational	database	you
cannot	keep	scaling	vertically	without	loss	of	function,	whereas	with	NoSQL	you	scale	horizontally	and	this
enables	performance	to	be	maintained.	Before	describing	the	NoSQL	distributed	database	infrastructure	and
why	it	is	suitable	for	big	data,	we	need	to	consider	the	CAP	Theorem.

CAP	Theorem
In	2000,	Eric	Brewer,	a	professor	of	computer	science	at	the	University	of	California	Berkeley,	presented	the
CAP	(consistency,	availability,	and	partition	tolerance)	Theorem.	Within	the	context	of	a	distributed	database
system,	consistency	refers	to	the	requirement	that	all	copies	of	data	should	be	the	same	across	nodes.	So	in
Figure	4,	for	example,	Block	A	in	DataNode	1	should	be	the	same	as	Block	A	in	DataNode	2.	Availability
requires	that	if	a	node	fails,	other	nodes	still	function—if	DataNode	1	fails,	then	DataNode	2	must	still	operate.
Data,	and	hence	DataNodes,	are	distributed	across	physically	separate	servers	and	communication	between
these	machines	will	sometimes	fail.	When	this	occurs	it	is	called	a	network	partition.	Partition	tolerance
requires	that	the	system	continues	to	operate	even	if	this	happens.

In	essence,	what	the	CAP	Theorem	states	is	that	for	any	distributed	computer	system,	where	the	data	is
shared,	only	two	of	these	three	criteria	can	be	met.	There	are	therefore	three	possibilities;	the	system	must	be:



consistent	and	available,	consistent	and	partition	tolerant,	or	partition	tolerant	and	available.	Notice	that	since
in	a	RDMS	the	network	is	not	partitioned,	only	consistency	and	availability	would	be	of	concern	and	the	RDMS
model	meets	both	of	these	criteria.	In	NoSQL,	since	we	necessarily	have	partitioning,	we	have	to	choose
between	consistency	and	availability.	By	sacrificing	availability,	we	are	able	to	wait	until	consistency	is
achieved.	If	we	choose	instead	to	sacrifice	consistency	it	follows	that	sometimes	the	data	will	differ	from
server	to	server.

The	somewhat	contrived	acronym	BASE	(Basically	Available,	Soft,	and	Eventually	consistent)	is	used	as	a
convenient	way	of	describing	this	situation.	BASE	appears	to	have	been	chosen	in	contrast	to	the	ACID
properties	of	relational	databases.	‘Soft’	in	this	context	refers	to	the	flexibility	in	the	consistency	requirement.
The	aim	is	not	to	abandon	any	one	of	these	criteria	but	to	find	a	way	of	optimizing	all	three,	essentially	a
compromise.

The	architecture	of	NoSQL	databases
The	name	NoSQL	derives	from	the	fact	that	SQL	cannot	be	used	to	query	these	databases.	So,	for	example,
joins	such	as	the	one	we	saw	in	Figure	4	are	not	possible.	There	are	four	main	types	of	non-relational	or
NoSQL	database:	key−value,	column-based,	document,	and	graph—all	useful	for	storing	large	amounts	of
structured	and	semi-structured	data.	The	simplest	is	the	key−value	database,	which	consists	of	an	identifier
(the	key)	and	the	data	associated	with	that	key	(the	value)	as	shown	in	Figure	5.	Notice	that	‘value’	can
contain	multiple	items	of	data.

5.	Key−value	database.

Of	course,	there	would	be	many	such	key−value	pairs	and	adding	new	ones	or	deleting	old	ones	is	simple
enough,	making	the	database	highly	scalable	horizontally.	The	primary	capability	is	that	we	can	look	up	the
value	for	a	given	key.	For	example,	using	the	key	‘Jane	Smith’	we	are	able	to	find	her	address.	With	huge
amounts	of	data,	this	provides	a	fast,	reliable,	and	readily	scalable	solution	to	storage	but	it	is	limited	by	not
having	a	query	language.	Column-based	and	document	databases	are	extensions	of	the	key−value	model.

Graph	databases	follow	a	different	model	and	are	popular	with	social	networking	sites	as	well	as	being	useful
in	business	applications.	These	graphs	are	often	very	large,	particularly	when	used	by	social	networking	sites.
In	this	kind	of	database,	the	information	is	stored	in	nodes	(i.e.	vertices)	and	edges.	For	example,	the	graph	in
Figure	6	shows	five	nodes	with	the	arrows	between	them	representing	relationships.	Adding,	updating,	or
deleting	nodes	changes	the	graph.

6.	Graph	database.

In	this	example,	the	nodes	are	names	or	departments,	and	the	edges	are	the	relationships	between	them.	Data



is	retrieved	from	the	graph	by	looking	at	the	edges.	So,	for	example,	if	I	want	to	find	‘names	of	employees	in
the	IT	department	who	have	dependent	children’,	I	see	that	Bob	fulfils	both	criteria.	Notice	that	this	is	not	a
directed	graph—we	do	not	follow	the	arrows,	we	look	for	links.

Currently,	an	approach	called	NewSQL	is	finding	a	niche.	By	combining	the	performance	of	NoSQL	databases
and	the	ACID	properties	of	the	relational	model,	the	aim	of	this	latent	technology	is	to	solve	the	scalability
problems	associated	with	the	relational	model,	making	it	more	useable	for	big	data.

Cloud	storage
Like	so	many	modern	computing	terms	the	Cloud	sounds	friendly,	comforting,	inviting,	and	familiar,	but
actually	‘the	Cloud’	is,	as	mentioned	earlier,	just	a	way	of	referring	to	a	network	of	interconnected	servers
housed	in	data	centres	across	the	world.	These	data	centres	provide	a	hub	for	storing	big	data.

Through	the	Internet	we	share	the	use	of	these	remote	servers,	provided	(on	payment	of	a	fee)	by	various
companies,	to	store	and	manage	our	files,	to	run	apps,	and	so	on.	As	long	as	your	computer	or	other	device	has
the	requisite	software	to	access	the	Cloud,	you	can	view	your	files	from	anywhere	and	give	permission	for
others	to	do	so.	You	can	also	use	software	that	‘resides’	in	the	Cloud	rather	than	on	your	computer.	So	it’s	not
just	a	matter	of	accessing	the	Internet	but	also	of	having	the	means	to	store	and	process	information—hence
the	term	‘Cloud	computing’.	Our	individual	Cloud	storage	needs	are	not	that	big,	but	scaled	up	the	amount	of
information	stored	is	massive.

Amazon	is	the	biggest	provider	of	Cloud	services	but	the	amount	of	data	managed	by	them	is	a	commercial
secret.	We	can	get	some	idea	of	their	importance	in	Cloud	computing	by	looking	at	an	incident	that	occurred	in
February	2017	when	Amazon	Web	Services’	Cloud	storage	system,	S3,	suffered	a	major	outage	(i.e.	service
was	lost).	This	lasted	for	approximately	five	hours	and	resulted	in	the	loss	of	connection	to	many	websites	and
services,	including	Netflix,	Expedia,	and	the	US	Securities	and	Exchange	Commission.	Amazon	later	reported
human	error	as	the	cause,	stating	that	one	of	their	employees	had	been	responsible	for	inadvertently	taking
servers	offline.	Rebooting	these	large	systems	took	longer	than	expected	but	was	eventually	completed
successfully.	Even	so,	the	incident	highlights	the	susceptibility	of	the	Internet	to	failure,	whether	by	a	genuine
mistake	or	by	ill-intentioned	hacking.

Lossless	data	compression
In	2017,	the	widely	respected	International	Data	Corporation	(IDC)	estimates	that	the	digital	universe	totals	a
massive	16	zettabytes	(Zb)	which	amounts	to	an	unfathomable	16	x	1021	bytes.	Ultimately,	as	the	digital
universe	continues	to	grow,	questions	concerning	what	data	we	should	actually	save,	how	many	copies	should
be	kept,	and	for	how	long	will	have	to	be	addressed.	It	rather	challenges	the	raison	d’être	of	big	data	to
consider	purging	data	stores	on	a	regular	basis	or	even	archiving	them,	as	this	is	in	itself	costly	and	potentially
valuable	data	could	be	lost	given	that	we	do	not	necessarily	know	what	data	might	be	important	to	us	in	the
future.	However,	with	the	huge	amounts	of	data	being	stored,	data	compression	has	become	necessary	in
order	to	maximize	storage	space.

There	is	considerable	variability	in	the	quality	of	the	data	collected	electronically	and	so	before	it	can	be
usefully	analysed	it	must	be	pre-processed	to	check	for	and	remedy	problems	with	consistency,	repetition,	and
reliability.	Consistency	is	clearly	important	if	we	are	to	rely	on	the	information	extracted	from	the	data.
Removing	unwanted	repetitions	is	good	housekeeping	for	any	dataset,	but	with	big	datasets	there	is	the
additional	concern	that	there	may	not	be	sufficient	storage	space	available	to	keep	all	the	data.	Data	is
compressed	to	reduce	redundancy	in	videos	and	images	and	so	reduce	storage	requirements	and,	in	the	case
of	videos,	to	improve	streaming	rates.

There	are	two	main	types	of	compression—lossless	and	lossy.	In	lossless	compression	all	the	data	is	preserved
and	so	this	is	particularly	useful	for	text.	For	example,	files	with	the	extension	‘.ZIP’,	have	been	compressed
without	loss	of	information	so	that	unzipping	them	returns	us	to	the	original	file.	If	we	compress	the	string	of
characters	‘aaaaabbbbbbbbbb’	as	‘5a10b’	it	is	easy	to	see	how	to	decompress	and	arrive	at	the	original	string.
There	are	many	algorithms	for	compression	but	it	is	useful	first	to	consider	how	data	is	stored	without
compression.

ASCII	(American	Standard	Code	for	Information	Interchange)	is	the	standard	way	of	encoding	data	so	that	it
can	be	stored	in	a	computer.	Each	character	is	designated	a	decimal	number,	its	ASCII	code.	As	we	have
already	seen,	data	is	stored	as	a	series	of	0s	and	1s.	These	binary	digits	are	called	bits.	Standard	ASCII	uses	8
bits	(also	defined	as	1	byte)	to	store	each	character.	For	example,	in	ASCII	the	letter	‘a’	is	denoted	by	the
decimal	number	97	which	converts	to	01100001	in	binary.	These	values	are	looked	up	in	the	standard	ASCII
table,	a	small	part	of	which	is	given	at	the	end	of	the	book.	Upper-case	letters	have	different	ASCII	codes.

Consider	the	character	string	‘added’	which	is	shown	coded	in	Figure	7.



7.	A	coded	character	string.

So	‘added’	takes	5	bytes	or	 	bits	of	storage.	Given	Figure	7,	decoding	is	accomplished	using	the	ASCII
code	table.	This	is	not	an	economical	way	of	encoding	and	storing	data;	8	bits	per	character	seems	excessive
and	no	account	is	taken	of	the	fact	that	in	text	documents	some	letters	are	used	much	more	frequently	than
others.	There	are	many	lossless	data	compression	models,	such	as	the	Huffman	algorithm,	which	uses	less
storage	space	by	variable	length	encoding,	a	technique	based	on	how	often	a	particular	letter	occurs.	Those
letters	with	the	highest	occurrence	are	given	shorter	codes.

Taking	the	string	‘added’	again	we	note	that	‘a’	occurs	once,	‘e’	occurs	once,	and	‘d’	occurs	three	times.	Since
‘d’	occurs	most	frequently,	it	should	be	assigned	the	shortest	code.	To	find	the	Huffman	code	for	each	letter	we
count	the	letters	of	‘added’	as	follows:

Next,	we	find	the	two	letters	that	occur	least	frequently,	namely	‘a’	and	‘e’,	and	we	form	the	structure	in
Figure	8,	called	a	binary	tree.	The	number	2	at	the	top	of	the	tree	is	found	by	adding	the	number	of
occurrences	of	the	two	least	frequent	letters.

8.	A	binary	tree.

In	Figure	9,	we	show	the	new	node	representing	three	occurrences	of	the	letter	‘d’.

9.	The	binary	tree	with	a	new	node.

Figure	9	shows	the	completed	tree	with	total	number	of	letter	occurrences	at	the	top.	Each	edge	of	the	tree	is
coded	as	either	0	or	1,	as	shown	in	Figure	10,	and	the	codes	are	found	by	following	the	paths	up	the	tree.

10.	Completed	binary	tree.

So	‘added’	is	coded	as	 ,	 ,	 ,	 ,	 ,	which	gives	us	0011101.	Using	this	method	we	see	that
3	bits	are	used	for	storing	the	letter	‘d’,	2	bits	for	letter	‘a’,	and	2	bits	for	letter	‘e’,	giving	a	total	of	7	bits.	This
is	a	big	improvement	on	the	original	40	bits.

A	way	of	measuring	the	efficiency	of	compression	is	to	use	the	data	compression	ratio,	which	is	defined	as	the
uncompressed	size	of	a	file	divided	by	its	compressed	size.	In	this	example,	45/7	is	approximately	equal	to
6.43,	a	high	compression	rate,	showing	good	storage	savings.	In	practice	these	trees	are	very	large	and	are
optimized	using	sophisticated	mathematical	techniques.	This	example	has	shown	how	we	can	compress	data
without	losing	any	of	the	information	contained	in	the	original	file	and	it	is	therefore	called	lossless
compression.



Lossy	data	compression
In	comparison,	sound	and	image	files	are	usually	much	larger	than	text	files	and	so	another	technique	called
lossy	compression	is	used.	This	is	because,	when	we	are	dealing	with	sound	and	images,	lossless	compression
methods	may	simply	not	result	in	a	sufficiently	high	compression	ratio	for	data	storage	to	be	viable.	Equally,
some	data	loss	is	tolerable	for	sound	and	images.	Lossy	compression	exploits	this	latter	feature	by
permanently	removing	some	data	in	the	original	file	so	reducing	the	amount	of	storage	space	needed.	The
basic	idea	is	to	remove	some	of	the	detail	without	overly	affecting	our	perception	of	the	image	or	sound.

For	example,	consider	a	black	and	white	photograph,	more	correctly	described	as	a	greyscale	image,	of	a	child
eating	an	ice-cream	at	the	seaside.	Lossy	compression	removes	an	equal	amount	of	data	from	the	image	of	the
child	and	that	of	the	sea.	The	percentage	of	data	removed	is	calculated	such	that	it	will	not	have	a	significant
impact	on	the	viewer’s	perception	of	the	resulting	(compressed)	image—too	much	compression	will	lead	to	a
fuzzy	photo.	There’s	a	trade-off	between	the	level	of	compression	and	quality	of	picture.

If	we	want	to	compress	a	greyscale	image,	we	first	divide	it	into	blocks	of	8	pixels	by	8	pixels.	Since	this	is	a
very	small	area,	all	the	pixels	are	generally	similar	in	tone.	This	observation,	together	with	knowledge	about
how	we	perceive	images,	is	fundamental	to	lossy	compression.	Each	pixel	has	a	corresponding	numeric	value
between	0	for	pure	black	and	255	for	pure	white,	with	the	numbers	between	representing	shades	of	grey.	After
some	further	processing	using	a	method	called	the	Discrete	Cosine	Algorithm,	an	average	intensity	value	for
each	block	is	found	and	the	results	compared	with	each	of	the	actual	values	in	a	given	block.	Since	we	are
comparing	these	actual	values	to	the	average	most	of	them	will	be	0,	or	0	when	rounded.	Our	lossy	algorithm
collects	all	these	0s	together,	which	represent	the	information	from	the	pixels	that	is	less	important	to	the
image.	These	values,	corresponding	to	high	frequencies	in	our	image,	are	all	grouped	together	and	the
redundant	information	is	removed,	using	a	technique	called	quantization,	resulting	in	compression.	For
example	if	out	of	sixty-four	values	each	requiring	1	byte	of	storage,	we	have	twenty	0s,	then	after	compression
we	need	only	45	bytes	of	storage.	This	process	is	repeated	for	all	the	blocks	that	make	up	the	image	and	so
redundant	information	is	removed	throughout.

For	colour	images	the	JPEG	(Joint	Photographic	Experts	Group)	algorithm,	for	example,	recognizes	red,	blue,
and	green,	and	assigns	each	a	different	weight	based	on	the	known	properties	of	human	visual	perception.
Green	is	weighted	greatest	since	the	human	eye	is	more	perceptive	to	green	than	to	red	or	blue.	Each	pixel	in
a	colour	image	is	assigned	a	red,	blue,	and	green	weighting,	represented	as	a	triple	<R,G,B>.	For	technical
reasons,	<R,G,B>	triples	are	usually	converted	into	another	triple,	<YCbCr>	where	Y	represents	the	intensity
of	the	colour	and	both	Cb	and	Cr	are	chrominance	values,	which	describe	the	actual	colour.	Using	a	complex
mathematical	algorithm	it	is	possible	to	reduce	the	values	of	each	pixel	and	ultimately	achieve	lossy
compression	by	reducing	the	number	of	pixels	saved.

Multimedia	files	in	general,	because	of	their	size,	are	compressed	using	lossy	methods.	The	more	compressed
the	file,	the	poorer	the	reproduction	quality,	but	because	some	of	the	data	is	sacrificed,	greater	compression
ratios	are	achievable,	making	the	file	smaller.

Following	an	international	standard	for	image	compression	first	produced	in	1992	by	the	JPEG,	the	JPEG	file
format	provides	the	most	popular	method	for	compressing	both	colour	and	greyscale	photographs.	This	group
is	still	very	active	and	meets	several	times	a	year.

Consider	again	the	example	of	a	black	and	white	photograph	of	a	child	eating	an	ice-cream	at	the	seaside.
Ideally,	when	we	compress	this	image	we	want	the	part	featuring	the	child	to	remain	sharp,	so	in	order	to
achieve	this	we	would	be	willing	to	sacrifice	some	clarity	in	the	background	details.	A	new	method,	called	data
warping	compression,	developed	by	researchers	at	Henry	Samueli	School	of	Engineering	and	Applied	Science,
UCLA,	now	makes	this	possible.	Those	readers	interested	in	the	details	are	referred	to	the	Further	reading
section	at	the	end	of	the	book.

We	have	seen	how	a	distributed	data	file	system	can	be	used	to	store	big	data.	Problems	with	storage	have
been	overcome	to	the	extent	that	big	data	sources	can	now	be	used	to	answer	questions	that	previously	we
could	not	answer.	As	we	will	see	in	Chapter	4,	an	algorithmic	method	called	MapReduce	is	used	for	processing
data	stored	in	the	Hadoop	DFS.



Chapter	4
Big	data	analytics

Having	discussed	how	big	data	is	collected	and	stored,	we	can	now	look	at	some	of	the	techniques	used	to
discover	useful	information	from	that	data	such	as	customer	preferences	or	how	fast	an	epidemic	is	spreading.
Big	data	analytics,	the	catch-all	term	for	these	techniques,	is	changing	rapidly	as	the	size	of	the	datasets
increases	and	classical	statistics	makes	room	for	this	new	paradigm.

Hadoop,	introduced	in	Chapter	3,	provides	a	means	for	storing	big	data	through	its	distributed	file	system.	As
an	example	of	big	data	analytics	we’ll	look	at	MapReduce,	which	is	a	distributed	data	processing	system	and
forms	part	of	the	core	functionality	of	the	Hadoop	Ecosystem.	Amazon,	Google,	Facebook,	and	many	other
organizations	use	Hadoop	to	store	and	process	their	data.

MapReduce
A	popular	way	of	dealing	with	big	data	is	to	divide	it	up	into	small	chunks	and	then	process	each	of	these
individually,	which	is	basically	what	MapReduce	does	by	spreading	the	required	calculations	or	queries	over
many,	many	computers.	It’s	well	worth	working	through	a	much	simplified	and	reduced	example	of	how
MapReduce	works—and	as	we	are	doing	this	by	hand	it	really	will	need	to	be	a	considerably	reduced	example,
but	it	will	still	demonstrate	the	process	that	would	be	used	for	big	data.	There	would	be	typically	many
thousands	of	processors	used	to	process	a	huge	amount	of	data	in	parallel,	but	the	process	is	scalable	and	it’s
actually	a	very	ingenious	idea	and	simple	to	follow.

There	are	several	parts	to	this	analytics	model:	the	map	component;	the	shuffle	step;	and	the	reduce
component.	The	map	component	is	written	by	the	user	and	sorts	the	data	we	are	interested	in.	The	shuffle
step,	which	is	part	of	the	main	Hadoop	MapReduce	code,	then	groups	the	data	by	key,	and	finally	we	have	the
reduce	component,	which	again	is	provided	by	the	user,	which	aggregates	these	groups	and	produces	the
result.	The	result	is	then	sent	to	HDFS	for	storage.

For	example,	suppose	we	have	the	following	key−value	files	stored	in	the	Hadoop	distributed	file	system,	with
statistics	on	each	of	the	following:	measles,	Zika	virus,	TB,	and	Ebola.	The	disease	is	the	key	and	a	value
representing	the	number	of	cases	for	each	disease	is	given.	We	are	interested	in	the	total	number	of	cases	of
each	disease.

File	1:
Measles,3
Zika,2	TB,1	Measles,1
Zika,3	Ebola,2

File	2:
Measles,4
Zika,2	TB,1

File	3:
Measles,3	Zika,2
Measles,4	Zika,1	Ebola,3

The	mapper	enables	us	to	read	each	of	these	input	files	separately,	line	by	line,	as	shown	in	Figure	11.	The
mapper	then	returns	the	key−value	pairs	for	each	of	these	distinct	lines.



11.	Map	function.

Having	split	the	files	and	found	key−values	for	each	split,	the	next	step	in	the	algorithm	is	provided	by	the
master	program,	which	sorts	and	shuffles	the	key−values.	The	diseases	are	sorted	alphabetically	and	the
result	is	sent	to	an	appropriate	file	ready	for	the	reducer,	as	shown	in	Figure	12.

12.	Shuffle	and	reduce	functions.

Continuing	to	follow	Figure	12,	the	reduce	component	combines	the	results	of	the	map	and	shuffle	stages,	and
as	a	result	sends	each	disease	to	a	separate	file.	The	reduce	step	in	the	algorithm	then	allows	the	individual
totals	to	be	calculated	and	these	results	are	sent	to	a	final	output	file,	as	key−value	pairs,	which	can	be	saved
in	the	DFS.

This	is	a	very	small	example,	but	the	MapReduce	method	enables	us	to	analyse	very	large	amounts	of	data.	For
example,	using	the	data	supplied	by	Common	Crawl,	a	non-profit	organization	that	provides	a	free	copy	of	the
Internet,	we	could	count	the	number	of	times	each	word	occurs	on	the	Internet	by	writing	a	suitable	computer
program	that	uses	MapReduce.

Bloom	filters
A	particularly	useful	method	for	mining	big	data	is	the	Bloom	filter,	a	technique	based	on	probability	theory
which	was	developed	in	the	1970s.	As	we	will	see,	Bloom	filters	are	particularly	suited	to	applications	where
storage	is	an	issue	and	where	the	data	can	be	thought	of	as	a	list.



The	basic	idea	behind	Bloom	filters	is	that	we	want	to	build	a	system,	based	on	a	list	of	data	elements,	to
answer	the	question	‘Is	X	in	the	list?’	With	big	datasets,	searching	through	the	entire	set	may	be	too	slow	to	be
useful,	so	we	use	a	Bloom	filter	which,	being	a	probabilistic	method,	is	not	100	per	cent	accurate—the
algorithm	may	decide	that	an	element	belongs	to	the	list	when	actually	it	does	not;	but	it	is	a	fast,	reliable,	and
storage	efficient	method	of	extracting	useful	knowledge	from	data.

Bloom	filters	have	many	applications.	For	example,	they	can	be	used	to	check	whether	a	particular	Web
address	leads	to	a	malicious	website.	In	this	case,	the	Bloom	filter	would	act	as	a	blacklist	of	known	malicious
URLs	against	which	it	is	possible	to	check,	quickly	and	accurately,	whether	it	is	likely	that	the	one	you	have
just	clicked	on	is	safe	or	not.	Web	addresses	newly	found	to	be	malicious	can	be	added	to	the	blacklist.	Since
there	are	now	over	a	billion	websites,	and	more	being	added	daily,	keeping	track	of	malicious	sites	is	a	big
data	problem.

A	related	example	is	that	of	malicious	email	messages,	which	may	be	spam	or	may	contain	phishing	attempts.
A	Bloom	filter	provides	us	with	a	quick	way	of	checking	each	email	address	and	hence	we	would	be	able	to
issue	a	timely	warning	if	appropriate.	Each	address	occupies	approximately	20	bytes,	so	storing	and	checking
each	of	them	becomes	prohibitively	time-consuming	since	we	need	to	do	this	very	quickly—by	using	a	Bloom
filter	we	are	able	to	reduce	the	amount	of	stored	data	dramatically.	We	can	see	how	this	works	by	following	the
process	of	building	a	small	Bloom	filter	and	showing	how	it	would	function.

Suppose	we	have	the	following	list	of	email	addresses	that	we	want	to	flag	as	malicious:	<aaa@aaaa.com>;
<bbb@nnnn.com>;	<ccc@ff.com>;	<dd@ggg.com>.	To	build	our	Bloom	filter	first	assume	we	have	10	bits	of
memory	available	on	a	computer.	This	is	called	a	bit	array	and	initially	it	is	empty.	A	bit	has	just	two	states,
usually	denoted	by	0	and	1,	so	we	will	start	by	setting	all	values	in	the	bit	array	to	0,	meaning	empty.	As	we
will	see	shortly,	a	bit	with	a	value	of	1	will	mean	the	associated	index	has	been	assigned	at	least	once.

The	size	of	our	bit	array	is	fixed	and	will	remain	the	same	regardless	of	how	many	cases	we	add.	We	index
each	bit	in	the	array	as	shown	in	Figure	13.

13.	10-bit	array.

We	now	need	to	introduce	hash	functions,	which	are	algorithms	designed	to	map	each	element	in	a	given	list
to	one	of	the	positions	in	the	array.	By	doing	this,	we	now	store	only	the	mapped	position	in	the	array,	rather
than	the	email	address	itself,	so	that	the	amount	of	storage	space	required	is	reduced.

For	our	demonstration,	we	show	the	result	of	using	two	hash	functions,	but	typically	seventeen	or	eighteen
functions	would	be	used	together	with	a	much	bigger	array.	Since	these	functions	are	designed	to	map	more	or
less	uniformly,	each	index	has	an	equal	chance	of	being	the	result	each	time	the	hash	algorithm	is	applied	to	a
different	address.

So,	first	we	let	the	hash	algorithms	assign	each	email	address	to	one	of	the	indices	of	the	array.

To	add	‘aaa@aaaa.com’	to	the	array,	it	is	first	passed	through	hash	function	1,	which	returns	an	array	index	or
position	value.	For	example,	let’s	say	hash	function	1	returned	index	3.	Hash	function	2,	again	applied	to
‘aaa@aaaa.com’,	returned	index	4.	These	two	positions	will	each	have	their	stored	bit	value	set	to	1.	If	the
position	was	already	set	to	1	then	it	would	be	left	alone.	Similarly,	adding	‘bbb@nnnn.com’	may	result	in
positions	2	and	7	being	occupied	or	set	to	1	and	‘ccc@ff.com’	may	return	positions	4	and	7.	Finally,	assume	the
hash	functions	applied	to	‘dd@ggg.com’	return	the	positions	2	and	6.	These	results	are	summarized	in	Figure
14.

14.	Summary	of	hash	function	results.



The	actual	Bloom	filter	array	is	shown	in	Figure	15	with	occupied	positions	having	a	value	set	to	1.

15.	Bloom	filter	for	malicious	email	addresses.

So,	how	do	we	use	this	array	as	a	Bloom	filter?	Suppose,	now,	that	we	receive	an	email	and	we	wish	to	check
whether	the	address	appears	on	the	malicious	email	address	list.	Suppose	it	maps	to	positions	2	and	7,	both	of
which	have	value	1.	Because	all	values	returned	are	equal	to	1	it	probably	belongs	to	the	list	and	so	is	probably
malicious.	We	cannot	say	for	certain	that	it	belongs	to	the	list	because	positions	2	and	7	have	been	the	result	of
mapping	other	addresses	and	indexes	may	be	used	more	than	once.	So	the	result	of	testing	an	element	for	list
membership	also	includes	the	probability	of	returning	a	false	positive.	However,	if	an	array	index	with	value	0
is	returned	by	any	hash	function	(and,	remember,	there	would	generally	be	seventeen	or	eighteen	functions)
we	would	then	definitely	know	that	the	address	was	not	on	the	list.

The	mathematics	involved	is	complex	but	we	can	see	that	the	bigger	the	array	the	more	unoccupied	spaces
there	will	be	and	the	less	chance	of	a	false	positive	result	or	incorrect	matching.	Obviously	the	size	of	the
array	will	be	determined	by	the	number	of	keys	and	hash	functions	used,	but	it	must	be	big	enough	to	allow	a
sufficient	number	of	unoccupied	spaces	for	the	filter	to	function	effectively	and	minimize	the	number	of	false
positives.

Bloom	filters	are	fast	and	they	can	provide	a	very	useful	way	of	detecting	fraudulent	credit	card	transactions.
The	filter	checks	to	see	whether	or	not	a	particular	item	belongs	to	a	given	list	or	set,	so	an	unusual
transaction	would	be	flagged	as	not	belonging	to	the	list	of	your	usual	transactions.	For	example	if	you	have
never	purchased	mountaineering	equipment	on	your	credit	card,	a	Bloom	filter	will	flag	the	purchase	of	a
climbing	rope	as	suspicious.	On	the	other	hand,	if	you	do	buy	mountaineering	equipment,	the	Bloom	filter	will
identify	this	purchase	as	probably	acceptable	but	there	will	be	a	probability	that	the	result	is	actually	false.

Bloom	filters	can	also	be	used	for	filtering	email	for	spam.	Spam	filters	provide	a	good	example	since	we	do
not	know	exactly	what	we	are	looking	for—often	we	are	looking	for	patterns,	so	if	we	want	email	messages
containing	the	word	‘mouse’	to	be	treated	as	spam	we	also	want	variations	like	‘m0use’	and	‘mou$e’	to	be
treated	as	spam.	In	fact,	we	want	all	possible,	identifiable	variations	of	the	word	to	be	identified	as	spam.	It	is
much	easier	to	filter	everything	that	does	not	match	with	a	given	word,	so	we	would	only	allow	‘mouse’	to	pass
through	the	filter.

Bloom	filters	are	also	used	to	speed	up	the	algorithms	used	for	Web	query	rankings,	a	topic	of	considerable
interest	to	those	who	have	websites	to	promote.

PageRank
When	we	search	on	Google,	the	websites	returned	are	ranked	according	to	their	relevance	to	the	search	terms.
Google	achieves	this	ordering	primarily	by	applying	an	algorithm	called	PageRank.	The	name	PageRank	is
popularly	believed	to	have	been	chosen	after	Larry	Page,	one	of	the	founders	of	Google,	who,	working	with	co-
founder	Sergey	Brin,	published	articles	on	this	new	algorithm.	Until	the	summer	of	2016,	PageRank	results
were	publicly	available	by	downloading	the	Toolbar	PageRank.	The	public	PageRank	tool	was	based	on	a	range
from	1	and	10.	Before	it	was	withdrawn,	I	saved	a	few	results.	If	I	typed	‘Big	Data’	into	Google	using	my
laptop,	I	got	a	message	informing	me	there	were	‘About	370,000,000	results	(0.44	seconds)’	with	a	PageRank
of	9.	Top	of	this	list	were	some	paid	advertisements,	followed	by	Wikipedia.	Searching	on	‘data’	returned	about
5,530,000,000	results	in	0.43	seconds	with	a	PageRank	of	9.	Other	examples,	all	with	a	PageRank	of	10,
included	the	USA	government	website,	Facebook,	Twitter,	and	the	European	University	Association.

This	method	of	calculating	a	PageRank	is	based	on	the	number	of	links	pointing	to	a	webpage—the	more	links,
the	higher	the	score,	and	the	higher	the	page	appears	as	a	search	result.	It	does	not	reflect	the	number	of
times	a	page	is	visited.	If	you	are	a	website	designer,	you	want	to	optimize	your	website	so	that	it	appears	very
near	the	top	of	the	list	given	certain	search	terms,	since	most	people	do	not	look	further	than	the	first	three	or
four	results.	This	requires	a	huge	number	of	links	and	as	a	result,	almost	inevitably,	a	trade	in	links	became
established.	Google	tried	to	address	this	‘artificial’	ranking	by	assigning	a	new	ranking	of	0	to	implicated
companies	or	even	by	removing	them	completely	from	Google,	but	this	did	not	solve	the	problem;	the	trade
was	merely	forced	underground,	and	links	continued	to	be	sold.

PageRank	itself	has	not	been	abandoned	and	forms	part	of	a	large	suite	of	ranking	programs	which	are	not
available	for	public	viewing.	Google	re-calculates	rankings	regularly	in	order	to	reflect	added	links	as	well	as
new	websites.	Since	PageRank	is	commercially	sensitive,	full	details	are	not	publicly	available	but	we	can	get
the	general	idea	by	looking	at	an	example.	The	algorithm	provides	a	complex	way	of	analysing	the	links
between	webpages	based	on	probability	theory,	where	probability	1	indicates	certainty	and	probability	0
indicates	impossibility,	with	everything	else	having	a	probability	value	somewhere	in-between.



To	understand	how	the	ranking	works,	we	first	need	to	know	what	a	probability	distribution	looks	like.	If	we
think	of	the	result	of	rolling	a	fair	six-sided	die,	each	of	the	outcomes	1	through	6	is	equally	likely	to	occur	and
so	each	has	a	probability	of	1/6.	The	list	of	all	the	possible	outcomes,	together	with	the	probability	associated
with	each,	describes	a	probability	distribution.

Going	back	to	our	problem	of	ranking	webpages	according	to	importance,	we	cannot	say	that	each	is	equally
important,	but	if	we	had	a	way	of	assigning	probabilities	to	each	webpage,	this	would	give	us	a	reasonable
indication	of	importance.	So	what	algorithms	such	as	PageRank	do	is	construct	a	probability	distribution	for
the	entire	Web.	To	explain	this,	let’s	consider	a	random	surfer	of	the	Web,	who	starts	at	any	webpage	and	then
moves	to	another	page	using	the	links	available.

We	will	consider	a	simplified	example	where	we	have	a	web	consisting	of	only	three	webpages;	BigData1,
BigData2,	and	BigData3.	Suppose	the	only	links	are	from	BigData2	to	BigData3,	BigData2	to	BigData1,	and
BigData1	to	BigData3.	Then	our	web	can	be	represented	as	shown	in	Figure	16,	where	the	nodes	are
webpages	and	the	arrows	(edges)	are	links.

16.	Directed	graph	representing	a	small	part	of	the	Web.

Each	page	has	a	PageRank	indicating	its	importance	or	popularity.	BigData3	will	be	the	most	highly	ranked
because	it	has	the	most	links	going	to	it,	making	it	the	most	popular.	Suppose	now	that	a	random	surfer	visits	a
webpage,	he	or	she	has	one	proportional	vote	to	cast,	which	is	divided	equally	between	the	next	choices	of
webpage.	For	example,	if	our	random	surfer	is	currently	visiting	BigData1,	the	only	choice	is	to	then	visit
BigData3.	So	we	can	say	that	a	vote	of	1	is	cast	for	BigData3	by	BigData1.

In	the	real	Web	new	links	are	made	all	the	time,	so	suppose	we	now	find	that	BigData3	links	to	BigData2,	as
shown	in	Figure	17,	then	the	PageRank	for	BigData2	will	have	changed	because	the	random	surfer	now	has	a
choice	of	where	to	go	after	BigData3.

17.	Directed	graph	representing	a	small	part	of	the	Web	with	added	link.

If	our	random	surfer	starts	off	at	BigData1,	then	the	only	choice	is	to	visit	BigData3	next	and	so	the	total	vote
of	1	goes	to	BigData3,	and	BigData2	gets	a	vote	of	0.	If	he	or	she	starts	at	BigData2	the	vote	is	split	equally
between	BigData3	and	BigData1.	Finally,	if	the	random	surfer	starts	at	BigData3	his	or	her	entire	vote	is	cast
for	BigData2.	These	proportional	‘votes’	are	summarized	in	the	Figure	18.



18.	Votes	cast	for	each	webpage.

Using	Figure	18,	we	now	see	the	total	votes	cast	for	each	webpage	as	follows:

Total	votes	for	BD1	are	1/2	(coming	from	BD2)
Total	votes	for	BD2	are	1	(coming	from	BD3)
Total	votes	for	BD3	are	1½	(coming	from	BD	1	and	BD2)

Since	the	choice	of	starting	page	for	the	surfer	is	random,	each	one	is	equally	likely	and	so	is	assigned	an
initial	PageRank	of	1/3.	To	form	the	desired	PageRanks	for	our	example,	we	need	to	update	the	initial
PageRanks	according	to	the	proportion	of	votes	cast	for	each	page.

For	example,	BD1	has	just	1/2	vote,	cast	by	BD2,	so	the	PageRank	of	BD1	is	 .	Similarly,
PageRank	BD2	is	given	by	 	and	PageRank	BD3	is	 .	Since	all	the	Page	Rankings
now	add	up	to	one,	we	have	a	probability	distribution	which	shows	the	importance,	or	rank,	of	each	page.

But	there	is	a	complication	here.	We	said	that	the	probability	that	a	random	surfer	was	on	any	page	initially
was	1/3.	After	one	step,	we	have	calculated	the	probability	that	a	random	surfer	is	on	BD1	is	1/6.	What	about
after	two	steps?	Well,	again	we	use	the	current	PageRanks	as	votes	to	calculate	the	new	PageRanks.	The
calculations	are	slightly	different	for	this	round	because	the	current	PageRanks	are	not	equal	but	the	method
is	the	same,	giving	new	PageRanks	as	follows:	PageRank	BD1	is	2/12,	PageRank	BD2	is	6/12,	and	PageRank
BD3	is	4/12.	These	steps,	or	iterations,	are	repeated	until	the	algorithm	converges,	meaning	that	the	process
continues	like	this	until	no	more	changes	can	be	made	by	any	further	multiplication.	Having	achieved	a	final
ranking,	PageRank	can	select	the	page	with	the	highest	ranking	for	a	given	search.

Page	and	Brin,	in	their	original	research	papers,	presented	an	equation	for	calculating	the	PageRank	which
included	a	Damping	Factor	d,	defined	as	the	probability	that	a	random	Web	surfer	will	click	on	one	of	the	links
on	the	current	page.	The	probability	that	a	random	Web	surfer	will	not	click	on	one	of	the	links	on	the	current
page	is	therefore	 ,	meaning	that	the	random	surfer	has	finished	surfing.	It	was	this	Damping	Factor	that
ensured	the	PageRank	averaged	over	the	entire	Web	settles	down	to	1,	after	a	sufficient	number	of	iterative
calculations.	Page	and	Brin	reported	that	a	web	consisting	of	322	million	links	settled	down	after	fifty-two
iterations.

Public	datasets
There	are	many	freely	available	big	datasets	that	interested	groups	or	individuals	can	use	for	their	own
projects.	Common	Crawl,	mentioned	earlier	in	this	chapter,	is	one	example.	Hosted	by	the	Amazon	Public
Datasets	Program,	in	October	2016	the	Common	Crawl	monthly	archive	contained	more	than	3.25	billion
webpages.	Public	datasets	are	in	a	broad	range	of	specialties,	including	genome	data,	satellite	imagery,	and
worldwide	news	data.	For	those	not	likely	to	write	their	own	code,	Google’s	Ngram	Viewer	provides	an
interesting	way	of	exploring	some	big	datasets	interactively	(see	Further	reading	for	details).

Big	data	paradigm
We	have	seen	some	of	the	ways	in	which	big	data	can	be	useful	and	in	Chapter	2	we	talked	about	small	data.
For	small	data	analysis,	the	scientific	method	is	well-established	and	necessarily	involves	human	interaction:
someone	comes	up	with	an	idea,	formulates	a	hypothesis	or	model,	and	devises	ways	to	test	its	predictions.
Eminent	statistician	George	Box	wrote	in	1978,	‘all	models	are	wrong,	but	some	are	useful’.	The	point	he
makes	is	that	statistical	and	scientific	models	in	general	do	not	provide	exact	representations	of	the	world
about	us,	but	a	good	model	can	provide	a	useful	picture	on	which	to	base	predictions	and	draw	conclusions
confidently.	However,	as	we	have	shown,	when	working	with	big	data	we	do	not	follow	this	method.	Instead	we
find	that	the	machine,	not	the	scientist,	is	predominant.

Writing	in	1962,	Thomas	Kuhn	described	the	concept	of	scientific	revolutions,	which	follow	long	periods	of
normal	science	when	an	existing	paradigm	is	developed	and	investigated	to	the	full.	If	sufficiently	intractable
anomalies	occur	to	undermine	the	existing	theory,	resulting	in	loss	of	confidence	by	researchers,	then	this	is
termed	a	‘crisis’,	and	it	is	ultimately	resolved	by	a	new	theory	or	paradigm.	For	a	new	paradigm	to	be
accepted,	it	must	answer	some	of	the	questions	found	to	be	problematic	in	the	old	paradigm.	However,	in



general,	a	new	paradigm	does	not	completely	overwhelm	the	previous	one.	For	example,	the	shift	from
Newtonian	mechanics	to	Einstein’s	relativity	theory	changed	the	way	science	viewed	the	world,	without
making	Newton’s	laws	obsolete:	Newtonian	mechanics	now	form	a	special	case	of	the	wider	ranging	relativity
theory.	Shifting	from	classical	statistics	to	big	data	analytics	also	represents	a	significant	change,	and	has
many	of	the	hallmarks	of	a	paradigm	shift.	So	techniques	will	inevitably	need	to	be	developed	to	deal	with	this
new	situation.

Consider	the	technique	of	finding	correlations	in	data,	which	provides	a	means	of	prediction	based	on	the
strength	of	the	relationships	between	variables.	It	is	acknowledged	in	classical	statistics	that	correlation	does
not	imply	causation.	For	example,	a	teacher	may	document	both	the	number	of	student	absences	from	lectures
and	student	grades;	and	then,	on	finding	an	apparent	correlation,	he	or	she	may	use	absences	to	predict
grades.	However,	it	would	be	incorrect	to	conclude	that	absences	cause	poor	grades.	We	cannot	know	why	the
two	variables	are	correlated	just	by	looking	at	the	blind	calculations:	maybe	the	less	able	students	tend	to	miss
class;	maybe	students	who	are	absent	due	to	sickness	cannot	later	catch	up.	Human	interaction	and
interpretation	is	needed	in	order	to	decide	which	correlations	are	useful.

With	big	data,	using	correlation	creates	additional	problems.	If	we	consider	a	massive	dataset,	algorithms	can
be	written	that,	when	applied,	return	a	large	number	of	spurious	correlations	that	are	totally	independent	of
the	views,	opinions,	or	hypotheses	of	any	human	being.	Problems	arise	with	false	correlations—for	example,
divorce	rate	and	margarine	consumption,	which	is	just	one	of	many	spurious	correlations	reported	in	the
media.	We	can	see	the	absurdity	of	this	correlation	by	applying	scientific	method.	However,	when	the	number
of	variables	becomes	large,	the	number	of	spurious	correlations	also	increases.	This	is	one	of	the	main
problems	associated	with	trying	to	extract	useful	information	from	big	data,	because	in	doing	so,	as	with
mining	big	data,	we	are	usually	looking	for	patterns	and	correlations.	As	we	will	see	in	Chapter	5,	one	of	the
reasons	Google	Flu	Trends	failed	in	its	predictions	was	because	of	these	problems.



Chapter	5
Big	data	and	medicine

Big	data	analysis	is	significantly	changing	the	world	of	healthcare.	Its	potential	has	yet	to	be	fully	realized	but
includes	medical	diagnosis,	epidemic	prediction,	gauging	the	public	response	to	government	health	warnings,
and	the	reduction	in	costs	associated	with	healthcare	systems.	Let’s	start	by	looking	at	what	is	now	termed
healthcare	informatics.

Healthcare	informatics
Medical	big	data	is	collected,	stored,	and	analysed	using	the	general	techniques	described	in	previous
chapters.	Broadly	speaking,	healthcare	informatics	and	its	many	sub-disciplines,	such	as	clinical	informatics
and	bio-informatics,	use	big	data	to	provide	improved	patient	care	and	reduce	costs.	Consider	the	definition
criteria	for	big	data	(discussed	in	Chapter	2)—volume,	variety,	velocity,	and	veracity—and	how	they	apply	to
medical	data.	Volume	and	velocity	are	satisfied,	for	example,	when	public-health-related	data	is	collected
through	social	networking	sites	for	epidemic	tracking;	variety	is	satisfied	since	patient	records	are	stored	in
text	format,	both	structured	and	unstructured,	and	sensor	data	such	as	that	provide	by	MRIs	is	also	collected;
veracity	is	fundamental	to	medical	applications	and	considerable	care	is	taken	to	eliminate	inaccurate	data.

Social	media	is	a	potentially	valuable	source	of	medically	related	information	through	data	collection	from
sites	such	as	Facebook,	Twitter,	various	blogs,	message	boards,	and	Internet	searches.	Message	boards
focused	on	specific	healthcare	issues	are	abundant,	providing	a	wealth	of	unstructured	data.	Posts	on	both
Facebook	and	Twitter	have	been	mined,	using	classification	techniques	similar	to	those	described	in	Chapter	4,
to	monitor	experience	of	unpleasant	reactions	to	medications	and	supply	healthcare	professionals	with
worthwhile	information	regarding	drug	interactions	and	drug	abuse.	Mining	social	media	data	for	public-
health-related	research	is	now	a	recognized	practice	within	the	academic	community.

Designated	social	networking	sites	for	medical	professionals,	such	as	Sermo	Intelligence,	a	worldwide	medical
network	and	self-proclaimed	‘largest	global	healthcare	data	collection	company’,	provide	healthcare	personnel
with	instant	crowdsourcing	benefits	from	interaction	with	their	peers.	Online	medical	advice	sites	are
becoming	increasingly	popular	and	generate	yet	more	information.	But,	although	not	publicly	accessible,
perhaps	the	most	important	source	is	the	vast	collection	of	Electronic	Health	Records.	These	records,	usually
referred	to	simply	by	their	initials,	EHR,	provide	an	electronic	version	of	a	patient’s	full	medical	history,
including	diagnoses,	medications	prescribed,	medical	images	such	as	X-rays,	and	all	other	relevant	information
collected	over	time,	thus	constructing	a	‘virtual	patient’—a	concept	we	will	look	at	later	in	this	chapter.	As	well
as	using	big	data	to	improve	patient	care	and	cut	costs,	by	pooling	the	information	generated	from	a	variety	of
online	sources	it	becomes	possible	to	think	in	terms	of	predicting	the	course	of	emerging	epidemics.

Google	Flu	Trends
Every	year,	like	many	countries,	the	US	experiences	an	influenza	(or	flu)	epidemic	resulting	in	stretched
medical	resources	and	considerable	loss	of	life.	Data	from	past	epidemics	supplied	by	the	US	Center	for
Disease	Control	(CDC),	the	public	health	monitoring	agency,	together	with	big	data	analytics,	provide	the
driving	force	behind	researchers’	efforts	to	predict	the	spread	of	the	illness	in	order	to	focus	services	and
reduce	its	impact.

The	Google	Flu	Trends	team	started	working	on	predicting	flu	epidemics	using	search	engine	data.	They	were
interested	in	how	the	course	of	the	annual	flu	epidemic	might	be	predicted	faster	than	it	currently	took	the
CDC	to	process	its	own	data.	In	a	letter	published	in	the	prestigious	scientific	journal	Nature	in	February
2009,	the	team	of	six	Google	software	engineers	explained	what	they	were	doing.	If	data	could	be	used	to
accurately	predict	the	course	of	the	annual	US	flu	epidemic	then	the	illness	could	be	contained,	saving	lives
and	medical	resources.	The	Google	team	explored	the	idea	that	this	could	be	achieved	by	collecting	and
analysing	search	engine	queries	relevant	to	concerns	about	the	flu.	Previous	attempts	to	use	online	data	to
predict	the	spread	of	the	flu	had	either	failed	or	been	met	with	limited	success.	However,	by	learning	from
earlier	mistakes	in	this	pioneering	research,	Google	and	the	CDC	hoped	to	be	successful	in	using	big	data
generated	by	search	engine	queries	to	improve	epidemic	tracking.



The	CDC	and	its	European	counterpart,	the	European	Influenza	Surveillance	Scheme	(EISS),	collect	data	from
various	sources,	including	physicians,	who	report	on	the	number	of	patients	they	see	with	flu-like	symptoms.
By	the	time	this	data	is	collated	it	is	typically	about	two	weeks	old	and	the	epidemic	has	progressed	further.
Using	data	collected	in	real-time	from	the	Internet,	the	Google/CDC	team	aimed	to	improve	the	accuracy	of
epidemic	predictions	and	to	deliver	results	within	a	single	day.	To	do	this,	data	was	collected	on	flu-related
search	queries	varying	from	individual	Internet	searches	on	flu	remedies	and	symptoms	to	mass	data	such	as
phone	calls	made	to	medical	advice	centres.	Google	was	able	to	tap	into	a	vast	amount	of	search	query	data
that	it	had	accumulated	between	2003	and	2008,	and	by	using	IP	addresses	it	was	able	to	identify	the
geographic	location	of	where	search	queries	had	been	generated	and	thus	group	the	data	according	to	State.
The	CDC	data	is	collected	from	ten	regions,	each	containing	the	cumulative	data	from	a	group	of	States	(e.g.
Region	9	includes	Arizona,	California,	Hawaii,	and	Nevada),	and	this	was	then	integrated	into	the	model.

The	Google	Flu	Trends	project	hinged	on	the	known	result	that	there	is	a	high	correlation	between	the	number
of	flu-related	online	searches	and	visits	to	the	doctor’s	surgery.	If	a	lot	of	people	in	a	particular	area	are
searching	for	flu-related	information	online,	it	might	then	be	possible	to	predict	the	spread	of	flu	cases	to
adjoining	areas.	Since	the	interest	is	in	finding	trends,	the	data	can	be	anonymized	and	hence	no	consent	from
individuals	is	required.	Using	their	five-year	accumulation	of	data,	which	they	limited	to	the	same	time-frame
as	the	CDC	data,	and	so	collected	only	during	the	flu	season,	Google	counted	the	weekly	occurrence	of	each	of
the	fifty	million	most	common	search	queries	covering	all	subjects.	These	search	query	counts	were	then
compared	with	the	CDC	flu	data,	and	those	with	the	highest	correlation	were	used	in	the	flu	trends	model.
Google	chose	to	use	the	top	forty-five	flu-related	search	terms	and	subsequently	tracked	these	in	the	search
queries	people	were	making.	The	complete	list	of	search	terms	is	secret	but	includes,	for	example,	‘influenza
complication’,	‘cold/flu	remedy’,	and	‘general	influenza	symptoms’.	The	historical	data	provided	a	baseline
from	which	to	assess	current	flu	activity	on	the	chosen	search	terms	and	by	comparing	the	new	real-time	data
against	this,	a	classification	on	a	scale	from	1	to	5,	where	5	signified	the	most	severe,	was	established.

Used	in	the	2011–12	and	2012–13	US	flu	seasons,	Google’s	big	data	algorithm	famously	failed	to	deliver.	After
the	flu	season	ended,	its	predictions	were	checked	against	the	CDC’s	actual	data.	In	building	the	model,	which
should	be	a	good	representation	of	flu	trends	from	the	data	available,	the	Google	Flu	Trends	algorithm	over-
predicted	the	number	of	flu	cases	by	at	least	50	per	cent	during	the	years	it	was	used.	There	were	several
reasons	why	the	model	did	not	work	well.	Some	search	terms	were	intentionally	excluded	because	they	did	not
fit	the	expectations	of	the	research	team.	The	much	publicized	example	is	that	high-school	basketball,
seemingly	unrelated	to	the	flu,	was	nevertheless	highly	correlated	with	the	CDC	data,	but	it	was	excluded	from
the	model.	Variable	selection,	the	process	by	which	the	most	appropriate	predictors	are	chosen,	always
presents	a	challenging	problem	and	so	is	done	algorithmically	to	avoid	bias.	Google	kept	the	details	of	their
algorithm	confidential,	noting	only	that	high-school	basketball	came	in	the	top	100	and	justifying	its	exclusion
by	pointing	out	that	the	flu	and	basketball	both	peak	at	the	same	time	of	year.

As	we	have	noted,	in	constructing	their	model	Google	used	forty-five	search	terms	as	predictors	of	the	flu.	Had
they	only	used	one,	for	example	‘influenza’	or	‘flu’,	important	and	relevant	information	such	as	all	the	searches
on	‘cold	remedy’	would	have	gone	unnoticed	and	unreported.	Accuracy	in	prediction	is	improved	by	having	a
sufficient	number	of	search	terms	but	it	can	also	decrease	if	there	are	too	many.	Current	data	is	used	as
training	data	to	construct	a	model	that	predicts	future	data	trends,	and	when	there	are	too	many	predictors,
small	random	cases	in	the	training	data	are	modelled	and	so,	although	the	model	fits	the	training	data	very
well,	it	does	not	predict	well.	This	seemingly	paradoxical	phenomenon,	called	‘over-fitting’,	was	not	taken	into
account	sufficiently	by	the	team.	Omitting	high-school	basketball	as	simply	being	coincidental	to	the	flu	season
made	sense,	but	there	were	fifty	million	distinct	search	terms	and	with	such	a	big	number	it	is	almost
inevitable	that	others	will	correlate	strongly	with	the	CDC	but	not	be	relevant	to	flu	trends.

Visits	to	the	doctor	with	flu-like	symptoms	often	resulted	in	a	diagnosis	that	was	not	the	flu	(e.g.	it	was	the
common	cold).	The	data	Google	used,	collected	selectively	from	search	engine	queries,	produced	results	that
are	not	scientifically	sound	given	the	obvious	bias	produced,	for	example	by	eliminating	everyone	who	does	not
use	a	computer	and	everyone	using	other	search	engines.	Another	issue	that	may	have	led	to	poor	results	was
that	customers	searching	Google	on	‘flu	symptoms’	would	probably	have	explored	a	number	of	flu-related
websites,	resulting	in	their	being	counted	several	times	and	thus	inflating	the	numbers.	In	addition,	search
behaviour	changes	over	time,	especially	during	an	epidemic,	and	this	should	be	taken	into	account	by	updating
the	model	regularly.	Once	errors	in	prediction	start	to	occur,	they	tend	to	cascade,	which	is	what	happened
with	the	Google	Flu	Trends	predictions:	one	week’s	errors	were	passed	along	to	the	next	week.	Search	queries
were	considered	as	they	had	actually	occurred	and	not	grouped	according	to	spelling	or	phrasing.	Google’s
own	example	was	that	‘indications	of	flu’,	‘flu	indications’,	and	‘indications	of	the	flu’	were	each	counted
separately.

The	work,	which	dates	back	to	2007–8,	has	been	much	criticized,	sometimes	unfairly,	but	the	criticism	has
usually	related	to	lack	of	transparency,	for	example	the	refusal	to	reveal	all	the	chosen	search	terms	and
unwillingness	to	respond	to	requests	from	the	academic	community	for	information.	Search	engine	query	data
is	not	the	product	of	a	designed	statistical	experiment	and	finding	a	way	to	meaningfully	analyse	such	data	and
extract	useful	knowledge	is	a	new	and	challenging	field	that	would	benefit	from	collaboration.	For	the	2012–13
flu	season,	Google	made	significant	changes	to	its	algorithms	and	started	to	use	a	relatively	new	mathematical
technique	called	Elasticnet,	which	provides	a	rigorous	means	of	selecting	and	reducing	the	number	of
predictors	required.	In	2011,	Google	launched	a	similar	program	for	tracking	Dengue	fever,	but	they	are	no
longer	publishing	predictions	and,	in	2015,	Google	Flu	Trends	was	withdrawn.	They	are,	however,	now	sharing



their	data	with	academic	researchers.

Google	Flu	Trends,	one	of	the	earlier	attempts	at	using	big	data	for	epidemic	prediction,	provided	useful
insights	to	researchers	who	came	after	them.	Even	though	the	results	did	not	live	up	to	expectations,	it	seems
likely	that	in	the	future	better	techniques	will	be	developed	and	the	full	potential	of	big	data	in	tracking
epidemics	realized.	One	such	attempt	was	made	by	a	group	of	scientists	from	the	Los	Alamos	National
Laboratory	in	the	USA,	using	data	from	Wikipedia.	The	Delphi	Research	Group	at	Carnegie	Mellon	University
won	the	CDC’s	challenge	to	‘Predict	the	Flu’	in	both	2014–15	and	2015–16	for	the	most	accurate	forecasters.
The	group	successfully	used	data	from	Google,	Twitter,	and	Wikipedia	for	monitoring	flu	outbreaks.

The	West	Africa	Ebola	outbreak
The	world	has	experienced	many	pandemics	in	the	past;	the	Spanish	flu	of	1918–19	killed	somewhere	between
twenty	million	and	fifty	million	people	and	in	total	infected	about	500	million	people.	Very	little	was	known
about	the	virus,	there	was	no	effective	treatment,	and	the	public	health	response	was	limited—necessarily	so,
due	to	lack	of	knowledge.	This	changed	in	1948	with	the	inauguration	of	the	World	Health	Organization
(WHO),	charged	with	monitoring	and	improving	global	health	through	worldwide	cooperation	and
collaboration.	On	8	August	2014,	at	a	teleconference	meeting	of	the	International	Health	Regulations
Emergency	Committee,	the	WHO	announced	that	an	outbreak	of	the	Ebola	virus	in	West	Africa	formally
constituted	a	‘public	health	emergency	of	international	concern’	(PHEIC).	Using	a	term	defined	by	the	WHO,
the	Ebola	outbreak	constituted	an	‘extraordinary	event’	requiring	an	international	effort	of	unprecedented
proportions	in	order	to	contain	it	and	thus	avert	a	pandemic.

The	West	Africa	Ebola	outbreak	in	2014,	primarily	confined	to	Guinea,	Sierra	Leone,	and	Liberia,	presented	a
different	set	of	problems	to	the	annual	US	flu	outbreak.	Historical	data	on	Ebola	was	either	not	available	or	of
little	use	since	an	outbreak	of	these	proportions	had	never	been	recorded,	and	so	new	strategies	for	dealing
with	it	needed	to	be	developed.	Given	that	knowledge	of	population	movements	help	public	health
professionals	monitor	the	spread	of	epidemics,	it	was	believed	that	the	information	held	by	mobile	phone
companies	could	be	used	to	track	travel	in	the	infected	areas,	and	measures	put	in	place,	such	as	travel
restrictions,	that	would	contain	the	virus,	ultimately	saving	lives.	The	resulting	real-time	model	of	the	outbreak
would	predict	where	the	next	instances	of	the	disease	were	most	likely	to	occur	and	resources	could	be
focused	accordingly.

The	digital	information	that	can	be	garnered	from	mobile	phones	is	fairly	basic:	the	phone	number	of	both	the
caller	and	the	person	being	called,	and	an	approximate	location	of	the	caller—a	call	made	on	a	mobile	phone
generates	a	trail	that	can	be	used	to	estimate	the	caller’s	location	according	to	the	tower	used	for	each	call.
Getting	access	to	this	data	posed	a	number	of	problems:	privacy	issues	were	a	genuine	concern	as	individuals
who	had	not	given	consent	for	their	calls	to	be	tracked	could	be	identified.

In	the	West	African	countries	affected	by	Ebola,	mobile	phone	density	was	not	uniform,	with	the	lowest
percentages	occurring	in	poor	rural	areas.	For	example,	in	2013	just	over	half	the	households	in	Liberia	and
Sierra	Leone,	two	of	the	countries	directly	affected	by	the	outbreak	in	2014,	had	a	mobile	phone,	but	even	so
they	could	provide	sufficient	data	to	usefully	track	movement.

Some	historic	mobile	phone	data	was	given	to	the	Flowminder	Foundation,	a	non-profit	organization	based	in
Sweden,	dedicated	to	working	with	big	data	on	public	health	issues	that	affect	the	world’s	poorer	countries.	In
2008,	Flowminder	were	the	first	to	use	mobile	operator	data	to	track	population	movements	in	a	medically
challenging	environment,	as	part	of	an	initiative	by	the	WHO	to	eradicate	malaria,	so	they	were	an	obvious
choice	to	work	on	the	Ebola	crisis.	A	distinguished	international	team	used	anonymized	historic	data	to
construct	maps	of	population	movements	in	the	areas	affected	by	Ebola.	This	historic	data	was	of	limited	use
since	behaviour	changes	during	epidemics,	but	it	does	give	strong	indications	of	where	people	will	tend	to
travel,	given	an	emergency.	Mobile	phone	mast	activity	records	provide	real-time	population	activity	details.

However,	the	Ebola	prediction	figures	published	by	WHO	were	over	50	per	cent	higher	than	the	cases	actually
recorded.

The	problems	with	both	the	Google	Flu	Trends	and	Ebola	analyses	were	similar	in	that	the	prediction
algorithms	used	were	based	only	on	initial	data	and	did	not	take	into	account	changing	conditions.	Essentially,
each	of	these	models	assumed	that	the	number	of	cases	would	continue	to	grow	at	the	same	rate	in	the	future
as	they	had	before	the	medical	intervention	began.	Clearly,	medical	and	public	health	measures	could	be
expected	to	have	positive	effects	and	these	had	not	been	integrated	into	the	model.

The	Zika	virus,	transmitted	by	Aedes	mosquitoes,	was	first	recorded	in	1947	in	Uganda,	and	has	since	spread
as	far	afield	as	Asia	and	the	Americas.	The	current	Zika	virus	outbreak,	identified	in	Brazil	in	2015,	resulted	in
another	PHEIC.	Lessons	have	been	learned	regarding	statistical	modelling	with	big	data	from	work	by	Google
Flu	Trends	and	during	the	Ebola	outbreak,	and	it	is	now	generally	acknowledged	that	data	should	be	collected
from	multiple	sources.	Recall	that	the	Google	Flu	Trends	project	collected	data	only	from	its	own	search
engine.



The	Nepal	earthquake
So	what	is	the	future	for	epidemic	tracking	using	big	data?	The	real-time	characteristics	of	mobile	phone	call
detail	records	(CDRs)	have	been	used	to	assist	in	monitoring	population	movements	in	disasters	as	far	ranging
as	the	Nepal	earthquake	and	the	swine-flu	outbreak	in	Mexico.	For	example,	an	international	Flowminder
team,	with	scientists	from	the	Universities	of	Southampton	and	Oxford,	as	well	as	institutions	in	the	US	and
China,	following	the	Nepal	earthquake	of	25	April	2015,	used	CDRs	to	provide	estimates	of	population
movements.	A	high	percentage	of	the	Nepali	population	has	a	mobile	phone	and	by	using	the	anonymized	data
of	twelve	million	subscribers,	the	Flowminder	team	was	able	to	track	population	movements	within	nine	days
of	the	earthquake.	This	quick	response	was	due	in	part	to	having	in	place	an	agreement	with	the	main	service
provider	in	Nepal,	technical	details	of	which	were	only	completed	a	week	before	the	disaster.	Having	a
dedicated	server	with	a	20	Tb	hard	drive	in	the	providers’	data	centre	enabled	the	team	to	start	work
immediately,	resulting	in	information	being	made	available	to	disaster	relief	organizations	within	nine	days	of
the	earthquake.

Big	data	and	smart	medicine
Every	time	a	patient	visits	a	doctor’s	office	or	hospital,	electronic	data	is	routinely	collected.	Electronic	health
records	constitute	legal	documentation	of	a	patient’s	healthcare	contacts:	details	such	as	patient	history,
medications	prescribed,	and	test	results	are	recorded.	Electronic	health	records	may	also	include	sensor	data
such	as	Magnetic	Resonance	Imaging	(MRI)	scans.	The	data	may	be	anonymized	and	pooled	for	research
purposes.	It	is	estimated	that	in	2015,	an	average	hospital	in	the	USA	will	store	over	600	Tb	of	data,	most	of
which	is	unstructured.	How	can	this	data	be	mined	to	give	information	that	will	improve	patient	care	and	cut
costs?	In	short,	we	take	the	data,	both	structured	and	unstructured,	identify	features	relevant	to	a	patient	or
patients,	and	use	statistical	techniques	such	as	classification	and	regression	to	model	outcomes.	Patient	notes
are	primarily	in	the	format	of	unstructured	text,	and	to	effectively	analyse	these	requires	natural	language
processing	techniques	such	as	those	used	by	IBM’s	Watson,	which	is	discussed	in	the	next	section.

According	to	IBM,	by	2020	medical	data	is	expected	to	double	every	seventy-three	days.	Increasingly	used	for
monitoring	healthy	individuals,	wearable	devices	are	widely	used	to	count	the	number	of	steps	we	take	each
day;	measure	and	balance	our	calorie	requirements;	track	our	sleep	patterns;	as	well	as	giving	immediate
information	on	our	heart	rate	and	blood	pressure.	The	information	gleaned	can	then	be	uploaded	onto	our	PCs
and	records	kept	privately	or,	as	is	sometimes	the	case,	shared	voluntarily	with	employers.	This	veritable
cascade	of	data	on	individuals	will	provide	healthcare	professionals	with	valuable	public	health	data	as	well	as
providing	a	means	for	recognizing	changes	in	individuals	that	might	help	avoid,	for	example,	a	heart	attack.
Data	on	populations	will	enable	physicians	to	track,	for	example,	side-effects	of	a	particular	medication	based
on	patient	characteristics.

Following	the	completion	of	the	Human	Genome	Project	in	2003,	genetic	data	will	increasingly	become	an
important	part	of	our	individual	medical	records	as	well	as	providing	a	wealth	of	research	data.	The	aim	of	the
Human	Genome	Project	was	to	map	all	the	genes	of	humans.	Collectively,	the	genetic	information	of	an
organism	is	called	its	genome.	Typically,	the	human	genome	contains	about	20,000	genes	and	mapping	such	a
genome	requires	about	100	Gb	of	data.	Of	course,	this	is	a	highly	complex,	specialized,	and	multi-faceted	area
of	genetic	research,	but	the	implications	following	the	use	of	big	data	analytics	are	of	interest.	The	information
about	genes	thus	collected	is	kept	in	large	databases	and	there	has	been	concern	recently	that	these	might	be
hacked	and	patients	who	contributed	DNA	would	be	identified.	It	has	been	suggested	that,	for	security
purposes,	false	information	should	be	added	to	the	database,	although	not	enough	to	render	it	useless	for
medical	research.	The	interdisciplinary	field	of	bioinformatics	has	flourished	as	a	consequence	of	the	need	to
manage	and	analyse	the	big	data	generated	by	genomics.	Gene	sequencing	has	become	increasingly	rapid	and
much	cheaper	in	recent	years,	so	that	mapping	individual	genomes	is	now	practical.	Taking	into	account	the
cost	of	fifteen	years	of	research,	the	first	human	genome	sequencing	cost	nearly	US$3	million.	Many
companies	now	offer	genome	sequencing	services	to	individuals	at	an	affordable	price.

Growing	out	of	the	Human	Genome	Project,	the	Virtual	Physiological	Human	(VPH)	project	aims	to	build
computer	representations	that	will	allow	clinicians	to	simulate	medical	treatments	and	find	the	best	for	a	given
patient,	built	on	the	data	from	a	vast	data	bank	of	actual	patients.	By	comparing	those	with	similar	symptoms
and	other	medically	relevant	details,	the	computer	model	can	predict	the	likely	outcome	of	a	treatment	on	an
individual	patient.	Data	mining	techniques	are	also	used	and	potentially	merged	with	the	computer	simulations
to	personalize	medical	treatment,	and	so	the	results	of	an	MRI	might	integrate	with	a	simulation.	The	digital
patient	of	the	future	would	contain	all	the	information	about	a	real	patient,	updated	according	to	smart	device
data.	However,	as	is	increasingly	the	case,	data	security	is	a	significant	challenge	faced	by	the	project.

Watson	in	medicine
In	2007,	IBM	decided	to	build	a	computer	to	challenge	the	top	competitors	in	the	US	television	game	show,
Jeopardy.	Watson,	a	big	data	analytics	system	named	after	the	founder	of	IBM,	Thomas	J.	Watson,	was	pitted
against	two	Jeopardy	champions:	Brad	Rutter,	with	a	winning	streak	of	seventy-four	appearances;	and	Ken
Jennings,	who	had	won	a	staggering	total	of	US$3.25	million.	Jeopardy	is	a	quiz	show	in	which	the	host	of	the
show	gives	an	‘answer’	and	the	contestant	has	to	guess	the	‘question’.	There	are	three	contestants	and	the
answers	or	clues	come	in	several	categories	such	as	science,	sport,	and	world	history	together	with	less



standard,	curious	categories	such	as	‘before	and	after’.	For	example,	given	the	clue	‘His	tombstone	in	a
Hampshire	churchyard	reads	“knight,	patriot,	physician	and	man	of	letters;	22	May	1859–7	July	1930”’,	the
answer	is	‘Who	is	Sir	Arthur	Conan	Doyle?’.	In	the	less	obvious	category	‘catch	these	men’,	given	the	clue
‘Wanted	for	19	murders,	this	Bostonian	went	on	the	run	in	1995	and	was	finally	nabbed	in	Santa	Monica	in
2011’,	the	answer	is	‘Who	was	Whitey	Bulger?’.	Clues	that	were	delivered	to	Watson	as	text	and	audio-visual
cues	were	omitted	from	the	competition.

Natural	language	processing	(NLP),	as	it	is	known	in	artificial	intelligence	(AI),	represents	a	huge	challenge	to
computer	science	and	was	crucial	to	the	development	of	Watson.	Information	also	has	to	be	accessible	and
retrievable,	and	this	is	a	problem	in	machine	learning.	The	research	team	started	out	by	analysing	Jeopardy
clues	according	to	their	lexical	answer	type	(LAT),	which	classifies	the	kind	of	answer	specified	in	the	clue.	For
the	second	of	these	examples,	the	LAT	is	‘this	Bostonian’.	For	the	first	example,	there	is	no	LAT,	the	pronoun
‘it’	does	not	help.	Analysing	20,000	clues	the	IBM	team	found	2,500	unique	LATs	but	these	covered	only	about
half	the	clues.	Next,	the	clue	is	parsed	to	identify	key	words	and	the	relationships	between	them.	Relevant
documents	are	retrieved	and	searched	from	the	computer’s	structured	and	unstructured	data.	Hypotheses	are
generated	based	on	the	initial	analyses,	and	by	looking	for	deeper	evidence	potential	answers	are	found.

To	win	Jeopardy,	fast	advanced	natural	language	processing	techniques,	machine	learning,	and	statistical
analysis	were	crucial.	Among	other	factors	to	consider	were	accuracy	and	choice	of	category.	A	baseline	for
acceptable	performance	was	computed	using	data	from	previous	winners.	After	several	attempts,	deep
question	and	answer	analysis,	or	‘DeepQA’,	an	amalgamation	of	many	AI	techniques	gave	the	solution.	This
system	uses	a	large	bank	of	computers,	working	in	parallel	but	not	connected	to	the	Internet;	it	is	based	on
probability	and	the	evidence	of	experts.	As	well	as	generating	an	answer,	Watson	uses	confidence-scoring
algorithms	to	enable	the	best	result	to	be	found.	Only	when	the	confidence	threshold	is	reached	does	Watson
indicate	that	it	is	ready	to	give	an	answer,	the	equivalent	of	a	human	contestant	hitting	their	buzzer.	Watson
beat	the	two	Jeopardy	champions.	Jennings,	generous	in	defeat,	is	quoted	as	saying,	‘I,	for	one,	welcome	our
new	computer	overlords’.

The	Watson	medical	system,	based	on	the	original	Jeopardy	Watson,	retrieves	and	analyses	both	structured
and	unstructured	data.	Since	it	builds	its	own	knowledge	base	it	is	essentially	a	system	that	appears	to	model
human	thought	processes	in	a	particular	domain.	Medical	diagnoses	are	based	on	all	available	medical
knowledge,	they	are	evidence-based,	accurate	to	the	extent	that	the	input	is	accurate	and	contains	all	the
relevant	information,	and	consistent.	Human	doctors	have	experience	but	are	fallible	and	some	are	better
diagnosticians	than	others.	The	process	is	similar	to	the	Watson	of	Jeopardy,	taking	into	account	all	the
relevant	information	and	returning	diagnoses,	each	with	a	confidence	rating.	Watson’s	built-in	AI	techniques
enable	the	processing	of	big	data,	including	the	vast	amounts	generated	by	medical	imaging.

The	Watson	supercomputer	is	now	a	multi-application	system	and	a	huge	commercial	success.	In	addition
Watson	has	been	engaged	in	humanitarian	efforts,	for	example	through	a	specially	developed	openware
analytics	system	to	assist	in	tracking	the	spread	of	Ebola	in	Sierra	Leone.

Medical	big	data	privacy
Big	data	evidently	has	potential	to	predict	the	spread	of	disease	and	to	personalize	medicine,	but	what	of	the
other	side	of	the	coin—the	privacy	of	the	individual’s	medical	data?	Particularly	with	the	growing	use	of
wearable	devices	and	smartphone	apps,	questions	arise	as	to	who	owns	the	data,	where	it	is	being	stored,	who
can	access	and	use	it,	and	how	secure	it	is	from	cyber-attacks.	Ethical	and	legal	issues	are	abundant	but	not
addressed	here.

Data	from	a	fitness	tracker	may	become	available	to	an	employer	and	used:	favourably,	for	example	to	offer
bonuses	to	those	who	meet	certain	metrics;	or,	unfavourably,	to	determine	those	who	fail	to	reach	the	required
standards,	perhaps	leading	to	an	unwanted	redundancy	offer.	In	September	2016,	a	collaborative	research
team	of	scientists	from	the	Technische	Universität	Darmstadt	in	Germany	and	the	University	of	Padua	in	Italy,
published	the	results	of	their	study	into	fitness	tracker	data	security.	Alarmingly,	out	of	the	seventeen	fitness
trackers	tested,	all	from	different	manufacturers,	none	was	sufficiently	secure	to	stop	changes	being	made	to
the	data	and	only	four	took	any	measures,	all	bypassed	by	the	team’s	efforts,	to	preserve	data	veracity.

In	September	2016	following	the	Rio	Olympic	Games,	from	which	most	Russian	athletes	were	banned
following	substantiated	reports	of	a	state-run	doping	programme,	medical	records	of	top	athletes,	including
the	Williams	sisters,	Simone	Byles,	and	Chris	Froome,	were	hacked	and	publicly	disclosed	by	a	group	of
Russian	cyber-hackers	on	the	website	FancyBears.net.	These	medical	records,	held	by	the	World	Anti-Doping
Agency	(WADA)	on	their	data	management	system	ADAMS,	revealed	only	therapeutic	use	exemptions	and
therefore	no	wrong-doing	by	the	cyber-bullied	athletes.	It	is	likely	that	the	initial	ADAMS	hack	was	the	result
of	spear-phishing	email	accounts.	This	technique,	whereby	an	email	appears	to	be	sent	by	a	senior	trusted
source	within	an	organization,	such	as	a	healthcare	provider,	to	a	more	junior	member	of	the	same
organization,	is	used	to	illegally	acquire	sensitive	information	such	as	passwords	and	account	numbers
through	downloaded	malware.

Proofing	big	data	medical	databases	from	cyber-attacks	and	hence	ensuring	patient	privacy	is	a	growing
concern.	Anonymized	personal	medical	data	is	for	sale	legally	but	even	so	it	is	sometimes	possible	to	identify



individual	patients.	In	a	valuable	exercise	highlighting	the	vulnerability	of	supposedly	secure	data,	Harvard
Data	Privacy	Lab	scientists	Latanya	Sweeney	and	Ji	Su	Yoo,	using	legally	available	encrypted	(i.e.	scrambled	so
that	they	cannot	easily	be	read;	see	Chapter	7)	medical	data	originating	in	South	Korea,	were	able	to	decrypt
unique	identifiers	within	the	records,	and	identify	individual	patients	through	cross-checking	with	public
records.

Medical	records	are	extremely	valuable	to	cyber-criminals.	In	2015,	the	health	insurer	Anthem	declared	that
its	databases	had	been	hacked	with	over	seventy	million	people	affected.	Data	critical	to	individual
identification,	such	as	name,	address,	and	social	security	number,	was	breached	by	Deep	Panda,	a	Chinese
hacking	group,	using	a	stolen	password	to	access	the	system	and	instal	Trojan-horse	malware.	Critically,	the
social	security	numbers,	a	unique	identifier	in	the	USA,	were	not	encrypted,	leaving	wide	open	the	possibility
of	identity	theft.	Many	security	breaches	start	with	human	error:	people	are	busy	and	do	not	noticed	subtle
changes	in	a	Uniform	Resource	Locator	(URL);	devices	such	as	flash	drives	are	lost,	stolen,	and	even	on
occasion	deliberately	planted,	with	malware	instantly	installed	once	an	unsuspecting	employee	plugs	the
device	into	a	USB	port.	Both	discontented	employees	and	genuine	employee	mistakes	also	account	for
countless	data	leaks.

New	big	data	incentives	in	the	management	of	healthcare	are	being	launched	at	an	increasing	rate	by	world-
renowned	institutions	such	as	the	Mayo	Clinic	and	Johns	Hopkins	Medical	in	the	USA,	the	UK’s	National
Health	Service	(NHS),	and	Clermont-Ferrand	University	Hospital	in	France.	Cloud-based	systems	give
authorized	users	access	to	data	anywhere	in	the	world.	To	take	just	one	example,	the	NHS	plans	to	make
patient	records	available	via	smartphone	by	2018.	These	developments	will	inevitably	generate	more	attacks
on	the	data	they	employ,	and	considerable	effort	will	need	to	be	expended	in	the	development	of	effective
security	methods	to	ensure	the	safety	of	that	data.



Chapter	6
Big	data,	big	business

In	the	1920s,	J.	Lyons	and	Co.,	a	British	catering	firm	famous	for	their	‘Corner	House’	cafés,	employed	a	young
Cambridge	University	mathematician,	John	Simmons,	to	do	statistical	work.	In	1947,	Raymond	Thompson	and
Oliver	Standingford,	both	of	whom	had	been	recruited	by	Simmons,	were	sent	on	a	fact-finding	visit	to	the
USA.	It	was	on	this	visit	that	they	first	became	aware	of	electronic	computers	and	their	potential	for	executing
routine	calculations.	Simmons,	impressed	by	their	findings,	sought	to	persuade	Lyons	to	acquire	a	computer.

Collaboration	with	Maurice	Wilkes,	who	was	then	engaged	in	building	the	Electronic	Delay	Storage	Automatic
Computer	(EDSAC)	at	the	University	of	Cambridge,	resulted	in	the	Lyons	Electronic	Office.	This	computer	ran
on	punched	cards	and	was	first	used	by	Lyons	in	1951	for	basic	accounting	tasks,	such	as	adding	up	columns
of	figures.	By	1954,	Lyons	had	formed	its	own	computer	business	and	was	building	the	LEO	II,	followed	by	the
LEO	III.	Although	the	first	office	computers	were	being	installed	as	early	as	the	1950s,	given	their	use	of
valves	(6,000	in	the	case	of	the	LEO	I)	and	magnetic	tape,	and	their	very	small	amount	of	RAM,	these	early
machines	were	unreliable	and	their	applications	were	limited.	The	original	Lyons	Electronic	Office	became
widely	referred	to	as	the	first	business	computer,	paving	the	way	for	modern	e-commerce	and,	after	several
mergers,	finally	became	part	of	the	newly	formed	International	Computers	Limited	(ICL)	in	1968.

e-Commerce
The	LEO	machines	and	the	massive	mainframe	computers	that	followed	were	suitable	only	for	the	number-
crunching	tasks	involved	in	such	tasks	as	accounting	and	auditing.	Workers	who	had	traditionally	spent	their
days	tallying	columns	of	figures	now	spent	their	time	producing	punched	cards	instead,	a	task	no	less	tedious
while	requiring	the	same	high	degree	of	accuracy.

Since	the	use	of	computers	became	feasible	for	commercial	enterprises,	there	has	been	interest	in	how	they
can	be	used	to	improve	efficiency,	cut	costs,	and	generate	profits.	The	development	of	the	transistor	and	its
use	in	commercially	available	computers	resulted	in	ever-smaller	machines,	and	in	the	early	1970s	the	first
personal	computers	were	being	introduced.	However,	it	was	not	until	1981,	when	International	Business
Machines	(IBM)	launched	the	IBM-PC	on	the	market,	with	the	use	of	floppy	disks	for	data	storage,	that	the
idea	really	took	off	for	business.	The	word-processing	and	spreadsheet	capabilities	of	succeeding	generations
of	PCs	were	largely	responsible	for	relieving	much	of	the	drudgery	of	routine	office	work.

The	technology	that	facilitated	electronic	data	storage	on	floppy	disks	soon	led	to	the	idea	that	in	future,
businesses	could	be	run	effectively	without	the	use	of	paper.	In	1975	an	article	in	the	American	magazine
BusinessWeek	speculated	that	the	almost	paper-free	office	would	be	a	reality	by	1990.	The	suggestion	was	that
by	eliminating	or	significantly	reducing	the	use	of	paper,	an	office	would	become	more	efficient	and	costs
would	be	reduced.	Paper	use	in	offices	declined	for	a	while	in	the	1980s	when	much	of	the	paperwork	that
used	to	be	found	in	filing	cabinets	was	transferred	to	computers,	but	it	then	rose	to	an	all-time	high	in	2007,
with	photocopies	accounting	for	the	majority	of	the	increase.	Since	2007,	paper	use	has	been	gradually
declining,	thanks	largely	to	the	increased	use	of	mobile	smart	devices	and	facilities	such	as	the	electronic
signature.

Although	the	optimistic	aspiration	of	the	early	digital	age	to	make	an	office	paperless	has	yet	to	be	fulfilled,
the	office	environment	has	been	revolutionized	by	email,	word-processing,	and	electronic	spreadsheets.	But	it
was	the	widespread	adoption	of	the	Internet	that	made	e-commerce	a	practical	proposition.

Online	shopping	is	perhaps	the	most	familiar	example.	As	customers,	we	enjoy	the	convenience	of	shopping	at
home	and	avoiding	time-consuming	queues.	The	disadvantages	to	the	customer	are	few	but,	depending	on	the
type	of	transaction,	the	lack	of	contact	with	a	store	employee	may	inhibit	the	use	of	online	purchasing.
Increasingly,	these	problems	are	being	overcome	by	online	customer	advice	facilities	such	as	‘instant	chat’,
online	reviews,	and	star	rankings,	a	huge	choice	of	goods	and	services	together	with	generous	return	policies.
As	well	as	buying	and	paying	for	goods,	we	can	now	pay	our	bills,	do	our	banking,	buy	airline	tickets,	and
access	a	host	of	other	services	all	online.

eBay	works	rather	differently	and	is	worth	mentioning	because	of	the	huge	amounts	of	data	it	generates.	With



transactions	being	made	through	sales	and	auction	bids,	eBay	generates	approximately	50	Tb	of	data	a	day,
collected	from	every	search,	sale,	and	bid	made	on	their	website	by	a	claimed	160	million	active	users	in	190
countries.	Using	this	data	and	the	appropriate	analytics	they	have	now	implemented	recommender	systems
similar	to	those	of	Netflix,	discussed	later	in	this	chapter.

Social	networking	sites	provide	businesses	with	instant	feedback	on	everything	from	hotels	and	vacations	to
clothes,	computers,	and	yoghurt.	By	using	this	information,	businesses	can	see	what	works,	how	well	it	works,
and	what	gives	rise	to	complaints,	while	fixing	problems	before	they	get	out	of	control.	Even	more	valuable	is
the	ability	to	predict	what	customers	want	to	buy	based	on	previous	sales	or	website	activity.	Social
networking	sites	such	as	Facebook	and	Twitter	collect	massive	amounts	of	unstructured	data	that	businesses
can	benefit	from	commercially	given	the	appropriate	analytics.	Travel	websites,	such	as	TripAdvisor,	also	share
information	with	third	parties.

Pay-per-click	advertising
Professionals	are	now	increasingly	acknowledging	that	appropriate	use	of	big	data	can	provide	useful
information	and	generate	new	customers	through	improved	merchandising	and	use	of	better	targeted
advertising.	Whenever	we	use	the	Web	we	are	almost	inevitably	aware	of	online	advertising	and	we	may	even
post	free	advertisements	ourselves	on	various	bidding	sites	such	as	eBay.

One	of	the	most	popular	kinds	of	advertising	follows	the	pay-per-click	model,	which	is	a	system	by	which
relevant	advertisements	pop	up	when	you	are	doing	an	online	search.	If	a	business	wants	their	advertisement
to	be	displayed	in	connection	with	a	particular	search	term,	they	place	a	bid	with	the	service	provider	on	a
keyword	associated	with	that	search	term.	They	also	declare	a	daily	maximum	budget.	The	adverts	are
displayed	in	order	according	to	a	system	based	in	part	on	which	advertiser	has	bid	the	highest	for	that	term.

If	you	click	on	their	advertisement,	the	advertiser	then	must	pay	the	service	provider	what	they	bid.
Businesses	only	pay	when	an	interested	party	clicks	on	their	advertisement,	so	these	adverts	must	be	a	good
match	for	the	search	term	to	make	it	more	likely	that	a	Web	surfer	will	click	on	them.	Sophisticated	algorithms
ensure	that	for	the	service	provider,	for	example	Google	or	Yahoo,	revenue	is	maximized.	The	best	known
implementation	of	pay-per-click	advertising	is	Google’s	Adwords.	When	we	search	on	Google	the
advertisements	that	automatically	appear	on	the	side	of	the	screen	are	generated	by	Adwords.	The	downside	is
that	clicks	can	be	expensive,	and	there	is	also	a	limit	on	the	number	of	characters	you	are	allowed	to	use	so
that	your	advertisement	will	not	take	up	too	much	space.

Click	fraud	is	also	a	problem.	For	example,	a	rival	company	may	click	on	your	advertisement	repeatedly	in
order	to	use	up	your	daily	budget.	Or	a	malicious	computer	program,	called	a	clickbot,	may	be	used	to
generate	clicks.	The	victim	of	this	kind	of	fraud	is	the	advertiser,	since	the	service	provider	gets	paid	and	no
customers	are	involved.	However,	since	it	is	in	the	best	interests	of	providers	to	ensure	security	and	so	protect
a	lucrative	business,	considerable	research	effort	is	being	made	to	counteract	fraud.	Probably	the	simplest
method	is	to	keep	track	of	how	many	clicks	are	needed	on	average	to	generate	a	purchase.	If	this	suddenly
increases	or	if	there	are	a	large	number	of	clicks	and	virtually	no	purchases	then	fraudulent	clicking	seems
likely.

In	contrast	to	pay-per-click	arrangements,	targeted	advertising	is	based	explicitly	on	each	person’s	online
activity	record.	To	see	how	this	works,	we’ll	start	by	looking	more	closely	at	cookies,	which	I	mentioned	briefly
in	Chapter	1.

Cookies
This	term	first	appeared	in	1979	when	the	operating	system	UNIX	ran	a	program	called	Fortune	Cookie,	which
delivered	random	quotes	to	the	users	generated	from	a	large	database.	Cookies	come	in	several	forms,	all	of
which	originate	externally	and	are	used	to	keep	a	record	of	some	activity	on	a	website	and/or	computer.	When
you	visit	a	website,	a	message	consisting	of	a	small	file	that	is	stored	on	your	computer	is	sent	by	a	Web	server
to	your	browser.	This	message	is	one	example	of	a	cookie,	but	there	are	many	other	kinds,	such	as	those	used
for	user-authentication	purposes	and	those	used	for	third-party	tracking.

Targeted	advertising
Every	click	you	make	on	the	Internet	is	being	collected	and	used	for	targeted	advertising.

This	user	data	is	sent	to	third-party	advertising	networks	and	stored	on	your	computer	as	a	cookie.	When	you
click	on	other	sites	supported	by	this	network,	advertisements	for	products	you	looked	at	previously	will	be
displayed	on	your	screen.	Using	Lightbeam,	a	free	add-on	to	Mozilla	Firefox,	you	can	keep	track	of	which
companies	are	collecting	your	Internet	activity	data.

Recommender	systems



Recommender	systems	provide	a	filtering	mechanism	by	which	information	is	provided	to	users	based	on	their
interests.	Other	types	of	recommender	systems,	not	based	on	the	users’	interests,	show	what	other	customers
are	looking	at	in	real-time	and	often	these	will	appear	as	‘trending’.	Netflix,	Amazon,	and	Facebook	are
examples	of	businesses	that	use	these	systems.

A	popular	method	for	deciding	what	products	to	recommend	to	a	customer	is	collaborative	filtering.	Generally
speaking,	the	algorithm	uses	data	collected	on	individual	customers	from	their	previous	purchases	and
searches,	and	compares	this	to	a	large	database	of	what	other	customers	liked	and	disliked	in	order	to	make
suitable	recommendations	for	further	purchasing.	However,	a	simple	comparison	does	not	generally	produce
good	results.	Consider	the	following	example.

Suppose	an	online	bookstore	sells	a	cookery	book	to	a	customer.	It	would	be	easy	to	subsequently	recommend
all	cookery	books,	but	this	is	unlikely	to	be	successful	in	securing	further	purchases.	There	are	far	too	many	of
them,	and	the	customer	already	knows	he	or	she	likes	cookery	books.	What	is	needed	is	a	way	of	reducing	the
number	of	books	to	those	that	the	customer	might	actually	buy.	Let’s	look	at	three	customers,	Smith,	Jones,
and	Brown,	together	with	their	book	purchases	(Figure	19).

19.	Books	bought	by	Smith,	Jones,	and	Brown.

The	question	for	the	recommender	system	is	which	book	should	be	recommended	to	Smith	and	which
recommended	to	Jones.	We	want	to	know	if	Smith	is	more	likely	to	buy	Pasta	Today	or	Wine	for	All.

To	do	this	we	need	to	use	a	statistic	that	is	often	used	for	comparing	sets	and	is	called	the	Jaccard	index.	This
is	defined	as	the	number	of	items	the	two	sets	have	in	common	divided	by	the	total	number	of	distinct	items	in
the	two	sets.	The	index	measures	the	similarity	between	the	two	sets	as	the	proportion	they	have	in	common.
The	Jaccard	distance,	defined	as	one	minus	the	Jaccard	index,	measures	the	dissimilarity	between	them.

Looking	again	at	Figure	19,	we	see	that	Smith	and	Jones	have	one	book	purchase	in	common,	Daily	Salads.
Between	them	they	have	purchased	three	distinct	books,	Daily	Salads,	Desserts	Tomorrow,	and	Wine	for	All.
This	gives	them	a	Jaccard	index	of	1/3	and	a	Jaccard	distance	of	2/3.	Figure	20	shows	the	calculation	for	all	the
possible	pairs	of	customers.

20.	Jaccard	index	and	distance.

Smith	and	Jones	have	a	higher	Jaccard	index,	or	similarity	score,	than	Smith	and	Brown.	This	means	that
Smith	and	Jones	are	closer	in	their	purchasing	habits—so	we	recommend	Wine	for	All	to	Smith.	What	should
we	recommend	to	Jones?	Smith	and	Jones	have	a	higher	Jaccard	index	than	Jones	and	Brown,	so	we
recommend	Desserts	Tomorrow	to	Jones.

Now	suppose	that	customers	rate	purchases	on	a	five-star	system.	To	make	use	of	this	information	we	need	to
find	other	customers	who	gave	the	same	rating	to	particular	books	and	see	what	else	they	bought	as	well	as
considering	their	purchasing	history.	The	star	ratings	for	each	purchase	are	given	in	Figure	21.



21.	Star	ratings	for	purchases.

In	this	example	a	different	calculation,	called	the	cosine	similarity	measure,	which	takes	the	star	ratings	into
account,	is	described.	For	this	calculation,	the	information	given	in	the	Star	Ratings	table	is	represented	as
vectors.	The	length	or	magnitude	of	the	vectors	is	normalized	to	1	and	plays	no	further	part	in	the	calculations.
The	direction	of	the	vectors	is	used	as	a	way	of	finding	how	similar	the	two	vectors	are	and	so	who	has	the	best
star	rating.	Based	on	the	theory	of	vector	spaces,	a	value	for	the	cosine	similarity	between	the	two	vectors	is
found.	The	calculation	is	rather	different	to	the	familiar	trigonometry	method,	but	the	basic	properties	still
hold	with	cosines	taking	values	between	0	and	1.	For	example,	if	we	find	that	the	cosine	similarity	between	two
vectors,	each	representing	a	person’s	star	ratings,	is	1	then	the	angle	between	them	is	0	since	cosine	(0)	=	1,
and	so	they	must	coincide	and	we	can	conclude	that	they	have	identical	tastes.	The	higher	the	value	of	the
cosine	similarity	the	greater	the	similarity	in	taste.

If	you	want	to	see	the	mathematical	details,	there	are	references	in	the	Further	reading	section	at	the	end	of
this	VSI.	What	is	interesting	from	our	perspective	is	that	the	cosine	similarity	between	Smith	and	Jones	works
out	to	be	0.350,	and	between	Smith	and	Brown	it	is	0.404.	This	is	a	reversal	of	the	previous	result,	indicating
that	Smith	and	Brown	have	tastes	closer	than	those	of	Smith	and	Jones.	Informally,	this	can	be	interpreted	as
Smith	and	Brown	being	closer	in	their	opinion	of	Desserts	Tomorrow	than	Smith	and	Jones	were	in	their
opinion	of	Daily	Salads.

Netflix	and	Amazon,	which	we	will	look	at	in	the	next	section,	both	use	collaborative	filtering	algorithms.

Amazon
In	1994,	Jeff	Bezos	founded	Cadabra,	but	soon	changed	the	name	to	Amazon	and	in	1995	Amazon.com	was
launched.	Originally	an	online	book	store,	it	is	now	an	international	e-commerce	company	with	over	304
million	customers	worldwide.	It	produces	and	sells	a	diverse	range	from	electronic	devices	to	books	and	even
fresh	food	items	such	as	yoghurt,	milk,	and	eggs	through	Amazon	Fresh.	It	is	also	a	leading	big	data	company,
with	Amazon	Web	Services	providing	Cloud-based	big	data	solutions	for	business,	using	developments	based
on	Hadoop.

Amazon	collected	data	on	what	books	were	bought,	what	books	a	customer	looked	at	but	did	not	buy,	how	long
they	spent	searching,	how	long	they	spent	looking	at	a	particular	book,	and	whether	or	not	the	books	they
saved	were	translated	into	purchases.	From	this	they	could	determine	how	much	a	customer	spent	on	books
monthly	or	annually,	and	determine	whether	they	were	regular	customers.	In	the	early	days,	the	data	Amazon
collected	was	analysed	using	standard	statistical	techniques.	Samples	were	taken	of	a	person	and,	based	on
the	similarities	found,	Amazon	would	offer	customers	more	of	the	same.	Taking	this	a	step	further,	in	2001
researchers	at	Amazon	applied	for	and	were	granted	a	patent	on	a	technique	called	item-to-item	collaborative
filtering.	This	method	finds	similar	items,	not	similar	customers.

Amazon	collects	vast	amounts	of	data	including	addresses,	payment	information,	and	details	of	everything	an
individual	has	ever	looked	at	or	bought	from	them.	Amazon	uses	its	data	in	order	to	encourage	the	customer	to
spend	more	money	with	them	by	trying	to	do	as	much	of	the	customer’s	market	research	as	possible.	In	the
case	of	books,	for	example,	Amazon	needs	to	provide	not	only	a	huge	selection	but	to	focus	recommendations
on	the	individual	customer.	If	you	subscribe	to	Amazon	Prime,	they	also	track	your	movie	watching	and
reading	habits.	Many	customers	use	smartphones	with	GPS	capability,	allowing	Amazon	to	collect	data
showing	time	and	location.	This	substantial	amount	of	data	is	used	to	construct	customer	profiles	allowing
similar	individuals	and	their	recommendations	to	be	matched.

Since	2013,	Amazon	has	been	selling	customer	metadata	to	advertisers	in	order	to	promote	their	Web	services
operation,	resulting	in	huge	growth.	For	Amazon	Web	Services,	their	Cloud	computing	platform,	security	is
paramount	and	multi-faceted.	Passwords,	key-pairs,	and	digital	signatures	are	just	a	few	of	the	security
techniques	in	place	to	ensure	that	clients’	accounts	are	available	only	to	those	with	the	correct	authorization.

Amazon’s	own	data	is	similarly	multi-protected	and	encrypted,	using	the	AES	(Advanced	Encryption	Standard)
algorithm,	for	storage	in	dedicated	data	centres	around	the	world,	and	Secure	Socket	Layer	(SSL),	the
industry	standard,	is	used	for	establishing	a	secure	connection	between	two	machines,	such	as	a	link	between
your	home	computer	and	Amazon.com.

Amazon	is	pioneering	anticipatory	shipping	based	on	big	data	analytics.	The	idea	is	to	use	big	data	to



anticipate	what	a	customer	will	order.	Initially	the	idea	is	to	ship	a	product	to	a	delivery	hub	before	an	order
actually	materializes.	As	a	simple	extension,	a	product	can	be	shipped	with	a	delighted	customer	receiving	a
free	surprise	package.	Given	Amazon’s	returns	policy,	this	is	not	a	bad	idea.	It	is	anticipated	that	most
customers	will	keep	the	items	they	do	order	since	they	are	based	on	their	personal	preferences,	found	by	using
big	data	analytics.	Amazon’s	2014	patent	on	anticipatory	shipping	also	states	that	goodwill	can	be	bought	by
sending	a	promotional	gift.	Goodwill,	increased	sales	through	targeted	marketing,	and	reduced	delivery	times
all	make	this	what	Amazon	believes	to	be	a	worthwhile	venture.	Amazon	also	filed	for	a	patent	on	autonomous
flying	drone	delivery,	called	Prime	Air.	In	September	2016,	the	US	Federal	Aviation	Administration	relaxed	the
rules	for	flying	drones	by	commercial	organizations,	allowing	them,	in	certain	highly	controlled	situations,	to
fly	beyond	the	line	of	sight	of	the	operator.	This	could	be	the	first	stepping	stone	in	Amazon’s	quest	to	deliver
packages	within	thirty	minutes	of	an	order	being	placed,	perhaps	leading	to	a	drone	delivery	of	milk	after	your
smart	refrigerator	sensor	has	indicated	that	you	are	running	out.

Amazon	Go,	located	in	Seattle,	is	a	convenience	food	store	and	is	the	first	of	its	kind	with	no	checkout
required.	As	of	December	2016	it	was	only	open	to	Amazon	employees	and	plans	for	it	to	be	available	to	the
general	public	in	January	2017	have	been	postponed.	At	present,	the	only	technical	details	available	are	from
the	patent	submitted	two	years	ago,	which	describes	a	system	eliminating	the	need	to	go	through	an	item-by-
item	checkout.	Instead,	the	details	of	a	customer’s	actual	cart	are	automatically	added	to	their	virtual	cart	as
they	shop.	Payment	is	made	electronically	as	they	leave	the	store	through	a	transition	area,	as	long	as	they
have	an	Amazon	account	and	a	smartphone	with	the	Amazon	Go	app.	The	Go	system	is	based	on	a	series	of
sensors,	a	great	many	of	them,	used	to	identify	when	an	item	is	taken	from	or	returned	to	a	shelf.

This	will	generate	a	huge	amount	of	commercially	useful	data	for	Amazon.	Clearly,	since	every	shopping	action
made	between	entering	and	leaving	the	store	is	logged,	Amazon	will	be	able	to	use	this	data	to	make
recommendations	for	your	next	visit	in	a	way	similar	to	their	online	recommendation	system.	However,	there
may	well	be	issues	about	how	much	we	value	our	privacy,	especially	given	aspects	such	as	the	possibility
mentioned	in	the	patent	application	of	using	facial	recognition	systems	to	identify	customers.

Netflix
Another	Silicon	Valley	company,	Netflix,	started	in	1997	as	a	postal	DVD	rental	company.	You	took	out	a	DVD
and	added	another	to	your	queue,	and	they	would	then	be	sent	out	in	turn.	Rather	usefully,	you	had	the	ability
to	prioritize	your	queue.	This	service	is	still	available	and	still	lucrative,	though	it	appears	to	be	gradually
winding	down.	Now	an	international,	Internet	streaming,	media	provider	with	approximately	seventy-five
million	subscribers	across	190	different	countries,	in	2015	Netflix	successfully	expanded	into	providing	its	own
original	programmes.

Netflix	collects	and	uses	huge	amounts	of	data	to	improve	customer	service,	such	as	offering	recommendations
to	individual	customers	while	endeavouring	to	provide	reliable	streaming	of	its	movies.	Recommendation	is	at
the	heart	of	the	Netflix	business	model	and	most	of	its	business	is	driven	by	the	data-based	recommendations
it	is	able	to	offer	customers.	Netflix	now	tracks	what	you	watch,	what	you	browse,	what	you	search	for,	and	the
day	and	time	you	do	all	these	things.	It	also	records	whether	you	are	using	an	iPad,	TV,	or	something	else.

In	2006,	Netflix	announced	a	crowdsourcing	competition	aimed	at	improving	their	recommender	systems.
They	were	offering	a	$1	million	prize	for	a	collaborative	filtering	algorithm	that	would	improve	by	10	per	cent
the	prediction	accuracy	of	user	movie	ratings.	Netflix	provided	the	training	data,	over	100	million	items,	for
this	machine	learning	and	data	mining	competition—and	no	other	sources	could	be	used.	Netflix	offered	an
interim	prize	(the	Progress	Prize)	worth	$50,000,	which	was	won	by	the	Korbell	team	in	2007	for	solving	a
related	but	somewhat	easier	problem.	Easier	is	a	relative	term	here,	since	their	solution	combined	107
different	algorithms	to	come	up	with	two	final	algorithms,	which,	with	ongoing	development,	are	still	being
used	by	Netflix.	These	algorithms	were	gauged	to	cope	with	100	million	ratings	as	opposed	to	the	five	billion
that	the	full	prize	algorithm	would	have	had	to	be	able	to	manage.	The	full	prize	was	eventually	awarded	in
2009	to	the	BellKor’s	Pragmatic	Chaos	team	whose	algorithm	represented	a	10.06	per	cent	improvement	over
the	existing	one.	Netflix	never	fully	implemented	the	winning	algorithm,	primarily	because	by	this	time	their
business	model	had	changed	to	the	now-familiar	one	of	media	streaming.

Once	Netflix	expanded	their	business	model	from	a	postal	service	to	providing	movies	by	streaming,	they	were
able	to	gather	a	lot	more	information	on	their	customers’	preferences	and	viewing	habits,	which	in	turn
enabled	them	to	provide	improved	recommendations.	However,	in	a	departure	from	the	digital	modality,
Netflix	employs	part-time	taggers,	a	total	of	about	forty	people	worldwide	who	watch	movies	and	tag	the
content,	labelling	them	as,	for	example,	‘science	fiction’	or	‘comedy’.	This	is	how	films	get	categorized—using
human	judgement	and	not	a	computer	algorithm	initially;	that	comes	later.

Netflix	uses	a	wide	range	of	recommender	algorithms	that	together	make	up	a	recommender	system.	All	these
algorithms	act	on	the	aggregated	big	data	collected	by	the	company.	Content-based	filtering,	for	example,
analyses	the	data	reported	by	the	‘taggers’	and	finds	similar	movies	and	TV	programmes	according	to	criteria
such	as	genre	and	actor.	Collaborative	filtering	monitors	such	things	as	your	viewing	and	search	habits.
Recommendations	are	based	on	what	viewers	with	similar	profiles	watched.	This	was	less	successful	when	a
user	account	has	more	than	one	user,	typically	several	members	of	a	family,	with	inevitably	different	tastes	and
viewing	habits.	In	order	to	overcome	this	problem,	Netflix	created	the	option	of	multiple	profiles	within	each



account.

On-demand	Internet	TV	is	another	area	of	growth	for	Netflix	and	the	use	of	big	data	analytics	will	become
increasingly	important	as	they	continue	to	develop	their	activities.	As	well	as	collecting	search	data	and	star
ratings,	Netflix	can	now	keep	records	on	how	often	users	pause	or	fast	forward,	and	whether	or	not	they	finish
watching	each	programme	they	start.	They	also	monitor	how,	when,	and	where	they	watched	the	programme,
and	a	host	of	other	variables	too	numerous	to	mention.	Using	big	data	analytics	we	are	told	that	they	are	now
even	able	to	predict	quite	accurately	whether	a	customer	will	cancel	their	subscription.

Data	science
‘Data	scientist’	is	the	generic	title	given	to	those	who	work	in	the	field	of	big	data.	The	McKinsey	Report	of
2012	highlighted	the	lack	of	data	scientists	in	the	USA	alone,	estimating	that	by	2018	the	shortage	would
reach	190,000.	The	trend	is	apparent	worldwide	and	even	with	government	initiatives	promoting	data	science
skills	training,	the	gap	between	available	and	required	expertise	seems	to	be	widening.	Data	science	is
becoming	a	popular	study	option	in	universities	but	graduates	so	far	have	been	unable	to	meet	the	demands	of
commerce	and	industry,	where	positions	in	data	science	offer	high	salaries	to	experienced	applicants.	Big	data
for	commercial	enterprises	is	concerned	with	profit,	and	disillusionment	will	set	in	quickly	if	an	over-burdened
data	analyst	with	insufficient	experience	fails	to	deliver	the	expected	positive	results.	All	too	often,	firms	are
asking	for	a	one-size-fits-all	model	of	data	scientist	who	is	expected	to	be	competent	in	everything	from
statistical	analysis	to	data	storage	and	data	security.

Data	security	is	of	crucial	importance	to	any	firm	and	big	data	creates	its	own	security	issues.	In	2016,	the
Netflix	Prize	2	initiative	was	cancelled	because	of	data	security	concerns.	Other	recent	data	hacks	include
Adobe	in	2013,	eBay	and	JP	Morgan	Chase	Bank	in	2014,	Anthem	(a	US	health	insurance	company)	and
Carphone	Warehouse	in	2015,	MySpace	in	2016,	and	LinkedIn—a	2012	hack	not	discovered	until	2016.	This	is
a	small	sample;	many	more	companies	have	been	hacked	or	suffered	other	types	of	security	breaches	leading
to	the	unauthorized	dissemination	of	sensitive	data.	In	Chapter	7,	we	will	look	at	some	of	the	big	data	security
breaches	in	depth.



Chapter	7
Big	data	security	and	the	Snowden	case

In	July	2009,	Amazon	Kindle	readers	found	life	imitating	art	when	their	copy	of	Orwell’s	novel	1984	completely
disappeared	from	their	devices.	In	1984,	the	‘memory	hole’	is	used	to	incinerate	documents	that	are
considered	subversive	or	no	longer	wanted.	Documents	permanently	disappear	and	history	is	rewritten.	It
could	almost	have	been	an	unfortunate	prank	but	1984	and	Orwell’s	Animal	Farm	had	actually	been	removed
as	the	result	of	a	dispute	between	Amazon	and	the	publisher.	Customers	were	angry,	having	paid	for	the	e-
book	and	assumed	that	it	was	therefore	their	property.	A	lawsuit	filed	by	a	highschool	student	and	one	other
person	was	settled	out	of	court.	In	the	settlement,	Amazon	stated	that	they	would	no	longer	erase	books	from
people’s	Kindles,	except	in	certain	circumstances,	including	that	‘a	judicial	or	regulatory	order	requires	such
deletion	or	modification’.	Amazon	offered	customers	a	refund,	gift	certificate,	or	to	restore	the	deleted	books.
In	addition	to	being	unable	to	sell	or	to	lend	our	Kindle	books,	it	seems	we	do	not	actually	own	them	at	all.

Although	the	Kindle	incident	was	in	response	to	a	legal	problem	and	was	not	intended	maliciously,	it	serves	to
illustrate	how	straightforward	it	is	to	delete	e-documents,	and	without	hard	copies,	how	simple	it	would	be	to
completely	eradicate	any	text	viewed	as	undesirable	or	subversive.	If	you	pick	up	the	physical	version	of	this
book	tomorrow	and	read	it	you	know	with	absolute	certainty	it	will	be	the	same	as	it	was	today	but	if	you	read
anything	on	the	Web	today,	you	cannot	be	certain	that	it	will	be	the	same	when	you	read	it	tomorrow.	There	is
no	absolute	certainty	on	the	Web.	Since	e-documents	can	be	modified	and	updated	without	the	author’s
knowledge,	they	can	easily	be	manipulated.	This	situation	could	be	extremely	damaging	in	many	different
situations,	such	as	the	possibility	of	someone	tampering	with	electronic	medical	records.	Even	digital
signatures,	designed	to	authenticate	electronic	documents,	can	be	hacked.	This	highlights	some	of	the
problems	facing	big	data	systems,	such	as	ensuring	they	actually	work	as	intended,	can	be	fixed	when	they
break	down,	and	are	tamper-proof	and	accessible	only	to	those	with	the	correct	authorization.

Securing	a	network	and	the	data	it	holds	are	the	key	issues	here.	A	basic	measure	taken	to	safeguard	networks
against	unauthorized	access	is	to	install	a	firewall,	which	isolates	a	network	from	unauthorized	outside	access
through	the	Internet.	Even	if	a	network	is	secure	from	direct	attack,	for	example	from	viruses	and	trojans,	the
data	stored	on	it,	particularly	if	it	is	unencrypted,	can	still	be	compromised.	For	instance,	one	such	technique,
that	of	phishing,	attempts	to	introduce	malicious	code,	usually	by	sending	an	email	with	an	executable	file	or
requesting	personal	or	security	data	such	as	passwords.	But	the	main	problem	facing	big	data	is	that	of
hacking.

The	retail	store	Target	was	hacked	in	2013	leading	to	the	theft	of	the	details	of	an	estimated	110	million
customer	records,	including	credit	card	details	of	forty	million	people.	It	is	reported	that	by	the	end	of
November	the	intruders	had	successfully	pushed	their	malware	to	most	of	Target’s	point-of-sale	machines	and
were	able	to	collect	customer	card	records	from	real-time	transactions.	At	that	time,	Target’s	security	system
was	being	monitored	twenty-four	hours	a	day	by	a	team	of	specialists	working	in	Bangalore.	Suspicious	activity
was	flagged	and	the	team	contacted	the	primary	security	team	located	in	Minneapolis,	who	unfortunately
failed	to	act	on	the	information.	The	Home	Depot	hack,	which	we	will	look	at	next,	was	even	bigger	but	used
similar	techniques,	leading	to	a	massive	data	theft.

Home	Depot	hack
On	8	September	2014,	Home	Depot,	which	describes	itself	as	the	largest	home	improvement	retailer	in	the
world,	announced	in	a	press	release	that	its	payment	data	systems	had	been	hacked.	In	an	update	on	18
September	2014,	Home	Depot	reported	that	the	attack	had	affected	approximately	fifty-six	million	debit/credit
cards.	In	other	words,	fifty-six	million	debit/credit	cards	details	were	stolen.	In	addition,	fifty-three	million
email	addresses	were	also	stolen.	In	this	case,	the	hackers	were	able	to	first	steal	a	vendor’s	log,	giving	them
easy	access	to	the	system—but	only	to	the	individual	vendor’s	part	of	the	system.	This	was	accomplished	by	a
successful	phishing	attempt.

The	next	step	required	the	hackers	to	access	the	extended	system.	At	that	time,	Home	Depot	was	using
Microsoft	XP	operating	system,	which	contained	an	inherent	flaw	that	the	hackers	exploited.	The	self-checkout
system	was	then	targeted	since	this	sub-system	was	itself	clearly	identifiable	within	the	entire	system.	Finally,
the	hackers	infected	the	7,500	self-checkout	terminals	with	malware	to	gain	customer	information.	They	used



BlackPOS,	also	known	as	Kaptoxa,	a	specific	malware	for	scraping	credit/debit	card	information	from	infected
terminals.	For	security,	payment	card	information	should	be	encrypted	when	the	card	is	swiped	at	a	point-of-
sales	terminal	but	apparently	this	feature,	point-to-point	encryption,	had	not	been	implemented	and	so	the
details	were	left	open	for	the	hackers	to	take.

The	theft	was	uncovered	when	banks	started	to	detect	fraudulent	activity	on	accounts	that	had	made	other
recent	purchases	at	Home	Depot—the	card	details	had	been	sold	through	Rescator,	a	cybercrime	outlet	found
on	the	dark	Web.	It	is	interesting	that	people	using	cash	registers,	which	also	take	cards,	were	not	affected	by
this	attack.	The	reason	for	this	appears	to	be	that	in	the	mainframe	computer,	cash	registers	were	identified
only	by	numbering	and	so	were	not	readily	identifiable	as	checkout	points	by	the	criminals.	If	Home	Depot	had
also	used	simple	numbering	for	its	self-checkout	terminals,	this	hacking	attempt	might	have	been	foiled.
Having	said	that,	at	the	time	Kaptoxa	was	deemed	state-of-the-art	malware	and	was	virtually	undetectable,	so
given	the	open	access	to	the	system	the	hackers	had	obtained,	it	almost	certainly	would	eventually	have	been
introduced	successfully.

The	biggest	data	hack	yet
In	December	2016,	Yahoo!	announced	that	a	data	breach	involving	over	one	billion	user	accounts	had	occurred
in	August	2013.	Dubbed	the	biggest	ever	cyber	theft	of	personal	data,	or	at	least	the	biggest	ever	divulged	by
any	company,	thieves	apparently	used	forged	cookies,	which	allowed	them	access	to	accounts	without	the	need
for	passwords.	This	followed	the	disclosure	of	an	attack	on	Yahoo!	in	2014,	when	500	million	accounts	were
compromised.	Chillingly,	Yahoo!	alleged	the	2014	hack	was	perpetrated	by	an	unnamed	‘state-sponsored
actor’.

Cloud	security
The	list	of	big	data	security	breaches	increases	almost	daily.	Data	theft,	data	ransom,	and	data	sabotage	are
major	concerns	in	a	data-centric	world.	There	have	been	many	scares	regarding	the	security	and	ownership	of
personal	digital	data.	Before	the	digital	age	we	used	to	keep	photos	in	albums	and	negatives	were	our	backup.
After	that,	we	stored	our	photos	electronically	on	a	hard-drive	in	our	computer.	This	could	possibly	fail	and	we
were	wise	to	have	back-ups	but	at	least	the	files	were	not	publicly	accessible.	Many	of	us	now	store	data	in	the
Cloud.	Photos,	videos,	home	movies	all	require	a	lot	of	storage	space	and	so	the	Cloud	makes	sense	from	that
perspective.	When	you	store	your	files	in	the	Cloud,	you	are	uploading	them	to	a	data	centre—more	likely,	they
will	be	distributed	across	several	centres—and	more	than	one	copy	will	be	kept.

If	you	store	all	your	photos	in	the	Cloud,	it’s	highly	unlikely	with	today’s	sophisticated	systems	that	you	would
lose	them.	On	the	other	hand,	if	you	want	to	delete	something,	maybe	a	photo	or	video,	it	becomes	difficult	to
ensure	all	copies	have	been	deleted.	Essentially	you	have	to	rely	on	your	provider	to	do	this.	Another	important
issue	is	controlling	who	has	access	to	the	photos	and	other	data	you	have	uploaded	to	the	Cloud.	If	we	want	to
make	big	data	secure,	encryption	is	vital.

Encryption
Encryption,	as	mentioned	briefly	in	Chapter	5,	refers	to	methods	used	to	scramble	files	so	that	they	cannot
easily	be	read,	and	the	basic	technique	goes	back	at	least	as	far	as	Roman	times.	Suetonius,	in	his	The	Twelve
Caesars,	describes	how	Julius	Caesar	encoded	documents	using	a	three-letter	shift	to	the	left.	Using	this
method	the	word	‘secret’	would	be	encoded	as	‘pbzobq’.	Known	as	a	‘Caesar	cipher’	this	is	not	difficult	to
break,	but	even	the	most	secure	ciphers	used	today	apply	shifting	as	part	of	the	algorithm.

In	1997,	the	best	publicly	available	encryption	method,	Data	Encryption	Standard	(DES),	was	shown	to	be
breakable,	largely	due	to	the	increase	in	computing	power	available	and	the	relatively	short	56-bit	key	length.
Although	this	provides	a	possible	256	different	key	choices,	it	was	possible	to	decrypt	a	message	by	testing
each	one	until	the	correct	key	was	found.	This	was	done	in	1998,	in	just	over	twenty-two	hours	using	Deep
Crack,	a	computer	built	by	Electronic	Frontier	Foundation	expressly	for	this	purpose.

In	1997,	the	National	Institute	of	Standards	and	Technology	(NIST)	in	the	USA,	concerned	that	DES	lacked	the
security	needed	for	protecting	top	secret	documents,	launched	an	open,	worldwide	competition	to	find	a	better
encryption	method	than	DES.	The	competition	ended	in	2001	with	the	AES	algorithm	being	chosen.	It	was
submitted	as	the	Rijndael	algorithm,	combining	the	names	of	its	two	Belgian	originators,	Joan	Daemen	and
Vincent	Rijmen.

AES	is	a	software	algorithm	used	for	text	encryption	with	a	choice	of	a	128-,	192-,	or	256-bit	key	length.	For
the	128-bit	key	length,	the	algorithm	requires	nine	processing	rounds,	each	consisting	of	four	steps,	plus	a
final	round	with	only	three	steps.	The	AES	encryption	algorithm	is	iterative	and	performs	a	large	number	of
computations	on	matrices—just	the	kind	of	calculations	that	are	best	performed	by	computers.	However,	we
can	describe	the	process	informally	without	reference	to	the	mathematical	transformations.

AES	starts	by	applying	a	key	to	the	text	we	want	to	encrypt.	We	would	no	longer	be	able	to	recognize	the	text



but	given	the	key,	we	could	easily	decode	it	so	more	steps	are	needed.	The	next	step	involves	substituting	each
letter	with	another	letter,	using	a	special	look-up	table,	called	a	Rijndael	S-Box.	Again,	if	we	have	the	Rijndael
S-Box,	we	can	work	backwards	to	decrypt	the	message.	A	Caesar	Cipher,	where	letters	are	shifted	to	the	left,
and	a	final	permutation	completes	one	round.	The	result	is	then	used	to	start	another	round,	using	a	different
key	and	so	on,	until	all	rounds	have	been	completed.	Of	course,	we	have	to	be	able	to	decrypt,	and	for	this
algorithm	the	method	is	reversible.

For	the	192-bit	key	length	there	are	twelve	rounds	in	total.	For	even	greater	security,	a	longer	key	length,	AES
256,	can	be	employed,	but	most	users,	including	Google	and	Amazon,	find	AES	128	sufficient	for	their	big	data
security	needs.	AES	is	secure	and	has	yet	to	be	broken,	leading	to	several	governments	to	ask	major
companies	such	as	Apple	and	Google	to	provide	back	doors	into	the	encrypted	material.

Email	security
It	has	been	estimated	that	in	2015	over	200	billion	emails	were	sent	every	day,	with	less	than	10	per	cent	of
these	being	authentic	and	not	spam	or	with	malicious	intent.	Most	emails	are	not	encrypted,	making	their
contents	vulnerable	to	interception	by	hackers.	When	I	send	an	unencrypted	email,	let’s	say	from	California	to
the	UK	for	example,	it	is	divided	into	data	‘packets’	and	transmitted	through	a	mail	server,	which	is	connected
to	the	Internet.	The	Internet	is	essentially	made	up	of	a	big	worldwide	network	of	wires,	above	ground,	below
ground,	and	below	oceans,	plus	cell	phone	towers	and	satellites.	The	only	continent	unconnected	by
transoceanic	cables	is	Antarctica.

So	although	the	Internet	and	Cloud-based	computing	are	generally	thought	of	as	wireless,	they	are	anything
but;	data	is	transmitted	through	fibre-optic	cables	laid	under	the	oceans.	Nearly	all	digital	communication
between	continents	is	transmitted	in	this	way.	My	email	will	be	sent	via	transatlantic	fibre-optic	cables,	even	if
I	am	using	a	Cloud	computing	service.	The	Cloud,	an	attractive	buzz	word,	conjures	up	images	of	satellites
sending	data	across	the	world,	but	in	reality	Cloud	services	are	firmly	rooted	in	a	distributed	network	of	data
centres	providing	Internet	access,	largely	through	cables.

Fibre-optic	cables	provide	the	fastest	means	of	data	transmission	and	so	are	generally	preferable	to	satellites.
The	current	extensive	research	into	fibre-optic	technology	is	resulting	in	ever	faster	data	transmission	rates.
Transatlantic	cables	have	been	the	target	of	some	curious	and	unexpected	attacks,	including	those	from	sharks
intent	on	biting	through	the	cables.	While,	according	to	the	International	Cable	Protection	Committee,	shark
attacks	account	for	fewer	than	1	per	cent	of	the	faults	logged,	even	so,	cables	in	vulnerable	areas	are	now
often	protected	using	Kevlar.	Assuming	there	are	no	problems	with	transatlantic	cables	due	to	inquisitive
sharks,	hostile	governments,	or	careless	fishermen,	and	my	email	makes	landfall	in	the	UK	and	continues	on
its	way,	it	may	be	at	this	point	that,	as	with	other	Internet	data,	it	is	intercepted.	In	June	2013,	Edward
Snowden	leaked	documents	revealing	that	the	Government	Communications	Headquarters	(GCHQ)	in	the	UK
were	tapping	into	a	vast	amount	of	data,	received	through	approximately	200	transatlantic	cables,	using	a
system	called	Tempora.

The	Snowden	case
Edward	Snowden	is	an	American	computer	professional	who	was	charged	with	espionage	in	2013	after	leaking
classified	information	from	the	US	National	Security	Agency	(NSA).	This	high-profile	case	brought	government
mass	surveillance	capabilities	to	the	attention	of	the	general	public,	and	widespread	concerns	were	expressed
regarding	individual	privacy.	Awards	made	to	Snowden	since	taking	this	action	have	been	many	and	include
election	as	rector	of	the	University	of	Glasgow,	the	Guardian’s	Person	of	the	Year	2013,	and	Nobel	Peace	Prize
nominations	in	2014,	2015,	and	2016.	He	has	the	support	of	Amnesty	International	as	a	whistleblower	who
provided	a	service	to	his	country.	However,	US	government	officials	and	politicians	have	begged	to	differ	in
this	view.

In	June	2013,	the	Guardian	newspaper	in	the	UK	reported	that	the	NSA	was	collecting	metadata	from	some	of
the	major	US	phone	networks.	This	report	was	swiftly	followed	by	the	revelation	that	a	program	called	PRISM
was	being	used	to	collect	and	store	Internet	data	on	foreign	nationals	communicating	with	the	US.	A	whole
slew	of	electronic	leaks	followed,	incriminating	both	the	US	and	the	UK.	A	Booz	Allen	Hamilton	employee	and
NSA	contractor	working	at	the	Hawaii	Cryptologic	Center,	Edward	Snowden,	was	the	source	of	these	leaks,
which	he	sent	to	members	of	the	media	he	felt	could	be	trusted	not	to	publish	without	careful	consideration.
Snowden’s	motivations,	and	the	legal	issues	involved,	are	beyond	the	scope	of	this	book	but	it	is	apparent	that
he	believed	that	what	had	started	out	as	legitimate	spying	on	other	countries	had	now	turned	in	on	itself	and
the	NSA	was	now	spying,	illegally,	on	all	US	citizens.

The	free	Web	scraping	tools,	DownThemAll,	an	available	extension	of	Mozilla	Firefox,	and	the	program	wget,
give	the	means	to	quickly	download	the	entire	contents	of	a	website	or	other	Web-related	data.	These
applications,	available	to	authorized	users	on	NSA	classified	networks,	were	used	by	Snowden	to	download
and	copy	massive	amounts	of	information.	He	also	transferred	large	amounts	of	highly	sensitive	data	from	one
computer	system	to	another.	In	order	to	do	this,	he	needed	usernames	and	passwords,	which	a	systems
administrator	would	routinely	have.	He	thus	had	easy	access	to	many	of	the	classified	documents	he	stole,	but
not	all.	To	get	access	to	higher	than	top-secret	documents,	he	had	to	use	the	authentication	details	of	higher
level	user	accounts,	which	security	protocols	should	have	prevented.	However,	since	he	had	created	these



accounts	and	had	system	administrator	privileges,	he	knew	the	account	details.	Snowden	also	managed	to
persuade	at	least	one	NSA	employee	with	security	clearance	higher	than	his	to	tell	him	their	password.

Ultimately,	Snowden	copied	an	estimated	1.5	million	highly	classified	documents,	of	which	about	200,000
(Snowden	understood	that	not	all	of	his	stolen	documents	should	be	made	public	and	was	cautious	about
which	should	be	published)	were	handed	over	to	trusted	reporters,	although	relatively	few	of	even	these	were
eventually	published.

While	the	details	have	never	been	fully	revealed	by	Snowden,	it	seems	he	was	able	to	copy	the	data	onto	flash
drives,	which	he	apparently	had	no	difficulty	in	taking	with	him	when	he	left	work	for	the	day.	Security
measures	to	prevent	Snowden	from	being	able	to	remove	these	documents	were	clearly	inadequate.	Even	a
simple	body	scan	on	exiting	the	facility	would	have	detected	any	portable	devices,	and	video	surveillance	in
the	offices	could	also	have	flagged	suspicious	activity.	In	December	2016,	the	US	House	of	Representatives
declassified	a	document	dated	September	2016,	which	remains	heavily	redacted,	reviewing	Snowden	the	man
as	well	as	the	nature	and	impact	of	the	leaked	documents.	From	this	document	it	is	clear	that	the	NSA	had	not
applied	sufficient	security	measures	and	as	a	result	the	Secure	the	Net	initiative	has	since	been	put	into
operation,	although	it	is	yet	to	be	fully	implemented.

Snowden	had	extensive	system	administrator	privileges,	but	given	the	extremely	sensitive	nature	of	the	data,
allowing	one	person	to	have	full	access	with	no	safeguards	was	not	acceptable.	For	example,	requiring
validation	credentials	of	two	people	when	data	was	accessed	or	transferred	might	have	been	sufficient	to
prevent	Snowden	from	illicitly	copying	files.	It	is	also	curious	that	Snowden	could	apparently	plug	in	a	USB
drive	and	copy	anything	he	wanted.	A	very	simple	security	measure	is	to	disable	DVD	and	USB	ports	or	not
have	them	installed	in	the	first	place.	Add	further	authentication	using	retina	scan	to	the	requirement	for	a
password	and	it	would	have	been	very	difficult	for	Snowden	even	to	access	those	higher	level	documents.
Modern	security	techniques	are	sophisticated	and	difficult	to	penetrate	if	used	correctly.

In	late	2016,	entering	‘Edward	Snowden’	in	Google	search	gave	over	twenty-seven	million	results	in	just	over
one	second;	and	the	search	term	‘Snowden’	gave	forty-five	million	results.	Since	many	of	these	sites	give
access	to	or	even	display	the	leaked	documents	labelled	‘Top	Secret’,	they	are	now	firmly	in	the	global	public
domain	and	will	no	doubt	remain	so.	Edward	Snowden	is	currently	living	in	Russia.

In	contrast	with	Edward	Snowden’s	case,	WikiLeaks	presents	a	very	different	story.

WikiLeaks
WikiLeaks	is	a	huge	online	whistleblowing	organization	whose	aim	is	to	disseminate	secret	documents.	It	is
funded	by	donations	and	staffed	largely	by	volunteers,	though	it	does	appear	to	employ	a	few	people	too.	As	of
December	2015,	WikiLeaks	claims	to	have	published	(or	leaked)	more	than	ten	million	documents.	WikiLeaks
maintains	its	highly	public	profile	through	its	own	website,	Twitter,	and	Facebook.

Highly	controversial,	WikiLeaks	and	its	leader	Julian	Assange	hit	the	headlines	on	22	October	2010	when	a
vast	amount	of	classified	data—391,832	documents—dubbed	‘Iraq	War	Logs’	was	made	public.	This	followed
the	approximately	75,000	documents	constituting	‘The	Afghan	War	Diary’	that	had	already	been	leaked	on	25
July	2010.

An	American	army	soldier,	Bradley	Manning,	was	responsible	for	both	leaks.	Working	as	an	intelligence	analyst
in	Iraq,	he	took	a	compact	disc	to	work	with	him	and	copied	secret	documents	from	a	supposedly	secure
personal	computer.	For	this,	Bradley	Manning,	now	known	as	Chelsea	Manning,	was	sentenced	in	2013	to
thirty-five	years	in	prison	following	conviction,	by	court-martial,	for	violations	of	the	Espionage	Act	and	other
related	offences.	Former	US	president	Barack	Obama	commuted	Chelsea	Manning’s	sentence	in	January	2017,
prior	to	his	leaving	office.	Ms	Manning,	who	received	treatment	for	gender	dysphoria	while	in	prison,	was
released	on	17	May	2017.

Heavily	criticized	by	politicians	and	governments,	WikiLeaks	has	nonetheless	been	applauded	by	and	received
awards	from	the	likes	of	Amnesty	International	(2009)	and	the	UK’s	The	Economist	(2008),	among	a	long	list	of
others.	According	to	their	website,	Julian	Assange	has	been	nominated	for	the	Nobel	Peace	Prize	in	six
consecutive	years,	2010–15.	The	Nobel	Committee	does	not	release	the	names	of	nominees	until	fifty	years
have	passed	but	nominators,	who	have	to	meet	the	strict	criteria	of	the	Peace	Prize	committee,	often	do
publicly	announce	the	names	of	their	nominees.	For	example,	in	2011,	Julian	Assange	was	nominated	by
Snorre	Valen,	a	Norwegian	parliamentarian,	in	support	of	WikiLeaks	exposing	alleged	human	rights	violations.
In	2015,	Assange	had	the	support	of	former	UK	member	of	parliament	George	Galloway,	and	in	early	2016	a
supportive	group	of	academics	also	called	for	Assange	to	be	awarded	the	prize.

Yet	by	the	end	of	2016,	the	tide	was	turning	against	Assange	and	WikiLeaks,	at	least	in	part	because	of	alleged
bias	in	their	reporting.	Against	WikiLeaks	are	ethical	concerns	regarding	the	safety	and	privacy	of	individuals;
corporate	privacy;	government	secrecy;	the	protection	of	local	sources	in	areas	of	conflict;	and	the	public
interest	in	general.	The	waters	are	becoming	increasingly	muddied	for	Julian	Assange	and	WikiLeaks.	For
example,	in	2016,	emails	were	leaked	at	a	time	best	suited	to	damage	Hillary	Clinton’s	presidential	candidacy,
raising	questions	about	WikiLeaks’	objectivity,	and	prompting	considerable	criticism	from	a	number	of	well-



respected	sources.

Regardless	of	whether	you	support	or	condemn	the	activities	of	Julian	Assange	and	WikiLeaks,	and	almost
inevitably	people	will	do	both,	varying	with	the	issue	at	stake,	one	of	the	big	technical	questions	is	whether	it
is	possible	to	shut	down	WikiLeaks.	Since	it	maintains	its	data	on	many	servers	across	the	world,	some	of	it	in
sympathetic	countries,	it	is	unlikely	that	it	could	be	completely	shut	down,	even	assuming	that	this	was
desirable.	However,	for	increased	protection	against	retaliation	following	each	disclosure,	WikiLeaks	has
issued	an	insurance	file.	The	unspoken	suggestion	is	that	if	anything	happens	to	Assange	or	if	WikiLeaks	is
shut	down,	the	insurance	file	key	will	be	publicly	broadcast.	The	most	recent	WikiLeaks	insurance	file	uses
AES	with	a	256-bit	key	and	so	it	is	highly	unlikely	to	be	broken.

As	of	2016,	Edward	Snowden	is	at	odds	with	WikiLeaks.	The	disagreement	comes	down	to	how	each	of	them
managed	their	data	leaks.	Snowden	handed	his	files	over	to	trusted	journalists,	who	carefully	chose	which
documents	to	leak.	US	government	officials	were	informed	in	advance,	and,	following	their	advice,	further
documents	were	withheld	because	of	national	security	concerns.	To	this	day,	many	have	never	been	disclosed.
WikiLeaks	appears	simply	to	publish	its	data	with	little	effort	to	protect	personal	information.	It	still	seeks	to
gather	information	from	whistleblowers,	but	it	is	not	clear	how	reliable	recent	data	leaks	have	been,	or	indeed
whether	its	selection	of	the	information	it	presents	allows	it	to	be	completely	disinterested.	On	its	website,
WikiLeaks	gives	instruction	for	how	to	use	a	facility	called	TOR	(The	Onion	Router)	to	send	data	anonymously
and	ensure	privacy,	but	you	do	not	have	to	be	a	whistleblower	to	use	TOR.

TOR	and	the	dark	Web
Janet	Vertesi,	an	assistant	professor	in	the	Sociology	Department	at	Princeton	University,	decided	to	conduct	a
personal	experiment	to	see	if	she	could	keep	her	pregnancy	a	secret	from	online	marketers	and	so	prevent	her
personal	information	becoming	part	of	the	big	data	pool.	In	an	article	published	in	TIME	magazine	in	May
2014,	Dr	Vertesi	gives	an	account	of	her	experience.	She	took	exceptional	privacy	measures,	including
avoiding	social	media;	she	downloaded	TOR	and	used	it	to	order	many	baby-related	items;	and	in-store
purchases	were	paid	for	in	cash.	Everything	she	did	was	perfectly	legal	but	ultimately	she	concluded	that
opting	out	was	costly	and	time-consuming	and	made	her	look,	in	her	own	words,	like	a	‘bad	citizen’.	However,
TOR	is	worth	looking	at,	not	least	because	it	made	Dr	Vertesi	feel	safe	and	maintained	her	privacy	from
trackers.

TOR	is	an	encrypted	network	of	servers	that	was	originally	developed	by	the	US	Navy	to	provide	a	way	of
using	the	Internet	anonymously,	and	so	prevent	tracking	and	the	collection	of	personal	data.	TOR	is	an	ongoing
project,	aimed	at	developing	and	improving	open-source	online	anonymity	environments	that	anyone
concerned	about	privacy	can	use.	TOR	works	by	encrypting	your	data,	including	the	sending	address,	and	then
anonymizes	it	by	removing	part	of	the	header,	crucially	including	the	IP	address,	since	an	individual	can	easily
be	found	by	back-tracking	given	that	information.	The	resulting	data	package	is	routed	through	a	system	of
servers	or	relays,	hosted	by	volunteers,	before	arriving	at	its	final	destination.

On	the	positive	side,	users	include	the	military	who	originally	designed	it;	investigative	journalists	wishing	to
protect	their	sources	and	information;	and	everyday	citizens	wishing	to	protect	their	privacy.	Businesses	use
TOR	to	keep	secrets	from	other	businesses;	and	governments	use	it	to	protect	sources	of	sensitive	information
as	well	as	the	information	itself.	A	TOR	Project	press	release	gives	a	list	of	some	of	the	news	items	involving
TOR	between	1999	and	2016.

On	the	negative	side,	the	TOR	anonymity	network	has	been	widely	used	by	cyber	criminals.	Websites	are
accessible	through	TOR-hidden	services	and	have	the	suffix	‘.onion’.	Many	of	these	are	extremely	unpleasant,
including	illegal	dark	websites	used	for	drug	dealing,	pornography,	and	money	laundering.	For	example,	the
highly	publicized	website	Silk	Road,	part	of	the	dark	Web	and	a	supplier	of	illegal	drugs,	was	accessed	through
TOR,	making	it	difficult	for	law	enforcement	to	track	it.	A	major	court	case	followed	the	arrest	of	Ross	William
Ulbricht,	who	was	subsequently	convicted	of	creating	and	running	Silk	Road,	using	the	pseudonym	Dread
Pirate	Roberts.	The	website	was	closed	down	but	later	sprang	back	up	again,	and	in	2016	was	in	its	third
reincarnation	under	the	name	Silk	Road	3.0.

Deep	Web
The	deep	Web	refers	to	all	those	websites	that	cannot	be	indexed	by	the	usual	search	engines,	such	as	Google,
Bing,	and	Yahoo!	It	comprises	legitimate	sites	as	well	as	those	that	make	up	the	dark	Web.	It	is	popularly
estimated	to	be	vastly	bigger	than	the	familiar	surface	Web,	though	even	with	special	deep	Web	search
engines	it	is	difficult	to	estimate	the	size	of	this	hidden	world	of	big	data.



Chapter	8
Big	data	and	society

Robots	and	jobs
The	eminent	economist,	John	Maynard	Keynes,	writing	during	the	British	economic	depression	in	1930,
speculated	on	what	working	life	would	be	like	a	century	later.	The	industrial	revolution	had	created	new	city-
based	jobs	in	factories	and	transformed	what	had	been	a	largely	agrarian	society.	It	was	thought	that	labour-
intensive	work	would	eventually	be	performed	by	machines,	leading	to	unemployment	for	some	and	a	much-
reduced	working	week	for	others.	Keynes	was	particularly	concerned	with	how	people	would	use	their
increased	leisure	time,	freed	from	the	exigencies	of	gainful	employment	by	technological	advances.	Perhaps
more	pressing	was	the	question	of	financial	support	leading	to	the	suggestion	that	a	universal	basic	income
would	provide	a	way	of	coping	with	the	decline	in	available	jobs.

Gradually	over	the	20th	century	we	have	seen	jobs	in	industry	eroded	by	ever-more	sophisticated	machines,
and	although,	for	example,	many	production	lines	were	automated	decades	ago,	the	Keynesian	fifteen-hour
working	week	has	yet	to	materialize	and	seems	unlikely	to	do	so	in	the	near	future.	The	digital	revolution	will
inevitably	change	employment,	just	as	the	industrial	revolution	did,	but	in	ways	we	are	unlikely	to	be	able	to
predict	accurately.	As	the	technology	of	the	‘Internet	of	Things’	advances,	our	world	continues	to	become	more
data-driven.	Using	the	results	of	real-time	big	data	analysis	to	inform	decisions	and	actions	will	play	an
increasingly	important	role	in	our	society.

There	are	suggestions	that	people	will	be	needed	to	build	and	code	machines,	but	this	is	speculative	and,	in
any	case,	is	just	one	area	of	specialized	work	where	we	can	realistically	expect	to	see	robots	increasingly
taking	the	place	of	people.	For	example,	sophisticated	robotic	medical	diagnosis	would	reduce	the	medical
workforce.	Robotic	surgeons,	with	extended	Watson-like	capabilities,	are	likely.	Natural	language	processing,
another	big	data	area,	will	develop	to	the	point	where	we	cannot	tell	whether	we	are	talking	to	a	robotic
device	or	a	doctor—at	least,	when	we	are	not	face-to-face.

However,	predicting	what	jobs	humans	will	be	doing	once	robots	have	taken	over	many	of	the	existing	roles	is
difficult.	Creativity	is	supposedly	the	realm	of	humans,	but	computer	scientists,	working	in	collaboration	at	the
Universities	of	Cambridge	and	Aberystwyth,	have	developed	Adam,	a	robot	scientist.	Adam	has	successfully
formulated	and	tested	new	hypotheses	in	the	field	of	genomics,	leading	to	new	scientific	discoveries.	The
research	has	progressed	with	a	team	at	the	University	of	Manchester	successfully	developing	Eve,	a	robot	that
works	on	drug	design	for	tropical	diseases.	Both	these	projects	implemented	artificial	intelligence	techniques.

The	craft	of	the	novelist	appears	to	be	uniquely	human,	relying	on	experience,	emotion,	and	imagination,	but
even	this	area	of	creativity	is	being	challenged	by	robots.	The	Nikkei	Hoshi	Shinichi	Literary	Award	accepts
novels	written	or	co-written	by	non-human	authors.	In	2016,	four	novels	written	jointly	by	people	and
computers	passed	the	first	stage	of	the	competition,	without	the	judges	knowing	the	details	regarding
authorship.

Although	scientists	and	novelists	may	eventually	work	collaboratively	with	robots,	for	most	of	us	the	impact	of
our	big	data	driven	environment	will	be	more	apparent	in	our	daily	activities,	through	smart	devices.

Smart	vehicles
On	7	December	2016,	Amazon	announced	that	it	had	made	its	first	commercial	drone	delivery	using	GPS
(global	positioning	system)	to	find	its	way.	The	recipient,	a	man	living	in	the	countryside	near	Cambridge	in	the
UK,	received	a	package	weighing	4.7	pounds.	Drone	deliveries	can	currently	be	made	to	only	two	Amazon
Prime	Air	customers,	both	living	within	5.2	square	miles	of	the	fulfilment	centre	near	Cambridge.	A	video,
referenced	in	the	Further	reading	section,	shows	the	flight.	This	seems	likely	to	signal	the	start	of	big	data
collection	for	this	program.

Amazon	is	not	the	first	to	make	a	successful	commercial	drone	delivery.	In	November	2016,	Flirtey	Inc.	started
a	drone	delivery	pizza	service	in	a	small	area	from	their	home	base	in	New	Zealand	and	there	have	been
similar	projects	elsewhere.	At	present,	it	seems	likely	that	drone	delivery	services	will	grow,	particularly	in



remote	areas	where	it	might	be	possible	to	manage	safety	issues.	Of	course,	a	cyber-attack	or	simply	a
breakdown	in	the	computer	systems	could	create	havoc:	if,	for	example,	a	small	delivery	drone	were	to
malfunction,	it	could	cause	injury	or	death	to	humans	or	animals,	as	well	as	considerable	damage	to	property.

This	is	what	happened	when	the	software	controlling	a	car	travelling	along	the	road	at	70	mph	was	taken	over
remotely.	In	2015,	two	security	experts,	Charlie	Miller	and	Chris	Valasek,	working	for	Wired	magazine,
demonstrated	on	a	willing	victim	that	Uconnect,	a	dashboard	computer	used	to	connect	a	vehicle	to	the
Internet,	could	be	hacked	remotely	while	the	vehicle	was	in	motion.	The	report	makes	alarming	reading;	the
two	expert	hackers	were	able	to	use	a	laptop	Internet	connection	to	control	the	steering,	brakes,	and
transmission	along	with	other	less	critical	functions	such	as	the	air-conditioning	and	radio	of	a	Jeep	Cherokee.
The	Jeep	was	travelling	at	70	mph	on	a	busy	public	road	when	suddenly	all	response	to	the	accelerator	failed,
causing	considerable	alarm	to	the	driver.

As	a	result	of	this	test,	the	car	manufacturer	Chrysler	issued	a	warning	to	the	owners	of	1.4	million	vehicles
and	sent	out	USB	drives	containing	software	updates	to	be	installed	through	a	port	on	the	dashboard.	The
attack	was	made	because	of	a	vulnerability	in	the	smartphone	network	that	was	subsequently	fixed,	but	the
story	serves	to	illustrate	the	point	that	the	potential	for	cyber-attacks	on	smart	vehicles	will	need	to	be
addressed	before	the	technology	becomes	fully	public.

The	advent	of	autonomous	vehicles,	from	cars	to	planes,	seems	inevitable.	Planes	can	already	fly	themselves,
including	taking	off	and	landing.	Although	it’s	a	step	away	to	think	of	drones	being	in	widespread	use	for
transporting	human	passengers,	they	are	currently	used	in	farming	for	intelligent	crop	spraying	and	also	for
military	purposes.	Smart	vehicles	are	still	in	the	early	stages	of	development	for	general	use	but	smart	devices
are	already	part	of	the	modern	home.

Smart	homes
As	mentioned	in	Chapter	3,	the	term	‘Internet	of	Things’	(IoT)	is	a	convenient	way	of	referring	to	the	vast
numbers	of	electronic	sensors	connected	to	the	Internet.	For	example,	any	electronic	device	that	can	be
installed	in	a	home	and	managed	remotely—through	a	user	interface	displayed	on	the	resident’s	television
screen,	smartphone,	or	laptop—is	a	smart	device	and	so	part	of	the	IoT.	Voice-activated	central	control	points
are	installed	in	many	homes	that	manage	lighting,	heating,	garage	doors,	and	many	other	household	devices.
Wi-Fi	(which	stands	for	‘wireless	fidelity’,	or	the	capacity	to	connect	with	a	network,	like	the	Internet,	using
radio	waves	rather	than	wires)	connectivity	means	that	you	can	ask	your	smart	speaker	(by	its	name,	which
you	will	have	given	it)	for	the	local	weather	or	national	news	reports.

These	devices	provide	Cloud-based	services,	and	are	not	without	their	drawbacks	when	it	comes	to	privacy.	As
long	as	the	device	is	switched	on,	everything	you	say	is	recorded	and	stored	in	a	remote	server.	In	a	recent
murder	investigation,	police	in	the	United	States	asked	Amazon	to	release	data	from	an	Echo	device	(which	is
voice	controlled	and	connects	to	the	Alexa	Voice	Service	to	play	music,	provide	information,	news	reports,	etc.)
that	they	believed	would	assist	them	in	their	inquiries.	Amazon	was	initially	unwilling	to	do	so,	but	the	suspect
has	recently	given	his	permission	for	them	to	release	the	recordings,	hoping	that	they	will	help	prove	his
innocence.

Further	developments,	based	on	Cloud	computing,	mean	that	electrical	appliances	such	as	washing	machines,
refrigerators,	and	home-cleaning	robots	will	be	part	of	the	smart	home	and	managed	remotely	through
smartphones,	laptops,	or	home	speakers.	Since	all	these	systems	are	Internet	controlled	they	are	potentially	at
risk	from	hackers,	and	so	security	is	a	big	area	of	research.

Even	children’s	toys	are	not	immune.	Named	‘2014	Innovative	Toy	of	the	Year’	by	the	London	Toy	Industry
Association,	a	smart	doll	called	‘My	Friend	Cayla’	was	subsequently	hacked.	Through	an	unsecured	bluetooth
device	hidden	in	the	doll,	a	child	can	ask	the	doll	questions	and	hear	replies.	The	German	Federal	Network
Agency,	responsible	for	monitoring	Internet	communications,	has	encouraged	parents	to	destroy	the	doll,
which	has	now	been	banned,	because	of	the	threat	to	privacy	that	it	presents.	Hackers	have	been	able	to	show
that	it	is	fairly	easy	listen	to	a	child	and	provide	inappropriate	answers,	including	words	from	the
manufacturer’s	banned	list.

Smart	cities
Although	the	smart	home	is	only	just	becoming	a	reality,	the	IoT	together	with	multiple	information	and
communication	technologies	(ICTs)	are	now	predicted	to	make	smart	cities	a	reality.	Many	countries,	including
India,	Ireland,	the	UK,	South	Korea,	China,	and	Singapore,	are	already	planning	smart	cities.	The	idea	is	that
of	greater	efficiency	in	a	crowded	world	since	cities	are	growing	rapidly.	The	rural	population	is	moving	to	the
city	at	an	ever-increasing	rate.	In	2014,	about	54	per	cent	lived	in	cities	and	by	2050	the	United	Nations
predicts	that	about	66	per	cent	of	the	world’s	population	will	be	city	dwellers.

The	technology	of	smart	cities	is	propelled	by	the	separate	but	accumulating	ideas	from	early	implementations
of	the	IoT	and	big	data	management	techniques.	For	example,	driverless	cars,	remote	health	monitoring,	the
smart	home,	and	tele-commuting	would	all	be	features	of	a	smart	city.	Such	a	city	would	depend	on	the



management	and	analysis	of	the	big	data	accumulated	from	the	sum	total	of	the	city’s	vast	sensor	array.	Big
data	and	the	IoT	working	together	are	the	key	to	smart	cities.

For	the	community	as	a	whole,	one	of	the	benefits	would	be	a	smart	energy	system.	This	would	regulate	street
lighting,	monitor	traffic,	and	even	track	garbage.	All	this	could	be	achieved	by	installing	a	huge	array	of	radio-
frequency	identification	(RFID)	tags	and	wireless	sensors	across	the	city.	These	tags,	which	consist	of	a
microchip	and	a	tiny	antenna,	would	send	data	from	individual	devices	to	a	central	location	for	analysis.	For
example,	the	city	governance	would	monitor	traffic	by	installing	RFID	tags	on	vehicles	and	digital	cameras	on
streets.	Improved	personal	safety	would	also	be	a	consideration,	for	example,	children	could	be	discretely
tagged	and	monitored	through	their	parents’	cell	phones.	These	sensors	would	create	a	huge	amount	of	data
which	would	need	to	be	monitored	and	analysed	in	real-time,	through	a	central	data	processing	unit.	It	could
then	be	used	for	a	variety	of	purposes	including	gauging	traffic	flow,	identifying	congestion,	and
recommending	alternative	routes.	Data	security	would	clearly	be	of	paramount	importance	in	this	context,	as
any	major	breakdown	in	the	system	or	hacking	would	quickly	affect	public	confidence.

Songdo	International	Business	District	in	South	Korea,	scheduled	for	completion	in	2020,	has	been	purpose
built	as	a	smart	city.	One	of	the	main	features	is	that	the	entire	city	has	fibre-optic	broadband.	This	state-of-
the-art	technology	is	used	to	ensure	the	desired	features	of	a	smart	city	can	be	accessed	quickly.	New	smart
cities	are	also	being	designed	to	minimize	negative	environmental	effects,	making	them	the	sustainable	cities
of	the	future.	While	many	smart	cities	have	been	planned	and,	like	Songdo,	are	being	purpose	built,	existing
cities	will	need	to	modernize	their	infrastructures	gradually.

In	May	2016,	the	United	Nations	Global	Pulse,	an	initiative	aimed	at	promoting	big	data	research	for	global
benefit,	unveiled	its	open	‘Big	Ideas	Competition	2016:	Sustainable	Cities’	for	the	ten	member	states	of	the
Association	of	Southeast	Asian	Nations	(ASEAN)	and	the	Republic	of	Korea.	By	the	June	deadline,	over	250
proposals	had	been	received	and	the	winners	in	various	categories	were	announced	in	August	2016.	The
Grand	Prize	went	to	the	Republic	of	Korea	for	their	proposal	to	improve	public	transport	by	reducing	waiting
times	by	utilizing	crowd-sourcing	information	on	queues.

Looking	forward
In	this	Very	Short	Introduction,	we	have	seen	how	the	science	of	data	has	undergone	a	radical	transformation
over	the	past	few	decades	due	to	the	technological	advances	brought	about	by	the	development	of	the	Internet
and	the	digital	universe.	In	this	final	chapter,	we	have	glimpsed	some	of	the	ways	our	lives	may	be	shaped	by
big	data	in	the	future.	While	we	can’t	hope	to	cover	in	a	short	introduction	all	the	areas	in	which	big	data	is
making	an	impact,	we	have	seen	some	of	the	diverse	applications	that	already	affect	us.

The	data	generated	by	the	world	is	only	going	to	get	bigger.	Methods	for	dealing	with	all	this	data	effectively
and	meaningfully	will	undoubtedly	continue	to	be	the	subject	of	intense	research,	particularly	in	the	area	of
real-time	analysis.	The	big	data	revolution	marks	a	sea-change	in	the	way	the	world	works,	and	as	with	all
technological	developments,	individuals,	scientists,	and	governments	together	have	a	moral	responsibility	to
ensure	its	proper	use.	Big	data	is	power.	Its	potential	for	good	is	enormous.	How	we	prevent	its	abuse	is	up	to
us.



Byte	size	chart

Term Meaning
Bit 1	binary	digit:	0	or	1
Byte 8	bits
Kilobyte	(Kb) 1,000	bytes
Megabyte	(Mb) 1,000	kilobytes
Gigabyte	(Gb) 1,000	megabytes
Terabyte	(Tb) 1,000	gigabytes
Petabyte	(Pb) 1,000	terabytes
Exabyte	(Eb) 1,000	petabytes
Zettabyte	(Zb) 1,000	exabytes
Yottabyte	(Yb) 1,000	zettabytes
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ADVERTISING
A	Very	Short	Introduction

Winston	Fletcher

The	book	contains	a	short	history	of	advertising	and	an	explanation	of	how	the	industry	works,	and	how	each
of	the	parties	(the	advertisers,	the	media	and	the	agencies)	are	involved.	It	considers	the	extensive	spectrum
of	advertisers	and	their	individual	needs.	It	also	looks	at	the	financial	side	of	advertising	and	asks	how
advertisers	know	if	they	have	been	successful,	or	whether	the	money	they	have	spent	has	in	fact	been	wasted.
Fletcher	concludes	with	a	discussion	about	the	controversial	and	unacceptable	areas	of	advertising	such	as
advertising	products	to	children	and	advertising	products	such	as	cigarettes	and	alcohol.	He	also	discusses	the
benefits	of	advertising	and	what	the	future	may	hold	for	the	industry.
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A	Very	Short	Introduction

Nick	James

Cancer	research	is	a	major	economic	activity.	There	are	constant	improvements	in	treatment	techniques	that
result	in	better	cure	rates	and	increased	quality	and	quantity	of	life	for	those	with	the	disease,	yet	stories	of
breakthroughs	in	a	cure	for	cancer	are	often	in	the	media.	In	this	Very	Short	Introduction	Nick	James,	founder
of	the	CancerHelp	UK	website,	examines	the	trends	in	diagnosis	and	treatment	of	the	disease,	as	well	as	its
economic	consequences.	Asking	what	cancer	is	and	what	causes	it,	he	considers	issues	surrounding	expensive
drug	development,	what	can	be	done	to	reduce	the	risk	of	developing	cancer,	and	the	use	of	complementary
and	alternative	therapies.
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ECONOMICS
A	Very	Short	Introduction

Partha	Dasgupta

Economics	has	the	capacity	to	offer	us	deep	insights	into	some	of	the	most	formidable	problems	of	life,	and
offer	solutions	to	them	too.	Combining	a	global	approach	with	examples	from	everyday	life,	Partha	Dasgupta
describes	the	lives	of	two	children	who	live	very	different	lives	in	different	parts	of	the	world:	in	the	Mid-West
USA	and	in	Ethiopia.	He	compares	the	obstacles	facing	them,	and	the	processes	that	shape	their	lives,	their
families,	and	their	futures.	He	shows	how	economics	uncovers	these	processes,	finds	explanations	for	them,
and	how	it	forms	policies	and	solutions.

‘An	excellent	introduction	…	presents	mathematical	and	statistical	findings	in	straightforward	prose.’
Financial	Times
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FREE	SPEECH
A	Very	Short	Introduction

Nigel	Warburton

‘I	disapprove	of	what	you	say,	but	I	will	defend	to	the	death	your	right	to	say	it’	This	slogan,	attributed	to
Voltaire,	is	frequently	quoted	by	defenders	of	free	speech.	Yet	it	is	rare	to	find	anyone	prepared	to	defend	all
expression	in	every	circumstance,	especially	if	the	views	expressed	incite	violence.	So	where	do	the	limits	lie?
What	is	the	real	value	of	free	speech?	Here,	Nigel	Warburton	offers	a	concise	guide	to	important	questions
facing	modern	society	about	the	value	and	limits	of	free	speech:	Where	should	a	civilized	society	draw	the
line?	Should	we	be	free	to	offend	other	people’s	religion?	Are	there	good	grounds	for	censoring	pornography?
Has	the	Internet	changed	everything?	This	Very	Short	Introduction	is	a	thought-provoking,	accessible,	and	up-
to-date	examination	of	the	liberal	assumption	that	free	speech	is	worth	preserving	at	any	cost.

‘The	genius	of	Nigel	Warburton’s	Free	Speech	lies	not	only	in	its	extraordinary	clarity	and	incisiveness.	Just	as
important	is	the	way	Warburton	addresses	freedom	of	speech	‐	and	attempts	to	stifle	it	‐	as	an	issue	for	the	21st
century.	More	than	ever,	we	need	this	book.’

Denis	Dutton,	University	of	Canterbury,	New	Zealand
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GLOBALIZATION
A	Very	Short	Introduction

Manfred	Steger

‘Globalization’	has	become	one	of	the	defining	buzzwords	of	our	time	‐	a	term	that	describes	a	variety	of
accelerating	economic,	political,	cultural,	ideological,	and	environmental	processes	that	are	rapidly	altering
our	experience	of	the	world.	It	is	by	its	nature	a	dynamic	topic	‐	and	this	Very	Short	Introduction	has	been	fully
updated	for	2009,	to	include	developments	in	global	politics,	the	impact	of	terrorism,	and	environmental
issues.	Presenting	globalization	in	accessible	language	as	a	multifaceted	process	encompassing	global,
regional,	and	local	aspects	of	social	life,	Manfred	B.	Steger	looks	at	its	causes	and	effects,	examines	whether	it
is	a	new	phenomenon,	and	explores	the	question	of	whether,	ultimately,	globalization	is	a	good	or	a	bad	thing.
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