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The volume of natural language text data has been rapidly increasing over the past two decades, due to factors 
such as the growth of the Web, the low cost associated with publishing, and the progress on the digitization of 
printed texts. This growth combined with the proliferation of natural language systems for search and retrieving 
information provides tremendous opportunities for studying some of the areas where database systems and 
natural language processing systems overlap.

This book explores two interrelated and important areas of overlap: (1) managing natural language 
data and (2) developing natural language interfaces to databases. It presents relevant concepts and research 
questions, state-of-the-art methods, related systems, and research opportunities and challenges covering both 
areas. Relevant topics discussed on natural language data management include data models, data sources, 
queries, storage and indexing, and transforming natural language text. Under natural language interfaces, it 
presents the anatomy of these interfaces to databases, the challenges related to query understanding and query 
translation, and relevant aspects of user interactions. Each of the challenges is covered in a systematic way: first 
starting with a quick overview of the topics, followed by a comprehensive view of recent techniques that have 
been proposed to address the challenge along with illustrative examples. It also reviews some notable systems 
in details in terms of how they address different challenges and their contributions. Finally, it discusses open 
challenges and opportunities for natural language management and interfaces.

The goal of this book is to provide an introduction to the methods, problems, and solutions that are 
used in managing natural language data and building natural language interfaces to databases. It serves as 
a starting point for readers who are interested in pursuing additional work on these exciting topics in both 
academic and industrial environments.

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis 
Digital Library of Engineering and Computer Science.  Synthesis 
books provide concise, original presentations of important research 
and development topics, published quickly, in digital and print formats.
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ABSTRACT
The volume of natural language text data has been rapidly increasing over the past two decades,
due to factors such as the growth of the Web, the low cost associated with publishing, and the
progress on the digitization of printed texts. This growth combined with the proliferation of
natural language systems for search and retrieving information provides tremendous opportu-
nities for studying some of the areas where database systems and natural language processing
systems overlap.

This book explores two interrelated and important areas of overlap: (1) managing natural
language data and (2) developing natural language interfaces to databases. It presents relevant
concepts and research questions, state-of-the-art methods, related systems, and research oppor-
tunities and challenges covering both areas. Relevant topics discussed on natural language data
management include data models, data sources, queries, storage and indexing, and transform-
ing natural language text. Under natural language interfaces, it presents the anatomy of these
interfaces to databases, the challenges related to query understanding and query translation, and
relevant aspects of user interactions. Each of the challenges is covered in a systematic way: first
starting with a quick overview of the topics, followed by a comprehensive view of recent tech-
niques that have been proposed to address the challenge along with illustrative examples. It also
reviews some notable systems in details in terms of how they address different challenges and
their contributions. Finally, it discusses open challenges and opportunities for natural language
management and interfaces.

The goal of this book is to provide an introduction to themethods, problems, and solutions
that are used in managing natural language data and building natural language interfaces to
databases. It serves as a starting point for readers who are interested in pursuing additional work
on these exciting topics in both academic and industrial environments.

KEYWORDS
natural language data, natural language interfaces, natural language queries, query-
ing natural language text, semantic parsing, human computer interaction, conver-
sational natural language interfaces
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Preface
Natural languages are languages developed naturally by human through use and repetition. They
are central to almost all human activities. In today’s digital world, a large portion of data that is
stored and exchanged is in natural languages.These languages also play a growing role in our daily
interactions with machines with the popularization of voice-based interfaces such as self-driven
cars and virtual personal assistants. Allowing “casual users” to employ their native languages
today has implications for both communicating with databases and storing and retrieving data
in the form of natural languages.

This book grew out of our passion for the two interrelated topics in the intersection of
database systems and natural language processing: managing natural languages and building
natural language interfaces to databases. Despite the commonality of the issues in understanding
natural languages and dealing with ambiguities, each area offers some challenges of its own. In
the former, the structure of the data is described informally in a natural language but the queries
are more formal. In the latter, data is described more formally (e.g., in a relational database) but
the queries are informally expressed in a natural language.

This goal of this book is to provide a unified view of both topics, with overlapping areas
discussed once and/or cross-referenced. This book takes a structured approach to present a com-
prehensive survey of all important research problems and their key sub-problems and the latest
development in the related fields. It also bridges the gap between everything-is-a-relation and
everything-is-a-text cultures, highlighting where each culture shines and how it contributes to
an integrated solution.

This book is suitable for database students, researchers, and developers who are interested
in different aspects of managing natural language data and developing natural language inter-
faces to databases. It will also provide students, researchers, and practitioners in other related
areas (such as natural language processing, question answering, information retrieval, data min-
ing, and machine learning) with database principles and techniques that may be applicable to
related problems in those areas.

The book may be used within various courses at graduate and undergraduate levels, as a
starting point to the literature. A course covering natural language interfaces to databases may
discuss Sections 4.1–4.4 for the main components, their functions and challenges, and one or
more of the systems in Section 4.5, as relevant, for more details. A course covering querying
and indexing natural language text may discuss Sections 3.3–3.5 and maybe Section 3.6. In
both cases, any other section may be covered as relevant or applicable. Section 3.6 may also
be covered within a course on linked data and semantic search. The background section may be
skipped for those familiar with common natural language processing techniques. The book grew
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out of a three-hour tutorial on the same subject [Li and Rafiei, 2017], given by the authors at
SIGMOD2017.The slides used in the tutorial are available online and can be easily incorporated
into courses.1

Yunyao Li and Davood Rafiei
July 2018

1https://webdocs.cs.ualberta.ca/~drafiei/papers/SIGMOD2017tutorial_LR.pdf and https://www.slides
hare.net/YunyaoLi/natural-language-data-management-and-interfaces-recent-development-and-open-
challenges

https://webdocs.cs.ualberta.ca/~drafiei/papers/SIGMOD2017tutorial_LR.pdf
https://www.slideshare.net/YunyaoLi/natural-language-data-management-and-interfaces-recent-development-and-open-challenges
https://www.slideshare.net/YunyaoLi/natural-language-data-management-and-interfaces-recent-development-and-open-challenges
https://www.slideshare.net/YunyaoLi/natural-language-data-management-and-interfaces-recent-development-and-open-challenges
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C H A P T E R 1

Introduction
If we are to satisfy the needs of casual users of data bases, we must break through
the barriers that presently prevent these users from freely employing their native
languages. — Ted Codd

Codd [1974] said the above quote in the context of Rendezvous, a dialog-based system he envi-
sioned back in 1974 to allow casual users to effectively communicate with structured databases.
At the time, structured data was the only source of data stored in machines due to limitations
in machine resources and costs. Today a large portion of data stored and exchanged is in natural
languages. These languages also play a much bigger role in our daily interactions with machines.
Allowing “casual users” to employ their native languages today has implications for both com-
municating with databases and storing and retrieving data in the form of natural languages.

Extracting structured data from natural languages is typically done by information ex-
traction systems. These systems can be classified into machine learning-based and rule-based.
Machine learning-based methods require a significant amount of training data to train a model
for a specific extraction task (e.g., companies and their headquarters). Rule-based systems take
a more declarative approach for describing patterns or queries that extract the desired informa-
tion. Even though machine learning-based methods may achieve a better accuracy when enough
training data is provided, rule-based systems can be applied more broadly, since they do not need
training data, and seem to be a more popular choice in industry as observed by Chiticariu et al.
[2013] and Suganthan et al. [2015]. Also, the clarity of rule-based systems in explaining the
information needs allows further analysis and integration with other data sources. This book
covers more declarative approaches for querying and extracting information from natural lan-
guage sources.

Databases are often considered as the cornerstone of modern society. Data residing in
databases is essential to almost every aspect of our daily life (from electric patient record since
birth to retirement account) as well as the business world (from accounting reports to invoicing
customers). Structured queries in a formal database query language such as SQL help access data
in databases in a meaningful and powerful way. However, in order to specify such queries, one
needs to have either the knowledge of both the query language and underlying database schema
or the availability of a pre-built search interface, usually supporting only limited types of search
queries. Supporting querying databases in natural languages would enable users to naturally
interact with databases without aforementioned limitations, and has long been regarded as the
holy grail of database query interface.
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Managing natural language data and building natural language interfaces to databases fo-

cus on complimentary aspects of data management. The former focuses on taming information
from natural language to help populating data into databases, while the latter aims to drasti-
cally improve the accessibility of data already residing in databases. However, the two topics
are highly interrelated to each other. Obviously, both deal with natural language. As a result,
techniques for extracting information from natural language into structured data are also often
applicable to building natural language interfaces to databases, and vise verse. We provide an
overview for such techniques applicable to both (e.g., semantic parsing) in Chapter 2. Further-
more, managing natural language data brings additional challenges to building natural language
interfaces to databases with new types of data and queries to support, while natural language
interfaces to databases can potentially provide seamless integration of databases populated from
heterogeneous data sources, including those in natural languages, with complete transparency
to their users.

There have been two major developments that have made the two interrelated topics of
managing natural language data and developing natural language interfaces to databases rele-
vant and timely. First, we have a much larger set of resources at our disposal, in terms of the
processing power, both public and proprietary data (e.g., Wikipedia, Twitter), and knowledge
bases such as Yago [Suchanek et al., 2007], to build and develop techniques to better manage
natural language data; furthermore, there is a growing number of tools that can help with pro-
cessing text, ranging from part-of-speech taggers, to syntactic parsers, to semantic role labelers,
to deep learning libraries. Second, the success of IBM’s Watson [Ferrucci, 2012] at Jeopardy and
the emergence of natural language dialog systems such as Apple’s Siri, Google’s Home, Ama-
zon’s Alexa, and Microsoft’s Cortana has further ignited the interest in natural language data
analysis and interfaces. These developments have two implications as far as database research is
concerned. First, we are amassing natural language text in sizes that we have not seen before and
the sheer volume of information encoded in text and its relationships to data in our relational
databases is too great to be ignored. Second, there is a huge opportunity and demand to push
database systems more in the direction of realizing Codd’s vision of “rendezvous.”

Numerous science fiction books and movies contain artificial intelligent characters who
obtain their knowledge from a vast amount of data sources, including those in natural lan-
guages (e.g., books and scientific publications), and interact with human in natural languages.
Obviously, the reality of today’s technology is far from being able to enable artificial intelligent
characters depicted in science fictions such as Data from Star Trek and Samantha from Her.
Nonetheless, progress in managing natural language data and developing natural language inter-
faces to databases such as IBM’s Watson and more recently Project Debater has already shown
great promise in automatically harvesting information from massive natural language sources
and leveraging such information to enable new generations of artificial intelligent systems and
applications.
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In this book, we explore these two fascinating topics.We review the state-of-the-artmeth-

ods, recent progress, research opportunities, and challenges in two interrelated and timely topics
of building natural language interfaces to databases and managing natural language data. The
book is broken down to two major parts: (1) natural language data management and (2) natural
language interfaces to databases. The first part deals with the issue of querying and managing
data in natural language data sources. It reviews data models and query classes that have been ei-
ther in use or under development and the storage structures that support some of theses queries.
This part also reviews the issue of semantics and the developments on transforming natural lan-
guage text to a meaning representation. The second part addresses the challenges surrounding
building natural language interfaces to databases. It reviews the issues of understanding and
translating queries expressed in natural language to database queries, the components involved
in the translation, as well as models of user interactions. Finally, a range of systems are reviewed
in terms of features and functions offered and the challenges addressed.

While the book covers all major ideas and techniques, to the best of our knowledge, re-
lated to the two topics, it is not intended to include an exhaustive list of works related to natural
language data management and interfaces to databases, nor can it can be expected to do so
given the fast-moving pace of the related fields of research in data management, natural lan-
guage processing, data mining, information retrieval, and many others. However, the authors
will be maintaining a web page, which will have the latest developments and progress in the
areas covered in the book. If you find omissions or errors in our coverage, please do not hesitate
to let us know and we will try to include them in that page and also when updating the materials
in this book.
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C H A P T E R 2

Background
Natural language is a common type of data considered by many areas of computer science, from
natural language processing to question answering. While the focus of this book is natural lan-
guage within the context of databases, both as data as well as interfaces, techniques used to
handling natural language in other areas of computer science are often relevant and discussed.
In this chapter, we provide a brief overview of a few topics closely related to the main content of
this book. The goal is not to provide a comprehensive treatment of these topics, as each of which
warrants its own book, but to enable readers who are new to these topics to have enough back-
ground knowledge to better understand the terminologies and techniques discussed throughout
the book. As syntactic and semantic analysis provide valuable information for natural language
understanding and translation, we review them here. For syntactic analysis, we review part-of-
speech tagging, morphological analysis, and syntactic and dependency parsing in Sections 2.1–
2.3. This is followed by the problem of semantic parsing of natural language in Section 2.4. We
then discuss the area of question answering in Section 2.6. Finally, we present an overview of
dialog systems in Section 2.5. The relationships between these topics and the main topics of
the book, natural language data management and natural language interfaces to databases, are
discussed in more details in Chapters 3 and 4, respectively.

2.1 PART-OF-SPEECHTAGGING

Part-of-Speech tagging (also known as POS tagging) is the task of assigning each word in text to
a word category such as noun, verb, and adjective. A word can take more than one part of speech,
depending on its context, and a POS tagger must detect, given the context of a word, which POS
tag of the word is used. While word categories vary between different languages and different
tagging of even the same language, most POS taggers for English use the Penn Treebank tag
set [Marcus et al., 1993], which has 45 categories. These include noun, verb, adjective, adverb,
preposition (e.g., “under,” “over”), determiner (e.g., “a”, “the”), and conjunction (e.g., “and,” “or,”
“but”).The fourmajor word categories noun, verb, adjective, and adverb are considered open class,
in that new words are created or added to the categories on daily basis (e.g., “to google”).

It is shown that the most frequent class baseline, where each word is assigned the category
it occurs the most in the training set, achieves over 90% accuracy [Jurafsky and Martin, 2009b].
This means many words are unambiguous, when it comes to POS tagging. Hidden Markov
Models compute the probability of tag sequences, assigning tags based on the tags of the words
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before and after the target word. They are shown to achieve an accuracy close to 97% [Brants,
2000].

2.2 MORPHOLOGICALANALYSIS
Morphology is the study of the way words are constructed from the smallest grammatical units
known as morphemes. Most words can be broken down to a central morpheme, known as stem,
which gives the central meaning, and an affix, which adds to or modifies the meaning. For ex-
ample, the word teacher can be broken down to “teach” and “er” where the latter modifies the
meaning to “someone who teaches.” Natural languages can be classified into three classes based
on their morphological structures. In isolating languages, words do not change and there are no
morphemes to indicate tense (e.g., past, present) or if a noun is singular or plural. Chinese Man-
darin and Vietnamese are examples of this class. Agglutinative languages combine, morphemes
including stem and affixes, with no change in their forms to express compound ideas. Table 2.1
gives an example in Turkish and Farsi. Inflecting languages use a single inflectional morpheme to
represent multiple syntactic and semantic form or meaning.

Table 2.1: Compound nouns built using stems khane in Farsi and ev in Turksih

Farsi Compound Turkish Compound English Meaning

khane

khaneha

khaneash

khanehayash

khaneat

ev

evler

evi

evleri

evin

evden

evlerden

evinden

evlerinden

house

houses

his/her house

his/her/their houses

your house

from the house

from the houses

from his/her house

from his/her/their houses

A simple algorithm for morpheme segmentation, known as Morfessor, is an unsupervised
method that takes as input an unannotated text corpus and produces a segmentation of the word
forms in the input text [Creutz andLagus, 2007].The algorithmprocesses the word forms, one at
a time. The word forms considered include the word as a whole and all possible splits of the word
into substrings. The form (or split) that yields the highest probability is selected. The splitting
process recursively continues until no more gain is possible. This is typically done by iteratively
processing the corpus until the overall probability converges. In its first iteration over the corpus,
the algorithm selects all whole words as potential morphs. Based on the observation that many
word stems are mentioned as whole words as well (e.g., ev), the algorithm in its next iteration
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detects suffixes and prefixes (e.g., ler, in) by splitting long words into known stems and prefixes
and suffixes. The extended set of morphs are used in the next iteration to further split the words.
Improvements over this simple method are possible by considering additional features such as
the categories of the morphs (e.g., prefix, stem, suffix). Supervised models further improve the
accuracy of the segmentation (e.g., Durrett and DeNero [2013]).

2.3 SYNTACTICANDDEPENDENCYPARSING

Understanding the syntactic structure of a sentence and the grammatical relationships between
words plays a key role in understanding the sentence. One way to parse a sentence is to decom-
pose it into its constituents—words or groups of words that function as a single unit or has a
single role. Since phrases can be further broken down into smaller units until each unit consists
of a word, this hierarchical decomposition of a sentence emits a tree called constituency parse tree.
For example, the sentence “John teaches a course” can be broken down into a noun phrase that
contains “John” and a verb phrase that has “teaches a course.” The latter can further be broken
down to the verb “teaches” and a noun phrase that has “a course.” The phrase “a course” can be
broken down to the determiner “a” and the noun “course.” This parse of the sentence is shown in
Figure 2.1, where the labels S, NP, VP, V, NNP, NN, and DT, respectively, denote sentence,
noun phrase, verb phrase, verb, proper noun, common noun, and determiner. A sentence can
have more than one parse when it is possible to generate the sentence using different production
rules of the natural language grammar. This gives rise to the problem of ambiguity, which is a
challenge in parsing.

S

NP VP

NNP NPV

John      teaches

a        course

DT NN

Figure 2.1: Syntactic parse of the sentence “John teaches a course.”

A different approach to parsing a sentence is to only detect binary relations between words.
A dependency parse of a sentence is a tree with each node denoting a word and each edge de-
scribing a relation. The relations may or may not be typed. When the relations are typed (e.g.,
subject, object, etc.), the type information is shown as edge labels in the parse tree. For exam-
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ple, the dependencies of the sentence “John teaches a course,” can be listed as teaches
subj
��! John,

teaches
obj
�! course, and course det

�! a.
In the style of LR parsers from programming languages [Aho and Ullman, 1972], a con-

stituency parser is generally guided by a grammar and may be implemented with a stack. As
the words of a sentence are processed, they can be replaced by their categories. For example,
the sentence “John teaches a course” may become “NNP V DT NN.” Applying the grammar
rules “NP!NNP” and “NP ! DT NN” to the sequence will produce “NP V NP.” This can be
further transformed to “NP VP” uisng the rule “VP!V NP” and finally to “S” using the rule
“S!NP VP.” Putting these transformations together will give the parse tree in Figure 2.1. Mul-
tiple production rules can match a sequence, each leading to a different parse tree. In such cases,
statistics from a corpus may be used to compute the likelihood of each candidate parse [Collins,
1997].

A dependency parser, on the other hand, examines the relationships between word pairs
in a sentence and tags each relationship as head-to-dependent or dependent-to-head. Stanford
parser [de Marneffe et al., 2006] starts with a grammar-based constituency parse of the sentence,
giving the phrase structure, and identifies the head of each constituent using some rules [Collins,
2003]. Verbs and content words may be chosen as head to better describe the semantics. Once
dependencies are detected, each dependency is assigned a grammatical relation type, based on
the patterns given for that relation type. When there are more than one matching patterns, the
pattern with the most specific grammatical relation is chosen as the dependency type.

2.4 SEMANTIC PARSING
Semantic parsing [Mooney, 2007] is the task of mapping a natural language sentence into the
corresponding formal meaning representation on which a machine can act. The target output
representation of meaning varies according to the task to be performed by the machines, as
illustrated by examples in Figure 2.2, ranging from formal database query languages such as
SQL (e.g., Zhong et al. [2017]), to procedural languages for robot control applications (e.g.,
Matuszek et al. [2013]), simple intent and argument structures for chatbot APIs, more general
predicate and argument structures for Semantic Role Labeling [Jurafsky and Martin, 2009a], and
more comprehensive Abstract Meaning Representation [Banarescu et al., 2013].

The most studied semantic parsing problem is perhaps Semantic Role Labeling
(SRL) [Palmer et al., 2010a], also known as shallow semantic parsing. It is the task of assign-
ing roles to each argument of each predicate in a sentence, capturing the information on “Who
did what to whom, when, where, and how” expressed in a sentence. Consider the sentence in
Figure 2.2d as an example. The predicate-argument structure indicates that there is an action
Break, the Agent (the volitional causer of an event) of the action is John, the Theme (the partic-
ipant most directly affected by an event) of the action is the window, and the Instrument used
is a hammer.
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Find all the publications by Michael Stonebraker

SELECT P.*

FROM  Author A, Publication P

WHERE    A.AuthorID = P.AuthorID

AND  A.AuthorName = ‘Michael Stonebraker’

Go left to the end of the hall

(do-sequentially

   (turn-left

  (do-until

   (or

     (not

       (exists forward-loc))

     (room forward-loc)) 

(move-to forward-loc)))

What is the weather tomorrow?

(Location: San Jose, CA, USA)

(Date: 2018-05-01)

John broke the window with a hammer.

(Predicate: Break.01)

(Agent: John)

(Theme: the window)

(Instrument: a hammer)

!e boy did not go.

(p / possible

 :domain (g / go-01

      :arg0 (b / boy))

 :polarity -))

(a) Formal Database Query

(b) Robot Control Program

(c) Chatbot API Output

(d) Semantic Role Labeling

(e) Abstract Meaning Representation

Figure 2.2: Example meaning representations for semantic parsing for different tasks.
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The predicate-argument structures help to capture syntactically different sentences with

the same semantics in a uniform way. For instance, the same structure in Figure 2.2d applies to
all the sentences below despite of their syntactic differences.

• The window was broken by John with a hammer.

• With a hammer, the window was broken by John.

• With a hammer, John broke the window.

• John, with a hammer, broke the window.

The task of SRL is generally treated as a supervised machine learning task, with models
trained on labeled corpora such as PropBank [Palmer et al., 2005] or FrameNet [Baker et al.,
1998]. Algorithms generally start by tokenizing and parsing a sentence into a dependency parse
tree and then automatically tagging each parse tree node with a semantic role. Some recent work
(e.g., He et al. [2017b], Zhou and Xu [2015]) has successfully leveraged deep neural network to
perform end-to-end learning of semantic role labeling without parsing. Semantic role labeling
is further discussed in the context of transforming natural language text in Section 3.6.

2.5 QUESTIONANSWERING
Question answering (QA) is the task of automatically answering questions posed by humans in
a natural language. Based on the source of their answers, QA systems can be divided into two
paradigms: IR-based question answering and knowledge-based question answering.

IR-based question answering relies on information available in unstructured data such as
text on the Web or in specialized collections such as PubMed. Given a user question, a typical
IR-based question answering system first classifies the question based on the likely answer type
(e.g., who, where, when) and formulates queries to send to a search engine. The search engine
returns ranked passages. Finally, the system extracts candidate answers from the passages and
returns ranked answers.

Knowledge-based question answering relies on information available in a structured
knowledge base.The knowledge base could consist of triples of simple relations, or more complex
structured data such as a relational or graph database. Given a user question, a knowledge-based
question answering system usually first translates it into a structured query (e.g., a logical ex-
pressions or a SQL query) and executes the translated query over the knowledge base to retrieve
answers, potentially after re-ranking, to the original question.

Classic QA systems are usually IR-based, as such systems are easier to build with lower
upfront cost. Real-world QA systems such as the DeepQA system [Ferrucci, 2010] in IBM’s
Watson generally are hybrid systems, using a combination of text datasets and structured knowl-
edge bases to answer questions. As an example, DeepQA extracts a wide variety of meanings
from the question (syntactic parses, relations, named entities, ontological information), and then
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finds large numbers of candidate answers from both structured knowledge bases and unstruc-
tured text such as Wikipedia and newspaper articles. Each candidate answer is then reasoned
and is scored before being ranked based on its score.

Recent advances in the area of computer vision has expanded the interest in and the scope
of question answering beyond text. Increasing number of works attempt to support visual ques-
tion answering [Teney et al., 2017] as well as multimodal question answering [Li et al., 2017].

2.6 DIALOGSYSTEM
A dialog system, also known as conversational agent, is a computer program that can interact
with a human in a natural and coherent turn-to-turn structure. Figure 2.3 depicts the basic
architecture of a dialog system. As can be seen, a typical dialog system consists of the following
major components.

1. Input Recognition: The input to a dialog system by a user could be human voice, gesture,
or handwriting. This component recognizes such signals and translates them into natural
language text.

2. LanguageUnderstanding:This component interprets the recognized natural language input
from the user into a semantic representation.The understanding typically involves a variety
of natural language processing techniques including named entity recognition, part-of-
speech tagging, syntactic parsing, and semantic parsing. The (Language Understanding)
analysis of the current dialog acts may depend on the history and the state of the dialog
maintained by the Dialog Manager.

3. DialogManager:This component keeps the history and the state of the dialog andmanages
the general flow of the conversation. It analyzes the semantic representation of the user’s
input and passes it to the Task Manager and then takes the output of the Task Manager
and passes it to Response Generation. The structure of the dialog could be managed as
predefined finite state transducers (e.g., Figure 2.4), frames (e.g., Figure 2.5), classic AI
plans, and information states in models learned by deep neural networks.

4. TaskManager: Based on the input from the Dialog Manager, this components decides the
system dialog act based on the specific task domain. For instance, for the airline booking
dialog system as illustrated in Figure 2.4, the Task Manager is responsible for booking the
ticket based on the information provided by a user via dialog.

5. Response Generation: This component generates the response to the user in the current
dialog.

6. Output Rendering: Finally, This component renders the system response into an appropri-
ate format (e.g., voice, robotic act) to communicate to the user.
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User
Input

Input
Recognition

Output
Rendering

System
Response

Words

Words
Response

Generation

Language
Understanding

Dialog
Manager

Task
Manager

System
Dialog Act

User
Dialog Act

(Interpreted)

Figure 2.3: Basic components of a dialog system.

Which airport are you leaving from?

Which airport are you going to?

What is your departure date?

Is it a one-way trip?

What is your return date?Do you want to go from <FROM> to
<TO> on <DATE>?

Do you want to go from <FROM> to
<TO> on <DATE>?

Y

YN

N

N

Y
Book the Flight

Figure 2.4: Example finite state dialog manager.



2.6. DIALOGSYSTEM 13

Slot Question

ORIGIN_AIRPORT Which airport are you leaving from?

DESTINATION_CITY Which airport are you going to?

DEPARTURE_DATE When would you like to leave?

RETURN_DATE When would you like to return?

Figure 2.5: Example of a frame-based dialog manager.

Dialog systems with text-only interfaces (e.g., a chat bot) only need components (2)–
(5). We refer readers to the relevant literature [Jokinen and McTear, 2010, Jurafsky and Martin,
2009a] for a more comprehensive overview of dialog systems, particularly speech dialog systems.
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Natural Language Data
Management

3.1 OVERVIEW
Long before the invention of modern computers and the formation of computer science as a
discipline, natural languages have been used to record observations, to describe entities and re-
lationships and to exchange information. Compared to more formal languages and abstractions
such as formal logic, relational model, XML, RDF, etc., natural languages clearly are not the best
medium for representing data and expressing facts and relationships about real-world entities.
However, the truth of the matter is that much of human knowledge and everyday information
is written and communicated in some form of natural language. Furthermore, the advent of
the Web and the wide-spread digitization and content sharing over the Internet has made a
huge volume of natural language data, initially intended for human consumption, available for
almost all users. Managing such content, governed by a natural language grammar, is a chal-
lenge in terms of efficient and effective querying. Traditionally this data has been stored outside
databases and has been processed using natural language processing tools and Information Re-
trieval (IR) engines, in isolation from other data sources. However, IR engines are very limited
in their querying functionality and the issues of efficient storage and querying are not addressed
within natural language processing systems. Also, there are many scenarios where natural lan-
guage text co-exists and is queried with more structured data. Here are some scenarios.

• We have the financial filings of a company (e.g., as shown in Figure 3.1) and want to
find evidence that supports or contradicts a claim. U.S. Securities and Exchange Com-
mission,1 which collects such reports on regular basis, currently provides access to more
than 21 million filings.

• We have a collection of medical articles and want to find treatments for a disease and their
success rates as reported in those articles.

• We are given the health records of a set of patients who have gone under a surgery and
want to find post-operative complications as reported in the patient records.

1https://www.sec.gov/edgar/searchedgar/companysearch.html

https://www.sec.gov/edgar/searchedgar/companysearch.html
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• We have a few candidates running in a federal election and want to gauge the degree of

support they are getting in social media (e.g., Twitter) and the contexts in which their
names are mentioned.

• We are retrieving products that satisfy some user needs (e.g., from relational tables) and
want to include some statistics or analyses of each product based on the sentiments of
online reviews.

... At March 31, 2017, we had approximately $9.0 billion carrying value (including 
hedge accounting fair value adjustments) of senior unsecured notes outstanding; no 
indebtedness outstanding under our up to $1.5 billion commercial paper program; 
no indebtedness outstanding under our $2.0 billion senior unsecured revolving 
credit facility and $2.0 billion of available borrowing capacity (subject to customary 
conditions to borrowing) under our senior unsecured revolving credit facility (of 
which $1.5 billion of available borrowing capacity was reserved to provide liquidity 
support, if required , for our commercial paper program); and no secured indebted-
ness outstanding. At March 31, 2017, our subsidiaries had approximately $12.2 
million of  indebtedness outstanding. ...

Figure 3.1: A filing at U.S. Securities and Exchange Commission.

A unifying theme in all these scenarios is that (1) text sources are queried and analyzed
in granularities smaller than a document, and (2) text sources are queried in conjunction with
more structured data which may be available either as meta-data of the same text sources (e.g.,
the poster of a tweet, the date it is posted, the user who retweeted it, etc.) or from different
sources (e.g., the names of candidates and their parties). There is a large range of applications
with the same or similar data requirements that can benefit from a possible integrated solution.
In general, IR approaches are less useful when text is queried in small granularities such as a
sentence or is joined with structured data; hence, a viable choice is to manage and query the
data at some abstraction level (e.g., sentences) in a database, allowing easy development of more
complex applications. However, there are two major challenges that hinder this development:
(1) many relational database systems currently lack support for querying natural language data
and (2) the problem of transforming natural language text to a meaning representation that can
be easily queried, aggregated, and joined with other sources is not well resolved.2

This chapter reviews the latest progress in the area of natural language data management
and some of the principles that have allowed this progress as well as a discussion of the chal-
lenges. The organization of the rest of the chapter is as follows. Section 3.2 reviews some of

2Other challenges that arise include variations in entity naming and referencing and differences due to synonyms and para-
phrasing, text formatting, misspelling, etc. These challenges are out of the scope of this book and are addressed elsewhere
(e.g., Christen [2012a], Lin and Pantel [2001], Lin et al. [2003].)
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the sources that generate natural language data. Data models and queries are discussed in Sec-
tions 3.3 and 3.4, and strategies for efficiently supporting queries over natural language text
are discussed in Section 3.5. The problem of transforming natural language text to a meaning
representation that can be easily queried is discussed in Section 3.6.

3.2 DATA SOURCES
A challenge in querying natural languages is that the data may come from different sources and
those sources can vary in (1) the quality of the data they offer, (2) the language of encoding,
and (3) the medium or format of the storage. Querying natural language data is intertwined
with understanding these challenges as well as the areas and the sources where the challenges
are either easier to overcome or can be avoided.

Quality. News articles have been a more traditional source of content and have also been used
in training many early NLP tools (e.g., Aone et al. 1998, Collins 1996, Lin and Pantel 2001).
The quality of data in news articles may depend on the authority of the sources and the type of
the articles. Data from more authoritative sources (e.g., court documents, financial statement
filings, and well-respected news sites) is expected to be more accurate simply because the sources
don’t want to jeopardize the trust conferred on them by the public. At the same time, some
authoritative sources such as news sites may publish opinion columns, and these columns can
have less factual content or be less accurate than news articles. The web pages, on the other hand,
are more diverse; some pages are rich with more factual statements, and are often well-edited,
such as Wikipedia pages and scientific articles. These pages may also be well-written since they
often go through an editorial review. In contrast, many pages go through very least to none
editorial reviews and can publish opinions or statements that are hard to verify.

Language.The language of encodingmay determine the ease at which the content can be parsed,
queried and analyzed. In terms of the resources that one needs to understand the encoding of
the content, English by far is the most resourceful language. Some of these resources include
large parsed corpora, aka treebanks (e.g., Penn Treebank [Marcus et al., 1993] and MASC [Re-
source, 2017]), n-grams (e.g., Lin et al. [2012] and Norvig [2017]), parsers and part-of-speech
taggers (e.g., Stanford toolkit [Manning et al., 2014]), etc. Some resources that may help in
understanding the content (e.g., Wikipedia) are available in multiple languages but the English
version is usually more comprehensive or accurate. For the same reason, in multilingual shared
tasks, English usually tops the list in terms of the accuracy of the results (e.g., Tjong Kim Sang
and De Meulder [2003]).

Medium. Natural language data can be in the form of text or speech. Many customer call
recordings are in the form of speech; to analyze such data using text processing tools, recordings
are often transcribed into text. The process involves audio sampling and feature extraction to
recognize individual sounds and to convert them to text. Despite the recent progress in this
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area, transcription error cannot be avoided. However, the error has been reduced in recent years;
Google has reported reaching an 8% error rate [Pichai, 2015].

Without loss of generality, our discussion in this chapter will focus on textual data in
English.

3.3 DATAMODELS
Intended for human consumption, natural language content generally does not lend itself to an
easily recognizable or a non-ambiguous data model. On the other hand, one needs some sort
of a data model for querying the content. There are two general approaches that may be used
to establish a structure over content and to allow the relationships to be parsed: (1) interpreting
context as schema and (2) mapping natural language text to more formal models.

3.3.1 INTERPRETINGCONTEXTAS SCHEMA
Often users know the context where facts and relationships are expressed, and those contexts can
be used as clues in querying. For example, consider the lease agreement template in Figure 3.2; a
user who is searching for a list of lessors, lessees, and the address of the property being leased may
use phrases such as “as lessor,” “as lessee,” and “located at” to detect field boundaries and to extract
the relationships. It can be noted that there is no clear separation between the schema description
and the data instance, and it is up to the queries or applications to make this distinction.

<Name of Lessor>, as Lessor, does hereby agree to let to <Name of Lessee>, as
Lessee, a parking space located at <Street Address of Parking Space> (Building/Street 
Address) <City of Parking Space> (City), <State of Parking Space> (State) , such 
parking space being further described Parking Space No. <Parking Space Number> at 
the aforementioned location. !e following terms and conditions shall apply to this 
Parking Space Lease Agreement ( “Agreement”): 

Terms and Conditions: ...

Figure 3.2: Parking space lease agreement (source: http://www.docracy.com/3241/parkin
g-space-lease-agreement).

3.3.2 MAPPINGCONTENTTOMOREFORMALMODELS
Natural language text may be transformed into a formal representation that describes the syn-
tactic and the semantic structure of a sentence and the relationships between tokens, and these
models may be treated as a data model. Consider the parse tree of the sentence “Edmonton
with a population of 928,000 is the capital of Alberta,” as shown in Figure 3.3. Even though
this is only a syntactic annotation of the sentence, the tags and their relationships in the tree
provide some means of querying the data. For example, the listing of the terms “Edmonton,”

http://www.docracy.com/3241/parking-space-lease-agreement
http://www.docracy.com/3241/parking-space-lease-agreement
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“population,” and “928,000” in the same subtree indicates a relationship that may be queried or
analyzed. Similarly the relationship between Alberta and its capital may be queried using the
dependencies between the terms “Edmonton,” “capital,” and “Alberta,” as shown in Figure 3.4.
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NP NPPP VBZ

NNP IN NP

NP NPEdmonton with PP DT

DT NN NP

CD

928,000

of Albertaa population

NNPthe ofcapitalIN

NN IN

NPis PP

Figure 3.3: Syntactic parse tree.
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Figure 3.4: Dependency parse tree.

A natural language sentence may also be decomposed into a set of formal statements, aka
frames, where the meaning is established by connecting the components or frames to encyclo-
pedic knowledge. For example, the sentence “Edmonton with a population of 928,000 is the
capital of Alberta,” can be broken into two frames “population” and “capital” and those frames
may be linked to an ontology (e.g., dbpedia) in the sense that the meaning of each frame relates
to and is defined in terms of all the world knowledge that are linked to the same frame in the
ontology. Modeling a sentence as a frame graph links language internal and external informa-
tion, providing a powerful model for representing the meaning. As an example, Table 3.1 gives
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core and non-core roles of the frame receiving, as listed in FrameNet [Baker et al., 1998], and
here is an example sentence labeled with those roles:

(Ullman)Recipient received (the SIGMOD contribution award)Theme (in 1996)Time.

Transforming natural language text to a meaning representation (aka semantic parsing) is
further discussed in Section 3.6.

Table 3.1: Roles of the frame receiving listed in FrameNet

Core Donor, Recipient, � eme

Non-Core Countertransfer, Depictive, Manner, Means, Mode of Transfer, Path, Place, 

Purpose_of_theme, Role, Time

3.4 QUERIES
Natural language content may be queried in the source format without deep analysis or under-
standing. This section reviews a few such query classes that have been developed. Some of these
classes (e.g., Boolean queries) operate at the level of text with no analysis while others (e.g., tree
pattern queries) rely on some syntactic analysis such as parsing.

3.4.1 BOOLEANKEYWORDQUERIES
If we treat natural language content as free text, Boolean queries may be used to find windows of
text that satisfy the queries. Variations in syntax, which is common in natural language content,
can be easily expressed in the form of disjunctions. Queries may as well include wild cards to
allow even more variations to be expressed easily. Here is a query from TREC legal track3 for
finding documents that discuss the placement of tobacco products in G-rated movies:

((guide! OR strateg! OR approv!) AND (place! or promot!)) AND ((“G-rated” OR
“G rated” OR family) W/5 (movie! OR film! OR picture!))

The use of a wild card at the end of the term “strateg” includes different formattings of
the term (such as strategy, strategies, and strategic) in search without explicitly listing them. A
Boolean query may also place some constraint on the length of a matching window, as done for
the terms “family” and “movie” in the given query where their mentions cannot be more than
five words apart.

On the other hand, natural language text is usually broken down into smaller logical units
such as article, section, paragraph, and sentence and queries can have matches at any of those
levels of granularities. Quicklaw and Westlaw, which use Boolean queries as their default search,
3https://trec-legal.umiacs.umd.edu/

https://trec-legal.umiacs.umd.edu/
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allow searches to be constrained to some of these units. For example, the query “text /S database”
in Quicklaw4 finds articles that have the given terms in a sentence.

3.4.2 GRAMMAR-BASED SEARCHES
Natural language text is expected to follow some generative grammar rules, and those rules may
be treated as schema for querying. A caveat is that grammar rules for natural language text
are often complex, and a query formulation is generally less straightforward. Hence, grammar-
based searches are well-suited for more structured text. For example, bibliographic records in
a document can be broken down into entries such as author, title, publication venue, year, and
page numbers and the ordering of the entries and their composition in a record may be de-
scribed using some rules, which may in turn be used in queries to parse the input. Grammar-
based queries are used in the context of text databases for searching bibliographic records and
dictionary entries [Gonnet and Tompa, 1987] as well as for querying semi-structured docu-
ments [Abiteboul et al., 1997, Christophides et al., 1994]. For example, the following SQL-like
query [Christophides et al., 1994] finds sections of articles that contain “natural language data.”

select ss
from a in Articles, s in a.sections, ss in s.subsectns
where text(ss) contains (''natural language data'')

3.4.3 TEXTPATTERNQUERIES
Often the user knows the context where a desired answer is expected and may use this context
to find the answers. For example, consider searching for mentions of hockey players affiliated
with Edmonton Oilers in text; one context where such a name can be mentioned is “Oilers
player NAME” where the name follows the phrase “Edmonton Oilers.” These contexts may be
expressed as text patterns with some wild cards to allow variations and some tags to mark the
location(s) where an answer is expected. Unlike regular expressions, commonly used in program-
ming and shell scripting languages and in SQL, the grouping operators and the wild cards in a
text pattern may not be expressed at the level of single characters.

DeWild [Rafiei and Li, 2009a,b] introduces two wild cards in text pattern queries. A
percentage sign indicates one or more noun phrases, and each noun phrase can consist of one
or more terms. The wild card, when used in a query, indicates the location of a noun phrase or
noun phrases that must be extracted. For example, the query “Oilers players such as %” will extract
noun phrases Andrew Ference and Connor McDavid from text “He was impressed by the efforts
from the Oilers players such as Andrew Ference and Connor McDavid.” A star denotes a set
of terms or phrases that have a similar meaning to a given phrase. Consider again searching for
oilers players. The query “Oilers players such as %” will not retrieve players who are referred to
as “forwards,” “defensemen,” or “stars.” To include those terms in the search, the query may be
4http://legalresearch.org/electronic/syntax-quicklaw-westlaw-canlii/

http://legalresearch.org/electronic/syntax-quicklaw-westlaw-canlii/
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changed to “Oilers *players* such as %” where the term inside the stars not only matches “players”
but also its synonyms such as “forward,” “defenseman,” “shooter,” “lineman,” etc.5 Table 3.2
gives some examples of text pattern queries.

Table 3.2: Examples of text pattern queries

Natural Language Question Text Pattern Query

Who invented the light bulb? % invented the light bulb

What does Canada consist of ? Canada consists of %

Where is Glacier National Park? Gracier National Park is located in %

Which states border California? California is bordered by % & % is U.S. state

In a language similar to DeWild, IKE [Dalvi et al., 2016] supports text patterns over
surface text and POS tags of sentences. IKE also allows matches over distributional similar
words and the maximum number of those words is specified in queries. For example, the pattern
dog�10 will match the term “dog” and any of its 10 synonyms.

A challenge in using text patterns for querying natural language text is the possibility of a
mismatch between the expressions of queries and texts that have the relevant information. Al-
though using wild cards allows more expressive queries, a fact can still be potentially expressed
in different contexts and a query that gives one context can miss many qualified candidates. For
example, the query “Oilers *players* such as %” will not match the texts “: : : Oilers player Andrew
Ference : : :” or “: : : Andrew Ference has been playing for Oilers : : :.” DeWild introduces rewrit-
ing rules or transformations to express the relationships between alternative query expressions.
Some of these transformations are quite general and include hyponym patterns (as shown in
Table 3.3) and morphological variations. DeWild uses a datalog-[Ceri et al., 1989]style rewrit-
ing rule language to express the transformations between text patterns. Here is part of those
rewritings for hyponym patterns.

(.+) is an? (.+)
–>
$2 such as $1 && plural($2)
$1, and other $2 && plural($1)
$1, a $2 && singular($2)

Keywords from queries may be remembered using capturing groups (marked by parenthe-
ses) on the left side of a rule and may be recalled on the right side using back references (e.g., $1
and $2). The remembered values may be transformed (e.g., to plural or singular forms) before
5The set of synonyms of a term may be obtained from a thesaurus or be constructed using a corpus, based on the distributional
similarity of the terms [Lin et al., 2003, Qu et al., 2017]. Also, see Section 3.6.3 for more details.
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Table 3.3: Hyponym patterns (reported by Hearst [1992])

NP2 is a(n) NP1

NP1 (,) such as NP2List

such NP1 as NP2List

NP1 (,) especially NP2List

NP1 (,) including NP2List

NP2List and other NP1

NP2List and other NP1

NP2, a(n) NP1

NP1 NP2

constructing a rewrite. The given rewriting, when applied to “Canada is a country” will produce
the following three rewrites: “countries such as Canada,” “Canada, and other countries,” and
“Canada, a country.”

3.4.4 TREE PATTERNQUERIES
Text pattern queries can fail in the presence of additional terms in a matching text. For example,
the query “Oilers forward%” will notmatch the text “Oilers star forward LeonDraisaitl” because
of the adjective “star” in text but not in the query. Variations due to optional terms such as
adjectives may be expressed in queries but this has two side-effects: (1) the query can become
more complex and (2) it is easy to miss some of the variations. An alternative approach is to
treat both text and queries as collections of syntactically annotated trees.

More concretely, syntactic relationships between terms in a sentence can be modeled as an
unranked node-labeled tree (cf. Section 3.3.2). Since the tree is unranked, each node can have an
arbitrary number of children. Queries over syntactic annotated trees are modeled as trees with
nodes representing the terms and annotations to be matched and the edges describing binary
relationships between the terms or annotations. Tree pattern queries may be generated from
natural language questions, following the same process used for parsing text. This is desirable in
many cases especially when the user is not familiar with the grammar, the annotations, or the
tree syntax. Tree pattern queries may also be composed by expert users who are well-versed in
the language syntax. Figure 3.5 gives an example tree pattern query in the form of a constituency
parse tree, and Figure 3.6 does the same in the form of a dependency parse tree. These queries
may be posed over the tree pattern queries in Figures 3.3 and 3.4, respectively.

It is not hard to see that two or more children of a query node can have the same labels, for
example, when two adjectives are modifying a single noun. Hence, we may require that query
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Figure 3.5: A query as a syntactic parse tree.
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Figure 3.6: A query as a dependency parse tree.

nodes with the same labels must match different data nodes or the matching to be an injective
function.

3.4.5 COMBININGTEXTANDTREEPATTERNQUERIES
Text and tree patterns may be combined to express conditions on both surface text of a sentence
and the syntactic relationships tagged by a parser. Koko [Wang et al., 2018] supports conditions
on both surface text and the dependency tree structure of matching sentences. A query in Koko
can consist of three clauses. An extract clause is where the variables are defined, including those
to be extracted. The extract clause also lists all conditions on the types and the dependency
relationships of the matching tokens that must be satisfied. A satisfying clause is where a score
is computed for each match, as an aggregation of the scores from all matching sentences, and
a threshold on the matches may be specified. An excluding clause may also be given to list any
matches that should not be returned.
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3.4.6 SUMMARY
Unlike Boolean and grammar-based searches where the query result is a set of matching docu-
ments, the result of text-pattern and tree-pattern queries are terms or phrases for unary queries
or tuples consisting of terms and phrases for n-ary queries. Supporting word level extractions
is important for several reasons. First, a large class of natural language questions, referred to as
factoid questions, can easily be expressed as one or more text pattern or tree pattern queries (see
Table 3.2 for some examples). Second, text and tree pattern queries can be easily joined with
each other or with the data residing in a database, allowing the formulation of more expressive
queries. For example, knowing that the result of a text or tree pattern query is a city name, the
result may be refined by looking up the values in a database table populated with city names.

3.5 INDEXINGNATURALLANGUAGETEXT
Indexes are crucial for efficiently supporting queries over large text collections. These indexes
are constructed once and are used to evaluate many queries, hence their amortized construction
cost is negligible. Also, the construction is often done offline and it does not affect the cost of
online queries.

A common approach for efficiently storing and accessing text (and not necessarily natural
language text) has been to build an inverted index of words and to provide a fast access to their
frequency, location, etc. However, an inverted index provides only a limited support for many
natural language processing tasks. For example, an inverted index can reduce the search space
of text pattern and tree pattern queries by directing the search to sentences that mention some
of the query terms, but the number of such sentences can be large if the query terms are not
selective enough. Major querying systems over syntactically annotated parsed corpora, such as
TGrep2 [Rhode] and CorpusSearch [Randall, 2018], require an in-memory scan of the entire
corpus for answering any single query; these systems can benefit from more efficient storage
options. We next present storage and index structures for efficiently supporting text pattern and
tree pattern queries.

3.5.1 INDEXINGFORTEXTPATTERNQUERIES
There are a few indexing strategies that are applicable and may be used to speed up text pattern
queries.

Inverted Index
Text pattern queries may be evaluated using an inverted index, and an evaluation strategy can
be adapted from those developed for phrase and multi-keyword queries. Given a corpus to be
searched, suppose each word is indexed and the posting list of a term includes the ids of docu-
ments and sentences that contain the term and the term offsets (as shown in Table 3.4). Given
a text pattern query, one can intersect the posting lists of the terms in the query and verify their
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offsets to find sentences that contain the terms in the given order. The matching sentences can
then be retrieved and the desired parts (e.g., those matching the wild card %) can be extracted.
A downside of using an inverted index is long posting lists; this is an issue for text pattern
queries since frequent terms such as “is,” “a,” and “the” are commonly used in these queries (see
Section 3.4.3 for examples).

Table 3.4:Words and their postings, extracted from the text “Edmonton is the capital of Alberta.
The city population is 928,000” assuming the document id is 1.

Word Posting List

edmonton (1, 1, 1)

is (1, 1,2), (1, 2,4)

the (1, 1,3),(1, 2,1)

capital (1, 1,4)

of (1, 1,5)

alberta (1, 1,6)

city (1, 2,2)

population (1, 2,3)

928,000 (1, 2,5)

Neighbor Index
This is an inverted index that stores for each term both the left and the right neighbor terms
and may better suit queries over natural language text [Cafarella and Etzioni, 2005]. Storing the
neighboring terms can improve the performance of text pattern queries since terms matching
the wild cards are stored in the index. For example, the posting list of the term “player” will have
the matching terms for the query Oilers player %, assuming that the nouns are tagged and stored
as neighbors. This improvement comes at the cost of a significant increase in index size.

Word Permuterm Index
Word permuterm index [Chubak and Rafiei, 2010] is an adaptation of Garfield’s elegant Per-
muterm index [Garfield, 1976] for natural language text applications. In particular, it has been
shown to perform well for text pattern queries. The index has three components: (1) a word-
level Burrows-Wheeler Transformation (BWT) of text, (2) a mechanism to efficiently store and
access the alphabet, and (3) a mechanism to efficiently access the ranks.

A word-level BWT of the text is obtained by (1) finding all word-level cyclic rotations
of text, (2) sorting the rotations, and (3) taking the vector of last words from the sorted set
of rotations in Step 2. Let’s denote this vector with L. Consider the text T D$ Paris is a city in
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Europe $European cities such as Paris $� with two sentences and the symbols $ and �, respectively,
marking the sentence boundaries and the end of text. The set of all rotations of T , as shown in
Figure 3.7, gives L.

i Permutation

1 $ European cities such as Paris $ ~ $ Paris is a city in Europe

2 $ Paris is a city in Europe $ European cities such as Paris $ 

3 $ ~ $ Paris is a city in Europe $ European cities such as Paris

4 Europe $ European cities such as Paris $ ~ $ Paris is a city in

5 European cities such as Paris $ ~ $ Paris is a city in Europe $

$

$

6 Paris $ ~ $ Paris is a city in Europe $ European cities such as

7 Paris is a city in Europe $ European cities such as Paris $~ 

8 a city in Europe $ European cities such as Paris $ ~ $ Paris is

9 as Paris $ ~ $ Paris is a city in Europe $ European cities such

10 cities such as Paris $ ~ $ Paris is a city in Europe $ European

11 city in Europe $ European cities such as Paris $ ~ $ Paris is a

12 in Europe $ European cities such as Paris $ ~ $ Paris is a city

13 is a city in Europe $ European cities such as Paris $ ~ $ Paris

14 such as Paris $ ~ $ Paris is a city in Europe $ European cities

15 ~ $ Paris is a city in Europe $ European cities such as Paris

L

~

Figure 3.7: Sorted permutations of T with the last word vector L marked.

BWT has some interesting properties; in particular, one property that is relevant to text
pattern queries is that the text can be traversed backward using L. More precisely, given the term
at index i of L, i.e., LŒi�, the index of the term on the left of LŒi� in T is

LF.i/ D C.LŒi �/ C RankLŒi�.L; i/;

where C.LŒi �/ is the number of words that are lexicographically smaller than LŒi� and
RankLŒi�.L; i/ is the number of times LŒi� appears in the sub-sequence LŒ1 : : : i �. In other
words, LF.i/ indicates where the term preceding LŒi� in T is located in L. For example,
LF.8/ D C Œ0is0� C Rank0is0.L; 8/ D 12 C 1 D 13, and LŒ13� is ‘Paris,’ which is the term preced-
ing LŒ8� D0 is0 in T .

To efficiently support backward traversals over text, one needs efficient implementations
of functions C./ and Rank./. C can be implemented as a dictionary, maintaining for each term
both its frequency and its cumulative frequency in the lexicographical ordering of the terms. The
dictionary, implemented as a hash, can give constant-time access to C.t/, the number of terms
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that are smaller than term t . Naive implementations of Rank with alphabet † over a text of size n

requires O.n/ time and space when rank is computed each time from scratch by scanning L, and
O.1/ time and O.nj†j/ space when rank is fully computed in advance. Chubak and Rafiei show
that rank can be computed using a succinct data structure such as the Wavelet tree [Grossi et al.,
2003] and this reduces the search time to O.logj†j/. More details about Word Permuterm index
and its properties and performance can be found in the literature [Chubak and Rafiei, 2010].

Using a word permuterm index, text pattern queries may be traversed from right to left
using the terms that are present or are retrieved in previous traversals. A right-to-left traversal
is useful when the query has its salient terms on the right and maybe the wild cards on the
left. Since we are not expecting all text pattern queries to follow this structure, it is desirable to
construct another word permuterm index that allows a left-to-right traversal of text. This can be
easily done by simply reversing the order of the terms in text (i.e., making the first term as last,
the second term as the second last, etc.) before constructing the word permuterm index.

3.5.2 INDEXINGFORTREEPATTERNQUERIES
Given a tree pattern query Q and a node-labeled data tree T , we say T matches Q if there
exists a mapping function f such that (1) f maps every node of Q to a node of T , and (2) if
there is an edge between query nodes u and v, then there is an edge between f .u/ and f .v/ in
T . The mapping function may be injective to enforce that every query node maps to a different
data node, as discussed in Section 3.4.5. Irrespective of how data trees are generated from natural
language text (e.g., using automated tools such as syntactic parsers or manually) and the specifics
of the mapping function, the question being studied here is how data trees can be structured and
stored such that queries can be answered efficiently.

One simple strategy for indexing syntactically annotated trees is to keep some structural
information for each node. For example, LPath [Bird et al., 2006] keeps for each node its interval
coding, which allows checking for containment and adjacency relationships. Koko [Wang et al.,
2018] constructs an inverted index on the parse labels of all dependency paths starting from
the root. For example, the posting list of the path “/Root” includes tokens that sit under the
root node in the dependency trees of all sentences. For our dependency tree in Figure 3.4, the
posting list of “/Root” will include the token “capital” and that of “/Root/nsubj” will include
“Edmonton.” The posting list may include additional information that can help with finding
matches, such as sentence id, the word offset, and the depth of the token in the dependency
tree.

With nodes (or paths) of data trees stored in an index, the search for matching trees
becomes the problem of finding a set of nodes (or paths) that match the query in their labels
and are in the same parent-child relationships as their matching query nodes.

There is a large body of work on indexing and querying general trees and graphs that
may also be applied to syntactic annotated trees. For example, ATreeGrep [Shasha et al., 2002]
stores all paths of a collection of trees into a suffix array and uses a hash index of nodes and edges
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to prune candidates. However, there are two issues with these approaches. First, a general tree
indexing approach will not be aware of the properties of the sources from which the syntactic
annotated trees are generated and may not be efficient or comparable to algorithms that use
this information. Second, the matching function may not support the kind of mapping that
is desired in natural language contexts. For example, ATreeGrep, a competitive algorithm for
matching unordered labeled trees, does not support injective matching. On the other hand,
injective matching of syntactic annotated trees can be important, as discussed in Section 3.4.4.
In the rest of this section, we discuss, in more detail, an index that is specifically developed for
syntactic annotated trees.

Subtree Index
Given a set S of syntactically annotated trees and a size parameter mss, consider the set of all
unique subtrees of sizes 1; 2; : : : ; mss that can be extracted from the trees in S , and associate
to each subtree a posting list that includes the ids of all trees in S where the subtree appears.
Figure 3.8 gives an example where unique subtrees of sizes 2 and 3 are extracted as keys. Syntactic
annotated tree are unordered and so are their subtrees; this reduces the number of unique keys
that are extracted. However, the number of unique subtrees in general can be extremely large;
given alphabet † of node labels and a subtree template of size s, the number of unique subtrees
that can be constructed is O.j†js/. Chubak and Rafiei [2012] experimentally show that the
number of unique subtrees in a corpus of news articles grows almost linearly with the input
corpus size. A reason for this is that similar structures are plentiful in a corpus of parsed trees,
simply because there is a small set of grammatical structures that are commonly used in natural
language text; the number of such unique trees does not grow dramatically even considering
differences in writing styles, grammatical deviations, etc.
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Figure 3.8: Computing index keys: (a) input tree, index keys of sizes (b) 2 and (c) 3.

Also, the size of the posting list grows with the number of subtrees that can be extracted
from a tree. This number ranges from n � m C 1 to

�
n�1
m�1

�
for a tree of size n and subtrees of size
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m. The lower bound is for the case where the branching factor is 1 and the tree forms a branch of
height n. The upper bound is for the case where the tree has a root with n � 1 children. Clearly
the number of postings grows dramatically with n and m. Again it is shown that nodes with large
branching factors are not that common in natural language text. In one experiment [Chubak and
Rafiei, 2012], the average branching factor of internal nodes is reported to be 1:52. Hence the
number of subtrees is quite manageable for small values of m (e.g., for m less than 6).

Summarizing these results, the number of unique keys and the posting list sizes can both
be quite large for general trees and this is a deterrent when indexing using subtrees as keys.
However, annotated parse trees behave quite well in terms of the number of unique keys and the
sizes of the posting lists, and this makes them good candidates as index keys. Next, we discuss
how these keys can stored and retrieved.

Coding Subtrees
With each syntactically annotated tree decomposed into a set of subtrees of size mss or less, those
subtrees need to be flattened with the structural information encoded to allow a fast pruning at
query time. There are a number of encoding schemes that may be used.

One basic coding scheme, referred to as filter-based coding, is to keep for each subtree only
a reference to where the subtree appears. The coding scheme does not maintain any structural
information about the trees or the position of the subtrees. The posting list of a subtree stores,
similar to any inverted index, a sorted list of unique tree ids that contain the subtree.

Subtree interval coding generalizes the interval coding commonly used for XML docu-
ments and assigns to each node a pair of pre and post numbers indicating the pre- and post-visit
ranks of the node in a Depth-First Search (DFS) traversal, respectively. A level number is typi-
cally maintained to handle parent child queries. Also, the order of a node in a pre-order traversal
may be stored to differentiate the instances of symmetric postings stored under the same index
keys. It can be noted that subtree interval coding keeps structural information that is important
for pruning. For example, given the tree in Figure 3.8a as a query and the posting lists of the
subtrees A(B)(C)(A) and A(C(D))(B), one can join the posting lists to enforce the parent-child
relationships between the two subtrees and only retrieve trees that match the query. This benefit
comes at a cost of some storage overhead. The size of an index built using a subtree interval
coding can be 2–5 times larger than that of a filter-based coding for mss ranging from 1–5; the
gap becomes larger for larger values of mss.

Root-split interval coding aims at offering the best of both filter-based and subtree interval
coding schemes with the idea of representing each subtree as concisely as possible. Root split
coding stores for each subtree, in addition to the tree identifier, only the (pre, post, level) values
of its root. Compared to subtree interval coding, this simple strategy reduces the posting list
size of a subtree of size m by a factor of at least m. A question now is if this concise encoding
has sufficient information to allow joining the posting lists of query subtrees. The answer is
affirmative but the queries cannot be arbitrarily decomposed and joined since the structural



3.5. INDEXINGNATURALLANGUAGETEXT 31
information is not kept for all nodes. One decomposition under which this join is possible is
root-split cover.

Definition 3.1 Given a query Q and a set C D fc1; : : : ; ckg of subtrees that cover Q (i.e., every
node and edge of Q is listed in some tree in C ), then C is a root-split cover of Q if and only if
either C D fQg or for every subtree ci , there exists a subtree cj , 1 � i; j � k, such that one of
the following holds: (1) both ci and cj have the same root in Q, (2) the root of ci is the parent
of cj in Q, or (3) the root of cj is the parent of ci in Q.

Less formally, a root-split cover is a cover that can be evaluated only by performing joins
over the roots of its subtrees. Such a cover is useful for root-split coding since the coding scheme
only stores the structural information about the root node of each index key. It can be noted
that, every query Q has at least one valid root-split cover, which is the set containing individual
nodes of Q, though this composition may not be efficient. Next, we discuss how a “better” query
decomposition can be obtained.

Query Decomposition
Given a query Q, an efficient query plan can be selected by (1) finding a “good” set of subtrees
that cover Q and serve as data streams placed at the leaves of the query plan, and (2) searching
the space of plans for the selected cover and finding an optimal execution plan. The second
step is typically addressed by a query optimizer and is not discussed here. One thing to note
though that each query plan will have index scans at the leaves and posting list intersections
(merge-join over sorted streams) at internal nodes. For the first step, one has to decompose
the given query into a set of subtrees, each of size mss or less, such that the matches for each
subtree can be retrieved from the index. Clearly there are multiple ways of decomposing a query
and some decompositions are more amenable for query optimization. An interesting question
is what makes a “good cover” from the set of all possible covers that can be obtained.

One thing we know is that the posting list size of a subtree has a direct relationship to
the size of the subtree. In fact, it can be shown that the posting list size is a monotonically non-
increasing function of subtree sizes for both filter-based and root-split coding. Hence, larger
subtrees in a query cover are preferred since they are more selective and lead to a smaller join
cost. Also for filter-based and root-split coding, one can always generate a cover of a query such
that the cover includes only subtrees of maximum size mss, referred to as max-cover. However,
a query can have multiple maximal covers and those covers may not all have the same cost,
especially if there are overlaps between the subtrees in the covers. The number of joins is a direct
function of the number of subtrees in a query cover, and having fewer subtrees will lead to fewer
joins or less cost. Hence among all maximum covers, those with the least size, in terms of the
number of subtrees, are preferred; such a cover is referred to as a join-optimal cover.

An interesting question is how one can find a join-optimal cover. Here are a few observa-
tions that can be made. First, it is clear that a join-optimal cover cannot have less than djQj=msse
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subtrees. Second, it is shown that it is not always possible to construct the structure of a query
using a root-split cover of size djQj=msse. Chubak and Rafiei [2012] give an algorithm that
finds a join-optimal root-split cover of a query for mss � 6; they also bound the number of extra
joins required for evaluating a root-split cover of Q by jQj � djQj=msse � mss C 1.

3.5.3 SUMMARY
Querying natural language text poses some interesting challenges in terms of storage and in-
dexing. We presented some approaches for efficiently processing text pattern and tree pattern
queries, but interesting challenges remain. In particular, for selection queries, a “good” index is
expected to prune as many irrelevant sentences as possible. However, relevant sentences do not
always have many overlapping terms with a query; this can make pruning a challenging task. For
join queries, a “good” storage structure is expected to preserve the locality of relevant sentences,
for example, storing them in the same or nearby pages. Detecting such relevance in advance of
queries and balancing the access cost with the storage overhead is an interesting direction.

3.6 TRANSFORMINGNATURALLANGUAGETEXT
Natural language text may be mapped to a formal meaning representation for further query-
ing. The holy grail of language understanding research is finding a meaning representation that
is detailed enough, allowing reasoning and inference on the transformed text, while covering
as many different domains and contexts as possible. In practice, two types of meaning repre-
sentations, collectively referred to as semantic parsing in Section 2.4, have emerged. One type
of representation, referred to as deep semantic parsing, maps each sentence into a detailed formal
model such as first-order logic predicates. A problem with deep semantic parsing is the presence
of ambiguity in natural languages; a sentence can have multiple meanings, and a parser may have
to decide between these meanings. This is not easy without a deep understanding of the domain
or the context where the sentence is stated. Also, it is not easy to construct a general-purpose
ontology that is detailed enough to be useful in all possible applications. For the same reason,
deep semantic parsers have been successfully developed for specific domains (such as conversa-
tional agents [Allen et al., 1995], travel reservations, etc.) where the vocabulary is limited and
an expression cannot have many possible meanings.

Shallow semantic parsing or semantic role labeling is an alternative representation where
the meaning is represented using a set of smaller but somewhat independent components or
analyses. These components may include named entity resolution, word sense disambiguation,
and detecting the arguments of predicates or verbs of a sentence.

Irrespective of the level of semantic parsing and the degree of understanding that is
reached, the output of a semantic parser is a set of n-ary predicates about a domain of dis-
course. The output may also link the mentions of named entities and predicates in parsed text to
external resources and ontologies, for the purpose of resolving entities and disambiguating pred-
icates. The result of parsing a document may be represented as a knowledge graph with nodes
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denoting entities or literals and edges depicting the predicates. Such a graph can be queried
using ontology graph query languages such as SPARQL.

In this section, we discuss some of the steps and challenges in mapping natural language
utterances to a formal representation.

3.6.1 MEANINGREPRESENTATION
When we talk about meaning representation for natural language input utterances, there is a
non-human involvement in processing and acting upon the input. The actions may vary between
domains and applications but they often refer to those taken by a machine. For example, a robot
may act to instructions by making a sequence of moves, whereas the actions of an emergency
response system, monitoring tweets, will be detecting when and where a catastrophic event is
about to hit.

As for what makes a “good” meaning representation, it must be possible to detect from
the representation of a sentence the relationships that are expressed between objects and events
referenced in the sentence. In a more specific setting, it must be possible to identify, based on the
representation of two sentences, if both sentences describe the same relationship or event, or if
the relationship described in one sentence can be inferred from the other sentence. A challenge
in reaching this goal is that different sentences with possibly different word choices can express
the same meaning and we ideally want all those variations to have the same canonical meaning
representation.

First-Order Logic
First-Order Logic (FOL) has some attractive features for meaning representation including
sound basis for expressiveness, inference and querying. FOL describe objects or the domain of
discourse in terms of their properties and relationships. Each FOL formula may consist of terms
(constants, variables, functions), predicates, quantifiers, and connectives (such as logical “and,”
“or,” and “implication”). Each formula makes a statement about the universe. Here are some
example formulas:

.F1/ city.Edmonton/ ^ population.Edmonton; 928000/ ^ capital.Alberta; Edmonton/;

.F2/ 8c.country.c/ H) 9p.city.p/ ^ capital.c; p//;

.F3/ city.x/ ^ locatedIn.x; Canada/:

FOL formulas can use constants (as in F1) or variables (as in F2 and F3). Variables in a
FOL formula can be free (as in F3) when they are not in the scope of a quantifier; otherwise they
are bounded (as in F2). Formulas with free variables are useful for iterating over the elements of
a domain in queries, whereas formulas with no free variables make statements about the world
(referred to as first-order sentences).

The semantics of FOL is defined as a 4-tuple .U; C; P; F / where U is the universe and
C , P , and F are interpretations of constants, predicates, and functions, respectively. In simple
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terms, an interpretation associates constants, predicates, and functions in a formula to those in
the real world being modeled. For example, an interpretation of F1 is to associate the constant
“Edmonton” to the city of Edmonton in Alberta, “Alberta” to the province of Alberta in Canada
and the numeral to an integer denoting the numeral.

Description Logics
There are often relationships between entities in the domain of interest. For example, indus-
trialized countries, developing countries, and European countries are all countries. Description
Logics (DL) have emerged as a logical formalism for ontologies (such as Web Ontology Lan-
guage or OWL) and as a means for describing the relationships between entities and their do-
mains or categories. Suppose we have identified a set of categories within our domain of interest
(or state of affairs). Many of these categories may have relationships that must be specified in
the meaning representation. For example, the assertion that an European country is a country
or an industrialized country is a country can be expressed as a subsumption relation between the
categories:

EuropeanCountry v Country
IndustrializedCountry v Country

The aforementioned relations between European country, industrialized country, and
country are examples of Terminological (aka TBox) axioms, describing the relationships between
related terms, in DL, whereas the statement “city(Edmonton)” is an assertional (aka ABox) ax-
iom, describing the category of a named entity. Relational (aka RBox) axioms, on the other
hand, state that, for example, the categories IndustrializedCountry and DevelopingCountry are
disjoint, EuropeanCountry and IndustrializedCountry overlap, and the composition of sisterOf
and sonOf is subsumed by nephewOf.

As for supporting inference, DL focuses on tasks such as if a category is a subset or a
superset of another category or if an entity is a member of a category, given the facts about the
entity and the categories. The reasoning system for DL goes beyond the explicitly stated facts
and infers relationships that are not explicit. Unlike FOL where the definition of semantics is
procedural and the reasoning is in general computationally infeasible,6 DL includes fragments of
FOL for which the tractability of inference can be guaranteed and efficient reasoning techniques
are developed [Baader et al., 2008, Tsarkov and Horrocks, 2006].

Representing Events
Representing events and states is a major part of the semantics that needs to be captured in
natural languages. A state can be seen as a property or condition that remains unchanged over a
period of time, whereas an event is a change in states. Events generally don’t have a fixed number
of arguments. For example, a meeting can have two, three, or more participants and a single
6This is due to infinitely many structures that can be created in the presence of function symbols.
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predicate with a fixed number of arguments cannot represent these variations. One approach
for representing events is to treat them as entities and introduce an event variable that can be
quantified (as shown for a meeting event):

9e meeting.e/ ^ participant.e; Davood/ ^ participant.e; Yunyao/ ^ subject.e; BookPrep/:

Events are often associated with a time. One event can happen before, during, and af-
ter another event, and this information must be represented to support inference. Verb tenses
in a sentence provide information about the events described in relationship to other events.
Reichenbach [1947] introduces speech time, event time, and reference time to distinguish events
described using tenses such as past and present perfect. For example, in the sentence “I had a
meeting,” both event time and reference time are positioned before the speech time on the time
line, whereas for the sentence “I have had a meeting,” the event time is before both reference
time and speech time. Using the present perfect indicates that the reference time and the speech
time coincide. Temporal logic has been a formal model for representing time and reasoning
about events and assertions. Each statement in temporal logic is associated with a time, and the
truth of a formula with respect to an interpretation (e.g., an assignment of variables in a query)
is also evaluated with respect to a time.

Events may also be associated with a location. For example, the statement “gas prices
went up today” can be true in one location and not true in another location. The location of an
event can be given explicitly or may be implied. In our example on gas prices, the event may
be associated with the location of the speaker of the utterance. The location of an event may
be represented in the form of a latitude and a longitude. Events may also be associated with a
location in a geographical database of locations, known as a gazetteer. The hierarchical structure
of a gazetteer gives Part-Of and other relationships between locations that can be useful in
performing an inference.

3.6.2 MEANINGOFWORDS
Following the principle of compositionality, the meaning of a sentence may be determined in
terms of the meanings of its constituents, i.e., words, and the rules governing the composition.
Here a sentence is not simply treated as a bag of words and other factors such as the ordering of
the words, the grouping of words into phrases and the relationships that exists between words
affect the meaning of the sentence. As the syntactic composition of a sentence is governed by
a grammar, the semantic composition may also be guided by the break-down of the syntactic
components and their relationships, for example, represented in the parsing of the sentence. In
this section, we discuss how meaning can be assigned to words.

A simple approach to representing the meaning of a word is to take each word on its face
value, as a symbol with no analysis or relationship. However, the meaning of a word cannot
always be defined independent of other words. Two words may be related or have the same or
similar meanings. As an alternative, the meaning of words may be defined in terms of the dis-
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tribution of words around it, by embedding it into a vector space. Two words that are synonyms
are expected to co-occur with the same context words and have the same or similar vectors. The
size of this vector can be large (in the order of the size of the vocabulary) with many zeros, and
a dense embedding may be obtained, for example, using Word2vec models [Bengio et al., 2003,
Mikolov et al., 2013b].

Sometimes a word can be broken down into smaller units and the meaning of the word
may be defined in terms of that of its canonical form (aka lemma) and suffixes and prefixes. A
word may also have more than one sense or aspect, depending on the context it is used in, and
these senses of the word sometimes are semantically related (known as polysemy) and sometimes
are not (referred to a homonymy). Different word senses with different canonical forms may also
be related. The relationships may take the form of synonymy, for two senses that are substitutable
one for the other in any sentence without changing the sentence truth, or hyponym-hypernym,
when one sense is a subclass of another sense (e.g., Canada-Country). Other relationships in-
clude antonymy, part-whole, etc.

We generally need a more comprehensive account of the relationships between word
senses, and this leads to resources or databases such as WordNet and FrameNet that have such
information.

WordNet, created under the direction of a psychology professor at Princeton University [Miller,
1995a] starting in 1985, is one of the commonly used resources for English. The database groups
word senses into nouns, verbs, adjectives, and adverbs.The latest version, wordNet 3.0 released in
2005–2006, has 117,798 nouns, 11,529 verbs, 21,479 adjectives, and 4,481 adverbs. On average,
the number of senses for a noun, a verb, an adjective, and an adverb is, respectively, 1.24, 2.17,
1.40, and 1.25. For example, “database” has one sense whereas “order” has 15 senses as noun and
9 senses as verb. For each word sense, the database has a set of near-synonyms (referred to as
synset). For example, one noun sense of “order” is club (as in “royal order of Canada”) and this
sense has the following synonyms: club, social club, society, guild, gild, lodge. A verb sense of
the word is “bringing into conformity with rules” and this sense has the following words in the
synset: regulate, regularize, regularize, and govern.

Events
Representing the meaning of events is not as simple as that of word senses since events have
arguments and those arguments often have semantic constraints on them. In describing those
constraints, two events may be deemed similar and are grouped together because of the same
or similar constraints placed on their arguments. Consider the following publishing and editing
events:

9p; 9b publishing.p/ ^ publisher.p; 00Morgan � Claypool00/ ^ published.p; b/ ^ book.b/

9e; 9b editing.e/ ^ editor.e; 00Jagadish00/ ^ edited.e; b/ ^ book.b/:
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The FOL description given above is event-specific and does not provide much ammu-

nition for inference. For example, it is not easy to see that editor and publisher have similar
roles in that they make the editing and publishing events to happen. They both, referred to as
an agent, represent someone or something that is the source of the causation or action. Book,
which is affected by the action, is referred to as theme. Arguments may take other thematic roles
such as force, result, beneficiary, goal, etc. Semantic role labeling systems assign thematic roles
to arguments (instead of syntactic roles such as subject and object) since the ordering of verb
arguments can change (e.g., “send him the book” and “send the book to him”) and so is their
syntactic role labels. However, it is generally difficult to come up with a standard set of thematic
roles or even formally define each role. An alternative approach is to come up with more general
semantic roles such as agent and semantic role - patient. The more an argument shows agent-like
properties such as deciding on, committing to or causing a course of action, the more likely the
argument is labeled a proto-agent. Similarly, the more an argument takes patient-like proper-
ties such as passive or stationary compared to the other participant, causally affected instead of
affecting, going through some changes due to the actions contributed to the other participant,
the more likely the argument is a proto-patient.

Resources have been developed to aid with representing meaning at the thematic role
level. Two of those commonly-used resources are Propositional Bank (referred to as PropBank)
and FrameNet.

PropBank [Kingsbury and Palmer, 2002] is a collection of sentences annotated with semantic
roles. The English version annotates all sentences in Penn TreeBank. Each sense of each verb
has a set of roles or arguments. Generally, the first and the second arguments are, respectively,
proto-agent and proto-patient and the other arguments are specific to each verb. For example,
the frame file for verb “expect” lists two roles: expector as Arg0 and the thing expected as Arg1,
whereas the verb “leave” has more than one sense. One sense of the verb, which means “moving
away from” as in “Joe left the town,” has two roles: entity leaving as Arg0 and the place left as
Arg1. Another sense of the verb, which means “give” as in “Joe left his friend an apartment in
his will,” has three roles: giver as Arg0, the thing given as Arg1, and the beneficiary as Arg2.

FrameNet [Baker et al., 1998] provides semantic role labels at the level of a frame, which de-
scribes a situation instead of a specific verb. Frames can span over multiple verbs and nouns,
and the arguments of a frame are broken down into core and non-core elements. For example,
the “lending” frame has three core arguments including borrower, lender and the theme (i.e.,
the object being transferred), and a few non-core arguments including duration, manner, place,
purpose and time. The frame “expectation” has three core arguments including a cognizer (i.e.,
someone who believes something will take place), a phenomenon (i.e., what cognizer believes
in) and a topic, and a set of non-core arguments including the degree to which the event occurs,
a location, a time, etc. Another example of a frame and a sentence labeled with frame roles is
given in Section 3.3.2.
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3.6.3 COMPUTINGWORDSEMANTICS
One subject that we haven’t touched in our discussion is the issue of ambiguity in mapping to a
meaning representation. Suppose we are given a sentence and our goal is to annotate each word
or phrase with a semantic role label. Each word of the sentence can have multiple senses in
our lexicon such as WordNet or FrameNet; which one of those senses does accurately model the
sense of the word in the sentence? In a different scenario, a query word may not have a matching
word in the corpus. Which other word senses in the corpus are similar to the given query word?
In this section, we review some techniques for addressing these problems.

Word Sense Disambiguation
Each word in a sentence has a set of context features that may help predict its sense. Consider
the word “order,” which has 15 senses as noun in WordNet. Knowing the words to the left and
to the right of the target word can reveal the sense of the word that is used in the sentence. For
example, the words right before and right after the target word “order” in “the troop received
an order to withdraw” are different than those for “the speed was an order of magnitude faster”
and may reveal the sense of the word. In general, a window may be placed on the target word to
extract these features. The features may include the words in the window, their positions with
respect to the target word, and their part of speech tags. The context features may also include
non-stop words in a larger window, as a bag of words, giving the topic of the context where the
target word is used.

Several approaches have been developed to detect the sense of a word used in a sentence.
One simple baseline is to always choose the most frequent sense of each word, based on the
frequency of the senses in an annotated corpus. This strategy usually correspond to the first
sense of the word in WordNet; for example, for the word “order,” it will correspond to the sense
described as “a command given by a superior.” This clearly will miss many other senses of the
word. Another commonly used strategy, known as the Lesk algorithm [Lesk, 1986], selects the
sense of the word whose dictionary description is the closest to the context of the word being
disambiguated. The closeness, in what is known as the simplified Lesk Algorithm, is measured
in terms of the number of non-stop words in common between the context of the word being
disambiguated and the words in the dictionary definition and examples of the sense. When the
overlap is less than a threshold, meaning that there is no strong evidence in favor of choosing
one sense, the algorithm selects the most frequent sense of the word.

A problem with the simplified Lesk method is that the dictionary definition of a word is
often short and a correct sense may not have enough words in common with the target word
context. The Corpus Lesk algorithm addresses this problem using a corpus to extend the size
of the dictionary description. The idea is to extend the set of words in the dictionary definition
of a sense and to include all words in the corpus sentences that are labeled for that sense. Due
to a potential increase in the number of overlapping words, the Corpus Lesk method also in-
troduces a weight to each word, instead of simply using a stop word list. The weight of a term
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is the standard IR Inverse Document Frequency (IDF), which is inversely proportional to the
number of documents (in this particular case, the number of dictionary entries or senses) the
word appears in. Supervised approaches are also employed for word sense disambiguation but
are not discussed here.

Word Sense Similarity
Sometimes we want to detect if two words or word senses are similar. For example, in Recog-
nizing Textual Entailment (RTE), two sentences are given and the RTE system must predict
if one sentence can be entailed from the other despite the differences in word choices and their
composition. In Question Answering (QA), the question words can be different than the words
in answer sentences, and the QA system must find such sentences despite the vocabulary differ-
ences.

The algorithms for computing word similarity can be grouped into thesaurus-based and
distributional. Thesaurus-based algorithms are applicable when there is a thesaurus (e.g., Word-
Net) that lists the words being compared. Suppose the senses of the words are known and each
sense corresponds to a node in the thesaurus. In a simple thesaurus-based algorithm, the dis-
tance between two word senses is measured in terms of the length of the shortest path between
them in the thesaurus hierarchy. With this definition, a word sense is more similar to its parent
and children than the word senses that are far apart. When the word senses are not known, the
distance between two words w1 and w2 may be defined as

simword.w1; w2/ D mins12senses.w1/
s22senses.w2/

simsenses.s1; s2/:

Our simple algorithm assumes all paths of the same length are of the same distance (or
the same similarity). It is not hard to verify that this does not always hold. For example, two
nodes that are closer to the root of the tree are expected to have a shorter distance, compared to
nodes that are placed deeper in the tree, but they may not be more similar.

Resnik [1995] defines for each concept node c the probability that a randomly selected
node in a corpus is an instance of the concept c. Let P.c/ denote this probability. Based on
this notion of probability, Resnik defines the similarity between two word senses s1 and s2 as
�logP.LCS.s1; s2// where LCS is the lowest or deepest node in the hierarchy that subsumes
both s1 and s2. Lin et al. [1998] argues that a similarity function should measure not only the
commonalities but also the differences between the word senses being compared. He defines the
similarity between two senses s1 and s2 as

sim.s1; s2/ D
2logP.LCS.s1; s2//

logP.s1/ C logP.s2/
:

Note that the numerator has a constant multiplier for normalization purposes and to make sure
the similarity between the same senses is 1.
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Thesaurus-based algorithms are applicable only if a thesaurus is available and both words

are listed in the thesaurus; this cannot be warranted for many words especially those that are
domain specific. Distributional algorithms, on the other hand, estimate the similarity based on
word distributions in a corpus. The idea behind distributional algorithms is that the meaning of
a word can be inferred from its context in a corpus. The algorithms differ on how they represent
the context and how two contexts are compared (e.g., Lin [1998a]). A simple algorithm is to
take the words that occur in the neighborhood of a target word and construct a feature vector of
their co-occurence frequencies, based on which the similarity can be estimated. It can be noted
that a simple co-occurence frequency cannot be a good measure since many non-content words
such as “a”, “the,” and “of ” co-occur with the target words as well as with any other word. A fix
is to avoid using absolute frequencies, and instead measure for each context word, its relative
frequency of co-occuring with the target word compared to chance. This can be expressed for
context words x and y as their pointwise mutual information, i.e.,

pmi.t; c/ D log
P.t; c/

P.t/P.c/
;

where the numerator gives the observed co-occurence probability of context word c with target
word t and the denominator gives the probability of co-occurence assuming independence.

The Word2vec models learn a word embedding by training a neural network model that
can predict the context words. On the other hand, a model that can predict the context words
also gives a good embedding as far as the similarity between the words is concerned. These
models are usually efficient in representing the context and are now widely used [Witten et al.,
2016].

Given two words and their feature vectors, as constructed above, the word similarity can
be computed using a similarity metric such as Cosine, KL-divergence, etc.

3.6.4 MEANINGOF SENTENCES
To make inference at the level of a sentence and to support queries that generalize over different
surface text of predicates and the ordering of arguments, we need a meaning representation at
the sentence level to describe the predicates and the semantic roles of their arguments. A general
approach to represent this commonality between different verbs and predicates in a sentence is
to label each verb with a verb sense (as in Propbank) or a frame (as in FrameNet) and to assign
thematic roles to their arguments. Table 3.5 gives some of the common thematic roles a noun
phrase may take with respect to an action or event described by a verb. For example, in the
sentence “John gave a lecture to students,” John is the agent, the lecture is the theme, and students
is the experiencer. The roles stay the same even if the syntactic structure of the sentence changes,
for example, to “John gave students a lecture.” Levin [1993] classifies English verbs into 47 high-
level classes and presents multiple argument structures the verbs can take. VerbNet [Palmer,
2018] extends Levin’s classes and alsomaps PropBank verbs to VerbNet classes.The 2006 version
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of this resource [Kipper et al., 2006], which is the latest as of February 2018, lists 5,257 verb
senses (of 3,769 lemmas), each mapped to one of 274 classes and 23 thematic roles are used for
labeling the arguments.

Table 3.5: A set of commonly used thematic roles (source: Palmer et al. [2010b]).

Role Description Example

Agent Initiator of action, capable of volition   e man stopped the car.

Patient Aff ected by action, undergoes change of state " e man broke the window.

" eme Entity being moved or located " e man stopped the car.

Experiencer Perceives action but not in control John felt sorry for the boy.

Benefi ciary Benefi ciary of the action John rented him a car.

Instrument Instrument used to carry out the action He used his chisel to carve out 

the ears.

Location Place of object or action He moved to California.

Source Starting point He walked home from his school.

Goal Ending point He walked home from his school.

However, as noted earlier, it is difficult to come upwith a standard set of thematic roles and
a consistent mapping of arguments. A simpler approach is to use very few general semantic roles
such as agent and patient and classify each argument based on the degree they show agent-like
or patient-like properties.

With the thematic role labels fixed, the semantic role labeling of an input sentence may
be carried out as follows.

1. Parse the syntactic structure of the sentence and detect the dependency and constituency
relationships between words or phrases.

2. Traverse the parse and find all words (mostly verbs) that indicate a predicate.

3. Find the arguments of each predicate in Step 2 by examining the nodes in the parse tree
and assigning a semantic role when applicable.

For the last step, a supervised classifier, trained on resources such as ProbBank and
FrameNet, may be used. The classifier expects a feature vector for each node. Typical features
include the predicate (usually a verb) since the roles are defined with respect to a predicate. They
also include the POS tag of the node (e.g., NP), its dependency relationship to the predicate
(e.g., Subj), the headword of the node, and the path in the parse tree from the node to the
predicate. An initial list of these features is reported by Gildea and Jurafsky [2002].
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Sometimes the verb of a sentence imposes restrictions on the class of entities or concepts

that can fill the argument roles, and these restrictions become constraints on predicate argu-
ments. For example, the sentence “John drinks a tea” makes sense whereas the sentence “John
drinks a building” does not because we expect the theme of the verb “drink” to be something that
is drinkable. One way to address this is to associate arguments to a thesaurus type or class (e.g.,
Wordnet synsets). In practice, such restrictions on arguments are expressed as soft constraints
since violations can occur and those violations can be acceptable. Resnik [1993] captures this
with selectional preference strength which gives the the degree at which a predicate identifies the
semantic class of its arguments.

Word2vec models are extended to provide a dense vector representation of a sentence.
A simple approach is to use a weighted average of the word vectors [Mikolov et al., 2013b,
Mitchell and Lapata, 2010]. An alternative approach is to combine the word vectors in an or-
der determined by the parse of the sentence [Socher et al., 2011]. Paragraph vector is another
approach that assigns each paragraph a vector, which is later averaged or concatenated with the
word vectors [Le and Mikolov, 2014].

3.6.5 INFORMATIONEXTRACTION
Semantic role labeling is a resource-intensive process. A syntactic parser must iterate over many
possible parses before coming up with a parse that is consistent or has less ambiguity; the cost
of parsing increases dramatically with the length of the input. Annotated data are needed for
detecting events and labeling their arguments; the accuracy of this mapping largely depends on
the size and the coverage of labeled corpora, and constructing such resources is a lor-intensive
process. Information Extraction (IE) has emerged as a set of techniques for extracting structured
information about entities and their relationships without a full syntactic parsing and also often
without the need for large and comprehensive annotated data.

One area of information extraction, referred to as template filling, assumes a predefined set
of templates can be provided. The semantic role of arguments for those templates may be learned
from a labeled corpus [Bunescu and Mooney, 2004, Chieu et al., 2003] before the learned mod-
els can be used to classify the input relations and to extract more instances or slot fillers of the
templates. Several tasks are defined under template filling. For example, the Message Under-
standing Conference (MUC)7 ran evaluations on the following information extraction tasks:
named entity recognition, coreference resolution, template element (which extracts basic infor-
mation about organization and person entities), and scenario template (which extracts event
information and relating them to organization and person entities) [Chinchor, 1998, Sundheim
and Grishman, 1996]. As an example, an entity element template of type person in MUC-7 in-
cludes for each person the name (e.g., “Dennis Gillespie”), the category (e.g., person_military),
and the description (e.g., “Capt.” | “the commander of Carrier Air Wing 11”). An example of a

7MUC refers to a series of Message Understanding Conferences, also known as MUC-1, : : :, MUC-7, which ran from
1987–1998. The conferences, funded by DARPA, provided evaluation benchmarks for information extraction systems.
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scenario template task in MUC-4 is extracting terrorist related events, where the slots include
incident date, incident location, event type (e.g., bombing, kidnapping), instrument (e.g., bomb,
arson), perpetrator (i.e., person and organization names), target, etc.

Another area is open information extraction, which has gained interest lately with the need
for extracting structured information from documents on the Web. Unlike template filling, the
schema in open IE does not need to be fixed in advance. Early open IE systems extract triplets
in the form of (subject, relation, object) from relations expressed by a verb; examples include
TextRunner [Banko et al., 2007] and ReVerb [Etzioni et al., 2011]. Later systems attempt to
extract non-binary relations and also relations that are not verb-based; this usually comes at a
cost. For example, OLLIE [Fader et al., 2011] and Stanford OpenIE [Angeli et al., 2015] use
dependency parse of a sentence to extract some of those relationships. For example, OpenIE
extracts the open domain relation was-born-in(Obama, Hawaii) from the text “Obama was
born in Hawaii,” where the sentence verb becomes the relation name.

Information extraction techniques can be grouped into rule based and machine learning
based. Rule-based approaches use hand-crafted and sometimes semi-automatically generated
rules and regular expressions to extract the desired information. Our query-based approaches
discussed in this chapter fall under rule-based approaches. The rule-based approaches are widely
used in many domains and applications [Chiticariu et al., 2013]. Chieu et al. [2003] report that
almost all participating systems in the scenario template task in MUC were rule-based systems.
Two tutorials in SIGMOD outlined some of the challenges and opportunities in rule-based
information extraction from a database perspective [Chiticariu et al., 2010, Doan et al., 2006].
Machine learning-based approaches may train a classifier for each slot in a template. The fea-
tures considered may include verbs and noun phrases that are linked to the slot, for example, in
a dependency parse and the roles. For example, Chieu et al. [2003] consider a range of features
for each candidate noun phrase (np) including the verbs associated with the np as an agent, the
verbs associated with the np as a patient, the head word of the np, etc. Any supervised learning
algorithm may be used for the classification. The approaches used in the literature include max-
imum entropy [McCallum et al., 2000], support vector machine, naive Bayes, decision tree, and
conditional random fields [Peng and McCallum, 2006].

3.6.6 ENTITY LINKING
Named entities mentioned in text can have multiple interpretations in the real world, and a
transformed text will be ambiguous unless those interpretations are resolved into one. For ex-
ample, consider the sentence “Paris has fallen in love with ‘garden skyscrapers’.” GeoNames8
lists 97 possible interpretations for Paris as a place name. Other interpretations include person
name, film title, music band, music album, etc. (for example, as listed in Wikipedia9). Entity
linking, also known as named entity disambiguation, refers to the task of determining a correct

8http://www.geonames.org
9https://en.wikipedia.org/wiki/Paris_(disambiguation)

http://www.geonames.org
https://en.wikipedia.org/wiki/Paris_(disambiguation)
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interpretation for each name from the set of candidates. The set of possible interpretations is
usually taken from a knowledge base, and there are a few resources that are widely used.

Resources. The list of candidate entities for entity linking may be obtained from different
sources. Wikipedia currently has over 5 million articles, each typically describing an entity or
a concept. This resource provides a vast amount of disambiguation clues about a large class of
prominent named entities, and is often used for entity linking [Cucerzan, 2007]. These clues
include contextual words (from the body of an article describing an entity), entity surface forms
(from linked pages) and category tags. GeoNames is another resource that covers a relatively
large number of location names and is used for resolving named entities of type location [Ka-
malloo and Rafiei, 2018]. The database currently has over 10 million geographical names, with
populated places identified and alternate names also given. Yago [Suchanek et al., 2007] con-
structs its knowledge base by combining data from Wikipedia, WordNet, and GeoNames. With
over 10 million entities (such as people, organizations and locations) and more than 120 million
facts about those entities, it is the largest knowledge base in public domain. Yago adopts the tax-
onomy of WordNet and the category system of Wikipedia and has about 100 manually defined
relationships of different types between entities. These include subClassOf (e.g., physicst sub-
ClassOf scientist), type (e.g., AlbertEinstein type physicist), and means (e.g., “Einstein” means
AlbertEinstein).

Techniques. Entity linking can be broken down into : (1) candidate generation and (2) candi-
date ranking. In the first phase, each entity mention in a document is assigned a set of candidates
that may resolve the entity. The candidates may be obtained from a knowledge base (or other
sources as discussed above), based on the string comparison between the surface form of the
mention and that of the entity. Sometimes the same entity is mentioned multiple times in the
document. For example, a person can be referred to as “John Doe” early in the document and
as “Doe” or “John” later. These variations can provide additional clues in finding the set of can-
didates. For example, “Doe” may be expanded to “John Doe” before looking up the candidates.
Entity linking may identify these variations in surface form and resolve them all to the same
entity.

For candidate ranking, both supervised (e.g., Bunescu and Paşca [2006], Kulkarni et al.
[2009], Zheng et al. [2010]) and unsupervised approaches (e.g., Cucerzan [2007], Gottipati and
Jiang [2011]) are used. Generally, the candidates may be ranked based on (1) how the surface
form of the mention compare to that of the candidate, (2) whether the entity types match,
and (3) if the context of the mention matches that of the candidate. It is usually assumed that
entities mentioned in a document are related and their resolving entities must also demonstrate
some topical coherence. The popularity of the candidate entities may also be taken as the prior
probability in ranking, in that popular candidates will have a better chance of correctly resolving
a mention. A survey of the main approaches to entity linking is reported by Shen et al. [2015].
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3.6.7 SUMMARYANDDISCUSSIONS
We reviewed semantic role labeling and some of the components that play a key role in trans-
forming natural language sentences to a meaning representation. Our review included meaning
representation frameworks (e.g., FOL), resources for computing the meaning of words and sen-
tences (e.g., WordNet, VerbNet and FrameNet), detecting and representing event arguments,
and identifying similarities between words and events. There are other important components
that are not discussed including named entity detection and resolution, representing and rea-
soning on time and location of events, and pronoun resolution. A more detailed overview of
semantic role labeling with a survey of related work is provided by Palmer et al. [2010b]. Se-
mantic role labeling was the shared task in CoNLL 2004 and 2005, which allowed a number of
systems to compete on PropBank predicate-argument structures [Carreras and Màrquez, 2005].
More recent semantic role labeling systems use deep learning models and claim to perform bet-
ter. For example, a recent system claims an F1-measure of slightly over 83% on CoNLL 2005
and CoNLL 2012 test sets [He et al., 2017a].

To put our discussion into perspective, suppose we are given an article and our goal is to
distill information about entities that are mentioned, their relationships, the events the entities
are participating in, and the time and the location of those events.We probably want the distilled
information to be organized and the temporal and the spatial relationships between events to
be stored in a format that is transparent for querying. We also want the relationships between
entities and events described in different articles to be correctly represented. Putting together
a system that does the aforementioned tasks at a level comparable to humans is a daunting
challenge and can be characterized as the ultimate goal of machine reading. However, the task
may be broken down to smaller subtasks and techniques or algorithms are being developed for
those subtasks on a best-effort basis.

One task is entity linking—detecting the mentions of named entities in text and resolving
them to real world entities. The literature in this area assumes an independent description of the
referent entities (for example, a Wikipedia page) exists [Cucerzan, 2007]. In the absence of
such independent resources, the problem remains challenging. Similar challenge are faced when
resolving pronouns though the techniques for resolving them are somewhat different.

Our discussion of meaning representation for a sentence leads to a set of predicates. Those
predicates may describe relationships or events, each involving some entities. Such events or re-
lationships may happen or be valid at a certain period in time. Temporal references in a sentence
can be absolute (e.g., March 28, 2018) or relative (e.g., last week). Temporal references can
be implicit and further analysis may be needed to place a predicate on the time axis. Despite
the progress made on developing resources (e.g., the annotated TimeBank corpus [Pustejovsky
et al., 2003]) and algorithms, assigning a predicate to a point or a period on the time axis can
be challenging.

Events may also have spatial associations. For example, an event may happen at a loca-
tion or may involve entities that have some fixed localities. Detecting and representing those
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spatial relationships can be important for further analysis. However, those spatial relationships
may or may not be explicitly stated in text. Despite progress on toponym resolution and geo-
tagging [Leidner et al., 2004, Rafiei and Rafiei, 2016], assigning general entities and events to
their actual locations remains an interesting challenge.

3.7 SUMMARY
A large volume of data we consume on daily basis is stored in some form of natural language.This
includes messages and comments in text and social messaging services, emails, meeting minutes,
financial reports, newspaper articles, blog posts, etc. This data is too rich to be ignored and too
large to be left outside databases. In this chapter, we reviewed the issues and developments
surrounding storage, querying and managing natural language text data. Our discussion also
included mapping natural language text to a meaning representation which has clear benefits in
terms of querying and understanding text.

There have been other developments that are orthogonal to our discussion and treatment
of natural language text. One such development is the issue of integrating natural language text
with relational data. We are not aware of any work targeting natural language text in particular,
but there is literature on integrating text and relational data, which may be applied to natural
language text. This line of work can be divided into tight integration and loose integration. Chu
et al. [2007] present a tight integration approach that incrementally queries the structure in text,
and as more queries are processed, more structure is extracted, allowing a richer set of queries.
There has been more studies on a loose integration of text and relational data where text sources
are managed by a text search engine and are joined with relational data at the query time. Under
a loose integration scheme, different probing strategies are studied and various cost models and
query processing and optimization techniques are developed [Agichtein and Gravano, 2003,
Agrawal et al., 2008, Chaudhuri et al., 1995, Jain et al., 2008]. A typical workload is entity
extraction where a set of entities is stored in a relational database, and the goal is to efficiently
retrieve the mentions of those entities in a set of documents [Agrawal et al., 2008]. This line
of work on text can be directly applied to natural language text, though natural language text
has a structure and offers more opportunities for querying and query processing, as discussed
throughout the book.

Another development is on populating a relational table or a knowledge base with similar
data residing in natural language text sources. The idea is to learn patterns that encode an input
set of instances and use those patterns to retrieve more instances. The literature can be divided
into pattern-based (e.g., Agichtein and Gravano [2000], Brin [1998]) and consistency-based
reasoning (e.g., Suchanek et al. 2009). Some of the recent development in this area are reviewed
by Weikum et al. [2016].
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C H A P T E R 4

Natural Language Interfaces to
Databases

In the real world, we usually obtain information from each other by asking questions in a natu-
ral language. Not surprisingly, natural language interfaces have long been regarded as the holy
grail for query interface to databases [Li et al., 2006]. Numerous science fictions include an-
droids (e.g., Data in Star Trek by Paramount Pictures [1987] or Samantha in Her by Warner
Bros. Entertainment Inc. [2013]) that allow human to retrieve data via natural language ques-
tions. An ideal natural language interface to databases enables users to pose arbitrarily complex
ad hoc queries against underlying databases and obtain precise information back with mini-
mal effort. The emerging democratization of data makes such a interface even more appealing
than before [Liang, 2016], as such it requires no prior knowledge of any formal query language,
database schema, or the exact terminology of the underlying data. In reality, unfortunately, de-
spite years of research efforts [Sujatha et al., 2012], natural language interfaces to databases
largely remains an open research problem.

In this chapter, we first give an overview of a typical natural language interface to databases
in Section 4.1.1. We also discuss various challenges related to the building of a natural language
interface to databases at the high level in Section 4.1.2. We then discuss these challenges and
summarize common techniques used to address them in Sections 4.2–4.4. We will then further
systematically analyze in more details a number of representative natural language interfaces to
databases developed since 2000, with a focus on recent systems. This unified systematic view of
the systems aim to help the readers to better understand the existing solutions and develop their
owns accordingly.

4.1 OVERVIEW

In this section, we describe the main components of a modern natural language interface to
databases (NLIDB). We then present the major open challenges hindering the wide adaption
of NLIDBs. We will use the terminologies defined in this section throughout the rest of the
chapter to help providing a systematic view of different techniques and solutions.
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4.1.1 ANATOMY
Figure 4.1 depicts the anatomy of a natural language interface to databases. As can be seen, an
NLIDB typically consists of the following three main components: (1) Query Understanding,
which parses and interprets a natural language query (NLQ) into one or more intermediate
representations to capture the intent of the user query; (2) Query Translation, which translates
the intermediate representation of a user query into the corresponding structured query; and
(3) Data Store, which executes the structured queries generated by Query Translation against
the underlying data store to obtain results.

NLQ
Parsed

Queries
Query

Understanding
Queries

QueriesInteractions

Query
Translation

Domain
Knowledge

Data Store

Feedback
Generation

Figure 4.1: Anatomy of a natural language interface to databases.

Many modern NLIDBs also include one or two of the following components. (1)Domain
Knowledge, which captures the domain knowledge related to the underlying data and to help
with a better query understanding and translation; and (2) Feedback Generation, which provides
feedback to the user with regards to the system’s understanding and interpretation of the user
query and/or solicit additional input from the user to help the system to better understand and
interpret the user query.

In the rest of the chapter, we will explain these components in more details.

4.1.2 CHALLENGES
The major open challenges blocking the wide adaption of NLIDBs are related to the following
two aspects: (1) natural language understanding and (2) query translation.

Natural language understanding refers to the capability of parsing a natural language
query, usually in the form of one single natural language sentence, into a data structure that
represents the syntactical and semantic structure of the query. Natural language understanding
is the foundation of any NLIDB system.
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Unfortunately, generic natural language understanding remains a challenging open re-

search question itself [Liang, 2016]. The performance of a parser, the software component
performing natural language understanding, is often far from ideal. Moreover, parsers used
by NLIDBs are usually developed with open-domain news corpus, while the queries against
NLIDBs are often domain-specific questions. As a result, parsers tend to make more mis-
takes when parsing natural language queries and lead to issues for the subsequent operations
in NLIDBs [Popescu et al., 2003].

Query translation is the process of translating the structured representation of a parsed
natural language query into the corresponding formal query against the underlying database.
Even when an NLIDB fully understands a user-given natural language query, turning that struc-
tured representation into the corresponding formal query remains a challenging task. Natural
language queries are usually given by a user without the knowledge of the underlying data. As
such, the NLIDB needs to bridge the gap between the parsed query and the underlying data in
terms of both data value as well as schema. In addition, natural languages are much more ex-
pressive than any formal query language. Therefore, generating formal queries based on a parsed
natural language query is also a major challenge in building NLIDBs. As an example, given the
query “Find the most prolific authors in the DB community” against a typical publication database,
expressing the semantics of this seemingly simple natural language query in SQL would require
(i) the understanding of “most prolific” and “the DB community,” as well as (ii) complex operations
such as group by, aggregation (e.g., max and sum), and subqueries.

4.1.3 SUMMARY
In this section, we describe the common components of an NLIDB and also discuss the major
challenges in building an NLIDB. In the rest of chapter, we discuss various challenges related
to the building of NLIDBs and summarize common techniques used to address them (Sec-
tions 4.2–4.4). We then further analyze in more details a number of representative NLIDBs
developed since 2000, with a focus on recent systems. While the techniques presented in this
book are not intended to be exhaustive, providing a unified systematic view of the systems should
help the readers to better understand the existing solutions and develop their own accordingly.

4.2 QUERYUNDERSTANDING
Queries specified in a formal database language fully describe the query semantics based on the
knowledge of the underlying database schema. Such formal queries require no further semantic
interpretation and can be directly executed against the underlying database. Queries specified
in natural languages, however, need to be understood and interpreted into the corresponding
internal representation(s) first, before being translated into formal database queries.

Section 4.2.1 describes the scope of natural language support by NLIDBs ranging from
arbitrary ad hoc natural language queries to strictly controlled natural language queries and discuss
the trade-offs between the different choices.
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Section 4.2.2 presents stateless and stateful designs of NLIDBs, based on whether an

NLIDB takes query history into consideration.
As discussed earlier in Section 4.1.2, general natural language understanding remains an

open research problem. As a result, a parser may make mistakes when parsing natural language
queries. Such paring errors can propagate further and lead to mistakes made by the NLIDB.
Section 4.2.3 describes different techniques in handling parser errors in recent systems and their
trade-offs.

4.2.1 SCOPE
The scope of the natural language support by an NLIDB may be coarsely characterized, in terms
of the types of natural language queries that it supports, into the following two categories.

AdhocNatural LanguageQueries.An ad hoc natural language query is one that cannot
be predetermined in any way prior to the issuing of the query. An NLIDB supporting
ad hoc natural language queries does not restrict how and what queries the user can
ask in natural languages except that the semantics of the queries is expressible in the
corresponding structured queries.

ControlledNatural LanguageQueries. Controlled natural language queries are subsets
of natural language queries with restricted grammar and vocabulary.

An ideal NLIDB system should support ad hoc natural language queries and allow users
to ask arbitrary natural language questions and get the correct results back, as long as the se-
mantics of the queries can be expressed in the corresponding structured queries supported by the
underlying database. Not surprisingly, a few notable NLIDBs (such as Li and Jagadish 2014 and
Bais et al. 2016) aim to support ad hoc natural language queries. Unfortunately, parsing ad hoc
natural language queries remains an open problem. As illustrated in Figure 4.2, while support-
ing ad hoc natural language queries leads to more natural user experience, it is also associated
with an increase in complexity and ambiguity of user queries. The increase in complexity in user
queries tends to lead tomore parsing errors. NLIDBs supporting ad hoc natural language queries
thus have to heavily rely on parser error handling techniques. We will discuss such techniques
in Section 4.2.3 in more details. At the same time, an increase in the ambiguity of user queries
makes it more challenging to automatically analyze them. To avoid misinterpret the user intent,
the NLIDBs often need to solicit user input to help resolve the ambiguity. We will describe in
Section 4.4 various techniques for interacting with users to resolve ambiguity in more details.

In practice, NLIDB systems often limit their scope of natural language support to a con-
trolled subset of natural language queries with restricted grammar and vocabulary. The goal is to
reduce or eliminate ambiguity and complexity and enable reliable automatic semantic analysis
of the language.

For instance, PRECISE [Popescu et al., 2004] defines the notion of semantic tractability
and identifies a subset of natural language queries that can be precisely translated into SQL.
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Figure 4.2: Scope of natural language support.

NaLIX [Li et al., 2006, 2007b] limits natural language queries to a controlled subset based
on a predefined grammar. Similarly, NLPQC [Stratica et al., 2005] accepts queries based on a
domain-specific template.

While controlled natural language queries are less ambiguous and simpler to parse, such
benefits do not come for free. An NLIDB requiring controlled natural language queries needs
to address two associated challenges. The first challenge is to ensure the expressiveness of the
controlled language, despite of the restriction on complexity, and the usefulness of the NLIDB.
Ideally, a controlled language should support as wide range of query tasks as possible. For in-
stance, templates in NLPQC [Stratica et al., 2005] support joins between tables, and NaLIX [Li
et al., 2006, 2007b] supports complex query semantics such as aggregation and group by. The sec-
ond challenge is to ensure the usability of the NLIDB by helping users to understand and learn
to effectively use the controlled language. One major consideration of user interaction design in
an NLIDB is to expose the restrictions imposed by the controlled natural language to the users
so that they can understand the limitation of the system and learn to use the controlled subset
with as little frustration as possible. Section 4.4 describes various techniques in designing the
user interactions in more details.

4.2.2 STATELESS VS. STATEFUL
Search is rarely a single-step process as found by previous studies [Moore, 1995, Olson et al.,
1985, Peacock et al., 1992]. As such, when a user interacts with an NLIDB, she may issue
more than one query. She often needs to modify her queries based on the results obtained.
Furthermore, certain query semantics could be too complex to be composed comfortably into a
single query sentence, and thus better expressed in a divide-and-conquer fashion.

Figure 4.3 depicts the following two kinds of design on how a user query could be handled
by the NLIDB.

Stateless. The NLIDB understands and interprets each user query completely indepen-
dent of any prior query issued by the user.



52 4. NATURALLANGUAGE INTERFACESTODATABASES
Stateful. The NLIDB understands and interprets each user query in the context of prior

queries of the user, i.e., query history.

NLQ Engine

NLQ NLQ

Query
History

NLQ Engine

Databases

(a) Stateless (b) Stateful

Databases

Figure 4.3: Stateless vs. stateful NLIDBs.

A stateless NLIDB does not retain query history and requires every single user query to
be fully specified. Each user query is handled completely independent of each other. On the
other hand, a stateful NLIDB needs to retain and use query history to understand and interpret
each user query. A user query can be partially specified, and the NLIDB will interpret it based
on information provided previously in the query history.

For instance, given the sample database in Figure 4.4, the user first issues a query “List all
the publications by Michael Stonebraker.” If the user wants to group the results by publication
venues, in a stateless NLIDB, she has to issue a completely specified query such as “List all
the publications by Michael Stonebraker, group by their publication venues” and repeat the
information stated already in the earlier query; whereas in a stateful NLIDB, she only needs to
issue a partially specified query such as “Group by publication venues,” as a follow up query to
the earlier query.

As illustrated by the above example, a stateful NLIDB interacts with users in an iterative
fashion: a user asks a question, obtains an answer, and based on the answer asks follow-up ques-
tions to augment or change earlier questions. Stateful NLIDBs are also known as conversational
NLIDBs. They can be viewed as a special type of dialog systems [Jurafsky and Martin, 2009b].

Compared to their stateless peers, stateful NLIDBs provide a more natural interaction
environment for their users. Meanwhile, they also face a few additional challenges in query
understanding. The first challenge is how to identify the relevant prior queries in the query
history to help understand the current query. The second challenge is how to incorporate the
relevant prior queries identified to better understand the current query. The third challenge is
that users are more likely to issue partial queries and thus potentially lead to more parser errors.

Perhaps due to the additional challenges faced by stateful NLIDBs, almost all NLIDB
systems developed so far are stateless with few exceptions. One notable stateful NLIDB is
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AuthorID AuthorName Affi  liation

M001 Michael Stonebraker MIT

J002 Jeff rey D. Ullman Stanford University

H003 H. V. Jagadish University of Michigan

… … …

PubID AuthorID Title Year Venue

001 M001 ! e design and implementation of INGRES 1976 TODS

002 J002 Introduction to Automata ! eory, Languages, and 
Computation

2006 SIGMOD Record

004 H003 Structural joins: A primitive for effi  cient XML 
query pattern matching

2002 ICDE

… … … … …

Author

Publication

Figure 4.4: Sample database with Author and Publication tables.

NaLIX [Li et al., 2007b]. The iterative search capability in NaLIX draws inspiration from “chat
room”-style and forum-style interfaces. In NaLIX, queries are organized into threads as in
forum-style interfaces to maintain the context of each query. Meanwhile, the interaction for
each individual query is synchronous as in a chat. Queries within the same thread share the
same context center, i.e., topic of interest. Constraints specified in queries with regard to the con-
text center are referred to as query context. The start of a thread is a root query, which specifies
the context center and the initial query context. A follow-up query inherits and modifies the
query context of its parent query and creates its own query context. NaLIX then interprets each
query based on its query context and context center. If a new query specifies a new context cen-
ter, then it is regarded as a new root query and starts a new thread. As a result, NaLIX allows
users to incrementally focus their search on the objects of interest. More details are discussed in
Section 4.5.3.

One notable recent work in enabling stateful NLIDBs appears in Suhr et al. [2018]. This
work modifies the encoder-decoder architecture of recurrent neural network (RNN) [Elman,
1990] to encode context from the interaction history to make generation decisions for each
natural language query (utterance). For each natural language query, the decoding step explicitly
maintains a set of query fragments generated from previous queries. The decoder then chooses
whether to output a token or select a segment from the set, which is appended to the output in a
single decoding step maintains. Evaluation over ATIS [Hemphill et al., 1990] demonstrates the
effectiveness of the proposed techniques in supporting conversational queries against databases.
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4.2.3 PARSERERRORHANDLING
NLIDBs usually leverage off-the-shelf linguistic parsers to obtain the initial syntactic and/or
semantic structure of the input queries, as an initial step of query understanding. Obviously,
the performance of linguistic parsers directly impact the performance of the final query. Many
NLIDBs choose to make the simple assumption that the off-the-shelf parsers would always
work perfectly.

Unfortunately, as discussed earlier in Section 4.1, the linguistic parsers used to parse the
input queries in an NLIDB can make mistakes and produce erroneous output. The accuracy1

of the state-of-the-art dependency parser is 92.17% over news corpus [Andor et al., 2016] and
around 80% over questions [Judge et al., 2006]. As a result, while completely relying on linguistic
parsers makes the design of NLIDBs simpler, users of such NLIDBs may face more frustration
due to unexpected results.

There are two common approaches for handling parser errors in an NLIDB.

Auto-Correction. This approach automatically detects and corrects parse errors before
query translation.

InteractiveCorrection. This alternative approach leverages user interaction and corrects
parser errors in an interactive fashion.

The ideal approach toward handling parser errors is auto-correction, as it requires no effort
from users. However, detecting and correcting arbitrary parser errors is not easier than building
a perfect linguistic parser. As such, some of the NLIDBs (e.g., PRECISE [Popescu et al., 2003,
2004] and DaNaLIX [Li et al., 2007a]) remedy this issue by detecting and correcting certain
types of parser errors.

For instance, PRECISE examines attachment decisions made by the parser. It first exam-
ines whether a noun phrase or a prepositional phrase n is attached to a parent p in an inconsistent
way with the semantic information in the lexicon of PRECISE. Whenever it finds an inconsis-
tency, it attempts to repair the parse tree by traversing the path in the parse tree from p to the
root node. It searches for a suitable node to attach n to in an iterative fashion. The search stops
when PRECISE finds a new node, to which when n is attached, the modified parse tree agrees
with PRECISE’s semantic model.

Consider, for example, the question “What are flights from Boston to Chicago on Mon-
day?”; as depicted in Figure 4.5a, the parser wrongly attaches the prepositional phrase “on Mon-
day” to “Chicago” instead of “flights.” PRECISE is able to detect that this syntactic decision is
inconsistent with the semantic information. According to its lexicon, the preposition “on” takes
a flight and a day as input, instead of a city and a day. Then PRECISE attempts to re-attach “on
Monday” to the ancestor nodes of “on” until it correctly attaches to the NP “flights from Boston
to Chicago.” Such semantic overrides can help PRECISE to fix prepositional attachment errors
1In term of labeled attachment score (LAS) [Kubler et al., 2009].
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as well as parser errors in topicalized questions (e.g., “What are Boston to Chicago flights?”) and
in preposition ellipsis (e.g., when “on” is omitted in the question “What are flights from Boston
to Chicago Monday?”).

What  are flights  from  Boston  to  Chicago on  Monday? What  are flights  from  Boston  to  Chicago on  Monday?

(a) Preposition Attachment Error (b) Preposition Ellipsis Error
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Figure 4.5: Example semantic override for parser error repairing in PRECISE.

Unfortunately, many parser errors are difficult to be systematically identified and auto-
matically corrected. Such errors could be addressed via interactive corrections by soliciting user
input in one of two ways. One way is query reformulation. Whenever the system detects possi-
ble parser errors but is uncertain on how to correct the error, it can report an error message and
alert the user to rewrite the current query into one that can be correctly handled by the parser
(e.g., NaLIX [Li et al., 2006, 2007b]). In such cases, the system can also potentially learn how to
correct similar errors automatically in the future (e.g., Li et al. [2007a]). The other way is parse
tree correction, where the system detects possible errors and asks the user to correct the parse
tree directly so that the current query can be correctly understood by the system (e.g., NaLIR [Li
and Jagadish, 2014]).

4.3 QUERYTRANSLATION
The second component of an NLIDB is query translation. Once a natural language query is
parsed into a structured representation, this representation is then further interpreted and trans-
lated into a structured query in a formal query language (e.g., SQL/XQuery/SPARQL) against
the underlying database. This step can be challenging, even when the structured representation
correctly and fully captures the user intent in the original natural language query, as discussed
in Section 4.1.2.

Section 4.3.1 describes different aspects of the gap between parsed natural language
queries and the underlying data in databases.
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Section 4.3.2 describes how NLIDBs generate structured queries that can be then exe-

cuted against the underlying databases to produce query results, leveraging various techniques
used by NLIDBs to bridge the gap in order to produce and disambiguate interpretations of the
parsed queries.

4.3.1 BRIDGINGTHE SEMANTICGAP
The structured representation generated by query understanding is not sufficient on its own to
produce a structured formal database query due to the gap between the user queries and the
underlying data. A crucial role of query translation is to bridge this gap. This section describes
the related challenges and provides an overview on techniques to address these challenges.

Vocabulary Gap
Users of an NLIDB are unlikely to have precise knowledge of the underlying data. As a re-
sult, there often exists mismatches between the vocabulary used in a user query and that in the
underlying data.

As an example, when a user issues the query “List all the publications by Jeff Ullman”
against the sample database in Figure 4.4, the NLIDB needs to construct the following SQL
query in order to retrieve the desired results:

SELECT P.*
FROM Author A, Publication P
WHERE A.AuthorID = P.AuthorID

AND A.AuthorName = 'Jeffrey D. Ullman';

Note that this query is not exactly a direct translation from the input natural lan-
guage query: In particular, the table name in the SQL query is Publication instead of
publications; similarly, the comparison predicate in the SQL query is A.AuthorName =
'Jeffrey D. Ullman', a term that exists in the database, instead of A.AuthorName = 'Jeff
Ullman', a term that is from the original user query but does not exist in the database. In other
words, in order to construct the right SQL query, the NLIDB needs to recognize the corre-
spondence between the database table name Publication and the query term “publications”
as well as the correspondence between “Jeffrey D. Ullman” in the database and the query term
“Jeff Ullman.”

Techniques used to recognize the existence of vocabulary gap and to identify the corre-
spondence of terms in the underlying data and those in the user queries largely falls into the
following categories.

Stemming/Lemmatization. The same word may be expressed in different forms due
to morphological changes, such as “publication” and “publications” in the above ex-
ample. In addition, there exist families of derivationally related words with similar
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meanings, such as “direct” and “director.” Stemming and lemmatization are two com-
mon techniques to relate such words.
Stemming is usually a crude heuristic process that remove the ends of words, usually
the derivational affixes, to their stems. Lemmatization usually utilizes vocabulary and
morphological analysis of words to remove inflectional endings only and to return the
lemma, also known as the base or dictionary form of a word.
The most well-known and common used algorithm for stemming English is Porter’s
algorithm [Porter, 1980]. There are also other stemming algorithms such as Lovins
stemmer [Lovins, 1968], Paice/Husk stemmer [Paice, 1990], and Y-Stemmer [Yatsko
et al., 2009]. The basic idea of an stemming algorithm (referred to as stemmer) is to
recognize suffix and root of a word with predefined heuristics and return the root, also
known as stem, by removing the suffix.
For example, Porter’s algorithm2 identifies “s” at the end of “publications” as a suffix
and returns “publication” and thus helps relate a query term “publications” with the
table name “Publication.” Similarly, it can help relate “directed” to “director” by stem-
ming both into “direct.” However, due to the relatively simplistic nature of stemming
algorithms, they may produce incorrect results. As an example, Porter’s algorithm
outputs “written” for “written,” instead of “write,” and returns “compani” for “compa-
nies,” instead of “company.” As a result, it fails to help relate the right words together.
As another example, it stems “operation,” “operator,” “operative,” “operational” all
into “oper” and thus can potentially lead to the ambiguity issue discussed later in this
section.
Lemmatization algorithms (referred to as lemmatizer) leverage full morphological
analysis to accurately identify the lemma for each word. As a result, lemmatizers tend
to produce more accurate results than stemmers and do not suffer from the issues
mentioned above for stemmers.
While stemming and lemmaization are both well-known techniques in information
retrieval, their benefits tend to be mixed in improving information retrieval perfor-
mance for English [Manning et al., 2008]. However, they are crucial for NLIDBs in
bridging the vocabulary gap and translating the original query into a fully-specified
formal query.

Term Expansion. The same semantics can be expressed in words/phrases such as “au-
thor” and “writer” in significantly different surface forms. Additionally, there are
many words/phrases with similar but not exactly the same semantics such as “arti-
cle” and “publication.” Furthermore, for the same real-world entity, more than one
surface form could exist. For example, “IBM” and “International Business Machine

2As implemented in Natural Language Toolkit 3.2.5 (http://www.nltk.org/).

http://www.nltk.org/


58 4. NATURALLANGUAGE INTERFACESTODATABASES
Corporation” refer to the same company, and similarly, “Bill Clinton” and “William
Jefferson Clinton” refer to the same person.
Term expansion expands or replaces query terms with alternative terms. It has been
studied extensively in the information retrieval literature [Bhogal et al., 2007] as a
means to address the above more complex vocabulary mismatches due to the exis-
tence of similar or related words such as synonyms or near-synonyms, hyponymy,
hypernymy [Fromkin and Robert, 2013], and entity variants. Many NLIDB systems
borrow this idea from the information retrieval community to map different forms of
user query terms into the same term in the underlying database.
One common approach toward term expansion is lexicon/ontology-based term ex-
pansion by leveraging hard-coded lexicons (e.g., Precise [Popescu et al., 2003]). Such
a relatively simplistic approach can be further augmented with off-the-shelf lexi-
cal databases such as WordNet [Miller, 1995b] (e.g., NaLIX [Li et al., 2007b] and
NaLIR [Li and Jagadish, 2014]), and/or domain-specific ontologies (e.g., NaLIX [Li
et al., 2007b] and ATHENA [Saha et al., 2016]).
RecentNLIDBs, such asNaLIR [Li and Jagadish, 2014] and SQLizer [Yaghmazadeh
et al., 2017], also leverage language embedding techniques such as word2vec [Mikolov
et al., 2013a] in identifying the mapping between mismatched terms.
More sophisticated term-expansion functions can also be built using the knowledge
of underlying structure in the representation of entities and map mentions of the
same entity with different surface form by converting them into the same standardized
form. For instance, ATHENA [Saha et al., 2016] leverages normalization functions
for specific entity types such as Person and Organization in building its translation
index. Such normalization functions can standardize mentions of different surface
forms (e.g., “William Jefferson Clinton,” “William J. Clinton,” and “Bill J. Clinton”)
into the same mention (e.g., “Bill Clinton”) and thus help to map query terms with
the terms in the underlying databases. This type of functions can be manually crafted
such as the ones used in ATHENA or learned from examples with tools such as
LUSTRE [Qian et al., 2018].

Leaky Abstraction
Without the precise knowledge of the underlying database, users of an NLIDB often make the
wrong assumption on the abstraction associated with the database, such as its data schema and
domain ontology. Such mismatches between the database abstraction and user assumptions are
referred to as leaky abstraction.

As an example, given the sample database in Figure 4.4, a user without a precise knowledge
of the database schema may ask “Who has published the most in the top database conferences?”
With this query, the user wrongly assumes that the database contains information on the types
(e.g., conference vs. journal) and associated research areas (e.g., database) of different publication
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venues and that it includes information on the ranking of these venues and the notion of top
venues.

One way to handle the leaky abstraction issue is to identify and ignore possiblemismatches
and reduce the original user query into one that can be handled by the database. For instance, the
original query “Who has published the most in the top database conferences?” may be reduced
into “Who has published the most?” For an NLIDB that handles leaky abstraction in this way, it
is crucial for it to communicate back to the user and explain what is and what is not understood
by the system to help the user better understand the capability of the NLIDB as well as gain
more knowledge about the underlying database [Li and Jagadish, 2014, Li et al., 2007b].

Another way to handle leaky abstraction is to identify and alert the user for possible mis-
matches and request the user to reformulate. In systems like NaLIX [Li et al., 2006, 2007b],
for example, when a user asks “Who has published the most in the top database conferences?”,
the system will provide feedback and guidance to help the user to reformulate it into one that
can be handled correctly by the NLIDB, such as “Who has published the most at SIGMOD,
VLDB, ICDE, and EDBT?”

NLIDBs can also leverage domain knowledge to help bridge the semantic gaps caused by
leaky abstraction. Domain knowledge can be captured in different forms, such as ontology or
domains-schema [Li et al., 2007b, Saha et al., 2016]. It can be hand-crafted or automatically
learned from external resources or query reformulations. As an example, DaNaLIX [Li et al.,
2007a], the domain-adaptative extension of NaLIX [Li et al., 2006, 2007b], can learn transfor-
mation rules that can be used to transform a parse tree that is not understandable by the system
into one that is (Section 4.5.3).

Under-Specification
Formal database queries follow specific query syntax and require all the information expressed
explicitly in order to correctly execute the queries. In contrast, a natural language query supported
by NLIDBs, even in a controlled language setting, may not explicitly include all the information
needed in the corresponding formal database query. This phenomenon of omitting information
in natural language queries is referred to as the under-specification of natural language queries.
Under-specified queries are pervasive in natural language interfaces such as NLIDBs [Sajjad
et al., 2012].

As an example, for the sample database in Figure 4.4, to find all the publication byMichael
Stonebraker, one can issue the following SQL query:

SELECT P.*
FROM Author A, Publication P
WHERE A.AuthorID = P.AuthorID

AND A.AuthorName = 'Michael Stonebraker'.

As can be seen, this query fully specifies all the information needed to execute the
query, including the table names (i.e., Author, Publication), column names (i.e., AuthorID,
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AuthorName), join predicates (i.e., A.AuthorID = P.AuthorID), comparison predicates (i.e.,
A.AuthorName = 'Michael Stonebraker'), and the SELECT clause.

Alternatively, the user may also issue the following natural language query: “List all the
publications by Michael Stonebraker.” As can be seen, unlike the above SQL query, this query
only partially specify the SELECT clause (i.e., “List all the publications”) and a comparison
predicates (i.e., “by Michael Stonebraker”). As such, in order to be able to construct the corre-
sponding SQL query, an NLIDB needs to add all the missing information, such as table names
and column names.

As partially illustrated by this example, two major factors contribute to the underspecifica-
tion of a natural language query. First, users of an NLIDB typically have no precise knowledge of
the underlying data or a formal query language. As such, they tend to formulate natural language
queries that omit information important for constructing the formal queries but unnecessary for
conveying the query semantics. For instance, table/columns names and join conditions are im-
portant in the formal queries but they are determined by the underlying database schema and
thus are often omitted in natural language queries. Second, underspecification is a known phe-
nomena occurring often in natural language expressions [Pinkal, 1996]. In fact, omitting certain
information in the natural language queries has been found crucial in ensuring the naturalness
of the queries perceived by the users [Kokkalis et al., 2012]. It is therefore important for an
NLIDB to be able to gracefully handle under-specified queries and add the appropriate missing
information back when constructing the final queries.

Techniques proposed to address the underspecification issue of natural language queries
largely fall into the following categories.

Controlled language. One way to address the underspecification issue of natural lan-
guage queries is via limiting the scope of natural language queries that are sup-
ported using a controlled language and minimizing the degree of underspecifica-
tion. For instance, if an NLIDB enforces a controlled language with the grammar of
Select hTABLENAMEi where hATTRIBUTENAMEi is hATTRIBUTEVALUEi, then the
earlier under-specified query “List all the publications by Michael Stonebraker.” will
need to be rewritten into a fully specified query “Select publications where author
is Michael Stonebraker” to be accepted by the NLIDB. As can be seen, controlled
languages simplify both query understanding and query translation. Not surprisingly,
many NLIDBs (e.g., Li and Jagadish 2014, Li et al. 2007b) require a controlled lan-
guage despite of the known drawbacks discussed earlier in Section 4.2.

Repair Rule. Another way to address underspecification is to repair the underspecified
natural language queries by automatically adding missing information. For example,
NaLIX [Li et al., 2006, 2007b] leverages a pre-defined set of rules to add join pred-
icates and determine the scope of nesting and grouping. Similarly, SQLizer [Yagh-
mazadeh et al., 2017] iteratively refines program sketch (i.e., partial SQL queries with
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placeholders formissing information) based on the database schema and data statistics
with a deterministic algorithm.

IntermediateQuery Language. Certain intermediate query languages such as Schema-
Free XQuery [Li et al., 2004], Schema-Free SQL [Li et al., 2014a], and OQL [Saha
et al., 2016] can accept queries that are not completely specified with respect to the
underlying database schema. The corresponding engines that support these query lan-
guages can execute such queries either directly (e.g., Schema-Free XQuery [Li et al.,
2004]) or by translating the queries into the corresponding formal query languages
such as SQL or SPARQL (e.g., OQL [Saha et al., 2016]). Instead of translating a
natural language query to a formal query language that requires fully specified infor-
mation, an NLIDB can translate it into an intermediate query language that allows
certain missing information and thus reduces the work required to handle the under-
specification issue.

Ambiguity
The major role of query translation is to find a mapping between a natural language query qnli

and its corresponding structured query qstructuredi ;j , denoted as hqnli
; qstructuredi ;j i) and referred

to as an interpretation. Natural language is highly ambiguous by nature [Wasow et al., 2005]. It
is not unusual for an NLIDB to find that multiple interpretations of the same natural language
query are possible when attempting to bridge the semantic gaps between user queries and the
underlying databases using the techniques described earlier. In another word, the same natural
language query may be potentially mapped into more than one structured query.

The key questions to consider when an ambiguity arises are the following.

Interpretation Ranking. When multiple interpretations are possible, arbitrarily return-
ing results for all the interpretations can only overwhelm and confuse the user. Instead,
an NLIDB needs to either select one single interpretation to produce the final results
for the user or return an ordered list of results associated with the interpretations. In
either cases, the interpretations need to be ranked.
To rank the interpretations, one common approach is for the NLIDB to associate
each interpretation with a score, where the score corresponds to how confident the
NLIDB is in generating that particular interpretation. As an example, given the query
“Find all SIGMOD publications by Michael Stonebraker” against the database in
Figure 4.4, an NLIDB could translate it into the following three SQL queries, since
the term “SIGMOD” could be interpreted as the “SIGMOD” conference, or the “SIGMOD
Record,” or both.

(Q1) SELECT P.*
FROM Author A, Publication P



62 4. NATURALLANGUAGE INTERFACESTODATABASES
WHERE A.AuthorID = P.AuthorID

AND A.AuthorName = 'Michael Stonebraker'
AND A.venue = 'SIGMOD';

(Q2) SELECT P.*
FROM Author A, Publication P
WHERE A.AuthorID = P.AuthorID

AND A.AuthorName = 'Michael Stonebraker'
AND A.venue = 'SIGMOD Record';

(Q3) SELECT P.*
FROM Author A, Publication P
WHERE A.AuthorID = P.AuthorID

AND A.AuthorName = 'Michael Stonebraker'
AND (A.venue = 'SIGMOD'

OR
A.venue = 'SIGMOD Record')

For simplicity, assume that the NLIDB assigns a confidence score based on the aver-
age Jaccard distance [Jaccard, 1901] between the original query terms and the corre-
sponding database terms used in the interpretation. Then we can obtain the following
confidence scores:

sQ1 D J.‘‘SIGMOD;00 ‘‘SIGMOD00/ D 1

sQ2 D J.‘‘SIGMOD;00 ‘‘SIGMODRecord00/ D 0:5

sQ3 D
J.‘‘SIGMOD;00‘‘SIGMOD00/CJ.‘‘SIGMOD;00‘‘SIGMOD00/

2
D 0:75.

As such, we can rank the interpretations such as the corresponding queries are in the
order of Q1, Q3, and Q2. In practice, more factors could be taken into account in
assigning the confidence scores in addition to the term similarity, such as closeness in
the database schema and the size of the results returned.

User Interaction.When anNLIDBdiscovers potential ambiguities, attempting to trans-
late a NLQ, one important decision to make is whether to surface and how to surface
the ambiguity to the end user. It can choose to hide the ambiguity from the user
and make the decision automatically. Alternatively, it can also choose to surface the
ambiguity to the user.
The reason to surface ambiguity is two-fold. First, it helps a user to better understand
the capability of the NLIDB. No matter how well an NLIDB handles the ambiguity



4.3. QUERYTRANSLATION 63
issues, it could make mistakes. Surfacing the ambiguity discovered by the NLIDB
could help a user to better understand the semantic gaps between the knowledge in the
user’s mind and the underlying data as well as the system’s capability in bridging the
gaps. Second, it allows the NLIDB to solicit user input to help resolve the ambiguity.
For instance, NaLIR [Li and Jagadish, 2014] generates a multiple choice selection
panel for each ambiguous part and requires a user to resolve the ambiguity manually.
ANNESAH [Shabaz et al., 2015] performs automatic disambiguation. However, it
also surfaces system decisions at the point where the ambiguity matters via interactive
ambiguity widgets to allow the user to resolve ambiguities. User inputs are stored as
constraints and influence subsequent queries, similar to how domain knowledge is
acquired in DaNALIX [Li et al., 2007a].

4.3.2 QUERYCONSTRUCTION
The construction of queries in a formal language from natural language queries can be done by
constructing formal queries from parsed queries with a deterministic algorithm or via machine
learning (e.g., Bais et al. 2016, Tang and Mooney 2001), resolving ambiguity and augmenting
queries with additional information with techniques discussed above (e.g., Amsterdamer et al.
2015b, Saha et al. 2016) as needed. We will discuss both approaches in this section. The target
query language can be a formal query language such as XQuery or SQL that can be executed
directly against one single underlying data store, or a intermediate language that is independent
of underlying data stores such as OQL.

Algorithmic Approach
The common approach for query construction is using a deterministic algorithm to construct for-
mal queries from an internal representation of the original natural language query, along with
domain knowledge corresponding to the underlying database(s). As illustrated in Figure 4.6,
algorithmic approaches for query construction largely fall into two categories: (1) query compo-
sition, where a parsed query is first interpreted based on information of the underlying database
and then the interpretations are mapped into query fragments, based on inference rules, before
finally being assembled into complete queries; and (2) query mapping, where a parsed query is
mapped directly into a complete query based on inference rules, and in some cases, if no com-
plete query is created, the incomplete query, referred to as query sketch, is repaired in an iterative
fashion until a complete query is generated.

Majority of the existing NLIDBs, such as NalIX [Li et al., 2007b], NL2CM [Amster-
damer et al., 2015b], FREyA [Damljanovic et al., 2012, 2013a], NaLIR [Li and Jagadish, 2014],
and ATHANA [Saha et al., 2016] construct queries via query composition. This step-by-step
process is easy to incorporate the various techniques discussed above, particularly those requiring
user interactions, to help bridge the semantic gap between a user-given natural language query
and the underlying database. This query mapping method makes it is easier to apply template-
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Figure 4.6: Overview of algorithm approach for query construction.

based algorithms such as in NLPQC [Stratica et al., 2005] and potentially allows more complex
reasoning during the query construction process as in SQLizer [Yaghmazadeh et al., 2017].

Machine Learning Approach
A growing number of NLIDBs in recent years attempt to leverage machine learning in the
construction of their structured queries beyond learning from user feedback. These efforts largely
fall into the following two categories.

Hybrid. Some systems take a hybrid approach and use a combination ofmachine learning
and deterministic algorithm approach. For instance, Palakurthi et al. [2015] presents
a system that learns to map explicit attributes (i.e., attributes mentioned explicitly in
the original natural language query) into SQL clauses and then uses the deterministic
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algorithm approach to construct the full SQL queries.Meanwhile, the work described
in Giordani and Moschitti [2012] uses a generative parser to generate candidate SQL
clauses, composes them into complete SQL queries with rules, and then uses a SVM-
ranker to rerank the candidates queries. SQLizer [Yaghmazadeh et al., 2017] takes
a similar approach: It first trains a semantic parser to obtain query sketches, uses a
rule-based approach to repair the sketches into complete SQL queries, ranks all the
queries during the process, and finally presents the top m results to the user.

PurelyMachine Learning. The growing popularity of sequence to sequence models has
led to NLIDBs being built with machine learning models that perform the map-
ping from the original natural language query to the corresponding structured query
without using any intermediate meaning representation. In such NLIDBs, query un-
derstanding and translation is performed together. For instance, Iyer et al. [2017] uses
a neural sequence-to-sequence model to directly generate SQL queries from natural
language questions and then leverages user feedback to improve the model in an itera-
tive fashion. Another recent work Seq2SQL [Zhong et al., 2017] leverages the struc-
ture of SQL when generating SQL queries with a deep neural network with policy-
based reinforcement learning to help improving the model during training. Last but
not the least, Suhr et al. [2018] is an interesting recent work that leverages query
history in generating SQL queries from natural language dialogs with databases.

While building an NLIDB completely with a machine learning approach may appear to
simplify the overall design of the system, it also needs to address a few unique challenges.

TrainingData. The quality of the machine learning models obtained heavily depends on
the quality and quantity of the training data. How to scale up the building of training
data remains a challenge. Not surprisingly, this challenge has received increasing at-
tention [Brad et al., 2017, Zhong et al., 2017]. It would be interesting to adapt tech-
niques used in building training data for general-purpose semantic parsers [Wang
et al., 2015], such as crowdsourcing and paraphasing, for building NLIDBs, while
taking advantage of the existing knowledge about the target language and the under-
lying data.

Expressivity. Formal database query languages aim to be relationally complete [Codd,
1972], i.e., be equivalent in expressive power to relational algebra. Existing work
(e.g., Iyer et al. 2017, Yaghmazadeh et al. 2017, Zhong et al. 2017) learns only a
small subset of SQL. Building machine learning models that are capable of perform-
ing complex logical reasoning remains an open challenge.

Explainablity. Due to the black-box nature of machine learning models, it is even more
challenging for a user to understand the limitations of the system. Iyer et al. [2017]
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make a preliminary attempt in this direction, but enabling a better explainablity re-
mains an open problem for machine learning in general.

Overall the work on applying machine learning approaches for constructing NLIDBs is
still at its early stage. Many dimensions are yet to explored. However, with the fresh wave of
ambition pushing the limits of what can be machine learnable, it is an exiting time to study how
to incorporate machine learning in building better NLIDBs.

4.4 USER INTERACTIONS
As depicted in Figure 4.1, user interactions is an integral part of an NLIDB. In this section,
we discuss various aspects related to user interactions in an NLIDB. We first describe different
design considerations when building an NLIDB (Section 4.4.1). We then present several user
interaction models applicable to an NLIDB (Section 4.4.2). Finally, we discuss how the choice
of stateless vs. stateful impacts the user interactions of an NLIDB.

4.4.1 DESIGNCONSIDERATIONS
When designing user interactions for an NLIDB, it is important to take the following into
consideration.

Learnability. How long does it take for users to learn to use the NLIDB competently?
This consideration is especially important for NLIDBs supporting controlled lan-
guages (Section 4.2.1), as any query out of the scope will result in errors (e.g., Li and
Jagadish 2014) or will produce a less desired result (e.g., Saha et al. 2016).

Explainability. Given a result returned by an NLIDB, can a user understand why the
result is obtained? This consideration is crucial for a user to understand the capability
of an NLIDB.

System Response Time. Once a user submits a natural language question, how long
does it take for the system to translate it into a formal query and how long does it
take to execute the query and return a result? It is important to understand the user
expectations and constraints on system response time and design the user interactions
accordingly (e.g., providing clear UI indication when something is in progress).

4.4.2 USER INTERACTIONMODELS
We introduce a few commonly used user interactionmodels in NLIDBs, summarized as follows.

Result Explanation.An NLIDB needs to make many choices to return a result based on
an input NLQ. In addition to returning the result itself, an NLIDB may also allow
a user to trace back and understand all the choices made by the NLIDB (potentially
with the help from the user).
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Interpretation/Query Navigation. As discussed in Section 4.3.1, due to the semantic

gap between a user-givenNLQand the underlying database, anNLIDBmay translate
the same NLQ into one or more formal queries. An NLIDB would pick the top-
ranked query, execute it and return the results to the user [Saha et al., 2016]. NLIDBs
using the Interpretation/Query Navigation, however, present all or the top-k of the
interpretations/queries and allow the user to navigate them to pick one that is intended
(e.g., Li and Jagadish 2014). To support this interaction model, an NLIDB needs to
present the choices in a way that is easily consumable for its users (e.g., presenting
formal queries along with its English descriptions) to help the user understand the
choices and reduce their mental burden.

ConversationalClarification.Given the ubiquitous nature of ambiguities inNLQs, suc-
cessfully resolving ambiguities is crucial when building an NLIDB. An NLIDB can
explicitly solicit user input to help resolve the ambiguities via UI prompt (e.g., pop-up
with a list of choices or with auto-generated questions).

Failure Clarification. An NLIDB may fail to translate an input NLQ. In such a case,
it is important to explain to the user the cause of the failure and possible ways of
reissuing a new input NLQ (e.g., Li et al. 2007b).

Query History Navigation. When an NLIDB preserves query history, even partially
(e.g., Li et al. 2007b), it also needs to allow the user to view and navigate in the query
history, so the user does not need to reissue an old query.

It is worth noting that the above user interaction models are also useful when designing a
programming-by-example system, where the system has to bridge the gap between the example
and a intended program. For instance, the concepts of Program Navigation and Conversational
Clarification in Mayer et al. [2015] are similar to the concepts of Interpretation/Query Naviga-
tion and Conversational Clarification discussed above.

4.4.3 STATELESS VS. STATEFUL
As discussed in Section 4.2.2, depending on whether an NLIDB is designed to remember pre-
ceding natural language queries or user interactions, it can be categorized into stateful or state-
less. In a stateless NLIDB, incorporating the user interaction models discussed in Section 4.4.2
requires only consideration of the current input NLQ. In contrast, while in a stateful NLIDB,
supporting these models also requires the consideration of relevant query history and thus in-
troduces additional complexity to the design.
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4.5 NOTABLE SYSTEMS
In this section, we describe a few notableNLIDBs since year 2000 in chronicle order.3 FromSec-
tion 4.5.1 to Section 4.5.9, we provide an overview of the individual systems as well as highlight
their key technical contributions. In Section 4.5.10, we summarize and compare the different
design considerations of the different systems when putting together the complete end-to-end
system.

4.5.1 PRECISE
PRECISE Popescu et al. [2003, 2004] is an early modern natural language interface for rela-
tional databases. It supports controlled natural language based on the notion of semantic tractabil-
ity, defined as follows.

Definition 4.1 Database Element. Any instance of database relations, attributes, or values is
referred to as a database element.

Definition 4.2 Token. A token refers to a word matches a database element. Depending on
the type of the matching database element, a token can be further classified into a relation,
attribute, or value token.

Definition 4.3 Syntactic Marker. A syntactic marker is a term from a fixed set of database-
independent terms that make no semantic contribution to the interpretation of the NLQ.

Definition 4.4 Semantically Tractable. Given a set of database element E, a sentence S is
considered semantic tractable, when its complete tokenization satisfies the following conditions:

• every token matches a unique data element in E;

• every attribute token attaches to a unique value token; and

• every relation token attaches to either an attribute token or a value token.

Figure 4.7 depicts the overall architecture of PRECISE. The query understanding stage
leverages Charniak parser [Charniak, 2000] to obtain attachment relationship between tokens,
followed by semantic override to correct certain types of parser errors such as preposition at-
tachment and ellipsis. Details of semantic override are described earlier in Section 4.2.3 and
thus omitted here. During query translation, the parse tree nodes are first mapped into differ-
ent types of tokens and/or syntactic markers based on pre-built lexicon. Consider the following
simple database consisting of one single table.
3We refer the readers to Sujatha et al. [2012] for discussions on additional early NLIDBs.
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Figure 4.7: Overview of PRECISE.
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Figure 4.8 depicts the corresponding tokenization post parsing for query “What the HP
jobs on a Unix System.” Each parse tree node regarded as tokens is then mapped into corre-
sponding database element(s). The same parse tree node could be mapped into more than one
data elements. For instance, “HP” could be mapped into both as attribute Platform as well as
attribute Company. Such ambiguities are addressed using a maxflow algorithm, as illustrated in
Figure 4.9. The final interpretation corresponds to the following SQL query:

SELECT DISTINCT Job.Description
FROM Job, City
WHERE Job.Platform = ‘Unix’

AND Job.Company = ‘HP’.

However, even with a maxflow algorithm, multiple interpretations may still exist for the
same query. For instance, given the query “What are the systems analyst jobs in Austin?”, the
substring “system analyst” could be interpreted as jobTitle = ''system analyst'' or as
description = ''systems'' and jobTitle = ''analyst.'' In such a case, the system will
ask user to select one of the interpretations to help resolve the ambiguity.



70 4. NATURALLANGUAGE INTERFACESTODATABASES

Question

What

the

HP

jobs

on

a

Unix

System

Tokens

What

 
HP

Job

Unix

system

Value
Tokens

What

 
HP

Unix

Attribute
Tokens

system

Syntactic
Markers

the

on

a

Relation
Tokens

Job

Figure 4.8: Query translation: Parse tree node mapping.

Value
Tokens

What

 
HP

Unix

Attribute
Tokens

system

Database
Values

Description = What

 Platform = HP
Company = HP

Platform = Unix

Database
Attributes

Description

 
Platform

Company

S

E

2
I         T  

Figure 4.9: Query translation: Maxflow algorithm.

Similarly, multiple join-paths could also result in multiple valid interpretations. As an
example, given the query “What are the HP jobs on Unix in a small town?” for the database
shown in Figure 4.10, there are two valid join-paths from Job.JobID to City.CityID:

Job.JobID � WorkLocation.JobID � City.CityID

Job.JobID � PostLocation.JobID � City.CityID.

As a result, the system will request user input to help select from interpretations corre-
sponding to the following two possible SQL queries:
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Job WorkLocation City

JobID JobID CityID

Description CityID Name

Company State

Platform PostLocation Size

JobID

CityID

Figure 4.10: Sample job database.

SELECT DISTINCT Job.Description
FROM Job, WorkLocation, City
WHERE Job.Platform = ‘HP’

AND Job.Company = ‘Unix’
AND Job.JobID = WorkLocation.JobID
AND WorkLocation.CityID = City.CityID

and

SELECT DISTINCT Job.Description
FROM Job, PostLocation, City
WHERE Job.Platform = ‘HP’

AND Job.Company = ‘Unix’
AND Job.JobID = WorkLocation.JobID
AND PostLocation.CityID = City.CityID.

Main Results
PRECISE is evaluated on the ATIS dataset [Price, 1990]. The authors find that parser errors
contribute to the majority of the errors and that reducing parser errors through retraining the
parser and semantic override can significant improve the overall performance of the system.

4.5.2 NLPQC
NLPQC [Stratica et al., 2005] is another early NLIDB. It supports controlled NLQ based on
a set of predefined rule templates. Figure 4.11 illustrates the overall architecture of the system.
NKPOC uses Link parser [Sleator and Temperly, 1993] to parse input natural language ques-
tions and then map parse tree nodes into table names and attributes using some mapping rules.
Then based on the table names and attributes the original questionmapped into, NLPQC selects
the corresponding query template to generate the final SQL query.
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Figure 4.11: NLPQC overview.

The mapping rules are automatically generated using WordNet, based on the underlying
database schema, and then curated by a system administrator. For instance, given a database
table attribute name language, the system generates a mapping rule based on all terms that
it may mapped into according to synonyms (e.g., speech, lyric, words), hypernyms (e.g., text)
and hyponyms (e.g., alliteration) in WordNet [Miller, 1995b]. A system administrator then
goes through the generated mapping rule to accept, reject, and/or add terms. This process could
potentially generate the following mapping rule: language ) language, speech, words,
source language.

Author Resource_Author Resource

AuthorID AuthorID ResourceID

Name ResourceID Title

Affi  liation Publisher

Year

Figure 4.12: NLPQC: Sample database.

The rule templates are manually created by the system administrator in the form of simple
action rules with if-then statements for query construction. Consider query “Who is the author
of book Algorithms” issued against the sample database in Figure 4.11. Assume that based on
mapping rules, the parse tree node “author” is mapped into table Author, “book” is mapped
into table Resource and “Algorithms” is mapped into the default attribute of table Resource,
namely Resource.title. Then given the following rule template:
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If (table Author and table Resource are used)
then (related table Resource_Author is used too)
and
(SQL query template includes

Resource_Author.ResourceID = Resource.ResourceID
AND Resource_Author.AuthorID = Author.AuthorID),

the original query can be translated into:

SELECT Author.Name
FROM Author, Resource, Resource_Author
WHERE Resource.Title = 'Algorithm'

AND Resource_Author.ResourceID = Resource.ResourceID
AND Resource_Author.AuthorID = Author.AuthorID.

Main Results
Compared to other systems described in this section, NLPQC is relatively simplistic: it sup-
ports only basic SQL constructs such as selection predicates and equality joins; it does not han-
dle parser errors or resolve ambiguity explicitly either. However, the idea of using controlled
language and query templates has been widely used in practical NLIDBs systems due to the
simplicity of this approach.

4.5.3 NALIX
NaLIX [Li et al., 2006, 2007a,b] is an early natural language interface for XML databases. It
supports controlled natural language based on pre-defined grammar and translates natural lan-
guage queries into Schema-free XQuery [Li et al., 2004], an extension to the standard XQuery
language to allow under-specific queries that do not perfectly match the underlying database
schema.

Figure 4.13 shows the overall architecture of NaliX. It first uses Minipar [Lin, 1998b], an
off-the-shelf dependency parser, to obtain the dependency parse tree of an input natural language
query. It then classifies parse tree nodes into two different types according to the following
definitions.

Definition 4.5 Token. A word/phrase that can be mapped into a XQuery component is re-
ferred to as a token.

Definition 4.6 Marker. A word/phrase that cannot be mapped into a XQuery component is
referred to as a marker.

Tokens can be further divided into different types according to the type of query com-
ponents that they match based on a predefined classification tables. Similarly, markers can be
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Figure 4.13: NaLIX overview.

categorized into different types as well. Tables 4.1 and 4.2 present example types of tokens and
markers. We refer readers to Li et al. [2007b] for complete lists. Figure 4.14 illustrates the clas-
sified parse tree generated for query “What are the state that share a watershed with California”
with different types of tokens and markers.

What are [CMT]

states [NT]

the [GM] watershed [NT] with [CM]

the [GM] share [CM]

a [GM] California [VT]

Figure 4.14: Classified parse tree.

NaLIX [Li et al., 2007a] also includes a domain-adaptation component that is capable of
(1) extracting domain knowledge based on semantically equivalent queries and (2) incorporating
domain knowledge over a classified parse tree and update it accordingly. Domain knowledge is
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Table 4.1: Example token types

Token Type Query Component Description Examples

Command Token 

(CMT)

Return Clause Top main verb or wh- phrase [Quirk 

et al., 1985] of parse tree, from an 

enum set of words/phrases

return

what is

Value Token (VT) Value A noun or noun phrase in quotation 

marks, a proper noun or noun phrase, 

or a number

California 

2014

Name Token (NT) Basic Variables A noun or noun phrase that is not a 

value token

state

river

Operator Token Operator A phrase fron an enum set of preposi-

tion phrases

more than 

same as

Table 4.2: Example markers types

Marker Type Semantics Description Examples

Connection 

Marker (CM)

Connect two 

related tokens

A preposition from an enum set, or 

nontoken main verb

of, shared

Modifi ed Marker 

(MM)

Distinquish two 

name tokens

An adjective as determiner or 

a numeral as predeterminer or 

postdeterminer

many

popular

Gernal Marker 

(GM)

None Auxiliary verbs, articles a, an, the

represented as a set of transformation rules, each corresponding to the mapping between a partial
parse tree containing terms with domain meanings and one expressed in terms understandable
by NaLIX without any domain adaption. Figure 4.15 shows the visualization of an example
transformation rule applicable for the classified parse tree in Figure 4.14, resulting in the updated
classified parse tree in Figure 4.16.

Before query translation, NaLIX first performs query validation query validationand ex-
amines the classified parse tree, potentially after incorporating applicable transformation rules,
to find out whether it satisfies a predefined grammar (see Li et al. 2007b for more details). If it
does, it is referred as a valid parse tree; otherwise, a invalid parse tree. An invalid parse tree will
be rejected by the system with the appropriate error message(s) dynamically generated to guide
the user to rephrase the query into one that is understandable by the system.
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Figure 4.15: Sample transformation rule.

What are [CMT]

states [NT] where [MM]

river [NT] river [NT]

state [NT]

the [GM] is the same as [OT]

each [MM]

California [VT]

a [GM] of [CM] a [GM] of [CM]

Figure 4.16: Updated classified parse tree with domain knowledge.

During the query validation process, NaLIX also performs the following two tasks when-
ever applicable.

Term Expansion. As described in Section 4.3.1, a user may not be familiar with the
specific element or attribute names or value in the database. This task is to find the
name(s) of element or attribute or value in the database that matches with a given
name/value token based on WordNet [Miller, 1995b] and domain-specific ontology
similar to [Li et al., 2004].
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Attaching Implicit Name Tokens. A natural language query may contain one or more

value tokens that have no name tokens attached to them. This task is to identify such
value tokens, determine the implicit name token attached to each of them by look-
ing up the given value in the database, and attach the implicit name tokens to the
corresponding name tokens.

If multiple choices for the above task are possible, the disjunction of them (e.g.,
“state|province” as a name token) is used to update the classified parse tree. Users can update
the query by choosing one or more of them.

Figure 4.17 illustrates the classified parse tree post query validation for our running ex-
ample query, updated with (1) term expansion, where the original term “California” from the
user-given query is replaced by “CA” the corresponding actual value in the database; and (2) im-
plicit name token, where a new name token node “state” is inserted before value token “CA”.
Figure 4.17 also depicts variable binding for name tokens in the classified parse tree. As can be
seen, different name tokens are associated with different variables unless they are regarded as
equivalent (e.g., $v1).

What are [CMT]

states [NT] where [MM]

river [NT] river [NT]

state [NT] state [NT]

the [GM] is the same as [OT]

each [MM] CA [VT]

a [GM] of [CM] a [GM] of [CM]

$v1*

$v1*

$v2 $v3

$v4

Figure 4.17: Updated classified parse tree post validation with variable binding: Dashed box
indicates implicit name tokens, dashed oval indicates updated tokens via term expansion, symbol
* indicates core token.

Once variable binding is done, NaLIX maps token patterns into XQuery fragments based
on pre-defined patterns, including determining the scope of grouping and nesting whenever ap-
plicable. For example, our running example in Figure 4.17 corresponds to the following XQuery
fragments:
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for $v1 in doc(''geo.xmml'')//state
for $v2 in doc(''geo.xmml'')//river
for $v3 in doc(''geo.xmml'')//river
for $v4 in doc(''geo.xmml'')//state
where $v2 = $v3

where $v4 = ''CA'' .

In addition, NaLIX maps variables corresponding to related name tokens into the same
mqf function in a WHERE clause. The relatedness of name tokens is determined based on
their relationship in the classified parse tree. The most common cases of related name tokens
are name tokens with parent-child relationships (ignoring any intervening markers and FT/OT
nodes with a single child). As an example, the parse tree in Figure 4.17 can be mapping into the
following XQuery fragments:

where mqf($v1, $v2)
where mqf($v3, $v4).

We refer the readers to the original NaliX paper by Li et al. [2007b] for additional cases
of related named tokens.

Finally, NaLIX constructs a complete query with all the XQuery fragments generated
so far, starting from innermost clauses and work outwards. As a example, the fully translated
XQuery for our running query is as follows:

for $v1 in doc(''geo.xmml'')//state
$v2 in doc(''geo.xmml'')//river
$v3 in doc(''geo.xmml'')//river
$v4 in doc(''geo.xmml'')//state

where $v2 = $v3

and $v4 = ''CA''
and mqf($v1,$v2)
and mqf($v3,$v4).

An important functionality of NaLIX is enabling conversational-style natural language
queries by supporting follow-up queries, as discussed earlier in Section 4.2.2. Inspired by “chat
room” style communications and forum-style communication, NaLIX supports iterative search
by allowing follow-up queries. Queries are organized into threads as in forum-style commu-
nication to maintain the context of each query, while the interaction for each individual query
is synchronous as in a chat. Queries within the same thread share the same context center, i.e.,
topic of interest. Constraints specified in the queries with regard to the context center are referred



4.5. NOTABLE SYSTEMS 79
to as query context. The start of a thread is a root query, which specifies the context center and
initial query context. A follow-up query inherits and modifies the query context of its parent
query to create its own query context. NaLIX interprets each query based on its query context
and context center. If a new query specifies a new context center, then it is regarded as a new
root query and starts a new thread. For instance, in our running example query “What are the
states that share a watershed with California?”, the context center is “the state” and the query
context is “that share a watershed with California.” A possible follow-up query could be “What
about with Texas?.” Note that this follow-up query by itself is not complete, however, by taking
existing query context in the same thread into consideration, it is in effect interpreted as “What
are the states that share a watershed with Texas?” However, if a user issues a new query “What
is the longest river in California?,” it would be considered as a new query, as the context center
has been shifted to “river.”

NaLIX handles query ambiguity in two ways: (1) it solicits user input for ambiguity in
query terms (e.g., whether to interpret “Georgia” as a country or a state); and (2) it leverages
Schema-free XQuery to find out the optimal join-path to resolve ambiguity in join-path (e.g.,
there could be multiple ways for a river to be related to a state). It does not do not handle parser
error explicitly but has included an interactive UI to encourage NLQ input understandable by
the system. It also keeps recent search history and also allows users to back up at any time, and
return to any point of recent search history.

Main Results
NaLIX seeks to address almost all the challenges related to supporting natural language queries
discussed earlier in this Section. It demonstrates that by leveraging a schema-free query lan-
guage as a target language and carefully designed user interactions, it can support novice users
to construct complex database queries (e.g., aggregation and nesting) in natural language with
virtually no training. It also shows that the capability of learning-on-the-job and awareness of
query search history are important for the usability of anNLIDB. It is one of the handful existing
NLIDBs that supports conversational style NLQs.

4.5.4 FREYA
FREyA [Damljanovic et al., 2012, 2013a,b] is a relatively recent natural language interface de-
signed to query ontologies. Figure 4.18 depicts its overall architecture.

One interesting aspect of FREyA is that it employs a combination of ontology-based lookup
and syntactic parsing and analysis for query understanding. Ontology-based lookup links query
terms to Ontology Concepts (OCs) with only simple morphological analysis [Damljanovic et al.,
2008] without considering any context or grammar used in the given query. It uses rdfs:label
property (by default) rdfs:label or any applicable predefined naming conventions to name the
specific Ontology Concepts (e.g., Figure 4.19a). In addition, FREyA uses an off-the-shelf syn-
tactic parser followed by an algorithm with heuristic mapping rules to determine Potential On-
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Figure 4.18: FREyA overview.

What is the highest point of the state bordering Mississippi?

(a) Ontology-based Lookup

(b) Syntactic Parsing and Analysis

(c) Consolidation and Assign Joker Class

What is the highest point of the state bordering Mississippi?

What is the highest point of the state bordering Mississippi?

geo:isHighestPointOf

the highest point the state Mississippi

geo:State geo:border geo:mississippi

geo:isHighestPointOf? geo:State geo:border geo:mississippi

PROPERTY PROPERTY INSTANCECLASS

PROPERTY PROPERTY INSTANCECLASSJOKER

Figure 4.19: Example query understanding process in FREyA.

tology Concepts (POCs) based on a parse tree and part-of-speech tags (e.g., Figure 4.19b). The
algorithm requires no perfect perfect parse tree. As such, query understanding in FREyA is
relatively robust and can handle ill-form questions and query fragments.

Once FREyA identifies OCs and POCs, it seeks to map existing POCs to OCs automat-
ically based on span containment during the Consolidation step. For our example in Figure 4.19,
every POC in Figure 4.19b can be mapped into a unique OC in Figure 4.19a; thus no further
action is required from the user. However, if FREyA fails to map a POC to an OC, it will
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generate a list of suggestions and ask for user feedback. The suggestions are ranked based on
string similarity using a combination of Monge Elkan distance [Monge and Elkan, 1997] and
Soundex [The National Archives, 2018]. For instance, POC population in Figure 4.20 cannot
be automatically mapped into any OC. As a result, FREyaA may suggest the following OC for
the user to choose from:

state population
state population density
has low point
...

Return the population of California

population California

geo:california

POCs

OCs

INSTANCE

Figure 4.20: POCs and OCs mapping disambiguation.

In addition, FREyA leverages re-enforcement learning to learn to improve the ranking of
suggestions based on user interactions.

Once consolidation along with any required user interaction is done, FREyA inserts joker
based on pre-define set of rules before generating triples based on related OCs. The triples
are then translated into a SPARQL query in a straightforward fashion. For our example in
Figure 4.19c, a joker class is added before the first two OCs derived from the question, as they
refer to a property and a class, respectively. They are then transformed into triples as follows:

? - geo:isHighestPointOf - geo:State;
geo:State - geo:borders - geo:mississippi (geo:State);

They can be translated into the following SPARQL query:

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix geo: <http://www.mooney.net/geo#>
select ?firstJoker ?p0 ?c1 ?p2 ?i3
where { { ?firstJoker ?p0 ?c1 .
filter (?p0=geo:isHighestPointOf) . }
?c1 rdf:type geo:State .
?c1 ?p2 ?i3 .
filter (?p2=geo:borders) .
?i3 rdf:type geo:State .
filter (?i3=geo:mississippi) . }
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The result of a SPARQL query is a graph. Depending on the answer type, FREyA displays

the result in different ways based on several heuristic rules. We refer the readers to Damljanovic
et al. [2012] for more details.

Main Results
FREyA supports querying ontologies using natural languages. It leverages a combination of
syntactic parsing with ontology-based look-up to interpret user questions and involve users to
resolve ambiguities as needed. Similar to NaLIX (Section 4.5.3), it also learns from user input
and self-improves overtime. It generates basic SPARQL queries with filter predicates.

4.5.5 NALIR
NaLIR [Li and Jagadish, 2014] is a more recent NLIDB designed for relational databases. As
depicted in Figure 4.21, it first uses an off-the-shelf parser to obtain dependency parse tree for
a given user query. Then it maps parse tree nodes into different types of nodes (Table 4.3) cor-
responding to SQL components they map into, in a similar fashion as NaLIX (Section 4.5.3).
Specifically, the mappings are identified based on Wu-Palmer similarity score [Wu and Palmer,
1994] using surface strings and WordNet based on the database schema and value as well as
predefined sets of phrases. If any node fails to map to SQL component, the system returns a
warning to the user and alerts her of the failure. If a node has multiple mappings, the system
selects the best mapping but reports all the candidate mappings to the user via the Interactive
Communicator. Taking the parse tree in Figure 4.22a as an example, one possible mapping strat-
egy is the following:

return ! SN: SELECT
author ! NN: author
more ! ON: >
paper ! VN: author.name
VLDB ! VN: conference.name
after ! ON: >
2000 ! VN: publication:year.

NaLIR accepts controlled natural language queries based on a predefined grammar.When
it cannot interpret a query based on the parse tree post node mapping, it attempts to automat-
ically adjust the original parse tree structure into one that it can interpret, referred to as a valid
parse tree. This step of parse tree reformulation is done based on a combination of the prede-
fined grammar, the similarity between the reformulated parse tree and the original parse tree,
and the mappings between the parse tree nodes and the schema elements in the databases. As
illustrated by Figures 4.22b and 4.22c, this step is potentially useful to overcome parse errors, the
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Figure 4.21: NaLIR overview.
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Figure 4.22: (a) A simplified parse tree; (b) a valid parse tree; and (c) a query tree after inserting
implicit nodes.

limitations of semantic coverage of the system as well as ambiguity of the original query. Then
the system further rewrites each valid parse tree into one semantically reasonable by inserting
implicit nodes based a set of heuristic rules and generates a query tree (e.g., Figure 4.22c).

The user supervises this entire process. In addition, when multiple choices are available,
it explicitly requests user input to resolve ambiguous mappings and interpretations. Although
there is no theoretical guarantee with regard to the effectiveness of the parse tree adjustment,
experimental results do seem to confirm its effectiveness.

When a query tree contains no function node or quantifier node, the translation from
the query tree to the target SQL query is straightforward: each value node (NV) along with its



84 4. NATURALLANGUAGE INTERFACESTODATABASES

Table 4.3: Different types of parse tree node

Node Type Corresponding SQL Component

Select Node (SN) SQL Keyword: SELECT

Operator Node (ON) An operator, e.g. =, >=, !=, contains

Function Node (FN) An aggregation function, e.g., AVG

Name Node (NN) A relation name or attribute name

Value Node (VN) An attribute value

Quantifi er Node (QN) ALL, ANY, EACH

Logic Node (LN) AND, OR, NOT

operation node (ON) if specified is translated to either into a SELECT clause or translated into a
selection condition in the WHERE clause. Finally, foreign-key-primary-key (FK-PK) join paths
are added based on the schema graph to connect each NV node and its neighbors, with each
translated into FK-PK join conditions and all the schema elements in the join paths are added
to the FROM clause.

When the query tree contains function nodes or quantifier nodes, NaLIR use the concept
of block to identify the scope of the corresponding subqueries, where a block is a subtree rooted
at the select node, a name node that is marked as “all” or “any,” or a function node. The trans-
lation is done one block at a time, starting from the innnermost block. For each single block,
the translation is similar to the basic translation described earlier, except that additional SQL
fragments are required for connecting subqueries based on their scopes. Take the query tree in
Figure 4.22c as an example. It contains three blocks and corresponds to a SQL query with two
subqueries as illustrated in Figure 4.23.

Main Results
NaLIR seeks to address the challenges in query understanding and translation via a combina-
tion auto-correction and interactively soliciting user input. It demonstrates that by exposing
decisions made by the system to the user and involving the user proactively in the process can
effectively overcome some of the changes and provides better usability. It enables even novice
users to construct complex database queries such as those with aggregation and nesting in natural
language.

4.5.6 NL2CM
Crowd mining platforms (e.g., Marcus and Parameswaran 2015) are a new emerging kind of
hybrid data platform that combines knowledge bases of general data with mining the crowd
for individual, unrecorded data. NL2CM [Amsterdamer et al., 2015a,b,c] is a natural language
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1. Block 1: SELECT SUM(Publication.name) as totalPublication

2.          FROM Publication, Conference, Author

3.          WHERE Publication.cid = Conference.cid

4.            AND Publication.id = Author.pid

5.            AND Conference.name = “VLDB”

6.            AND Author.name = “Bob”

7.          GROUP BY Conference.cid

8. Block 2: SELECT SUM(Publication.name) as totalPublication, Author.name as

   author

9.          FROM Publication, Conference, Author

10.         WHERE Publication.cid = Conference.cid

11.           AND Publication.id = Author.pid

12.           AND Conference.name = “VLDB”

13.         GROUP BY Author.id

14. Block 3: SELECT block2.author

15.          FROM (CONTENT OF 1) as block1

16.            AND (CONTENT OF BLOCK2) as block2

17.            WHERE block1.totalPublication < block2.totalPublication

Figure 4.23: Translated SQL query for the query tree in Figure 4.22c.

interface to crowd mining which translates natural language questions into well-formed crowd
mining query in OASSIS-QL [Amsterdamer et al., 2014].

OASSIS-QL is defined as an extension of SPARQL. An OASSIS-QL query typically con-
sists of three parts: (i) a SELECT clause, which defines the output of the query; (ii) a WHERE
clause, which specifies predicates to be evaluated against a general knowledge base; and (iii) a
SATISFYING clause, which defines the data pattern to be mined from the crowd. Figure 4.24 il-
lustrates an example OASSIS-QL query, translated from the query “What are themost interesting
places near Forest Hotel, Buffalo that we should visit?”.

As illustrated by Figure 4.25, given such a natural language query, NL2CM first verifies
whether it belongs certain types of questions not supported by the system. For instance, “Why
...” questions are not supported. It returns warning messages to the user for such questions and
provides feedback with explanation and tips for rephrasing.

If the question passes the verification steps, it is sent to Stanford Parser [de Marneffe
et al., 2006] to obtain the dependency parse tree corresponding to each question along with the
part-of-speech tags. The parse tree is then sent for query translation: (i) to Individual eXpression
(IX) Detector which identifies and extracts the individual parts from the dependency parse tree;
and (ii) to a General Query Generator for RDF data such as the FREyA system described earlier
in Section 4.5.4 to process the remaining parts.

The IXDetector identifies individual parts using pre-defined IX patterns and vocabularies.
NL2CMconsiders three types of patterns/vocabularies.
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1. SELECT VARIABLES

2. WHERE

3.      {$x instanceOf Place.

4.       $x near Forest_Hotel,_Buffalo,_NY}

5. SATISFYING

6.      {$x hasLabel “interesting”}

7.      ORDER BY DESC(SUPPORT)

8.      LIMIT 5

9.      AND

10.     { [ ] visit $x}

11.     WITH SUPPORT THRESHOLD = 0.1

Figure 4.24: Example OASSIS-QL query. Translated from the query “What are the most in-
teresting places near Forest Hotel, Buffalo that we should visit?”.
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Figure 4.25: NL2CMOverview.

Lexical individuality. Individual terms convey sentiment or subjectivitiy, such as “inter-
esting,” which expresses an individual opion.

Participant individuality. Participants or agents in the text that that are relative to the
person addressed by the request. As an example, “you” in “Which hotel in Boston
would you recommend for families with young children?.”

Synctatic individuality. Certain syntactic constructs in a sentence. For instance, the
modal verb “should” in “Where should we visit San Jose?” emphasizes the speaker’s
an opinion or sentiment about something.

Consider the natural language query in Figure 4.24, it matches a lexical individuality term
“interesting” as well as the following participant individuality pattern.
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$x subject $y
filter(POS($x) = "verb" && $b in V_participant).

These matches are then translated into two OASSIS-QL triples:

$x interesting
[] visit $x.

Meanwhile, the same query is also sent to a General Query Generator (e.g., FREyA in
Section 4.5.4) to process and translate into SPARQL triples, potentially with help from the
user.The ones not overlapping with detected IXs are used for further processing. For our running
example, the following two SPARQL triples are produced:

$x instanceOf Place
$x near Forest Hotel,_Buffalo,_NY.

Note that the original user query only mentions “Buffalo,” which refers to multiple loca-
tions (e.g., Buffalo, NY, U.S. and Buffalo, IL, U.S., etc.). In such a case, as discussed earlier,
FREyA requests the user to select from a list of possible locations and produces the triple based
on the user response.

Finally, the Query Composer combines the OASSIS-QL triples with the SPARQL
triples into one single OASSIS-QL query. This process includes creating the sub-clauses for
the SATISFYING clause (from the OASSIS-QL triples), aligning variables in the WHERE clause
(from SPARQL triples), and creating the SELECT clause. For the subclauses in the SATISFYING
clause, NL2CM also adds support threshold or a top/bottom-k support selection based on the
system configuration. The system interacts with the user to determine the final variables to be
projected out by the query. Finally, the user can edits the translated query directly before starting
mining from the crowd.

Main Results
NL2CM takes a hybrid approach toward supporting natural language queries for crowd mining
by leveraging an existing NLIDB to handle the general part of the queries. It heavily relies
on user interactions to help to handle ambiguities when interpreting and translating the user
queries. Experimental results obtained from experimental study, including a user study, indicate
that this approach is effective for handling a wide range of user questions.

4.5.7 ATHANA
ATHANA [Saha et al., 2016] is an ontology-driven system for natural language querying of
relational databases. As depicted in Figure 4.26, it takes a unique two-stage approach, where
the input NLQ is first translated into Ontology Query Language (OQL), an intermediate query
language over an ontology, and then translated into SQL against the underlying relational
databases.
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Figure 4.26: ATHANA overview.

The notion of ontology is defined as follows.

Definition4.7 Ontology. An ontologyO D .C; R; P / contains a set of concepts C D fcn; 1 �

n � N g, a set of relations R D frk; 1 � k � Kg, and a set of properties P D fpm; 1 � m � M g

that represent a real-world domain.

A ontology element refers to a concept, relation, or relation of the ontology. It is worthy
noting that an ontology based on the above definition contains no data instance, as illustrated by
the example ontology in Figure 4.27. As such it is closer to an RDF Schema4 than to an OWL
ontology.5

OQL is an intermediate language over domain ontologies. It is designed to separate query
semantics from the underlying physical data stores and support common OLAP-style queries.
Figure 4.30 summarizes the portion of OQL grammar (partially6) supported by ATHANA.

The first stage of ATHANA, referred to as the NLQEngine, consists of three components.

Ontology Evidence Annotator. Given a NLQ, this components produces evidences on
what are the possible ontology elements referred to by the input NLQ. Each evidence
maps a sequence of words (referred to a token in this work) in the original NLQ into
one or more ontology elements (concept, relation, property), referred to as candidates.
Figure 4.29 shows all the candidates obtained for an example NLQ.
Specifically, ontology Evidence Annotator mainly consists of two types of annota-
tors: (i) Metadata Evidence Annotator uses a dictionary that maps the synonyms of

4https://www.w3.org/TR/rdf-schema
5https://www.w3.org/OWL
6Only single level nesting is supported.

https://www.w3.org/TR/rdf-schema
https://www.w3.org/OWL
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Figure 4.27: Example ontology for the financial domain.

Key

“Alibaba”

“Alibaba Inc”

“Alibaba Incorporated”

“Alibaba Holding”

…

         Entries

Company.name:Alibaba Inc

InvesteeCompany.name:Alibaba Holding Inc.

  …

Figure 4.28: Translation index: A simple example.

the ontology elements to the corresponding ontology elements. (ii) Data Value Evi-
dence Annotator uses a combination of Translation Index, Time Range Expression, and
Numeric Expression.

Translation Index [Li et al., 2014b] is a technique adapted by ATHANA from se-
mantic search. It provides mappings between each unique data value in the database
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S h o w  m e  r e s t r i c t e d  s t o c k  i n v e s t m e n t s  i n  A l i b a b a  s i n c e  2 0 1 2  b y  y e a r
indexed value

PersonalInvestment
InstitutionalInvestment
VCInvestment
…

Company.name:Alibaba Inc.
InvesteeCompany.name:Alibaba Holding Inc.
…

Holding.type: restricted stock
Transaction.type: restricted stock
Institutionalinvestment.type: restricted stock
…

indexed value time rangemetadata metadata metadata

Transaction.reported_year
Transaction.purchase_year
InstitutionalInvestment.
reported_year
…

Figure 4.29: A NLQ annotated with evidences by the ontology evidence annotator.

UnionQuery:  Query (UNION Query)*
Query:       select from where? groupBy? orderBy? having?
select:      aggrType?(PropertyRef))+
from:        (Concept ConceptAlias)+
where:       binExpr1* binExpr2 inExpr?
GroupBy:     (PropertyRef)+
orderBy:     (aggrType?(PropertyRef))+
having:      aggrType(PropertyRef) binOp value
value:       Literal+ | Query
aggrType:    SUM| COUNT| AVG | MIN | MAX
binExpr1:    PropertyRef binOp [any] value
binExpr2:    ConceptAlias RelationRef+ = ConceptAlias
inExpr:      PropertyRef IN Query
binOp:       > | < | >= | <= | =
PropertyRef: ConceptAlias.Property
RelationRef: Relation ->

Figure 4.30: OQL grammar supported by ATHANA.

and its variants to one or more properties containing that value. Given a query term,
it returns the set of the properties along with the actual value corresponding to the
query term in the database for each property. As an example, given the term “Al-
ibaba,” the translation index in Figure 4.28 returns “Company.name:Alibaba Inc” and
“InvesteeCompany.name:Alibaba Holding Inc,” etc. The set of evidences obtained
with the Metadata Evidence Annotator and Data Value Evidence Annotator is re-
ferred to as an Evident Set V . Each evidence vi W ti 7! Ei 2 V has a type (metadata
or data value) and maps a token ti to a set of candidates Ei .

In addition, the Ontology Evidence Annotator annotates dependencies between to-
kens in the NLQ, such as in Figure 4.29, the dependency between “investment” and
“Alibaba” through “in,” referred to as Relationship Constraints, formally defined later.

ATHANA does not explicitly limit the scope of NLQs it supports. Instead, if
any word in the input NLQ, other than those of certain pre-defined types (e.g.,
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prepositions, adverbs, conjunctions), fails to be mapped into any ontology element,
ATHANA stops the interpretation process and returns an error message to the user.

Ontology-driven InterpretationGenerator. This component takes the set of evidences
produced earlier and the ontology as input and generates a ranked list of interpreta-
tions. Each interpretation consist of a selected set (SS) and a set of interpretation trees
(ITree), formally defined as follows.

Definition 4.8 Selected Set. Given an Evident Set V , a Selected Set SS D f.ti 7!

ei /j8.ti 7! Ei / 2 V; 9ei 2 Eig. An ontology element ei is called a chosen element) for
evidence .ti 7! Ei / 2 V , short as a chosen element.

Definition 4.9 Interpretation Tree. Given an ontology O D .C; R; P / and a se-
lected set SS , an interpretation tree ITRee D .C 0; R0; P 0/ and C 0 � C , R0 � R, and
P 0 � P .

Each interpretation tree IT ree must satisfy the constraints specified by the input
query and the domain ontology. Specifically it needs to satisfy the following con-
straints.

Evidence Cover. It must contain the chosen element in the corresponding Se-
lected Set. In other words, the ITree covers all the annotated tokens in the NLQ.
Weak Connectedness. The undirected graph created by removing the direction
of the relation edges in the IT ree must be connected.
Inheritance Constraints. A chosen element cannot inherit a property or a re-
lation from another chosen element who corresponds to its child (or member)
concept. For instance, if a chosen element corresponds to the Investment concept
in the ontology in Figure 4.27, then it cannot inherit the property “type” from
its child concept InstitutionalInvestiment.
Relationship Constraint. A Relationship Constraint is a triple of tokens
ht1; t2; t3i whose corresponding chosen elements e1, e2, e3 in SS satisfy the fol-
lowing constraints: e1; e3 2 C [ P and e2 2 R. The IT ree satisfies the Rela-
tionship Constraint if and only if e2 is on the path between e1 and e3 in IT ree.

Figure 4.31 shows a top ranked interpretation consisting of two interpretation trees
for the NLQ in Figure 4.29. Details on how to generate and ranked the interpretation
trees using a modified Steiner Tree algorithm are described in Saha et al. [2016].
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Figure 4.31: Interpretation trees in a top ranked interpretation for the NLQ in Figure 4.29.

Ontology Query Builder. This component constructs an OQL query for each inter-
pretation by generating an OQL query that is a union of the OQL query for one
interpretation tree in the interpretation.

For each interpretation tree and its corresponding selected set (SS), ATHANA gen-
erates the OQL clauses select, from, where, groupBy, and OrderBy clauses based
on a combination of lexicon/pattern matches and deterministic mapping algorithms
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in Saha et al. [2016]. Figure 4.32 presents the OQL query generated for the Inter-
pretation Tree in Figure 4.31a.

SELECT    Sum(oInstituionalINvestment.amount),

          oInstitutionalInvestment.reported_year

FROM      InstitutionalInvestment OInstitutionalInvestment,

          InvesteeCompany oInvesteeCompany

WHERE     oInstitutionalInvestment.type = “restricted_stock”,

          oInstitutionalInvestment.reported_year >= ‘2012’

          oInstitutionalInvestment.reported_year >= Inf,

          oInvesteeCompany.name =

                                ‘Alibaba Holdings Ltd.’, ‘Alibaba Inc.’,

                                ‘Alibaba Capital Partners’},

          oInstitionalInvestment → isa → InvestedIn → unionOf_Security

                        → issuedBy=oInvesteeCompany

GROUP BY  oInstituionalInvestment.reported_year

Figure 4.32: An example OQL query.

It is worth noting that when an interpretation contains more than one interpretation
trees (e.g., Figure 4.31), it usually indicates the existence of ambiguity. ATHANA
chooses not to explicitly disambiguate in such cases, and instead returns results for a
union of them.

The second stage of ATHANA is Query Translation, which is responsible for converting
an OQL query over an ontology into a SQL query over a database. Given an OQL query,
its associated ontology, and a pre-defined Ontology-to-Database Mapping, the translation from
OQL to SQL is done with a deterministic algorithm in a fairly straightforward manner. For
the same OQL query, Query Translator generates one SQL query for each relational schema.
As such, conceptually, the same NLQ query can be executed against more than one relational
database at the same time.

When multiple interpretation are available for the same NLQ, multiple SQL queries will
be generated. ATHANA automatically picks the top-ranked one for execution and presents
the results to the user. Meanwhile, it also presents to the user a complete list of ranked SQL
queries along with their natural language explanation [Luk and Kloster, 1986] to allow the user
to choose an alternative query, if the top-ranked one fails to capture her intent.

Main results
ATHANA takes a ontology-driven two-stage approach in supporting natural languages against
relational databases. By separating query interpretation from the actual physical store, it po-
tentially helps to reduce the challenges associated with query understanding and translation as
a user tends to be more familiar with the domain ontology than with the underlying physical
database schema. In addition, this approach allows the system to generate queries on different
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relational schema and potentially non-relational data stores as well. Experimental results over
three benchmark datasets demonstrate the effectiveness and efficiency of this approach.

4.5.8 SQLIZER
SQLizer [Yaghmazadeh et al., 2017] uses a hybrid approach to build NLIDBs with a com-
bination of machine learning and rules. As depicted in Figure 4.33, it is constructed in two
phrases—training phase, during which it learns a semantic parser model, and deployment phrase,
during which it takes a NLQ as input, applies the semantic parser model learned to generate a
query sketch, completes it using rules, and iteratively refines and repairs any low-confident query
sketch using rules and heuristics until the score of the generated SQL query cannot be improved.
We next explain in detail how this hybrid approach works in constructing SQL queries from
natural language.

NLQ

Low-confident
Query Sketch

Updated
Query Sketch

Trained Model

Training Phase Runtime Phase

Query Sketch Queries RDBMS

Database
Schema +
Statistics

Training
Data

Sketch
Grammar

Semantic
Parser

SEMPRE
Framework

Program
Synthesis

Sketch
Repair

Figure 4.33: SQLizer overview.

Training Phrase
During the training phrase, SQLizer builds its semantic parser on top of the SEMPRE frame-
work [Berant and Liang, 2014], a toolkit for building semantic parsers, as well as leverages
Stanford Parser [Manning et al., 2014]. The logical form representation produced by the se-
mantic parser are called query sketches, a special type of program sketches [Solar-Lezama et al.,
2006], defined by a sketch grammar designed to express extended relational algebra.
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Table 4.4: Grammar of extended relational algebra. t , c denote table and column names; f

denotes an aggregate function, and v denotes a data value.
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As depicted in Figure 4.4, this grammar extends relational algebra with aggregate func-
tions and a group-by operator (a subset of extended relational algebra supported by SQL).
Specifically, aggregate functions f 2 AggrFunc D fmax; min; avg; sum; countg are specified as a
subscript in the projection operation. …f .c/.T / denotes the aggregate value obtained by applying
f to column c of relation T . Similarly, …g.f .c1/;c2/ represent a group-by operation that divides
rows of T into groups gi based on the values stored in column c2 and for each gi , returns the
aggregate value f .c1/.

A query sketch � is essentially a relational algebra term with missing table and column
names, where ‹h represents an unknown column with natural language hint h (i.e., a natural
language description of the unknown), and ‹‹h represents an unknown table name with cor-
responding hint h. The natural language hits will be used later for to help complete the query
sketch. If there is no hint associated with a hole, SQLizer simply writes ‹ for columns and ‹‹

for tables.
Given a set of training data consisting of pairs of English sentences and their correspond-

ing query sketches, SQLizer learns a semantic parser that can map a given English sentence into
a list of logical form xi , each associated with a probability that the English sentence corresponds
to xi , computed using the features inherited from SEMPRE framework.

Runtime Phase
At runtime, given an NLQ, SQLizer first deploys the learned semantic parser to generates the
top k most-likely query sketches, ranked by a score indicating the likelihood that the corre-
sponding query sketch is the intended interpretation of the input query.

For instance, given the query “What is the number of papers published in SIGMOD
2015?”, the highest-ranked query sketch returned by the semantic parser is …count.‹Œpapers�/

.�‹DSIGMOD 2015 .‹‹Œpapers�//, which corresponds to the following partially specific SQL state-
ments:
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SELECT count(?[papers])
FROM ??[papers]
WHERE ? = 'SIGMOD 2015'.

In this partial SQL statement, ?? represents a unknown table, and ? represents a unknown
columns, with words in the square brackets represent so-called “hints” for them. For instance,
??[papers] indicates that the table represented by ?? semantically corresponds to the English
word “papers.”

Given a query sketch, the Program Synthesis component of SQLizer (Figure 4.33) enu-
merates through the database schema to obtain all possible well-typed sketch completions by filling
in as many of the holes as possible. Each sketch complete corresponds to a (potentially partially
specified) SQL query. It applies a set of heuristic rules to obtain the confidence score for each
sketch completion based on the following high-level intuitions; we skip the detailed algorithm
in this book.

Names of schema elements. Each hole in a query sketch contains natural language hint.
Sketch completion for that hole with table/column names in the database schema
that is similar to the natural language hint have a higher chance to be the intended
table/column.

Foreign and primary keys. Foreign keys provide links between data in two different
database tables. As such, join operations involving foreign keys are more likely to be
the intended term.

Database contents. The confidence score should also take the content of the database
into account. For example, if there exists no entry in table T satisfies predicate �, then
a sketch completion corresponding to the candidate term ��.T / should be assigned
with a lower confidence score.

The above step generates a ranked list of possible well-typed sketch completions, each
associated with a confidence score. In some cases, SQLizer may fail to find high-confidence
sketch completion due to the existence of significant semantic gap between a user query and the
underlying database, as earlier in Section 4.3.1. In such a case, the Sketch Repair component in
SQLizer (Figure 4.33) seeks to repair the query sketch using a set of heuristic rules.

For instance, given the sample database in Figure 4.4, SQLizer fails to generate a high-
confident sketch completion for the example sketch …count.‹Œpapers�/.�‹DSIGMOD 2015.‹‹Œpapers�//
discussed earlier, as there exists no database entry “SIGMOD 2015” in the database. In such a
case, SQLizer first tries to repair the sketch by splitting the predicate �‹DSIGMOD 2015 into two
and produces …count.‹Œpapers�/.�.‹DSIGMOD/^.‹D2015/.‹‹Œpapers�//, corresponding to the following
partial SQL statements:

SELECT count(?[papers])
FROM ??[papers]
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WHERE ? = 'SIGMOD'

AND ? = '2015'.

For the sample database in Figure 4.4, SQLizer is able to find a high-confidence comple-
tion of the updated query sketch, corresponding to the following query:

SELECT count(Publication.PubID)
FROM Publication
WHERE Publication.Venue = 'SIGMOD'

AND Publication.Year = '2015'.

However, when we apply SQLizer over another publication database with a slightly dif-
ferent schema (Figure 4.34), SQLizer fails to find a high-confidence completion of this updated
sketch either, as there is no single database table contains both the entry “SIGMOD” and the en-
try “2015.” In such a case, SQLizer tries to repair it by introducing an additional join and rewrite
the original query sketch into the following: …count.‹Œpapers�/.�.‹DSIGMOD/^.‹D2015/.‹‹‹Œpapers� ‰

‹‹‹//, corresponding to

SELECT count(?[papers])
FROM ??[papers] JOIN ??

ON ? = ?
WHERE ? = 'SIGMOD'

AND ? = '2015'.

This time SQLizer is able to find a high-confidence completion of the updated query
sketch, corresponding to the following query:

SELECT count(Publication.PubID)
FROM Publication J
JOIN Venue ON Publication.VenueID = Venue.VenueID
WHERE Venue.name = 'SIGMOD'

AND Publication.year = 2015.

Main Results
Takes a hybrid approach toward supporting NLIDBs by combining machine-learning and rule-
based approaches. It leverages a generic semantic parser framework to learn a semantic parser
from training data (in a database-agnostic fashion) to parse a natural language query into a
ranked list of query sketches. It then applies heuristics and domain knowledge to complete
the query sketches and repair them in an iterative fashion until it produces at least one high-
confidence well-formed SQL query. The experimental results demonstrates that Sqlizer signif-
icantly outperforms NaLIR (Section 4.5.5). The evaluation also confirms the importance of the
heuristic rules that leverage domain knowledge for sketch completion and for sketch repair.



98 4. NATURALLANGUAGE INTERFACESTODATABASES

AuthorID AuthorName Affi  liation

M001 Michael Stonebraker MIT

J002 Jeff rey D. Ullman Stanford University

H003 H. V. Jagadish University of Michigan

… … …

PubID AuthorID Title VenueID Year

001 M001 ! e design and implementation of INGRES V001 1976

002 J002 Introduction to Automata ! eory, Languages, and 
Computation

V002 2006

004 H003 Structural joins: A primitive for effi  cient XML 
query pattern matching

V003 2002

… … … …

VenueID Venue Type Publisher

V001 MIT Journal ACM

V002 SIGMOD Record Journal ACM

V004 ICDE Conference IEEE

… … … …

Author

Venue

Publication

Figure 4.34: Sample publication database.

4.5.9 SEQ2SQL
Seq2SQL [Zhong et al., 2017] is an NLIDB developed using deep neural network for translat-
ing natural language questions to the corresponding SQL queries. As can be seen in Figure 4.35,
it is built in two phases: training and runtime. We now describe each of the phases in more de-
tails.

Training Phase
During the training phase, Seq2SQL learns a model that takes a question and a table schema7

as input and outputs a corresponding SQL query. Figure 4.36 depicts an example table and
one labeled data instance associated with the table, consisting of a natural language question,

7A table schema is the names of the columns in a table.
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Figure 4.35: Seq2SQL overview.

its corresponding SQL query, and the result obtained from the table with the SQL query. In-
ternally, the Model Learning component learns an augmented pointer network [Vinyals et al.,
2015] that consists of three parts, each corresponding to a part in the most common structure in
SQL queries (Figure 4.37): Aggregation Classifier, SELECTColumn Pointer andWHEREClause
Pointer Decoder.8 We present each of the models at high-level and skip the details on the learning
algorithms in this book.

Aggregation Classifier. This classifier classifies an aggregation operation for the query,
including COUNT, MIN, MAX, and the no-aggregation operation NULL. It is
learned with using cross entropy via multi-layer perceptron. The cross entropy loss for
the aggregation operation is denoted as Lagg .

SELECT Column Pointer. The selection of column(s) depends both on the table
schema and the question itself. For instance, in the example query in Figure 4.36,
“how many players” indicates that the query is asking for “players,” which corresponds

8Seq2SQL supports only SQL queries against one table at a time, thus there is no need to learn FROM clauses.
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Player No. Nationality Position Years in Toronto School Team

Mark Baker 3 United States Guard 1998–1999 Ohio State

Marcus Banks 3 United States Guard 2009–2010 UNLV

… … … …

Rasual Butler 9 United States Guard-Forward 2011–2012 Las Salle

… … … …

… …

… …

How many players were with the school team La Salle?

1

Table: TorontoRoster

Question

SQL Query

Result

SELECT COUNT (PLAYER)

FROM [Toronto Roster]

WHERE [School/Club Team] = “Las Salle”

Figure 4.36: An example table and a labeled data instance in WikiSQL dataset (simplified for
presentation).

SELECT $ArgFunction $ColumnName

FROM   $TableName

WHERE  ($ColumnName $op $Value)*

Figure 4.37: SQL structure supported by Seq2SQL. $ArgFunction 2 {COUNT, MIN, MAX, NULL}
and $op 2 {=, <, >}.

to the “Player” column. SELECT column prediction is therefore a matching prob-
lem, solvable using a pointer: given the table schema representations and a question
representation, select a column that best matches the question. It is also learned cross
entropy via multi-layer perception, where the cross entropy loss is denoted as Lsel.
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WHEREClause PointerDecoder. In SQL, the predicates in a WHERE clause can be

in reordered arbitrarily and still produces the same result. Learning supervised using
cross entropy loss would wrongly penalize the difference in the order of predicates
between a generated WHERE clause and the ground truth. As such, the model for
WHERE clause is trained using policy gradient reinforcement learning. As shown in
Figure 4.35, the reward is calculated by comparing the result obtained using a gener-
ated SQL against the expected result. The loss, Lwhe, is the negative expected reward
over possible WHERE clauses.

The final model of Seq2SQL is learned using gradient descent to minimize the Mixed
Objective Function L D Lagg C Lsel C Lwhe.

Last but not the least, before Model Learning, Seq2SQL applies Stanford
CoreNLP Manning et al. [2014] to tokenize the natural language questions and then
apply Token Normalization to normalize the tokens into ones that exist in the table. The exact
details are not discussed in Zhong et al. [2017], but as discussed earlier in Section 4.3.1, this
step is essential in bridging the semantic gap between a user query and the underlying database.

Runtime Phase
As illustrated in Figure 4.35, the runtime phase of Seq2SQL is quite simple compared to other
NLIDBs discussed in this book. The core component is the Seq2SQL model, which takes a
tokenized and normalized natural language question and a table schema as input and outputs a
SQL query again the corresponding table.

Main Results
Seq2SQL showcases a machine model based on augmented pointer network that takes the com-
mon structure of SQL queries and the unordered nature of predicates into account. It demon-
strates the potential of learning machine learning models that can translate NLQ into a formal
database language directly without any intermediate representation. It also creates WikiSQL,
a dataset of 87726 manually annotated questions and SQL query pairs over 26375 tables from
Wikipedia. This large data set, despite of its simplicity (e.g., limited complexity of the queries
and tables), is an important first-step to enable more efforts toward the building of NLIDBs
with deep learning techniques (e.g.SQLNet proposed by Xu et al. 2017).

4.5.10 SUMMARY
Table 4.5 summarizes all the NLIDBs discussed in this section along a few key dimensions.
As can be seen, while an ideal NLIDB should support ad hoc natural language queries, self-
improving over the time, taking previous interactions with the user into account either without
making any parsing errors or capable of automatically correct them. Despite years of research,
existing NLIDBs are still far from perfect. Not surprisingly, so far no commercial database
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system provides NLQ support. However, this field is also moving fast with strong interest and
investment from both the academia and industry, with rapid progression undergoing.

4.6 RELATIONSHIPTOOTHERAREAS

4.6.1 RELATIONSHIPTOQUESTIONANSWERING
As illustrated in Figures 4.38a and 4.38b, on the high level a typical NLIDB system and Ques-
tion Answer (QA) systems looks almost identical: both take as input a question formulated in
natural language and must interpret and translate the question in order to answer it correctly.
However, there are several key difference between them: (i) the underlying data of NLIDBs is
structured or semi-structured, while that of QA systems is usually unstructured documents, as
classic QA systems are IR-based as discussed in Section 2.5; (ii) NLIDBs need to translate a
NLQ into formal queries based on languages (e.g., SQL) that are much more expressive than
the ones that QA systems needs to translate into for factoid questions (e.g., Boolean keyword);
and (iii) the results returned by NLIDBs for a NLQ are direct answers obtained based on the
execution of a structured query based on the original question; as such it is relatively difficult for
a user to verify the correctness of the results; in contrast, the results returned by a QA system are
passages or facts extracted from passages; as such, the user can inspect the passages to determine
the correctness of the results. As a result, the tasks of building an NLIDB is typically much more
complex and involved than building a QA system.

However, with the emerging of hybrid data management systems such as polystores and
data lakes (e.g., Deng et al. 2017, Duggan et al. 2015, Färber et al. 2012, IBM 2018), and the
rise of semantic search over unstructured and semi-structured data (Bast et al. 2016, Li et al.
2014b), the line between NLIDBs and QA system is becoming blur: an NLIDB for a hybrid
data management needs to generate queries that are suitable to run over all the different un-
derlying data management systems. Similarly, a knowledge-based QA system needs to produce
structured queries (Section 2.5). The two-stage design of ATHANA (Section 4.5.7) could be a
good starting point for designing NLIDBs for polystores, while knowledge-based QA systems
could adapt techniques in building NLIDBs such as those discussed in this book to handle more
complex query semantics.

4.6.2 RELATIONSHIPTOSEMANTIC PARSING
As discussed earlier in Section 2.4, semantic parsing [Mooney, 2007] refers to the task of trans-
lating natural language into a formal meaning representation on which a machine can act. Con-
ceptually, the task of translating a natural language question into a formal query against the
underlying database can be viewed as a specific type of semantic parsing. In another words,
building an NLIDB can be regarded as building a special-purpose semantic parser with a for-
mal query language as its meaning representation.
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Figure 4.38: Overview of (a) a typical NLIDB system; (b) a typical question answering system;
and (c) a typical semantic parser.

However, as can be seen from Figures 4.38a and 4.38c, the current design and implemen-
tation of a typical NLIDB system and a typical general-purpose semantic parser differ greatly.

(i) A typical NLIDB system heavily relies on domain knowledge or the knowledge of the
underlying data for query understanding and translation; in contrast, a general-purpose
semantic parser is usually built in a domain-independent fashion.

(ii) As described in Section 4.5, most NLIDB systems built so far are using deterministic al-
gorithms; in contrast, a typical semantic parser is usually a machine learning model trained
with labeled data.

(iii) How to interact with users has been a major design consideration when one builds an
NLIDB system, but is rarely a consideration when one builds a general-purpose semantic
parser.

In fact, in most cases, a general-purpose semantic parser can be used to help query un-
derstanding in an NLIDB system, but the NLIDB system itself still has to do the heavy lifting
in query interpretation and generation. It is worth noting, however, that with the increasing
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attentions on machine learning, the above differences start to change. Several recent NLIDB
systems, including SQLizer (Section 4.5.8 and Seq2SQL Section 4.5.9) discussed in this book,
have been built by leveraging techniques used in building general-purpose semantic parsers. We
refer the readers to Liang [2016] for a more comprehensive overview of the techniques used in
building semantic parsers.

4.7 SUMMARY
With the recent surge of voice-based personal assists, such as Apple’s Siri, Amazon’s Alexa, Mi-
crosoft’s Cortana, and Google Home, as well as chatbot APIs (e.g., IBM Watson Assistant, Mi-
crosoft Bot Framework, Api.ai, etc.), the demand for easier access to data will continue to grow.
The landscape of NLIDBs is rapidly changing with reignited interests from the industry as well
as academia. As a result, latest techniques developed to solve other artificial intelligence prob-
lem, such as deep neural network, has been adapted to provide better NLIDBs with preliminary
but promising results. We hope that by surveying existing work and provides a comprehensive
and systematic view of the problem space, we can help both researchers and practitioners in-
terested in building NLIDBs to better understand the challenges, leverage existing techniques,
and develop ones to address these challenges.
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C H A P T E R 5

Open Challenges and
Opportunities

The progress in natural language processing over the past couple of years has impacted many
related areas including machine translation, sentiment analysis, question answering, and infor-
mation extraction. Database management systems are also affected by these developments, and
this book reviews two areas where the progress has been significant: (1) natural language inter-
faces to databases and (2) natural language data management. The merger of database manage-
ment and natural language processing introduces many interesting challenges and opportunities,
some of which are discussed throughout the book. This chapter reviews a few more fundamental
challenges that are relevant to the merger.

5.1 RESOLVINGREFERENCES

Relational databases have been traditionally key-oriented; every entity has a key, every relation
has a key, and entities are referenced using their keys, giving rise to primary-foreign key rela-
tionships between tables. Keys also play a major role even in NoSQL databases (e.g., key-value
stores, triple stores, etc.). However, this simple abstraction of an entity in terms of a numeric
or a short string key does not carry over to natural languages. It is not uncommon for the same
entity to be referenced using multiple ids, and those ids can be ambiguous, referencing multiple
entities. This is a problem for both natural language data management and NLIDBs. Without
reliable ids, pulling data from different sources and joining them is a challenge. Also NLIDB
systems can struggle when there is a vocabulary gap and query references (e.g., for ad hoc queries)
do not align well with those in the database being queried. There has been progress in the area
of named entity disambiguation, especially when entities are listed in external sources (e.g.,
Wikipedia pages, RDF resources) [Cucerzan, 2007]. Also record linkage and deduplication has
been one of long-standing goals of data integration [Christen, 2012b, Stonebraker and Ilyas,
2018]. Any major progress in named entity disambiguation can impact natural language data
management and interfaces.
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5.2 UNDERSTANDINGNATURALLANGUAGETEXTAND
QUERIES

Understanding natural languages has been a challenge, often due to all the ambiguities that may
be present, the syntax variability that may be allowed and the background knowledge that may
be needed. Natural language statements and questions are expressed within a context and under-
standing or modeling context (or what is known as pragmatic) has been one of the most difficult
aspects of NLP. Future research is expected to make progress in areas where contextual infor-
mation is either less relevant or easily available. The progress in stateless NLIDBs (compared to
statefull systems) is an example of this trend.

5.3 MOBILENATURALLANGUAGEDATAMANAGEMENT

The number of mobile phone users has been rapidly increasing and is expected to pass the five
billion mark by 2019 as predicated by Statista [2018]; with more than half of those users being
smart phone users, the scale of content that is being produced or accessed is growing fast. A good
portion of this content is in natural language text (e.g., emails, tweets, web pages, documents).
Also, the need for conversational, situation-aware NLIDBs on these devices has never been
stronger (e.g., Siri, Alexa, Google Assistant, Cortana). Mobile devices bring new challenges in
natural language data management due to their limited battery and bandwidth, but they also
offer opportunities in terms of additional information that may be available about users and
the context in which the interactions are taking place. For example, more than 30% of mobile
searches are location-based [Sohn et al., 2008], and NLIDBs can better be geared toward such
searches.

5.4 MULTILINGUAL/CROSS-LINGUAL SUPPORT

Much of the work discussed in the book focus on one single language, namely English. Ob-
viously the needs for managing natural languages and building natural language interfaces to
databases are universal. Ideally, content with the same semantics but in different languages
should be represented in the same abstraction and users should be able to issue queries in dif-
ferent languages against the same underlying database. However, as briefly touched upon in
Section 2.2, techniques in language analysis and understanding vary across different languages
and most progresses usually happen for English. Providing universal language analysis and un-
derstanding as well as interfaces remain open research questions, with notable progress made on
universal part-of-speech tagging (e.g., Sylak-Glassman et al. 2015), universal dependency (e.g.,
Nivre et al. 2016), and universal semantic parsing (e.g., Akbik et al. 2015, Reddy et al. 2017).
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5.5 EVALUATION
One obstacle in developing NLIDBs and natural language data management systems is the lack
of benchmark(s). Benchmarks have been instrumental in the database community because of an
emerging consensus on what needs to be measured and how it should be measured. With no
standard benchmark, many studies end up developing their own test suites or using proprietary
data, which limits access to the public. An interesting open challenge in natural language data
management and interfaces is developing benchmarks that capture different types of workloads
that are important for a class of users or applications. In addition, with the rising interest in
applying machine learning, in particular deep learning, toward NLIDB, building labeled dataset
of sufficient size and complexity is becoming increasingly important for both developing and
benchmarking NLIDBs. Recent work [Brad et al., 2017, Trivedi et al., 2017, Zhong et al.,
2017] is making some progress in fulfilling the needs.

Besides benchmark dataset, another important aspect of evaluation is evaluation metrics.
Manually examining the formal queries generated from NLQ is the most accurate way to mea-
sure the correctness of them. However, it is labor intensive and does not scale. One common
alternative (e.g., Li and Jagadish 2014, Li et al. 2007b, Saha et al. 2016, Yaghmazadeh et al.
2017) is to compare the results obtained by executing these queries against the expected results.
However, the issue is that different queries could generate the same result and thus such metrics
could reward the wrongly generated queries. Another alternative (e.g., Brad et al. 2017, Iyer
et al. 2017, Xu et al. 2017, Zhong et al. 2017) is to compare the generated queries (or the in-
termediate logical forms) against the ground truth. However, since the query could be written
in different ways, such metrics could mistakenly penalize correctly generated queries based on
exact matches (e.g., Zhong et al. 2017), while over-rewarding wrongly generated queries that
are syntactically similar to but semantically different from the ground truth (e.g., BLEU [Pap-
ineni et al., 2002] used by Brad et al. 2017). Designing the right evaluation metrics that can be
automatically evaluated and easily interpreted remains an open challenge.
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C H A P T E R 6

Conclusions
Addressing the challenges related to natural language, both in terms of data management and
interfaces toward databases, is critical to the increasing volume of natural language data and
demands for democratizing the access to databases. This book explores the progress that has
been made by the database community on the topics of natural language data management and
natural language interfaces toward databases. It also presents open challenges and opportunities
related to these topics. The book grew out of a three-hour tutorial on the same subject [Li and
Rafiei, 2017], given by the authors at SIGMOD 2017.

After a brief introduction in Chapter 1, Chapters 3–4 cover the core topics of natural
language data management and natural language interfaces to databases. First, each chapter
starts with a quick overview of the topic and identifies related key challenges. Then, subsequent
sections in the chapter present detailed discussions on recent innovative techniques that have
been proposed to address the challenges. Section 4.5 also presents a few works on building
natural language interfaces to databases to highlight design considerations and decisions made
by each system. Finally, Chapter 5 describes the open challenges and opportunities that arise in
natural language data management and interfaces.

The techniques presented in the book are not intended to be an exhaustive list of works
related to natural language data management and interfaces, nor can they be expected to be
given the fast-moving pace of this field of research. However, we do hope that this book services
as a starting point for those interested in pursuing additional work on these exciting topics and
realize the grand vision laid out by Ted Codd nearly half a century ago.
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