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Preface

Books on big data tend to fall into one of two categories: either they offer no explanation as to how things
actually work or they are highly mathematical textbooks suitable only for graduate students. The aim of this
book is to offer an alternative by providing an introduction to how big data works and is changing the world
about us; the effect it has on our everyday lives; and the effect it has in the business world.

Data used to mean documents and papers, with maybe a few photos, but it now means much more than that.
Social networking sites generate large amounts of data in the form of images, videos, and movies on a minute
by minute basis. Online shopping creates data as we enter our address and credit card details. We are now at a
point where the collection and storage of data is growing at a rate unimaginable only a few decades ago but,
as we will see in this book, new data analysis techniques are transforming this data into useful information.
While writing this book, I found that big data cannot be meaningfully discussed without frequent reference to
its collection, storage, analysis, and use by the big commercial players. Since research departments in
companies such as Google and Amazon have been responsible for many of the major developments in big data,
frequent reference will be made to them.

The first chapter introduces the reader to the diversity of data in general before explaining how the digital age
has led to changes in the way we define data. Big data is introduced informally through the idea of the data
explosion, which involves computer science, statistics, and the interface between them. In Chapters 2 to 4, I
have used diagrams quite extensively to help explain some of the new methods required by big data. The
second chapter explores what makes big data special and, in doing so, leads us to a more specific definition. In
Chapter 3, we discuss the problems related to storing and managing big data. Most people are familiar with
the need to back up the data on their personal computer. But how do we do this with the colossal amounts of
data that are now being generated? To answer this question, we will look at database storage and the idea of
distributing tasks across clusters of computers. Chapter 4 argues that big data is only useful if we can extract
useful information from it. A flavour of how data is turned into information is given using simplified
explanations of several well-established techniques.

We then move on to a more detailed discussion of big data applications, starting in Chapter 5 with the role of
big data in medicine. Chapter 6 analyses business practices with case studies on Amazon and Netflix, each
highlighting different features of marketing using big data. Chapter 7 looks at some of the security issues
surrounding big data and the importance of encryption. Data theft has become a big problem and we look at
some of the cases that have been in the news including Snowden and Wikil.eaks. The chapter concludes by
showing how cybercrime is an issue that big data needs to address. In the final chapter, Chapter 8, we
consider how big data is changing the society we live in, through the development of sophisticated robots and
their role in the workplace. A consideration of the smart homes and smart cities of the future concludes the
book.

In a very short introduction it is not possible to mention everything, so I hope the reader will pursue their
interests through the Further reading section’s recommendations.
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Chapter 1
The data explosion

What is data?

In 431 BCE, Sparta declared war on Athens. Thucydides, in his account of the war, describes how besieged
Plataean forces loyal to Athens planned to escape by scaling the wall surrounding Plataea built by Spartan-led
Peloponnesian forces. To do this they needed to know how high the wall was so that they could make ladders
of suitable length. Much of the Peloponnesian wall had been covered with rough pebbledash, but a section was
found where the bricks were still clearly visible and a large number of soldiers were each given the task of
counting the layers of these exposed bricks. Working at a distance safe from enemy attack inevitably
introduced mistakes, but as Thucydides explains, given that many counts were taken, the result that appeared
most often would be correct. This most frequently occurring count, which we would now refer to as the mode,
was then used to calculate the height of the wall, the Plataeans knowing the size of the local bricks used, and
ladders of the length required to scale the wall were constructed. This enabled a force of several hundred men
to escape, and the episode may well be considered the most impressive example of historic data collection and
analysis. But the collection, storage, and analysis of data pre-dates even Thucydides by many centuries, as we
will see.

Notches have been found on sticks, stones, and bones dating back to as early as the Upper Paleolithic era.
These notches are thought to represent data stored as tally marks, though this is still open to academic
debate. Perhaps the most famous example is the Ishango Bone, found in the Democratic Republic of Congo in
1950, and which is estimated to be around 20,000 years old. This notched bone has been variously interpreted
as a calculator or a calendar, although others prefer to explain the notches as being there just to provide a
better grip. The Lebombo Bone, discovered in the 1970s in Swaziland, is even older, dating from around
35,000 BCE. With twenty-nine lines scored across it, this fragment of a baboon’s fibula bears a striking
resemblance to the calendar sticks still used by bushmen in distant Namibia, suggesting that this may indeed
be a method that was used to keep track of data important to their civilization.

While the interpretation of these notched bones is still open to speculation, we know that one of the first well-
documented uses of data is the census undertaken by the Babylonians in 3800 BCE. This census systematically
documented population numbers and commodities, such as milk and honey, in order to provide the information
necessary to calculate taxes. The early Egyptians also used data, in the form of hieroglyphs written on wood or
papyrus, to record the delivery of goods and to keep track of taxes. But early examples of data usage are by no
means confined to Europe and Africa. The Incas and their South American predecessors, keen to record
statistics for tax and commercial purposes, used a sophisticated and complex system of coloured knotted
strings, called quipu, as a decimal-based accounting system. These knotted strings, made from brightly dyed
cotton or camelid wool, date back to the third millennium BCE, and although fewer than a thousand are known
to have survived the Spanish invasion and subsequent attempt to eradicate them, they are among the first
known examples of a massive data storage system. Computer algorithms are now being developed to try to
decode the full meaning of the quipu and enhance our understanding of how they were used.

Although we can think of and describe these early systems as using data, the word ‘data’ is actually a plural
word of Latin origin, with ‘datum’ being the singular. ‘Datum’ is rarely used today and ‘data’ is used for both
singular and plural. The Oxford English Dictionary attributes the first known use of the term to the 17th-
century English cleric Henry Hammond in a controversial religious tract published in 1648. In it Hammond
used the phrase ‘heap of data’, in a theological sense, to refer to incontrovertible religious truths. But although
this publication stands out as representing the first use of the term ‘data’ in English, it does not capture its use
in the modern sense of denoting facts and figures about a population of interest. ‘Data’, as we now understand
the term, owes its origins to the scientific revolution in the 18th century led by intellectual giants such as
Priestley, Newton, and Lavoisier; and, by 1809, following the work of earlier mathematicians, Gauss and
Laplace were laying the highly mathematical foundations for modern statistical methodology.

On a more practical level, an extensive amount of data was collected on the 1854 cholera outbreak in Broad
Street, London, allowing physician John Snow to chart the outbreak. By doing so, he was able to lend support
to his hypothesis that contaminated water spread the disease and to show that it was not airborne as had been
previously believed. Gathering data from local inhabitants he established that those affected were all using the
same public water pump; he then persuaded the local parish authorities to shut it down, a task they



accomplished by removing the pump handle. Snow subsequently produced a map, now famous, showing that
the illness had occurred in clusters around the Broad Street pump. He continued to work in this field,
collecting and analysing data, and is renowned as a pioneering epidemiologist.

Following John Snow’s work, epidemiologists and social scientists have increasingly found demographic data
invaluable for research purposes, and the census now taken in many countries proves a useful source of such
information. For example, data on the birth and death rate, the frequency of various diseases, and statistics on
income and crime is all now collected, which was not the case prior to the 19th century. The census, which
takes place every ten years in most countries, has been collecting increasing amounts of data, which
eventually has resulted in more than could realistically be recorded by hand or the simple tallying machines
previously used. The challenge of processing these ever-increasing amounts of census data was in part met by
Herman Hollerith while working for the US Census Bureau.

By the 1870 US census, a simple tallying machine was in operation but this had limited success in reducing the
work of the Census Bureau. A breakthrough came in time for the 1890 census, when Herman Hollerith’s
punched cards tabulator for storing and processing data was used. The time taken to process the US census
data was usually about eight years, but using this new invention the time was reduced to one year. Hollerith’s
machine revolutionized the analysis of census data in countries worldwide, including Germany, Russia,
Norway, and Cuba.

Hollerith subsequently sold his machine to the company that evolved into IBM, which then developed and
produced a widely used series of punch card machines. In 1969, the American National Standards Institute
(ANSI) defined the Hollerith Punched Card Code (or Hollerith Card Code), honouring Hollerith for his early
punch card innovations.

Data in the digital age

Before the widespread use of computers, data from the census, scientific experiments, or carefully designed
sample surveys and questionnaires was recorded on paper—a process that was time-consuming and expensive.
Data collection could only take place once researchers had decided which questions they wanted their
experiments or surveys to answer, and the resulting highly structured data, transcribed onto paper in ordered
rows and columns, was then amenable to traditional methods of statistical analysis. By the first half of the 20th
century some data was being stored on computers, helping to alleviate some of this labour-intensive work, but
it was through the launch of the World Wide Web (or Web) in 1989, and its rapid development, that it became
increasingly feasible to generate, collect, store, and analyse data electronically. The problems inevitably
generated by the very large volume of data made accessible by the Web then needed to be addressed, and we
first look at how we may make distinctions between different types of data.

The data we derive from the Web can be classified as structured, unstructured, or semi-structured.

Structured data, of the kind written by hand and kept in notebooks or in filing cabinets, is now stored
electronically on spreadsheets or databases, and consists of spreadsheet-style tables with rows and columns,
each row being a record and each column a well-defined field (e.g. name, address, and age). We are
contributing to these structured data stores when, for example, we provide the information necessary to order
goods online. Carefully structured and tabulated data is relatively easy to manage and is amenable to
statistical analysis, indeed until recently statistical analysis methods could be applied only to structured data.

In contrast, unstructured data is not so easily categorized and includes photos, videos, tweets, and word-
processing documents. Once the use of the World Wide Web became widespread, it transpired that many such
potential sources of information remained inaccessible because they lacked the structure needed for existing
analytic techniques to be applied. However, by identifying key features, data that appears at first sight to be
unstructured may not be completely without structure. Emails, for example, contain structured metadata in
the heading as well as the actual unstructured message in the text and so may be classified as semi-structured
data. Metadata tags, which are essentially descriptive references, can be used to add some structure to
unstructured data. Adding a word tag to an image on a website makes it identifiable and so easier to search
for. Semi-structured data is also found on social networking sites, which use hashtags so that messages (which
are unstructured data) on a particular topic can be identified. Dealing with unstructured data is challenging:
since it cannot be stored in traditional databases or spreadsheets, special tools have had to be developed to
extract useful information. In later chapters we will look at how unstructured data is stored.

The term ‘data explosion’, which heads this chapter, refers to the increasingly vast amounts of structured,
unstructured, and semi-structured data being generated minute by minute; we will look next at some of the
many different sources that produce all this data.

Introduction to big data

Just in researching material for this book I have been swamped by the sheer volume of data available on the
Web—from websites, scientific journals, and e-textbooks. According to a recent worldwide study conducted by

IBM, about 2.5 exabytes (Eb) of data are generated every day. One Eb is 1018 (1 followed by eighteen 0s) bytes



(or a million terabytes (Tb); see the Big data byte size chart at the end of this book). A good laptop bought at
the time of writing will typically have a hard drive with 1 or 2 Tb of storage space. Originally, the term ‘big
data’ simply referred to the very large amounts of data being produced in the digital age. These huge amounts
of data, both structured and unstructured, include all the Web data generated by emails, websites, and social
networking sites.

Approximately 80 per cent of the world’s data is unstructured in the form of text, photos, and images, and so it
is not amenable to the traditional methods of structured data analysis. ‘Big data’ is now used to refer not just
to the total amount of data generated and stored electronically, but also to specific datasets that are large in
both size and complexity, with which new algorithmic techniques are required in order to extract useful
information from them. These big datasets come from different sources so let’s take a more detailed look at
some of them and the data they generate.

Search engine data

In 2015, Google was by far the most popular search engine worldwide, with Microsoft’s Bing and Yahoo Search
coming second and third, respectively. In 2012, the most recent year for which data is publicly available, there
were over 3.5 billion searches made per day on Google alone.

Entering a key term into a search engine generates a list of the most relevant websites, but at the same time a
considerable amount of data is being collected. Web tracking generates big data. As an exercise, I searched on
‘border collies’ and clicked on the top website returned. Using some basic tracking software, I found that some
sixty-seven third-party site connections were generated just by clicking on this one website. In order to track
the interests of people who access the site, information is being shared in this way between commercial
enterprises.

Every time we use a search engine, logs are created recording which of the recommended sites we visited.
These logs contain useful information such as the query term itself, the IP address of the device used, the time
when the query was submitted, how long we stayed on each site, and in which order we visited them—all
without identifying us by name. In addition, clickstream logs record the path taken as we visit various websites
as well as our navigation within each website. When we surf the Web, every click we make is recorded
somewhere for future use. Software is available for businesses allowing them to collect the clickstream data
generated by their own website—a valuable marketing tool. For example, by providing data on the use of the
system, logs can help detect malicious activity such as identity theft. Logs are also used to gauge the
effectiveness of online advertising, essentially by counting the number of times an advertisement is clicked on
by a website visitor.

By enabling customer identification, cookies are used to personalize your surfing experience. When you make
your first visit to a chosen website, a cookie, which is a small text file, usually consisting of a website identifier
and a user identifier, will be sent to your computer, unless you have blocked the use of cookies. Each time you
visit this website, the cookie sends a message back to the website and in this way keeps track of your visits. As
we will see in Chapter 6, cookies are often used to record clickstream data, to keep track of your preferences,
or to add your name to targeted advertising.

Social networking sites also generate a vast amount of data, with Facebook and Twitter at the top of the list.
By the middle of 2016, Facebook had, on average, 1.71 billion active users per month, all generating data,
resulting in about 1.5 petabytes (Pb; or 1,000 Tb) of Web log data every day. YouTube, the popular video-
sharing website, has had a huge impact since it started in 2005, and a recent YouTube press release claims
that there are over a billion users worldwide. The valuable data produced by search engines and social
networking sites can be used in many other areas, for example when dealing with health issues.

Healthcare data

If we look at healthcare we find an area which involves a large and growing percentage of the world
population and which is increasingly computerized. Electronic health records are gradually becoming the
norm in hospitals and doctors’ surgeries, with the primary aim being to make it easier to share patient data
with other hospitals and physicians, and so to facilitate the provision of better healthcare. The collection of
personal data through wearable or implantable sensors is on the increase, particularly for health monitoring,
with many of us using personal fitness trackers of varying complexity which output ever more categories of
data. It is now possible to monitor a patient’s health remotely in real-time through the collection of data on
blood pressure, pulse, and temperature, thus potentially reducing healthcare costs and improving quality of
life. These remote monitoring devices are becoming increasingly sophisticated and now go beyond basic
measurements to include sleep tracking and arterial oxygen saturation rate.

Some companies offer incentives in order to persuade employees to use a wearable fitness device and to meet
certain targets such as weight loss or a certain number of steps taken per day. In return for being given the
device, the employee agrees to share the data with the employer. This may seem reasonable but there will
inevitably be privacy issues to be considered, together with the unwelcome pressure some people may feel
under to opt into such a scheme.



Other forms of employee monitoring are becoming more frequent, such as tracking all employee activities on
the company-provided computers and smartphones. Using customized software, this tracking can include
everything from monitoring which websites are visited to logging individual keystrokes and checking whether
the computer is being used for private purposes such as visiting social network sites. In the age of massive
data leaks, security is of growing concern and so corporate data must be protected. Monitoring emails and
tracking websites visited are just two ways of reducing the theft of sensitive material.

As we have seen, personal health data may be derived from sensors, such as a fitness tracker or health
monitoring device. However, much of the data being collected from sensors is for highly specialized medical
purposes. Some of the largest data stores in existence are being generated as researchers study the genes and
sequencing genomes of a variety of species. The structure of the deoxyribonucleic acid molecule (DNA),
famous for holding the genetic instructions for the functioning of living organisms, was first described as a
double-helix by James Watson and Francis Crick in 1953. One of the most highly publicized research projects
in recent years has been the international human genome project, which determines the sequence, or exact
order, of the three billion base-pairs that comprise human DNA. Ultimately, this data is helping research teams
in the study of genetic diseases.

Real-time data

Some data is collected, processed, and used in real-time. The increase in computer processing power has
allowed an increase in the ability to process as well as generate such data rapidly. These are systems where
response time is crucial and so data must be processed in a timely manner. For example, the Global Positioning
System (GPS) uses a system of satellites to scan the Earth and send back huge amounts of real-time data. A
GPS receiving device, maybe in your car or smartphone (‘smart’ indicates that an item, in this case a phone,
has Internet access and the ability to provide a number of services or applications (apps) that can then be
linked together), processes these satellite signals and calculates your position, time, and speed.

This technology is now being used in the development of driverless or autonomous vehicles. These are already
in use in confined, specialized areas such as factories and farms, and are being developed by a number of
major manufacturers, including Volvo, Tesla, and Nissan. The sensors and computer programs involved have to
process data in real-time to reliably navigate to your destination and control movement of the vehicle in
relation to other road users. This involves prior creation of 3D maps of the routes to be used since the sensors
cannot cope with non-mapped routes. Radar sensors are used to monitor other traffic, sending back data to an
external central executive computer which controls the car. Sensors have to be programmed to detect shapes
and distinguish between, for example, a child running into the road and a newspaper blowing across it; or to
detect, say, an emergency traffic layout following an accident. However, these cars do not yet have the ability
to react appropriately to all the problems posed by an ever-changing environment.

The first fatal crash involving an autonomous vehicle occurred in 2016, when neither the driver nor the
autopilot reacted to a vehicle cutting across the car’s path, meaning that the brakes were not applied. Tesla,
the makers of the autonomous vehicle, in a June 2016 press release referred to the ‘extremely rare
circumstances of the impact’. The autopilot system warns drivers to keep their hands on the wheel at all times
and even checks that they are doing so. Tesla state that this is the first fatality linked to their autopilot in 130
million miles of driving, compared with one fatality per 94 million miles of regular, non-automated driving in
the US.

It has been estimated that each autonomous car will generate on average 30 Tb of data daily, much of which
will have to be processed almost instantly. A new area of research, called streaming analytics, which bypasses
traditional statistical and data processing methods, hopes to provide the means for dealing with this particular
big data problem.

Astronomical data

In April 2014 an International Data Corporation report estimated that, by 2020, the digital universe will be 44
trillion gigabytes (Gb; or 1,000 megabytes (Mb)), which is about ten times its size in 2013. An increasing
volume of data is being produced by telescopes. For example, the Very Large Telescope in Chile is an optical
telescope, which actually consists of four telescopes, each producing huge amounts of data—15 Tb per night,
every night in total. It will spearhead the Large Synoptic Survey, a ten-year project repeatedly producing maps

of the night sky, creating an estimated grand total of 60 Pb (2°0 bytes).

Even bigger in terms of data generation is the Square Kilometer Array Pathfinder (ASKAP) radio telescope
being built in Australia and South Africa, which is projected to begin operation in 2018. It will produce 160 Th
of raw data per second initially, and ever more as further phases are completed. Not all this data will be stored
but even so, supercomputers around the world will be needed to analyse the remaining data.

What use is all this data?

It is now almost impossible to take part in everyday activities and avoid having some personal data collected
electronically. Supermarket check-outs collect data on what we buy; airlines collect information about our



travel arrangements when we purchase a ticket; and banks collect our financial data.

Big data is used extensively in commerce and medicine and has applications in law, sociology, marketing,
public health, and all areas of natural science. Data in all its forms has the potential to provide a wealth of
useful information if we can develop ways to extract it. New techniques melding traditional statistics and
computer science make it increasingly feasible to analyse large sets of data. These techniques and algorithms
developed by statisticians and computer scientists search for patterns in data. Determining which patterns are
important is key to the success of big data analytics. The changes brought about by the digital age have
substantially changed the way data is collected, stored, and analysed. The big data revolution has given us
smart cars and home-monitoring.

The ability to gather data electronically resulted in the emergence of the exciting field of data science,
bringing together the disciplines of statistics and computer science in order to analyse these large quantities
of data to discover new knowledge in interdisciplinary areas of application. The ultimate aim of working with
big data is to extract useful information. Decision-making in business, for example, is increasingly based on the
information gleaned from big data, and expectations are high. But there are significant problems, not least
with the shortage of trained data scientists capable of effectively developing and managing the systems
necessary to extract the desired information.

By using new methods derived from statistics, computer science, and artificial intelligence, algorithms are now
being designed that result in new insights and advances in science. For example, although it is not possible to
predict exactly when and where an earthquake will occur, an increasing number of organizations are using
data collected by satellite and ground sensors to monitor seismic activity. The aim is to determine
approximately where big earthquakes are likely to occur in the long-term. For example, the US Geological
Survey (USGS), a major player in seismic research, estimated in 2016 that ‘there is a 76% probability that a
magnitude 7 earthquake will occur within the next 30 years in northern California’. Probabilities such as these
help focus resources on measures such as ensuring that buildings are better able to withstand earthquakes
and having disaster management programmes in place. Several companies in these and other areas are
working with big data to provide improved forecasting methods, which were not available before the advent of
big data. We need to take a look at what is special about big data.



Chapter 2
Why is big data special?

Big data didn’t just happen—it was closely linked to the development of computer technology. The rapid rate of
growth in computing power and storage led to progressively more data being collected, and, regardless of who
first coined the term, ‘big data’ was initially all about size. Yet it is not possible to define big data exclusively in
terms of how many Pb, or even Eb, are being generated and stored. However, a useful means for talking about
the ‘big data’ resulting from the data explosion is provided by the term ‘small data’—although it is not widely
used by statisticians. Big datasets are certainly large and complex, but in order for us to reach a definition, we
need first to understand ‘small data’ and its role in statistical analysis.

Big data versus small data

In 1919, Ronald Fisher, now widely recognized as the founder of modern statistics as an academically rigorous
discipline, arrived at Rothamsted Agricultural Experimental Station in the UK to work on analysing crop data.
Data has been collected from the Classical Field Experiments conducted at Rothamsted since the 1840s,
including both their work on winter wheat and spring barley and meteorological data from the field station.
Fisher started the Broadbalk project which examined the effects of different fertilizers on wheat, a project still
running today.

Recognizing the mess the data was in, Fisher famously referred to his initial work there as ‘raking over the
muck heap’. However, by meticulously studying the experimental results that had been carefully recorded in
leather-bound note books he was able to make sense of the data. Working under the constraints of his time,
before today’s computing technology, Fisher was assisted only by a mechanical calculator as he, nonetheless
successfully, performed calculations on seventy years of accumulated data. This calculator, known as the
Millionaire, which relied for power on a tedious hand-cranking procedure, was innovative in its day, since it
was the first commercially available calculator that could be used to perform multiplication. Fisher’s work was
computationally intensive and the Millionaire played a crucial role in enabling him to perform the many
required calculations that any modern computer would complete within seconds.

Although Fisher collated and analysed a lot of data it would not be considered a large amount today, and it
would certainly not be considered ‘big data’. The crux of Fisher’s work was the use of precisely defined and
carefully controlled experiments, designed to produce highly structured, unbiased sample data. This was
essential since the statistical methods then available could only be applied to structured data. Indeed, these
invaluable techniques still provide the cornerstone for the analysis of small, structured sets of data. However,
those techniques are not applicable to the very large amounts of data we can now access with so many
different digital sources available to us.

Big data defined

In the digital age we are no longer entirely dependent on samples, since we can often collect all the data we
need on entire populations. But the size of these increasingly large sets of data cannot alone provide a
definition for the term ‘big data’—we must include complexity in any definition. Instead of carefully
constructed samples of ‘small data’ we are now dealing with huge amounts of data that has not been collected
with any specific questions in mind and is often unstructured. In order to characterize the key features that
make data big and move towards a definition of the term, Doug Laney, writing in 2001, proposed using the
three ‘v’s: volume, variety, and velocity. By looking at each of these in turn we can get a better idea of what the
term ‘big data’ means.

Volume

‘Volume’ refers to the amount of electronic data that is now collected and stored, which is growing at an ever-
increasing rate. Big data is big, but how big? It would be easy just to set a specific size as denoting ‘big’ in this
context, but what was considered ‘big’ ten years ago is no longer big by today’s standards. Data acquisition is
growing at such a rate that any chosen limit would inevitably soon become outdated. In 2012, IBM and the
University of Oxford reported the findings of their Big Data Work Survey. In this international survey of 1,144



professionals working in ninety-five different countries, over half judged datasets of between 1 Tb and 1 Pb to
be big, while about a third of respondents fell in the ‘don’t know’ category. The survey asked respondents to
choose either one or two defining characteristics of big data from a choice of eight; only 10 per cent voted for
‘large volumes of data’ with the top choice being ‘a greater scope of information’, which attracted 18 per cent.
Another reason why there can be no definitive limit based solely on size is because other factors, like storage
and the type of data being collected, change over time and affect our perception of volume. Of course, some
datasets are very big indeed, including, for example, those obtained by the Large Hadron Collider at CERN,
the world’s premier particle accelerator, which has been operating since 2008. Even after extracting only 1 per
cent of the total data generated, scientists still have 25 Pb to process annually. Generally, we can say the
volume criterion is met if the dataset is such that we cannot collect, store, and analyse it using traditional
computing and statistical methods. Sensor data, such as that generated by the Large Hadron Collider, is just
one variety of big data, so let’s consider some of the others.

Variety

Though you may often see the terms ‘Internet’ and ‘World Wide Web’ used interchangeably, they are actually
very different. The Internet is a network of networks, consisting of computers, computer networks, local area
networks (LANSs), satellites, and cellphones and other electronic devices, all linked together and able to send
bundles of data to one another, which they do using an IP (Internet protocol) address. The World Wide Web
(www, or Web), described by its inventor, T. J. Berners-Lee, as ‘a global information system’, exploited Internet
access so that all those with a computer and a connection could communicate with other users through such
media as email, instant messaging, social networking, and texting. Subscribers to an ISP (Internet services
provider) can connect to the Internet and so access the Web and many other services.

Once we are connected to the Web, we have access to a chaotic collection of data, from sources both reliable
and suspect, prone to repetition and error. This is a long way from the clean and precise data demanded by
traditional statistics. Although the data collected from the Web can be structured, unstructured, or semi-
structured resulting in significant variety (e.g. unstructured word-processed documents or posts found on
social networking sites; and semi-structured spreadsheets), most of the big data derived from the Web is
unstructured. Twitter users, for example, publish approximately 500 million 140-character messages, or
tweets, per day worldwide. These short messages are valuable commercially and are often analysed according
to whether the sentiment expressed is positive, negative, or neutral. This new area of sentiment analysis
requires specially developed techniques and is something we can do effectively only by using big data
analytics. Although a great variety of data is collected by hospitals, the military, and many commercial
enterprises for a number of purposes, ultimately it can all be classified as structured, unstructured, or semi-
structured.

Velocity

Data is now streaming continuously from sources such as the Web, smartphones, and sensors. Velocity is
necessarily connected with volume: the faster data is generated, the more there is. For example, the messages
on social media that now ‘go viral’ are transmitted in such a way as to have a snowball effect: I post something
on social media, my friends look at it, and each shares it with their friends, and so on. Very quickly these
messages make their way around the world.

Velocity also refers to the speed at which data is electronically processed. For example, sensor data, such as
that being generated by an autonomous car, is necessarily generated in real-time. If the car is to work reliably,
the data, sent wirelessly to a central location, must be analysed very quickly so that the necessary instructions
can be sent back to the car in a timely fashion.

Variability may be considered as an additional dimension of the velocity concept, referring to the changing
rates in flow of data, such as the considerable increase in data flow during peak times. This is significant
because computer systems are more prone to failure at these times.

Veracity

As well as the original three ‘v’'s suggested by Laney, we may add ‘veracity’ as a fourth. Veracity refers to the
quality of the data being collected. Data that is accurate and reliable has been the hallmark of statistical
analysis in the past century. Fisher, and others, strived to devise methods encapsulating these two concepts,
but the data generated in the digital age is often unstructured, and often collected without experimental
design or, indeed, any concept of what questions might be of interest. And yet we seek to gain information
from this mish-mash. Take, for example, the data generated by social networks. This data is by its very nature
imprecise, uncertain, and often the information posted is simply not true. So how can we trust the data to yield
meaningful results? Volume can help in overcoming these problems—as we saw in Chapter 1, when Thucydides
described the Plataean forces engaging the greatest possible number of soldiers counting bricks in order to be
more likely to get (close to) the correct height of the wall they wished to scale. However, we need to be more
cautious, as we know from statistical theory, greater volume can lead to the opposite result, in that, given
sufficient data, we can find any number of spurious correlations.



Visualization and other ‘v’'s

‘V’ has become the letter of choice, with competing definitions adding or substituting such terms as
‘vulnerability’ and ‘viability’ to Laney’s original three—the most important perhaps of these additions being
‘value’ and ‘visualization’. Value generally refers to the quality of the results derived from big data analysis. It
has also been used to describe the selling by commercial enterprises of data to firms who then process it using
their own analytics, and so it is a term often referred to in the data business world.

Visualization is not a characterizing feature of big data, but it is important in the presentation and
communication of analytic results. The familiar static pie charts and bar graphs that help us to understand
small datasets have been further developed to aid in the visual interpretation of big data, but these are limited
in their applicability. Infographics, for example, provide a more complex presentation but are static. Since big
data is constantly being added to, the best visualizations are interactive for the user and updated regularly by
the originator. For example, when we use GPS for planning a car journey, we are accessing a highly interactive
graphic, based on satellite data, to track our position.

Taken together, the four main characteristics of big data—volume, variety, velocity, and veracity—present a
considerable challenge in data management. The advantages we expect to gain from meeting this challenge
and the questions we hope to answer with big data can be understood through data mining.

Big data mining

‘Data is the new oil’, a phrase that is common currency among leaders in industry, commerce, and politics, is
usually attributed to Clive Humby in 2006, the originator of Tesco’s customer loyalty card. It’s a catchy phrase
and suggests that data, like oil, is extremely valuable but must first be processed before that value can be
realized. The phrase is primarily used as a marketing ploy by data analytics providers hoping to sell their
products by convincing companies that big data is the future. It may well be, but the metaphor only holds so
far. Once you strike oil you have a marketable commodity. Not so with big data; unless you have the right data
you can produce nothing of value. Ownership is an issue; privacy is an issue; and, unlike oil, data appears not
to be a finite resource. However, continuing loosely with the industrial metaphor, mining big data is the task of
extracting useful and valuable information from massive datasets.

Using data mining and machine learning methods and algorithms, it is possible not only to detect unusual
patterns or anomalies in data, but also to predict them. In order to acquire this kind of knowledge from big
datasets, either supervised or unsupervised machine learning techniques may be used. Supervised machine
learning can be thought of as roughly comparable to learning from example in humans. Using training data,
where correct examples are labelled, a computer program develops a rule or algorithm for classifying new
examples. This algorithm is checked using the test data. In contrast, unsupervised learning algorithms use
unlabelled input data and no target is given; they are designed to explore data and discover hidden patterns.

As an example let’s look at credit card fraud detection, and see how each method is used.

Credit card fraud detection

A lot of effort goes into detecting and preventing credit card fraud. If you have been unfortunate enough to
receive a phone call from your credit card fraud detection office, you may be wondering how the decision was
reached that the recently made purchase on your card had a good chance of being fraudulent. Given the huge
number of credit card transactions it is no longer feasible to have humans checking transactions using
traditional data analysis techniques, and so big data analytics are increasingly becoming necessary.
Understandably, financial institutions are unwilling to share details of their fraud detection methods since
doing so would give cyber criminals the information they need to develop ways round it. However, the broad
brush strokes present an interesting picture.

There are several possible scenarios but we can look at personal banking and consider the case in which a
credit card has been stolen and used in conjunction with other stolen information, such as the card PIN
(personal identification number). In this case, the card might show a sudden increase in expenditure—a fraud
that is easily detected by the card issuing agency. More often, a fraudster will first use a stolen card for a ‘test
transaction’ in which something inexpensive is purchased. If this does not raise any alarms, then a bigger
amount is taken. Such transactions may or may not be fraudulent—maybe a cardholder bought something
outside of their usual purchasing pattern, or maybe they actually just spent a lot that month. So how do we
detect which transactions are fraudulent? Let’s look first at an unsupervised technique, called clustering, and
how it might be used in this situation.

Clustering
Based on artificial intelligence algorithms, clustering methods can be used to detect anomalies in customer

purchasing behaviour. We are looking for patterns in transaction data and want to detect anything unusual or
suspicious which may or may not be fraudulent.



A credit card company gathers lots of data and uses it to form profiles showing the purchasing behaviour of
their customers. Clusters of profiles with similar properties are then identified electronically using an iterative
(i.e. repeating a process to generate a result) computer program. For example, a cluster may be defined on
accounts with a typical spending range or location, a customer’s upper spending limit, or on the kind of items
purchased, each resulting in a separate cluster.

When data is collected by a credit card provider it does not carry any label indicating whether the transactions
are genuine or fraudulent. Our task is to use this data as input and, using a suitable algorithm, accurately
categorize transactions. To do this, we will need to find similar groups, or clusters, within the input data. So,
for example, we might group data according to the amount spent, the location where the transaction took
place, the kind of purchase made, or the age of the card holder. When a new transaction is made, the cluster
identification is computed for that transaction and if it is different from the existing cluster identification for
that customer, it is treated as suspicious. Even if it falls within the usual cluster, if it is sufficiently far from the
centre of the cluster it may still arouse suspicion.

For example, say an 83-year-old grandmother living in Pasadena purchases a flashy sports car; if this does not
cluster with her usual purchasing behaviour of, say, groceries and visits to the hairdresser, it would be
considered anomalous. Anything out of the ordinary, like this purchase, is considered worthy of further
investigation, usually starting by contacting the card owner. In Figure 1 we see a very simple example of a
cluster diagram representing this situation.
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1. A cluster diagram.

Cluster B shows the grandmother’s usual monthly expenditure clustered with other people who have a similar
monthly expenditure. Now, in some circumstances, for example when taking her annual vacation, the
grandmother’s expenditure for the month increases, perhaps grouping her with those in Cluster C, which is
not too far distant from Cluster B and so not drastically dissimilar. Even so, since it is in a different cluster, it
would be checked as suspicious account activity, but the purchase of the flashy sports car on her account puts
her expenditure into Cluster A, which is very distant from her usual cluster and so is highly unlikely to reflect a
legitimate purchase.

In contrast to this situation, if we already have a set of examples where we know fraud has occurred, instead
of clustering algorithms we can use classification methods, which provide another data mining technique used
for fraud detection.

Classification

Classification, a supervised learning technique, requires prior knowledge of the groups involved. We start with
a dataset in which each observation is already correctly labelled or classified. This is divided into a training
set, which enables us to build a classification model of the data, and a test set, which is used to check that the
model is a good one. We can then use this model to classify new observations as they arise.

To illustrate classification, we will build a small decision tree for detecting credit card fraud.

To build our decision tree, let us suppose that credit card transaction data has been collected and transactions
classified as genuine or fraudulent based on our historical knowledge are provided, as shown in Figure 2.



Was the card | Was the item Was the customer | Classification
reported purchased phoned and asked
stolen or lost? | unusual? if they made the

purchase?
MNo No Genuine transaction
MNo Yes Yes Genuine transaction
Mo Yes Mo Fraudulent transaction
Yes Fraudulent transaction

2. Fraud dataset with known classifications.

Using this data, we can build the decision tree shown in Figure 3, which will allow the computer to classify
new transactions entering the system. We wish to arrive at one of the two possible transaction classifications,
genuine or fraudulent, by asking a series of questions.

Card reported stolen or lost?

No Yes
Unusual item purchased? Fraudulent
transaction

Yes

Customer
verified purchase?

Genuine
transaction

Genuine
transaction

Fraudulent
transaction

3. Decision tree for transactions.

By starting at the top of the tree in Figure 3, we have a series of test questions which will enable us to classify
a new transaction.

For example, if Mr Smith’s account shows that he has reported his credit card as lost or stolen, then any
attempt to use it is deemed fraudulent. If the card has not been reported lost or stolen, then the system will
check to see if an unusual item or an item costing an unusual amount for this customer has been purchased. If
not, then the transaction is seen as nothing out of the ordinary and labelled as genuine. On the other hand, if
the item is unusual then a phone call to Mr Smith will be triggered. If he confirms that he did make the
purchase, then it is deemed genuine; if not, fraudulent.

Having arrived at an informal definition of big data, and considered the kinds of questions that can be
answered by mining big data, let us now turn to the problems of data storage.



Chapter 3
Storing big data

The first hard drive, developed and sold by IBM in San Jose, California, had a storage capacity of about 5 Mb,
held on fifty disks, each 24 inches in diameter. This was cutting edge technology in 1956. The device was
physically massive, weighed over 1 ton, and was part of a mainframe computer. By the time of the Apollo 11
moon landing in 1969, NASA’'s Manned Spacecraft Center in Houston was using mainframe computers that
each had up to 8 Mb of memory. Amazingly, the onboard computer for the Apollo 11 moon landing craft,
piloted by Neil Armstrong, had a mere 64 kilobytes (Kb) of memory.

Computer technology progressed rapidly and by the start of the personal computer boom in the 1980s, the
average hard drive on a PC was 5 Mb when one was included, which was not always the case. This would hold
one or two photos or images today. Computer storage capacity increased very quickly and although personal
computer storage has not kept up with big data storage, it has increased dramatically in recent years. Now,
you can buy a PC with an 8 Tb hard drive or even bigger. Flash drives are now available with 1 Tb of storage,
which is sufficient to store approximately 500 hours of movies or over 300,000 photos. This seems a lot until
we contrast it with the estimated 2.5 Eb of new data being generated every day.

Once the change from valves to transistors took place in the 1960s the number of transistors that could be
placed on a chip grew very rapidly, roughly in accordance with Moore’s Law, which we discuss in the next
section. And despite predictions that the limit of miniaturization was about to be reached it continues to be a
reasonable and useful approximation. We can now cram billions of increasingly faster transistors onto a chip,
which allows us to store ever greater quantities of data, while multi-core processors together with multi-
threading software make it possible to process that data.

Moore’s Law

In 1965, Gordon Moore, who became the co-founder of Intel, famously predicted that over the next ten years
the number of transistors incorporated in a chip would approximately double every twenty-four months. In
1975, he changed his prediction and suggested the complexity would double every twelve months for five
years and then fall back to doubling every twenty-four months. David House, a colleague at Intel, after taking
into account the increasing speed of transistors, suggested that the performance of microchips would double
every eighteen months, and it is currently the latter prediction that is most often used for Moore’s Law. This
prediction has proved remarkably accurate; computers have indeed become faster, cheaper, and more
powerful since 1965, but Moore himself feels that this law’ will soon cease to hold.

According to M. Mitchell Waldrop in an article published in the February 2016 edition of the scientific journal
Nature, the end is indeed nigh for Moore’s Law. A microprocessor is the integrated circuit responsible for
performing the instructions provided by a computer program. This usually consists of billions of transistors,
embedded in a tiny space on a silicon microchip. A gate in each transistor allows it to be either switched on or
off and so it can be used to store 0 and 1. A very small input current flows through each transistor gate and
produces an amplified output current when the gate is closed. Mitchell Waldrop was interested in the distance
between gates, currently at 14-nanometer gaps in top microprocessors, and stated that the problems of heat
generation caused by closer circuitry and how it is to be effectively dissipated were causing the exponential
growth predicted by Moore’s Law to falter, which drew our attention to the fundamental limits he saw rapidly
approaching.

A nanometre is 10~2 metre, or one-millionth of a millimetre. To put this in context, a human hair is about
75,000 nanometres in diameter and the diameter of an atom is between 0.1 and 0.5 nanometres. Paolo Gargini,
who works for Intel, claimed that the gap limit will be 2 or 3 nanometres and will be reached in the not too
distant future—maybe as soon as the 2020s. Waldrop speculates that ‘at that scale, electron behaviour will be
governed by quantum uncertainties that will make transistors hopelessly unreliable’. As we will see in Chapter
7, it seems quite likely that quantum computers, a technology still in its infancy, will eventually provide the
way forward.

Moore’s Law is now also applicable to the rate of growth for data as the amount generated appears to
approximately double every two years. Data increases as storage capacity increases and the capacity to



process data increases. We are all beneficiaries: Netflix, smartphones, the Internet of Things (IoT; a convenient
way of referring to the vast numbers of electronic sensors connected to the Internet), and the Cloud (a
worldwide network of interconnected servers) computing, among others, have all become possible because of
the exponential growth predicted by Moore’s Law. All this generated data has to be stored, and we look at this
next.

Storing structured data

Anyone who uses a personal computer, laptop, or smartphone accesses data stored in a database. Structured
data, such as bank statements and electronic address books, are stored in a relational database. In order to
manage all this structured data, a relational database management system (RDBMS) is used to create,
maintain, access, and manipulate the data. The first step is to design the database schema (i.e. the structure of
the database). In order to achieve this, we need to know the data fields and be able to arrange them in tables,
and we then need to identify the relationships between the tables. Once this has been accomplished and the
database constructed we can populate it with data and interrogate it using structured query language (SQL).

Clearly tables have to be designed carefully and it would require a lot of work to make significant changes.
However, the relational model should not be underestimated. For many structured data applications, it is fast
and reliable. An important aspect of relational database design involves a process called normalization which
includes reducing data duplication to a minimum and hence reduces storage requirements. This allows
speedier queries, but even so as the volume of data increases the performance of these traditional databases
decreases.

The problem is one of scalability. Since relational databases are essentially designed to run on just one server,
as more and more data is added they become slow and unreliable. The only way to achieve scalability is to add
more computing power, which has its limits. This is known as vertical scalability. So although structured data
is usually stored and managed in an RDBMS, when the data is big, say in terabytes or petabytes and beyond,
the RDBMS no longer works efficiently, even for structured data.

An important feature of relational databases and a good reason for continuing to use them is that they conform
to the following group of properties: atomicity, consistency, isolation, and durability, usually known as ACID.
Atomicity ensures that incomplete transactions cannot update the database; consistency excludes invalid data;
isolation ensures one transaction does not interfere with another transaction; and durability means that the
database must update before the next transaction is carried out. All these are desirable properties but storing
and accessing big data, which is mostly unstructured, requires a different approach.

Unstructured data storage

For unstructured data, the RDBMS is inappropriate for several reasons, not least that once the relational
database schema has been constructed, it is difficult to change it. In addition, unstructured data cannot be
organized conveniently into rows and columns. As we have seen, big data is often high-velocity and generated
in real-time with real-time processing requirements, so although the RDBMS is excellent for many purposes
and serves us well, given the current data explosion there has been intensive research into new storage and
management techniques.

In order to store these massive datasets, data is distributed across servers. As the number of servers involved
increases, the chance of failure at some point also increases, so it is important to have multiple, reliably
identical copies of the same data, each stored on a different server. Indeed, with the massive amounts of data
now being processed, systems failure is taken as inevitable and so ways of coping with this are built into the
methods of storage. So how are the needs for speed and reliability to be met?

Hadoop Distributed File System

A distributed file system (DFS) provides effective and reliable storage for big data across many computers.
Influenced by the ideas published in October 2003 by Google in a research paper launching the Google File
System, Doug Cutting, who was then working at Yahoo, and his colleague Mike Cafarella, a graduate student
at the University of Washington, went to work on developing the Hadoop DFS. Hadoop, one of the most
popular DFS, is part of a bigger, open-source software project called the Hadoop Ecosystem. Named after a
yellow soft toy elephant owned by Cutting’s son, Hadoop is written in the popular programming language,
Java. If you use Facebook, Twitter, or eBay, for example, Hadoop will have been working in the background
while you do so. It enables the storage of both semi-structured and unstructured data, and provides a platform
for data analysis.

When we use Hadoop DFS, the data is distributed across many nodes, often tens of thousands of them,
physically situated in data centres around the world. Figure 4 shows the basic structure of a single Hadoop
DFS cluster, which consists of one master NameNode and many slave DataNodes.
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4. Simplified view of part of a Hadoop DFS cluster.

The NameNode deals with all requests coming in from a client computer; it distributes storage space, and
keeps track of storage availability and data location. It also manages all the basic file operations (e.g. opening
and closing files) and controls data access by client computers. The DataNodes are responsible for actually
storing the data and in order to do so, create, delete, and replicate blocks as necessary.

Data replication is an essential feature of the Hadoop DFS. For example, looking at Figure 4, we see that Block
A is stored in both DataNode 1 and DataNode 2. It is important that several copies of each block are stored so
that if a DataNode fails, other nodes are able to take over and continue with processing tasks without loss of
data. In order to keep track of which DataNodes, if any, have failed, the NameNode receives a message from
each, called a Heartbeat, every three seconds, and if no message is received it is assumed that the DataNode
in question has ceased to function. So if DataNode 1 fails to send a Heartbeat, DataNode 2 will become the
working node for Block A operations. The situation is different if the NameNode is lost, in which case the
inbuilt backup system needs to be employed.

Data is written to a DataNode only once but will be read by an application many times. Each block is usually
only 64 Mb, so there are a lot of them. One of the functions of the NameNode is to determine the best
DataNode to use given the current usage, ensuring fast data access and processing. The client computer then
accesses the data block from the chosen node. DataNodes are added as and when required by the increased
storage requirements, a feature known as horizontal scalability.

One of the main advantages of Hadoop DFS over a relational database is that you can collect vast amounts of
data, keep adding to it, and, at that time, not yet have any clear idea of what you want to use it for. Facebook,
for example, uses Hadoop to store its continually growing amount of data. No data is lost, as it will store
anything and everything in its original format. Adding DataNodes as required is cheap and does not require
existing nodes to be changed. If previous nodes become redundant, it is easy to stop them working. As we have
seen, structured data with identifiable rows and columns can be easily stored in a RDBMS while unstructured
data can be stored cheaply and readily using a DFS.

NoSQL databases for big data

NoSQL is the generic name used to refer to non-relational databases and stands for Not only SQL. Why is
there a need for a non-relational model that does not use SQL? The short answer is that the non-relational
model allows us to continually add new data. The non-relational model has some features that are necessary in
the management of big data, namely scalability, availability, and performance. With a relational database you
cannot keep scaling vertically without loss of function, whereas with NoSQL you scale horizontally and this
enables performance to be maintained. Before describing the NoSQL distributed database infrastructure and
why it is suitable for big data, we need to consider the CAP Theorem.

CAP Theorem

In 2000, Eric Brewer, a professor of computer science at the University of California Berkeley, presented the
CAP (consistency, availability, and partition tolerance) Theorem. Within the context of a distributed database
system, consistency refers to the requirement that all copies of data should be the same across nodes. So in
Figure 4, for example, Block A in DataNode 1 should be the same as Block A in DataNode 2. Availability
requires that if a node fails, other nodes still function—if DataNode 1 fails, then DataNode 2 must still operate.
Data, and hence DataNodes, are distributed across physically separate servers and communication between
these machines will sometimes fail. When this occurs it is called a network partition. Partition tolerance
requires that the system continues to operate even if this happens.

In essence, what the CAP Theorem states is that for any distributed computer system, where the data is
shared, only two of these three criteria can be met. There are therefore three possibilities; the system must be:



consistent and available, consistent and partition tolerant, or partition tolerant and available. Notice that since
in a RDMS the network is not partitioned, only consistency and availability would be of concern and the RDMS
model meets both of these criteria. In NoSQL, since we necessarily have partitioning, we have to choose
between consistency and availability. By sacrificing availability, we are able to wait until consistency is
achieved. If we choose instead to sacrifice consistency it follows that sometimes the data will differ from
server to server.

The somewhat contrived acronym BASE (Basically Available, Soft, and Eventually consistent) is used as a
convenient way of describing this situation. BASE appears to have been chosen in contrast to the ACID
properties of relational databases. ‘Soft’ in this context refers to the flexibility in the consistency requirement.
The aim is not to abandon any one of these criteria but to find a way of optimizing all three, essentially a
compromise.

The architecture of NoSQL databases

The name NoSQL derives from the fact that SQL cannot be used to query these databases. So, for example,
joins such as the one we saw in Figure 4 are not possible. There are four main types of non-relational or
NoSQL database: key—value, column-based, document, and graph—all useful for storing large amounts of
structured and semi-structured data. The simplest is the key—value database, which consists of an identifier
(the key) and the data associated with that key (the value) as shown in Figure 5. Notice that ‘value’ can
contain multiple items of data.

Key Value

Jane Smith | Address: 33 Any Drive; Any City

Tom Brown | Gender: Male; Marital Status: Married; # of Children: 2;

Favourite Movies: Cinderella; Dracula; Patton

5. Key—value database.

Of course, there would be many such key—value pairs and adding new ones or deleting old ones is simple
enough, making the database highly scalable horizontally. The primary capability is that we can look up the
value for a given key. For example, using the key ‘Jane Smith’ we are able to find her address. With huge
amounts of data, this provides a fast, reliable, and readily scalable solution to storage but it is limited by not
having a query language. Column-based and document databases are extensions of the key—value model.

Graph databases follow a different model and are popular with social networking sites as well as being useful
in business applications. These graphs are often very large, particularly when used by social networking sites.
In this kind of database, the information is stored in nodes (i.e. vertices) and edges. For example, the graph in
Figure 6 shows five nodes with the arrows between them representing relationships. Adding, updating, or
deleting nodes changes the graph.

Manages

Works in

Reports

Married Dependent

Dependent
6. Graph database.

In this example, the nodes are names or departments, and the edges are the relationships between them. Data



is retrieved from the graph by looking at the edges. So, for example, if I want to find ‘names of employees in
the IT department who have dependent children’, I see that Bob fulfils both criteria. Notice that this is not a
directed graph—we do not follow the arrows, we look for links.

Currently, an approach called NewSQL is finding a niche. By combining the performance of NoSQL databases
and the ACID properties of the relational model, the aim of this latent technology is to solve the scalability
problems associated with the relational model, making it more useable for big data.

Cloud storage

Like so many modern computing terms the Cloud sounds friendly, comforting, inviting, and familiar, but
actually ‘the Cloud’ is, as mentioned earlier, just a way of referring to a network of interconnected servers
housed in data centres across the world. These data centres provide a hub for storing big data.

Through the Internet we share the use of these remote servers, provided (on payment of a fee) by various
companies, to store and manage our files, to run apps, and so on. As long as your computer or other device has
the requisite software to access the Cloud, you can view your files from anywhere and give permission for
others to do so. You can also use software that ‘resides’ in the Cloud rather than on your computer. So it’s not
just a matter of accessing the Internet but also of having the means to store and process information—hence
the term ‘Cloud computing’. Our individual Cloud storage needs are not that big, but scaled up the amount of
information stored is massive.

Amazon is the biggest provider of Cloud services but the amount of data managed by them is a commercial
secret. We can get some idea of their importance in Cloud computing by looking at an incident that occurred in
February 2017 when Amazon Web Services’ Cloud storage system, S3, suffered a major outage (i.e. service
was lost). This lasted for approximately five hours and resulted in the loss of connection to many websites and
services, including Netflix, Expedia, and the US Securities and Exchange Commission. Amazon later reported
human error as the cause, stating that one of their employees had been responsible for inadvertently taking
servers offline. Rebooting these large systems took longer than expected but was eventually completed
successfully. Even so, the incident highlights the susceptibility of the Internet to failure, whether by a genuine
mistake or by ill-intentioned hacking.

Lossless data compression

In 2017, the widely respected International Data Corporation (IDC) estimates that the digital universe totals a

massive 16 zettabytes (Zb) which amounts to an unfathomable 16 x 102! bytes. Ultimately, as the digital
universe continues to grow, questions concerning what data we should actually save, how many copies should
be kept, and for how long will have to be addressed. It rather challenges the raison d’étre of big data to
consider purging data stores on a regular basis or even archiving them, as this is in itself costly and potentially
valuable data could be lost given that we do not necessarily know what data might be important to us in the
future. However, with the huge amounts of data being stored, data compression has become necessary in
order to maximize storage space.

There is considerable variability in the quality of the data collected electronically and so before it can be
usefully analysed it must be pre-processed to check for and remedy problems with consistency, repetition, and
reliability. Consistency is clearly important if we are to rely on the information extracted from the data.
Removing unwanted repetitions is good housekeeping for any dataset, but with big datasets there is the
additional concern that there may not be sufficient storage space available to keep all the data. Data is
compressed to reduce redundancy in videos and images and so reduce storage requirements and, in the case
of videos, to improve streaming rates.

There are two main types of compression—lossless and lossy. In lossless compression all the data is preserved
and so this is particularly useful for text. For example, files with the extension ‘.ZIP’, have been compressed
without loss of information so that unzipping them returns us to the original file. If we compress the string of
characters ‘aaaaabbbbbbbbbb’ as ‘5a10b’ it is easy to see how to decompress and arrive at the original string.
There are many algorithms for compression but it is useful first to consider how data is stored without
compression.

ASCII (American Standard Code for Information Interchange) is the standard way of encoding data so that it
can be stored in a computer. Each character is designated a decimal number, its ASCII code. As we have
already seen, data is stored as a series of Os and 1s. These binary digits are called bits. Standard ASCII uses 8
bits (also defined as 1 byte) to store each character. For example, in ASCII the letter ‘a’ is denoted by the
decimal number 97 which converts to 01100001 in binary. These values are looked up in the standard ASCII
table, a small part of which is given at the end of the book. Upper-case letters have different ASCII codes.

Consider the character string ‘added’ which is shown coded in Figure 7.



Character string | a d d e d

ASCII 97 100 100 101 100

Binary 01100001 | 01100100 | 01100100 | 01100101 | 01100100

7. A coded character string.

So ‘added’ takes 5 bytes or 5§ * 8 = 4() bits of storage. Given Figure 7, decoding is accomplished using the ASCII
code table. This is not an economical way of encoding and storing data; 8 bits per character seems excessive
and no account is taken of the fact that in text documents some letters are used much more frequently than
others. There are many lossless data compression models, such as the Huffman algorithm, which uses less
storage space by variable length encoding, a technique based on how often a particular letter occurs. Those
letters with the highest occurrence are given shorter codes.

Taking the string ‘added’ again we note that ‘a’ occurs once, ‘e’ occurs once, and ‘d’ occurs three times. Since
‘d’ occurs most frequently, it should be assigned the shortest code. To find the Huffman code for each letter we
count the letters of ‘added’ as follows:

la—le—3d

Next, we find the two letters that occur least frequently, namely ‘a’ and ‘e’, and we form the structure in
Figure 8, called a binary tree. The number 2 at the top of the tree is found by adding the number of
occurrences of the two least frequent letters.

2
£ %
1a 1e

8. A binary tree.
In Figure 9, we show the new node representing three occurrences of the letter ‘d’.

2 3d

7 N
1a 1e

9. The binary tree with a new node.

Figure 9 shows the completed tree with total number of letter occurrences at the top. Each edge of the tree is
coded as either 0 or 1, as shown in Figure 10, and the codes are found by following the paths up the tree.

Letter Code (bits)

5
2%
0 1
4 \‘ a 00
2 3d
O/ \\1 e 10
1a

1e d 1

10. Completed binary tree.

So ‘added’ iscoded as g =00, d=1.d=1 e =10, d =1, which gives us 0011101. Using this method we see that
3 bits are used for storing the letter ‘d’, 2 bits for letter ‘a’, and 2 bits for letter ‘e’, giving a total of 7 bits. This
is a big improvement on the original 40 bits.

A way of measuring the efficiency of compression is to use the data compression ratio, which is defined as the
uncompressed size of a file divided by its compressed size. In this example, 45/7 is approximately equal to
6.43, a high compression rate, showing good storage savings. In practice these trees are very large and are
optimized using sophisticated mathematical techniques. This example has shown how we can compress data
without losing any of the information contained in the original file and it is therefore called lossless
compression.



Lossy data compression

In comparison, sound and image files are usually much larger than text files and so another technique called
lossy compression is used. This is because, when we are dealing with sound and images, lossless compression
methods may simply not result in a sufficiently high compression ratio for data storage to be viable. Equally,
some data loss is tolerable for sound and images. Lossy compression exploits this latter feature by
permanently removing some data in the original file so reducing the amount of storage space needed. The
basic idea is to remove some of the detail without overly affecting our perception of the image or sound.

For example, consider a black and white photograph, more correctly described as a greyscale image, of a child
eating an ice-cream at the seaside. Lossy compression removes an equal amount of data from the image of the
child and that of the sea. The percentage of data removed is calculated such that it will not have a significant
impact on the viewer’s perception of the resulting (compressed) image—too much compression will lead to a
fuzzy photo. There’s a trade-off between the level of compression and quality of picture.

If we want to compress a greyscale image, we first divide it into blocks of 8 pixels by 8 pixels. Since this is a
very small area, all the pixels are generally similar in tone. This observation, together with knowledge about
how we perceive images, is fundamental to lossy compression. Each pixel has a corresponding numeric value
between 0 for pure black and 255 for pure white, with the numbers between representing shades of grey. After
some further processing using a method called the Discrete Cosine Algorithm, an average intensity value for
each block is found and the results compared with each of the actual values in a given block. Since we are
comparing these actual values to the average most of them will be 0, or 0 when rounded. Our lossy algorithm
collects all these 0s together, which represent the information from the pixels that is less important to the
image. These values, corresponding to high frequencies in our image, are all grouped together and the
redundant information is removed, using a technique called quantization, resulting in compression. For
example if out of sixty-four values each requiring 1 byte of storage, we have twenty 0Os, then after compression
we need only 45 bytes of storage. This process is repeated for all the blocks that make up the image and so
redundant information is removed throughout.

For colour images the JPEG (Joint Photographic Experts Group) algorithm, for example, recognizes red, blue,
and green, and assigns each a different weight based on the known properties of human visual perception.
Green is weighted greatest since the human eye is more perceptive to green than to red or blue. Each pixel in
a colour image is assigned a red, blue, and green weighting, represented as a triple <R,G,B>. For technical
reasons, <R,G,B> triples are usually converted into another triple, <YCbCr> where Y represents the intensity
of the colour and both Cb and Cr are chrominance values, which describe the actual colour. Using a complex
mathematical algorithm it is possible to reduce the values of each pixel and ultimately achieve lossy
compression by reducing the number of pixels saved.

Multimedia files in general, because of their size, are compressed using lossy methods. The more compressed
the file, the poorer the reproduction quality, but because some of the data is sacrificed, greater compression
ratios are achievable, making the file smaller.

Following an international standard for image compression first produced in 1992 by the JPEG, the JPEG file
format provides the most popular method for compressing both colour and greyscale photographs. This group
is still very active and meets several times a year.

Consider again the example of a black and white photograph of a child eating an ice-cream at the seaside.
Ideally, when we compress this image we want the part featuring the child to remain sharp, so in order to
achieve this we would be willing to sacrifice some clarity in the background details. A new method, called data
warping compression, developed by researchers at Henry Samueli School of Engineering and Applied Science,
UCLA, now makes this possible. Those readers interested in the details are referred to the Further reading
section at the end of the book.

We have seen how a distributed data file system can be used to store big data. Problems with storage have
been overcome to the extent that big data sources can now be used to answer questions that previously we
could not answer. As we will see in Chapter 4, an algorithmic method called MapReduce is used for processing
data stored in the Hadoop DFS.



Chapter 4
Big data analytics

Having discussed how big data is collected and stored, we can now look at some of the techniques used to
discover useful information from that data such as customer preferences or how fast an epidemic is spreading.
Big data analytics, the catch-all term for these techniques, is changing rapidly as the size of the datasets
increases and classical statistics makes room for this new paradigm.

Hadoop, introduced in Chapter 3, provides a means for storing big data through its distributed file system. As
an example of big data analytics we’ll look at MapReduce, which is a distributed data processing system and
forms part of the core functionality of the Hadoop Ecosystem. Amazon, Google, Facebook, and many other
organizations use Hadoop to store and process their data.

MapReduce

A popular way of dealing with big data is to divide it up into small chunks and then process each of these
individually, which is basically what MapReduce does by spreading the required calculations or queries over
many, many computers. It’s well worth working through a much simplified and reduced example of how
MapReduce works—and as we are doing this by hand it really will need to be a considerably reduced example,
but it will still demonstrate the process that would be used for big data. There would be typically many
thousands of processors used to process a huge amount of data in parallel, but the process is scalable and it’s
actually a very ingenious idea and simple to follow.

There are several parts to this analytics model: the map component; the shuffle step; and the reduce
component. The map component is written by the user and sorts the data we are interested in. The shuffle
step, which is part of the main Hadoop MapReduce code, then groups the data by key, and finally we have the
reduce component, which again is provided by the user, which aggregates these groups and produces the
result. The result is then sent to HDFS for storage.

For example, suppose we have the following key—value files stored in the Hadoop distributed file system, with
statistics on each of the following: measles, Zika virus, TB, and Ebola. The disease is the key and a value
representing the number of cases for each disease is given. We are interested in the total number of cases of
each disease.

File 1:

Measles, 3

Zika,2 TB,1 Measles,1
Zika,3 Ebola,2

File 2:
Measles,4
Zika,2 TB,1

File 3:
Measles, 3 Zika,2
Measles,4 Zika,1 Ebola,3

The mapper enables us to read each of these input files separately, line by line, as shown in Figure 11. The
mapper then returns the key—value pairs for each of these distinct lines.



INPUT MAPPER SEPARATES KEY-VALUES

Measles,3
Measles,3 ,-1—”"’ '

Zika,2 TB,1 Measles,1 = Zika,2 TB,1 Measles,1

Zika,3 Ebola,? T p———
ika, ola,

Measles,4 /_,_,/—’ Measles 4
Zika,2 TBA r——— ] "

Measles, 3 Zika,2 = Measles,3 Zika,2

Measles,4 Zika,1 Ebola,3 = Measles,4 Zika,1 Ebola,3

11. Map function.

Having split the files and found key—values for each split, the next step in the algorithm is provided by the
master program, which sorts and shuffles the key—values. The diseases are sorted alphabetically and the
result is sent to an appropriate file ready for the reducer, as shown in Figure 12.

KEY-VALUE MAP AND SHUFFLE REDUCE QUTPUT

Ebola,2
Ebcla,3
Ebeolad

Measles,3
Measlas,1
Measles,4 4.,| Measles.‘IEI- Ebola,6
Measles,3 Measles, 15
Measles,4 TB,2
Zika,10

TB
TB

Zika,2
Zika,3
Zika,2
Zika,2
Zika1

Zika,10

| Measles 4 Zika,1 Ebola,3

12. Shuffle and reduce functions.

Continuing to follow Figure 12, the reduce component combines the results of the map and shuffle stages, and
as a result sends each disease to a separate file. The reduce step in the algorithm then allows the individual
totals to be calculated and these results are sent to a final output file, as key—value pairs, which can be saved
in the DFS.

This is a very small example, but the MapReduce method enables us to analyse very large amounts of data. For
example, using the data supplied by Common Crawl, a non-profit organization that provides a free copy of the
Internet, we could count the number of times each word occurs on the Internet by writing a suitable computer
program that uses MapReduce.

Bloom filters
A particularly useful method for mining big data is the Bloom filter, a technique based on probability theory

which was developed in the 1970s. As we will see, Bloom filters are particularly suited to applications where
storage is an issue and where the data can be thought of as a list.



The basic idea behind Bloom filters is that we want to build a system, based on a list of data elements, to
answer the question ‘Is X in the list?” With big datasets, searching through the entire set may be too slow to be
useful, so we use a Bloom filter which, being a probabilistic method, is not 100 per cent accurate—the
algorithm may decide that an element belongs to the list when actually it does not; but it is a fast, reliable, and
storage efficient method of extracting useful knowledge from data.

Bloom filters have many applications. For example, they can be used to check whether a particular Web
address leads to a malicious website. In this case, the Bloom filter would act as a blacklist of known malicious
URLs against which it is possible to check, quickly and accurately, whether it is likely that the one you have
just clicked on is safe or not. Web addresses newly found to be malicious can be added to the blacklist. Since
there are now over a billion websites, and more being added daily, keeping track of malicious sites is a big
data problem.

A related example is that of malicious email messages, which may be spam or may contain phishing attempts.
A Bloom filter provides us with a quick way of checking each email address and hence we would be able to
issue a timely warning if appropriate. Each address occupies approximately 20 bytes, so storing and checking
each of them becomes prohibitively time-consuming since we need to do this very quickly—by using a Bloom
filter we are able to reduce the amount of stored data dramatically. We can see how this works by following the
process of building a small Bloom filter and showing how it would function.

Suppose we have the following list of email addresses that we want to flag as malicious: <aaa@aaaa.com>;
<bbb@nnnn.com>; <ccc@ff.com>; <dd@ggg.com>. To build our Bloom filter first assume we have 10 bits of
memory available on a computer. This is called a bit array and initially it is empty. A bit has just two states,
usually denoted by 0 and 1, so we will start by setting all values in the bit array to 0, meaning empty. As we
will see shortly, a bit with a value of 1 will mean the associated index has been assigned at least once.

The size of our bit array is fixed and will remain the same regardless of how many cases we add. We index
each bit in the array as shown in Figure 13.

Index 0 1 2 3 4 5 6 7 8 9

Bit value | 0 0 0 0 0 0 0 0 0 0

13. 10-bit array.

We now need to introduce hash functions, which are algorithms designed to map each element in a given list
to one of the positions in the array. By doing this, we now store only the mapped position in the array, rather
than the email address itself, so that the amount of storage space required is reduced.

For our demonstration, we show the result of using two hash functions, but typically seventeen or eighteen
functions would be used together with a much bigger array. Since these functions are designed to map more or
less uniformly, each index has an equal chance of being the result each time the hash algorithm is applied to a
different address.

So, first we let the hash algorithms assign each email address to one of the indices of the array.

To add ‘aaa@aaaa.com’ to the array, it is first passed through hash function 1, which returns an array index or
position value. For example, let’s say hash function 1 returned index 3. Hash function 2, again applied to
‘aaa@aaaa.com’, returned index 4. These two positions will each have their stored bit value set to 1. If the
position was already set to 1 then it would be left alone. Similarly, adding ‘bbb@nnnn.com’ may result in
positions 2 and 7 being occupied or set to 1 and ‘ccc@ff.com’ may return positions 4 and 7. Finally, assume the
hash functions applied to ‘dd@ggg.com’ return the positions 2 and 6. These results are summarized in Figure
14.

DATA HASH 1 HASH 2

aaa@aaaa.com

bbb @ nnnn.com

cec@ff.com

N R @
o |~ |~ e

dd@ggg.com

14. Summary of hash function results.



The actual Bloom filter array is shown in Figure 15 with occupied positions having a value set to 1.

Index 0 1 2 3 4 5 6 7 8 9

Bit value| 0 0 1 1 1 0 1 1 0 0

15. Bloom filter for malicious email addresses.

So, how do we use this array as a Bloom filter? Suppose, now, that we receive an email and we wish to check
whether the address appears on the malicious email address list. Suppose it maps to positions 2 and 7, both of
which have value 1. Because all values returned are equal to 1 it probably belongs to the list and so is probably
malicious. We cannot say for certain that it belongs to the list because positions 2 and 7 have been the result of
mapping other addresses and indexes may be used more than once. So the result of testing an element for list
membership also includes the probability of returning a false positive. However, if an array index with value 0
is returned by any hash function (and, remember, there would generally be seventeen or eighteen functions)
we would then definitely know that the address was not on the list.

The mathematics involved is complex but we can see that the bigger the array the more unoccupied spaces
there will be and the less chance of a false positive result or incorrect matching. Obviously the size of the
array will be determined by the number of keys and hash functions used, but it must be big enough to allow a
sufficient number of unoccupied spaces for the filter to function effectively and minimize the number of false
positives.

Bloom filters are fast and they can provide a very useful way of detecting fraudulent credit card transactions.
The filter checks to see whether or not a particular item belongs to a given list or set, so an unusual
transaction would be flagged as not belonging to the list of your usual transactions. For example if you have
never purchased mountaineering equipment on your credit card, a Bloom filter will flag the purchase of a
climbing rope as suspicious. On the other hand, if you do buy mountaineering equipment, the Bloom filter will
identify this purchase as probably acceptable but there will be a probability that the result is actually false.

Bloom filters can also be used for filtering email for spam. Spam filters provide a good example since we do
not know exactly what we are looking for—often we are looking for patterns, so if we want email messages
containing the word ‘mouse’ to be treated as spam we also want variations like ‘mQOuse’ and ‘mou$e’ to be
treated as spam. In fact, we want all possible, identifiable variations of the word to be identified as spam. It is
much easier to filter everything that does not match with a given word, so we would only allow ‘mouse’ to pass
through the filter.

Bloom filters are also used to speed up the algorithms used for Web query rankings, a topic of considerable
interest to those who have websites to promote.

PageRank

When we search on Google, the websites returned are ranked according to their relevance to the search terms.
Google achieves this ordering primarily by applying an algorithm called PageRank. The name PageRank is
popularly believed to have been chosen after Larry Page, one of the founders of Google, who, working with co-
founder Sergey Brin, published articles on this new algorithm. Until the summer of 2016, PageRank results
were publicly available by downloading the Toolbar PageRank. The public PageRank tool was based on a range
from 1 and 10. Before it was withdrawn, I saved a few results. If I typed ‘Big Data’ into Google using my
laptop, I got a message informing me there were ‘About 370,000,000 results (0.44 seconds)’ with a PageRank
of 9. Top of this list were some paid advertisements, followed by Wikipedia. Searching on ‘data’ returned about
5,530,000,000 results in 0.43 seconds with a PageRank of 9. Other examples, all with a PageRank of 10,
included the USA government website, Facebook, Twitter, and the European University Association.

This method of calculating a PageRank is based on the number of links pointing to a webpage—the more links,
the higher the score, and the higher the page appears as a search result. It does not reflect the number of
times a page is visited. If you are a website designer, you want to optimize your website so that it appears very
near the top of the list given certain search terms, since most people do not look further than the first three or
four results. This requires a huge number of links and as a result, almost inevitably, a trade in links became
established. Google tried to address this ‘artificial’ ranking by assigning a new ranking of 0 to implicated
companies or even by removing them completely from Google, but this did not solve the problem; the trade
was merely forced underground, and links continued to be sold.

PageRank itself has not been abandoned and forms part of a large suite of ranking programs which are not
available for public viewing. Google re-calculates rankings regularly in order to reflect added links as well as
new websites. Since PageRank is commercially sensitive, full details are not publicly available but we can get
the general idea by looking at an example. The algorithm provides a complex way of analysing the links
between webpages based on probability theory, where probability 1 indicates certainty and probability O
indicates impossibility, with everything else having a probability value somewhere in-between.



To understand how the ranking works, we first need to know what a probability distribution looks like. If we
think of the result of rolling a fair six-sided die, each of the outcomes 1 through 6 is equally likely to occur and
so each has a probability of 1/6. The list of all the possible outcomes, together with the probability associated
with each, describes a probability distribution.

Going back to our problem of ranking webpages according to importance, we cannot say that each is equally
important, but if we had a way of assigning probabilities to each webpage, this would give us a reasonable
indication of importance. So what algorithms such as PageRank do is construct a probability distribution for
the entire Web. To explain this, let’s consider a random surfer of the Web, who starts at any webpage and then
moves to another page using the links available.

We will consider a simplified example where we have a web consisting of only three webpages; BigDatal,
BigData2, and BigData3. Suppose the only links are from BigData2 to BigData3, BigData2 to BigDatal, and
BigDatal to BigData3. Then our web can be represented as shown in Figure 16, where the nodes are
webpages and the arrows (edges) are links.

BigData2 BigData3

BigData1

16. Directed graph representing a small part of the Web.

Each page has a PageRank indicating its importance or popularity. BigData3 will be the most highly ranked
because it has the most links going to it, making it the most popular. Suppose now that a random surfer visits a
webpage, he or she has one proportional vote to cast, which is divided equally between the next choices of
webpage. For example, if our random surfer is currently visiting BigDatal, the only choice is to then visit
BigData3. So we can say that a vote of 1 is cast for BigData3 by BigDatal.

In the real Web new links are made all the time, so suppose we now find that BigData3 links to BigData2, as
shown in Figure 17, then the PageRank for BigData2 will have changed because the random surfer now has a
choice of where to go after BigData3.

BigData2 BigData3

BigData

17. Directed graph representing a small part of the Web with added link.

If our random surfer starts off at BigDatal, then the only choice is to visit BigData3 next and so the total vote
of 1 goes to BigData3, and BigData2 gets a vote of 0. If he or she starts at BigData2 the vote is split equally
between BigData3 and BigDatal. Finally, if the random surfer starts at BigData3 his or her entire vote is cast
for BigData2. These proportional ‘votes’ are summarized in the Figure 18.



Proportion of vote Proportion of vote | Proportion of vote
cast by BD1 cast by BD2 cast by BD3

For BD1 0 1/2 0

For BD2 . 0 0 1

For BD3 1 1/2 0

18. Votes cast for each webpage.

Using Figure 18, we now see the total votes cast for each webpage as follows:

Total votes for BD1 are 1/2 (coming from BD2)
Total votes for BD2 are 1 (coming from BD3)
Total votes for BD3 are 1% (coming from BD 1 and BD2)

Since the choice of starting page for the surfer is random, each one is equally likely and so is assigned an
initial PageRank of 1/3. To form the desired PageRanks for our example, we need to update the initial
PageRanks according to the proportion of votes cast for each page.

For example, BD1 has just 1/2 vote, cast by BD2, so the PageRank of BD1is | /3%]/2 =1/ . Similarly,
PageRank BD2 is given by 1 /3#%] =2/ 6 and PageRank BD3 is | /3#3 %2 =3/ . Since all the Page Rankings
now add up to one, we have a probability distribution which shows the importance, or rank, of each page.

But there is a complication here. We said that the probability that a random surfer was on any page initially
was 1/3. After one step, we have calculated the probability that a random surfer is on BD1 is 1/6. What about
after two steps? Well, again we use the current PageRanks as votes to calculate the new PageRanks. The
calculations are slightly different for this round because the current PageRanks are not equal but the method
is the same, giving new PageRanks as follows: PageRank BD1 is 2/12, PageRank BD?2 is 6/12, and PageRank
BD3 is 4/12. These steps, or iterations, are repeated until the algorithm converges, meaning that the process
continues like this until no more changes can be made by any further multiplication. Having achieved a final
ranking, PageRank can select the page with the highest ranking for a given search.

Page and Brin, in their original research papers, presented an equation for calculating the PageRank which
included a Damping Factor d, defined as the probability that a random Web surfer will click on one of the links
on the current page. The probability that a random Web surfer will not click on one of the links on the current
page is therefore (1 —d ) meaning that the random surfer has finished surfing. It was this Damping Factor that

ensured the PageRank averaged over the entire Web settles down to 1, after a sufficient number of iterative
calculations. Page and Brin reported that a web consisting of 322 million links settled down after fifty-two
iterations.

Public datasets

There are many freely available big datasets that interested groups or individuals can use for their own
projects. Common Crawl, mentioned earlier in this chapter, is one example. Hosted by the Amazon Public
Datasets Program, in October 2016 the Common Crawl monthly archive contained more than 3.25 billion
webpages. Public datasets are in a broad range of specialties, including genome data, satellite imagery, and
worldwide news data. For those not likely to write their own code, Google’s Ngram Viewer provides an
interesting way of exploring some big datasets interactively (see Further reading for details).

Big data paradigm

We have seen some of the ways in which big data can be useful and in Chapter 2 we talked about small data.
For small data analysis, the scientific method is well-established and necessarily involves human interaction:
someone comes up with an idea, formulates a hypothesis or model, and devises ways to test its predictions.
Eminent statistician George Box wrote in 1978, ‘all models are wrong, but some are useful’. The point he
makes is that statistical and scientific models in general do not provide exact representations of the world
about us, but a good model can provide a useful picture on which to base predictions and draw conclusions
confidently. However, as we have shown, when working with big data we do not follow this method. Instead we
find that the machine, not the scientist, is predominant.

Writing in 1962, Thomas Kuhn described the concept of scientific revolutions, which follow long periods of
normal science when an existing paradigm is developed and investigated to the full. If sufficiently intractable
anomalies occur to undermine the existing theory, resulting in loss of confidence by researchers, then this is
termed a ‘crisis’, and it is ultimately resolved by a new theory or paradigm. For a new paradigm to be
accepted, it must answer some of the questions found to be problematic in the old paradigm. However, in



general, a new paradigm does not completely overwhelm the previous one. For example, the shift from
Newtonian mechanics to Einstein’s relativity theory changed the way science viewed the world, without
making Newton’s laws obsolete: Newtonian mechanics now form a special case of the wider ranging relativity
theory. Shifting from classical statistics to big data analytics also represents a significant change, and has
many of the hallmarks of a paradigm shift. So techniques will inevitably need to be developed to deal with this
new situation.

Consider the technique of finding correlations in data, which provides a means of prediction based on the
strength of the relationships between variables. It is acknowledged in classical statistics that correlation does
not imply causation. For example, a teacher may document both the number of student absences from lectures
and student grades; and then, on finding an apparent correlation, he or she may use absences to predict
grades. However, it would be incorrect to conclude that absences cause poor grades. We cannot know why the
two variables are correlated just by looking at the blind calculations: maybe the less able students tend to miss
class; maybe students who are absent due to sickness cannot later catch up. Human interaction and
interpretation is needed in order to decide which correlations are useful.

With big data, using correlation creates additional problems. If we consider a massive dataset, algorithms can
be written that, when applied, return a large number of spurious correlations that are totally independent of
the views, opinions, or hypotheses of any human being. Problems arise with false correlations—for example,
divorce rate and margarine consumption, which is just one of many spurious correlations reported in the
media. We can see the absurdity of this correlation by applying scientific method. However, when the number
of variables becomes large, the number of spurious correlations also increases. This is one of the main
problems associated with trying to extract useful information from big data, because in doing so, as with
mining big data, we are usually looking for patterns and correlations. As we will see in Chapter 5, one of the
reasons Google Flu Trends failed in its predictions was because of these problems.



Chapter 5
Big data and medicine

Big data analysis is significantly changing the world of healthcare. Its potential has yet to be fully realized but
includes medical diagnosis, epidemic prediction, gauging the public response to government health warnings,
and the reduction in costs associated with healthcare systems. Let’s start by looking at what is now termed
healthcare informatics.

Healthcare informatics

Medical big data is collected, stored, and analysed using the general techniques described in previous
chapters. Broadly speaking, healthcare informatics and its many sub-disciplines, such as clinical informatics
and bio-informatics, use big data to provide improved patient care and reduce costs. Consider the definition
criteria for big data (discussed in Chapter 2)—volume, variety, velocity, and veracity—and how they apply to
medical data. Volume and velocity are satisfied, for example, when public-health-related data is collected
through social networking sites for epidemic tracking; variety is satisfied since patient records are stored in
text format, both structured and unstructured, and sensor data such as that provide by MRIs is also collected;
veracity is fundamental to medical applications and considerable care is taken to eliminate inaccurate data.

Social media is a potentially valuable source of medically related information through data collection from
sites such as Facebook, Twitter, various blogs, message boards, and Internet searches. Message boards
focused on specific healthcare issues are abundant, providing a wealth of unstructured data. Posts on both
Facebook and Twitter have been mined, using classification techniques similar to those described in Chapter 4,
to monitor experience of unpleasant reactions to medications and supply healthcare professionals with
worthwhile information regarding drug interactions and drug abuse. Mining social media data for public-
health-related research is now a recognized practice within the academic community.

Designated social networking sites for medical professionals, such as Sermo Intelligence, a worldwide medical
network and self-proclaimed ‘largest global healthcare data collection company’, provide healthcare personnel
with instant crowdsourcing benefits from interaction with their peers. Online medical advice sites are
becoming increasingly popular and generate yet more information. But, although not publicly accessible,
perhaps the most important source is the vast collection of Electronic Health Records. These records, usually
referred to simply by their initials, EHR, provide an electronic version of a patient’s full medical history,
including diagnoses, medications prescribed, medical images such as X-rays, and all other relevant information
collected over time, thus constructing a ‘virtual patient’—a concept we will look at later in this chapter. As well
as using big data to improve patient care and cut costs, by pooling the information generated from a variety of
online sources it becomes possible to think in terms of predicting the course of emerging epidemics.

Google Flu Trends

Every year, like many countries, the US experiences an influenza (or flu) epidemic resulting in stretched
medical resources and considerable loss of life. Data from past epidemics supplied by the US Center for
Disease Control (CDC), the public health monitoring agency, together with big data analytics, provide the
driving force behind researchers’ efforts to predict the spread of the illness in order to focus services and
reduce its impact.

The Google Flu Trends team started working on predicting flu epidemics using search engine data. They were
interested in how the course of the annual flu epidemic might be predicted faster than it currently took the
CDC to process its own data. In a letter published in the prestigious scientific journal Nature in February
2009, the team of six Google software engineers explained what they were doing. If data could be used to
accurately predict the course of the annual US flu epidemic then the illness could be contained, saving lives
and medical resources. The Google team explored the idea that this could be achieved by collecting and
analysing search engine queries relevant to concerns about the flu. Previous attempts to use online data to
predict the spread of the flu had either failed or been met with limited success. However, by learning from
earlier mistakes in this pioneering research, Google and the CDC hoped to be successful in using big data
generated by search engine queries to improve epidemic tracking.



The CDC and its European counterpart, the European Influenza Surveillance Scheme (EISS), collect data from
various sources, including physicians, who report on the number of patients they see with flu-like symptoms.
By the time this data is collated it is typically about two weeks old and the epidemic has progressed further.
Using data collected in real-time from the Internet, the Google/CDC team aimed to improve the accuracy of
epidemic predictions and to deliver results within a single day. To do this, data was collected on flu-related
search queries varying from individual Internet searches on flu remedies and symptoms to mass data such as
phone calls made to medical advice centres. Google was able to tap into a vast amount of search query data
that it had accumulated between 2003 and 2008, and by using IP addresses it was able to identify the
geographic location of where search queries had been generated and thus group the data according to State.
The CDC data is collected from ten regions, each containing the cumulative data from a group of States (e.g.
Region 9 includes Arizona, California, Hawaii, and Nevada), and this was then integrated into the model.

The Google Flu Trends project hinged on the known result that there is a high correlation between the number
of flu-related online searches and visits to the doctor’s surgery. If a lot of people in a particular area are
searching for flu-related information online, it might then be possible to predict the spread of flu cases to
adjoining areas. Since the interest is in finding trends, the data can be anonymized and hence no consent from
individuals is required. Using their five-year accumulation of data, which they limited to the same time-frame
as the CDC data, and so collected only during the flu season, Google counted the weekly occurrence of each of
the fifty million most common search queries covering all subjects. These search query counts were then
compared with the CDC flu data, and those with the highest correlation were used in the flu trends model.
Google chose to use the top forty-five flu-related search terms and subsequently tracked these in the search
queries people were making. The complete list of search terms is secret but includes, for example, ‘influenza
complication’, ‘cold/flu remedy’, and ‘general influenza symptoms’. The historical data provided a baseline
from which to assess current flu activity on the chosen search terms and by comparing the new real-time data
against this, a classification on a scale from 1 to 5, where 5 signified the most severe, was established.

Used in the 2011-12 and 2012-13 US flu seasons, Google’s big data algorithm famously failed to deliver. After
the flu season ended, its predictions were checked against the CDC’s actual data. In building the model, which
should be a good representation of flu trends from the data available, the Google Flu Trends algorithm over-
predicted the number of flu cases by at least 50 per cent during the years it was used. There were several
reasons why the model did not work well. Some search terms were intentionally excluded because they did not
fit the expectations of the research team. The much publicized example is that high-school basketball,
seemingly unrelated to the flu, was nevertheless highly correlated with the CDC data, but it was excluded from
the model. Variable selection, the process by which the most appropriate predictors are chosen, always
presents a challenging problem and so is done algorithmically to avoid bias. Google kept the details of their
algorithm confidential, noting only that high-school basketball came in the top 100 and justifying its exclusion
by pointing out that the flu and basketball both peak at the same time of year.

As we have noted, in constructing their model Google used forty-five search terms as predictors of the flu. Had
they only used one, for example ‘influenza’ or ‘flu’, important and relevant information such as all the searches
on ‘cold remedy’ would have gone unnoticed and unreported. Accuracy in prediction is improved by having a
sufficient number of search terms but it can also decrease if there are too many. Current data is used as
training data to construct a model that predicts future data trends, and when there are too many predictors,
small random cases in the training data are modelled and so, although the model fits the training data very
well, it does not predict well. This seemingly paradoxical phenomenon, called ‘over-fitting’, was not taken into
account sufficiently by the team. Omitting high-school basketball as simply being coincidental to the flu season
made sense, but there were fifty million distinct search terms and with such a big number it is almost
inevitable that others will correlate strongly with the CDC but not be relevant to flu trends.

Visits to the doctor with flu-like symptoms often resulted in a diagnosis that was not the flu (e.g. it was the
common cold). The data Google used, collected selectively from search engine queries, produced results that
are not scientifically sound given the obvious bias produced, for example by eliminating everyone who does not
use a computer and everyone using other search engines. Another issue that may have led to poor results was
that customers searching Google on ‘flu symptoms’ would probably have explored a number of flu-related
websites, resulting in their being counted several times and thus inflating the numbers. In addition, search
behaviour changes over time, especially during an epidemic, and this should be taken into account by updating
the model regularly. Once errors in prediction start to occur, they tend to cascade, which is what happened
with the Google Flu Trends predictions: one week’s errors were passed along to the next week. Search queries
were considered as they had actually occurred and not grouped according to spelling or phrasing. Google’s
own example was that ‘indications of flu’, ‘flu indications’, and ‘indications of the flu’ were each counted
separately.

The work, which dates back to 2007-8, has been much criticized, sometimes unfairly, but the criticism has
usually related to lack of transparency, for example the refusal to reveal all the chosen search terms and
unwillingness to respond to requests from the academic community for information. Search engine query data
is not the product of a designed statistical experiment and finding a way to meaningfully analyse such data and
extract useful knowledge is a new and challenging field that would benefit from collaboration. For the 2012-13
flu season, Google made significant changes to its algorithms and started to use a relatively new mathematical
technique called Elasticnet, which provides a rigorous means of selecting and reducing the number of
predictors required. In 2011, Google launched a similar program for tracking Dengue fever, but they are no
longer publishing predictions and, in 2015, Google Flu Trends was withdrawn. They are, however, now sharing



their data with academic researchers.

Google Flu Trends, one of the earlier attempts at using big data for epidemic prediction, provided useful
insights to researchers who came after them. Even though the results did not live up to expectations, it seems
likely that in the future better techniques will be developed and the full potential of big data in tracking
epidemics realized. One such attempt was made by a group of scientists from the Los Alamos National
Laboratory in the USA, using data from Wikipedia. The Delphi Research Group at Carnegie Mellon University
won the CDC’s challenge to ‘Predict the Flu’ in both 2014-15 and 2015-16 for the most accurate forecasters.
The group successfully used data from Google, Twitter, and Wikipedia for monitoring flu outbreaks.

The West Africa Ebola outbreak

The world has experienced many pandemics in the past; the Spanish flu of 1918-19 killed somewhere between
twenty million and fifty million people and in total infected about 500 million people. Very little was known
about the virus, there was no effective treatment, and the public health response was limited—necessarily so,
due to lack of knowledge. This changed in 1948 with the inauguration of the World Health Organization
(WHO), charged with monitoring and improving global health through worldwide cooperation and
collaboration. On 8 August 2014, at a teleconference meeting of the International Health Regulations
Emergency Committee, the WHO announced that an outbreak of the Ebola virus in West Africa formally
constituted a ‘public health emergency of international concern’ (PHEIC). Using a term defined by the WHO,
the Ebola outbreak constituted an ‘extraordinary event’ requiring an international effort of unprecedented
proportions in order to contain it and thus avert a pandemic.

The West Africa Ebola outbreak in 2014, primarily confined to Guinea, Sierra Leone, and Liberia, presented a
different set of problems to the annual US flu outbreak. Historical data on Ebola was either not available or of
little use since an outbreak of these proportions had never been recorded, and so new strategies for dealing
with it needed to be developed. Given that knowledge of population movements help public health
professionals monitor the spread of epidemics, it was believed that the information held by mobile phone
companies could be used to track travel in the infected areas, and measures put in place, such as travel
restrictions, that would contain the virus, ultimately saving lives. The resulting real-time model of the outbreak
would predict where the next instances of the disease were most likely to occur and resources could be
focused accordingly.

The digital information that can be garnered from mobile phones is fairly basic: the phone number of both the
caller and the person being called, and an approximate location of the caller—a call made on a mobile phone
generates a trail that can be used to estimate the caller’s location according to the tower used for each call.
Getting access to this data posed a number of problems: privacy issues were a genuine concern as individuals
who had not given consent for their calls to be tracked could be identified.

In the West African countries affected by Ebola, mobile phone density was not uniform, with the lowest
percentages occurring in poor rural areas. For example, in 2013 just over half the households in Liberia and
Sierra Leone, two of the countries directly affected by the outbreak in 2014, had a mobile phone, but even so
they could provide sufficient data to usefully track movement.

Some historic mobile phone data was given to the Flowminder Foundation, a non-profit organization based in
Sweden, dedicated to working with big data on public health issues that affect the world’s poorer countries. In
2008, Flowminder were the first to use mobile operator data to track population movements in a medically
challenging environment, as part of an initiative by the WHO to eradicate malaria, so they were an obvious
choice to work on the Ebola crisis. A distinguished international team used anonymized historic data to
construct maps of population movements in the areas affected by Ebola. This historic data was of limited use
since behaviour changes during epidemics, but it does give strong indications of where people will tend to
travel, given an emergency. Mobile phone mast activity records provide real-time population activity details.

However, the Ebola prediction figures published by WHO were over 50 per cent higher than the cases actually
recorded.

The problems with both the Google Flu Trends and Ebola analyses were similar in that the prediction
algorithms used were based only on initial data and did not take into account changing conditions. Essentially,
each of these models assumed that the number of cases would continue to grow at the same rate in the future
as they had before the medical intervention began. Clearly, medical and public health measures could be
expected to have positive effects and these had not been integrated into the model.

The Zika virus, transmitted by Aedes mosquitoes, was first recorded in 1947 in Uganda, and has since spread
as far afield as Asia and the Americas. The current Zika virus outbreak, identified in Brazil in 2015, resulted in
another PHEIC. Lessons have been learned regarding statistical modelling with big data from work by Google
Flu Trends and during the Ebola outbreak, and it is now generally acknowledged that data should be collected
from multiple sources. Recall that the Google Flu Trends project collected data only from its own search
engine.



The Nepal earthquake

So what is the future for epidemic tracking using big data? The real-time characteristics of mobile phone call
detail records (CDRs) have been used to assist in monitoring population movements in disasters as far ranging
as the Nepal earthquake and the swine-flu outbreak in Mexico. For example, an international Flowminder
team, with scientists from the Universities of Southampton and Oxford, as well as institutions in the US and
China, following the Nepal earthquake of 25 April 2015, used CDRs to provide estimates of population
movements. A high percentage of the Nepali population has a mobile phone and by using the anonymized data
of twelve million subscribers, the Flowminder team was able to track population movements within nine days
of the earthquake. This quick response was due in part to having in place an agreement with the main service
provider in Nepal, technical details of which were only completed a week before the disaster. Having a
dedicated server with a 20 Tb hard drive in the providers’ data centre enabled the team to start work
immediately, resulting in information being made available to disaster relief organizations within nine days of
the earthquake.

Big data and smart medicine

Every time a patient visits a doctor’s office or hospital, electronic data is routinely collected. Electronic health
records constitute legal documentation of a patient’s healthcare contacts: details such as patient history,
medications prescribed, and test results are recorded. Electronic health records may also include sensor data
such as Magnetic Resonance Imaging (MRI) scans. The data may be anonymized and pooled for research
purposes. It is estimated that in 2015, an average hospital in the USA will store over 600 Tb of data, most of
which is unstructured. How can this data be mined to give information that will improve patient care and cut
costs? In short, we take the data, both structured and unstructured, identify features relevant to a patient or
patients, and use statistical techniques such as classification and regression to model outcomes. Patient notes
are primarily in the format of unstructured text, and to effectively analyse these requires natural language
processing techniques such as those used by IBM’s Watson, which is discussed in the next section.

According to IBM, by 2020 medical data is expected to double every seventy-three days. Increasingly used for
monitoring healthy individuals, wearable devices are widely used to count the number of steps we take each
day; measure and balance our calorie requirements; track our sleep patterns; as well as giving immediate
information on our heart rate and blood pressure. The information gleaned can then be uploaded onto our PCs
and records kept privately or, as is sometimes the case, shared voluntarily with employers. This veritable
cascade of data on individuals will provide healthcare professionals with valuable public health data as well as
providing a means for recognizing changes in individuals that might help avoid, for example, a heart attack.
Data on populations will enable physicians to track, for example, side-effects of a particular medication based
on patient characteristics.

Following the completion of the Human Genome Project in 2003, genetic data will increasingly become an
important part of our individual medical records as well as providing a wealth of research data. The aim of the
Human Genome Project was to map all the genes of humans. Collectively, the genetic information of an
organism is called its genome. Typically, the human genome contains about 20,000 genes and mapping such a
genome requires about 100 Gb of data. Of course, this is a highly complex, specialized, and multi-faceted area
of genetic research, but the implications following the use of big data analytics are of interest. The information
about genes thus collected is kept in large databases and there has been concern recently that these might be
hacked and patients who contributed DNA would be identified. It has been suggested that, for security
purposes, false information should be added to the database, although not enough to render it useless for
medical research. The interdisciplinary field of bioinformatics has flourished as a consequence of the need to
manage and analyse the big data generated by genomics. Gene sequencing has become increasingly rapid and
much cheaper in recent years, so that mapping individual genomes is now practical. Taking into account the
cost of fifteen years of research, the first human genome sequencing cost nearly US$3 million. Many
companies now offer genome sequencing services to individuals at an affordable price.

Growing out of the Human Genome Project, the Virtual Physiological Human (VPH) project aims to build
computer representations that will allow clinicians to simulate medical treatments and find the best for a given
patient, built on the data from a vast data bank of actual patients. By comparing those with similar symptoms
and other medically relevant details, the computer model can predict the likely outcome of a treatment on an
individual patient. Data mining techniques are also used and potentially merged with the computer simulations
to personalize medical treatment, and so the results of an MRI might integrate with a simulation. The digital
patient of the future would contain all the information about a real patient, updated according to smart device
data. However, as is increasingly the case, data security is a significant challenge faced by the project.

Watson in medicine

In 2007, IBM decided to build a computer to challenge the top competitors in the US television game show,
Jeopardy. Watson, a big data analytics system named after the founder of IBM, Thomas J. Watson, was pitted
against two Jeopardy champions: Brad Rutter, with a winning streak of seventy-four appearances; and Ken
Jennings, who had won a staggering total of US$3.25 million. Jeopardy is a quiz show in which the host of the
show gives an ‘answer’ and the contestant has to guess the ‘question’. There are three contestants and the
answers or clues come in several categories such as science, sport, and world history together with less



standard, curious categories such as ‘before and after’. For example, given the clue ‘His tombstone in a
Hampshire churchyard reads “knight, patriot, physician and man of letters; 22 May 1859-7 July 1930, the
answer is “‘Who is Sir Arthur Conan Doyle?’. In the less obvious category ‘catch these men’, given the clue
‘Wanted for 19 murders, this Bostonian went on the run in 1995 and was finally nabbed in Santa Monica in
2011’, the answer is “‘Who was Whitey Bulger?’. Clues that were delivered to Watson as text and audio-visual
cues were omitted from the competition.

Natural language processing (NLP), as it is known in artificial intelligence (Al), represents a huge challenge to
computer science and was crucial to the development of Watson. Information also has to be accessible and
retrievable, and this is a problem in machine learning. The research team started out by analysing Jeopardy
clues according to their lexical answer type (LAT), which classifies the kind of answer specified in the clue. For
the second of these examples, the LAT is ‘this Bostonian’. For the first example, there is no LAT, the pronoun
‘it’ does not help. Analysing 20,000 clues the IBM team found 2,500 unique LATs but these covered only about
half the clues. Next, the clue is parsed to identify key words and the relationships between them. Relevant
documents are retrieved and searched from the computer’s structured and unstructured data. Hypotheses are
generated based on the initial analyses, and by looking for deeper evidence potential answers are found.

To win Jeopardy, fast advanced natural language processing techniques, machine learning, and statistical
analysis were crucial. Among other factors to consider were accuracy and choice of category. A baseline for
acceptable performance was computed using data from previous winners. After several attempts, deep
question and answer analysis, or ‘DeepQA’, an amalgamation of many Al techniques gave the solution. This
system uses a large bank of computers, working in parallel but not connected to the Internet; it is based on
probability and the evidence of experts. As well as generating an answer, Watson uses confidence-scoring
algorithms to enable the best result to be found. Only when the confidence threshold is reached does Watson
indicate that it is ready to give an answer, the equivalent of a human contestant hitting their buzzer. Watson
beat the two Jeopardy champions. Jennings, generous in defeat, is quoted as saying, ‘I, for one, welcome our
new computer overlords’.

The Watson medical system, based on the original Jeopardy Watson, retrieves and analyses both structured
and unstructured data. Since it builds its own knowledge base it is essentially a system that appears to model
human thought processes in a particular domain. Medical diagnoses are based on all available medical
knowledge, they are evidence-based, accurate to the extent that the input is accurate and contains all the
relevant information, and consistent. Human doctors have experience but are fallible and some are better
diagnosticians than others. The process is similar to the Watson of Jeopardy, taking into account all the
relevant information and returning diagnoses, each with a confidence rating. Watson’s built-in AI techniques
enable the processing of big data, including the vast amounts generated by medical imaging.

The Watson supercomputer is now a multi-application system and a huge commercial success. In addition
Watson has been engaged in humanitarian efforts, for example through a specially developed openware
analytics system to assist in tracking the spread of Ebola in Sierra Leone.

Medical big data privacy

Big data evidently has potential to predict the spread of disease and to personalize medicine, but what of the
other side of the coin—the privacy of the individual’s medical data? Particularly with the growing use of
wearable devices and smartphone apps, questions arise as to who owns the data, where it is being stored, who
can access and use it, and how secure it is from cyber-attacks. Ethical and legal issues are abundant but not
addressed here.

Data from a fitness tracker may become available to an employer and used: favourably, for example to offer
bonuses to those who meet certain metrics; or, unfavourably, to determine those who fail to reach the required
standards, perhaps leading to an unwanted redundancy offer. In September 2016, a collaborative research
team of scientists from the Technische Universitat Darmstadt in Germany and the University of Padua in Italy,
published the results of their study into fitness tracker data security. Alarmingly, out of the seventeen fitness
trackers tested, all from different manufacturers, none was sufficiently secure to stop changes being made to
the data and only four took any measures, all bypassed by the team’s efforts, to preserve data veracity.

In September 2016 following the Rio Olympic Games, from which most Russian athletes were banned
following substantiated reports of a state-run doping programme, medical records of top athletes, including
the Williams sisters, Simone Byles, and Chris Froome, were hacked and publicly disclosed by a group of
Russian cyber-hackers on the website FancyBears.net. These medical records, held by the World Anti-Doping
Agency (WADA) on their data management system ADAMS, revealed only therapeutic use exemptions and
therefore no wrong-doing by the cyber-bullied athletes. It is likely that the initial ADAMS hack was the result
of spear-phishing email accounts. This technique, whereby an email appears to be sent by a senior trusted
source within an organization, such as a healthcare provider, to a more junior member of the same
organization, is used to illegally acquire sensitive information such as passwords and account numbers
through downloaded malware.

Proofing big data medical databases from cyber-attacks and hence ensuring patient privacy is a growing
concern. Anonymized personal medical data is for sale legally but even so it is sometimes possible to identify



individual patients. In a valuable exercise highlighting the vulnerability of supposedly secure data, Harvard
Data Privacy Lab scientists Latanya Sweeney and Ji Su Yoo, using legally available encrypted (i.e. scrambled so
that they cannot easily be read; see Chapter 7) medical data originating in South Korea, were able to decrypt
unique identifiers within the records, and identify individual patients through cross-checking with public
records.

Medical records are extremely valuable to cyber-criminals. In 2015, the health insurer Anthem declared that
its databases had been hacked with over seventy million people affected. Data critical to individual
identification, such as name, address, and social security number, was breached by Deep Panda, a Chinese
hacking group, using a stolen password to access the system and instal Trojan-horse malware. Critically, the
social security numbers, a unique identifier in the USA, were not encrypted, leaving wide open the possibility
of identity theft. Many security breaches start with human error: people are busy and do not noticed subtle
changes in a Uniform Resource Locator (URL); devices such as flash drives are lost, stolen, and even on
occasion deliberately planted, with malware instantly installed once an unsuspecting employee plugs the
device into a USB port. Both discontented employees and genuine employee mistakes also account for
countless data leaks.

New big data incentives in the management of healthcare are being launched at an increasing rate by world-
renowned institutions such as the Mayo Clinic and Johns Hopkins Medical in the USA, the UK’s National
Health Service (NHS), and Clermont-Ferrand University Hospital in France. Cloud-based systems give
authorized users access to data anywhere in the world. To take just one example, the NHS plans to make
patient records available via smartphone by 2018. These developments will inevitably generate more attacks
on the data they employ, and considerable effort will need to be expended in the development of effective
security methods to ensure the safety of that data.



Chapter 6
Big data, big business

In the 1920s, J. Lyons and Co., a British catering firm famous for their ‘Corner House’ cafés, employed a young
Cambridge University mathematician, John Simmons, to do statistical work. In 1947, Raymond Thompson and
Oliver Standingford, both of whom had been recruited by Simmons, were sent on a fact-finding visit to the
USA. It was on this visit that they first became aware of electronic computers and their potential for executing
routine calculations. Simmons, impressed by their findings, sought to persuade Lyons to acquire a computer.

Collaboration with Maurice Wilkes, who was then engaged in building the Electronic Delay Storage Automatic
Computer (EDSAC) at the University of Cambridge, resulted in the Lyons Electronic Office. This computer ran
on punched cards and was first used by Lyons in 1951 for basic accounting tasks, such as adding up columns
of figures. By 1954, Lyons had formed its own computer business and was building the LEO II, followed by the
LEO III. Although the first office computers were being installed as early as the 1950s, given their use of
valves (6,000 in the case of the LEO I) and magnetic tape, and their very small amount of RAM, these early
machines were unreliable and their applications were limited. The original Lyons Electronic Office became
widely referred to as the first business computer, paving the way for modern e-commerce and, after several
mergers, finally became part of the newly formed International Computers Limited (ICL) in 1968.

e-Commerce

The LEO machines and the massive mainframe computers that followed were suitable only for the number-
crunching tasks involved in such tasks as accounting and auditing. Workers who had traditionally spent their
days tallying columns of figures now spent their time producing punched cards instead, a task no less tedious
while requiring the same high degree of accuracy.

Since the use of computers became feasible for commercial enterprises, there has been interest in how they
can be used to improve efficiency, cut costs, and generate profits. The development of the transistor and its
use in commercially available computers resulted in ever-smaller machines, and in the early 1970s the first
personal computers were being introduced. However, it was not until 1981, when International Business
Machines (IBM) launched the IBM-PC on the market, with the use of floppy disks for data storage, that the
idea really took off for business. The word-processing and spreadsheet capabilities of succeeding generations
of PCs were largely responsible for relieving much of the drudgery of routine office work.

The technology that facilitated electronic data storage on floppy disks soon led to the idea that in future,
businesses could be run effectively without the use of paper. In 1975 an article in the American magazine
BusinessWeek speculated that the almost paper-free office would be a reality by 1990. The suggestion was that
by eliminating or significantly reducing the use of paper, an office would become more efficient and costs
would be reduced. Paper use in offices declined for a while in the 1980s when much of the paperwork that
used to be found in filing cabinets was transferred to computers, but it then rose to an all-time high in 2007,
with photocopies accounting for the majority of the increase. Since 2007, paper use has been gradually
declining, thanks largely to the increased use of mobile smart devices and facilities such as the electronic
signature.

Although the optimistic aspiration of the early digital age to make an office paperless has yet to be fulfilled,
the office environment has been revolutionized by email, word-processing, and electronic spreadsheets. But it
was the widespread adoption of the Internet that made e-commerce a practical proposition.

Online shopping is perhaps the most familiar example. As customers, we enjoy the convenience of shopping at
home and avoiding time-consuming queues. The disadvantages to the customer are few but, depending on the
type of transaction, the lack of contact with a store employee may inhibit the use of online purchasing.
Increasingly, these problems are being overcome by online customer advice facilities such as ‘instant chat’,
online reviews, and star rankings, a huge choice of goods and services together with generous return policies.
As well as buying and paying for goods, we can now pay our bills, do our banking, buy airline tickets, and
access a host of other services all online.

eBay works rather differently and is worth mentioning because of the huge amounts of data it generates. With



transactions being made through sales and auction bids, eBay generates approximately 50 Tb of data a day,
collected from every search, sale, and bid made on their website by a claimed 160 million active users in 190
countries. Using this data and the appropriate analytics they have now implemented recommender systems
similar to those of Netflix, discussed later in this chapter.

Social networking sites provide businesses with instant feedback on everything from hotels and vacations to
clothes, computers, and yoghurt. By using this information, businesses can see what works, how well it works,
and what gives rise to complaints, while fixing problems before they get out of control. Even more valuable is
the ability to predict what customers want to buy based on previous sales or website activity. Social
networking sites such as Facebook and Twitter collect massive amounts of unstructured data that businesses
can benefit from commercially given the appropriate analytics. Travel websites, such as TripAdvisor, also share
information with third parties.

Pay-per-click advertising

Professionals are now increasingly acknowledging that appropriate use of big data can provide useful
information and generate new customers through improved merchandising and use of better targeted
advertising. Whenever we use the Web we are almost inevitably aware of online advertising and we may even
post free advertisements ourselves on various bidding sites such as eBay.

One of the most popular kinds of advertising follows the pay-per-click model, which is a system by which
relevant advertisements pop up when you are doing an online search. If a business wants their advertisement
to be displayed in connection with a particular search term, they place a bid with the service provider on a
keyword associated with that search term. They also declare a daily maximum budget. The adverts are
displayed in order according to a system based in part on which advertiser has bid the highest for that term.

If you click on their advertisement, the advertiser then must pay the service provider what they bid.
Businesses only pay when an interested party clicks on their advertisement, so these adverts must be a good
match for the search term to make it more likely that a Web surfer will click on them. Sophisticated algorithms
ensure that for the service provider, for example Google or Yahoo, revenue is maximized. The best known
implementation of pay-per-click advertising is Google’s Adwords. When we search on Google the
advertisements that automatically appear on the side of the screen are generated by Adwords. The downside is
that clicks can be expensive, and there is also a limit on the number of characters you are allowed to use so
that your advertisement will not take up too much space.

Click fraud is also a problem. For example, a rival company may click on your advertisement repeatedly in
order to use up your daily budget. Or a malicious computer program, called a clickbot, may be used to
generate clicks. The victim of this kind of fraud is the advertiser, since the service provider gets paid and no
customers are involved. However, since it is in the best interests of providers to ensure security and so protect
a lucrative business, considerable research effort is being made to counteract fraud. Probably the simplest
method is to keep track of how many clicks are needed on average to generate a purchase. If this suddenly
increases or if there are a large number of clicks and virtually no purchases then fraudulent clicking seems
likely.

In contrast to pay-per-click arrangements, targeted advertising is based explicitly on each person’s online
activity record. To see how this works, we’ll start by looking more closely at cookies, which I mentioned briefly
in Chapter 1.

Cookies

This term first appeared in 1979 when the operating system UNIX ran a program called Fortune Cookie, which
delivered random quotes to the users generated from a large database. Cookies come in several forms, all of
which originate externally and are used to keep a record of some activity on a website and/or computer. When
you visit a website, a message consisting of a small file that is stored on your computer is sent by a Web server
to your browser. This message is one example of a cookie, but there are many other kinds, such as those used
for user-authentication purposes and those used for third-party tracking.

Targeted advertising

Every click you make on the Internet is being collected and used for targeted advertising.

This user data is sent to third-party advertising networks and stored on your computer as a cookie. When you
click on other sites supported by this network, advertisements for products you looked at previously will be
displayed on your screen. Using Lightbeam, a free add-on to Mozilla Firefox, you can keep track of which
companies are collecting your Internet activity data.

Recommender systems



Recommender systems provide a filtering mechanism by which information is provided to users based on their
interests. Other types of recommender systems, not based on the users’ interests, show what other customers
are looking at in real-time and often these will appear as ‘trending’. Netflix, Amazon, and Facebook are
examples of businesses that use these systems.

A popular method for deciding what products to recommend to a customer is collaborative filtering. Generally
speaking, the algorithm uses data collected on individual customers from their previous purchases and
searches, and compares this to a large database of what other customers liked and disliked in order to make
suitable recommendations for further purchasing. However, a simple comparison does not generally produce
good results. Consider the following example.

Suppose an online bookstore sells a cookery book to a customer. It would be easy to subsequently recommend
all cookery books, but this is unlikely to be successful in securing further purchases. There are far too many of
them, and the customer already knows he or she likes cookery books. What is needed is a way of reducing the
number of books to those that the customer might actually buy. Let’s look at three customers, Smith, Jones,
and Brown, together with their book purchases (Figure 19).

Daily Salads | Pasta Today | Desserts Tomorrow | Wine For Al
Smith bought bought
Jones bought . . bought
Brown bought bought bought

19. Books bought by Smith, Jones, and Brown.

The question for the recommender system is which book should be recommended to Smith and which
recommended to Jones. We want to know if Smith is more likely to buy Pasta Today or Wine for All.

To do this we need to use a statistic that is often used for comparing sets and is called the Jaccard index. This
is defined as the number of items the two sets have in common divided by the total number of distinct items in
the two sets. The index measures the similarity between the two sets as the proportion they have in common.
The Jaccard distance, defined as one minus the Jaccard index, measures the dissimilarity between them.

Looking again at Figure 19, we see that Smith and Jones have one book purchase in common, Daily Salads.
Between them they have purchased three distinct books, Daily Salads, Desserts Tomorrow, and Wine for All.
This gives them a Jaccard index of 1/3 and a Jaccard distance of 2/3. Figure 20 shows the calculation for all the
possible pairs of customers.

Mumber of titles | Total number of | Jaccard | Jaccard
in common distinct titles index distance
purchased
Smith and Jones 1 3 1/3 2/3
Smith and Brown 1 4 1/4 34
Jones and Brown 1 4 1/4 34

20. Jaccard index and distance.

Smith and Jones have a higher Jaccard index, or similarity score, than Smith and Brown. This means that
Smith and Jones are closer in their purchasing habits—so we recommend Wine for All to Smith. What should
we recommend to Jones? Smith and Jones have a higher Jaccard index than Jones and Brown, so we
recommend Desserts Tomorrow to Jones.

Now suppose that customers rate purchases on a five-star system. To make use of this information we need to
find other customers who gave the same rating to particular books and see what else they bought as well as
considering their purchasing history. The star ratings for each purchase are given in Figure 21.



Daily Salads | Pasta Today | Desserts Tomorrow | Wine For All

Smith 5 3
Jones 2 5
Brown 1 4 3

21. Star ratings for purchases.

In this example a different calculation, called the cosine similarity measure, which takes the star ratings into
account, is described. For this calculation, the information given in the Star Ratings table is represented as
vectors. The length or magnitude of the vectors is normalized to 1 and plays no further part in the calculations.
The direction of the vectors is used as a way of finding how similar the two vectors are and so who has the best
star rating. Based on the theory of vector spaces, a value for the cosine similarity between the two vectors is
found. The calculation is rather different to the familiar trigonometry method, but the basic properties still
hold with cosines taking values between 0 and 1. For example, if we find that the cosine similarity between two
vectors, each representing a person’s star ratings, is 1 then the angle between them is 0 since cosine (0) = 1,
and so they must coincide and we can conclude that they have identical tastes. The higher the value of the
cosine similarity the greater the similarity in taste.

If you want to see the mathematical details, there are references in the Further reading section at the end of
this VSI. What is interesting from our perspective is that the cosine similarity between Smith and Jones works
out to be 0.350, and between Smith and Brown it is 0.404. This is a reversal of the previous result, indicating
that Smith and Brown have tastes closer than those of Smith and Jones. Informally, this can be interpreted as
Smith and Brown being closer in their opinion of Desserts Tomorrow than Smith and Jones were in their
opinion of Daily Salads.

Netflix and Amazon, which we will look at in the next section, both use collaborative filtering algorithms.

Amazon

In 1994, Jeff Bezos founded Cadabra, but soon changed the name to Amazon and in 1995 Amazon.com was
launched. Originally an online book store, it is now an international e-commerce company with over 304
million customers worldwide. It produces and sells a diverse range from electronic devices to books and even
fresh food items such as yoghurt, milk, and eggs through Amazon Fresh. It is also a leading big data company,
with Amazon Web Services providing Cloud-based big data solutions for business, using developments based
on Hadoop.

Amazon collected data on what books were bought, what books a customer looked at but did not buy, how long
they spent searching, how long they spent looking at a particular book, and whether or not the books they
saved were translated into purchases. From this they could determine how much a customer spent on books
monthly or annually, and determine whether they were regular customers. In the early days, the data Amazon
collected was analysed using standard statistical techniques. Samples were taken of a person and, based on
the similarities found, Amazon would offer customers more of the same. Taking this a step further, in 2001
researchers at Amazon applied for and were granted a patent on a technique called item-to-item collaborative
filtering. This method finds similar items, not similar customers.

Amazon collects vast amounts of data including addresses, payment information, and details of everything an
individual has ever looked at or bought from them. Amazon uses its data in order to encourage the customer to
spend more money with them by trying to do as much of the customer’s market research as possible. In the
case of books, for example, Amazon needs to provide not only a huge selection but to focus recommendations
on the individual customer. If you subscribe to Amazon Prime, they also track your movie watching and
reading habits. Many customers use smartphones with GPS capability, allowing Amazon to collect data
showing time and location. This substantial amount of data is used to construct customer profiles allowing
similar individuals and their recommendations to be matched.

Since 2013, Amazon has been selling customer metadata to advertisers in order to promote their Web services
operation, resulting in huge growth. For Amazon Web Services, their Cloud computing platform, security is
paramount and multi-faceted. Passwords, key-pairs, and digital signatures are just a few of the security
techniques in place to ensure that clients’ accounts are available only to those with the correct authorization.

Amazon’s own data is similarly multi-protected and encrypted, using the AES (Advanced Encryption Standard)
algorithm, for storage in dedicated data centres around the world, and Secure Socket Layer (SSL), the
industry standard, is used for establishing a secure connection between two machines, such as a link between
your home computer and Amazon.com.

Amazon is pioneering anticipatory shipping based on big data analytics. The idea is to use big data to



anticipate what a customer will order. Initially the idea is to ship a product to a delivery hub before an order
actually materializes. As a simple extension, a product can be shipped with a delighted customer receiving a
free surprise package. Given Amazon’s returns policy, this is not a bad idea. It is anticipated that most
customers will keep the items they do order since they are based on their personal preferences, found by using
big data analytics. Amazon’s 2014 patent on anticipatory shipping also states that goodwill can be bought by
sending a promotional gift. Goodwill, increased sales through targeted marketing, and reduced delivery times
all make this what Amazon believes to be a worthwhile venture. Amazon also filed for a patent on autonomous
flying drone delivery, called Prime Air. In September 2016, the US Federal Aviation Administration relaxed the
rules for flying drones by commercial organizations, allowing them, in certain highly controlled situations, to
fly beyond the line of sight of the operator. This could be the first stepping stone in Amazon’s quest to deliver
packages within thirty minutes of an order being placed, perhaps leading to a drone delivery of milk after your
smart refrigerator sensor has indicated that you are running out.

Amazon Go, located in Seattle, is a convenience food store and is the first of its kind with no checkout
required. As of December 2016 it was only open to Amazon employees and plans for it to be available to the
general public in January 2017 have been postponed. At present, the only technical details available are from
the patent submitted two years ago, which describes a system eliminating the need to go through an item-by-
item checkout. Instead, the details of a customer’s actual cart are automatically added to their virtual cart as
they shop. Payment is made electronically as they leave the store through a transition area, as long as they
have an Amazon account and a smartphone with the Amazon Go app. The Go system is based on a series of
sensors, a great many of them, used to identify when an item is taken from or returned to a shelf.

This will generate a huge amount of commercially useful data for Amazon. Clearly, since every shopping action
made between entering and leaving the store is logged, Amazon will be able to use this data to make
recommendations for your next visit in a way similar to their online recommendation system. However, there
may well be issues about how much we value our privacy, especially given aspects such as the possibility
mentioned in the patent application of using facial recognition systems to identify customers.

Netflix

Another Silicon Valley company, Netflix, started in 1997 as a postal DVD rental company. You took out a DVD
and added another to your queue, and they would then be sent out in turn. Rather usefully, you had the ability
to prioritize your queue. This service is still available and still lucrative, though it appears to be gradually
winding down. Now an international, Internet streaming, media provider with approximately seventy-five
million subscribers across 190 different countries, in 2015 Netflix successfully expanded into providing its own
original programmes.

Netflix collects and uses huge amounts of data to improve customer service, such as offering recommendations
to individual customers while endeavouring to provide reliable streaming of its movies. Recommendation is at
the heart of the Netflix business model and most of its business is driven by the data-based recommendations
it is able to offer customers. Netflix now tracks what you watch, what you browse, what you search for, and the
day and time you do all these things. It also records whether you are using an iPad, TV, or something else.

In 2006, Netflix announced a crowdsourcing competition aimed at improving their recommender systems.
They were offering a $1 million prize for a collaborative filtering algorithm that would improve by 10 per cent
the prediction accuracy of user movie ratings. Netflix provided the training data, over 100 million items, for
this machine learning and data mining competition—and no other sources could be used. Netflix offered an
interim prize (the Progress Prize) worth $50,000, which was won by the Korbell team in 2007 for solving a
related but somewhat easier problem. Easier is a relative term here, since their solution combined 107
different algorithms to come up with two final algorithms, which, with ongoing development, are still being
used by Netflix. These algorithms were gauged to cope with 100 million ratings as opposed to the five billion
that the full prize algorithm would have had to be able to manage. The full prize was eventually awarded in
2009 to the BellKor’s Pragmatic Chaos team whose algorithm represented a 10.06 per cent improvement over
the existing one. Netflix never fully implemented the winning algorithm, primarily because by this time their
business model had changed to the now-familiar one of media streaming.

Once Netflix expanded their business model from a postal service to providing movies by streaming, they were
able to gather a lot more information on their customers’ preferences and viewing habits, which in turn
enabled them to provide improved recommendations. However, in a departure from the digital modality,
Netflix employs part-time taggers, a total of about forty people worldwide who watch movies and tag the
content, labelling them as, for example, ‘science fiction’ or ‘comedy’. This is how films get categorized—using
human judgement and not a computer algorithm initially; that comes later.

Netflix uses a wide range of recommender algorithms that together make up a recommender system. All these
algorithms act on the aggregated big data collected by the company. Content-based filtering, for example,
analyses the data reported by the ‘taggers’ and finds similar movies and TV programmes according to criteria
such as genre and actor. Collaborative filtering monitors such things as your viewing and search habits.
Recommendations are based on what viewers with similar profiles watched. This was less successful when a
user account has more than one user, typically several members of a family, with inevitably different tastes and
viewing habits. In order to overcome this problem, Netflix created the option of multiple profiles within each



account.

On-demand Internet TV is another area of growth for Netflix and the use of big data analytics will become
increasingly important as they continue to develop their activities. As well as collecting search data and star
ratings, Netflix can now keep records on how often users pause or fast forward, and whether or not they finish
watching each programme they start. They also monitor how, when, and where they watched the programme,
and a host of other variables too numerous to mention. Using big data analytics we are told that they are now
even able to predict quite accurately whether a customer will cancel their subscription.

Data science

‘Data scientist’ is the generic title given to those who work in the field of big data. The McKinsey Report of
2012 highlighted the lack of data scientists in the USA alone, estimating that by 2018 the shortage would
reach 190,000. The trend is apparent worldwide and even with government initiatives promoting data science
skills training, the gap between available and required expertise seems to be widening. Data science is
becoming a popular study option in universities but graduates so far have been unable to meet the demands of
commerce and industry, where positions in data science offer high salaries to experienced applicants. Big data
for commercial enterprises is concerned with profit, and disillusionment will set in quickly if an over-burdened
data analyst with insufficient experience fails to deliver the expected positive results. All too often, firms are
asking for a one-size-fits-all model of data scientist who is expected to be competent in everything from
statistical analysis to data storage and data security.

Data security is of crucial importance to any firm and big data creates its own security issues. In 2016, the
Netflix Prize 2 initiative was cancelled because of data security concerns. Other recent data hacks include
Adobe in 2013, eBay and JP Morgan Chase Bank in 2014, Anthem (a US health insurance company) and
Carphone Warehouse in 2015, MySpace in 2016, and LinkedIn—a 2012 hack not discovered until 2016. This is
a small sample; many more companies have been hacked or suffered other types of security breaches leading
to the unauthorized dissemination of sensitive data. In Chapter 7, we will look at some of the big data security
breaches in depth.



Chapter 7
Big data security and the Snowden case

In July 2009, Amazon Kindle readers found life imitating art when their copy of Orwell’s novel 1984 completely
disappeared from their devices. In 1984, the ‘memory hole’ is used to incinerate documents that are
considered subversive or no longer wanted. Documents permanently disappear and history is rewritten. It
could almost have been an unfortunate prank but 1984 and Orwell’s Animal Farm had actually been removed
as the result of a dispute between Amazon and the publisher. Customers were angry, having paid for the e-
book and assumed that it was therefore their property. A lawsuit filed by a highschool student and one other
person was settled out of court. In the settlement, Amazon stated that they would no longer erase books from
people’s Kindles, except in certain circumstances, including that ‘a judicial or regulatory order requires such
deletion or modification’. Amazon offered customers a refund, gift certificate, or to restore the deleted books.
In addition to being unable to sell or to lend our Kindle books, it seems we do not actually own them at all.

Although the Kindle incident was in response to a legal problem and was not intended maliciously, it serves to
illustrate how straightforward it is to delete e-documents, and without hard copies, how simple it would be to
completely eradicate any text viewed as undesirable or subversive. If you pick up the physical version of this
book tomorrow and read it you know with absolute certainty it will be the same as it was today but if you read
anything on the Web today, you cannot be certain that it will be the same when you read it tomorrow. There is
no absolute certainty on the Web. Since e-documents can be modified and updated without the author’s
knowledge, they can easily be manipulated. This situation could be extremely damaging in many different
situations, such as the possibility of someone tampering with electronic medical records. Even digital
signatures, designed to authenticate electronic documents, can be hacked. This highlights some of the
problems facing big data systems, such as ensuring they actually work as intended, can be fixed when they
break down, and are tamper-proof and accessible only to those with the correct authorization.

Securing a network and the data it holds are the key issues here. A basic measure taken to safeguard networks
against unauthorized access is to install a firewall, which isolates a network from unauthorized outside access
through the Internet. Even if a network is secure from direct attack, for example from viruses and trojans, the
data stored on it, particularly if it is unencrypted, can still be compromised. For instance, one such technique,
that of phishing, attempts to introduce malicious code, usually by sending an email with an executable file or
requesting personal or security data such as passwords. But the main problem facing big data is that of
hacking.

The retail store Target was hacked in 2013 leading to the theft of the details of an estimated 110 million
customer records, including credit card details of forty million people. It is reported that by the end of
November the intruders had successfully pushed their malware to most of Target’s point-of-sale machines and
were able to collect customer card records from real-time transactions. At that time, Target’s security system
was being monitored twenty-four hours a day by a team of specialists working in Bangalore. Suspicious activity
was flagged and the team contacted the primary security team located in Minneapolis, who unfortunately
failed to act on the information. The Home Depot hack, which we will look at next, was even bigger but used
similar techniques, leading to a massive data theft.

Home Depot hack

On 8 September 2014, Home Depot, which describes itself as the largest home improvement retailer in the
world, announced in a press release that its payment data systems had been hacked. In an update on 18
September 2014, Home Depot reported that the attack had affected approximately fifty-six million debit/credit
cards. In other words, fifty-six million debit/credit cards details were stolen. In addition, fifty-three million
email addresses were also stolen. In this case, the hackers were able to first steal a vendor’s log, giving them
easy access to the system—but only to the individual vendor’s part of the system. This was accomplished by a
successful phishing attempt.

The next step required the hackers to access the extended system. At that time, Home Depot was using
Microsoft XP operating system, which contained an inherent flaw that the hackers exploited. The self-checkout
system was then targeted since this sub-system was itself clearly identifiable within the entire system. Finally,
the hackers infected the 7,500 self-checkout terminals with malware to gain customer information. They used



BlackPOS, also known as Kaptoxa, a specific malware for scraping credit/debit card information from infected
terminals. For security, payment card information should be encrypted when the card is swiped at a point-of-
sales terminal but apparently this feature, point-to-point encryption, had not been implemented and so the
details were left open for the hackers to take.

The theft was uncovered when banks started to detect fraudulent activity on accounts that had made other
recent purchases at Home Depot—the card details had been sold through Rescator, a cybercrime outlet found
on the dark Web. It is interesting that people using cash registers, which also take cards, were not affected by
this attack. The reason for this appears to be that in the mainframe computer, cash registers were identified
only by numbering and so were not readily identifiable as checkout points by the criminals. If Home Depot had
also used simple numbering for its self-checkout terminals, this hacking attempt might have been foiled.
Having said that, at the time Kaptoxa was deemed state-of-the-art malware and was virtually undetectable, so
given the open access to the system the hackers had obtained, it almost certainly would eventually have been
introduced successfully.

The biggest data hack yet

In December 2016, Yahoo! announced that a data breach involving over one billion user accounts had occurred
in August 2013. Dubbed the biggest ever cyber theft of personal data, or at least the biggest ever divulged by
any company, thieves apparently used forged cookies, which allowed them access to accounts without the need
for passwords. This followed the disclosure of an attack on Yahoo! in 2014, when 500 million accounts were
compromised. Chillingly, Yahoo! alleged the 2014 hack was perpetrated by an unnamed ‘state-sponsored
actor’.

Cloud security

The list of big data security breaches increases almost daily. Data theft, data ransom, and data sabotage are
major concerns in a data-centric world. There have been many scares regarding the security and ownership of
personal digital data. Before the digital age we used to keep photos in albums and negatives were our backup.
After that, we stored our photos electronically on a hard-drive in our computer. This could possibly fail and we
were wise to have back-ups but at least the files were not publicly accessible. Many of us now store data in the
Cloud. Photos, videos, home movies all require a lot of storage space and so the Cloud makes sense from that
perspective. When you store your files in the Cloud, you are uploading them to a data centre—more likely, they
will be distributed across several centres—and more than one copy will be kept.

If you store all your photos in the Cloud, it’s highly unlikely with today’s sophisticated systems that you would
lose them. On the other hand, if you want to delete something, maybe a photo or video, it becomes difficult to
ensure all copies have been deleted. Essentially you have to rely on your provider to do this. Another important
issue is controlling who has access to the photos and other data you have uploaded to the Cloud. If we want to
make big data secure, encryption is vital.

Encryption

Encryption, as mentioned briefly in Chapter 5, refers to methods used to scramble files so that they cannot
easily be read, and the basic technique goes back at least as far as Roman times. Suetonius, in his The Twelve
Caesars, describes how Julius Caesar encoded documents using a three-letter shift to the left. Using this
method the word ‘secret’ would be encoded as ‘pbzobq’. Known as a ‘Caesar cipher’ this is not difficult to
break, but even the most secure ciphers used today apply shifting as part of the algorithm.

In 1997, the best publicly available encryption method, Data Encryption Standard (DES), was shown to be
breakable, largely due to the increase in computing power available and the relatively short 56-bit key length.

Although this provides a possible 2°9 different key choices, it was possible to decrypt a message by testing
each one until the correct key was found. This was done in 1998, in just over twenty-two hours using Deep
Crack, a computer built by Electronic Frontier Foundation expressly for this purpose.

In 1997, the National Institute of Standards and Technology (NIST) in the USA, concerned that DES lacked the
security needed for protecting top secret documents, launched an open, worldwide competition to find a better
encryption method than DES. The competition ended in 2001 with the AES algorithm being chosen. It was
submitted as the Rijndael algorithm, combining the names of its two Belgian originators, Joan Daemen and
Vincent Rijmen.

AES is a software algorithm used for text encryption with a choice of a 128-, 192-, or 256-bit key length. For
the 128-bit key length, the algorithm requires nine processing rounds, each consisting of four steps, plus a
final round with only three steps. The AES encryption algorithm is iterative and performs a large number of
computations on matrices—just the kind of calculations that are best performed by computers. However, we
can describe the process informally without reference to the mathematical transformations.

AES starts by applying a key to the text we want to encrypt. We would no longer be able to recognize the text



but given the key, we could easily decode it so more steps are needed. The next step involves substituting each
letter with another letter, using a special look-up table, called a Rijndael S-Box. Again, if we have the Rijndael
S-Box, we can work backwards to decrypt the message. A Caesar Cipher, where letters are shifted to the left,
and a final permutation completes one round. The result is then used to start another round, using a different
key and so on, until all rounds have been completed. Of course, we have to be able to decrypt, and for this
algorithm the method is reversible.

For the 192-bit key length there are twelve rounds in total. For even greater security, a longer key length, AES
256, can be employed, but most users, including Google and Amazon, find AES 128 sufficient for their big data
security needs. AES is secure and has yet to be broken, leading to several governments to ask major
companies such as Apple and Google to provide back doors into the encrypted material.

Email security

It has been estimated that in 2015 over 200 billion emails were sent every day, with less than 10 per cent of
these being authentic and not spam or with malicious intent. Most emails are not encrypted, making their
contents vulnerable to interception by hackers. When I send an unencrypted email, let’s say from California to
the UK for example, it is divided into data ‘packets’ and transmitted through a mail server, which is connected
to the Internet. The Internet is essentially made up of a big worldwide network of wires, above ground, below
ground, and below oceans, plus cell phone towers and satellites. The only continent unconnected by
transoceanic cables is Antarctica.

So although the Internet and Cloud-based computing are generally thought of as wireless, they are anything
but; data is transmitted through fibre-optic cables laid under the oceans. Nearly all digital communication
between continents is transmitted in this way. My email will be sent via transatlantic fibre-optic cables, even if
I am using a Cloud computing service. The Cloud, an attractive buzz word, conjures up images of satellites
sending data across the world, but in reality Cloud services are firmly rooted in a distributed network of data
centres providing Internet access, largely through cables.

Fibre-optic cables provide the fastest means of data transmission and so are generally preferable to satellites.
The current extensive research into fibre-optic technology is resulting in ever faster data transmission rates.
Transatlantic cables have been the target of some curious and unexpected attacks, including those from sharks
intent on biting through the cables. While, according to the International Cable Protection Committee, shark
attacks account for fewer than 1 per cent of the faults logged, even so, cables in vulnerable areas are now
often protected using Kevlar. Assuming there are no problems with transatlantic cables due to inquisitive
sharks, hostile governments, or careless fishermen, and my email makes landfall in the UK and continues on
its way, it may be at this point that, as with other Internet data, it is intercepted. In June 2013, Edward
Snowden leaked documents revealing that the Government Communications Headquarters (GCHQ) in the UK
were tapping into a vast amount of data, received through approximately 200 transatlantic cables, using a
system called Tempora.

The Snowden case

Edward Snowden is an American computer professional who was charged with espionage in 2013 after leaking
classified information from the US National Security Agency (NSA). This high-profile case brought government
mass surveillance capabilities to the attention of the general public, and widespread concerns were expressed
regarding individual privacy. Awards made to Snowden since taking this action have been many and include
election as rector of the University of Glasgow, the Guardian’s Person of the Year 2013, and Nobel Peace Prize
nominations in 2014, 2015, and 2016. He has the support of Amnesty International as a whistleblower who
provided a service to his country. However, US government officials and politicians have begged to differ in
this view.

In June 2013, the Guardian newspaper in the UK reported that the NSA was collecting metadata from some of
the major US phone networks. This report was swiftly followed by the revelation that a program called PRISM
was being used to collect and store Internet data on foreign nationals communicating with the US. A whole
slew of electronic leaks followed, incriminating both the US and the UK. A Booz Allen Hamilton employee and
NSA contractor working at the Hawaii Cryptologic Center, Edward Snowden, was the source of these leaks,
which he sent to members of the media he felt could be trusted not to publish without careful consideration.
Snowden’s motivations, and the legal issues involved, are beyond the scope of this book but it is apparent that
he believed that what had started out as legitimate spying on other countries had now turned in on itself and
the NSA was now spying, illegally, on all US citizens.

The free Web scraping tools, DownThemAll, an available extension of Mozilla Firefox, and the program wget,
give the means to quickly download the entire contents of a website or other Web-related data. These
applications, available to authorized users on NSA classified networks, were used by Snowden to download
and copy massive amounts of information. He also transferred large amounts of highly sensitive data from one
computer system to another. In order to do this, he needed usernames and passwords, which a systems
administrator would routinely have. He thus had easy access to many of the classified documents he stole, but
not all. To get access to higher than top-secret documents, he had to use the authentication details of higher
level user accounts, which security protocols should have prevented. However, since he had created these



accounts and had system administrator privileges, he knew the account details. Snowden also managed to
persuade at least one NSA employee with security clearance higher than his to tell him their password.

Ultimately, Snowden copied an estimated 1.5 million highly classified documents, of which about 200,000
(Snowden understood that not all of his stolen documents should be made public and was cautious about
which should be published) were handed over to trusted reporters, although relatively few of even these were
eventually published.

While the details have never been fully revealed by Snowden, it seems he was able to copy the data onto flash
drives, which he apparently had no difficulty in taking with him when he left work for the day. Security
measures to prevent Snowden from being able to remove these documents were clearly inadequate. Even a
simple body scan on exiting the facility would have detected any portable devices, and video surveillance in
the offices could also have flagged suspicious activity. In December 2016, the US House of Representatives
declassified a document dated September 2016, which remains heavily redacted, reviewing Snowden the man
as well as the nature and impact of the leaked documents. From this document it is clear that the NSA had not
applied sufficient security measures and as a result the Secure the Net initiative has since been put into
operation, although it is yet to be fully implemented.

Snowden had extensive system administrator privileges, but given the extremely sensitive nature of the data,
allowing one person to have full access with no safeguards was not acceptable. For example, requiring
validation credentials of two people when data was accessed or transferred might have been sufficient to
prevent Snowden from illicitly copying files. It is also curious that Snowden could apparently plug in a USB
drive and copy anything he wanted. A very simple security measure is to disable DVD and USB ports or not
have them installed in the first place. Add further authentication using retina scan to the requirement for a
password and it would have been very difficult for Snowden even to access those higher level documents.
Modern security techniques are sophisticated and difficult to penetrate if used correctly.

In late 2016, entering ‘Edward Snowden’ in Google search gave over twenty-seven million results in just over
one second; and the search term ‘Snowden’ gave forty-five million results. Since many of these sites give
access to or even display the leaked documents labelled “Top Secret’, they are now firmly in the global public
domain and will no doubt remain so. Edward Snowden is currently living in Russia.

In contrast with Edward Snowden’s case, WikilL.eaks presents a very different story.

WikilL.eaks

WikiLeaks is a huge online whistleblowing organization whose aim is to disseminate secret documents. It is
funded by donations and staffed largely by volunteers, though it does appear to employ a few people too. As of
December 2015, Wikil.eaks claims to have published (or leaked) more than ten million documents. WikiL.eaks
maintains its highly public profile through its own website, Twitter, and Facebook.

Highly controversial, WikilL.eaks and its leader Julian Assange hit the headlines on 22 October 2010 when a
vast amount of classified data—391,832 documents—dubbed ‘Iraq War Logs’ was made public. This followed
the approximately 75,000 documents constituting ‘The Afghan War Diary’ that had already been leaked on 25
July 2010.

An American army soldier, Bradley Manning, was responsible for both leaks. Working as an intelligence analyst
in Iraq, he took a compact disc to work with him and copied secret documents from a supposedly secure
personal computer. For this, Bradley Manning, now known as Chelsea Manning, was sentenced in 2013 to
thirty-five years in prison following conviction, by court-martial, for violations of the Espionage Act and other
related offences. Former US president Barack Obama commuted Chelsea Manning’s sentence in January 2017,
prior to his leaving office. Ms Manning, who received treatment for gender dysphoria while in prison, was
released on 17 May 2017.

Heavily criticized by politicians and governments, WikilL.eaks has nonetheless been applauded by and received
awards from the likes of Amnesty International (2009) and the UK’s The Economist (2008), among a long list of
others. According to their website, Julian Assange has been nominated for the Nobel Peace Prize in six
consecutive years, 2010-15. The Nobel Committee does not release the names of nominees until fifty years
have passed but nominators, who have to meet the strict criteria of the Peace Prize committee, often do
publicly announce the names of their nominees. For example, in 2011, Julian Assange was nominated by
Snorre Valen, a Norwegian parliamentarian, in support of WikiLeaks exposing alleged human rights violations.
In 2015, Assange had the support of former UK member of parliament George Galloway, and in early 2016 a
supportive group of academics also called for Assange to be awarded the prize.

Yet by the end of 2016, the tide was turning against Assange and WikiLeaks, at least in part because of alleged
bias in their reporting. Against WikiL.eaks are ethical concerns regarding the safety and privacy of individuals;
corporate privacy; government secrecy; the protection of local sources in areas of conflict; and the public
interest in general. The waters are becoming increasingly muddied for Julian Assange and WikilL.eaks. For
example, in 2016, emails were leaked at a time best suited to damage Hillary Clinton’s presidential candidacy,
raising questions about WikiLeaks’ objectivity, and prompting considerable criticism from a number of well-



respected sources.

Regardless of whether you support or condemn the activities of Julian Assange and WikilLeaks, and almost
inevitably people will do both, varying with the issue at stake, one of the big technical questions is whether it
is possible to shut down WikilLeaks. Since it maintains its data on many servers across the world, some of it in
sympathetic countries, it is unlikely that it could be completely shut down, even assuming that this was
desirable. However, for increased protection against retaliation following each disclosure, WikiL.eaks has
issued an insurance file. The unspoken suggestion is that if anything happens to Assange or if WikiLeaks is
shut down, the insurance file key will be publicly broadcast. The most recent WikiLeaks insurance file uses
AES with a 256-bit key and so it is highly unlikely to be broken.

As of 2016, Edward Snowden is at odds with Wikil.eaks. The disagreement comes down to how each of them
managed their data leaks. Snowden handed his files over to trusted journalists, who carefully chose which
documents to leak. US government officials were informed in advance, and, following their advice, further
documents were withheld because of national security concerns. To this day, many have never been disclosed.
WikilL.eaks appears simply to publish its data with little effort to protect personal information. It still seeks to
gather information from whistleblowers, but it is not clear how reliable recent data leaks have been, or indeed
whether its selection of the information it presents allows it to be completely disinterested. On its website,
WikiLeaks gives instruction for how to use a facility called TOR (The Onion Router) to send data anonymously
and ensure privacy, but you do not have to be a whistleblower to use TOR.

TOR and the dark Web

Janet Vertesi, an assistant professor in the Sociology Department at Princeton University, decided to conduct a
personal experiment to see if she could keep her pregnancy a secret from online marketers and so prevent her
personal information becoming part of the big data pool. In an article published in TIME magazine in May
2014, Dr Vertesi gives an account of her experience. She took exceptional privacy measures, including
avoiding social media; she downloaded TOR and used it to order many baby-related items; and in-store
purchases were paid for in cash. Everything she did was perfectly legal but ultimately she concluded that
opting out was costly and time-consuming and made her look, in her own words, like a ‘bad citizen’. However,
TOR is worth looking at, not least because it made Dr Vertesi feel safe and maintained her privacy from
trackers.

TOR is an encrypted network of servers that was originally developed by the US Navy to provide a way of
using the Internet anonymously, and so prevent tracking and the collection of personal data. TOR is an ongoing
project, aimed at developing and improving open-source online anonymity environments that anyone
concerned about privacy can use. TOR works by encrypting your data, including the sending address, and then
anonymizes it by removing part of the header, crucially including the IP address, since an individual can easily
be found by back-tracking given that information. The resulting data package is routed through a system of
servers or relays, hosted by volunteers, before arriving at its final destination.

On the positive side, users include the military who originally designed it; investigative journalists wishing to
protect their sources and information; and everyday citizens wishing to protect their privacy. Businesses use
TOR to keep secrets from other businesses; and governments use it to protect sources of sensitive information
as well as the information itself. A TOR Project press release gives a list of some of the news items involving
TOR between 1999 and 2016.

On the negative side, the TOR anonymity network has been widely used by cyber criminals. Websites are
accessible through TOR-hidden services and have the suffix ‘.onion’. Many of these are extremely unpleasant,
including illegal dark websites used for drug dealing, pornography, and money laundering. For example, the
highly publicized website Silk Road, part of the dark Web and a supplier of illegal drugs, was accessed through
TOR, making it difficult for law enforcement to track it. A major court case followed the arrest of Ross William
Ulbricht, who was subsequently convicted of creating and running Silk Road, using the pseudonym Dread
Pirate Roberts. The website was closed down but later sprang back up again, and in 2016 was in its third
reincarnation under the name Silk Road 3.0.

Deep Web

The deep Web refers to all those websites that cannot be indexed by the usual search engines, such as Google,
Bing, and Yahoo! It comprises legitimate sites as well as those that make up the dark Web. It is popularly
estimated to be vastly bigger than the familiar surface Web, though even with special deep Web search
engines it is difficult to estimate the size of this hidden world of big data.



Chapter 8
Big data and society

Robots and jobs

The eminent economist, John Maynard Keynes, writing during the British economic depression in 1930,
speculated on what working life would be like a century later. The industrial revolution had created new city-
based jobs in factories and transformed what had been a largely agrarian society. It was thought that labour-
intensive work would eventually be performed by machines, leading to unemployment for some and a much-
reduced working week for others. Keynes was particularly concerned with how people would use their
increased leisure time, freed from the exigencies of gainful employment by technological advances. Perhaps
more pressing was the question of financial support leading to the suggestion that a universal basic income
would provide a way of coping with the decline in available jobs.

Gradually over the 20th century we have seen jobs in industry eroded by ever-more sophisticated machines,
and although, for example, many production lines were automated decades ago, the Keynesian fifteen-hour
working week has yet to materialize and seems unlikely to do so in the near future. The digital revolution will
inevitably change employment, just as the industrial revolution did, but in ways we are unlikely to be able to
predict accurately. As the technology of the ‘Internet of Things’ advances, our world continues to become more
data-driven. Using the results of real-time big data analysis to inform decisions and actions will play an
increasingly important role in our society.

There are suggestions that people will be needed to build and code machines, but this is speculative and, in
any case, is just one area of specialized work where we can realistically expect to see robots increasingly
taking the place of people. For example, sophisticated robotic medical diagnosis would reduce the medical
workforce. Robotic surgeons, with extended Watson-like capabilities, are likely. Natural language processing,
another big data area, will develop to the point where we cannot tell whether we are talking to a robotic
device or a doctor—at least, when we are not face-to-face.

However, predicting what jobs humans will be doing once robots have taken over many of the existing roles is
difficult. Creativity is supposedly the realm of humans, but computer scientists, working in collaboration at the
Universities of Cambridge and Aberystwyth, have developed Adam, a robot scientist. Adam has successfully
formulated and tested new hypotheses in the field of genomics, leading to new scientific discoveries. The
research has progressed with a team at the University of Manchester successfully developing Eve, a robot that
works on drug design for tropical diseases. Both these projects implemented artificial intelligence techniques.

The craft of the novelist appears to be uniquely human, relying on experience, emotion, and imagination, but
even this area of creativity is being challenged by robots. The Nikkei Hoshi Shinichi Literary Award accepts
novels written or co-written by non-human authors. In 2016, four novels written jointly by people and
computers passed the first stage of the competition, without the judges knowing the details regarding
authorship.

Although scientists and novelists may eventually work collaboratively with robots, for most of us the impact of
our big data driven environment will be more apparent in our daily activities, through smart devices.

Smart vehicles

On 7 December 2016, Amazon announced that it had made its first commercial drone delivery using GPS
(global positioning system) to find its way. The recipient, a man living in the countryside near Cambridge in the
UK, received a package weighing 4.7 pounds. Drone deliveries can currently be made to only two Amazon
Prime Air customers, both living within 5.2 square miles of the fulfilment centre near Cambridge. A video,
referenced in the Further reading section, shows the flight. This seems likely to signal the start of big data
collection for this program.

Amazon is not the first to make a successful commercial drone delivery. In November 2016, Flirtey Inc. started
a drone delivery pizza service in a small area from their home base in New Zealand and there have been
similar projects elsewhere. At present, it seems likely that drone delivery services will grow, particularly in



remote areas where it might be possible to manage safety issues. Of course, a cyber-attack or simply a
breakdown in the computer systems could create havoc: if, for example, a small delivery drone were to
malfunction, it could cause injury or death to humans or animals, as well as considerable damage to property.

This is what happened when the software controlling a car travelling along the road at 70 mph was taken over
remotely. In 2015, two security experts, Charlie Miller and Chris Valasek, working for Wired magazine,
demonstrated on a willing victim that Uconnect, a dashboard computer used to connect a vehicle to the
Internet, could be hacked remotely while the vehicle was in motion. The report makes alarming reading; the
two expert hackers were able to use a laptop Internet connection to control the steering, brakes, and
transmission along with other less critical functions such as the air-conditioning and radio of a Jeep Cherokee.
The Jeep was travelling at 70 mph on a busy public road when suddenly all response to the accelerator failed,
causing considerable alarm to the driver.

As a result of this test, the car manufacturer Chrysler issued a warning to the owners of 1.4 million vehicles
and sent out USB drives containing software updates to be installed through a port on the dashboard. The
attack was made because of a vulnerability in the smartphone network that was subsequently fixed, but the
story serves to illustrate the point that the potential for cyber-attacks on smart vehicles will need to be
addressed before the technology becomes fully public.

The advent of autonomous vehicles, from cars to planes, seems inevitable. Planes can already fly themselves,
including taking off and landing. Although it’s a step away to think of drones being in widespread use for
transporting human passengers, they are currently used in farming for intelligent crop spraying and also for
military purposes. Smart vehicles are still in the early stages of development for general use but smart devices
are already part of the modern home.

Smart homes

As mentioned in Chapter 3, the term ‘Internet of Things’ (IoT) is a convenient way of referring to the vast
numbers of electronic sensors connected to the Internet. For example, any electronic device that can be
installed in a home and managed remotely—through a user interface displayed on the resident’s television
screen, smartphone, or laptop—is a smart device and so part of the IoT. Voice-activated central control points
are installed in many homes that manage lighting, heating, garage doors, and many other household devices.
Wi-Fi (which stands for ‘wireless fidelity’, or the capacity to connect with a network, like the Internet, using
radio waves rather than wires) connectivity means that you can ask your smart speaker (by its name, which
you will have given it) for the local weather or national news reports.

These devices provide Cloud-based services, and are not without their drawbacks when it comes to privacy. As
long as the device is switched on, everything you say is recorded and stored in a remote server. In a recent
murder investigation, police in the United States asked Amazon to release data from an Echo device (which is
voice controlled and connects to the Alexa Voice Service to play music, provide information, news reports, etc.)
that they believed would assist them in their inquiries. Amazon was initially unwilling to do so, but the suspect
has recently given his permission for them to release the recordings, hoping that they will help prove his
innocence.

Further developments, based on Cloud computing, mean that electrical appliances such as washing machines,
refrigerators, and home-cleaning robots will be part of the smart home and managed remotely through
smartphones, laptops, or home speakers. Since all these systems are Internet controlled they are potentially at
risk from hackers, and so security is a big area of research.

Even children’s toys are not immune. Named ‘2014 Innovative Toy of the Year’ by the London Toy Industry
Association, a smart doll called ‘My Friend Cayla’ was subsequently hacked. Through an unsecured bluetooth
device hidden in the doll, a child can ask the doll questions and hear replies. The German Federal Network
Agency, responsible for monitoring Internet communications, has encouraged parents to destroy the doll,
which has now been banned, because of the threat to privacy that it presents. Hackers have been able to show
that it is fairly easy listen to a child and provide inappropriate answers, including words from the
manufacturer’s banned list.

Smart cities

Although the smart home is only just becoming a reality, the IoT together with multiple information and
communication technologies (ICTs) are now predicted to make smart cities a reality. Many countries, including
India, Ireland, the UK, South Korea, China, and Singapore, are already planning smart cities. The idea is that
of greater efficiency in a crowded world since cities are growing rapidly. The rural population is moving to the
city at an ever-increasing rate. In 2014, about 54 per cent lived in cities and by 2050 the United Nations
predicts that about 66 per cent of the world’s population will be city dwellers.

The technology of smart cities is propelled by the separate but accumulating ideas from early implementations
of the IoT and big data management techniques. For example, driverless cars, remote health monitoring, the
smart home, and tele-commuting would all be features of a smart city. Such a city would depend on the



management and analysis of the big data accumulated from the sum total of the city’s vast sensor array. Big
data and the IoT working together are the key to smart cities.

For the community as a whole, one of the benefits would be a smart energy system. This would regulate street
lighting, monitor traffic, and even track garbage. All this could be achieved by installing a huge array of radio-
frequency identification (RFID) tags and wireless sensors across the city. These tags, which consist of a
microchip and a tiny antenna, would send data from individual devices to a central location for analysis. For
example, the city governance would monitor traffic by installing RFID tags on vehicles and digital cameras on
streets. Improved personal safety would also be a consideration, for example, children could be discretely
tagged and monitored through their parents’ cell phones. These sensors would create a huge amount of data
which would need to be monitored and analysed in real-time, through a central data processing unit. It could
then be used for a variety of purposes including gauging traffic flow, identifying congestion, and
recommending alternative routes. Data security would clearly be of paramount importance in this context, as
any major breakdown in the system or hacking would quickly affect public confidence.

Songdo International Business District in South Korea, scheduled for completion in 2020, has been purpose
built as a smart city. One of the main features is that the entire city has fibre-optic broadband. This state-of-
the-art technology is used to ensure the desired features of a smart city can be accessed quickly. New smart
cities are also being designed to minimize negative environmental effects, making them the sustainable cities
of the future. While many smart cities have been planned and, like Songdo, are being purpose built, existing
cities will need to modernize their infrastructures gradually.

In May 2016, the United Nations Global Pulse, an initiative aimed at promoting big data research for global
benefit, unveiled its open ‘Big Ideas Competition 2016: Sustainable Cities’ for the ten member states of the
Association of Southeast Asian Nations (ASEAN) and the Republic of Korea. By the June deadline, over 250
proposals had been received and the winners in various categories were announced in August 2016. The
Grand Prize went to the Republic of Korea for their proposal to improve public transport by reducing waiting
times by utilizing crowd-sourcing information on queues.

Looking forward

In this Very Short Introduction, we have seen how the science of data has undergone a radical transformation
over the past few decades due to the technological advances brought about by the development of the Internet
and the digital universe. In this final chapter, we have glimpsed some of the ways our lives may be shaped by
big data in the future. While we can’t hope to cover in a short introduction all the areas in which big data is
making an impact, we have seen some of the diverse applications that already affect us.

The data generated by the world is only going to get bigger. Methods for dealing with all this data effectively
and meaningfully will undoubtedly continue to be the subject of intense research, particularly in the area of
real-time analysis. The big data revolution marks a sea-change in the way the world works, and as with all
technological developments, individuals, scientists, and governments together have a moral responsibility to
ensure its proper use. Big data is power. Its potential for good is enormous. How we prevent its abuse is up to
us.



Byte size chart

Term Meaning

Bit 1 binary digit: 0 or 1
Byte 8 bits

Kilobyte (Kb) 1,000 bytes

Megabyte (Mb)

1,000 kilobytes

Gigabyte (Gb)

1,000 megabytes

Terabyte (Tb)

1,000 gigabytes

Petabyte (Pb)

1,000 terabytes

Exabyte (Eb)

1,000 petabytes

Zettabyte (Zb)

1,000 exabytes

Yottabyte (Yb)

1,000 zettabytes




ASCII table for lower case letters

Decimal Binary Hex Letter

97 01100001 61 a

98 01100010 62 b 112 01110000 70 p
99 01100011 63 c 113 01110001 | q
100 01100100 64 d 114 01110010 T2 r
101 01100101 65 e 115 01110011 73 8
102 01100110 66 f 116 01110100 T4 t
103 01100111 67 g 17 01110101 75 u
104 01101000 68 h 118 01110110 76 v
105 01101001 69 i 149 01110111 ik W
106 01101010 6A i 120 01111000 78 X
107 01101011 5B k 121 01111001 79 ¥
108 01101100 6C 1 122 01111010 TA z
109 01101101 6D m 32 00010000 20 space
110 01101110 6E n

1 01101111 6F ]
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