AmeetV Joshi

Machine

Learning

and Artificial
ligence

2 Springer

Machine Learning and Artificial Intelligence

Ameet V Joshi

Machine Learning
and Artificial Intelligence

@ Springer

Ameet V Joshi
Microsoft (United States)
Redmond, WA, USA

ISBN 978-3-030-26621-9 ISBN 978-3-030-26622-6 (eBook)
https://doi.org/10.1007/978-3-030-26622-6

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-26622-6

To everyone who believes in human
intelligence to be mature enough to coexist
with machine intelligence and be benefitted
and entertained by it. . .

Foreword

I first got exposed to computing about 35 years back. It was the time when the
term “microcomputers” was being replaced by the term “personal computers (PC).”
Within a space of 5 years, there was this seismic shift that happened during which
computing as a superspecialized domain with a total of only a few thousand people
across the world working with these magical machines in cooled clean rooms
suddenly became readily accessible to hundreds of millions. It dawned on everyone
that computing was going to impact every aspect of business and eventually personal
lives too. With that came the scramble to learn computing—whether it be about the
basics of what a computer is or how to use applications like word processing or
spreadsheets or engineers in every part of the world swarming to learn computer
architectures and programming, algorithms, and data structures. If you were not
learning any of those to some level of competency, you were heavily disadvantaged
in your professions—tregardless of the profession.

Fast forward 15 years to about 1995. PCs had evolved and become powerful and
had taken over business computing with client-server architectures, and most people
in developed countries had PCs of their own at work and home. Then, the terms
Internet, web, Mosaic, Netscape, browser, webserver, HTML, and HTTP suddenly
swept the computing landscape. The seismic shift that happened then entirely
reframed how data and information became democratized at a scale several orders
of magnitude greater than anything that preceded in the history of humanity. The
Internet led to the creation of the smartphones which in turn exponentially increased
the scale and reach of the Internet. The computing architectures, especially around
data representation, storage, and distribution, went through a massive revolution.
With that came the scramble to learn “Internet”—whether it was people of all
ages learning the basics of what the Internet is, how to use a browser, and how to
communicate with people electronically to authoring content as web consumables
(emails, pages, sites, blogs, posts, tweets, etc.). Engineers swarmed to learn
Internet architectures, web and mobile application development, distributed data
architectures, etc. If you were not learning something along this spectrum, you were
not only heavily disadvantaged professionally, you were probably disadvantaged
socially.

vii

viii Foreword

Fast forward another 15 years. Advances in the Internet and mobile technologies
lead to explosive growth in creation and aggregation of data. The massive aggre-
gation of data and the virtually infinite computational capacity that goes with it
evolved to being physically distributed and yet logically unified. This became the
“Cloud.” Organizing and making sense of this scale of data were not only beyond
human capabilities, it was even beyond the capabilities of traditional algorithms.
Traditional algorithms couldn’t even scale to the “searching” through this sea of
data let alone make sense of it. Yet, the easy availability of such vast volumes of
data finally makes possible the long-held dream of computers transcending from
“processing information” to actually “creating intelligence” by making sense of
the data. Decades of research in ML and Al became re-energized and have made
progress in leaps and bounds with the easy access to massive quantities of data
and computation in the cloud. Thus, we are officially now in the age of “AlL” Just
as has happened in the PC and the Internet revolutions, there is now a realization
that Al is going to transform not just computing but society and humanity in
unprecedented ways. It is beginning to dawn on people that applicability of Al
and machine learning go far beyond mundane things like facial recognition in their
Facebook feeds. It is also beyond the flashy, sci-fi scenarios like self-driving cars and
digital assistants. Businesses of every kind—health care, manufacturing, hospitality,
financial, etc.—are in the process of massive transformation with data and Al at the
center of it. In all facets of life, digital information without intelligence will become
pointless. The next decade will be transformed by Al The Internet age is now set to
transition to the age of Al

However, the “swarm” towards understanding Al is just beginning. In that
context, I am thrilled that Dr. Ameet Joshi is coming out with this book on
Machine Learning and Artificial Intelligence. When a topic is of such broad human
interest and impact, one can never have enough sources of knowledge and learning.
Compared to the kind of learning content that was created in the PC era or the
Internet era, machine learning and Al related content is still sparse and somewhat
narrowly targeted. This is an area which is still mysterious even for the technically
savvy folks. While there is a need to address the full spectrum of audiences, there is
an urgent need to demystify the space for folks who are comfortable with the math
and science without necessarily being computer scientists or engineers. These are
folks who are willing and capable of getting a good handle on ML and Al They
are folks who understand data and math at fairly advanced levels; they possibly
understand traditional computing and algorithms—but they have been left off the
island populated by the “priests of data science.” They are eager to roll up their
sleeves, dive in, and understand what ML and Al from its foundations. ML and
Al learning is ripe for democratization. Dr. Joshi’s book hits the exact right sweet
spot on this. Most people who read this may not become data scientists—but all of
them will gain a perspective on how ML and Al work and will be able to take it to
whatever domain of work they will be involved in. They will be able to see every
application of Al be it a digital assistant they converse with or a spookily accurate
targeting of an advertisement or price fluctuations of airline ticket prices in a very
different light and with a much deeper understanding. The shroud of mystery around

Foreword ix

many things digital happening around us will seem more obvious and matter of fact.
More importantly, I fully expect people who read this book to use that learning to
look for applications in their future domains of work. For some set of readers, it may
even intrigue them enough to become practitioners of ML and Al as a profession.
There is definitely a huge demand for such professionals.

Dr. Joshi is a passionate practitioner himself. His passion shows through in this
book. He has worked on broad set of ML and AI problems, and that practical
experience has helped him identify and explain relatable scenarios and applications
in this book. This is one of those books which likely is more than a onetime read.
In all likelihood, the readers will want to revisit sections of the book to refresh their
understanding or dig deeper in an area when they see real-world applications of the
techniques described in this book. I think those are the best kinds of books to own.
Even as an industry veteran, I enjoyed reading the book and will keep a copy handy.

Happy reading.

General Manager Vij Rajarajan
Microsoft
Redmond, Washington, USA

Preface

One of the greatest physicists of all time and Nobel Laureate Dr. Richard Feynman
was once asked by his peer to explain a property of Fermi-Dirac statistics that was
very recently discovered then. Feynman, quickly said,

Not only I will explain it to you, but I will prepare a lecture on it for freshman level.

However, quite unusually, after few days, he came back and admitted,

I could not do it. I just could not reduce the explanation to freshman level. That means we
really don’t understand it.

It was quite a bold remark coming from even Dr. Feynman. However, apart from
the topic of Fermi-Dirac statistics itself, it alludes to a very deep thought about our
understanding of things in general. Freshman level here essentially meant something
that can be derived directly using the first principles in mathematics or physics. This
thought has always made me conscious to try and explain everything that I claim
to understand using first principles, try to explain everything conceptually and not
only using elaborate set of equations.

The area of artificial intelligence and machine learning has exploded over the
last decade. With the widespread popularity, the core concepts in the field have
been sometimes diluted and sometimes reinterpreted. With such exponential growth
in the area, the scope of the field has also grown in proportion. A newcomer in
the area can quickly find the topic daunting and confusing. One can always start
with searching the relevant topics on the web or just start with Wikipedia, but more
often than not, every single topic opens a rabbit hole with more and more new and
unknown concepts, and one can get lost very easily. Also, most of the concepts
in machine learning are deeply rooted in mathematics and statistics. Without solid
background in theoretical mathematics and statistics, the sophisticated derivations
of the theorems and lemmas can make one feel confused and disinterested in the
area.

I have made an attempt here to introduce most fundamental topics in machine
learning and their applications to build artificially intelligent solutions with an
intuitive and conceptual approach. There would be some mathematical guidance

xi

xii Preface

used from time to time, without which the concepts would not be sufficiently clear,
but I have tried to avoid complex derivations and proofs to make the content more
accessible to readers who are not from strong mathematical background. In the
process, as per Dr. Feynman, I also make sure I have understood them myself. As
far as general mathematical and statistical requirements go, [would say that typical
undergraduate level should suffice. Also, with proliferation and standardization of
the machine learning libraries in open-source domain, one does not need to go that
deep into mathematical understanding of the theory to be able to implement the
state-of-the-art machine learning models, leading to the state-of-the-art intelligent
solutions.

One of the main sources of confusion that arises when trying to solve a problem
in the given application is the choice of algorithm. Typically, each algorithm
presented here has originated from some specific problem, but the algorithm is
typically not restricted to solving only that problem. However, choosing the right
algorithm for the given problem is not trivial even for a doctoral fellow with strong
mathematical background. In order to separate these two areas, I have divided these
two areas into separate parts altogether. This will make the topics much easier to
access for the reader.

I would recommend the reader to start with Part [and then choose Part II or
Part 111, depending on the needs. It will be ideal for a student to go sequentially
through the book, while a newcomer to the area from professional background
would be better suited to start with Part I1I to understand or focus on the precise
application at hand and then delve into the details of the theory for the algorithms
as needed in Part II. Part IV and Part V should follow afterwards. I have added
sufficient references between the two parts to make this transition smooth.

In my mind, unless one can see the models in action on real data that one
can see and plot, the understanding is not complete. Hence, following the details
of algorithms and applications, I have added another part to cover the basic
implementation of the models using free and open-source options. Completion of
this part will enable the reader to tackle the real-world problems in Al with state-of-
the-art ML techniques!

Redmond, WA, USA Ameet Joshi
March 2019

Acknowledgments

I would like to use this opportunity to acknowledge the people who had deep impact
on the creation of this book. This, being the first ever book written by me, was
quite a challenging task. There were quite a few times when I had almost given up.
However, the continuous support and encouragement from my wife, Meghana, and
sons, Dhroov and Sushaan, really helped me continue with the efforts and ultimately
complete the book. I would also like to thank my father, Vijay, and brother, Mandar,
for their feedback and support.

I would like to thank Mary James of Springer publications for the encouragement
and support and understanding as I worked through the completion of the book.

The present book is an exercise in unification of the disparate areas in the field of
machine learning to produce artificially intelligent experiences, and hence, the book
essentially stands on the pillars of this knowledge that is created by the numerous
extraordinary scientists and brilliant mathematicians over several decades in the
past. So, I would like to thank them as well.

Last but not the least, I have used multiple quotes from some of the landmark
movies produced over the last 60—70 years that depicted various scenarios of Al
These movies, like 2001: A Space Odyssey, Star Wars, WarGames, Terminator 2:
Judgment Day, and The Matrix, have showcased the power and scope of what Al can
do and how it can change our lives. These cinematic interpretations express these
extremely complex and technical concepts to laymen in highly influential manner
and prepare them for what is coming in the future. Without them, the technological
progress in this area would remain disconnected from people, so I would like to
thank the creators of these movies.

xiii

Contents

PartI Introduction

1

Introduction to Aland ML,
L1 INtrodUCtioN.....vvvteeititttt e eeeeees
1.2 What IS AL ..o e
1.3 What IS ML ..o e
1.4 Organization of the BOOKccoeiiiiiiiiiiiiiiiiiiiiiiins
141 Introductionoovviiiiiiiiiiiiiiii e,
1.42 Machine Learningoovviiiiiiiininnnnnnnnn....
1.4.3 Building End to End Pipelinescooo.e.
1.4.4 Artificial Intelligenceoovviiiiiiiiiiininnnnn.
1.45 Implementationsoovvvvviiiiiiiiniennnenennennnnnn..
146 ConcluSionoovviiiiiiiiiiiiii e

Essential Concepts in Artificial Intelligence

and Machine Learningoooiiiiiiiiiiiiiiiiiiiiiia
2.1 INtrodUCHON. ..covtit et e
2.2 BigDataand Not-So-BigDatacoooeiiiiiiiiiiiiiiinnnnn.
22,1 WhatIsBigData ...
2.2.2 Why Should We Treat Big Data Differently?
2.3 Types of Learningeueeieiiiiiiiiiiiiiiiiiiieiiieeeneeeeennns
2.3.1 Supervised Learning................oovviiiiiiiiiiiiiinnnn.
2.3.2 Unsupervised Learning................coovvvviiiiinennnnn..
2.3.3 Reinforcement Learning...................ooovviiiiiinnnn.
2.4 Machine Learning Methods Based on Time
24.1 StaticLearning............ooviiiiiiiiiiiie
242 Dynamic Learning..............oooviiiiiiiiiiiiiiiinnnnn.
2.5 DIimensionalityeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieas
2.5.1 Curse of Dimensionalityoooeeeeeen...
2.6 Linearity and Nonlinearityc...uuuuuuuuuiiiinnnnnnnnnnnnn.
2.7 Occam’s RAzZor ...o.uuuiiiiiiiiii
2.8 NoFree Lunch Theoremccooiiiiiiiiiiiiiiiiiiiiiniinn.

A o) W) Ne NNV, BV, RV, IR S B S

XV

XVi

4

Contents

2.9 Law of Diminishing Returns. ..., 19
2.10 Early Trends in Machine Learningcccoooiiiiiieeaann. 19
2.10.1 EXPert SYStEMS ...ceevrnnutiiiteeiieeeiiiieeeens 19

2,11 CONCIUSION ...t eeett et et et 20
Data Understanding, Representation, and Visualization............... 21
3.1 INtrodUCHON. .. ceit et 21
3.2 Understanding the Dataccooiiiiiiiiiiiiiiiiiiiiiiii. 21
3.2.1 Understanding Entitiescoveviieeeien.... 22

3.2.2 Understanding Attributes...............cooovveeeeeeneen.... 22

3.2.3 Understanding Data Typescovvveiiieeinnn.... 24

3.3 Representation and Visualization of the Data....................... 24
3.3.1 Principal Component AnalySiS...............covveeennn.... 24

3.3.2 Linear Discriminant Analysis..................oooveennnn.. 27

3.4 CONCIUSION ... e ettt e 29

Part II Machine Learning

Linear Methodso 33
4.1 IntroduCtion.........ooiiuiiiieiiiii i e 33
4.2 Linear and Generalized Linear Modelscoovvvunnnn. 34
4.3 Linear Regressionueeiiiiiii i 34
43.1 Definingthe Problem..........ccoovviiiiiiiiiiii. .. 34

43.2 Solvingthe Problem............coooiiiiiiiiiiiiiii... 35

4.4 Regularized Linear Regressioncoooviiiiiiiiiiiiinnnn.. 36
4.4.1 Regularizationcccoeviiiiiiiiiiiiiiiiiieneeennns 36

442 Ridge Regressioncevviiiiiiiiiiiiiiiiiiiiieiieeenes 36

443 LassOReGressioncceeviiiiiiiiiiiiiiiiiiiiiiiiins 37

4.5 Generalized Linear Models (GLM)ccooiiiiiiiieiiin. .. 37
4.5.1 Logistic Regression.........ccovvvviiiiiiiiiiiiiiiiinenn... 37

4.6 k-Nearest Neighbor (KNN) Algorithm............cccovuuiiiinnnn. 38
4.6.1 Definition of KNN ..., 38

4.6.2 Classification and Regressionccoovvvvvveien.... 40

4.6.3 Other Variations of KNN ..., 40

47 CONCIUSIONttt ettt 41
Perceptron and Neural Networksooooiiiiiiiiiiiiiin. 43
5.1 INtroduCtiOn......oouueiiiiiiii e 43
5.2 PEICEPIION ..ttt eeeeees 43
5.3 Multilayered Perceptron or Artificial Neural Network 44
5.3.1 Feedforward Operation...................oovvviiiiiennnn... 44

5.3.2 Nonlinear MLP or Nonlinear ANN........................ 45

533 TrainingMLP ... 45

5.34 HiddenLayerscoooiiiiiiiiiii 48

5.4 Radial Basis Function Networksccoooiiiiiiiiiiiinnnn. 48

5.4.1 Interpretation of RBF Networks 49

Contents XVii
5.5 Opverfitting and Regularization................cccoviiiiiiiiiin, 50
5.5.1 Lland L2 Regularizationcccevviiiieieannnn. 50

5.5.2 Dropout Regularizationccevviiiiiiiann. 51

5.6 CoNCIUSION .. .uuut ittt 51
6 Decision Trees..........coooiiiiiiiiii i e 53
6.1 INrodUCHON.oiitt ittt 53
6.2 Why Decision Trees?ovviiiiiiiiiiiiiiiiiiiiiiieeeenns 54
6.2.1 Typesof Decision Trees............oovvvveeiiieeeiennnnn... 54

6.3 Algorithms for Building Decision Treescoovvuuvunnnnn. 54
6.4 Regression TIeevvveiiiiiiii it 55
6.5 Classification Tree......ooveeiiiiiiiiii e 57
6.6 DecCiSiON MELIICS ...vvvriiee et iiiiie et iiie e e iiiee e 57
6.6.1 Misclassification Error ... 57

6.6.2 GiniIndexX..........ooiiii 57

6.6.3 Cross-Entropy or Devianceooeeeennn.. 58

6.7 CHAID . ..ottt 58
6.7.1 CHAID Algorithm.................ceiiiiiii ... 59

6.8 Training DeciSion Tree.........vvviiiiiiiiiiiiiiiiiiiiiiieeens 59
0.8, 1 S DS ittt 59

6.9 Ensemble Decision Treesovvvieeieiiiiiiiieeeiiiiiiiaaeeanens 60
6.10 Bagging Ensemble Trees...........uuuuuuuuiiiiiiiiiiiiiiiiiiiinnnnns 60
6.11 Random Forest Trees......ooviiiiiiiiee i ciiiiae e 61
6.11.1 DecisionJungles...........coovviiiiiiiiiiiiiiiiininnnnnn... 61

6.12 Boosted Ensemble Treesovveeeiiiiiiiiieeiiiiie e 62
6.12.1 AdaBoOSt.......uiiiiiiiiii e 62

6.12.2 Gradient Boostingoovviiiiiiiiii.. 62

6.13 CoNCIUSION ...\ttt et e, 63
7 Support Vector Machines......................oiiii 65
T.1 INtrodUCtiON.oeitiie ettt e 65
7.2 Motivation and SCOPEuuuuunune e 65
7.2.1 Extension to Multi-Class Classification 66

7.2.2 Extension for Nonlinear Case..............c.ccovvieeeean.n. 66

7.3 Theory of SVM ... o 67
7.4 Separability and Marginsccooeoiiiiiiiiiiiiiiiiiiiiian. 69
7.4.1 Regularization and Soft Margin SVM 69

7.4.2 Use of Slack Variables............cccovveeiiiiiiiiiinnannnnn, 69

7.5 Nonlinearity and Use of Kernelsccoooviiiiiiiiinnnnn. 70
7.5.1 Radial Basis Functioncoooiiiiiiiiiinaaas, 70

7.52 Polynomial................ 71

753 Sigmoid ...oooiiiii 71

7.6 Risk Minimizationoviieeiiiiiiiiineeeeiiiiiaeeaannnnnnn. 71
A €0 1 1e] 11T 1o) 1 A 71

XViii

10

11

Contents

Probabilistic Models...............ccoiiiiiiiiii 73
8.1 INtroduCtion.........uuteeiiii i 73
8.2 Discriminative Modelscooiiiiiiiiiiiiii 74
8.2.1 Maximum Likelihood Estimation.......................... 74

8.2.2 Bayesian Approach ..ottt 74

8.2.3 Comparison of MLE and Bayesian Approach 76

8.3 Generative Modelsooouiiiiiiiiiiiiiiii 78
8.3.1 Mixture Methodscooviiiiiiiiiiiiiiiiiii i 79

8.3.2 Bayesian Networksccooiiiiiiiiiiiiiiiiiiiiii 79

8.4 Some Useful Probability Distributionsccovviinnie. 79
8.4.1 Normal or Gaussian Distribution 80

8.4.2 Bernoulli Distributionccciiiiiiiiiiiiiii. 81

8.4.3 Binomial Distributioncccciiiiiiiiiiii 84

8.4.4 Gamma Distributionooooeiiiiiiiiiiiii i 84

8.4.5 Poisson Distributionoooiiiiiiiiiiiiiiiiiii 85

8.5 CONCIUSION .. ettt 89
Dynamic Programming and Reinforcement Learning 91
0.1 INtrodUCtiON. ...oovinnit et 91
9.2 Fundamental Equation of Dynamic Programming 91
9.3 Classes of Problems Under Dynamic Programming................ 93
9.4 Reinforcement Learningccoovviiiiiiiiiiiiiiiiiiinnnnnnnns 93
9.4.1 Characteristics of Reinforcement Learning 93

9.4.2 Framework and Algorithm 94

9.5 Exploration and EXploitationc.c.ccvviiiiiiiiiiiiiinennnnnns 95
9.6 Examples of Reinforcement Learning Applications................ 95
9.7 Theory of Reinforcement Learning..............ccoovvvvvunnnnnnnn. 96
9.7.1 VariationsinLearningoovvvviiiiiiiinnnnnn.. 97

0.8 CONCIUSION ... ettt ettt et 98
Evolutionary Algorithms, 99
10.1 INtrodUCtion......ooueuuit ittt 99
10.2 Bottleneck with Traditional Methodsccooviiiiiiinnnn 99
10.3 Darwin’s Theory of Evolutioncooooiiiiiiiiinnn... 100
10.4 Genetic Programmingcccovviiiiiiiiiiiiiiiiiiiiiiiieneennn. 102
10.5 Swarm Intelligence.........c.ovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeens 104
10.6 Ant Colony OptimiZationevvvreeeiieereereeereeeeeeeeeeeens 105
10.7 Simulated Annealingccovviiiiiiiiiiiiiiiiiiiiiiiiiennnn. 106
10.8 CONCIUSION ... e ettt ettt 106
Time Series Models...............oooiiiiiiiiii s 107
T1.T INtrodUCtionvvveeeetitiittt e eeees 107
11.2 Stationarityeeeeeeeeeeeeeieeetteeeeeeees 108
11.3 Autoregressive and Moving Average Models....................... 109
11.3.1 Autoregressive, or AR Processoovvvvvviinnnn. 110

11.3.2 Moving Average, or MA Process...............ooovveennnn. 110

Contents Xix

12

13

14

11.3.3 Autoregressive Moving Average ARMA Process.......... 111
11.4 Autoregressive Integrated Moving Average (ARIMA) Models.... 111
11.5 Hidden Markov Models (HMM)coooiiiiiiiiiniiiiiiinnn.. 112
1151 Applications........ueeeeeiiiiiie it 114
11.6 Conditional Random Fields (CRF)ccoooiiiiiiiiiiin. .. 114
117 CONCIUSION .. .vvtteeet et 115
Deep Learning ... 117
12,1 IntroduCtionvveeiin ettt 117
12.2 Origin of Modern Deep Learningccooviiiiinnnnnnn. 118
12.3 Convolutional Neural Networks (CNNS)..........ccovvieeeeiiinnnn.. 119
12.3.1 1D Convolutionovveeiiiiieeeeie e iieeeeeeeeeeeannns 119
12.32 2D Convolutionovvveeeeeeieii e eeeeeeeeeeeeeannns 120
12.3.3 Architecture of CNN ...ttt 120
1234 Training CNN ...t 123
12.4 Recurrent Neural Networks (RNN) ..., 123
12.4.1 Limitation of RNN ... 124
12.4.2 Long Short-Term Memory RNN........................... 124
12.4.3 Advantages of LSTM.............oooviiiiiiiiiiiinnnnn... 126
12.4.4 Current State of LSTM-RNN ..., 126
12,5 CONCIUSION . .. vvtteeete et e 126
Emerging Trends in Machine Learning 127
13,1 INtrodUCtioN....oovnuntit et 127
13.2 Transfer Learningoevvviiiiiiiiiiiiiiiiieeeeeenenns 127
13.3 Generative Adversarial Networks (GANS)......coovvvviiiieiinnn.. 128
13.4 Quantum Computationevvrieiiereiiierereieeeeeeeeeeeeeenn. 128
13.4.1 Quantum Theory............oovviiiiiiiiiiiiiin., 129
13.4.2 Quantum Entanglementooeeena. 130
13.4.3 Quantum Superpositionoevvvvvveeeeeeeennnn... 131
13.4.4 Computation with Quantum Particles 131
13,5 AUtOML .ot 131
13.6 CONCIUSION ... e eettntt ettt e 132
Unsupervised Learning, 133
14,1 INtrodUCtiON.....ooiuettit ettt 133
14.2 CIUSIETING ..t vvttttttttt ettt eeeeeees 134
14.2.1 k-Means ClUStering........oovvvveeeeieeeeeenennennnnnnnnnn. 134
14.2.2 Improvements to k-Means Clustering 136
14.3 Component ANALYSISovverttiitiiiiiiiiiiiiieereeens 137
14.3.1 Independent Component Analysis (ICA).................. 137
14.4 Self Organizing Maps (SOM) ...t 138
14.5 Autoencoding Neural Networkscooeviiiiiiiiiiiiiniinnnn. 138

14.6 CONCIUSION ...ttt ettt et ettt s 140

XX

Contents

Part III Building End to End Pipelines

15 Featurization ...
151 IntroduCtion.......coevuuitieeetii et
15.2 UCI: Adult Salary Predictorccoooviiiiiiiiiiiiiiiiinnnn,
15.3 Identifying the Raw Data, Separating Information from Noise

15.3.1 Correlation and Causalityoovvvieeen....
15.4 Building Feature Setoooiiiiiiiiiiiiiiiiiiii i
15.4.1 Standard Options of Feature Building
15.4.2 Custom Options of Feature Building
15.5 Handling Missing Valuescccevviiiiiiiiiiiiiiiieeennn.
15.6 Visualizing the Features............coooviiiiiiiiiiiiiiiiiiiiiiinnn,
15.6.1 Numeric Featuresccooviiiiiiiiiiiiiiiiii .
15.6.2 Categorical Featurescccooiiiiiiiiiiiiiiiiiennn.
157 CONCIUSION ... ettt

16 Designing and Tuning Model Pipelines................................
16,1 INtrodUCtioN.....oovuuttii ettt
16.2 Choosing the Technique or Algorithmoooviiii.t.

16.2.1 Choosing Technique for Adult Salary Classification
16.3 Splitting the Data........c.covviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeees
16.3.1 Stratified Sampling ...t
16,4 Training ...ooveeeettittttttt e eeeeeees
16.4.1 Tuning the Hyperparametersoovvvveeennnn..
16.5 Accuracy Measurementvvvereeereiieereeeeeeeeeeeeeeeeenens
16.6 Explainability of Features............coooiiiiiiiiiiiiiiiiiiiinnnns
16.7 Practical Considerationscccovviuiieieeeiiiiiiieeeennnnnnns
16.7.1 Dataleakagecovvviiiiiiiiiiiiiene...
16.7.2 Coincidence and Causalityoovvveeeen...
16.7.3 Unknown Categoriesoovvvveeiieeeieeenennnnnnnnn..
16.8 CONCIUSION ... eettttttt ettt e

17 Performance Measurement...................cooeiiiiiiiieeiiniiineeee...
17.1 INtrodUCtiON.....oovuuutitt ettt
17.2 Metrics Based on Numerical Efrorcooovvviiiiiiiiinnnn

17.2.1 Mean Absolute Errorcooiiiiiiiiiiiiiiiin.
17.2.2 Mean Squared Error ...
17.2.3 Root Mean Squared Erroroooeeieieeatn.
17.2.4 Normalized Errorcooiiiiiiiiiiiiiiiiiiii .
17.3 Metrics Based on Categorical Error ..o
1731 ACCUTACY .ttt
17.3.2 Precisionand Recall ...,
17.3.3 Receiver Operating Characteristics (ROC) Curve
ANALYSIS « vttt e
17.4 Hypothesis TSNvvveiiiiiiiiiiiiiiiiiiieeeens

17.4.1 Backgroundoooiiiiiiiiii

Contents Xxi

17.4.2 Steps in Hypothesis Testingccoceeevviiiiiee... 175

1743 ABTESUNZ «.vvveiieeeii e 176

17.5 CONCIUSION . .. vttt et e 176
Part IV Artificial Intelligence

18 Classification ... 179

18.1 INtrodUCtion......oouuuuitiei it 179

18.2 Examples of Real World Problems in Classification 179

18.3 Spam Email Detectioncccvviiiiiiiiiiiiiiiiiinnnnnns 180

18.3.1 Defining SCOPe....covvveeeieiiiiiii e 180

18.3.2 ASSUMPLIONS .+t eeeeeeeeeeeeennns 181

1833 SkewintheData.............coooiiiiiiiiiiiiiiiiii. 182

18.3.4 Supervised Learning..............oovvviiiiiiiiiiiininnnnn.. 182

18.3.5 Feature Engineeringoooviiiiiiiiinnnnn.... 183

18.3.6 Model Trainingcovvvviviieiiiiiiiiiiieineeieeeennn. 183

18.3.7 Iterating the Process for Optimization..................... 183

18.4 ConCIUSION....eetnttt et 184

19 ReGIeSSIONoouuiiitt i e 185

19.1 INtrodUuCtion.......oouuuieieiiii e 185

19.2 Predicting Real Estate Pricesccccoeiiiiiiiiiiiiiiiiiiinnn 185

19.2.1 Defining Regression Specific Problem 185

19.2.2 Gather Labelled Data...............ooocooiiiiiiiiiiiinn, 186

19.2.3 Feature Engineeringoooeviiiiiiniiinnnn.... 187

19.2.4 Model Selectionccceeiiiiiiiiiiiiiiiiieeennn. 190

19.2.5 Model Performance...........ccoooiiiiiiiiiiiiiiiiannnn, 190

19.3 Other Applications of Regressioncceevvviiiiiiiiiiiiinnnn. 191

19.4 ConClUSION....eeinn et 191

20 RanKing..........oooiiiiiii i 193

20.1 INtrodUCHON.....ooiuuitttt ittt et 193

20.2 Measuring Ranking Performance..........................ooool 194

20.3 Ranking Search Results and Google’s PageRank................... 196

20.4 Techniques Used in Ranking Systems......................oooooait 196

20.4.1 Keyword Identification/Extraction......................... 196

20.5 ConClUSIONcoiinn ittt 198

21 Recommendations Systemsooiiiiiiiiiiiiiiiii 199

211 INErOdUCHION uuttttttt et eeeeees 199

21.2 Collaborative Filteringccooiiiiiiiiiiiiiiiiiii i, 200

21.2.1 Solution Approaches ... 201

21.3 Amazon’s Personal Shopping Experience 202

21.3.1 Context Based Recommendation 202

21.3.2 Personalization Based Recommendation................... 203

21.4 Netflix’s Streaming Video Recommendations 203

21.5 CONCIUSION ...ttt 204

XXii Contents

Part V Implementations

22 Azure Machine LearningoooiL L 207
221 INtrodUCHON. ..coititt ettt 207
22.2 Azure Machine Learning Studio...............oooeiiiiiiiiiiiin. 207

22.2.1 HOW to Start?ooiiuiiiieiie i 208
22.3 Building ML Pipeline Using AML Studio 210
22.3.1 GettheData......cccovviiiiiiiiiiiiiiii i 210
22.3.2 Data Preprocessingoovvviiiiiiiiiiiiiiiiiiinnnnnn... 212
22.3.3 Training the Classifier Model 214
22.4 Scoring and Performance Metricscooviiiiiiiiina.. 215
22.4.1 Comparing TwoModels...............oovvviiiiiiiiinnn... 217
22,5 CONCIUSION ...ttt et et 219

23 Open Source Machine Learning Libraries 221
231 INtrodUCHON. . .ootinttt ettt 221
23.2 Options of Machine Learning Libraries................cooovvvvnnn. 222
23.3 Scikit-Learn Library..........c.ccoiiiiiiiiiiiiiiiiiiiiiiiiiiieiees 223

23.3.1 Development Environment.........................oo..es. 223
23.3.2 ImportingData...........oovviiiiiiiiiii e 224
23.3.3 Data Preprocessingoovviiiiiiiiiiiiiiiiiiiinnnnn... 225
23.3.4 Splitting the Data Using Stratified Sampling.............. 226
23.3.5 Training a Multiclass Classification Model 226
23.3.6 Computing MetriCSoovvvveeieieiieiiiiiieeeeneeennnnn, 227
23.3.7 Using Alternate Modeloeeiiiiiin... 227
23.4 Model Tuning and OptimizZation..............euuuuuuruuunnnnnnnnnnn. 228
23.4.1 Generalizationcoeveeeeiiiiiiiiieeiiniiieeeennn. 229
23.5 Comparison Between AML Studio and Scikit-Learn 229
23.6 CONCIUSION ...ttt ettt e et e 232

24 Amazon’s Machine Learning Toolkit: Sagemaker-...................... 233
241 INtrodUCHON. ...oovinntttt ettt et 233
24.2 Setting Up Sagemakerccoviiiiiiiiiiiiiiiiiiieeenennns 233
24.3 Uploading Data to S3 Storagec.covvviiiiiiiiiiiiiiieiiennennns 234
24.4 Writing the Machine Learning Pipeline Using Python 235
245 CONCIUSION ... ettt et e e 236

Part VI Conclusion

25 Conclusion and Next Stepscocoiiiiiiiiiiiiiiiiiiiiii i, 247
R B ©)7 % 1< 247
25.2 What's NeXt oottt e e e e s 248
RefrenCeS. ...t 249

Part 1
Introduction

This is your last chance. After this, there is no turning back. You take the blue pill - the story
ends, you wake up in your bed and believe whatever you want to believe. You take the red
pill - you stay in Wonderland and I show you how deep the rabbit-hole goes. The question
is, which pill would you choose?

—Morpheus, “The Matrix”

Part Synopsis

This part introduces the concepts of Artificial Intelligence (AI) and Machine
Learning (ML) in the modern context. Various scenarios where these concepts are
used will also be discussed. Going further, this part also discusses the understanding,
representation and visualization aspects of data that form the foundation to the
next topics. This will serve as a good starting point to delve into the details of the
techniques, applications and implementations.

Chapter 1 ®
Introduction to AI and ML Chock or

1.1 Introduction

It is an understatement to say that the field of Artificial Intelligence and Machine
Learning has exploded in last decade. There are some rather valid reasons for the
exponential growth and some not so much. As a result of this growth and popularity,
there are also some of the most wrongly used words. Along with the enormous
growth of the field it has also become one of the most confusing fields to understand
the scope of. The very definitions of the terms Al and ML have also become diluted
and vague.

We are not going to try and define these entities with word play, but rather are
going to learn the context around the origins and scope of these entities. This will
make their meaning apparent. The roots of these words originate from multiple dis-
ciplines and not just computer science. These disciplines include pure mathematics,
electrical engineering, statistics, signal processing, and communications along with
computer science to name the top few. I cannot imagine any other area that emerges
as a conflation of such wide variety of disciplines. Along with the wide variety of
origins, the field also finds applications in even greater number of industries ranging
from high-tech applications like image processing, natural language processing to
online shopping to nondestructive testing of nuclear power plants and so on.

In spite of being such multi-disciplinary, there are several things that we can
conceptually learn collectively and obtain clarity of its scope. That is the primary
objective behind this book. I want to make the field accessible to newcomers to the
field in the form of graduate level students to engineers and professionals who are
entering the field or even actively working in this field.

© Springer Nature Switzerland AG 2020 3
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_1

4 1 Introduction to Al and ML

1.2 WhatIs Al

Alan Turing defined Artificial Intelligence as follows: “If there is a machine behind
a curtain and a human is interacting with it (by whatever means, e.g. audio or via
typing etc.) and if the human feels like he/she is interacting with another human,
then the machine is artificially intelligent.” This is quite a unique way to define Al
It does not directly aim at the notion of intelligence, but rather focusses on human-
like behavior. As a matter of fact, this objective is even broader in scope than mere
intelligence. From this perspective, Al does not mean building an extraordinarily
intelligent machine that can solve any problem in no time, but rather it means to
build a machine that is capable of human-like behavior. However, just building
machines that mimic humans does not sound very interesting. As per modern
perspective, whenever we speak of AI, we mean machines that are capable of
performing one or more of these tasks: understanding human language, performing
mechanical tasks involving complex maneuvering, solving computer-based complex
problems possibly involving large data in very short time and revert back with
answers in human-like manner, etc.

The supercomputer depicted in movie 2001: A space odyssey, called HAL
represents very closely to modern view of Al It is a machine that is capable
of processing large amount of data coming from various sources and generating
insights and summary of it at extremely fast speed and is capable of conveying
these results to humans in human-like interaction, e.g., voice conversation.

There are two aspects to Al as viewed from human-like behavior standpoint.
One is where the machine is intelligent and is capable of communication with
humans, but does not have any locomotive aspects. HAL is example of such Al
The other aspect involves having physical interactions with human-like locomotion
capabilities, which refers to the field of robotics. For the purpose of this book, we
are only going to deal with the first kind of Al

1.3 What Is ML

The term ‘“Machine Learning” or ML in short, was coined in 1959 by Arthur
Samuel in the context of solving game of checkers by machine. The term refers
to a computer program that can learn to produce a behavior that is not explicitly
programmed by the author of the program. Rather it is capable of showing behavior
that the author may be completely unaware of. This behavior is learned based
on three factors: (1) Data that is consumed by the program, (2) A metric that
quantifies the error or some form of distance between the current behavior and ideal
behavior, and (3) A feedback mechanism that uses the quantified error to guide the
program to produce better behavior in the subsequent events. As can be seen the
second and third factors quickly make the concept abstract and emphasizes deep

1.4 Organization of the Book 5

mathematical roots of it. The methods in machine learning theory are essential in
building artificially intelligent systems.

1.4 Organization of the Book

I have divided this book into six parts, as described below.
Parts of the Book

. Introduction

. Machine Learning

. Building end to end pipelines
. Artificial Intelligence

. Implementations

. Conclusion

AN B WN =

1.4.1 Introduction

The first part of the book introduces the key concepts in the field as well as outlines
the scope of the field. There are multiple aspects discussed in these chapters that may
appear disconnected, but put together they are all extremely important in holistic
understanding of the field and inspiring the confidence. This part also discusses the
preliminary understanding and processing of the raw data as is typically observed.
This sets the foundation for the reader to understand the subsequent parts.

1.4.2 Machine Learning

Second part of the book deals with the theoretical foundation of the machine
learning. In this part we will study various algorithms, their origins and their
applications as well. Machine learning has united a vast array of algorithms that
find their origins in fields ranging from electrical engineering, signal processing,
statistics, financial analysis, genetic sciences, and so on. All these algorithms are
primarily developed from the principles of pure mathematics and statistics, in spite
of being originated in fundamentally different areas. Along with the roots, they
also have one more thing in common: the use of computers to automate complex
computations. These computations ultimately lead to solving problems that seem
so hard that one would believe that they are solved by some intelligent entity, or
Artificial Intelligence.

6 1 Introduction to Al and ML
1.4.3 Building End to End Pipelines

After learning about the theory of machine learning, one is almost ready to
start solving problems in real world. However, the small gap that still remains
is addressed in this part. Putting together theory and application is the primary
objective to be learned from this part. Invariably the machine learning system built
to solve a real life problem always involves multiple components being operated
in sequence, creating a pipeline of operations. This part discusses all the essential
components of such pipeline that takes the raw data at the input and produces
interpretable results at the output.

1.4.4 Artificial Intelligence

This is likely the most interesting part of the book that directly deals with problems
that machine learning has solved and we experience in our day-to-day life. These
applications represent real problems that have been solved in variety of different
industries, e.g., face recognition requirements for national security, detecting spam
emails for e-commerce providers, deploying drones to carry out tactical jobs in
areas where situations are hazardous for humans, etc. These applications need help
from the rich collection of machine learning techniques that are described in the
previous part. It is important to separate the applications and techniques, as there
is a non-trivial overlap between those areas. There are some techniques specifically
developed for certain types of applications, but there are some applications that
can be benefitted from variety of different techniques, and the relationship between
them is many to many. Only when we start looking at the field from these angles
separately, lot of confusion starts to melt away and things start to make sense. The
seamless solution of these problems and their delivery to millions of people is what
creates the feel of artificial intelligence.

1.4.5 Implementations

The completion of studying parts 1 and 2, one can have sufficient confidence in
analyzing a given problem in the areas of machine learning and artificial intelligence
and come up with an outline of solution. However, this outline is not sufficient in
actually implement the solution. In most cases, the theory is quite complex and
solution of optimization problem is non-trivial. I am not going to delve into deep
mathematical proofs and flowcharts that can be directly translated into computer
programs for two reasons:

1. The content can quickly become too mathematical and will lose the interest of
most of the target audience.

1.4 Organization of the Book 7

2. The complete theory behind all the techniques discussed here is so vast, that it is
just not within the scope of a single book.

However, what I am going to target here is a conceptual understanding of the
techniques, that is sufficient for a professional computer engineer, or a data
analyst/scientist to grasp underlying key parameters of the problem.

Fortunately, the open source libraries in machine learning have matured to such
level that, with such conceptual understanding of the techniques and applications,
one can confidently implement reliable and robust artificially intelligent solutions
without need to fully understand the underlying mathematics. This is the target of
the part 3 of the book. This part will truly enable the reader to go ahead and build
end to end solution of a complex practical problem and demonstrate an artificially
intelligent system.

1.4.6 Conclusion

In this last part we summarize the learnings and discuss the next steps for the reader.
After completion of this book the reader is well equipped to embark on solving real
world problems that are still unsolved and make the world a better place.

Chapter 2 ®
Essential Concepts in Artificial oo
Intelligence and Machine Learning

2.1 Introduction

There are various concepts that are spread all over the place in terms of categorizing
them with techniques or applications or implementations. However, they are at the
heart of the entire machine learning theory and its applications and need special
attention. We will cover these topics in this chapter. We will keep revising them in
the book, but aggregating them here will make the reader more equipped to study
the subsequent chapters.

2.2 Big Data and Not-So-Big Data

2.2.1 What Is Big Data

Big data processing has become a very interesting and exciting chapter in the field
of Al and ML since the advent of cloud computing. Although there is no specific
memory size above which the data is called big, the generally accepted definition is
as follows: When the size of data is large enough such that it cannot be processed
on a single machine, it is called as big data. Based on current (2018) generation of
computers this equates to something roughly more than 10 GB. From there it can
go to hundreds of petabytes (1 petabyte is 1000 terabytes and 1 terabyte is 1000
gigabytes) and more.

© Springer Nature Switzerland AG 2020 9
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_2

10 2 Essential Concepts in Artificial Intelligence and Machine Learning
2.2.2 Why Should We Treat Big Data Differently?

Although the big data is separated from the not-so-big-data by simple size restric-
tions, the handling of the data changes drastically when we move from not-so-big
data to big data. For processing not-so-big data, one need not worry about the
location where each bit of data is stored. As all the data can be loaded into
memory of single machine and can be accessed without additional overhead, all
the typical numeric or string operations are executed in predictable time. However,
once we enter the realm of big data, all such bets are off. Instead of a single
machine, we are dealing with a cluster of machines. Each machine has its own
storage and computational resources. For all the numeric and string operations one
must carefully split the data into different machines, such that all the operands in
individual operation are available on the same machine. If not, there is additional
overhead of moving the data across the machines and it typically a very computation
intensive operation. Iterative operations are especially very computation intensive
for big data. Thus when dealing with big data, one must also carefully design the
storage along with the operations.

2.3 Types of Learning

The machine learning algorithms are broadly classified into three types:

1. Supervised learning algorithms
2. Unsupervised learning algorithms
3. Reinforcement learning algorithms

Let’s look at each type in detail.

2.3.1 Supervised Learning

For simplicity, let’s consider the ML system as a black box that produces some
output when given some input. If we already have a historical data that contains the
set of outputs for a set of inputs, then the learning based on this data is called as
supervised learning. A classic example of supervised learning is classification. Say
we have measured 4 different properties (sepal length, sepal width, petal length, and
petal width) of 3 different types of flowers (Setosa, Versicolor, and Virginica) [3].
We have measurements for say 25 different examples of each type of flower. This
data would then serve as training data where we have the inputs (the 4 measured
properties) and corresponding outputs (the type of flower) available for training the
model. Then a suitable ML model can be trained in supervised manner. Once the
model is trained, we can then classify any flower (between the three known types)
based on the sepal and petal measurements.

2.4 Machine Learning Methods Based on Time 11
2.3.2 Unsupervised Learning

In unsupervised learning paradigm, the labelled data is not available. A classic
example of unsupervised learning is “clustering.” Consider the same example as
described in the previous subsection, where we have measurements of the sepal
and petal dimensions of three types of flowers. However, in this case, we don’t
have exact names of the flowers for each set of measurements. All we have is set
of measurements. Also, we are told that these measurements belong to flowers of
three different types. In such cases, one can use unsupervised learning techniques
to automatically identify three clusters of measurements. However, as the labels are
not known, all we can do is call each cluster as flower-type-1, flower-type-2, and
flower-type-3. If a new set of measurement is given we can find the cluster to which
they are closest and classify them into one of them.

2.3.3 Reinforcement Learning

Reinforcement learning is a special type of learning method that needs to be treated
separately from supervised and unsupervised methods. Reinforcement learning
involves feedback from the environment, hence it is not exactly unsupervised,
however, it does not have a set of labelled samples available for training as well
and hence it cannot be treated as supervised. In reinforcement learning methods,
the system is continuously interacting with the environment in search of producing
desired behavior and is getting feedback from the environment.

2.4 Machine Learning Methods Based on Time

Another way to slice the machine learning methods is to classify them based on the
type of data that they deal with. The systems that take in static labelled data are
called static learning methods. The systems that deal with data that is continuously
changing with time are called dynamic methods. Each type of methods can be
supervised, or unsupervised, however, reinforcement learning methods are always
dynamic.

2.4.1 Static Learning

Static learning refers to learning on the data that is taken as a single snapshot and
the properties of the data remain constant over time. Once the model is trained on
the data (either using supervised or unsupervised learning) the trained model can be
applied to similar data anytime in the future and the model will still be valid and
will perform as expected. Typical examples of this would be image classification of
different animals.

12 2 Essential Concepts in Artificial Intelligence and Machine Learning
2.4.2 Dynamic Learning

This is also called as time series based learning. The data in this type of problems
is time sensitive and keeps changing over time. Hence the model training is not
a static process, but the model needs to be trained continuously (or after every
reasonable time window) to remain effective. A typical example of such problems
is weather forecasting, or stock market predictions. A model trained a year back
will be completely useless to predict the weather for tomorrow, or predict the price
of any stock for tomorrow. The fundamental difference in the two types is notion
of state. In static models, the state of the model never changes, while in dynamic
models the state of the model is a function of time and it keeps changing.

2.5 Dimensionality

Dimensionality is often a confusing concept when dealing with various data sets.
From the physical standpoint, dimensions are space dimensions: length, width,
and height. (Let’s not go deeper into physics with time as fourth dimension for
simplicity.) However, in any of the real life scenario we never encounter more than
these three dimensions. However, it is very common to have tens if not hundreds
and more dimensions when we deal with data for machine learning. In order to
understand these high dimensions, we need to look at the fundamental property of
dimensions. The space dimensions are defined such that each of the dimensions
is perpendicular or orthogonal to other two. This property of orthogonality is
essential to have unique representation of all the points in this 3-dimensional space.
If the dimensions are not orthogonal to each other, then one can have multiple
representations for same points in the space and whole mathematical calculations
based on it will fail. For example if we setup the three coordinates as length, width,
and height with some arbitrary origin (The precise location of origin only changes
the value of coordinates, but does not affect the uniqueness property and hence any
choice of origin is fine as long as it remains unchanged throughout the calculation.)
The coordinates (0,0,0) mark the location of origin itself. The coordinates (1,1,1)
will mark a point space that is 1 unit away from the origin in each of the dimensions
and is unique. No other set of coordinates will mean the same location in space.

Now, let’s extend this concept for higher dimensions. It is relatively easy to add
more dimensions mathematically, but is very hard to visualize them spatially. If
we add a fourth dimension, it needs to be orthogonal to all the previous three
dimensions. In such 4-dimensional space the coordinates of the origin would be
(0,0,0,0). The point (1,1,1) in 3-dimensional space may have coordinates (1,1,1,0) in
4-dimensional space. As long as orthogonality is assured, uniqueness of coordinates
will be guaranteed. In the same way, we can have any arbitrarily large number of
dimensions and all the mathematical calculations will still hold.

2.6 Linearity and Nonlinearity 13

Consider the example of Iris data described in previous chapters. The input has
4 features: lengths and widths of sepals and petals. As all these 4 features are
independent of each other, these 4 features can be considered as orthogonal. Thus
when we were solving the problem with Iris data, we were actually dealing with 4
dimensional input space.

2.5.1 Curse of Dimensionality

Even if adding arbitrarily large number of dimensions is fine from mathematical
standpoint, there is one problem. With increase in dimensions the density of the
data gets diminished exponentially. For example if we have 1000 data points in
training data, and data has 3 unique features. Let’s say the value of all the features
is within 1-10. Thus all these 1000 data points lie in a cube of size 10 x 10 x 10.
Thus the density is 1000/1000 or 1 sample per unit cube. If we had 5 unique features
instead of 3, then quickly the density of the data drops to 0.01 sample per unit 5-
dimensional cube. The density of the data is important, as higher the density of the
data, better is the likelihood of finding a good model, and higher is the confidence
in the accuracy of the model. If the density is very low, there would be very low
confidence in the trained model using that data. Hence, although high dimensions
are acceptable mathematically, one needs to be careful with the dimensionality in
order to be able to develop a good ML model with high confidence.

2.6 Linearity and Nonlinearity

Concept of linearity and nonlinearity is applicable to both the data and the model
that built on top of it. However, the concept of linearity differs in each context. Data
is called as linear if the relationship between the input and output is linear. To put
this simply, when the value of input increases, the value of output also increases and
vice versa. Pure inverse relation is also called as linear and would follow the rule
with reversal of sign for either input and output. Figure 2.1 shows various possible
linear relationships between input and output.

Linear models have a slightly more involved definition. All the models that
use linear equations to model the relationship between input and output are called
as linear models. However, sometimes, by preconditioning the input or output a
nonlinear relationship between the data can be converted into linear relationship and
then the linear model can be applied on it. For example if input and output are related
with exponential relationship as y = 5¢*. The data is clearly nonlinear. However,
instead of building the model on original data, we can build a model after applying
a log operation. This operation transforms the original nonlinear relationship into
linear one as logy = 5x. Then we build the linear model to predict log y instead
of y, which can then be converted to y by taking exponent. There can also be

14 2 Essential Concepts in Artificial Intelligence and Machine Learning

Liniearly separable class distribution

25
20 + A
/.//
.
L
= = i -
15[= .///
= = = .’/
(=] & = (== % /./
[=1 :- = i //
o = v <
‘10 B [=] / < |
o e o P o7 =]
o sy =
(=] _/'/
el S8
5 — s = = = -
/// = - = -
. <
./'/// = N
0 el 1 1 1 1
0 2 4 6 8 10
10 Modelling linear regression
T T
8 = .
6 E = L= 7
QOD - o = o o o e o o
[=) QQD Oo = C:::fD = = = =
4 =1 4
2 - =
0 1 1 1 1
0 2 4 6 8 10

Fig. 2.1 Examples of linear relationships between input and output

cases where a problem can be broken down into multiple parts and linear model
can be applied to each part to ultimately solve a nonlinear problem. Figures 2.2
and 2.3 show examples of converted linear and piecewise linear relationships,
respectively. While in some cases the relationship is purely nonlinear and needs
a proper nonlinear model to map it (Fig.2.4). Figure 2.4 shows examples of pure
nonlinear relationships.

2.6 Linearity and Nonlinearity

300
250
200
f;i 150
100

50

X +log(2)

y:

Original exponential (nonlinear) relationship

Converted linear relationship by taking log of y

15

Fig. 2.2 Example of nonlinear relationship between input and output being converted into linear
relationship by applying logarithm

16 2 Essential Concepts in Artificial Intelligence and Machine Learning

Piecewise linear separation between classes

o ®og ©
®e Q.‘.:

Piecewise linear regression

Fig. 2.3 Examples of piecewise linear relationships between input and output

2.6 Linearity and Nonlinearity 17

Example of nonlinearly separated data
[

25

20 -

15 o/ o 1

Fig. 2.4 Examples of pure nonlinear relationships between input and output

Linear models are the simplest to understand, build, and interpret. Our brain is
highly tuned for linear models, as most of our experiences tend to have linear trends.
Most times, what we call as intuitive behavior is mathematically a linear behavior.
All the models in the theory of machine learning can handle linear data. Examples
of purely linear models are linear regression, support vector machines without
nonlinear kernels, etc. Nonlinear models inherently use some nonlinear functions to
approximate the nonlinear characteristics of the data. Examples of nonlinear models
include neural networks, decision trees, probabilistic models based on nonlinear
distributions, etc.

18 2 Essential Concepts in Artificial Intelligence and Machine Learning

In analyzing data for building the artificially intelligent system, determining the
type of model to use is a critical starting step and knowledge of linearity of the
relationship is a crucial component of this analysis.

2.7 Occam’s Razor

In developing and applying machine learning models one always comes across
multiple possible solutions and multiple possible approaches to get the answer.
Many times there is no theoretical guideline as to which solution or which approach
is better than the rest. In such cases the concept of Occam’s Razor, which is also
sometimes called as principle of parsimony can be effectively applied. The principle
states,

Definition 2.1 Occam’s Razor One should not make more assumptions than the
minimum needed, or in other words, when there are multiple alternatives for a
solution, the simplest approach is the best.

This principle is not quite a theorem and cannot be applied as a quantitative rule or
equation. However, it stands a strong effective conceptual guideline when making
such decisions in real life. It is also important to note that this rule creates a form
of tradeoff, where on one side we have more information in the form of more
complexity and on the other hand less information in the form of simplicity. One
should not oversimplify the problem such that some of the core information is lost.
Another derived aspect of Occam’s razor is the simpler solutions tend to have more
generalization capabilities.

2.8 No Free Lunch Theorem

Another interesting concept that is good to be aware of when designing a machine
learning system comes from a paper by Wolpert and Macready [59], in the form
of no free lunch theorem or NFL theorem in optimization. The theorem essentially
states that

Definition 2.2 NFL Theorem If an algorithm performs better on certain class of
problems, then it pays for it in the form of degraded performance in other classes of
problems. In other words, you cannot have single optimal solution for all classes of
problems.

This theorem needs to be taken more of a guideline than a law, as it is quite possible
to have one well designed algorithm outperform some other not so well designed
algorithm in all the possible classes of problems. However, in practical situations,
we can infer from this theorem that we cannot have one solution for all the problems,
and expect it to work well in all situations.

2.10 Early Trends in Machine Learning 19
2.9 Law of Diminishing Returns

The law of diminishing returns is typically encountered in economics and business
scenarios, where it states that adding more headcounts to complete a job starts to
yield less and less returns with increase in existing number of headcount [9]. From
the machine learning perspective, this law can be applied with respect to feature
engineering. From the given set of data, one can only extract a certain number of
features, after which the gains in performance start to diminish and the efforts are
not worth the effect. In some ways it aligns with Occam’s razor and adds more
details.

2.10 Early Trends in Machine Learning

Before the machine learning started off commercially in true sense, there were few
other systems that were already pushing the boundary if routine computation. One
such notable application was Expert Systems.

2.10.1 Expert Systems

The definition by Alan Turin marks the beginning of the era where machine
intelligence was recognized and with that field of AI was born. However, in the early
days (all the way till 1980s), the field of Machine Intelligence or Machine Learning
was limited to what were called as Expert Systems or Knowledge based Systems.
One of the leading experts in the field of expert systems, Dr. Edward Feigenbaum,
once defined as expert system as,

Definition 2.3 Expert Systems An intelligent computer program that uses knowl-
edge and inference procedures to solve problems that are difficult enough to require
significant human expertise for the solution [40].

Such systems were capable of replacing experts in certain areas. These machines
were programmed to perform complex heuristic tasks based on elaborate logical
operations. In spite of being able to replace the humans who are experts in the
specific areas, these systems were not “intelligent” in the true sense, if we compare
them with human intelligence. The reason being the system were “hard-coded”
to solve only a specific type of problem and if there is need to solve a simpler
but completely different problem, these system would quickly become completely
useless. Nonetheless, these systems were quite popular and successful specifically in
areas where repeated but highly accurate performance was needed, e.g., diagnosis,
inspection, monitoring, control [40].

20 2 Essential Concepts in Artificial Intelligence and Machine Learning
2.11 Conclusion

In this chapter we studied variety of different concepts that are used in the theory of
machine learning and building artificially intelligent systems. These concepts arise
from different contexts and different applications, but in this chapter we aggregated
them at one place for reference. All these concepts need to be always at the back
of mind when solving some real life problems and building artificially intelligent
systems.

Chapter 3)
Data Understanding, Representation, Qe
and Visualization

3.1 Introduction

Before starting with the theory of machine learning in the next part of the book, this
chapter focusses on the understanding, representing, and visualizing the data. We
will use the techniques described here multiple times throughout the book. These
steps together can be called as data preprocessing.

With recent explosion of small devices that are connected to internet,! the amount
of data that is being generated has increased exponentially. This data can be quite
useful for generating variety of insights if handled properly, else it can only burden
the systems handling it and slow down everything. The science that deals with
general handling and organizing and then interpreting the data is called as data
science. This is a fairly generic term and concepts of machine learning and artificial
intelligence are part of it.

3.2 Understanding the Data

First step in building an application of artificial intelligence is to understand the
data. The data in raw form can come from different sources, in different formats.
Some data can be missing, some data can be mal-formatted, etc. It is the first task to
get familiar with the data. Clean up the data as necessary.

The step of understanding the data can be broken down into three parts:

1. Understanding entities
2. Understanding attributes
3. Understanding data types

ISometimes the network consisting of such devices is referred to as internet of things or IOT.

© Springer Nature Switzerland AG 2020 21
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_3

22 3 Data Understanding, Representation, and Visualization

In order to understand these concepts, let’s us consider a data set called Iris
data [3]. Iris data is one of the most widely used data set in the field of machine
learning for its simplicity and its ability to illustrate many different aspects of
machine learning at one place. Specifically, Iris data states a problem of multi-class
classification of three different types of flowers, Setosa, Versicolor, and Virginica.
The data set is ideal for learning basic machine learning application as it does not
contain any missing values, and all the data is numerical. There are 4 features per
sample, and there are 50 samples for each class totalling 150 samples. Here is a
sample taken from the data.

3.2.1 Understanding Entities

In the field of data science or machine learning and artificial intelligence, enti-
ties represent groups of data separated based on conceptual themes and/or data
acquisition methods. An entity typically represents a table in a database, or a flat
file, e.g., comma separated variable (csv) file, or tab separated variable (tsv) file.
Sometimes it is more efficient to represent the entities using a more structured
formats like svmlight.” Each entity can contain multiple attributes. The raw data
for each application can contain multiple such entities (Table 3.1).

In case of Iris data, we have only one such entity in the form of dimensions of
sepals and petals of the flowers. However, if one is trying to solve this classification
problem and finds that the data about sepals and petals alone is not sufficient, then
he/she can add more information in the form of additional entities. For example
more information about the flowers in the form of their colors, or smells or longevity
of the trees that produce them, etc. can be added to improve the classification
performance.

3.2.2 Understanding Attributes

Each attribute can be thought of as a column in the file or table. In case of Iris data,
the attributes from the single given entity are sepal length in cm, sepal width in cm,

2The structured formats like svmlight are more useful in case of sparse data, as they add significant
overhead when the data is fully populated. A sparse data is data with high dimensionality (typically
in hundreds or more), but with many samples missing values for multiple attributes. In such cases,
if the data is given as a fully populated matrix, it will take up a huge space in memory. The formats
like svmlight employ a name-value pair approach to specify the name of attribute and its value
in pair. The name-value pairs are given for only the attributes where value is present. Thus each
sample can now have different number of pairs. The model needs to assume that for all the missing
name-value pairs, the data is missing. In spite of added names in each sample, due to the sparsity
of the data, the file is much smaller.

3.2 Understanding the Data 23

Table 3.1 Sample from Iris data set containing 3 classes and 4 attributes

Sepal-length Sepal-width Petal-length Petal-width Class label
5.1 3.5 1.4 0.2 Iris-setosa

4.9 3.0 1.4 0.2 Iris-setosa
4.7 32 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5.0 3.6 1.4 0.2 Iris-setosa
4.8 34 1.9 0.2 Iris-setosa
5.0 3.0 1.6 0.2 Iris-setosa
5.0 34 1.6 0.4 Iris-setosa
5.2 3.5 1.5 0.2 Iris-setosa
5.2 34 1.4 0.2 Iris-setosa
7.0 32 4.7 1.4 Iris-versicolor
6.4 32 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
5.5 2.3 4.0 1.3 Iris-versicolor
6.5 2.8 4.6 1.5 Iris-versicolor
6.7 3.1 4.7 1.5 Iris-versicolor
6.3 2.3 4.4 1.3 Iris-versicolor
5.6 3.0 4.1 1.3 Iris-versicolor
5.5 2.5 4.0 1.3 Iris-versicolor
5.5 2.6 4.4 1.2 Iris-versicolor
6.3 33 6.0 2.5 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
7.1 3.0 5.9 2.1 Iris-virginica
6.3 2.9 5.6 1.8 Iris-virginica
6.5 3.0 5.8 2.2 Iris-virginica
6.7 3.0 5.2 2.3 Iris-virginica
6.3 2.5 5.0 1.9 Iris-virginica
6.5 3.0 5.2 2.0 Iris-virginica
6.2 34 5.4 2.3 Iris-virginica
5.9 3.0 5.1 1.8 Iris-virginica

petal length in cm, petal width in cm. If we had added additional entities like color,
smell, etc., each of those entities would have their own attributes. It is important
to note that in the current data, all the columns are all features, and there is no ID
column. As there is only one entity, ID column is optional, as we can assign arbitrary
unique ID to each row. However, when we have multiple entities we need to have
an ID column for each entity along with the relationship between IDs of different
entities. These IDs can then be used to join the entities to form the feature space.

24 3 Data Understanding, Representation, and Visualization
3.2.3 Understanding Data Types

Attributes in each entity can be of various different types from the storage and
processing perspective, e.g., string, integer valued, datetime, binary (“true”/*false”,
or “17/°0”), etc. Sometimes the attributes can originate from completely different
domains like an image or a sound file, etc. Each type needs to be handled separately
for generating a feature vector that will be consumed by the machine learning
algorithm. We will discuss the details of this processing in Chap. 15. As discussed
before, we can also come across sparse data, in which case, some attributes will
have missing values. This missing data is typically replaced with special characters,
which should not be confused with any of the real values. In order to process data
with missing values, one can either fill those missing values with some default
values, or use an algorithm that can work with missing data.

In case of Iris data, all the attributes are real valued numerical and there is
no missing data. However, if we add additional entities like color, it would have
enumerative type string features like green, orange, etc.

3.3 Representation and Visualization of the Data

Even after we have understood the data with the three hierarchical levels, we still do
not know how the data is distributed and how it related to the output or class label.
This marks the last step in preprocessing the data. We live in 3-dimensional world,
so any data that is up to 3 dimensional, we can plot it and visualize it. However,
when there are more than 3-dimensions, it gets tricky. The Iris data, for example,
also has 4 dimensions. There is no way we can plot the full information in each
sample in a single plot that we can visualize. There are couple of options in such
cases:

1. Draw multiple plots taking 2 or three dimensions at a time.
2. Reduce the dimensionality of the data and plot upto 3 dimensions

Drawing multiple plots is easy, but it splits the information and it becomes
harder to understand how different dimensions interact with each other. Reducing
dimensionality is typically preferred method. Most common methods used to reduce
the dimensionality are:

1. Principal Component Analysis or PCA
2. Linear Discriminant Analysis or LDA
3.3.1 Principal Component Analysis

We can only visualize the data in maximum of 2 or 3 dimensions. However, it is
common practice to have the dimensionality of the data in tens or even hundreds.

3.3 Representation and Visualization of the Data 25

In such cases, we can employ the algorithms just fine, as the mathematics on which
they are based scales perfectly fine for higher dimensions. However, if we want
to actually have a look at the data to see the trends in the distribution or to see
the classification or regression in action, it becomes impossible. One way to do
this is to plot the data in pairs of dimensions. However, in such case, we only see
partial information in any one plot and it is not always intuitive to understand the
overall trends by looking at multiple separate plots. In many situations, the real
dimensionality of data is much less than what the dimensionality in which the data
is presented. For example, check the 3-dimensional data plotted in Fig. 3.1 and the
same data plotted with different perspective in Fig. 3.2. As can be seen in the second
perspective, the data is actually only 2 dimensional, if we can adjust the coordinates
suitably. In other words, one can imagine all the data to be plotted on a single
piece paper, which is only 2-dimensional and then holding it in skewed manner
in a 3-dimensional space. If we can find exact coordinates (X’, Y’) of the paper’s
orientation as linear combination of X, Y, and Z coordinates of the 3-dimensional
space, we can reduce the dimensionality of the data from 3 to 2. The above example
is for illustrations only and in most real situations the lower dimensionality is not
reflected in such obvious manner. Typically the data does have some information in
all the dimensions, but the extent of the information in some dimensions can be very
small compared to the information present in the other dimensions. For visualization
purposes and also in real application purposes, it is quite acceptable to lose the
information in those dimensions, without sacrificing any noticeable performance.

40 —
35
30 - S
25

. "B

o

Fig. 3.1 3-dimensional data containing only 2-dimensional information with first perspective

26 3 Data Understanding, Representation, and Visualization

40
*
35 L
¥
30 i
w
25 - i
20- :
15 — !
4
£ =
i
10 - 4
E
*
5~ *
#*

s 5 e 10
8 BT e e 6 8
2 ™ 2

Fig. 3.2 3-dimensional data containing only 2-dimensional information with alternate perspective

As discussed in the previous chapter, the higher dimensionality increases the
complexity of the problem exponentially, and such reduction in dimensionality for
loss of some information is acceptable in most situations.

The mathematical process for finding the information spread across all the
dimensions and then ranking the dimensions based on the information content is
done using theory of principal component analysis or PCA. This theory is based
on properties of matrices, specifically the process of singular value decomposition
(SVD). This process starts with first finding the dimension along which there is
maximum spread or information content. If we have started with n-dimensions,
then after first principal component is found the algorithm tries to find the next
component of maximum spread in the remaining n» — 1 dimensional space that
is orthogonal to the first component. The process continues till we reach the last
dimension. The process also gives coefficient for each of the principal components
that represent the relative spread along that dimension. As all the components are
found with deterministic and monotonically decreasing coefficient of spread, this
representation is useful for any further analysis of the data. Thus this process is not
restricted to only reducing the dimensions, but to find the optimal dimensions that
represent the data. As can be seen in Fig. 3.3 (principal components are shown in
red arrows), the original data and principal components are both 2-dimensional, but
the representation of the data along principal components is different and preferable
compared to original coordinates.

3.3 Representation and Visualization of the Data 27

30

-20

-30 -

-40 -30 -20 -10 0 10 20 30 40

Fig. 3.3 2-dimensional data where PCA dimensionality is same but along different axes

3.3.2 Linear Discriminant Analysis

The way PCA tries to find the dimensions that maximize variance of the data, linear
discriminant analysis or LDA tries to maximize the separation between the classes
of data. Thus LDA can only effectively work when we are dealing with classification
type of problem, and the data intrinsically contains multiple classes. Conceptually
LDA tries to find the hyperplane in ¢ — 1 dimensions to achieve: maximize the
separation of means of the two classes and minimize the variance of each class. Here
c is number of classes. Thus, while doing this classification it finds a representation
of the data in ¢ — 1 dimensions. For full mathematical details of theory one can refer
to [5].

Figure 3.4 shows 3 dimensional data in one perspective, where the classes are
not quite separable. Figure 3.5 shows another perspective of the data where classes
are separable. LDA finds precisely this perspective as linear combination of the
features and creates a 1-dimensional representation of the data on a straight line
where the classes are best separated. As there are only two classes, the LDA
representation is 1-dimensional. The LDA representation is independent of the
original dimensionality of the data.

As can be seen, sometimes this representation is bit extreme and not quite useful
in understanding the structure of the data and then PCA would be a preferred choice.

28 3 Data Understanding, Representation, and Visualization

40
.
* %
35 + ®
*
& ¥k ;
w**#ﬁk * #* -xf ¥
30 ¥ * * *
Fe *g ¥ 5 ¥
® * | o % W i
25 * * k¥ % K)
¥ * Hge * % * *
* * *%02* B g # *
* T * "
20 2 £ x> "
x ¥ o T Ky o Fo *
15 — * % o * * ox ﬁ* #* * *
* . % * * ¥
o3 * ’SS* 3 *
* | 5 L™ * * ¥ #*
10 L *
#H * it
* ¥4 % ¥ -
5 - ®)
* *
* :ﬁ o
0 -
10 0
8 6 5 6 4 2
2 8
010
Fig. 3.4 3-dimensional data with 2 classes
Offe dimensional representation
40 —
35 4
30 —
25 -
20 — i
15 - g %
10 g ¥
* *
*
5 — § i
¥
0 " 10
15

00

Fig. 3.5 3-dimensional data with 2 classes in another perspective, with LDA representation. LDA

reduces the effective dimensionality of data into 1 dimension where the two classes can be best
separated

3.4 Conclusion 29

3.4 Conclusion

In this chapter, we studied the different aspects of preparing the data for solving
the machine learning problem. Each problem comes with a unique set of properties
and quirks in the training data. All these custom abnormalities in the data need to
be ironed out before it can be used to train a model. In this chapter we looked at
different techniques to understand and visualize the data, clean the data, reduce the
dimensionality as possible, and make the data easier to model in the subsequent
steps in the machine learning pipeline.

Part I1
Machine Learning

The unknown future rolls toward us. I face it, for the first time, with a sense of hope. Because
if a machine, a Terminator, can learn the value of human life, maybe we can too.

—Sarah Connor, “Terminator 2: Judgement Day”

Part Synopsis

In this part we will focus on various techniques that form the foundation of all
the static Machine Learning models. The static ML models address the class of
problems where the data is static and there is no concept of time series. The model
does not learn incrementally. If there is a new set of data, the entire learning process
is repeated.

We will discuss these techniques from the conceptual and mathematical stand-
point without going too much into the mathematical details and proofs. We will
point the user with reference papers and books to find more details on theory
whenever required.

Chapter 4 ®
Linear Methods Chock or

4.1 Introduction

In general machine learning algorithms are divided into two types:

1. Supervised learning algorithms
2. Unsupervised learning algorithms

Supervised learning algorithms deal with problems that involve learning with
guidance. In other words, the training data in supervised learning methods need
labelled samples. For example for a classification problem, we need samples with
class label, or for a regression problem we need samples with desired output value
for each sample, etc. The underlying mathematical model then learns its parameters
using the labelled samples and then it is ready to make predictions on samples that
the model has not seen, also called as test samples. Most of the applications in
machine learning involve some form of supervision and hence most of the chapters
in this part of the book will focus on the different supervised learning methods.

Unsupervised learning deals with problems that involve data without labels. In
some sense one can argue that this is not really a problem in machine learning
as there is no knowledge to be learned from the past experiences. Unsupervised
approaches try to find some structure or some form of trends in the training data.
Some unsupervised algorithms try to understand the origin of the data itself. A
common example of unsupervised learning is clustering.

In Chap. 2 we briefly talked about the linearity of the data and models. Linear
models are the machine learning models that deal with linear data or nonlinear
data that be somehow transformed into linear data using suitable transformations.
Although these linear models are relatively simple, they illustrate fundamental
concepts in machine learning theory and pave the way for more complex models.
These linear models are the focus of this chapter.

© Springer Nature Switzerland AG 2020 33
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_4

34 4 Linear Methods
4.2 Linear and Generalized Linear Models

The models that operate on strictly linear data are called linear models, and the
models that use some nonlinear transformation to map original nonlinear data to
linear data and then process it are called as generalized linear models. The concept
of linearity in case of supervised learning implies that the relationship between the
input and output can be described using linear equations. For unsupervised learning,
the concept of linearity implies that the distributions that we can impose on the
given data are defined using linear equations. It is important to note that the notion
of linearity does not imply any constraints on the dimensions. Hence we can have
multivariate data that is strictly linear. In case of one-dimensional input and output,
the equation of the relationship would define a straight line in two-dimensional
space. In case of two-dimensional data with one-dimensional output, the equation
would describe a two-dimensional plane in three-dimensional space and so on. In
this chapter we will study all these variations of linear models.

4.3 Linear Regression

Linear regression is a classic example of strictly linear models. It is also called as
polynomial fitting and is one of the simplest linear methods in machine learning.
Let us consider a problem of linear regression where training data contains p
samples. Input is n-dimensional as (x;,i = 1, ..., p) and x; € R". Output is single
dimensional as (y;,i = 1,..., p) and y; € N.

4.3.1 Defining the Problem

The method of linear regression defines the following relationship between input x;
and predicted output y; in the form of linear equation as:

n
Vi =) xijwj +wo @.1)
j=1
v; is the predicted output when the actual output is y;. w;,i = 1,..., p are called

as the weight parameters and wy is called as the bias. Evaluating these parameters
is the objective of training. The same equation can also be written in matrix form as

¥ =X".w+ w 4.2)

where X = [x,.T],i =1,...,pand w = [w;],i = 1,..., n. The problem is to find
the values of all weight parameters using the training data.

4.3 Linear Regression 35
4.3.2 Solving the Problem

Most commonly used method to find the weight parameters is to minimize the mean
square error between the predicted values and actual values. It is called as least
squares method. When the error is distributed as Gaussian, this method yields an
estimate called as maximum likelihood estimate or MLE. This is the best unbiased
estimate one can find given the training data. The optimization problem can be
defined as

min ||y; — %1 (4.3)

Expanding the predicted value term, the full minimization problem to find the
optimal weight vector w' can be written as

2
p

n
w'" = argmin Z yi — Zx,-j.wj — wo 4.4
j=1

=1

This is a standard quadratic optimization problem and is widely studied in the
literature. As the entire formulation is defined using linear equations, only linear
relationships between input and output can be modelled. Figure 4.1 shows an
example.

0.9
0.8 .
0.7

0.6 4

04
03 n
02 4

0.1

Fig. 4.1 Plot of logistic sigmoid function

36 4 Linear Methods
4.4 Regularized Linear Regression

Although, in general, the solution obtained by solving Eq.4.4 gives the best
unbiased estimate, but in some specific cases, where it is known that the error
distribution is not Gaussian or the optimization problem is highly sensitive to the
noise in the data, above procedure can result in what is called as overfitting. In such
cases, a mathematical technique called regularization is used.

4.4.1 Regularization

Regularization is a formal mathematical trickery that modifies the problem state-
ment with additional constraints. The main idea behind the concept of regularization
is to simplify the solution. The theory of regularization is typically attributed to
Russian mathematician Andrey Tikhonov. In many cases the problems are what is
referred to as ill posed. What it means is that the training data if used to full extent
can produce a solution that is highly overfitted and possesses less generalization
capabilities. Regularization tried to add additional constraints on the solution,
thereby making sure the overfitting is avoided and the solution is more generalizable.
The full mathematical theory of regularization is quite involved and interested reader
can refer to [39].

Multiple regularization approaches are proposed in the literature and one can
experiment with many. However, we will discuss two most commonly used ones.
The approaches discussed below are also sometimes referred to as shrinkage
methods, as they try to shrink the weight parameters close to zero.

4.4.2 Ridge Regression

In Ridge Regression approach, the minimization problem defined in Eq.4.4 is
constrained with

D)<t (4.5)
=1

where ¢ is a constraint parameter. Using Lagrangian approach,' the joint optimiza-
tion problem can be written as

2
P n n

whidge _ arg min Z Vi — inj.wj —wy | +A Z(wj)2 (4.6)
j=1 j=1

w i=1

A is the standard Lagrangian multiplier.

Lagrangian method is a commonly used method of integrating the regularization constraints into
the optimization problem thereby creating a single optimization problem.

4.5 Generalized Linear Models (GLM) 37
4.4.3 Lasso Regression

In Lasso Regression approach, the minimization problem defined in Eq.4.4 is
constrained with

> lwjl <t @.7)
j=1

where 7 is a constraint parameter. Using Lagrangian approach, the joint optimization
problem can be written as

2
P n n
w455 — arg min Z yi—inj.wj—wo +AZ|wj| (4.8)

i=1

4.5 Generalized Linear Models (GLM)

The Generalized Linear Models or GLMs represent generalization of linear models
by expanding their scope to handle nonlinear data that can be converted into linear
form using suitable transformations. The obvious drawback or limitation of linear
regression is the assumption of linear relationship between input and output. In
quite a few cases, the nonlinear relationship between input and output can be
converted into linear relationship by adding an additional step of transforming one
of the data (input or output) into another domain. The function that performs such
transformation is called as basis function or link function. For example, logistic
regression uses logistic function as basis function to transform the nonlinearity
into linearity. Logistic function is a special case where it also maps the output
between range of [0 — 1], which is equivalent to a probability density function. Also,
sometimes the response between input and output is monotonic, but not necessarily
linear due to discontinuities. Such cases can also be converted into linear space with
the use of specially constructed basis functions. We will discuss logistic regression
to illustrate the concept of GLM.

4.5.1 Logistic Regression

The building block of logistic regression is the logistic sigmoid function o (x) and
is defined as

1

38 4 Linear Methods

Logistic regression adds an exponential functional on top of linear regression to
constrain the output y; € [0, 1], rather than y; € N as in linear regression. The
relationship between input and predicted output for logistic regression can be given
as

n
)?l-:a inj.wj-i-IU() (410)
j=1

As the output is constrained between [0, 1], it can be treated as a probabilistic
measure. Also, due to symmetrical distribution of the output of logistic function
between —oo — 00, it is also better suited for classification problems. Other than
these differences, there is no fundamental difference between linear and logistic
regressions. Although there is nonlinear sigmoid function present in the equation, it
should not be mistaken for a nonlinear method of regression. The sigmoid function
is applied after the linear mapping between input and output, and at heart this is still
a variation of linear regression. The minimization problem that needs to be solved
for logistic regression is a trivial update from the one defined in Eq. 4.1. Due to its
validity in regression as well as classification problems, unlike the linear regression,
logistic regression is the most commonly used approach in the field of machine
learning as default first alternative.

4.6 k-Nearest Neighbor (KNN) Algorithm

The KNN algorithm is not exactly an example of a linear method, but it is one of
the simplest algorithms in the field of machine learning, and is apt to discuss it here
in the first chapter of this part. KNN is also a generic method that can be used as
classifier or regressor. Unlike linear methods described before in this chapter, this
algorithm does not assume any type equation or any type of functional relationship
between the input and output.

4.6.1 Definition of KNN

In order to illustrate the concept of k-nearest neighbor algorithm, consider a case of
2-dimensional input data as shown in Fig. 4.2. The top plot in the figure shows the
distribution of the data. Let there be some relationship between this input data and
output data (not shown here). For the time being we can ignore that relationship.
Let us consider that we are using the value of k as 3. As shown in bottom plot in
the figure let there be a test sample located as shown by red dot. Then we find the 3
nearest neighbors of the test point from the training distribution as shown. Now, in
order to predict the output value for the test point, all we need to do is find the value

4.6 k-Nearest Neighbor (KNN) Algorithm 39

Training distribution of data

45 T

40+ #if’* 1

25_ *** .
20 - * wy ¥ A

151 * ¥

. Zoomed En version [showing !? nearest qeighbor tc? a test poiint

21} -
205 -

20 & -

*

19.5 + * 1

185 §

175} -

16.5 .

15 16 17 18 19 20 21

Fig. 4.2 Figure showing a distribution of input data and showing the concept of finding nearest
neighbors

40 4 Linear Methods

of the output for the 3 nearest neighbors and average that value. This can be written
in equation form as

k
5= (Zy,») /k (4.11)
i=1

where y; is the output value of the ith nearest neighbor. As can be seen this is one of
the simplest way to define the input to output mapping. There is no need to assume
any priory knowledge, or any need to perform any type of optimization. All you
need to do is to keep all the training data in memory and find the nearest neighbors
for each test point and predict the output.

This simplicity does come at a cost though. This lazy execution of the algorithm
requires heavy memory footprint along with high computation to find the nearest
neighbors for each test point. However, when the data is fairly densely populated,
and computation requirements can be handled by the hardware, KNN produces good
results in spite of being expressed with overly simplistic logic.

4.6.2 Classification and Regression

As the formula expressed in Eq.4.11 can be applied to classification as well as
regression problems, KNN can be applied to both types of problems without need
to change anything in the architecture. Figure 4.2 showed as example of regression.
Also, as KNN is a local method as opposed to global method, it can easily handle
nonlinear relationships unlike the linear methods described above. Consider the
two class nonlinear distribution as shown in Fig.4.3. KNN can easily separate
the two classes by creating the circular boundaries as shown based on the local
neighborhood information expressed by Eq.4.11.

4.6.3 Other Variations of KNN

As such, the KNN algorithm is completely described by Eq.4.11. However, there
exist some variations of the algorithm in the form of weighted KNN, where the value
of each neighbors output is inversely weighted by its distance from the test point.
In other variation, instead of using Euclidean distance, one can use Mahalanobis
distance [28] to accommodate the variable variance of the data along different
dimensions.

4.7 Conclusion 41

40 T T T ¥ T T T

20

_40 Il 1 L L 1 !
-40 -30 -20 -10 0 10 20 30 40

Fig. 4.3 Figure showing nonlinear distribution of the data

4.7 Conclusion

In this chapter we looked at some of the simple techniques to introduce the topic of
machine learning algorithms. Linear methods form the basis of all the subsequent
algorithms that we will study throughout the book. Generalized linear methods
extend the scope of the linear methods to apply for some simple nonlinear cases
as well as probabilistic methods. KNN is another simple technique that can be used
to solve most basic problems in machine learning and also illustrates the use of local
methods as opposed to global methods.

Chapter 5 ®
Perceptron and Neural Networks Qe

5.1 Introduction

Perceptron was introduced by Rosenblatt [44] as a generalized computation frame-
work for solving linear problems. It was quite effective, one of a kind machine at the
time and seemingly had unlimited potential. However soon some fundamental flaws
were detected in the theory that limited scope of perceptron significantly. However,
all these difficulties were overcome in time with addition of multiple layers in
the architecture of the perceptron converting it into artificial neural networks and
addition of nonlinear kernel functions like sigmoid. We will study the concept of
perceptron and its evolution into modern artificial neural networks in this chapter.
However, we will restrict the scope to small sized neural networks and will not delve
into the deep networks. That will be studied later in separate chapter.

5.2 Perceptron

Geometrically a single layered perceptron with linear mapping represents a linear
plane in n-dimensions. In n-dimensional space the input vector is represented as
(x1,x2, ..., x,) or X. The coefficients or weights in n-dimensions are represented
as (wy, wa, ..., wy,) or w. The equation of perceptron in the n-dimensions is then
written in vector form as

X.W=1y 5.1)

Figure 5.1 shows an example of an n-dimensional perceptron. This equation looks a
lot like the linear regression equation that we studied in Chap. 4, which is essentially
true, as perceptron represents a computational architecture to solve this problem.

© Springer Nature Switzerland AG 2020 43
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_5

44 5 Perceptron and Neural Networks

0%0
5.3 Multilayered Perceptron or Artificial Neural Network

o o

Fig. 5.1 Perceptron

Multilayered perceptron (MLP) seems like a logical extension of the single layer
architecture, where we use multiple layers instead of single. Figure 5.1 shows an
illustration of a generic MLP with m layers. Let nl be the number of nodes in
layer 1, which is same as the input dimensionality. The subsequent layers have ni
number of layers where i = 2, ..., m. The number of nodes in all the layers except
the first one can have any arbitrary value as they are not dependent on the input
or output dimensionality. Also, one other obvious difference between the single
layer perceptron and MLP is the fully connectedness. Each of the internal nodes
is now connected all the nodes in the subsequent layer. However, as long as we are
using linear mapping as described above, single layer perceptron and multilayered
perceptron are mathematically equivalent. In other words, having multiple layers
does not really improve the capabilities of the model and it can be rigorously proved
mathematically.

5.3.1 Feedforward Operation

The network shown in Fig. 5.2 also emphasizes another important aspect of MLP
called as feedforward operation. The information that is entered from the input
propagates through each layer towards the output. There is no feedback of the
information from any layer backwards when the network is used for predicting the
output in the form of regression or classification. This process closely resembles the
operation of human brain.

5.3 Multilayered Perceptron or Artificial Neural Network 45

Fig. 5.2 Multilayered perceptron

5.3.2 Nonlinear MLP or Nonlinear ANN

The major improvement in the MLP architecture comes in the way of using
nonlinear mapping. Instead of using simple dot product of the input and weights,
a nonlinear function, called as activation function is used.

5.3.2.1 Activation Functions

Most simple activation function is a step function, also called as sign function as
shown in Fig.5.3. This activation function is suited for applications like binary
classification. However, as this is not a continuous function is not suitable for most
training algorithms as we will see in the next section.

The continuous version of step function is called as sigmoid function or logistic
function as discussed in the previous chapter. Sometimes, a hyperbolic tan or tanh
function is used, which has similar shape but its values range from [—1, 1], instead
of [0 — 1] as in case of sigmoid function. Figure 5.4 shows the plot of tanh function.

5.3.3 Training MLP

During the training process, the weights of the network are learned from the labelled
training data. Conceptually the process can be described as:

1. Present the input to the neural network.

2. All the weights of the network are assigned some default value.

3. The input is transformed into output by passing through each node or neuron in
each layer.

46

5 Perceptron and Neural Networks

08

08

06

Fig. 5.4 Activation function ranh

5.3 Multilayered Perceptron or Artificial Neural Network 47

4. The output generated by the network is then compared with the expected output
or label.

5. The error between the prediction and label is then used to update the weights of
each node.

6. The error is then propagated in backwards direction through every layer, to
update the weights in each layer such that they minimize the error.

Comert [45] summarizes various backpropagation training algorithms commonly
used in the literature along with their relative performances. I am not going to go into
the mathematical details of these algorithms here, as the theory quickly becomes
quite advanced and can make the topic very hard to understand. Also, we will see
in the implementation part of the book that with conceptual understanding of the
training framework and open source libraries, one is sufficiently armed to apply
these concepts on real problems.

Thus backpropagation algorithm for training and feedforward operation for
prediction mark the two phases in the life of neural network. Backpropagation-based
training needs to be done in two different methods.

1. Online or stochastic method
2. Batch method

5.3.3.1 Online or Stochastic Learning

In this method a single sample is sent as input to the network and based on the
output error the weights are updated. The optimization method most commonly
used to update the weights is called stochastic gradient descent or SGD method. The
use of stochastic here implies that the samples are drawn randomly from the whole
data set, rather than using them sequentially. The process can converge to desired
accuracy level even before all the samples are used. It is important to understand
that in stochastic learning process, single sample is used in each iteration and the
learning path is more noisy. In some cases, rather than using a single sample, a
mini-batch of samples is used. SGD is beneficial when the expected learning path
can contain multiple local minima.

5.3.3.2 Batch Learning

In batch method the total data set is divided into a number of batches. Entire batch of
samples is sent to the network before computing the error and updating the weights.
After entire batch is processed, the weights are updated. Each batch process is called
as one iteration. When all the samples are used once, it’s considered as one epoch
in the training process. Typically multiple epochs are used before the algorithm
fully converges. As the batch learning uses a batch of samples in each iteration, it
reduces the overall noise and learning path is cleaner. However, the process is lot

48 5 Perceptron and Neural Networks

more computation heavy and needs more memory and computation resources. Batch
learning is preferred when the learning path is expected to be relatively smooth.

5.3.4 Hidden Layers

The concept of hidden layers needs a little more explanation. As such they are not
directly connected with inputs and outputs and there is no theory around how many
such layers are optimal in given application. Each layer in MLP transforms the input
to a new dimensional space. The hidden layers can have higher dimensionality
than the actual input and thus they can transform the input into even higher
dimensional space. Sometimes, if the distribution of input in its original space
has some nonlinearities and is ill conditioned, the higher dimensional space can
help improve the distribution and as a result improve the overall performance.
These transformations also depend on the activation function used. Increasing
dimensionality of hidden layer also makes the training process that much more
complicated, and one needs to carefully trade between the added complexity and
performance improvement. Also, how many such hidden layers should be used is
another variable where there are no theoretical guidelines. Both these parameters
are called as hyperparameters and one needs to do an open-ended exploration using
a grid of possible values for them and then choose the combination that gives the
best possible results within the constraints of the training resources.

5.4 Radial Basis Function Networks

Radial basis function networks RBFN or radial basis function neural networks
RBFNN are a variation of the feedforward neural networks (we will call them as
RBF networks to avoid confusion). Although their architecture as shown in Fig. 5.5
looks similar to MLP as described above, functionally they are more close to
the support vector machines with radial kernel functions. The RBF networks are
characterized by three layers, input layer, a single hidden layer, and output layer.
The input and output layers are linear weighing functions, and the hidden layer has
a radial basis activation function instead of sigmoid type activation function that is
used in traditional MLP. The basis function is defined as

Frpr(x) = e Plul® (5.2)

Above equation is defined for a scalar input, but without lack of generality it can be
extended for multivariate inputs. w is called as center and § represents the spread or
variance of the radial basis function. It lies in the input space. Figure 5.6 shows the
plot of the basis function. This plot is similar to Gaussian distribution.

5.4 Radial Basis Function Networks

Fig. 5.5 Architecture of radial basis function neural network

g Output 1

Output 2

49

1 T T T

T T

RBF for =5 and 3=3 |

09

0.8

0.7+

06

0.5

04+

031

021

0.1

0 1 1 1

0 1 2 3 4 5 6 T

Fig. 5.6 Plot of radial basis function

5.4.1 Interpretation of RBF Networks

10

Aside from the mathematical definition, RBF networks have a very interesting
interpretability that regular MLP does not have. Consider that the desired values
of output form n number of clusters for the corresponding clusters in the input

50 5 Perceptron and Neural Networks

space. Each node in the hidden layer can be thought of as a representative of each
transformation from input cluster to output cluster. As can be seen from Fig. 5.6, the
value of radial basis function reduces to O rather quickly as the distance between
the input and the center of the radial basis function u increases with respect to the
spread 8. Thus RBF network as a whole maps the input space to output space by
linear combination of outputs generated by each hidden RBF node. It is important
to choose these cluster centers carefully to make sure the input space is mapped
uniformly and there are no gaps. The training algorithm is capable of finding the
optimal centers, but number of clusters to use is a hyperparameter (in other words
it needs to be tuned by exploration). If an input is presented to RBF network that is
significantly different than the one used in training, the output of the network can be
quite arbitrary. In other words the generalization performance of RBF networks in
extrapolation situations is not good. However, if requirements for the RBF network
are followed, it produces accurate predictions.

5.5 Overfitting and Regularization

Neural networks open up a feature-rich framework with practically unlimited scope
to improve the performance for the given training data by increasing the complexity
of the network. Complexity can be increased by manipulating various factors like

. Increasing number of hidden layers

. Increasing the nodes in hidden layers
. Using complex activation functions

. Increasing the training epochs

AW N =

Such improvements in training performance with arbitrary increase in com-
plexity typically lead to overfitting. Overfitting is a phenomenon where we try to
model the training data so accurately that in essence we just memorize the training
data rather than identifying the features and structure of it. Such memorization
leads to significantly worse performance on unseen data. However determining the
optimal threshold where the optimization should be stopped to keep the model
generic enough is not trivial. Multiple approaches are proposed in the literature,
e.g., Optimal Brain Damage [47] or Optimal Brain Surgeon [46].

5.5.1 LI and L2 Regularization

Regularization approaches the problem using Lagrangian multiplier, where on top
of minimizing the prediction error, we add another term in the optimization problem
that restricts the complexity of the network with Lagrangian weighing factor A.

5.6 Conclusion 51

Equations 5.3 and 5.4 show the updated cost function C(x) use of L1 and L2 type
of regularizations to reduce the overfitting.

C(x)=Lx) + 1) W] (33)

Cx)=Lx) +1) IW|? (5.4)

L(x) is the loss function that is dependent on the error in prediction, while W stand
for the vector of weights in the neural network. The L1 norm tries to minimize
the sum of absolute values of the weights while the L2 norm tries to minimize
the sum of squared values of the weights. Each type has some pros and cons. The
L1 regularization requires less computation but is less sensitive to strong outliers,
as well as it is prone to making all the weights zero. L2 regularization is overall a
better metric and provides slow weight decay towards zero, but is more computation
intensive.

5.5.2 Dropout Regularization

This is an interesting method and is only applicable to the case of neural networks,
while the L1 and L2 regularization can be applied to any algorithm. In dropout
regularization, the neural network is considered as an ensemble of neurons in
sequence, and instead of using fully populated neural network, some neurons are
randomly dropped from the path. The effect of each dropout on overall accuracy is
considered, and after some iterations optimal set of neurons are selected in the final
models. As this technique actually makes the model simpler rather than adding more
complexity like L1 and L2 regularization techniques, this method is quite popular,
specifically in case of more complex and deep neural networks that we will study in
later chapters.

5.6 Conclusion

In this chapter, we studied the machine learning model based on simple neural
network. We studied the concept of single perceptron and its evolution into full-
fledged neural network. We also studied the variation of the neural networks using
radial basis function kernels. In the end we studied the effect of overfitting and how
to reduce it using regularization techniques.

Chapter 6 ®
Decision Trees Check for

6.1 Introduction

Decision trees represent conceptually and mathematically a different approach
towards machine learning. The other approaches deal with the data that is strictly
numerical and can increase and/or decrease monotonically. The equations that
define these approaches cannot process a data that is not numerical, e.g., categorical
or string type. However, the theory of decision trees does not rely on the data being
numerical. While other approaches start by writing equations about the properties
of data, decision trees start with drawing a tree-type structure such that at each node
there is a decision to be made. At heart, decision trees are heuristic structures that
can be built by a sequence of choices or comparisons that are made in certain order.

Let’s take an example of classifying different species on earth. We can start with
asking questions like: “Can they fly?”. Based on the answer, we can split the whole
gamut of species into two parts: ones that can fly and ones that can’t. Then we go
to the branch of species that cannot fly. We ask another question: “How many legs
do they have?”. Based on this answer we create multiple branches with answers like
2 legs, 4 legs, 6 legs, and so on. Similarly we can either ask same question for the
flying species or we can ask a different question and continue splitting the species
till we reach the leaf nodes such that there is only one single species there. This
approach essentially summarizes the conceptual process of building a decision tree.

Although the above process describes the high level operation underlying the
decision tree, the actual building process for a decision tree in a generalized setting
is much more complex. The reason for complexity lies in answering the following:
“how to choose which questions to ask and in which order?”. One can always start
asking random questions and ultimately still converge on the full solution, but when
the data is large and high dimensional, this random or brute force approach can never
be practical. There are multiple variations of the implementations of this concept
that are widely used in the machine learning applications.

© Springer Nature Switzerland AG 2020 53
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_6

54 6 Decision Trees
6.2 Why Decision Trees?

Before going into the details of decision tree theory, let’s understand why decision
trees are so important. Here are the advantages of using decision tree algorithms for
reference:

1. More human-like behavior.

2. Can work directly on non-numeric data, e.g., categorical.

3. Can work directly with missing data. As a result data cleaning step can be
skipped.

4. Trained decision tree has high interpretability compared to abstract nature of
trained models using other algorithms like neural networks, or SVM, etc.

5. Decision tree algorithms scale easily from linear data to nonlinear data without
any change in core logic.

6. Decision trees can be used as non-parametric model, thus hyperparameter tuning
becomes unnecessary.

6.2.1 Types of Decision Trees

Based on the application (classification or regression) there are some differences in
how the trees are built, and consequently they are called classification decision trees
and regression decision trees. However, we are going to treat the machine learning
techniques based on applications in the next part of the book and in this chapter,
we will focus on the fundamental concepts underlying the decision trees that are
common between both.

6.3 Algorithms for Building Decision Trees

Most commonly used algorithms for building decision trees are:

¢ CART or Classification and Regression Tree
* ID3 or Iterative Dichotomiser
e CHAID or Chi-Squared Automatic Interaction Detector

CART or classification and regression tree is a generic term used for describing
the process of building decision trees as described by Breiman—Friedman [39]. ID3
is a variation of CART methodology with slightly different use of optimization
method. CHAID uses a significantly different procedure and we will study it
separately.

The development of classification trees is slightly different but follows similar
arguments as a regression tree. Let’s consider a two-dimensional space defined by

6.4 Regression Tree 55

A
X2

)
w

A\ 4

Fig. 6.1 Rectangular regions created by decision tree

axes (x1, x2). The space is divided into 5 regions (R1, R2, R3, R4, Rs) as shown in
figure, using a set of rules as defined in Fig. 6.1.

6.4 Regression Tree

Regression trees are the trees that are designed to predict the value of a function
at given coordinates. Let us consider a set of N-dimensional input data {x;,i =
I,...,p and x; C NR"}. The corresponding outputs are {y;,i = 1,..., p and
yi C N} It is required that in case of regression trees the input and output data
is numerical and not categorical. Once given this training data, it is the job of the
algorithm to build the set of rules. How many rules should be used, what dimensions
to use, when to terminate the tree are all the parameters that the algorithm needs to
optimize based on the desired error rate.

Based on the example shown in Figs. 6.1 and 6.2, let the classes be regions R; to
Rs5 and the input data is two dimensional. In such case, the desired response of the
decision tree is defined as

t(x) =rVx; € Ry (6.1)

56 6 Decision Trees

Yes

No
b
Fig. 6.2 Hierarchical rules defining the decision tree

where r;, €) is a constant value of output in region Ry. If we define the optimization
problem as minimizing the mean square error,

=p
> i — 1)) (6.2)
i=1

then simple calculation would show that the estimate for 7y is given by
re = ave(yi|x; € Ry) (6.3)

Solving the problem to find the globally optimum regions to minimize the mean
square error is an NP-hard problem and cannot be solved in general in finite time.
Hence greedy methods resulting in local minimum are employed. Such greedy
methods typically result in a large tree that overfits the data. Let us denote such
large tree as Tp. Then the algorithm must apply a pruning technique to reduce the
tree size to find the optimal tradeoff that captures the most of the structure in the
data without overfitting it. This is achieved by using squared error node impurity
measure optimization as described in [39].

6.6 Decision Metrics 57
6.5 Classification Tree

In case of classification, the output is not a continuous numerical value, but a discreet
class label. The development of the large tree follows the same steps as described
in the regression tree subsection, but the pruning methods need to be updated as
the squared error method is not suitable for classification. Three different types of
measures are popular in the literature:

* Misclassification error
* Gini index
* Cross-entropy or deviance
Let there be “k” classes and “n” nodes. Let the frequency of class (i) predictions
at each node (i) be denoted as f;,,;. The fraction of the classes predicted as m at node

i be denoted as p,,;. Let the majority class at node m be c,,. Hence the fraction of
classes ¢, at node m would be py,, .

6.6 Decision Metrics

Let’s define the metrics used for making the decision at each node. Differences in
the metric definition separate the different decision tree algorithms.

6.6.1 Misclassification Error

Based on the variables defined above the misclassification rate is defined as 1 —
Dme,, - As can be seen from the figure this rate is not a continuous function and hence
cannot be differentiated. However, this is one of the most intuitive formulations and
hence is fairly popular.

6.6.2 Gini Index

Gini index is the measure of choice in CART. Concept of the Gini index can be
summarized as the probability of misclassification of a randomly selected input
sample if it was labelled based on the distribution of the classes in the given node.
Mathematically it is defined as

m=k

G=> pmi(l = pmi) (6.4)

m=1

58 6 Decision Trees

By =

00 | R
0.0 05 1.0

\J

Fig. 6.3 The plot of decision metrics for a case of 2 class problem. X-axis shows the proportion
in class 1. Curves are scaled to fit, without loss of generality

As the plot in Fig. 6.3 shows, this is a smooth function of the proportion and is
continuously differentiable and can be safely used in optimization.

6.6.3 Cross-Entropy or Deviance

Cross-entropy is an information theoretic metric defined as

m=k

== pmilog(pm)- (6.5)

m=1

This definition resembles classical entropy of a single random variable. However, as
the random variable here is already a combination of the class prediction and nodes
of the tree, it is called as cross-entropy. ID3 models use cross-entropy as the measure
of choice. As the plot in figure shows, this is a smooth function of the proportion
and is continuously differentiable and can be safely used in optimization.

6.7 CHAID

Chi-square automatic interaction detector or CHAID is a decision tree technique
that derives its origin in statistical chi-square test for goodness of fit. It was first
published by G. V. Kass in 1980, but some parts of the technique were already in

6.8 Training Decision Tree 59

use in 1950s. This test uses the chi-square distribution to compare a sample with a
population and predict at desired statistical significance whether the sample belongs
to the population. CHAID technique uses this theory to build a decision tree. Due
to the use of chi-square technique in building decision tree, this method is quite
different compared to any other types of decision trees discussed so far. Following
subsection discusses the details of the algorithm briefly.

6.7.1 CHAID Algorithm

The first task in building the CHAID tree is to find the most dependent variable. This
is in a way directly related to what is the final application of the tree. The algorithm
works best if a single desired variable can be identified. Once such variable is
identified, it is called as root node. Then the algorithm tries to split the node into
two or more nodes, called as initial or parent nodes. All the subsequent nodes are
called as child nodes, till we reach the final set of nodes that are not split any further.
These nodes are called as terminal nodes. Splitting at each node is entirely based on
statistical dependence as dictated by chi-square distribution in case of categorical
data and by F-test in case of continuous data. As each split is based on dependency
of variables, unlike a more complex expression like Gini impurity or cross-entropy
in case of CART or ID3-based trees, the tree structure developed using CHAID is
more interpretable and human readable in most cases.

6.8 Training Decision Tree

We are not going into full mathematical details of building a decision tree using
CART or ID3, but the following steps will explain the methodology in sufficient
details and clarity.

6.8.1 Steps

—_—

. Start with the training data.

2. Choose the metric of choice (Gini index or cross-entropy).

3. Choose the root node, such that it splits the data with optimal values of metrics
into two branches.

4. Split the data into two parts by applying the decision rule of root node.

5. Repeat the steps 3 and 4 for each branch.

6. Continue the splitting process till leaf nodes are reached in all the branches with

predefined stop rule.

60 6 Decision Trees
6.9 Ensemble Decision Trees

In previous sections we learned ways to develop a single decision tree based on
different techniques. In many situations such trees work very well, but there are
ways to extract more performance out of the similar architecture if we create
multiple such trees and aggregate them. Such techniques are called as ensemble
methods and they typically deliver superior performance at the cost of computation
and algorithmic complexity. In ensemble methods, a single decision tree is called
as a single learner or weak learner and the ensemble methods deal with a group of
such learners.

There are various approaches proposed in the literature that can successfully
combine multiple weak learners to create a strong overall model.! Each weak learner
in the ensemble of learners captures certain aspects of the information contained in
the data that is used to train it. The job of ensemble tree is to optimally unite the weak
learners to have better overall metrics. Primary advantage of ensemble methods is
reduction in overfitting.

There are three main types of ensembles:

1. Bagging
2. Random forest
3. Boosting

6.10 Bagging Ensemble Trees

The term bagging finds it origins in Bootstrap Aggregation. Coincidentally, literal
meaning of bagging, which means putting multiple decision trees in a bag is not too
far from the way the bagging techniques work. Bagging technique can be described
using following steps:

1. Split the total training data into a predetermined number of sets with random
sampling with replacement. The term With replacement means that same sample
can appear in multiple sets. Each sample is called as Bootstrap sample.

2. Train decision tree using CART or ID3 method using each of the data sets.

. Each learned tree is called as a weak learner.

4. Aggregate all the weak learners by averaging the outputs of individual learners
for the case of regression and aggregate all the individual weak learners by voting

[SN]

IThe words weak and strong have a different meaning in this context. A weak learner is a decision
tree that is trained using only fraction of the total data and is not capable or even expected of
giving metrics that are close to the desired ones. Theoretical definition of a weak learner is one
whose performance is only slightly better than pure random chance. A strong learner is a single
decision tree uses all the data and is capable of producing reasonably good metrics. In ensemble
methods individual tree is always a weak learner as it is not exposed to the full data set.

6.11 Random Forest Trees 61

for the case of classification. The aggregation steps involve optimization, such
that prediction error is minimized.

5. The output of the aggregate or ensemble of the weak learners is considered as the
final output.

The steps described above seem quite straightforward and does not really involve
any complex mathematics or calculus. However, the method is quite effective. If the
data has some outliers,” a single decision tree can get affected by it more than an
ensemble can be. This is one of the inherent advantages of bagging methods.

6.11 Random Forest Trees

Bagging process described above improves the resilience of the decision trees
with respect to outliers. Random forest methods go one step forward to make the
ensemble even more resilient in case of varying feature importances. Even after
using a carefully crafted feature space, not all features are equally influential on the
outcome. Also certain features can have some interdependencies that can affect their
influence on the outcome in counterproductive manner. Random forest tree archi-
tecture improves model performance in such situations over previously discussed
methods by partitioning feature space as well as data for individual weak learner.
Thus each weak learner sees only fraction of samples and fraction of features. The
features are also sampled randomly with replacement [48], as data is sampled with
replacement in bagging methods. The process is also called as random subspace
method, as each weak learner works in a subspace of features. In practice, this sam-
pling improves the diversity among the individual trees and overall makes the model
more robust and resilient to noisy data. The original algorithm proposed by Tin Ho
was then extended by Breiman [49] to merge the multiple existing approaches in the
literature to what is now commonly known as random forest method.

6.11.1 Decision Jungles

Recently a modification to the method of random forests was proposed in the form of
Decision Jungles [62]. One of the drawbacks of random forests is that they can grow

2Qutliers represent an important concept in the theory of machine learning. Although, its meaning
is obvious, its impact on learning is not quite trivial. An outlier is a sample in training data that
does not represent the generic trends in the data. Also, from mathematical standpoint, the distance
of an outlier from other samples in the data is typically large. Such large distances can throw
a machine learning model significantly away from the desired behavior. In other words, a small
set of outliers can affect the learning of a machine learning model adversely and can reduce the
metrics significantly. It is thus an important property of a machine learning model to be resilient of
a reasonable number of outliers.

62 6 Decision Trees

exponentially with data size and if the compute platform is limited by memory, the
depth of the trees needs to be restricted. This can result in suboptimal performance.
Decision jungles propose to improve on this by representing each weak learner in
random forest method by a directed acyclic graph DAG instead of open-ended tree.
The DAG has capability to fuse some of the nodes thereby creating multiple paths
to a leaf from root node. As a result decision jungles can represent the same logic
as random forest trees, but in a significantly compact manner.

6.12 Boosted Ensemble Trees

Fundamental difference between boosted and bagging (or random forest for that
matter) is the sequential training of the trees against the parallel training. In bagging
or random forest methods all the individual weak learners are generated using
random sampling and random subspaces. As all the individual weak learners are
independent of each other, they all can be trained in parallel. Only after they are
completely trained their results are aggregated. Boosting technique employs a very
different approach, where first tree is trained based on a random sample of data.
However, the data used by the second tree depends on the outcome of training of first
tree. The second tree is used to focus on the specific samples where first decision tree
is not performing well. Thus training of second tree is dependent on the training of
first tree and they cannot be trained in parallel. The training continues in this fashion
to third tree and fourth and so on. Due to unavailability of parallel computation, the
training of boosted trees is significantly slower than training tress using bagging
and random forest. Once all the trees are trained then the output of all individual
trees is combined with necessary weights to generate final output. In spite of the
computational disadvantage exhibited by the boosted trees, they are often preferred
over other techniques due to their superior performance in most cases.

6.12.1 AdaBoost

AdaBoost was one of the first boosting algorithms proposed by Freund and Schapire
[51]. The algorithm was primarily developed for the case of binary classification
and it was quite effective in improving the performance of a decision tree in a
systematic iterative manner. The algorithm was then extended to support multi-class
classification as well as regression.

6.12.2 Gradient Boosting

Breiman proposed an algorithm called as ARCing [50] or Adaptive Reweighting
and Combining. This algorithm marked the next step in improving the capabilities

6.13 Conclusion 63

of boosting type methods using statistical framework. Gradient boosting is a
generalization of AdaBoost algorithm using statistical framework developed by
Breiman and Friedman [39]. In gradient boosted trees, the boosting problem is
stated as numerical optimization problem with objective to minimize the error
by sequentially adding weak learners using gradient descent algorithm. Gradient
descent being a greedy method, gradient boosting algorithm is susceptible to
overfitting the training data. Hence regularization techniques are always used with
gradient boosting to limit the overfitting.

6.13 Conclusion

In this chapter we studied the concept of decision trees. These methods are
extremely important and useful in many applications encountered in practice. They
are directly motivated by the hierarchical decision making process very similar to
the human behavior in tackling real life problems and hence are more intuitive
than the other methods. Also, the results obtained using decision trees are easier
to interpret and these insights can be used to determine action to be taken after
knowing the results. We also looked at ensemble methods that use aggregate of
multiple decision trees to optimize the overall performance and make the models
more robust and generic.

Chapter 7 ®
Support Vector Machines Qe

7.1 Introduction

Theory of support vector machines or SVMs is typically attributed to Vladimir
Vapnik. He was working in the field of optimal pattern recognition using statistical
methods in the early 1960s. His paper with Lerner [52] on generalized portrait
algorithm marks the beginning of the support vector machines. This method was
primarily designed to solve the problem of binary classification using construction
of optimal hyperplane that separates the two classes with maximum separation.

7.2 Motivation and Scope

Original SVM algorithm is developed for binary classification. Figure shows the
concept of SVM in case of linear application. The algorithm of SVM tries to
separate the two classes with maximal separation using minimum number of data
points, also called as support vectors, as shown in Figs. 7.1 and 7.2. Figure 7.1 shows
the case of linearly separable classes and the result is trivial. The solid line represents
the hyperplane that optimally separates the two classes. The dotted lines represent
the boundaries of the classes as defined by the support vectors. The class separating
hyperplane tries to maximize the distance between the class boundaries. However,
as can be seen in Fig. 7.2, where the classes are not entirely linearly separable,
the algorithm still finds the optimal support vectors. Once the support vectors are
identified, the classification does not need the rest of the samples for predicting the
class. The beauty of the algorithm lies in the drastic reduction in the number of
support vectors compared to number of total training samples.

© Springer Nature Switzerland AG 2020 65
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_7

66 7 Support Vector Machines

LI | ° . L]
L] +1 . .
50 O Support Veclors . - E

40 -

or

2r

A0F e® . g

-20 [n

L 1 Il 1 1 L 1 Il L 1 L

0 5 10 15 20 25 30 35 40 45 50

Fig. 7.1 Linear binary SVM applied on separable data

7.2.1 Extension to Multi-Class Classification

As per the conceptual setup of SVM, it is not directly extensible for solving the prob-
lem of multi-class classification. However there are few approaches commonly used
to extend the framework for such case. One approach is to use SVM as binary classi-
fier to separate each pair of classes and then apply some heuristic to predict the class
for each sample. This is extremely time consuming method and not the preferred
one. For example, in case of 3-class problem, one has to train the SVM for separating
classes 1-2, 1-3, and 2-3, thereby training 3 separate SVMs. The complexity will
increase in polynomial rate with more classes. In other approach binary SVM is
used to separate each class from the rest of the classes. With this approach, for 3-
class problem, one still has to train 3 SVMs, 1-(2,3), 2-(1,3), and 3-(1,2). However,
with further increase in the number of classes, the complexity increases linearly.

7.2.2 Extension for Nonlinear Case

The case of nonlinear separation can be solved by using suitable kernels. The
original data can be transformed into arbitrarily higher dimensional vectors using

7.3 Theory of SVM 67

o .1

60 I [] +1 -
O Support Vectors .

2r

L - 1 1 Il 1 Il Il L 1 Il L

0 5 10 15 20 25 30 35 40 45 50

Fig. 7.2 Linear binary SVM applied on non-separable data

suitable kernel functions. After the transformation, the equations of linear SVM are
applicable as is leading to optimal classification.

7.3 Theory of SVM

In order to understand how the SVMs are trained it is important to understand the
theory behind SVM algorithm. This can get highly mathematical and complex, how-
ever, [am going to try to avoid the gory details of derivations. Reader is encouraged
to read [37] for detailed theoretical overview. I will state the assumptions on which
the derivations are based and then move to final equations that can be used to train
the SVM without losing the essence of SVM.

Let us consider a binary classification problem with n-dimensional training data
set consisting of p pairs (X;, y;), such that x; € %" and y; € {—1, +1}. Let the
equation of the hyperplane that separates the two classes with maximal separation
be given as

W-X)—wp=0 (7.1)

68 7 Support Vector Machines
Here w € 9" same as x. For the samples belonging to each class we can write

1, ify =1
wox)—wp{ (7.2)
<1, ify;=-1

The two equations can be combined into a single equation as
yil(w-x) —wol>1,i=1,...,p (7.3)

The above equation can be solved to get multiple solutions for weight vector.
In order to get the solution that also minimizes the weight vector we impose a
constraint to minimize ® (w). Where & (w) is given as

d(w) = |W]|? (7.4)

where W’ is an (n + 1) dimensional vector that is combination of w and wy.

Thus we have arrived at a point where we can define the optimization problem
that needs to be solved. To obtain the precise equation of the hyperplane, we need
to minimize the functional ®(w’) with constraints defined in Eq.7.3. Typically
such problems are solved using the technique of Lagrangian, that combines the
functional that is to be minimized and the constraints into a single Lagrange
functional that needs to be minimized,

min { <% Do l—yil(w-x) - wo]) + m(w)} (7.5)

i=1

With some manipulations, the Lagrangian in Eq. 7.5 reduces to a subset that con-
tains only a very small number of training samples that are called as support vectors.
As can be seen from Fig. 7.1, these support vectors are the vectors that represent the
boundary of each class. After some more mathematical trickery performed using
well-known Kiihn-Tucker conditions, one arrives at convex quadratic optimization
problem, which is relatively straightforward to solve. The equation to compute the
optimal weight vector W can then be given in terms of Lagrange multipliers «; > 0
as

W= Z YVidiXi (7.6)

support vectors only

Once these parameters are computed as part of training process, the classifying
function can be given as (for a given sample Xx),

fe(x) = sign > v -x) —a (7.7)

support vectors only

7.4 Separability and Margins 69
7.4 Separability and Margins

The SVM algorithm described above is designed to separate the classes that are
in fact completely separable. In other words, when the separating hyperplane is
constructed, between the two classes, entirety of the one class lies on one side of
the hyperplane and entirety of other class lies on the opposite side of the hyperplane
with 100% accuracy in separation. The margins defined in Eq. 7.2 are called as hard
margins that impose complete separability between the classes. However, in practice
such cases are seldom found. In order to account for the cases that are not entirely
separable, soft margins were introduced. In order to understand the soft margins, let
us write Eq. 7.3 in slightly different manner as

0>1—ylwx)—wol,i=1,....p (7.8)

7.4.1 Regularization and Soft Margin SVM

For all the cases when the samples are not separable, the above inequality will not
be satisfied. To accommodate such cases the optimization problem is re-formulated
using regularization techniques. New Lagrangian to be minimized is given as

min { (l > max(0, 1 — y;[(w-x) — wo])> + A@(w)} (7.9)
i=1

w n “

Here, with the max function we are essentially ignoring the cases when there is error
in the classification.

7.4.2 Use of Slack Variables

Another way to accommodate for case of non-separable data is use of slack variables
denoted as &;. With use of slack variables the cost functional is updated as

ow) = [wI>+CY & (7.10)
i=1

where & > 0,i = 1, ..., m. Now the optimization operation also needs to find the
values of all the slack variables. This approach is also called as C-SVM.

70 7 Support Vector Machines
7.5 Nonlinearity and Use of Kernels

Use of kernels is one of the ground breaking discoveries in the field of machine
learning. With the help of this method, one can elegantly transform a nonlinear
problem into a linear problem. These kernel functions are different from the link
functions that we discussed in Chap. 4. In order to understand the use of kernels
in case of support vector machines, let’s look at Eq. 7.7, specifically the term (x.x).
Here we are taking a dot product of input vector with itself and as a result generating
a real number. Use of kernel function' states that we can replace the dot product
operation with a function that accepts two parameters, (in this case both will be
input vector) and outputs a real valued number. Mathematically, this kernel function
is written as

k:(x-x)— N (7.11)

Although, this representation allows for using any arbitrary kernel function to
transform the original data, in order to have deterministic answers in all the
situations, the kernel function needs to be positive definite function. A positive
definite function needs to satisfy a property defined by Mercer’s theorem. Mercer’s

theorem states that for all finite sequence of points xi,x2,...,x, and all real
numbers ci, ¢, . .., ¢, the kernel function should satisfy,
n n
>0 k(xi.xj)eic; = 0 (7.12)

i=1 j=1

With appropriate choice of such positive definite kernel function, one can map the
n-dimensional input to a real valued output in a deterministic linear manner. If we
know certain nonlinearity trends in the data, we can build a custom kernel function
that will transform the problem suitable to be solved by the linear support vector
machine. Some of the commonly used kernel functions are:

7.5.1 Radial Basis Function

Radial basis function kernel with variance o is given as

L _ (||x,-—x,-||2)
(xi,xj) =exp| ————— (7.13)

202

ISometimes this is also called as kernel trick, although this is far more than a simple trick. A
function needs to satisfy certain properties in order to be able called as kernel function. For more
details on kernel functions refer to [37].

7.7 Conclusion 71

This representation of SVM resembles closely with radial basis function neural
networks that we learnt in Chap. 5. In some cases, use of squared distance between
the two inputs can be lead to vanishingly low values. In such cases a variation of
above function, called as Laplacian radial basis function is used. It is defined as

L _ (||xi—xj||)
(xi, xj) = exp e — (7.14)

7.5.2 Polynomial

For polynomial with degree d, the kernel function is given as

k(xi,xj) = (xi - xj + 1) (7.15)

7.5.3 Sigmoid

Sigmoid kernel can also be used that resembles a traditional neural network. It is
defined as

k(xi, x;) = tanh(Ax]x; + B) (7.16)

7.6 Risk Minimization

Methods based on risk minimization, sometimes called as structural risk minimiza-
tion [64], essentially aim at learning to optimize the given system with constraints on
parameters imposed by regularization as well as problem definition itself. Support
vector machines solve this problem of risk minimization in elegant fashion. These
methods strike the balance between performance optimization and reduction in
overfitting in programmatic manner. Vapnik further extended the theory of structural
risk minimization for the cases of generative models using vicinal risk minimization
[63]. These methods can be applied to the cases that do not fit in the traditional SVM
architecture, such as problems with missing data, or unlabelled data.

7.7 Conclusion

In this chapter we studied an important pillar of machine learning theory, the support
vector machines. SVM represents a mathematically elegant architecture to build an
optimal classification or regression model. The training process is bit complex and
needs tuning of some hyperparameters, but once properly tuned SVM models tend
to provide very high accuracy and generalization capabilities.

Chapter 8 ®
Probabilistic Models Chock or

8.1 Introduction

Most algorithms studied thus far are based on algebraic, graphical, and/or calculus
based methods. In this chapter we are going to focus on the probabilistic methods.
Probabilistic methods try to assign some form of uncertainty to the unknown
variables and some form of belief probability to known variables and try to
find the unknown values using the extensive library of probabilistic models. The
probabilistic models are mainly classified into two types:

1. Generative
2. Discriminative

The generative model takes a more holistic approach towards understanding the
data compared to discriminative models. Commonly, the difference between the
two types is given in terms of the probabilities that they deal with. If we have
an observable input X and observable output Y, then the generative models try to
model the joint probability P(X; Y), while the discriminative models try to model
the conditional probability P(Y|X). Most non-probabilistic approaches discussed
so far also belong to the class of discriminative models. Although this definition of
separation between the two approaches can be quite vague and confusing at times.
Hence, we will try to define the two more intuitively. Before going into the definition
we need to add few more concepts. Let there be a hidden entity called state S along
with the input and output. The input actually makes some changes into the state
of the system, and that change along with the input dictates the output. Now, let’s
define the discriminative models as the models that try to predict the changes in the
output based on only changes in the input. The generative models are the models
that try to model the changes in the output based on changes in input as well as the
changes in the state. This inclusion and modeling of the state gives a deeper insight
into the systemic aspects and the generative models are typically harder to build
and need more information and assumptions to start with. However, there are some

© Springer Nature Switzerland AG 2020 73
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_8

74 8 Probabilistic Models

inherent advantages that come with this added complexity as we will see in later
sections of this chapter./AQPlease check the sentence “Although this definition...”
for clarity.

The probabilistic approaches (discriminative as well as generative) are also sliced
based on two universities of thought groups:

1. Maximum likelihood estimation
2. Bayesian approach

8.2 Discriminative Models

We will first discuss the distinction between these two classes from the perspective
of discriminative models and then we will turn to generative models.

8.2.1 Maximum Likelihood Estimation

The maximum likelihood estimation or MLE approach deals with the problems at
the face value and parameterizes the information into variables. The values of the
variables that maximize the probability of the observed variables lead to the solution
of the problem. Let us define the problem using formal notations. Let there be a
function f(x; 6) that produces the observed output y. x € R” represent the input on
which we don’t have any control over and 6 € © represent a parameter vector that
can be single or multidimensional. The MLE method defines a likelihood function
denoted as L(y|6). Typically the likelihood function is the joint probability of the
parameters and observed variables as L(y|0) = P(y; 0). The objective is to find the
optimal values for 6 that maximizes the likelihood function as given by

gMLE _ argmax{L(y|0)} (8.1)
6c®
or,
oMLE — argmax{P(y; 0)} (8.2)
0e®

This is a purely frequentist approach that is only data dependent.

8.2.2 Bayesian Approach

Bayesian approach looks at the problem in a different manner. All the unknowns
are modelled as random variables with known prior probability distributions. Let
us denote the conditional prior probability of observing the output y for parameter

8.2 Discriminative Models 75

vector 6 as P(y|6). The marginal probabilities of these variables are denoted as
P(y) and P(0). The joint probability of the variables can be written in terms of
conditional and marginal probabilities as

P(y;0) = P(yl6) - P(6) (8.3)
The same joint probability can also be given as

P(y;0) = P@ly)- P(y) (8.4)

Here the probability P(6/y) is called as posterior probability. Combining Egs. 8.3
and 8.4

P@ly)- P(y)=P(|0)- P(6) (8.5)

rearranging the terms we get

P(y|0)-P@®
P@ly) = % (8.6)

Equation 8.6 is called as Bayes’ theorem. This theorem gives relationship between
the posteriory probability and priori probability in a simple and elegant manner. This
equation is the foundation of the entire bayesian framework. Each term in the above
equation is given a name, P () is called as prior, P(y|0) is called as likelihood,
P (y) is called as evidence, and P(0|y) is called as posterior. Thus in this worm the
Bayes’ theorem is stated as/AQ Please check the sentence “Thus in this worm...” for
clarity.

ior) - (likelihood
(posterior) = (prior) .(1 clihood) (8.7)
(evidence)

The Bayes’ estimate is based on maximizing the posterior. Hence, the optimiza-
tion problem based on Bayes’ theorem can now be stated as

6B — arg max{P(0]y} (8.8)
0e®
expanding the term
P(y|0)- P@©
6B — arg max { M} (8.9)
9cO P(y)

Comparing this equation with 8.2, we can see that Bayesian approach adds more
information in the form of priori probability. Sometimes, this information is
available, and then Bayesian approach clearly becomes the preferred, but in cases

76 8 Probabilistic Models

when this information is not explicitly available, one can still assume certain default
distribution and proceed.

8.2.3 Comparison of MLE and Bayesian Approach

These formulations are relatively abstract and in general can be quite hard to
comprehend. In order to understand them to the full extent let us consider a simple
numerical example. Let there be an experiment to toss a coin for 5 times. Let’s say
the two possible outcomes of each toss are H, T, or Head or Tail. The outcome of
our experiment is H, H, T, H, H. The objective is to find the outcome of the 6th
toss. Let’s work out this problem using MLE and Bayes’ approach.

8.2.3.1 Solution Using MLE

The likelihood function is defined as, L(y|#) = P(y;6), where y denotes the
outcome of the trial and 6 denotes the property of the coin in the form of probability
of getting given outcome. Let probability of getting a Head be h and probability of
getting a Tail will be 1 —h. Now, outcome of each toss is independent of the outcome
of the other tosses. Hence the total likelihood of the experiment can be given as

P(y;0) = P(y=H|0 =h)*- P(y =T|0 = (1 — h)) (8.10)
Now, let us solve this equation,

P(y;0)=h-h-(1—h)-h-h

P(y:0) = h* — 1
In order to maximize the likelihood, we need to use the fundamental principle from
differential calculus, that at any maximum or minimum of a continuous function the
first order derivative is 0. In order to maximize the likelihood, we will differentiate

above equation with respect to & and equate it to 0. Solving the equation (assuming
h # 0) we get,

9
—P(y;0) =0
o (y; 0)

9

—h*=h)=0

8h()

4.0 —-5.1*=0
4.0 =5.hn*

8.2 Discriminative Models 77

4
h

TN

. o . . 4
This probability of getting Head in the next toss would be =.

8.2.3.2 Solution Using Bayes’s Approach

Writing the posterior as per Bayes’ theorem,

P(y|0)- P(®
P@ly) = % (8.11)

Comparing this equation with the Eq. 8.10, we can see that the likelihood function
is same as the term P (y|6) in current equation. However, we need value for another
entity P(0) and that is the prior. This is something that we are going to assume
as it is not explicitly given to us. If we assume the prior probability to be uniform,
then it is independent of 6 and the outcome of Bayes’ approach will be same as
the outcome of MLE. However, in order to showcase the differences between the
two approaches, let us use a different and non-intuitive prior. Let P(0 = h) = 2h.
Consequently P(0 = T). While defining this prior, we need to make sure that it is
a valid probability density function. The easiest way to make sure that is to confirm
hh2=01 P(@® = h) = 1. As can be seen from figure, it is indeed true. There is one
more factor in the equation in the form of evidence, P(y). However, this value is
probability of occurrence of the output without any dependency on the constant
bias, and is constant with respect to 2. When we differentiate with respect to &, the
effect of this parameter is going to vanish. Hence, we can safely ignore this term for
the purpose of optimization (Fig. 8.1).
So we can now proceed with the optimization problem as before. In order to
maximize the posterior, let’s differentiate it with respect to / as before,

9 PGIO) - PO) _

"y PO) 0 (8.12)

9
—P@®|y) =
o ©@1y)

Substituting the values and solving (assuming z # 0),

0 PGIO)-PO) _
oh PGy

0
aih((z-h)5 P(y=HIo=h* Py=TIe =1—-h)) =0

3
8—h(25 W= k) =0

78 8 Probabilistic Models

P(6=

0 W i L . L L L —L - L - .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Fig. 8.1 Probability density function (pdf) for the prior

oh
9.k —10-1°=0
9.n8 =104
9
h=—
10

With Bayes’s approach, probability of getting Head in the next toss would be %.
Thus assumption of a non-trivial prior with Bayes’ approach leads to a different
answer compared to MLE.

8.3 Generative Models

As discussed earlier, generative models try to understand how the data that is
being analyzed came to be in the first place. They find applications in multiple
different fields where we need to synthesize speech, images, or 3D environments
that resemble the real life but is not directly copied from any of the real examples.
The generative models can be broadly classified into two types: (1) Classical models
and (2) Deep learning based models. We will look at few examples of classical
generative models briefly.

8.4 Some Useful Probability Distributions 79

Fig. 8.2 Sample Bayesian
network

8.3.1 Mixture Methods

One of the fundamental aspect of generative models is to understand the composi-
tion of the input. Understand how the input data came to existence in the first place.
Most simplistic case would be to have all the input data as outcome of a single
process. If we can identify the parameters describing the process, we can understand
the input to its fullest extent. However, typically any input data is far from such ideal
case, and it needs to be modelled as an outcome of multiple processes. This gives
rise to the concept of mixture models.

8.3.2 Bayesian Networks

Bayesian networks represent directed acyclic graphs as shown in Fig. 8.2. Each node
represents an observable variable or a state. The edges represent the conditional
dependencies between the nodes. Training of Bayesian network involves identifying
the nodes and predicting the conditional probabilities that best represent the given
data.

8.4 Some Useful Probability Distributions

We will conclude this chapter with detailing some of the commonly used probability
distributions. There are likely hundreds of different distributions studied in the
literature of probability and statistics. We don’t want to study them all, but in my
experience with machine learning projects so far, I have realized that knowledge
of few key distributions goes a long way. Hence, I am going to describe these

80 8 Probabilistic Models

distributions here without going to into theoretical details of their origins etc.
We will look at the probability density functions or pdf’s and cumulative density
functions or cdf’s of these distributions and take a look at the parameters that define
these distributions. Here are the definitions of these quantities for reference:

Definition 8.1 pdf A probability density function or pdf is a function P(X = x)
that provides probability of occurrence of value x for a given variable X. The plot of
P(X = x) is bounded between [0, 1] on y-axis and can spread between [—00, 00]
on x-axis and integrates to 1.

Definition 8.2 cdf A cumulative density function or cdf is a function C(X = x)
that provides sum of probabilities of occurrences of values of X between [—o0, x].
This plot is also bounded between [0, 1]. Unlike pdf, this plot starts at O on left and
ends into 1 at the right.

I would strongly advise the reader to go through these distributions and see the
trends in the probabilities as the parameters are varied. We come across distributions
like these in many situations and if we can match a given distribution to a known
distribution, the problem can be solved in far more elegant manner.

8.4.1 Normal or Gaussian Distribution

Normal distribution is one of the most widely used probability distribution. It is also
called as bell shaped distribution due to the shape of its pdf. The distribution has
vast array of applications including error analysis. It also approximates multitude
of other distributions with more complex formulations. Another reason the normal
distribution is popular is due to central limit theorem.

Definition 8.3 Central Limit Theorem Central limit theorem states that, if suffi-
ciently large number of samples are taken from a population from any distribution
with finite variance, then the mean of the samples asymptotically approaches the
mean of the population. In other words, sampling distribution of mean taken from
population of any distribution asymptotically approaches normal distribution.

Hence sometimes the normal distribution is also called as distribution of distribu-
tions.

Normal distribution is also an example of continuous and unbounded distribu-
tion, where the value of x can span [—o00, co]. Mathematically, the pdf of normal
distribution is given as

(x — w?

1
Prormal (x|, 0) = \/ﬁ exp [—T}
JTO

(8.13)

8.4 Some Useful Probability Distributions 81

where u is the mean and o is the standard deviation of the distribution. Variance is
2. cdf of normal distribution is given as

Chormal (X|@, 0) = l 1 +erf TR (8.14)
2 o2

where erf is a standard error function, defined as

1 x 2

erf(x) = — e’ (8.15)
VTS —x
functional that is being integrated is symmetric, hence it can also be written as
2 [_p
erf(x) = — / e’ (8.16)
Ve

The plots of the pdf and cdf are shown in figure (Figs. 8.3 and 8.4).

8.4.2 Bernoulli Distribution

Bernoulli distribution is an example of discrete distribution and its most common
application is probability of coin toss. The distribution owes its name to a great
mathematician of the seventeenth century, Jacob Bernoulli. The distribution is based
on two parameters p and ¢, which are related as p = 1 — g. Typically p is called
the probability of success (or in case of coin toss, it can be called as probability
of getting a Head) and q is called the probability of failure (or in case of coin toss,
probability of getting a Tail). Based on these parameters, the pdf (sometimes, in case
of discrete variables, it is called as probability mass function or pmf, but for the sake
of consistency, we will call it pdf) of Bernoulli distribution is given as

D, ifk =1,
g=1—p, ifk=0.

Poernoutti (k| p,) = (8.17)

here, we use the discrete variable k instead of continuous variable x. The cdf is given
as

0, if k <0,
Chernoutti (k| p, q) = g=1—p, f0<k<l, (8.18)
1, ifk>1.

82 8 Probabilistic Models

0.4 Normal distribution cdfs

1=0,0=1

0.35 - /l \ 1=0,0=3| |
1=0,0=5

0.3

025

02

015

0.05

=00

1 T T

08+

0.7+

06

0.5

0.4+

03+

02

0.1

0
-00 : ; ; 0 : ; : 00

Fig. 8.3 Plot of normal pdfs for 0 mean and different variances

8.4 Some Useful Probability Distributions

Normal distribution cdfs

0.4 T T

| |
0.35 | \

p=-2,0=1
p=2,0=3
1=3,0=5

|

|

03+ |
|

0.25
02}

015

0.05

=00

-""—''_J—._.___

09

p=-2,0=1
p=2,0=3
,[J,=3.0‘=5

08

0.7

06

0.5

0.4

03r

0.2

0.1rf

0 1
-00 ; 3 3 0

Fig. 8.4 Plot of normal pdfs for different means and different variances

83

84 8 Probabilistic Models

8.4.3 Binomial Distribution

Binomial distribution generalizes Bernoulli distribution for multiple trials. Binomial
distribution has two parameters n and p. n is number of trials of the experiment,
where probability of success is p. The probability of failure is ¢ = 1 — p just like
Bernoulli distribution, but it is not considered as a separate third parameter. The pdf
for binomial distribution is given as

Pginomial (k|n, p) = (Z)Pk(l - P)n_k (8.19)
where
(”) __m (8.20)
k k'(n —k)!

is called as binomial coefficient in this context. It also represents the number
of combinations of k in n from the permutation-combination theory where it is

represented as

The cdf of binomial distribution is given as

k

Cinomial (K1, p) =) (’Z)pfa -p" (8.22)

i=0

8.4.4 Gamma Distribution

Gamma distribution is also one of the very highly studied distribution in theory of
statistics. It forms a basic distribution for other commonly used distributions like
chi-squared distribution, exponential distribution etc., which are special cases of
gamma distribution. It is defined in terms of two parameters: « and 8. The pdf of
gamma distribution is given as

ooa—1,—Bx
Pgamma(xm’ B) = IBXTO; (8.23)

where x > 0 and «, 8 > 0. The simple definition of I'(«) for integer parameter is
given as a factorial function as

'n)=m-1)! (8.24)

8.4 Some Useful Probability Distributions 85

The same definition is generalized for complex numbers with positive real parts as
o
o) = f x* e dx (8.25)
0

This function also follows the recursive property of factorials as
MNa)=(—DH'(@e—-1) (8.26)

Figure 8.5 shows plots of the pdf for variable « and § values.
The cdf of gamma function cannot be stated easily as a single valued function,
but rather is given as sum of an infinite series as

o0

Coamma(x|a, B) = e P Z

i=a

('Bi—):)l (8.27)

Figure 8.6 shows plots of the cdf for variable o and 8 values similar to the ones
shown for pdf.

8.4.5 Poisson Distribution

Poisson distribution is a discrete distribution loosely similar to Binomial distribu-
tion. Poisson distribution is developed to model the number of occurrences of an
outcome in fixed interval of time. It is named after a French mathematician Siméon
Poisson. The pdf of Poisson distribution is given in terms of number of events (k) in
the interval as

v
Ppoisson(k) = e~ F (8.28)
where the single parameter A is the average number of events in the interval. The
cdf of Poisson distribution is given as

k .
A’l
Cpoisson (k) = e~ lambda Z 7 (8.29)
i=0
Figures 8.7 and 8.8 show the pdf and cdf of Poisson distribution for various values
of the parameter A.

86

Varying o

8 Probabilistic Models

a=20,6=1.0
a=20,5=20
a=20,06=3.0
a=200=4.0

0 2 4 6

Fig. 8.5 Plot of Gamma pdfs for different values of « and

8.4 Some Useful Probability Distributions

Varying a

09 b
0.8 b
0.7 b
0.6 B
0.5 b
0.4 b
0.3 a=1.03=1.0| -
a=203=1.0
0.2 a=300=10| A
-a=4.0,5=10
0.1 B
0 » 1
0 2 4 6 8 10
a=208=10| 1
a=20,3=20
a=20,3=3.0| 1
a=20,3=4.0
8 10

Fig. 8.6 Plot of Gamma cdfs for different values of « and B

87

88

8 Probabilistic Models
pdf of Poisson distributions for different values of A
0.4 T T T -1 T T T
x=1
A=2
. A=s ||
0.35 g

Fig. 8.7 Plot of Poisson pdfs for different values of A

. _cdfof P

oisson distributions for different values of A
L B e

10 12 14
Fig. 8.8 Plot of Poisson cdfs for different values of A

8.5 Conclusion 89

8.5 Conclusion

In this chapter, we studied various methods based on probabilistic approach.
These methods start with some different fundamental assumptions compared to
other methods, specifically the ones based on Bayesian theory. The knowledge of
priory knowledge separates them from all other methods. If available, this priory
knowledge can improve the model performance significantly as we saw in fully
worked example. Then we concluded the chapter with learning bunch of different
probability distributions with their density and cumulative functions.

Chapter 9 ®
Dynamic Programming and Qe
Reinforcement Learning

9.1 Introduction

The theory of dynamic programming was developed by Bellman [38] in 1950s. In
the preface of his iconic book, he defines dynamic programming as follows:
The purpose of this book is to provide introduction to the mathematical theory of multi-

stage decision process. Since these constitute a somewhat complex set of terms we have
coined the term dynamic programming to describe the subject matter.

This is very interesting and apt naming as the set of methods that come under the
umbrella of dynamic programming is quite vast. These methods are deeply rooted
in pure mathematics, but are more favorably expressed so that they can be directly
implemented as computer programs. In general such multi-stage decision problems
appear in all sorts of industrial applications, and tackling them is always a daunting
task. However, Bellman describes a structured and sometimes iterative manner
in which the problem can be broken down and solved sequentially. There exists
a notion of state machine in sequential solution of the subproblems and context
of subsequent problems changes dynamically based on the solution of previous
problems. This non-static behavior of the methods imparts the name dynamic. These
types of problems also marked the early stages of Artificial Intelligence in the form
of expert systems.

9.2 Fundamental Equation of Dynamic Programming

In general, the problem that dynamic programming tries to solve can be given in
the form of a single equation and it is called as Bellman equation (Fig.9.1). Let us
consider a process that goes through N steps. At each step there exist a state and
possible set of actions. Let the initial state be sg and first action taken be ap. We also

© Springer Nature Switzerland AG 2020 91
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_9

92 9 Dynamic Programming and Reinforcement Learning

Fig. 9.1 The setup for Bellman equation

constrain the set of possible actions in step ¢ as a; € I'(s;). Depending on the action
taken, the next state is reached. Let us call the function that combines the current
state and action and produces next state as 7 (s, a). Hence s1 = T (sg, ag). As the
process is going through multiple states, let the problem we are trying to solve is to
optimize a value function at step ¢ as V (s;).

The optimality principle in iterative manner can be stated as: “In order to have
the optimum value in the last step, one needs to have optimum value in the previous
step that will lead to final optimum value”. To translate this into equation, we can
write

V(s;) = max V(T (ss,a:)) 9.1

arel(sy)

This is a special case of Bellman equation when the payout after each state is not
considered. To make the equation more generic, let us add the payout function at
step ¢ as F'(sy, a;). A more general form of Bellman equation can now be given as

Vis:) = , ax)(F(Sz, a;) + V(T (s, ar))) 9.2)

In some scenarios, the optimality of future value cannot be assumed to be fully
attainable, and a discount factor needs to be added as 8, where 0 < 8 < 1. Then
the Bellman equation can be written as

Vis) = max)(F(Sta ar) + BV (T (51, ar))) 9.3)

a €

This generic equation is in fairly abstract form, where we have not defined any
specific problem, or specific constraints or even the specific value function that we
want to maximize or minimize. However, once we have these defined, we can safely
use this equation to solve the problem as long as the functions are continuous and
differentiable.

9.4 Reinforcement Learning 93
9.3 Classes of Problems Under Dynamic Programming

Dynamic programming defines a generic class of problems that share the same
assumptions as theory of machine learning. The exhaustive list of problems that
can be solved using theory of dynamic programming is quite large as can be seen
here [4]. However, the most notable classes of problems that are studied and applied
are:

* Travelling salesman problem

* Recursive Least Squares (RLS) method

* Finding shortest distance between two nodes in graph

» Viterbi algorithm for solving hidden Markov model (HMM)

Other than these specific problems, the area that is most relevant in the context of
modern machine learning is Reinforcement learning and its derivatives. We will
study these concepts in the rest of the chapter.

9.4 Reinforcement Learning

Most of the machine learning techniques we have explored so far and will explore
in later chapters primarily focus on two types of learning: (1) Supervised and (2)
Unsupervised. Both methods are classified based on the availability of labelled data.
However, none of these types really focus on interaction with the environment.
Even in supervised learning techniques the labelled data is available beforehand.
Reinforcement learning takes a fundamentally different approach towards learning.
It follows biological aspects of learning more closely. When a newborn baby starts
interacting with the environment, its learning begins. In the initial times, the baby
is making mostly some random actions and is being greeted by the environment
in some way. This is called as reinforcement learning. It cannot be classified into
either of the two types. Let us look at some of the fundamental characteristics of the
reinforcement learning to understand precisely how it differs from these methods.
The reinforcement learning framework is based on interaction between two primary
entities: (1) system and (2) environment.

9.4.1 Characteristics of Reinforcement Learning

1. There is no preset labelled training data available.

2. The action space is predefined that typically can contain very large number of
possible actions that the system can take at any given instance.

3. The system chooses to make an action at every instance of time. The meaning of
instance is different for each application.

94 9 Dynamic Programming and Reinforcement Learning

4. Atevery instance of time a feedback (also called as reward) from the environment
is recorded. It can either be positive, negative, or neutral.

. There can be delay in the feedback.

. System learns while interacting with the environment.

7. The environment is not static and every action made by the system can potentially
change the environment itself.

8. Due to dynamic nature of environment, the total training space is practically
infinite.

9. The training phase and application phase are not separate in case of reinforce-
ment learning. The model is continuously learning as it is also predicting.

AN W

9.4.2 Framework and Algorithm

It is important to note that reinforcement learning is a framework and not an
algorithm like most other methods discussed in this book, hence it can only be
compared with other learning frameworks like supervised learning. When an algo-
rithm follows above characteristics, the algorithm is considered as a reinforcement
learning algorithm. Figures 9.2 and 9.3 show the architectures of reinforcement
learning and supervised learning frameworks. Unsupervised learning is completely
different as it does not involve any type of feedback or labels, and is not considered
here.

Training

Supervised Learning

Input Supervised Learning QOutput

Application

Fig. 9.2 Architecture of supervised learning

9.6 Examples of Reinforcement Learning Applications 95

e Reinforcement Learning

m

Training and Application

Fig. 9.3 Architecture of
reinforcement learning

9.5 Exploration and Exploitation

Reinforcement learning introduces two new concepts in the process of learning
called exploration and exploitation. As the system starts its learning process, there
is no knowledge learned so far and every action taken by the system is pure random.
This is called exploration. During exploration, the system is just trying out different
possible actions that it can make and registering the feedback from the system
as positive, negative, or neutral reward. After a while in learning phase, when
sufficient feedback is gathered, the system can start using the knowledge learned
from the previous exploration and start producing actions that are not random but
deterministic. This is called exploitation. Reinforcement learning needs to find a
good tradeoff between exploration and exploitation. Exploration opens up more
possible actions that can lead to better long term rewards in future at the cost of
lower possible rewards in short term, while exploitation tends to get better short term
rewards at the cost of possibly missing out on greater long term rewards possible due
to actions not known at the time.

9.6 Examples of Reinforcement Learning Applications

The theory of reinforcement learning is better understood after looking at some of
the real life applications as follows:

1. Chess programs: Solving the problem of winning a chess game by computers
is one of the classic application of reinforcement learning. Every move that
is made by either side opens up a new position on the board. The ultimate
objective is it captures the king of the other side, but the short term goals are
to capture other pieces of other side or gain control of the center, etc. The
action space is practically infinite, as there are 32 pieces in total on 64 squares
and each piece has different types of moves allowed. One of the conservative
estimates on the number of possible moves in chess is calculated to be around

96

9 Dynamic Programming and Reinforcement Learning

1029, which is also known as Shannon number [10]. Deep Blue system by
IBM was a supercomputer specifically designed to play chess was able to defeat
reigning world champion Gary Kasparov in 1997 [11]. This was considered as
landmark in machine learning. It did use some bits of reinforcement learning,
but it was heavily augmented with huge database of past games. Since then
the computers have become increasingly better at the game. However, the real
victory of reinforcement learning came with Google’s AlphaZero system. This
system was trained by playing against itself and learning all the concepts of chess.
Just after 9 h of training and without any knowledge of previously played games,
it was able to defeat the other world champion chess program, called Stockfish in
2015 [60].

. Robotics: Training a robot to maneuver in a complex real world is a classical

reinforcement learning problem that closely resembles the biological learning.
In this case, the action space is defined by the combination of the scope of
moving parts of the robot and environment is the area in which the robot needs
to maneuver along with all the existing objects in the area. If we want to train the
robot to lift one object from one place and drop it at another, then the rewards
would be given accordingly.

. Video Games: Solving video games is another interesting application of rein-

forcement learning problems. A video game creates a simulated environment in
which the user needs to navigate and achieve certain goals in the form of say
winning a race or killing a monster, etc. Only certain combination of moves
allows the user to pass through various challenging levels. The action space
is also well defined in the form of up, down, left, right, accelerate brake, or
attack with certain weapon, etc. Open Al has created a platform for testing
reinforcement learning models to solve video games in the form of Gym [13].
Here is one application where the Gym is used to solve stages in classical game
of Super Mario [12].

. Personalization: Various e-commerce websites like Amazon, Netflix have most

of their content personalized for each user. This can be achieved with the use of
reinforcement learning as well. The action space here is the possible recommen-
dations and reward is user engagement as a result of certain recommendation.

9.7 Theory of Reinforcement Learning

Figure 9.4 shows the signal flow and value updates using reinforcement learning
architecture. s; denotes the state of the system that is combination of environment
and the learning system itself at time instance k. ai is action taken by the system,
and ry is the reward given by the environment at the same time instance. 7y is the
policy for determining the action at the same time instance and is function of current
state. V™ denotes the value function that updates the policy using current state and
reward.

9.7 Theory of Reinforcement Learning 97

Fig. 9.4 Reinforcement learning model architecture

9.7.1 Variations in Learning

This depiction of reinforcement learning combines various different methods into a
single generic representation. Here are the different methods typically used:

1. Q-learning
2. SARSA
3. Monte Carlo

9.7.1.1 Q-Learning

In order to understand Q-learning, let’s consider the most generic form of Bellman
equation as Eq.9.3. In Q-learning framework, the function 7 (s, a) is called as the
value function. The technique of Q-learning focusses on learning the values of
T (s, a) for all the given states and action combinations. The algorithm of Q-learning
can be summarized as,

1. Initialize the Q-table, for all the possible state and action combinations.
2. Initialize the value of 8.
3. Choose an action using a tradeoff between exploration and exploitation.

98 9 Dynamic Programming and Reinforcement Learning

4. Perform the action and measure the reward.

5. Update the corresponding Q value using Eq. 9.3

6. Update the state to next state.

7. Continue the iterations (steps 3—0) till the target is reached.

9.7.1.2 SARSA

SARSA stands for state-action-reward-state-action [66]. SARSA algorithm is an
incremental update to Q-learning where it adds learning based on policy. Hence it
is also sometimes called as on-policy Q-learning, which the traditional Q-learning
is oft-policy. The update equation for SARSA can be given as

V/(St’ a) =1 —aB)V(s;,ar) +aF(s;,a;) +aBV(siy1,ar41) 9.4)

where B is discount factor as before, and « is called as learning rate.

9.8 Conclusion

In this chapter, we studied methods belonging to the class of dynamic programming
as defined by Bellman. The specific case of reinforcement learning and its variations
mark a topic of their own and we devoted a section for studying these concepts and
their applications. Reinforcement learning marks a whole new type of learning that
resembles to human learning more so than traditional supervised and unsupervised
learning techniques. Reinforcement learning enables fully automated way of learn-
ing in a given environment. These techniques are becoming quite popular in the
context of deep learning and we will study those aspects in later chapters.

Chapter 10 ®
Evolutionary Algorithms Qe

10.1 Introduction

All the traditional algorithms including the new deep learning framework tackle the
problem of optimization using calculus of gradients. The methods have evolved sig-
nificantly to solve harder problems that were once considered impossible to solve.
However, the horizon of the reach of these algorithms is linear and predictable.
Evolutionary algorithms try to attack the optimization problems in a fundamentally
different manner of massive exploration in a random but supervised manner. This
approach opens up whole new types of solutions for the problems at hand. Also,
these methods are inherently suitable for embarrassingly parallel computation,
which is the mantra of modern computation based on GPUs.

10.2 Bottleneck with Traditional Methods

In the applications of machine learning, one comes across many problems for which
it is practically impossible to find universally optimal solution. In such cases one
has to be satisfied with a solution that is optimal within some reasonable local
neighborhood (the neighborhood is from the perspective of the hyperspace spanned
by the feature values). Figure 10.1 shows an example of such space.

Most traditional methods employ some form of linear search in a greedy
manner.! In order to see a greedy method in action, let us zoom into the previous

!n general all the algorithms that use gradient based search are called as greedy algorithms. These
algorithms use the fact from calculus that at any local optimum (minimum or maximum) the value
of gradient is 0. In order to distinguish between whether the optimum is a minimum or a maximum
second order gradient is used. When the second order gradient is positive a minimum is reached,
otherwise it’s a maximum.

© Springer Nature Switzerland AG 2020 99
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_10

100 10 Evolutionary Algorithms

Example of complex search space

140

120 - |

100 -

Local minima

-5
Global-Minimum

10 49

Fig. 10.1 Example of complex search space with multiple local minima and a unique single global
minimum

figure, as shown in Fig. 10.2. The red arrows show how the greedy algorithm
progresses based on the gradient search and results into a local minimum.

10.3 Darwin’s Theory of Evolution

There exists a very close parallel to this problem in the theory of natural evolution.
In any given environment, there exist a complex set of constraints in which all the
inhabitant animals and plants are fighting for survival and evolving in the process.
The setup is quite dynamic and a perfectly ideal species does not exist for any given
environment at all times. All the species have some advantages and some limitations
at any given time. The evolution of the species is governed by Darwin’s theory of
evolution by natural selection. The theory can be stated briefly as:

Over sufficiently long span of time, only those individual organisms survive in a given
environment who are better suited for the environment.

10.3 Darwin’s Theory of Evolution 101

le of pl h space

70 —

Fig. 10.2 Example of greedy search in action resulting into a local minimum

This time-span can extend over multiple generations and its effects are typically
not seen in a matter of few years or even a few hundred years. However, in few
thousand years and more the effect of evolution by natural selection is seen beyond
doubt. There is one more aspect to the theory of evolution without which it cannot
work, and that is random variation in the species that typically happen by the
process of mutation. If the process of reproduction kept on producing species that
are identical to the parents, there would never be any change in the setup and natural
selection cannot successfully happen. However, when we add a random variation in
the offsprings during each reproduction, it changes everything. The new features
that are created as a result of mutation are put to test in the environment. If the new
features make the organism better cope with the environment, the organisms with
those features thrive and tend to reproduce more in comparison to the organisms that
do not have those features. Thus over time, the offsprings of the weaker organisms
are extinct and the species overall have evolved. As a result of continued evolution,
over time, the species get better and better with respect to surviving the given
environment. In long run, the process of evolution leads the species along the

102 10 Evolutionary Algorithms

direction of better adaptation and on aggregate level it never retrogresses. These
characteristics of evolution are rather well suited for the problems described at the
beginning.

All the algorithms that come under the umbrella of evolutionary algorithms are
inspired from this concept. Each such algorithm tries to interpret the concepts of
random variation, environmental constraints, and natural selection in its own way to
create a resulting evolution. Fortunately, as the processes of random variations and
natural selection are implemented using computer running in GHz, they can happen
in matter of mere seconds compared to thousands or hundreds of thousands of years
in the biological setup.

Thus, evolutionary methods rely on creating an initial population of samples
that is chosen randomly, instead of a single starting point used in greedy methods.
Then they let processes of mutation based sample variation and natural selection to
do their job to find which sample evolves into better estimate. Thus evolutionary
algorithms also do not guarantee a global minimum, but they typically have higher
chance of finding one.

Following sections describe few most common examples of evolutionary algo-
rithms.

10.4 Genetic Programming

Genetic programming models try to implement Darwin’s idea as closely as possible.
It maps the concepts of genetic structure to solution spaces and implements the
concepts of natural selection and reproduction with possibility of mutation in
programmatic manner. Let us look at the steps in the algorithm.

Steps in Genetic Programming

1. Set the process parameters as stopping criteria, mutation fraction, etc.

2. Initialize the population of solution candidates using random selection.

3. Create a fitness index based on the problem at hand.

4. Apply the fitness index to all the population candidates and trip the number
of candidates to a predetermined value by eliminating the lowest scoring
candidates.

5. Randomly select pairs of candidates from the population as parents and
carry out the process of reproduction. The process of reproduction can
contain two alternatives:

(a) Crossover: In crossover, the parent candidates are combined in a
predefined structural manner to create the offspring.

(continued)

10.4 Genetic Programming 103

(b) Mutation: In mutation, the children created by the process of crossover
are modified randomly. The mutation is applied only for a fraction of
the offsprings as determined as one of the settings of the process.

6. Augment the original population with the newly created offsprings.
7. Repeat steps 4, 5, and 6 till desired stopping criteria are met.

Although the steps listed in the algorithm are fairly straightforward from
biological standpoint, they need customization based on the problem at hand for
programmatic implementation. In order to illustrate the complexity in customization
let us take a real problem. A classic problem that is very hard to solve using
traditional methods but is quite suitable for genetic programming is of travelling
salesman. The problem is like this:

There is a salesman that wants to travel to n number of destinations in sequence. The
distance between each pair of destinations is given as d;;, where i, j € {1,2,...,n}. The
problem is to select the sequence that connects all the destinations only once in shortest
overall distance.

Although apparently straightforward looking one, this problem is actually consid-
ered as one of the hardest to solve? and universally optimal solution to this problem
is not possible even when the number of destinations is as small as say 100.

Let’s try to solve this problem using above steps.

1. Let us define the stopping criteria as successive improvement in the distance to
be less than some value o or maximum number of iterations.

2. We first need to create a random population of solutions containing say k number
of distinct solutions. Each solution is random sequence of destination from 1 to
n.

3. The fitness test would be given as sum of distances between successive destina-
tions.

4. We will keep k number of top candidates when sorted in decreasing order of total
distance.

5. Reproduction step is where things get a little tricky. First we will choose two
parents randomly. Now, let’s consider the two cases one by one.

a. For crossover, we will select first k1, k; < k destinations directly from
parent-1 and then remaining destinations from parent-2. However, this simple
crossover can lead to duplicating some destinations and missing some desti-
nations in the new sequence, called as the offspring sequence. These errors
need to fixed by appropriate adjustment.

2This problem belongs to a class of problems called as NP-hard. It stands for nondeterministic
polynomial time hard problems [27]. The worst case solution time for this problem increases in
near exponential time and quickly becomes beyond the scope of current hardware.

104 10 Evolutionary Algorithms

b. For mutations, once the crossover based offspring sequence is generated,
randomly some destinations are swapped.

6. Once we have reproduced the full population, we will have a population of
twice the size. Then we can repeat above steps as described in the algorithm
till stopping criteria are reached.

Unfortunately due to the random factor in the design of genetic programs, one
cannot have a deterministic bound on how much time it would take to reach the
acceptable solution, or how much should be the size of the population or how much
should be the percentage of mutations, etc. One has to experiment with multiple
values of these parameters to find the optimal solution for each given case. In spite
of this uncertainty, genetic programs are known to provide significant improvements
in computation times for solutions of certain types of problems and are in general a
strong tool to have in the repertoire of machine learning toolkit.

10.5 Swarm Intelligence

Swarm intelligence is a generic term used to denote algorithms that are influenced
by the biological aspects of groups primitive organisms. The origin of swarm
intelligence techniques can be traced back to 1987, when Craig Reynolds published
his work on boids [68]. In his work Reynolds designed a system of flock of birds
and assigned a set of rules governing the behavior of each of the bird in the flock.
When we aggregate the behavior of the group over time, some completely startling
and non-trivial trends emerge. This behavior can be attributed to the saying that
sometimes, 1 + 1 > 2. When a single bird is considered as a singular entity and is
let loose in the same environment, it has no chance of survival. If all the birds in
the flock act as single entities, they all are likely to perish. However, when one
aggregates the birds to form a social group that communicates with each other
without any specific governing body, the abilities of the group improve significantly.
Some of the very long migrations of birds are classic examples of success of swarm
intelligence.

In recent years, swarm intelligence is finding applications in computer graphics
for simulating groups of animals or even humans in movies and video games. As
a matter of fact, the encyclopedia of twenty-first century: Wikipedia can also be
attributed to swarm intelligence. The techniques of swarm intelligence are also
finding applications in controlling a group autonomous flying drones. In general the
steps in designing an algorithm that is based on swarm intelligence can be outlined
as follows:

1. Initialize the system by introducing a suitable environment by defining con-
straints.

2. Initialize the individual organism by defining the rules of possible actions and
possible ways of communicating with others.

10.6 Ant Colony Optimization 105

W

. Establish the number of organisms and period of evolution.

4. Define the individual goals for each organism and group goals for the whole flock
as well as stopping criteria.

5. Define the randomness factor that will affect the decisions made by individual
organisms by trading between exploration and exploitation.

6. Repeat the process till the finishing criteria are met.

10.6 Ant Colony Optimization

Although ant colony optimization can be considered as a subset of swarm intel-
ligence, there are some unique aspects to this method and it needs separate
consideration. Ant colony optimization algorithms as the name suggests, is based
on the behavior of a large groups of ants in a colony. The individual ant possesses
a very limited set of skills, e.g., they have a very limited vision, in most cases they
can be completely blind, they have a very small brain with very little intellect,
and their auditory and olfactory senses are also not quite advanced. In spite of
these limitations, the ant colonies as such are known to have some extraordinary
capabilities like building complex nest, finding shortest path towards food sources
that can be at large distances from the nest. Another important aspect of the ant
colonies is that they are a completely decentralized system. There is no central
decision maker, a king or queen ant that orders the group to follow certain actions.
All the decisions and actions are decided and executed by individual ant based on
its own method of functioning. For the ant colony optimization algorithm, we are
specifically going to focus on the capabilities of the ants to find the shortest path
from the food source to the nest.

At the heart of this technique lies the concept of pheromones. A pheromone is a
chemical substance that is dropped by each ant as it passes along any route. These
dropped pheromones are sensed by the ants that come to follow the same path. When
an ant reaches at a junction, it chooses the path with higher level of pheromones with
higher probability. This probabilistic behavior combines the random exploration
with exploitation of the paths travelled by other ants. The path that connects the
food source with the nest in least distance is likely going to be used more often than
the other paths. This creates a form of positive feedback and the path with shortest
distance keeps getting more and more chosen one over time. In biological terms,
the shortest path evolves over time. This is quite a different way of interpreting
the process of evolution, but it conforms to the fundamentals nonetheless. All the
different paths connecting the nest with the food source mark the initial population.
The subsequent choices of different paths, similar to process of reproduction, are
governed in probabilistic manner using pheromones. Then the positive feedback
created by aggregation of pheromones acts as a fitness test and controls the evolution
in general.

106 10 Evolutionary Algorithms

These biological concepts related to emission of pheromones and their decay
and aggregation can be modelled using mathematical functions to implement this
algorithm programmatically. The problem of travelling salesman is also a good
candidate to use ant colony optimization algorithm. It is left as an exercise for the
reader to experiment with this implementation. It should be noted that: as the ant
colony optimization algorithm has graphical nature of the solution at heart it has
relatively limited scope compared to genetic programs.

10.7 Simulated Annealing

Simulated annealing [67] is an odd man out in this group of evolutionary algorithms
as it finds its origins in metallurgy and not biology. The process of annealing
involves heating the metal above a certain temperature called as recrystallization
temperature and then slowly cooling it down. When the metal is heated above the
recrystallization temperature, the atoms and molecules involved in the crystalliza-
tion process can move. Typically this movement occurs such that the defects in the
crystallization are repaired. After annealing process is complete, the metal typically
improves it ductility and machinability as well as electrical conductivity.

Simulated annealing process is applied to solve the problem of finding global
minimum (or maximum) in a solution space that contains multiple local minima
(or maxima). The idea can be described using Fig. 10.1. Let’s say with some initial
starting point, the gradient descent algorithm converges to nearest local minimum.
Then the simulated annealing program, generates a disturbance into the solution by
essentially throwing the algorithm’s current state to a random point in a predefined
neighborhood. It is expected that the new starting point leads to another local
minimum. If the new local minimum is smaller than the previous one, then it is
accepted as solution otherwise previous solution is preserved. The algorithm is
repeated again till the stopping criteria are reached. By adjusting the neighborhood
radius corresponding to the higher temperature in the metallurgical annealing, the
algorithm can be fine tuned to get better performance.

10.8 Conclusion

In this chapter, we studied different algorithms inspired by the biological aspects of
evolution and adaptation. In general entire machine learning theory is inspired by the
human intelligence, but various algorithms used to achieve that goal may not directly
be applicable to humans or even other organisms for that matter. However, the
evolutionary algorithms are specifically designed to solve some very hard problems
using methods that are used by different organisms individually or as a group.

Chapter 11 ®
Time Series Models Creck fo

11.1 Introduction

All the algorithms discussed so far are based on static analysis of the data. By
static it is meant that the data that is used for training purposes is constant and
does not change over time. However, there are many situations where the data is
not static. For example analysis of stock trends, weather patterns, analysis of audio
or video signals, etc. The static models can be used up to certain extent to solve
some problems dealing with dynamic data, by taking snapshots of the time series
data at a certain time. These snapshots can then be used as static data to train the
models. However, this approach is seldom optimal and always results in less than
ideal results.

Time series analysis is studied quite extensively for over centuries as part
of statistics and signal processing and the theory has quite matured. Typical
applications of time series analysis involve trend analysis, forecasting, etc. In signal
processing theory the time series analysis also deals with frequency domain which
leads to spectral analysis. These techniques are extremely powerful in handling
dynamic data. We are going to look at this problem from the perspective of machine
learning and we will not delve too much into signal processing aspects of the topic
that essentially represent fixed mode analysis. The essence of machine learning is
in feedback. When a certain computation is performed on the training data and
a result is obtained, the result must somehow be fed back into the computation
to improve the result. If this feedback is not present, then it is not a machine
learning application. We will use this concept as yardstick to separate the pure
signal processing or statistical algorithms from machine learning algorithms and
only focus on latter.

© Springer Nature Switzerland AG 2020 107
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_11

108 11 Time Series Models
11.2 Stationarity

Stationarity is a core concept in the theory of time series and it is important to
understand some implications of this before going to modelling the processes. Sta-
tionarity or a stationary process is defined as a process for which the unconditional
joint probability distribution of its parameters does not change over time. Sometimes
this definition is also referred to as strict stationarity. A more practical definition
based on normality assumption would be the mean and variance of the process
remain constant over time. These conditions make the process strictly stationary
only when the normality condition is satisfied. If that is not satisfied then the process
is called weak stationary or wide sense stationary. In general, when the process is
non-stationary, the joint probability distribution of its parameters changes over time
or the mean and variance of its parameters are not constant. It becomes very hard
to model such process. Although most processes encountered in real life are non-
stationary, we always make the assumptions of stationarity to simplify the modelling
process. Then we add concepts of trends and seasonality to address the effects of
non-stationarity partially. Seasonality means the mean and variance of the process
can change periodically with changing seasons. Trends essentially model the slow
changes in mean and variance with time. We will see simple models that are built
on the assumptions of stationary and then we will look at some of their extensions
to take into consideration the seasonality.

To understand the nuances of trends and seasonality let’s look at the plots shown
in Figs. 11.1 and 11.2. Plot of Microsoft stock price almost seems periodical with
a period of roughly 6 months with upward trend, while Amazon stock plot shows
irregular changes with overall downward trend. On top of these macro trends, there
is additional periodicity on daily basis.

Figure 11.3 shows use of mobile phones per 100 people in Germany from 1960
to 2017. This plot does not show any periodicity, but there is a clear upward trend

38 Microsoft Stock Price in 2001

36

32y
30 f
2t
26 |
24
22 i

20 | L L L | | L 1 L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mav Dec Jan
2001

Fig. 11.1 Plot showing Microsoft stock price on daily basis during calendar year 2001

11.3 Autoregressive and Moving Average Models 109

pen Amazon Stock Price in 2001

20¢

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mo Dec Jan
2001

Fig. 11.2 Plot showing Amazon stock price on daily basis during calendar year 2001

. Use of mobile phone per 100 people in Germany

Fig. 11.3 Plot mobile phone use in Germany per 100 people from 1960 to 2017. The data is
courtesy of [7]

in the values. The trend is not linear and not uniform. Thus it represents a good
example of non-stationary time series.

11.3 Autoregressive and Moving Average Models

Autoregressive moving average or ARMA analysis is one of the simplest of the
techniques of univariate time series analysis. As the name suggests this technique
is based on two separate concepts: autoregression and moving average. In order to
define the two processes mathematically, let’s start with defining the system. Let
there be a discreet time system that takes white noise inputs denoted as €;,i =
1,...,n, where i denoted the instance of time. Let the output of the system be
denoted as x;,i = 1,...,n. For ease of definition and without loss of generality
let’s assume all these variables as univariate and numerical.

110 11 Time Series Models
11.3.1 Autoregressive, or AR Process

An autoregressive or AR process is the process in which current output of the system
is a function of weighted sum of certain number of previous outputs. We can define
an autoregressive process of order p, AR(p) using the established notation as

i—1
xi= Y ajxi+te 1L.1)
Jj=i—p
«a; are the coefficients or parameters of the AR process along with the error term ¢;
at instance i. The error term is typically assumed to be a white noise. It is important
to note that by design AR process is not necessarily stationary. The AR process can
be more efficiently represented with the help of time lag operator L. The operator is
defined as
Lx; = xj_1Vi (11.2)
and for kth order lag,
L*x; = x;j_xVi (11.3)

Using this operator the AR model can now be defined as

p
I—Zaij X; = € (11~4)
j=1

11.3.2 Moving Average, or MA Process

A moving average process is always stationary by design. A moving average or
MA process is a process in which the current output is a moving average of certain
number of past states of the default white noise process. We can define a moving
average process of order g, MA(q) as

Xi =€+ prei-1 + -+ Pycig aL5)

which can be written using lag operator as

q
X = <1+Z,3k-Lk> € (11.6)
k=1

Bi are the coefficients or parameters of the MA process.

11.4 Autoregressive Integrated Moving Average (ARIMA) Models 111
11.3.3 Autoregressive Moving Average ARMA Process

Now, we can combine the two processes, into a single ARMA(p, g) process with
parameters p and g as

Xi =aiXj—1 + -+ apxi—p t+ €+ Birei—1 + -+ By€i—g (11.7)

or using lag operator as

p q
1= oLl | xi =14) 8L | & (11.8)
j=1 j=1

11.4 Autoregressive Integrated Moving Average (ARIMA)
Models

Although ARMA(p, q) process in general can be non-stationary, it cannot explicitly
model a non-stationary process well. This is why the ARIMA process is developed.
The added term integrated adds differencing terms to the equation. Differencing
operation as the name suggested computes the deltas between consecutive values of
the outputs as

xa()'=x@) —x@i —1) (11.9)

Equation 11.9 shows the first order differences. Differencing operation in discrete
time is similar to differentiation or derivative operation in continuous time. First
order differencing can make polynomial based second order non-stationary pro-
cesses into stationary ones, just like differentiating a second order polynomial
equation leads to a linear equation. Processes with higher polynomial order non-
stationarity need higher order differencing to convert into stationary processes. For
example second order differencing can be defined as,

xg()? = xg(D)' = x4 — D! (11.10)
xg()? = @) —xi —1) — (x@i — 1) —x@ —2)) (11.11)
xg()? =x0G)—2xG — 1) +x(i —2) (11.12)

and so on. Using the lag operator the same differencing operations can be written as

xg()' = (1 = L)x; (11.13)

112 11 Time Series Models

and

xa()? = (1 — L)*x; (11.14)
This can be quickly generalized into any arbitrary order r as

xg(@) =10 =LY x; (11.15)

Now, we are ready to give the equation of the ARIMA process. ARIMA process
adds the differencing operation along with AR and MA operations and let the
parameter associated with the differencing operations be r. Thus ARIMA(p, ¢, r)
process can be defined as

14 q
1= oL/ | a—Lyxi=|1+> 8L |« (11.16)
j=1 j=1

Thus ARIMA process generalizes the ARMA process for the cases with non-
stationarity. When the value of r is 0, the ARIMA process reduces to ARMA
process. Similarly, when r and ¢ are 0, the ARIMA process reduces to AR process
and when r and p are 0, it reduces to MA process and so on.

11.5 Hidden Markov Models (HMM)

Hidden Markov models or HMMs represent a popular generative modelling tool in
time series analysis. The HMMs have evolved from Markov processes in statistical
signal processing. Consider a statistical process generating a series of observations
represented as yi, y2, ..., k. The process is called as a Markov process if the
current observation depends only on the previous observation and is independent
of all the observations before that. Mathematically it can be stated as

Ye+1 = F(yr) (L.17)

where F is the probabilistic Markov function.

In HMM, there is an additional notion of states. Consider Fig. 11.4. The states
are shown as sx_1, Sk, and sx41 and corresponding outcomes or observations are
shown as yx_1, Yk, and yg4+1. The states follow Markov property such that each
state is dependent on the previous state. The outcomes are probabilistic functions of
only the corresponding states. The HMMs further assume that the states, although
they exist, are invisible to the observer. The observer can only see the series
of outcomes, but cannot know or see the actual states that are generating these
outcomes. Mathematically it can be stated using two equations as

se1 = Fy(s) (11.18)

11.5 Hidden Markov Models (HMM) 113

—» Sxa —» S« —¥ Sk ——>

T

Yi-1 Yk Yk+;

Fig. 11.4 A sequence of states and outcomes that can be modelled using hidden Markov models
technique

/

Fol6/G)

/ ., .
F/0_11.-’R: {3.,fn':.'_'_.|=o[.3,f3} "/ \Fols/m)) Fol6/8)
4 gl AN | F\MRFTwm TNFelsm \S N\
il foapre@® \ [ROER | e SNQuebe o
1 2 3 4 > 6

Fig. 11.5 Showing a full HMM with three states as three different die: red, blue, green and six
outcomes as 1,2,3,4,5,6

where Fj is the probabilistic function of state transitions.

Yir1 = Fo(Skt1) (11.19)

where F, is the probabilistic function of observations.

Consider a real life example with three different states represented by three
dies: red, blue, and green. Each die is biased differently to produce the outcomes
of (1,2,3,4,5,6). The state transition probabilities are given by Fi(s;/s;) and
outcome probabilities are given as F,(s;/0;). Figure 11.5 shows the details of the
model.

Once a given problem is modelled using HMM, there exist various techniques to
solve the optimization problem using training data and predict all the transition and
outcome probabilities [41].

114 11 Time Series Models
11.5.1 Applications

HMMs have been widely used to solve the problems in natural language processing
with notable success. For example part of speech (POS) tagging, speech recognition,
machine translation, etc. As generic time series analysis problems, they are also
used in financial analysis, genetic sequencing, etc. They are also used with some
modifications in image processing applications like handwriting recognition.

11.6 Conditional Random Fields (CRF)

Conditional random fields or CRFs represent a discriminative modelling tool as
opposed to HMM which is a generative tool. CRFs were introduced by Lafferty et
al. [69] in 2001. In spite of having a fundamental different perspective, CRFs share
a significant architecture with HMM. In some ways CRFs can be considered as
generalization of HMMs and logistic regression. As generative models typically try
to model the structure and distribution of each participating class, discriminative
models try to model the discriminative properties between the classes or the
boundaries between the classes. As HMMs try to model the state transition
probabilities first and then the outcome or observation probabilities based on states,
CRFs directly try to model the conditional probabilities of the observations based
on the assumptions of similar hidden states. The fundamental function for CRF can
be stated as

y = argmax yP(y/X) (11.20)
In order to model the sequential input and states, CRF introduces feature
functions. The feature function is defined based on four entities.
Entities in Feature Function

1. Input vectors X.

2. Instance i of the data point being predicted.

3. Label for data point at (i — 1)th instance, /;_.
4. Label for data point at (i)th instance, /;.

The function is then given as
fX i G0 (11.21)

Using this feature function the conditional probability is written as

1
Z(X)

P(y/X, %) = exp [YD fiX, i, yie1, 3i) (11.22)
i=1

J

11.7 Conclusion 115

where the normalization constant Z(X) is defined as

ZX) =Y 3 rifiXod, v,) (11.23)

Jeyi=1 j

11.7 Conclusion

Time series analysis is an interesting area in the field of machine learning that deals
with data that is changing with time. The entire thought process of designing a
time series pipeline is fundamentally different than the one used in all the static
models that we studied in previous chapters. In this chapter, we studied the concept
of stationarity followed by multiple different techniques to analyze and model the
time series data to generate insights.

Chapter 12 ®
Deep Learning Qe

12.1 Introduction

In his famous book, "The nature of Statistical Learning Theory:" [37], Vladimir
Vapnik stated (in 1995) the four historical periods in the area of learning theory
as:

. Constructing first learning machine

. Constructing fundamentals of the theory

. Constructing the neural network

. Constructing alternatives to the neural network

A W=

The very existence of the fourth period was a failure of neural networks. Vapnik
and others came up with various alternatives to neural network that were far more
technologically feasible and efficient in solving the problems at hand at the time and
neural networks slowly became history. However, with the modern technological
advances, neural networks are back and we are in the fifth historical period: “Re-
birth of neural network.”

With re-birth, the neural networks are also renamed into deep neural networks
or simply deep networks. The learning process is called as deep learning. However,
deep learning is probably one of the most widely used and misused term. Since
inception, there were no sufficient success stories to back up the over-hyped
concept of neural networks. As a result they got pushed back in preference to
more targeted ML technologies that showed instant success, e.g., evolutionary
algorithms, dynamic programming, support vector machines, etc. The concept of
neural networks or artificial neural networks (ANNs) was simple: to replicate the
processing methodology of human brain which is composed of connected network
of neurons. ANN was proposed as a generic solution to any type of learning
problem, just like human brain is capable of learning to solve any problem. The
only blocker was that at the time, the processor architecture and manufacturing
processes were not sufficiently mature to tackle the gargantuan processing required

© Springer Nature Switzerland AG 2020 117
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_12

118 12 Deep Learning

to realistically simulate human brain. Average human brain has roughly 100 billion
neurons and over 1000 trillion synaptic connections [1]!! This would compare to a
processor with trillion calculations/second processing power backed by over 1000
terabytes of hard drive. Even in 2018 AD, this configuration for a single computer is
far-fetched.! The generic learning of ANNSs can only converge to sufficient accuracy
if it is trained with sufficient data followed by corresponding level of computation.
It was just beyond the scope of technology in 1990s, and as a result they were not
able to realize the full potential of the technology.

With the advent of graphics processor based computation (called as general
purpose graphics processing unit or GPGPU) made popular by NVIDIA in the form
of CUDA library, the technology started coming close to realizing the potential
of ANNs. However, due to the stigma associated with original ANN, the newly
introduced neural networks were called as deep neural networks (DNN) and the ML
process was called deep learning. In essence there is no fundamental difference
between an ANN of the 1990s and deep networks of the twenty-first century.
However, there are some more differences that are typically assumed when one
talks about deep networks. The original ANNs were primarily used for solving
problems with a very small amount of data and very narrow scope of application
and consisted of handful of nodes and 1-3 layers of neurons at best. Based on
the hardware limitations, this was all that could have been achieved. The deep
networks typically consist of hundreds to thousands of nodes per layer and number
of layers can easily exceed 10. With this added complexity of order of magnitude,
the optimization algorithms have also drastically changed. One of the fundamental
changes in the optimization algorithms is heavier use of parallel computation. As
the GPGPUs present many hundreds or even thousands of cores that can be used in
parallel, the only way to improve the computation performance is to parallelize the
training optimization of the deep networks [2]. The deep learning framework is not
limited to supervised learning, but some of the unsupervised problems can also be
tackled with this technique.

12.2 Origin of Modern Deep Learning

Although the current state of deep learning is made possible by the advances
in computation hardware, a lot of efforts have been spent on the optimization
algorithms that are needed to successfully use these resources and converge to
the optimal solution. It is hard to name one person who invented deep learning,
but there are few names that are certainly at the top of list. Seminal paper by

IThe fastest supercomputer in the world is rated at 200 petaflops, or 200,000 trillion calcula-
tions/second. It is backed by storage of 250 petabytes or 250,000 terabytes. So it does significantly
better than a single human brain, but at the cost of consuming 13 MW of power and occupying
entire floor of a huge office building [18].

12.3 Convolutional Neural Networks (CNNs) 119

Geoffrey Hinton titled A fast learning algorithm for deep belief networks [54]
truly ushered the era of deep learning. Some of the early applications of deep
learning were in the field of acoustic and speech modeling and image recognition.
Reference [53] summarizes the steps in the evolution of deep learning as we see
today concisely. Typically when one refers to deep learning or deep networks they
either belong to convolutional networks or recurrent networks or their variations.
Surprisingly enough, both of these concepts were invented before the deep earning.
Fukushima introduced convolutional networks back in 1980 [55], while Michael
Jordan introduced recurrent neural networks in 1986 [56].

In the following sections we will discuss architectures of convolutional and
recurrent deep neural networks.

12.3 Convolutional Neural Networks (CNNs)

Convolutional neural networks or CNNs are based on the convolution operation.
This operation has its roots in signal processing and before going into details of
CNN, let us look at the convolution process itself.

12.3.1 1D Convolution

Mathematically, convolution defines a process by which one real valued function
operates on another real valued function to produce new real valued function. Let
one real valued continuous function be f(¢) and other be g(¢), where ¢ denotes
continuous time. Let the convolution of the two be denoted as s(¢). Convolution
operation is typically denoted as .

F@)*g@)=(f*g)t) = / f(o)gt —1)dr (12.1)

Also, convolution is a commutative operation meaning, (f * g) is same as (g * f),

e¢]

(fx8)@) = (g f)t) = f g(0) f(t —r)dt (122)

—00

The same equations can also be written for discrete processes, that we typically
deal with in machine learning applications. The discrete counterparts of the two
equations can be written as f (k) and g(k), where k denoted a discrete instance of
time.

fR)yxglk)y=(fx)k)= Y f(®)glk—?) (12.3)

S=—00

120 12 Deep Learning

and

o0

(f k) =(gx k)= Y g@®) fk—9) (12.4)

§=—00

These definitions are very similar to the definition of correlation between two
functions. However, the key difference here is the sign of § in case of discrete
convolution and 7 in case of continuous convolution is opposite between f and
g. If the sign is flipped, the same equations would represent correlation operation.
The sign reversal makes one function reversed in time before being multiplied
(point-wise) with the other function. This time reversal has far reaching impact
and the result of convolution is completely different than the result of correlation.
The convolution has also very interesting properties from the perspective of Fourier
transform [8] in frequency domain and they are heavily used in signal processing
applications.

12.3.2 2D Convolution

Above equations represent 1D convolution. This is typically used in speech
applications, where the signal is 1D. Concept of convolution can also be applied in
2-dimensions as well, which makes it suitable for applications on images. In order
to define 2D convolution, let us consider two images A and B. The 2D convolution
can now be defined as,

(AxB)(, j) = ZZA(m,n)B(i —m,j—n) (12.5)

m

Typically the second image B is a small 2D kernel compared to first image A. The
convolution operation transforms the original image into another one to enhance the
image in some desired way.

12.3.3 Architecture of CNN

Figure 12.1 shows the architecture of CNN. The building block of CNN is composed
of three units:

1. Convolution layer
2. Rectified linear unit, also called as ReLU
3. Pooling layer

12.3 Convolutional Neural Networks (CNNs) 121

Fig. 12.1 Architecture of
convolutional neural network.
The building block of the
network contains the
convolution, ReLU followed
by pooling layer. A CNN can Fully Connected Layer
have multiple such layers in
series. Then there is a fully
connected layer that generates
the output

g

Pooling e

=

=

o

5

Rectified Linear Unit (ReLU) S
£

=)

3

Convolution

12.3.3.1 Convolution Layer

The convolution layer consists of a series of 2D kernels. Each of these kernels is
applied to original figure using 2D convolution defined in Eq. 12.5. This generates
a 3D output.

12.3.3.2 Rectified Linear Unit (ReLU)
Rectified linear unit of ReLU, as the name suggests, rectifies the output of
convolutional layer to convert all the negative values to 0. The function is defined

as,

J(x) = max(0, x) (12.6)

122 12 Deep Learning

10 Plot of ReLU fucntion
T T T

Fig. 12.2 Plot of the rectified linear unit (ReLU)

The ReLU function is shown in Fig. 12.2. This layer also introduces nonlinearity
into the network, which is otherwise linear. This layer does not change the
dimensionality of the data. Sigmoid or tanh functions were used earlier to model
the nonlinearity in a more continuous way, but it was observed that use of simpler
ReLU function is just as good and it also improves the computation speed of the
model and also fixes the vanishing gradient problem [57].

12.3.3.3 Pooling

Pooling layer performs down-sampling by replacing larger sized blocks with single
value. Most commonly used pooling method is called Max Pooling. In this method
simply the maximum value of the block is used to replace the entire block. This
layer reduces the dimensionality of the data flowing through the network drastically
while still maintaining the important information captured as a result of convolution
operations. This layer also reduces overfitting.

These three layers together form the basic building block of a CNN. Multiple
such blocks can be employed in single CNN.

12.3.3.4 Fully Connected Layer

The previously described layers essentially target certain spatial parts of the input
and transform them using the convolutional kernels. The fully connected layers
bring this information together in traditional MLP manner to generate the desired
output. It typically uses softmax activation function as additional step to normalize
the output. Let the input to the softmax be a vector y of dimensions n. Softmax

12.4 Recurrent Neural Networks (RNN) 123

function is defined as,

evi

o(y)j = ST o (12.7)

=

Softmax function normalizes the output so that it sums to 1.

12.3.4 Training CNN

CNN:s are typically trained using stochastic gradient descent algorithm. Here are the
main steps.

1. Gather the sufficient labelled training data.

2. Initialize the convolution filter coefficients weights.

3. Select a single random sample or a mini-batch of samples and pass it through the
network and generate the output (class label in case of classification or real value
in case of regression).

4. Compare the network output with the expected output and then use the error
along with backpropagation to update filter coefficients and weights at each layer.

5. Repeat steps 3 and 4 till algorithm converges to desired error levels.

6. In order to tune hyperparameters (which can be, “size of convolution kernels”,
“number of convolution blocks”, etc.) repeat the entire training process multiple
times for different set of hyperparameters and finally choosing the ones that
perform best.

12.4 Recurrent Neural Networks (RNN)

All the traditional neural networks as well as CNNs are static models as defined
in Chap. 2. They work with data that is already gathered and that does not change
with time. Recurrent neural networks or RNNs propose a framework for dealing
with dynamic or sequential data that changes with time. RNNs exhibit a concept of
state that is a function of time. Classical RNNs, sometimes called as fully recurrent
networks have architecture very similar to MLP, but with addition of a feedback of
current state as shown in Fig. 12.3. Thus output of the RNN can be given as,

yr = fy(V - Hy) (12.8)

The state of RNN is updated at every time instance using input and previous state
as,

H = fuU- X+ W-H1) (12.9)

124 12 Deep Learning

Y1 Yt Yis1
4 4
\ v vV v
Unfolding in time _ w “ini
+ 4
U u U T
u Xt-l Xt Xt+]

Fig. 12.3 Architecture of classic or fully recurrent RNN. The time unfolded schematic shows how
the state of RNN is updated based on sequential inputs

The training of the RNN would be carried out using backpropagation in similar
fashion using a labelled input sequence for which the output sequence is known.

12.4.1 Limitation of RNN

RNNs were successful in modeling time series data that was not possible to model
using traditional neural networks that dealt with static data. However, when the
sequence of data to be analyzed was long with varying trends and seasonalities, the
RNNs were not able to adapt to these conditions due to problems of exploding and
vanishing gradients and/or oscillating weights, etc. [58]. The learning algorithms
appeared to reach a limit after certain number of samples were consumed and any
updates after that point were minuscule and not really changing the behavior of the
network. In some cases, due to high volatility of the changes in training samples,
the weights of the network kept on oscillating and would not converge.

12.4.2 Long Short-Term Memory RNN

Hochreiter and Schmidhuber proposed an improvement to the standard RNN
architecture in the form of long short-term memory RNN or LSTM-RNN. This
architecture improved the RNNs to overcome most of their limitations are discussed
in previous section. The fundamental change brought by this architecture was the
use of forget gate. The LSTM-RNN had all the advantages of RNN and much
reduced limitations. As a result most of modern RNN applications are based

12.4 Recurrent Neural Networks (RNN) 125

L
P
Va
v
v
-
v
H

Fig. 12.4 Architecture of LSTM-RNN. o7 denotes the forget gate, o, denotes the input gate, and
o3 denotes the output gate

on LSTM architecture. Figure 12.4 shows the components of LSTM-RNN. The
architecture is quite complex with multiple gated operations. In order to understand
the full operation, let us dive deeper into the signal flow. S; denotes the state of the
LSTM at time ¢. y; denotes the output of the LSTM at time 7. X; denotes the input
vector at time ¢. o1, 02, and 03 denotes the forget gate, input gate and, output gate,
respectively. Let us look at the operations at each gate.

12.4.2.1 Forget Gate

At forget gate the input is combined with the previous output to generate a fraction
between 0 and 1, that determines how much of the previous state need to be
preserved (or in other words, how much of the state should be forgotten). This output
is then multiplied with the previous state.

12.4.2.2 Input Gate

Input gate operates on the same signals as the forget gate, but here the objective is
to decide which new information is going to enter the state of LSTM. The output
of the input gate (again a fraction between 0 and 1) is multiplied with the output of
tanh block that produces the new values that must be added to previous state. This
gated vector is then added to previous state to generate current state.

126 12 Deep Learning

12.4.2.3 Output Gate

At output gate the input and previous state are gated as before to generate another
scaling fraction that is combined with the output of fanh block that brings the current
state. This output is then given out. The output and state are fed back into the LSTM
block as shown.

12.4.3 Advantages of LSTM

The specific gated architecture of LSTM is designed to improve all the following
shortcomings of the classical RNN:

1. Avoid the exploding and vanishing gradients, specifically with the use of forget
gate at the beginning.

2. Long term memories can be preserved along with learning new trends in the data.
This is achieved through combination of gating and maintaining state as separate
signal.

3. A priori information on states is not required and the model is capable of learning
from default values.

4. Unlike other deep learning architectures there are not many hyperparameters
needed to be tuned for model optimization.

12.4.4 Current State of LSTM-RNN

LSTM is one of the important areas in cutting edge of machine learning and many
new variants of the model are proposed including bi-directional LSTM, continuous
time LSTM, hierarchical LSTM, etc.

12.5 Conclusion

We studied deep learning techniques in this chapter. The theory builds on the basis
of classical perceptron or single layer neural network and adds more complexity
to solve different types of problems given sufficient training data. We studied two
specific applications in the form of convolutional neural networks and recurrent
neural networks.

Chapter 13)
Emerging Trends in Machine Learning Qe

13.1 Introduction

In the second decade of the twenty-first century, the field of machine learning
has taken quantum leaps of progress compared to its much slower evolution over
last decades. Deep learning is certainly at the core of this explosive growth;
however, there are many novel approaches and techniques that have surfaced and
without discussing them, the topic of this book would remain unfinished. Most
of these techniques are in their infancy but have shown promising results, while
some techniques have already matured. The discussion here is fairly superficial to
introduce these techniques. In order to have deeper understanding, references are
provided.

13.2 Transfer Learning

The machine learning process can be mathematically represented in the form
of equations. However, the intermediate stages in learning of a specific system,
especially a deep learning system cannot be expressed or interpreted in words.
During the process of training, there are lot of changes happening in values of certain
variables or some new variables are being created. This learning of parameters
is quite abstract. When something cannot be expressed in terms of words, it is
hard to interpret. Without interpretation, it is hard to translate. However, in many
situations, the learnings from one problem can be very useful in tackling some
other problems that can be superficially quite different. Or in some other cases,
we need to use the system that is effectively trained in one domain (e.g., an NLP
system trained on English language) needs to be adapted to work in another similar
domain, where sufficient training data is not available (e.g., some African language).
This is a crucial aspect of human brain, where it is exceedingly smart in adapting

© Springer Nature Switzerland AG 2020 127
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_13

128 13 Emerging Trends in Machine Learning

such domains. We often apply abstract learnings from one experience into another
without even realizing the complexity of it. Transfer learning techniques (sometimes
also called as domain adaptations) try to mimic this property of human brain into
transferring learnings from one system of deep network into another [36, 70], in
spite of their abstractness. Specifically with popularity of deep learning, this topic
is gaining traction.

13.3 Generative Adversarial Networks (GANs)

We discussed generative models in Chap. 8. Generative models typically take a
more holistic approach towards understanding and solving the problem, by trying to
model the structure and distribution of the data. Generative Adversarial Networks or
GANs are combination of two neural networks as suggested in the name: generative
network and adversarial network. The generative network is designed to imitate
the process that generates the sample data, while adversarial network is a type of
discriminative network that checks if the data generated by the generative network
belongs to the desired class. Thus these two networks working together can generate
any type of synthetic data. In order to better understand the architecture of GANS,
let’s take an example of image synthesis. We would like to generate images of
human faces that look like faces of real people, but are completely computer
generated. Figure 13.1 shows the architecture of GAN to solve this problem.
The generative network is given input as random noise to generate a synthetic
face. The generated faces are compared with database of real human face images
by the discriminative network to generate the classification. The output of the
discriminative network is fed back to train both the networks. With availability of
sufficiently large labelled database of human face images, both the networks can
be trained. Once the system is trained, it is capable of artificially generating human
like faces. GANs represent one of the most novel discoveries in the field of machine
learning, specifically in the field of deep learning that was introduced in 2014 by
Goodfellow et al. [43].

13.4 Quantum Computation

Quantum computation has been seen as a potential source of ultra-fast computation
since early 1080s. Nobel Laureate, Professor Richard Feynman in 1959, hinted
about the possibility of quantum computation based on quantum entanglement in
his speech given in Annual Physics Society’s meeting. However, that thought got
unnoticed for couple of decades. In 1980s, the simultaneous papers by Beniof
[61] and Manin [14] marked the beginning of quantum computation. Traditional
computing chips that are at the core of PC or Mac or all the mobile devices as well
as the GPUs are made from silicon with various different manufacturing processes.

13.4 Quantum Computation 129

Random Noise —I° °°° ‘° '. > ynthetic human faces

Generative Network

Database of pictures of

human faces l
~ Ad

yIoMIaN
2AIBUIWILIISI [BLBSIDAPY
©
(-2
(=2

Fig. 13.1 Architecture of generative adversarial network

Thus, they all feature different architectures and power consumption levels, at the
core they are all built upon same type of hardware. Quantum computer introduces
an entirely new type of computation device that is based on the quantum properties
of subatomic particles. Specifically, quantum entanglement and superposition.

13.4.1 Quantum Theory

In general quantum theory in physics introduced some fundamental new ways
to think about interactions of subatomic particles in twentieth century. Classical
physics always relied to continuity and predictability at all levels of mass and space
and time, while quantum physics essentially proved it wrong at subatomic levels. It
proposed that when dealing distances and masses that are really small, the continuity

130 13 Emerging Trends in Machine Learning

as well as predictability ceases to exist and different rules become applicable. The
rules of quantum physics are based on four primary assumptions.

Fundamental Assumptions in Quantum Theory

1. The energy is quantized. In other words, it means that after reducing the energy
to certain level, we reach the quantum of energy that cannot be further divided.

2. The mass is quantized in the same way as energy.

3. Particle-wave duality. At subatomic levels, the particles exhibit particle type and
wave type behavior at the same time.

4. Uncertainty principle. This was probably one of the most ground breaking
discoveries of quantum physics attributed to Heisenberg [15]. The principle states
that the product of uncertainty of position and momentum of a particle is greater
than or equal to a fixed number defined by Planck’s constant. Thus, if you try to
find the precise position of the particle, the momentum or velocity of the particle
becomes quite unpredictable and vice versa. Classical physicists hated this idea,
but ultimately had to agree after sufficient evidence.

Quite a few interpretations of quantum theory contradict with classical theory of
physics including Einstein’s equations, but nonetheless, both theories hold true in
their own domains. It is still an active area of research to unify these two theories
into a single grand theory of physics.

Although quantum theory is quite fascinating in general, we will focus on the
specific areas of quantum physics that are relevant to the concept of quantum
computation: quantum entanglement and superposition.

13.4.2 Quantum Entanglement

Quantum entanglement can be described in short as the phenomenon where two
particles or a group of particles possibly separated by large distances' exhibit
correlation in physical properties like momentum, spin, etc. The particles are said
to be in state of entanglement. Although this behavior can lead to endless series
of paradoxes if applied to large objects, the quantum entanglement of subatomic
particles (e.g., photons, electrons, neutrinos) has been proved beyond doubt [16].

Large distances in quantum context mean the distances that are long enough that light takes
noticeable time to travel that distance. Noticeable time would imply multiple seconds or a time
that can be accurately measured by modern timekeeping devices beyond statistical uncertainty.

135 AutoML 131
13.4.3 Quantum Superposition

Quantum superposition is a direct implication of principle of duality. As two waves
can be added or superposed in classical physics, the quantum states of two particles
can be superposed in quantum mechanics. Thus any quantum state of a subatomic
particle can be represented as a linear combination of two or more quantum states
[17].

13.4.4 Computation with Quantum Particles

As the traditional computer works on the smallest chunk of information as bits,
(which can have a binary value O or 1) the smallest chunk of information in quantum
computer is called as quantum bit or qubit. Each qubit is represented as a quantum
state of a subatomic particle. With quantum superposition, an n qubit quantum
computer can represent 2" n bit numbers at the same time, while an » bit traditional
computer can only represent one such number. Quantum entanglement can control
different quantum particles driving the quantum computer to change their states in
sync as needed. Using these properties, a quantum computer is posed to compute
parallel operations at unprecedented levels. However, the problems that need very
long sequential computation are not really benefitted with this approach. Also,
theoretically adding more qubits can arbitrarily increase the parallel computation
power of a quantum computer, there are number of practical limitations that are
constraining the scope of quantum computing. However, assuming these limitations
are somehow overcome, the quantum computers stand to take the machine learning
applications to levels of sophistication, one can only dream as of now.

13.5 AutoML

AutoML is another emerging trend in the area of machine learning and artificial
intelligence. As the name suggests, it means automating the machine learning for
any problem. We have studied the series of sequential steps that are needed to build
a successful machine learning pipeline to solve a given problem at hand. Quite a few
steps in this sequence need domain knowledge of the problem as well as theoretical
underpinnings of the algorithms being used. It is typically hard to get resources with
this unique combination of experience. AutoML [31] concept tries to automate the
entire pipeline of machine learning problem by building a machine learning system
on top of machine learning system. If implemented successfully as per its grand
inspirations, AutoML promises to build an entire machine learning pipeline and
optimize it automatically.

132 13 Emerging Trends in Machine Learning

The concept of AutoML is relatively in its infancy and is a hot topic of research.
The primary areas of automation can be broken down into following categories.

Areas of Automation Targeted Under AutoML

1. Automating the feature engineering. Once all the raw data is gathered and target
problem defined in the form of desired metrics, the AutoML system would
automatically perform feature selection or transformation as suitable and optimal
for achieving the best possible results.

2. Automating the choice of algorithm. For example if we are trying to solve a
problem that requires multiclass classification as primary underlying model, the
AutoML system would be capable of automatically iterating through certain
predefined algorithms like decision trees, or neural networks or support vector
machine and come up with the best suited algorithm.

3. Automating the hyperparameter tuning. When the algorithm is auto-selected,
the AutoML system can take it further by auto-initializing the hyperparameters
followed by auto-defining the optimal parameter grid and finding the optimal set
of hyperparameters for the algorithm.

4. Automating the system optimization. Evaluating the results of the tuned model,
the AutoML system can iterate on it as desired and then optimize the performance
of the system for given hardware resources.

Each of these topics is quite an ambitious goal in itself and currently there are no
systems available that can claim to have solved either of them to sufficient level of
performance. However, the progress in the area is quite exciting and looks promising
[32].

13.6 Conclusion

In this chapter, we looked at some of the emerging trends in the field of machine
learning. This list is just a tip of an iceberg where the theory of machine learning
is exploding along variety of different dimensions. However, some of the concepts
listed here would give the reader a taste of what is coming up.

Chapter 14 ®
Unsupervised Learning Qe

14.1 Introduction

Unsupervised learning methods deal with problems where the labelled data is not
available. There is no form of supervised feedback to be gained about the processing
that happens. Absence of labelled samples marks a fundamental shift of thought
from the other supervised methods discussed so far in the book. It might also appear
that such processing might not yield any useful information and one could not be
more wrong. There are many situations where unsupervised methods are extremely
valuable. The first and foremost is cost of labeling. In many situations, having all the
training data fully labelled can be rather expensive and practically impossible and
one needs to work with only small set of labelled data. In such cases, one can start
with supervised methods using small set of labelled data and then grow the model
in unsupervised manner on larger set of data. In other cases, the labels may not be
available at all, and one needs to understand the structure and composition of data by
doing exploratory unsupervised analysis. Understanding the structure of the data can
also help with choosing the right algorithm or better set of initialized parameters for
the algorithm in cases where supervised methods will be ultimately used. In general,
unsupervised learning marks an important pillar of modern machine learning.

In this chapter, we will learn about the following aspects of unsupervised
learning:

1. Clustering

2. Component Analysis

3. Self Organizing Maps (SOM)
4. Autoencoding neural networks

© Springer Nature Switzerland AG 2020 133
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_14

134 14 Unsupervised Learning
14.2 Clustering

Clustering is essentially aggregating the samples in the form of groups. The criteria
used for deciding the membership to a group is determined by using some form
of metric or distance. Clustering being one of the oldest methods in the machine
learning repertoire, there are numerous methods described in the literature. We will
focus on one of the simple yet quite effective method which with the help of certain
modifications can tackle broad range of clustering problems. It is called as K-means
clustering. The variable K denotes number of clusters. The method expects the user
to determine the value of K before starting to apply the algorithm.

14.2.1 k-Means Clustering

Figure 14.1 shows two examples of extreme cases encountered in case of clustering.
In top figure the data is naturally distributed into separate non-overlapping clusters,
while the bottom figure shows the case where there is no natural separation of the
data. Most cases encountered in practice are somewhere in between.

The k-means clustering algorithm can be summarized as follows:

1. Start with a default value of k, which is the number of clusters to find in the given
data.

2. Randomly initialize the k cluster centers as k samples in training data, such that
there are no duplicates.

3. Assign each of the training samples to one of the k cluster centers based on a
chosen distance metric.

4. Once the classes are created, update the centers of each class as mean of all the
samples in that class.

5. Repeat steps 2—4 until there is no change in the cluster centers.

The distance metric used in the algorithm is typically the Euclidean distance.
However, in some cases different metrics like Mahalanobis distance, Minkowski
distance, or Manhattan distance can be used depending on the problem at hand.

Figure 14.2 shows the algorithm in intermediate stages as it converges to desired
clusters. This is somewhat an ideal case. In most practical situations, where the
clusters are not well separated, or the number of naturally occurring clusters is
different than the initialized value of k, the algorithm may not converge. The cluster
centers can keep oscillating between two different values in subsequent iterations
or they can just keep shifting from one set of clusters to another. In such cases
multiple optimizations of the algorithms are proposed in the literature [42]. Some
of the optimizations that are commonly used are as follows.

Optimizations for k-Means Clustering

1. Change the stopping criterion from absolute “no change” to cluster centers to
allow for a small change in the clusters.
2. Restrict the number of iterations to a maximum number of iterations.

14.2 Clustering 135

Data naturally showing 3 clusters

15
10
5 -
0 . 1
0 5 10 15
15 Data naturally does not show any separation
T T
* oy X L R o | ®
* g i ¥ * %ok *
10 . ok ¥ .4 1
® * * Y F *
** * * ** oy * w * ¥ 4
* Kok ¥ * T . ¥
*H * * * >
* ¥ # * * **'*f "
* e o® o4 R * K
= * 2
5 *x¥ * . AR
5 ® I‘Sk ™ * %
% ** * » # ** * * *
*
ks * * * 4 *
0 1 1
0 5 10 15

Fig. 14.1 Figures showing the extreme cases of data distribution for clustering

3. Find the number of samples in each cluster and if the number of samples is less
than a certain threshold, delete that cluster and repeat the process.

4. Find the intra-cluster distance versus inter-cluster distance, and if two clusters
are too close to each other relative to other clusters, merge them and repeat the

process.

136 14 Unsupervised Learning

Initializing the random clusters Clusters after first iteration

Center-1

Clusters after few more i ions Final set of clusters

Center-1

w

Fig. 14.2 Figures showing the progress of k-means clustering algorithm iterating through steps to
converge on the desired clusters

5. If some clusters are getting too big, apply a threshold of maximum number of
samples in a cluster and split the cluster into two or more clusters and repeat the
process.

14.2.2 Improvements to k-Means Clustering

Even after the multiple optimizations are described in previous subsection, there are
cases, when the results are still suboptimal and some further improvements can be
applied.

14.3 Component Analysis 137

14.2.2.1 Hierarchical k-Means Clustering

In some cases, using the same k-means clustering algorithm recursively can be
helpful. After each successful completion of the clustering, new set of random
clusters are initialized inside of each cluster and same algorithm is repeated in the
subset of each cluster to find the sub-clusters. This is called as hierarchical k-means
clustering method.

14.2.2.2 Fuzzy k-Means Clustering

In traditional k-means clustering algorithm after the cluster centers are chosen or
updated, all the training samples are grouped into nearest cluster. Instead of using
such absolute grouping, fuzzy k-means algorithm suggests a use of probabilistic
grouping. In this case, each sample has non-zero probability of belonging to multiple
clusters at the same time. The nearer the cluster, the higher the probability and so on.

14.3 Component Analysis

Another important aspect of unsupervised machine learning is dimensionality
reduction. Component analysis methods are quite effective in this regard. Principal
component analysis or PCA is one of the most popular techniques in dimensionality
reduction in the theory of machine learning as we saw in Chap. 3. In this chapter
we will look at another important technique similar to PCA called independent
component analysis or ICA.

14.3.1 Independent Component Analysis (ICA)

Although PCA and ICA are both generative methods of extracting the core
dimensionality of the data, they both differ in the underlying assumptions. PCA
uses variation in the data and tries to model it to find the dimensions in ranked order
where the variation is maximized. Matrix algebra and singular value decomposition
(SVD) tools are used to find these dimensions. ICA takes a very different and more
probabilistic approach towards finding the core dimensions in the data by making
the assumption that given data is generated as a result of combination of a finite
set of independent components. These independent components are not directly
observable and hence sometimes referred to as latent components. Mathematically,
the ICA can be defined for given data (x;),i = 1,2,...,n as,

k
xi =Y ajs;.Vi (14.1)
j=1

138 14 Unsupervised Learning

where a; represent weights for corresponding k number of s; independent com-
ponents. The cost function to find the values of a; is typically based on mutual
information. The fundamental assumption in choosing the components is that they
should be statistically independent with non-Gaussian distributions. Conceptually
the process of finding ICA is quite similar to the topic of blind source separation
in statistics. Typically, in order to make the predictions more robust a noise term is
added into the Eq. 14.1.

14.4 Self Organizing Maps (SOM)

Self organizing maps, also called as self organizing feature maps present a neural
network based unsupervised learning system, unlike other options discussed before.
The neural networks are inherently supervised methods of learning, so their use in
unsupervised class of methods is quite novel in that sense. SOMs define a different
type of cost function that is based on similarity in the neighborhood. The idea
here is to maintain the topological distribution of the data while expressing it in
smaller dimensions efficiently. In order to illustrate the functioning of SOM, it will
be useful to take an actual example. Top plot in Fig. 14.3 shows data distributed in 3-
dimensions. This is a synthetically generated data with ideal distribution to illustrate
the concept. The data is essentially a 2-dimensional plane folded into 3-dimensions.
SOM unfolds the plane back into 2-dimensions as shown in the bottom figure. With
this unfolding, the topological behavior of the original distribution is still preserved.
All the samples that are neighbors in original distribution are still neighbors. Also,
the relative distances of different points from one another are also preserved in that
order.

The mathematical details of the cost function optimization for SOM can be found
here [34]. The representation generated by SOM is quite useful and is generally
better than first principal component as predicted by PCA analysis. However, PCA
also provides multiple subsequent components to fully describe the variation in the
data as needed and SOM lacks this capability. However, if one is only interested in
efficient representation of the data SOM provides a powerful tool.

14.5 Autoencoding Neural Networks

Autoencoding neural networks or just autoencoders are a type of neural networks
that work without any labels and belong to the class of unsupervised learning.
Figure 14.4 shows architecture of autoencoding neural network. There is input
layer matching the dimensionality of the input and hidden layer with reduced
dimensionality followed by an output layer with the same dimensionality as input.
The target here is to regenerate the input at the output stage. The network is trained
to regenerate the input at the output layer. Thus the labels are essentially same as

139

14.5 Autoencoding Neural Networks

3-dimensional distribution of data

10

Result of SOM with 2-dimensional representation

FERFEEEREERERF R R ERE R ER RS
S S e R R R KK K
FHEREk kR R TR E R ER X KK
0 0 e e 4 e 6 e e e e e e e B de ek ke e
FRERERE R EE R TR R E R XXX
S s A o R S R K Rk K K
FREREREEEE R TR R ERERH
SR S o R R e R R K Rk
FHERERER TR E R R ERERER XXX
S5 A S o R Ok R R R R K K
FERERERER TR R LR R R ER XXX
S5 S Ao o R O R R K Rk K
FRERERER TR X R KR R R ER KKK
Sk Ao R R o R R R ok K
FREEEEER TR R ERERER KKK
S Ao oK R Ok R K R ok o K
FERERERER TR R ERERER XXX
S Ao R R o R R K R ok o
kR Rk RERER KKK
A A A A R e R R
FEEFEEEEEREERRE R R R R R ERE R R
S sk e o o o R oo K K F ok K
kTR RERRERERER XXX
S5 K o R R K K

10

Fig. 14.3 Figures showing original 3-dimensional distribution of the data and its 2-dimensional

representation generated by SOM. The SOM essentially unfolds 2-dimensional place folded into

3-dimensional space

140 14 Unsupervised Learning

N-dimensional input
1ndino jeuoisuawip-N

M-dimensional
hidden layer
(M<N)

Fig. 14.4 Figure showing architecture of autoencoding neural network

input. The unique aspect of autoencoding networks is reduced dimensionality of the
hidden layer. If an autoencoding network is successfully trained within the required
error margins, then in essence we are representing the input in lesser dimensional
space in the form of coefficients of the nodes at hidden layer. Furthermore, the
dimensionality of the hidden layer is programmable. Typically, with the use of
linear activation functions, the lower dimensional representation generated by the
autoencoding networks resembles the dimensionality reduction obtained from PCA.

14.6 Conclusion

In this chapter, we discussed the new type of algorithms in machine learning
literature known as unsupervised learning. These algorithms are characterized by
learning without availability of labelled data. These algorithms belong to generative
class of models and are used widely in many applications.

Part 111
Building End to End Pipelines

David: Is this real or is it a game?
Joshua aka WOPR: What’s the difference?

—dialog between David and Joshua aka WOPR, the supercomputer,
“WarGames”

Part Synopsis

Building a full solution of a problem using machine learning techniques needs
multiple components to be tied together in a sequential chain that operate on the
data one after another to finally produce the desired results. In this part we will
discuss the details of building an end to end machine learning pipeline using the
algorithms described in the previous section.

Chapter 15 ®
Featurization Check for

15.1 Introduction

Building the end to end machine learning system is the topic of this part. Featur-
ization or feature engineering or feature wrangling as it is called is typically the
first step in this process. Although human brain typically deals with non-numeric
information just as comfortably if not more than the pure numeric information,
computers can only deal with numeric information. One of the fundamental aspects
of feature engineering is to convert all the different features into some form of
numerical features. However, as one can imagine the process is not trivial. In order
to illustrate the process let us consider an example problem.

15.2 UCI: Adult Salary Predictor

UCI Machine Learning Repositoty is one of the well-known resources for finding
sample problems in machine learning. It hosts multiple data sets targeting variety
of different problems. We will use a problem listed there called as Adult Data Set
[6]. This data set contains a multivariate data with features that present multiple
challenges from the perspective of building end to end solutions. The data presented
here contains information collected by census about the salaries of people from
different work-classes, age groups, locations, etc. The objective is to predict
the salary, specifically predict a binary classification between salary greater than
$50K/year and less than $50K/year. This is a good representative set for our needs.

In order to understand the details of each step in the featurization pipeline, here
are the details of the features given in this data set copied for reference.

© Springer Nature Switzerland AG 2020 143
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_15

144 15 Featurization

Feature Details

1. age: continuous.
2. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov,
State-gov, Without-pay, Never-worked.

. fnlwgt: continuous.

4. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm,
Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st—4th, 10th, Doctorate, S5th—6th,
Preschool.

5. education-num: continuous.

6. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Wid-
owed, Married-spouse-absent, Married-AF-spouse.

7. occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,
Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-
fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

8. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmar-
ried.

9. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

10. sex: Female, Male.

11. capital-gain: continuous.

12. capital-loss: continuous.

13. hours-per-week: continuous.

14. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Ger-
many, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico,
Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti,
Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia,
El-Salvador, Trinadad and Tobago, Peru, Hong, Holand-Netherlands.

W

Most of the feature names are descriptive of their meaning, but for the rest, the
reader is advised to check [6].
Expected outcome is binary classification as,

1. salary > $50K
2. salary <= $50K

15.3 Identifying the Raw Data, Separating Information from
Noise

In present problem, we are given a set of raw data that is already curated and in
tabular form. Hence, we already know that we will need to use all the data that is
available. This may not be true in some situations. In such cases, the rule of thumb
is to use all the data that may even remotely have any influence on the outcome.
However, all the data that is not related to the outcome in any way, should be

15.3 Identifying the Raw Data, Separating Information from Noise 145

removed. Adding noise in the data dilutes it and affects the performance of the
algorithm. Most classification algorithms can easily handle hundreds of features,
but one must be careful in curating these features to have a good balance between
what is needed and what is pure noise. This is not a one time decision and one can
always experiment with different sets of features and study how they are affecting
the outcomes.

15.3.1 Correlation and Causality

There are some techniques that can also be used to understand the relation between
individual feature and the outcome. One simple technique is called as correlation.
Quantitatively it is computed using correlation coefficient or Pearson correlation
coefficient p from the mathematician and statistician Karl Pearson. Let there be two
sets of distributions X and Y. From the current context, let us say X corresponds
to one of the features and Y corresponds to the outcome. Probabilistically, the
coefficient is defined as,

pxy = (15.1)

where oy is the standard deviation of X and oy is the standard deviation of ¥ and
covariance between X and Y, cov(X, Y) is defined as,

cov(X,Y) = E[(X — ux)(Y — uy)] (15.2)

E(z) represents the expected value of variable z also known as population average.
wx and py represent the sample means of X and Y. Using Egs. 15.1 and 15.2, we
can write,

E _ _
pxy = [(X —ux)(Y — uy)] (15.3)
oxOoy

In order to numerically compute these values, let us assume there are n samples
and denote individual samples from feature and outcome as x;,i = 1,...,n and
vi,i =1,...,n. We can expand the definitions of these expressions to arrive at,

Yo = pux)(yi — py)

pxy =
VEH G = 02 [i 2

(15.4)

The value of correlation coefficient lies between [—1, 1]. Positive values indicate
there is direct correlation between the two vectors. In other words, if value of the
feature increases, the value of the outcome also increases. Value of 0 means there is
no correlation between the feature and outcome and the feature should not be used

146 15 Featurization

in the model. Correlation of 1 shows there is very direct correlation between feature
and outcome and one must be suspicious if we are using a feature that is part of the
outcome. Typically very high correlation of 1 or a value close to it, is not possible
in real applications. Value of —1 means very high but inverse correlation. Typically,
negative correlations can be quickly converted to positive by changing the sign of
the feature values. But, algorithms are smart enough to do that automatically as well.

This correlation analysis can quickly give us some insight into what features we
are using and which features are likely to have more influence on the outcome. There
is another caveat that must be recognized as well. This is the confusion between
correlation and causality. Sometimes a completely noisy feature can show high
correlation with outcome. For example in the current context, say we have gathered
the data about postal addresses of the people. If one comes up with a binary feature
as,

e feature value = 1, when the street number is even
e feature value = 0, when the street number is odd

Let’s say this feature has a relatively high correlation with the outcome of the order
of 0.7. Does that mean it is a good feature? From pure numbers, the answer would
be yes, but from the domain knowledge of the origin of the feature one can easily
confirm that this is pure coincidence. Such coincidental features need to be carefully
identified and removed from the model, as they may have adverse effect on the
model performance.

15.4 Building Feature Set

Once we have identified the set of raw data that contains good information as
discussed in the previous section, the next step is to convert this information into
machine usable features. The process of converting the raw data into features
involves some standard options and some domain specific options. Let us first look
at the standard options.

15.4.1 Standard Options of Feature Building

The raw information that is curated for model building can be one of the following
types from the perspective of computers:

1. Numerical: This can involve positive or negative integers, fractions, real num-
bers, etc. This does not include dates, or some form of IDs. (sometimes IDs
can appear to be numeric, but they should not considered numeric from the
model standpoint, as the increment and decrement in the values of IDs has
no real meaning from the perspective of the outcome.) If a numeric entity is

15.4 Building Feature Set 147

known to have only a small set of unique values, it is better to treat them as
categorical rather than numeric. Rule of thumb is, if the number of unique values
is in few tens, it could be treated as categorical, but if that number is over a
hundred, then it’s better to treat them as numerical. Ideally a feature should be
treated as numerical, if the increase and decrease in the value of the feature has
corresponding (direct or inverse) impact on the outcome.

2. Categorical: These can be string features or numeric features. String features
(pure string or alphanumeric) should be treated as categorical using similar rule
as stated above when the unique values it can take is in few tens. If there are more
than hundred unique values, they should be treated as string features.

3. String: These are pure string features, where we expect to have some unique
value in each sample. Typically these features would contain multiple words or
even sentences in some cases.

4. Datetime: These would come as alphanumeric features and seem like string
features, but they should be treated differently. They can have only date, only
time, or datetime.

Now, let us dive deeper and see how each standard of feature should be dealt
with.

15.4.1.1 Numerical Features

Numerical features are the simplest to treat, as they are already in machine
understandable format. In most cases, we keep these features as is. In some cases
following operations can be performed:

1. Rounding: the fractional or real valued features can be rounded to nearest or
lower or upper integer if the added granularity of the fractional value is of no use.

2. Quantization: Rather than just rounding, the values can be quantized into a set of
predefined buckets. This process can take the feature closer towards a categorical
feature, but in many cases, this still provides a different information and can be
desirable.

15.4.1.2 Categorical Features

Treatment of categorical features is significantly different compared to the numer-
ical features. As stated earlier, the feature is considered as categorical when the
number of unique classes is in few tens. However, in some cases with large data
sets, it may be appropriate to use categorical features even with hundreds of unique
categories. At the heart of this treatment is a procedure called as One Hot Encoding.
One hot encoding stands for conversion to a vector of 0’s and 1’s such that there
is only single 1 in the entire vector. The length of the vector equals to the number
of categories. Let’s take the example of [workclass] from our example. There are
eight different categories. Hence each category would be encoded into a vector

148 15 Featurization

of length 8. The one hot encoding of “Private” would be [1, 0, 0,0, 0, 0, 0, 0], of
“Self-emp-not-inc” would be [0, 1,0, 0,0, 0, 0, 0], and so on. Each value in this
vector is a different feature and the names of these features would be “workclass-
Private”, “workclass-Self-emp-not-inc,” and so on. So now, we have expanded a
single categorical feature into eight binary features. One can ask a question as why
should we complicate this process into building so many more features, when we
can just convert them into a single integer feature and assign the values from say
1-8, or 07 or even 00000001-10000000. The reason for not doing this way lies in
the relation between two numbers. For example number 1 is closer to number 2 than
number 3 and so on. Does this relation holds for the values we are encoding? Does
the value “Private” is closer to value “Self-emp-not-inc” than say “Without-pay”?
The answer to these questions is NO. All these values have a meaning of their own
and cannot be compared to each other like we compare two numbers. This can only
be expressed numerically by putting them in different dimensions of their own. One
hot encoding achieves precisely that.

15.4.1.3 String Features

Generic string features, also called as text features can be processed in multiple
ways. But in general before converting them into features, a set of preprocessing
steps are recommended. These include:

1. Removing punctuation characters: In most cases, the punctuation characters do
not carry any useful information and can be safely removed.

2. Conversion to lower case: In most cases, converting all the text into lower case is
highly recommended. If the same word or set of words appears in multiple places
with even a slight difference in casing, machine treats them as two completely
separate entities. It not a desired in most cases, and converting everything to
lower case makes the next processing more streamlined.

3. Removal of common words: Words like articles (a, an, the), conjunctions (for,
but, yet, etc.), prepositions (in, under, etc.) are used quite commonly and are
typically not quite informative from the machine learning model perspective.
These are also termed as stop words and can be safely removed. Due to high
frequency of these words, removal of these words reduces the complexity
significantly. A pre-populated list of stop words is typically available in machine
learning libraries and it can be used as off-the-shelf component.

4. Spelling fixes: It is quite common to have spelling errors in the data and
misspelled words can give rise to lot of noise. Standard spell check can be safely
applied to improve the data quality.

5. Grammar: This is a complex topic in itself. In many cases, applying various
grammar checks can improve the quality of data, but these modifications are
not necessarily generic and should be applied on a case by case basis. The
common techniques include: stemming and lemmatization (converting words
like “walking” or “walked” to “walk,” etc.), tagging parts of speech (POS), etc.

15.4 Building Feature Set 149

The featurization of the text can be broadly classified into simple and advanced.

Simple featurization can include counts and frequencies of different entities. Some
examples are:

DN AW =

. Number of words

. Frequency of repeated words
. Number of stop words

. Number of special characters
. Number of sentences

Advanced featurization includes:

. N-grams analysis: N-gram analysis segments the given text into buckets of

consecutive n words. Each unique sequence of n words is collected as a unique
n-gram and they are encoded based on the frequency of occurrence of each
n-gram. For example consider a sentence “Michael ran as fast as he can to catch
the bus.” Assuming we applied the lower case conversion as preprocessing step,
unigram or l-gram analysis would give: "michael," “ran,” “as,” “fast,” “he,”
“can,” “to,” “catch,” “the,” “train” unique 1-grams. The encoded vector will be
[1,1,2,1,1,1,1,1, 1, 1]. Bigram or 2-gram analysis of the same sentence will
generate following unique 2-grams "michael ran,” “ran as,” “as fast,” “fast as,”
“as he,” “he can,” “can to,” “to catch,” “catch the,” “the bus”. The encoded vector
willbe [1,1,1,1,1,1, 1,1, 1, 1]. As you can see the difference between 1-grams
and 2-grams, word “as” appears only once in the feature space of 1-grams, but
the bigrams “as fast” and “fast as” appear separately in 2-grams feature space.
In cases like this elimination of stop words (such as “as”) can reduce the feature
space drastically.

One more thing to notice here is that n-gram analysis with n > 1, captures
the sequential information of the words and not just their frequency. Especially
when n gets larger, the uniqueness of features increase exponentially. Also, if n
is too large the space gets too sparse, so one needs to carefully do the tradeoff
between higher value of n vs lower value.

. Bag of Words: Bag of words is typically described as most popular method of

featurizing string entities. It essentially represents the n-gram analysis with n=1.

. TF-IDF analysis: It stands for term frequency—inverse document frequency. This

analysis is typically useful in case of long texts. For shorter texts, n-grams or
bag of words is typically sufficient. Conceptually it quantifies the importance
of a word in a given text compared to the collection of texts. Let us look at the
mathematical definition of this.

Let the term frequency (TF) of a word w; in a text ¢; be given as f, (w;, t;).
This is calculated as the number of times word w; appears in text ;. Let there be
total of n words over the entire corpus of texts. Let there be m number of texts.

150 15 Featurization

The inverse document frequency (IDF) f;;(w;) of word w; is defined as,

fia(w;) = log . (15.5)

1, ifw; et;
p Y
0, otherwise.

the denominator essentially counts the number of texts that contain the word
w;. The joint TF-IDF expression is then the combination of TF and IDF as
Sw(wi,) fia(w;).

To illustrate the concept, the stop words will have a high TF in all the
documents, but low IDF overall, and as a result their TF score will be discounted
accordingly. However, if a certain word appears only in one document, its TF in
that document will be significantly boosted by IDF.

15.4.1.4 Datetime Features

Datetime features expose a very different type of information and it needs a little bit
of domain knowledge to make sense. That way, they belong more in the next section
of custom features. However, they also allow for some standard processing and
hence are discussed here. In string format the datetime feature is quite meaningless,
at the same time converting datetime directly to a numeric value also brings little to
the table. Commonly extracted datetime features include:

Day of week
Day of month
Day of year
Week of month
Week of year
Month of year
Quarter of year
Days from today
Hour of day
Minute of hour

CPOXTIAN R WD~

[y

15.4.2 Custom Options of Feature Building

Most of the featurization options discusses in the previous section are standard in
the sense that they are valid irrespective of the context or in absence of any domain
knowledge. When we are building a custom machine model to solve a specific
problem in artificial intelligence, we already have a domain knowledge that can be
applied to extract features that may not make sense in generic settings. For example,
let us consider the example of salary prediction. One of the numeric feature is “age.”

15.5 Handling Missing Values 151

It is numeric and continuous feature, and as per standard featurization guideline we
can use it as is or we can round it integer, or even bin it to multiples of 5, etc.
However, for current problem of salary, this age is not just a number between say
0-100, but it has more to it. We know that typical starting age for employment is
say around 18 and typical retirement age is say around 65. Then we can add custom
bins within that range to create a more meaningful feature in current context.

Another important aspect of custom feature building is in the form of interactions
between two features. This is completely non-trivial from generic standpoint
and can gain a significant information that is otherwise not possible. For exam-
ple from the adult salary example, there are two features “Capital-gain” and
“Capital-loss.” We can join these two features in the form of difference as
"(Capital-gain) — (Capital-loss)" to see the big picture in single feature. Or we have
some survey information that gives a specific relationship between the “age” and
“education-num,” which we can use to join these two features in some proportion
to create a more informative new feature. These features are non-trivial and would
certainly add to the information that the model can use.

Datetime features are also a string candidate for creating interaction features.
Difference of days between two dates is always a useful feature. Another way
to join features is applying mean, min, max, etc. operators on collection of
numeric features. The options are quite unlimited. However, it must be noted that
creating large amounts of custom features is not necessarily going to improve the
performance arbitrarily and there would soon be a point of saturation. Nevertheless,
this is always a good option to experiment.

15.5 Handling Missing Values

Missing values is a very common occurrence in real life situations and they must
be substituted with some values or the models will fail to execute. If the missing
values are present in the training data, trivial solution is to just ignore these
samples. However, in some cases there is just too many samples with some missing
information and we cannot just ignore them. Also, if the values are missing in test
data, where we need to make a prediction, we have no choice but to substitute the
missing value with some reasonable estimate. Most common ways to handle the
missing values are:

1. Use the mean or mode or median value in case of numeric values.

2. Use the mode in case of categorical values.

3. If we have some prior knowledge, we can always replace the missing value with
a predetermined value.

4. In case of categorical features, we can create a new category as “unknown” and
use that instead. However, there is one caveat here and that is if the ‘“unknown”
category pops only in the test data and is not available in the training data some
models can fail. However, if there are samples in training data with missing

152 15 Featurization

values that are also substituted with “unknown,” then it is typically the most
elegant solution.

5. Predicting the missing value. This can be achieved by variety of ways, ranging
from simple regression based methods to more complicated Expectation Maxi-
mization or EM algorithms. If the feature that is being predicted has a very high
variance, then this method can result in bad estimates, but in general this is better
suited than simple “mean/mode/median” substitution.

6. Use the algorithms that support missing values. There are certain algorithms
that inherently use the features independently, e.g., Naive Bayes, or k-nearest
neighbor clustering. Such algorithms can work with missing values without
needing to substitute it with some estimate.

15.6 Visualizing the Features

The last step in featurization is visualizing the features and their relationship
with the labels. Looking at the visualizations, one can go back to some feature
modifications as well and iterate over the process. To illustrate this, let us use the
adult salary data.

15.6.1 Numeric Features

First let us look at the numeric features. The numeric features are:

age
. fulwgt

. education-num
. capital-gain

. capital-loss

. hours-per-week

A e I S

Now, let’s look at the plots of individual feature values compared to the label as
shown in Figs. 15.1, 15.2, and 15.3.

Table 15.1 shows the correlation coefficients of each of the features with the
label.

As we can see from the figures and the correlation coefficients, feature fnlwgt
contains almost no information and most other features a relatively weak features
on their own. As discussed before the negative sign only shows the relationship
between their values and label is inverse. Looking at this data, we can safely ignore
the feature fnlwgt for model training purpose. However, considering that there are
only 14 features to start with, we can keep it.

15.6 Visualizing the Features

Distribution of age

* <= 50K
* >50K

0.5 .

10 20 30 40 50 60 70 80 90

Distribution of fnlwgt

<= 50K
> 50K

1 [R e ol M K ek ¥ kR

x10°

Fig. 15.1 Showing class separation using individual features age and fnlwgt

153

154 15 Featurization

Distribution of education-num

1.5 T T
¥ <=50K
¥ > 50K
TH—%——%—%—%—%—%——%——%—— %% ¥ —kF *—%
05 1
0 —_— -
0 2 4 6 8 10 12 14 16
- Distribution of capital-gain
* <= 50K
* >50K
1 . & * %]
05 4
O F—rml Nk —k : - .
0 2 4 6 8 10
x10%

Fig. 15.2 Showing class separation using individual features education-num and capital-gain

15.6 Visualizing the Features 155

Distribution of capital-loss

1.5 T T T
* <=50K
* = 50K
T g e M KR e UM % ke k *
05F .
0 L AR F—k L—s

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Distribution of hours-per-week

1.5 T
¥ <= 50K
* > 50K
1 L kb
05F g
0 SRR R 4 Bl
0 20 40 60 80 100

Fig. 15.3 Showing class separation using individual features capital-loss and hours-per-week

15.6.2 Categorical Features

Now, we will look at the categorical features one by one. As described before, each
value of a categorical feature is treated as separate feature by using one hot encoding
technique.

156 15 Featurization

Table _15 -1 Correlation Feature name Correlation coefficient
coefficients between
numerical features and label age —0.23
Sfnlwgt +0.01
education-num | —0.34
capital-gain —-0.22
capital-loss —0.15
hours-per-week | —0.23

Count for Salary > 50K
6000

3000

2000

? Federal-gov Local-gov Private Self-emp-inc Self-emp-not-inc State-gov

Fig. 15.4 Pivot table showing distribution of the label (>50K) for each value of the feature. ?
means missing value

15.6.2.1 Feature: Workclass

Feature workclass is a categorical feature with possible values in {Private, Self-
emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-
worked}. It would be much harder to visualize the effect of all the different values
of the features in a single plot the way we did in case of numerical features. Also,
we don’t want to create separate plot for each value, as that would lead to just too
many plots. Instead we will use a technique called pivot table or pivot chart. In this
technique we put all the values of one parameter on one axis and count for any other
aggregate function (sum, max, min, median, mean, etc.) of the values of the other
parameters on the other axis. Figures 15.4 and 15.5 show the pivot charts for all the
values of this feature in case of salary >50K and salary <50K. As can be seen from
the charts, the value of Private has similar distribution in both cases, but the values
Federal-gov and self-emp-inc show significantly different distribution in both cases.
Thus we expect that the separate features created using these values should be more
influential in the model.

15.6 Visualizing the Features 157
Count for Salary <= 50K

20000

18000

16000

14000

12000

6000
4000

2000

i . = . = . =

? Federal-gov Local-gov Never-worked Private self-emp-inc self-emp-not- State-gov Without-pay
inc

Fig. 15.5 Pivot table showing distribution of the label (<50K) for each value of the feature. ?

means missing value
& & & &

.

&

o

J o< ¥

ol F & o

A o F: 8 2] I P
v%s& o & & & & .

Count of salary > 50K
2500

2000

1500

1000

500 Lo |

0 . N
?-\-SS ._"0& ,‘:\a',‘c'\‘g

- i —
= = & o > -

o o g o o o
5 o

(0’4 l

Fig. 15.6 Pivot table showing distribution of the label (>50K) for each value of the feature. ?
means missing value

15.6.2.2 Feature: Education

Feature education is a categorical feature with values in {Bachelors, Some-college,
11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th—8th, 12th, Masters,
1st—4th, 10th, Doctorate, 5Sth—6th, Preschool}. We will use the pivot chart as before
to see the trends between value of this feature and label. Figures 15.6 and 15.7 show
the pivot charts. Some features are altogether missing between the plots as a result
of having zero count. These values would be expected to have a very high influence

158 15 Featurization

Count of salary <= 50K
10000

9000

o
5
L

82000
000
5000
5000
4000
3000
2000
1000
& & S & L R

N o A

Fig. 15.7 Pivot table showing distribution of the label (<50K) for each value of the feature. ?
means missing value

on the outcome. Also the values corresponding to higher education show strong
separation between the two classes.

15.6.2.3 Other Features

Remaining categorical features marital-status, occupation, relationship, race, sex,
native-country can be analyzed in similar fashion. The insights gained by looking at
the trends visually can be extremely effective in choosing the right mode, tuning it,
selecting the constraints for regularization, etc.

15.7 Conclusion

This chapter described the concept of featurization in detailed manner. We started
with generic description of the techniques and to make them real, we took an
example of the adult salary data and performed the featurization of it by taking
each individual feature one at a time. We also used the help of visualization to draw
some inferences on the influencing capabilities of each feature on the outcome.

Chapter 16 ®
Designing and Tuning Model Pipelines Qe

16.1 Introduction

Once the features are ready as discussed in the previous chapter, the next step
is to choose the technique or algorithm to use for the desired application. Then
the available data is split into two or three sets depending on how the tuning is
implemented. The three sets are called as training, validation, and testing. The
training set is used for training the model, optional validation set is used to tune the
parameters, and test set is used to predict the performance metrics of the algorithm
that we would expect when it would be applied to the real data. We will go through
these steps in detail in the following sections.

16.2 Choosing the Technique or Algorithm

Typically the application dictates the broad category of method we should use.
For example if we are dealing with a regression problem then we are restricted
to all the regression type techniques, which would eliminate the clustering or
recommendation algorithms', etc. Alternatively, if we are dealing with unsupervised
clustering application, then all the supervised algorithms like decision trees, support
vector machines, or neural networks cannot be used.

I'The terms model and algorithm are used interchangeably in most machine learning literature,
and it can be confusing. The precise definition of these two terms is: Algorithm is the underlying
theoretical infrastructure and model is the abstract binary structure that is obtained when we go
through the training process. In other words, model is a trained algorithm. With different training
data, we get a different model, but underlying algorithm remains unchanged. The trained model
then can be used to predict outcomes on the unlabelled data.

© Springer Nature Switzerland AG 2020 159
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_16

160 16 Designing and Tuning Model Pipelines

In order to illustrate the thought process in choosing the model, let’s consider the
problem of binary classification of the adult salary data as described in the previous
chapter.

16.2.1 Choosing Technique for Adult Salary Classification

As the application dictates we have to narrow our scope to classification algorithms.
Regression algorithms can always be used in classification applications with
addition of threshold, but are less preferred. We discussed about the types of field
given to us. Here is a snapshot of actual data for first few samples (Table 16.1).

As can be seen here, the data types we are dealing with here are either
continuous valued integers or string categorical. There are also some missing
features represented with “?”.

Decision tree based methods are typically better suited for problems that have
categorical features as these algorithms inherently use the categorical information.
Most other algorithms like logistic regression, support vector machines, neural
networks, or probabilistic approaches are better suited for numerical features. This
is not to say that you cannot use them at all in case of categorical features, but this
suggestion should be taken as rule of thumb. Also, it is better to start with a simpler
algorithm to begin with to establish a baseline performance. Then we can try with
mode complex algorithms and compare the performance with baseline. Complex
algorithms are typically the ones that need elaborate setup and initialization of large
number of parameters, also called as hyperparameters. We will deal with this topic
later in this chapter.

Single decision tree can be used as one of the simplest possible starting
algorithm; however, random forest decision tree is also a good choice. As described
in Chap. 6, random forest algorithm provides significant improvements over single
decision tree without adding much complexity from training perspective.

16.3 Splitting the Data

Once an algorithm is selected for use, the next step is to separate the whole labelled
training data into 2 or 3 sets, called as training, (optional) validation, and test. In this
case, as we plan to do hyperparameter tuning, we will divide the data into three sets.
Typically the division of the three sets in percentage is done as: 60-20-20, or 70—
15-15. More the samples available for training the better, but we need to also keep
sufficient samples in validation and test sets to have statistically significant metrics.
This aspect is discussed in greater detail in Chap. 17. Typically the validation and
test sets are of same size. But all these decisions are empirical and one can choose
to customize them as needed.

161

16.3 Splitting the Data

asnods
seIS 1redor -AIO pers
306=>| -panun oy 0 0| PSP AMYM pueqsny “JeID | -paleN 6 -SH | 99€°€61 ARALG | 6F
s9IRIS Arwey | reeSeuewt peid
A06=>| -panun 08 0 0 °lEN AMYM -ur-joN 99Xy | padloAlg 6 -SH | 092°L9€ AeAlld | 6€
I3pue[s| asnods
-oed -AID 3391100
308< ynog 09 0 0| BN | -uelsy pueqsny & | "PaUIBN 01 -wog | 112081 I 1Y
saIRIS aredor | paLuewt peid
A06=>| -payun oy 0 0| SN SMYM | PIIYO-UMQO “Jerd | -IPASN 6 -SH | ¥6T°891 AeAlld | 61
jussqe
Aruey QOIAIRS | -osnods
206=> | eorewef 91 0 0 | o[ewag Aoerd -ur-joN ~I9O | -patieN S We | L81°091 AeAlld | 61
asnods
seIS [eLIoSeURW -AID
MOS=>| -saun or 0 0 | orewrog AMYM M -09XY | -PoLLBIN Y1 | SISBIN | T8S VST QeAlld | LE
asnods
Kyreroads -AID
06=> BqnD oy 0 0 | oreurag Aoerg RUAN -JOId | -poLBN €1 [sIoydey | 60%'SEE QeALd | 8T
asnods
seIS SIoULBI[O -ATD
206=>| -payun oy 0 0| P°PEN Aoerg pueqsnH | -SIS[pueq | -paLLB]A L WIT | 1TLYET ARAL] | €6
s91R1S Aqruey SIoUBI[O peid
30S=>| -panun oy 0 0| ©°PEN AMYM -UIFION | -SI9[pUBH | padIoAlq 6 -SH | 9¥9°G1C QeAlld | 8¢
[9qe 1| Anunod | yoom-rod SSO[ures pelN Qoey | diysuoneoy | uonednooQ snje)s wnu uoreonpy | 1SMJuJ |SSe[OYIoA | 98V
-OATIEN -smoy | -tende) | -rende) -[eIIRIA ~uonEeOnpH

eyep Arefes jjnpe [D) woij smoi ojdwes -9 IqeL

162 16 Designing and Tuning Model Pipelines
16.3.1 Stratified Sampling

The splitting is always done in random fashion and not sequential manner to have
statistically even spread of data between all the three sets. There is one more
aspect that needs careful attention, specifically in case of classification applications.
This is called as stratified sampling. Stratified sampling ensures a certain known
distribution of classes in split parts. When we are dealing with say n number of
classes, the number of samples per class is not always same. Sometimes there can
be large skew in this distribution, meaning number of samples of one class can
be significantly larger than others. In such cases the uniform random split does
not yield optimal separation. In order to train the model without bias towards any
specific class, we need to have roughly same number of samples from each class
in the training set. The distribution in validation and test set is less important, but
it is always a good practice to have roughly balanced distribution across the classes
in all the three sets. When the original distribution is unbalanced, there are two
choices:

1. Ignore a number of samples from the classes that have more samples to match
the classes that have less number of samples.

2. Use the samples from the classes that have less number of samples repeatedly
to match with number of samples from the classes that have larger number of
samples.

Which option to choose now depends on the original number of samples. If there
are sufficient number of samples even after dropping samples from larger sets, then
that is always a better option rather than repeated sampling.

Also, it is not mandatory to use stratified sampling, if the bias between classes
is acceptable. In the current problem of adult salary classification, they have given
the training and test data in separate sets already. There are 24,720 samples from
the class <50K and only 7841 samples from the class >50K in training data that
contains total of 32,561 samples. The test set contains 12,435 samples from the
class <50K and only 3846 samples from the class >50K with total of 16,281
samples. Thus there is significant skew in the sample distribution. However, as per
the guidance given by the creators of the data set, the bias between these two classes
of salary ranges is known and needs to be preserved. Uniform random sampling
typically gives similar distribution between the classes in different parts when data
is large enough, but if there is significant difference, one can repeat the sampling
to ensure that, or one can use stratified sampling to enforce certain distribution of
classes in each part. In current problem we just need to split the training set into two
parts training and validation. We will use 70-30 split for this purpose.

16.4 Training 163
16.4 Training

Once the data is split into training and test sets, the training set is used to train
the algorithm and build the model. Each algorithm has its own specific method
associated with it for training. The underlying concept common in all the different
technique is to find the right set of parameters of the model that can map the input
to output as far as training data is concerned. In other words, to find the set of
parameters that minimize the error (one can choose different types of errors as
defined in Chap. 17) between the predictions and the expected values of the output
in training set. Some methods are iterative, and they go through multiple loops of
finding and improving the parameters. Some methods are one shot, where in single
loop the optimal set of parameters are computed.
The parameters of the model are also classified into two main types:

1. The parameters that can be computed using the training process to minimize the
error in the prediction.

2. The parameter that cannot be directly computed using the training process. These
parameters are also called as hyperparameters. Each unique set of hyperparame-
ters can be thought of as a different model in itself.

16.4.1 Tuning the Hyperparameters

The hyperparameters are typically a set of parameters that can be unbounded, e.g.,
number of nodes in a hidden layer of a neural network. One can theoretically choose
any number between 1 and co. One cannot simply use the training data to find the
right number of nodes. Hence the bounds on hyperparameters are created by the
scientist, who is in charge of building the model. These bounds are created based on
multiple constraints like computation requirements, dimensionality, and size of data,
etc. Typically one needs to create such bounds for more than one hyperparameter
for each model. Thus we end up with an n-dimensional grid of hyperparameters to
choose.

As stated in previous section a single set of training set can be used to get results
with one set of hyperparameters. Hence in order to have multiple such sets to tune
hyperparameters, one needs to split the training data further into two parts called
as training and validation. There are multiple techniques described in the literature
for generating these sets. However, the test set must be kept separate and never be
used in the tuning or training processes. If one uses the test set in this process, then
all the labelled data is used for the training-tuning process and there would no data
left to predict the behavior of the trained-tuned model on unseen samples. This is a
fundamental rule in machine learning theory that must never be broken.

For a given set of hyperparameters, the training set is the only data available
for training and the trained model is applied on the validation set to compute the
accuracy metrics. Once all the different set of hyperparameters are used, the set that

164 16 Designing and Tuning Model Pipelines

provides best performance on the validation set is used as best model. Then the test
data is used only once to predict the accuracy of the tuned and trained machine
learning model.

16.5 Accuracy Measurement

Measuring the accuracy of a model is the last step in the design of machine learning
system. However, considering the scope of this topic entire next chapter is devoted
on this step.

16.6 Explainability of Features

Typically once the model is trained with sufficient accuracy, the job is over.
However, in recent times, an additional step is getting more and more importance.
This step does not find roots in theory of machine learning but has emerged more
due to the collision of the traditional heuristic methods with machine learnt methods.
When a domain expert builds a simper heuristic model to predict certain outcomes,
all the rules that are part of the heuristic model are human readable and have obvious
interpretability. When the outcome is high or low, the reason for that specific
outcome can quickly be seen from the rules and interpreted. These interpretations
also lead to concrete actions that can be taken based on them.

Most of the machine learnt models, specifically the neural net type models,
lack this reasoning and interpretability completely. One must accept the outcome
as it stands based on the accuracy metrics that are provided based on the test
data. However, this lack of reasoning or explainability and interpretability came
into strong criticism when the machine learnt models started to replace the older
heuristic models. There are variety of different techniques proposed that can be
applied after the model is trained to add explanability of the results, or importances
of the features used. The core idea here is to vary the value of individual features
and see their effect on the outcome. The features that have stronger impact on the
outcome are more important and vice versa. However, this technique does not take
into account interdependency of the features. This article [30] discusses some of the
current advances in this field. Also, the explainability of the features needs to be
built for aggregate level as well as case by case level.

16.7 Practical Considerations

All the machine learning algorithms discussed so far in the book are based on
certain assumptions about the nature of the data. Either the data is static, or it is
in the form of time series. Either data is strictly linear or it can be converted into

16.7 Practical Considerations 165

linear with suitable link function or it is purely nonlinear. The number of classes
defined in the training data cannot be different from the ones in test data. And
so on. However, when we deal with data in practice none of these assumptions
are precisely applicable. There is always some gray area and it is very crucial to
identify such areas and address them explicitly. We will discuss some of the more
commonly observed situations in this section, but this list should not be treated as
comprehensive.

16.7.1 Data Leakage

In selecting the underlying algorithm for solving a given machine learning problem
one must understand the trends in the data. If the data is static then there is a set
of static algorithms that one can choose from. Examples of static problem could be
classification of images into ones that contain cars and ones that don’t. In this case
the images that are already gathered for the classification are not going to change
over time and is purely a case of static analysis. However, if the data is changing
over time, it creates additional layer of complexity. If one is interested in modeling
the trends of change in data over time, it becomes a time series type of problem
and one must choose appropriate model e.g. ARIMA as described in Chap. 11. For
example stock price prediction. However, in some cases, we are dealing with data
that is changing, but we are only interested in the behavior of the data for a given
snapshot in time. This situation does not warrant a time series model and once a
snapshot of the data is taken, it becomes a strictly static problem. However, when
such snapshot of the data is taken for building a machine learning model, one must
be careful about the time-line of changes of all the individual features till the time
of snapshot.

An example will help understand this phenomenon better. Consider a business of
auto mechanic. We are trying to predict the customers who are likely to visit more
than once in a period of say 6 months. We gathered the sales data for past 6 months.
Here are some of the columns in the data:

. Number of visits

. Year of manufacture of the car
. Make of the car

. Model of the car

. Miles on the odometer

. Amount of sale

. Method of payment

. Category of customer

0NN B W

The first column is actually the label of the data, where if the number of visits is
greater than 2, we classify it as “True” and classify as “False” otherwise as per the
definition of the problem. This column is then removed from the feature space and
all the remaining columns are used as features. However, the last column in the list is

166 16 Designing and Tuning Model Pipelines

a categorical feature where we classify each customer, based on the historical data.
Only the customers that are repeat customers, we put them into “Known” category,
and rest of them are put into “Unknown” category. Now, this column is not exactly
same as the label column; however, the “Known” customers are more likely to be
classified as “True” as per our definition compared to the “Unknown” customers.
Also, it must be noted that the value in this column is going to be updated after each
visit. Thus if we use this column as one of the features, it is going to leak partial
information from the label back into the feature space. This will cause the model to
perform much better than expected based on this single feature alone. Also, it must
be noted that this feature will not be available for the customers when they are going
to visit for the first time. Hence it would be best to not use this feature in training
the model. This leakage of information is also called as Target Leaking.

16.7.2 Coincidence and Causality

In practice when dealing with data with large number of features for predicting
relatively small number of classes or predicting a relatively simple regression
function, the noise levels in the training data can significantly affect the model
quality. When there are too many features present in the data that have no causal
effect on the outcome, there is a chance that some of these noisy features may
show lucky correlation with the outcome. Identifying such noisy features is typically
done with the domain knowledge of the problem space, but sometimes the scientist
developing the model may lack this knowledge. In such cases, it becomes extremely
difficult to identify the features that are coincidentally correlated with the outcome
versus the features that actually have causal effect on the outcome. The coincidental
features might help in getting high accuracy on training data, but will make the
model quite weak in predicting the outcome on the unseen test data. In other words
the generalization performance of the model will be quite poor.

Unfortunately, there exists no theoretical method to identify and separate the
coincidental features from the causal features purely from the data analysis. There
are some probabilistic methods proposed based on conditional dependence between
features, but all such methods make some assumptions on the dependency and
causality and these assumptions may not hold true on the real data. This is a
relatively novel aspect of machine learning and is under study. Here is one article
that discusses some aspects of this phenomenon [29]. Although this is a problem
with no concrete theoretical solution, one can circumvent this situation by taking
following measures:

1. Using cross validation even if hyperparameter tuning is not used. This splits
the data in multiple different combinations thereby reducing the chance of
coincidental features getting more importance.

2. Using ensemble methods as opposed to single model methods to improve the
robustness and reduce coincidence.

16.8 Conclusion 167

3. Applying feature interpretation as an additional step after the model training to
make sure all the important features have domain specific explainability. Having
such explainability makes the models more resilient of coincidences.

16.7.3 Unknown Categories

Existence of missing data is a common occurrence in case of training classification
problems. However, the case of unknown categories is little more deeply rooted and
can be confusing. When a feature type is treated as categorical, it is then processed
accordingly as described in Chap. 15. Each new category encountered is added to the
list of categories and accordingly the categories are encoded into numerical features.
However, sometimes, it may happen that a new category is encountered only in the
test set, which was completely missing in the training or validation set. Most models
can fail in such situations. However, if the model is built to take into consideration
of this possibility this failure can be avoided. Here are few examples of handling
such situation:

1. The new category is treated as unknown category and such unknown category is
preprogrammed into the featurization of the model. There may be an unknown
category in the training data where the data is actually missing and then the newly
discovered category can be considered as missing data. This can be acceptable
behavior if planned for.

2. If a new category is discovered in the test data, it is explicitly treated as missing
data and the model is trained to ignore this feature and still be able to produce
the result.

3. The newly discovered category is treated as one of the known category and model
is applied as trained.

All these cases are way of doing some form of approximation to make the model
robust in case of unseen data, and which solution to use in any given case must be
determined at the time of model building.

16.8 Conclusion

In this chapter we integrated the concepts learnt so far with respect to various
algorithms and data preprocessing and discussed the elements of designing an end
to end machine learning pipeline. We also discussed about the lesser known aspects
in this design like data leakage and coincidence against causality and how to address
those to successfully build the system.

Chapter 17 ®
Performance Measurement Check for

17.1 Introduction

Any discussion about machine learning techniques cannot be complete without
the understanding of performance measurement. Performance can be measured
qualitatively by looking subjectively at a set of results or objectively at the value
of an expression. Whenever size of data is large, subjective and qualitative tests can
no longer give any reliable information about the general performance of the system
and objective methods are the only way to go. There are various such mathematical
expressions, called as metrics defined in the field for assessing performance of
different types of machine learning systems. In this chapter we are going to focus
on the theory of performance measurement and metrics.

Whenever a data set is selected for training a machine learning model, one must
keep a fraction of the set aside for testing the performance. This test data should not
be used in any way during the training process. This is extremely important aspect
and anyone who wants to venture into this field should treat this as sanctimonious
and uber principle. Typically the training and test split is done as 70-30% or 75—
25%. The rule of thumb here is two fold:

1. Model should get as much as training data as possible.
2. The test set should contain sufficient samples to have statistical confidence in the
metrics produced using it.

There is a whole topic dedicated on statistical significance in statistics, but the gist
of it is: one needs at least 30 samples for testing the performance of single one-
dimensional variable. When there are more than one variable and more than one
dimension, the rule gets much more complex depending on the dependency between
the dimensions and variables, etc. In such cases the sufficient number of training
samples need to be decided on case by case basis.

Following sections define most commonly used performance metrics. Some of
them are quite trivial, but they are still provided for completeness. All the metrics

© Springer Nature Switzerland AG 2020 169
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_17

170 17 Performance Measurement

are based on the assumption of discrete data. In case of continuous functions, the
summation is replaced with integral, but the concepts remain the same.

17.2 Metrics Based on Numerical Error

These are the simplest form of metrics. When we have a list of expected values, say
(yi,i =1, ..., n)and we have a list of predicted values, say (y;,i = 1, ..., n). The
error in prediction can be given using following metrics:

17.2.1 Mean Absolute Error

Mean absolute error is defined as:

i=n s ..
€mae = —Zi=1 |:l)l il 17.1)

Use of only Mean Error is typically avoided, as it can lead to unusually low values
due to cancellation of the negative and positive errors.

17.2.2 Mean Squared Error

Mean squared error is defined as:

i=n s N2
e — M—w 17.2)

MSE typically penalizes less number larger errors (outliers) more heavily compared
to more number of smaller errors. One can choose to use either of them based on
specific problem or use both.

17.2.3 Root Mean Squared Error

Root mean squared error is defined as:

i=n 5. — v
€rmse = M (17.3)

17.3 Metrics Based on Categorical Error 171

RMSE reduces the sensitivity of the error to few outliers, but still is more sensitive
compared to the MAE.

17.2.4 Normalized Error

In many cases, all the above error metrics can produce some arbitrary number
between —oo and co. These numbers only make sense in a relative manner. For
example we can compare the performance of the two systems operating on the same
data by comparing the errors produced by them. However, if we are looking at a
single instance of the single system, then the single value of error can be quite
arbitrary. This situation can be improved by using some form of normalization of
the error, so that the error is bounded by lower and upper bounds. Typically the
bounds used are (—1 to +1), (0-1), or (0-100). This way, even a single instance of
normalized error can make sense on its own. All the above error definitions can have
their own normalized counterpart.

17.3 Maetrics Based on Categorical Error

Performance metrics based on categorical data are quite a bit different. In order to
quantitatively define the metrics, we need to introduce certain terminology. Consider
a problem of binary classification. Let there be a total of n; samples of class 1 and
ny samples of class 2. Total number of samples is n = n; + ny. The classifier
predicts 717 number of samples for class 1 and 7, number of samples for class 2,
such that 71 4+ 71, = n. In such situations the metrics can be calculated either from
the perspective of only class 1, or only class 2, or with a joint perspective.

17.3.1 Accuracy

To quantitatively define the metrics, let’s define certain parameters. Let n;; be the
number of samples originally of class i that are classified as class j. With joint
perspective, the metrics are given in terms of accuracy A as,

A= nir +n (17.4)
niy +nip +n2 +n

172 17 Performance Measurement
17.3.2 Precision and Recall

We need to define few more terms for defining the metrics from perspective of any
one class. Let TP be the number of true positives from the perspective of class 1.
Hence TP = nj;. Let FP be the false positives from the perspective of class 1.
False positive means the sample is actually from class 2, but is classified as class 1.
Hence FP = n;,1. They are also called as false calls. Let TN be the number of false
negatives from the perspective of class 1. True negative means the sample is actually
from class 2 and is classified as class 2. Hence TN = ny,. Let FN be the number of
false negatives from the perspective of class 1. False negative means the sample is
actually from class 1, but is classified as class 2. They are also alternatively called
as misses. Hence FN = n>. Now we can define the two metrics from perspective
of class 1 as precision, P and recall, R.

TP
P=— (17.5)
TP + FP
TP
R=— (17.6)
TP + FN

As can be seen the numerator is same in both equations, but denominator is
different. In order to subjectively understand these entities, one can follow these
rules of thumbs.

Rules of Thumb for Understanding Precision and Recall

1. Precision can be interpreted as how many samples actually belong to class 1 from
the pool of samples that are classified as class 1.

2. Recall can be interpreted as how many samples actually belong to class 1 from
the pool of samples that actually belong to class 1.

17.3.2.1 F-Score

In order to combine these two metrics into a single metric, sometimes another metric
is defined as F-score, which is essentially harmonic mean of precision and recall. It
is sometimes called as F-measure or F1 score, but they all mean the same quantity.

P-R
P+R

F=2.

(17.7)

17.3.2.2 Confusion Matrix

All the equations that are described above can be reformulated from the perspective
of class 2. Also, the same analysis can be further generalized for case of n-classes.

17.3 Metrics Based on Categorical Error 173

Along with these metrics often times the full matrix of misclassifications n;;,i =
1,...nand j = 1, ..., nis also useful and is called as confusion matrix.

17.3.3 Receiver Operating Characteristics (ROC) Curve
Analysis

The precision and recall are in a way competing metrics. When a classifier is
designed, there is some form of threshold or a condition that is ultimately involved
that separate the two classes. If we move the threshold in any direction, it affects
precision and recall in opposite manner. In other words, if we try to improve
the precision, the recall typically gets worse and vice versa. Hence in order to
understand the core performance of the classifier in separating the two classes, a
plot called receiver operating characteristics (ROC) is generated. The name ROC
can be quite confusing, as there is no receiver in any of the considerations here.
This whole theory has evolved in the subject of communications. In an electronic
communication system there is a transmitter and receiver. In ideal situation, the
receiver needs to decode the signals with no error as sent by the transmitter.
However, due to noise on the transmission medium, there are always some errors.
The ROC curve based analysis was developed to provide quantitative measure on
the performance of the receiver. ROC curve is typically plotted in terms of True
Positive Rate, TPR and False Positive Rate, FPR. These terms are defined as:

TP
TPR= —— (17.8)
TP + FN
FP
FPR= — (17.9)
FP + TN

As can be seen from the equations, TPR has same definition as recall and with some
calculation we can see that FPR is related to precision. However, in current context,
they are called as rate and we are going to vary these parameters as a function of
threshold.

Figures 17.1 and 17.2 show two examples of ROC curve. The x-axis marks the
FPR and the y-axis marks TPR. At the origin, both the rates are 0, as threshold
is such that we are classifying all samples into non-desirable class. Then as we
move the threshold, ideally the TPR should increase much faster than FPR. At
the opposite end, we are classifying all samples into desired class and both rates
are 1. In any given application we need to choose a threshold that provides the
optimal performance under given constraints. However, one aspect of the ROC curve
provides a metric that is independent of the application and is considered as the most
fundamental property of the classifier and that is the area under the ROC curve or
just AUC. The greater the area, the better the classifier.

174 17 Performance Measurement

True Positive Rate (TPR)
o [o o =] o o
w o (4] [=2] -~ =] [{=]
T T T T T T T
.
N
L A ' ' L e '

o
N
T
L

=4

-
T
i

0) L I 1 Il 1 Il I 1 Il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate (FPR)

Fig. 17.1 Example of a relatively bad ROC curve

17.4 Hypothesis Testing

Hypothesis testing is essentially a probabilistic process of determining whether a
given hypothesis is true. Typical explanation of this process involves quite a few
concepts that are deeply rooted in theory of statistics and for a person not conversant
with these concepts can quickly get lost. However, the concept of hypothesis testing
is quite generic and we will study this concept with sufficient clarity here without
going into too much detail.

17.4.1 Background

Before we dive deep into the process of hypothesis testing, let us first understand the
background where we will apply this technique. We will take up a simple practical
example to illustrate this. Consider daily weather predictions from the local news.
Quite often we see that they are wrong, so we want to find out whether they actually
have some scientific truth in them or they are just random predictions. Hypothesis
testing framework can help in this analysis. Let us assume that there are 4 different
types of weather conditions that are possible in a given region: sunny, cloudy, rainy,
or snowy. Thus if one starts to make simple random predictions, those predictions

17.4 Hypothesis Testing 175

0.7 | 1

0.6 | 1

0.5 1

0.4 4

True Positive rate (TPR)

0.3 4

021 4

0 L s i L i L L i L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

Fig. 17.2 Example of a relatively good ROC curve

would have only 25% chance of becoming true each day. Then we note the weather
predictions for each day for over a period of say 6 months or 180 days. Then we
find out what was the accuracy of the weather predictions of the local news channel
and compare them with the default random value of 25% and determine whether
the weather predictions from the local news channel are any better than pure chance
using the theory of probability.

17.4.2 Steps in Hypothesis Testing

Entire process of hypothesis testing is split into four broad parts.
Steps in Hypothesis Testing

1. First step in the process involves defining what is called as null hypothesis Hp.
Null hypothesis is essentially the default random behavior. In the example that
we just described, null hypothesis would be: “weather predictions by the local
news channel are random and purely based on chance.”

2. Second step is to gather experimental or observational data. In the case of
current example, that would mean the difference between the weather predictions
recorded every day from the local news channel and actual observed weather

176 17 Performance Measurement

conditions. These observations constitute a random variable, called as rest
statistic.

3. Third step involves computation of the probability (also called as P-value) that
the test statistic actually proves the null hypothesis.

4. Fourth step involves comparing the P-value with the predetermined level of
significance, denoted as «. (Typically value of « lies between 5 and 1%) to either
accept or reject the null hypothesis. The level of significance can be thought of as
probability of test statistic lying outside of the expected region if null hypothesis
1S true.

17.4.3 A/B Testing

In many machine learning scenarios, we typically encounter comparison of more
than one model for the solution of a problem. In such cases, we can extend the
concept of hypothesis testing to what is called as A/B testing. In A/B testing, rather
than using a default null hypothesis, we use hypothesis A, which is the outcome
from the model-A. Then compare this with the outcome of model-B as second
hypothesis. Following similar steps we can find out which model produces better
results based on predetermined significance level.

17.5 Conclusion

Performance measurement is the most critical aspect of building a machine learning
system. Without having a proper definition of quantitative metrics, one cannot
effectively compare and contract different approaches or models. In this chapter, we
studied the different metrics used for measuring the performance of machine learn-
ing systems. Different metrics are needed based on the application as well as the type
and size of data, and depending on the needs, one can choose which metrics to use.

Part IV
Artificial Intelligence

I know I’ve made some very poor decisions recently, but I can give you my complete
assurance that my work will be back to normal. I've still got the greatest enthusiasm and
confidence in the mission. And I want to help you.

—HAL 9000, “2001: A Space Odyssey”

Part Synopsis
This part focusses on the implementation of the ML models to develop Artificially
Intelligent applications.

Chapter 18 ®
Classification Creck fo

18.1 Introduction

We have discussed various algorithms that are designed for solving the classification
problems in previous part. In this chapter, we are going to look at the topic in
slightly different way. We are going to look at some real world problems that need
underlying classification algorithms to solve. We will list a few problems that are
well known and have made significant impact in the consumer space. We will try to
build a machine learning pipeline to solve those problems in a rudimentary manner.
Although we will not explicitly solve the problems, the process of tackling these
classes of problems will give the reader a practical insight into the applications of
machine learning in real world.

18.2 Examples of Real World Problems in Classification

Although classification is one of the simple applications of machine learning theory,
the real world situations are not typically as simple as text book problems like
classification of flowers illustrated by IRIS data set [3]. Here are few examples that
have classification as underlying machine learning model:

1. Spam email detection: Classifying emails as genuine or spam. This is one of
the crucial components of most email application and services these days. If an
application can successfully separate the spams emails from genuine emails, it
can quickly become application of choice by millions of people. The spam can
further be divided into categories like deal alerts, newsletters, fishing emails, etc.
making it a multiclass problem.

© Springer Nature Switzerland AG 2020 179
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_18

180 18 Classification

2. Image classification: There are numerous applications of image classification.
The images can be of faces and objective is to classify the faces into males and
females. Or the images can be of animals and the problem can be to classify them
into different species. Or the images can be of different vehicles and objective is
to classify them into various types of cars.

3. Medical diagnosis: There are different types of sensing technologies available in
medical diagnosis, like ultrasound, X-ray, magnetic resonance imaging, etc. This
diagnostic sensory data can then be given to a machine learning system which
can then analyze the signals and classify the medical conditions into different
predetermined types.

4. Musical genre identification: When a piece of music is played, the machine
learning system can automatically detect the genre of the music.

In order to understand the nuances of real life machine learning we will look at the
first problem in greater detail in the rest of the chapter.

18.3 Spam Email Detection

Detecting spam emails against genuine emails is a very important and real world
problem that most email services e.g. Gmail, Hotmail, Yahoo Mail etc. as well as
email clients e.g. various email apps on mobile platforms, Microsoft Office 365
Outlook app, etc. face. However, the scope of the solution for each is very different.
For example, email services can have access to all the emails from all the accounts in
their platform, while the email clients can only access the accounts that are accessed
through them. Again, as per the ever increasingly strict privacy rules, the extent to
which these emails can be accessed is limited. In order to illustrate the problem
solving methodology we will try to solve the problem of spam detection from the
perspective of email service. The problem at hand is a very good example of binary
classification. Let’s define the precise scope of the problem.

18.3.1 Defining Scope

Let us consider that we have our own email service called as email.com. Let us
assume we have access to all the emails for all the accounts that are opened on our
email service in aggregate and anonymous manner. This means, only the automated
algorithms can access the emails, no human can look at any specific message. Also,
when we are dealing with errors and metrics, only aggregate level metrics can be
accessed. There is no way to check why any specific message is being misclassified.

18.3 Spam Email Detection 181
18.3.2 Assumptions

In real life the problem definition is never crisp like the one that appears in a
textbook. The problem is typically identified in a broad sense and micro details
need to be figured out. Case at hand is no different. Hence, we need to start making
some assumptions in order to narrow down the scope of the problem further. These
assumptions are essentially an extension of the problem definition itself.

18.3.2.1 Assumptions About the Spam Emails

1. The spam emails can be originated from email.com as well as from other
domains.

2. The sender of the spam emails must be sending large amount of emails from
his/her account.

3. Most emails sent by spammer account would be almost character-wise identical
to each other with slight differences possible if the emails have been customized
for each user. In such cases, each email will have a different greeting name, but
the other contents would still be same.

4. Spam emails can fall into two categories: (1) Marketing and advertising emails;
(2) Emails that are used to steal identity of a person or to make him/her commit
some fraudulent financial transaction. In either of the case, the spam email would
contain some URLs or fake email address(es) that will take the user to insecure
destinations.

5. Spam emails are also created to look appealing and attractive and hence they are
likely to be formatted as HTML rather than plain text.

18.3.2.2 Assumptions About the Genuine Emails

1. The genuine emails are the ones that are sent to the recipients with conveying
useful information.

2. The recipient whether expects those emails or reads those emails to get the new
information.

18.3.2.3 Assumptions About Precision and Recall Tradeoff

The assumptions listed above are likely to be true only for a certain percentage
of times and we are certainly going to encounter exceptional cases where these
assumptions would completely fail. This is the reason we can almost never achieve
an accuracy of 100%. The objective is to find the optimal tradeoff between the two
classes to maximize the overall accuracy. The key concept here is optimal. The
concept of optimal can have multiple meanings based on the context. It need not

182 18 Classification

mean we should be equally accurate in detecting spam versus genuine, in other
words it can be biased towards one. It may be desired to have the model so tuned
that we will have much higher accuracy in detecting genuine emails (in other words
high recall of detecting genuine emails) at the cost of detecting some spam emails
as genuine (in other words low precision in detecting genuine emails), but when
the model classifies an email as spam it is almost certainly a spam (in other words
high precision for spam detection). Or we can have a completely opposite strategy
or somewhere in between. In current context, let us keep the problem symmetric
and unbiased and try to design a model that has roughly equal precision in detecting
both classes.

18.3.3 Skew in the Data

The optimization of tradeoff between precision and recall is also affected by skew
in the data. This is another dimension to the design of the classification system.
Most of the statements in the previous section indirectly assume that there are equal
number of samples from spam and genuine emails, or more generally speaking, the
distribution of spam and genuine emails in the real world is roughly equal. This
may not be the case. Let’s assume for argument that the number of spam emails are
only 40% and remaining 60% are genuine emails. In this situation, if we design the
model to be equally accurate (say 80%) for precision of both classes, then resulting
overall accuracy is also going to be 80%. However, consider a case when we design
the model to be 90% accurate for genuine emails and as a result it is only 70%
accurate for spam. Now let us see what the total accuracy is. The overall accuracy
is going to be weights by the distribution of each class. Hence overall accuracy will
be given as,

Aoverall = (0.6 X 0.9) 4 (0.4 x 0.7) = 0.82 (18.1)

Thus overall accuracy is slightly higher than the accuracy achieved with previous
approach of treating both accuracies equally important. Small amount of skew is
typically not as impacting on the overall accuracy, but when there is large skew e.g.
(10-90%, etc.) then the design of the model needs to be carefully evaluated. If we
want to remove the effect of the skew in the data in training model, we can use the
technique of stratified sampling as discussed in Chap. 16. It is useful to note that
as stratified sampling can be used to remove the skew, it can also be used to add a
predetermined skew in the training data. For now, we will make the assumption that
there is 60—40 skew in the data favoring genuine emails to spam emails.

18.3.4 Supervised Learning

It is safe to assume that this problem is strictly of supervised learning type and
we have access to a labelled training set of spam and genuine emails. A set of about

18.3 Spam Email Detection 183

100,000 labelled emails where say 60,000 emails are genuine and remaining 40,000
emails are spam should be sufficient to train the model. Unsupervised methods like
clustering are capable of classifying the data into different clusters; however, as
the labels are not used in separating the clusters, the resulting classes predicted by
unsupervised clustering would be difficult to quantify.

18.3.5 Feature Engineering

A lot of important information is contained in the header of an email and its format
is quite complex and contains multiple fields other than the simple From, To, date
and Subject, like User-Agent, MIME-Version, and so on. All these fields can be part
of the feature space used to train the classifier model.

The emails can be written as simple text or then can be formatted as HTML.
The formatting type itself can be one feature. Then quite a bit of information can be
extracted from the actual content. For example, number of words, number of lines,
number of paragraphs, most repeated keywords, number of misspelled words, etc.

18.3.6 Model Training

A suitable classification algorithm or a set of algorithms need to be selected to train.
With categorical features, decision tree type methods work very well. In this case,
an optimized decision tree method of random forest is likely to work quite well.
For simple training process, the 70-30 split would be sufficient. If one wants to
further improve the model with hyperparameter tuning one can split the data 70—
15-15 or 60-20-20 for train-validation-test. The validation step is used to train the
hyperparameters.

If all the features are numerical, then neural networks can work well too.
With use of neural networks validation step becomes mandatory. Also, to reduce
the overfitting, regularization techniques must be used in the form of L1 or L2
regularization.

18.3.7 Iterating the Process for Optimization

Once the first version of the model is completed, it defines the baseline performance
level. We can then iterate over each step of the process to improve the performance.
One can play with addition and removal of more features, creation of compound
features that are combination of existing features based on the domain knowledge
of the field. Examples of such features can be: ratio of number of words to number of
paragraphs, or difference between dates of original email and its reply, etc. Then one

184 18 Classification

can try and expand the hyperparameter search space, or play with stratified sampling
and see the effect of on the performance. Apart from improving the performance in
a static case, more important is to continuously update the model on a periodic level
like every week or month, etc. The data is continuously changing and with time,
the most optimized model of today can become outdated and inefficient. Also, in
cases like spam, there always exists a continuous adaptation from the spammers to
change the format of the spam emails to circumvent the spam detectors. Hence such
systems need to be designed to be continuously evolving.

18.4 Conclusion

In this chapter, we looked at various popular real life problems that need underlying
classification models to solve. We then looked at the specific example of email spam
detection in detail by going from the assumptions need to be made to constrain the
problem so that it can be solved using a suitable training data and machine learning
algorithm. In the end we looked at how we can improve the overall process by
iterating through all the steps.

Chapter 19 ®
Regression Qe

19.1 Introduction

In this chapter we will look at a real life application of regression technique.
Regression problems are characterized by prediction of real valued output. The
input features need not be numerical only though. They can range from numerical,
categorial to pure string valued. We will take up the problem in its raw form, and
then construct a problem suitable for a machine learning system to solve by making
suitable assumptions, and also build a careful framework to analyze the results of
the system in the form suitable for quantitative metrics.

19.2 Predicting Real Estate Prices

Predicting values of real estate is always one of the hot topics in our lives at various
stages. The solution of the problem is useful to consumers as well as banks as well
as real estate agents and so on. The prediction is going to be a real valued number
of the dollar amount, and hence fit perfectly as a regression problem. It is important
to identify the nuances of the problem further to narrow down the scope of it. When
one talks about the real estate values there are many aspects to it and we must narrow
down the definition to the specific problem we want to solve.

19.2.1 Defining Regression Specific Problem

To define the specific problem that we want to solve, let us first list down all the
different aspects when one talks about real estate pricing.

© Springer Nature Switzerland AG 2020 185
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_19

186 19 Regression

Aspects in Real Estate Value Prediction

1. Trends in price of a certain specific property over time, specifically in different
seasons.

. Price of certain type of property, e.g., a 2 bed condo, in certain area.

. Average price of house in certain area.

. Range of prices of a type of property in various different areas.

. Price of a certain specific property at a given time.

[I SOSN8

Although the above list is far from comprehensive, it gives an idea about
the possible different directions in which one can think when dealing with real
estate prices. Each aspect defines a different problem from the machine learning
perspective and will need different set of features and possibly even different type
of model and different type of training data. For current context we will choose the
last of the problem from the list to predict price of a certain specific property at a
given time. Even this problem can be interpreted in significantly different directions
when the type of property is taken into account. The property can be an empty
land or a commercial property or a residential property with single family. In each
case the factors that affect the price are drastically different and ultimately would
lead to a completely different machine learning problem. For now, let us consider
the problem of residential property with single family, specifically a single family
house.

19.2.2 Gather Labelled Data

The next step is to identify the labelled set of data. As regression is a supervised
learning problem without availability of appropriate labelled set of data, we cannot
proceed.

From the perspective of the narrowed down problem we need a data that should
include prices of a set of houses in a specific time frame, say from January 1 2019
to January 31 2019. We need to include the houses that are sold in that time frame
in local neighborhood where the target property is located as well as some extended
region around the neighborhood. The more the houses available the better. The rule
of thumb here is to have at least 30 houses in the test set so that the predictions would
have sufficient statistical significance. Typically we split the training and test set as
70-30%, so we need at least 100 houses in total. From model training perspective
almost universally more is better within reason. It is also important to have the
houses selected in training data to be similar to the house we want to predict on,
but should have distribution on either side of it. For example if we want to predict
the price of a house with 3 bedrooms and 2 bathrooms with 2500 square foot of
area, we should have houses with less than and greater than 3 bedrooms, less than
and greater than 2 bathrooms, and so on. This distribution makes the prediction
problem as interpolation problem against an extrapolation problem. Most machine
learning models perform significantly better in interpolation region compared to

19.2 Predicting Real Estate Prices 187

extrapolation region. Figure 19.1 shows the difference between interpolation and
extrapolation. Consider that x and y axes are plotting values of some features from
the feature set, e.g., area of the house and area of the lot, etc. Interpolation is an
easier and more deterministic problem where the behavior of the function that we
are trying to map using suitable machine learning model is known. In the case
of extrapolation, the behavior of the function in the specific neighborhood is not
known. As long as the behavior is not too different in the region of extrapolation,
the model can still predict reasonably accurate results, but the confidence in the
prediction is lower.

19.2.2.1 Splitting the Data

Once the labelled data is gathered, we need to split it into 2 or 3 sets, as

1. Training Set
2. (Optional) validation set
3. Test set

The training and optional validation set is typically selected as 70 or 75% and test
set is selected accordingly as 30 or 25%. The validation set is required to optimize
the hyperparameters using methods like cross validation. If the model does not need
hyperparameter tuning, validation set is not required.

Sampling

Ideally the training set should have identical distribution of the data compared to
the test set, but in practice it is difficult to achieve. When the data sets are large (in
thousands) simple random sampling can be sufficient. However, when the data set
is small a technique called as stratified sampling' can be used to achieve this.

19.2.3 Feature Engineering

If you talk to a real estate agent, he or she may make the problem very simple
by identifying three key features as location, location, and location and make the
machine learning almost unnecessary. However, for now, let us use the single feature
suggested by the agent and append it with our own feature set. Here are the factors
that we can list down that would affect the price.

"When a population contains multiple sub-populations, especially with uneven distributions, the
uniform random sampling from the joint population cannot guarantee a sample with sub-population
distributions resembling to the original population. In such cases a technique called stratified
sampling is used. In stratified sampling, each subpopulation is sampled separately and then these
samples are mixed to create the overall sample.

188

20

19 Regression

Example of Interpolation

18

16

12

10

0 x© O
o @
o QO o Q
o O o o o o
& Cb %)
o) o] o) © o
a 2 o e
(0] O o
[8le] - o
o) * o O o}
(530 oL, Oo o o
o o) o} %O o o
o © e o 2
o] o0 = o
(076}
ocR . o
o o o e

20

20

18

16

14+

10

o}

1 12 13 14 15 16 17 18 19

20

Fig. 19.1 Point where a value of the function needs to be predicted is shown as asterisk. Top figure
shows an interpolation case where the point lies inside the region covered by the other points in
the training set. Bottom figure shows an extrapolation case where the point lies outside the region
covered by the other points in the training set

19.2 Predicting Real Estate Prices 189

Factors Affecting the Price in Raw Form

. Location

. Size of the house

. Type of the house

. Builder Name

. Year built

. Information about car parking
. Details of the interior

~N NN R W=

We can extend this list further but for the conceptual understanding this is
sufficient. After identifying the factors in raw form as listed above, we need to
convert them into more specific parameters that we can identify into the standard
data types as numerical, strings, etc.

Factors in Standard Data Format

Most of the features listed in Table 19.1 can be directly used in machine learning
model, except for the datetime features. The datetime features need to be handled
based on the context. The direct use of the datetime string is not quite useful from
the model perspective. From the model perspective the information that the field is
giving is the age of the house. Thus we can convert the built date into age in the
form of either number of years or number of months or even number of days based
on whatever is appropriate. Some of the numerical features marked with superscript

[TP%1]

a” can also be used as categorical as those fields are only going to have a small set

Table 19.1 Features for

s . : Feature name Data type
predicting price of single

family house

Location-zipcode
Location-cityname
Location-county
Location-state
Location-streetname
Area of the house
Area of the lot
Number of bedrooms
Number of bathrooms
Number of floors
Building material
Builder name

Date built

Car garage present
Size of car garage
Flooring type

Numerical-categorical
String-categorical
String-categorical
String-categorical
String-categorical
Numerical
Numerical
Numerical®
Numerical®
Numerical®
String-categorical
String-categorical
String-datetime®
Binary
Numerical®
String-categorical

4These numerical features can also be considered

as categorical features

bDatetime features need to handled separately
before using into machine learning model as
discussed later in the chapter

190 19 Regression

of deterministic values. However, it is completely safe to use them as is in numerical
form.

Thus we have identified a proper set of features that we can use to build the
model. It is a good practice to plot the features along with labels to see the
distribution of feature space and its correlation with the outcome. Techniques like
Principal Component Analysis can be useful in this situation. Such plots give
additional insights into the data that is going to be passed into the model and
these insights help when we are iterating over the training process to optimize the
performance metrics.

19.2.4 Model Selection

Using the repertoire of the algorithms learned in the previous part of the book we
can select any of the suitable algorithms to solve the current problem. Here are few
options:

. Decision tree based regression
. Logistic regression

. Neural network

. Support Vector Regression

AW N =

Once the model is chosen, we can go through the corresponding training-
validation process to optimize the model performance on the training data.

19.2.5 Model Performance

It is quite important to decide the correct set of metrics to compute the model
performance. With incorrect choice of metrics, the entire process can lead to a
very under-performing model providing suboptimal results. Given current case of
regression, the suitable metrics could be:

1. RMS error in predicted value

2. MA error in predicted value

3. Mean and standard deviation or variance of the absolute error
4. Max absolute error

19.4 Conclusion 191

It is important to decide the bounds on each of the metric that make the resulting
model acceptable. If the metrics do not lie within the bounds one need to iterate the
whole or partial process. Here are few possible ways to iterate:

1. Use different model

2. Change the cross validation policy
3. Change, add or remove the features
4. Re-split the data

19.3 Other Applications of Regression

Above example illustrated the details in building a regression based application.
There are many other areas where regression techniques are required. One such
application of great importance marks an entire field of research, called as Non-
destructive Testing and Evaluation or NDT/E. NDT/E encapsulates all inspection
type applications of a system where the inspection needs to be performed without
affecting or stopping the regular operation of the system. For example inspection of
aircrafts, inspection of various components in a nuclear power plants or inspection
of gas or oil carrying pipelines [65]. These inspections need to be performed without
breaking open the aircraft, stopping the nuclear reactor, or stopping the pipeline
from carrying any oil or gas. Various transducers are used to inspect the systems
and the inspection data is collected in digital form. Then the data is analyzed to
predict any defects or flaws in the system. Most such problems pose good examples
of application regression techniques.

19.4 Conclusion

In this chapter, we studied the real applications based on the theory of regression.
This analysis gives a glimpse towards the various practical considerations one
needs to go through in the form of quantitative problem definition, constrained
optimization followed by certain assumptions.

Chapter 20 ®
Ranking Qe

20.1 Introduction

Ranking at heart is essentially sorting of information. Unconsciously we are always
ranking things around us based on some metrics. We rank the products based on
their reviews. We rank players in various sports based on their performance in a
season. We rank movies and music albums based on their earnings. We rank stocks
based on their predicted growth, etc. In this regard ranking should be a simple rule in
basic mathematics rather than being an aspect of machine learning. However, based
on their applications, ranking has become quite popular and hot topic in machine
learning and artificially intelligent systems. One of the glaring examples here would
be exponential growth of Google in the twenty first century, which was truly based
on their unique way to rank web pages.

Common applications of ranking are seen in search and information retrieval
problems, recommendation systems, machine translation, data mining, etc. When
one queries for a string in a search engine or queries for a movie name in online
streaming websites, typically there are tens or hundreds of results that match the
query with certain margin. No user is actually going to go through all these results,
so some other quantitative measures need to be created that will help sort these
hundreds and thousands of results in a manner that we can present only top 5 or
top 10 of them to the user and present more results if requested by the user in
continuing order. This would make the user experience vastly superior than random
presentation of the results. Ranking defines the underlying model that is capable
of ordering the results in optimum manner before presenting to the user. As the
ranking problem fundamentally differs from the other machine learning problems,
it also needs a separate set of metrics to analyze. In this chapter we will look at
different practical examples of ranking systems and also look at various techniques
and metrics used in the process.

© Springer Nature Switzerland AG 2020 193
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_20

194 20 Ranking
20.2 Measuring Ranking Performance

Subjectively, ideal ranking algorithm would be defined as:

Definition 20.1 The algorithm that can rank the items in strictly non-increasing
order of relevance.

The relevance factor here is a non-trivial measure that needs to be defined for each
ranking problem. Now, let’s try to convert this subjective definition to mathematical
expression. Let there be n number of items that need to be ranked and each has a
relevance score of r;,i = 1,2, ..., n. A simple measure, called as cumulative gain
(CQ) is defined on these relevances as,

CG=) r (20.1)

CG essentially represents the overall quality of aggregate search results. As there is
no positional factor in the expression, CG does not provide any information about
the ranking. Hence a modified measure is defined as discounted cumulative gain or
DCG. DCG is defined as,

n
ri
DCG = _— 20.2
; log, i + 1 (20-2)

The base b of the logarithm is typically used as 2. The reason for using i + 1 instead
of i is to account for the case when i = 1. In this case, the denominator would
be 0 and the metric would be meaningless. This expression penalizes the ranking if
highly relevant item is ranked lower. In order to see the effect of this expression, let’s
take a real example. Table 20.1 shows a set of items with corresponding relevance
scores ranging from 0.0 to 1.0. Score of 0.0 means no relevance at all and 1.0 is the
highest possible relevance; however, the maximum relevance in the given set is 0.6.
The third column in the table gives the corresponding discounted relevance score as
defined in Eq. 20.2 (without summing the values).

If we sum the discounted scores, then we get DCG as 1.20. As we can see this
ranking is not ideal, as the highest ranked item is at rank 7 and all the items are
fairly arbitrarily ranked. Now, let’s fix the rankings and recalculated the discounted
relevance scores as shown in Table 20.2.

Now, if we sum the discounted relevance scores, we get 1.53, which is signifi-
cantly higher than the previous score, that was produced with random ordering of
the items. Thus we have a good metric in the form of DCG that can compare two
different sets of rankings if we have corresponding relevance scores. Although there
is one slight drawback in this system and that is presence and position of the items
with 0.0 score. If we remove the items with score 0.0, we will still have the same
score. However, in reality, if we present the items to the user, the set without items

20.2 Measuring Ranking Performance 195

Table 20.1 Sample set of
items to be ranked with

Item no. | Relevance score | Discounted relevance score

relevance score 1 04 04
2 0.25 0.16
3 0.1 0.05
4 0.0 0.0
5 03 0.12
6 0.13 0.05
7 0.6 0.2
8 0.0 0.0
9 0.56 0.17
10 0.22 0.06

In this case they are ranked arbitrarily

Table 20.2 Sample set of
items ideally ranked with

Item no. | Relevance score | Discounted relevance score

non-increasing relevance 1 0.6 0.6
score 2 0.56 0.35
3 0.4 0.2
4 0.3 0.13
5 0.25 0.1
6 0.22 0.08
7 0.13 0.04
8 0.1 0.032
9 0.0 0.0
10 0.0 0.0

with 0.0 score would be better than the one with them. However, penalizing the
items with score of 0.0 without affecting the regular operation of DCG is quite a bit
more complicated and typically used as is.

There is one more problem with DCG and that is the actual value of a score is
quite arbitrary based on the range of values of relevance scores. For example, if
recalibrate our relevance scores to range from 0 to 5 instead of 0-1 as before, our
ideal DCG would jump from 1.53 to 7.66 and our random DCG would jump from
1.20 to 6.01. All these values are fairly arbitrary and the value of 6.01 has not much
meaning without knowing the ideal value of DCG, which is 7.66. Hence another
metric is introduced as normalized DCG or nDCG. nDCG is defined as,

DCG
DCG = —— 203
n iDCG (203)

where iDCG is the value of ideal DCG.

196 20 Ranking
20.3 Ranking Search Results and Google’s PageRank

All the metrics discussed above hold true and provide a good measure of ranking
quality, only if we have a single numeric measure of the relevance score for each
item. However, coming up with such score is not always a trivial task. Rather the
goodness of such measure is the true deciding factor in building a good ranking
system.

Having better search results was the key aspect of exponential growth of Google
in first decade of this millennium. There were already many search engines available
at that time, and they were not really bad. However, Google just had better results.
All the search engines were crawling the same set of websites and there was no
secret database that Google was privy of. The single aspect where it just did order
of magnitude better than the competition was the ranking of the search results.
The concept of PageRank [33] was at the heart of Google’s rankings. At the time
before Google’s PageRank came to existence, the commonly used technique for
ranking the pages was number of times a particular query appeared on the page.
However, PageRank proposed an entirely new way of ranking the pages based on
their importance. This importance was calculated based on how many other pages
are referencing given page and importance of those pages. This system created a
new definition of relevance metric and ranking based on this metric proved to be
extremely effective in getting better search results and rest is history!

20.4 Techniques Used in Ranking Systems

Information retrieval and text mining are the core concepts that are important in
the ranking system that relate to searching websites or movies, etc. We will look
specifically at a technique called as keyword identification/extraction and word
cloud generation. This method underpins most of the text mining systems and
knowledge of these techniques is invaluable.

20.4.1 Keyword Identification/Extraction

Figure 20.1 shows a word cloud from the famous Gettysburg address by Abraham
Lincoln in 1863. A word cloud is a graphical representation of the keywords
identified from a document or set of documents. The size of each keyword
represents the relative importance of it. Let’s look at the steps required to find these
importances.

20.4 Techniques Used in Ranking Systems 197

torary
devotion conseclrated
fought cemetery coimirys
9 battiefield
manuscript remalnmg revision

@© consecrate .
2 osition larger resting world hallowed

original &
ives __detract sense Frgcr}trlmct)irr:entsz é
ied Civi £
mg?g task© ComeCOplEd november y gift E library
no Yconse seven endure 2c
poor ago C eo Te d ti £ remem
forget ayto evo lon 8s o
Zgave h ” equal 85
worknever £ Enew SNallincon litte 5352
_ prop facsimile » plac es 382
@ — per —
25,2 deddedicated e o 2 ¢
S %Eg)mg"_' Gh-)'og Lcate T
£ a0p<cx (0 - o2
take 55 B2 £ Syears$ £
century 5 28 O - war Sunfe § £
S s sCane =ig i ¢
honored g —far SE E 2
crate ('U [o
i 2 2fothconceived CU C $ whether
batlle testing |Qpygmill fron -5 QW g o resolve
d “V'n = g advanced
increased gcore g 'O _g 32 35
dom last brave gettysburg wﬂl‘:Ei age 85
birth cause engaged met & = 3>
congress struggled Jea\"es o E‘llTlhOFSShed

f s
hallow february hallow hi ghly Eg
o

magazine P freedom
altogether

Fig. 20.1 Word cloud from famous Gettysburg address by Abraham Lincoln

Steps in Building a Word Cloud

1.

2.

W

Cleaning up the data. This step involves removing all the formatting characters
as well as punctuation marks.

Normalization of the data. This step involves making all the characters lower
case, unless it is required to distinguish the upper case letters from lower
case. Another aspect of normalization is lemmatization or stemming. This step
involves applying grammar to find the root word for every word form. For
example root word for running is run and so on.

. Removal of stop words. This step involves removing all the common words that

are typically used in any text and have no meaning of their own. For example a,
them for, to, and etc.

. Compute the frequency of occurrence of each of the remaining words.
. Sort the words in descending order of frequency.
. Plot the top-n keywords graphically to generate the word cloud.

198 20 Ranking

Above analysis works well for a single document case. When there are multiple
documents, then there is one more technique that is useful. It is called as TF-IDF,
or term frequency - inverse document frequency. Term frequency is calculated in
similar way as described above. The inverse document frequency is an interesting
concept and it is based on the notion of how much important the given keyword is
in the current document as opposed to other documents. Thus a word that appears
frequently across all the documents will have low value of IDF in any of these
documents. However, when a keyword appears frequently in only one document,
but is almost not present in the rest of the documents, then its importance in the
given document is even higher. Mathematically, both the terms are defined as,

frequency of the word in given document

tf (20.4)

~ Maximum frequency of any word in the given document

frequency of the word in given document

= 20.5
Total number of documents in which the word appears (20.5)

Thus combining tf and idf, we can generate even better measure for keyword
importance when dealing with multiple documents.

20.5 Conclusion

In this chapter we looked at the problem of ranking and its evolution in the
context of machine learning and artificial intelligence from simple ordering of items
to information retrieval and resulting user experience. We studied the different
measures for computing relevance and metrics for comparing different sets of
ranking along with different techniques used in ranking documents.

Chapter 21 ®
Recommendations Systems Qe

21.1 Introduction

Recommendation system is a relatively new concept in the field of machine learning.
In practical terms a recommendation is a simple suggestion given by a friend or
colleague to another friend or colleague to watch a movie or to eat in a certain
restaurant. Most important thing about the recommendations is that they are very
personal. What we recommend to one friend as top choice for restaurant, we may not
recommend to another one at all depending on his/her likings. Typically, the person
recommending does not have any ulterior motive behind the recommendations, but
in some cases that may not be true as well. For example if one of my good friend has
started a new restaurant, then I might recommend it to my other friends irrespective
of their likings too.

When building a recommendation system on large scale, one must express
these relationships quantitatively and formulate a theory to optimize a cost func-
tion to obtain a trained recommendation system. The core mathematical theory
underlying modern recommendation systems is commonly called as collaborative
filtering. Companies like Amazon and Netflix have influenced this genre of machine
learning significantly for personalizing shopping and movie watching experiences
respectively. Both the systems started off with techniques almost as simple as table
joins, but soon evolved into a sophisticated recommendation algorithms. Netflix
had actually announced an open competition for developing the best performing
collaborative filtering algorithm to predict user ratings for films [35]. A team called
BellKor won the grand prize in 2009 by achieving more than 10% better accuracy
on predicted ratings than Netflix’s existing algorithm.

We will first study the concepts in collaborative filtering and then we will look at
both the cases of Amazon and Netflix in the context of recommendation system and
understand the nuances of each in this chapter along with learning various concepts
and algorithms that are involved in building such systems.

© Springer Nature Switzerland AG 2020 199
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_21

200 21 Recommendations Systems
21.2 Collaborative Filtering

Being quite new and cutting edge technology, there are multiple different interpre-
tations of the collaborative filtering based on the context and application. But in
broad sense the collaborative filtering can be defined as a mathematical process
of predicting the interests or preferences of a given user based on a database of
interests or preferences of other users. Very loosely speaking, these predictions are
based on the nearest neighbor principle. Users with similar interests in one aspect
tend to share similar interest in other similar aspects. To consider an example and
oversimplifying the concept, if persons A, B and C like movie Die Hard - I and
persons A and B also like movie Die Hard - 2, then person C is also probably going
to like the movie Die Hard - 2.

Collaborative filters always deal with 2-dimensional data in the form of a matrix.
One dimension being the list of users and the other dimension being the entity that
is being liked or watched or purchased, etc. Table 21.1 shows a representative table.
The table is always partially filled, representing the training data. The goal is to
predict all the missing values. Table 21.1 shows values that are binary, but they can
as well be numeric or categorical with more than two categories. Also, you can see
that the top 10 users have mostly known ratings, while bottom 10 users have mostly

Table 21.1 Sample training data for building a recommendation system

Persons Electronics Books Travel Household Cars
Personl Like ? Dislike Like ?
Person2 Dislike Like Dislike Like Like
Person3 Dislike Like Like ? Dislike
Person4 Like Like Like Like Dislike
Person5 Like Dislike Dislike Dislike Like
Person6 ? Like ? ? Dislike
Person7 Like ? Dislike Like ?
Person8 Like Like ? ? Like
Person9 Dislike ? Dislike Like Like
Person10 Dislike ? Like Like ?
Personl 1 ? ? Dislike ? ?
Person12 ? ? ? ? ?
Personl3 ? ? Like ? ?
Personl4 ? Like ? ? ?
Personl15 ? ? ? ? Like
Personl6 ? ? ? ? ?
Personl7 Like ? ? ? ?
Person18 ? Like ? ? ?
Person19 ? ? Dislike ? ?
Person20 Dislike ? ? ? ?

21.2 Collaborative Filtering 201

unknown ratings. This is a typical situation in practice, where substantial amount of
data can be quite sparse.

21.2.1 Solution Approaches

The solution of the problem defined in the previous subsection can be tackled in few
different options. However, the core information that can be possibly available is of
three types.

Information Types

1. Information about the users in the form of their profiles. The profiles can have
key aspects like age, gender, location, employment type, number of kids, etc.

2. Information about the interests. For movies, it can be in the form of languages,
genres, lead actors and actresses, release dates, etc.

3. Joint information of users’ liking or rating their interests as shown in the
Table 21.1.

In some cases, one or more sets of information may not be available. So the
algorithm needs to be robust enough to handle such situations. Based on the type of
information used, the algorithms can be classified into three different types.

Algorithm Types

1. Algorithms exploiting the topological or neighborhood information. These algo-
rithms are primarily based on the joint historical information about the users’
ratings. They use nearest neighbor type methods to predict the unknown ratings.
These algorithms cannot work if the historical data is missing.

2. Algorithms that exploit the structure of the relationships. These methods assume
a structural relationship between users and their ratings on the interests. These
relationships are modelled using probabilistic networks or latent variable meth-
ods like component analysis (principal or independent) or singular value decom-
position. These methods use the joint information as well as the separate
information about the user profiles and interest details. These methods are better
suited to tackle sparse data and ill conditioned problems, but they miss out
neighborhood information.

3. Hybrid approach. Most recommendation systems go through different phases
of operation, where in the beginning the ratings data is not available and the
only data that is available is user profiles and interest details. This is typically
called as cold start. The neighborhood based algorithms simply cannot operate
in such situations. Hence these hybrid systems start with algorithms that are more
influenced by the structural models in the early stages and later on combine the
advantages of neighborhood based models.

202 21 Recommendations Systems
21.3 Amazon’s Personal Shopping Experience

In order to understand the problem from Amazon’s perspective, we need to explain
the problem in more detail. First and foremost Amazon is a shopping platform where
Amazon itself sells products and services as well as it lets third party sellers sell
their products. Each shopper that comes to Amazon comes with some idea about
the product that he/she wants to purchase along with some budget for the cost of the
product that he/she is ready to spend on the product as well as some expectation of
date by which the product must be delivered. The first interaction in the experience
would typically begin with searching the name or the category of the product, e.g.,
“digital camera.” This would trigger a search experience, which would be similar to
the search discussed in the previous chapter on ranking. This search would come up
with a list of products that are ranked by relevance and importance of the different
items that are present in Amazon’s catalog. Amazon then lets user alter the sorting
by price, relevance, featured, or average customer review. These altered results are
still just extension of the ranking algorithm and not really the recommendations.
The “featured” criteria typically is influenced by the advertising of the products
by sellers (including Amazon). Once user clicks on the one item in the list that
he/she finds interesting based on price, customer reviews, or brand, etc., the user is
shown the details of the product along with additional set of products gathered as
Frequently bought together or Continue your search or Sponsored products related
to this item. These sets represent the direct outcome of recommendation algorithm
at work.

21.3.1 Context Based Recommendation

Amazon probably has many millions of products in their catalog, but how many
products should be recommended needs have some limitation. If Amazon starts
putting a list of hundreds of products are recommended ones, user is going to get lost
in the list and may not even look at them or even worse, move to another website for
getting confused. Also, if too few or no recommendations are shown then Amazon is
losing potential increase in sales of related items. Thus an optimal balance between
the two must be observed in order to maximize the sale and minimizing the user
distraction. The product recommendations shown here are context based and are
related to the search query only. Once the number of recommendations needs to be
shown is finalized, then comes the question of which products to recommend. There
can be multiple aspects guiding this decision.

Aspects Guiding the Context Based Recommendations

1. Suggesting other similar products that are cheaper than the product selected. So,
if the cost is the only aspect stopping the user from buying the selected item, the
recommended item can solve the problem.

21.4 Netflix’s Streaming Video Recommendations 203

2. Suggesting a similar product from a more popular brand. This might attract user
to buy a potentially more expensive product that is coming from more popular
brand, so more reliable or better quality.

. Suggesting a product that has better customer reviews.

4. Suggesting a set of products that are typically bundled with the selected product.
These suggestions would right away increase the potential sale. For example
suggesting carry bag or battery charger or a memory card when selected item
is a digital camera.

W

21.3.2 Personalization Based Recommendation

The recommendations based on search results are not quite personal and would be
similar for most users. However, the real personalization is seen when one opens the
www.amazon.com the first time before querying for any specific product. The first
screen that is shown to the user is heavily customized for the user based on his/her
previous searches and purchases. If the user is not logged in, the historical purchases
may not be available. In such cases the browsing history or cookies can be used to
suggest the recommended products. If nothing is available, then the products are
shown that are in general popular among the whole set of Amazon buyers. These
different situations decide which algorithm of the collaborative learning needs to
be applied. For example the last case represents the cold start situation and needs
a model based approach to be used, while in other cases, one can use a hybrid
approach.

21.4 Netflix’s Streaming Video Recommendations

Netflix was one of the pioneers of the modern day recommendation systems, specif-
ically through the open contest as well as being one of the first players in the online
streaming genre. In early days the ratings provided on Netflix were similar to the
ones on www.imdb.com or other movie rating portals. These portals have different
ways to generate these ratings. Some ratings are generated by the movie editors that
specifically curate these ratings for a given site, some ratings are created as aggre-
gates from different newspapers and other websites, while some ratings are aggre-
gated by user ratings. One of the most important differences here is that the ratings
given on websites are same for all the people visiting the sites. These movie sites are
not personalized for any user and as a result the ratings that are available on these
websites are average ratings that might not mean much for any individual user other
than finding some of the top rated movies of all time or from some specific genre.
Netflix’s rating system differs here in the fundamental way. Each user sees a
very different screen when he/she logs in to their Netflix account, in spite of Netflix
having same set of movies available for all the users to watch. Hence the ratings

www.amazon.com
www.imdb.com

204 21 Recommendations Systems

Table 21.2 Sample training data for Netflix to build video recommendation system

Movie-1 Movie-2 Movie-3 Series-1 Series-2

Persons Rating, views | Rating, views | Rating, views | Rating, views | Rating, views
Personl 84,2 2,1 2,1 7,2 2,?
Person2 1,1 9,2 4,1 7,1 8,1
Person3 3,1 6,2 7,1 2,1 3,1
Person4 9,3 8,2 5,1 7,2 1,1
Person5 6,1 2,1 2,1 4,1 9,3
Person6 2,0 6,0 2,0 5,1 4,2
Person7 7,1 2,2 2,3 9,4 2,1
Person8 10,2 8,2 7,1 2,0 8,0
Person9 3,1 2,0 2,0 2,2 10,0
Personl0 | 1,1 2,0 8,1 10,5 4,1
Personll |?2,0 2,0 2,1 2,0 2,0
Personl2 | 2,0 2,0 2,0 2,0 2,0
Personl3 2,0 ? 8,2 2,0 2,0
Personld |2,1 5,1 2,0 2,0 2,0
Personl5 |?2,0 2,0 2,0 2,0 7,1
Personl6 |?2,0 2,0 2,0 2,0 2,0
Personl7 | 6,2 2,0 2,0 2,0 2,0
Personl8 | 2,0 9,2 2,0 2,0 2,0
Personl9 | ?,0 2,0 1 1,0 2,0
Person20 | 1,1 2,0 2,0 2,0 2,0

2Ratings are between 1 to 10. 10 being most liked and 1 being least liked

or recommendations that Netflix shows to each user are personalized for that user
based on their past viewing and/or search history. Netflix is not interested in having
a generic set of ratings that produce top rated movies of all time or specific time in
specific genre, but is more interested in catering to the specific user that is currently
logged in and is interested in watching something. The recommendations have one
single motive and that is to maximize the watching time on Netflix.

A sample data set that Netflix would have to use to build their recommendation
system would be similar to the one shown in Table 21.2. For new users representing
the bottom half of the table, there would be little to no ratings/viewings available,
while for older users there will be richer data.

21.5 Conclusion

In this chapter, we studied the collaborative filtering technique. We then looked at
the specific cases of recommendation systems deployed by Amazon and Netflix.
Recommendation systems represent a relatively new entry into the field of machine
learning and it is a cutting edge of the area and is under strong development.

Part V
Implementations

Do or do not, there is no try!!

—Yoda, “Star Wars: The Empire Strikes Back”

Part Synopsis

In this part we will go over couple of options to implement simple ML pipelines.
This will make all the concepts discussed so far concrete and will give a hand-on
experience to the reader.

Chapter 22 ®
Azure Machine Learning Qe

22.1 Introduction

Having learned the different machine learning techniques and how they can be used
to build artificially intelligent applications in the previous chapters, we have now
reached a point where we are ready to implement such systems and use them.
There are multiple options to choose when one comes to implementation. Most
of them involve open source libraries in Python or R' or even more mainstream
programming languages like Java, C#, etc. However, using these libraries is a little
more involved task and we will look at that option in the next chapter.

22.2 Azure Machine Learning Studio

In this chapter, we will focus on Microsoft Azure Machine Learning studio, also
called as AML(VI). We will call it just AML henceforth. AML provides a very
simple and intuitive flowchart type platform for machine learning model imple-
mentations. Most of the functionality that we discussed in the previous chapters
is available in the form of pre-built blocks. The blocks can be connected to form
the data processing pipeline. Each block allows for some customization. Although
AML studio is not exactly open source option where you can look through the code
behind all the models, and update as needed, it is nonetheless a free to use option
that is perfect to start. One can start building sophisticated machine learning models
using AML studio in matter of hours. For the person who is completely new to the
field, this is a much desired option that will boost the confidence.

IR is a statistical analysis language that is open source. It has a huge community of followers and
developers who have added lot of packages in machine learning as well.

© Springer Nature Switzerland AG 2020 207
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_22

208 22 Azure Machine Learning

22.2.1 How to Start?

The first place one needs to visit is: https://studio.azureml.net/. Here user is greeted
with the screen shown in Fig.22.1. Here one can sign in with a Microsoft account,
e.g., hotmail.com or outlook.com, etc. No purchase is necessary to start building
machine learning models. Once you sign in, you are presented with a screen as
shown in Fig. 22.2 There are multiple options available as you can see the menu on
the left side, but we are only going to use the feature called Experiments. Currently
it shows that there are no experiments created. So let’s start with the first one. We
will use the classic Iris Data based multiclass classification to illustrate the main
components in the machine learning pipeline using AML studio.

Let’s click on the + New option on the bottom left of the screen. This presents
with screen shown in Fig. 22.3. It gives options to load multitude of pre-configured
experiments. One can go through them to understand different features of the studio,
but for now, we will start with Blank Experiment. This way we can see how one can
start from scratch and build the end to end machine learning pipeline using AML
studio.

When the option of Blank Experiment is selected, user is presented with a
blank experiment canvas in the center with all the pre-built machine learning tools
available on the left panel. The right side panel shows properties of a specific tool
selected in the canvas as shown in Fig. 22.4. Now, we are all set to get the Iris data
in the experiment and build the machine learning pipeline.

Welcome to Azure
Machine Learning
Try it for free

No

A~ -
AZUre

of & Microsoft account

Machine Learning
: < Signin @
service

Try it today! -

Not an Azure ML user?

Fig. 22.1 Sign In screen for Azure machine learning studio

https://studio.azureml.net/
hotmail.com
outlook.com

22.2 Azure Machine Learning Studio 209

experiments

MY EXPERIMENTS

AUTHOR STATUS | LASTEDITED & PROVECT

0 items selected

Fig. 22.2 Default screen after you login to Azure machine learning studio

Binary Classification:

Fig. 22.3 New experiment screen

210 22 Azure Machine Learning

Properties

[+ Data Input and Output

Eriter Dats Manually

Export Data

Impet Data

Lead Trained Model

Unpack Zipped Datasets

Quick Help

Fig. 22.4 Blank canvas for a new experiment

22.3 Building ML Pipeline Using AML Studio

In this section we will go over all the steps to build the multiclass classification
pipeline using AML studio.

22.3.1 Get the Data

The first step in the process is to import the data. AML provides various different
options to import data using Import Data block as shown in Fig. 22.4. Figure 22.5
shows all the options. However, as Iris data is quite small, we will just use the block
named Enter Data Manually. This block can be brought to the experiment canvas
by drag and drop. Once you click on the block on the right panel it shows options
on how you want to enter the data. Let’s choose the default option of CSV and paste
the CSV data in Data block as shown in Fig.22.6. You can copy the data directly
from here [3].

22.3 Building ML Pipeline Using AML Studio 211

Properties Project >

Web URL via HTTP
Hive Query

Azure SQL Database
Azure Table

Data Feed Provider

On-Premises SQL Database (Preview Feature)
Azure Cosmos DB

Fig. 22.5 Various data import options

Q]
-
. Iris Classifier 4§ Properties Project »
Sarch axparimant lama i+ SR 4 Enter Data Manaally
g Sived Dutasets L I'l':'“'""
v
[Data Forman Comversions B> Erter Duta Manually ', e
« [gi» Data input and Cutput ° Oata
11 2M,7.4,2.8,6.1,1.9,1, virginica
i ol 132 132,7.9,3.8,6.4,2.0,1, virginics
[Data 2.2,1, virginics
iz 1. virginics
Import Data 1. virginics
. wirginies
Load Trained Madel . virgindes
virginica
Unpack Zipped Datasets JI. virginiea
vk d:
B Data Transtormation 2 :‘:::.::
1. wirginica
S Festure Selection . virginica
3] Machine Learming s ":':":“
. virginica
™ Opency Library Modules
@ Python Language Modules
3,1, virginics
' R Language Modules 158 .1,1.8,1, virginics N |
Zol Statstical Funstices
(5% Text Analytics
f Time Series
@ websenice
B Deprecated g M Map. b
o TG sy .
l'—-n‘,—r Quick Help -
Enables ernering and edang small datasets by type values
mone help_)
=N @l— @] =
i 8 A > 2 B

Fig. 22.6 Entering the data manually

212 22 Azure Machine Learning
22.3.2 Data Preprocessing

The manually entered data contain features and labels all in single set. We need
to separate them and label them accordingly so that AML studio can process the
features and labels accordingly. This can be done in two steps:

1. Use Select Columns in Dataset block in Data Transformation->Manipulation in
the left panel.
2. Use the block two times to select features and label separately.

To select the columns, just click on Launch column selector in right panel. That
brings the Ul shown in Fig. 22.7. Use the Ul twice to select features in set and labels

Select columns

Y NAME

WITH LS

Fig. 22.7 UI for selecting columns

22.3 Building ML Pipeline Using AML Studio 213

Iris Classifier

E_> Enter Data Manually
L

e

B i o] i

S Select Columns in Dataset wpp Select Columns in Dataset
L] ®
v v

B Edit Metadata £, Edit Metadata

=

Fig. 22.8 ML pipeline at the end of data preprocessing

[ﬁm Add Columns
1)
¥

in another. The subsequent block in the pipeline can be connected by dragging the
mouse from the connector bubbles at the top and bottom of the blocks as shown in
Fig.22.7. The next step is to edit the metadata to let AML studio know the features
and labels. This can be done using the Edit Metadata block from the left panel. At
any point we can run the pipeline that is built so far by clicking on the Run button at
the bottom panel. Also at this point, you can give a suitable name to the experiment
in the top left corner of the canvas and save the experiment using the save button in
the bottom panel.

Once features and labels metadata is updated, we can add the columns back into a
single data set using Add Columns block. The pipeline should be like the one shown
in Fig.22.8 so far. This data is clean and has no missing values. Also, as all the
features are already in numeric form, our data preprocessing step is now concluded.

Once any block of the pipeline is executed successfully, it is marked with a green
colored tick mark. The output of such blocks can be visualized for getting insights
into the data processing. Figures 22.9 and 22.10 show couple of examples of the
visualization, where you can also see the histogram of the data.

214 22 Azure Machine Learning

i Unigise Vakies]
Mg Vidhots 0
Feature Type String Label

Fig. 22.9 Visualization of the labels

22.3.3 Training the Classifier Model

Before we start training process, we need to choose appropriate algorithm to
use. In case of multiclass classifier, we can use decision trees or neural network
or simple logistic regression based classification. As first attempt let us choose
decision jungle, which is an example of ensemble decision tree. We can bring
the block multiclass decision jungle from Machine Learning -> Initialize Model
-> Classification on the left panel.

We also need to split the data into training and test sets. The block named as split
data can be brought to experiment canvas from Data Transformation-> Sample and
Split on left panel. As we are dealing with a very small sized data, uniform random
sampling might distort the distributions between the two sets, so we should use
stratified sampling based on the label values. When you click on the split data block
it shows the option to enable the stratified sampling on the right panel, and then lets

22.4 Scoring and Performance Metrics

s Mean

Median

Min

Max

Standard Deviation
Unique Valoes
Missing Values
Featare Type

Fig. 22.10 Visualization of one of the features

215

30573

44
04359
FE]

Mumeric Feature

you choose the column on which the sampling should be based. Let’s choose 70%

data for training and 30% for test.

Then, bring in the block Machine Learning -> Train -> Train Model to the
experiment canvas. It takes two inputs: (1) The output of the multiclass decision
jungle and (2) The training set from split data. The experiment pipeline should look

as shown in Fig. 22.11.

22.4 Scoring and Performance Metrics

The next step in the processing is to score the test set with the trained model. We
can use the block Score Model from Machine Learning -> Score on left panel. It
takes the two inputs as trained model and test data. After we score the test set we

216 22 Azure Machine Learning

i) Enter Data Manually

i e

i3] :::]
~En Select Columns in Dataset ~pq Select Columns in Dataset
! !
i
|
! !
EBF_‘H Edit Metadata \Em,‘.n Edit Metadata
o //'
! /
:::
ET Add Columns
L .
\EE
—

@ Multiclass Decision Jungle . [;ﬁn Split Data]
L &

S
=

:_r!lﬂ Train Model

Fig. 22.11 ML pipeline till training the model

can compare the test results with the expected classes from the known labels.? This
can be done using the block Evaluate Model from Machine Learning -> Evaluate on
the left panel. Once all the blocks are connected, the whole pipeline should be like
the one shown in Fig.22.12. The evaluate block not only computes the accuracy,
it also shows the full confusion matrix that shows how the model classifies each
sample as shown in Fig. 22.13. As we can see from confusion matrix, the classifier
is classifying the class Versicolor with 100% accuracy but is not able to separate the
other two classes as well. As the data is split randomly, one can repeat the runs to see
how much of difference it makes to the model performance. If there is significant
difference between two such runs, it means that there is a strong skew in the data.
Ideally multiple runs should produce very similar results.

2This set of known labels from the test data is commonly called as ground truth in machine learning
literature.

22.4 Scoring and Performance Metrics

Iris Classifier

ié Enter Data Manually =
L
_'A-\.__
— T —
= Y
B, Select Columns in Dataset By Select Columns in Dataset
° °
| |
Shn Edit Metadata B Edit Metadata
'y .
A S
"‘-\-.__\\. -
™ —
N F
o Add Columns
L
\H"-\.
Y
[muttictass Decision Jungle & spit Data
L L L]
N o |
S~ - \
= ~ \
N \
\ i \
3 4 \
M \
(B rain Mode
A \

_"}—l Score Model
' ?
D,

£

L ;? | Evaluate Model

Fig. 22.12 Full ML pipeline from entering the data to evaluating the model using decision jungle
multiclass classifier

22.4.1 Comparing Two Models

Now, we have a full machine learning pipeline working with decision jungle as the
underlying algorithm. Next, we can train the model using another algorithm and
compare the two results of the two. As you can see in Fig. 22.12, the evaluate block
can take two inputs, but we have only provided one so far. The second input is
from another model trained using same data. We will repeat the steps described

217

218 22 Azure Machine Learning

Fig. 22.13 Visualization of

the evaluate block Iris Classifier » Evaluate Model » Evaluation results
4 Metrics
Overall accuracy 0.933333
Average accuracy 0.955556
Micro-averaged precision 0.933333
Macro-averaged precision 0.944444
Micro-averaged recall 0.933333
| Macro-averaged recall 0.933333

| 4 Confusion Matrix

Predicted Class

s /
g " b “ iy
“!osd @’3;’.:_ o
v I. setosa 86.7% 13.3%
8
\J
]
2 l. versi... 100.0%
w
<<
I. virgi... 6.7% | 93.3%

before to add multiclass neural network as second model and compare it with
decision jungle using evaluate block. The machine learning pipeline should now
look like the one shown in Fig.22.14. Once the new pipeline is executed, we can
see the comparative evaluation results as shown in Fig. 22.15. As we can see from
the comparison results, multiclass neural network seems to perform better than the
decision jungle. As the data is strictly numerical, decision tree type model does not
have advantage (decision tree models have algorithmic advantage when dealing with
categorical data.) and properly tuned® neural networks generally perform better with
pure numeric data.

3When we click on the Initialize Model block for multiclass neural network or multiclass decision
jungle we can see a whole list of parameters on the right panel. Currently we have chosen the
default values for all of them, but one can use the block Tune Model Hyperparameters from the
left panel to further optimize the neural network model. This block replaced the simple Train
Model block and performs hyper parameter tuning using grid search. However we will defer this
discussion to next chapter.

22.5 Conclusion 219

Iris Classifier

"., Enter Data Manually -
* o

e
il e
S Sebect Columns in Dataset B, Select Columns in Dataset
. .
| |
Shn Edlit Metadata BB Edit Metadata
L ¢ .
\ J
=N
By /
88 . Add Columns
B8y Add Colume
.
\
s
5
[E] mutticlass Decision hungle B Split Data L] Mubiclass Neural Network
® ® . b
\ X . J
kS o s o
~. e —
~ | =
iy / |
[train Model
= = | [B] Train Modet
. | - -
s | | T
e I)
| / N

(@] score Madel
Ll e

(8] score Modal
-
L

\\....

[E] evaluate Mode
£

Fig. 22.14 Full ML pipeline with two models as decision jungle and neural network used as
multiclass classifiers

22.5 Conclusion

In this chapter, we used Azure machine learning (AML) studio as first implemen-
tation tool. We used the Iris data that we had discussed before in the book, to
illustrate the development of end to end pipeline of machine learning model. We
started with manually entering the data in the AML studio experiment canvas and
then adding all the necessary blocks for preprocessing, model training followed by
scoring and evaluation. We also saw how we can iterate on the model for improving
the performance and compare two different algorithms on same data to see which
one gives better performance.

220 22 Azure Machine Learning

Iris Classifier » Evaluate Model » Evaluation results

4 Metrics 4 Metrics
Overall accuracy 0.933333 Overall accuracy 0.955556
Average accuracy 0.955556 Average accuracy 097037
Micro-averaged precision 0.933333 Micro-averaged precision 0.955556
Macro-averaged precision 0.944444 Macro-averaged precision 0.960784
Micro-averaged recall 0.933333 Micro-averaged recall 0.955556
Macro-averaged recall 0.933333 Macro-averaged recall 0.955556

4 Confusion Matrix 4 Confusion Matrix

Predicted Class Predicted Class

!’a% (.%; (,%: t% (%’{' ("‘Q‘

w L setosa 13.3% wn I. satosa

o i
i) =
o w
= K]

2 L versi. 2 I versi...

%]]

<< <<

L virgi... 6.7% 1. virgi... 13.3%

Fig. 22.15 Visualization of the evaluate block with comparative results from both the models

Chapter 23 ®)
Open Source Machine Learning oo
Libraries

23.1 Introduction

Now that we have built the first machine learning pipeline from end to end, using
AML studio, we cannot delve into more complex problems and their solutions
using open source libraries. There have been nothing short of explosion of different
machine learning libraries in last few years. Almost every university and big
technology company has published their own version of libraries. As the libraries
are not programming platform themselves they always need to tag along with an
existing platform. The platform that is getting most attention is Python. Python is
an interesting platform. It is foremost an interpreted language of programming.’
Being interpreted makes it easy to start, as you can just write your first line of code
and just run it. In spite of being interpreted language it has some really advanced
features that have attracted lot of companies and universities to make this de-facto
standard for machine learning library development.

IThe programming languages are primarily divided into two types: (1) Compiled and (2)
Interpreted. In interpreted languages, when a code is executed, each line is executed one after
another. Hence if there are any bugs in the code, they do not surface until that line gets executed.
Also, the code written in interpreted language is less optimal as it is not really optimized
holistically. Compiled languages are different. Before even first line of code is executed, a part
of the language, called compiler, reads all the lines and finds if they have any bugs. If there are,
then compilation process itself fails and user is notified of the bug. Once the code is bug-free, the
compiler translates the English language code written as per syntax of the language into binary
form that is then executed. As the compiler looks at the entire code before running any individual
like it can optimize the entire chunk of code for faster execution or smaller memory footprint.
However, the added complexity of compilation can scare away beginners.

© Springer Nature Switzerland AG 2020 221
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_23

222 23 Open Source Machine Learning Libraries
23.2 Options of Machine Learning Libraries

Here is a list of some of the more popular machine learning libraries available in
open source:

1. Scikit-learn Scikit-learn, also called as sklearn is one of the most popular
machine learning library and it also has support for most types of models. This
is built on Python ecosystem.

2. TensorFlow TensorFlow is a library published by Google as open source. It
supports multiple languages including Python, C#, Java, etc. TensorFlow is more
targeted towards deep learning applications and does not support quite a few of
classical machine learning” techniques.

3. Theano Theano is another machine learning library that is targeted for deep
learning applications. It is primarily based on Python ecosystem.

4. CNTK Microsoft Cognitive Toolkit, also called CNTK, is another deep learning
targeted machine learning library published as open source from Microsoft.
CNTK supports Python and C++.

5. Keras Keras is an interesting option. It provides an even higher level interface on
top of existing libraries like Theano, TensorFlow, and CNTK. It provides unified
commands to build deep learning pipeline using either of three platforms using
Python.

6. Caffe Convolutional Architecture for Fast Feature Embedding or Caffe is another
machine learning library targeted towards neural networks and deep learning
written for Python.

7. Torch Yet another deep learning library that is primarily written for another
language called Lua. Lua has deeper ties with C, and hence Torch is also
compatible with C or C++.

Most of the deep learning libraries also support GPU? based computation. This
does not mean that they don’t work with systems without GPUs, but if you have a
powerful GPU (specifically Nvidia GPU) then computation can be accelerated using
CUDA support.

2The term classical machine learning is used to refer to the machine learning techniques that do
not use deep learning. They would include SVM, decision trees, probabilistic methods, etc.

3Graphics Processing Unit or GPU is also sometimes called as graphics card in the computer.
Traditionally the graphics cards are either embedded on the motherboard of the computer or can
be added as discrete cards. The primary function of the GPU is to manage the displaying of the
information on monitor. They are heavily used in video games. GPU has fundamentally different
architecture compared to CPU, and are not suitable for typical computation performed by CPU.
However, GPUs typically provide massive parallel processing support. As in typical graphical
computations, similar computations need to be performed for each of the pixel that is rendered on
the screen. Nvidia identified this advantage and created a library called CUDA that exposes some
CPU like commands that are specifically tuned for deep learning type applications. Most deep
learning libraries mentioned above support CUDA to accelerate the training of deep networks.
Although in order to really see the performance gains one needs a really high end GPU.

23.3 Scikit-Learn Library 223

Apart from these open source libraries there are some premium platforms
available for developing machine learning models such as Matlab. They offer better
integration of the libraries with the existing development environments, but they are
not quite necessary to start off. There exists another interesting machine learning
library called MLLIB. However, it is supported as the machine learning platform
on distributed computer network called Spark. Quite often the size of data used
to develop machine learning model goes well beyond the scope of single PC, (in
other words when dealing with Big Data) then one has to resort to distributed
computation. Spark is one of the popular open source distributed computation
platforms, and MLLIB is exclusively supported on Spark.

As the scope of this book goes well beyond only deep learning, but we need to
delve into big data for now, we will use sklearn as our library of choice. Once having
familiarity with sklearn, jumping to other libraries for deep learning applications is
also relatively easy.

23.3 Scikit-Learn Library

Scikit-learn or sklearn library is built on core Python and few additional libraries
like NumPy, SciPy, and Pandas. The plotting library Matplotlib is also needed. I
will not go into the details of installation of Python and these other libraries here.
There are multiple options available to do that based on the operating system used.
Here are few links that have sufficient information [19-25].

23.3.1 Development Environment

Python does not need any specific development environment, and one can easily
use any text editor (preferably with some syntax highlighting) and write the Python
code. Then the Python file can be executed using the command line interface. As
Python is an interpreted language, one can also directly enter line by line code on
the Python command line and see the results. However, for this chapter we will
use an online interface called as Jupyter Notebook [26]. Once installed on the PC,
you can run it either from command line or from the desktop icon and it opens
up a browser page with interface as shown in Fig. 23.1 The interface shows a file
browser from your local computer. You can create a suitable folder to keep all the
Python files and create a new file to create an end to end machine learning pipeline
using sklearn. The files created in jupyter notebook are named as *.ipynb, that stands
for interactive Python notebook. When you click on the notebook file, it will open a
notebook for editing in a new browser tab. The interface is in the form of sequence
of cells. You can execute each cell at a time and see the output of that in the same
window, just below the cell.

224 23 Open Source Machine Learning Libraries

Documents,

: Jupyter Quit | | Logout
Files Running Clusters
Select items to perform actions on them. Upload New= &
Jo ~ Wm/ Documents/ Python Name Last Modified File size
(i seconds ago
O & skleam-mi-pipeline.ipynb Running 2 hours ago 728

Fig. 23.1 Starting interface of Jupyter online interactive editor for Python

In [4]: irds_data = pd.read_csv('Iris.csv')
iris_data
out[4]:
Sopal-Length Sepal-Width Petal-Length PetalWidth Label

[5.1 35 14 02 | setosa
1 48 a0 14 02 I setosa
2 47 32 13 02 | setosa
3 48 31 15 02 I setosa
4 5.0 a6 14 03 I setosa
L 54 1] 1.7 04 lsetosa
3 48 34 14 03 I setosa
7 60 34 15 02 I setosa
-] 4.4 29 14 02 | setosa
] 4.8 a1 15 0.1 I setosa
10 5.4 ar 15 02 I setosa
" 48 34 16 02 I selosa
12 4.8 30 14 0.1 I setosa
13 4.3 a0 11 0.1 I setosa
1" 58 40 12 02 I setosa
15 57 44 15 04 |setosa
16 54 39 13 04 I setosa
17 5.1 a5 14 03 | setosa

Fig. 23.2 Python code showing how to read CSV data followed by displaying the data that is read

23.3.2 Importing Data

In order to compare and contrast with the example studied in the previous chapter
using Azure machine learning studio, we will use the same Iris data to solve the
same problem of multiclass classification. To read the data into Python, we will
use a CSV (comma separated variable) file that contains all the Iris data along
with the headings. We will use a CSV reader from Pandas library and display the
table to make sure we have read all the data correctly as shown in Fig. 23.2. This

23.3 Scikit-Learn Library 225

import converts the CSV file into an internal tabular form called Pandas DataFrame.
This dataframe structure is quite important from the machine learning development
perspective and is extensively used. The dataframe structure provides multiple table
operations like joining two tables, doing column based operations, etc. that simple
2D array does not.

23.3.3 Data Preprocessing

As described in the previous chapter, this data does not contain any missing values
and all the data is numeric. Hence there is no need to perform any data clean up and
transformation operations. However, we still need to identify the features and labels
separately from the data similar to what we did in AML studio. Figure 23.3 shows*
these steps with scikit-learn.

In [18): features = iris[['Sepal-Length','Sepal-Width','Petal-Length','Petal-Width']]
labels = iris[['Label']]

In [59]: features.head()

ol Sepal-Length Sepal-Width Petal-Length Petal-Width
0 5:1 35 14 0.2
1 4.9 3.0 14 0.2
2 4.7 3.2 1.3 0.2
3 48 31 1.5 0.2
4 5.0 36 14 0.3

In [58]: labels.head()

out[58]:
Label

0 | setosa

1 | setosa

[X]

I. setosa

w

I. setosa

-

I. setosa

Fig. 23.3 Python code showing data preprocessing

“The function head() shows top 5 rows of the given dataframe.

226 23 Open Source Machine Learning Libraries
23.3.4 Splitting the Data Using Stratified Sampling

Before invoking the training algorithm we need to split the data into training and
test. As discussed in previous chapter, we need to use stratified sampling to make
sure we have similar class distribution in training and test set. Figure 23.4 shows
this operation.

The inputs to the data split function are self-explanatory and it generates four
different variables as output as listed below.

. xtrain denotes the features of the samples to be used for training.
. ytrain denotes the labels for the samples to be used for training.

. xtest denotes the features of the samples to be used for testing.

. ytest denotes the labels of the samples to be used for testing.

W =

23.3.5 Training a Multiclass Classification Model

To illustrate a parallel with previous chapter, we will start with a multiclass classifier
based on ensemble decision tree. The specific decision jungle classifier that we used
in the previous chapter is not available in Scikit-learn, hence we will use random
forest as a similar alternative. We will use the same values for hyperparameters as
we used for decision jungle to have apples to apples comparison. The code for these
steps is shown in Fig. 23.4.

In [78]: from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size=2.3, stratify=labels)

In [79]: from sklearn.ensemble import RandomForestClassifier
randforest RandomForestClassifier(n_estimators=8, max_depth=32, max_leaf_nodes=128)

¢ randfore stl

82]: RandomForestClassifier({bootstrap=True, class_weight=None, criterion="gini’',
max_depth=32, max_features='auto", max_leaf_nodes=128,
min_impurity_decrease=0.8, min_impurity_split=None,
min_samples_leafs1, min_samples_split=2,
min_weight_fraction_leaf=8.8, n_estimators=8, n_jobs=None,
oob_score=False, random_state=None, verbose=8,
warm_start=False)

In [81]: randforest.fit{xtrain, ytrain['Label'])

Fig. 23.4 Python code showing the stratified sampling based train-test split followed by use of
random forest classifier training

23.3 Scikit-Learn Library 227

In [82]: from sklearn.metrics import accuracy_score
ypred = randforest.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
accuracy

Out[B82]: ©.9333333333333333
In [67]: import seaborn as sb
types ['setosa’, 'versicolor®, 'wvirginica']
confmat = pd.DataFrame(confusion_matrix(ytest, ypred), columns=types, index=types)

sb.heatmap(confmat, annot=True)

<matplotlib.axes._subplots.AxesSubplot at @x17235c64b38>

versicalar

wirginica

wt05a versicolor virginica

In [83]: confmat

Fig. 23.5 Performance of the classification using metrics of accuracy and confusion matrix

23.3.6 Computing Metrics

Once the models are successfully trained, we can apply it on the test data and
generate predictions. The predictions can then be compared with actual labels, or
ground truth to generate the metrics in the form of accuracy and confusion matrix.
Figure 23.5 shows the code for these operations. As can be seen, the accuracy
matches exactly, but confusion matrices does not match exactly compared to what
we got using AML studio. There are multiple reasons for this. We used a similar
albeit a different algorithm for classification and the random stratified split was also
different in both cases. In spite of these variations the differences are quite minimal.
The confusion matrix was shown as percent values in case of AML studio, but the
default way using scikit-learn shows actual number of misclassifications rather than
percentages, but those two numbers can be easily converted.

23.3.7 Using Alternate Model

Now, we will try to use neural network based multiclass classifier and compare its
output with the output of random forest, precisely how we did before. Figure 23.6
shows the full code and results of this. The accuracy score with neural network is
identical compared to random forest. However, the confusion matrix shows slightly
different errors in misclassification. This score is less than what was obtained with
neural network based classifier in AML studio. However, the differences are within

228 23 Open Source Machine Learning Libraries

In [182]: from sklearn.neural_network import MLPClassifier
neuralnet = MLPClassifier(hidden_layer_sizes=(4,188), tol=8.885)

In [183]: neuralnet.fit{xtrain, ytrain['Label’]

: MLPClassifier(activations'relu’, alpha=8.8801, batch_size='auto’, beta_1=9.9,
beta_2=8.993, early_stopping=False, epsilon=le-@8,
hidden_layer_sizes=(4, 18@), learning_rate='constant’,
learning_rate_init=0.8@1, max_iter=208, momentum=9.9,
n_iter_no_change=18, nesterovs_momentumsTrue, power_t=8.5,
random_state=None, shuffle=True, solver=‘adam’, tol=e.ees,
validation_fraction=8.1, verbosesFalse, warm_startsFalse)

In [184]: ypred = randforest.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
accuracy

ut[184]: @.9333333333333333
In [185]: confmat = pd.DataFrame{confusion_matrix(ytest, ypred), columnsstypes, indexstypes)
sb.heatmap(confmat, annot=True

out[185]: <matplotlib.axes._subplots.AxesSubplot at 8x17236@d5asSs>

B

-

setosa versicolor rginsca

Fig. 23.6 Use of neural network based multiclass classifier as alternate model and comparison of
metrics

2% and are quite reasonable considering the small size of data and variation in
sampling. Also, there are multitude of hyperparameters that we need to initialize
for neural network, and AML studio exposes slightly different set of parameters
compared to scikit-learn, and that can also account for variation in the performance.
It is important to note that there are multiple variations in which the same algorithm
is coded in AML studio and scikit-learn and these variations lead to variation in
hyperparameters. Hence, it is important to understand the details of parameters in
framework that is chosen for implementing the machine learning pipeline.

23.4 Model Tuning and Optimization

We purposely skipped the aspect of model tuning and optimization in the previous
chapter for keeping the pipeline simple. When the first pass of the machine learning
pipeline is complete it establishes a baseline for performance metrics. The numbers
we cannot regress from. However, there is significant scope to improve the metrics
further. This improvement process is called as model tuning and optimization. This
can be achieved using a multiple options such as:

1. Grid search In grid search all the possible combination of each hyperparameter
are listed. Then the model training is performed for each unique combination

23.5 Comparison Between AML Studio and Scikit-Learn 229

of all the hyperparameters. Let there be 5 hyperparameters and possible values
for each of the parameter are (2,3,2,5,4). Then we will need to run the training
for 2 x 3 x 2 x5 x 4 or 240 times. Thus the computation complexity
increases exponentially with added hyperparameter. Grid search is an exhaustive
search option and provides best possible combination, but if the number of
hyperparameters is large and each has large number of possible values, then it
is not possible to use. However, as each combination has no influence on another
one, all the training operations can be carried out in perfectly parallel manner
utilizing GPU hardware if available.

2. Gradient Search This is an improvement over the grid search. Applying gradient
search for hyperparameter tuning is using an algorithm on top of another
algorithm that is used for training the underlying model. However, when the grid
of hyperparameters is large, gradient search converges much quicker than fully
exhaustive grid search. Hence even being conceptually more complex, it reduces
the computational complexity.

3. Evolutionary Methods The evolutionary methods like genetic programming
or simulated annealing can also be effectively used to find the optimal set of
hyperparameters.

4. Probabilistic Methods Bayesian methods can also be used if we can impose a
known probability distribution on the effect of hyperparameters on the training
accuracy.

23.4.1 Generalization

When a hyperparameter optimization search is performed on the given set of training
data, it is quite likely to overuse and effectively overfit the model for that set of
data. In order to improve generalization and reduce overfitting a technique of cross-
validation is used. In cross-validation, the whole of labelled data is split into 3 parts,
called train, validate, and test. Also, the data between train set and validation set
is resampled multiple times to create multiple sets of train and validation sets. The
above mentioned training iterations are performed on each of the train and validation
sets. The test set is not used during this, and is kept as blind set for the trained model
only for the purpose of metrics calculation. This process in spite of adding more
computational complexity, improves the generalization performance of the model.

23.5 Comparison Between AML Studio and Scikit-Learn

Figures 23.7 and 23.8 show the lists of algorithms supported by each. The list of
AML blocks is comprehensive, while list in scikit-learn is higher level list such that
each item has multiple variations that are supported.

230 23 Open Source Machine Learning Libraries

Fig. 23.7 List of all the

supported algorithm blocks in
Azure machine learning Evaluate
studio

Fl @ Machine Learning

4 |nitialize Model
4 Anomaly Detection
One-Class Support Vector Machine
PCA-Based Anomaly Detection
4 (Classification

Multiclass Decision Forest
Multiclass Decision Jungle
Multiclass Logistic Regression
Multiclass Neural Network
One-vs-All Multiclass
Two-Class Averaged Perceptron
Two-Class Bayes Point Machine
Two-Class Boosted Decision Tree
Two-Class Decision Forest
Two-Class Decision Jungle
Two-Class Locally-Deep Support Vector Machine
Two-Class Logistic Regression
Two-Class Neural Network
Two-Class Support Vector Machine
4 Clustering
K-Means Clustering

4 Regression

Bayesian Linear Regression
Boosted Decision Tree Regression
Decision Forest Regression

Fast Forest Quantile Regression
Linear Regression

Neural Network Regression
Ordinal Regression

Poisson Regression

23.5 Comparison Between AML Studio and Scikit-Learn

Fig. 23.8 List of all the

algorithms in scikit-learn s

>

1

-1

1
1
1
1

g

1
1

ol

2

3.
4.
5.
6.
o
8.
9,

10

12

13

1. Supervised learning

1.1. Generalized Linear Models

Linear and Quadratic Discriminant Analysis
Kemel ridge regression

Support Vector Machines

Stochastic Gradient Descent
Mearest Neighbors

Gaussian Processes

Cross decomposition

Maive Bayes

. Decision Trees

. Ensemble methods

. Multiclass and multilabel algorithms
. Fealure selection

. Semi-Supervised

.15. Isotonic regression

6.

Probability calibration

. Neural network models (supervised)

2. Unsupervised learning
» 2.1,

22

» 2.3,

> 24,

»25.

> 2.6.

»2.7.

»28.

»29.

Gaussian mixture models
Manifold learning
Clustering

Biclustering

Decomposing signals in components (matrix factorization problems)

Covariance estimation
Movelty and Outlier Detection
Density Estimation

Meural network models (unsupervised)

231

As mentioned earlier, AML studio is easier and more visual option to get started
with the topic and once having sufficient proficiency with all the techniques moving
on the scikit-learn is recommended. With scikit-learn one has more flexibility with
importing data, preprocessing and also with model selection and tuning. With
additional help from other Python libraries in plotting and general numeric and
statistical analyses one can easily extend the scope of the pipeline for any arbitrary
type of processing. Going even further, using core Python syntax, one can come up
with their own implementations of the algorithms or their variations and augment

the existing libraries with them.

232 23 Open Source Machine Learning Libraries

23.6 Conclusion

In this chapter we implemented an end to end machine learning pipeline using
scikit-learn library. We used the same set of data and similar machine learning
algorithms in both cases to draw parallel between these two options. It was seen
that the performance metrics obtained between the systems and two algorithms were
quite close. We also learned that due to high complexity of coding these algorithms,
different libraries expose slightly different sets of hyperparameters. It is therefore
important to understand the details of all the input parameters for framework chosen
for implementation of the machine learning pipeline to be able to optimize it. We
then learned the use of hyperparameter tuning and generalization of the algorithm
with cross-validation. We also compared the AML studio and scikit-learn libraries
based on their scope and functionality.

Chapter 24 ®
Amazon’s Machine Learning Toolkit: Qe
Sagemaker

24.1 Introduction

Sagemaker is Amazon’s version of free to use framework for implementing and
productizing machine learning models. In contrast to AzureML studio as we studied
in Chap. 22, Sagemaker provides a Jupyter notebook interface for implementing the
models as we saw in Chap. 23. It offers the Amazon’s own implementation of a
library of models along with open source models, e.g., scikit-learn as we used in
Chap. 23. In this chapter we will look at how to setup Sagemaker for first use and
how to implement the model using Sagemaker.

24.2 Setting Up Sagemaker

Figure 24.1 shows the screen where you can sign up to start using Amazon
Sagemaker. Once you create your free account, you can start with building your
first machine learning pipeline. Sagemaker interface is a little bit more advanced
with stronger focus on productizing the machine learning pipeline. Once you have
created the account, you are taken to Sagemaker home as shown in Fig. 24.2. From
there, you can navigate to Sagemaker dashboard, see Fig. 24.3. The dashboard
shows the various options you can do inside the Sagemaker. It also shows the
previous activity. Currently it is empty, as we are just getting started. However, in
the future, it will show the status of the model execution here. We would like to
build the machine learning model using the notebook, so we will select the option
of Notebook.

© Springer Nature Switzerland AG 2020 233
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_24

234 24 Amazon’s Machine Learning Toolkit: Sagemaker

Support English = My Account =

Fig. 24.1 Screenshot showing the getting started screen for Amazon Sagemaker

Then a customization screen is shown as can be seen in Fig.24.4 to create the
notebook instance. We will name the notebook as Classifylris. It should be noted
that underscore character is not allowed in this name. Most of the other options can
be kept at default. It should be noted that 5 GB is minimum required volume, even
if we are going to need only a small fraction of it. The IAM role needs to be created.
This role enforces access restrictions. These would be useful in productizing the
model later on. For now, we will just create a simple role as shown in Fig. 24.5. We
will select the role that can access any bucket in the linked S3 storage. Then we can
go ahead with notebook creation. Once clicked on Create Notebook Instance, you
are shown with the confirmation as can be seen in Fig. 24.6. The status is pending,
but within few minutes, it should be complete.

24.3 Uploading Data to S3 Storage

The next step is to onboard the data. For that we need to step out of Sagemaker
interface and go to list of services offered by AWS, and select S3 storage as shown
in Fig.24.7. You first need to add a bucket as the primary container of the data.
This step is shown in Fig. 24.8. We will name the bucket as mycustomdata. We will
accept the default options in the subsequent screens to complete the creation of the
bucket. Then we will create a folder inside the bucket with name iris. We will upload
the same Iris.csv file that we used in previous chapters in the folder (Fig. 24.9).

24.4 Writing the Machine Learning Pipeline Using Python 235

5./ \s-east-2 CORSOle WS AMAZON Com. t T A& @3 L]

a_W_S Sorv « Resource Groups - *
mazon SageMaker 4
MACHINE
Dashboard
S Amazon SageMaker

w Ground Truth

Build, train, and deploy
machine learning models
at scale

Labeling jobs
Labeling datasets

Labeling workforces

¥ Notebook
Natebook instances
Lifecycle configurations
Git repositories

w Training
Algarithms

How it works

Training jobs

Hyperparameter tuning jobs
d no upfront

65 &3 ==

Label Build Train

w Inference

Compilation jobs

Model packages

Models

- P - Related services
Endpoint configurations Connect to other
WS services and

transform data in

Use Amazon
SageMaker's
algorithms and

Endpaints

Batch transform jobs

WS Marketplace [4

training datasets
within Amazon
Malker, using

Amazon SageMaker
notebocks

frameworks, or bring
for
ited training

tearn
human Labeling

&9

Tune Deploy

More resources

[|

——]

Amazon SageMaker

Onee training is
automatically tunes completed, madels

your model by

algarithm time predictions

Fig. 24.2 Screenshot showing the home screen for Amazon Sagemaker

24.4 Writing the Machine Learning Pipeline Using Python

Now, we can go back to the notebook instance that we have created in Sagemaker.
This instance acts like a project environment where we can add multiple scripts.
For our purpose, we will need a single script or notebook. If you click on the new
option on the top right of the notebook instance interface, you are presented with
multiple options as shown in Fig.24.10. Some of the options are for building the
models in Spark, which is a big data environment. Some are specific to deep learning
libraries like Tensorflow and PyTorch. Each one is available with different versions
of python. For current experiment, we will choose conda_poython3. This option
will enable standard Python (version 3) script. The first step would be to import the
data that we uploaded in S3. Figure 24.11 shows the code to import the data.

236 24 Amazon’s Machine Learning Toolkit: Sagemaker

Resource Groups ~

Amazon SageMaker x

Overview
Search’
» Ground Truth

Labeling jobs E
Labeling datasets @ H o

Labeling warkfarces

round Truth Motebook Trainin
w Notabook Gro u otebool 9

Notebook instances Setup and manage labeling Avallability of AWS and Train and tune modeds at any
scale. Leverage high

SageMaker SDKs
Patebooks to create traing
Jaibs and deploy modals.

Lifeeyele eanfigurations

Git repositories

w Training Labeling jobs Motebook instances | Training jobs

Hyperparameter

Algorithms
s by

Training jobs

Hyperparameter tuning jobss

¥ Inference

Compilation jobs -
Recent activity Recent activity withinthe | Last Tdays
Madel packages

Madets
Endpaint configuratiorss
Endpaints

Batch transform jobs.

Fig. 24.3 Screenshot showing the dashboard for Amazon Sagemaker

From here onwards, we essentially have the same environment as we discussed in
the previous chapter. We can use the scikit-learn libraries to carry out the multiclass
classification, or we can use Amazon’s proprietary library function XGBoost.
Figure 24.12 shows the full list of custom models supported by Amazon Sagemaker.
These models use the same underlying theory described in previous chapters, but
they are optimized for performance and execution for AWS and Sagemaker system.
It is left as exercise to the reader to build the remaining pipeline using different
models and see the difference in the performance.

24.5 Conclusion

In this chapter we studied how to build a machine learning pipeline using Amazon’s
interface called as Sagemaker. The initial setup initializes the productization aspects
of the machine learning pipeline. Then the user is presented with the familiar
Jupyter notebook interface to build the pipeline using either open source options
of Amazon’s proprietary options. Once the model is built the Sagemaker system
provides various options to productize it, monitor the state and performance of the
pipeline at various stages and debug it.

24.5 Conclusion 237

Amazon SageMaker X Amazon SageMaker > Notebook instances > Create notebook instance

Dastbow Create notebook instance

Search®es

Amazaon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances

¥ Ground Truth include example code for comman model training and hosting exercises. Learn more [

Labeling jobs

Labeling datasets Notebook instance settings

Labeling workforces

Notebook instance name

v Notebook Qussifylris

Notebook instances o

1 spiaces
Lifecycle configurations Notebook instance type
Git repasitories mLtZ.medium b
w Training Elastic Inference Learn more [
Algorithms none -
Training jobs 1AM role
) Notbook itances reguse Sagetaker ao 53 Chin v o it i3 Ermarte 3 role with the
Hyperparameter tuning jobs AmaronsageMakesFullaceess 4
v Infavance AmazonSageMaker-ExecutionRole-20190223T102369 bl
Compilation jobs VP - aptional
Yous ek irvitarce will ke pe AiLe cewis becasn 3 VPC setting i
Model packages v
Models
Endpoint configurations
Endpoints Mo configuration hd
Batch transform jobs Encryption key - optional
Encaypt your notebook data. Choose a
AWS Marketplace [o Custom Encryption -

Volume size in GB - optional
Ene

5

* Git repositories - optional

» Tags - aptional

oo

Fig. 24.4 Screenshot showing create notebook interface for Amazon Sagemaker

238 24 Amazon’s Machine Learning Toolkit: Sagemaker

Create an |IAM role X

zon SageMaker permission to perform action
the AmazonSageMakerFullAccess [A

The 1AM role you create will provide access to:

@ 53 buckets you specify - optional
Specific 53 buckets

Cor

O Any 53 bucket

Al users that have

and *f

ok instance access

o any bucket and its contents in your account

@ Any 53 bucket with "sagemaker” in the name
G) Any 53 object with "sagemaker” in the name
Any 53 object with the tag "sagemaker” and value "true" See Object tagging
y 53 obj ith the tag "sagemak d vall | 4]

@ 53 bucket with a Bucket Policy allowing access to SageMaker See 53 bucket policies [

Fig. 24.5 Screenshot showing create role setup for Amazon Sagemaker

& Success! Your notebook instance is being created. View details x

Open the notebook instance when status is InService and open a template not k to get started.

Amazon SageMaker Notebook instances
Notebook instances Actions ¥ Create notebook instance
O, Senech norebook in 105 @
Name v Instance Creation time A4 Status v Actions

Classifylrie ml.t2.medium Feb 23, 2019 18:25 UTC @) Pending

Fig. 24.6 Screenshot showing that the notebook is successfully created in Amazon Sagemaker

24.5 Conclusion 239

Fig. 24.7 Screenshot
showing the option for
selecting the S3 storage in
AWS History [|

Resource Groups

53

Amazon SageMaker @ Compute

Console Home EC2

Lightsail &

ECR

ECS

EKS

Lambda

Batch

Elastic Beanstalk

Serverless Application Repository

Storage
S3
EFS
FSx
| 53 Glacier
Storage Gateway
AWS Backup

240 24 Amazon’s Machine Learning Toolkit: Sagemaker

Create bucket

(3) amo and region Configura opticns (3) set pormissions

Name and region

Bucket name

Regicn

US East (Ohio) s

tings from an existing buckat

Fig. 24.8 Screenshot showing the option for creating custom dataset in S3 storage in AWS

Q, Type a prefix and press Enter 1o search. Press ESC to clear. —|

US East (Ohio) &

Viewing 110 1
[Name = Last moddied Size Storage class
£ F 19 11:15:30 A
I Tris.csv b2, TAENMN v Standard
GMT-0800
Viewing 1 to 1

Fig. 24.9 Screenshot showing that Iris data is successfully uploaded in the S3 storage in AWS

24.5 Conclusion

Fig. 24.10 Screenshot
showing all the possible
options for creating notebook
in Amazon Sagemaker

241

Upload <

Notebook

Sparkmagic (PySpark)
Sparkmagic (PySpark3)
Sparkmagic (Spark)

Sparkmagic (SparkR)
conda_amazonei_mxnet_p27
conda_amazonei_mxnet_p36
conda_amazonei_tensorflow _p27
conda_amazonei_tensorflow_p36
conda_chainer_p27
conda_chainer_p36
conda_mxnet_p27
conda_mxnet_p36
conda_python2

conda_python3
conda_pytorch_p27
conda_pytorch_p36
conda_tensorflow p27

conda_tensorflow_p36

Other:
Text File
Folder

Terminal

e

2B
kB

242 24 Amazon’s Machine Learning Toolkit: Sagemaker

' Jupyter XGboostClassifier Las Crackpeint a lew seccrds aga (autosaved)

B+ ¥ BB 4+ HRun B C B C

In [5]: import pandss as pd
import urllib.request
from sagemaker import get_sxecution_role

In [3]: role = get_sxecution_role()
bucket="'mycustondata’
d E

fornat(bucket, dats_key)
lecatien)

In [4]: | iris_data

Sepallength SepalWidth Petsliength PetslWidtn Label

(] [X] as 14 02 Lsewma
1 48 an 14 02 Lsewsa
2 47 32 13 02 | osedcsa
a a8 3 14 02 Lsewsa
4 50 as 14 03 Lsewsa
5 54 39 7 04 | sewss
[a8 34 14 03 Lsewosa
T 50 34 15 02 Lseiosa
L] 44 9 14 02 L setcsa
il as a 18 01 Lsesosa
0 54 a7 15 02 ILsewsa

Fig. 24.11 Screenshot showing the python code for importing the data set from S3 storage and
using in the machine learning pipeline in Amazon Sagemaker notebook

24.5 Conclusion

Fig. 24.12 Screenshot
showing Amazon’s
proprietary machine learning
models available in Amazon
Sagemaker

243

& Build a Model
& Use Built-in Algorithms
Common Information

BlazingText
DeepAR Forecasting
Factorization Machines

Image Classification
Algorithm

IP Insights
K-Means Algorithm

K-Mearest Neighbors (k-
NN) Algorithm

Latent Dirichlet Allocation
(LDA)

Linear Learner Algorithm

Neural Topic Madel (NTM)
Algorithm

Object2Vec

Object Detection
Algorithm

Principal Component
Analysis (PCA) Algorithm

Random Cut Forest (RCF)
Algorithm

Semantic Segmentation

Sequence to Sequence
(seq2seq)

XGBoost Algorithm

Use Your Own Algorithms

Part VI
Conclusion

Do or do not, there is no try!!

—Yoda, “Star Wars: The Empire Strikes Back”

Part Synopsis
This part concludes the book with key takeaways from the book and road ahead.

Chapter 25 ®
Conclusion and Next Steps oo

25.1 Overview

The concepts of machine learning and artificial intelligence have become quite
mainstream and focus of lot of cutting edge research in science and technology.
Although most of the concepts in machine learning are derived from the mathemat-
ical and statistical foundations, which are quite hard to understand without having
background in graduate level courses in those topics, the artificially intelligent
applications based on machine learning are becoming quite commonplace and
accessible to anyone. This simplicity of applications has opened the doors to these
topics for a huge number of engineers and analysts, which otherwise were only
accessible to people doing their Ph.Ds. This is good and bad in a way. Good because
these topics do have applications in technology that is used in every little aspect
of our modern lives. The people who are building all these technology are not
necessarily the people who are pursuing their Ph.Ds in mathematics and statistics.
Hence, when more people are armed with these powerful techniques, the faster is
the pace of evolution of technology and revolution of lives of all the people. Bad
because, oversimplification of the concepts can lead to misunderstanding and that
can have catastrophically worse if not dangerous effects.

Many books, Wikipedia, and many other websites are dedicated on this topic,
but in my investigation, the material presented in most sources is focused on a small
subset of topics and typically either goes too deep in theory or stays too superficial
that the applications may seem like black magic. I had come across many colleagues
and friends who had asked questions about different problems or applications in
day-to-day life that were all ultimately connected with machine learning or artificial
intelligence and created profound confusion. Most of these sources are useful when
you know exactly what you are looking for, and in most cases, that is not true. In
such case it is easy to get lost in plethora of this information.

I had tried to scope the book to include most of the concepts that one will come
across in the fields of machine learning or artificial intelligence, specifically in day-

© Springer Nature Switzerland AG 2020 247
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26622-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-26622-6_25

248 25 Conclusion and Next Steps

to-day life, but still present the material in more intuitive and conceptual focused
manner rather than going deep into theory. However, to make the concepts concrete
and avoid oversimplification, theory is presented whenever it is necessary and
easy to understand with undergraduate level mathematics and statistics background.
Anyone interested in this field, working on developing applications, or even
developing machine learning systems will get something new from this book. It
will connect the dots floating around from different contexts in a meaningful way
and connect them with their roots in theory. In no way this book claims to give
comprehensive context of the field, but it will certainly equip the reader to tackle
any new concept with confidence.

25.2 What’s Next

After completing this book, I would say, should mark the beginning for the reader
to embark on whatever is next in the broader field of data science in general. There
are many ways in which one can proceed depending on the interest or need. Here is
a couple of mainstream areas:

1. Target towards big data applications. One needs to learn more about the hardware
architecture for managing the big data, and the technologies that manage it. For
example Hadoop, Spark, etc.

2. Target towards any specific application, e.g., speech or image processing or
computer vision or robotics, etc. In such cases, one would have to learn more
about the domain knowledge about the area. Understand the nuances of the
applications, understand what user of the application is going to look for. Then
connect the machine learning context with it to build the artificial intelligence.

Each individual aspect of this technology when looked in micro detail, starts to
seem obvious, trivial even. However, when all these individual components come
together, the problem that is solved, and experience that is delivered is just magical.
And that is what keeps me excited about this topic every single day. Hope to have
passed this excitement through this book to every reader!

References

—

. The Human Memory http://www.human-memory.net/brain_neurons.html
. Wikipedia - Deep Learning https://en.wikipedia.org/wiki/Deep_learning
. Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository https://archive.

ics.uci.edu/ml/datasets/iris. Irvine, CA: University of California, School of Information and
Computer Science.

. Wikipedia - Dynamic Programming Applications https://en.wikipedia.org/wiki/Dynamic_

programming#Algorithms_that_use_dynamic_programming

. Wikipedia - Linear discriminant analysis https://en.wikipedia.org/wiki/Linear_discriminant_

analysis

. UCI - Machine Learning Repository (Center for Machine Learning and Intelligent Systems) -

Adult Data Set https://archive.ics.uci.edu/ml/datasets/Adult

. Mobile cellular subscriptions (per 100 people) https://data.worldbank.org/indicator/IT.CEL.

SETS.P2%end=2017&start=1991

. Convolution Theorem https://en.wikipedia.org/wiki/Convolution_theorem
. Diminishing Returns https://en.wikipedia.org/wiki/Diminishing_returns

10. Shannon number https://en.wikipedia.org/wiki/Shannon_number

11. Deep Blue (chess computer) https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

12. Setting up Mario Bros. in OpenAl’s gym https://becominghuman.ai/getting-mario-back-into-
the- gym-setting-up-super-mario- bros-in-openais- gym-8e39a96cle4 1

13. Open Al Gym http://gym.openai.com/

14. Quantum Computing https://en.wikipedia.org/wiki/Quantum_computing

15. Uncertainty Principle https://en.wikipedia.org/wiki/Uncertainty_principle

16. Quantum Entanglement https://en.wikipedia.org/wiki/Quantum_entanglement

17. Quantum Superposition https://en.wikipedia.org/wiki/Quantum_superposition

18. Summit Supercomputer https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

19. Python https://www.python.org/

20. Anaconda https://www.anaconda.com/distribution/

21. Pip https://pypi.org/project/pip/

22. Numpy http://www.numpy.org/

23. Scipy https://scipy.org/install.html

24. Matplotlib https://matplotlib.org/users/installing.html

25. Scikit Learn https://scikit-learn.org/stable/index.html

26. Jupyter Notebook https://jupyter.org/

27. Travelling Salesman Problem https://en.wikipedia.org/wiki/Travelling_salesman_problem

28. Mahalanobis distance https://en.wikipedia.org/wiki/Mahalanobis_distance

© Springer Nature Switzerland AG 2020 249

A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-26622-6

http://www.human-memory.net/brain_neurons.html
https://en.wikipedia.org/wiki/Deep_learning
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://en.wikipedia.org/wiki/Dynamic_programming#Algorithms_that_use_dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming#Algorithms_that_use_dynamic_programming
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://archive.ics.uci.edu/ml/datasets/Adult
https://data.worldbank.org/indicator/IT.CEL.SETS.P2?end=2017&start=1991
https://data.worldbank.org/indicator/IT.CEL.SETS.P2?end=2017&start=1991
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Diminishing_returns
https://en.wikipedia.org/wiki/Shannon_number
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://becominghuman.ai/getting-mario-back-into-the-gym-setting-up-super-mario-bros-in-openais-gym-8e39a96c1e41
https://becominghuman.ai/getting-mario-back-into-the-gym-setting-up-super-mario-bros-in-openais-gym-8e39a96c1e41
http://gym.openai.com/
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Quantum_entanglement
https://en.wikipedia.org/wiki/Quantum_superposition
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.python.org/
https://www.anaconda.com/distribution/
https://pypi.org/project/pip/
http://www.numpy.org/
https://scipy.org/install.html
https://matplotlib.org/users/installing.html
https://scikit-learn.org/stable/index.html
https://jupyter.org/
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://doi.org/10.1007/978-3-030-26622-6

250 References

29. Causality in machine learning http://www.unofficialgoogledatascience.com/2017/01/causality-
in-machine-learning.html

30. A Brief History of Machine Learning Models Explainability https://medium.com/@Zelros/a-
brief-history-of-machine-learning-models-explainability-f1¢3301be9dc

31. Automated Machine Learning https://en.wikipedia.org/wiki/Automated_machine_learning

32. AutomML.org https://www.ml4aad.org/automl/

33. PageRank https://en.wikipedia.org/wiki/PageRank

34. Self Organizing Maps https://en.wikipedia.org/wiki/Self-organizing_map

35. Netflix Prize https://www.netflixprize.com/rules.html

36. A Gentle Introduction to Transfer Learning for Deep Learning https://machinelearningmastery.
com/transfer-learning-for-deep-learning/

37. Vladimir N. Vapnik, The Nature of Statistical Learning Theory, 2nd edn. (Springer, New York,
1995).

38. Richard Bellman, Dynamic Programming, (Dover Publications, Inc., New York, 2003).

39. Trevor Hastie, Robert Tibshirani, Jerome Friedman The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn. (Springer, New York, 2016).

40. Joseph Giarratano, Gary Riley, Expert Systems: Principles and Programming, PWS Publishing
Company, 1994.

41. Olivier Cappé, Eric Moulines, Tobias Rydén, Inference in Hidden Markov Models (Springer,
New York, 2005).

42. Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification John Wiley and Sons,
2006.

43. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, Yoshua Bengio Generative Adversarial Nets, NIPS, 2014.

44. Frank Rosenblatt, The Perceptron - a perceiving and recognizing automation, Report 85-460,
Cornell Aeronautical Laboratory, 1957.

45. Zafer COMERT and Adnan Fatih KOCAMAZ, A study of artificial neural network training
algorithms forclassification of cardiotocography signals, Journal of Science and Technology,
Y 7(2)(2017) 93-103.

46. Babak Hassibi, David Stork, Gregory Wolff, Takahiro Watanabe Optimal brain surgeon:
extensions and performance comparisons, NIPS, 1993.

47. Yann LeCun, John Denker, Sara Solla, Optimal Brain Damage, NIPS 1989.

48. Tin Kam Ho, Random Decision Forests, Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, QC, 14-16 August 1995. pp. 278-282.

49. Leo Breiman, Random Forests, Machine learning 45.1 (2001): 5-32.

50. Leo Breimian, Prediction Games and ARCing Algorithms, Technical Report 504, Statistics
Department, University of California, Berkerley, CA, 1998.

51. Yoav Freund, Robert Schapire A Short Introduction to Boosting, Journal of Japanese Society
for Artificial Intelligence, 14(5):771-780, September, 1999.

52. V. N. Vapnik and A. Y. Lerner Pattern Recognition using Generazlied Portraits Automation
and Remote Control, 24, 1963.

53. Haohan Wang, Bhiksha Raj On the Origin of Deep Learning, ArXiv e-prints, 2017.

54. Geoffrey Hinton, Simon Osidero, Yee-Whye Teh A fast learning algorithm for deep belief
networks, Neural Computation, 2006.

55. Kunihiko Fukushima, Neocognition: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position Biological cybernetics, 36(4), 193-202,
1980.

56. Michael I Jordan, Serial order: A parallel distributed processing approach. Advances in
psychology, 121:471-495, 1986.

57. Vinod Nair, Geoffrey Hinton Rectified Linear Units Improve Restricted Boltzmann Machines,
27th International Conference on Machine Learning, Haifa, Isreal, 2010.

58. Sepp Hochreiter, JAijrgen Schmidhuber Long Short-Term Memory Neural Computation, vol-9,
Issue 8, 1997.

http://www.unofficialgoogledatascience.com/2017/01/causality-in-machine-learning.html
http://www.unofficialgoogledatascience.com/2017/01/causality-in-machine-learning.html
https://medium.com/@Zelros/a-brief-history-of-machine-learning-models-explainability-f1c3301be9dc
https://medium.com/@Zelros/a-brief-history-of-machine-learning-models-explainability-f1c3301be9dc
https://en.wikipedia.org/wiki/Automated_machine_learning
https://www.ml4aad.org/automl/
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Self-organizing_map
https://www.netflixprize.com/rules.html
https://machinelearningmastery.com/transfer-learning-for-deep-learning/
https://machinelearningmastery.com/transfer-learning-for-deep-learning/

References 251

59.

60.

61.

62.
63.

64.
. Ameet Joshi, Lalita Udpa, Satish Udpa, Antonello Tamburrino, Adaptive Wavelets for Char-

65

66.

67.

68.

69.

70.

David Wolpert, William Macready, No Free Lunch Theorems for Optimization, IEEE Transac-
tions on Evolutionary Computation, Vol. 1, No. 1, April, 1997.

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, Demis Hassabis, Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm, AxXiv e-prints, Dec 2017.

Paul Beniof, The Computer as a Physical System: A Microscopic Quantum Mechanical
Hamiltonian Model of Computers as Represented by Turing Machines, Journal of Statistical
Physics, Vol. 22, No. 5, 1980.

Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, Antonio
Criminisi, Decision Jungles: COmpact and Rich Models for Classification, NIPS 2013.
Olivier Chapelle, Jason Weston, Leon Bottou and Vladimir Vapnik, Vicinal Risk Minization,
NIPS, 2000.

Vladimir Vapnik, Principles of Risk Minimization for Learning Theory, NIPS 1991.

acterizing Magnetic Flux Leakage Signals from Pipeline Inspection, IEEE Transactions on
Magentics, Vol. 42, No. 10, October 2006.

G. A. Rummery, Mahesh Niranjan On-Line Q-Learning using Connectionist Systems, volume
37. University of Cambridge, Department of Engineering.

S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimzation by Simulated Annealing, Science,
New Series, Vol. 220, No. 4598, 1983.

Craig W. Reynolds Flocks, Herd and SChools: A Distributed Behavioral Model, Computer
Graphics, 21(4), July 1987, pp 25-34.

Lafferty, J., McCallum, A., Pereira, F. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. Proc. 18th International Conf. on Machine Learning.
Morgan Kaufmann. pp. 282-289, 2001.

Sinno Jialin Pan, Qiang Yang, A Survey on Transfer Learning IEEE Transactions on Knowl-
edge and Data and Engineering, Vol. 22, No. 10, October 2010.

Index

A
A/B testing, 176
Accuracy, 171
Activation functions, 45, 46
AdaBoost algorithm, 62, 63
Adaptive reweighting and combining
algorithms (ARCing), 62-63
Adult data set, 143
Adult salary classification, 160, 161
Al, see Artificial intelligence
Algorithm selection
accuracy measurement, 164
adult salary classification, 160, 161
coincidence and causality, 166-167
data leakage, 165-166
data splitting
hyperparameter tuning, 160,
163-164
stratified sampling, 160
training, 160, 163
validation and test sets, 160
explainability, 164
unknown categories, 167
Amazon Sagemaker, see Sagemaker

Amazon’s personal shopping experience,

199

context based recommendation, 202-203

“featured” criteria, 202

personalization based recommendation,

203

AML studio, see Azure machine learning

studio
ANN:s, see Artificial neural networks
Ant colony optimization, 105-106

© Springer Nature Switzerland AG 2020

ARCing, see Adaptive reweighting and
combining algorithms
Area under curve (AUC), 173
Artificial intelligence (AI), 6
applications, 247-248
classification (see Classification
algorithms)
data understanding (see Data
preprocessing)
definition, 4
expert systems, 91
ranking (see Ranking)
recommendation systems (see
Collaborative filtering)
regression (see Regression)
Artificial neural networks (ANNs), 117
complexity, 50
dropout regularization, 51
GPGPU, 118
L1 and L2 regularization, 50-51
neurons, 117-118
nonlinear, 45, 46
overfitting, 50, 51
See also Multilayered perceptron
Autoencoding neural networks, 138, 140
AutoML, 131-132
Autoregressive integrated moving average
(ARIMA) models, 111-112
Autoregressive moving average (ARMA)
process, 111
autoregressive process, 110
definition, 109
moving average process, 110
Autoregressive (AR) process, 110

A. V. Joshi, Machine Learning and Artificial Intelligence,

https://doi.org/10.1007/978-3-030-26622-6

https://doi.org/10.1007/978-3-030-26622-6

254

Azure machine learning (AML) studio
Blank Experiment, 208, 210
data processing pipeline, 207
multiclass classification pipeline
data preprocessing, 212-215
importing data, 210, 211
training classifier model, 214-216
New experiment screen, 208, 209
vs. Scikit-learn library, 229-231
scoring and performance metrics, 215-220
Sign In screen, 208, 209

B
Bagging ensemble trees, 60-61
Batch learning, 4748
Bayesian approach
conditional prior probability, 74
joint probability, 75
marginal probabilities, 75
solution using, 77-78
Bayesian networks, 79
Bellman equation, 91-92
Bernoulli distribution, 81
Big data
applications, 248
definition, 9
iterative operations, 10
Binary classification, 65, 67
Binomial distribution, 84
Boosted ensemble trees, 62-63
Bootstrap aggregation, 60
Bootstrap sample, 60

C
Caffe, 222
Capital-gain, 151
Capital-loss, 151
CART, see Classification and regression tree
Categorical features
education feature, 157, 158
marital-status feature, 158
native-country feature, 158
occupation feature, 158
race feature, 158
relationship feature, 158
sex feature, 158
workclass feature, 156, 157
cdf, see Cumulative density function
Central limit theorem, 80

CHAID, see Chi-squared automatic interaction

detector

Index

Child nodes, 59
Chi-squared automatic interaction detector
(CHAID), 54, 58-59
Classical generative models, 78
Classification algorithms
image classification, 180
medical diagnosis, 180
musical genre identification, 180
spam email detection
assumptions, 181-182
categories, 179
data skew, 182
feature engineering, 183
iteration, 183-184
model training, 183
scope, 180
supervised learning, 182-183
Classification and regression tree (CART),
54-55
Classification tree, 57
Classitylris, 234
Class separation
age feature, 152, 153
capital-gain feature, 152, 154
capital-loss feature, 152, 155
education-num feature, 152, 154
fnlwgt feature, 152, 153
hours-per-week feature, 152, 155
Clustering, see k-means clustering
CNNs, see Convolutional neural networks
CNTK, 222
Cold start, 201
Collaborative filtering
Amazon’s personal shopping experience,
199
context based recommendation,
202-203
“featured” criteria, 202
personalization based recommendation,
203
definition, 200
Netflix
vs. BellKor, 199
streaming video recommendations,
203-204
sample training data, 200
solution approaches
algorithm types, 201
information types, 201
Conditional probability, 73
Conditional random fields (CRFs),
114-115
Confusion matrix, 172-173, 216

Index

Convolutional neural networks (CNNs)
architecture
building block, 120, 121
convolution layer, 121
fully connected layer, 122-123
pooling layer, 122
rectified linear unit, 121-122
1D convolution, 119-120
training, 123
2D convolution, 120
Convolution layer, 121
Correlation coefficients, 145, 152, 156
Cross-entropy, 58
CSV file, 224
C-SVM, 69
Cumulative density function (cdf), 80
gamma distribution, 85, 87
Poisson distribution, 85, 88
Cumulative gain (CG), 194

D
Darwin’s theory of evolution, 100-102
Data leakage, 165-166
Data preprocessing
attributes, 22-23
clean up, 21
dimensions, 24
entities, 22, 23
LDA, 27-28
PCA
3-dimensional data, 24-26
2-dimensional data, 26, 27
Scikit-learn library, 225
types, 24
Data science, 21
Data splitting
hyperparameter tuning, 160, 163-164
Scikit-learn library, 226
stratified sampling, 160
training, 160, 163
validation and test sets, 160
DCG, see Discounted cumulative gain
Decision jungle, 61-62, 218, 219
Decision trees, 190
advantages, 54
algorithms for, 54-55
CHAID, 58-59
classification tree, 57-58
ensemble methods
bagging, 60-61
boosting, 62-63
random forest trees, 61-62

255

single/weak learner, 60

heuristic structures, 53

metrics, 57-58

regression trees, 55-56

training, 59

types, 54
Deep learning, 78, 117

CNNss (see Convolutional neural networks)

origin, 118-119

RNN (see Recurrent neural networks)
Deep networks, see Deep neural networks
Deep neural networks, 117, 118
Deviance, see Cross-entropy
Dimensionality

coordinates, 12

data density, 13

Iris data, 13

LDA, 27-28

orthogonality, 12

PCA, 24-27

space dimensions, 12
Directed acyclic graph (DAG), 62
Discounted cumulative gain (DCG), 194-195
Dynamic learning, 12
Dynamic programming

Bellman equation, 91-92

classes of problems, 93

definition, 91

E
Ensemble decision trees
bagging, 60-61
boosting, 62-63
random forest trees, 61-62
single/weak learner, 60
Evolutionary algorithms
ant colony optimization, 105-106
Darwin’s theory of evolution, 100-102
genetic programming, 102-104
greedy method, 99-101
simulated annealing, 106
swarm intelligence, 104—105
traditional methods, 99, 100
Evolutionary methods, 229
Expectation maximization (EM) algorithms,
152
Expert systems, 19, 91

F
False calls, 172
False positive rate (FPR), 173

256

Feature engineering
real estate value prediction, 187, 189-190
spam email detection, 183
See also Featurization
Feature functions, 114
Feature wrangling, see Featurization
Featurization
causality, 146
correlation, 145-146
custom options, 150-151
missing values, 151-152
raw data identification, 144—-146
standard options
categorical features, 147-148
datetime features, 150
numerical features, 146—147
string features, 147-150
UCI machine learning repositoty, 143—-144
visualizations
categorical features, 155-158
numeric features, 152-156
Finding shortest distance between two nodes in
graph, 93
F-measure, 172
F-score, 172
Fully connected layer, 122—123
Fuzzy k-means clustering, 137

G
Gamma distribution, 84—-87
GANS, see Generative adversarial networks
Gaussian distribution, see Normal distribution
Generalized linear models (GLM)
basis function, 37
definition, 34
logistic regression, 37-38
General purpose graphics processing unit
(GPGPU), 118
Generative adversarial networks (GANs), 128,
129
Genetic programming, 102-104
Gini index, 57-58
GLM, see Generalized linear models
Google’s PageRank, 196
Gradient boosting algorithm, 62-63
Gradient search, 229
Greedy method, 99-101
Greedy search, 100, 101
Grid search, 228-229

H
Hard margins, 69
Hidden layers, 48

Index

Hidden Markov model (HMM), 93, 112-114
Hierarchical k-means clustering, 137
Hyperparameters, 48, 71, 187
Hyperparameter tuning, 160, 163—-164
Hypothesis testing

A/B testing, 176

background, 174-175

process, 175-176

1
111 posed problems, 36
Image classification, 180
Independent component analysis (ICA),
137-138
Information retrieval, 196
Iris data
attributes, 22-23
entities, 22, 23
multi-class classification, 22
Iterative dichotomiser (ID3), 54

J
Joint optimization problem, 36, 37
Joint probability, 73

K
Keras, 222
Kernel function
nonlinear, 66-67
polynomial, 71
positive definite function, 70
radial basis function, 70-71
sigmoid, 71
k-means clustering
algorithm, 134, 136
data distribution cases, 134, 135
Euclidean distance, 134
fuzzy, 137
hierarchical, 137
optimizations, 134-136
k-nearest neighbor (KNN) algorithm
classification and regression, 40, 41
definition, 38
input to output mapping, 40
2-dimensional input data, 38, 39
variations of, 40
Knowledge based systems, see Expert systems

L

Lagrangian approach, 36, 37
Laplacian radial basis function, 71
Lasso regression, 37

Index

Latent components, 137
Learning rate, 98
Learning theory (Vapnik, Vladimir), 117
Least squares method, 35
Linear discriminant analysis (LDA), 27-28
Linear models
definition, 13, 34
input and output relationship, 13, 14
linear regression, 34-35
piecewise linear relationships, 14, 16
Linear regression, 34-35
Link function, 37
Local minima
complex search space with, 99, 100
greedy search, 100, 101
simulated annealing process, 106
Logistic regression, 37-38, 190
Logistic sigmoid function, 35, 37
Long short-term memory RNN (LSTM-RNN)
advantages, 126
architecture, 124—-125
current state, 126
forget gate, 124, 125
input gate, 125
output gate, 126

M
Machine learning (ML)
advantages, 247
algorithm selection (see Algorithm
selection)

applications, 247-248

AutoML, 131-132

computations, 5

decision trees (see Decision trees)

deep learning (see Deep learning)

definition, 4

disadvantages, 247-248

dynamic learning, 12

dynamic programming
Bellman equation, 91-92
classes of problems, 93
definition, 91

expert systems, 19

GANS, 128, 129

KNN algorithm (see k-nearest neighbor

algorithm)

law of diminishing returns, 19

no free lunch theorem, 18

open source libraries, 7

problem solving, 5

quantum computation
quantum entanglement, 128, 130
with quantum particles, 131
quantum superposition, 131
quantum theory, 129-130
reinforcement learning, 11
applications, 95-96
architecture, 94-97
characteristics, 93-94
classification, 93
exploration and exploitation, 95
framework and algorithm, 94, 95
theory, 96-98
static learning, 11
supervised learning, 10, 33
time series analysis (see Time series
analysis)
transfer learning, 127-128
unsupervised learning, 11, 33
Mabhalanobis distance, 40
Matrix algebra, 137
Maximum likelihood estimation (MLE), 35
likelihood function, 74
solution using, 7677
Max pooling, 122
Mean squared error, 170
Medical diagnosis, 180
Mercer’s theorem, 70
Misclassification error, 57
ML, see Machine learning
MLE, see Maximum likelihood estimation
MLP, see Multilayered perceptron
Monte Carlo learning, 97
Moving average (MA) process, 110
Multi-class classification, 66
Multilayered perceptron (MLP)
feedforward operation, 44
hidden layers, 48
linear mapping, 44
with m layers, 44, 45
nonlinear, 45, 46
training
backpropagation algorithm, 4748
process, 45, 47
Musical genre identification, 180

N
Netflix
vs. BellKor, 199
streaming video recommendations,
203-204

257

258

Neural networks
ANN:Ss (see Atrtificial neural networks)
autoencoding, 138, 140
CNNss (see Convolutional neural networks)
deep, 117, 118
failure of, 117
as multiclass classifier, 218, 219
regression, 190
RNN (see Recurrent neural networks)
No free lunch (NFL) theorem, 18
Non-destructive testing and evaluation
(NDT/E), 191
Nonlinearity, see Nonlinear models
Nonlinear models
definition, 13
examples, 17
input and output relationship, 14, 15
and kernel function, 70-71
pure nonlinear relationships, 14, 17
Nonlinear sigmoid function, 38
Normal distribution, 80—83
Normalized DCG (nDCG), 195
Normalized error, 171
Null hypothesis, 175

(0]
Occam’s Razor, 18
Online learning, 47
On-policy Q-learning, 98
Open source machine learning libraries
Matlab, 223
MLLIB, 223
model tuning and optimization
evolutionary methods, 229
generalization, 229
gradient search, 229
grid search, 228-229
probabilistic methods, 229
options, 222
Python, 221
data preprocessing, 225
Jupyter online interactive editor, 223,
224
reading CSV data, 224
stratified sampling based train-test split,
226
Scikit-learn library
vs. AML studio, 229-231
computing metrics, 227
data preprocessing, 225
data splitting, 226
development environment, 223, 224

Index

importing data, 224-225
neural network based multiclass
classifier, 227-228

training multiclass classification mode,

226
Optimization problem, 35

P
Parent nodes, 59
PCA, see Principal component analysis
pdf, see Probability density function
Pearson correlation coefficient, 145
Perceptron
MLP (see Multilayered perceptron)
n-dimensions, 43, 44
Performance measurement
hypothesis testing
A/B testing, 176
background, 174-175
process, 175-176
metrics, 169
categorical error, 171-175
numerical error, 170-171
ranking, 194-195
Pheromones, 105-106
Planck’s constant, 130
Poisson distribution, 85, 88
Polynomial fitting, see Linear regression
Polynomial kernel, 71
Pooling layer, 122
Positive definite function, 70
Principal component analysis (PCA)
3-dimensional data, 24-26
2-dimensional data, 26, 27
Probabilistic methods, 229
discriminative models, 73
Bayesian approach, 74-78
definition, 73
MLE, 74, 76-77
generative models
Bayesian networks, 79
classification, 78
definition, 73
mixture methods, 79
probability distributions
Bernoulli distribution, 81
binomial distribution, 84
cumulative density function, 80
gamma distribution, 84-87
normal/Gaussian distribution, 80-83
Poisson distribution, 85, 88
probability density function, 80

Index

Probability density function (pdf), 80
gamma distribution, 85, 86
normal distribution, 80, 82, 83
Poisson distribution, 85, 88
P-value, 176
Python, 221
data preprocessing, 225
Jupyter online interactive editor, 223,
224
reading CSV data, 224
stratified sampling based train-test split,
226

Q

Q-learning, 97-98

Quantum bit (qubit), 131
Quantum entanglement, 128, 130
Quantum superposition, 131
Quantum theory, 129-130

R
Radial basis function
kernel, 70-71
Laplacian, 71
Radial basis function networks (RBFN)
architecture, 48, 49
basis function, 48, 49
interpretation, 49-50
Radial basis function neural networks
(RBFNN), see Radial basis function
networks
Random forest trees, 61-62
Random subspace method, 61
Ranking
applications, 193
definition, 193
Google’s PageRank, 196
information retrieval, 196
keyword identification/extraction,
196-198
performance measurement, 194—195
search results, 196
text mining, 196, 197
RBEFN, see Radial basis function networks
Receiver operating characteristics (ROC) curve
analysis, 173, 174
Recommendation systems, see Collaborative
filtering

Rectified linear unit (ReLU), 121-122
Recurrent neural networks (RNN)
classic/fully RNN architecture, 123,
124
dynamic/sequential data, 123
limitation, 124
long short-term memory
advantages, 126
architecture, 124-125
current state, 126
forget gate, 124, 125
input gate, 125
output gate, 126
output of, 123
Recursive least squares (RLS) method, 93
Regression
NDTI/E, 191
real estate value prediction
feature engineering, 187, 189-190
labelled data collection, 186—188
model performance, 190-191
model selection, 190
specific problem, 185-186
Regression trees, 55-56
Regularization, 36
dropout, 51
L1 and L2, 50-51
and soft margin SVM, 69
Regularized linear regression, 36-37
Reinforcement learning, 11
applications
chess programs, 95-96
personalization, 96
robotics, 96
video games, 96
architecture, 94-97
characteristics, 93-94
classification, 93
exploration and exploitation, 95
framework and algorithm, 94, 95
Monte Carlo, 97
Q-learning, 97-98
SARSA, 98
Ridge regression, 36
Risk minimization, 71
RNN, see Recurrent neural networks
Root mean squared error, 170-171
Root node, 59

259

260

S
Sagemaker
setting up
customization screen, notebook
interface, 234, 237
dashboard, 233, 236
getting started screen, 233, 234
home screen, 233, 235
TAM role creation, 234, 238
notebook creation screen, 234, 238
S3 storage
custom dataset creation, 234, 240
Iris data upload, 234, 240
selection, 234, 239
writing machine learning pipeline, 235,
236, 241-243
Scikit-learn library
vs. AML studio, 229-231
computing metrics, 227
data preprocessing, 225
data splitting, 226
development environment, 223, 224
importing data, 224-225
neural network based multiclass classifier,
227-228
training multiclass classification mode, 226
Self organizing feature maps, see Self
organizing maps
Self organizing maps (SOM), 138, 139
Shannon number, 96
Shrinkage methods, 36
Sigmoid kernel, 71
Simulated annealing, 106
Singular value decomposition (SVD), 26, 137
Slack variables, 69
Soft margins, 69
Softmax function, 122-123
Spam email detection
assumptions, 181-182
categories, 179
data skew, 182
feature engineering, 183
iteration, 183-184
model training, 183
scope, 180
supervised learning, 182—183
State-action-reward-state-action (SARSA)
algorithm, 98
Static learning, 11
Stationarity, 108—109
Stochastic gradient descent (SGD) method, 47

Index

Stochastic learning, see Online learning
Stockfish, 96
Stratified sampling, 160, 187, 226
Strict stationarity, see Stationarity
Structural risk minimization, 71
Supervised learning, 10, 33, 93
architecture, 94
spam email detection, 182-183
Support vector machines (SVMs)
binary classification, 65
kernels, 70-71
linear binary SVM
on non-separable data, 65, 67
on separable data, 65, 66
multi-class classification, 66
nonlinear separation, 66—67
risk minimization, 71
separability and margins, 69
theory, 67-68
Support vector regression, 190
Support vectors, 65, 68
Swarm intelligence, 104—-105

T
Target leaking, 166
TensorFlow, 222
Term frequency-inverse document frequency
(TF-IDF), 198
Terminal nodes, 59
Test statistic, 176
Text mining, 196, 197
Theano, 222
Time series analysis
applications, 107
ARIMA process, 111-112
autoregressive moving average process,
111
autoregressive process, 110
definition, 109
moving average process, 110
conditional random fields, 114-115
hidden Markov models, 112-114
signal processing, 107
stationarity, 108-109
Time series based learning, see Dynamic
learning
Torch, 222
Transfer learning, 127-128
Travelling salesman problem, 93
True positive rate (TPR), 173

Index

U

Unsupervised learning, 11, 33,93
autoencoding neural networks, 138, 140
clustering (see k-means clustering)
component analysis, 137-138
cost of labeling, 133
linearity, 34
self organizing maps, 138, 139

\%
Versicolor, 216
Visualization
categorical features, 155-158

of evaluate block, 216, 218, 220
numeric features, 152—-156
Viterbi algorithm, 93

W

Weak stationary, 108
Wide sense stationary, 108
Word cloud, 196, 197

X
XGBoost, 236

261

	Foreword
	Preface
	Acknowledgments
	Contents
	Part I Introduction
	1 Introduction to AI and ML
	1.1 Introduction
	1.2 What Is AI
	1.3 What Is ML
	1.4 Organization of the Book
	1.4.1 Introduction
	1.4.2 Machine Learning
	1.4.3 Building End to End Pipelines
	1.4.4 Artificial Intelligence
	1.4.5 Implementations
	1.4.6 Conclusion

	2 Essential Concepts in Artificial Intelligence and Machine Learning
	2.1 Introduction
	2.2 Big Data and Not-So-Big Data
	2.2.1 What Is Big Data
	2.2.2 Why Should We Treat Big Data Differently?

	2.3 Types of Learning
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Reinforcement Learning

	2.4 Machine Learning Methods Based on Time
	2.4.1 Static Learning
	2.4.2 Dynamic Learning

	2.5 Dimensionality
	2.5.1 Curse of Dimensionality

	2.6 Linearity and Nonlinearity
	2.7 Occam's Razor
	2.8 No Free Lunch Theorem
	2.9 Law of Diminishing Returns
	2.10 Early Trends in Machine Learning
	2.10.1 Expert Systems

	2.11 Conclusion

	3 Data Understanding, Representation, and Visualization
	3.1 Introduction
	3.2 Understanding the Data
	3.2.1 Understanding Entities
	3.2.2 Understanding Attributes
	3.2.3 Understanding Data Types

	3.3 Representation and Visualization of the Data
	3.3.1 Principal Component Analysis
	3.3.2 Linear Discriminant Analysis

	3.4 Conclusion

	Part II Machine Learning
	4 Linear Methods
	4.1 Introduction
	4.2 Linear and Generalized Linear Models
	4.3 Linear Regression
	4.3.1 Defining the Problem
	4.3.2 Solving the Problem

	4.4 Regularized Linear Regression
	4.4.1 Regularization
	4.4.2 Ridge Regression
	4.4.3 Lasso Regression

	4.5 Generalized Linear Models (GLM)
	4.5.1 Logistic Regression

	4.6 k-Nearest Neighbor (KNN) Algorithm
	4.6.1 Definition of KNN
	4.6.2 Classification and Regression
	4.6.3 Other Variations of KNN

	4.7 Conclusion

	5 Perceptron and Neural Networks
	5.1 Introduction
	5.2 Perceptron
	5.3 Multilayered Perceptron or Artificial Neural Network
	5.3.1 Feedforward Operation
	5.3.2 Nonlinear MLP or Nonlinear ANN
	5.3.2.1 Activation Functions

	5.3.3 Training MLP
	5.3.3.1 Online or Stochastic Learning
	5.3.3.2 Batch Learning

	5.3.4 Hidden Layers

	5.4 Radial Basis Function Networks
	5.4.1 Interpretation of RBF Networks

	5.5 Overfitting and Regularization
	5.5.1 L1 and L2 Regularization
	5.5.2 Dropout Regularization

	5.6 Conclusion

	6 Decision Trees
	6.1 Introduction
	6.2 Why Decision Trees?
	6.2.1 Types of Decision Trees

	6.3 Algorithms for Building Decision Trees
	6.4 Regression Tree
	6.5 Classification Tree
	6.6 Decision Metrics
	6.6.1 Misclassification Error
	6.6.2 Gini Index
	6.6.3 Cross-Entropy or Deviance

	6.7 CHAID
	6.7.1 CHAID Algorithm

	6.8 Training Decision Tree
	6.8.1 Steps

	6.9 Ensemble Decision Trees
	6.10 Bagging Ensemble Trees
	6.11 Random Forest Trees
	6.11.1 Decision Jungles

	6.12 Boosted Ensemble Trees
	6.12.1 AdaBoost
	6.12.2 Gradient Boosting

	6.13 Conclusion

	7 Support Vector Machines
	7.1 Introduction
	7.2 Motivation and Scope
	7.2.1 Extension to Multi-Class Classification
	7.2.2 Extension for Nonlinear Case

	7.3 Theory of SVM
	7.4 Separability and Margins
	7.4.1 Regularization and Soft Margin SVM
	7.4.2 Use of Slack Variables

	7.5 Nonlinearity and Use of Kernels
	7.5.1 Radial Basis Function
	7.5.2 Polynomial
	7.5.3 Sigmoid

	7.6 Risk Minimization
	7.7 Conclusion

	8 Probabilistic Models
	8.1 Introduction
	8.2 Discriminative Models
	8.2.1 Maximum Likelihood Estimation
	8.2.2 Bayesian Approach
	8.2.3 Comparison of MLE and Bayesian Approach
	8.2.3.1 Solution Using MLE
	8.2.3.2 Solution Using Bayes's Approach

	8.3 Generative Models
	8.3.1 Mixture Methods
	8.3.2 Bayesian Networks

	8.4 Some Useful Probability Distributions
	8.4.1 Normal or Gaussian Distribution
	8.4.2 Bernoulli Distribution
	8.4.3 Binomial Distribution
	8.4.4 Gamma Distribution
	8.4.5 Poisson Distribution

	8.5 Conclusion

	9 Dynamic Programming and Reinforcement Learning
	9.1 Introduction
	9.2 Fundamental Equation of Dynamic Programming
	9.3 Classes of Problems Under Dynamic Programming
	9.4 Reinforcement Learning
	9.4.1 Characteristics of Reinforcement Learning
	9.4.2 Framework and Algorithm

	9.5 Exploration and Exploitation
	9.6 Examples of Reinforcement Learning Applications
	9.7 Theory of Reinforcement Learning
	9.7.1 Variations in Learning
	9.7.1.1 Q-Learning
	9.7.1.2 SARSA

	9.8 Conclusion

	10 Evolutionary Algorithms
	10.1 Introduction
	10.2 Bottleneck with Traditional Methods
	10.3 Darwin's Theory of Evolution
	10.4 Genetic Programming
	10.5 Swarm Intelligence
	10.6 Ant Colony Optimization
	10.7 Simulated Annealing
	10.8 Conclusion

	11 Time Series Models
	11.1 Introduction
	11.2 Stationarity
	11.3 Autoregressive and Moving Average Models
	11.3.1 Autoregressive, or AR Process
	11.3.2 Moving Average, or MA Process
	11.3.3 Autoregressive Moving Average ARMA Process

	11.4 Autoregressive Integrated Moving Average (ARIMA) Models
	11.5 Hidden Markov Models (HMM)
	11.5.1 Applications

	11.6 Conditional Random Fields (CRF)
	11.7 Conclusion

	12 Deep Learning
	12.1 Introduction
	12.2 Origin of Modern Deep Learning
	12.3 Convolutional Neural Networks (CNNs)
	12.3.1 1D Convolution
	12.3.2 2D Convolution
	12.3.3 Architecture of CNN
	12.3.3.1 Convolution Layer
	12.3.3.2 Rectified Linear Unit (ReLU)
	12.3.3.3 Pooling
	12.3.3.4 Fully Connected Layer

	12.3.4 Training CNN

	12.4 Recurrent Neural Networks (RNN)
	12.4.1 Limitation of RNN
	12.4.2 Long Short-Term Memory RNN
	12.4.2.1 Forget Gate
	12.4.2.2 Input Gate
	12.4.2.3 Output Gate

	12.4.3 Advantages of LSTM
	12.4.4 Current State of LSTM-RNN

	12.5 Conclusion

	13 Emerging Trends in Machine Learning
	13.1 Introduction
	13.2 Transfer Learning
	13.3 Generative Adversarial Networks (GANs)
	13.4 Quantum Computation
	13.4.1 Quantum Theory
	13.4.2 Quantum Entanglement
	13.4.3 Quantum Superposition
	13.4.4 Computation with Quantum Particles

	13.5 AutoML
	13.6 Conclusion

	14 Unsupervised Learning
	14.1 Introduction
	14.2 Clustering
	14.2.1 k-Means Clustering
	14.2.2 Improvements to k-Means Clustering
	14.2.2.1 Hierarchical k-Means Clustering
	14.2.2.2 Fuzzy k-Means Clustering

	14.3 Component Analysis
	14.3.1 Independent Component Analysis (ICA)

	14.4 Self Organizing Maps (SOM)
	14.5 Autoencoding Neural Networks
	14.6 Conclusion

	Part III Building End to End Pipelines
	15 Featurization
	15.1 Introduction
	15.2 UCI: Adult Salary Predictor
	15.3 Identifying the Raw Data, Separating Information from Noise
	15.3.1 Correlation and Causality

	15.4 Building Feature Set
	15.4.1 Standard Options of Feature Building
	15.4.1.1 Numerical Features
	15.4.1.2 Categorical Features
	15.4.1.3 String Features
	15.4.1.4 Datetime Features

	15.4.2 Custom Options of Feature Building

	15.5 Handling Missing Values
	15.6 Visualizing the Features
	15.6.1 Numeric Features
	15.6.2 Categorical Features
	15.6.2.1 Feature: Workclass
	15.6.2.2 Feature: Education
	15.6.2.3 Other Features

	15.7 Conclusion

	16 Designing and Tuning Model Pipelines
	16.1 Introduction
	16.2 Choosing the Technique or Algorithm
	16.2.1 Choosing Technique for Adult Salary Classification

	16.3 Splitting the Data
	16.3.1 Stratified Sampling

	16.4 Training
	16.4.1 Tuning the Hyperparameters

	16.5 Accuracy Measurement
	16.6 Explainability of Features
	16.7 Practical Considerations
	16.7.1 Data Leakage
	16.7.2 Coincidence and Causality
	16.7.3 Unknown Categories

	16.8 Conclusion

	17 Performance Measurement
	17.1 Introduction
	17.2 Metrics Based on Numerical Error
	17.2.1 Mean Absolute Error
	17.2.2 Mean Squared Error
	17.2.3 Root Mean Squared Error
	17.2.4 Normalized Error

	17.3 Metrics Based on Categorical Error
	17.3.1 Accuracy
	17.3.2 Precision and Recall
	17.3.2.1 F-Score
	17.3.2.2 Confusion Matrix

	17.3.3 Receiver Operating Characteristics (ROC) Curve Analysis

	17.4 Hypothesis Testing
	17.4.1 Background
	17.4.2 Steps in Hypothesis Testing
	17.4.3 A/B Testing

	17.5 Conclusion

	Part IV Artificial Intelligence
	18 Classification
	18.1 Introduction
	18.2 Examples of Real World Problems in Classification
	18.3 Spam Email Detection
	18.3.1 Defining Scope
	18.3.2 Assumptions
	18.3.2.1 Assumptions About the Spam Emails
	18.3.2.2 Assumptions About the Genuine Emails
	18.3.2.3 Assumptions About Precision and Recall Tradeoff

	18.3.3 Skew in the Data
	18.3.4 Supervised Learning
	18.3.5 Feature Engineering
	18.3.6 Model Training
	18.3.7 Iterating the Process for Optimization

	18.4 Conclusion

	19 Regression
	19.1 Introduction
	19.2 Predicting Real Estate Prices
	19.2.1 Defining Regression Specific Problem
	19.2.2 Gather Labelled Data
	19.2.2.1 Splitting the Data

	19.2.3 Feature Engineering
	19.2.4 Model Selection
	19.2.5 Model Performance

	19.3 Other Applications of Regression
	19.4 Conclusion

	20 Ranking
	20.1 Introduction
	20.2 Measuring Ranking Performance
	20.3 Ranking Search Results and Google's PageRank
	20.4 Techniques Used in Ranking Systems
	20.4.1 Keyword Identification/Extraction

	20.5 Conclusion

	21 Recommendations Systems
	21.1 Introduction
	21.2 Collaborative Filtering
	21.2.1 Solution Approaches

	21.3 Amazon's Personal Shopping Experience
	21.3.1 Context Based Recommendation
	21.3.2 Personalization Based Recommendation

	21.4 Netflix's Streaming Video Recommendations
	21.5 Conclusion

	Part V Implementations
	22 Azure Machine Learning
	22.1 Introduction
	22.2 Azure Machine Learning Studio
	22.2.1 How to Start?

	22.3 Building ML Pipeline Using AML Studio
	22.3.1 Get the Data
	22.3.2 Data Preprocessing
	22.3.3 Training the Classifier Model

	22.4 Scoring and Performance Metrics
	22.4.1 Comparing Two Models

	22.5 Conclusion

	23 Open Source Machine Learning Libraries
	23.1 Introduction
	23.2 Options of Machine Learning Libraries
	23.3 Scikit-Learn Library
	23.3.1 Development Environment
	23.3.2 Importing Data
	23.3.3 Data Preprocessing
	23.3.4 Splitting the Data Using Stratified Sampling
	23.3.5 Training a Multiclass Classification Model
	23.3.6 Computing Metrics
	23.3.7 Using Alternate Model

	23.4 Model Tuning and Optimization
	23.4.1 Generalization

	23.5 Comparison Between AML Studio and Scikit-Learn
	23.6 Conclusion

	24 Amazon's Machine Learning Toolkit: Sagemaker
	24.1 Introduction
	24.2 Setting Up Sagemaker
	24.3 Uploading Data to S3 Storage
	24.4 Writing the Machine Learning Pipeline Using Python
	24.5 Conclusion

	Part VI Conclusion
	25 Conclusion and Next Steps
	25.1 Overview
	25.2 What's Next

	References
	Index

