COGNITIVE SCIENCE SERIES

Natural Language Processing
and Computational Linguistics 1

Speech, Morphology, Syntax

Mohamed Zakaria Kurdi

WILEY

200290
File Attachment
Thumbnail.jpg

Natural Language Processing and Computational Linguistics 1

Series Editor
Patrick Paroubek

Natural Language Processing
and Computational
Linguistics 1

Speech, Morphology and Syntax

Mohamed Zakaria Kurdi

;

WILEY

First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com
©ISTE Ltd 2016

The rights of Mohamed Zakaria Kurdi to be identified as the author of this work have been asserted by
him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016945024

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-848-2

Contents

Introduction

Chapter 1. Linguistic ResourcesforNLP.

1.1. The concept of a corpus
1.2. Corpus taxonomy
1.2.1. Written versus spoken . . .
1.2.2. The historical point of view
1.2.3. The language of corpora. .
1.2.4. Thematic representativity .
1.2.5. Age range of speakers . . .

1.3.1. The Gutenberg project . . .

1.3.2. The linguistic data consortium
1.3.3. European language resource agency.
1.3.4. Open language archives community.

1.3.5. Miscellaneous
1.4. The lifecycle of a corpus
1.4.1. Needs analysis.

1.4.2. Design of scenarios to collect data

forthecorpus
1.4.3. Collection of the corpus . .
1.4.4. Transcription
1.4.5. Corpus annotation
1.4.6. Corpus documentation . . .
1.4.7. Statistical analysis of data .
1.4.8. The use of corpora in NLP

—_—

O O 000 JWn W B b —

—_ = =
N OO OO

12
12
16
18
22
22
23

vi Natural Language Processing and Computational Linguistics 1

1.5. Examples of existing corpora
1.5.1. American National Corpus
1.5.2. Oxford English Corpus
1.5.3. The Grenoble Tourism Office Corpus.

Chapter 2. The Sphere of Speech

2.1. Linguistic studies of speech
2.1.1.Phonetics.
2.1.2.Phonology

2.2.Speechprocessing.
2.2.1. Automatic speech recognition
2.2.2.Speechsynthesis

Chapter 3. Morphology Sphere.

3.1. Elements of morphology
3.1.1. Morphological typology
3.1.2. Morphology of English
3.1.3.Partsofspeech
3.1.4. Terms, collocations and colligations.

3.2. Automatic morphological analysis
32.1.Stemming,
3.2.2. Regular expressions for morphological analysis
3.2.3. Informal introduction to finite-state machines .
3.2.4. Two-level morphology and FST
3.2.5. Part-of-speech tagging

Chapter 4. Syntax Sphere

4.1. Basic syntactic concepts
4.1.1. Delimitation of the field of syntax
4.1.2. The concept of grammaticality
4.1.3. Syntactic constituents
4.1.4. Syntactic typology of topology
andagreement.
4.1.5. Syntactic ambiguity
4.1.6. Syntactic specificities of
spontaneous oral language

4.2. Elements of formal syntax
4.2.1. Syntax trees and rewrite rules.
4.2.2. Languages and formal grammars.
4.2.3. Hierarchy of languages
(Chomsky—Schiitzenberger)

............ 23
............ 23
............ 23
............ 24

............ 25

............ 25
............ 25
............ 46
............ 61
............ 62
............ 80

Contents vii

4.2.4. Feature structures and unification 162
4.2.5. Definite clause grammar. 169
4.3. Syntactic formalisms 171
43.1.X-bar ..o 171
4.3.2. Head-driven phrase structure grammar 178
4.3.3. Lexicalized tree-adjoining grammar. 193
4.4, AUtomatic parsing v v vt 201
4.4.1. Finite-state automata 202
4.4.2. Recursive transitionnetworks L 203
443 . Top-downapproach 207
4.4.4 Bottom-upapproach 212
4.4.5. Mixed approach: left-cormer 215
4.4.6. Tabular parsing (chart). 221
4.4.7. Probabilistic parsing 225
4.4.8. Neural networks. 233
4.4.9. parsing algorithms for
unification-based grammars L. 237
4.4.10. Robust parsing approaches, .. 238
4.4.11. Generation algorithms 242
Bibliography. 245

Introduction

Language is one of the central tools in our social and professional life.
Among other things, it acts as a medium for transmitting ideas, information,
opinions and feelings, as well as for persuading, asking for information, giving
orders, etc. Computer Science began to gain an interest in language as soon as
the field itself emerged, notably within the field of Artificial Intelligence (Al).
The Turing test, one of the first tests developed to judge whether a machine
is intelligent or not, stipulates that to be considered intelligent, a machine
must possess conversational abilities that are comparable to those of a human
being [TUR 50]. This implies that an intelligent machine must possess
comprehension and production abilities, in the broadest sense of these terms.
Historically, natural language processing (NLP) got itself focused on the
potential for applying such technology to the real world in a very short span of
time, particularly with machine translation (MT) during the Cold War. This
began with the first machine translation system which was developed as the
brainchild of a joint project between the University of Georgetown and IBM in
the United States [DOS 55, HUT 04]. This work was not crowned with the
success that was expected, as the researchers soon realized that a deep
understanding of the linguistic system is a prerequisite for any comprehensive
application of this kind. This discovery, presented in the famous report
by automatic language processing advisory committee (ALPAC), had a
considerable impact upon machine translation work and on the field of NLP in
general. Today, even though NLP is largely industrialized, the interest in basic
language processing has not waned. In fact, whatever the application of
modern NLP, the use of a basic language processing unit such as a
morphological, syntactic, recognition or speech synthesis analyzer is almost
always indispensable (see [JON 11] for a more complete review of the history
of NLP).

x Natural Language Processing and Computational Linguistics 1

I.1. The definition of NLP

Firstly, what is NLP? It is a discipline which is found at the intersection
of several other branches of science such as Computer Science, Artificial
Intelligence and Cognitive Psychology. In English, there are several terms
for certain fields which are very close to one another. Even though the
boundaries between these designated fields are not always very clear, we are
going to try to give a definition without claiming that the definition is
unanimously accepted in the community. For example, the terms formal
linguistics or computational linguistics relate more to models or linguistic
formalities developed for IT implementation. The terms Human Language
Technology or Natural Language Processing, on the other hand, refer to a
publishing software tool equipped with features related to language
processing. Furthermore, speech processing designates a range of techniques
from signal processing to the recognition or production of linguistic units
such as phonemes, syllables or words. Except for the dimension dealing with
the signal processing, there is no major difference between speech
processing and NLP. Many techniques that have initially been applied
to speech processing have found their way into applications in NLP,
an example being the Hidden Markov Models (HMM). This encouraged us
to follow the unifying path already taken by other colleagues, such as
[JUR 00], in this book. This path involves grouping NLP and speech
processing into the same discipline. Finally, it is probably worth to mention
the term corpus linguistics which refers to the methods of collection,
annotation and use of corpora, both in linguistic research and NLP. Since
corpora have a very important role in the process of constructing an NLP
system, notably those which adopt a machine learning approach, we saw fit
to consider corpus linguistics as a branch of NLP.

In the following sections, we will present and discuss the relationships
between NLP and related disciplines such as linguistics, Al and cognitive
science.

1.1.1. NLP and linguistics

Today, with the democratization of NLP tools, such tools make up the
toolkit of many linguists conducting empirical work across a corpus.
Therefore, Part-Of-Speech (POS) taggers, morphological analyzers and
syntactic parsers of different types are often used in quantitative studies.

Introduction xi

They may also be used to provide the necessary data for a psycholinguistics
experiment. Furthermore, NLP offers linguists and cognitive scientists a new
perspective by adding a new dimension to research carried out within these
fields. This new dimension is testability. Indeed, many theoretical models
have been tested empirically with the help of NLP applications.

1.1.2. NLP and Al

Al is the study, design and creation of intelligent agents. An intelligent
agent is a natural or artificial system with perceptual abilities that allows it
to act in a given environment to satisfy its desires or successfully achieve
planned objectives (see [MAR 14a] and [RUS 10] for a general introduction).
Work in Al is generally classified into several sub-disciplines or branches,
such as knowledge representation, planning, perception and learning. All these
branches are directly related to NLP. This gives the relationship between Al
and NLP a very important dimension. Many consider NLP to be a branch of
Al while some prefer to consider NLP a more independent discipline.

In the field of Al, planning involves finding the steps to follow to achieve
a given goal. This is achieved based on a description of the initial states and
possible actions. In the case of an NLP system, planning is necessary to
perform complex tasks involving several sources of knowledge that must
cooperate to achieve the final goal.

Knowledge representation is important for an NLP system at two levels.
On the one hand, it can provide a framework to represent the linguistic
knowledge necessary for the smooth functioning of the whole NLP system,
even if the size and the quantity of the declarative pieces of information in
the system vary considerably according to the approach chosen. On the other
hand, some NLP systems require extralinguistic information to make
decisions, especially in ambiguous cases. Therefore, certain NLP systems
are paired with ontologies or with knowledge bases in the form of a semantic
network, a frame or conceptual graphs.

In theory, perception and language seem far from one another, but in
reality, this is not the case, especially when we are talking about spoken
language where the linguistic message is conveyed by sound waves
produced by the vocal folds. Making the connection between perception and
voice recognition (the equivalent of perception with a comprehension

xii Natural Language Processing and Computational Linguistics 1

element) is crucial, not only for comprehension, but also to improve the
quality of speech recognition. Furthermore, some current research projects
are looking at the connection between the perception of spoken language and
the perception of visual information.

Machine learning involves building a representation after having
examined data which may or may not have previously been analyzed. Since
the 2000s, machine learning has gained particular attention within the field
of Al thanks to the opportunities it offers, allowing intelligent systems to be
built with minimal effort compared to rule-based symbolic systems which
require more work to be done by human experts. In the field of NLP, the
extent to which basic machine learning is used depends highly on the
targeted linguistic level. The extent to which machine learning is used varies
between almost total domination within speech recognition systems and
limited usage within high level processing such as in discourse analysis and
pragmatics, where the symbolic paradigm is still dominant.

1.1.3. NLP and cognitive science

As with linguistics, the relationship between cognitive science and NLP
goes in two directions. On the one hand, cognitive models can act to support a
source of inspiration for an NLP system. On the other hand, constructing an
NLP system according to a cognitive model can be a way of testing this
model. The practical benefit of an approach which mimics the cognitive
process remains an open question because in many fields, constructing a
system which is inspired by biological models does not prove to be
productive. It should also be noted that certain tasks carried out by NLP
systems have no parallel in humans, such as searching for information across
search engines or searching through large volumes of text data to extract
useful information. NLP can be seen as an extension of human cognitive
capabilities as part of a decision support system, for example. Other NLP
systems are very close to human tasks, such as comprehension and production.

1.1.4. NLP and data science

With the availability of more and more digital data, a new discipline has
recently emerged: data science. It involves extracting, quantifying and
visualizing knowledge, primarily from textual and spoken data. Since these
data are found in natural language in many cases, the role of NLP in the

Introduction xiii

extraction and treatment process is obvious. Currently, given the countless
industrial uses for this kind of knowledge, especially within the fields of
marketing and decision-making, data science has become extremely
important, even reminiscent of the beginning of the Internet in the 1990s.
This shows that NLP is as useful when applied as it is when considered as a
research field.

l.2. The structure of this book

The aim of this book is to give a panoramic overview of both early and
modern research in the field of NLP. It aims to give a unified vision of fields
which are often considered as being separate, for example speech processing,
computational linguistics, NLP and knowledge engineering. It aims to be
profoundly interdisciplinary and tries to consider the various linguistic and
cognitive models as well as the algorithms and computational applications on
an equal footing. The main postulate adopted in this book is that the best
results can only be the outcome of a solid theoretical backbone and a well
thought-out empirical approach. Of course, we are not claiming that this book
covers the entirety of the works that have been done, but we have tried to
strike a balance between North American, European and international work.
Our approach is thus based on a duel perspective, aiming to be accessible and
informative on the one hand but on the other, presenting the state-of-the-art of
a mature field which is in a constant state of evolution.

As a result, this work uses an approach that consists of making linguistic
and computer science concepts accessible by using carefully chosen
examples. Furthermore, even though this book seeks to give the maximum
amount of detail possible about the approaches presented, it nevertheless
remains neutral about implementation details to leave each individual some
freedom regarding the choice of a programming language. This must be
chosen according to personal preference as well as the specific objective
needs of individual projects.

Besides the introduction, this book is made up of four chapters. The first
chapter looks at the linguistic resources used in NLP. It presents the different
types of corpora that exist, their collection, as well as their methods of

xiv. Natural Language Processing and Computational Linguistics 1

annotation. The second chapter discusses speech and speech processing.
Firstly, we will present the fundamental concepts in phonetics and
phonology and then we will move to the two most important applications in
the field of speech processing: recognition and synthesis. The third chapter
looks at the word level and it focuses particularly on morphological analysis.
Finally, the fourth chapter covers the field of syntax. The fundamental
concepts and the most important syntactic theories are presented, as well as
the different approaches to syntactic analysis.

Linguistic Resources for NLP

Today, the use of good linguistic resources for the development of
NLP systems seems indispensable. These resources are essential for creating
grammars, in the framework of symbolic approaches or to carry out the
training of modules based on machine learning. However, collecting,
transcribing, annotating and analyzing these resources is far from being
trivial. This is why it seems sensible for us to approach these questions in an
introduction to NLP. To find out more about the matter of linguistic data and
corpus linguistics, a number of works and articles can be consulted,
including [HAB 97, MEY 04, WIL 06a, WIL 06b] and [MEG 03].

1.1. The concept of a corpus

At this point, a definition of the term corpus is necessary, given that it is
central for the subject of this section. It is important to note that research
works related to both written and spoken language data is not limited to
corpus linguistics. It is actually possible to use individual texts for various
forms of literary, linguistic and stylistic analyses. In Latin, the word corpus
means body, but when used as a source of data in linguistics, it can be
interpreted as a collection of texts. To be more specific, we will quote
scholarly definitions of the term corpus from the point of view of modern
linguistics:

— A collection of linguistic data, either written texts or a transcription
of recorded speech, which can be used as a starting point of linguistic
description or as a means of verifying hypotheses about a language
[CRY 91].

Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax,
First Edition. Mohamed Zakaria Kurdi.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

2 Natural Language Processing and Computational Linguistics 1

— A collection of naturally occurring language text, chosen to characterize
a state or variety of a language [SIN 91].

— The corpus itself cannot be considered as a constituent of the language:
it reflects the character of the artificial situation in which it has been
produced and recorded [DUB 94].

From these definitions, it is clear that a corpus is a collection of data
selected with a descriptive or applicative aim as its purpose. However, what
exactly are these collections? What are their fundamental properties? It is
generally thought that a corpus must possess a common set of fundamental
properties, including representativeness, a finite size and existing in
electronic format.

The problem with the representativeness of a corpus has been highlighted
by Chomsky. According to him, certain entirely valid linguistic phenomena
exist which might never be observed due to their rarity. Given the infinite
nature of language due to the possibility of generating an infinite number of
different sentences from a finite number of rules and the constant addition of
neologisms in living languages, it is clear that whatever be the size of a
corpus, it would be impossible to include all linguistically valid phenomena.
In practice, researchers construct corpora whose size is geared to the
individual needs of the research project. Thus, the phenomena that Chomsky
is talking about are certainly linguistically valid from a theoretical point of
view but are almost never used in everyday life. A sentence that is ten
thousand words long and formed in accordance with the rules of the English
language is of no interest to a researcher who is trying to construct a
machine translation system from English to Arabic, for example.
Furthermore, we often talk about applications which are task orientated,
where we are looking to cover the linguistic forms used in an applied
context, which is restricted to hotel reservations or asking for tourist
information, for example. In this sort of application, even though it is
impossible to be exhaustive, it is possible (even though it takes a lot of work)
to reach a satisfactory level.

Often, the size of a corpus is limited to the given number of words (a
million words, for example). The size of a corpus is generally predetermined
in advance during the design phase. Sometimes, teams, such as Professor
John Sinclair’s team at the University of Birmingham in England, update

Linguistic Resources for NLP 3

their corpus continuously (in this case, the term text collection is preferred).
This continuous updating is necessary to guarantee the representativeness of
a corpus across time: the opening up and the infinity of the corpus constitute
a means to guarantee diachronic representativeness. Infinite corpora are
particularly useful for lexicographers who are looking to include neologisms
in new editions of their dictionaries.

Today, the word corpus is almost automatically associated with the word
digital. Historically, the term referred mainly to printed texts or even
manuscripts. The advantages of digitalization are undeniable. On the one
hand, research has become much easier and results are obtained more
quickly and, on the other hand, annotation can be done much more flexibly.
Moreover, sometimes long-distance teamwork has become much easier.
Furthermore, in view of the extreme popularity of digital technology, having
data in an electronic format allows such data to be exchanged and allows
paper usage to be reduced (which is a good thing given the impact of paper
usage on the environment). However, this gave birth to some long-term
issues related to electronic corpora such as portability. With the development
of operating systems and text analysis software, it sometimes becomes
difficult to access documents that were coded with old versions of software
with a format that is obsolete. To get around this problem, researchers try to
perpetuate their data using independent versions of platforms and of text
processing software. XML markup language is one of the main languages
used for the annotation of data. More specialized standards such as the
EAGLES Corpus Encoding Standard and XCES are also available and are
under continuous development to allow researchers to understand linguistic
phenomena in a precise and reliable way.

In the field of NLP, the use of corpora is uncontested. Of course, there is
a debate surrounding the place of corpora within the approach to build NLP
systems, but to our knowledge, everyone is in agreement that linguistic data
play a very important role in this process. Corpora are also very useful
within linguistics itself, especially for those who wish to carry out a study on
a specific linguistic phenomenon such as collocations, fixed expressions, as
well as lexical ambiguities. Furthermore, corpora are used more and more in
disciplines such as cognitive science or foreign language teaching [NES 05,
GRI 06, ATW 08].

4 Natural Language Processing and Computational Linguistics 1

1.2. Corpus taxonomy

To establish a corpus taxonomy, many criteria can be used, such as the
distinction between spoken corpora, written corpora, modern corpora,
corpora of an ancient form of a language or a dialect, as well as the number
of languages in a given corpus.

1.2.1. Written versus spoken

This kind of corpus is made up of a collection of written texts. Often,
corpora such as these contain newspaper articles, webpages, blogs, literary
or religious texts, etc. Another source of data from the Internet includes
written dialogues between two people communicating on the Internet (such
as in a chat) or between a person and a computer program designed
specifically for this kind of activity. Often, newspaper archives such as The
Guardian (for English), Le Monde (for French) and Al-Hayat (for Arabic)
are also a very popular source for written texts. They are especially useful
within the fields of information research and lexicography. More
sophisticated corpora also exist, such as the British National Corpus (BNC),
the Brown Corpus and the Susanne Corpus, which consists of 130,000 words
of the Brown Corpus which have been analyzed syntactically. Written
corpora can appear in many forms. These forms differ as much at the level of
their structures and linguistic functions as at the level of their collection
method.

— Verbal dictations: these are often texts read by office software users to
gather digital texts in the form of data. Speakers vary in age range and it is
necessary to record speakers of different genders to guarantee phonetic
variation. Sometimes, geographical variations are also included, for example
(in case of American English), New York English versus Midwest English.

— Spoken commands: this kind of corpus is made up of a collection of
commands whose purpose is to control a machine such as a television or a
robot. The structures of utterances used are often quite limited because short
imperative sentences are naturally quite frequently used. Performance
phenomena such as hesitation, self-correction or incompleteness are not very
common.

— Human—machine dialogues: in this kind of corpus, we try to capture a
spoken exchange or a written exchange between a human user and a

Linguistic Resources for NLP 5

computer. The diversity of linguistic phenomena that we are able to observe
is quite limited. The main gaps come from the fact that machines are far
from being as good as humans. Therefore, humans adapt to the level of the
machine by simplifying their utterances [LUZ 95].

— Human—human dialogues mediated by machines: here, we have an
exchange (spoken or written) between two different human users. The
mediator role of the machine could quite simply involve transmitting written
sequences or sound waves (often with some extent of loss in sound quality).
Machines could also be more directly involved, especially in the case of
translation systems. An example of such situation could be a speaker “A”
who is speaking in French and this person who tries to reserve a hotel room
in Tokyo by speaking to a Japanese agent (speaker B) who does not speak
French.

— Multimodal dialogues: whether they are between a human and a
machine or mediated by a machine, these dialogues have the ability to
combine gestures and words. For example, in a drawing task, the user could
ask the machine to move a blue square from one place to another. Put this
square <pointing gesture towards the blue square> here <pointing gesture
towards the desired location>.

1.2.2. The historical point of view

The period that a linguistic corpus represents can be considered as a
criterion for distinguishing between corpora. There are corpora representing
linguistic usage at a specific period in the history of a given language. The
data covered by ancient texts often consist of a collection of literary texts
and official texts (political speeches, archives of a state). In view of the
fleeting nature of oral speech, it is virtually impossible to accurately identify
all the sensitivities of a spoken language long ago.

1.2.3. The language of corpora

A corpus must be expressed in one or several languages. This leads us to
need to distinguish between: monolingual corpora, multilingual corpora or
parallel corpora.

6 Natural Language Processing and Computational Linguistics 1

Monolingual corpora are corpora whose content is formulated with the
help of a single language. The majority of corpora that are available today
are of this type. Thus, examples of corpora of this type are very common: the
Brown Corpus and the Switchboard Corpus for written and spoken English,
respectively, and the Frantext corpus, as well as the OTG corpus for written
and spoken French, respectively.

Furthermore, parallel corpora include a collection of texts where versions
of the text in several languages are connected to one another. These corpora
can be represented as a graph or even a matrix of two dimensions n x m:
where n is the number of texts (7x) in the source language and m is the
number of languages. News reports from press agencies such as Agence
France-Presse (AFP) or Reuters are classic examples of sources of such
corpora: each report is translated into several languages. Furthermore,
several organizations and international companies such as the United
Nations, the Canadian Parliament and Caterpillar have parallel corpora for
various purposes. Some research laboratories have also collected this type of
corpora, such as the European corpus CRATER by the University of
Lancaster, which is a parallel corpus in English, French and Spanish. For a
corpus to really be useful, fine alignments must be made at levels such as
sentence or word. Thus, each sentence from text “T1” in language “L1” must
be connected to a sentence in text “T2” in language “L2”. An extract from a
parallel corpus with aligned sentences is shown in Figure 1.1.

the location register should as a minimum contain the following information about a
mobile station :

1’enregistreur de localisation doit contenir au moins les renseignements suivants sur
une station mobile:

sub d =386 ---------- &

handover is the action of switching a call in progress from one cell to another (or
radio channels in the same cell).

le transfert intercellulaire consiste & commuter une communication en cours d’une
cellule (ou d’une voie radioélectrique a ’autre a I’intérieur de la méme cellule).

Figure 1.1. Extract from a parallel corpus [MCE 96]

Linguistic Resources for NLP 7

Note that a multitude of multilingual corpora exist which are not parallel
corpora. For example, the corpus CALLFRIEND Collection is a corpus of
telephone conversations available in 12 languages and three dialects, and the
corpus CALLHOME is made up of telephone conversations available in six
languages. In these two corpora, the dialogues, which are not identical from
one language to another, are not connected in the same way as in the format
presented above.

Parallel corpora are a fundamental source used to build and test machine
translation software (see [KOE 05]). An important question to ask after
having identified multilingual data is the alignment of the content of these
data. To resolve such a fundamental problem to make use of multilingual
corpora, a number of approaches have been proposed. Some approaches are
based on the comparison of the length of sentences in terms of the number of
characters they contain [GAL 93] and in terms of the number of words
[BRO 91], while others adopt the criterion of vectorial distance between the
segments of the corpora considered [FUN 94]. Furthermore, there are
approaches which make use of lexical information to establish links between
two aligned texts [CHE 93]. Other approaches combine the length of
sentences with lexical information [MEL 99, MOO 02]. Note that the
GIZA++ toolbox is particularly popular for aligning multilingual corpora.

1.2.4. Thematic representativity

This criterion affects written corpora which target the representativity of
an entire language or at least a large proportion of this language. To achieve
representativity at such a broad level, having a selection of texts coming
from a variety of domains is essential. Three types of layouts can be cited:

— Balanced corpora: to guarantee thematic representativeness, texts are
collected according to their topics, so as to ensure that each topic is
represented equally.

— Pyramidal corpora: in these cases, corpora are constructed using large
collections for topics considered central and small collections for topics
considered less important,

8 Natural Language Processing and Computational Linguistics 1

— Opportunistic corpora: this kind of corpora is used in cases where there
are not enough linguistic resources for a given language or for a given
application. Therefore, it is indispensable to make the most of all available
resources, even if they are not sufficient to guarantee the representativeness
aimed for.

Note that guaranteeing the topic representativity of a corpus is often
complicated. In most cases, texts look at several different topics at once and
it is difficult (especially in the case of an automatic collection from a corpus,
with the help of a web crawler, for example) to decide exactly what topic a
given text covers. Moreover, as [DEW 98] underlines, there is no commonly
accepted typology used for the classification of texts. Finally, it may be
useful to mention that lexicography and online information research are
among the areas of application which are the most sensitive to thematic
representativeness.

1.2.5. Age range of speakers

The application or scientific domains often impose constraints regarding
the age range of speakers. Certain corpora are only made up of linguistic
productions uttered by adult speakers, such as air travel information system
(ATIS), distributed by LDC. Certain corpora that will be used to research
first language acquisition are made up of baby utterances. The most well-
known example of this is the child language data exchange systems
(CHILDES) corpus, collected and distributed at Carnegie Mellon University
in the United States. Finally, corpora exist which cover the linguistic
productions of adolescents, such as the spoken conversation corpora
collected at the University of Southern Demark SDU as part of the European
project NICE.

1.3. Who collects and distributes corpora?

The increasingly central role of corpora in the process of creating Al
applications has led to the emergence of numerous organizations and
projects with a mission to create, transcribe, annotate and distribute corpora.

Linguistic Resources for NLP 9

1.3.1. The Gutenberg project’

This is a multilingual library which distributes approximately 45,000 free
books. This project makes an extensive choice of books available to Internet
users, both at the linguistic level and at the level of topics available, since
it distributes literary works, scientific works, historical works, etc.
Nevertheless, since it is not specifically designed to be used as a corpus, the
works distributed in this project need some preprocessing to make them
usable as a corpus.

1.3.2. The linguistic data consortium

Founded in 1992 and based at the University of Pennsylvania in the
United States, this research and development center is financed primarily by
the National Science Foundation (NSF). Its main activities consist of
collecting, distributing and annotating linguistic resources which correspond
to the needs of research centers and American companies which work in the
field of language technology. The linguistic data consortium (LDC) owns an
extensive catalog of written and spoken corpora which covers a fairly large
number of different languages.

1.3.3. European language resource agency

This is a European level centralized not-for-profit organization. Since its
creation in 1995, the European language resource agency (ELRA?) has been
collecting, distributing and validating spoken, written and terminological
linguistic resources, as well as software tools. Although it is based in the
European city of Paris, this organization does not only look at European
languages. Indeed, many corpora of non-European languages, including
Arabic, feature in its catalog. Among its scientific activities, the ELRA
organizes a biannual conference: language resources and evaluation
conference (LREC).

1 https://www.gutenberg.org/.
2 http://www.elra.info/en/.

10 Natural Language Processing and Computational Linguistics 1

1.3.4. Open language archives community

Open language archives community (OLAC®) is a consortium of
institutions and individuals which is creating a virtual library of linguistic
resources on a global scale and is developing a consensus on best practices
for the digital archiving of linguistic resources by creating a network of
storing services for these resources.

1.3.5. Miscellaneous

Given the considerable costs of a quality corpus and the lucrative
character of most existing organizations, it is often difficult for researchers
who do not have a sufficient budget to get hold of corpora that they need for
their studies. Moreover, many manufacturers and research laboratories
jealously keep back the linguistic resources they own, even after the projects
for which the corpora were collected have finished.

To confront this problem of accessibility, many centers and laboratories
have begun to adopt a logic that is similar to that of free software.
Laboratories such as CLIPS-IMAG and Valoria have, for example, taken the
initiative of collecting and distributing two corpora of oral dialogues for free.
These corpora include the Grenoble Tourism Office corpus and the Massy
School corpus* [ANT 02]. In the United States, there are examples such as
the Trains Corpus collected by the University of Rochester, whose
transcriptions have been made readily available to the community [HEE 95].
In addition, the ngrams of the Google books’ is a corpus which is used more
and more for various purposes.

1.4. The lifecycle of a corpus

As an artificial object, corpora can only very rarely exist in the natural
world. Corpora collection often requires important resources. From this point
of view, in some ways, the lifecycle of a corpus resembles the lifecycle of a
piece of software. To get a closer look at the lifecycle of a corpus, let us
examine the flowchart shown in Figure 1.2. As we can see that there are four

3 http://www.language-archives.org/.
4 http://www.info.univ-tours.fr/~antoine/parole_publique/Massy/index.html.
5 https://books.google.com/ngrams.

Linguistic Resources for NLP 11

main steps involved in this process: preparation/planning, acquisition and
preparation of the data, use of the data and evaluation of the data. It is a
cyclical process and certain steps are repeated to deal with a lack of
linguistic representativeness (often diachronic, geographical or empirical in
nature) to improve the results of an NLP module.

Needs Scenario Corpus

. —_— [.
analysis planning collection
Corpus
transcription
Linguisitic l
1 analysis

Corpus

< Limits >

< / annotation
™ NLP application

Figure 1.2. Lifecycle of a corpus

Three main steps stand out within a lifecycle:

— The preparatory step: this is about the work carried out before the
corpus collection. In this step, key questions must be answered, such as:
Why do we need a corpus? What properties should such a corpus have? How
can we collect this corpus?

— The collection and the annotation of the corpus: this step covers the
work necessary to construct the corpus in such a way that the objectives
fixed in the preceding step can be reached.

— The use of the corpus: this step is about the statistical analysis and/or
the linguistic analysis of the contents of the corpus. This step can bring some
insights into the studied linguistic subject. For example, you can try to
calculate the number of syntactic constructions by knowing the thematic
context or the type of text (medical text, journalistic text, etc.). Moreover,
the corpus can be used to construct NLP modules.

As we shall see later on, the lifecycle of a spoken corpus is distinguished
by an additional step which is the transcription of spoken utterances.
Moreover, given their situation in a specific spatio-temporal context,

12 Natural Language Processing and Computational Linguistics 1

dialogue corpora (both written and spoken) require the definition of
scenarios to ensure a minimal level of representativeness of the dialogue
domain.

1.4.1. Needs analysis

Examples of the objectives of a corpus include analyzing varieties of
syntactic styles, constructing a morphological analyzer for a given language
and creating a dictionary. The needs analysis directly affects all the
parameters which define the type of a corpus. Among others, this allows the
following to be decided:

— Basic choices: whether the corpus is spoken or written, the languages,
etc.

— Speakers: the age range of speakers, their socioeconomic status, the
number of speakers used, the gender of the speakers (percentage of males
and females).

—Size of the corpus: when we have to collect a corpus to make a
dictionary for the Arabic language, for example, we need to use a very broad
corpus to make sure that all the linguistic registers and all socioeconomic
factors have been taken into account.

— Thematic structure of the corpus: pyramidal, balanced, etc.

1.4.2. Design of scenarios to collect data for the corpus

After having specified the collection objectives, the linguists must
describe how the corpus is to be collected. This must happen according to
the objectives specified in the preceding step. Note that the scenarios used
for collection involve both spoken and written conversation corpora and that
one scenario can sometimes be adapted to several collection methods.

1.4.3. Collection of the corpus

As we have already seen, a corpus is a collection of texts that is
specifically selected to satisfy a number of predetermined constraints. The
simplest way of collecting a corpus is to use real existing data. As far as
spoken data is concerned, the broadcast news is probably the most well-

Linguistic Resources for NLP 13

known example. It consists of a televised news program accompanied by a
written transcription. For written data, the Internet is incontestably the most
abundant source. This is also reflected by the diversity of the linguistic forms
and registers available online such as classical literature, informal chat and
discussion forums.

Collection is carried out using a web crawler, which collects information
automatically according to predefined thematic and linguistic criteria.
Creating a list of documents can be done in two different ways. One way is
to do this using a search engine: in this case, the crawler uses a number of
keywords which it successively submits to one or several search engines.
The URLs collected from the search results are added to the list of
documents to be analyzed. The search engine plays the role of a topic filter
here since only pages corresponding to the query topic are obtained. The
other way is to obtain the list of documents using a list of URLs. This list
can be initialized right at the beginning with a collection of links generated
manually. Next, new URLs are extracted from the pages visited and are used
to expand the list of URLs to be visited. This allows an exploration of the
document space using a Breadth First Search approach. Note that crawlers
must respect the rules of ethics which involve consuming the minimum
amount of resources from the server from which the data are extracted.
Often, crawlers are equipped with a language detection algorithm. An
algorithm like this is able to classify the documents according to the
language they are written with. Thus, the language and the theme of the text
are, in general, the main selection criteria for a page to be included in a
database. NLP specialists have made use of this source of information in the
development of several types of applications, including speech recognition
software and the POS tagging (see [VAU 00]).

In some cases, linguists use computer programs to generate sentences
which correspond mainly to syntactic criteria. Among the most well-adapted
tools is definite clause grammar (DCG), developed using the PROLOG
language (logic programming). Due to the limitations of current automatic
generation systems, it is often considered to be costly to constrain the
syntactic grammars used for this kind of objective using semantic criteria.
Thus, such corpora are of no interest to linguistic research. Often, they are
used to train speech recognition modules (in particular, statistical language
models). The main aim of this method is to obtain a number of syntactically
acceptable texts with a minimal amount of time and effort.

14 Natural Language Processing and Computational Linguistics 1

To collect linguistic data that conform to specific criteria, it is possible to
create a description of the system’s task, which can then be used as a support
for the generation of data. For example, at the University of Aleppo, in the
framework of the construction of the prototype of our system AraTis (airline
reservation system in Arabic), we carried out data collection of this type,
since at the beginning of the project, no linguistic data of this type were
freely available. The advantage of this method is that no special preparations
are required. The only requirements to collect data of a reasonable quality
and quantity include having a clear description of the system’s task and
getting a sufficient number of speakers. The number of speakers varies
naturally from one application to another when collecting data of reasonable
quality and quantity. Previous works have shown that the task as well as the
physical context influence the linguistic behavior of speakers [LUZ 95]. This
limits the possibilities of using such data for the rapid development of
prototypes since the statistical representativeness of the phenomena is not
guaranteed. The Wizard of Oz method is often used to address these
shortcomings.

To develop a human—-machine dialogue system of any type, we need to
model several sources of knowledge at different levels. This includes
linguistic and metalinguistic knowledge, which involve a considerable
number of factors which directly influence how conversations progress.
Besides, this knowledge includes information about the speaker, the
speaker’s way of speaking, the speaker’s linguistic level (whether they are
native or foreign). In addition, this knowledge includes information about
the conversation topic, how certain operations are carried out and knowledge
of the physical context, i.e. where the dialogue takes place (e.g. at a train
station, at an airport or at the workplace, etc.).

To take into consideration all the knowledge that we have just outlined
and to simulate the behavior of speakers when faced with a real system
before its creation, researchers use the Wizard of Oz method. The idea of
this method is to put the participant in a context which makes him think that
he is interacting with an intelligent computer program, but in reality, he is
interacting with a fellow human who is simulating the reactions of the
machine. This is shown in the diagram outlined in Figure 1.3.

Linguistic Resources for NLP 15

2—[{1 —2

. |

Confederate . Participant
Human—Machine

dialogue system
interface

Figure 1.3. Data collection system using the Wizard of Oz method

The main advantage of the Wizard of Oz method is that it comes close to
real utilization conditions and, therefore, the data produced is of a better
quality, both linguistically and in terms of the knowledge linked to the
applied usage of such data. However, in some cases, the cost and the tools
necessary for collection can exceed the financial means of most laboratories.
For some projects, such as those involving a dialog with an embedded
system in a car or an airplane, we need to use simulators for these machines
which makes the project extremely expensive. Therefore, only large
specialized companies are able to carry out collection using tools of this kind
(see [GEU 02] for an example of a collection for a corpus using a car
simulator).

Manually collected corpora, or sometimes corpora collected using the
Wizard of Oz method, are often used to develop a preliminary version of a
system or a prototype. This prototype can be used to collect better quality
data, which, in turn, can be used to improve the performance of the
prototype itself (see Figure 1.4). For example, we can cite the Halpin system,
which was developed within the laboratory CLIPS-IMAG [ROU 00]. This
system of human-machine dialogue that can be used to research
bibliographic references in the IMAG media library was put online to collect
usage data. This data is used later to improve the quality of the system.
Successive versions of the system were released, and at each iteration, the
quality of the system improved and consequently the quality of the data
collected was also improved.

16 Natural Language Processing and Computational Linguistics 1

Initial
corpus
v

L Real
corpus

Prototype

|

(o4
b

User

Figure 1.4. Diagram of a corpus data collection system using a prototype

Therefore, this is an incremental process that can continue as long as the
system is in use. In this way, it is possible to take into account the potential
evolutions of the linguistic and interactive behavior of users. Using prototypes
for collection is a very good way of obtaining real data easily. On the other
hand, this method requires a lot of resources to annotate the large quantities of
data which are obtained in this way. Furthermore, since the prototype is made
readily available to users, some users occasionally take the system for a game
and, therefore, do not produce utterances that correspond to the purpose of the
system. To filter out such utterances, extra effort is required.

1.4.4. Transcription

Transcription involves producing a written version of a recording
obtained using one of the different collection methods. A professional
transcription must be carried out rigorously and three fundamental principles
must be respected [EDW 93]:

— categories must be discriminating, exhaustive and contrastive;
— transcriptions must be easy to read;

— transcriptions must be systematic and predictable to make the automatic
processing of data possible.

Linguistic Resources for NLP 17

Before beginning the transcription, the type of transcription must be
decided, in order to know whether an orthographic, phonetic or prosodic (or
a combination) transcription is required. If a combination is required, the
transcriptions must be aligned. An agreement must be reached as much for
the language in question as for foreign words regarding problematic
spellings, which can be quite common in transcriptions, e.g. alternative
spellings for Kuwait in the French language (Kuweit, Koweit and Koweit).
This is necessary to guarantee the homogeneity of transcriptions. In the same
way, it is important to plan to take into account non-verbal phenomena
present in the speech signal when they are produced by speakers, e.g. clicks,
coughs, hesitations and long or short pauses. Short pauses are typically
between 0.2 and 0.5 seconds while long pauses are those whose length
exceeds 0.5 seconds. Equally, it is possible to consider sound phenomena
linked to the environment where the conversation is being recorded such as
objects falling, parallel conversations and the noise of cars or airplanes.

Often, the software used in transcription offers an open list in which
the user can insert labels to be used for certain phenomena. Let us look at
Figure 1.5, which gives us an example of the transcription of a radio
sequence produced using the transcription software Transcriber’, which is
distributed under the general public license (GPL). In this example, each
speaker’s contribution begins with the name given to them by the
transcribers. In the case of our example, we have two speakers: Simon
Tivolle and Patricia Martin. The two first speaking turns are marked #1 and
#2, respectively, which signifies that the two turns are happening in parallel.
The labels [laugh] and [i] indicate, respectively, that a laugh and an
inhalation occurred at that moment (by their presence in the sequence).
Finally, the labels [laugh-] and [-laugh] show that the sequence between
them is produced in parallel with a laugh.

Simon Tivolle : #1 yeah. #

Patricia Martin : #2 sure ? #

Simon Tivolle : really? [laugh] no. joke, Patricia’s joke. [i] France-Inter, [laugh-] it’s

7 o’clock [-laugh].

Patricia Martin : the news, Simon Tivolle:

Simon Tivolle : [i] hello! Tuesday April 28th. The national consultation on the national
high school: [i] a huge debate today and tomorrow in Lyon to learn about

Figure 1.5. Transcription example using the software Transcriber

6 http://www.etca.fr/CTA/gip/Projets/Transcriber/.

18 Natural Language Processing and Computational Linguistics 1

Finally, note that the process of transcribing large amounts of data
requires the implementation of a hierarchical cooperation process between
several linguists to verify the transcriptions more than once and, therefore,
ensure that the quality required is achieved.

1.4.5. Corpus annotation

Annotation is the process which involves enhancing the text with
linguistic information or sometimes general information that describes the
contents of the corpus. In other words, annotation involves adding value to
the corpus, since it improves its quality and, therefore, opens up the ways in
which the corpus can be used (see [PAL 10] and [PUS 12] for a general
introduction to this). Annotation typically corresponds to the levels of
linguistic structure: morphology, syntax, semantics, etc. The annotation of a
corpus with non-linguistic information is also possible. Annotation can be
carried out manually when appropriate, but very often, NLP tools are used to
carry out annotation automatically. In this case, a checking and error
correction phase is indispensable. A good annotation must always be well
documented to guide users. It must be as neutral as possible regarding
theoretical controversies to maximize the scope of its usage.

The first step in the annotation process is the raw corpus made up of
tokenized but unannotated texts which are cleaned to remove special
characters, if necessary. Sometimes, depending on the type of text, titles and
paragraphs are marked.

Texts annotated with parts of speech are one of the most commonly used
corpora. This kind of corpora are annotated using POS tags. This corpora is
mainly used to build and test parts of speech taggers or to test syntactic
parsers. An example of a fragment of text annotated using parts of speech is
shown in Figure 1.6.

a. SpeakerB3/SYM./.

b. Wel/UH what/WP do/VBP you/PRP think/VB
about/IN the/DT idea/NN of/IN ,/, uh/UH ,/, kids/NNS
having/VBG to/TO do/VB public/JJ service/NN
work/NN for/IN a/DT year/NN?/.

Figure 1.6. Segment of a corpus analyzed using parts of speech

Linguistic Resources for NLP 19

As we will see in the chapter of syntax, statistical parsing has made
significant progress, especially in terms of robustness and the resolution of
ambiguity, thanks to the availability of syntactically annotated corpora. In
practice, the realization of these parsers requires syntactically parsed data which
are commonly named treebanks. A grammar based parser is usually used to
annotate the corpus syntactically. Next, linguists begin to review the annotated
corpus to be able to correct the inevitable errors introduced by the parser.

To be widely usable, it is important these corpora are independent of
existing syntactic theories. However, there are two main schools of thought
within the linguistics community, namely the structuralism and the
functionalism, mirroring the famous schism in syntax.

The structuralism focuses on noun phrases, verb phrases, etc. The Penn
Treebank by the University of Pennsylvania is the most popular example of this
type of treebanks [MAR 94]. It is made up of a syntactically annotated
collection of sentences from the Brown Corpus and the Switchboard Corpus. An
example of a simple sentence from the Penn Treebank is shown in Figure 1.7.

((CODE SpeakerB1 .))

((INTJ Okay . E_S))

((CODE SpeakerA2 .))

((INTJ Okay . E_8S))

((CODE SpeakerB3 .))

((SBARQ (INTJ Well)
(WHNP-1 what)

(SQ do
(NP-SBJ you)
(VP think
(NP *T*-1)
(PP about
(NP (NP the idea)
(PP of
(INTJ uh)
(S-NOM (NP-SBJ-2 kids)
(VP having
(S (NP-SBJ *-2)
(VP to
(VP do
(NP public
service work))))
(PP-TMP for
(NP a

yean))))))

Figure 1.7. Extract from the Penn Treebank

20 Natural Language Processing and Computational Linguistics 1

As we can see in Figure 1.7, the sentences are labeled in the style of the
programming language Lisp rather than XML.

A tree corpus for French was also constructed at the Formal Linguistics
Lab (LLF) at Denis-Diderot University in Paris [ABE 03]. Made up of about
22,000 sentences and 870,000 words, this corpus was created by extracting
sections of the daily newspaper Le Monde that appeared in 1990, 1992 and
1993. The corpus covers texts written by a number of authors on varying
subjects from economics to literature and politics, etc. In contrast to the Penn
Treebank, this corpus used a format based on XML, as shown in Figure 1.8.
It has been distributed freely since 2001.

<SENT nb=“7">
<PP fct="MOD”> Parmi
<NP> les candidats

<PP>a
<NP> la commission exécutive
<PP> de <NP> La CGT </NP>
</PP>
</NP>
</PP>
</NP>
</PP>,

<VN fet="SUJ”> on compte </VN>
<NP fct="0OBJ”> quarante---quatre nouveaux---venus </NP></SENT>

Figure 1.8. Extract from a tree corpus for French

Functional annotation uses a radically different approach and focuses on
syntactic relationships and dependencies between words. This is the case in
the Prague Dependency Treebank and the English Dependency Treebank
[HAJ 98]. In fact, [XIA 01] showed that it is not possible to convert a
dependency tree corpus into a corpus annotated using the structural approach
such as the Penn Treebank because the functional approach treats the subject
and object equally regarding their attachment to the verb.

There are corpora which are semantically annotated. In contrast to
syntactic annotation, semantic annotation approaches are quite diverse and
fulfill a number of purposes. Some annotations cover semantic relationships
between constituents in the sentence, e.g. the Proposition Bank [PAL 05].

Linguistic Resources for NLP 21

Annotated at the University of Lancaster in the UK, the clinical text corpus,
CLEF, is another example of a corpus of this type. Among the semantic
relationships considered by this corpus, there is the has target which
compares an intervention or an investigation using the part of the corpus in
question. It is, therefore, a predicate (relationship) which takes two
arguments. The first argument is investigation or intervention and the second
is zone.

This patient has had a [arg2 lymph node]
[argl biopsy]

... he does need a [arg2 groin]

[argl dissection]

Figure 1.9. Semantic annotation with a has_target relationship

In the first sentence of the example shown in Figure 1.9, the predicate is
has had, the intervention is biopsy and the zone of intervention is lymph
node. The corpus GENIA is another semantically annotated medical corpus.
It is a corpus which will be used to facilitate the extraction of knowledge
based on genetic data [KIM 03]. Another form of annotation involves using
temporal expressions such as those in the TimeBank [PUS 03].

There are also corpora which are annotated with discursive relationships,
for example the RST Corpus, which is made up of 385 articles extracted
from the Penn Treebank’. It is hierarchically annotated according to the
rhetorical structure theory (RST) by [MAN 88]. The main task involved in
annotation consists of identifying the elementary discursive units (EDUs).
The discursive tree corpus Discourse Treebank from the University of
Pennsylvania adopted an approach which was more centered on discursive
connectors and their arguments [MIL 04]. It is probably useful to mention
the annotation of co-referential relationships in the corpus by [POE 04] and
the corpus of opinions [WIE 05].

Finally, it is probably worth mentioning some existing annotation
tools. EXMARaLDA® is a German multi-level annotation tool which is
entirely based on XML language. Specially adapted to discursive annotation,
it contains a data annotation tool, a corpus manager which combines
annotated files and adds the metadata. Developed at the Universidad

7 http://www.isi.edu/~marcu/discourse/Corpora.html.
8 http://www.exmaralda.org/.

22 Natural Language Processing and Computational Linguistics 1

Auténoma de Madrid, the UAM Corpus Tool’ is another annotation tool,
designed to be user-friendly to make annotation easier for linguists whose
programming skills are limited [O’DO 08]. It is distributed with a number of
NLP and research tools for English. The Brat Rapid Annotation Tool" by
MIT is another example of an annotation tool. With a web interface, it is
particularly adapted to collaborative annotation projects. It was used in
projects about entity and event detection and extraction, as well as in
projects about shallow parsing, etc. Other tools whose aims are more specific
should also be mentioned. For example, CLaRK'' for the annotation of
syntactic information, NITE'? for multimodal annotations and MMAX2" for
anaphor annotation.

1.4.6. Corpus documentation

The aim of the documentation is to make corpora accessible to the
community. Typically, three files are used to document corpora. Firstly,
there is the initial file which is commonly called readme. This file contains
information about the rights of authors, the version of the corpus,
information about the corpus documentation (the other files) as well as
summary information about the corpus: the size, the number of speakers,
structure, etc. This is followed by the documentation file which includes a
detailed description of all aspects of the corpus. Among other things, this
includes the recruitment criteria for participants (e.g. age range,
socioeconomic status, etc.), the annotation procedure, the format used, the
software used, the recording and metadata. Finally, specific documents are
put together to cover specific aspects of the corpus such as the history of the
corpus, internal publications on the corpus in the form of technical reports,
etc.

1.4.7. Statistical analysis of data

The statistical analysis of data involves looking at the frequency, the
mean and the median of particular phenomena such as the frequency of a

9 http://www.wagsoft.com/CorpusTool/.

10 http://brat.nlplab.org.

11 http://www.bultreebank.org/clark/index.html.
12 http://www .ltg.ed.ac.uk/NITE/.

13 http://mmax2.net.

Linguistic Resources for NLP 23

certain word or word category, a syntactic structure, an opinion, or another
discursive phenomenon. It is possible to carry out the description of a given
corpus or to compare these phenomena in two or several corpora.

1.4.8. The use of corpora in NLP

The way in which corpora are used to construct an NLP module depends
on the approach used for processing. Rule-based approaches do not require
specific annotations, since it is the responsibility of the human developer to
extract the knowledge from the corpus as he or she sees fit. In contrast,
learning-based approaches require annotated data to guide the process of
information extraction and processing. The degree of granularity of the
annotation required varies considerably according to the applicative aim of
the module, as well as the algorithm and the approach that it adopts, such as
whether it involves supervised or unsupervised learning, neural networks,
statistical algorithms, and automatic grammar induction algorithms.

1.5. Examples of existing corpora
1.5.1. American National Corpus

This non-free corpus has the objective of collecting a million words from
transcribed spoken data, as well as a collection of written texts whose size is
approximately ten million words. The American National Corpus (ANC)
team is made up of people in industry, as well as academic teams. This
corpus includes important sections that are annotated with POS tags and is
distributed using the XML coding standard format (XCES).

1.5.2. Oxford English Corpus

The Oxford English Corpus (OEC) is a collection of English texts which
was used to support the creation of the Oxford English Dictionary, published
by Oxford University Press. Containing more than two billion words, it is
the largest corpus of its kind in the world. The texts which make up this
corpus are extremely varied. Literary texts, specialized newspapers, daily
newspapers, weekly newspapers, websites, and extracts of forums, among
other types of texts, make up the main source of this corpus.

24 Natural Language Processing and Computational Linguistics 1

The OEC is annotated with XML and is often analyzed with the software
Sketch Engine. Each document of the OEC is accompanied with the
following metadata:

— title;

— author (if known);

— type of author (if known);

— dialect (British English, US English, etc.);
— source (website);

— date of the document (if known);

— date it was added to the corpus;

— field and sub-field;

— document statistics (number of tokens, sentences, etc.)

1.5.3. The Grenoble Tourism Office Corpus

Recorded by the laboratory CLIPS-IMAG in the Grenoble Tourism
Office, this is a collection of task-oriented human—human spoken dialogues
which come from the applied setting of tourist information [ANT 02]. The
collection of data is carried out in real conditions following a semi-blind
method: it involves an interaction between a member of the tourism office
team and members of the public who are visiting the town. The real life
conditions for recording meant that some sound quality was lost. The
recordings were carried out on two different paths using a digital audio tape
(DAT) recorder. In this way, two audio files in .wav format were obtained
per conversation. In total, seven hours of recording were obtained. This
corpus was initially limited to being distributed to members of the ARC.
Today, it is distributed in two formats, the transcribed corpus can be
downloaded directly from a web page associated with the project PAROLE
PUBLIQUE'* and the complete corpus (transcription and audio files), due to
the size of the audio files, is distributed on CDs by post.

14 http://www-valoria.univ-ubs.fr/antoine/parole publique.

2

The Sphere of Speech

2.1. Linguistic studies of speech

The scientific study of speech, found at the intersection of a number of
disciplines such as Physiology, Electronics, Psychology and Linguistics, is a
very rich field. It forms the basis of a large number of practical applications,
including speech pathology, language teaching and speech processing (SP),
which is the focus of this chapter. Two key disciplines are at the heart of
studies in this area: phonetics and phonology.

2.1.1. Phonetics

Phonetics is a field that deals with the scientific study of speech sounds.
It provides methods for the description, classification and transcription of
speech sounds [CRY 91]. As a branch of the natural sciences, it examines
speech sounds from physical, physiological and psychological points of
view. Phonetics involves making parallels between sounds in human
language and looking at the physiological, physical and psychological
constraints which have shaped these sounds. For a general introduction to
phonetics, the reader can refer to a number of excellent works, including
those of [LEO 05, LAD 01, HAR 99, CAR 74].

Historically, the interest in describing the sounds of speech goes back to
antiquity. It is widely thought that the Phoenicians developed the first system
of phonetic transcription or alphabet on the east coast of the Mediterranean

Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax,
First Edition. Mohamed Zakaria Kurdi.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

26 Natural Language Processing and Computational Linguistics 1

between 1700 and 1500 BC. The traces of this alphabet are still visible in
some alphabets that exist today. As for the first actual phonetic descriptions,
it is thought that they began in around 500 BC with the grammar of Sanskrit
written by Panini, which contains a remarkable classification of the sounds
of this language. In the Middle Ages, Arabic linguists carried out advanced
research on descriptions of the sounds of Arabic, notably using a system of
phonetic contrasts. Some of these works had a prescriptive objective, as the
aim was to conserve the original phonetic form of the Quran’s message,
eliminating changes which would take place throughout the ages [CRY 71].
Others, such as Avicenna’s work, had the aim of understanding the
physiological basics of the process of speech production and, therefore, were
more scientific in nature (see [KAD 04, WER 84] for a review of these
works). In Europe, the interest in phonetics began to develop at the
beginning of the 18th century, with the works of Joshua Steele, among
others. It was in the 19th century, with Thomas Edison’s invention of the
phonograph, that phonetics was able to make a large leap in progress.
Thanks to this device, phoneticians were able to record spoken sequences
and could describe their properties (by slowing down or speeding up the
recordings). Among the works written during this period, we can cite those
of Ludimar Hermann on the production of vowels.

Since it is much more practical to work with written forms,
phoneticians developed a number of transcription systems for
transcribing speech. In contrast to an ordinary alphabet, a transcription
system is different because there is a direct and unique correspondence
between a sound and its grapheme. Each individual sound corresponds to
a single grapheme in the system of transcription and each grapheme is
associated with one sound. Furthermore, a transcription system must be
universal to be used to transcribe all the languages in the world. Among
the systems of transcription, the International Phonetic Alphabet (IPA) is
the best-known. It is a transcription system developed towards the end of
the 19th century by the IPA. To examine the purpose of such an alphabet,
let us examine Table 2.1, which presents some graphical forms in French
for the sound [o0] and some examples of transcription of the grapheme “0”
in English.

The Sphere of Speech 27

Word Transcription
rose [Roz]

chaud [Jo]

Beau [bo]

show [Jou]

bond [band]

drone [draun]
ubiquitous [ju bikwitas]

Table 2.1. Examples of IPA transcriptions
from French and English

The differences in grammatical forms are due to several reasons which
can be morphological or even etymological. In spite of their apparent
banality, the sounds of a language are far from being simple entities to study.
Sounds can be studied from several points of view according to the specific
location in the communication system (see Figure 2.1).

Noise
Spoken dialog
-~
——
- Channel of transmission
= 4]
Emitter Receptor
Articulatory Audio signal Acoustic
production decoding
Articulatory Acoustic Auditory
phonetics phonetics phonetics

Figure 2.1. Communication system

28 Natural Language Processing and Computational Linguistics 1

This shows how the three main branches of phonetics are distinct:
articulatory phonetics, which focuses on the production of sounds by the
emitter; acoustic phonetics, which is located at the level of the transmission
channel; and auditory phonetics, which focuses on the way in which the
sounds are perceived by the receptor.

2.1.1.1. Articulatory phonetics

Articulatory phonetics takes the point of view of the emitter and
considers the way in which sounds are produced by the speech organs such
as the pharynx, the tongue and the lips. In other words, the physiology of the
production of sounds is the true focus of this branch of phonetics.

To fully understand the process of the production of speech sounds, we can
compare it to a well-known artificial process — the production of music by
instruments. In both cases, we need a source which can be modified by a
sound box of sorts. We are talking about a complex process involving a
number of organs (the organs that make up the vocal tract) whose roles need to
be coordinated efficiently. To explain this in a systematic way, these organs
can be grouped into three functional components: the subglottic system,
the phonatory system and the supraglottic (supralaryngeal) system (see
Figure 2.2(a) for a global view of the speech apparatus and Figure 2.2(b) for a
lateral view of the phonatory and supraglottic systems). Moreover, Broca’s
area, situated in the frontal lobe of the cerebral cortex, can be considered as a
major component of the vocal apparatus, because of the leading role that it
plays in the coordination of this process. For more information on the process
of speech production, see [MAR 07].

The subglottic system has the role of creating an air current following the
deflation of the lungs after the diaphragm relaxes. Air freed in this way then
moves across the trachea before arriving at the larynx. The main component
of the production of sound, the larynx, is a cartilaginous solid structure
which is situated above the trachea and below the middle part of the
pharynx. Another specificity of the larynx is that it contains the two vocal
folds which are two muscular bands of about 1 cm in length and 3 mm in
width. During phonation, these folds come close to one another and begin to
vibrate against each other. This vibration gives the sound its basic quality

The Sphere of Speech 29

and is called the fundamental frequency. Think of vibration as happening in
two modes: a heavy mode which produces deep sounds and a light mode for
high-pitched sounds.

f l
a) b) Nasal cavity
Hard palette
Nasal cavity -
Epiglottis Soft palette

Oral cavity

Trachea Alveolar ridge

Teeth Uvula
\]L \ Lung Tongue
/ﬁ Bronchi — Epiglottis
\L Vaocal cords, . -'Esophagus
Diaphragm Larynx I

Figure 2.2. Speech organs

The articulation system, located above the larynx, is made up of three
cavities which play an important role in the formation of sounds: the pharynx,
the nasal cavity and the oral cavity. The pharynx is a cavity which resembles a
tube whose main role is to connect the larynx with the nasal cavities and the
respiratory tract as well as the mouth and the esophagus (digestive tract). The
shape of the pharyngeal cavity determines the fundamental qualities which
give a unique timbre to the voice of each and every one of us. With a fixed
size and shape, the nasal cavity plays the role of the sound box, filtering the
sound and producing resonances. In order for the air to pass through this
cavity, the soft palate (velum) must be lowered (see Figure 2.3). If the lips are
closed, the entire mass of air being released is directed through the nasal
cavity, producing consonants like m. Likewise, the opening of the lips
accompanied by the lowering of the soft palate produces nasal vowels such as
the sound [a] in French, for example in the word grand [gral.

The oral cavity is the most important of the three cavities, because of its
total volume and also because of the number of organs which are found
within it. It is made up of the palate, the tongue, the lips and the lower jaw.

30 Natural Language Processing and Computational Linguistics 1

Oral Nasal

/
/

Py
(

Figure 2.3. Position of the soft palate
during the production of French vowels

The palate, the upper part of the oral cavity, is separated into two parts:
the hard palate and the soft palate. The hard palate, located in the bony
frontal part, is immobile and its role is to support the tongue during its
movements, therefore allowing for partial occlusions to be made. The soft
palate or velum is situated further back.

The tongue is a complex organ made up of a collection of muscles which
are responsible for its large range of mobility. It is divided into three main
parts: the apex, the body and the root (see Figure 2.4).

Tongue

o

Figure 2.4. Parts and aperture of the tongue

The distance between the body of the tongue and the palate or the degree
of aperture allows the quantity of air which passes through the mouth to be
controlled (Figure 2.5).

The Sphere of Speech 31

Figure 2.5. Degree of aperture

The lips, just like the tongue, are highly mobile and this allows them to
assume many different shapes. Thus, when they come together, they create
closure, for example when producing [m] or in the closure phase of [p]. On
the other hand, when they are slightly open and round, they allow the
production of vowels such as [0] and [u]. Likewise, when they are open and
spread, they can produce vowels such as [i] and with a neutral position, they
can produce [9]. Finally, when the lower lip makes contact with the incisors,
the sound [f] can be produced.

Ultimately, the lower jaw plays a moderating role by increasing or
decreasing the size of the oral cavity.

2.1.1.2. Acoustic phonetics

Acoustic phonetics is a branch of phonetics which considers the physical
properties of sound waves. Its focus is on what happens between the emitter
and the receptor (see [MAR 08] for an introduction).

Let us begin by looking at the mechanism of production of sound waves.
The movements of speech organs transmit a certain amount of energy to the
air molecules surrounding them, creating a pattern of zones of high and low
pressure, and we call this a sound wave. These waves propagate through the
air (or, in some cases, through water), transmitting energy to neighboring
molecules. To simplify the explanation of this process, let us look, for
example, at the vibration of a tuning fork which causes the displacement of
air molecules both forwards and backwards, as shown in Figure 2.6.

32 Natural Language Processing and Computational Linguistics 1

Time

Displacement

Figure 2.6. Displacement of air molecules by the vibrations of a tuning fork

As minimal units of communication, sound waves must be able to be
perceptibly distinguishable from one another by virtue of their fundamental
physical properties. These include frequency and amplitude differences
which cause perceptual variations in tone (pitch) and volume (loudness),
respectively (see Figure 2.7).

The frequency of a signal is measured in cycles per second or Hertz, while
amplitude, also sometimes called infensity, is a measure of the energy
transmitted by a wave according to a unit called the decibel. Note that a tuning
fork does not vibrate infinitely but even if its amplitude lowers little by little,
its frequency remains stable. This means that frequency and amplitude are
completely independent from one another. In other words, we can have two
different signals that have the same frequency but different amplitudes, or two
signals that have the same amplitude but different frequencies.

Cycle

Amplitude

e
™~
b
Ty
537

T T T — Ill.‘ T
a2 ® 32 Pax 4 Y /

..\\./'f \\ / . S

Figure 2.7. Frequency and amplitude of a simple wave

The Sphere of Speech 33

Note that the wave shown in Figure 2.7 presents a certain regularity
because it does not change shape as time progresses: the distance between
the peaks is always fixed. This kind of wave is called a repetitive wave or a
periodic wave. The waves of vowel sounds are waves of this type. However,
another kind of wave does not produce this kind of regularity and is logically
called a non-repetitive or aperiodic wave. This kind of wave corresponds to
plosive sounds such as [p] or [b] or to clicks (see Figure 2.8).

Figure 2.8. An aperiodic wave

It is also useful to distinguish between simple waves and complex waves.
Complex waves are the result of combining multiple simple waves.
Consequently, it is possible to analyze a complex wave by looking at its
simple components. As illustrated in Figure 2.9, the presentation of a
complex signal (a) in the form of simple waves (b) does not allow us to show
all the properties of its components. Therefore, it is necessary to use a more
sophisticated instrument such as a spectrograph to do this.

a) b)

Figure 2.9. Analysis of a complex wave

Before presenting the spectrograph, we shall consider the term resonance.
Resonance is the transmission of a vibration from one body to another,
namely the resonator. Note that each body has its own natural frequency that
it reacts to with the most ease. Thus, a tuning fork that vibrates at 200 Hz
will cause the vibration of another tuning fork if it has a natural neighboring
frequency. A simplified way of seeing the spectrograph is to consider it as a

34 Natural Language Processing and Computational Linguistics 1

collection of tuning forks, each with a different natural frequency. When
these tuning forks find themselves next to a complex wave, some, whose
natural frequency corresponds to the frequency of a simple component of
this wave, will resonate, making it possible to carry out an analysis of this

wave (see Figure 2.10).
700 m

1|{| I r 600
.M'l kL)
Complex

wave

550 WA

500

Figure 2.10. A collection of tuning forks plays the role of a spectrograph

In Figure 2.10, we have a complex wave made up of three components
which will make three tuning forks of the same frequency vibrate. These
frequencies are 550 Hz. The information that is produced by a spectrograph
is called a spectrogram. A spectrogram is a multidimensional representation
of the sounds obtained with the fast Fourier transform. As shown in
Figure 2.11, the vertical axis represents frequency, whereas the horizontal
axis represents time. The dark zones in the spectrogram give information
about concentrations of acoustic energy and these are called formants.

4000 Hz

0 Visible part 1.208401 seconds 1.208401

Figure 2.11. Spectrogram of a French speaker saying
“la rose est rouge” generated using the Praat software

The Sphere of Speech 35

Formants play a fundamental role in the analysis of vowels where they
are visible very clearly as vertical bars. To distinguish a vowel, it is normally
sufficient to look at the first three formants. Table 2.2 presents the average
values of the three first formants of the French vowels [a], [i] and [u].

Formant [a] [i] [u]
F1 750 200 200
F2 1200 2200 700
F3 2600 3200 2200

Table 2.2. The three first formants of the vowels [a], [i] and [u]

In general, F1 correlates with the size of the pharyngeal cavity. This
explains why the F1 value of the vowel [a], which is an open vowel, is the
highest. Likewise, the values of the first formant of vowels [i] and [u] are
very low, because they are close vowels. F2 is generally associated with the
shape and size of the oral cavity. In the case of the vowel [i], where the oral
cavity is reduced in size, this causes a very high F2 level. In the case of the
vowel [a], the openness and the large amount of space within the oral cavity
causes a lower F2 value. When it comes to F3, it is possible to distinguish
between the French vowels [i] and [y], where the lips play an important role
([y] being a front rounded vowel that is not used in English). When
professional singers perform, the lowering of the larynx and the raising of
the tongue causes the increase in F3 and F4 values, making them more
prominent acoustically (see Figure 2.12).

Sound __ Spectrogram

[a]

[i]

Figure 2.12. Spectrograms of the French vowels: [a], [i] and [u]

36 Natural Language Processing and Computational Linguistics 1

When it comes to consonant sounds, several criteria come into play in
order to describe their spectrograms. Criteria include the temporary
transitions between formants, voicing', periods of silence, etc. Let us
examine Figure 2.13, where we will consider some examples of consonants
produced alongside the vowel [u].

Word Spectrogram
[ufu]

[usu]

[uku]

[usu]

[umu]

Figure 2.13. Spectrograms of several non-sense
words with consonants in the center

As we can see in the spectrograms of Figure 2.13, the difference between
the consonants [[] and [s] can be seen by the position of the dark areas at the
top of the spectrogram, reflecting the frequency of noise from friction which
is much higher in the case of [s] than in the case of [[]. The closure phase of
the consonant [k] can be seen in the light area in the spectrogram followed
by a little area of friction which corresponds to aspiration, a consequence of
the release phase, since this is a voiceless consonant. The French fricative
[6] is seen as vertical bars of energy, which reflect friction. The nasal
consonant [m] is characterized by a pattern that is similar to those of
formants, shown as darker patches. Finally, the darker areas at the bottom of
the spectrogram, which are visible for consonants [g] and [m], reflect the
fact that these consonants are voiced.

1 Voicing is the property of a sound which involves the harmonic vibration of the vocal folds.

The Sphere of Speech 37

2.1.1.3. Auditory phonetics

Auditory phonetics is the study of how sounds are perceived, looking at
what happens within the ear and also what happens when the brain is
processing sounds. The study of auditory phonetics fits within the frameworks
of work in physiology and experimental psychology (see [JOH 11, RAP 11]
for a general introduction).

Before looking at the perception of speech sounds, let us consider the
anatomy involved in auditory perception. Instead of focusing on the
complexities of the multimodal perception of speech sounds (which involve
parallel auditory and visual pathways), we will focus solely on the auditory
pathway; we recommend [MCG 76] and [ROS 05] for more information on
multimodal perception.

The auditory pathway is made up of three main parts: the ears, the cochlear
nerve and the brain. The ear is the main organ for hearing. It has three major
functions: being stimulated by sounds, transmitting these stimuli and analyzing
these stimuli. Having two ears enables the hearer to localize the source of
sounds: a person speaking, the television, a car driving along, etc. The ear
further away from the source receives the sound with a slightly weaker intensity
and a slight delay compared to the other ear. Physiologically, three components
make up the ear: the outer ear, the middle ear and the inner ear (see Figure 2.14).

Figure 2.14. Physiology of the ear

The outer ear includes the auricle, whose role is to collect sounds and
direct them towards the middle ear via the outer ear canal, which is about

38 Natural Language Processing and Computational Linguistics 1

2.5 cm in length. Sounds collected in this way then make the eardrum
(a fibrous membrane located at the end of the ear canal) vibrate. Apart from
its role as an amplifier, the eardrum plays an important role in the filtering
out of certain frequencies and amplitudes.

The middle ear, which is located further in than the eardrum, is made up
of a small hollow cavity which contains three ossicles that connect the ear
drum with the cochlea. These ossicles include the malleus, the incus and the
stapes. The role of these ossicles is the amplification of sound waves and the
transmission of these sound waves to the inner ear. This mechanical
transmission also ensures that that airwaves are transformed into liquid
waves, transmitted via the fenestra ovalis. The difference in terms of the
surface between the ear drum and the fenestra ovalis (a factor of 1/25) also
contributes to the amplification of sound waves received.

Finally, the inner ear is made up of the cochlea. The cochlea is spiral
shaped and has a diameter which progressively contracts. The cochlea is found
inside a solid bony labyrinth which is full of fluid. The wave transmitted by
the middle ear makes the basilar membrane inside the cochlea vibrate. This
allows the initial analysis of sounds to take place, notably in terms of their
frequencies, since the cochlea reacts to sound waves in a selective way. The
lower part of the cochlea resonates with high-pitched sounds and the upper
part (also called the apex) resonates with low-pitched sounds. The selectivity
of the cochlea can be explained by the fact that diameter variation implies the
existence of a continuum of natural frequencies which allows the cochlea to
differentiate a great number of sounds. The hair cells within the cochlea
are connected to the cochlear nerve which is made up of approximately
30,000 neuron axons. The movement of these cells triggers a signal which is
directed towards the temporal lobe in both hemispheres of the brain. The brain
merges these signals and the signal is processed and perceived.

Several perceptual factors influence the way in which we hear sounds, for
example, the pitch, the quality of the sound and its length. An average
person can perceive sounds with frequencies between 20 and 20,000 Hz.
However, most sound frequencies used in natural languages are between
100 and 5,000 Hz. Since frequency variations are not always perceived in
the same way by the human ear, we use the term pitch, measured on the mel
scale, to describe the perceptual effect of frequencies.

The Sphere of Speech 39

The feeling of pitch, created by voiced sounds, such as vowels and
consonants such as [b] and [d], is linked to the frequency of vocal fold
vibration, which is also called the fundamental frequency FO. In the case of
voiceless sounds such as [s] and [p], the sound produced is the result of the
passage of air forced through constrictions. This produces faster pressure
variations than with vowels. It is also worth mentioning that pitch variations
play an important role in the marking of prosodic differences. When
differences in pitch occur in a systematic way within words in certain
languages (notably within a syllable) and create differences in the meaning
of words as a result, we call these languages tone languages. Examples of
such languages include Mandarin Chinese and Vietnamese. When pitch
differences occur at the level of the whole phrase, we are talking about
intonation, which is a phenomenon that occurs in many languages, including
French, English and Arabic.

Volume (or loudness) is the perceptual equivalent of amplitude. Just as
with the relationship between pitch and frequency, the relationship between
volume and amplitude is not linear, because sounds of a very high frequency
or a very low frequency must be of a much higher amplitude to be perceived
(compared to sounds with a mid-range frequency). Typically, speaking more
loudly is the normal reaction to problems where noise prevents perception.
From a linguistic perspective, volume plays a minor role in the study of
accents of other prosodic phenomena.

2.1.1.4. The phonetic system of French

Descriptive phonetics considers the global properties of linguistic
systems (languages or dialects) as well as comparing them to find universals
or phenomena that are specific to a given language. The description is
carried out according to articulatory and acoustic criteria. These descriptions
are particularly based on the distinction (universally attested in all of the
world’s languages) between consonants and vowels.

Vowels are voiced sounds (requiring the vibration of the vocal folds)
which come from the passage of air in the oral cavity and/or nasal cavity
without or with very little obstruction. To classify vowels, we use features
such as manner of articulation, nasality, degree of aperture, as well as
backness or frontness, which we will see in detail in the following sections.

40 Natural Language Processing and Computational Linguistics 1

The manner of articulation concerns the way in which the speech organs
are configured to shape the air that comes from the lungs. This concerns
phenomena such as rounding and orality/nasality. Rounding refers to the
shape of the lips during the production of a vowel characterized by the
pulling in of the corners of the mouth and the lips in the middle. It is
accompanied by the protrusion of the lips, creating an additional cavity
between the lips and the teeth which some call the labial cavity (see
Figure 2.15).

Rounded Unrounded

A)

Figure 2.15. Lip rounding

Even though, in theory, all vowels can be pronounced with rounded lips,
some can only be pronounced with rounded lips, such as the first group in
Table 2.3 [ROA 02].

Rounded vowel | Example | Transcription |Unrounded vowel | Transcription | Example
[yl vue [vy] [i] commis [komi]
[ee] Peur [pceR] [e] nommé [nome]
[o] Peu [po] (€] étre [etR]

Table 2.3. Examples of rounded and unrounded vowels in French

Nasality is the result of the lowering of the velum, which forces the air to
cross the nasal cavity. Since the mouth cannot be closed completely during
the production of a vowel, air continues to pass (in parallel) through the oral
cavity. In IPA, a tilde is added above the grapheme to mark nasal vowels.
Several languages have nasal vowels, such as Portuguese, Polish, Hindi and
French, which contains four vowels of this type (see Table 2.4).

The Sphere of Speech

41

Nasal vowel Examples
[5] Mon, tronc
[a] Tente, gant
[c] Brun, défunt
[€] Satin, rien

Table 2.4. Nasal vowels in French

French also has a group of 12 oral vowels which are characterized by air
only passing through the oral cavity, without nasalization (see Table 2.5).

Oral vowel Examples

[i] Ni, ici

[e] Les, générer
[€] Mes, maison
[o] Peu, cheveux
[v] Vu, mue

[9] Le, de

[u] Cou, mou
[o] Bateau, beau
[2] Fort, toc

[a] Pate, mat

[a] Bas, ma

[ce] Peur, sceur

Table 2.5. Oral vowels in French

The degree of aperture is another criterion which allows vowel sounds to
be distinguished between one another. It is a question of the distance
between the tongue and the palate at a place where the two are at their
closest. To find out more about the differences between degrees of aperture,
let us look at the following sequence of vowels:

D) [i] [y] [u]
2) [e] [#] [0]
3) [] [ee] [3]
4) [a] [a]

42 Natural Language Processing and Computational Linguistics 1

As we can see, the first series corresponds to three close vowels because
the tongue is close to the palate. The second series involves three mid-close
vowels, and the third series includes three mid-open vowels. Finally, we
have a series of two open vowels where the distance between the tongue and
the palate is maximal.

Frontness/backness is an important criterion in the classification of
vowels. Front vowels such as [i], [e], [€] and [a] are characterized by the tip
of the tongue being at the front of the mouth. On the other hand, back vowels
such as [u], [0], [0] and [a] are characterized by the pulling back and
bunching up of the body of the tongue (see Figure 2.16).

Front Back

AN
\

Figure 2.16. Front vowels and back vowels

Taking the criteria of openness and backness/frontness, we obtain the
schematic classification of vowels which takes the form of a trapezium (see
Figure 2.17).

front back
spread rounded rounded
Y u

i
very closed

o\
closed \e \‘” 0

regular \ 3 /
J
3

open £
&
very open
a

Figure 2.17. French vowel trapezium

B:3
\

The Sphere of Speech 43

It is useful to mention that there is a particular vowel in French which is
called the silent e. It is transcribed using the [o] symbol in IPA. This vowel is
different to the vowel [@], which is used in words such as deux [de] (two).
Indeed, both are front rounded vowels in French but with different degrees
of rounding, [@] being more rounded. Phonologically, this vowel has a
special status in French because it can appear in precise contexts, notably at
the end of a word or before another vowel. Furthermore, geographical
considerations can come into play to regulate its pronunciation.

Consonants are sounds that are produced with a closure or a constriction
in the oral cavity. In contrast to vowel sounds, the vibration of the vocal
folds is not a necessary condition during the production of consonants.
However, two main criteria are used to classify consonants: place of
articulation and manner of articulation.

The manner of articulation of consonants allows two consonant sounds
which share the same place of articulation but which are pronounced in
different ways to be distinguished. This allows consonants to be classified
according to the following pairs of categories: voiced/voiceless, oral/nasal,
plosive/fricative and lateral/vibrant.

Voicing is the property of consonants whose pronunciation involves the
vibration of the vocal folds. Thus, we have two series of consonant sounds:
series (a) represents voiceless consonants and series (b) represents voiced
consonant sounds.

a) [p] [t] [k] [f] [s] [J]
b) [b] [d] [g] [v] [2] [3]

In a practical way, to find out whether a consonant is voiced or voiceless,
you can put your finger on your throat to feel whether there are vibrations.

As we have seen with vowel sounds, nasalization is a property which is
the result of air passing through the nasal cavity due to the lowering of the
velum (see Figure 2.18). In French, there are three nasal consonants: [m], [n]
and [n], like in gagner (win). To test whether a consonant is nasal or not,
you can block the nose while pronouncing this consonant. If the sound
changes in quality, this shows that the consonant sound is nasal.

44 Natural Language Processing and Computational Linguistics 1

Oral Nasal

Figure 2.18. Nasal and oral consonants

Some consonant sounds are pronounced in a continuous and
homogeneous way (through time), while others are quick, due to the
complete closure of the vocal tract and then the sudden escape of air from
this point of closure (like an explosion). This property allows fricatives
(series a), which are continuous, to be distinguished from plosives (series b),
which are quick.

a) [f] [v] [s] [z] 1 [3]
b) [p] [b] [t] [d] [k] [g]

From an articulatory point of view, the continuous aspect of fricatives is
due to the constriction of the air passing through the vocal tract but without
complete closure. Once the speech organs are in place for a fricative, they do
not move. This gives fricative sounds a homogeneous character. However,
the production of plosives requires the speech organs to move and, therefore,
a heterogeneous sound is produced.

A lateral consonant is a consonant whose pronunciation involves air
passing down the sides of the tongue. In modern French, there is only one
lateral consonant: [1]. Conversely, a vibrating consonant is the result of one
or more taps with the tongue tip or the back of the tongue making repeated
contact against the uvula. For example, with the [r], which is commonly
called apical, the tongue is placed against the upper teeth but produces a tap
which allows air to pass through.

For consonant sounds, the place of articulation is the area where two
articulators come close or touch one another, forming a partial or full closure
of the vocal tract. This allows French consonants that we are taking as an
example here to be classified according to Table 2.6:

The Sphere of Speech

45

Place of articulation | Phonetic category Examples
Lips Labial or bilabial [p], [b], [m]
Teeth and lip Labiodental [f], [v]
Teeth Dental [t], [d], [n]
Alveolar ridge2 Alveolar [s]

Palate Palatal], U1, [3]
Velum Velar [k, [g]
Uvula Uvular [¥]

Table 2.6. Places of articulation of French consonants

There is a category of sounds that lies between consonant and vowel
sounds and these are sometimes called semi-vowels or glides. These in
French are non-syllabic vowel sounds (which cannot form the nucleus of a
syllable) which, when next to syllabic vowels, form part of a diphthong,
while also having linguistic properties which are similar to those of
consonants. In some respects, semi-vowels could be defined as fricative
consonants, which correspond to particular vowels sharing their place of
articulation. The list of semi-vowels for French is given in Table 2.7.

Semi-vowel Example Corresponding vowel
[3] Feuille [feej] [i]
(Y] Puis [pYi] [y]
[w] Bois [bwa] [u]

Table 2.7. French semi-vowels

Finally, coarticulation is a phenomenon in phonetics which deserves to be
mentioned. It occurs when a given sound influences the pronunciation of
another sound or several sounds which follow or precede it. For example, in
the case of a sequence of French words such as robe serrée (tight dress), the
voiced b is influenced by the voiceless s and becomes a p. The sequence is
pronounced [Bopsese]. In this case, phoneticians talk about the assimilation
of voicing.

2 The alveolar ridge is a cavity within the jawbone where the teeth are embedded [ENC 09].

46 Natural Language Processing and Computational Linguistics 1

2.1.2. Phonology

This is a branch of linguistics which looks at the functioning of sounds in
the framework of a language system. In contrast to phonetics, phonology
looks at sounds as abstract units and not as concrete physical entities. As a
consequence, phonology adopts an abstract basic unit, the phoneme, not
the physical sound adopted by phonetics. For a general introduction to
phonology from a computational perspective, a good reference is [BIR 03].

2.1.2.1. The concepts of phonemes and allophones

The phoneme is a fundamental unit in phonology. It is the smallest unit
in language which does not hold any meaning of its own, but changing
one phoneme for another causes a semantic change. For example, the
replacement of the phoneme /p/ in the word pit by the phoneme /b/ leads to a
clear change in meaning, since the word bif is created. Since the words pit
and bit only differ by one phoneme, we call them a minimal pair. These
groups of words are particularly useful for identifying phonemes in a
language. Sometimes, sound differences do not lead to semantic differences.
This is the case notably with dialectal variations of the same phoneme, and
the best-known case of this in French is with the phoneme /t/. It is well
known that depending on the geographical zone, this phoneme is realized by
the sounds [r], [R] and [s]. Therefore, we are talking about three allophones.
In other languages, these three sounds, or two of them as, in Arabic,
correspond to three distinct phonemes. This demonstrates that two or more
sounds can be allophones in one language and distinct phonemes in another.

It must also be outlined that although phonetics and phonology examine
different aspects of speech, they share a number of things in common, for
example the distinctive features that we will detail later (see [KIN 07] for
more information about the connection between phonetics and phonology).

2.1.2.2. Distinctive features

Since the Middle Ages, linguists have recognized that sounds are not
simple units but rather complex structures made up of phonetic
characteristics. At the beginning of the 20th century, the Russian linguist
Nicolai Troubetzkoy described this aspect of phonemes in terms of
oppositions and he identified several types of oppositions [TRO 69]. He

The Sphere of Speech 47

described binary oppositions, which imply two phonemes that share
properties in common, such as the phonemes /p/, and /f/, and exclusive
oppositions, which show that in a pair of phonemes, only one might possess
a particular trait (e.g. voicing in the case of /v/ and /f/, where only /v/ is
voiced). He also described multilateral oppositions that concern several
phonemes such as /p/, /b/, /f/ and /v/. Finally, he broached continuous
oppositions which, by their very nature, vary in degrees such as the height of
the tongue necessary for the production of a vowel.

The proposal for what is now known as the distinctive feature theory is
historically attributed to Roman Jakobson whose work with Gunnar Fant and
Morris Halle laid its foundations [JAK 61]. Jakobson’s model stipulates,
among other things, that all phonological features are binary. This means that
a phoneme either possesses or does not possess a trait of whatever kind,
therefore making the discretization of the gradual oppositions described by
Troubetzkoy necessary. The advantage of this rule binarization is that it makes
the expression of phonological rules much simpler. To guarantee the
universality of its description, Jakobson opted for acoustic features, therefore
avoiding articulatory features which are too dependent on specific language.
The result of his taxonomy is a collection of 12 features: consonantal,
compact/diffuse, grave/acute, tense/lax, voiced, nasal, continuant, strident
(elevated noise intensity)/non-strident, obstruent, flat and sharp. For example,
the phoneme /a/ possesses the following features: +Vowel, —Nasal, +Grave,
+Compact.

Reexamined by Noam Chomsky and Morris Halle in their book The
Sound Pattern of English (SPE), the concept of the distinctive feature
becomes less abstract and gives way to a richer taxonomy. According to the
SPE model, features are categorized according to five groups: major
features, place of articulation features (cavity), manner of articulation
features, source features and prosodic features [CHO 68] (see Table 2.8).

The description of phonemes in terms of features opens the path to
generalizations in the form of phonological rules, which give way to the
study of a number of morphological phenomena such as joining and
assimilation.

48

Natural Language Processing and Computational Linguistics 1

Class

Features

Explanation

Major features

Syllabic [+Syll]

This feature indicates that the phoneme is
capable of making up a whole syllable by
itself. In French, for example, only vowels
have this property, but in English, some
consonants can be syllabic like the consonant /
in bottle.

Consonantal [+Cons]

This feature concerns the phonemes whose
production involves a major vocal tract
obstruction such as plosives, liquids, fricatives
and nasals.

Sonorant [+Son]

This feature indicates a significant opening of
the vocal tract: vowels, semi-vowels, liquids
and nasals.

Place of articulation

Coronal [+Cor]

This feature is connected to consonants where
the tip of the tongue gets close to or touches
the teeth or alveolar ridge.

High [+High]

The body of the tongue rises to get close to or
touch the palate.

Anterior [+Ant]

The place of articulation is located at a frontal
position in the mouth (alveolar ridge, teeth,
lips, etc.).

Back [+Back]

The place of articulation is located with the
tongue behind the palatal area.

Manner of articulation of consonants

Sonorant [+Son]

This feature allows vowel and consonant
phonemes which require the vocal and nasal
tract to be as unconstructed as possible to be
grouped together. Liquids and nasals are
examples of consonants which have this feature.

Continuant [+Cont]

This feature allows sounds whose
pronunciation can be prolonged (e.g. fricatives)
to be distinguished from phonemes that cannot

be prolonged (e.g. plosives).

Nasal [+Nas]

Phonemes whose pronunciation requires free
airflow through the nasal cavity.

The Sphere of Speech 49

High/Low [+High]/ [+Low] | This feature indicates the position of the
tongue in the mouth, marking the degrees of
aperture of the vowels: open [+Low], close

[+High].
Back [+Back] The body of the tongue is pulled back.
Round [+Round] Phonemes produced with rounded lips.

Manner of articulation of vowels

Table 2.8. Examples of distinctive features according
to the taxonomy by Chomsky and Halle [CHO 68]

2.1.2.3. Phonological rules

This is a formal tool used most notably in the framework of generative
phonology to describe a phonological or morphophonological process. The
rules can apply to phonetic transcriptions or to feature structures. The
modern format of these rules was proposed in the framework of the SPE
model. Their general system has the following format: A — B/ X Y. In this
system, X represents the position on the left and Y represents the right, while
A and B correspond to the entry and exit symbols, respectively. In other
words, after applying this rule, the sequence XAY will be replaced by the
sequence XBY. To express higher level constraints, it is possible to
eventually use the symbols $, +, # and ## to mark the boundary of a syllable,
a morpheme, a word or a phrase, respectively. Likewise, the symbol @, used
to mark an empty element, is particularly useful for expressing the
suppression of an element in the entry sequence.

To clarify the functioning of these rules, let us examine the following
example:

[n] = [m]/ _[b]

This rule describes the replacement of # by an m in standard Arabic if the
final sound is followed by a b, independent of what is found in the left-hand

50 Natural Language Processing and Computational Linguistics 1

position. For example, the n in the preposition ¢« [min] (has several English
equivalents depending on context including of and from) becomes m when it
is followed by the adverb baid (after), which begins with a b ¢« and the
result is the following pronunciation [mimbaidi] (JALF 89], see [WAT 02]
for similar phenomena in Arabic dialects). It must be noted that a similar
change occurs in Spanish but in different conditions, which require the
description in terms of distinctive features:

[n] ~[m] /[+vowel] —[:ftt::rluent}

Following this rule, the phoneme n becomes m, if it is preceded by a
vowel (such as [a], [e], [0], [i] and [u]) and followed by a consonant which is
labial and an obstruent like [p], [b] and [f]. Thus, n does not change in a case
like [en espapa] but it becomes m in cases such as:

— en Porto Rico [em portoriko], en Paris [em paris];
— en Bolivia [em bolifja], en Barcelona [em barfelona];

— en Francia [em fransja].

Phonological rules can occur in many different ways and they can be
grouped into four categories: assimilation, dissimilation, insertion and
suppression.

Assimilation involves changing the features of a given phoneme to make
it phonetically more similar to another phoneme, which is usually adjacent
but sometimes further away. The preceding two rules describe a case of
consonantal assimilation under the effect of a neighboring consonant. The
assimilation of the vowel [€] in the French verb “aider” (to help) [ede] is a
good example of vowel assimilation. This vowel is often pronounced [e]
under the effect of the final vowel. In this case, since the two vowels are not
adjacent, we can say that this is non-contiguous assimilation.

Dissimilation is a phonological phenomenon which has been shown both
historically and in today’s languages. In contrast to assimilation, it involves
the systematic avoidance of the occurrence of two similar sounds being next

The Sphere of Speech 51

to each other [ALD 07]. Let us look at the following examples from a Berber
language [BOU 09]:

am+bur [anbur] Unmarried
am+ frrd [anfr:d] Person who changes

am+mal [anmal] Action of showing

This gives us the following rule:

b
[m]~[n]/_§f

Insertion involves adding a sound into a given phonological context. In
English, a typical case involves adding the schwa [o] at the end of words
which finish with an s (before an s ending) such as in the word bus [bas],
which becomes buses [basaz] in the plural. Another example of insertion
comes from Egyptians speaking English. The language spoken in Egypt does
not allow three consonants to be pronounced in succession. Some Egyptian
speakers of English will add a vowel sound to avoid three consonant sounds
in succession. The sentence.: I don’t know exactly [a1 dount nou 1gzeektli]
becomes [a1 dounti nou 1gzeaktili] with the insertion of the vowel i at the end
of the words don 't and exact.

Suppression can affect a given sound in a precise context where the
speaker thinks that it will not cause an ambiguity if it is introduced. A typical
case in French is the suppression (by certain speakers) of the schwa [9] in
words such as the verb “devenir” (to become) [dovenir] which might be
pronounced [dvenir] or the adjective “petit” (small), which is pronounced
[pti]. Likewise, the last consonant in a word, like the final 7 in the adjective
petit or the s in the determinant /es, is not pronounced when it is followed by
an obstruent, a liquid or a nasal. On the other hand, this consonant is

52 Natural Language Processing and Computational Linguistics 1

pronounced when it is followed by a vowel or a semi-vowel. Let us look at
the following examples:

Petit talon [pati tald] Les talons [le talo]
Petit lapin [pati lapg] Les lapins [le lape]
Petit narval [pati naRval] Les narvals [le naRval]
Petit [potit adolesa] Les adolescents [lez adolesal]
adolescent

Petit oiseau [potit wazo] Les oiseaux [lez wazo]

This gives the following rule:

[+obstruent|
[+consonant] — ¢/ _ #1 [+liquid]
[+nasal]

In spite of the simplicity of these rules, using them as a representation
framework is not unanimously agreed upon within the community, notably
due to the ambiguity surrounding the order of their application. Different
alternatives have been proposed to resolve this problem. One such
alternative, which is the most easily applied in NLP, is two-level phonology.
This theory will be the focus of a specific section in this chapter. Other
approaches recommend using logic to maximize the rigor of the description
framework, therefore minimizing the gap between the theory and its
computational implantation [GRA 10, JAR 13].

2.1.2.4. The syllable

The concept of the syllable allows describing phenomena at a higher level
than the phoneme level, which is the main focus of the SPE model. It
involves an abstract phonological unit which corresponds to an uninterrupted
phonetic sequence. As a phonological unit, a syllable can either have
meaning or not.

The simplest approach involves characterizing the syllables in a language
in a linear way, such as sequences of consonants (C) and vowels (V). Let us

The Sphere of Speech 53

take the following as examples: a, V, the CV, cat CVC, happy CV-CV,
basket CVC-CVC. As we can see, some syllables end with a vowel and are

called open syllables (like CV), while others end with a consonant and are
called closed syllables (like CVC).

Other theoretical approaches stipulate that the syllable should have a
hierarchical structure [KAY 85, STE 88]. Following these approaches, a
syllable (o) is made up of two main parts: an onset (@) and a rime (p). The
onset is universal and present in all the world’s languages. Although some
languages allow empty onsets, they nevertheless require a structural marker
to show this, often in the form of joining. For example, the syllable y [i] in
French has an empty onset which is filled by the joining (liaison)
phenomenon, like in “allons-y” (let’s go (there)) [alozi]. The rime is an
obligatory part in every well-formed syllable. The rime is made up of two
elements: the nucleus (v) and the coda (k). The nucleus is the most sonorous
part of the syllable and is the underpinning element of the rime. This is why
it is considered an obligatory element. In French, the nucleus is made up of a
vowel, a diphthong, or both at the same time. However, some languages,
including Czech, allow a nasal consonant or a liquid to fulfill this role. The
coda is optional and has a descending sonority. It is made up of one or
several consonants. Consequently, the syllables that have a coda are also
closed syllables. Let us look at some examples in Figure 2.19 to illustrate
some syllabic structures in French.

y [i] je [39] pra [pRa] tique [tik]
) o a g
PN P T P ™
w p [a] P m P o) P
I I I I 2 Hg I I P
@ v 3 v p r v t v k
I | | | |
i] a i k
fresque [fResk] croire [kKRwaR]
ag ag
/\\ /\\
w o} w p
f R v k k R v k
I N PN I
I3 s k w a R

Figure 2.19. Examples of some possible syllabic structures in French

54 Natural Language Processing and Computational Linguistics 1

As we can see in Figure 2.19, the onset of the first syllable is the null
element (¢). This is a way of marking that the onset is obligatory but that in
this specific case, it is empty. Likewise, we can see that some constituents
can form branches, like the onset in the syllable pra, the onset and the coda
of the syllable fResk or the nucleus of the syllable croire.

2.1.2.5. Autosegmental phonology

The SPE model has been criticized for several reasons. One reason is
because it emphasizes the rules more than the substance of phonological
representations. The other reason is the overgeneration of certain rules which
are capable of producing unattested cases in the language whose system they
are meant to be describing. This contributed to the emergence of different
models including autosegmental phonology, an important extension of
generative phonology, which was proposed by John Goldsmith also under
the name nonlinear generative phonology [GOL 76, GOL 90] (see [PAR 93,
VAN 82, HAY 09] for a general introduction).

This theory is based on abandoning the principle of the strict linearity of
language introduced by Saussure in favor of a multidimensional vision of the
linguistic sign previously defended by linguists from different branches of
the field such as [BLO 48, FIR 48] and [HOC 55]. Thus, according to this
theory, phonological representations are made up of several independent
tiers, each having a linear structure.

The segmental tier focuses on distinctive features more than phonemes to
give a finer granularity to the representation. For example, the phoneme /p/
is represented by the following features: [-sonorant, -continuant, -voiced
and -labial]. To overcome the redundancy of the representations of these
features, several models have been proposed to take the concept of
underspecification between the features into consideration [MES 89, KIP 82,
ARC 88, ARC 84].

The timing tier corresponds to the succession of units of time and is used
as a pivotal point for the other tiers. It allows complex and long segments to
be processed. Typically, these units are noted in the form of a sequence of
characters, marked as x in the tree, and are associated with segments. For
example, the consonant m which is doubled in the spelling of the French
words “emmener” and “emmagasiner” receives two temporal units (see
Figure 2.20).

The Sphere of Speech 55

Timing Tier X X X X X X X X X X X X X X X

Segmental Tier

Figure 2.20. Examples of how double
consonants are dealt with by the timing tier

The tonal tier contains information which shows the distribution of tones
at the level of phonological representation. Several studies have shown that
this tier is independent of segments since changes in elements at the
segmental level do not affect the tonal structure that these elements carry.
Tonal information is particularly important for tone languages such as
Vietnamese and Chinese.

The autosegmental tier allows the study of long-distance vowel and nasal
harmony [CLE 76]. This phenomenon is well known in certain South
American languages, such as Warao which is spoken in Venezuela and
Tucano and Barasana, spoken in Colombia. In these languages, nasality
spreads from consonants to neighboring vowels like in nad +ya — naoya, he
is coming [PEN 00] (see Figure 2.21).

[+Nasal] Autosegmental Tier
m
n 3 6 ¥ 5 Segmental Tier

Figure 2.21. Propagation of nasality in Warao

The syllabic tier allows the constraints linked to the elements of the
syllable that we saw in the section on the syllable (onset, nucleus and coda)
in each language to be studied. The information in the syllabic tier
corresponds to the root of the tree o, while the segmental level corresponds

56 Natural Language Processing and Computational Linguistics 1

to the phonemic sequence. As Paradis [PAR 93] highlights, differences in
syllabic structure allow interesting phonological phenomena to be explored,
such as joining (liaison) of words, e.g. [’oiseau [wazo] (“bird” in French),
where the semi-vowel w is considered to be a part of the nucleus and not the
onset, while this joining does not occur in la ouate [wat] (“wadding” in
French), since w is part of the onset.

The metrical tier concerns the supra-syllabic level and allows phenomena
such as the accentuation of one or more syllables, and other prosodic
phenomena, to be described. This includes intonation that we will detail later
(to avoid repetition of other prosodic phenomena).

As a theory of the dynamics of phonological representations,
autosegmental phonology covers the rules about well-formedness, allowing
the association of one tier’s element with an element of another tier.

Autosegmental phonology has seen important developments, notably
following McCarthy’s work which promised to generalize the theory to take
into account languages with non-concatenative morphology such as standard
Arabic [McC 81].

2.1.2.6. Optimality theory

Proposed by Alain Prince and Paul Smolensky, optimality theory (OT) is a
linguistic model situated in the framework of generative grammar. It states
that the surface structure of languages is the result of the resolution of a certain
number of conflicts between several constraints in competition [PRI 93,
PRI 04]. The linguistic system is, therefore, considered as a system of
conflicting forces. Although phonology is the field that OT fits into best, many
works have attempted to apply its principles in other branches of linguistics,
such as morphology, syntax and semantics (see [LEG 01, HEN 01, BLU 03]).

In contrast to the SPE model, the OT uses constraints more than rules.
For example, in the SPE model, to express the fact that in Egyptian, three
consonants cannot appear in succession, rules such as those provided below
are used.

[+con][+con]% [+con][+con] [1]/ __ [+con]

[+con][+con]e [+con][+con][l] / __ #[+con]

The Sphere of Speech 57

In practice, this gives us cases like:
il bint kibi: ra — il bint —I —kibi: ra (the eldest daughter)

To process this case from the perspective of OT, we need to use the
constraints that can be organized in a table (see Table 2.9).

Entrance *CCC
il bint kibi: ra *
il bint — I —kibi:ra ja&"

Table 2.9. Constraint forbidding three successive consonants in Egyptian Arabic

As we can see in Table 2.9, the constraint of forbidding three successive
consonants is violated by the first candidate (marked by an asterisk) and not
by the second. This explains why the second candidate, marked by the
pointing hand, is preferred over the other. If we take the different constraints
implied in the formation of a sentence, we will find a number of candidates
in competition and each will obey different constraints (but not all the
constraints). The optimal candidate will, therefore, be the one that satisfies
the most constraints.

To put candidates in order, OT distinguishes between different types of
violations: a violation marked by an asterisk and a crucial violation marked
by an exclamation mark. Let us examine the case of joining in French and
constraints that are exemplified by two possible candidates [poti ami]
(boyfriend) and [pati t ami] presented in Table 2.10. The constraints that
apply to an example of this kind can be classified into two major categories:
markedness constraints and faithfulness constraints. Markedness constraints
imply a minimization of markedness and, therefore, cognitive effort, which
contributes to a maximization of discrimination. In practice, this is realized
by a preference for simple linguistic structures which are commonly used
and easy to process. For example, all the languages in the world have oral
vowels but few have nasal vowels. Likewise, all the languages in the world
have words that begin with consonant sounds but few languages allow words
to begin with vowel sounds. Identity constraints put structural changes upon
entry at a disadvantage. In other words, they require words to have the same
structure on entry as on exit: no insertion, no suppression, no order changes,
etc.

58 Natural Language Processing and Computational Linguistics 1

As we can see in Table 2.10, we have two constraints which are in
competition. Firstly, the constraint that two vowels cannot be next to each
other is violated by the second candidate, but not by the first. We can also
see that the faithfulness constraint is violated by the first candidate, which
involves the insertion of a ¢. Since the first constraint is very important in
French, its violation is considered to be fatal. Thus, the first candidate is
favored, even though it violates the faithfulness constraint (see [TRA 00] for
a more detailed discussion of similar examples in French).

Entry *VV Faithfulness
peti t ami = *
peti ami *1

Table 2.10. Constraints involved in the case of joining (liaison) in French

It can be said that the main advantage of OT is its explanatory ability. In
contrast to the rules which must be satisfied by the surface structure, the
constraints bring to light factors which might otherwise be hidden (not
visible on the surface) but which contribute to the emergence of the optimal
output structure.

From a computational point of view, the formal establishment and
models of OT implicate other theoretical frameworks, such as autosegmental
phonology used by Jason Eisner, who proposed a formalization of OT based
on finite-state automata [EIS 97]. Based on Eisner’s model, William Idsardi
showed that the problem of OT generation is NP-hard and that it cannot give
an account for phenomena of phonological opacity because it does not
possess an intermediary level of rules to apply [IDS 06]. The Idsardi test was
called into question by Jeffrey Heinz [HEI 09] who argued that it only
applies to a particular part of OT. Boersma [BOE 01] proposed a stochastic
view of OT where the constraints are associated with a value on a continuous
scale rather than on a discrete scale of priority. Other formalization works
have emerged in the field of syntax (see [HES 05] for a general review of the
applications of OT in computational linguistics). Furthermore, a learning
framework for OT was proposed by Bruce Tesar [TES 98, TES 12].

2.1.2.7. Prosody and phono-syntax

Prosody is a term in suprasegmental phonology used to discuss
supraphonemic phenomena such as the syllable, intonation, rhythm and flow

The Sphere of Speech 59

[CRY 91, BOU 83] (see [VOG 09] for a typological overview). From a
phonetic point of view, the parameters which allow prosody to be
characterized include height, acoustic intensity and the duration of sounds.
These parameters are directly affected by the emotional state of the speaker,
which gives prosody an additional dimension.

In the field of NLP, prosody plays an important role in a number of
applications, notably speech synthesis, emotion recognition, the processing
of extra-grammatical information in oral speech, etc. Given the complexity
of interactions between prosody and superior linguistic levels in French,
we will concentrate on prosodic phenomena in this language, while also
mentioning notable phenomena in other languages.

2.1.2.7.1. Stress

Stress has the function of establishing a contrast between different
segments, defined by phonological, syntactic and semantic criteria, which
are stressable units. As Garde [GAR 68] underlines, the criteria chosen to
define these units vary from one language to another. Consequently, stress
has the role of giving a formal marker to a grammatical unit, the word,
which is an intermediary between the minimal grammatical unit, the
morpheme and the maximal grammatical unit, which is the sentence.

Stress can be marked using two different types of processes. positive and
negative. Positive processes involve the increase in intensity of the syllable,
which is stressed in comparison with unstressed syllables. Another factor
that contributes to a syllable being stressed is prolonging the length of the
nucleus of the syllable in question, as well as a noticeable increase in its
fundamental frequency. In contrast to positive processes, negative processes
involve the removal of a feature in unstressed syllables. Logically, these
processes affect the features that belong to the inventory of distinctive
features in the language.

In French, stress units have limits which are highly variable and depend
on factors such as the succession of syllables which are susceptible to being
stressed, the rhythm of speech and pauses. The majority of words are
susceptible, in certain positions, to becoming unstressed. In reality, stress
does not affect units that can be described based on fixed linguistic criteria.
It is more a question of units whose limits vary from one utterance to
another. This is how French tends to avoid the immediate juxtaposition of
two stresses. Apart from this case, French excludes the possibility of

60 Natural Language Processing and Computational Linguistics 1

semantically close words all being stressed in near succession unless there
are pauses. Groups of words like this become longer and the flow becomes
gradually more rapid and less careful. Given that there is no syntactic
category that systematically carries the stress in French, it is impossible to
syntactically define a stress unit. On the other hand, we can define the
syntactic constraints which affect the realization of stress. For example, we
know that the stress cannot be placed on an article such as le or /a (the),
since these morphemes are always integrated into a larger stress unit.

In some languages, the position of the stress, in the framework of a stress
unit which has already been set out, depends upon syntactic criteria. These
languages are called variable stress languages. In other languages, called
fixed stress languages, the position of the stress depends on phonological
criteria. In French, stress is fixed, because it falls on the final syllable in the
stress unit.

Now, let us consider an important variant of ordinary stress in French
which is called insistence stress. Just as with ordinary stress, it is based on
the idea of an intentional contrast which allows certain elements of the
utterance to become the focus of the utterance. In contrast to ordinary stress,
this insistence stress falls on the first syllable of the word in French and this
causes perceptibility to increase. In French, it is possible to distinguish two
processes in prosodic insistence: emotional insistence stress and intellectual
insistence stress [GAR 68]. Emotional insistence stress involves prolonging
the first consonant of a word with an emotional value or pronounced with
disapproval, like in C’est formidable (it’s wonderful) or C’est épouvantable
(it’s terrible). Intellectual insistence stress involves reinforcing intensity by
increasing the fundamental frequency as well as lengthening the first syllable
of the stressed phrase [GAR 68]. It is mainly used to mark the opposition
between two terms like in ¢’est un chirurgien qui a opéré le patient, pas un
infirmier (it was a surgeon who operated on the patient, not a nurse) or in the
following exchange:

— Un billet d’avion avec une chambre d’hotel ? (A plane ticket with a
hotel room?)

— Non, un billet d’avion seulement. (No, just a plane ticket)

The position of the intellectual insistence stress is not always the same as
in the case of emotional insistence stress. Both are on the initial syllable

The Sphere of Speech 61

when the word begins with a consonant. On the other hand, in words which
begin with a vowel sound, intellectual insistence falls on the first syllable
and emotional insistence falls on the second.

2.1.2.7.2. Intonation

Intonation, in the broadest sense of the term, covers a whole series of
physical parameters which vary with time, such as intensity, fundamental
frequency and silence. Psychoacoustic parameters also come into play
with intonation. Stress, melody, rhythm, prominence, breaks, etc. are all
important [ROS 81, ROS 00, GUS 07].

Since the beginning of linguistics, there have been a number of studies
investigating the relationships between syntax and intonation, given the
possible range of effects of syntax on the surface structure of the phrase.
Intonation plays a role in the initial resolution of syntactic ambiguities and,
therefore, allows the speaker to choose a particular analysis over other
analyses or interpretations. Let us examine the following sentence: John
talked #1 about his adventure #2 with Tracy. Depending on the place of the
pause (1 or 2), one possible interpretation is preferred. The possible
interpretations are as follows, respectively: Tracy went on the adventure with
John, or Tracy is John’s conversation partner. Here is another interesting
example: John didn’t leave his house # because he was ill. With a pause after
the prepositional phrase, the interpretation of this sentence is: John is at
home. Without the pause, the interpretation becomes: John is no longer at
home but the reason for his having left the house is not the illness. Finally, it
is well known that intonation plays an important role in the marking of
discursive structures and thematic roles [HIR 84] (see [HIR 98] for a
typological review).

2.2. Speech processing

Speech processing (SP) is a term which refers to a variety of applications.
Some applications are limited to the level of the speech signal, whereas
others rely on high-level linguistic information. In this section, we will focus
on the two applications which fit into NLP the best: speech recognition and
speech synthesis. Given the nature and the objectives of this book, we will

62 Natural Language Processing and Computational Linguistics 1

not elaborate on the aspects linked to the processing of the signal itself, but,
nevertheless, we will include references for those who would like to know
more.

Before going any further, we must quickly present two other applications
which are of interest in many respects: speaker recognition and language
identification.

Speaker recognition involves identifying the person who utters a phonic
sequence whose length varies from long to very short. Such applications
require vocal characteristics (which are unique to each and every one of us)
to be modeled. To limit the quantity of speech required for training, a
generic model is created and the specific models for each speaker are
derived from this. Once the models have been created, the process of
identification involves measuring the distance between the short sequence
produced by the speaker and the existing models. The speaker is identified if
the distance between the sample and the model exceeds the pre-established
confidence threshold (see [BON 03, KIN 10] for an introduction).

Another application of SP involves identifying the language or dialect of
the speaker. From a practical point of view, such applications allow
telephone calls to be connected to speakers who are able to understand and
interact with the language used, in an international context. However,
applications to the field of security remain the most common for this type of
systems. The principle of these systems is similar to the systems of speaker
identification. This involves creating an acoustic profile for each target
language and/or dialect and measuring the distance between the sample
received and each of the existing profiles (see [MON 09] for an example of
these works).

2.2.1. Automatic speech recognition

Automatic speech recognition (ASR) involves identifying sequences of
words which correspond to the speech signal captured by a microphone (see
[JUN 96, YU 14] for a general review). The most obvious use for ASR is in
the context of human—machine spoken dialogue applications, where data are
introduced by means of spoken utterances. Nevertheless, vocal dictation is
the oldest and most widespread application of ASR.

The Sphere of Speech 63

To classify ASR systems, several parameters come into play, including
the size of the vocabulary and the number of speakers. Table 2.11 presents
the main parameters as well as the main characteristics of the systems
[ZUE 97].

Parameter Possibilities
Speaking mode Isolated words, continuous speech
Speaking style Read text, spontaneous speech
Enrollment Dependent or independent speaker
Vocabulary size Between 20 and tens of thousands of words
Type of language model Finite state machine or context-dependent
Perplexity Between < 10 (small) and >100 (large)

Table 2.11. Classification parameters of speech recognition systems

Given the complexity of their task, ASR systems have to overcome
big challenges. These challenges have given way to highly desirable
characteristics, which are:

—robustness: an ASR system must adapt to different levels of sound
quality, including sounds of a poor quality. This poorness of quality can be
the result of noise in the environment. This is especially the case in
applications that are designed to be used in a car or in an airplane (e.g. the
noise caused by the engine or the air). Conversations happening nearby can
also present a similar form of challenge;

— portability: given the cost of the development of an ASR application, it
is highly desirable to be able to apply the same work to several areas of the
application without much effort being required;

— adaptability: a good system should be able to adapt to speaker changes
and microphone changes and this should be the case whenever it is used.
Spontaneous speech comes with its own major challenges to overcome, as it
contains hesitations and repetitions which are difficult to model, even with
the use of statistical approaches. Finally, a recognition system must be

64 Natural Language Processing and Computational Linguistics 1

capable of recognizing or at least reducing the impact of the words
pronounced which are not already included in its vocabulary.

Typically, a speech recognition system is made up of several modules
and each one is specialized, allowing it to deal with a particular aspect of the
analysis of the speech signal (see Figure 2.22).

Firstly, the feature extraction module allows features which are useful for
the digital and sampled signal to be extracted. In telephone applications, for
example, this sampling is carried out at a rate of approximately 8,000
samples per second. In some cases, this module has the role of improving the
quality of the signal, by reducing the sources of sound which come from a
neighboring conversation, from noise in the environment, etc. This filtering
allows the recognition module to be activated intelligently when it is
established that the signal received is effectively a speech signal and not
noise. For more information on the extraction of features and signal
processing in general, refer to [CAL 89, OGU 14] and [THA 14].

Training data

Acoustic Language
model model

[Feature)
. Decoding Module * Good evening everyone

“m \l“.' extraction

Feature Words
vectors

Speech

Figure 2.22. General architecture of speech recognition systems

Next, the decoding module tries to find the most likely word using
acoustic models and language models.

The acoustic model allows hypotheses about words to be generated with
the help of techniques such as hidden Markov models (HMM), neural
networks, Gaussian models or other models. The result of the acoustic model
is a graph of words which sometimes involves a great number of sequences,

The Sphere of Speech 65

and each one corresponds to a path in the graph. To identify the best
sequence of words in the graph, the decoding module uses a language model
which is usually based on n-grams. Note that in spite of the domination of
statistical models since the 1970s, different forms of pairing with linguistic
models have nevertheless been experimented with.

2.2.1.1. Acoustic models based on HMM

When work first began on ASR, rule-based expert systems were used to
detect phonemes. Given the limits of their efficiency and the difficulties
surrounding their development, these approaches were abandoned in favor of
statistical methods, notably Markov chains. Markov chains are mathematical
systems proposed by the Russian mathematician Andrei Markov at the
beginning of the last century to model temporal series. The model was then
further developed by the American mathematician Leonard E. Baum and his
collaborators whose work gave way to the HMMs. The first implementations
of HMM in the area of speech recognition took place during the 1970s by
Baker at Carnegie Mellon University, as well as Jelinek and his colleagues at
IBM [BAK 75a, BAK 75b, JEL 76].

The fundamental idea of Markov chains is to examine a sequence of
random variables which are independent of each other. The purpose of such
a sequence is that it allows us, through observing past variables, to predict
the value of these variables in the future. For example, if we know the
monthly rainfall in a given town, we can predict, with a certain margin of
error, what the rainfall will be in the subsequent month(s). Therefore, we are
talking about conditional probability, where the value of a given variable
(quantity of rain predicted for the subsequent month) depends upon the
values of variables in the sequence that precedes it (known history of rain in
the town in question).

For an introduction to the fundamental concepts of probability, since
this goes beyond the objectives of this text, we recommend [KRE 97] and
[MAN 99] (for an introduction to these concepts in the context of NLP). A
great range of books and manuals giving an introduction to probability exists
and, of course, these can be used if necessary.

Let us take a detailed example to explain the principle of the Markovian
process (see [RAB 89, FOS 98] for a similar example on climate). Suppose
that a given person or robot, whom we will call Xavier, can be in three
possible moods: happy, neutral and sad. Suppose also that our Xavier

66 Natural Language Processing and Computational Linguistics 1

remains in the same mood for the whole day. Therefore, to predict Xavier’s
mood tomorrow, it is necessary to know what his mood is today, what it was
like yesterday and what it was like the day before yesterday, etc. More
formally, we must calculate the probability of p(ey+i|€n, €n1, ... €1). In
practice, it is best to take into account a part of Xavier’s mood history with
only a limited number of preceding moods. Here, we are talking about a
first-order Markov chain (with only one preceding mood) or a second-order
Markov chain (with two moods preceding the current mood), etc.

Suppose that we have a chain of random variables X = {X;, X,, .., Xt}
and each one takes a value v based on a limited range of values V={vy, v, ..,
va}. This gives us the following equations:

p(ew1 =Vi [y, €1, ... €1) = p(ew1|e,) first-order Markov process.
p(ew1 =i [e, €x1, ... €1) = p(ewi]er, er1) second-order Markov process.
The probability of a Markov chain can be calculated according to
equation [2.1].

ple, ...,) =1_[p(ei le, —1) [2.1]

Let us imagine that in the case of Xavier’s moods, we have the
probabilities presented in Table 2.12.

Mood today Mood tomorrow
Happy Neutral Sad
Happy 0.70 0.27 0.03
Neutral 0.40 0.35 0.25
Sad 0.12 0.23 0.65

Table 2.12. Probabilities of Xavier's moods
tomorrow, with the knowledge of his mood today

Table 2.12 shows that the probability of a radical change in Xavier’s
mood (e.g. happy— sad) is generally inferior to that of a gradual change
(e.g. happy— neutral) or to no change at all (e.g. happy— happy). The

The Sphere of Speech 67

information given in this table can be represented in the form of a Markovian
graph made up of a finite number of states (which is three in our case —
namely neutral, happy and sad), of transitions between these states (arrows
or curves) which allow a transition between one state (mood) and another, as
well as the probability of staying in the same state (Figure 2.23).

Figure 2.23. Markovian model of Xavier's moods

This model allows us, for example, to calculate the probability that
Xavier’s mood will be neutral tomorrow and happy the day after tomorrow,
knowing that his mood is neutral today. This is carried out in the following
way:

p(e,=neutral, e;=happy | e;=neutral) =

p(es=happy]| e,=neutral, e;=neutral) * p(e,=neutral |e;=neutral) =
p(es=happy]| e;=neutral) * p(e,=neutral |e;=neutral) = (first order Markov)
0.4 *0.35=0.14

The idea of Markov chains was pushed even further following the work
by Baum and his collaborators who added an additional element of
complexity to the model, which is latent or hidden variables, and this gave
way to what we today call the hidden Markov models or HMMs. The main
purpose of HMMs compared to ordinary Markov chains is that they allow
sequences to be dealt with even if they contain ambiguity and, as a
consequence, they can be processed in more than one way.

68 Natural Language Processing and Computational Linguistics 1

If we come back to our example, we know that in reality it is very
difficult to guess if someone is in a good mood or not (hidden variable). The
only way of telling this is to observe the person’s behavior (observable
variable). We can simplify this into two possible behaviors: smiling or
frowning. This allows us to imagine the probability presented in Table 2.13
containing information about whether Xavier is likely to be smiling or
frowning, knowing his mood.

Mood Probability of smiling Probability of frowning
Happy 0.88 0.12
Sad 0.55 0.45
Neutral 0.65 0.35

Table 2.13. Probability of Xavier’s behavior, knowing his mood

A more detailed version of the Markov chain graph (Figure 2.23) with
behavioral probability gives the HMM diagram shown in Figure 2.24.

Smiling Frowning

N\ /
065 035
o

0.35 Neutral

0.27%0.23
0.40 0.25

.
0.12

b |

|/

070, Happy @ Sad 065
L/’ A 0.03 A
88 D12 055 045
/ SN
Smiling Frowning Smiling Frowning

Figure 2.24. HMM diagram of Xavier’s behavior and his moods

As Figure 2.24 shows, the HMM model is based on two types of
probabilities: the probability of transition and the probability of emission.
Transition relates to the movement from one state to another while emission
involves emitting an observable variable based on a certain state.

The Sphere of Speech 69

From a formal point of view, HMMs can be seen as a quintuplet:

E={e,e, ..., e} All states

0O=1{01,0, ..., O} Observations

(i) =p(e=ti) I<i < n Probability of being in a state e; at time
where 7 is equal to the t knowing that ¢ = 0 for the initial state

number of states
A = {a;} withi,je E Probability of transition between states
B = {bijo} i, j {E and o} Probability of emission

A={A, B, n} Complete model

If we come back to our example, the HMM allows us to calculate the
probability of Xavier’s mood, which can be observed directly, based on his
behavior, which is also observable directly. In other words, it is possible to
calculate a particular mood e;e {happy, sad, neutral} based on an observed
behavior o;e {smiling, frowning}. This is carried out with the help of the
Bayes formula, given in equation [2.2]:

p(oile;)p(e;)

2.2
p(oi) 22

p(eilo;) =

In practice, we are sometimes more interested in the probability of a
sequence of events than the probability of a single event. Thus, for a
sequence of n days, we will have a sequence of moods E={e,, e», ..., ¢,} and
a corresponding sequence of observable behaviors O={04, 0, ..., 04}:

p(0y,...,0,le;,.¢,) .p(ey, e,)
p(o,... 0,)

p(el,..en|01,...,on)= [2.3]

When applied to the problem of ASR, the sequence of acoustic
parameters extracted from the speech signal can be described by a HMM.

70 Natural Language Processing and Computational Linguistics 1

This involves combining two statistical processes: a Markov chain which
models the temporal variations, and an observed sequence which allows
spectral variations to be examined. The most intuitive way of representing a
phonemic sequence is to consider that each state corresponds to a phoneme.
Let us examine the example of the French word ouvre (to open) [uvR],
which is made up of three phonemes, shown in Figure 2.25.

all- a22: a33
‘0' o @i lz‘.:J @ J-‘.‘ a

Figure 2.25. Markov chain for the word “ouvre” (open)

As we can see in Figure 2.25, there are two types of transitions between
phonemes: a transition between a phoneme and the following phoneme and a
cyclical transition towards the same phoneme which allows important
variations between the length realizations of each phoneme to be studied.
These variations are generally due to the nature of the phoneme (notably
continuous vowels and consonants), the differences in the context of
phonetic realization, intraspeaker variation or interspeaker variation, etc. Of
course, this model is highly simplified because the system in this case can
recognize only one word. In applications that are slightly more complex, we
have a limited number of words to recognize, like with vocal command
systems, where we can give a limited number of orders to a robot or some
kind of automatic system. For example, the Markov chain used for the
recognition of three (French) vocal commands, namely ouvre (open), ferme
(close) and démarre (begin) can have the form shown in Figure 2.26.

—©
w W

010}
Q)

Figure 2.26. Markov chain for the recognition of vocal commands

The Sphere of Speech 71

In continuous speech recognition systems with a large vocabulary, a more
narrow representation of phonemes is indispensable. Thus, we use several
states to represent phonemes. This allows acoustic variations of the same
phoneme within a spectrogram to be studied (see Figure 2.27).

Neural networks are a possible alternative for the classification of
phonemes (see [HAT 99] for a review). In spite of their results, which are
comparable to those of HMM, this technique suffered from significant
limitations such as the fact that the learning process is quite slow and that it
is difficult to estimate its parameters. Following recent developments in the
field of deep learning, which found the solution to these limitations [HIN 06,
HIN 12], we are seeing neural networks grow stronger as a real alternative to
HMMs.

Figure 2.27. HMM for the word “ouvre” (open)

2.2.1.2. The Viterbi algorithm

As we have said, the role of HMMs in an ASR system is to help find the
most likely sequence of phonemes, knowing the acoustic parameters
extracted from the speech signal. This comes back to finding the most likely
sequence of states or phonemes E = {e|, e,, ..., €,}, knowing the acoustic
parameters observed O = {0, 0,, ..., O} and a model A. In other words,
what we are looking for is: p(O, E| 1), which can be calculated using Bayes’
equation (equation [2.4]).

p(O, E[1) =p(O| E, 1) . p(E[1) [2.4]

Likewise, the probability of an observed sequence O knowing the HMM
model A can be calculated by the following equation:

p(0]2) = 3p(0, E| 1) [2.5]

To find the most likely path, knowing an observed sequence in a trellis,
the easiest solution, but the least efficient, involves calculating the

72 Natural Language Processing and Computational Linguistics 1

probabilities of every path that allows the sequence in question to be
generated, and to then choose the most likely path. A brute force approach
like this collides with the size of the research space where the number of
possible sequences exponentially increases in the following way: |E|", where
|E| is the number of hidden states in our HMM model and 7 the size of the
entry sequence. In real applications, where the number of states can exceed
100 and the number of words to be recognized can easily exceed 10, we can
imagine that the number of possibilities to consider can quickly become
impossible to deal with in this way.

The most popular approach for calculating the most probable path is to
use the Viterbi algorithm. This algorithm, proposed at the end of the 1960s
by Andrew Viterbi, the Italian American engineer [VIT 67], is based on
dynamic programming. This paradigm involves dividing the original
problem into sub-problems whose solution leads to the solution of the whole
problem. The algorithm uses two variables:

— 04(i) is the path for which the likelihood is maximal among all possible
paths and ends with the state s; at time #:

o(i) = | max]p(el, €yseiey €1, € =S;, 0, 05,... 0, | \)
el, e2, ..., et—

— y,(i) allows to store the best path, ending in state s;at time ¢:

w(i) = argmax p(e, e),..., €,_j, € =S;, 0, 05,...0, | \)
el, e2, ..., et—1

The principle of the Viterbi algorithm involves finding the most probable
path for each intermediary state and later using it to find the final state in the
trellis. Thus, at each time ¢, we come back to the most probable curve which
leads to s;. The algorithm is made up of four steps:

1) Initialization:

31(i) =m. bio,i=1,.., Ty where T is the number of states and m; the
probability of being between a state e; at
moment #=1.

yi(i))=0 No state precedes the initial state.

The Sphere of Speech 73

2) Recursion:

The recursive function is the true heart of the algorithm. Informally, the
problem of the final path is cut up into sub-problems whose partial solution
is stored in variable v for the current state j:

o) = ggy)%@“ (i)-ay) b, . 2 <t <T
1 <j <T,

yi(j) = arg max (8, (i)- a;) 2 <t<T
1<i<Ts 1 _j STS

3) Stop condition:
The algorithm stops once we arrive at the final state T:

P'(Op) = max &, (i)

1<i<Ts

* .
e =argmaxd; (i)
1<i<Ts

Next, we look for the best path when the end of the observation sequence
has been reached at moment t = T, starting with the best vectors ;.

4) Path backtracking:

Ef = {eT, . e’} } such as: ef=wt+1(ef+1),t=T— 1, T-2,...,1.

To illustrate the functioning of this algorithm, let us go back to the
example of Xavier’s behavior. Suppose that we want to calculate the most
probable sequence of states, knowing that we have observed the following
sequence of behaviors: O = {smiling, smiling, frowning}. Since we do not
know Xavier’s initial mood: ty, we will assume that the three possibilities are
equally probable. To simplify the presentation, we will adopt the following
conventions: Happy = ha, Sad = sa, Neutral = nt, Smiling = sm and
Frowning = fr.

1) Initialization:

t=1

81(ha) = T(pay. b pasm= 0.33 * 0.88 = 0.29

74 Natural Language Processing and Computational Linguistics 1

yi(ha)=0
81(1t) = Ty b= 0.33 * 0.65 = 0.21
yi(nt) =0
81(32) = Tsay. b sm= 0.33 * 0.55 = 0.18
yi(sa)=0

2) Recursion:

We then calculate the likelihood of being in a certain state based on three
possible predecessors, from which we choose the most likely.

t=2

82(ha) = max(8, (ha)- ay,,, 8, (nt)-a,,. 8 (sa) agp,) by om =
max (0.29*0.70, 0.21%0.40, 0.18*0.12)'0.88 =0.178

U2(ha) = ha

82(nt) = max(8, (ha)-ay, ., & (nt)-a, . 8 (sa) ag,) by m =
max (0.29*0.27, 0.21*0.35, 0.18*0.23)'0.65 =(0.050

y,(nt) = ha

8y(sa) = max(3, (ha)- a,,, 8,(nt) - a,, & (sa) a
max (0.29%0.03,0.21%0.25,0.18%0.65)-0.55 = 0.064

sa.sa) bsa, sm

y(sa) =sa
t=3
53(}13) = maX(BZ (ha) " Apahas 62 (l’lt)) ant.ha, 62 (Sa)) asa,ha)' bha, o

max (0.178*0.70, 0.050%0.40, 0.17*0.12)'0.12 =0.014
y3(ha) = ha

The Sphere of Speech 75

53(1’10 = max(62 (ha) T8, nes 62 (Ilt)) ant.nt, 52 (Sa) ’ asa.nt)' bnt, fr
max (0.178*0.27,0.05%0.35, 0.17*0.23)-0.35 = 0.016

y3(nt) = ha

83(sa) = max(8, (ha)- a,.,,, 5, (nt)" A, O (sa)-ag,) b, & =
max (0.178*0.03, 0.05*0.25, 0.17*0.65)'0.45 =0.005625

y;3(sa) = nt

At this stage, as Figure 2.28 shows, we have a trellis that is fully
populated with three possible paths which contain values of variable v as

follows:
y3(ha) = ha, y,(ha) = ha,
y3(nt) = ha, y,(nt) = ha,
ys(sa) = nt, y(sa) = sa,

Thus, the first path is: {happy, happy, happy}, the second is: {happy,
happy, neutral} and the final one is: {sad, neutral, sad}.

6,=0.29 6-.=0.17 5.=0.014
Happy [2

82021
Neutral o

Sad s P
6 =0.18 §,=0.06 6;=0.005
Sequence O = 0] = sr 0 =sr 03 = ms
1] |7} t3
Time >

Figure 2.28. Trellis with three possible paths

76 Natural Language Processing and Computational Linguistics 1

3) Stop condition:

We begin to look for the most probable sequence based on the previous
stage:

P* (O]n) = max(85(e)) = 85(nt) = 0.016

*

e, = argmax 03(e) =nt

This means that the most probable state with t=3 is neutral.
4) Backtracking:

Based on the previous state found in the preceding stage, we return
backwards to the previous state: t =T-1 =3-1=2.

e, =ys(ey) = ys(nt) = ha.

Again, we come back to a state: t=T-1 =2-1=1.
e =Va(e;) = ya(ha) = ha.

This means that, knowing the sequence of behaviors observed: O=
{smiling, smiling, frowning}, the most likely sequence is E= {happy, happy,
neutral}. Note that with the probabilities of transitioning between states only,
the most likely path would be {happy, happy, happy}.

2.2.1.3. Language models based on n-grams

After the phoneme recognition phase, ASR systems must find words that
correspond to the sequence of phonemes obtained in the preceding phase. Of
course, a sequence of letters can correspond to a multitude of possible word
sequences. This is due to several factors, such as homophony (two different
words with the same pronunciation) or phoneme recognition errors, etc. For
example, the (French) phonetic sequence [vjoloselki] can correspond to
“violoncelle qui” (cello that) as well as “violons celle qui” (violate that one).
In the same way, in English, based on the phonetic sequence [nar.trert], it is
possible to obtain two different word sequences: “night rate” and “nitrate”.
Furthermore, it must be indicated that language models are used in several
applications outside of ASR such as machine translation, information
retrieval, text classification, etc.

The Sphere of Speech 77

To find the optimal sequence of words, knowing the sequence of
phonemes, several sources of information come into play, notably
morphology and syntax. Traditionally, syntactic grammars were used to
refine the search for a word sequence. That was abandoned in favor of more
statistical approaches sometimes combined with certain forms of syntax
[JEL 99]. However, the ideal combination of discrete syntactic knowledge
with statistical knowledge, or other forms of continuous knowledge, is yet to
be found as much at the level of linguistic theory as at the application level.

From a formal point of view, the probability of observing a sequence of
words p(wy, ..., Wy,) is approximated according to the following equation:

pW1, o W) = [[0 W D= Tp 0, 1w,y -5 wi0) [2.6]
i=1 i=1

The idea of n-grams is to consider the n-/ preceding words rather than the
complete history. The hypothesis is that partial information loss is justified
by the gain from the reduction in the quantity of linguistic data necessary for
n-gram learning. The size of the data required for learning increases with the
value of n. The general case of n-grams can be calculated using the
following equation:

p(Wl Wn)

2.7
p0w W) 27

pw,w, ... w,_)=

To fully understand n-grams, we are going to use the following micro-
corpus where sentences begin and end with the markers <p> and </p>,
respectively:

<p>I am Mr. Dujardin</p>
<p>It’s Dujardin</p>

<p>I want a single room for one night with a balcony </p>

Several types of n-grams exist following the size of the history that is
taken into consideration. Unigrams are the simplest form of n-grams. It is a
matter of counting the frequency of words out of context in a given corpus,

78 Natural Language Processing and Computational Linguistics 1

without taking past frequencies into account. However, the raw information
from the frequency of a given word in a corpus is difficult to interpret, hence
the use of normalization in the form of probability. Thus, we proceed to the
division of the frequency of the word in question by the total number of
words in the corpus (equation [2.8]):

[2.8]

where C is the number of words in the corpus and f{w,) is the frequency of
the word wy. If we begin to count the words in our micro-corpus, we obtain
Table 2.14.

Word f(wy) P(wy) Word f(wy) P(wy)
I 2 0.11 a 2 0.11
am 1 0.05 room 1 0.05
Mr 1 0.05 single 1 0.05
Dujardin 2 0.11 for 1 0.05
it 1 0.05 night 1 0.05
is 1 0.05 with 1 0.05
want 1 0.05 balcony 1 0.05

Table 2.14. Micro-corpus unigrams

Bigrams involve considering a given word with a back window of a
single word. Thus, we are researching different possibilities of occurrences
of pairs of words, that is: f(w, wy). Let us take the example of the bigrams of
our micro-corpus presented in Table 2.15. It is necessary to add n-1 artificial
symbols (hashtags for example) at the beginning and at the end of each
sentence to indicate the symbols which are located at the head and tail of the
sentence. In the bigram example, the markers <p> and </p> played this role.

The Sphere of Speech 79

Bigram fwy wy) Bigram fwy wy)
<p>1 2 single room 1

I am 1 room for 1

am Mr 1 for a 1

Mr Dujardin 1 a night 1
Dujardin </p> 2 night with 1
<p>1It’s3 1 with a 1

It’s Dujardin 1 a balcony 1

want a 1 balcony </p> 1
aroom 1

Table 2.15. Bigrams in the micro-corpus with their frequencies

To normalize the bigrams, we can use the following equation:

bt) = L2 W) _P(¥or o) [2.9]

F(Woi) P(W,1)

Based on Table 2.15, we can calculate the probabilities of certain bigrams
as follows:

P(Il<p>)=2/3=0.6 P(am|l)=1/2=0.5 P(balconyla) = 1/2=0.5
To calculate the probability of the sequence It’s Dujardin, we can
proceed as follows: p(<p> It’s Dujardin </p>) = p(It’s|<p>) p(Dujardin|It’s)
p(</p>Dujardin) = 1/3 * 1/1 * 2/3 =0.217.

Finally, since it is not realistic to assume that the training corpus includes
all possible words from the language in question, it is highly recommended
to create in advance a specific category for unknown words.

3 For simplification, we have considered “it’s” as one word.

80 Natural Language Processing and Computational Linguistics 1

2.2.2. Speech synthesis

A speech synthesis (SS) system is a software or hardware capable of
producing speech in an artificial way [TAY 09]. In some cases, the input for
such systems can be a phonetic transcription of the entry text or a text
annotated with syntactic or prosodic information. However, since the typical
input into these systems is a flat text, they are sometimes called Text To
Speech systems.

Science historians have reported several attempts to create mechanical
machines equipped with spoken functionalities such as Wolfgang von
Kempelen’s machine, which was created towards the end of the
18th century. However, the first SS system in the modern sense of the term
was probably the VOCODER system, which was developed towards the end
of the 1930s at the Bell laboratory in the United States.

From an application point of view, SS systems can be used as
independent applications or as modules in larger systems. Applications for
the visually impaired or the blind as well as for people with speech disorders
are probably the most obvious medical use of such systems. Likewise,
human—machine dialog systems use SS modules as a way of interacting with
humans. Furthermore, with the increased popularization of intelligent
tutoring systems, notably in the field of foreign language teaching, the use of
an SS module gives a voice to virtual tutors, allowing them to teach the
language in its spoken form. Another important development is the
emergence of talking heads or animated virtual characters. There must be a
detailed synchronization between the SS and the module that creates the
animation of facial and body expressions to guarantee a minimal level of
coherence. Of course, the success of all applications depends on the quality
and expressiveness of the SS module.

A typical example of the architecture of an SS system is shown in
Figure 2.29. Of course, it is more of a general example since the real
implementations of modules as well as their modes of interaction can change.

As Figure 2.29 shows, in general an SS system involves two major steps:
front-end processing, whose function is to prepare the entry text for
synthesis, and back-end processing, which relates to the synthesis of the
digital signal. This is done according to several approaches, like
concatenative synthesis, formant synthesis and articulatory synthesis.

The Sphere of Speech 81

Front-end

K Normalization e NER — POS «— Phonetization «—s Prosodic
processing analysis
T |
I ¥
| Back-end Synthesis of the digital
| processing speech signal
|
I would like a Y Y T N A
room please e ’ ‘ L w L
! L

|

Figure 2.29. Typical architecture of an SS system

2.2.21. Front-end processing

This phase is made up of several stages of low-level linguistic processing,
and the majority of these are explained in the following chapters. The first
step is the normalization phase, which involves translating written
conventions and abbreviations in an explicit format. Let us examine the
examples from Table 2.16. As we can see, normalization is far from being a
trivial operation. A simple syntactic conversion from one format to another
is not enough, but it is clear that we need to access the meaning of the
expression to translate it correctly.

The annotation of words by POS tagging (e.g. verb, noun, adjective, etc.),
which we will see in detail in Chapter 3, allows certain pronunciation
problems linked to homographs of different morphological categories. A
typical example in English would be /ive whose pronunciation as a verb is
clearly different from its pronunciation as a noun. In French, the three words
couvent, violent and relations for example, can all be nouns or verbs with a
different pronunciation for each category. For instance, in the case of
couvent (convent (N) or brood (V)), the POS analysis allows the verb
(pronounced [kuv]) to be differentiated from the noun, which is pronounced
[kuva]. However, this annotation does not resolve cases where homographs
appear in the same grammatical category. The noun bass is a typical case in
English as it may have two different pronunciations ([bas] and [beys])
depending on its meaning. As an example in French we have the word fils
(son) [fis] and fils (threads) [fil].

82 Natural Language Processing and Computational Linguistics 1

Abbreviated form Longer form

€1.25 one euro twenty five

3/5 three fifths

1/2 L milk half a liter of milk

Sandy is 5 ft. 11 in Sandy is five feet and eleven inches tall
Sandy is 5° 117

1h30,1.30h one hour and a half or one hour thirty
Washington Ave. Washington Avenue

Delaware Cir. Delaware Circle

Table 2.16. Abbreviations to be normalized before synthesis

Named-entity recognition allows chains of words used to designate a
specific object to be detected. It can act upon the title of a book or a film, the
name of an institution, a company, a town, etc. Although according to the
normative grammar of language such objects should be placed between
quotation marks, in practice, many people do not follow this rule, and this
makes it necessary to detect entities by non-orthographic means. Let us
examine the following examples:

I saw Gone with the Wind last night. Title of a film.

I would like to see Les Intouchables again with ~ Film title in
my school friends. French.

As we can see from the above examples, the pronunciation of a named
entity must be differentiated from the rest of the sentence to guarantee that it
will be considered as such and not as a part of the sentence, in which case it
would change the meaning. In cases where the name of the entity is in
another language, a special form of treatment is preferred. For example, the
proper noun (of Arabic origin) Hamza is pronounced [amza] in English,
while in Arabic, it is pronounced [hamza].

To find the sequence of phonemes based on words, we have the choice
between two approaches: a symbolic rule-based approach (written manually
or created automatically based on a corpus) and a dictionary-based approach.

The Sphere of Speech 83

The rule-based approach has the advantage of being able to process
general cases without a need to store in the computer memory all possible
forms. For example, the conversion rules of the grapheme ¢ into s or k can be
expressed as follows:

c—os/__ {e iy} c is transcribed as s if it is followed by one of the
following French vowels: e, 1, y.

c—k c is transcribed as £ in all other cases.

Another typical example in French is the pronunciation of the letter g
which has two equivalents: [g] and [j] (see [BOS 97, MAN 00] for examples
of learning-based approaches).

In the dictionary-based approach, all known possibilities are stored in a
database. The advantage of this approach is that it allows the numerous
pronunciation exceptions (notably in languages where pronunciation is not
very regular, such as English) to be taken into consideration. The CMU
pronouncing dictionary, which is freely available on the Internet, is a good
example of one of these dictionaries®. It is an electronic dictionary for North
American English with 125,000 words transcribed phonetically (stress marks
included). The transcription format adopts the Arpabet code and includes 39
phonemes. The vowels are annotated with a number which indicates the
stress that they carry. Thus, O indicates that there is no stress, 1 indicates a
primary stress and 2 indicates a weak secondary stress which tends to be
used in compound words such as Vacuum Cleaner, for example. Some
transcription examples are given in Table 2.17.

Phoneme | Word | Transcription without stress marks | Transcription with stress marks
AA odd AAD AA1D

AE at AET AEIT

AH hut HHAHT HH AHI T

H it IHT HIT

Table 2.17. Examples of transcriptions with the Arpabet format

4 http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

84 Natural Language Processing and Computational Linguistics 1

The problem is that a dictionary, whatever its size, is limited and cannot
cover all the words in a language, especially neologisms. To limit non-covert
cases in the dictionary, some researchers proceed to the concatenation of
compound words or morphemes. For example, imagine that we have to
process the word bavardation, which is not listed in a French dictionary. We
could assume that we are looking at a case of concatenating the French root
bavard (chatty) and the suffix ation. Likewise, the English neologism
boatness can be the result of the concatenation of the word boat with the
suffix ness.

Finally, based on the above information, the prosodic analysis module
allows the text to be analyzed to detect the units which are capable of
receiving prosodic forms. The expression of emotions is an important
subject, which is directly linked to prosody. The same utterance pronounced
with different stress patterns leads to different emotional charges being
attached, and this can sometimes change the meaning of the utterance (see
[BUR 15] for a review of this work).

2.2.2.2. Concatenative synthesis

Concatenative synthesis is the most intuitive method because it involves
putting recorded sequences of speech end to end. Besides its simplicity, it
has the advantage of producing a good quality of speech, even though the
passage from one sequence to another sometimes causes audible noise. The
question which is posed here is one of optimal granularity. Of course, it is
tempting to record relatively long sequences of speech such as entire
sentences. Such units are well adapted for applications which do not require
a large amount of variation in the message, such as indicating the next
subway stop. In this case, in a simplified context, it is possible to imagine
that it is sufficient to record a station announcement sequence (and the
sequence of station names) like in the following example:

<station_announcement><little pause><station_name X>.
< station_announcement > = The next station is

< station_name _01>= Lexington Ave.

< station name 02>= Broadway

etc.

The Sphere of Speech 85

Since the majority of applications require much larger variations in terms
of messages, an extreme case being the synthesis of open texts, we must think
about using more fine-grained units. The other extreme, in terms of
granularity, involves recording the phonemes and concatenating them.
Although this approach seems to respond to the need for message variability, it
does not consider contextual phonetic variations caused by coarticulation, and
therefore, considerably reduces the quality and the intelligibility of the speech.

To take coarticulation into consideration at a local level, larger units are
used such as diphones, triphones or nphones, for general cases. Some
researchers, like Thierry Dutoit, call this method segmental unit selection
speech synthesis [DUT 00]. A diphone is an acoustic segment which begins
at the center of the stable zone of a phoneme and ends at the center of the
stable zone of the next phoneme. In the case of non-continuous phonemes, it
is possible to take the most stable part or simply use triphones [DUT 97]. If
the number of phonemes in a given language is equal to N, the number of
diphones in this language is theoretically equal to N°. Since not all
theoretical combinations are authorized by linguistic systems, the real
number of diphones is much smaller. For example, the 25 phonemes of
Japanese give way to 625 diphones and the 40 phonemes of English produce
1,600 diphones but in both languages, only one part of the possible diphones
is practically usable [BLA 00].

Prosodically annotated
phoneme sequence

|
‘ Speech !
: - pece 4 Application of prosody
i BPof —+ segmentation :
. “speech and processing i 7

Concatenation of segments

_“BD

(] p : l i
nphbﬁé : Speech synthesis —-—- . N%‘i“"' w

:Data collection - 4 :Signal treatment and synthesis

Figure 2.30. General architecture of a concatenation synthesis system

As Figure 2.30 shows, the first step in the process of constructing a SS
system consists of collecting linguistic data in the form of a speech database,
which must be representative of all the diphones of the target language. The
simple approach involves retaining only the example of diphones which is

86 Natural Language Processing and Computational Linguistics 1

judged to be the most representative. These sequences include all possible
combinations of consonants, vowels and silence, which can be considered as
a phoneme in the model. A more elaborate approach involves storing several
examples of diphones with different prosodic properties, notably in terms of
pitch and duration. This allows prosodic processing to be reduced to a
minimum The cost of this reduction to increase of the size of the database.

Next, the signal retained for the base is edited and segmented with the
help of specialized software, the most common one being Praat, developed
by Dutch phoneticians Paul Boersma and David Weenink®. To facilitate
adding prosodic parameters and to reduce the size of the database, it is
necessary to carry out signal sampling with a method like linear predictive
coding. Among the most popular systems developed with this technique, we
can cite the MBrolla system from the Mons Polytechnic in Belgium as well
as the Festival system developed at the University of Edinburgh in the UK
and Carnegie Mellon University in the United States [DUT 96, LEN 00].

To guarantee the best quality of synthesis, industrial approaches adopt
more varied natural units, which are generally superior to diphones, such as
phonemes, syllables or morphemes. On the one hand, it allows the coverage
of coarticulation phenomena on a broader scale. On the other hand, it also
reduces the acoustic and prosodic treatments, thus guaranteeing better
quality speech production. To find these stored units in an efficient way, an
index is created with information such as acoustic characteristics, duration or
the phonemic context of each unit.

The main downside of this method is the large quantity of speech that
needs to be recorded, which can be up to several dozen hours.

2.2.2.3. Formant synthesis

In contrast to concatenation synthesis, this approach does not require a
data sample to be stored because speech is produced in an entirely artificial
way, based on an acoustic specification of the first formants of the sound
[KLA 80]. Each formant is typically described using three acoustic
parameters, namely frequency, amplitude and bandwidth, which represent
the breadth of the spectrum signal surrounding the formant. In the majority
of approaches, the oral and nasal cavities are modeled in a parallel way and
then combined with a propagation module which simulates the nose and the

5 http://www.fon.hum.uva.nl/praat/.

The Sphere of Speech 87

lips. This particular method is not interested in modeling the speech
production process by humans, but rather in modeling its entry and exit. In
other words, the human phonatory system is considered a black box.

In a general way, this approach uses the source—filter model where the
source models the activity of the vocal folds and the filter represents the
vocal tract, which produces the formants. The sound source for vowels
and consonants can take different forms according to their phonetic
characteristics. Thus, the source for vowels and voiced consonants is either a
periodic function or the output of a linear time-invariant filter, which takes a
sequence of impulses as its input. Sounds implying an obstruction are
generated based on random noise (white noise), while voiced fricatives use
two sources. Formants are then created based on a second-order filter, which
reduces the high frequencies and the amplitude from their source. Two types
of architectures are possible: serial architecture and parallel architecture (see
Figure 2.31). Serial architecture requires the frequency and the bandwidth of
each resonance, as well as the common gain. This architecture, which is
capable of approximating oral sounds, presents limits when it comes to
approximating nasal sounds or fricative sounds. Parallel architecture is
capable of approximating any kind of speech spectrum but requires the
individual gains at the input of each filter.

Sgnal Source— F1 H F2 ’—» F3 —
architecture

Al —— F1
Parallel
architecture Source A2 — F2 +
A3 —— F3

Figure 2.31. Serial and parallel architecture of
formant speech synthesis systems

This technique offers multiple notable advantages. Apart from the good
intelligibility of the speech that it produces, it allows the memory necessary
for the system to be reduced, as it does not store speech. Furthermore, since
speech is produced in a completely artificial way, it gives a very high level

88 Natural Language Processing and Computational Linguistics 1

of control to parameters such as prosody and flow. The only disadvantage is
probably that speech synthesized using this method can be quite robotic in
some cases.

2.2.2.4. Articulatory synthesis

Articulatory synthesis is a technique which is based on the computational
modeling of the physiological process of speech production. According to
this approach, the sound produced is the result of the interaction of the vocal
source with a filter that corresponds to one or several speech organs (see
[PAL 06] for a general review). In other words, rather than specifying the
desired speech signal, the conditions which lead to its formation are
described. In this kind of model, artificial articulators are typically controlled
by a collection of articulatory parameters whose variation with time allows a
speech signal to be obtained. These parameters can be the geometry and the
movement of the relevant articulatory organs (such as the tongue, the lips or
the palate) as well as the forces and temporal information linked to these
organs. To create these models, different methods can be used, including
static methods (e.g. X-rays) or dynamic methods (e.g. electropalatography,
electromagnetic articulography or optopalatography).

This approach has the advantage of being easily configurable and is,
therefore, very promising. Today, its focus is on improving our comprehension
of the language production process.

3

Morphology Sphere

3.1. Elements of morphology

Morphology is a branch of linguistics that focuses on the way in which
words are formed from morphemes. Morphemes are the smallest linguistic
unit which hold any meaning; thus, a word can be composed of one or more
morphemes. For example, book, cat and house are simple words, while
books, finished and dismiss are complex words because they are made up of
multiple morphemes. There are two types of morphemes: lexical morphemes
and grammatical morphemes. Also called monemes, lexical morphemes
designate common objects such as book, computer, city or flight. These
morphemes are distinguished by their number in a given language; it is
always possible to add to the list of lexical morphemes with new
morphemes, which are generally referred to as neologisms. Grammatical
morphemes, on the other hand, concern words that play a grammatical role
in a sentence, such as prepositions, articles and pronouns. Because these
groups of words cannot in practice be modified by speakers of a language,
they constitute closed groups. Thus, it is possible to add a new noun to
designate a new object, but not to add a new preposition or pronoun.

The consideration of morphology as an independent branch of linguistics
like phonology, syntax and semantics is not unanimous within the linguistic
community. Certain syntactic theories, such as distributed morphology, posit
that the role of syntax is to make all of the combinations required to
construct a sentence, in terms of both word construction and the formation of

Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax,
First Edition. Mohamed Zakaria Kurdi.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

90 Natural Language Processing and Computational Linguistics 1

syntactic units [HAL 93]. In addition, there are many interconnections
between phonology and morphology. As we saw in the previous chapter,
several phonological phenomena manifest during the realization of a
phonological marker such as the plural. The relationship between semantics
and morphology does not need to be proven since the meaning of an
utterance is a function of the meanings of the morphemes that compose it.

In this chapter, we will try to cover key morphological properties of
several langauges, such as English, French, Arabic and Turkish. For a
general overview of morphology and its theoretical tendencies, we refer
readers to [VIL 93, LIB 09] and [KIR 04].

3.1.1. Morphological typology

In terms of morphological typology, there are two major language
groups: isolating languages and inflected languages.

Isolating languages, also called analytic languages, are languages (such
as Vietnamese and Chinese) in which the morpheme-to-word ratio is very
close to 1:1. In other words, in the majority of cases, the words in these
languages are formed of a single morpheme, which means that their form
hardly changes at all. These languages are rare and replace morphological
information with the syntactic context represented by the order of
words/morphemes. For example, a word such as prehistoric is equivalent, in
these languages, to the following word/morpheme sequence: pre histor ic.

Inflected (or synthetic) languages constitute a linguistic family in which
there is a principal morpheme, the stem, surrounded by affixes. This group can
be further divided into two subgroups: fusional languages and agglutinative
languages.

In fusional languages such as Arabic, words are not modified by adding
morphemes before or after the stem, but rather by inserting new phonemes
within the stem itself. Take the example of the Arabic stem k-t-b (“to write”)
which gives a multitude of derived words (see Table 3.1).

Morphology Sphere

91

Arabic word Translation Arabic word Translation
Kataba wrote Kateb writer
Kaataba correspond Maktaba library
Kitab book Maktab office
Kutub books Maktoub written

Table 3.1. Examples of Arabic words derived from the stem k-t-b

Agglutinative languages are another type of inflected languages. Unlike
fusional languages, these languages form words from a number of
morphemes that are completely separate from one another. For example, in
the Turkish language, which is the most representative of this group, words
begin with a stem followed by one or more suffixes [OFL 94]. The
difference between this and other inflected languages is that it is possible to
construct entire sentences with this procedure because the suffixes can be
prepositions, possessives, etc. (see Table 3.2 for examples).

Word Morphemes Translation
stitsiiz stit-siiz / milk-without without milk
bankadan bank-adan / bank-from from the bank
gitti gitt-i / went-he he went
akarsuyunuz akar-su-yunuz / river-2PP-POSS our river is

Table 3.2. Examples of words in Turkish

Finally, we should mention that the classification presented above does
not apply to all languages as there are languages, such as Japanese, which
show mixed characteristics.

3.1.2. Morphology of English

Throughout the different phases of its development, English has been
influenced by linguistic sources that have left their mark on its morphological
system. Besides Latin and Greek, which form the classical substratum, English
words have been borrowed from languages as varied as French, Spanish,
German and Arabic. This has contributed to the creation of a rich lexical and

morphological system.

92 Natural Language Processing and Computational Linguistics 1

3.1.2.1. Types of morphemes in English

English words are generally composed of a stem and an optional set of
affixes. The stem, as a morpheme that cannot be removed, is the true
morphological base of an English word. For example, in a plural word such
as books we can remove the morpheme —s but not the morpheme book.

Stems may be surrounded by multiple secondary morphemes called
affixes. These are classified into one of three types according to their
placement in relation to the stem: prefixes, suffixes and circumfixes.

Prefixes are morphemes that precede the stem. In the vast majority of
cases, they do not exist independently of the stem. Their role is essentially
semantic, in that they do not affect the grammatical role of the word. Over
time, some prefixes may become part of the lexicon, and consequently, be
used independently as stems, like the prefix ex, which means ex-husband or
ex-wife when used alone rather than as part of a word. In some cases,
multiple prefixes may be placed before the stem, as in anticonstitutional in
which the prefixes anti and con are used. Other examples are provided in
Table 3.3.

Prefix Meaning Examples

im— opposite impossible, imprudent, imparity

pre— before prehistoric, premeditate, premature
anti— Against anti-abortion, anti-war, antibiotic
extra— beyond extrasensorial, extracellular, extrarural
over— too much overcook, overdose, overkill

para— self automobile, autobiography, autocracy

Table 3.3. Examples of prefixes commonly used in English

Suffixes are morphemes that come after the stem. Unlike prefixes, their
role is not limited to modifying the meaning of the word but extends to the
modification of its grammatical function. For example, if we add the suffix
—ly to the adjective slow, we get the adverb slowly. For this reason, we
classify suffixes according to the grammatical category they give; thus, there
are nominal suffixes such as —tion and —ment and adjectival suffixes like —fu/
and —al. In Table 3.4 are provided some examples of common suffixes.

Morphology Sphere 93

suffix Meaning Examples
—ist Person who practices an activity | specialist, guitarist, linguist
—er, —or Agent of an action employer, actor, lawyer
—ism Doctrine, belief, practice sophism, abolitionism, animism
— able Able to be reasonable, portable, affordable
—ac Pertaining to cardiac, paranoiac, insomniac
—al The action or process of remedial, denial, trial

Table 3.4. Examples of suffixes commonly used in English

Finally, in bound or amalgamated morphemes, the affix is inseparable from
the stem. For example, we cannot separate the stem from the suffix in verbs
such as began or bought. Because these are conjugated verbs, we know that
this is a case of a stem followed by an ending that is inseparable from it.

3.1.2.2. Allomorphs

Similar to the concept of an allophone, an allomorph involves phonetic or
graphic variants of the same morpheme. In other words, this is a case in
which two chains of phonemes or characters (depending on whether we are
speaking of the oral or written case, respectively) correspond to the same
morpheme. These variations may be contextual or combinatorial. In this
case, the context in question may be phonological in nature, the plural
morpheme —s is probably the most obvious case. In fact, in a word like Aats
it is realized without modification [s], while it is realized as [z] in words like
dogs and finally as [oz] in words such as boxes.

3.1.2.3. Morpheme combination operations

There are several morphological combination operations we can use to
form words from phonemes in English; these include inflection, derivation,
composition and blending.

Inflection (or inflexion) is an operation that consists of combining the
stem with a grammatical morpheme to give number for a noun, or time and
person for a verb. They belong to the same category as the original, and the
semantic difference between the base word and the new word, obtained via
inflection, is easily noticeable. The purpose of inflection is, thus, essentially

94 Natural Language Processing and Computational Linguistics 1

syntactic, such as gender or number agreement. For example, the following
pairs of words are created via inflection: livre/livres (plural), veuf/veuve,
(feminine), mangent/mangeons (conjugation).

Like inflection, derivation consists of combining the stem with a
grammatical morpheme. It is distinguished by the fact that it produces a
more significant semantic change. In addition, words composed by
derivation generally belong to a different syntactic category than the starting
word. For example, via the derivation process, we obtain the adverb
constitutionally from the adjective constitutional, which is itself constructed
from the noun constitution, which is itself obtained from the verb constitute.
In other words, in this case, we have the following chain of words: verb —
noun — adjective — adverb.

Composition, or compounding, is another type of word creation, in which
at least two stems are juxtaposed within the same word. From an
orthographical point of view, these words are written using three
conventional methods which have no linguistic motivation. The first method
consists of stringing together morphemes without spaces or hyphens, as in
darkroom, railroad and smalltalk. In the second method, words are
composed of stems separated by a space, as in ice cream and real estate.
Finally, in the third method, words are composed of stems separated by a
hyphen, as in merry-go-round and actor-director. There are several criteria
which allow us to identify compound words. For example, nothing can be
inserted between the parts of a compound word. Likewise, the semantics of
compound words is a special case, since the overall meaning of a compound
word is not equal to the assembled meanings of its components.

Blending, is a procedure that consists of joining the start of one word to
the end of another. For example, the word mockumentary is obtained in the
following way: mock + documentary. These words are usually used in the
fields of science, technology, advertising and even poetry, in order to create
nouns specific to new objects or concepts. Common examples include
internet (international network), malware (malicious software) and bionic
(biology + electronic).

3.1.2.4. Abbreviation

Abbreviation consists of creating a word by simplifying one or more
other words. Truncation is a simplification procedure that consists of
removing one or more syllables, as in laboratory, mathematics, Patrick,

Morphology Sphere 95

Edward, etc. Another form of simplification consists of using the initials of
the words in an expression or a complex noun. Words obtained in this way
are called acronyms. Some of these acronyms are widely known, such as
EU (European Union) and NASA (National Aeronautics and Space
Administration), while others, like EMNLP (Empirical Methods on Natural
Language Processing) and LDC (Linguistic Data Consortium) are known
only in specialized fields.

3.1.3. Parts of speech

In the context of syntactic parsing, it is also useful to identify the part of
speech of each word in the text or sentence under consideration. Given the
many ambiguities that can exist, this procedure is anything but trivial. In
reality, it is often necessary to use a combination of morphological structure
and syntactic context in order to attain this objective, sometimes extending
to include the semantic and practical levels. This explains why some
specialists consider part-of-speech annotation to be part of syntax rather than
morphology.

The classic categorization of many European languages is an inheritance
from Latin and goes back to the beginning of the last century. It posits the
existence of 9 categories, a view that is currently being questioned in general
linguistics (see [CRE 95]). We will avoid these controversies and give a
general description of the various categories and their basic syntactic
properties.

The parts of speech adhere to the general classification of the language’s
words into two categories: open categories and closed categories. Open
categories, the members of which cannot be limited, include the categories:
noun, verb, adjective, and adverb. The closed categories, on the other hand,
include so-called functional categories such as determiners, prepositions,
conjunctions, interjections, and numerals.

Along with verbs, nouns are universally acknowledged as categories that
must be present in all known languages. Nouns in English vary in number but
unlike languages such as French and Arabic they don’t have gender (feminine
or masculine). Besides, there are nouns in English that do not vary in number,
such as sheep and sal/mon. Some invariant nouns can sometimes have a plural
form as well. For example, antelop and antelopes can be used as plural of

96 Natural Language Processing and Computational Linguistics 1

antelop the same goes for fish that can have fish or fishes as plurals. Some
nouns are always singular, like physics, news and furniture, while others, like
trousers and scissors, are always plural. Based on syntactic and semantic
criteria, we can distinguish two types of nouns: common nouns, also called
substantive nouns; and proper nouns. Substantive nouns are almost always
preceded by a determiner, and sometimes by an adjective, which can also be
placed after the noun. In terms of syntax, the noun, or more precisely the noun
phrase of which it is the core, plays a variety of roles, including subject,
object, attribute or complement of another noun (see example [3.1]).

The teacher gave a gift to the best student. Subject

He likes his children a lot. Object

He is the @friend of Melissa. Attribute [3.1]
His passion for reading is so intense that he Complement of

would spend the entire day in the library. another noun

In French, proper nouns have also a gender, and in certain exceptional
cases may vary in number. However, this causes a semantic change, as in the
group of proper nouns in example [3.2].

a) Paris est tres jolie. Paris is very beautiful (+ mark of fem.)
b) Seattle est tres verte. Seattle is very green (4 mark of fem.)

¢) L’Amérique est en mouvement America is moving

d) Les Amériques The Americas [3.2]
e) Les Etats-Unis The United States (federation)

f) Les Indes Indias (old name for India)

g) L’Inde India (modern India)

In terms of syntax, the particular characteristic specific to proper nouns is
that they can form a noun phrase alone or plays its role at least. Although
usually used alone, a proper noun can also be preceded by a determiner, as
in [3.3].

— The Netherlands

. [3.3]
— The Rolling Stones

Morphology Sphere 97

In English, adjectives are invariable while they vary in both gender and
number in French depending on the nature of the noun to which they are
connected. In English, there are three major types of adjectives: attribute,
predcative and nominal. Attributive adjectives are used before (prepositive)
or after (postpositive) a noun, typically playing the role of head of the
nominal phrase. Predicative adjectives come after the noun to which they are
linked with a copula or another linking mechanism. Finally, when the noun
is elided, the adjective can play the role of head of a Noun Phrase (NP). In
this case, it is called a nominal adjective (see example [3.4]).

The blue sea is beautiful. Prepositive
attributive
adjective

The governor — general decided Postpositive

to leave the country. attributive [3.4]
adjective

The sea is blue. Predicative

The customers prefer Nominal

the best and the cheapest.

Verbs are morphologically variable in number, person, modality, time
and voice. Preceded by their subjects and followed by their objects in the
preferential order of English, they are the core of both verbal groups and
sentences. Verb complements take on highly variable functions and forms,
such as direct object complement, indirect object complement, infinitive and
gerund. Several typologies exist for classifying verbs on the basis of their
relationships with their complements: intransitive verbs, direct transitive
verbs, indirect transitive verbs, verbs that take two complements, etc.
Likewise, we will consider the relationship between the verb and its subject;
defined subject: he walks, John works, indefinite subject: somebody walks or
in which the subject is the agent of the action, as with the verbs beat, attack
and give or in which it is the patient, as in die.

As emphasized by [CRE 95], the category of adverbs includes the most
syntactically heterogeneous words; in other words, this category contains
groups of words that cannot be categorized otherwise. These include words
such as circumstantial adverbs including somewhere now and tomorrow; and
adverbs of place such as here, there and far; of manner such as slowly, softly

98 Natural Language Processing and Computational Linguistics 1

and Joudly; and of degree, such as very and too. Generally invariant in
English, we have some cases where two adverbs differ in number such as
somtime and sometimes. However, in French, in unusual cases, the adverbs
agree in number with the names or adjectives they modify as in example
[3.5].

Les voies de ’avenir sont toutes/ The paths of the future are all + plural/
grandes ouvertes devant Julien. widely + plural open in front of Julien. [3.5]

Les enfants derniers - nés. The new + plural born babies.

The role of adverbs is to modify, particularly adjectives and verbs. One of
the specific characteristics of many adverbs is that they play roles considered
to be secondary; for this reason, they can be removed without causing a
significant semantic change.

Determiners, which occur together with nouns, may vary in number,
gender (like in French) and even person in the case of possessives. These
elements are adjacent to nouns and can only be separated from them by
attributive adjectives, sometimes preceded by one or more adverbs. Only one
determiner can be used per noun, except in the case of quantifiers such as all
and other. In French, there are cases where the gender or number of a noun
cannot be determined, so determiners help solve the ambiguity, as in un vieux
(an old) versus des vieux (det_plural old), un éléve (det masc student) versus
une éleve (det_fem student), etc. This ambiguity is even more significant in
spoken language since the same spoken form of some nouns can correspond to
the written forms of the feminine singular, masculine singular or feminine
plural. Note that the category of determiners includes several subcategories,
including articles, possessive adjectives, demonstrative adjectives, indefinite
adjectives, numeral adjectives and interrogative adjectives.

Pronouns act as substitutes for noun phrases. For this reason, they are
highly variable in terms of gender, number and person. In terms of
morphology, they can correspond to words such as ke, me or nothing. This
category includes a multitude of subcategories including demonstrative
pronouns, possessive pronouns, relative pronouns, interrogative pronouns,
indefinite pronouns and numeral pronouns (e.g. two have left their homes).

Prepositions are invariable and play an important role in the structuring of
linguistic elements. As we have already seen, they serve to create certain

Morphology Sphere 99

compound words such as on top of and also introduce noun or indirect object
complements as in example [3.6].

I would like to go from Toronto to Istanbul. [3.6]

Johan Gave a gift to a stranger.

3.1.4. Terms, collocations and colligations

In this section, we will look at the different types of word clusters that
are constructed on the basis of syntactic and/or semantic criteria. The
recognition and correct processing of these clusters is an important factor in
the understanding of any text. These clusters take various forms such as
technical terms, collocations and colligations.

What we mean by “terms” includes a heterogeneous number of linguistic
phenomena including common nouns, named entities and noun phrases that
may be composed of other noun phrases. The difference between an ordinary
word and a term is that the latter identifies a specific concept in a specialized
field, such as bovine spongiform encephalopathy in the field of medicine.
From a linguistic point of view, terms constitute a cohesive unit both
syntactically and semantically, even if the term cannot stand as a sentence on
its own.

Expressions such as an awful lot, a good deal, kick the bucket and
curriculum vitae are particular linguistic units requiring specific treatment at
the lexical, syntactic and semantic levels, and which are commonly known as
collocations. Coined by Firth [FIR 57], the term collocation designates a group
of words with strong statistical relationships. The weight attributed to the role
of grammar in this relationship has been the subject of intense debate within
the linguistic community. Traditionally, the terms phraseological units,
idiomatic expressions, fixed expressions [MIS 87, GRO 96] and semi-fixed
expressions [LAM 05] have been preferred. A more recent view considers
words to have a linguistic charge, and to exercise an attraction or repulsion for
other words [REN 07]. We refer readers to the summaries by [PAR 98] and
[PEC 04] for a more complete overview. Note that the concept of collocation
is closely linked to the analysis of corpora, which supports the calculation of
co-occurrence statistics (see Table 3.5 for some examples in French literature).

100 Natural Language Processing and Computational Linguistics 1

Collocation Balzac Hugo Zola
Faire fortune Get rich 131.31 - 21.38
Faire faillite Going bankrupt 74.96 14.58 23.27
Faire banqueroute Going bankrupt 7.99 5.98 5.91

Table 3.5. Examples of collocations in three French literary corpora [LEG 12]

Another type of lexical cluster that should be mentioned is colligation. This
is a multidimensional unit in which relationships of lexical co-occurrence have
the same importance as the pattern of grammatical relationships of words
[HUN 01, HOE 04] (see Table 3.6).

Pattern Examples

The most + adjective The most advanced

The most rich

N/NP + replaced + by The old car is replaced by a new one.

Table 3.6. Examples of colligation

Even if the use of such patterns is not tightly integrated within syntactic
theories, these constructions have been the subject of various applications
in the field of task-oriented dialog systems. Moreover, collocations and
colligations are used in applications aimed at the classification of texts
according to author or era.

3.2. Automatic morphological analysis

Modern computers have enough memory to store all the inflected forms
of a language. However, devices with limited memory such as mobile
phones and handheld computers, require more compact methods for storing
these various forms. Likewise, certain languages, as we have seen, have a
very rich morphology that makes their raw data very heavy to store. For a
general introduction to the questions of computational morphology, we refer
readers to [ROA 07] and [BEE 03].

Morphology Sphere 101

3.2.1. Stemming

Steming is the simplest form of morphological processing. It consists of
returning inflected, derived or compound words to a canonical form, called the
lemma, which is not necessarily a word or morpheme in the language.
Generally speaking, the goal behind lemmatization is to identify the concept or
approximate meaning of the word. Used particularly in the field of information
retrieval, lemmatization gives more flexibility to textual information retrieval
by making it possible to find words that are morphologically different but
conceptually similar. For example, the words consolatory and constancy are
stemmed into the lemmas consolatori and constanc respectively that are not
part of the English vocabulary. Likewise, in French, the lemma mainten,
which is neither a word nor a morpheme, corresponds to the words maintenir
(keep), maintenant (now), maintenait (have kept), maintenaient (have kept
in plural), maintint (kept), etc.

Several approaches have been proposed for automatic lemmatization.
Some are more statistical, while others are more heuristic or based more or
less on linguistic criteria.

3.2.1.1. Successor variety

The successor variety approach was proposed by Margaret Hafer
[HAF 74]. Influenced by structural linguistics, this approach attempts to
identify the boundaries between morphemes based on the distribution of
phonemes as observed in a large corpus. The basic criterion is the number of
letters likely to follow the current chain in the corpus. To illustrate the
function of this approach, imagine that we have a micro-corpus containing
the following words: able, ape, beatable, fixable, read, readable, reading,
reads, red, rope and ripe. To find the value of the successor for a word such
as read, we create a table of successors (see Table 3.7).

Prefix Successors Letters
R 3 E,I,O
RE 2 A,D
REA 1 D
READ 3 A LS

Table 3.7. Successors of the word read [FRA 92]

102 Natural Language Processing and Computational Linguistics 1

With a larger corpus, the number of successors shrinks until we reach the
boundary of a segment, and then increases. The question at this stage is one of
establishing the boundary of the lemma. The simplest (and most controversial)
solution consists of establishing a theoretical value for the number of
successors. Since there are no concrete criteria for choosing this threshold,
error is fairly likely. One heuristic approach consists of considering a
boundary to have been reached when the number of occurrences of a letter is
greater than that of the two letters that precede and follow it, respectively.
Statistical criteria such as entropy have also been used (see [MAN 99]).

3.2.1.2. Porter stemming algorithm

Developed in the 1970s as part of an information retrieval project at
Cambridge University in the United Kingdom, the Porter stemming
algorithm is distinguished by its simplicity and effectiveness [POR 80],
making it one of the most popular algorithms for lemmatization [WIL 06al].
Versions for several European languages has been proposed by [POR 06].
However, a detailed presentation and analysis of the algorithm is beyond the
scope of our objectives in this book. Consequently, we will limit ourselves to
a general description of its features.

In the first stage, we tag letters that correspond to vowels as v. A sequence
of consonants or vowels with length greater than zero will be denoted by C
and V, respectively. This yields the following general pattern: [C](VC)m[V],
where the square brackets denote the arbitrary presence of their content and m
is a constant that can be zero or more. Then a series of rules of the form
(condition) S1 —> S2 are applied to remove the suffixes. The general meaning
of these rules is as follows: S1 is replaced by S2 if the word is ending with the
suffix S1, and the stem before S1 satisfies the given condition. Note that the
condition may be expressed in terms of the value of m, such as m > 1. The rules
are organized into groups that are applied in cascade. Some examples of
transformations after this stage are given as follows:

SSES — SS caresses — caress
(m>0) EED — EE feed — feed
(m>0) ATIONAL — ATE Relational — relate
(m>0) ICATE — IC triplicate — triplic
(m>1) IZE — bowdlerize — bowdler

(m>1)E — probate — probat

Morphology Sphere 103

3.2.1.3. N-gram-based clustering

This approach aims at the clustering of morphologically similar words
without identifying the lemma. From a functional point of view, in many
applications, this goes back to the same thing since the objective of the
lemmatization process is to reduce the variety of morphological forms
without the modular use of higher processing related to the syntax or
semantics of the text.

The principle consists of identifying the n-grams of each word in the
corpus and then calculating their similarity to other words using the
Serensen—Dice coefficient (equation [3.7]) [DIC 45]:

2Z
X+Y

sim =

where:

— Z is the number of unique bigrams shared by both words;
— X is the number of unique bigrams in the first word,;

—Y is the number of unique bigrams in the second word.

Take the French words bonbon and bonbonne (carboy). First, we will
identify the bigrams that make up each of these two words. We must also
identify the bigrams whose occurrence in the word is greater than one (see
Table 3.8). Note that a trigram- (or higher) based approach is also possible,
but the principle is the same.

Word Bigrams Repeated bigrams
bonbon bo on nb bo on bo on
bonbonne bo on nb bo on ne bo on

Table 3.8. Bigrams of the words bonbon and bonbonne

104 Natural Language Processing and Computational Linguistics 1

As we can see in Table 3.8, the word bonbon has five bigrams, two of
which are repeated and the word bonbonne has six bigrams, two of which
are also repeated. For our example, this gives: sim = 2*1/1+2 = 0.66. In a
real application with a corpus of n words, we would then move on to
calculating the distances between all of the words and storing the result of
this calculation in a matrix of n rows and n—/ columns. The matrix
thus constructed serves to support a clustering algorithm used to find
morphologically similar words.

3.2.2. Regular expressions for morphological analysis

First developed by Stephen Kleene [KLE 56], regular expressions are
aimed at specifying classes of character chains through the specification
of patterns. A chain is a sequence of symbols: numbers, letters, spaces,
tabulations and punctuation marks. In this context, spaces are symbols like
any other and can be represented by a specific chosen character. The
simplest form of regular expressions is a simple character chain. Regular
expressions are conventionally placed between two slashes / /. For example,
the expression /Ouagadougou/ is used to recognize all chains containing the
subchain Ouagadougou, such as “Ouagadougou is an African capital” or
“Ouagadougou is a city”. Some other examples are given in Table 3.9.

Expression Recognized chains
/Ouagadougou/ Ouagadougou is the capital city of Burkina Faso.
[city/ The city of Damascus was among the most splendid cities

in the world.

/play/ He played football during his entire life.

Table 3.9. Some regular expressions with simple sequences

Square brackets can be used to recognize a class of characters that is a set
of equivalent characters. Look at the examples in Table 3.10.

Morphology Sphere 105

Expression Recognized Examples
category
/[Oo]uagadougou/ Ouagadougou Ouagadougou is a modern city.
ouagadougou Ouagadougou is far from here.
/[xyz)/ X,yorz Lexique, zanini
/[0123456789]/ 0, 1 or 2 etc. un ensemble de 1 jusqu’a 9

Table 3.10. Regular expressions with character categories

We can use shortcuts to designate continuous sequences of characters as
follows:

— [a—z] one character among all lower-case letters;
— [e—h] one character among e, f, g, h;
— [A—Z] one character among all upper-case letters;

—[0-9] a single digit.

We use special operators like Kleene operators, anchors, joker operators
and disjunction to increase the power of regular expressions.

The Kleene star operator®, represented by the symbol *, means zero or
more occurrences of the character or pattern that precedes it. For example,
/b*/ recognizes a chain of zero or more b and /vv*/ recognizes a chain of one
or more v. Likewise, the expression /[0-9]*/ recognizes any number, such as
124, 6547 or 098, as well as empty chains. The operator ? is a particular case
of the operator * because it designates the preceding character or expression,
or nothing. Thus, the expression /cars?/ is used to recognize the chain cars or
car.

The Kleene operator + is used to render the occurrence of the previous
character or regular expression mandatory at least once. In other words, in
order to be satisfied, this operator requires one or more occurrences of what
precedes it. Thus, the expression /goo+d/ is used to recognize good or goood
or gooood, etc.

To express more specific limitations regarding the number of occurrences
of any item, we use two curly brackets {n}, with n corresponding to the

106 Natural Language Processing and Computational Linguistics 1

number of repetitions of the element. For example, /hello{5} the world/
recognizes Hellooooo the world but not Hellooo the world. A variant of this
operator follows the syntax {n, m}, with n and m expressing the minimum
and maximum limits, respectively, of a range of occurrences. For example,
the expression /cour{2,4}/ will recognize courr, courrr, and courrrr, but not
cour or courrrrrrrr. If the upper limit in the expression {n} is not specified,
so it will recognize at least n occurrences of the preceding chain. Thus, the
expression /Voila{3}/ recognizes voilaaa and voilaaaaaa but not voila or
voilaa.

As its name suggests, the Joker operator, designated by a period, is a
character that recognizes all other characters except the back slash \, which is
a character that plays an important role in the syntax of regular expressions.
For example, the expression /fin.r/ recognizes the chains finar, finir, finur,
finmr, finxr, etc. Likewise, the expression /see.*future/ recognizes chains
that begin and end, respectively, with see and future, such as see the future
and see the beginning of new future.

Anchors constitute a set of operators, with various uses, having to do with
the position of the regular expression in the chain. Here are some examples:

— " tags the starting character of the row;
— $ marks the end of the row;
—\b end of a word;

—\B not the end of a word.

For example, the expression / The animals hunt.$/ specifies a row that
contains only the chain The animals hunt. / \b44/ this regular expression
recognizes the chain 44 in Mary is 44 year old today because it follows the
end of the word.

The copy operator is used to memorize part of the chain in order to
reproduce it identically later on. Suppose that we are trying to create an
expression in which we have two identical subchains such as: the world is
beautiful the world is crazy. To do this, we can tag the first chain using the
operator () and the second using \1. The (.*) is beautiful. The \1 is crazy. Of
course, we can repeat the copying to get new subchains, such as: the world is
crazy. The (.*) is beautiful. The \1 is superb. The \2 is vaste.

Morphology Sphere 107

The disjunction operator, which takes the form of a transverse bar, |, is
used to express an alternative between two possibilities. Thus, the expression
/flower | rose/ recognizes either the chain flower or the chain rose.

To combine multiple operators within one expression, we must be aware
of their precedence. It is important to know that simple character chains
have higher precedence than the disjunction character, which has lower
precedence than all other operators. A list of operators ranked by priority is
given in Table 3.11.

Operators Precedence Examples
Parentheses Highest 0
Counters/repetition *+2{}
Sequences and anchors A $\b\B
Disjunction Lowest |

Table 3.11. Priority of operators in regular expressions

To understand the concept of precedence properly, let us take two
examples. The verb connaitre (to know) can be written in two ways in
French: connaitre and connaitre. To express this fact with a regular
expression, all we need to do is use the disjunction operator to choose
between everything to its left and everything to its right. This gives the
following expression: connaitre | connaitre. A more elegant way of
expressing this divergence of writing consists of using two parentheses as
follows: conna(i|i)tre. Since parentheses have higher priority than
disjunction, disjunction is limited to sequences of characters between
parentheses. Moreover, because repetition operators or counters, have higher
priority than sequence operators, the expression hello* can interpret hello or
helloo, while the expression (hello)* can interpret sello hello or hello hello
hello due to the higher priority of parentheses.

Regular expressions have been used as a means of optimizing the process
of creating morphological analyzers, as well as executing multiple word-
retrieval tasks in a given corpus. For example, a regular expression can be
used to find all the words in a corpus that share the same affix or to specify
rules of morphological analysis. They have also been used for the syntactic
analysis of temporal expressions such as dates of events and tokenization
[KAR 97].

108 Natural Language Processing and Computational Linguistics 1

3.2.3. Informal introduction to finite-state machines

First introduced in 1945 by Warren McCulloch, a neurophysiologist, and
Walter Pitts, a logician, finite-state machines (FSM) were developed to
model the activity of a neuron that gives an output of 1 when active and an
output of 0 when inactive [MCC 43]. According to this approach, each
neuron receives input from the other neurons to which it is connected and
possesses an activation function. Between 1951 and 1956, Kleene continued
this work by defining finite-state machines and regular expressions and by
proving the equivalence between them. Today, FSM are used in a large
number of fields including NLP, particularly for morphological and syntactic
analysis and the modeling of sequential logic circuits and communication
protocols. For an introduction to FSM in the context of NLP in general, and
morphology in particular, see [ROC 96, KAR 05, KAP 97] and [SIL 15].

Informally speaking, an FSM consists of a finite number of states and
transitions. It is known that Markov chains, which we saw in Chapter 2, are
formally equivalent to FSM, with the probability of transition on the arcs
of a Markov chain being the only difference. Likewise, FSM are formally
equivalent to regular expressions, which means that any regular expression
can be expressed in the form of an FSM, and vice versa.

Let us begin by examining an FSM to express or recognize an expression
of encouragement or surprise that can have the following forms: well/,
bravo!, very good!, very very good!, very very very good!, etc. To do this, we
need an FSM that includes four states and appropriate transitions between
these states. Using a graph is an effective way to represent an FSM (see
Figure 3.1).

very good

well

Figure 3.1. FSM for expressions of encouragement

Morphology Sphere 109

As we can see in Figure 3.1, we have two arcs to go from the initial state
e0 to the state e2 with two different words: bravo and well. Another
important point is the cyclical transition to state e;, which makes it possible
to repeat the word very an unlimited number of times. Finally, the final state
e; is marked with a double circle to indicate that it is a valid stopping point.
This prevents the recognition of an incomplete chain such as very or very
good (without an exclamation point) as a valid chain. Another way of
representing the information contained in an FSM consists of constructing a
so-called transition table. For our example, it takes the form of Table 3.12.

Input state very bravo | well good | !
e0 el e2 e2 0] (0]
el el (0] (0] e2 (0]
€2 0 0 0 0 e3
e3 0 0 0 0 0

Table 3.12. FSM transition table for expressions of encouragement

FSM are equivalent to a type of grammar called regular grammar or type-
three grammar (in Chomsky’s hierarchy of formal grammars), which we will
examine in Chapter 4. Likewise, we have seen that Kleene’s work proved
the equivalence of regular expressions to FSA. A conversion algorithm has
even been suggested to automate the conversion of a regular expression into
a machine [THO 68]. To illustrate the relationship between FSM and regular
expressions, let us look at the examples of basic cases shown in Figure 3.2.

As we can see in Figure 3.2, the repetition of an element by the * operator
is obtained via a cyclical link. Likewise, the step backward with an empty
element represented by the symbol & enables the infinite repetition of the
sequence ab in the expression: (ab)+. Finally, the disjunction operator in the
third expression is translated via an alternative route, starting from the same
state.

In the context of NLP, it is important to distinguish between two types of
FSM: deterministic machines and non-deterministic machines, which can be
considered as different formal variants for expressing the same thing. It has
been shown that for each non-deterministic FSM there is a deterministic
equivalent that recognizes exactly the same language (see [HOP 01] for a
discussion of the proof).

110 Natural Language Processing and Computational Linguistics 1

Regular FSM
expression
a*b a
chains: b, ab,
aab, aaab, etc. *" b
atb a
chains: ab, aab,
aaab, etc. <0 2 @ L
(ab)+ . ¥ "
chains: ab, abab, U
ababab,
ababababab, etc. '
ab|c 0 L] m .,
chains: ab, ¢ U

Figure 3.2. Examples of regular expressions with their FSM equivalence

A deterministic FSM is a machine which, with a given input chain,
always carries out the same processing. This means that each transition in a
deterministic FSM always leads to one single state for a given symbol being
processed. For example, the FSM that corresponds to the expression a*b in
Figure 3.2 is a deterministic FSM. As we can see, there is always a single
destination state no matter what symbol is analyzed.

On the other hand, a non-deterministic FSM is not required to obey the
constraint of the uniqueness of analysis for a given chain and may, therefore,
allow a multitude of destination states from the same initial state and with
analysis of the same symbol. There are generally two reasons for the non-
determinism of a machine: empty transition and cyclical transition. The FSM
of the expression a+b in Figure 3.2 is an example of a non-deterministic
machine with a cyclical transition. We can see that from the initial state e
and with the symbol a being analyzed, we can reach either state e, with the
cyclical transition, or state e; with the other transition.

Morphology Sphere 111

From a formal point of view, an FSA can be defined as a quintuplet: <E,
X, A, ey, F>, where:

— E is a finite number of states;
— X is a finite number of input symbols;

— A is a function used to find the next state. This function gives a single
state for a given symbol in the case of a deterministic machine and can give
multiple states in the case of a non-deterministic machine;

—¢g € E is the initial state;

—F < E is the group of final states. In exceptional cases, all the states of
a machine can be final states.

The intuitive application of FSM to morphological analysis consists of
dedicating one transition between two states for each morpheme; for
example, in processing the French verbs poser (put) and porter (carry),
which can take one of sixteen possible prefixes as well as a fairly large
number of suffixes depending on time and modality. To avoid repetitions,
we can design an FSM like the one shown in Figure 3.3, in which these
prefixes are divided into three subgroups; two groups for the prefixes proper
to each verb and one group for the prefixes shared between them. An empty
transition is used to pass shared prefixes to the stems of the two verbs
concerned. For the sake of simplicity, we have shown present indicative
tense suffixes only.

A more refined way of representing information consists of considering
phonemic level rather than morphemic level. This makes it possible also to
take into account the phonological phenomena discussed in the previous
chapter. For example, this increased fineness allows us to insert the vowel e
at the end of the stem of the French verb manger (eat) with the plural first-
person present indicative suffix —ons. This, of course, entails an additional
cost in terms of the time needed to prepare such a machine and makes the
use of an automatic compilation module to generate it indispensable.

Despite its interest, a machine like the one shown in Figure 3.3 allows us
to see whether a word conforms to the morphological rules of a given
language without giving any more information about its internal structure.
To do this, we need more advanced tools, such as finite-state transducers
(FST), which we will examine in the next section.

112 Natural Language Processing and Computational Linguistics 1

\
\i.s
T

~— e i

Figure 3.3. Conjugation of the verbs poser and
porter in the present indicative tense

3.2.4. Two-level morphology and FST

The origins of two-level morphology lie in the work of Noam Chomsky
and Morris Hall, conducted in the 1960s on the SPE model we saw in
Chapter 2. It is an ordered sequence of rules of rewriting that convert
abstract phonological representations into surface representations via a series
of intermediary representations (see [ANT 91a, ANT 91b, KOS 83], and
[KAR 01] for an introduction). The pioneers of FST-based morphological
analysis, namely Lauri Kartunen, Martin Kay, Ronald Kaplan and Kimmo
Koskenniemi (the four Ks), met at a conference at the University of Texas at
Austin. Koskenniemi discovered the idea of FST reinvented by Kay and Kaplan
and subsequently developed it for morphological and morphophonological
analysis.

In 1972, C. Douglas Johnson published his thesis entitled Formal Aspects
of Phonological Description, in which he showed that phonological rules are
less powerful than they appear to be [DOU 72]. Johnson observed that the
same rules of rewriting, which are dependent on context, can be applied
recursively to their own output. Phonologists have observed that the point of
application can be applied to the left or right of the chain after each
application. For example, if the rule x — y / z _ w is used to rewrite the
chain “uzxwv” as “uzywv”, all applications following the same rule must

Morphology Sphere 113

leave the y unchanged and affect only the parts “uz” or “wv”. Johnson
showed that this property could be modeled by an FST, a result that was
rediscovered by Ronald Kaplan and Martin Kay in 1981 [KAP 94].

In two-level morphology, words are represented by a correspondence
between two levels, the lexical level and the surface level. The lexical level
is a simple concatenation of morphological information describing the nature
and properties of the word in question. These items of information are
attached to one another via a group of features such as: +N (noun), +V
(verb), +Pl (plural), +Sg (singular), +PART-PRES (present participle),
+PAST-PART (past participle), 3SING (3™ person singular), +Masc
(masculine), +Fem (feminine), etc. The surface level affects the graphic form
of the word; that is, the sequence of its characters (e.g. house). In other
words, two-level morphology represents a word as a series of complex
sequences called correspondence pairs. Analysis is, thus, defined as the
establishing of a relationship between the surface level and the lexical level.
As an example, here are the correspondence pairs for some words:

—houses: H:H O:0 U:U S:S E:E +N:g +PI:S;
—looks: L:L O:0 0:0 K:K +V:¢g +3P:S +Sg:¢;
— choice: C:C H:H O:0 I.I CC E:E +N:e +Sg: ¢.

As we can see in the above examples, each phoneme corresponds to a
phoneme when it is part of a stem. For lexical morphemes reflecting one
aspect of the totality of the stem such as +N and +V in order to indicate
whether it is a noun and a verb, respectively. We have an empty equivalent
at the surface level, represented by the symbol €. Morphemes are marked on
the surface by a single character such as s, which marks the plural of a noun,
or e, which marks the ending of the verb at the end of the noun. This pair can
be represented hierarchically as shown in Figure 3.4.

H O U E +N +P1

S

[I I R R
|
S

[Y N N
H O U E ¢ S

Figure 3.4. Correspondence pair for the word houses

Note that this method of representation is very well-suited for
incorporating modifications at the surface level using the phonological

114 Natural Language Processing and Computational Linguistics 1

constraints that we saw in Chapter 2, such as deletion and assimilation. Thus,
in certain contexts, the stop consonant [d] is replaced by the silent occlusive
[t]. This can be easily represented by the correspondence pair D:T E:E. A
case of marked assimilation in French consists of pronouncing the word
cheveu (hair) [[ove] as [[fe], with the removal of the o and the replacement of
the consonant [v] with [f] under the effect of the silent consonant [[]. With
two-level morphology, this gives us the correspondence pair C:C H:H E:g
V:F E:E U:U.

According to the representation in Figure 3.4, analysis is viewed as a
passage from the surface level to the lexical level, while the process of
generation consists of moving in the opposite direction, from the lexical
level to the surface level. It is clear that the FSM we saw in the previous
section are not capable of executing both of these procedures. For this,
researchers have suggested using Finite State Transducers (FST) which are
finite-state machines annotated with two tags on each transition, where each
tag corresponds to a pair of symbols (see Figure 3.5).

s PN P . R, N
Gy — T8 — e 47— {11 }]
— = S
RR =
| —_———
AT) o) G, Y A e
(et h—ne—{ &5 11— e12 0.0~ e13 =17 eld r—1—{ e1s anet6 — — — —__
\,T,/I - - Nav] b ‘ g " L .
~ “~
1 | i N \
L Y U NN T
o)) e e G e G e GO)]
& GG p -/ - p o/ e \
| ; |
AA /
yd
iy | AN P £ A, £ e \‘
| . 7 \ g MM /
A~ 024" RR— 025 }—AA— €26 —M:bi-] 027 | - /
ez)t g - . N b
Lot o
N . L
A
N
(et}
L
I
AA

Figure 3.5. FST for some words in French with the prefix “anti—"

As we can see in Figure 3.5, words are represented in terms of characters
rather than morphemes. This makes it possible to gain detailed knowledge of
the phenomena described by transition pairs. Besides, this allows us to avoid
repeating certain characters, particularly at the start and end of words, thus
giving a more compact representation.

As we saw in section 3.1.2.3, derivation is another interesting
phenomenon. To exemplify the way in which derivations are represented in

Morphology Sphere 115

FST, we have chosen an example of some stems of which the derivations are
shown in Figure 3.6. This FST shows how to move from a noun such as the
French word concept to an adjective such as conceptuel, and then to a verb
such as conceptualiser and finally on to a new noun with conceptualisation.
For the sake of clarity, we have used the infinitive form of the verb only, but
it is easy to imagine the complexity of the FST with all the possible forms
for variations according to time and modality. The feminine and plural forms
of adjectives, as well as the plurals of nouns, are also considered. This shows
the flexibility given by an FST, which covers morphological aspects as well
as phonological ones such as the doubling of the / in the feminine version of
an adjective like conceptuelle.

SEn i i, P G i, P e =\ A
(Voo Jood bwnd Yee{ Yee{ el Y N s)
- L 4 & @ 4 b & < et/
€ ‘jf
T %
*FIE IP1:S
() !
b
T |
LL
1
Sy Y el) e D) D e () aprel S—pes—L)
+] 4 i m— \ ~ ADL M PLis—}\
Ve " W " _/ N \)
S H—
e ‘.-/ E:E 12l
{ i
> i 7N N\
N /‘ w’ = &
™T C:C Uy S:S
e = \ e i 1/ \’
- - N
\T, - _ BT
i RR A:A
-~ M:M s . s
A) @~ v (@)L
i ;(W {) = L N:E—{ —HPLS—)
L /‘ N \"‘TT A N/ =
VV——""—¢M:F |
{ +N:e TT "7
i 1 N
(l"\a—E —4 D Ad *HJ::‘\' () ™~ R Srms—(()
\ ! \ —+Adjie i [} ——— o Li—) -8 W
L & e\ - o/ N N/
=-Pl:S [H]
.fi“ Fa
=t -
0:0
o
&
N:N
S =N P
L} 4Ne -((Boees)
L N/ N

Figure 3.6. Partial FST for the derivation of some French words

116 Natural Language Processing and Computational Linguistics 1

In its role as recognizer, an FST takes a correspondence pair as input and
yields as output a confirmation or negation of the matching of the surface level
with the lexical level, knowing the language of the correspondence pairs
defined by the FST. In its role as analyzer, the FST takes a surface chain as
input and must produce the corresponding lexical chain. Conversely, when
acting as a generator, the FST produces the surface chain from the lexical
chain provided as input. Finally, the FST can act as a translator by taking a
chain as input and producing a transformed version of this chain as output.

It is important to mention that rules of rewriting can be converted into
transducers. In fact, each cascade of transducers can be converted into a
single transducer which establishes a relationship between the lexical forms
on one hand and the surface forms on the other. The diagram proposed by
Kay and Kaplan is shown in Figure 3.7.

Lexical chain . .
Lexical chain

| |

TFE1

T
intermediary chai

n

TFE 2

a single transducer
obtained from transducers
TFE1, TFE2, ..., TFEn

T
intermediary chain

I
intermediary chain

TFEn

Surface chain Surface chain

Figure 3.7. Kay and Kaplan diagram

In real applications, the rules and lexicon are first defined as regular
expressions. These rules are then converted by a compiler into an FST. The
compiler is a computer program designed to translate expressions expressed
using any formal language, in this case regular expressions into expressions
in another formal language (FST) (see Figure 3.8).

Morphology Sphere 117

Lexical — FST lexicon
(regular expressions)
Compiler Unified Lexical
FST
Rules
(regular expressions) FST rules

Figure 3.8. Xerox approach to the use of FST in morphological analysis

Lexical transducers can contain hundreds of thousands or even millions of
states and arcs. The size of the FST is particularly large when morphologically
rich languages such as German are involved.

3.2.5. Part-of-speech tagging

Part-of-speech (POS) tagging consists of automatically attaching a part-
of-speech tag to all of the words in a given corpus. This process is very
important in many NLP applications. In the context of syntactic analysis,
POS tagging facilitates the task of the analysis module by providing it with a
starting point. As part of information retrieval, the annotation of words in a
given corpus may improve search functions by giving more weight to
categories known to better characterize texts, such as nouns and adjectives,
rather than categories judged to be less representative semantically, such as
determiners, pronouns, verbs and adverbs. In the field of speech synthesis,
we saw examples in Chapter 2 in which the grammatical category is used to
select the appropriate phonetic transcription for two homographs in different
grammatical categories. We have also covered examples like the word /live,
the pronunciation of which changes depending on whether it is noun or a
verb. This interest explains the multitude of approaches proposed by many
research centers all over the world. For an introduction to this issue, we refer
readers to [VOU 09] and [ASM 14].

The main obstacle that must be overcome by a POS tagging system
is ambiguity. There are many words, or more precisely graphic forms, in
languages such as French and English, which can be associated with
multiple parts of speech. Some examples are dogs (verb, noun), heat (verb,
noun), slow (adjective, verb, adverb), in (preposition, adverb, adjective,

118 Natural Language Processing and Computational Linguistics 1

noun), large (adjective, noun, adverb), etc. In a study on English conducted
by Steven DeRose, it was demonstrated that, though ambiguity is found in
only 11.5% of categories, in reality, it concerns around 40% of the words in
the Brown Corpus, the subject of the study [DER 88]. This shows the
importance of this phenomenon and the necessity of an effective solution.

In addition to ambiguity, modules must overcome various problems of form.
These problems include the processing of new words that have not yet been
observed in the training corpus. This problem, which is common to several NLP
applications, makes it necessary to use contextual and morphological heuristics
among others. Another problem observed in corpora of real data has to do with
spelling errors and various types of grammatical errors. In transcribed spoken
language corpora, this can be manifested in the form of hesitations, repetitions,
false starts, etc. This phenomenon is difficult to model and causes changes of
context, making it difficult to assess the part of speech of the current word. The
writing systems of certain languages, such as Arabic, can also be an additional
source of ambiguity that can be qualified as artificial. In this language, the
diacritical marks corresponding to short vowels are usually optional. For
example, without diacritical marks, the grapheme < can correspond to different
words such as [kataba] wrote and [kutub] books.

There are lists of tags called tagsets for several languages. Though true
standards do not exist on this subject, some lists have been commonly
adopted, such as the Penn Treebank tagset, which includes between 36 and 41
tags depending on the version. This tagset is based on the one developed for
the annotation of the Brown corpus [NEL 64, GRE 81, MAR 93]. The Xerox
tagger' has 77 categories for English, 45 for French and 67 for German. As an
example, we have provided a list of eleven basic tags drawn from the
Universal Part-of-Speech Tagset in [BIR 09] (see Table 3.13). The definition
of lists like these is only part of a wider convention that must specify, among
other things, the way in which compound and conflated words must be tagged.
For example, the Penn Treebank uses the same tag for each part of the word.
Another possibility consists of joining the components of a compound word
with an underscore to indicate a single word. Likewise, conflated words
require a special convention. It is common to split them when possible into
multiple parts according to rules such as ['/l = [will. In cases where
morphemes cannot be separated, a possible way to process them consists of a
replacement like in gonna = going fo.

1 https://open.xerox.com/Services/fst-nlp-tools/Consume/Part%200f%20Speech%20Taggin20%
28Standard%29-178.

Morphology Sphere 119

Tag Category Examples
ADJ Adjective beautiful, legal, cold, round
ADP Preposition from, at, to, with
ADV Adverb slowly, far, here, now
CONJ Conjunction and, or, if, but, whereas
DET Determiner the, a, some
NOM Noun house, book, table, France, Delaware
NUM Numeral one, thirty-five, 2016, 22.5
PRON Pronoun he, she, we, they, them
VERB Verb eat, see, live
AUX Auxiliary is, was, has

Punctuation e ?
X other dunno, ersatz

Table 3.13. A minimal list of tags

Using the tag list shown in Table 3.13, we can tag the micro-corpus
shown in Figure 3.9.

the/ DET first/ADJ written/ADJ records/ NOUN for/ADP the/DET
history/ NOUN of/ADP France/ NOUN was/VERB in/ADP the/DET Iron/ADJ
Age/ NOUN

what/PRON is/VERB now/ADV France/ NOUN made/VERB up/PRT the/ DET
bulk/NOUN of/ADP the/DET region/ NOUN known/ADJ to/ADP the/DET
Romans/NOUN as/ADV Gaul/ NOUN

Roman/ADJ written/ADJ resources/NOUN noted/VERB the/DET
presence/NOUN of/ADP three/DET main/ADJ ethno-linguistic/ADJ
groups/NOUN in/ADP the/DET area/NOUN

the/ DET Gauls/NOUN history/ NOUN is/AUX written/ VERB long/ADJ
time/ NOUN ago/ADV

Figure 3.9. A micro-text tagged with POS

120 Natural Language Processing and Computational Linguistics 1

In terms of linguistics, part-of-speech tagging is done on the basis of
multiple sources of information. First, at the lexical level, we need a
database in which all of the graphemes with their possible tags are stored.
Next, we need contextual information that is both syntactic and semantic.
Morphology plays a significant role as well. As we have seen, the suffixes of
words formed with derivation make it possible, in certain cases, to figure out
the part of speech to which the word belongs. For example, it is possible to
assume with a reasonable degree of certainty that a word ending with —tion is
a noun. However, because many suffixes are shared by multiple parts of
speech, this is not always a decisive source of information. In a tagging
module, it is common to use low-level sources of information, avoiding
higher-level information like semantics. This is due partly to the fact that it
is possible to get good results with low-level information, and partly to the
dependency of the task and the heaviness of development that such higher-
level information causes.

The tagging process is, generally, carried out in two main stages:
identification of potential tags for input words and disambiguation. The first
stage consists of using a dictionary in which the words with their possible
tags are stored. The second, disambiguation stage consists of choosing the
most appropriate tag among the candidates identified in the first stage.

In terms of technologies, a fairly large number of approaches have
been used to construct taggers. Statistical approaches and learning-based
approaches have frequently been used to solve problems of ambiguity in the
domain of NLP. These approaches are good for modeling problems that are
still poorly understood in theoretical terms. This has motivated a considerable
amount of research since the 1980s [DER 88, GAR 87, CHU 88, SCH 94b].
Several variants of learning-based approaches such as memory-based learning
[DAE 96, DAE 10], neural networks [SCH 94a, MAR 96] and genetic
algorithms [ARA 02, BEN 13] have also been tested with varying degrees of
success.

3.2.5.1. Statistical approaches

The simplest statistical approach consists of using n-grams, the simplest
form of which, as we saw in Chapter 2, are unigrams. We intuitively count
frequencies of categories per word in an annotated corpus. During automatic
tagging, we choose the most probable category for this word, independent of
its context. Suppose that we have a tagger trained on the corpus shown in

Morphology Sphere 121

Figure 3.9 and that this module must tag the sentence The written history of
the Gauls is known. To do this, we must resolve the ambiguity of the word
written, which, as we have seen, can be tagged with both the verb and
adjective categories. Based on the statistics of our micro-corpus, the
probability that written can be tagged with the category ADJ is 2/3 = 0.66,
while the probability of its tagging with VERB is 1/3 = 0.33. Therefore, the
category ADIJ is chosen for this sentence. The same choice is made for the
sentence The history was written, which is not the correct choice. Note that,
depending on the language considered, the expansion of the contextual
window by taking into account a larger value for » in an n-gram-based
model does not always guarantee improved results. This is mainly due to the
fact that the larger the history, the more data it requires. For example, a study
conducted on three southeast Asian languages has shown that the results of
tagging with unigrams are better than those with bigrams. However, the
same study showed that tagging with hidden Markov models (HMMs) yields
results that are clearly superior to n-grams [HAS 07]. To benefit the most
from n-grams even with a limited amount of data, we can use a so-called
backoff heuristic, which consists of tagging all the words we can tag with
trigrams and leaving the rest for lower levels. The process is then repeated
with bigrams and then unigrams, and finally unknown words are tagged with
the most frequent category.

A more refined way of modeling the problem consists of considering
HMMs as a framework [CHA 93a]. This uses two different complementary
sources of information: the probabilities of transition from one tag to another
p(eiei.1), which model the context of occurrence, and the probabilities of
generation of a given word knowing a specific tag p(WjE;), which takes the
lexical level into account. These two probabilities are calculated using
equations [3.8]. We refer readers to the section on HMMs in Chapter 2 for
further details.

p(WIE)=]Tp(m; <) [3.8]

p(E) :Hp(ei leir)

122 Natural Language Processing and Computational Linguistics 1

As we saw in the speech sphere, we can make three types of inference
with HMMs by using different algorithms. Firstly, in a context of language
modeling, we can calculate the probability of a sequence of words with a
hidden sequence of tags. The other possibility is to find the most probable
tag sequences, knowing the sequence of words observed. Finally, we can
estimate the parameters of the model based on the observed sequence and
the corresponding tag sequence.

Let us return to our example: The written history of the Gauls is known.
To analyze this sentence with an HMM, we can have the two representations
below in the form of a Bayesian network, the first of which is correct. The
probabilities on the arcs of the networks in Figure 3.10 are obviously
calculated from the corpus being used.

’P[A]JDETI’P(NDUNADJ],F(ADPVDUN ’P(D[TADPL’P(NWNDET) (P(VERBNDUN}, P(ADIVERN,

Plthe \DETJ Plwrs tlenl/\Dl Pihi staw NOUN) Plo IADPJ P(treIDU) Plgauls NOUN) P |vum) I‘\"'J

writtan (

,P(NOUNDET] (:P (AUXINOUNI ’ PIVERB|AUX) ’

Plthe |DET) Pihistory| NOUN) Plwa |Aux Plwritten [VERS)

the history was written

Figure 3.10. Tag sequences for “The written history of the Gauls is known”

The main problem with the statistical approaches we have just presented
is the need for significant linguistic resources, which are not always
available, particularly for minority languages or those from the countries of
the south. Approaches based on Bayesian networks, the generic form of
HMMs, have been proposed, among other solutions, as an unsupervised
learning framework for tagging modules [LEE 10, GOL 07]. Though the
results of these approaches are encouraging, this work is still in the research
stage and its results are clearly inferior to those of supervised approaches.

3.2.5.2. Transformation-based approach

Proposed by Eric Brill at the University of Pennsylvania, the
transformation-based approach is a hybrid process combining statistical
information with symbolic rules [BRI 93]. According to this approach, the
tagging process is carried out according to the architecture in Figure 3.11.

Morphology Sphere 123

|

Initial state

Tagged Model
text
Learning
module

Figure 3.11. Architecture of the Brill tagger [BRI 95]

The first stage of processing consists of rough tagging using an n-gram
based module (in the initial version, a unigram was used). Words tagged in
this way and liable for improvement are marked for possible correction in a
subsequent stage. The rules to be applied to the corpus being tagged are
learned automatically from the corpus so as to guarantee maximum
improvement. The process of applying a rule is called a transformation.
There are two types of transformations; rules and triggers. Rules specify the
way in which the input must be modified, while triggers serve to describe the
conditions of application of a given rule.

Trigger the previous word is in the Tag, category
Rule if trigger then Tag, — Tag,

For example, we can have the following trigger and rule:
Trigo The previous word is in Category DET.
Rule If Trigy, then VRB — NOM

Transformations are learned as follows. First, the training corpus is
annotated with the initial tagger. The results of the annotation are compared
with the annotation of this corpus and the number of errors is obtained. Then,

124 Natural Language Processing and Computational Linguistics 1

we apply a number 7 of possible transformations, and for each transformation
we calculate the number of errors. The transformation that reduces most of the
errors is chosen. We repeat this process with the rest of the transformations
until we arrive at a state in which there are no more transformations that might
improve tagging. An example of learning adapted from Brill [BRI 95] with
four possible transformations is given in Figure 3.12.

Non-
annotated
Corpus

Annotated
corpus
6,125 errors

Annotated
corpus
1,805 errors

Annotated
corpus
1,840 errors

Initial t
nitial tagger -

T1

Annotated
corpus
1,625 errors

Annotated
corpus
1,555 errors

Annotated
corpus
3,211 errors

T1

Annotated
corpus
6,200 errors

T3 T2

Annotated
corpus
1,711 errors

Annotated
corpus
1,533 errors

Annotated
corpus
4,965 errors

T4

T4
T3
Annotated

corpus
1.783 errors

Annotated
corpus
4,186 errors

Annotated
corpus
5.541 errors

Figure 3.12. Example of transformation-based learning

As we can see in Figure 3.12, the transformation T2 is the one that gives
the minimum number of errors; therefore, it is chosen as the first
transformation to be carried out. Next, we choose T3 for the same reason.
Finally, since none of the transformations improve the results, we stop our
search.

This approach is distinguished not only by its effectiveness and good
results, but also in terms of data savings. Unlike statistical approaches
requiring the storage of n-gram models, the size of which increases along with
the size of n, the Brill approach requires much less memory. This is
particularly appreciated in mobile telephone systems or similar applications.

Morphology Sphere 125

The final advantage of this approach concerns the readability of internal
representations in the form of rules that can be understood by humans. Finally,
it is probably worth to mention that a generic toolbox for the transformation-
based learning algorithm is available [FLO 02] and transformation-based
tagging has been applied to several languages.

4

Syntax Sphere

4.1. Basic syntactic concepts
4.1.1. Delimitation of the field of syntax

Syntax is a key branch of linguistics. It focuses on the scientific study of
the structure of the sentence as an independent unit. The word order, the
dependency relationships between these words and, in some languages, the
relationships of agreement as well as the case marking, are among the points
that attract the attention of most of the researchers. The final objective of
syntax is to produce a formal description of underlying regularities with
regard to sentence organization and to determine the principles that govern
the combination and dependency relationships of words and word sequences
within the sentence.

Syntax, which is actually at the heart of linguistics, maintains fairly close
relationships with the other branches of linguistics, including phonology,
morphology and semantics.

With phonology and more particularly with prosody, the relationships
are well-known. For example, the syntactic process of emphasis, which
manifests itself in the form of dislocation (Yesterday evening, John came to
see me), or clefting (It is John who came to see me yesterday evening)
is systematically accompanied by a particular intonation (see [NES 07,
INK 90] for an introduction to these issues).

Compared to morphology, syntax is distinguished by the fact that it
focuses on the relationships between words, whereas morphology focuses on

Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax,
First Edition. Mohamed Zakaria Kurdi.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

128 Natural Language Processing and Computational Linguistics 1

variations of word forms. Note that some linguistic currents consider that the
morpheme is the basic unit of syntax. This leads us to consider that the
processes of word creation and sentence construction are of the same nature.
So, in this case we refer to morphosyntax.

Essentially formal, syntax focuses on the linguistic form of the sentence
without giving paramount importance to the meaning, which is the object of
study for semantics. If we want to simplify, we can say that syntax focuses on
the relationships between linguistic signs, while semantics focuses on the
relationships between these signs and those signified by them, as well as on
the overall meaning of the sentence that will be produced by syntax. However,
the boundaries of the two disciplines are not very clear. In fact, it is being
widely accepted that the complementarity of these two sources of knowledge is
indispensable to be able to correctly understand a sentence, particularly in the
case of syntactic ambiguities or semantic anomalies (see [ANT 94, MAH 95],
for a review of these studies in the field of psycholinguistics and NLP).

4.1.2. The concept of grammaticality

As linguistics is a descriptive and non-normative discipline, it is
appropriate to begin with a clarification of the descriptive concept. In the
NLP field, grammar is not a set of rules that a speaker must follow as its
production is considered to be well-formed (normative grammar), but rather
a description of the syntactic phenomena used by any linguistic community
at a given time. This description is, therefore, used as a reference to
distinguish what is said from what is not said.

According to Chomsky, grammar is a device capable of carrying out
grammaticality judgments, that is to classify input units sequences (lexical
strings) in two groups: the correctly and the incorrectly formed strings (see
Figure 4.1). It is this device which characterizes the competence of an
average speaker.

Grammaticality

Lexical X Grammaticality judgement

string

Figure 4.1. The role of grammar according to Chomsky

Syntax Sphere 129

This original conception of grammar has important implications on the
concept of grammaticality. On one hand, grammaticality is different from the
concept of frequency of use of a phenomenon within a linguistic community,
made evident by the number of occurrence(s) of the phenomenon in question,
in a corpus which is considered to be representative of the language of this
community. Let us take a look at the sentence [4.1]:

The astronaut’s telescope is broken. [4.1]

The dotted lines in the sentence [4.1] can be replaced by several words
that would be both syntactically and semantically acceptable, including
spatial, infrared and black. Furthermore, although the words table (noun)
and temporal (adjective) are statistically unlikely in this context, only the
adjective temporal allows us to create a grammatical sentence:

a) The astronaut’s spatial telescope is broken.
b) The astronaut’s temporal telescope is broken. [4.2]

¢) The astronaut’s table telescope is broken. *

The group of sentences [4.2] leads us to the second important distinction
between grammaticality and interpretability. In fact, sentence (a) is interpretable,
both grammatically and semantically, whereas sentence (b) is syntactically
acceptable but not semantically interpretable. Finally, sentence (c) is neither
grammatically nor semantically interpretable.

Note that grammaticality is not a necessary condition for comprehension.
Although agrammatical, the famous sentence: Me Tarzan, You Jane, is quite
understandable.

4.1.3. Syntactic constituents

Parsing consists of the decomposition of sentences in major syntactic
units and of the identification of dependency relationships. This analysis
often leads to a graphical representation in the form of a box according to the
original approach proposed by the American linguist Charles Francis
Hockett [HOC 58]. Generally, it takes the form of a tree diagram. As we will
see later, this type of analysis has a strong power of explanation and

130 Natural Language Processing and Computational Linguistics 1

particularly takes into account the syntactic ambiguities. But the question
arises as to what is the nature of the constituents of a sentence. Is a
constituent a word or a word sequence which has a particular syntactic role
within the sentence?

This is the question which we will try to answer.

4.1.3.1. Words

As we have seen in the sphere of words, in spite of the problems related
to its definition, the word is recognized more or less explicitly as a
syntactical unit by different theories from different currents. In addition,
many NLP applications presuppose a linguistic material in which words are
labeled. That is why we believe that it is useful to begin with a classification
of words according to their syntactic categories, commonly known as parts
of speech.

Some linguists deny the existence of linguistic units which are higher
than words. That is why they assume that syntactic relationships are limited
to the dependencies between the words in the sentence. In the tradition of the
Slavic language, the French linguist Lucien Tesniére has laid the foundations
of a linguistic theory known as dependency grammar [TES 59]. Recovered,
developed and applied in the works of several linguists throughout the world
[HAY 60, MEL 88, HDU 84, HUD 00, SLE 91], dependency grammar is
still a minority current in modern syntax.

From a formal point of view, a dependency tree (or a stemma), according
to Tesnicre’s terminology, is a graph or a tree that represents the syntactic
dependencies between the words of a sentence. Thus, dependency grammar
is based on these explicit- or implicit-dependency relationships rather than
on a precise theoretical framework. The shapes of the trees vary according to
specific theories in spite of shared theoretical foundations.

For example, the arguments of a verb (subject, object, adverbials, etc.) are
all syntactic functions, represented by arcs, which come from the verb. In the
grammatical framework of Word Grammar (WG) by Hudson, we have
four relationships: pre-adjoint, post-adjoint, subject and complement (see
Figure 4.2).

Syntax Sphere 131

dependent

AN VAN

pre-dependent post-dependent adjunct valent
pre-adjunct post-adjunct subject complement
a+ +a S C

Figure 4.2. Relationships in the framework of formalism, WG [HUD 10]

Like other dependency formalisms, WG bestows a central place to the verb
which has the pivotal role in the entire sentence (see example in Figure 4.3).

® | ®, O

vl | | |
. 1l |
vl v v v R vl 'l

The linguistics professor gives lectures at the university

Figure 4.3. Analysis of a simple sentence by the formalism of WG

The adoption of the word as the central unit of syntactic analysis has
several advantages. In fact, on one hand, it is easier to establish relationships
with phonological levels, such as binding phenomena and semantics with
semantic roles. On the other hand, it is particularly suitable for processing
phenomena such as discontinuity which are, among others, observed in
German [KRO 01]. As for the disadvantages, we can note the difficulty of
processing phenomena such as coordination which often involves word
blocks and not simple words.

132 Natural Language Processing and Computational Linguistics 1

A discussion of the formal equivalence of dependency grammars with the
formalisms based on superior constituents is proposed in [KAH 12]. We
should also note that parsing modules based on dependency grammars have
been developed for several languages including English [SLE 91], French
[CAN 10] and Arabic [MAR 13].

4 .1.3.2. Clauses

The concept of clause is transdisciplinary to the extent that it is used in a
variety of disciplines such as linguistics and logic. In the field of logic, it is a
utterance which accepts a truth value: it can be either true or false.

In the field of linguistics, it refers to sequences of words containing at
least a subject and a verb predicate explicitly or implicitly present (in the
case of an ellipsis). A sentence can, generally, be divided into several clauses
each contained in the other. A more detailed discussion of these issues
follows later in section 4.1.3.6.

4.1.3.3. Phrase

A phrase, according to classical terminology, is a word or a consecutive
word sequence which has a specific syntactic role and which we can,
consequently, associate with a single category. This unit is defined based on
the criterion of substitutability. It is, thus, located among the higher unit of
syntax, i.e. the sentence and the word. However, some believe that this
concept, as relevant as it is, does not justify by itself that we devote to it a full-
level of analysis, because the information that a phrase conveys is already
present at the level of the words that comprise it (see the previous section).

Each phrase has a kernel of which it inherits the category and the
function. A kernel can be a simple word or a compound; it can even be
another phrase. Sometimes, a phrase has two or several kernels which are
either coordinated or juxtaposed [4.3]:

My friend Michael and his best friend Jack go to the
factory every morning. [4.3]

A human being eats, drinks and breathes all the time.

One of the specificities of the phrase is that it is a recursive unit. In other
words, a phrase can have as a unit another phrase as in [4.4], where the

Syntax Sphere 133

prepositional phrase (of the village) are included in the principal phrase, the
doctor of the village:

The doctor of the village left last night. [4.4]

The question that now arises is: how can we identify a phrase with the
help of rigorous linguistic tests? In fact, several experiments or linguistic
tests allow us to highlight the unitary character of a word sequence, such
as commutation, ellipsis, coordination, shift, topicalization, clefting and
negation.

Commutation or substitution is the simplest test which consists of
replacing a series of words by a single word without changing the meaning
or the grammaticality. Pronominalization is the most well-known form of
this process as in [4.5]:

My good cousin Philip/He wants to go to Sweden.

[4.5]
I would like this red notebook and that white notebook /that one.

Ellipsis is one of these tests, as it allows us to substitute a word sequence
with a zero element. In French, noun phrases can be elided, unless they are
subjects or obligatory complements, prepositional phrases, as well as phrasal
complements (see [4.6]):

a) Cynthia will go at her office, and her husband will go as well. 16
b) This teacher will send a bouquet of flowers and Mary as well. [4.6]

As we can see in [4.6], we replace only the complement noun phrase of
an indirect object with a null element (a) and we also replace the verb phrase
and its complement with a null element (b).

In the case of discursive ellipses, responses to partial questions can be
achieved with an ellipsis. In the group of responses [4.7], case (a) represents
the possibility of a response without omitting the subject and the object
noun phrases. Response (b) provides a possible response with only the
complement noun phrase. Response (c¢) gives us a case of a truncated

134 Natural Language Processing and Computational Linguistics 1

constituent, while response (d) gives us an example of a response with a very
long and, therefore, not acceptable sequence as a constituent.

— What do you want ?

— I would like a linguistics book.

— a phonetics book. [4.7]
— a phonetics book tonight (it is not a constituent).

—* phonetics (it is not a constituent).

Coordination can also serve as a test to identify units, because the basic
principle of coordination is to coordinate only the elements of the same
category and whose result is an element which keeps the category of
coordinated elements. Let us look at the examples [4.8]:

a) Np [Np [My math teacher | and Np [my next door neighbor]]
will leave together.
b) Julia Vp [Vp [loves the country | and Vp [hates the big cities]].

¢)S [S[1 prepared dinner | and S|[1 vacuumed]]. [4.8]

d) S [S[You should leave immediately | or S| you will miss your exam]].

e)S [S [I searched for the books] but S [I did not find them]].

As we can see in example [4.8], we can coordinate noun phrases (a), verb
phrases (b) or entire sentences (c, d and e).

Dislocations or shifts consist of changing the location of a set of words
that form a constituent. There is a variety of shift types, such as
topicalization, clefting, pseudo-clefting, interrogative movement, shift of the
most important constituent to the right.

Topicalization is the dislocation of a constituent at the head of the
sentence by means of a separator such as a comma:

a) I love phonetics.

b) Phonetics, I love it.
. [4.9]

c¢) [can write a poem.

d) To write a poem, that I can.

Syntax Sphere 135

In the series of example [4.9], we have a shift of the noun phrase
phonetics in (b) while a shift of the verb phrase write a poem in (d).

Interrogative movement is also a common case of the interrogative that is
to separate the complement noun phrase from the object as in [4.10]:
— I want a Syrian restaurant in the city center.

4.10
— which Syrian restaurant in the city center do you prefer? []

Clefting consists of highlighting a constituent of the sentence CONST by
delimiting it, respectively, by a presentative and a relative. Two main types
of clefting exist in French: clefting on the subject and clefting on the object.
To these, we can also add pseudo-clefting. The patterns that follow these
three types are presented in Table 4.1.

Type Pattern Examples
Clefting on the | It is CONST. that Y. It is John that will go to the market.
subject It is the neighborhood postman that brings the
letters every day.
Clefting on the | It is X that CONST. It is carrots that John will buy from the
object market tomorrow evening.

It is tomorrow evening that John will buy
carrots from the market.

Pseudo-clefting | What X has done, it is | What he asked the school principal, it is a
CONST. question.

To whom he asked a question, it is the
journalist from Washington Post.

To whom he asked a question, it is to the
school director.

Table 4.1. Clefting patterns

Restrictive negation (which is sometimes called exceptive) can also be
used as a test, because only a constituent can be the focus of the restrictive
negation. In fact, from a semantics point of view, it is not truly a negation
but rather a restriction that excludes from its scope everything that follows.
As we can see in Table 4.2, these excluded elements are constituents which
have varied roles.

136 Natural Language Processing and Computational Linguistics 1

Example Excluded constituent

The newly arrived worker says only nonsense. NP/Direct object
complement

I am only a poor man. NP/Subject attribute

She eats only in the evening with her best friends. NP/Adverbial phrase

She eats in the evening only with her best friends. PP/Indirect object
complement

It is only the young from Toulon that says nonsense. VP

He only says nonsense. VP

Table 4.2. Examples of restrictive negation

Note that sometimes restrictive negation excludes more than one
constituent at a time as in [4.9] even if, in this case, we can consider the
relative act as a genitive construction:

Il n’y a que ta thése qui t’intéresse.

(It is only your thesis that interests me.) [4.11]

Another test consists of separating a constituent from its neighbor by
using the adverbs only or even whose role is to draw the line between the
two constituents. Let us look at the examples [4.12]:

a) Only/Even Frank studies at night his syntax exercises.
b) Frank studies only/even at night his syntax exercises. [4.12]

c¢) Frank studies at night only/even his syntax exercises.

As we note in group [4.12], this test does not allow us to identify only a
single boundary of a constituent. Consequently, when the delimited element
is at the head of the sentence as in (a). On the contrary, in one of the contexts
as in the case of (b), we must perform other tests for complete identification.

4.1.3.4. Chunks

Proposed by Steven Abney, these are the smallest word sequences to
which we can associate a category as a nominal or verb phrase [ABN 91a].
Unlike phrases, chunks or segments are non-recursive units (they must not
have a constituent of the same nature). That is why some as [TRO 09] prefer

Syntax Sphere 137

to call them nuclear phrases or kernel phrases. Just like phrases, chunks
typically have a keyword (the head) which is surrounded by a constellation
of satellite words (functional). For example, in the tree in the meadow, there
are, in fact, two separate chunks: the tree and in the meadow. A more
comprehensive example of the analysis is provided in Figure 4.4.

The effort to establish such a conclusion of course must have two foci, the study of the rocks
and the study of the sun.

{[Det the] } { [N effort] } { [Inf-To to] [S to] } { [V establish] }
[Pron such] } { [Deta] } { [N conclusion] } {[Adv of course] }{
have] } { [Num two] } { [N foci] } {{Comma,]} ...

[DP [Det the] [NP [N effort]]]

[PC-Inf [IP-Inf [Inf-To to] [VP [V establish]]]]

[DP [Predet such] [Det a] [NP [N conclusion]]]

[PC [IP [AdVP [Adv of course]] [Modal will] [VP [V have]]]]
[DP [NP [Num two] [N foci]]]

[Comma ,]

[DP [Det the] [NP [N study]]]

[PP [S of] [DP [Det the] [NP [N rocks]]]]

{ [Predet such] [Det such]
[N must] [V must] } { [V

Figure 4.4. Example of an analysis by chunks [ABN 91a]

Although it does not offer a fundamentally different conception on the
theoretical level, the adoption of chunks as a unit of analysis has two
advantages. On the one hand, it allows us to identify more easily the
prosodic and syntactic parallels, because the concept of a “chunk” is also
prosodically anchored. On the other hand, the simplification of syntactic
units has opened new roads in the field of the robust parsing (see
section 4.4.10).

4.1.3.5. Construction

Unlike other linguistic formalisms which establish a clear boundary
between morphemes and constituents of higher rank as a syntactical unit, the
construction grammar (CG) argues that the two can coexist within the same
theoretical framework [FIL 88] (see [GOL 03, YAN 03] for an introduction).
According to this concept, grammar is seen as a network of construction
families. The basic constructions in this CG are very close to those of the
HPSG formalism that we are going to present in detail in section 4.3.2.

138 Natural Language Processing and Computational Linguistics 1

4.1.3.6. Sentence

As the objective of syntax is to study the structure of the sentence of
which it is the privileged unit, it seems important to understand the structure
of this unit. The simplest definition of a sentence is based on spelling criteria
according to which it is a word sequence that begins with a capital letter and
ends with a full stop. From a syntactic point of view, sentence decomposes
in phrases, typically a noun phrase and a verb phrase for a simple sentence.
Similarly, it consists of a single clause in the case of a simple sentence or of
several clauses in the case of a complex sentence. We distinguish between
several types of complex sentences based on the nature of the relationships
that link the clauses. These are the following three: coordination,
juxtaposition and subordination.

Coordination consists of the comparison of at least two clauses within a
sentence by means of a coordinating conjunction, such as and, or, but,
neither, etc. (see [4.13]):

— It is early and minors are already moving towards the entrance.

— John loves to observe the underwater life but he cannot swim. [4.13]
— Joana will study a Master degree in Charlottesville or she will '

work in a bank in Lynchburg.

Juxtaposition consists of using two joint clauses by a punctuation mark
that does not mark the end of a sentence [4.14]. It is, according to some, a
particular case of coordination to the extent that we can, in most cases,
replace the comma with a coordinating conjunction without changing the
nature of the syntactic or semantic relationships of the clauses:

It snows a lot in Delaware this winter, truck
; ; [4.14]
drivers will have many problems.

The relationship of subordination implies a relationship of domination
between a main clause which serves as the framework in the sentence and a
dependent clause which is called subordinate. Often linked by a
complementizer which can be a subordinating conjunction (that, when, as,
etc.) or a relative pronoun (who, what, when, if, etc.), the subordinating

Syntax Sphere 139

clauses are sometimes juxtaposed without the presence of a subordinating
element that connects them as in [4.15]:

The more he eats, the more he gains weight. [4.15]

Traditionally, we distinguish between two types of subordinates, namely
the completives [4.16] and the relatives [4.16] and [4.16]:

a) Cedric believes that all software should be free.

b) Cedric estimates the distance between the two cities.

c¢) Last night I met John who was your neighbor in Brooklyn. [4.16]

d) Celine sings all songs that she finds interesting.

In the case of completives, the subordinate plays the role of a completive
to the verb of the main clause. Thus, the completive in [4.16a] has the same
role as the complement to the direct object of [4.16b]. With regard to
relatives, they complement a noun phrase in the main clause that we call
antecedent. For example, John and all songs are, respectively, the
antecedents of relative subordinate clauses in [4.16¢] and [4.16d].

4.1.4. Syntactic typology of topology and agreement

Topology concerns the order in which the words are arranged within the
sentence. In general, topology allows us to know the function of an argument
according to its position in relation to the verb [LAZ 94]. For example,
French is a language with the order SVO (subject-verb-object). Other
languages are of the SOV type, such as German, Japanese, Armenian,
Turkish and Urdu, whereas languages such as Arabic and Hawaiian are of
the VSO type. Note that, depending on the language, this order can vary
from fixed to totally variable. We will refer to [MUL 08] for a more
complete presentation of the word order in French.

The relationship of agreement consists of a morphological change that
affects a given word due to its dependency on another word. They are a
reflection of the privileged syntactic links that exist between the constituents
of the sentence. In French, it is a mechanism according to which a given
noun or pronoun exerts a formal constraint on the pronouns which represent

140 Natural Language Processing and Computational Linguistics 1

it, on the verbs of which it is a subject, on the adjectives or past participles
which relate to it [DUB 94].

4.1.5. Syntactic ambiguity

Syntactic ambiguity, which is sometimes called amphibology, concerns
the possibility to associate at least two different analyses with a single
sentence. Unlike lexical ambiguities, the source of the syntactic ambiguity is
not the polysemy of the words that make up the sentence, but rather the
differences of dependency relationships that the constituents of the sentence
can have. Therefore, we refer to attachment ambiguity of which the most
notable case is the attachment of the prepositional phrase see Figure 4.5 for
an example.

‘R The prepositional phrase is attached to
Mary hit (the man with an umbrella). the noun phrase.

— The prepositional phrase is attached to
Mary (hit the man with an umbrella). the verb phrase.

Figure 4.5. Example of attachment
ambiguity of a prepositional phrase

The attachment of the adjective to the nominal group can sometimes
cause an ambiguity of syntactic analysis as in [4.17]:

a) (red birds) and (fish).
b) Red (birds and fish).
[4.17]
c)a wheel of a (car used for...).
d) (a wheel of a car) used for.

Coordination consists of coordinating two or several elements that have
the same syntactic nature. In this situation, there may be an ambiguity when
there are two coordinating conjunctions of which we cannot delimit the
scope. For example, in the sentence [4.18], we have two conjunctions and
and or without knowing whether each of these conjunctions focuses on a

Syntax Sphere 141

simple element (tea, coffee) or on the result of the other conjunction: (sugar
and coffee) and (tea or coffee):

a) I want (sugar and tea) or coffee. [4.18]
b) I want sugar and (tea or coffee). '

Ambiguity can also focus on the attachment of the adverb as in the
French examples [4.19]:

a) il veut (bien apprendre). [He wants to (learn well)]
[4.19]
b) (il veut bien) apprendre. [(He wants well) to learn.]

In group [4.19], in case (a) the adverb bien (well) depends on the verb
apprendre (learn), whereas in case (b) this same adverb depends on the
semi-auxiliary veut (wants) with which it also forms a construction of
collocation type.

Obviously, syntactic ambiguity directly affects the semantic interpretation of
a sentence. In fact, sometimes, multiple analyses that allow the syntax are all
semantically interpretable as in the sentences [4.19] and [4.17]; and sometimes
there is only a subset of these analyses that is semantically interpretable as in the
sentence [4.20]:

a) A (drug for atherosclerosis expired). [4.20]
b) A drug (for atherosclerosis expired). '

We note in the group [4.20] that only structure (a) where the adjective
expired qualifies the noun drug can receive a semantic interpretation, whereas
(b) where the adjective expired qualifies the noun atherosclerosis does not
have a particular meaning. With this example, we return to the concept of
grammaticality which was discussed at the beginning of this section.

4.1.6. Syntactic specificities of spontaneous oral language

In the field of speech, quite a considerable number of studies has focused
on phonetic and phonological aspects. However, syntax, which is a central

142 Natural Language Processing and Computational Linguistics 1

discipline in linguistics, is the only one to remain subject to the reign of the
scripturocentrism as highlighted in [KER 96]. In fact, syntactic studies have
focused primarily on the written word while neglecting the oral dimension,
which was considered as an impoverished and sometimes deviant form of
writing. The lack of linguistic resources due to the difficulties of collecting
and transcribing spoken dialogues (see [BLA 87] for a general review of these
issues), as well as the relatively limited importance of the syntactic processing
of the spoken language before the 1990s are some other reasons for this delay.

4.1.6.1. Topology in spoken language

Spoken language does not seem to obey the same standard as the written
text regarding word order. For example, the utterances of Table 4.3 are
perfectly possible in a spoken conversation or in a pseudo-writing used in
discussion forums on the Internet, while they are not acceptable in a standard
written text:

Example Structure Order of elements
My notebook I forgot it | Anteposition of an NP oSV
at home
At 200 meters you will | Anteposition of an PP OSVO

find a pharmacy

Me my father I love him | Double marking SOSVO
very much

Table 4.3. A few examples of variation of the
word order at the oral framework

The question that arises is to know what is the importance of these cases
in terms of frequency in the spoken conversations and then to know whether
this frequency depends on the syntactic context (i.e. is it more important in a
syntactic context C1 than in another syntactic context C2?). [ANT 01] have
tried to answer these questions in their study which is based on three corpora
of spoken French'. Thus, these researchers have shown that in ordinary
situations the finalized language respects the privileged sequencing.

1 These are the three corpora: Air France [MOR 92], Murol [BES 95], Ozkan [OZK 94].

Syntax Sphere 143

4.1.6.2. Agreement in gender and number

According to the constructions, agreement is often respected in the
spoken language, but not always. For example, non-respect of the agreement
between the noun and/or its adjectives is very rare, while non-agreement in
gender between the attribute and the word to which it relates is very frequent
[4.21] [SAU 721

a) Une voiture émetteur A car (+fem) emitter (+masc)

b) Les revenus salariaux The wage (+fem) incomes (+masc) [4.21]

c) Les dispositions que The provisions (+fem) that we have
nous avons pris taken (+masc)

4.1.6.3. Extragrammaticalities of the oral language

Extragrammaticalities, unexpected structural elements, spontaneities and
disfluencies are among other terms that have been proposed in the literature
to designate the spontaneous phenomena of the spoken language such
as hesitation, repetition, self-correction, etc. [LIC 94, SHR 94, HEE 97,
COR 99, MCK 98]. Each of these terms has its motivation. The term
“extragrammaticality” which has been adopted by [CAR 83] seems to be the
most appropriate, because it is sufficiently general and specific to cover the
different spontaneous phenomena of the spoken language which do not
depend directly on the syntax of the language. Three key phenomena are
distinguished within extragrammaticalities: repetitions, self-corrections and
false starts.

Repetition is the repetition of a word or a series of words. It is defined on
purely morphological criteria. Consequently, the formulation and the
paraphrase of a utterance or a segment (where we repeat two segments that
have the same meaning) are not considered as repetitions: it would be a
Paris Delhi flight rather than a flight a domestic flight.

Repetition is not always a redundancy. It can also have a communicative
function. For example, when a speaker is not sure if his message (or a part of
his message) will be perceived clearly by its audience because of a poor

144 Natural Language Processing and Computational Linguistics 1

articulation, a noise in the channel, etc., he repeats it. In addition, repetition
is a quite common pragmatic means to mark an affirmation or an insistence
as in the utterance [4.22]:

yes yes I'll buy one of these [4.22]

In the utterance 4.22, the repetition of the word yes has an affirmative
function.

Self-correction is to replace a word or a series of words with others in
order to modify or correct the meaning of the utterance. Self-correction is
not completely random and often focuses on a segment that can have one or
several phrases [COR 99]. That is why it is frequently accompanied by a
partial repetition of the corrected segment. Let us look at the utterance
[4.23]:

Yes: I have a I have the web pages yes. [4.23]

In this utterance, self-correction is performed by repeating the segment /
have and by replacing the word a with the word the. We note that the two
words have the same morphological category (definite article) and the same
syntactic function (determiner).

A false start is to abandon what has been said and starting over with
another utterance. Syntactically, this is manifested with the succession of an
incomplete (or an incorrectly formed) segment and with a complete segment.
Let us look at the utterance [4.24]:

(...) yes itis at and this is taken to the second floor. [4.24]

Unlike self-correction, there is no analogy between the replaced segment
and the rest of the utterance. Thus, we can notice in the example [4.24] that
the abandoned segment it is at has almost no relationship with this is
taken.... This form of extragrammaticality is the most difficult to process
given that the detection criteria (essentially the incompleteness of a segment)
are very vague and can lead to many problems both of overgeneration and of
undergeneration.

Syntax Sphere 145

4.2. Elements of formal syntax
4.2.1. Syntax trees and rewrite rules

After reviewing the different constituents of a sentence and the subtleties
of the relationships that may exist between these constituents, we will now
address the question of the analysis of the sentence by assembling the pieces
of the puzzle. To do this, we will begin with phrases and end with complex
sentences.

The idea to use rules to describe the syntax of a particular language goes
back to the beginning of the past century. It was formalized in the 1950s,
particularly with [CHO 56, BAC 59].

A syntax tree is a non-oriented (there is not a predetermined direction to
traverse the tree) and acyclic (we cannot traverse the tree and then return to
the starting point) graph consisting of nodes connected by arcs. A node
represents a constituent or a morphological or syntactic category connected
by an arc with the dominant node. Each constituent must be directly
dominated by the corresponding category. Inspired by family relationships,
the dominant node is called “parent node” and the dominated node is called
“child node”. Similarly, the highest node of a tree (the one that dominates all
other nodes) is called the “root node” of this tree, whereas the lowest nodes
in the hierarchy and which, therefore, do not dominate other nodes are called
“leaf nodes”. In syntax trees, each word is dominated by its morphological
category and phrases by their syntactic categories. Logically, the S
(Sentence) is the root node of these trees and the words of the analyzed
sentence are the leaf nodes.

Let us begin with the noun phrases. As we have seen, a noun phrase can
consist of a proper noun only in a common noun surrounded by a wide range
of varied satellite words. Let us look at the phrases in Table 4.4.

Noun phrase Sequence of categories
John NP
My small red car Det Adj N Adj
The house of the family Det N prep Det N

Table 4.4. Examples of noun phrases
and their morphological sequences

146 Natural Language Processing and Computational Linguistics 1

As we can see in Table 4.4, each noun phrase is provided with the
sequence of morphological categories of which it is composed. This sequence
provides quite important information in order to understand the syntactic
structure of these phrases, but it is, however, not sufficient because it omits the
dependency relationships between these categories. To fill this lack of
information, syntax trees can shed light on both the order of constituents and
their hierarchy. Let us examine the syntax trees of the phrases provided in
Figure 4.6.

(@) (b)

SN SN
| TN
NP Det Adj Adj N
| I | | |
Jean my little red ' -car
(© SN
i
Det N Sp
the house Prep SN
| P
of Det N
| I
the family

Figure 4.6. Syntax trees of some noun phrases

As we note in Figure 4.6, all the trees have an NP as a root node (the
highest node) since they all correspond to noun phrases. Tree (a) is the
simplest one since it is a proper noun which is capable of achieving a noun
phrase without another constituent. In tree (b), the kernel of the phrase, the
noun car, is qualified by an anteposed adjective small and by a postponed
adjective red. Tree (c) shows how a prepositional phrase acts as a genitive
construction. This prepositional phrase consists in turn of a preposition and a
noun phrase.

A rewrite rule is an equation between symbols of two types: terminal and
non-terminal symbols. Terminal symbols are symbols that cannot be
replaced by other symbols and which correspond to words or morphemes of
the language in question. Non-terminal symbols are symbols that can be
replaced by terminal symbols or other non-terminal symbols. In grammar,
they correspond to morphological categories such as noun, verb and
adjective or to syntactic categories such as NP, VP, PP, etc.

Syntax Sphere 147

The transformation of the syntax trees shown in Figure 4.6 in rewrite
rules provides the grammar in Figure 4.7.

NP — PN

NP — Det (Adj) N (Adj)
NP — DetN PP

PP — Prep NP

Det — the| my

NP — John

N — car | house |family
Adj — small | red

Prep — of

Figure 4.7. Grammar for the structures as shown in Figure 4.6

Let us look at the noun phrase of the Figure 4.8. It is a noun phrase which
includes an adverb and an adjective. What is specific in the phrase is that the
adverb does not modify the noun but rather the adjective which in turn
qualifies the noun. To understand this dependency relationship, the creation
of an adjective phrase seems to be necessary.

/’/S,N\ NP 0 Det SAdj

N
i N
Det Sad; Sadj — Adv Adj
| A~~~ 1 =
. et—a
a Adv Adj house
| | N — house

Adv — very

very beautiful Adj — beautiful

Figure 4.8. Syntax trees and rewrite rules of an adjective phrase

One of the specificities of natural languages is the production capacity of
an infinite number of sentences. Among the sources of this generativity is
the ability to emphatically repeat the same element especially in the spoken
language. Let us look at the sentence [4.25], where we can repeat the
adjective an indefinite number of times:

A flower beautiful beautiful ... [4.25]

148 Natural Language Processing and Computational Linguistics 1

This poses a problem because we have to repeat the same rule each time
with an increase in the number of symbols (see grammar in Figure 4.9).

NP — Det N Adj

NP — Det N Adj Adj

NP — Det N Adj Adj Adj
etc.

Figure 4.9. Grammar for the
structures presented in Figure 4.8

An elegant and practical solution to this problem is to use recursive rules
that contain the same non-terminal symbol, both in its left and right hand
sides (grammar in Figure 4.10).

NP — Det N SAdj
SAdj — Adj SAd]
SAdj — Adj

Figure 4.10. Grammar for the
noun phrase with a recursion

According to the first rule of the mini grammar in Figure 4.10, a noun
phrase consists of a determiner, a noun and an adjective phrase. According to
our second rule, an adjective phrase consists of an indefinite number of
adjectives: it adds an adjective and is called the rule of the adjective phrase.
According to the third rule, the adjective phrase can consist of a single
adjective and has the function to stop the looping to infinity of the second rule.

The adverbial phrase has for a kernel an adverb which can be modified by
another adverb as in [4.26]:

very quickly [4.26]

too late

Note that in order to avoid circularity in the analysis, we must distinguish
the adverbs of degree (very, little, too, etc.) from other adverbs in the rewrite
rules. This provides the rules of the form: AdvP — AdvDeg Adv.

Syntax Sphere 149

The verb phrase is, as we have seen, the kernel of the sentence because it
is the bridge that connects the subject with potential complements. Let us
look at the sentences [4.27] with different complements:

I have seen the rose. (Direct Object)

He leaves tomorrow. (Adverbial phrase/Adverb) (4.27)

Nadine gave a flower to her father kindly.
(Direct Object + Indirect Object)

These three sentences are analyzed with the syntax tree of the Figure 4.11.

@ (b)

p
T
SN Sv s Sv
| P
I GV SN | SN

R PN Pron V Adv
Valux \lf Dlet N | | |

I
He leaves tomorrow
have seen the rose

(©) P
A
SN SV
| B o S
Pron V SN SP Adv
She offers Det N Prép SN kindly

| I I N

some flowers to Det N

| |
her father

Figure 4.11. Examples of VP with different complement types

Complex sentences is another type of syntactic phenomena which
deserves to be examined in the framework of syntactic grammar. What is
significant at this level is to be able to represent the dependencies of the
clauses within the sentence.

Completives consist of adding a subordinate which acts as a complement
in relation to the verb of the main clause. Thus, the overall structure of the

150 Natural Language Processing and Computational Linguistics 1

sentence remains the same regardless of the type of the complement. The
question is: how should this phrasal complement be represented? To answer
this question, we can imagine that the complex sentence has a phrase of a
particular type (SPh (Sentence Phrase)) which begins with a complementizer
(comp) followed by the sentence. Figure 4.12 shows a parallel between a
phrasal complement and a pronominal complement (ordinary NP).

a) b)
P P
o T /“‘-_
SN SV SN SV
| P i | N
NP \Y% SN NP A% SPh
I l | I i
Marie thinks Pron Marie thinks comp P
this that SN SV
! /\
NP A% SP
| | e
Franck is Prep SN
| >
at Det N
| |
the jardin

Figure 4.12. Analysis of two types of sentences
with two types of complements

The processing of relatives is similar to the processing of cleft sentences
to the extent that we consider the subordinates as phrasal complements.
Naturally, in the case of relative subordinates, the attachment is performed at
the noun phrase as in Figure 4.13.

Coordinated sentences consist of two or several clauses (simple
sentences) connected with a coordinating conjunction. The analysis of this
type of structures is quite simple since it implies a symmetry of the
coordinated constituents dominated by an element that has the same category
as the coordinated elements. This rule applies both at the level of
constituents and at the level of the entire sentence (see Figure 4.14).

Syntax Sphere

151

P

/—‘-___
SII\I SV
__/.__-—\
pron GV SN
I 8 —_—
I Vaux V Det N SPh
| | | |
have scen the machine Comp P
o,
that/S.N\ SV

> i

Det N GV Adv
| | SN I

the engineer Vzltux \lf vesterday

had built

P

,_.-'—’_—--\‘—-._
SN Sv

__-"‘---—’-_-\\-_
pron GV SN

[N e e
Je Vamx V Det N SPh

I I | e e
ai vu le ingénieur Comp P
.—-—"’/‘-_--—-N“--.
qui SN sV
I — N T
0 GV SN Adv

e |
Vaux v Det N hier

a fabriqué la machine

Figure 4.13. Example of analysis of two relative sentences

(a) (b)
SN
ﬁ\\ P
SN Conj SN PN, S
L L s p Conj P

NIP and Dlet N |

Julian has finished but he did not tidy up
his homework his room

Marie her friend

Figure 4.14. Examples of the coordination of two phrases and two sentences

152 Natural Language Processing and Computational Linguistics 1

We should also note that syntax trees are a very good way of highlighting
the syntactical ambiguity which is manifested by the allocation of at least
two valid syntax trees for the same syntactic unit (see Figure 4.15).

(a) (b)

P P
A //-_-_\
NP SV NP SV
| — | e e
Marie GV SN Marie GV SN SP

P — T PN AN

Vaux V Det TTI SP Valux \|/ Det |N with an umbrella
| | | _— |

has hit the man with an umbrella has hit the man

Figure 4.15. Two syntax tree for a syntactically ambiguous sentence

At the end of this section, it seems necessary to note that phrase structure
grammars, despite their simplicity and efficiency, are not a perfect solution
to understand all syntactic phenomena. In fact, some linguistic cases pose
serious problems for the phrase structure model [4.28]:

— Caroline is too shy, I am not. (ellipsis)

— Frank, my colleague, a good pharmacist,
died yesterday. (juxtaposition) [4.28]

— Me, my house, its roof, it is damaged. (clefting)

— The toys, the child broke all of them. (interrelationships)

4.2.2. Languages and formal grammars

Formal language is a set of symbol strings of finite length, constructed on
the basis of a given vocabulary (alphabet) and which is sometimes constrained
by rules that are specific to this language (see [WEH 97, XAV 05] for a
detailed introduction). Vocabulary, which is conventionally represented by
lowercase letters of the Latin alphabet, corresponds to the words of the
language which are the produced strings. To describe a formal language, the
simplest way is to list all the strings produced by this language. For example,
L= {a, ab, ba, b}. The problem is that formal languages often produce an
infinite number of strings whose listing is impossible. This requires the use of
a formulation which characterizes the strings without having to list them all.

Syntax Sphere 153

Let us look at L,, a formal language which includes all non-null sequences of
the symbol a: L, = {a, aa, aaa, aaaa,}. As it is impossible to list all the
words of the language, we can use an expression of the form: {a' | i >1} where
no limit is imposed on the maximum value of i, so as to be capable of
generating an infinite number of strings. For a linguistic initiation to phrase
structure and formal grammars, we refer to the books by Lélia Picabia and
Maurice Gross [PIC 75, GRO 12].

When we refer to formal language, it is intuitive to evoke the concept of
formal grammar. In fact, a formal language can be seen as the product of a
grammar that describes it. Formally, such a grammar is defined by a
quadruplet: G = (Vx, V1, S, S) where:

— Vn: the non-terminal vocabulary;

— Vr: this vocabulary brings together all of the terminals of the grammar,
which are commonly called the words of the language;

— P: the set of the rewrite rules of grammar (production rules);

—S: sometimes called an axiom, it is a special element of the set Vy
which corresponds to well-formed sentences.

Note that the sets Vy and Vr are disjointed (their intersection is zero) and
that their union forms the vocabulary V of the grammar. In addition, V*
denotes the set of all the strings of finite length which are formed by the
concatenation of elements taken from the vocabulary including the null
string and V+ is equal to V* except for the fact that it does not contain the
empty string: V+ = V*— {D}.

Rewrite rules have the following form: a—f where a > V+ (however, it
contains a non-terminal element) f > V *.

Conventionally, lowercase letters at the beginning of the Latin alphabet
are used to represent the terminal elements a, b, ¢, etc. We also use
lowercase letters at the end of the Latin alphabet to represent strings of
terminal elements w, x, z, etc. and the uppercase letters A4, E, C, etc. to
represent non-terminal elements. Finally, lowercase Greek letters represent
the strings of terminal and non-terminal elements a, f, y, J, etc.

154 Natural Language Processing and Computational Linguistics 1

Let us consider a formal grammar G = (Vy, V1, P, S) with:
Vn={S}
V1= {a, b}
P: 1.S —aS
2.S—b

The language defined by this grammar has the following form: L (G) =
a*b. This means that the strings which are acceptable by this language are
formed by a sequence of zero or more occurrences of a followed by a single
occurrence of b: b, ab, aab, aaab, aaaab, etc.

To generate these language strings from the grammar, we begin with the
special symbol S. We apply the set of rules which have the letter “S” in their
left-hand side until there are no more terminals in the input string. The
process to obtain strings from a grammar is called derivation.

Thus, in our grammar, the simplest derivation is to apply the rule #2 to
replace the symbol S with the terminal b: S => b. Similarly, we can derive
the sentence aab by the successive application of the rule #1 twice and the
rule #2 only once: S => aS => aaS => aab.

4.2.3. Hierarchy of languages (Chomsky-Schiitzenberger)

After having presented languages and formal grammars, we can rightfully
ask the following questions. What is the expressive power of a particular
grammar? In other words, can a grammar G; describe all the languages
produced by a grammar G,? Can it describe other languages? How can we
decide whether two languages described by two different formalisms are
formally equivalent? To answer all these questions, the American linguist
Noam Chomsky and the French mathematician Marcel Paul Schiitzenberger
have proposed a framework for classifying the formal grammars and the
languages they generate according to their complexity [CHO 56, CHO 63].
As this framework is capable of characterizing all recursively enumerable
languages, it is commonly referred to as the hierarchy of languages or
Chomsky hierarchy. It is a typology which includes four types of grammars,
each included in the higher type and numbered between 0 and 4.

Syntax Sphere 155

Type-0 grammar
Type-1 grammar

Type-2 grammar

Type-3 grammar
Type-4 grammar

Figure 4.16. Hierarchy of formal grammars

Type-0 grammar, which is also called unrestricted grammar, is the most
general form of the grammar because it allows us to transform an arbitrary
non null number of symbols into an arbitrary number of symbols (potentially
zero symbols). It refers to grammar which accepts, for example, the rules
whose right-hand side is longer than their left-hand side, as the rule:
ANE—aN.

Although they are the most general, these types of grammar are the least
useful for linguists and computer scientists. The languages generated by a
grammar of this type are called recursively enumerable languages and the
tool to recognize them is the Turing machine’.

Type-1 grammar, which is also called context-sensitive grammar, are
types of grammars whose rules follow the following pattern: A — aryp.

With a non-terminal symbol 4 and sequences of terminal or non-terminal
symbols ¢, y and f knowing that & and S can be empty unlike y. Another
characteristic of these grammars is that they do not accept rules whose right-
hand side is longer than the left-hand side.

2 The Turing machine is a hypothetical device capable of manipulating symbols on a tape.
This concept was proposed in 1936 by the English mathematician Alan Turing.

156 Natural Language Processing and Computational Linguistics 1

The typical language generated by this type of grammars is of the form: a"
b" ¢". This language can be generated by the grammar shown in Figure 4.17.

S — abc|aSE
bEc — bbcc
cE — Ec

Figure 4.17. Grammar for the language a" b" c¢"

The grammar in Figure 4.17 allows us to generate strings such as: abc,
aabbcc, aaabbbccc, etc.

a) b)
S

/I\ S
a b C s | —
a S E
I s |
a a b c E
L >k
a b E c
b b % ©

Figure 4.18. Syntax tree for the strings: abc and aabbcc

As we can see in Figure 4.18, the derivation of the abc string is
performed in a direct way with a single rule: S — abc, whereas the
derivation of the aabbcc string requires contextual rules such as: bEc —
bbcc.

Type-1 grammar has been used for syntactic and morphological analysis
particularly with augmented transition networks.

Type-2 grammar, which is called context-free grammar or context free
grammar (CFG) is a type of grammar in which all rules follow the pattern: A
— 7. With a non-terminal symbol 4 and a sequence of terminal and non-
terminal symbols y. The typical language generated by Type-2 grammar is:
a"b" (see Figure 4.19 for an example).

Syntax Sphere 157

Grammar a) b) c)
S—alB /S\ /S\ /S\
B—aBb a B a B a B
B—b | o i — T
b a B b a B b
I /—T\
a B b
|
b

Figure 4.19. The derivation of strings: ab, aabb, aaabbb

To obtain the string ab in tree [4.19a], it is sufficient to apply the first
rule: S — a B and then we replace “B” with “b” with the rule B — b. In tree
(b), we apply the rule: B — a B b only once, whereas in tree (¢) we must
apply it twice.

Thanks to its simplicity, Type-2 grammar is quite commonly used,
particularly for parsing. The automaton which allows us to recognize this
type is the recursive transition network (RTN). As we will see in
section 4.4.2, there is a multitude of parsing algorithms of various types to
perform parsing of natural languages with context-free grammar.

Several forms, which are called normal, have been proposed to simplify
Type-2 grammar without reducing their generative capacities. Among these
forms, those of Chomsky and those of Greibach deserve to be addressed.
Note that these normal forms retain ambiguity. This means that an
ambiguous sentence generated by a Type-2 G grammar is also ambiguous in
languages G’ and G’’, which are the normal forms of this grammar
according to Chomsky and Greibach formats, respectively. Finally, note that
the equivalence between a CFG and its standardized form is low because,
although both generate exactly the same language, they do not perform the
analysis in the same way.

Chomsky’s normal form imposes a clear separation between the
derivation of terminal elements and the derivation of non-terminal elements.
Thus, a grammar is said to be in Chomsky normal form if its rules follow the
three following patterns: A - BC, A —a, S — €.

Where A, B and C are non-terminals other than the special symbol of the
grammar S. ¢ is a terminal and € represents the empty symbol whose use is

158 Natural Language Processing and Computational Linguistics 1

only allowed when the language generated by the grammar is considered as a
well-formed string. The constraints imposed by this normal form are that all
structures (syntax trees) associated with sentences generated by a grammar in
Chomsky normal form are strictly binary in their non-terminal part.

If we go back to the grammar in Figure 4.20, we note that only the rule:
B— a B b violates the diagrams imposed by Chomsky’s normal form,
because its right-hand side contains more than two symbols. Thus, to make
our grammar compatible with Chomsky’s normal form, we make the
changes provided in Figure 4.20.

Grammar a) b) c)
s s s
S—aB - - -9
B—oaX a B a B a /B\
X—Bb | = a X
b B = %
B—b N B b
B b N
| a X
b o g
B b
b

Figure 4.20. Example of a grammar in Chomsky
normal form with examples of syntax trees

Note that in linguistic grammars, to avoid the three-branches rules as the
one provided in Figure 4.21: NP — Det N PP, some assume the existence of
a unit equivalent to a simple phrase that is called group: noun, verb,
adjective, etc. (see Figure 4.21).

SN
T
Det GN
| A
the N SP
| TN
house Prep GN
i P
of Det ITI
1
the family

Figure 4.21. Syntax tree of an NP in Chomsky normal form

Syntax Sphere 159

Grammar is said to be in Greibach normal form if all of its rules follow
the two following patterns [GRE 65]: A—a and 4 — aB; B,. . . B,

Let us consider the grammar in Figure 4.22 for an example of the
grammar in Greibach normal form.

S —aB
bAA—a|aS|
bAAB — b|bS |aBB

Figure 4.22. Example of grammar in Greibach normal form

It should be noted that there are algorithms to convert any Type-2
grammar in a grammar in Chomsky or Greibach normal form. We should
also note that beyond their theoretical interest, some parsing algorithms
require standardized grammar.

Type-3 grammar, which is sometimes called regular grammar, is a type of
grammar whose rules follow the two following patterns: 4 — a and 4 — a B.

Where A and B are non-terminal symbols, whereas a is a terminal
symbol. This is a typical G grammar of regular languages which generates
the language: L (G) = a"b™ with n, m > 0 (see Figure 4.23).

S—aS$S

S—aB
B—bC
C—b

Figure 4.23. Regular grammar that generates the language a"b™

Finally, we should mention that it is formally proved that the languages
generated by a regular grammar can also be generated by an finite-state
automaton.

A particular form of regular grammar has been named “Type-4
grammar”. The rules in this grammar follow the diagram: A — a. In other
words, no non-terminal symbol is allowed in this type of grammar. This
grammar, which is of limited usefulness, is used to represent the lexicon of a
given language.

160

Natural Language Processing and Computational Linguistics 1

Table 4.5 summarizes the properties of the types of grammar that we

have just reviewed.

Type Form of rules Typical example Equivalent model

0 o — B (no limits) | Any calculable function | Turing machine

1 oAB — oyB a'b"c" Augmented Transition
Networks (ATN)

2 A—>y a'b" Recursive Transition
Networks (RTN)

3 A—a a*=a" Finite-state automata

A —aB

Table 4.5. Summary of formal grammars

The presentation of the different categories of formal languages and their
principal characteristics leads us to the following fundamental question:
what type of grammar is able to represent all the subtleties of natural
languages? To answer this question, we are going to discuss the limits of
each type based on Type-3 grammar.

From a syntactic point of view, natural languages are not regular because
some complex sentences have a self-embedded structure which requires
Type-2 grammar for their processing (examples [4.29]):

— The mouse likes the cheese.
— The mouse the cat chased likes the cheese.

— The mouse the cat the rat bit chased likes the cheese. [4.29]

— The mouse the cat the rat the lion looks at bits
chases likes the cheese.

To understand the differences between the abstract structures of complex
sentences, let us look at Figure 4.24.

Syntax Sphere 161

Left-branching Right-branching Self-embedding
A A A
P N I:_‘/\c
B C B C -
N P D E
X D D X)l(
/\
vy oz Al v 2

Figure 4.24. Types of branching in complex sentences

The syntax of natural languages is not independent of context because, in
a language such as French, there is a multitude of phenomena, whose
realization requires the consideration of the context. For example, we can
mention the following: agreement, unbounded dependencies and passive
voice.

Agreement exists between certain words or phrases in person, number
and gender. In a noun phrase, the noun, the adjective and the determiner
agree in gender and number. In a verb phrase, the subject and the verb agree
in person and number. To integrate the constraints of agreement in a Type-2
grammar, we must diversify the non-terminals and then create as many rules
for the possible combinations. The rule S — NP VP will be declined in six
different rules as in the context-free grammar shown in Figure 4.25.

S — NP_Persl NoSing NV _Persl NoSing
S — NP_Pers2 NoSing NV_Pers2 NoSing
S — NP_Pers3 NoSing NV_Pers3_NoSing
S — NP Persl NoPlur NV _Persl NoPlur
S — NP_Pers2 NoPlur NV_Pers2 NoPlur
S — NP_Pers3 NoPlur NV _Pers3 NoPlur

NP _Persl NoSing — I
NP_Pers2 NoSing — you
NP_Pers3 NoSing — he/she/it
etc.

Figure 4.25. Type-2 grammar modified to account for the agreement

This solution significantly reduces the generative power of grammar and
makes its management very difficult in practice, because non-terminals are
difficult to be read by humans. Some cases of agreement are even more

162 Natural Language Processing and Computational Linguistics 1

complicated, as the agreement between the post-verbal attributive adjective
of an infinitive and the subject noun phrase [4.30]:

Jane wants to become a top linguist. [4.30]

Type-2 grammar does not allow us to specify the sub-categorization of a
verb predicate (the required complements) or to require that the verb does not
have complements. Here a possible solution is also to vary categories. These
types of grammar do not allow the expression of structural generalizations
such as the relationship between the passive and the active voice.

4.2.4. Feature structures and unification

The formalisms that we have just seen allow us to represent the
information on the hierarchical dependencies of the constituents and their
order. We have seen that with the grammar in Figure 4.25, it is quite
important to take into account the relationships of agreement between these
different constituents with a simple phrase structure grammar. The most
current solution in the field of linguistics to solve this problem is to enrich
the linguistic units with feature structures (FS), which contain information of
different natures (morphological, syntactic and semantic) and to express the
possible correlations among them. They also allow us to refine the
constraints at the lexicon level and, thus, to simplify the rules of grammar.
For more information on feature structures and unification, we refer to
[SHI 86, CHO 91, WEH 97, SAG 03, FRA 12].

As we have seen in the sphere of speech, the first use of features in
modern linguistics was proposed in the field of phonology, particularly with
studies by Roman Jacobson, Noam Chomsky and Morris Halle. Since the
1980s, FSs have been adopted in the field of syntax, particularly in the
framework of formalisms based on unification. It is a family of linguistic
formalisms that allows us to specify lexical and syntactic information. The
main innovation of these formalisms lies on two points: the use of features
for encoding of information and the unification operation for the
construction of higher constituents than the word level.

The unification operation is applied on features in order to test, compare
or combine the information they contain. The origin of the unification
concept is double: on the one hand, it comes from the studies on the logic

Syntax Sphere 163

programming language ‘“Prolog” [COL 78, CLO 81] and on the other hand,
it is the result of studies in theoretical and computational linguistics on the
functional unification grammar (FUG) [KAY 83], the lexical functional
grammar (LFG) [BRE 82, KAP 83] and the generalized phrase structure
grammar (GPSG) [GAZ 85].

We distinguish two types of feature structures: atomic feature structures
in which all features have a simple value and complex feature structures
(CFS) where features can have other feature structures as a value. Below is
the structural feature of the noun “house” and of the verb “love” which are
shown in Figure 4.26. For example, the verb (FS b) has two features: an
atomic feature VerbType and a complex feature Agreement.

a) b)
Type Name': substantive TypeVerb: transitive
Nb.: sing Nb.: plur
Agreement : Agreement :)
Gender: fem Pers: third

Figure 4.26. Feature structures of the
noun “house” and of the verb “love”

Beyond the words, all other levels, such as phrases, clauses and
sentences, can be enriched by CFSs. To clarify the enrichment of supra-
lexical units with features, let us take a simple sentence such as [4.31]:

Frank eats apples. [4.31]

As there is no consensus as to the necessary features for the analysis of a
sentence, the linguistic theories which adopt the features as a mode of
expression of linguistic properties differ on this point. Thus, we can adopt
the following features to analyze the sentence [4.31]:

— category: specifies the grammatical category of the sentence: S;

— head: corresponds to the head of the sentence which is the verb and
specifies the features: tense, voice, and number;

— subject: noun phrase which is an argument of the verb;

— object: noun phrase which is an argument of the verb.

164 Natural Language Processing and Computational Linguistics 1

This provides the CFS presented in Figure 4.27.

rCategory: S
Category:]
Subject: sing
A t:
greemen Gender masc]
Category:
Object: Nb.. fem]
Agreement:
& Gender: masc]
Tense: present
Head: Voice: active]
Number: sinag

Figure 4.27. CFS of a simple sentence

A variant of the feature structures was proposed by Ait-Kaci [AIT 84]
where each structural feature has a type which limits the features that can be
included, as well as the values that the atomic features can have. This
concept is comparable to the types in the framework of the object-oriented
programming. For example, the complex feature subject can understand the
category and agreement features and the atomic feature Nb. can have the
values: sing and plur.

We should also note that CFSs can take the form of feature graphs, such
as the examples of the feature structures presented in Figure 4.28.

. (T) sing - \0,—2) plur
. Nb. L ~ Nb.
Agree -+ il) CE - Agree+{ al }
: Gender N\ 3 ~ Pers \
*(a3 |fem = _ iythird

Figure 4.28. Feature graphs for the agreement
feature for the words “house” and “love”

As we see in Figure 4.28, feature graphs are oriented, as we cannot
navigate in the direction of the arrow (or arc). As these graphs are a data
structure whose mathematical properties are well-known, this allows us to

Syntax Sphere 165

improve our understanding of CFS properties. Such a graph can be seen as a
quadruplet: {Q, q’, 8, 8}. Let us look at the graph (a) in Figure 4.28 as an
example, to make our explanation more concrete.

—Q is a finite set of nodes: Q = {qo, q1, 92, q3};

—q’ € Q is the initial state of the graph q° = qo. As we can note, in
Figure 4.28, the initial state of this graph is colored to differentiate it from
other states;

—0 represents a partial function in the graph such as:
3(qo, Agreement)= qi, 8(qi, Nb.)= 2, 8(q1, Gender)= g,

—0 represents a leaf that corresponds to a feature. Thus:
0(q2)=sing, 0(qs)=fem.

The representation of the features in the form of a graph leads us to the
path concept which is intimately associated with this. A path is a sequence of
features used to specify a particular component of a structural feature. The
paths that interest us are those that connect the initial element and a leaf. If
we accept that a path is part of our CFS: n € CFS, we can say that our
function d(q, m) provides the value of path © from the node ¢g. Now, if two
different paths begin with the initial state of the graph and ultimately lead to
the same node, we then say that there is a reentrancy relationship between
these two paths. Formally, we can express this as: 8(qo, ®) = 8(qo, 7°) and
n#n’. By extension, a structural feature is called reentrant if it contains two
features that share a common value. It is appropriate to distinguish the
reentrancy of cases where two different paths lead to two different features
which occasionally have the same value. In this kind of case, we refer to
paths of similar values. Let us consider the examples of CFSs in Figure 4.29
to clarify this distinction.

Feature structures of similar values Structure with reentrant features
vf y—c—-(g3)X A 11) 2
. FE o - -
@ ()=
B. i i S S DT 3
E=Er @
N \ N

Figure 4.29. Example of structures of
shared value and of a reentrant structure

A

166 Natural Language Processing and Computational Linguistics 1

As we can see in Figure 4.29, structures of similar values consist of an
occasional resemblance between the values of different features (q; and qy).
This means that it is not a constraint imposed by grammar but a simple
coincidence. A current example is when two noun phrases, subject
and object direct, share the same features of agreement in gender and
number. By contrast, the reentrant features are the shared product of two
different paths of the same feature (q4) as in the constraints on the agreement
between two different constituents as the subject noun phrase and the verb
phrase.

In matrix form, reentrant features are marked with specific indices. Thus,
the symbol in Figure 4.30 means that the features f'and g must have the

same value.

Feature structures of similar values Structure with reentrant features

|:f: [h:a]:| |:f [h:a]:|
g: [h:a] g:

Figure 4.30. Example of structures of
shared value and of a reentrant structure

If we approach the issue of the comparison of two feature structures, a
key question arises: are there any CFSs which are more generic than others?
To answer this question, the concepts of subsumption and extension have
been proposed.

Subsumption is a partial order relationship that we can define on feature
structures and which focuses both on the compatibility and the relative
specificity of the information they contain. It is noted with the help of the
symbol: c. Let us look at the two feature structures FS and FS’. We say that
FS is a subsumption of FS’ if all information contained in FS is also present
in FS’.

In Figure 4.31, we have three CFSs that maintain the following
subsumption relationships: a € b and a < ¢ and b < c. In other words, as the
CFS a is the least specific and consequently more abstract, it subsumes the
structures b and ¢ which are more generic. Obviously, the subsumption
between these structures would not exist without the compatibility between
these three structures. If we go back to Figure 4.26, the feature of agreement

Syntax Sphere

167

of the structure (a) does not subsume the feature of agreement of (b) and vice
versa, because of the incompatibility between the two features: the feature
gender in (a) and the feature pers in (b).

Sing
Agreement: []
4158 Gender Masc]
Category:
b |Subject: Smg
Agreement: []
g Gender Masc
Category:
Category: SN
Subject: Accord: Nb.: sing]]
Gender: masc
c Category: SN
Object: . Nb.: fem]
Agreement: [Gemier: masc]
Tense: present
Head: Voice: active }
Number: sing

Figure 4.31. Examples of feature structures with subsumption relationships

Extension is the inverse relationship of subsumption. It can be defined in
the following manner: let us consider two structures FS and FS’. We can say
that FS’ is an extension of FS, if and only if: all atomic features of FS’ are
present in FS with the same values, and if for all non-atomic features t;, in
FS’, there is an atomic feature t;” in FS such that the value of t;” is an
extension of the value of the feature t;.

Naturally, all feature structures are not in a relationship of extension or
subsumption. In fact, some CFSs can contain different but compatible
information, such as the relationship between the object and the subject in
matrix (c) as shown in the Figure 4.25. In addition, the structures “subject”
and “head” are both different and incompatible.

We have seen that the syntactic analysis process consists of combining
the representations of syntactic units to achieve a representation of the
structure of the sentence. We have also seen examples of syntactic
operations which allow us to combine words and phrases, etc. The question
which arises at this stage is: how can we combine the representations of
constituents enriched with features? The answer to this question is to use the
unification operation. It is an operation which determines, from a set of

168 Natural Language Processing and Computational Linguistics 1

compatible structures, a structure that contains all the information present in
each of the members of the set and nothing else. The unification of the two
feature structures FS; and FS, has, as a result, the smallest structure FS;
which is an extension both of FS and FS’. If such a structure does not exist,
then the unification is indefinite. Symbolized by the union operator U,
unification can also be reformulated:

FS, U FS,=FS; where FS, c FS; A FS, C FSs.

Note that the unification operation is both commutative and associative:
FS, UFS,=FS, UFS,
(FS; UFS,;) UFS; =FS, U (FS, U FS5)

As we can see in Figure 4.32, unification can be performed in quite varied
configurations. In case (a), it is clear that the unification of a structural feature
with itself is possible. Case (b) shows how we can unify the two different
structures to obtain a richer structure. Case (c¢) shows that logically the
unification of two incompatible feature structures is impossible because it
leads to an inconsistency. In case (d), we see that the null structure acts as a
neutral element and unifies with all structures without modifying them. Case
(e) shows how we can perform unification with reentrant features. Finally, in
case (f), we see a unification operation of more complex linguistic structures.

It should be noted that there are several generic tools that provide
implementations of the unification process and which are available to the
community. Among the best-known we can mention: PATRII, Prolog, and
NLTK.

The logic programming language “Prolog”, as we have seen, is the tool
which inspired the first studies and is still valid. In fact, the unification of
terms which are provided natively in Prolog significantly reduces the
application development time.

PATRII is another tool available to the community in the field of
unification. Originally proposed in SRI International by Stuart Shieber,
PATRII is both a formalism and a programming environment written in
Prolog [SHI 87]. It is possible to use PATRII to implement a limited
variety of formalisms. It is based on Type-2 grammars with which FS are
associated.

Syntax Sphere 169

a. [Nb.:sing] U [Nb.:sing] = [Nb.:sing]

Nb.: sing

b. [Nb.:sing] U [Gender: masc] = Cender: mace

c. [Nb.:sing]u [Nb.:plur] = faux
d. []Ju [Nb.:plur] = [Nb.:plur]
[Agreement: [nb.: sing]

Subject: [Agreement:
U [Subject: agreement [Person: 3rd]]

sin
_ Agreement: [1] [Person grdg]‘

Subject: |Agreement:
Tense: presentl

@

Voice: active
Number: sing
[Category: SN
Subject: Agreement: Nb.: sing
L Gender: masc
Nb.: sing]
cas: nominativel|

Head:

U [Agreement:

Tense: present
Head: Voice: active l
Number: sing
Category: SN
Subject: Nb.: sing
Agreement: Gender: masc
Case: nominative

Figure 4.32. Examples of unifications

4.2.5. Definite clause grammar

Definite clause grammar (DCQ) is a logical representation of linguistic
grammars. The first form of this grammar, which was called
“metamorphosis grammar”, was introduced in 1978 at the University of
Marseille following Alain Colmerauer’s studies, of which the first
application was on automatic translation. Afterward, David Warren and
Fernando Pereira of the University of Edinburgh proposed a particular case
of metamorphosis grammars which were named DCG [PER 80]. DCGs were
created to develop and test grammars on the computer, particularly with the
logic programming language ‘“Prolog” and more recently with the language

170 Natural Language Processing and Computational Linguistics 1

“Mercury”. From a functional point of view, DCGs allow us to analyze and
generate string lists. Let us look at the DCG in Figure 4.33.

s -->np, vp. n--> [boy].

s --> p, conj, p. n --> [girl].

np --> det, n. n --> [television].
vp --> v, np. n --> [radio].

vp --> V. v --> [looks].

det --> [the]. v --> [listens].
det --> [a]. conj --> [and].

Figure 4.33. DCG Grammar

The first note that we can make in respect of the grammar in Figure 4.31
is that its format is very close to the format of the ordinary Type-2
grammars, apart from a few small details. For example, non-terminals do not
begin with a capital letter. As the latter is the indication of a variable
according to the syntax of Prolog, terminals are provided in square brackets
which are used in Prolog to designate lists. We also note that DCG allows
the writing of recursive rules (the p symbol exists in the left and the right-
hand side of the rule).

It is also necessary to add that DCGs can be extended to enrich the
structures with features (see grammar in Figure 4.34).

s --> np(subj), vp.
np() --> det, n.
np(X) --> pron(X).
vp --> v, np(obj).
vp --> V.

det --> [the].

det --> [the].

n --> [father].

n --> [girl].
pron(suj) --> [he].
pron(suj) --> [she].
pron(obj) --> [him].
pron(obj) --> [her].
v --> [embraces].

Figure 4.34. DCG enriched with FS

Syntax Sphere 171

Several extensions have been proposed to improve DCGs including XGs
by Pereira [PER 81], the definite clause translation grammars (DCTGs) by
[ABR 84] and the multi-modal definite clause grammars (MM-DCGs) by
[SHI 95].

4.3. Syntactic formalisms

Given the interest in syntax, a considerable number of theories in this
field have been introduced. Different reasons are behind this diversity,
including the disagreement on the main units of analysis (morpheme, word
or phrase), the necessary knowledge to describe these units, as well as the
dependency relationships between them.

In this section, we retained three formalisms, including two that are based
on unification: X-bar, HPSG and LTAG.

4.3.1. X-bar

Before introducing the X-bar theory, let us begin with a critical
assessment of the phrase structure model presented in section 4.2.1. Let us
look at the sentences [4.32] and the rewrite rule and the syntax tree of the
sentence [4.32a] shown in Figure 4.35:

a) A pharmacist from Aleppo with the blue shirt.

b) A report from Istanbul on the Mediterranean.

4.32
¢) A pharmacist with the blue shirt from Aleppo.* []
d) A report on the Mediterranean from Istanbul.

SN
i B
Det N SP SP
a pharmacist from with the blue shirt
Aleppo

Figure 4.35. Rewrite rule and syntax tree of a complex noun phrase

172 Natural Language Processing and Computational Linguistics 1

The sentence [4.32a] mentions a pharmacist in the city of Aleppo who
has a blue shirt and the sentence [4.32b] mentions a reportage of Istanbul
about the Mediterranean. Intuitively, we have the impression that the two
prepositional phrases in the two cases do not have the same importance. To
demonstrate this, it is sufficient to perform a permutation between the two
phrases in each of the sentences. This provides the sentences [4.32c] and
[4.32d] which are not semantically equivalent, initial sentences ([4.32a] and
[4.32b]) whose grammaticality is questionable. Thus, we can conclude that
the two prepositional phrases do not have the same status. However, the
plain phrase structure analysis proposed in Figure 4.35 assigns equal weight
to them. Consequently, a revision of our model seems necessary in order to
account for these syntactic subtleties.

Moreover, in the framework of a universal approach to the modeling of
the language, we observe that the rules that we have proposed up to now are
specific to the grammars of European languages such as English or French
and do not necessarily apply to other languages such as Arabic, Pashto or
Portuguese.

These considerations, among others, led to the proposal in 1970 of a
modified model of the generative and transformational grammar which was
named X-bar theory. Initiated by Noam Chomsky, this theory has been
developed afterwards by Ray Jackendoff [CHO 70, JAC 77]. It allows us to
impose restrictions on the class of possible grammatical categories while
allowing a parallel of these latter elements thanks to metarules (generalization
of several rules). It is also a strong hypothesis on the structure of constituents
across languages. It rests on two strong hypotheses:

—all phrases, regardless of their categorical nature, have the same
structure;

— this structure is the same for all languages, regardless of the word order.

The term X-bar is explained as follows. The letter X corresponds to a
variable in the general diagram of the structure in constituents, which applies
to all syntactic categories (N, V, A, S, Adv., etc.). The term bar refers to the
notation adopted by this formalism to differentiate the fundamental levels in
the analysis. They are noted with one or two bars above the categorical
symbol of the head. Usually, for typographical reasons, we replace the
notation bar with a prime notation. N”, V”, A” and S” are thus notational

Syntax Sphere 173

variants respectively of NP, VP, ITS, PP. The notation that we have adopted
and the alternatives in the literature are presented in Table 4.6.

Level Our notation Alternatives
Phrase level NP N”, N, § N
Intermediate level N’ N
Head/Word level N N°

Table 4.6. Adopted notation and variants in the literature

In the framework of the X-bar theory, a phrase is defined as the
maximum projection of a head. The head of a phrase is a unique element of
zero rank, word or morpheme, which is of the same category as the phrase as
in the grammar of the Figure 4.36.

NP — N PP
VP — V NP
PP — P NP
SA — A PP

Figure 4.36. Examples of phrases with their heads

This leads us to a generalized and unique form for all rules: SX — X SY,
where X and Y are variables. Furthermore, according to the X-bar theory, a
phrase accepts only three analysis levels:

—level 0 (X) = head;
—level 1 (X) = head + complement(s);

—level 2 (X) = specifier + [head + complement(s)].

The specifier is usually an element of zero rank, but sometimes a phrase
can have this role: NP (spec(my beautiful) N° (flowers)). The specifier is a
categorical property of the head word. For example, the determiner is a
property of the category of nouns. Similarly, the complement is a lexical
property of the head word: taking two object complements by the verb give
is a lexical property of this specific verb, not a categorical property of the
verb, in general. Let us examine the diagrams of the general structures of the
phrases provided in Figure 4.37.

174 Natural Language Processing and Computational Linguistics 1

SX SX
spec(X) X spec(X’) X
X comp(X) X' comp(X)
X comp(X)

Figure 4.37. Diagrams of the two basic rules

In the two diagrams shown in Figure 4.37, we have the symbols X, Y and
Z which represent the categories, Spec (X) which corresponds fo a specifier
of and Comp(X) for complement of. The categories specifier and
complement designate the types of constituents. Thus, we have:

— Spec N =D (Det);

— Spec V = Vaux;
— Spec A = DEG (degree);
—Comp X’ =N".

The hierarchical structure of the two syntactic relationships specifier and
complement induces a constraint on the variation of order within the phrases.
The X-bar theory predicts that the complement can be located to the left or
to the right of the head and that the determiner is placed to the left of the
“head+complement” group, or to the right of this group.

If we go back to our starting noun phrase a pharmacist from Aleppo with
the blue shirt or even a variant of this phrase with an antepozed adjective to
the noun phrase such as good, we obtain the analyses provided in Figure 4.38.

(2) (b)
SN SN
——
S Det N*y
Det N’ | T
[e a S N’;
a N’ SP N T
B e WSS o, good N g
N SP with the blue shirt NT S o
S S I =
pharmacist ~ from pharmacist from
Aleppo Aleppo

Figure 4.38. Examples of noun phrases

Syntax Sphere 175

As we observe, the analyses proposed in Figure 4.38 take into account the
functional difference between the two prepositional phrases. Similarly, the
adjective responsible with respect to the head is processed as a specifier of
the head of the phrase.

Although they appear to be acceptable, some researchers have doubted
the adaptation of the analyses proposed in Figure 4.39 with respect to the
principles of the X-bar theory. In fact, one of the principles, which form the
basis of this theory, is to consider that all constituents, other than the head,
must themselves be phrases. It is rather motivated by reasons related to the
elegance of the theory than by linguistic principles. In the case of a noun
phrase, this means that the only constituent that is not phrasal is the noun.
However, in the proposed analysis, the determiner is analyzed similarly to
the head. To resolve this problem, some have proposed an original approach
which is to consider that NP depends in reality upon a determiner phrase
whose head is the determiner [ABN 87]. The diagram of an NP according to
this approach is provided in Figure 4.39.

a) b)
SD SD
C e N [l).
D‘ //\\
e D SN
D SN 211 i g
/’\FJ ' Sy
good N sP
I %5
N pharmacist from
Aleppo

Figure 4.39. Diagram and example of a
determiner phrase according to [ABN 87]

The processing of the verb phrase follows the standard diagram as can be
seen in Figure 4.40.

After having shown how we analyze noun, verb and prepositional phrases
in the framework of the X-bar theory, it is time to proceed with the analysis
of an entire sentence. We have seen that it is generally easy to adapt the
conventional analyses of constituents in the framework of the X-bar theory,

176 Natural Language Processing and Computational Linguistics 1

but this is less obvious in terms of the sentence itself. Consider the
conventional rewrite rule for the sentence: S — NP VP. The question that
arises is to determine if the root of the sentence S is a projection of V (the
head of VP) or a projection of N (the head of the subject NP). Two syntactic
phenomena deserve to be examined prior to decide. Firstly, we must report
the phenomenon of agreement between the subject NP and the VP in our
sentence analysis. To do this, it would be useful to postulate the existence of
a node between the subject NP and the VP, which would establish the link of
agreement between these two phrases. Secondly, we can observe differences
in the behavior of infinitive verbs and conjugated verbs. The two differ in
the place they occupy with respect to the negation markers, certain adverbs
and quantifiers. These differences confirm the special relationship which
connects the conjugate verb with the subject noun phrase since it does not
allow an interruption by these particular words. Invariably, the infinitive
verb has no relationship of agreement with the subject (see [ROB 02] for
some examples in French).

sv
|
v
A
v SP
/\\ -
v SN to his
I _~~._ mother
v Det N’
I | |
to give a N
|
flower

Figure 4.40. Example of the processing of a
verb phrase with the X-bar theory

To account for the relationship between the subject NP and the VP, we can
use an intermediate node between these two constituents. The role of this node
is to convey the necessary information to the agreement of the verb AGG with
the subject, as well as to provide the tense 7. This node is called Inflectional
Phrase (IP). We can now postulate that the sentence is a maximum projection
of IP and that its head is, therefore, IP (see Figure 4.41).

Syntax Sphere 177

Figure 4.41. Diagram and example of
analysis of entire sentences

The analysis of complex sentences is similar, in principle, to the analysis
that we have already seen in the previous section. We assume the existence

of a phrasal complement (PC) (see Figure 4.42).
CP
|
c
/\\
c PT
I
that SD T
T
T Y

the firefighters
|
have arrived

Figure 4.42. Analysis of a completive subordinate

Despite its elegance and its scientific interest, the X-bar theory has
several limitations. Among them, we should mention the problem of
infinitives and proper nouns, where it is difficult to identify the head.

The step that has followed the X-bar theory in the generative syntax was
the proposal of the government and binding (GB) theory by Noam Chomsky

at the beginning of the 1980s [CHO 81]. We refer to [POL 98, ROB 02,

178 Natural Language Processing and Computational Linguistics 1

CAR 06, DEN 13] for an introduction to this formalism, of which we will
present only the general features.

To account for the different aspects of the language, GB is designed in a
modular fashion involving a set of principles of which the most important
are:

—government principle: this principle describes the phenomena of
reaction. It addresses all conditions and constraints between the governors
and those being governed;

— instantiation criteria of thematic roles: each lexical head associates the
syntactic roles with their arguments (theta roles). Each argument of the
sentence must receive a role and each and every role must be distributed. To
receive a case, there must be a lexical or governed entity;

—binding principle: this principle describes the phenomena of co-
referential anaphora.

In spite of its high complexity, GB formalism has been the subject of
several operations in different application contexts [SHA 93, WEH 97,
BOU 98]. GB formalism has, in turn, been the subject of amendments in the
framework of Chomsky’s minimalist program [CHO 95].

Finally, it is probably necessary to add that some concepts of the X-bar
theory have also found their place in the theories related to generative
grammar, including the HPSG formalism, to which we will devote the next
section.

4.3.2. Head-driven phrase structure grammar

4.3.2.1. Fundamental principles

Head-driven phrase structure grammar (HPSG) was originally proposed
to combine the different levels of linguistic knowledge: phonetic, syntactic
and semantic. This formalism is presented as an alternative to the
transformational model [POL 87, POL 96, POL 97]. Although it is
considered as a generative approach to syntax, HPSG is inspired by several
formalisms which come from several theoretical currents, including the
generalized phrase structure grammar (GPSQG), the lexical functional

Syntax Sphere 179

grammar (LFG) and the categorial grammar (CG). In addition, there are
notable similarities between HPSG and construction grammar (CG) which
can be noted. In fact, although CG focuses on essentially cognitive
postulates, it has several points in common with HPSG, particularly with
regard to the flexibility in the processing unit, as well as the representation
of linguistic knowledge within these units [FIL 88] (see [GOL 03] and
[YAN 03]). The legacy of these unification grammars, heirs themselves of
several studies in artificial intelligence and cognitive sciences on the
representation and the processing of knowledge, makes HPSG particularly
suitable for IT implementations, which explains its popularity in the NLP
community.

The processing architecture in the HPSG formalism is based on the single
analysis level and does not therefore assume levels distributed as in the LFG
formalism with the double structures: functional structure and structure of
constituents. This is the same concerning the transformational model which
assumes the existence of a deep structure and of a surface structure, or even
as the GB model that attempts to explain the syntactic phenomena with the
movement mechanism.

From a linguistic point of view, HPSG is composed of the following
elements:

—a lexicon: which groups the basic words which are, in turn, complex
objects;

— lexical rules: for derivative words;

— immediate dominance patterns: for structures of constituents;

—rules of linear precedence: which allow us to specify word order;

—a set of grammatical principles: which allow us to express
generalizations about linguistic objects.

Since the complete presentation of a formalism as rich as the HPSG is
difficult to achieve in a small section such as this, we refer the reader to the
articles by [BLA 95, DES 03], as well as to Anne Abeillé’s book [ABE 93]
(in particular, the chapters on the GPSG and HPSG formalisms). We also
refer to Ivan Sag’s book and his collaborators [SAG 03] which constituted
the primary source of information for this section.

180 Natural Language Processing and Computational Linguistics 1

4.3.2.2. Feature structures

FSs have a main role in the framework of HPSG formalism. More
specifically, it refers to typed features, which means that to be well-formed,
an FS must contain all the features required by its type and that all these
features must be well instantiated. The types are organized in a generic
hierarchy whose highest element is a sign. Words, phrases, sentences and
speech are represented as signs as recommended in Saussurean tradition.
Each sign has phonetic, syntactic and semantic characteristics which are
grouped in an FS, whose general diagram is provided in Figure 4.43. The use
of types in the development of the lexicon makes the latter more compact,
thus facilitating its management and processing, and assuring its consistency.
On the processing plan, types allow us to control the unification operation
and consequently to avoid its failure.

Sign
PHON < PHON >
Synsem:
SYNSEM [LOCAL local
NON — LOCAL non — local
DTRS list(SIGN)

Figure 4.43. Diagram of a typed FS in HPSG

The sign feature has the function to indicate the status of the constituent
at the head of which it is located. The PHON feature is used to list the words
of the constituent. Exceptionally, it allows us to indicate the phonological
properties of the constituent. The SYNSEM feature represents the syntactic
and semantic features which describe the constituent. Sometimes, we prefer
to have two separate features: SYN and SEM. The SYN feature provides the
grammatical category of the node, its inflectional properties, as well as
the nodes with which this element must be combined, whereas The SEM
feature specifies the manner in which the sentence will be interpreted (mode
of the sentence, participants, situation, etc.). LOC and NON-LOC features
concern respectively the intrinsic/extrinsic aspects of the constituent which
focus on its internal structure and its relationships with the objects that are
located in its syntactic context. Most of the syntactic constructions are
processed locally except for particular constructions, such as movement,
which require non-local processing (see Table 4.7).

Syntax Sphere 181

Type Subtype
sign word, phrase
phrase headed phrase, headless phrase
list (o) nelist(c) (nonempty list), elist (empty list) <>
set (o) neset(c) (nonempty set), eset (empty set)
content relationship, indexed-obj
relationship gives-rel, walks-rel,...
Head nomin, verb, adj, prep, ...
Case noun, accus
Index Per, Noun, Gender

Table 4.7. Types in HPSG formalism [POL 97]

Finally, DTRS node concerns child nodes and leads to two features:
NON-HEAD-DTRS and HEAD-DTRS. To clarify the diagram provided in
Figure 4.43, let us take the example of the FS in Figure 4.44.

Word
PHON: < house >
noun
HEAD ACC [Person: 3rd]]
Gender: fem

SYNSEM

SPR D[ACC

COMPS: (SP)

Figure 4.44. Simplified lexical entry of “house”

According to the FS provided in Figure 4.35, the word house is of the
noun category and it has the features of agreement: 3rd person and singular.

182 Natural Language Processing and Computational Linguistics 1

It also says that this word must have a specifier (determiner), which has
exactly the same features of agreement as the head, due to the use of a
reentrant feature and an optional complement, placed between two
parentheses, of a prepositional phrase type. Note that, in view of the wealth
of FS in HPSG, many abbreviated forms or notational equivalents exist in
the literature (see Figure 4.45 for a presentation).

Extended form Abbreviated form

{Head; } (1.2

Tail:
< [1]| <> <..[]=>
Head : <, |>
Head:
Tail

Figure 4.45. Some abbreviations of FS in HPSG

The S-ARG or ARG-S feature concerns the argument structure which
focuses on the relationships of binding of argument predicates. For example,
verbs such as see, love and write can have the following argument structure:
<see, [S-ARG < NP, NP>]>.

The FS of our lexical entry can be further enriched particularly with the
addition of semantic features. Among them, we should mention MODE,
INDEX and RESTR features. The MODE feature provides the semantic
modes of an object and can have the values: question, proposal, reference,
direction or none. The INDEX feature can take a theoretically unlimited
number of values which correspond to the entities or the situation to which a
constituent (or an entire sentence) can refer. Finally, the RESTR feature,
whose value is a list of conditions, concerns conditions on the entities or the
situation described by the INDEX feature, as well as the relationships that
there may exist between them. If we take the word love, we have the
following restrictions: the noun of the RELN relationship is /ove and this

Syntax Sphere 183

relationship implies two actors or entities: loving and loved; and in a specific
situation, SIT. Similarly, the verb give implies a donor, a receptor and an

object/gift always in a specific situation s.

Let us examine the two FSs of word inputs: house and John provided in
Figure 4.46. In fact, this figure provides an enriched FS with S-ARG and
SEM structure features of arguments. The S-ARG feature indicates that the
specifier must be concatenated by the symbol @ with the complementer.
Semantic features indicate that this noun is of the type reference and that it
has an index k. The proper noun John, meanwhile, has a simpler FS: the
values of syntactic features, specifiers, complements and modifiers are
empty. On the semantics level, it has a relationship of a proper noun (NP),

which applies to a named entity.

rword
PHON < house >
noun
HEAD PERSON 3rd]
SYN Acc [GENDER fem]
SPR < Dlacc > comp +
COMPS: (SP)
S — ARG 23]
MODE rrf
INDEX k
SEM RELN house]
RESTR [517" s
HAB K
[word T
PHON < John >
noun
HEAD | acc SSing]
SYN SPR <>
VAL [COMPS <>}
MOD <>
MODE ref
INDEX i
SEM RELN NP
RESTR < |SIT s] >
I NOM i -

Figure 4.46. Enriched FS of the words “house” and “John”

184 Natural Language Processing and Computational Linguistics 1

With regard to verbs, features vary depending on the relationship of the
verb with its arguments (transitive or intransitive verbs, etc.). Let us take the
simplified examples shown in Figure 4.47.

a. hits b. continues
[HEAD Verb] [HEAD Verb |
SUBJECT ([1] SN[nomin3s]) SUBJECT (I sN)
COMPS (2l sN) COMPs (2] SV[INF+])

S—ARG <> S— ARG <>

c. murders

HEAD Verb
SUBJECT ([1] SN[nomin3s])
COMPS <>

S— ARG <>

Figure 4.47. Some simplified FS of verbs

The transitive verb hits takes two arguments: a subject noun phrase and
an object noun phrase at the nominative case and the third person singular.
The verb continues takes a verb phrase as a complement. Finally, the verb
dies, being intransitive, has an empty list of complement.

A more complete example of a verb is provided in Figure 4.48.

Syntax Sphere 185
- word
PHON: < voit >
i VERB]
HEAD VFORM fin]
[SYNSEM
SUB 1 noun
SYN HEAD [CAS nomin]
COMPS < SN
] [CAS accus]
S — ARG <[1}[2] >
MODE prop
INDEX k
RELN sees
SEM 5
RESTR Voyeur
I Seen

Figure 4.48. FS of the verb “sees”

The verb sees has two arguments: a subject noun phrase to the
nominative case, which has the semantic role of voyeur, and an object noun
phrase in the accusative case whose semantic role is seen.

4.3.2.3. Morphological rules

Lexical rules concern the introduction of morphological rules to FS of
words in order to avoid redundancies, e.g. repeating the same FSs once for
the singular form and once more for the plural form is expensive both in
terms of grammar writing and in terms of memory, without mentioning the
elegance of grammar and cognitive issues.

A lexical rule is an FS which establishes a link between two lexical
sequences. We distinguish between two types of lexical rules /-rules: the
rules of inflection i-rules, and the rules of derivation d-rules. All lexical
rules obey the constraints described by the diagram in Figure 4.49.

Input |- sequence <X, [SEM/ >
Output | —sequence <Y, [SEM/[2]| >

Figure 4.49. General diagram of I-rules

186 Natural Language Processing and Computational Linguistics 1

Let us begin with i-rules. As we have seen in the sphere of morphology,
inflection focuses primarily on the plural and singular forms for nouns, as
well as the conjugation for verbs. To obtain a plural form for a noun from
the singular form, we simply have to find the corresponding form according
to the morphophonological rules that we have already seen, as well as to
update the structural feature (see the example in Figure 4.50).

noun
INPUT < [ARG —ST < [compt+] >] >
word
OUTPUT < Fnpl[1] SYN HEAD[ACC[NB Plur]]] z

Figure 4.50. Rule of plural

According to the rule illustrated in Figure 4.50, the plural form of a
countable noun is a structure that keeps all the features of the singular
structure, but with the NB feature of the agreement, which become plural.
Obtaining the plural form of the noun is performed with the function of the
plural noun Fyp.. The other forms of inflection and derivation follow the
same principle. Let us take the case of the derivation of an agent noun from
the verb: dance — dancer (Figure 4.51).

[Stv — lxm
INPUT <[2]|SEM [INDEX s]| >
ARG —ST <X, SN>
cntn — lxm
SEM INDEX i
OUTPUT < F —eur S[P]. i
i ARG =ST <Y ([FORM de])

Figure 4.51. Rule of derivation of an agent noun from the verb

The function F-er adds an appropriate suffix to the form of the word at
the output. The input of the rule is a verbal lexeme, whose INDEX feature of
semantics becomes i at the noun form, because the change involves
important semantic modifications resulting from the derivation, including the
value of the MODE feature. By contrast, the value of the RESTR feature
remains unchanged in both forms, because the information provided in the

Syntax Sphere 187

verbal form is compatible with the noun form. The ARG-FS feature requires
a complement because, in languages such as English and French, we cannot
get an agent noun from an intransitive verb: give — giver, play — player,
but not die — dier. Followed by a genitive construction in French, an agent
noun is located in a preposition phrase before the preposition de (of) as in
donneur de sang (blood donor) and joueur de football (football player).

It is probably necessary to point out that, in cases where both
mechanisms of derivation and inflection are necessary, we must first apply
the rule of derivation and then the rule of inflection.

4.3.2.4. Syntactic rules

Unlike formalisms such as LFG and GB, the construction of the phrase is
performed by combining and satisfying the constraints expressed by words.
Several rules of word combination to form larger syntactic constituents are
possible. We have selected the three rules that we considered to be the most
important and which correspond to the basic rules of the X-bar theory.

The Head-Complement Rule takes the head H and produces a phrase if
this head is located in a sequence of arguments which are compatible with
the requirements for its COMPS feature. The FS of the obtained phrase is
identical to the features of the head, except for COMPS features that are
saturated (realized) and therefore removed by convention. In other words, in
HPSG, the head produces a phrase which is similar in a manner compatible
with the X-bar principle: the phrase is a maximum projection of the head. In

addition, the labels must be the same in the following phrases.

This means that the elements in the right-hand side of the rule must be
selected by COMPS feature (see Figure 4.52).

PHRASE WORD
COMPS <>] _’T[COMPS <[][A >]

Figure 4.52. Head-Complement Rule

If we apply the rule of Figure 4.52 to a transitive verb and a noun phrase,
this provides the tree of the Figure 4.53 where we have retained only the
relevant features.

188 Natural Language Processing and Computational Linguistics 1

PHRASE
HEAD
SYN COMPS <>
SPR < SN >
SEM [..]
PHRASE PHRASE
HEAD [HEAD [-]
| SYN comMps <[> SN COMPS <>
SPR < SN> SEM [.]
ARG — ST < SN,SN >
SEM []

Figure 4.53. Head-Complement Rule applied to a transitive verb

We note in the tree structure of Figure 4.53 that the features of the head of
the child node become the head features of the entire phrase. This is due to the
Head Feature Principle (HFP) according to which the values of the head of
any phrase are identical to the values of the head of the child node. We also
note that the value of the SPR feature of the head of the child node is also
transferred to the parent node. This is due to the Valence Principle (VP) which
stipulates that the values of SPR and COMPS features must be identical to
those of the head of the child node unless the rule specifies otherwise.

The Head-Modifier Rule allows us to obtain a phrase of a level
equivalent to the X’ in the X-bar theory. The MOD feature of the modifier
must have the same value as the element it modifies (see Figure 4.54). Note
that the HFP principle makes this rule generic (independent of the syntactic
category), just as in the X-bar theory.

COMPS <>
[PHRASE] — T[1][COMPS <>] []

MODE <[1]>

Figure 4.54. Head-Modifier Rule

The Head-Specifier Rule (Figure 4.55) takes a phrase with an SPR
feature whose value is non-empty and combines it with an item that satisfies
this value. The result is a phrase with a head preceded by a specifier.

PHRASE [SPR < >]
- |1|T
SPR <>] COMPS <>

Figure 4.55. Head-Specifier Rule

Syntax Sphere 189

4.3.2.5. Semantic principles

After having examined some syntactic rules for the combination of the
constituents, we will now examine the semantic constraints which allow us
to enrich syntactic structures with semantic properties. The two most
important principles are: the Principle of Semantic Compositionality and the
Semantic Inheritance Principle. The Principle of Semantic Compositionality
stipulates that in any well-formed phrase, the RESTR feature of a parent
node is the sum of the values of its child nodes. Similarly, the Semantic
Inheritance Principle specifies that the values of MODE and INDEX features
are identical to HEAD features of the child nodes. This means that in the
HPSG formalism, semantics, just as syntax, is led by the head.

4.3.2.6. Example of an analysis of a simple sentence

To complete our presentation of the HPSG formalism, let us consider an
example of the analysis of the following sentence: He sees the house. We will
begin with the object noun phrase and to do this, we must first specify the FS
of the determiner the as we have already seen the lexical entries of the noun
house (Figure 4.46), as well as of the verb sees (Figure 4.48). Note that, for
presentation conciseness reasons, we have seen fit to simplify the FSs.

r word
PHON < the >
det 1
[3sing ‘
PERSON 3rd
HEAD |ACC | NUMBER sing
SYN [| GENDER fem J
countable +
SPR <>
VAL COMPS <>
MOD <>
MODE nothing
INDEX k
SEM .
RELN exist
RESTR <[BV p]> |

Figure 4.56. Lexical entry of the determiner “the”

The single element that deserves a comment in the FS of the Figure 4.56 is
the Bound-variable (BV) feature. In fact, the semantic framework adopted
for the quantifiers is the generalized quantifier theory which models both the
standard quantifiers, such as the universal and existential quantifiers, and

190 Natural Language Processing and Computational Linguistics 1

the non-standard quantifiers, such as the most or the large majority in the
framework of the set theory.

As we can see in the tree of Figure 4.57, the FS of the determiner is
identical to the FS of the determiner presented in Figure 4.56 with a few

notable differences. On the one hand, the FS is marked by the symbol |2|,

which allows us to insert the FS of the determiner /e in the list of specifiers
of the noun house allowing, according to the Head-Specifier Rule, the
combination of these two words in the framework of the NP.

Similarly, the Semantic Inheritance Principle implies that the phrase
inherits the MODE and INDEX features of the head node which are
respectively: ref and k. This unifies the indexes of the and house and allows
the determiner to quantify the noun in the framework of the noun phrase.
Moreover, according to the principle of semantic compositionality, the value
of a REST node of a parent node is the sum of the values of the child nodes:

[11}[12].

[Phrase
PHON: < the house >
noun
3sing
PERSON 3rd
HEAD[3] |ACC] | yymBER sing
SYN GENDER fem
CAS accus
SPR <>
VAL COMPS <>}
MOD <>
MODE ref
INDEX k
SEM house
RESTR < [11], -[S[T] >
HABITANT K
,// ‘—\
word — 1 rword T
PHON: < the > PHON: < house >
det HEAD
HEAD |AcC syN SPR <[7]>
SYN countable + VAL < |COMPS <> >
SPR <> MOD <>
VAL [COMPS <>
MOD <> MODE ref
MODE nothing 1 SEM INDEX k
SEM INDEX I RESTR < >
ResTR <[I[TN > ||

Figure 4.57. Feature structures of the
noun phrase: the house

Syntax Sphere 191

We are now ready to examine the analysis of the verb phrase: sees the
house (Figure 4.58).

Phrase
PHON < sees the house >
Verb
HEAD 9| acc
plur
[eswi ACC [Person 3rd] S
SPR Number plur
VAL CAS non}ﬁr_t_
COMPS <>
MOD <>
MODE prop
INDEX s
SEM Sl??LN Ssees
RESTR D] < Voyeur >@[B]
Seen j
word p,
PHON < sees > PHON < the house >
HEAD IEI CAS accﬂ
SPR <[6]> RESTR [B]
VAL COMPS <[7]>
MOD <>
MODE prop
SEM INDEX s
RESTR [D]

Figure 4.58. Analysis of the verb phrase: sees the house

Several observations can be made about the Figure 4.58. The noun

phrase, labeled by the symbol , whose FS is an abbreviation of the noun
phrase of the Figure 4.57, is inserted in the list of the verb complements.
Moreover, according to the Head-Complement Principle, the FS of the
produced phrase is identical to that of the head of the complement, except
for the COMPS feature whose value is empty (saturated). The value of the
RESTR feature in the phrase is the concatenation of the values of the

RESTR features in the child nodes: @ and . According to the Valence

Principle, the value of the SPR node of the root node is equal to the value of
the SPR node of the head of the child node.

192 Natural Language Processing and Computational Linguistics 1

To analyze the entire sentence, we still have to introduce the FS of the
subject pronoun, which is presented in Figure 4.59, as well as its
combination with the structure of the Figure 4.60.

rword
PHON < the >
noun
CAS nomin
HEAD 1o plur]
PERSON 3rd
SYN NUMBER plur
SPR <>
VAL [COMPS <>]
MoD <>
MOD ref
SEM INDEX i }
RELN group
RESTR <[1N5T ") >

Figure 4.59. The FS of the pronoun “the”

To complete the analysis of the sentence, we still have to combine the
structure constructed for the verb phrase (verb + complement NP) with the FS
of the subject pronoun ke, which provides the representation of Figure 4.60.
The value of the RESTR node is the result of the concatenation of:

®[D]®[B]. The value of the AGR feature in the root node is equal to the

value of the subject and in accordance with the Head Feature Principle
(HFP) the Head-Specifier Rule, as well as the constraint of agreement
between the verb and its specifier.

HPSG has been applied to several languages of various families, such as
Arabic, French, German, Danish, etc. The deep linguistic processing with
HPSG (DELPH-IN) initiative has allowed the development of grammars of
large sizes for languages such as English, German and Japanese. These
grammars, which are available free of charge, are compatible with syntactic
parsers such as LKB.

Note that HPSG has been used in real-time applications such as automatic
speech translation, particularly in the German project Verbmobil [USZ 00,
KIE 00]. Besides, generic software for HPSG grammars writing is also
available, such as the LINGO system [BEN 02]".

3 www.delph-in.net/.
4 www.lingo.stanford.edu/.

Syntax Sphere

193

[Phrase
PHON < he sees the house >
Verb Lural
X plural
HEAD [ACC [Person
SYN Number
SPR <>
VAL [COMPS <>
MOD <>
MODE prop
SEM INDEX s .]
RESTR @ D] @ [E]

3rd]
plur.

/\

[6]NP;
PHON < the > Phrase
CAS nomin PHON < sees the house >
ACC HEAD B
RESTR SYN SPR <[6]>
VAL lcomps <>
MOD <>
MODE prop
SEM INDEX s }
RESTR [D]®
word NP,
PHON < sees > PHON < the house >
HEAD 9] CAS accus
SPR <[6]> ACC
VAL COMPS < [7]> RESTR
MOD <>
MODE prop
SEM [INDEX s
RESTR [D]

Figure 4.60. The analysis of the sentence: he sees the house

4.3.3. Lexicalized tree-adjoining grammar

4.3.3.1. Fundamental principles

The formalism of lexicalized tree-adjoining grammars has been described
first in [JOS 75], under the initial name of tree adjunct grammar. It was then
developed by other researchers particularly at the universities
Pennsylvania and Delaware in the United States, as well as at the University
of Paris 7 in France (see [ABE 93] for a review of the development steps of
this formalism). It is a lexicalized formalism which can be seen as an
intermediate vision between the dependency grammars and the phrase
structure grammars. In fact, this formalism is based on a representation of

dependency relationships in the form of trees.

of

194 Natural Language Processing and Computational Linguistics 1

From a formal point of view, the LTAG formalism can be defined as a
quintuplet (2., NT, I, A and S), where [JOS 99]:

— 2/ is a finite set of terminal symbols;
— NT is a finite set of non-terminal symbols: > N\ NT = ¢;
—§ is the distinguished non-terminal symbol: S € NT;,

—1I is a finite set of trees called initial trees which are characterized by
the following points: the internal nodes are labeled with non-terminal
symbols, and the border nodes of initial trees are labeled by terminal and
non-terminal symbols;

— A is a finite set of trees called auxiliary trees that have two fundamental
properties: the internal nodes are labeled with non-terminal symbols and the
nodes on the borders of auxiliary trees are labeled with non-terminal
symbols.

From a functional point of view, LTAG can be described according to
three points: the processing units (the elementary trees), the composition
operations, as well as the features and their unification.

4.3.3.2. Basic units

Unlike conventional syntactic formalisms whose phrase constitutes the
fundamental unit, LTAG has adopted a richer unit for the representation that
is the elementary tree. Therefore, an LTAG grammar can be considered as a
finite set of elementary trees. Any elementary tree has at least one of its leaf
nodes occupied by a lexical item which acts as a head and that is generally
called the anchor of this tree. The depth of the elementary trees is not limited
to a branch’. In addition, two types of basic trees are distinguished in this
formalism: the elementary trees and the auxiliary trees.

Elementary trees constitute a set of trees which are combined by
substitution and which correspond to the basic syntactic structures. These
trees are generally marked by the symbol, .

Auxiliary trees are combined by adjunction. These trees have a leaf node,

which is called foot node, bearing a non-terminal symbol in the same

5 The depth is the number of branches that separate the root node of the tree from the anchor
of this tree.

Syntax Sphere 195

category as the root node. Auxiliary trees are used for the representation of
modifiers (adjectives, adverbs and relatives), completive verbs, modal verbs
and auxiliary verbs. These trees are generally denoted by the symbol, £.

The leaf nodes of elementary trees can be annotated by terminal and non-
terminal symbols. Two types of nodes annotated by non-terminal symbols
can be distinguished: the substitution nodes marked by ({) and the
adjunction nodes marked by (*). The construction of elementary trees
conforms to four principles of well-formedness [ABE 93]:

1) Principle of lexical anchoring: each elementary tree must be associated
with at least one lexical head. Unlike HPSG and other formalisms, the
lexical head of an elementary tree in LTAG cannot be empty. In addition, an
elementary tree can be anchored by a set of lexical items. In this case, we
refer to co-heads. Co-heads are generally functional complementers, such as
from and that (relative). Thus, each lexical entry is associated with all the
structures that characterize its possible uses. From a computational point of
view, lexicalization allows us to invoke only the subset of elementary trees
of the grammar which is actually anchored by the words of the sentence,
making the processing more effective.

2) Predicate-arguments co-occurrence principle: the syntactic relationships
are compared to the logical relationships between the predicate and the
argument. This means that any predicate must contain in its elementary structure
at least a node for the arguments that it subcategorizes.

3) Principle of semantic consistency: any elementary tree must have a
non-empty semantic representation.

4) Principle of non-compositionality: an elementary tree corresponds to a
single semantic unit.

Semantic principles (3 and 4) are quite vague, since no clear definition is
provided for what is meant by a semantic unit. Their role in LTAG is
essentially to prevent most of the functional elements, prepositions,
complementers, etc., to constitute principle autonomous elementary trees (2).
Principle (3) serves to limit the size of elementary trees and to prevent the
anchoring of some trees by unnecessary elements. A few examples of
elementary trees in LTAG are provided in Figure 4.61.

196 Natural Language Processing and Computational Linguistics 1

ol o2 o3 o4
N N P P
Frank book Nod VvV Noy V Ny
| |
descends read
B1 B2 B3 pa
N Vv P vV
A N* V* Adv Nol \" Py Vv b
I I | |
good well wants can

Figure 4.61. Examples of initial and auxiliary elementary trees

4.3.3.3. Tree composition operations

We can distinguish between two types of constraints on the composition
of elementary trees within the LTAG formalism: syntactic constraints and
semantic constraints. These different constraints influence the nature of the
operations of the composition used. Two syntactic composition operations
are possible: substitution and addition.

Substitution is similar to the rewrite operation in a Type-2 grammar. It
allows us to insert a tree, initial or derived, to a substitution node of an
elementary or derived tree which is noted by the sign: 1. Substitution is an
obligatory operation to a terminal substitution node. An example of
substitution is the insertion of the initial tree of a determiner in the tree of a
nominal group (Figure 4.62).

a Det { T # Det
| |
city a city

Figure 4.62. Diagram and example of substitution in LTAG

Syntax Sphere 197

Addition is a specific operation in LTAG formalism. It allows us to insert
an auxiliary (or a derivative of an auxiliary) tree to an internal node or a root
node of an elementary or derived tree. Node X, where adjunction takes place,
is replaced by an elementary tree whose root node and foot node are labeled
by the category X. To illustrate adjunction, let us take as an example the
insertion of the auxiliary tree which corresponds to the adverb at the internal
node V of the initial tree of the verb works (Figure 4.63).

o B
P
p NOV V Vv
PN il i
Not V v Adv v Ady
l I | I
walks Walks well well

Figure 4.63. General diagram and example of adjunction

To control the adjunction in an LTAG grammar G = (2, NT, I, A, S),
three types of constraints are defined on a given adjunction node [JOS 99]:

— Selective adjunction (SA (T)): this constraint allows the adjunction to
single members of the set T — A of auxiliaries trees at the given node. In this
case, the adjunction of an auxiliary is not obligatory in this node.

— Null adjunction (NA): it prohibits any type of adjunction at the given
node.

— Obligatory adjunction (OA(T)): this constraint requires any auxiliary
tree which is a member of the set T — A adjoined to the given node.

The composition process of basic units in larger units (or derivation)
presents several specificities compared to other conventional syntactic
formalisms. In fact, unlike phrase structure grammar of type CFG or another

198 Natural Language Processing and Computational Linguistics 1

type, derivation is not characterized as a string obtained by other strings, but
as a tree obtained from other trees. The direct result of this difference is the
distinction within the LTAG formalism of two modes of representation of
the result of the derivation, which are the derived tree and the derivation tree.

The derived tree is similar to the syntax tree in the phrase structure
formalisms. It is a tree whose root is labeled with the distinguished symbol
from the formalism and the leaves of which the lexical items of the analyzed
utterance are aligned.

The derivation tree is a tree in which the nodes have pairs (elementary
tree, address of the node of the higher tree where this tree has been inserted).
The main function of the derivation trees is to show the dependencies
between the lexical items. Note that in Type-2 grammars, the derivation tree
and the derived tree are the same. An example of a derived tree and a
corresponding derivation tree is provided in Figure 4.64.

Derivative tree Derivation tree

P a3 (reads)
//\\s ~
N A\
| i (1) al (Frank) B2 (alot) (2)

Frank A Adv
| I
reads alot

Figure 4.64. An example of a derived tree
and a corresponding derivation tree

The derivation tree of the Figure 4.64 can be read as follows: the tree ol
(Frangois) is substituted in tree al(sleeps) at the location (1) address of the
node N and tree B2 is adjoined to tree o1(sleep) at the node (2).

4.3.3.4. Semantic composition and unification operation

After having completed syntactic operations, we still have to integrate
semantic constraints. To do this, LTAG proceeds to the decoration of the
nodes of the syntactic trees with FSs. It refers to atomic structures that have
the form (attribute, value). These features can be morphological, syntactic
and semantic. They are defined at the level of elementary trees and must be
retained in the derived trees. To facilitate the unification of features, LTAG
distinguishes between two types of features that are present in each node: top

Syntax Sphere 199

features and bottom features. Top features show the relationships of the node
with the nodes which dominate it, whereas bottom features are used to
indicate the relationships of the node with the nodes that it dominates (see
Figure 4.65).

N N P
t: t. /\\I
b:<det>= + b:<det>= E No § t:<num>= x
<pers>= 3 <num>=_ sing t:<num>= x : :per:>>= .yd. .
] < ender>= masc <pers>= y . <mode==indicative
<num== sing g <anim>= + <pers>= 3
| I <num>= sing
Mary book descends
ol o2 o3

Figure 4.65. Examples of feature structures
associated with elementary trees

In addition to the grouping of features, the unification operation enables
us to express the constraints on the possible tree attachments. Thus, the two
syntactic operations of the TAG formalism are constrained by the unification
in two ways: unification with substitution and unification with adjunction.

In the case of substitution, top features of the root node of the substituted
tree must be unified with the features of the node where there has been a
substitution (see Figure 4.66).

P
p
:]

s e t'<nu:Sl.sin e —
t:<num>= sing <pers>= y ;pe'?: yg NI - R
<pers>= 3 b:<mode>= indicative _jon= 4 v :Bgﬁgif sg]g <m0d9>=l§dlcahve

. 5 ; =indicati " <pers>=
<anim>= + <pers>= 3 b:<num>= sing b:<mode>=indicative 7 tot_ T <ﬁum>= %
<num>= sing <pers>= 3 |
I - Frank lescends
Frank descends I ran descends
Frank descends

Figure 4.66. An example of a substitution with unification

200 Natural Language Processing and Computational Linguistics 1

In the case of adjunction, we must have, on the one hand, the unification of
the top features of the root node of the auxiliary tree with the top features
of the node receiving the adjunction, and on the other hand, the unification
of the features of the foot node of the auxiliary tree with the foot features of
the node receiving the adjunction (Figure 4.67).

hs ’ X t: f1uf
/g1 . Dy RS
/ \ bgl

x tf2
b:g2

Figure 4.67. Diagram of an addition with unification

At the end of an analysis, for each complete derivation obtained, the top
and bottom parts must be unified at each node of the corresponding derived
tree.

Despite their usefulness for processing, the enrichment of the formalism
with features is a fairly difficult task and requires a lot of work. Regarding
the adaptation at the processing of oral dialogues, some of these features
appear to be redundant and repetitive.

Having generated a lot of interest in the community, particularly thanks
to its elegance and effectiveness, several researchers have proposed variants
of this formalism. Sometimes these variants are motivated by the following
reasons: to meet the needs of automatic translation — the parallel TAGs
[SHI 90] and the parallel TFGs [CAV 98b], to simplify the parsing algorithm —
Tree Insertion Grammar (TIG) [SCH 95], the stochastic TAGs [SCH 92,
RES 92b], TFGs [DES 90, CAV 98a, ROU 99a], and to adapt to the
processing of oral dialogues oriented by the semantic tree association
grammar Sm-TAG [KUR 00].

Syntax Sphere 201

Several parsing algorithms have also been proposed for LTAG of which
we mention the parsing algorithm by the connectivity for the oral language
[LOP 99], an efficient algorithm [EIS 00], a statistical algorithm [JOS 03]
and a tabular algorithm [NAS 09]. An approach of shallow parsing based on
LTAG has also been proposed under the name of supertagging [CHE 99,
SRI 99]. Applications of this spoken language processing approach have
been carried out [ROU 99b].

4.4. Automatic parsing

In the previous sections, we have seen several approaches for the
syntactic description of a given language in the form of grammars. The
question which now arises is how, from these grammars, to perform parsing
of sentences. To answer this rather complicated question, several approaches
have been proposed in the literature with a varied use of linguistic
knowledge.

Parsing modules are of utmost usefulness in many fields of application,
including automatic translation, grammatical correctors, man-machine
dialogue systems, and sometimes speech recognition. Typically, parsing
module provides its structural analysis to a semantic analysis module which
must describe the semantic content.

The task of a syntactic parser is the construction of a syntactic
representation, in the form of a parse tree or of another hierarchical data
structure, from an input sentence and a grammar that describes the language.
This task can be divided into three principal subtasks:

— segmentation: this step is to segment the string of words in phrases,
sentences or any other morphological, syntactic chunks [ABN 91a, ABN 95],
supertags, [SRI 99], semantic [KUR 00] or discursive unit [WEB 04].

— categorization: this step is to label the units obtained in the
segmentation phase, a well-formed (syntactic or semantic) structure.

— disambiguation: in some cases, the parser can provide several parses
corresponding to a single sentence. A disambiguation strategy is therefore
required to obtain the best parsing tree. The main disambiguation methods
include the use of linguistic metarules, psychological principles (minimal
attachment, lexical preference, etc.) or probabilities [BOD 95].

202 Natural Language Processing and Computational Linguistics 1

Today, with the popularization of the use of NLP tools, including
syntactic parsers in the processing of very large quantities of linguistic data,
the complexity of parsing algorithms is taken seriously. In fact, some favor
the use of approaches based on Finite State Automata (FSA) known for their
effectiveness (complexity O(n’)) rather than more traditional approaches
such as the tabular algorithms whose complexity is equal to O(n’). With this
importance, there are several parsers available to the community which are
in reduced form as with the NLP toolkit (NLTK) [BIR 09], and the Stanford
parser’ which comes with several algorithms and several grammars for
languages such as English [MAR 06], French [GRE 11], Arabic [PPE 10],
Spanish and Chinese [LEV 03, CHA 09]. We can also mention the Charniak
and Caballero [CAB 98] parser which is very popular for English, as well as
the Xerox parser’ which is available online for English, French and German.

Several good references are available in the literature on parsing
algorithms. For example, the book by [AHO 88] focuses on the syntactic
parsers used in the compilation of programming languages. [GRU 95] is a
general book parsing techniques and formal languages whose first edition is
freely available online®. [SIK 97] proposed a unified formal framework to
describe and compare the different parsing algorithms. [CRO 96] is an
introduction to the parsing presented in a cognitive perspective. Finally,
[WEH 97] presents an introduction to parsing concepts both from a linguistic
and an algorithmic point of view.

4.4.1. Finite-state automata

We have seen that finite-state automata (FSA) are a very good tool for
modeling the phonological and morphological knowledge. We have also
seen that regular grammars which are formally equivalent to the FSA are not
rich enough to account for the subtleties of the syntax of natural languages
including phenomena such as self-embedding. Yet, several studies have
focused on the use of these tools for parsing in contexts where a partial
modeling of syntactic knowledge seems to be sufficient, such as language
modeling for speech recognition systems or robust parsing systems. The
computational benefits behind the adoption of FSA are the relative

6 www.nlp.stanford.edu:8080/parser/.
7 www.open.xerox.com/Services/XIPParser/Consume/Parse%20text-64.
8 www.dickgrune.com/Books/PTAPG _1st_Edition/BookBody.pdf.

Syntax Sphere 203

simplicity of implementation of these automata and the advantageous
computational cost, as they are linear approaches. To obtain a finite-state
automaton from approximation algorithms, several approaches have been
proposed such as the approach which is based on the left-corner algorithm
[JOH 98].

Several robust parsing approaches have been presented, of which the
best-known is the chunk analysis approach by Steven Abney, which uses a
cascade of FSAs [ABN 9la] (see section 4.4.10.1 for more details). A
parsing approach of the oral language has also been proposed by [KAI 99].

4.4.2. Recursive transition networks

RTNs are an extended version of AFE [WOO 70]. Just as AFEs, they are
composed of a series of states and transitions, and on a labeled graph in
which each label corresponds to a category (lexical, syntactic or conceptual),
the transition from one state to another is subordinated by the success of the
unification between the label of the arc and the current word (or
subnetwork). We could also refer to the philosophical and cognitive
presentation of the recursion concept and of RTN in the book by [HOF 99].

Thus, a state in an RTN consists of four elements:

— current node: this element provides information on the processing
location;

— the rest of the sentence: indicates the part of the sentence which has not
yet been processed;

— the nodes on hold: the nodes in the current network which have not yet
been crossed;

— parse: the parse associated with the processed part of the input
sentence.
Three actions are possible when the parser is in a particular state

according to the nature of this state:

— the label is a phrase category (subnetwork): place the current node in
the waiting stack and create a new constituent for a new category;

—the label is a lexical category: verify the identity of this word and add
this word as well as its category to the current constituent;

204 Natural Language Processing and Computational Linguistics 1

— the constituent is complete: take the node on hold from the stack and
integrate the current constituent in a higher level constituent.

In a more formal way, a string .S composed of a set of substrings s; ... sy,
such as S =s; ... sy, is recognized as C by a network N if and only if:

— C is the label of an arc that connects an initial state x and a final state y
(where x and y correspond, respectively, to 1 and k);

— there is a path (a string of labels) /;... /; accepted by N (seen as a non-
RTN) and with x as the initial state;

— for each s; (where £k > i > 1), is 5; = [; (in this case s; corresponds to a
word) or s; is recognized as a subnetwork /;.

Thus, unlike phrase structure grammars, which consist of linear series of
symbols, RTNs constitute a symbol lattice. To account for the components
of the symbol lattice created by an RTN, we have adopted the notation of the
Table 4.8 which is inspired by [GAV 00].

Notation Arc type
Asr The beginning of the sequence of a rule
Al The end of the sequence of a rule
ARA The beginning of the alternatives to a rule
Ao The end of the alternatives to a rule
ATAv The empty forward transition
AMrAry The empty backward transition

Table 4.8. Labels adopted for the annotation of RTN

Syntax Sphere 205

Here is an example of a transition network presented with the notation
that we have adopted:

/ NAV\
—ASR> —a—v —ATSR> t | ASR— —c— FATSR{
ATAV ATAV

\» —ASR— :—b—»‘! KSR J
\?\TAN/

Figure 4.68. Example of a recursive transition network

This network allows us to recognize strings such as: ac (the empty
backward transition allows us to not consider b), abc, abbc (the transition
after an empty element allows us to accept an infinite number of b), abbbc,
etc.

Although they are equivalent to the CFGs, RTNs have several advantages
compared to them. In fact, RTNs are more compact and more effective than
conventional phrase structure rules, since an RTN can cover several rules.
To clarify this idea, let us look at the small grammar of Figure 4.69 in DCG
format. For the sake of concision, we have omitted the rules in which the
right-hand side is a terminal symbol.

Vv -->V, np. Svi o, S sp e

vp --> v, np, pp.
np --> det, n.

pp --> prep, np.
Sp Do Prep Sn :) ‘,C

Figure 4.69. A DCG and the corresponding RTNs TRVIDF PP

The first note that we can make about DCG of the Figure 4.69 and the
equivalent RTNs is that the rules corresponding to the NP are established
within a single network. In addition to the advantage of the conciseness of this
representation, processing with an RTN is more efficient than with the phrase

206 Natural Language Processing and Computational Linguistics 1

structure grammar. Suppose that we want to analyze the phrase: The dog
chases the cat near the elephant. With a top-down algorithm which uses the
phrase structure grammar, firstly the system tries the first rule in which the
left-hand side is v (VP-->v, np) and as the totality of the utterance is not yet
parsed, it tries the second alternative of VP which also includes a PP. The
problem is that with the second attempt, the system must restart the
parsing of the verb and of the NP which were correctly analyzed the first
time. As the two alternatives of the NV are coded with a single network, the
two elements which are common to the two rules of the NV are retained
when the system tries to verify the non-shared elements between these two
forms. This property makes the RTNs comparable to tabular algorithms that
we are going to see below. However, a notable difference between RTNs
and tabular algorithms deserves to be mentioned. In fact, parse tables in
tabular algorithms are created online (during the parsing), whereas in RTNs,
the graph corresponding to the grammar is created offline during grammar
compilation.

Another notable advantage of RTN is that it is easy enough to express the
infinite repetition of any element in the grammar. This property is
particularly useful for the implementation of a strategy of selective parsing,
which is also called island (driven) parsing, where the system ignores the
parts of the phrase that it is unable to parse.

RTNs have been a very popular paradigm in the 1970s and 1980s for
parsing tasks. They have been used for the implementation of semantic
grammars for the processing of oral dialogues (see among others [WAR 91,
MAY 95, GAV 00]).

Finally, we note a form of transition networks which are even more
powerful than RTN: Augmented Transition Networks (ATN) [VIN 83]. Two
fundamental differences distinguish the ATR from the RTN. Firstly, ATRs
have a data structure that is called a register which allows us to store the
information and consequently to take the context into greater consideration.
Secondly, ATRs allow us to define actions to perform at each arc transition.
This allows ATRs to use them in order to implement the grammars based on
unification.

Syntax Sphere 207

4.4.3. Top-down approach

In this type of algorithm, the system constructs the parse tree by
presupposing the existence of a sentence (or the axiom of the grammar). In
other words, the system begins with the establishment of P at the root node
of the parse tree. The second step is to find a rule with P in the left side and
then to generate the corresponding branches at the categories on the right
side of the rule as child branches of P. This procedure is repeated for the first
branch until we arrive at a non-terminal symbol and the parser searches for
another branch to explore.

Bottom-up parsers, like top-down parses, use a pointer to the next word
to parse to keep a record of parsing progress. Both algorithms also use a
stack. In Bottom-up algorithms the stack has a function of keeping track of
the categories to find (hypotheses) while in top-down algorithms the stack is
used to store the categories that are already included in the parse tree.

Let us consider the mini-grammar of the Figure 4.70.

PC — NP VP

NP — Det N

NP — NP

VP — V Adj

VP — VI

Det — the, my, my

NP — John

V — is | loves | descends
VI — descends

N — book | house | family
Adj — interesting | expensive

Figure 4.70. Context-free grammars for the
parsing of a fragment

To analyze the sentence: The book is interesting with the grammar of
Figure 4.70 using a top-down algorithm, we have the steps presented in
Figure 4.71.

208 Natural Language Processing and Computational Linguistics 1

(@)

(©)

Det N

(e)

PN
SN SV
Det N

le livre

@

=]

—’/\
SN SV

N
Det N \'

le livre est

Figure 4.71. Example of parsing with a top-down algorithm

Stack

[S]

Stack

[Det, N, VP]

Stack

[VP]

Stack

[Adj]

(b)

SN 8V

(@

i
SN S8V
Det N

le

®

/\\
SN sV

/\
Det N V
I |

le livre

(h)

le livre est intéressant

Stack

[NP, VP]

Stack

[N, VP]

Stack

[V, Adj]

Stack

[]

Syntax Sphere 209

The top-down parsing algorithm is shown in Figure 4.72.

1. Initialization: stack = [S]

2. If'the top of the stack (its first element) is a non-terminal N, then:
Select a rule of the form N —f (where B is one or several
symbols).

Remove N from the stack
Add P at the top of the stack.

3. If the element at the top of the stack is a preterminal T, then
Find the next word of the sentence M
If there is a rule of the form T — M, then remove T from the
stack
Otherwise, failure

4. If the stack is empty (stack =[]) and if there are no more words to

analyze, then
Success
5. Otherwise, go to step 2

Figure 4.72. Basic top-down algorithms

Step (1) of the algorithm initializes the stack with the special non-
terminal symbol of the grammar, i.e. S. Step (2) searches for a rule in which
the left-hand side is equal to the symbol which is located at the top of the
stack. In the event of a success, it replaces this symbol by the non-terminal
symbols that are located in the right-hand side of the rule. In our example
(Figure 4.72), in step (b), the algorithm has searched for a rule in which the
right-hand side is the symbol S, located at the top of the stack. It is the rule:
S — NP VP. Then, S is removed from the stack and the symbols NP and VP
are added. Step (3) deals with the case where a preterminal symbol, 7, is
located at the top of the stack. A preterminal symbol is a symbol which is
rewritten in a terminal symbol. In other words, it is a morphological category
(noun, determiner, verb, etc.). In this case, the algorithm tries to find a rule
that has the preterminal symbol in its left-hand side and the next word of the
sentence in its right-hand side. In the event of a success, the algorithm
removes T from the stack; otherwise, it declares its failure. If we go back to
our example in Figure 4.71, the preterminal symbol is Det and it is
associated with success in the next word of the sentence the (in this case, it is

210 Natural Language Processing and Computational Linguistics 1

the first) which is a determiner and this thanks to the rule (Det — the). Step
(4) is the stop condition of the algorithm. In fact, for the algorithm to
succeed, two conditions must be met: the stack must be empty and all the
words in the input sentence must be parsed. In our example (Figure 4.71),
the algorithm terminates with success in step (4) because, on the one hand,
the stack is empty and, on the other hand, all the words in the sentence are
parsed. The last step (5) allows the algorithm to loop until it arrives at a
point where it declares its success or failure.

The question now is how our parsing algorithm will process syntactic
ambiguities. In reality, both bottom and top parsing algorithms can adopt
one of three exploration strategies to process ambiguities: backtracking,
determinism and breadth-first search.

In our presentation of the top-down parsing approach, we have adopted
an exploration strategy which is called backtracking or the Depth-First
Search. This strategy is to develop a single rule even when the grammar
offers several possible rules at a given point of the parsing. If the algorithm
arrives at a parse that is not compatible with the sentence in the course of the
parsing, it reverts to (it performs a backtracking) the first not explored
alternative and it modifies the parse by adopting a new possible rule. To
illustrate this mechanism, suppose that the input of our parsing algorithm is:
John likes the book. The algorithm will first try to analyze the subject noun
phrase with the rule (NP — Det N). Such an attempt will fail in step (3) of
the algorithm because Jo/n is not of the category Det. Backtracking requires
choice points to be marked (e.g. stored in a data structure), to be able to
cancel everything up to the last choice point in the event of a failure. This is
not necessary in the case of programming with Prolog language, where the
backtracking mechanism is natively implemented.

As backtracking has a non-negligible calculation cost, some researchers
have explored the possibility of a deterministic strategy. In fact, the intuitive
observation of the human parsing process shows us that the resolution of
ambiguity is not performed by a research of the set of rules applicable to the
sentence in the course of processing. To do this, humans seem to use all
the knowledge they have to choose the solution that seems most plausible.
The arguments in favor of this type of strategies are the extreme speed of the

Syntax Sphere 211

human parser and the non-conscientization of different possibilities as
humans can interpret sentences without realizing the existence of several
possibilities. This intuitive observation has given birth to several algorithms
including those by [MAR 80] and [SAB 83].

Another control strategy, which is called breadth-first search, is to
explore all possible rules at all points in the parsing. It is a horizontal
exploration of the search space that allows us to identify all possible parses
of a sentence in the case of a syntactic ambiguity. Such a strategy allows the
a posteriori selection of the best parse according to syntactic, semantic,
discursive, etc. criteria. From a cognitive point of view, such a strategy is not
relevant, because humans do not seem to consider all possible analyses of a
sentence at the same time. With respect to the computational point of view,
this strategy is very costly in terms of space (memory) and parsing time.
This is particularly true with actual applications where the grammar size is
quite large, and sometimes it makes possible an infinite number of parses for
a given sentence.

The problem of the left recursion is very often cited in the literature as the
main limit of top-down algorithms, because of the rules of the form: A — A
a will cause this algorithm to loop to infinity. To illustrate this problem, let
us take the micro-grammar of the Figure 4.73.

S — NP VP

NP — NP PP

Figure 4.73. Micro-grammar with a left recursion

To analyze any sentence with the grammar of the Figure 4.73, the
algorithm will first try the first rule S — NP VP and then it will try to
develop the noun phrase with the rule NP — NP PP and it, therefore, falls in
an infinite loop, as illustrated in Figure 4.74.

To resolve this problem, we could perform transformations on the form
of the rules, but this will not provide linguistically relevant parse trees (see
[GRU 95] for more details on this issue).

212 Natural Language Processing and Computational Linguistics 1

a) b) c)

S P P
SN sV SN/\SV

SN SP

d) e) f)
P s

SN/\SV /S\N/\SV
P SN sP
SN spP e,
S % PN

Figure 4.74. Left recursion with a top-down algorithm

4.4.4. Bottom-up approach

Unlike top-down algorithms, bottom-up algorithms begin with the words
and then go up gradually to achieve a parse of the entire sentence, if it is
possible. It consists of searching for the words of the sentence and then
combining them together in higher order structures by using the grammar
rules until the arrival at the axiom. The stack in the bottom-up algorithms
contains the symbols that have already been parsed.

The simplest bottom-up algorithm is called shift-reduce. As indicated by
its name, this algorithm is based on two operations:

— shift: allow the algorithm to move to the next word;

— reduction: try to combine the constituents already found in higher
constituents. This operation is possible thanks to a stack which retains the
already found constituents.

Continuing with our sentence: Le livre est intéressant (The book is
interesting) and the grammar of the Figure 4.70 we get the parsing steps
presented in Figure 4.75.

Syntax Sphere 213

(@) (b)
Det Stack T' Stack
IL [Det] B [Det, N]
(© (d)
SN Stack \ Stack
N [NP] | [NP, V]
Det N est
I |
le livre
(e ®
Adj Stack sV Stack
| [NP, V, Adj] W i [NP, VP]
S \") Adj
intéressant | |
est intéressant
(2)
P Stack
SN sV [S]
N B
Det NV Adj

le livre est intéressant

Figure 4.75. Example of parsing with a bottom-up algorithm

The steps of the shift-reduce algorithm are provided in Figure 4.76.

0. Initialization: stack = []
Either: shift
+ Select the next word of the sentence or the first word at the
beginning.
+ Find the category of this word.
+ Place the category of this word at the top of the stack.
2. Or: reduction
+ If the categories in the stack correspond to the right-hand side
of one of the grammar rules, then
- Remove the identified categories.
- Add the symbol of the left-hand side of the rule in the
stack.
3. If there are no more words and if the stack = [S].
+ Then, success.
4. Otherwise, go to step 2.

—

Figure 4.76. Basic top-down algorithms

214 Natural Language Processing and Computational Linguistics 1

The bottom-up algorithm provided in Figure 4.76 is based on the two
operations that we have just presented. There are two alternatives of which
only one is applied at a given point of the analysis.

If we go back to our example in Figure 4.75, the algorithm firstly begins
the parsing with an empty stack. With the shift operation, it takes the first
word of the sentence the, and it finds its grammatical category det that it
puts in the stack (Step A). As there is no grammar rule in which the left-
hand side is the non-terminal det (the unique symbol in the stack), the
algorithm performs another shift: it finds the grammatical category N of
the next word book and it adds it to the stack that now contains the two
symbols Det and N (Step B). The algorithm finds a rule whose right-hand
side is: Det N. It is the rule: NP — Det N. It performs a reduction which is
to remove the two symbols that are located in the right-hand side of this
rule of the stack and to replace them with the symbol which is located in its
left-hand side: NP (Step C). Finally, in step (g), the two conditions of
success are met: the algorithm has consumed all the input words and it has
only the symbol § in the stack.

It is probably necessary to note finally that the top-down approach
includes several commonly used parsing algorithms, such as CYK, EARLY
[EAR 70] and GRL [TOM 86].

4.4.5. Mixed approach: left-corner

Historically attributed to [IRO 61, GRI 65] and [ROS 70], the left-corner
approach is a hybrid approach that combines the methods of two approaches
that we have just seen: the bottom-up approach and the top-down approach.
This is performed in order to increase the efficiency of the parsing by
reducing the search space.

The motivation behind the creation of this algorithm can be explained
with the following example. Suppose that our algorithm has the fragment of
grammar of the Figure 4.77 and that we have to parse the French
interrogative sentence: vient-il (is he coming)?

Syntax Sphere 215

S — NP VP
S — VP NP
NP — Det N
NP — NP
NP — PPS
VP — VI

Figure 4.77. CFG Grammar

To analyze the input sentence, a top-down algorithm will perform the
steps shown in Figure 4.78.

a) b) ©)
S P P
™ Y
SN SV SN S8V
S
Det N
d) e) f)
P P P
| |
SN SN SV/\SN
| |
NP PPS

Figure 4.78. Repeated backtracking with a top-down algorithm

As we see in Figure 4.78, the algorithm starts to construct the tree from
its root S. According to the grammar, a sentence can have two forms, thus
the algorithm starts with the first (S — NP VP) (Step B). Then, on three
occasions, it tries to find the noun phrase (Steps C, D and E) without
success. In that case, due to the lack of other opportunities, it backtracks and
tries the second form of the sentence (S — VP NP) which will eventually
lead to the correct parse. In other words, to find the parse, the algorithm has
performed four backtracks and this in a mini-grammar, then we can imagine
the cumbersome nature of the research with a grammar of a large size.

216 Natural Language Processing and Computational Linguistics 1

Intuitively, we can say that the bottom-up approach is not cognitively
relevant, because humans do not seem to examine all possibilities
mechanically. In fact, a normally constituted human would move
immediately to the second form of the sentence (S — VP NP), simply
because the noun phrase cannot begin with a verb. This idea is the basis of
the left-corner algorithm which uses precompiled tables of words or of
grammatical categories that can appear at the beginning of a constituent. If
we go back to our grammar of the Figure 4.70, a table of category and of
lexicon can have the form provided in Table 4.10.

Category Left-corner (categories) Left-corner (lexicon)
S Det, NP the, my, John
NP Det, NP the, my, John
VP A\ is, loves, descends

Table 4.10. Table of left-corners of
the grammar of the Figure 4.70

As we can see in Table 4.10, two types of information can be stored in
the table: grammatical categories or lexical units. Depending on the size
of the vocabulary, one of these choices is appropriate. In fact, in the
case of a very large vocabulary as in the automatic translation
applications of open texts, the compilation of a vocabulary with tens of
thousands of words could cause memory problems for the system. In this
case, we prefer the grammatical categories, in spite of the cost in terms of
calculation.

Obviously, a rule which passes the lexical filter does not necessarily
apply successfully, but this simply serves to reduce the search space and
therefore increase the effectiveness of the algorithm.

A left-corner parser recognizes the left corner of a rule in a bottom-up
fashion and predicts the rest of the symbols in the right-hand side of a rule in

Syntax Sphere 217

a top-down fashion. It includes three principal operations: shift, prediction
and attachment.

Similar to the operation of the same name that we have just seen at the
bottom-up algorithm, shift is to identify the category of the next word in
the sentence (or the first word at the beginning) and to place in the stack the
category which has been found. Prediction is to predict a constituent from its
siblings. For example, suppose our stack has an NP at its top which
corresponds to an already found noun phrase and that our grammar contains
the rule (S — NP VP), then the NP will be replaced with S/VP. This means
that the algorithm has predicted an S and that it must find the VP for the
parsing of S to be successful. Attachment, meanwhile, is performed in two
forms. The first is to consider a predicted constituent as already found when
we find its constituents. For example, when we arrive at identifying an
already predicted VP, the stack could have a form like [VP, S/VP].
Logically, the previous stack will be reduced to the form [S]. The second
form is to combine the predictions that intersect. Thus, when we need to find
an NP (complement) to complete a VP and if the latter is in turn necessary to
complete a S, then we can deduce that we need an NP to complete S. The
stack will be updated in the following manner: [VP/NP, S/VP] => [S/NP].
Note that a predicted element without having found any of its constituents
will be noted as X/.

A possible form of the left-corner approach is provided in Figure 4.79. In
fact, as the left-corner approach is a general strategy, it has been applied to
various parsing algorithms such as GLC [NED 93], RTN [KUR 03] or
tabular parsing [MOO 04].

Continuing with our example: Le livre est intéressant (The book is
interesting) analyzed with the grammar 4.70 and the left-corner algorithm
of the Figure 4.79, we get the steps presented in Figure 4.80. First of all,
the algorithm predicts in a top-down approach that it is parsing a sentence
and that is why it places the symbol S/ in the stack (Step A). In Step (b),
it performs a shift by analyzing the left-corner of the sentence, the
determiner The (Le), of which it finds the category (Det) that it places in
the stack. With the rule (NP — Det N), it predicts that there must be a
noun N to complete the already initiated NP and the stack is updated to

218 Natural Language Processing and Computational Linguistics 1

reflect the new waiting expectation. Next, in step (c), after having found
the N, it adds it to the stack. In step (d), it attaches the two constituents of
the found NP. In step (e), it predicts a VP from the rule (S — NP VP) and
the stack becomes [S/VP]. In other words, it announces that it has already
found an NP to complete the predicted S and that it requires the VP. In
step (h), it performs an attachment and then it declares the parsing
successful; as the stack contains the symbol S and as all the words in the
sentence have been consumed.

—

Initialization: predict the initial stack symbol = [S/].

2. Either: shift
Select the next word of the sentence or the first word at the
beginning.
Find the grammatical category of this word.
Place the category of this word at the top of the stack.

3. Or: prediction
Use the grammar rules to find the brother nodes of the found
symbols and update the stack in the following way: if there is
a rule in the form X — Y Z and if we have already found the
symbol Y, we add X/Z at the top of the stack.

4. Or: attachment
If we find the non-terminal symbol(s) necessary to complete a
predicted constituent, then we change the stack according to
the diagram: [X/Y Y] =>[X].
If we predict a constituent and then we find another
constituent which could be its child, then we can assume that
we are on the right path to find the constituent. In practice, if
we have the rules:
X —Y Zand Z — A T and if the stack has the form: [X/Y,
Y/T], it becomes [X/T].

5. If there are no more words and if the stack = [S].
Then, success.

6. Otherwise, go to step 2.

Figure 4.79. Left-corner algorithm

Syntax Sphere

219

a)

S Stack[$/]

b))
Det Stack Det N Stack
| [Det, S/ => | [N, NP/N, S/]
le [NP/N, S/] g le livre
d) e)
SN Stack [NP, $/1 /F'\ Stack [S/VP]
D(\N SN sv
le livre Dlet T
le livre
f 2)
P Stack P Stack
SN/\SV [V, S/VP] => SN/\SV [Adj, VP/Adj,
[VP/Adj, S/VP] S/IVP
Det N Det N
|
le livre le livre
V' Adj \
I I
est intéressant est
h) i)
P Stack P Stack
SN/\SV [VP, S/VP] T I8]
SN sV
D{\N 5 il
| | Det N V
le livre | _| |)
sV le livre est int
/\
v Adj

est intéressant

Figure 4.80. Example of parsing with the left-corner algorithm

220 Natural Language Processing and Computational Linguistics 1

In addition, several studies in computational psycholinguistics have
shown that the top and top-down algorithms present difficulties as regards
the processing of cases of left-branching and right-branching, respectively
[JOH 83, ABN 91b, RES 92a]. This is due to the need for storage of
intermediate information before being able to analyze the entire sentence. A
summary of the spaces required by the three types of algorithms is provided
in Table 4.11.

Strategy Required space
Left Auto Right
Bottom O(n) O(n) o(1)
Top o(1) O(n) O(n)
Left-corner o) O(n) o(1)

Table 4.11. Summary of spaces required by
the three parsing approaches [RES 92a]

First of all, note that n in Table 4.11 represents the width of the trees in
terms of nodes and that O(1) represents a fixed processing time. Just like
humans, the three strategies require more space to process the self-
embedding structures regardless of their embedding degree. By contrast, we
find an asymmetry in the processing of sentences with left-branching and
right-branching for bottom and bottom-up algorithms. However, humans do
not seem to process these two forms asymmetrically. This is considered as
an argument in favor of the cognitive plausibility of the left-corner approach.

The left-comer approach cannot prevent the activation of irrelevant rules
with respect to the context, particularly in the case of homography where two
words with the same graphic form correspond to different grammatical
categories such as the words plant and use which belong to both categories:
verb and noun. In addition, the rules which do not have a left-corner, because
their right-hand side is null (e.g. A — @), require a particular processing. In
contrast to the top-down approach, the left-corner can parse the left recursive

rules to the left without looping to infinity, particularly thanks to lexical
filtering.

Syntax Sphere 221

4.4.6. Tabular parsing (chart)

Historically, the authorship of tabular parsing, which is commonly called
chart parsing, is attributed to Martin Kay [KAY 67]. It is based on a
dynamic programming approach, in which the main idea is the storage of the
partial results found in the intermediate steps in order to reuse them in a
subsequent step. The algorithm parses the same piece only once, which
makes it more effective. Tabular parsing can be combined with the three
parsing approaches that we have just seen, the top-down approach, the
bottom-up approach and the corner-left approach. Similarly, it can use
breadth-first or depth-first search strategies.

Tabular parsing is often compared to similar approaches, including the
Earley algorithm and the Cocke—Y ounger—Kasami algorithm (CYK) [EAR 70,
KAS 65, YOU 67]. Given the importance of this type of algorithm, several
books have devoted large sections to it with detailed presentations including
[VIN 83, GAZ 89, BLA 09, COV 94].

To store intermediate parses, it uses a data structure called chart. It is a
set of nodes linked by edges. Each word of the input sentence is surrounded
by two nodes that are marked by numbers. The edges at their turn mark the
constituents. Let us take a look at the table of Figure 4.81 as an example.

SN

0 Jean 1 walks 2 close 3 to 4 the 5 river 6

Figure 4.81. Table of an incomplete parsing

The table presented in Figure 4.81 contains numbers between 0 and 6
which surround the words of the sentence from the beginning to the end. The
edges have the function to indicate the structures which have already been
recognized by the parser. In our case, two edges mark a proper noun and an

222 Natural Language Processing and Computational Linguistics 1

NP between 0 and 1 and an edge marking a verb between 1 and 2. As for the
progress of the parsing, the parser adds new edges to the table to account for
identified constituents. Note that in the case of an ambiguity of
morphological or syntactic category, the table contains two edges which
connect the nodes which surround the ambiguous word with two different
labels.

SV

N / SN
| \
| NP | y = .
l | [/ = f

| l ! | ,
0 Jean 1 walks 2 close 3 to 4the 5 river 6

Figure 4.82. Table of a complete parsing of a sentence

At the stage of parsing presented in Figure 4.82, the algorithm stops with
success because, on the one hand, all possible edges between 0 and 6 are
filled with an edge with the category S and, on the other hand, all the words
in the input sentence had been analyzed. We also note that some elements
are marked at several levels. For example, John is both a proper noun NP
and a noun phrase NP and it is also a part of the sentence S.

The table in Figure 4.82 is a particular case that we commonly call
“passive charts”, because they do not realize the previously completed
analyses that are partial or complete.

Active charts are the other type of tables which consists of realizing the
state of parsing in a more comprehensive manner, i.e. what has been
performed, as well as planned projects or steps. Concretely, an active chart
contains active edges, i.e. edges whose requirements are only partially
satisfied, as well as an agenda that defines the priority of task execution.

Active edges or dot rules are ordinary rewrite rules, but with an additional
dot in their right-hand side that separates what has been analyzed from what

Syntax Sphere 223

has not been analyzed, or from what we call the rest. For example, the rule
(S — NP ¢ VP) indicates a situation where a noun phrase was found and
where it requires a verb phrase to complete the parsing of the sentence.

If we go back to our example, Le livre est intéressant (The book is
interesting) and the grammar of Figure 4.70, we get the active chart of the
Figure 4.83.

SN — I]‘Der N <0,0, NP _).Det
| Det N>
| <0,1, Det —thee >

0 le 1 livre 2 est 3 intéressant 4
<0,1, NP —Dete

SN —Det *N

N>

Figure 4.83. Partial active chart

As we can see in Figure 4.83, we have two equivalent representations of
the parse table with two active edges and a passive edge. The interpretation
of this table is as follows. First of all, the parser predicts a constituent of NP
type without recognizing any element (the dot is located at the right end of
the right-hand side of the rule) and then after having identified a Det
(marked by a passive edge), it moves the dot to the right of the identified
constituent in the new initiated active edge. The question that now arises is
how to combine passive edges with active edges to account for the progress
of the parsing. To do this, tabular analyzers have a fundamental rule.

The intuition behind the fundamental rule is very simple. As an active
edge expresses an expectation of specific constituents in a given context, the
state of this expectation must be updated with the progress of the parsing and
the discovery of one of these constituents that are expressed by the addition
of a passive edge. This modification is performed simply by the
advancement of the dot to the right of the symbol found in the rewrite rule.
A more formal presentation of this rule is provided in Figure 4.84.

224 Natural Language Processing and Computational Linguistics 1

A6 :o Tl 12
N0ices Tley N2

Figure 4.84. Diagram of the first fundamental rule

Let us take a concrete example: the sentence Le livre est intéressant
(The book is interesting) analyzed with the grammar of the Figure 4.70
(Figure 4.85).

!
Ole I livre 2 est 3 mtéressant 4
4
SN — DetN-

Figure 4.85. Example of application of the fundamental rule

The example presented in Figure 4.85 contains a labeled active edge
(S —NP « VP). This means that the parser is expecting a VP. The following
passive edge indicates that we have already found the VP initiated by the
active edge. The fundamental rule allows us to combine the two edges and to
advance the state of parsing considering that the sentence S has been fully
parsed by generating an active edge labeled with (S —NP VP «).

To operate normally, a parser with an active chart must use an agenda. It
is a data structure that allows us to plan the actions. In other words, the
agenda of a tabular analyzer plays a similar role to the stacks that we have
just seen: to memorize the actions and to establish priorities’.

9 Another data structure, which is called queue, can also be used for the implementation of
agendas. In this case, the insertion of new elements is performed at the end leading to a depth-
first strategy (see [BLA 09] for more details).

Syntax Sphere 225

In sum, tabular parsing, by storing partial results, avoids repeating the
same parsing several times by performing backtrackings (as is the case with
the simple algorithms that we have seen). Similarly, we have seen that this
approach has an effective mechanism for processing ambiguities. It is
probably necessary to mention that parsers of this type do not have a
problem with the left recursion that is either with a top-down or a bottom-up
strategy.

However, the addition of predictions to the parse table, the main
advantage of tabular analyzers, has a few disadvantages. In fact, with either a
top-down or a bottom-up strategy, this could mislead the parsing with
incorrect predictions.

1. Initialize the table and the agenda
2. Repeat until the agenda is empty
Take the first edge of the agenda
b. Add the edge to the table

c. Use the fundamental rule to combine this edge with the other
edges of the table.

d. The new edges of the previous step must be added to the agenda.

e. Addnew active edges (expectations) to the agenda based on existing
edges and grammar rules.

3. Ifthe table contains a labeled passive edge with S, then success,
otherwise, failure.

Figure 4.86. Tabular parsing algorithm with a bottom-up approach

4.4.7. Probabilistic parsing

The idea behind statistical parsing is to combine the discrete symbolic
information with the statistical information of a continuing nature. In
practice, this is to enrich the existing linguistic formalisms with statistics
obtained from corpora related to application fields [CHA 93a, BOD 95,
ABN 96]. The way in which the Probabilistic CFG (PCFG) extends the CFG
is often compared to the extension of regular grammars by the HMMs that
we have seen in Chapter 2. The objectives of these different approaches can
be summarized by ambiguity resolution, as well as the limitation of the
search space of classical parsing algorithms. Studies in this context have

226 Natural Language Processing and Computational Linguistics 1

been performed in two complementary axes: the definition of statistical
formalisms, as well as the proposition of algorithms.

The definition of probabilistic formalisms, in the general case, is to propose
probabilistic versions of existing formalisms. We can mention in this
framework the studies on probabilistic CFGs [JEL 92], stochastic LTAG
[SCH 92, RES 92b], stochastic LFG [BOD 00, BOD 98], etc. Sometimes,
probabilistic analysis is proposed for the resolution of specific problems, such
as processing of syntactic discontinuities [LEV 05] or ambiguity resolution
[TOU 05]. The main problem addressed by these studies is the hierarchization
of probabilities according to linguistic units. Thus, we distinguish between
internal probabilities, within the basic linguistic unit such as the phrase and the
chunk and inter-unit external probabilities.

The other axis consists of the proposition of algorithms for probabilistic
analysis. In this context, we can mention the studies by [MAG 94, BOD 95,
GOO 98], etc. The main issues targeted on this axis are the obtaining of the
most probable parse tree (ambiguity resolution) effectively, the learning
automation of PCFG, as well as the reduction of the size of the learning
corpora.

The probabilistic analysis is a method which has several benefits for the
processing procedure, but its practical realization is generally difficult,
particularly in the context of deep parsing systems, especially because of the
need for a large quantity of correctly pre-parsed data.

From a formal point of view, a PCFG grammar can be defined as G =
(Vn, V1, S, R, IT). The only difference compared to the definition of the CFG
that we have seen is the element // which is the set of probabilities
associated with production rules with: ©(a—fp) = 0 where o—p e R.

As we note in Figure 4.87, the sum of probabilities of the rules which
share the same non-terminal symbol in their left-hand side is equal to one.
More formally, we can say that the PCFG obey the property formulated by

the following equation: V o € VN,ZTE(OL — Bi) =1. For example, if we take

the case of rules of NP: (NP — Det N) + ©(NP — PN) + (NP — Pron) =
0.27+0.63 +0.1 =1.

Syntax Sphere 227

S — NP VP 0.7
S— VP 0.3
NP — Det N 0.27
NP — NP 0.63
NP — Pron 0.1
VP — V Adj 0.5
VP -V 0.3
VP —->NPV 0.2
Det — my 0.45
Det — the 0.55
NP — John 1.0
V — book 0.1
V — loves 0.3
V —is 0.5
V — descends 0.1
N — book 0.35
N — notebook 0.40
N — program 0.25
Adj — interesting 0.6
Adj — expensive 0.4
Pron — the 0.3
Pron — the 0.3
Pron — the 04

Figure 4.87. Example of a probabilistic
context-free grammar for a fragment of French

To calculate the probability of an parsing tree, simply multiply the
probabilities of the rules used in its derivation, as we assume that the
probabilities of the rules are independent. Thus, the probabilities of trees a,
and a, in Figure 4.88 are calculated in the following manner from the
grammar of the Figure 4.87:

p(a;) = n(p — NP VP) (NP — NP) (NP — John) n(VP — V) n(V
— descends) = 0.7 * 0.63*1*0.3*%0.1 = 0.0132.

p(a2) = nm(p — NP VP) (NP — Det N) n(Det — the) n(N —
notebook) m(VP — V Adj) n(V — is) m(Adj — expensive) =
0.7%0.27%0.55%0.4*0.5%0.5*0.4 = 0.004158.

228 Natural Language Processing and Computational Linguistics 1

As we note, logically, the larger the parsing tree is, the smaller its
probability is.

P P

[0.7] [0.7]
W N e i
SN sv SN sV
[0.63] [0.3] [0.27] [0.5]
I I 7 i
NP v Det N V. adj
M [04] [0.|55] [0i4] [0|.5] [0i4]
Jollm desclendg the notebook is expensive

Figure 4.88. Parsing tree for a sentence
from the PCFG of the Figure 4.87

In the case of the two sentences of Figure 4.88, each sentence is
associated with a single parse, as there is no syntactic ambiguity. What is
interesting about a probabilistic grammar is that it assigns a probability to all
analyses or possible derivations of a syntactically ambiguous sentence,
allowing us to resolve the ambiguity. More formally, suppose we have a
sentence S which is likely to receive n different parses, the probability of this
sentence can be calculated according to the equation [4.33]. Thus, for each
derivation d member of the set of derivations of S, we have a probability
associated with this derivation t©(S). The probability of a sentence is equal to
the sum of the probabilities of its derivations.

p(S)= > P(4.) [4.33]

7e7(S)

Despite its benefits, PCFG suffers from several well-known limitations in
the literature. In fact, according to the independence hypothesis, each rule is
independent of other rules which constitute the parsing tree. Thus, the rule
S — NP VP does not imply any limitation with respect to the form of the
subject noun phrase. However, studies such as [FRA 99] have shown that in
English in 91% of the cases, the subject NP is a pronoun. In addition,
conjunction ambiguities as in [4.16a] are impossible to solve with a PCFG,
since the two possible parses have the same ambiguity. To resolve these
problems, several strategies have been proposed in the literature. The
simplest strategy is to differentiate labels. For example, rather than having

Syntax Sphere 229

the category NP, we would have NP Subject and NP_Object. A more
linguistically motivated solution is to lexicalize the grammar and to associate
probabilities to lexically anchored trees. This allows us to take into
consideration several syntactic parsing levels.

In a practical manner, PCFGs are inferred generally from a syntactically
annotated corpus, which is often called TreeBank (see Figure 4.89 for a
describing this process). The inference algorithm explores the trees in the
corpus and calculates the probabilities of each of the rules observed by using
the [4.34].

cla— p)

Plaa— pBlo)= [4.34]
c(a)
Syntactically-annotated corpus
o
o o e
[y Probabilistic Context-free
— G Grammar
1 T
. o h
o P — SNSV (1.0)
L SN — Det N (0.6)
N SN — NP (0.4)
SN Conj SN SV — VAJj (0.70)
] SV — VI (0.3)
NIP o D\d N Det — le (0.6)
Marie s copine Trek i ©0-18)
Supervised Det — mon (0.22)
e] —————|NP — Jean (1.0)
e — learning Voo est (0.59)
i = V — aime (0.22)
F—_ V — descend (0.19)
Pron V SN SP Adv VI — descend (1.0)
| | P e | | N — famille (0.22)
Elle offre Det N Prép SN gentiment N s livre (0.38)
| | | N — maison (0.4)
des fleurs & D|e¢ T Adj — intéressant (1.0)
son pére

Figure 4.89. Supervised learning of a PCFG

Another approach is to infer the PCFG from a non-annotated corpus.
Typically, we use the inside-outside algorithm whose principle is similar to
the Baum-Welch algorithm for the estimation of the parameters of an HMM.
As we might think, these studies are still at the research stage and their
performance is still inferior to that of the supervised approach.

Several probabilistic parsing algorithms have been proposed, many of
which are inspired by the tabular parsing approach described in section 4.4.6.

230 Natural Language Processing and Computational Linguistics 1

To find the best parse among the possible parses, algorithm such as A* or
Viterbi, that we have presented in Chapter 2, are used [COL 99, KLE 03].

To give a concrete idea of the probabilistic syntactic parsing, let us take the
CYK algorithm as an example. Named after its historical inventors, Coke,
Yonger and Kasami, this algorithm is a tabular algorithm which follows a
bottom-up approach. It requires grammars in Chomsky normal form, in which
all rules above the preterminal level are binary. Effective, this algorithm has a
processing time complexity which is equal to O(n’) and requires a space of
O(n’). As it follows a dynamic programming approach, this algorithm searches
for all partial parses for the sequences of equal length up to n words where » is
the number of words of the input sentence. The probabilistic version of this
algorithm uses the same approach, but it is distinguished by the association of
a probability to each sequence produced by a rule (see [CHA 98] for an
example). If we take as an example the French sentence Le livre est
intéressant (The book is interesting) with the grammar 4.87, we get the
following parse steps. The first step is to create a data structure which is called
table or parsing triangle, as it has the shape of an inverted right triangle whose
two catheti are formed by # cells where #n is equal to the number of words of
the input string. As we can see in Figure 4.90, each cell covers a substring with
a beginning index and an ending index.

Le livre est intéressant

10,11 10,21 10,3] 10,41

11.2] [1.3] 11,4]

[2,3] 12.4|

13.4]

Figure 4.90. General structure of the parse table of the CYK algorithm

Syntax Sphere 231

The parsing algorithm proceeds by filling the hypotenuse of the rectangle
with the information on the morphological categories of input words
introducing the rules of the form: preterminal — word (see Figure 4.91).
Lexical ambiguities are retained to the extent that we add the different parsing
possibilities of a word with their probabilities. For example, for the word /e
(the), we add the two possible rules in the grammar: Det — the 0.55 and Pron
— the 0.3. Next, the algorithm searches if there are higher level structures
which have the preterminal used to the right-hand side. For example, we find
that it is possible to construct a noun phrase with the following rule: NP —
Pron. The probability associated with this rule in the parse table is calculated
as follows: @w(NP — Pron) * n(Pron — the) = 0.1*0.3=0.03.

Le livre est intéressant

Det — le 0.55
Pron — le 0.3

SN —» Pron0.03 10.21 10,31 10.41
[0,1]
N — livre 0.35
V— livre 0.1
SV v 003 1L,3] 1L4]
P— SV 0.009
12|
V — est 05
SV >V 015
P SV 0045 124]

12,3]

Adj intéressant
0.6
13.4]

Figure 4.91. The first step in the execution of the CYK algorithm

In the second diagonal line, the algorithm searches for strings of two words
by combining the representations which have already been constructed at the
previous level, that of words (see Figure 4.92). For example, it finds that it is
possible to construct a sentence with the rule S — NP VP [0, 2] whose
probability is calculated in the following manner: n(S — NP VP) (NP — Pron)
(VP — V) =0.7*0.0006*0.051 = 0.000021. In a similar manner, the algorithm
discovers the possibility of obtaining a sentence in the cell [2, 4]. The cell [1,3]
remains empty because the string livre est (book is) does not correspond to any
constituent.

232

Natural Language Processing and Computational Linguistics 1

In the third step, the algorithm finds the possibility to construct a
sentence with the rule S — NP VP in the cell [0.3] (Figure 4.93).

Le livre est intéressant
];’:m_;llz ':5535 SN— Det N 0.051
< = 1SV SN V 0.0006
SN Pran .03 " O 10.3] 104
1] (021
N — livre 0.35
V— livre 0.1
SVV 0.03 (141
PSSV 0.009 (131
[1.2]
UL sV v Adj 015
SV - v oeas VA
P — SV 0.045 : i
24
23| 24
Adj—intéressant
0.6
1341

Figure 4.92. The second step in the execution of the CYK algorithm

Le livre ost intéressant
5
Dot e G5 s pet Nosi
SN o Pron .03 SV~ SNV 0.0006| P— SN SV 0.005 0]
’ 7 PSSN SV 0.0021 10.3] ’
[0,4] [0,2]
N — livre 0.35
V= livre 0.1
S¥ -V 003 (131 114
P—SV 0.009 :
[1.2]
V oot 05 oy vadjols
SV = voaas T e
P — SV 0.043 &
231 (24
Adj—intéressant
0.6
[3.4]

Figure 4.93. The third step in the execution of the CYK algorithm

Syntax Sphere 233

Finally, the algorithm finds a rule whose left-hand side is p and which
covers the entire sentence in the cell [0, 4] (Figure 4.94). This allows us to
conclude that the string Le livre est intéressant (The book is interesting) is a
legitimate sentence according to our grammar. In the case of ambiguity, i.e.
two different rules with the same non-terminal symbol in their left-hand side
and which cover exactly the same string, we keep only the most probable
rule. This is the mechanism that allows the CYK algorithm to resolve the
ambiguity.

Le livre est intéressant

Det — le 0.55
Pron — le 0.3
SN — Pron 0. 03

SN— Det N 0.051
SV—» SN'V 0.0006 P— SN SV 0.005 P SNSV 0.005
PoSN SV 0.0021 [0.3] [0.4]

0,11 03]

N — livre 0.35
V— livre 0.1
SVoV 003 [1.4]
P— SV 0.009 [1.3]
11,2]

Voot 03 oy vadjos
BT = i
P SV 00450 ° 52

23] e

Adj—intéressant
0.6
341

Figure 4.94. The fourth step in the execution of the CYK algorithm

To find the parse tree, we must enrich the rules with indexes to indicate
the extent of each constituent. For example, the rule S — NP VP in the cell
[0,4] will be marked in the following manner: S — NP [0,2] VP [2,4].

4.4.8. Neural networks

As we have seen in the sphere of speech, the first investigations on neural
networks were presented in the 1940s with the studies by Walter Pitts and
Warren McCulloch. After a series of partial successes and failures, neural

234 Natural Language Processing and Computational Linguistics 1

networks have begun to occupy an important place in the landscape of
artificial intelligence in the general sense of the term from the 1980s,
particularly following the publication of the book parallel distributed
processing by David Rumellheart and his collaborator [RUM 86]
(see [JUT 94] and [JOD 94] for an introduction).

Today neural networks bring together an important family of statistical
learning algorithms. Some of them, such as perceptrons, follow the
supervised learning mode where the network learns by comparing the given
input with the correct classification. Other networks adopt a non-supervised
learning mode such as Kohonen maps or self-organizing maps (SOM)
[KOH 82].

To be concrete, let us take the example of multilayer perceptrons which
are a popular form of supervised neural networks. The architecture of this
system is composed of three parts: the input layer, one or several hidden
layers and the output layer. The input layer has the function of introducing
the coded data to the network. For example, in the task of handwritten digit
recognition, this layer can consist of » neurons where n is equal to the
number of pixels of the images of each digit. Thus, with images of 28 x
28 pixels, we must have 784 neurons in the input layer. The hidden layer, in
turn, constructs an internal representation within the network. Finally, the
output layer corresponds to the classes of our system which, in the case of
digit recognition, are ten (see network architecture in Figure 4.95). Each
neuron in the network is connected to a subset of neurons in the network.
Each connection has a weight whose value can change during the learning
process. Neurons also have an activation function f which controls their
outputs given their inputs. The input of a neuron is the weighted sum of
neuron outputs of which it receives the output. The complexity of this
function varies depending on the networks. The simplest function is called
identity function, where the output of a network is equal to its net input:
f(x) = x. In this case, we refer to a linear network. More complex activation
functions are also used depending on applications such as the step function
with f(x) =0 if x <0 and f(x)=1 if x > 0 or the sigmoid function:

1

)= ——
l+e

—ax) *

Syntax Sphere 235

There are two different but complementary forms of learning in a neural.
The first one is to store diverse information in a compact form, such as in a
Hopfield network [HOP 82]. The second method is to deduct forms of
implicit rules that generalize the cases observed in the concrete examples
provided in learning.

Hidden layer
15 neurons

Output layer
10 neurons

Input layer
784 neurons

© ® N & U B WP - o

Figure 4.95. Architecture of a neural network
for handwritten digit recognition [NIE 14]

The main limitation to applying networks such as the one in Figure 4.91
is the lack of consideration of context, since digits are recognized only based
on their content. To take into account contextual information and temporal
sequences, Elman has proposed a particular architecture of neural networks
called recurring networks [ELM 90]. Unlike traditional networks, where the
flow of information always goes forward: from the input to the output,
feedforward, the recurrent networks allow for a return of information
rearward. Inspired by the biological neural networks, this bidirectionality
allows us to account for the context by memorizing implicitly one or several
history stages (see Figure 4.96).

This type of network has been the subject of several studies for the
construction of artificial neural networks which are capable of performing
syntactic parsing effectively [JOD 93, HEN 94, GER 01] (see [HEN 10] for

a review of these studies).

236 Natural Language Processing and Computational Linguistics 1

Input layer Hidden layer Output layer

Figure 4.96. Example of a recurring network

Despite their interest, the results with neural networks were often inferior
to those of statistical approaches. Even in the case of comparable performance,
as for speech recognition, neural networks have been disadvantaged because
of the high cost of learning. In fact, for actual applications learning required
sometimes weeks, which means that researchers had a very low margin of
error. A consequence of this cumbersome nature of learning was the inability
to equip networks with the appropriate number of hidden layers to construct
rich enough internal representations, because the addition of new internal
layers dramatically increases learning time. To resolve this problem, a group
of Canadian researchers including Geoffrey Hinton have proposed a new
paradigm named deep learning [HIN 06, HIN 12] (see [BEN 09] for an
introduction). This has opened the way for the exploration of new
architectures of neural networks to solve a fairly large number of problems
including the tricky problem of parsing.

Syntax Sphere 237

Thus, several studies have focused on building syntactic parsers with this
new type of neural networks. Typically, these studies focus on dependency
formalisms [COL 11, ETS 13, CHE 14].

4.4.9. Parsing algorithms for unification-based grammars

Unification grammars, as we have seen, contain complex feature
structures. We have also seen a simple way to process the additional
information encoded by the features in the framework of DCG.

Let us go back to the tabular parsing algorithm to examine how it can be
adapted to parse unification-based grammars. The principle is simple: in
addition to the constraints on the grammatical categories imposed by
grammar, the parser requires the unification of features associated with each
example. It is therefore an addition of new constraints.

If we assume that the algorithm adopts a top-down approach, then it will
first predict an active edge of the form:

0 O[C P] CAT SN ||CAT SV
R at —
Nb. Nb.
In the previous rule, the noun phrase and the verb phrase have a reentrant
feature to ensure the agreement of the verb with its subject. Next, by
processing the word John, it will add the following passive edge where we

have voluntarily simplified it by considering that a proper noun is directly
sufficient for a noun phrase:

CAT SN
0,1 i — John ¢
Nb. Sing

With the fundamental rule, we advance the point to the right of the
symbol.

oi[Cat P CAT SN [CAT SV
5 at - d
Nb. Nb.

238 Natural Language Processing and Computational Linguistics 1

The rest of the sentence is processed in the same way until obtaining a
complete parse: all words are covered under the category S. Note that, in
addition, the algorithm must verify the unification of the reentrant features to
ensure agreement.

4.4.10. Robust parsing approaches

A robust parser is a system that is able to provide a correct parsing tree
even in the case of an incomplete, distorted or unexpected input. Several
robust parsing techniques have been developed in the framework of studies
on the spoken, as well as on the written language. In both cases, the
objective is the use of parsing algorithms in actual conditions: recognition
errors and speech extragrammaticalities for spoken language and typing
errors and grammatical errors in written texts. The main techniques used in
robust parsing consist of extensions of conventional parsing algorithms, in
order to energize them and make them more appropriate to unexpected
actual applications. In addition, some approaches are based on studies in
fields such as information retrieval and document classification.

4.4.10.1. Chunk parsing

Inspired by the studies of [GEE 83] in psycholinguistics, [ABN 90,
ABN 95] proposes a partial parsing approach based on the segment (chunk

parsing).

In a chunk parser, parsing is divided into two completely distinct parts
(unlike the traditional approaches in which the two steps are merged):

— segmentation: the conversion of the flow of words in a flow of
segments;

— attachment: the attachment of the segments obtained in the previous
phase within a global structure, which is the parse tree of the utterance. In
regard to the previous part, this step is not mandatory or at least not
systematic. Thus, a chunker can provide complete parsing trees and partial
segments or only partial segments.

Cascaded parsing of syntactic structure (CASS) is a robust parser system
based on chunks. This system has been developed by Steven Abney at the
University of Tiibingen in Germany. CASS uses a set of simple parsers that

Syntax Sphere 239

apply in cascade to construct a global syntactic representation of the
utterance.

The input of CASS is the output of Church’s tagger [CHU 8] which
provides POS tags to the words, as well as the simple (non-recursive) noun
phrases. Note that the processing rate of noun phrases is lower than that of
POS tags. The processing of the pre-processed input in CASS is performed
according to three steps: the chunk filter, the clause filter and the parse filter.

In turn, the chunk filter is based on two subfilters: the noun phrases filter
and the chunk filter. The noun phrases filter is a module which uses regular
expressions to assemble noun phrases based on the superficial analysis
provided by Church’s noun phrase recognizer. Similarly in this module, we
correct the processing errors of noun phrases by the Church’s module, such
as those resulting from prenominal adjectives. In addition, the chunk filter
also uses regular expressions to recognize the rest of the segments. Here is
an example of the output of this module with the utterance: In south
Australia beds of Boulders were deposited.

CS

[pp in [Np south Australia beds]]
[pp of Np boulders]]

[Vp were deposited]

CS

As we can see, the system has committed an error of parsing (because of
the tagger) of the first noun phrase south Australia beds.

The clause filter also consists of two subfilters: the raw filter and the
corrected clause filter. The raw filter tries to recognize the boundaries of
simple clauses, as well as marking the subject and the predicate of the
clause. If it is unable to identify a single subject or predicate, this module
identifies the type of error encountered, such as the existence of several
verbal phrases or the absence of a subject (because of an ellipsis, for
example), etc. In addition, the corrected clause filter is a module that tries to
correct the errors identified by the previous module by applying specific
patterns in each case. For example, the following is the pattern used for the

240 Natural Language Processing and Computational Linguistics 1

correction of non-analyzed complementers: [pp X,-time NP] ... VP —
[clause Xe NP ... VP]. In cases where none of the patterns are applicable to the
input, the system uses general heuristics that allow it to improve the analysis
based on partial information (such as the existence of a noun phrase next to a
verb phrase, only a verb phrase, etc.). Thus, after this step, the parse obtained
for the utterance becomes as follows:

[pp 1n south Australia]
[susj [Np beds]]

[pp of boulders]

[prea [Vp were deposited]]

As we can see in the previous parse, the system has succeeded in
correcting the error of parsing in the first phrase.

Unlike the previous modules, the parsing filter is based on recursive rules
(not regular expressions). The main function of this module is to assemble
recursive structures by attaching the nodes to each other according to the
nature of the heads of these structures and the grammatical constraints on
their assembly. For example, a segment Y can be attached to a segment X
only if the head of X can have Y as an argument or modifier.

The results of CASS have shown that it is both robust enough and very
fast for the processing of written corpora. These results are mainly due to the
architecture of the system which is to apply different parsing levels in
cascade with rules and patterns that allow us to correct the errors made in the
previous steps.

Different approaches similar to Abney’s approach were proposed
including that by [AIT 97, GRE 99] which is based on techniques of FSAs
and that of supertagging proposed by [CHE 99, SRI 99], in the framework of
LTAG formalism.

4.4.10.2. Selective approaches

Selective approaches, which are sometimes called island-driven parsing,
consist of analyzing only the parties considered relevant or non-noisy by the
received utterance. These approaches are supported by simple observations

Syntax Sphere 241

on human language and speech processing which is characterized by the
variation of the degree of attention. From a computational point of view, it
often refers to equipping the parsing algorithm with a filter which allows us,
according to a number of constraints, to ignore one or more words or the
non-parsable segments. In fact, when analyzing the oral language, the input
of the parser is the output of the module for speech recognition which
contains a variable error rate depending on the circumstances (the amount of
noise, the speaker’s clarity of pronunciation, the richness of vocabulary,
etc.).

Different degrees of selectivity have been used in the literature. This
varies between fairly similar approaches to the parsing based on keywords
such as [LUZ 87, ROU 00] to more reasonable coverage approaches such as
the algorithm GLR* by [LAV 97] or the different implementations of
semantic grammars at Carnegie Mellon University, as well as in other
universities, [MAY 95, MIN 96, GAV 00, BOU 02].

Contrary to what some researchers in the field believe, selective
approaches are not necessarily synonymous with information loss or shallow
parsing. In fact, a well-designed selective strategy can be added to any
parsing system without affecting its depth of analysis (see [KUR 03] for a
more thorough discussion). The only drawback of these approaches is that
they increase the computational complexity of algorithms to which they are
added. For example, Wang [WAN 01] describes a chart parsing algorithm
which is equipped with a selective strategy (for the parsing with a semantic
grammar equivalent to CFG) whose complexity is O(b*) instead of O(b?), as
is the case of several conventional algorithms for the CFG'".

4.4.10.3. Parsing of extragrammaticalities of the oral language

The presence of extragrammaticalities in the oral language makes the use
of conventional algorithms such as those we have seen impossible. For
example, during our spoken language study done on the Trains Corpus, a
corpus of spontaneous oral conversations in American English, we have
found that filled pauses or hesitations constitute approximately 7% of the
words of this corpus and approximately 66,26% of the utterances contain
hesitations, in addition to a significant number of more complex phenomena,

10 This information is indirectly mentioned in Wang’s article, but it has been explicitly
provided during the oral presentation of this article at the Eurospeech conference 2001 in
Aalborg, Denmark.

242 Natural Language Processing and Computational Linguistics 1

such as repetitions, self-corrections and false starts. To overcome the
difficulties of parsing related to extragrammaticalities of the oral language,
several sources of knowledge have been used in the literature for the
processing of extragrammaticalities, including structural information,
morphosyntactic information, prosodic information.

Structural information focuses on the identity of each word and those of
the words which follow them''. The advantage of this information is its
reliability and simplicity of use, but its use is generally limited to the
detection of repetitions with the help of patterns [SHR 94, HEE 97].

Morphosyntactic information essentially concerns the morphosyntactic
categories of words or chunks and their possible successions. For example,
the succession of two determiners is deemed extragrammatical and therefore
the case is processed as an self-correction. Some systems have used more
complex rules to model cases involving phrases. In these kinds of cases,
conventional parsers have been developed to perform this task. These rules
have generally been implemented as syntactic metarules in a post-processing
module [COR 97, MCK 98, COR 99, KUR 02].

Prosodic information relies on a set of sources of various kinds, such as
unfilled pauses and the melodic contour, which have been used to segment
the input in syntactic constituents and therefore locate the center of the
extragrammaticality in the utterance [NAK 94, LIC 94].

4.4.11. Generation algorithms

As we have seen with the parsing algorithms, the input is a string of
words (typically a sentence) and the expected output of the algorithm is a
description of syntactic properties of this input string as tree or a dependency
graph. Then comes the role of semantic knowledge to provide an
interpretation of the sentence. In the case of generation, it is the reverse
process, because we must first consider what we would like to express in
terms of semantic content and then we produce the syntactic structure from
which we find the surface string. We can also consider a generation at the
scale of an entire text where consideration of discursive knowledge is
indispensable, particularly when taking into account the connections

11 This means that the system verifies if two words are identical or not, regardless of their
respective morphological categories.

Syntax Sphere 243

between the sentences. We refer to [DAN 00, REI 10] for a general
introduction to the issues of syntactic and semantic generation. With regard
to the syntactic aspects of generation, we often use top-down algorithms
sometimes with a tabular algorithm. Unification is also used to control the

forms of the sentences generated in many approaches including [GER 90,
EST 90, REI 04].

Bibliography

[ABE 93] ABEILLE A., Les nouvelles syntaxes: grammaires d ‘unification et analyse
du frangais, Armand Colin, Paris, 1993.

[ABE 00] ABEILLE A., CANDITO M.-H., “FTAG: a lexicalized tree adjoining
grammar for French”, in ABEILLE A., RAMBOW O. (eds), Tree Adjoining
Grammars, CSLI, Stanford, CA, 2000.

[ABE 03] ABEILLE A., CLEMENT L., TOUSSENEL F., “Building a treebank for
French”, in ABEILLE A. (ed.), Treebanks, Kluwer, Dordrecht, 2003.

[ABN 87] ABNEY S., The English noun phrase in its sentential aspect, PhD
Dissertation, MIT, 1987.

[ABN 90] ABNEY S., “Rapid incremental parsing with repair”, 6th New OED
Conference: Electronic Text Research, University of Waterloo, Waterloo,
Ontario, pp. 1-9, October 1990.

[ABN 91a] ABNEY S., “Parsing by chunks”, in BERWICK R., ABNEY S., TENNY C.
(eds), Principle Based Parsing, Kluwer Academic Publishers, Dordrecht,
1991.

[ABN 91b] ABNEY S., JOHNSON M., “Memory requirement and local ambiguities
of parsing strategies”, Journal of Psycholinguistic Research, vol. 20, no. 3,
pp- 233-250, 1991.

[ABN 95] ABNEY S., “Chunks and dependencies: Bringing processing evidence to
bear on syntax”, in Computational Linguistics and the Foundations of Linguistic
Theory, CSLI, available at: http://www.vinartus.net/spa/91i.pdf, 1995.

[ABN 96] ABNEY S., “Statistical methods and linguistics”, in KLAVANS J., RESNIK P.
(eds), The Balancing Act, The MIT Press, Cambridge, MA, 1996.

Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax,
First Edition. Mohamed Zakaria Kurdi.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

246 Natural Language Processing and Computational Linguistics 1

[ABR 84] ABRAMSON H., “Definite clause translation grammars”, The International
Symposium on Logic Programming, Atlantic City, New Jersey, pp. 233-240, 6-9
February 1984.

[AHO 88] AHO A.V., SETHI R., ULLMAN J., Compilers: Principles, Techniques and
Tools, Addison-Wesley, Reading, MA, 1988.

[AIT 84] Arr-Kact H., A lattice theoretic approach to computation based
on a calculus of partially ordered type structures (property inheritance,
semantic nets, graph unification), PhD Thesis, University of Pennsylvania, 1984.

[AIT 97] AIT-MOKHTAR S., CHANOD J.-P., “Incremental finite-state parsing”,
Proceedings of the 5th International Conference on Applied Natural Language
Processing (ANLP), Washington, DC, pp. 72-79, 1997.

[ALD 07] ALDERETE J.D., FRISCH S.A., “Dissimilation in grammar and the lexicon”,
in DE LACY P. (ed.), Cambridge Handbook of Phonology, Cambridge University
Press, 2007.

[ALF 89] ALFOZAN A., Assimilation in classical Arabic: a phonological study, PhD
Dissertation, University of Glasgow, 1989.

[ANT 91] ANTWORTH E.L., “Introduction to two-level phonology”, Electronic
Document, Notes on Linguistics No. 53, pp. 4-18, available at: http://www-
01.sil.org/pckimmo/two-level phon.html, 1991.

[ANT 94] ANTOINE J.-Y., Coopération-syntaxe sémantique pour la compréhension
de la parole spontanée, Thesis, Institut National Polytechnique de Grenoble,
1994,

[ANT 01] ANTOINE J.-Y., GOULIAN J., “Word order variations and spoken man-
machine dialogue in French: a corpus analysis on the ATIS domain”, Corpus
Linguistics 2001, Lancaster, UK, pp. 22-29, 2001.

[ANT 02] ANTOINE J.-Y., LETELLIER-ZARSHENAS S., NICOLAS P. et al., “Corpus
OTG et ECOLE MASSY: vers la constitution d’une collection de corpus
francophones de dialogue oral diffusés librement”, Actes TALN 2002, Nancy,
France, pp. 319-324, June 2002.

[ARA 02] ArAUJO L., “Part-of-speech tagging with evolutionary algorithms”, in
GELBUKH A. (ed.), Computational Linguistics and Intelligent Text Processing,
Springer, Heidelberg, 2002.

[ARC 84] ARCHANGELLI D., On the Nature of Phonological Representations:
Underspecification Theory, Thesis, Brandeis University, January 1984.

Bibliography 247

[ARC 88] ARCHANGELLI D., Underspecification in Yawelmani Phonology and
Morphology (Outstanding Dissertations in Linguistics), Garland Publishing,
New York, 1988.

[ASM 14] ASMUSSEN J., “Survey of POS taggers”, Technical Report, Society for
Danish Language and Littérature, DSL, available at: korpus.dsl.dk/clarin/corpus-
doc/pos-survey.pdf, 5 March 2014.

[ATW 08] ATwWELL E., Corpus linguistics and language learning: bootstrapping
linguistic knowledge and resources from text, PhD Dissertation, University of
Leeds, 2008.

[BAC 59] BAckuUS J.W., “The syntax and semantics of the proposed”, International
Algebraic Language of the Zurich ACM-GAMM Conference, International
Conference on Information Processing, UNESCO, pp. 125-132, 1959.

[BAK 75a] BAKER J.K., “The Dragon system — An overview”, [EEE Trans, Acoust.
Speech Signal Process, pp. 24-29, 1975.

[BAK 75b] BAKER J.K., Stochastic modeling as a means of automatic speech
recognition, PhD Thesis, Carnegie-Mellon University, 1975.

[BEE 03] BEESLEY K.R., Finite State Morphology, CSLI Publications, Stanford,
2003.

[BEN 02] BENDER E.M., FLICKINGER D., “Oepen Stephan, the grammar matrix:
an open-source starter-kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars”, Proceedings of the Workshop
on Grammar Engineering and Evaluation at the 19th International Conference
on Computational Linguistics, Taipei, Taiwan, pp. 8—14, 2002.

[BEN 09] BENGIO Y., “Learning deep architectures for AI”, Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[BEN 13] BEN ALI B., JARRAY F., “Genetic approach for Arabic part of speech
tagging”, International Journal on Natural Language Computing, vol. 2, no. 3,
June pp. 1-13, 2013.

[BES 95] BESSAC M., CAELEN J., “Analyses pragmatiques, prosodiques et lexicales
d’un corpus de dialogue oral homme-machine”, JADT’95, Roma, Italy, pp. 363—
370, 1995.

[BIR 03] BIRD S., “Phonology”, in MITKOV R. (ed.), Oxford Handbook of
Computational Linguistics, Oxford University Press, 2003.

[BIR 09] BIRD S., KLEIN E., LOPER E., Natural Language Processing with Python,
O’Reilly, 2009.

248 Natural Language Processing and Computational Linguistics 1

[BLA 87] BLANCHE-BENVENISTE C., JEANJEAN C., Le Frangais parlé: transcription
et édition, Didier Erudition, Paris, 1987.

[BLA 95] BLACHE P., Une introduction a HPSG, available at: http://aune.lpl.univ-
aix.fr/~blache/publis.html, 1995.

[BLA 00] BLACK A.W., Speech Synthesis in Festival: a practical course on making
computers talk, Language Technologies Institute, Carnegie Mellon University,
available at: http:/festvox.org/festtut/notes/festtut _toc.html, 2000.

[BLA 09] BLACKBURN P., STRIEGNITZ K., Natural Language Processing
Techniques in Prolog, O’Reilly Media, 2009.

[BLO 48] BLOCH B., “A set of postulates for phonemic analysis”, Language,
vol. 24, pp. 346, 1948.

[BLU 03] BLUTNER R., ZEEVAT H. (eds), Optimality Theory and Pragmatics,
Palgrave Macmillan, London, 2003.

[BOD 95] Bop R., Enriching linguistics with statistics: performance models of
natural language, PhD Dissertation, University of Amsterdam, 1995.

[BOD 98] BoD R., KAPLAN R., “A probabilistic corpus-driven model for lexical
functional analysis”, Proceedings COLING-ACL 98, Montreal, Canada, 1998.

[BOD 00] Bop R., “An empirical evaluation of LFG-DOP”, COLING ‘00
Proceedings of the 18th Conference on Computational Linguistics, Stroudsburg,
PA, pp. 62-68, 2000.

[BOE 01] BOERSMA P., HAYES B., “Empirical tests of the Gradual Learning
Algorithm”, Linguistic Inquiry, vol. 32, pp. 45-86, 2001.

[BON 03] BONASTRE J.-F., BIMBOT F., BOE L.-J. ef al., “Person authentication by
voice: A need for caution”, Eurospeech, Geneva, pp. 33—37, available at: http:/
www.afcp-parole.org/doc/AFCP_SpLC HotTopicsEurospeech03_final.pdf, 2003.

[BOS 97] VAN DEN BOSCH A., Learning to pronounce written words: a study in
inductive language learning, PhD Dissertation, University of Maastricht, 1997.

[BOU 83] BOULAKIA G., “Phonosyntaxe du frangais”, Revue Internationale du
Traitement Automatique du Langage, vol. 24, pp. 24—63, 1983.

[BOU 98] BOUFADEN N., Analyse syntaxique robuste des textes de dialogues oraux,
Thesis, Laval University, Québec, 1998.

[BOU 02] BOUSQUET-VERNHETTES C., Compréhension robuste de la parole
spontanée dans le dialogue oral homme-machine: Décodage conceptuel
stochastique, PhD Thesis, Paul Sabatier University-Toulouse-111, 2002.

Bibliography 249

[BOU 09] BoUKoOUS A., Phonologie de l’amazighe, Institut Royal de la Culture
Amazighe, Rabat, 2009.

[BRE 82] BRESNAN . (ed.), The Mental Representation of Grammatical Relations,
MIT Press, Cambridge, MA, 1982.

[BRI 93] BRILL E., A corpus-based approach to language learning, PhD
Dissertation, University of Pennsylvania, 1993.

[BRI 95] BRILL E., “Transformation-based error-driven learning and natural
language processing: a case study in part of speech tagging”, Computational
Linguistics, vol. 21, no. 4, pp. 543-565, 1995.

[BRO 91] BROWN P.F., LAI J.C., MERCER R.L., “Aligning sentences in parallel
corpora”, Proceedings of ACL 92, pp. 169—176, 1991.

[BUR 15] BURKHARDT F., CAMPBELL N., “Emotional speech synthesis”, in CALVOR.,
D’MELLO S.K., GRATCH J. et al. (eds), The Oxford Handbook of Affective
Computing, Oxford University Press, 2015.

[CAB 98] CARABALLO S., CHARNIAK E., “New figures of merit for best-first
probabilistic chart parsing”, Computational Linguistics, vol. 24, no. 2, pp. 275—
298, 1998.

[CAL 89] CALLIOPE, La parole et son traitement automatique, Masson, Paris, 1989.

[CAN 10] CANDITO M.-H., CRABBE B., DENIS P., “Statistical French dependency
parsing: Treebank conversion and first results”, Proceedings of LREC’10
Conference, La Valletta, Malta, 2010.

[CAR 83] CARBONNEL J.G., HAYES, P.J., “Recovery strategies for parsing
extragrammatical language”, American Journal of Computational Linguistics,
vol. 9, nos. 3—4, pp. 123-146, 1983.

[CAR 74] CARTON F., Introduction a la phonétique du frangais, Bordas, Paris,
1974.

[CAR 06] CARNIE A., Syntax: A Generative Introduction, Blackwell, Oxford, 2006.

[CAV 98a] CAVAZZA M., “An integrated parser for TFG with explicit tree typing”,
Proceedings of the International TAG Workshop, Philadelphia, 28-31 July 1998.

[CAV 98b] CAvAzzA M., “Synchronous TFG for speech translation”, Proceedings
of the International TAG Workshop, Philadelphia, 28-31 July 1998.

250 Natural Language Processing and Computational Linguistics 1

[CHA 93] CHARNIAK E., HENDRICKSON C., JACOBSON N. et al., “Equations for part-
of-speech tagging”, National Conference on Artificial Intelligence, pp. 784—789,
1993.

[CHA 98] CHAPELLIER J.-C., RAJMANN M., “A generalized CYK algorithm for
parsing stochastic CFG”, Proceedings of 1st Workshop on Tabulation in Parsing
and Deduction (TAPD’98), pp. 133—137, 1998.

[CHA 09] CHANG P.-C., TSENG H., JURAFSKY D. et al., “Discriminative reordering
with Chinese grammatical relations features”, Proceedings of the Third
Workshop on Syntax and Structure in Statistical Translation, pp. 51-59, 2009.

[CHE 93] CHEN S.F., “Aligning sentences in bilingual corpora using lexical
information”, ACL93, Columbus, Ohio, pp. 1-16, 22-26 June 1993.

[CHE 99] CHEN J., SRINIVAS B., SHANKER K.V., “New models for improving
supertag disambiguation”, Proceedings of the 9th EACL, Bergen, Norway,
pp. 188-195, 1999.

[CHE 14] CHEN D., MANNING C., “A fast and accurate dependency parser using
neural networks”, Conference on Empirical Methods on Natural Language
Processing EMNLP, Doha, Qatar, pp. 740-750, 25-29 October 2014.

[CHO 56] CHOMSKY N., “Three models for the description of language”, IR/
Transactions on Information Theory, vol. 2, no. 3, pp. 113—124, 1956.

[CHO 63] CHOMSKY N., SCHUTZENBERGER M.P., “The algebraic theory of context
free languages”, in BRAFFORT P., HIRSCHBERG D. (eds), Computer Programming
and Formal Languages, North Holland, Amsterdam, 1963.

[CHO 68] CHOMSKY N., HALLE M., The Sound Pattern of English, Harper and Row,
New York, 1968.

[CHO 70] CHOMSKY N., “Remarks on nominalization”, in JACOBS R., ROSENBAUM P.
(eds), Reading in English Transformational Grammar, Ginn, Waltham, 1970.

[CHO 81] CHOMSKY N., Lectures on Government and Binding, Foris, Dordrecht,
1981.

[CHO 91] CHor S.S., SoN D.J., Kim J.C., “Unification in unification-based
grammar”, 6th Japanese-Korean Joint Conference on Formal Linguistics,
available at: http://dspace.wul.waseda.ac.jp/dspace/bitstream/2065/11788/1/JK6-
26-34.pdf, 1991.

[CHO 95] CHOMSKY N., The Minimalist Program, MIT Press, Cambridge, 1995.

Bibliography 251

[CHU 88] CHURCH K.W., “A stochastic parts program and noun phrase parser for
unrestricted text”, Proceedings of the Second Conference on Applied Natural
Language Processing ANLC, Stroudsburg, PA, pp. 136143, 1988.

[CLE 76] CLEMENTS G.N., Vowel Harmony in Nonlinear Generative Phonology: An
Autosegmental Model, Indiana University Linguistics Club, Bloomington, IL,
1976.

[CLO 81] CrLocksSIN W.F., MELLISH C.S., Programming in Prolog, Springer-
Verlag, Berlin, 1981.

[COL 78] COLMERAUER A., “Metamorphosis grammar”, in BLOC L. (ed.), Natural
Language Communication with Computers, Springer-Verlag, Berlin, 1978.

[COL 99] CoLLINS M., Head-driven statistical models for natural language parsing,
PhD Dissertation, University of Pennsylvania, 1999.

[COL 11] COLLOBERT R., WESTON J., BOTTOU L. et al, ‘“Natural Language
Processing (Almost) from Scratch”, Journal of Machine Learning Research,
vol. 12, pp. 2493-2537, 2011.

[COR 97] Corl, M., DE FORNEL M., MARANDIN J.-M., “Parsing repair”, in MITKOV R.,
NicoLoV N. (eds), Recent Advances in Natural Language Processing, John
Benjamins Publishing Company, 1997.

[COR 99] CORE M., SCHUBERT L., “Speech repairs: a parsing perspective”, ICPhS
Satellite Meeting on Disfluency in Spontaneous Speech, Berkeley, CA, July pp.
48-53, 1999.

[COV 94] COVINGTON M., Natural Language Processing for Prolog Programmers,
Prentice Hall, Englewood, NJ, 1994,

[CRE 95] CREISSELS D., Eléments de syntaxe générale, Presses Universitaires de
France, Paris, 1995.

[CRO 96] CROCKER M.W., “Mechanisms for sentence processing”, Research paper,
The University of Edinburgh, Centre for Cognitive Science, November, 1996.

[CRY 71] CRYSTAL D., Linguistics, Penguin, Harmondsworth, 1971.

[CRY 91] CRYSTAL D., 4 Dictionary of Linguistics and Phonetics, 3rd ed.,
Blackwell, London, 1991.

[DAE 96] DAELEMANS W., ZAVREL J., BERCK P. et al., “MBT: a memory-based
part of speech tagger-generator”, Fourth Workshop on Very Large Corpora,
pp. 14-27, 1996.

252 Natural Language Processing and Computational Linguistics 1

[DAE 10] DAELEMANS W., VAN DEN BOSCH A., “Memory-based learning”, in
CLARCK A., Fox C., LAPPIN S. (eds), The Handbook of Computational
Linguistics and Natural Language Processing, Wiley-Blackwell, Malden, MA,
2010.

[DAN 00] DANLOS L., ROUSSARIE L., “La génération automatique de textes”, in
PIERREL J.-M. (ed.), Ingénierie des langues, Hermes, Paris, 2000.

[DEN 13] DEN DIKKEN M. (ed.), The Cambridge Handbook of Generative Syntax,
Cambridge University Press, 2013.

[DER 88] DEROSE S.J., “Grammatical category disambiguation by statistical
optimization”, Computational Linguistics, vol. 14, no. 1, pp. 31-39, 1988.

[DES 90] DE sMEDT K., KEMPEN G., “Segment Grammar a formalisme for
incremental generation”, in PARIS C. ef al. (ed.), Natural Language Generation
and Computational Linguistics, Kluwer Academic Publisher, Dordrecht, 1990.

[DES 03] DESMET M., HAMON S., LAVIEU B., “Les grammaires HPSG”, Linx
vol. 48, 2003.

[DEW 98] DEWE J., KARLGREN J., BRETAN 1., Telia Research, Assembling a
Balanced Corpus from the Internet, available at: http://eprints.sics.se/63/1/
Dropjaw_korpus.html, 1998.

[DIC 45] DICE L.R., “Measures of the amount of ecologic association between
species”, Ecology vol. 26, no. 3, pp. 297-302, 1945.

[DOS 55] DOSTERT L.E., The Georgetown-1.B.M. experiment, Locke and Booth
Collection, 1955.

[DOU 72] DOUGLAS JOHNSON C., Formal Aspects of Phonological Description,
Mouton, The Hague, 1972.

[DUB 94] DuBoIS J., GIACOMO M., GUESPIN L. et al., Dictionnaire de linguistique
et des sciences du langage, Larousse, Paris, 1994.

[DUT 96] DutoIT T., PAGEL V., “Le projet MBROLA : vers un ensemble de
synthétiseurs vocaux disponibles gratuitement pour utilisation non-

commerciale”, Actes des Journées d’Etudes sur la parole, Avignon, pp. 441—
444, 1996.

[DUT 97] DutoIT T., An Introduction to Text-to-Speech Synthesis, Kluwer
Academic Publishers, Dordrecht, 1997.

[DUT 00] DutoIT T., “Introduction au traitement automatique de la parole”,
available at: http:/tcts.fpms.ac.be/cours/1005-07-08/speech/parole.pdf, 2000.

[EAR 70] EARLEY J., “An efficient context-free parsing algorithm”,
Communications of the ACM, vol. 13, no. 2, pp. 94-102, 1970.

Bibliography 253

[EIS 97] EiSNER J., “Efficient generation in primitive Optimality Theory”, 35th
Annual Meeting of the Association for Computational Linguistics, ACL, pp. 313—
320, 1997.

[EIS 00] EISNER J., SATTA G., “A Faster Parsing Algorithm for Lexicalized Tree-
Adjoining Grammars”, 5th Workshop on Tree-Adjoining Grammars and Related
Formalisms (TAG+5), pp. 14-19, Paris, 25-27 May, 2000.

[ELM 90] ELMAN J.L., “Finding structure in time”, Cognitive Science, vol. 14,
no. 2, pp. 179-211, 1990.

[EST 90] ESTIVAL D., “Generating French with a reversible unification grammar”,
13th International Conference on Computational Linguistics, Helsinki, Finland,
pp. 106111, 1990.

[FIL 88] FILLMORE C.J., KAY P., O’CONNOR Mary Catherine, “Regularity and
idiomaticity in grammatical constructions: the case of let alone”, Language,
vol. 64, pp. 501-538, 1988.

[FIR 48] FIRTH J.R., “Sounds and prosodies”, Transactions of the Philological
Society, pp. 127-52, 1948.

[FIR 57] FIRTH, J.R., Papers in Linguistics: 1934—-1951, Oxford University Press,
1957.

[FLO 02] FLORIAN R., Fast transformation-based learning toolkit, Technical Report
Johns Hopkins University, available at: http://nlp.cs.jhu.edu/%7Erflorian/
fntbl/tbl-toolkit/nodel.html, 02-07 2002.

[FOS 98] FOSLER-LUSSIER E., Markov models and hidden Markov models — a brief
tutorial, Technical Report TR-98-041 International Computer Science Institute,
1998.

[FRA 92] FRAKES W.B., “Stemming algorithms”, in FRAKES W.B. (eds),
Information Retrieval: Data Structures and Algorithms, Prentice-Hall, Upper
Saddle River, NJ, 1992.

[FRA 99] FraNCIS H.S., GREGORY M.L., MICHAELIS L.A., “Are lexical subjects
deviant?”, In CLS-99.

[FRA 12] FRANCEZ N., WINTNER S., Unification Grammars, Cambridge University
Press, 2012.

[FUN 94] FUNG P., MCKEOWN K., “Aligning noisy parallel corpora across language
groups: word pair feature matching by dynamic time warping”, Proceedings of
the Association for Machine Translation (AMTA) in the Americas, pp. 81-88,
1994,

254 Natural Language Processing and Computational Linguistics 1

[GAD 89] GADET F., Le frangais ordinaire, Armand Colin, Paris, 1989.

[GAL 93] GALE W.A., CHURCH K.W., “A program for aligning sentences in
bilingual corpora”, Computational Linguistics vol. 19, pp. 75-102, 1993.

[GAR 68] GARDE P., L’Accent, PUF, Paris, 1968.

[GAR 87] GARSIDE R., “The CLAWS word-tagging system”, in GARSIDE R.,
LEECH G., SAMPSON G. (eds), The Computational Analysis of English: A
Corpus-based Approach, Longman, London, 1987.

[GAV 00a] GAVALDA M., “SOUP: a parser for real-world spontanecous speech”,
Sixth International Workshop on Parsing Technologies (IWPT-2000), Trento,
Italy, February 2000.

[GAV 00b] GAVALDA M., Growing semantic grammars, PhD Dissertation,
Language Technologies Institute, School of Computer Science, Carnegie Mellon
University, 2000.

[GAZ 85] GAZDAR G., KLEIN E., PULLUM G.K. et al., Generalized Phrase Structure
Grammar, Blackwell Publishing, Oxford, and Harvard University Press,
Cambridge, MA, 1985.

[GAZ 89] GAzDAR G., MELLISH C., Natural Language Processing in Prolog,
Addison Wesley, Wokingham, 1989.

[GEE 83] GEE J.P., GROSJEAN F., “Performance structures: a psycholinguistic and
linguistic appraisal”, Cognitive Psychology, vol. 15, pp. 411-458, 1983.

[GER 90] GERDEMANN D., HINRICHS E.W., “Funetor-driven natural language
generation with categorial-unification”, International Conference on Computational
Linguistics, pp. 145-150, 1990.

[GER 01] GERS F.A., SCHMIDHUBER J., “LSTM recurrent networks learn simple
context free and context sensitive languages”, IEEE Transactions on Neural
Networks, vol. 12, no. 6, pp. 1333-1340, 2001.

[GEU 02] GEUTNER P., STEFFENS F., MANSTETTEN D., “Design of the Vico spoken
dialog system: evaluation of user expectations by Wizard of Oz simulations”,
Proceedings of LREC02 Conference, Las Palmas, Spain, 2002.

[GOL 76] GoLDSMITH J.A., Autosegmental phonology, PhD Dissertation,
Massachusetts Institute of Technology, Cambridge, 1976.

[GOL 90] GOLDSMITH J.A., Autosegmental and Metrical Phonology, Blackwell,
Malden, 1990.

Bibliography 255

[GOL 03] GOLDBERG A.E., “Constructions: a new theoretical approach to
language”, TRENDS in Cognitive Sciences, vol. 7, no. 5 pp. 219-223, May,
2003.

[GOL 07] GOLDWATER S., GRIFFITHS T.L., “A fully Bayesian approach to
unsupervised part-of-speech tagging”, Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pp. 744—751, June 2007.

[GOO 98] GOODMAN J., Parsing inside-out, PhD Dissertation, Harvard University,
1998.

[GRA 10] GRAF T., Logics of phonological reasoning, Master Thesis, University of
California, Los Angeles, 2010.

[GRE 65] GREIBACH S., “A new normal-form theorem for context-free phrase
structure grammars”, Journal of the ACM, vol. 12, no. 11, 1965.

[GRE 81] GREENE B.B., RUBIN G.M., Automatic Grammatical Tagging of English,
Department of Linguistics, Brown University Providence, RI, 1981.

[GRE 99] GREFENSTETTE G., “Light parsing as finite-state filtering”, in KORNAI A.
(ed.), Extended Finite State Models of Language, Cambridge University Press,
1999.

[GRE 11] GREEN S., DE MARNEFFE M.-C., BAUER J. et al., “Multiword expression
identification with tree substitution grammars: a parsing tour de force with
French”, 2011 Conference on Empirical Methods on Natural Language
Processing EMNLP, University of Edinburgh, 27-29 July 2011.

[GRI 65] GRIFFITHS T.V., PETRICK S.R., “On the relative efficiencies of context-free
grammar recognizers”, Communications of the ACM, vol. 8, no. 5, pp. 289300,
1965.

[GRI 06] GRIES S.T., STEFANOWITSCH A. (eds), Corpora in Cognitive Linguistics:
Corpus-Based Approaches to Syntax and Lexis, Mouton de Gruyter, Berlin and
New York, 2006.

[GRO 96] GROSS G., Les expressions figées en frangais: noms composés et autres
locutions, Editions Ophrys, Paris, 1996.

[GRO 12] GROSS M., LENTIN A., Introduction to Formal Grammars, Springer
Science & Business Media, 2012.

[GRU 95] GRUNE D., JACOBS C., Parsing Techniques: A Practical Guide, Ellis
Horwood Limited, Chichester, 1995.

[GUS 07] GUSSENHOVEN C., “Intonation”, in DE LACY P. (ed.), Cambridge
Handbook of Phonology, Cambridge University Press, 2007.

256 Natural Language Processing and Computational Linguistics 1

[HAB 97] HABERT B., NAZARENKO A., SALEM A., Les linguistiques de corpus,
Armand Colin, Paris, 1997.

[HAF 74] HAFER M., WEISS S., “Word segmentation by letter successor varieties”,
Information Storage and Retrieval, vol. 10, pp. 371-385, 1974.

[HAJ 98] Hajsic J., “Building a syntactically annotated corpus: the Prague
dependency treebank”, in HAJICOVA E. (ed.), Issues of Valency and Meaning,

Studies in Honor of Jarmila Panevova, Charles University Press, pp. 12-19,
1998.

[HAL 93] HALLE M., MARANTZ A., “Distributed morphology and the pieces of
inflection”, in KENNETH HALE, S., KEYSER J. (eds), The View from Building 20,
MIT Press, Cambridge, MA, 1993.

[HAR 99] HARDCASTLE W.J., LAVER J. (eds), The Handbook of Phonetic Sciences,
Blackwell, Malden, 1999.

[HAS 07] HAsAaN F.M., UzzAMAN N., KHAN M., “Comparison of unigram, bigram,
HMM and Brill’s POS tagging approaches for some South Asian languages”, in
ELLEITHY K. (ed.), Advances and Innovations in Systems, Computing Sciences
and Software Engineering, Springer, 2007.

[HAT 99] HATON J.-P., “Neural network for automatic speech recognition: a review
in speech processing”, in CHOLLET G. et al. (ed.), Recognition and Artificial
Neural Networks, Springer, 1999.

[HAY 60] HAys D.G., “Grouping and dependency theories”, P-1910, RAND
Corporation, 1960.

[HAY 09] HAYES B., Introductory Phonology, Wiley-Blackwell, Malden, 2009.
[HDU 84] HUDSON R., Word Grammar, Blackwell, Oxford, 1984.

[HEE 95] HEEMAN P., ALLEN J., “The train 93 dialogs, TRAINS Technical note94-
2”, University of Rochester Computer Science Department, available at: fitp://
ftp.cs.rochester.edu/puby/.../ai/94.tn2. Trains 93 dialogues.ps.gz, March, 1995.

[HEE 97] HEEMAN P.A., Speech repairs, intonational boundaries and discourse
markers: modeling speakers’ utterances in spoken dialog, PhD Dissertation,
University of Rochester, 1997.

[HEI 09] HEINZ J., KOBELE G., RIGGLE J., “Evaluating the complexity of optimality
theory”, Linguistic Inquiry, vol. 40, pp. 277-288, available at: http://roa.rutgers.
edu/files/968-0508/968-RIGGLE-0-0.PDF, 2009.

Bibliography 257

[HEN 94] HENDERSON J., Description based parsing in a connectionist network.
PhD Thesis, University of Pennsylvania, 1994.

[HEN 01] HENDRIKS P., DE HOOP H., “Optimality theoretic semantics”, Linguistics
and Philosophy, vol. 24, no. 1, pp. 1-32, February 2001.

[HEN 10] HENDERSON J., “Artificial neural networks”, in CLARK A., Fox C.,
LAPPIN S. (eds), Handbook of Computational Linguistics and Natural Language
Processing, Wiley-Blackwell, Malden, 2010.

[HES 05] HEss M., KLENNER M., Optimality theory and computational linguistics:
an overview, Research paper, University of Zurich, 2005.

[HIN 06] HINTON G.E., OSINDERO S., TEH Y., “A fast learning algorithm for deep
belief nets”, Neural Computation, vol. 18, pp. 1527-1554, 2006.

[HIN 12] HINTON G.E., NITISH S., KRIZHEVSKY A. et al, “Improving neural
networks by preventing co-adaptation of feature detectors”, CoRR, abs/
1207.0580, 2012.

[HIR 84] HIRSHBERG J., PIERREHUMBERT J., The Intonational Structuring of
Discourse, Association for Computational Linguistics Stroudsburg, PA, 1984.

[HIR 98] HIRST D., D1 CRISTO A., (eds), Intonation Systems: A Survey of Twenty
Languages, Cambridge University Press, 1998.

[HOC 55] HOCkeTT C.F., 4 Manual of Phonology, Waverly Press and Indiana
University Publications in Anthropology and Linguistics, Baltimore, 1995.

[HOC 58] HOCKETT C.F., A Course in Modern Linguistics, MacMillan, New York,
1958.

[HOE 04] HOEY M., “Textual colligation: a special kind of lexical priming”,
Language and Computers vol. 1, no. 49, pp. 171-194, 2004.

[HOF 99] HOFSTADTER D., Géddel, Escher, Bach: An Eternal Golden Braid, Basic
Books, 1999.

[HOP 82] HoPFIELD J.J., “Neural networks and physical systems with emergent
collective computational abilities”, The National Academy of Sciences, vol. 79,
pp. 2554-2558, 1982.

[HOP 01] HOPCROFT J.E., MOTWANI R., ULLMAN 1.D., Introduction to Automata
Theory Languages, and Computation, Addison Wesley, 2001.

[HUD 00] HUDSON R., Dependency Grammar, Esslli Summer School, University of
Birmingham, UK, 2000.

258 Natural Language Processing and Computational Linguistics 1

[HUD 10] HUDSON R., An Introduction to Word Grammar, Cambridge University
Press, 2010.

[HUN 01] HUNSTON S., “Colligation, lexis, pattern, and text”, in HOEY M., MIKE S.,
GEOFF T. (eds), Patterns of Text: In Honour of Michael Hoey, John Benjamins,
Amsterdam and Philadelphia, PA, 2001.

[HUT 04] HUTCHINS J., “The first public demonstration of machine translation: the
Georgetown-IBM system”, 7th January 1954, 6th Conference of the Association
for Machine Translation in the Americas, AMTA 2004, Washington DC, 28
September—2 October 2004.

[IDS 06] IDSARDI W., “A simple proof that optimality theory is computationally
intractable”, Linguistic Inquiry, vol. 37, pp. 271-275, 2006.

[INK 90] INKEKLAS S., ZEC D. (eds), Phonology Syntax Connection, Chicago
University Press, IL, 1990.

[IRO 61] IrRoNS E.T., “A syntax directed compiler for ALGOL 607,
Communications of the ACM, vol. 4, pp. 51-55, 1961.

[JAC 77] JACKENDOFF R., X Syntax: A Study of Phrase Structure, MIT Press,
Cambridge, MA, 1977.

[JAK 61] JAKOBSON R., FANT C., GUNNAR M. et al., Preliminaries to Speech
Analysis: the Distinctive Features and Their Correlates, MIT Press, Cambridge,
MA, 1961.

[JAR 13] JARDINE A., “Logic and the generative power of autosegmental
phonology”, in KINGSTON J., MOORE-CANTWELL C., PATER J. et al. (eds),
Supplemental Proceedings of the 2013 Meeting on Phonology, 2013.

[JEL 76] JELINEK F., “Continuous speech recognition by statisical methods”, /IEEE
Proceedings, vol. 64, no. 4, pp. 532-556, 1976.

[JEL 92] JELINEK F., LAFFERTY J.D., MERCER R.L., “Basic methods of probabilistic
context free grammars”, Speech Recognition and Understanding, NATO ASI
Series, vol. 75, pp. 345-360, 1992.

[JOD 93] JoDOUIN J.-F., Réseaux de neurones et traitement du langage naturel :
étude des réseaux de neurones récurrents et de leurs représentations, PhD Thesis,
University of Paris 11, 1993.

[JOD 94] JODOUIN J.-F., Les réseaux de neurones, principes et définitions, Hermes,
Paris, 1994.

Bibliography 259

[JOH 83] JOHNSON-LAIRD P.N., Mental Models: Towards a Cognitive Science of
Language, Inference, and Consciousness, Harvard University Press, 1983.

[JOH 98] JOHNSON M., “Left corner transforms and finite state approximations”,
36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics, COLING-ACL 98, 10—
14 August 1998.

[JOH 11] JoHNSON K., Acoustic and Auditory Phonetics, Wiley-Blackwell, Malden,
2011.

[JON 11] JonEs K.S., “Natural language processing: a historical review”, Artificial
Intelligence Review, pp. 1-12, available at: http://www.cl.cam.ac.uk/archive/
ksj21/histdw4.pdf, 10 December 2011.

[JOS 75] JosHI A., LEVY L.S., TAKAHASHI M., “Tree adjunct grammar”, Journal of
Computer and System Science, vol. 21, no. 2, 1975.

[JOS 99] JosHi A., SCHABES Y., “Tree-adjoining grammars”, Michigan State
University, available at: http://www.cis.upenn.edu/~joshi/, 15 March 1999.

[JOS 03] JosHI A., SARKAR A., “Tree adjoining grammars and its application to
statistical parsing”, in BoD R., SCHA R., SIMA’AN K. (eds), Data-oriented
Parsing, CSLI, 2003.

[JUR 00] JURAFSKY D., MARTIN J., Speech and Language Processing, Prentice
Hall, 2000.

[JUT 94] HERAULT J., JUTTEN C., Réseaux Neuronaux et Traitement du Signal,
Hermes, Paris, 1994.

[KAD 04] KADDOURI-ALHAMAD G., Introduction a la phonétique de [’arabe,
Editions Ammar, Amman, 2004.

[KAH 12] KAHANE S., “Why to choose dependency rather than constituency for
syntax: a formal point of view”, in APRESJAN J., L’HOMME M.-C., IOMDIN L.
et al. (eds), Meanings, Texts, and Other Exciting Things: A Festschrifi to
Commemorate the 80th Anniversary of Professor Igor A. Mel ¢uk, Languages of
Slavic Culture, Moscow, 2012.

[KAI 99] KAISER E., JOHNSTON M., HEEMAN P.A., “PROFER: predictive, robust
finite-state parsing for spoken language”, Proceedings of ICASSP, vol. 11, March
1999.

[KAP 83] KAPLAN R., BRESNAN J., “Lexical-functional grammar: a formal system
for grammatical representation”, in JOAN B. (ed.), The Mental Representation of
Grammatical Relations, MIT Press, Cambridge, MA, 1983.

260 Natural Language Processing and Computational Linguistics 1

[KAP 94] KAPLAN R., KAY M., “Regular models of phonological rule systems”,
Computational Linguistics, vol. 20, no. 3, pp. 331-378, 1994,

[KAP 97] KAPLAN R., “Finite state technology”, in COLE R. (ed.), Survey of the
State of the Art in Human Language Technology, Cambridge University Press,
1997.

[KAR 97] KARTTUNEN L., CHANOD J.P., GREFENSTETTE G. et al, “Regular
expressions for language engineering”, Natural Language Engineering, vol. 2,
no. 4, pp. 1-24, 1997.

[KAR 01] KARTTUNEN L., BEESLEY K.R., “A short history of two-level
morphology”, ESSLLI-2001, Helsinki, available at: http://www.helsinki.fi/esslli/,
2001.

[KAR 05] KARTUNEN L., BEESLEY K.R., Twenty-five Years of Finite State
Morphology, CSLU Publications, available at: http://web.stanford.edu/~laurik/
publications/25Y earsOfTwoLM.pdf, 2005.

[KAS 65] KasaMmi T., An efficient recognition and syntax analysis algorithm for
context-free languages, Technical report AFCRL-65-758, Air Force Cambridge
Research Laboratory, Bedford, MA, 1965.

[KAY 67] KAY M., “Experiments with a powerful parser”, Proceedings of the 2nd
International Conference on Natural Language Processing, 23-25 August,
Grenoble, France, 1967.

[KAY 83] KAY M., Unification grammar, Technical report, Xerox Palo Alto
Research Center, Palo Alto, CA, 1983.

[KAY 85] KAYE J., LOWENSTAMM J., VERGNAUD J.-R., “The internal structure of
phonological elements: a theory of charm and government”, Phonology
Yearbook, vol. 2, pp. 305-328, 1985.

[KER 96] KERBRAT-ORECCIONI C., La Conversation, Seuil, Paris, 1996.

[KIE 00] KIEFER B., KRIEGER H.-U., NEDERHOF, M.-J., “Efficient and robust HPSG
parsing of word hypotheses graphs”, in WAHLSTER W. (ed.), Verbmobil:
Foundations of Speech-to Speech Translation System, Springer, Berlin, 2000.

[KIM 03] KM J.-D., OHTA T., TATEISI Y. et al., “GENIA corpus: a semantically
annotated corpus for bio-textmining”, [Ith International Conference on
Intelligent Systems for Molecular Biology, Brisbane, Australia, 29 June-3 July,
2003.

[KIN 07] KINGSTON J., “The phonetics—phonology interface”, in PAUL D.L. (ed.),
The Cambridge Handbook of Phonology, Cambridge University Press, 2007.

Bibliography 261

[KIN 10] Tomr K., HAizHOU L., “An overview of text-independent speaker
recognition: from features to supervectors”, Speech Communication, vol. 52,
no. 1, pp. 1240, 2010.

[KIP 82] KIPARSKY P., “Lexical phonology and morphology”, in YANG S. (ed.),
Linguistics in the Morning Calm, Hanshin, Seoul, 1982.

[KIR 04] KiRAZ G.A., Computational Nonlinear Morphology with Emphasis on
Semitic Languages, Cambridge University Press, 2004.

[KLA 80] KLATT D., “Software for a cascade/parallel formant synthesizer”, Journal
of the Acoustical Society of America, vol. 67, pp. 13-33, 1980.

[KLE 56] KLEENE, S.C., “Representation of events in nerve nets and finite
automata”, in SHANNON C., MCCARTHY J., (eds) Automata Studies, Princeton
University Press, 1956.

[KLE 03] KLEIN D., MANNING C., “A* parsing: fast exact viterbi parse selection”,
Proceedings of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2003.

[KOE 05] KOEHN P., “Europarl: a parallel corpus for statistical machine
translation”, 10th Machine Translation Summit, Phuket, Thailand, 12-16
September, pp. 79-86, 2005.

[KOH 82] KOHONEN T, “Self-organized formation of topologically correct feature
maps”, Biological Cybernetics vol. 43, no. 1, pp. 59-69, 1982.

[KOS 83] KOSKENNIEMI K., “Two-level morphology: a general computational
model for word-form recognition and production”, Publication No. 11,
Department of General Linguistics, University of Helsinki, 1983.

[KRE 97] KRENN B., SAMUELSON C., “The linguist’s guide to statistics”, available
at: nlp.stanford.edu/fsnlp/dontpanic.pdf, 1997.

[KRO 01] KROMANN M., “Optimality parsing and local cost functions in
discontinuous grammar”, Electronic Notes of Theoretical Computer Science,
vol. 53, pp. 163-179, 2001.

[KUR 00] KURDI M.-Z., “The semantic tree unification grammar: a new formalism
for spoken language parsing”, 6th International Conference on Spoken Language
Processing ICSLP 00, Beijing, China, 16-20 October 2000.

[KUR 02] KurDI M.-Z., “Combining pattern matching and shallow parsing
techniques for detecting and correcting spoken language extragrammaticalities”,
2nd Workshop on Robust Methods in Analysis of Natural language Data
Romand 2002, Rome, Italy, pp. 94-97, 17 July 2002.

262 Natural Language Processing and Computational Linguistics 1

[KUR 03] KurDI M.-Z., Contribution a ’analyse du langage oral spontané, Thesis,
University Joseph Fourier, Grenoble, France, 2003.

[LAD 01] LADEFOGED P., 4 Course in Phonetics, 4th ed., Heinle & Heinle, Boston,
2001.

[LAM 05] LAMIROY B., KLEIN J.R., “Le probléme central du figement est le semi-
figement”, Linx, vol. 53, pp. 135—-154, available at: http://linx.revues.org/271,
2005.

[LAV 97] LAVIE A., GLR*: a robust grammar-focused parser for spontaneously
spoken language, PhD Dissertation, Carnegie Mellon University, Pittsburgh, PA,
1997.

[LAZ 94] LAZARD G., L ’Actance, Presses Universitaires de France, Paris, 1994.

[LEE 10] LEE K.Y., HAGHIGHI A., BARZILAY R., “Simple type-level unsupervised
POS tagging”, Proceedings of the Conference on Empirical Methods in Natural
Language Processing EMNLP ‘10, Stroudsburg, PA, pp. 853-861, 2010.

[LEG 01] LEGENDRE G., GRIMSHAW J., VIKNER S. (eds), Optimality-Theoretic
Syntax, MIT Press, Cambridge, MA, 2001.

[LEG 12] LEGALLOIS D., “La colligation : autre nom de la collocation grammaticale
ou autre logique de la relation mutuelle entre syntaxe et sémantique?”’, Corpus,
vol. 11, pp. 31-54, 2012.

[LEN 00] LENzOo K.A., BLACK A.W., “Diphone collection and synthesis”, 6th
International Conference of Spoken Language Processing ICSLP, Beijing,
China, pp. 306-309, 2000.

[LEO 05] LEON P., Phonétisme et prononciations du francais, Armand Colin, Paris,
2005.

[LEV 03] LEvY R., MANNING C.D., “Is it harder to parse Chinese, or the Chinese
Treebank?”, ACL03, pp. 439-446, 2003.

[LEV 05] LEVY R., Probabilistic models of word order and syntactic discontinuity,
PhD Dissertation, Stanford University, 2005.

[LIB 09] LIEBER R., Introducing Morphology, Cambridge University Press, 2009.

[LIC 94] LickLEY R.L., Detecting disfluency in spontaneous speech, Ph.D.
Dissertation, University Edinburgh, 1994,

[LOP 99] LoPEz P., Analyse d’énoncés oraux pour le dialogue homme-machine a
I’aide de grammaires lexicalisées d’arbres, Doctoral thesis, University of Nancy,
1999.

Bibliography 263

[LUZ 87] LuzzATi D., “DIALORS: un systéme de dialogue oral simule pour une
tache restreinte”, XVIieme JEP, Hammamet, pp. 183—186, 1987.

[LUZ 95] LuzzATTI D., Le dialogue verbal homme-machine : étude de cas, Masson,
Paris, 1995.

[MAG 94] MAGERMAN D., Natural language processing as statistical pattern
recognition, PhD Dissertation, Stanford University, 1994.

[MAH 95] MaHESH K., Syntax-semantics interaction in sentence understanding,
PhD Dissertation, Georgia Institute of Technology, 1995.

[MAH 02] MAHEO-LE COADIC M., MIMRAN R., POISSON-QUINTON S., Grammaire
expliquée du frangais, Cl1é International, Paris, 2002.

[MAN 88] MANN W., THOMPSON S., “Rhetorical structure theory. Toward a
functional theory of text organization”, Text, vol. 8, no. 3, pp. 243-281, 1988.

[MAN 99] MANNING C., SCHUTZE H., Foundations of Statistical Natural Language
Processing, MIT Press, Cambridge, 1999.

[MAN 00] MANA F., MASSIMINO P., PACCHIOTTI A., “Using machine learning
techniques for grapheme to phoneme transcription”, 7" European Conference on
Speech Communication and Technology Eurospeech, Aalborg, Denmark,
pp. 1915-1918, 2001.

[MAR 80] MARCUS M., A Theory of Syntactic Recognition for Natural Language,
MIT Press, Cambridge, MA, 1980.

[MAR 93] MARCUS M., SANTORINI B., MARCINKIEWICZ M.A., “Building a large
annotated corpus of English: the Penn Treebank”, Computational Linguistics,
vol. 19, no. 2, pp. 313-330, available at: https://catalog.ldc.upenn.edu/docs/
LDC95T7/¢c193.html, 1993.

[MAR 94] MITCHELL M., KIM G., MARCINKIEWICZ M.A. et al., “The Penn
Treebank: annotating predicate argument structure”, Proceedings of the Human
Language Technology Workshop, San Francisco, available at: https://catalog.ldc.
upenn.edu/docs/LDC95T7/arpa94.html, March, 1994.

[MAR 96] MARQUES N.C., PEREIRA LOPES G., “Using neural nets for Portuguese
part-of-speech tagging”, 5th International Conference on the Cognitive Science
of Natural Language Processing, pp. 21-22, 1996.

[MAR 06] MARNEFFE M.-C., MacCARTNEY B., MANNING C.D., “Generating typed
dependency parses from phrase structure parses”, 5th International Conference
on Language Resources and Evaluation, Genoa, Italy, 24-26 May 2006.

264 Natural Language Processing and Computational Linguistics 1

[MAR 07] MARCHAL A., From Speech Physiology to Speech Phonetics, ISTE,
London and John Wiley & Sons, New York, 2007.

[MAR 08] MARTIN P., Phonétique acoustique : Introduction a l’analyse acoustique
de la parole, Armond Colin, Paris, 2008.

[MAR 13] YUVAL M., HABASH N., RAMBOW O., “Dependency parsing of modern
standard Arabic with lexical and inflectional features”, Computational
Linguistics, vol. 39-1, pp. 161-194, 2013.

[MAR 14] MARQuIis P., PAPINI O., PRADE H., Panorama de [’Intelligence
Artificielle: ses bases méthodologiques, ses développements, Cépadués Editions,
Toulouse, 2014.

[MAY 95] MAYFIELD L., GAVALDA M., SEO, Y.-H. et al., “Parsing real input in
JANUS: a concept based approach”, Proceedings of TMI195, pp. 442447, 1995.

[MCC 43] McCuLLoCH W., PiTTS, W., “Logical calculus of the ideas immanent in
nervous activity”, Philosophy of Science, vol. 10, no. 1, pp. 18-24, 1943.

[MCC 81] MCCARTHY J., “A prosodic theory of non-concatenative morphology”,
Linguistic Inquiry, vol. 12, pp. 373-418, 1981.

[MCE 96] MceENERY T., WILSON A., Corpus Linguistics, Edinburgh University
Press, 1996.

[MCG 76] McGURK H., MacDONALD J., “Hearing lips and seeing voices”, Nature,
vol. 264, no. 5588, pp. 746-748, 1976.

[MCK 98] MCcKELVIE D., “The syntax of disfluency in spontaneous spoken
language”, HCRC Research Paper HCRC/RP-95, May 1998.

[MEG 03] MEGERDOOMIAN K., “Text mining, corpus building and testing”, in
FARGHALI A. (ed.), Handbook for Language Engineers, Center for the Study of
Language and Information, Stanford University Press, 2003.

[MEL 88] MEL’CUK IGOR A., Dependency Syntax: Theory and Practice, SUNY
Press, Albany, NY, 1988.

[MEL 99] MELAMED L.D., “Bitext maps and alignments via pattern recognition”,
Computational Linguistics, vol. 25, no. 1, pp. 107—130, 1999.

[MES 89] MESTER R.A., ITO J., “Feature predictability and underspecification:
palatal prosody in Japanese mimetics”, Language, vol. 65, pp. 258-293, 1989.

[MEY 04] MEYER C., English Corpus Linguistics: An Introduction, Cambridge
University Press, 2004.

Bibliography 265

[MIL 04] MILTSAKAKI E., PRASAD R., JOSHI A. et al, “The Penn discourse
Treebank™, Proceedings of the NAACL/HLT Workshop on Frontiers in Corpus
Annotation, 2004.

[MIN 96] MINKER W., BENNACEF S., “Compréhension et évaluation dans le
domaine ATIS”, Proceedings of the Journées d’Etudes en Parole, 1996.

[MIS 87] MisrI G., Le figement linguistique en frangais contemporain, Linguistics
Doctoral Thesis, University Paris V, 1987.

[MON 09] MONTAVON G., “Deep learning for spoken language identification”,
NIPS Workshop on Deep Learning for Speech Recognition and Related
Applications, available at: http://research.microsoft.com/en-us/um/people/
dongyu/nips2009/papers/montavon-paper.pdf, 2009.

[MOO 02] MOORE R.C., “Fast and accurate sentence alignment of bilingual
corpora”, in Machine Translation: From Research to Real Users, Springer-
Verlag, Heidelberg, Germany, 2002.

[MOO 04] MooRE R.C., “Improved left-corner chart parsing for large context-free
grammars”, in BUNT H., CARROLL J., SATTA G. (eds), New Developments in
Parsing Technology, Kluwer Academic Publishers, Norwell, MA, 2004.

[MOR 92] MOREL M.-A., Structure hiérarchique de 1’énoncé oral, International
Symposium Lucien Tesniere, Mont-Saint-Aignan, 19—21 November 1992.

[MUL 08] MULLER C., “Réflexions sur I’ordre des mots en francais: les constituants
majeurs de 1’énoncé”, in DURAND J., HABERT B., BERNARD L. (eds), Proceedings
of the Ist World Congress of French Linguistics, CD-Rom, EDP Sciences, Paris,
pp. 2663-2676, July 2008.

[NAK 94] NAKATANI C., HIRSHBERG J., “A corpus-based study of repair cues
in spontaneous speech”, Journal of the Acoustical Society of America, vol. 95,
p. 160, 1994.

[NAS 09] NASR A., RAMBOW O., “Nonlexical chart parsing for TAG”, in
BANGALORE S., JOSHI A. (eds), Complexity of Lexical Descriptions and its
Relevance to Natural Language Processing: A Supertagging Approach, MIT
Press, Cambridge, 2009.

[NED 93] NEDERHOF M.-J., “Generalized left-corner parsing”, Proceedings of the
Sixth Conference of the European Chapter of the Association for Computational
Linguistics, Utrecht, The Netherlands, pp. 305-314, 1993.

[NEL 64] NELSON F.W., “A standard sample of present-day english for use with
digital computers”, Internal Report, U.S Office of Education on Cooperative
Research Project No. E-007, Brown University, Providence, 1964.

266 Natural Language Processing and Computational Linguistics 1

[NES 05] NESSELHAUF N., Collocations in a Learner Corpus, John Benjamins
Publishing Company Philadelphia, PA, 2005.

[NES 07] NESPOR M., VOGEL 1., Prosodic Phonology, Walter de Gruyter, Berlin,
2007.

[NIE 14] NIELSEN M., Neural Networks and Deep Learning, available at:
http://neuralnetworksanddeeplearning.com/index.html, December 2014.

[OFL 94] OrLAZER K., GOCMEN E., BOzSAHIN C., An Outline of Turkish
Morphology, available at: http://www.academia.edu/7331476/An_Outline of
Turkish_Morphology, October 1994.

[OGU 14] OGUNFUNMI T., NARASIMHA M., TOGNERI R. (eds), Speech and Audio

Processing for Coding, Enhancement and Recognition, Springer, New York,
2014.

[OZK 94] OzKAN N., Analyses communicationnelles de dialogues finalisés, Thesis,
Institute National Polytechnique de Grenoble, 1994,

[PAL 05] PALMER M., DANIEL G., KINGSBURY P., “The proposition bank: an

annotated corpus of semantic roles”, Computational Linguistics, vol. 31, no. 1,
pp. 71-106, 2005.

[PAL 06] PALO P., A review of articulatory speech synthesis, Master’s Thesis,
Helsinki University of Technology, 2006.

[PAL 10] PALMER M., XUE N., “Linguistic annotation”, in CLARK A., Fox C.,,
LAPPIN S. (eds), The Handbook of Computational Linguistics and Natural
Language Processing, Wiley-Balckwell, Malden, MA, 2010.

[PAR 93] PARADIS C., “Phonologie générative multilinéaire”, in NESPOULOUS J.-L.
(ed.), Tendances actuelles en linguistique générale, Delachaux and Niestlé,
Paris, pp. 11-45, 1993.

[PAR 98] PARTINGTON A., Patterns and Meanings: Using Corpora for English
Language Research and Teaching, John Benjamins, Amsterdam and
Philadelphia, PA, 1998.

[PEC 04] PECMAN M., Phraséologie contrastive anglais-francais: analyse et
traitement en vue de l'aide a la rédaction scientifique, Doctoral Thesis,
University of Nice-Sophia Antipolis, 2004.

[PEN 00] PENG L., “Nasal harmony in three South American languages”,
International Journal of American Linguistics, vol. 66, no. 1, pp. 76-97, 2000.

Bibliography 267

[PER 80] PEREIRA F., WARREN D., “Definite clause grammars for language analysis
a survey of the formalism and a comparison with Augmented Transition
Networks”, Artificial Intelligence, vol. 13, pp. 231-277, 1980.

[PER 81] PEREIRA F., “Extraposition grammars”, Computational Linguistics, vol. 7,
no. 4, pp. 243-256, 1981.

[PIC 75] PICABIA L., Eléments de linguistique générative: application au frangais,
Armond Colin, Paris, 1975.

[POE 04] Poesio M., “Discourse annotation and semantic annotation in the
GNOME corpus”, Proceedings of the ACL Workshop on Discourse Annotation,
pp. 72-9, 2004.

[POL 87] POLLARD C., SAG 1., Information Based Syntax and Semantics, Stanford,
CSLI Publications, 1987.

[POL 96] POLLARD C., SAG 1., “HPSG: background and basics”, available at: http://
www-users.york.ac.uk/~sjh1/courses/I23 lintro_to hpsg/papers/hpsg-overview.
pdf, 1996.

[POL 97] PoOLLARD C., SAG 1., “HPSG: background and basics”, in ABEILLE A.
et al. (eds), The Major Syntactic Structures of French, Esslli Summer School,
Aix-en-Provence, France, 1997.

[POL 98] PoLLOCK J.-Y., Langage et cognition: Introduction au programme
minimaliste de la grammaire générative, Presses Universitaires de France, Paris,
1998.

[POR 80] PORTER M.F., “An algorithm for suffix stripping”, Program, vol. 14,
no. 3, pp. 130—137, 1980.

[POR 06] PORTER M.F., Stemming Algorithms for Various European Languages,
available at: http://www.snowball.tartarus.org/texts/stemmersoverview.html, 2006.

PRI 93] PRINCE A., SMOLENSKY P., Optimality theory: constraint interaction in
p
generative grammar, Technical Report, Rutgers University Center for Cognitive
Science, 1993.

[PRI 04] PRINCE A., SMOLENSKY P., Optimality Theory: Constraint Interaction in
Generative Grammar, Blackwell Publishing, Malden, 2004.

[PUS 03] PUSTEJOVSKY J., HANKS P., SAURI R. ef al., “The timebank corpus”,
Corpus Linguistics, vol. 40, pp. 647-56, 2003.

[PUS 12] PUSTEJOVSKY J., STUBBS A., Natural Language Annotation for Machine
Learning, O’Reily, Sebastopol, CA, 2012.

268 Natural Language Processing and Computational Linguistics 1

[RAB 89] RABINER L.R., “A tutorial on hidden Markov models and selected
applications in speech recognition”, Proceedings of the IEEE, pp. 257-286,
1989.

[RAP 11] RAPHAEL, L.J., BORDEN G.J., HARRIS K.S., Speech Science Primer:
Physiology, Acoustics, and Perception of Speech, Wolters Kluwer/Lippincott
Williams and Wilkins, Philadelphia, 2011.

[REI 04] REITTER D., “A development environment for multimodal functional
unification generation grammars”, 3rd International Conference on Natural
Language Generation, Brockenhurst, UK, 2004.

[REI 10] REITER E., “Natural language generation”, in CLARK A., FOX C., LAPPIN S.
(eds), The Handbook of Computational Linguistics and Natural Language
Processing, Wiley-Blackwell, Malden, MA, 2010.

[REN 07] RENOUF A., BANERIJEE J., “Lexical repulsion between sense-related
pairs”, International Journal of Corpus Linguistics, vol. 12, no. 3, pp. 415444,
2007.

[RES 92a] RESNIK P., “Left-corner parsing and psychological plausibility”,
International Conference on Computational Linguistics COLING 92, Nantes
France, pp. 191-197, 1992.

[RES 92b] RESNIK P., “Probabilistic tree-adjoining grammar as a framework for
statistical natural language processing”, Proceedings of the Fourteenth
International Conference on Computational Linguistics (COLING’92), Nantes,
France, pp. 418-424, 1992.

[ROA 02] RoacH P., A little encyclopaedia of phonetics, available at:
www.personal.rdg.ac.uk/~llsroach/encyc.pdf, 2002.

[ROA 07] ROARK B., SPROAT R., Computational Approaches to Morphology and
Syntax, Oxford University Press, 2007.

[ROB 02] ROBERGE Y., Une bréve introduction aux concepts de la syntaxe
générative, online courses, University of Toronto, available at: http://french.
chass.utoronto.ca/fre378/messages.html, 2002.

[ROC 96] ROCHE E., SCHABES Y., Introduction to finite-state devices in natural
language processing, Technical Report, Mitsubishi Research Lab. TR1996-013,
1996.

[ROS 70] ROSENKRANTZ D.J., LEWIS P.M., “Deterministic left corner parsing”,
IEEE Conference Record of the 11th Annual Symposium on Switching and
Automata Theory, pp. 139-152, 1970.

Bibliography 269

[ROS 81] Rossi M., D1 CRISTO A., HIRST D. et al., L’intonation : de I’acoustique a
la sémantique, Klincksieck, Paris, 1981.

[ROS 00] Rossi M., L’intonation, le systeme du francais: description et
modélisation, Ophrys, Paris, 2000.

[ROS 05] ROSENBLUM L.D., “Primacy of multimodal speech perception”, in PISONI
D.B., REMEZ R.E. (eds), The Handbook of Speech Perception, Blackwell
Publishing, Malden, MA, 2005.

[ROU 99a] ROUSSEL D., Intégration de prédictions linguistiques issues
d’applications a partir d’une grammaire d’arbres hors contexte : contribution a
I’analyse de la parole, Thesis, INPG, Grenoble, France, 1999.

[ROU 99b] ROUSSEL D., KurRDI M.-Z., CAELEN J., “Normalisation des
extragrammaticalités, supertagging et analyse partielle pour le traitement de la
parole”, Hybrid Methods Workshop NLP/TALP for robust language processing,
Cargése, 11-17 July 1999.

[ROU 00] ROUILLARD J., Hyperdialogue sur Internet: Le systtme HALPIN,
Doctoral Thesis, University Grenoble I, 2000.

[RUM 86] RUMELHART D.E., McCLELLAND J.L., PDP RESEARCH GROUP, Parallel
Distributed Processing, Volume 1: Explorations in the Microstructure of
Cognition: Foundations, MIT Press, Cambridge, MA, 1986.

[RUS 10] RUSSEL S., NORVIG P., Intelligence Artificielle, 3rd ed., Pearson, 2010.

[SAB 83] SABAH G., RADY M., “A deterministic syntactic-semantic parser applied
to French”, Actes 8 IJCAI Karlsruhe, pp. 707-710, 1983.

[SAG 03] SAG 1.A.,, WAasow T., BENDER E.M., Syntactic Theory: A Formal
Introduction, Center for the Study of Language and Information CSLI, Stanford,
2003.

[SAU 72] SAUVAGEOT A., Analyse du frangais parlé, Hachette, Paris, 1972.

[SCH 92] SCHABES Y., “Stochastic tree adjoining grammars”, Proceedings of the
Fourteenth International Conference on Computational Linguistics (COLING’92),
Nantes, France, pp. 140-145, 1992.

[SCH 94a] ScHMIDT H., “Part of speech tagging with neural networks”, Proceedings
of the 15th International Conference on Computational Linguistics (COLING-
94), 1994.

[SCH 94b] ScHMIDT H., “Probabilistic part-of-speech tagging using decision trees”,
Proceedings of International Conference on New Methods in Language
Processing, Manchester, UK, 1994.

270 Natural Language Processing and Computational Linguistics 1

[SCH 95] SCHABES Y., WATERS R.C., “Tree insertion grammar: a cubic-time
parsable formalism that lexicalizes context-free grammar without changing
the trees produced”, Computational Linguistics, vol. 21, no. 4, pp. 479-513,
December 1995.

[SHA 93] SHABAN M., A minimal GB parser, BU-CS Technical report 39-013,
Boston, 1993.

[SHI 86] SHIEBER S.M., An Introduction to Unification-based Approaches to
Grammar, CSLI, 1986.

[SHI 87] SHIEBER S.M., “Separating linguistic analyses from linguistic theories”, in
WHITELOCK P. et al. (eds), Linguistic Theory and Computer Applications,
Academic Press, Cambridge, 1987.

[SHI 90] SHIEBER S., SCHABES Y., “Synchronous tree-adjoining grammars”, /3th
International Conference on Computational Linguistics, vol. 3, pp. 1-6, 1990.

[SHI 95] SHIMAZU H., TAKASHIMA Y., “Multimodal definite clause grammar”,
Systems and Computers in Japan, vol. 26, no. 3, pp. 93—102, 1995.

[SHR 94] SHRIBERG E., Preliminaries to a theory of speech disfluencies, PhD
Dissertation, University of Berkeley, 1994.

[SIK 97] SIKKEL K., Parsing Schemata — A Framework for Specification and
Analysis of Parsing Algorithms, Springer-Verlag, Berlin, 1997.

[SIL 15] SILBERZTEIN M., Formalizing Natural Languages, ISTE, London and John
Wiley & Sons, New York, 2015.

[SIN 91] SINCLAIR J., Corpus, Concordance, Collocation, Oxford University Press,
1991.

[SLE 91] SLEATOR D., TEMPERLEY D., “Parsing English with a link grammar”,
Research report CMU-CS-91-196, 1991.

[SRI 99] SRINIVAS B., JosHI A., “Supertagging: an approach to almost parsing”,
Computational Linguistics, vol. 20, no. 3, pp. 331-378, 1999.

[STE 88] STERIADE D., “Clements and Keyser: CV phonology”, Language, vol. 64,
pp. 118-130, 1988.

[TAY 09] TAYLOR P., Text to Speech Synthesis, Cambridge University Press, 2009.

[TES 59] TESNIERE L., Eléments de syntaxe structurale, Klincksieck, Paris, 1959.

Bibliography 271

[TES 98] TESAR B., SMOLENSKY P., “Learnability in optimality theory”, Linguistic
Inquiry, vol. 29, pp. 229-268, 1998.

[TES 12] TESAR B., “Learning phonological grammars for output-driven maps”,
Proceedings of NELS 39, p. 14, available at: http://roa.rutgers.edu/article/view/
1043, 2012.

[THA 14] THAMPI S.M., GELBUKH A., MUKHOPADHYAY J. (eds), Advances in
Signal Processing and Intelligent Recognition Systems, Springer International
Publishing, Berlin, 2014.

[THO 68] THOMPSON K., “Programming techniques: regular expression search
algorithm”, Communications of the ACM, vol. 11, no. 6, pp. 419422, 1968.

[TOM 86] TOMITA M., Efficient Parsing for Natural Language, Kluwer Academic
Publishers, London, 1986.

[TOU 05] TouTANOVA K., MANNING C.D., FLICKINGER D. ef al., “Stochastic HPSG
parse disambiguation using the Redwoods corpus”, Research on Language and
Computation, vol. 3, no. 1, pp. 83—105, 2005.

[TRA 00] TRANEL B., “Aspects de la phonologie du francais et la théorie de
I’optimalité”, French Language, vol. 126, pp. 39—72, 2000.

[TRO 69] TROUBETZKOY N., Principles of Phonology, University of California
Press, Berkeley, CA, 1969.

[TRO 09] TROUILLEUX F., “Un analyseur de surface non déterministe pour le

frangais”, Proceedings of the 16th Conference on Natural Language Processing
(TALN’09), Senlis, 24-26 June 2009.

[TUR 50] TURING A., “Computing machinery and intelligence”, Mind, vol. 59,
no. 236, pp. 433-460, available at: http://loebner.net/Prizef/TuringArticle.html,
October 1950.

[USZ 00] UszkOREIT H., KASPER W., FLICKINGER D. et al., “Deep linguistic
analysis with HPSG®, in WAHLSTER W. (ed.), Verbmobil: Foundations of
Speech-to-Speech Translation, Springer, Berlin, 2000.

[VAN 82] VAN DER HULST H.G., SMITH N., “An overview of autosegmental and
metrical phonology”, in VAN DER HULST H., SMITH N. (eds), The Structure of
Phonological Representations, Part I, Foris, Dordrecht, 1982.

[VAU 00] VAUFREYDAZ D., BERGAMINI C., SERIGNAT J.-F. et al., “A new
methodology for speech corpora definition from internet documents”,

Proceedings of the 2nd International Conference on Language Resources and
Evaluation, Athens, Greece, vol. 3, pp. 423426, 2000.

272 Natural Language Processing and Computational Linguistics 1

[VIL 93] VILLARD P., “Morphologie: tendances actuelles”, in NESPOULOUS J.-L.
(ed.), Tendances actuelles en linguistique générale, Delachaux and Niestlé,
Paris, 1993.

[VIT 67] VITERBI A.J., “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm”, [EEE Transactions on Information Theory,
vol. 13, no. 2, pp. 260-269, 1967.

[VOG 09] VOGEL 1., “Universals of prosodic structure”, Universals of Language
Today: Studies in Natural Language and Linguistic Theory, vol. 76, pp. 59-82,
20009.

[VOU 09] VOUTILAINEN A., “Part-of-speech tagging”, in MITKOV R. (ed.), The
Oxford Handbook of Computational Linguistics, Oxford University Press, 2009.

[WAR 91] WARD W., “Understanding spontaneous speech: the phoenix system”,
Proceedings of International Conference on Acoustics, Speech and Signal
Processing, pp. 365-367, May 1991.

[WAT 02] WATSON J.C.E., The Phonology and Morphology of Arabic, Oxford
University Press, 2002.

[WEB 04] WEBBER B., “D-LTAG: extending lexicalized TAG to discourse”,
Cognitive Science, vol. 28, no. 5, pp. 751-779, 2004.

[WEH 97] WEHRLI E., L’ analyse syntaxique des langues naturelles : problemes et
méthodes, Masson, Paris, 1997.

[WIE 05] WIEBE J., THERESA-WILSON CARDIE C., “Annotating expressions of
opinions and emotions in language”, Language Resources and Evaluations,
vol. 39, nos. 2-3, pp. 165-210, 2005.

[WIL 06a] WILLETT P., “The Porter stemming algorithm: then and now”, Program:
Electronic Library and Information Systems, vol. 40, no. 3, pp. 219-223, 2006.

[WIL 06b] WILSON A., ARCHER D., RAYSON P. (eds), Corpus Linguistics around
the World, Rodopi, Amsterdam, 2006.

[WOO 70] Woobs Z.A., “Transition network grammar for natural language
analysis”, CACM, vol. 13, no. 10, pp. 591-606, 1970.

[XAV 05] XAVviEr S.P.E., Theory of Automata, Formal Languages and
Computation, New Age International Publishers, New Delhi, 2005.

[XIA 01] XiA F., PALMER M., “Converting dependency structures to phrase
structures”, Ist International Conference on Human-Language Technology
Research, pp. 61-65, 2001.

Bibliography 273

[YAN 03] YANNICK MATHIEU Y., “La Grammaire de Construction”, Revue des
linguistes de ['université Paris Ouest Nanterre la défense, vol. 48, pp. 43-56,
2003.

[YOU 67] YOUNGER D.H., “Recognition and parsing of context-free languages in
time 1>, Information and Control, vol. 10, no. 2, pp. 189-208, 1967.

[YU 14] Yu D., DENG L., Automatic Speech Recognition: A Deep Learning
Approach, Springer, Berlin, 2014.

[ZUE 97] ZUE V., COLE R., WARD W., “Speech recognition”, in COLE R. (ed.),
Survey of the State of the Art in Human Language Technology, Cambridge
University Press, 1997.

Index

AB,C

abbreviation (morphology), 94, 95
accent, 39
acoustic phonetics, 31-36
adjunction, 194, 195, 197, 199
adverbial phrase, 148, 149
affix, 90, 92, 93, 107
agglutinative languages, 90, 91
agreement (syntax), 127
allomorph, 93
allophones, 46, 93
amplitude, 32, 38, 39, 86, 87
articulation

mode, 29

system,29
articulatory

phonetics, 28-31

synthesis, 80, 88
assimilation, 45, 47, 50, 114
auditive phonetics, 37-39
autosegmental phonology, 54-56
backness, 39, 42
bigrams, 78, 79, 103, 104, 121
binding principle, 178
blending (morphology), 94
bottom-up algorithm, 212-214, 217,

220
Chomsky normal form, 157, 158, 230

chunk parsing, 238

clefting (syntax), 127, 133-135, 152

cochlea, 37, 38

colligation, 99, 100

collocation, 3, 99, 100, 141

completive, 139, 149, 177, 195

complex sentence, 138, 145, 149,
150, 160, 161, 177

composition, 93, 94, 194, 197, 198—
201

composition (morphology), 94

concatenative synthesis, 80, 84—86

consonant, 43

coordination, 28, 131, 133, 134, 138,
140, 151

D,E,F

decibel, 32

definite clause grammar (DCG), 13,
169

derivation (morphology), 198

derivation tree (LTAG), 198

descriptive phonetics, 39

disambiguation (syntax), 120, 201

dissimilation, 50

distinctive features, 46-50, 54, 59

ear, 37, 38

Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax,

First Edition. Mohamed Zakaria Kurdi.

© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

276 Natural Language Processing and Computational Linguistics 1

extension (feature structures), 167,
168

extragrammaticality, 143, 144, 242

false-start (extragrammaticality), 118,
143, 144, 242

feature structure (HPSG), 180185

finite state automata, 58, 202, 203

formal language, 116, 152, 153, 160,
202

formant, 34-36, 80, 86, 87

formants synthesis, 80, 86—88

frontness, 39, 42

fundamental frequency, 29, 39,
59-61

G,H, I

government principle, 178
grammaticality, 128, 129, 133, 141,
172
Greibach normal form, 159
Hidden Markov Models, 64, 121
inflected languages, 90, 91
inflection, 93, 94, 180, 185—-187
insertion (phonology), 51
International Phonetic Alphabet, 26
intonation, 39, 56, 58, 61, 127
isolating languages, 90

L,M,N

language hierarchy, 154-162

larynx, 28, 29, 35

left-corner algorithm, 203, 216, 218,
219

lexical rules (HPSG), 179

lexicalized tree-adjoining grammar,
193-201

lips, 28, 29, 31, 35, 40, 87, 88

loudness, 32, 39

minimal pair, 46

morphology, 89

morphological rules, 185-187

movement, 30, 31, 38, 88, 134, 135,
179, 180

nasal cavity, 29, 39, 40, 43

nasality, 39, 40, 55

nasalization, 41, 43

neural networks, 233-237

nominal phrase, 97

O,P,R

oral cavity, 29-31, 35,3941, 43

palate, 29, 30, 41, 42, 88
hard, 30
soft, 29,30

parsing algorithms for unification-
based grammar, 237, 238

pharynx, 28, 29

phonation, 2

phonatory system, 28, 87

phonetics, 2545

phonology, 4661, 89, 90, 127, 162

phrase, 132-136

pitch, 32, 38, 39, 86

Porter (algorithm), 102

POS tagging, 13, 117

prefix, 92, 111

probabilistic parsing, 225-233

prolog, 13, 163, 168—170, 210

pronouns, 89, 98, 117, 139

proper nouns, 96, 117

proposition, 20, 226

radical, 66

Recursive Transition Networks
(RTR), 203206

reentrant features, 166, 168, 238

regular expressions, 104—110, 116,
239, 240

relative, 98, 135, 136, 138, 139, 150,
151, 166, 195, 203

resonance, 29, 87

restrictive negation, 135, 136

robust parsing, 137, 202, 203, 238—
242

Index 277

S, T,V, X

segmentation (syntax), 201, 238

self-correction (extragrammaticality),
143

semantic composition (LTAG), 198—
201

semi-vowels, 45

sentence, 2

spectrogram, 35, 36, 71

stemming, 101-104

subordination, 138

substitution (LTAG), 196

successors variation, 101, 102

suffix, 84, 92,93, 102, 111, 186

supraglottic system, 28

supralaryngeal system, 28

syllable, 5254

syntactic ambiguity, 140, 141, 211,
228

syntax, 127
tagsets, 118
tabular parsing, 221-225, 229, 237
tongue, 28-31, 35, 41, 42, 44, 4749
top-down parsing, 209, 210
topicalization, 133, 134
transformation based tagging, 125
two level morphology, 112—-117
types-
0 grammar, 155
1 grammar, 155, 156
2 grammar, 156, 157, 159-162,
168, 170, 196, 198
3 grammar, 159, 160
verbal phrase, 239
Viterbi (algorithm), 71-76
vocal folds, 28, 39, 43, 87
vowels, 39
X-Bar, 171-178

Other titles from
Sl
n

Cognitive Science and Knowledge Management

2016

CLERC Maureen, BOUGRAIN Laurent, LOTTE Fabien
Brain—Computer Interfaces 1: Foundations and Methods
Brain—Computer Interfaces 2: Technology and Applications

FORT Karén
Collaborative Annotation for Reliable Natural Language Processing

GIANNI Robert
Responsibility and Freedom
(Responsible Research and Innovation Set — Volume 2)

LENOIR Virgil Cristian
Ethical Efficiency: Responsibility and Contingency
(Responsible Research and Innovation Set — Volume 1)

MATTA Nada, ATIFI Hassan, DUCELLIER Guillaume
Daily Knowledge Valuation in Organizations

NOUVEL Damien, EHRMANN Maud, ROSSET Sophie
Named Entities for Computational Linguistics

SILBERZTEIN Max
Formalizing Natural Languages: The NooJ Approach

2015

LAFOURCADE Mathieu, JOUBERT Alain, LE BRUN Nathalie
Games with a Purpose (GWAPs)

SAAD Inés, ROSENTHAL-SABROUX Camille, GARGOURI Faiez
Information Systems for Knowledge Management

2014

DELPECH Estelle Maryline
Comparable Corpora and Computer-assisted Translation

FARINAS DEL CERRO Luis, INOUE Katsumi
Logical Modeling of Biological Systems

MACHADO Carolina, DAVIM J. Paulo
Transfer and Management of Knowledge

TORRES-MORENO Juan-Manuel
Automatic Text Summarization

2013

TURENNE Nicolas
Knowledge Needs and Information Extraction: Towards an Artificial
Consciousness

ZARATE Pascale
Tools for Collaborative Decision-Making

2011

DAVID Amos
Competitive Intelligence and Decision Problems

LEVY Pierre
The Semantic Sphere: Computation, Cognition and Information Economy

LIGOZAT Gérard
Qualitative Spatial and Temporal Reasoning

PELACHAUD Catherine
Emotion-oriented Systems

QUONIAM Luc
Competitive Intelligence 2.0: Organization, Innovation and Territory

2010

ALBALATE Amparo, MINKER Wolfgang
Semi-Supervised and Unsupervised Machine Learning: Novel Strategies

BROSSAUD Claire, REBER Bernard
Digital Cognitive Technologies

2009

BoUYSSOU Denis, DUBOIS Didier, PIRLOT Marc, PRADE Henri
Decision-making Process

MARCHAL Alain
From Speech Physiology to Linguistic Phonetics

PRALET Cédric, SCHIEX Thomas, VERFAILLIE Gérard
Sequential Decision-Making Problems / Representation and Solution

SzUcSsAndras, TAIT Alan, VIDAL Martine, BERNATH Ulrich
Distance and E-learning in Transition

2008

MARIANT Joseph
Spoken Language Processing

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

Natural language processing (NLP) is a scientific discipline which
is found at the interface of computer science, artificial intelligence
and cognitive psychology.

Providing an overview of international work in this
interdisciplinary field, this book gives the reader a panoramic
view of both early and current research in NLP. Carefully chosen
multilingual examples present the state of the art of a mature field
which is in a constant state of evolution.

In four chapters, this book presents the fundamental concepts of
phonetics and phonology and the two most important
applications in the field of speech processing: recognition and
synthesis. Also presented are the fundamental concepts of corpus
linguistics and the basic concepts of morphology and its NLP
applications such as stemming and part of speech tagging. The
fundamental notions and the most important syntactic theories
are presented, as well as the different approaches to syntactic
parsing with reference to cognitive models, algorithms and
computer applications.

Mohamed Zakaria Kurdi is Assistant Professor at the CS
Department of Lynchburg College in Virginia, USA. His research
interests include natural language processing, robust parsing,
text mining and intelligent computer-assisted language learning.

== wicey JII

www.iste.co.uk oll7g18481218482

	Cover

	Title Page

	Copyright

	Contents
	Introduction
	I.1. The definition of NLP
	I.1.1. NLP and linguistics
	I.1.2. NLP and AI
	I.1.3. NLP and cognitive science
	I.1.4. NLP and data science

	I.2. The structure of this book

	1.
Linguistic Resources for NLP
	1.1. The concept of a corpus
	1.2. Corpus taxonomy
	1.2.1. Written versus spoken
	1.2.2. The historical point of view
	1.2.3. The language of corpora
	1.2.4. Thematic representativity
	1.2.5. Age range of speakers

	1.3. Who collects and distributes corpora?
	1.3.1. The Gutenberg project1
	1.3.2. The linguistic data consortium
	1.3.3. European language resource agency
	1.3.4. Open language archives community
	1.3.5. Miscellaneous

	1.4. The lifecycle of a corpus
	1.4.1. Needs analysis
	1.4.2. Design of scenarios to collect data for the corpus
	1.4.3. Collection of the corpus
	1.4.4. Transcription
	1.4.5. Corpus annotation
	1.4.6. Corpus documentation
	1.4.7. Statistical analysis of data
	1.4.8. The use of corpora in NLP

	1.5. Examples of existing corpora
	1.5.1. American National Corpus
	1.5.2. Oxford English Corpus
	1.5.3. The Grenoble Tourism Office Corpus

	2.
The Sphere of Speech
	2.1. Linguistic studies of speech
	2.1.1. Phonetics
	2.1.2. Phonology

	2.2. Speech processing
	2.2.1. Automatic speech recognition
	2.2.2. Speech synthesis

	3.
Morphology Sphere
	3.1. Elements of morphology
	3.1.1. Morphological typology
	3.1.2. Morphology of English
	3.1.3. Parts of speech
	3.1.4. Terms, collocations and colligations

	3.2. Automatic morphological analysis
	3.2.1. Stemming
	3.2.2. Regular expressions for morphological analysis
	3.2.3. Informal introduction to finite-state machines
	3.2.4. Two-level morphology and FST
	3.2.5. Part-of-speech tagging

	4.
Syntax Sphere
	4.1. Basic syntactic concepts
	4.1.1. Delimitation of the field of syntax
	4.1.2. The concept of grammaticality
	4.1.3. Syntactic constituents
	4.1.4. Syntactic typology of topology and agreement
	4.1.5. Syntactic ambiguity
	4.1.6. Syntactic specificities of spontaneous oral language

	4.2. Elements of formal syntax
	4.2.1. Syntax trees and rewrite rules
	4.2.2. Languages and formal grammars
	4.2.3. Hierarchy of languages (Chomsky–Schützenberger)
	4.2.4. Feature structures and unification
	4.2.5. Definite clause grammar

	4.3. Syntactic formalisms
	4.3.1. X-bar
	4.3.2. Head-driven phrase structure grammar
	4.3.3. Lexicalized tree-adjoining grammar

	4.4. Automatic parsing
	4.4.1. Finite-state automata
	4.4.2. Recursive transition networks
	4.4.3. Top-down approach
	4.4.4. Bottom-up approach
	4.4.5. Mixed approach: left-corner
	4.4.6. Tabular parsing (chart)
	4.4.7. Probabilistic parsing
	4.4.8. Neural networks
	4.4.9. Parsing algorithms for unification-based grammars
	4.4.10. Robust parsing approaches
	4.4.11. Generation algorithms

	Bibliography
	Index
	Other titles from iSTE in Cognitive Science and Knowledge Management
	EULA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

