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Foreword

vii

It is indeed a great pleasure to write a few comments on this fascinating and 
inspiring book: Grammars for Language and Genes: Theoretical and 
Empirical Investigations, by David Chiang. First, I would like to acknowledge 
my good fortune in being able to work with David during his stay at the 
University of Pennsylvania. Each one of our meetings was a joyful event, 
informing and learning from each other, to our mutual benefit.  

Chiang’s work began with the study of the strong generative capacity of 
grammars, i.e., their capacity to represent structural descriptions. It is this aspect 
that is truly important for the study of formal grammars from the perspective of 
linguistics as well as computational linguistics. However, surprisingly, there is 
not much work done on issues concerning strong generative capacity (SGC). 
This is because it is not easy to formulate concepts of SGC that are formal 
enough and also linguistically meaningful. Building on notions of local 
interpretation functions, Chiang has given insightful accounts of how SGC should 
be characterized. He has then applied these ideas to a detailed study of 
characterizing SGC for a variety of formalisms including tree-adjoining 
grammars, their variants, and also several other formalisms. Further, building on 
some notions of extracting more SGC without increasing the weak generative 
capacity, Chiang has obtained some essential results connecting representations 
and interpretations. I am confident that much of this work will, in time, become 
the foundation on which to build further work on the formal characterizations of 
structural descriptions and interpretations and their eventual use in natural 
language processing (NLP).  

The notion of squeezing more SGC without increasing the weak generative 
capacity plays a very significant role in the work described in the chapters on statistical 
parsing and machine translation. These investigations have been carried out in the 
general framework of tree-adjoining grammar (TAG) and some of its variants. I am 
sure researchers at large in statistical parsing and machine translation will be inspired 
by this work and will explore its implications for other classes of formal grammars, 
thus providing some unity in the very extensive work going on in these areas. 
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By a remarkable coincidence, just as Chiang was engaged in the activities 
described above, he also became a member of the group which began to explore 
the role of formal grammars in characterizing biomolecular structures, such as 
DNA/RNA and proteins, for example. This part of Chiang’s book is a delightful 
treat for those who want to get a quick but thorough introduction to biomolecular 
structures and how to model a variety of these structures, keeping both the 
formal and computational aspects in mind at all times. 

In summary, Chiang’s work on grammars, which is based on solid mathematical 
foundations combined with a clear understanding of the domains that are being 
modeled, will lead to both a deeper theoretical understanding as well as usable 
computational models. I strongly recommend this book to all those who have
already embarked on such activities but, more importantly, to those who would 
like to be involved in these exciting directions of research.  

 
Aravind K. Joshi 
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Chapter 1

Introduction

Then the three young men of the bodyguard, who kept guard over the person of the king,
said to one another, Let each of us state what one thing is strongest; and to the one whose
statement seems wisest, King Darius will give rich gifts and great honors of victory. . . The
first wrote, Wine is strongest. The second wrote, The king is strongest. The third wrote,
Women are strongest, but above all things truth is victor.

1 Esdras 3.4–5, 10–12

One should realize. . . that if we consider these four, namely wine, the king, woman and
truth, in themselves they are not comparable because they do not belong to the same genus.
Nevertheless, if they are considered in relation to some effect, they coincide in one aspect,
and so can be compared with each other.

St. Thomas Aquinas, Quaestiones quodlibetales, XII, q. 14, a. 1

1.1 The Problem of Strong Generative Capacity

Formal grammars, first developed as specifications of linguistic theories and pro-
gramming languages, have found a rich variety of applications in computer sci-
ence, especially in natural language processing and, more recently, biological se-
quence analysis. Grammars can be expressed in a variety of competing grammar
formalisms, and the question naturally arises: What makes one grammar formalism
better than another?

Formal language theory has traditionally given two ways of answering this ques-
tion, namely, weak generative capacity (WGC) and strong generative capacity
(SGC). The WGC of a grammar is the set of strings it generates, and its SGC is
the set of structural descriptions it assigns to them. If we think of a grammar for-
malism as the set of all the grammars it can express, then the WGC (or SGC) of
a formalism is the set of the WGCs (or SGCs) of its grammars, and we say that
one formalism has greater WGC (or SGC) than another if its WGC (or SGC) is a
superset of the other’s.

Occasionally, one finds the term “strong generative capacity” misapplied to the
set of phrase-structure trees a grammar generates (which we will refer to as its tree

1 
07/978-3- - -9_1, 
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2 1 Introduction

generative capacity). But a structural description may be any kind of structure a
grammar might assign to a string: a phrase-structure tree, a dependency structure,
an f-structure, a derivation tree, or a proof tree.

At the time that Chomsky introduced the terminology of weak and strong gener-
ative capacity, he observed that SGC is “by far the more interesting notion” [42, p.
297], but WGC is “the only area in which substantial results of a mathematical char-
acter have been achieved” [41, pp. 325–326]. The reason SGC is more interesting
is that it is via structural descriptions that the grammar interfaces with higher-level
modules (e.g., semantics). But the paucity of results having to do with SGC is due,
at least in part, to the difficulty of defining what it means for two structural descrip-
tions to be equivalent, especially when they come from different formalisms.

Nearly fifty years later, Chomsky’s observation holds true. Formal language the-
ory has produced many significant mathematical results, but continues to focus on
WGC rather than SGC. Indeed, as more grammar formalisms are introduced, the
more difficult it becomes to compare their structural descriptions and therefore their
SGC. The problem of SGC has been addressed occasionally in the context of formal
linguistics [76, 77, 89], but hardly at all in the context of computational applications,
where the notion of SGC is no less relevant. Because results having to do with SGC
are still lacking, the use of new grammar formalisms in these application areas is
too often justified by intuition or examples or not at all.

1.2 Wine, King, Woman, and Truth

A similar problem was apparently faced by the three young men of the bodyguard of
King Darius of Persia, the protagonists of the (literally apocryphal) story quoted at
the beginning of this chapter. These three men argued for four different answers to
the question, “What one thing is strongest?”. Wine inebriates the greatest and least
of people equally, the king commands everyone and they obey, and so on. Although
the fourth answer, truth, prevailed in the end, St. Thomas Aquinas, commenting on
this passage, maintains that each of the four arguments is valid in its own way. Like
structural descriptions assigned by different grammar formalisms, these four things
“are not comparable because they do not belong to the same genus.”

Nevertheless, they can, Aquinas continues, be compared according to their ef-
fects in various domains. Wine has the strongest physical effect, woman has the
strongest emotional effect, the king has the strongest effect on the practical intellect,
and truth has the strongest effect on the speculative intellect. Thus, each domain has
a different strongest thing. Likewise, even if we can’t compare grammar formalisms
directly, can we compare them according to their effects in some particular domain?
This is the approach proposed by Miller [89]: to map structural descriptions gener-
ated by different formalisms into common interpretation domains where they can
be compared. Thus, there is no single notion of SGC, but as many notions of SGC
as there are interpretation domains. Here, we combine this approach with the formal
approach of Joshi and collaborators, which we illustrate with an example.
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1.3 The Case of Dutch Cross-Serial Dependencies

The controversy over the complexity of Dutch is a classic illustration of the kinds of
issues involved in testing the adequacy of a grammar formalism, which will guide us
as we develop the theoretical framework for our own comparisons of grammar for-
malisms. One early argument against the adequacy of context-free grammar (CFG)
for natural language was put forth by Huybregts [61]. He argued that Dutch sen-
tences exhibiting cross-serial dependencies like the following:

(1.1) dat
that

Jan
Jan

Piet
Piet

de
the

kinderen
children

zag
saw

helpen
help

zwemmen
swim

that Jan saw Piet help the children swim

(where the first NP is the subject of the first verb, the second of the second, and
so on) show that Dutch is like the copy language {ww}, which is non-context-free.
Pullum and Gazdar [101] correctly replied that the sequence of verbs is not a copy of
the sequence of nouns; the two sequences only had to be the same length. Therefore
Dutch, considered as a set of strings, cannot be shown in any formal way to be
reducible to the copy language.

Bresnan et al. [22] argued using traditional constituency arguments that the
phrase-structure trees of sentences like (1.1) had to have a certain form, and then
proved that CFG cannot generate such tree sets, concluding that CFG does not have
enough “strong generative capacity” (in our terminology, tree generative capacity)
to capture this construction. However, because it relied on theory-internal assump-
tions to determine the desired trees, this argument was not totally compelling.

Finally, Huybregts [62] and Shieber [122] independently observed that Swiss
German allows a cross-serial word order as Dutch does but also has verbs which
mark their objects with different cases.

(1.2) das
that

mer
we

d’chind
the children-ACC

em Hans
Hans-DAT

es
the

huus
house-ACC

lönd
let

hälfe
help

aastriiche
paint

that we let the children help Hans paint the house

(1.3) ∗das
that

mer
we

d’chind
the children-ACC

de Hans
Hans-ACC

es
the

huus
house-ACC

lönd
let

hälfe
help

aastriiche
paint

that we let the children help Hans paint the house

Therefore Swiss German can be reduced via homomorphisms and intersections
to the copy language {ww | w ∈ a∗b∗}, which proves that Swiss German is not a
context-free language. But this still does not settle the question for Dutch.

The most satisfying answer to the question of Dutch comes from the literature
on tree-adjoining grammars (TAG) and related formalisms. Just as CFGs generate
strings by rewriting symbols as strings, tree-adjoining grammars [69, 70] generate
trees by rewriting nodes as trees.

For example, consider the TAG of Figure 1.1. The tree α is called an initial
tree, roughly analogous to the start symbol in CFG. The trees β1 and β2 are called
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S

S

NP

de kinderen

VP

V

t

V

zwemmen

S

S

NP

N

Piet

VP

S V

t

V

helpen

∗

S

S

NP

N

Jan

VP

S V

t

V

zag

∗

(α) (β1) (β2)

Fig. 1.1 TAG for Dutch cross serial dependencies in sentence (1.1).

auxiliary trees, analogous to productions in CFG. They differ from initial trees in
that they have exactly one frontier node marked with an asterisk (∗); this node is
called the foot node and always has the same label as the root node. The path from
the root node to the foot node of an auxiliary tree is called its spine.

The basic rewriting operation is called adjunction, in which a node is rewritten
with the spine of an auxiliary tree β along with all its branches. The rewritten node
and the root/foot of β must have the same label. For example, Figure 1.2 shows the
result of rewriting the lower S node of α with β1.

S

S

S

NP

N

Piet

VP

S

NP

de kinderen

VP

V

t

V

t

V

helpen

V

zwemmen

Fig. 1.2 Example of adjunction. The tree β1 has been adjoined at the lower S node of α .

Joshi [67] showed that a tree-adjoining grammar with links (see Figure 1.3; this
particular analysis is due to Kroch and Santorini [75]) could generate examples
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S

S

NP

de kinderen

VP

V

t

V

zwemmen

S

S

NP

N

Piet

VP

S V

t

V

helpen

∗

S

S

NP

N

Jan

VP

S V

t

V

zag

∗

(α) (β1) (β2)

Fig. 1.3 TAG with links for Dutch cross-serial dependencies in sentence (1.1).

S

S

S

NP

N

Piet

VP

S

NP

de kinderen

VP

V

t

V

t

V

helpen

V

zwemmen

Fig. 1.4 First step in derivation of cross-serial dependencies. The tree β1 has been adjoined at the
lower S node of α .

like (1.1) with the dependencies (which are much less controversial than the phrase
structure) explicitly marked:

(1.4) dat Jan Piet de kinderen zag helpen zwemmen

Figures 1.4 and 1.5 show the derivation of the sentence, with the cross-serial depen-
dencies as desired. This is possible with a TAG but not possible for any CFG. There
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S

S

S

S

NP

N

Jan

VP

S

NP

N

Piet

VP

S

NP

de kinderen

VP

V

t

V

t

V

t

V

zag

V

helpen

V

zwemmen

Fig. 1.5 Second step in derivation of cross-serial dependencies. The tree β2 has been adjoined at
the third S node of Figure 1.4.

are two key assumptions at work in this argument. First, grammars are not mea-
sured according to their WGC but according to their ability to generate strings with
subject-verb dependencies explicitly marked with links. Second, CFGs and TAGs
can only generate links between terminal symbols in the same elementary structure.

Becker et al. [11] developed these two assumptions into the notion of derivational
generative capacity as an alternative to weak generative capacity and tree generative
capacity.

Definition 1. A linked string is a pair 〈w,∼〉, where w is a string and ∼ is a sym-
metric binary relation between string positions of w.

Definition 2. We say that a grammar G generates a linked string 〈w,∼〉 if G gener-
ates w such that i ∼ j if and only if the ith and jth symbol of w are generated in the
same derivation step.

Definition 3. The derivational generative capacity (DGC) of G is the set of all
linked strings generated by G.
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We notate linked strings either using arcs as above, or sometimes boxed numbers
( 1 , 2 , . . .) if the linking relation is transitive. In this terminology, then, we would
say that CFG lacks the DGC to capture cross-serial dependencies in Dutch.

The merit of this approach is that it eschews notions of generative capacity which
are inappropriate (WGC, tree generative capacity) or vague (SGC) in favor of a no-
tion (DGC) which allows a rigorous result to be proven from minimal assumptions
(namely, what the correct dependencies are and how dependencies must be repre-
sented in a CFG). Returning to Miller’s idea that SGC should always be measured
relative to some interpretation domain, we can view DGC, then, as one of many
possible notions of SGC (i.e., SGC with respect to the domain of linked strings), the
one that is best suited to the application at hand.

1.4 Overview

Theoretical framework

In Chapter 2 we set up the basic framework in which we will carry out our com-
parisons of grammar formalisms. We show how to generalize DGC to other inter-
pretation domains using the concept of local interpretation functions. This allows
us to rigorously classify a wide range of grammar formalisms according to their
power in various interpretation domains. Different interpretation domains classify
formalisms differently: some will be coarser-grained, some will be finer-grained; it
can even happen that one formalism is more powerful than another in one domain,
but less powerful in another domain. We are especially interested in situations where
we can “squeeze” SGC out of a formalism—that is, to increase the SGC of a for-
malism while preserving its computational properties [68]. We try to capture this
intuition using the notion of a cover [94]: a situation when one grammar is parsed
using another grammar (the cover grammar) and therefore inherits its computational
properties.

We will explore three areas of application: statistical natural language parsing,
natural language translation, and modeling of biological macromolecules. For each
area, we will define an appropriate interpretation domain, compare various grammar
formalisms with respect to that domain, and then explore the implications of these
results for practical applications.

Statistical parsing

We first consider, in Chapter 3, the task of statistical parsing: computing the most
likely structure (standardly, the most likely phrase-structure tree) of a given string.
We discuss how to define statistical models based on a large class of grammar for-
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malisms. We measure statistical-modeling power using SGC with respect to the
domain of weighted parse structures, which turns out to classify formalisms rather
coarsely: if a grammar G can be covered by (say) a CFG, then weights can also
be assigned to the cover grammar to make it strongly equivalent to G with respect
to weighted parses. In other words, we do not expect in general that formalisms
which squeeze SGC out of CFG will provide any more statistical parsing models
than weighted CFG does (although a more precise treatment of the question below
leaves some room for exceptions).

But if the statistical-modeling power of these squeezed formalisms is already
accessible within PCFG, then we can investigate how that power may already be
utilized by existing PCFG models like those of Charniak [25] or Collins [44], which
represented a breakthrough in statistical parsing. It turns out that the style of CFGs,
called lexicalized CFGs, that these models use is very similar to the cover CFGs
from the above result. Thus, applying the construction in reverse to a lexicalized
PCFG model yields a reinterpretation of lexicalized PCFG as a special kind of prob-
abilistic TAG.

But TAG structural descriptions contain more information than the phrase-
structure trees found in typical training corpora like the Penn Treebank [87]. Un-
der this interpretation, then, it becomes more clear that the purpose of the head-
propagation rules used by lexicalized PCFG models is not simply to rearrange infor-
mation in the training data, but to reconstruct information missing from the training
data; and this information is not lexical, but structural.

We then describe our implementatation of this interpretation in a parsing model
based on probabilistic tree-insertion grammar with sister-adjunction (TIG-SA). We
reinterpret the head/argument rules from Magerman’s SPATTER parser [86] and
Collins’ parser [44] as a heuristic for reconstructing full structural descriptions
from partial ones; we also explore a method related to the approach of Hwa [63]
which uses Expectation-Maximization to directly estimate the model defined over
full structural descriptions on the partial structural descriptions in the training data.
We present experimental results for both of these techniques, training our probabilis-
tic TIG-SA model from the Penn Treebank (English) and the Penn Chinese Tree-
bank. We find that our probabilistic TIG-SA model performs at roughly the same
level as lexicalized PCFG models and explore some new directions of research that
such a model opens up.

Machine translation

The next application we discuss is translation (Chapter 4). In contrast to the classi-
fication above, this notion of SGC classifies formalisms quite finely. A number of
formalisms that have been proposed in the literature are weakly equivalent to CFG,
but differ in their translation power, that is, their SGC with respect to the domain
of string or tree pairs. To these we add a new formalism, synchronous regular-form
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TAG [49, 39, 33]. We also take a look at synchronous TAG and extensions of syn-
chronous TAG.

Machine translation using synchronous CFGs and synchronous tree-substitution
grammars is now a fairly well-explored area. We provide a survey of recent research
from a formal-grammars perspective. An area that continues to be challenging is
tree-to-tree translation, that is, the modeling of two parallel syntactic structures in
different languages. We discuss a few cases where the additional translation power
of richer formalisms like synchronous regular-form TAG might prove useful. We
argue that because translation power classifies formalisms so much more finely than
statistical-modeling power, it is more important in translation research to target the
right formalism.

Biological sequence analysis

Finally, in Chapter 5 we explore the use of formal grammars for biological sequence
analysis. Proteins and RNAs are folded from molecules which are chains of building
blocks (amino acids and nucleotides) assembled in a sequence specified by genes.
The task of biological sequence analysis is to relate genetic sequences to the folded
structures they encode. It was Searls [120] who first observed the similarity between
biological sequence analysis and natural-language-syntactic analysis and proposed
that the same techniques could be applied to both problems. We give a unified treat-
ment of previous applications of formal grammars to this problem, highlighting in
particular their shared assumption that grammatical locality corresponds to physical
locality. This observation implies that the relevant notion of SGC for this problem is
that of linked strings. Searls’ original work was on CFG; we explore some ways of
employing formalisms with greater SGC than CFG to model more complex struc-
tures: α-helices, β -sheets, kissing hairpins, and pseudoknots.

Most grammatical approaches to biological sequence analysis rank structures us-
ing weights—usually probabilities or energies. We describe a more sophisticated
use of weights, drawing on a model due to Chen and Dill [28, 29] which tries not
only to predict structures of chain molecules but to give a full description of their
statistical-mechanical properties. Their model is not explicitly grammatical, but we
show that it can be more cleanly viewed as a weighted CFG.

In Chapter 6, we explore a family of approaches based on the technique of in-
tersection—analyzing a string with two or more grammars and composing their
structural descriptions. Intersection is not used much for natural language, proba-
bly because hierarchical structural descriptions do not compose easily, but is more
promising for biological sequence analysis, because there is a well-defined way of
composing structures. We show how our CFG version of Chen and Dill’s model can
be intersected with a finite-state automaton for α-helices, easily yielding a novel
model for bundles of α-helices. We also discuss how simple literal movement gram-
mars [57] (similar to range concatenation grammars [20]) might use their built-in
intersection operation to efficiently model protein β -sheets.





Chapter 2

Foundation

In this chapter we define the framework that will be used for the investigations
in subsequent chapters. Our framework combines and extends the approaches of
Miller [89] and of Joshi and collaborators. We take the position, following Miller,
that SGC should always be tested with reference to a particular interpretation do-
main, and, following Becker et al. [11], we define these interpretations on gram-
mar formalisms with well-defined domains of locality, permitting rigorous formal
comparisons. Moreover, we extend these ideas to a still larger class of formalisms,
simple literal movement grammars [57].

2.1 Strong Generative Capacity, Relativized

Structural descriptions

Strings

Constituent structures

Dependency structures

Linking systems

Fig. 2.1 Structural descriptions, strings, and interpretations under Miller’s framework.

Miller [89] deals with the elusiveness of SGC by defining it not as the set of
structural descriptions of a grammar, but the set of interpretations of its structural
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descriptions in a particular interpretation domain, for example, constituency or de-
pendency (see Figure 2.1). Thus SGC must always be considered with respect to
an interpretation domain. This creates many notions of SGC, but ensures that the
SGC of two formalisms can be meaningfully compared—provided they both have
interpretation functions in a common domain.

A strength of Miller’s approach is that it tries to preserve the generality of the
formalisms that can be dealt with, placing no restrictions on structural descriptions
or their interpretation functions except that interpretation functions are not supposed
to add information to structural descriptions that is not specified by the formalism.
But this generality makes it hard to make definite statements about what a formalism
is capable of.

The approach of Joshi and of Becker et al., which can be seen as a special case of
Miller’s, provides more traction. The key to this approach is the concept of locality.
DGC, as we saw in the previous chapter, assumes that structural descriptions can
be decomposed into elementary structures, and that the interpretation of a structural
description can be defined locally on each elementary structure: only symbols in the
same elementary structure can be linked. This constrains the interpretation functions
for a large class of formalisms in such a way that it can be rigorously shown that,
for example, Dutch cross-serial dependencies are possible for TAG but impossible
for CFG.

We generalize the TAG approach to allow for many interpretation domains, re-
taining the key idea of specifying local interpretation functions on elementary struc-
tures. In the following section we define local interpretation functions more pre-
cisely.

2.2 Simple Literal Movement Grammars

There are many grammar formalisms for which interpretation functions can be de-
composed into local interpretation functions on elementary structures; all the for-
malisms we will consider are subclasses of Groenink’s simple literal movement
grammar, or sLMG [57]. Simple LMGs are a special type of Post system [99, 42].
They resemble Prolog programs where the variables and constants range over strings
and can be concatenated. They are equivalent to range concatenation grammar or
RCGs [20], except that RCG variables stand for ranges of positions of a fixed input
string, whereas sLMG variables stand for strings.

As a nonlinguistic example, here is a grammar which accepts all and only the
Fibonacci numbers, written in unary notation:
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Fib(y) :− Fib2(x,y) (2.1)
Fib2(y,xy′) :− Fib2(x,y),Eq(y,y′) (2.2)

Fib2(1,1) (2.3)
Eq(1x,1x′) :− Eq(x,x′) (2.4)

Eq(ε,ε) (2.5)

The predicate Eq holds of two numbers (written in unary notation) just in case they
are equal. Clause (2.5) is an axiom that says that 0= 0; clause (2.4) says that x+1=
x′+1 if x = x′. The predicate Fib2 holds of two numbers (written in unary notation)
just in case they are consecutive Fibonacci numbers. Clause (2.3) is an axiom that
says that 1 and 1 are consecutive Fibonacci numbers. Clause (2.2) says that y and
x+ y′ are consecutive Fibonacci numbers if x and y are and y = y′. Finally, clause
(2.1) says that y is a Fibonacci number if x and y are consecutive Fibonacci numbers.
Then the proof that 5 (11111 in unary) is a Fibonacci number proceeds as follows
(leaving out the subderivations for Eq):

Fib2(1,1) from (2.3)
Fib2(1,11) from (2.2) with x = 1,y = y′ = 1
Fib2(11,111) from (2.2) with x = 1,y = y′ = 11
Fib2(111,11111) from (2.2) with x = 11,y = y′ = 111
Fib(11111) from (2.1) with x = 111,y = 11111

The TAG of Figure 1.1 would be encoded as the following sLMG:

S(x de kinderen y zwemmen) :− S2(x,y) (α)

S2(x Piet,y helpen) :− S2(x,y) (β1)

S2(x Jan,y zag) :− S2(x,y) (β2)

S2(ε,ε) (ε)

The unary predicate S holds of the string yields of derived initial trees rooted by
S. The binary predicate S2 holds of the string yields (to the left and to the right of
the foot) of derived auxiliary trees rooted by S. The derivation of (1.1) proceeds as
follows:

S2(ε,ε) from (ε)
S2(Jan,zag) from (β2)
S2(Jan Piet,zag helpen) from (β1)
S(Jan Piet de kinderen zag helpen zwemmen) from (α)

We now give a more formal definition.

Definition 4. A simple LMG is a tuple 〈T,N,V,S,A,P〉, where:

• T is a finite set of terminal symbols and N is a finite set of nonterminal symbols
• V is a set of variables
• S ∈ N is called the start symbol



14 2 Foundation

• A is a set of axioms of the form

X(α1, . . . ,αm)

where X ∈ N and α j ∈ T ∗
• P is a set of productions of the form

X(α1, . . . ,αm) :− Y1(β11, . . . ,β1m1), . . . ,Yn(βn1, . . . ,βnmn)

(“the αi are an X if the β1i are a Y1 and the β2i are a Y2, etc.”) where

– X ,Yi ∈ N
– α j ∈ (T ∪V )∗
– βi j ∈V
– each variable in the production appears exactly once on the left-hand side and

at least once on the right-hand side

Most sLMGs used in natural language processing belong to the class of linear
sLMGs, which is equivalent to LCFRS, nonerasing multiple context-free grammar
[121], local scattered context grammar [102], and simple RCG [20].

Definition 5. A linear sLMG is an sLMG in which for each production, each vari-
able in the production appears exactly once on the right-hand side and exactly once
on the left-hand side.

An sLMG defines a deductive proof system whose theorems are statements about
relations between strings; the start predicate, which is always unary, holds of all and
only the strings of the language defined by the grammar.

Definition 6. Let π be an sLMG production, x1, . . . ,xn be all the distinct variables
occurring in π , and w1, . . . ,wn ∈ T ∗. Let π ′ be the result of substituting wi for xi for
all 1 ≤ i ≤ n; then we say that π ′ instantiates or is an instantiation of π.

Definition 7. If G is an sLMG, we say that G derives X(α1, . . . ,αm) according to
the following recursive definition:

• An axiom X(α1, . . . ,αm) of G is derivable by G.
• X(α1, . . . ,αm) is derivable by G if there is a production in G which can be instan-

tiated as

X(α1, . . . ,αm) :− Y1(β11, . . . ,β1m1), . . . ,Yn(βn1, . . . ,βnmn)

and Yi(βi1, . . . ,βimi) is derivable by G for 1 ≤ i ≤ n.
• Nothing else is derivable by G.

Definition 8. The weak generative capacity L(G) of G is the set {w |G derives S(w)}.

We also sometimes represent the derivation process as a tree:

Definition 9. A derivation of an sLMG G is a tree over (names of) productions of
G, defined recursively:



2.3 Interpretation Functions 15

• If π = X(α1, . . . ,αm) is an axiom of G, π() is a derivation of X(α1, . . . ,αm).
• If a production π of G can be instantiated as

X(α1, . . . ,αm) :− Y1(β11, . . . ,β1m1), . . . ,Yn(βn1, . . . ,βnmn)

and τi is a derivation of Yi(βi1, . . . ,βimi), 1 ≤ i ≤ n, then π(τ1, . . . ,τn) is a deriva-
tion of X(α1, . . . ,αm).

Let D(G) denote the set of derivations of G.

2.3 Interpretation Functions

Next, we describe how to define interpretations of sLMG derivations. We do this by
attaching a local interpretation function to each clause of the grammar, in a manner
similar to attribute grammars [73].

Definition 10. An n-ary local interpretation function in D is any function from Dn

to D. A 0-ary local interpretation function on D just returns a constant member of
D.

Definition 11. An interpretation function for an sLMG G in interpretation domain
D is a function f : D(G)→ D. An assignment of a local interpretation function fπ
to each production π ∈ P induces an interpretation function f for G:

• If π is an axiom, f (π()) = fπ().
• If π is a production of the form

X(α1, . . . ,αm) :− Y1(β11, . . . ,β1m1), . . . ,Yn(βn1, . . . ,βnmn),

then f (π(τ1, . . . ,τn)) = fπ( f (τ1), . . . , f (τn)).

For example, to extend our sLMG for Dutch to generate links as in Figure 1.3, we
define local interpretation functions for each clause:

clause local interpretation function

(α) w1 de kinderen w2 zwemmen ←� 〈w1,w2〉

(β1) 〈w1 Piet,w2 helpen〉 ←� 〈w1,w2〉

(β2) 〈w1 Jan,w2 zag〉 ←� 〈w1,w2〉

(ε) 〈ε,ε〉
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where the notation y ←� x denotes a local interpretation function that maps x to y.
The interpretation of our example derivation is the linked string (1.4).

Definition 12. An interpretation function Φ for a grammar formalism F in domain
D assigns to each production allowed in F a set of possible local interpretation
functions on D. This induces a mapping from each grammar G ∈ F to a set, Φ(G),
of possible interpretation functions for G in D.

The reason Φ assigns a set of possible interpretation functions, rather than a single
interpretation function, is that more than one interpretation function may be rea-
sonable. For example, the word de in clause (α) could be linked to kinderen, or to
zwemmen, or nothing.1 This is a departure from Miller, whose interpretation func-
tions map each derivation of F to a single interpretation. We do, however, want Φ
to restrict the kinds of local interpretation functions that can be used. For example, in
the interpretation domain of linked strings (as used here and in Chapter 5), we don’t
want a local interpretation function to change or delete any links in its arguments.

We now have the necessary framework for our definition of strong generative
capacity.

Definition 13. The strong generative capacity ΣD(G, f ) of G with respect to the
interpretation domain D and interpretation function f is the set

{ f (τ) | τ is a derivation of G}

and the strong generative capacity of a formalism F with respect to D and interpre-
tation function Φ is the set of sets

{ΣD(G, f ) | G ∈ F and f ∈ Φ(G)}.

We define a trivial interpretation domain, that of strings, in which the interpreta-
tion of every derivation is just the string yield of that derivation:

Definition 14. The interpretation domain of strings has interpretations which are
(tuples of) strings, and local interpretation functions defined as follows: for each
axiom π of the form X(α1, . . . ,αm), the local interpretation function must be fπ() =
〈α1, . . . ,αm〉, and for each production π of the form

X(α1, . . . ,αm) :− Y1(β11, . . . ,β1m1), . . . ,Yn(βn1, . . . ,βnmn)

the local interpretation function must be

fπ(〈w11, . . . ,w1m1〉, . . . ,〈wn1, . . . ,wnmn〉) = 〈α1[wi j/βi j], . . . ,αm[wi j/βi j]〉

where [wi j/βi j] means, “replace βi j with wi j.” If the sLMG is nonlinear, this sub-
stitution may not always be consistent; in such cases, which are harmless, fπ is
undefined.
1 In practice, there may be situations where we want to assign multiple local interpretation func-
tions to a production, that is, different local interpretation functions to multiple identical produc-
tions. For simplicity, we have not attempted to cover this possibility.
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For the interpretation domain of trees, the interpretation functions will vary by
formalism. For example, CFG derivations would simply be mapped to themselves,
whereas TAG derivations would map to derived trees as in Figure 1.2. The only
general statement we can make is that a derivation’s interpretation in the domain of
trees should yield the same string as its interpretation in the domain of strings.

Finally, we restate the definition of DGC in the new framework, slightly relaxed
to allow unlinked symbols:

Definition 15. The interpretation domain of linked strings has interpretations which
are (tuples of) linked strings (Definition 1), and whose local interpretation functions
are the same as for the domain of strings except that terminal symbols in the αi may
be linked to each other (cf. Definition 2). The derivational generative capacity of
a grammar or grammar formalism is its SGC with respect to the domain of linked
strings.

2.4 Summary

The framework laid out in this chapter provides the control needed to prove results
with genuine relevance to applications. Because SGC is defined as interpretations
with reference to particular domains, we can test the relevant properties of a for-
malism; because interpretations are defined in terms of local interpretations, we can
firmly characterize a formalism’s SGC.

In subsequent chapters, we will use this framework to define interpretation do-
mains suited to particular applications and then compare various grammar for-
malisms in those interpretation domains. The goal is to see whether more results
like those of Joshi and collaborators can be obtained in these other areas of applica-
tion, and what implications they have for those applications.

2.5 Additional Topics

This section contains some supplemental material which will be referred to in sub-
sequent chapters, and which the impatient reader may safely skip on a first reading.
Sections 2.5.1 and 2.5.2 contain definitions of various formalisms that are subclasses
of sLMG, and Section 2.5.3 contains a brief treatment of sLMG parsing. Section
2.5.4 introduces the concept of cover grammars, which will be referred to mainly in
Chapter 3.
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2.5.1 Tree-Adjoining Grammars

We have already introduced tree-adjoining grammars in Section 1.3, but this section
presents a more complete definition of TAGs and several variants which will be
referred to throughout.

Definition 16. An auxiliary tree is a finite tree with a distinguished frontier node
called its foot node, which we mark with the symbol ∗. The path from an auxiliary
tree’s root node to its foot node is called its spine.

Definition 17. A tree-adjoining grammar [69, 70] is a tuple 〈T,N, I,A,S〉, where

• T is a finite set of terminal symbols
• N is a finite set of nonterminal symbols, N ∩T = /0
• N′ = N × {ε,NA,OA} is the set of nonterminal symbols with adjoining con-

straints; unless otherwise indicated, equivalence is understood to be modulo ad-
joining constraints

• I is a finite set of initial trees, which are finite trees whose interior labels are
drawn from N′ and whose frontier labels are drawn from N′ ∪T

• A is a finite set of auxiliary trees whose interior labels are drawn from N ′, whose
frontier labels are drawn from N′ ∪ T , and whose root and foot nodes bear the
same label

• S ⊆ I is a set of initial trees which can begin a derivation

Definition 18. The result of adjoining an auxiliary tree β with root/foot label X at
a node η with label X is the tree obtained as follows: detach the subtree rooted by
η and call it γη , leaving behind a copy of η; attach β by merging its root node with
(the copy of) η; reattach γη by merging its root node with the foot node of β .

Definition 19. The result of substituting an initial tree α with root label X at a fron-
tier node η with label X is the tree obtained by merging the root node of α with
η .

Definition 20. A derived tree (or derived initial tree or derived auxiliary tree) of G
is obtained by taking an elementary tree γ in S (or I or A, respectively), and:

• substituting a derived initial tree at each of the non-foot frontier nonterminal
nodes (called substitution nodes)

• adjoining a derived auxiliary tree at each of the nodes with adjoining constraint
OA and zero or more of the nodes without adjoining constraint NA

Definition 21. The tree set or tree generative capacity of a TAG G is the set of all
possible derived trees of G. The string set or weak generative capacity of G is the
set of yields of derived trees of G.

The following three restrictions of TAG have been proposed to capture some of
the additional descriptive power of TAG while remaining weakly context-free.
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No adjunction: tree substitution grammars

Definition 22. A tree-substitution grammar or TSG [111] is a tree-adjoining gram-
mar with no auxiliary trees.

As a historical note, TAG as originally defined only had adjunction; substitution
was introduced later by Abeillé [2], and then adjunction was dropped by Sch-
abes et al. [113] to form TSG, though it does not seem to have been called by that
name until later [111].

No wrapping adjunction: tree-insertion grammars

Definition 23. A left (or right) auxiliary tree is an auxiliary tree in which no frontier
node lies to the right (or left, respectively) of the foot node. (If we permit leaf nodes
labeled with empty elements, these may lie anywhere.)

Definition 24. A tree-insertion grammar or TIG [115, 116], originally termed a
“lexicalized context-free grammar,” is a TAG in which all auxiliary trees are either
left or right auxiliary trees, and adjunction is constrained so that:

• no left (right) auxiliary tree can be adjoined on any node that is on the spine of a
right (left) auxiliary tree, and

• no adjunction is permitted on a node that is to the right (left) of the spine of a left
(right) auxiliary tree.

Limited spine adjunction: regular form

In his original definition, the details of which we omit here, Rogers [107] defines
a restriction on TAG adjunction, called regular adjunction, that can generate only
regular path sets. He then identifies a subclass of TAGs, called TAGs in regular
form, which have the property that every derived tree that can be derived using
unrestricted adjunction could also have been derived using only regular adjunction.
But since Rogers’ recognition algorithm only performs regular adjunction, it cannot
in general produce all possible derivations of a sentence and therefore cannot be
used as a parser.

A more technical issue is that regular adjunction can occur at either the root
or foot, which creates derivational ambiguity. Rogers’ algorithm, however, cannot
distinguish between the two. If we want the parser to compute derivations, one or the
other should be disallowed. Following Schuler et al. [119], we prohibit adjunction at
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Fig. 2.2 Examples of adjunction in regular-form TAG. (a) Off-spine adjunction, allowed; (b)
acyclic spine adjunction, allowed; (c) cyclic spine adjunction, not allowed; (d) root adjunction,
not allowed; (e) foot adjunction, allowed.

the root.2 This leads us to the following definition, which narrows Rogers’ definition
to eliminate both of the above problems:

Definition 25. We say that a TAG is in regular form, or an RF-TAG, if there exists
some partial ordering � over nonterminal symbols such that if β is an auxiliary tree
whose root and foot nodes are labeled X , and η is a node labeled Y on β ’s spine
where adjunction is allowed, then X �Y , and X = Y only if η is a foot node.

Thus adjunction at nodes not lying along the spine and adjunction at the foot node
are allowed freely; adjunction at nodes lying along the spine is allowed to a bounded
depth, but adjunction at the root is not allowed at all (see Figure 2.2).

Multiple adjunction and sister adjunction
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Fig. 2.3 Sister adjunction.

In standard definitions of TAG, only one auxiliary tree is allowed to adjoin at a
single node. Schabes and Shieber [114] argue that this is unsatisfactory for certain

2 If we had prohibited adjunction at the foot, as is more customary, and allowed adjunction at the
root, then the resulting grammars would not be coverable by CFGs (see Section 2.5.4). It might
be possible to relax the definition of a cover grammar to allow this, but we do not pursue this
possibility here.
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linguistic constructions, and so they propose an extended notion of derivation in
which a distinction is made between modifier auxiliary trees and predicative auxil-
iary trees. Multiple modifier auxiliary trees may be adjoined at a single node, but
only one predicative auxiliary tree may be adjoined at a single node.

We combine the idea of multiple adjunctions with an operation borrowed from
d-tree substitution grammar [103] called sister-adjunction:

Definition 26. The result of sister-adjoining an initial tree α under a node η at
position i is the tree obtained by

• if i = 0: adding α as the leftmost daughter of η;
• if 0 < i < n, where n is the number of daughters of η: inserting α between the

ith and (i+1)st daughter of η ;
• if i = n: adding α as the rightmost daughter of η .

See Figure 2.3. As in Schabes and Shieber’s extension, multiple trees may be sister-
adjoined at the same position [31].

This extension does not add any weak generative power. However, a TAG ex-
tended in this way is no longer an sLMG, strictly speaking, because its derivation
trees can have unbounded branching factors, whereas an sLMG’s derivation trees
only allow bounded branching.

2.5.2 Multicomponent Grammars

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y

a X

b X

c Y d

e

f

∗

Z

g Z h∗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X

a Y

b X c

d

∗

X

e Z

f X g

h

∗

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(β1) (β2)

Fig. 2.4 Example multicomponent TAG elementary tree sets.

Multicomponent TAGs [129] are TAGs whose elementary structures are sets of
elementary trees. The basic operation is the simultaneous adjunction or substitution
of all the trees in a set. In set-local multicomponent TAG, all the trees must compose
into the same elementary tree set; in tree-local multicomponent TAG, all the trees
must compose into the same elementary tree. For example, Figure 2.4 shows some
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multicomponent TAG elementary tree sets. In a set-local multicomponent TAG, β1
would be able to adjoin into β2, by adjoining the first component into the first com-
ponent and the second component into the second component. Moreover, β2 would
be able to adjoin into β1, by adjoining both components into the two X nodes of the
first component. But in a tree-local multicomponent TAG, the former would not be
possible because the two adjunction sites are in different components.

We may generalize this concept to sLMGs in general.

Definition 27. A multicomponent predicate is one whose arguments are partitioned
into one or more components (shown separated by a colon):

X(α11, . . . ,α1m1 : . . . : αn1, . . . ,αnmn)

The dissolution of a multicomponent predicate with the above form is the set

{X1(α11, . . . ,α1m1), . . . ,Xn(αn1, . . . ,αnmn)}

Definition 28. A set-local (or component-local) multicomponent production is an
sLMG production whose predicates are multicomponent predicates, and if two vari-
ables appear in the same component (or predicate, respectively) of the right-hand
side, then they appear in the same component of the left-hand side.

The dissolution of a multicomponent production is the set of all possible well-
formed sLMG productions formed out of the dissolutions of its predicates (keeping
left-hand-side predicates on the left-hand side and right-hand-side predicates on the
right-hand side).

For example, the elementary tree sets in Figure 2.4, with the adjunctions described
above, could be converted into the following productions:

YZ(ax1bx2c,dx3ex4f : g,h) :− XX(x1,x4 : x2,x3) (β1)

XX(ax1b,cx2d : ex3f,gx4h) :− YZ(x1,x2 : x3,x4) (β2)

Both are easily verified to be set-local, but only β1 is component-local: in β2, x1 and
x3 occur in the same right-hand-side predicate, they occur in different left-hand-side
components.

Definition 29. A set-local (or component-local) multicomponent sLMG is an sLMG
with set-local (or component-local, respectively) multicomponent productions and
a single-component start predicate.

If a formalism F can be embedded in sLMG, then set-local (or component-local)
multicomponent F consists of set-local (or component-local, respectively) multi-
component sLMGs such that the dissolution of each production is a well-formed
production of F .

Component-local multicomponent TAG is the same as tree-local multicomponent
TAG. Set-local multicomponent CFG is also known as local scattered-context gram-
mar [102].
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Proposition 1. If a formalism F can be embedded in sLMG, then component-local
multicomponent F is weakly equivalent to F .

Proof. Observe that in the dissolution of a component-local multicomponent pro-
duction, all the components of each right-hand-side predicate end up in the same
production. Therefore, given a component-local multicomponent sLMG G, we can
dissolve G and augment the nonterminal alphabet to guarantee that it has the same
behavior as the original grammar. Let P′ be the set of all productions that can be
obtained as follows: for any π ∈ P, relabel the left-hand predicate to be π itself and
relabel each right-hand predicate to a production with a matching left-hand side.
Then let P′′ be the union of the dissolutions of all the productions in P′. This set of
productions forms a grammar of F weakly equivalent to G.

The component-locality constraint can be relaxed to delayed component-locality
[38] without losing weak equivalence. Delayed tree-local multicomponent TAG has
been employed for a variety of linguistic analyses [38, 58, 126].

2.5.3 Parsing

The basic parsing algorithm for sLMGs is straightforward: since they are just deduc-
tive systems, a chart-based deductive parser [125] can operate on an sLMG fairly
transparently. Such a parser essentially searches the space of all possible instanti-
ations of the productions of the input grammar for an instantiation with left-hand
side S(w), where w is the input string. Because the variables of an sLMG, as in an
RCG, can only be instantiated to substrings of w, the number of instantiations of
each sLMG production, and therefore the running time of the parser, is polynomial
in |w|.

To obtain a parse forest, that is, a representation of all possible parses of a given
string, we can use a construction due to Bertsch and Nederhof [12], a generalization
of similar constructions for other formalisms [10, 128]. Given an sLMG G and an
input string w, it computes another sLMG which compactly represents all possible
derivations of w by G. (If G is linear, then the construction works for a general
finite-state automaton, as shown by Bertsch and Nederhof.)

Define a new nonterminal alphabet

N′ =
⋃

X∈N,m≤ f

{X}×Q2m

where Q = {0, . . . , |w|} and f is the maximum arity of any predicate. Intuitively,
each nonterminal X ∈ N and arity m is accompanied by 2m string positions, indicat-
ing the left and right input positions of the arguments of X .

For any pair of mappings q,r : V → Q (where q(x) ≤ r(x)) and string α ∈ (V ∪
T )∗, define the condition matchq,r(α,w, i, j) which is true if one of the following is
true:
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• α = wi+1β and matchq,r(β ,w, i+1, j)
• α = xβ , x ∈V , q(x) = i, and matchq,r(β ,w,r(x), j)
• α = ε and i = j

Roughly speaking, matchq,r(α,w, i, j) holds just in case making each variable x to
span wq(x)+1 · · ·wr(x) makes α to span wi+1 · · ·wj .

Define a new set of productions P′ as follows. For each production π ∈ P of the
form

X(α1, . . . ,αm) :− Y1(β11, . . . ,β1m1), . . . ,Yn(βn1, . . . ,βnmn)

and for every pair of mappings q,r : V → Q, if for each αi there exist qi,ri ∈ Q such
that matchq,r(αi,w,qi,ri), then add to P′ the production

X ′(α1, . . . ,αm) :−Y ′
1(β11, . . . ,β1m1), . . . ,Y

′
n(βn1, . . . ,βnmn)

where X ′ = 〈X ,q1,r1, . . . ,qm,rm〉 and Y ′
i = 〈Yi,q(βi1),r(βi1), . . . ,q(βimi),r(βimi)〉.

These productions form a new grammar Gw whose start symbol is 〈S,0, |w|〉.
Observe that even if G was nonlinear, Gw is essentially a CFG; the nonterminals
do all the work and the arguments do not further constrain the derivations. The
size of Gw is O(|G|n(r+1) f ) productions, where |G| is the number of productions,
n is the length of w, f is the maximum arity, and r is the maximum number of
nonterminals on the right-hand side of a production. Therefore the running time of
this construction is also O(|G|n(r+1) f ).

This algorithm is by no means optimal, however. In order to improve parsing
time, one would have to write a specialized parser for the grammar or, equivalently,
construct a cover grammar for it. For example, in order to achieve O(n3) time com-
plexity for parsing CFGs, we must either convert the CFG into Chomsky normal
form (that is, strict binary-branching) or use a specialized algorithm like Earley’s
algorithm, which effectively binarizes the grammar on the fly. In either case, there
must be a way of reconstructing the derivations of the original grammar. We discuss
this topic further below.

2.5.4 Cover Grammars

When considering the use of new formalisms, we are especially interested in max-
imizing a formalism’s power in one respect while minimizing it in another. Most
often, one wants to minimize its WGC: Joshi [68] speaks of “squeezing” SGC out
of a formalism without increasing its WGC. From a theoretical standpoint, such
formalisms are interesting because they point to finer-grained ways of measuring
formal power than the traditional measure of WGC. More practically, one may want
to minimize parsing complexity: it would be ideal to gain extra SGC without in-
creasing the asymptotic complexity of the parsing algorithm.

These two constraints, WGC and parsing complexity, often coincide: proofs of
weak equivalence to, say, CFG, are often accompanied by O(n3) parsing algorithms.
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∗
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Fig. 2.5 Example of weakly context-free TAG.

Indeed, we argue that to have one without the other is not likely to be very interest-
ing.3 For example, the TAG of Figure 2.5a generates a CFL ({a,b}∗), and adding the
tree in Figure 2.5b does not increase the grammar’s WGC, yet intuitively it increases
the grammar’s complexity. Conversely, the language

{aib jck | i jk+1 is a prime number}

has a (very naı̈ve) O(n3) recognition algorithm, but whatever formal system gener-
ates it is not likely to resemble a CFG.

It would be easier to characterize what it means to squeeze SGC out of a formal-
ism if we used a tighter constraint, one which entailed both preservation of WGC
and preservation of parsing complexity. Such a constraint is suggested by examining
the parsing algorithms for common weakly context-free formalisms. For example,
the parsers for RF-TAG and TIG are based on CKY; their items are of the form
[X , i, j] and are combined in various ways, but always according to the deductive
rule schema

[Y, i, j] [Z, j,k]
[X , i,k]

where the material below the line is deduced from the material above the line [125].
But this is just like the CKY parser for CFG in Chomsky normal form. In effect
the parser dynamically converts the RF-TAG or TIG into an equivalent Chomsky-
normal-form CFG—each parser rule of the above form corresponds to the rule
schema X → Y Z.

More importantly, given a grammar G and a string w, a parser can reconstruct
a packed forest of all possible derivations of w in G by storing some information
inside its chart items. Every time it generates a new item, it takes the derivation
information in the antecedent items to compute some new information for the new
item. If we think of the parser as dynamically converting G into a CFG G′, then we
may think of these computations as attached not to the deductive rules of the parser,
but to the productions of G′. Indeed, we may think of them as a kind of interpreta-
tion function for G′ into the domain of G-derivations. We call G′ a cover grammar
for G, following Nijholt [94]. This covering relationship is a relationship between

3 A notable exception would the Lambek calculus [78], which is weakly context-free [96] but
NP-complete to parse [97], because the Lambek-to-CFG conversion does not preserve derivations.
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grammars and not parsing strategies: while this covering relationship prescribes a
particular approach to parsing G, it is independent of any particular parsing strategy
for G′.

So far we have not articulated how the derivations of G are reconstructed. A
parser like CKY builds a packed parse forest by storing in each parser item [X , i, j] a
set of productions X →Y Z together with back-pointers to forests of derivations of Y
and Z. Crucially, because these subforests would be exponential in size if unpacked,
the parser never accesses their internals; it only deals with back-pointers to them,
without dereferencing them. Parsers which use cover grammars also typically use
back-pointers in this way, which we formalize as follows:4

Definition 30. A cover sLMG G′ is an sLMG together with an interpretation func-
tion whose local interpretation functions fπ operate on tuples of derivations and are
each definable as:

fπ(〈t11, . . . , t1m1〉, . . . ,〈tn1, . . . , tnmn〉) = 〈u1, . . . ,um〉

where the ti j are variables and each ui is drawn from the set τ , which is a set of
derivation fragments recursively defined as follows:

1. ti j is in τ (copying a back-pointer)
2. π ′(τ1, . . . ,τn) is in τ , where τi ∈ τ and π ′ is an sLMG production (creating a

derivation fragment with back-pointers)

Definition 31. We say that a cover sLMG G′ covers another sLMG G if there is a
one-to-one correspondence between derivations of G′ and derivations of G such that
G′ derives w with interpretation δ if and only if δ is the corresponding G-derivation,
and δ is a derivation of w. We say that the cover respects an interpretation domain
D if corresponding derivations also have the same interpretation in D.

Definition 32. We say that a formalism F ′ covers another formalism F (respecting
D) if for any grammar G provided by F , there is a grammar provided by F ′ which
can cover G (respecting D).

X

Y

ε

X

a X d

na

∗

Y

b Y c

na

∗

(α) (β1) (β2)

Fig. 2.6 Example TAG to be covered. Here adjunction at foot nodes is allowed.

4 This notion is similar to generalized syntax-directed translation [5].
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Production Name

S(x1y1y2x2) :− X(x1,x2),Y (y1,y2) (α)

X(ax1,x2d) :− X(x1,x2) (β1)

X(ε ,ε) (εX )

Y (by1,y2c) :− Y (y1,y2) (β2)

Y (ε ,ε) (εY )

Fig. 2.7 sLMG representation of the TAG of Figure 2.6.

Production Local interpretation function Comment

S → α0• α(t1, t2)← � 〈t1, t2〉
α0• → α0• 〈εX (), t2〉 ←� 〈−, t2〉 no adjunction

α0• → α1• 〈−, t2〉 ←� 〈−, t2〉
α1• → α1• 〈−,εY ()〉 ←� 〈−,−〉 no adjunction

α1• → ε 〈−,−〉
α0• → β 0

1 [α
0] 〈β1(t1), t2〉 ←� 〈t1, t2〉 adjoin β1

β 0
1 [α

0]→ aβ 2
1 [α0]d 〈t1, t2〉 ←� 〈t1, t2〉

β 2
1 [α

0]→ β 0
1 [α

0] 〈β1(t1), t2〉 ←� 〈t1, t2〉 adjoin β1 by “tail recursion”

β 2
1 [α

0]→ α0• 〈εX (), t2〉 ←� 〈−, t2〉 no adjunction, return to α

α1• → β 0
2 [α

1] 〈−,β2(t2)〉 ←� 〈−, t2〉 adjoin β2

β 0
2 [α

1]→ bβ 2
2 [α1]c 〈−, t2〉 ←� 〈−, t2〉

β 2
2 [α1]→ β 1

2 [α1] 〈−,β2(t2)〉 ←� 〈−, t2〉 adjoin β2 by “tail recursion”

β 2
2 [α

1]→ α1• 〈−,εY ()〉 ←� 〈−,−〉 no adjunction, return to α

Fig. 2.8 CFG cover of the TAG of Figure 2.6. Here we leave the local interpretation functions
anonymous; y ← � x denotes the function which maps x to y.

As an example, a CFG which covers the RF-TAG of Figure 2.6 is shown in
Figure 2.8. The nonterminals of this grammar consist of an elementary tree name,
a superscripted tree address, a dot indicating the “top half” or “bottom half” of the
node (to prevent multiple adjunctions at a node), and a stack in square brackets.
When a tree β is adjoined into another tree γ , γ is pushed onto the stack so that it
can be recalled when β is finished; however, if β is adjoined at the foot node of
γ , then γ does not need to be recalled, so it is not pushed onto the stack, as in the
programming-language technique of tail recursion.

The notion of a cover grammar provides a new view of the question posed by
Joshi [68], “How much strong generative power can be squeezed out of a formal
system without increasing its weak generative power?” In our present framework,
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we must understand SGC to be relative to some interpretation domain. Moreover,
in light of the foregoing arguments, we should modify the constraint on WGC to be
a constraint on coverability. This provides a more rigid framework in which Joshi’s
question can be explored.

We will show in later chapters that in some interpretation domains, formalisms
that are coverable by CFG can indeed have greater SGC than CFG. For example,
in Section 5.3.1 we show that RF-TAG can generate a linked string set that CFG
cannot:

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c a a · · · a c b · · · b b

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

In a sense, this greater SGC is squeezed out of CFG for free. But this kind of squeez-
ing has its limits.

Proposition 2. If G′ covers G (using interpretation function c), then for any inter-
pretation function f of G, there exists an equivalent interpretation function f ′ of G′,
that is, f ′ = f ◦ c.

Proof. The equivalent interpretation for G′ is easy to construct: the basic idea is that
wherever a local interpretation function in the cover generates a G-production π , we
substitute π’s local interpretation function in place of π .

This means that we could in fact construct an interpretation for the cover CFG of
Figure 2.8 that generates L. It is only under the restriction that links be defined
within local domains that L is impossible for CFG.

In Proposition 2, the interpretation of G could even be another cover, which im-
plies that coverability is transitive. This means that while a covered formalism might
have greater SGC than the cover formalism in some domains, it can never have
greater SGC in the domain of covered derivations.

Corollary 1. A formalism F ′ can cover another formalism F if and only if F ′ can
cover every sLMG that F can.

In other words, one cannot squeeze a formalism a second time to get still more
power out. Therefore the class of sLMGs coverable by CFG represents the maxi-
mum amount of SGC that can be squeezed out of CFG as we have defined it.

In an earlier paper [32] we tried to characterize this class of grammars more
directly by choosing an interpretation domain and exhibiting a formalism that max-
imized SGC with respect to this domain. But since there are many different ways to
do this, it is more fruitful to consider Joshi’s question with reference to a particular
application.



Chapter 3

Statistical Parsing

We now turn to statistical parsing, in which some probability model defined over
parse structures (standardly, phrase-structure trees) is used to determine the best
structure or best k structures of a given string. We introduce weighted interpretation
domains and show how parsing models of a very general nature can be expressed
as weighted grammars. But we find that this domain classifies formalisms rather
coarsely: any two formalisms with the same coverability (respecting parse struc-
tures) also define the same parsing models.

Though this result makes the hope rather dim of squeezing statistical-modeling
power out of PCFG for free, it invites a reinterpretation of lexicalized PCFG models
[25, 44] as cover grammars of grammars with richer structural descriptions than
phrase-structure trees. As a demonstration of this new view, we define a probabilistic
TAG model and discuss techniques for obtaining adequate models from corpora
which, from this point of view, are labeled only with partial structural descriptions.
This model performs at the same level as lexicalized PCFG parsers and captures the
same kinds of dependencies they do in a conceptually simpler way.

3.1 Measuring Statistical Modeling Power

Typically, grammar-based statistical parsing models are defined as weighted gram-
mars, which we may define as follows.

Definition 33. The interpretation domain of weights is the set of nonnegative reals;
its local interpretation functions are of the form

fπ(w1, . . . ,wn) = w×
n

∏
i=1

wi (3.1)

A weighted sLMG is an sLMG together with an interpretation function for the do-
main of weights.
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In order to compare parsing models across formalisms (in terms of SGC or in terms
of parsing accuracy), we need to map derivations to some common parse structure,
usually phrase-structure trees or dependency trees. Here, we only consider phrase-
structure trees. Thus, we measure SGC in the domain of weighted trees (the domain
whose interpretations are (tree, weight) pairs and whose interpretation functions
are each the product of an interpretation function for the domain of trees and an
interpretation function for the domain of weights).

The statistical parsing problem is then to compute the highest-weighted tree for
a given input sentence. If it is possible for more than one derivation to yield the
same tree, a question arises: should we look for the highest-weight derivation or
the highest-weight tree (where the weight of a tree is the sum of the weights of the
derivations that yield it)? Some approaches to statistical parsing, like data-oriented
parsing [17], do the latter. But most parsers simply look for the highest-weight
derivation and output its interpretation as a tree.

The weights need not be numeric. If we want to estimate weights from data, then
we must start with a grammar whose productions π each have for a weight a feature
vector h(π). The feature vector of a derivation is the sum of the feature vectors of
its productions. To train the model, we estimate a vector of feature weights w; this
allows us to assign the numeric weight w ·h(π) to each production π.

For example, a linear sLMG G can be made into a probabilistic version by as-
signing a different unit feature vector (that is, a vector with value 1 for one feature
and 0 for the rest) to each production. The feature-weight vector to be estimated is
a vector of log-probabilities. For each nonterminal X and arity n, let PX,n be the set
of productions whose left-hand side has nonterminal X and arity n. Then we require

∑
π∈PX ,n

exp(w ·h(π)) = 1 (3.2)

Subject to this constraint, the maximum-likelihood estimate for w is just

exp(w ·h(π)) = c(π)
∑π∈PX ,n c(π ′)

(3.3)

where c(π) is the number of occurrences of π in the training data. The reason G
must be linear is that otherwise the derivation distribution would not sum to one
in general. This schema applied to CFG gives probabilistic CFG [18]. Probabilistic
TAG [105, 112] can be constructed in a similar way, although the details depend on
how we embed TAG into sLMG.

As another example, we can let the production weights be arbitrary feature vec-
tors, and instead of the constraint (3.2), we simply renormalize the derivation distri-
bution; that is, if D is the set of derivations of G and d ∈ D , then

P(d) =
exp(w ·∑π∈d h(π))

∑d′ ∈ D exp(w ·∑π∈d′ h(π))
(3.4)
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This is applicable even to nonlinear sLMGs. It defines a log-linear (or maximum-
entropy) model over derivations whose features are local to a production, but can
be arbitrary functions on productions. Since the summation in the denominator can
be difficult to compute [3], it is more common to restrict it to derivations of a given
string w, so that the model defines a conditional distribution P(d | w) [66]. Esti-
mating the feature weights w can be done by various numerical methods, which
generally involve calculating the expected number of times that a feature occurs for
a given training example. This can be done using a generalization of the Inside-
Outside algorithm [9, 79, 43, 91, 34].

In order to measure the statistical-modeling power of a grammar formalism, then,
we should look at its SGC with respect to the domain of weighted trees, whether
those weights are numbers or feature vectors.

Can we squeeze statistical-modeling power out of a formalism for free—that is,
without affecting coverability? The answer is the following negative result:

Proposition 3. If a grammar G′ covers G respecting some interpretation domain D,
then the weighted versions of G′ and G are equivalent with respect to the weighted
version of D.

Proof. Let Gw be the weighted version of G. Given G′, it is easy to construct a
weighted version of G′ that is equivalent to Gw: replace each local interpretation
function f ′ in G′ by (3.1), with p equal to the product of the weights in Gw of the
local interpretation functions invoked by f ′. The resulting weighted grammar G′

w
is equivalent to Gw, for even though G′

w and Gw multiply the production weights
together in different orders, the result is the same because multiplication of weights
(or addition of feature vectors) is commutative.

This means that squeezing SGC while preserving coverability will not increase the
number of models that can be described. On the other hand, it is trivially true that
a formalism with greater SGC with respect to parse structures can describe more
models. For example, TIG (see Section 2.5.1), because it can be covered by CFG
respecting strings, cannot be used to describe any more models of string probabil-
ity than CFG can. But because it has greater tree generative capacity than CFG, it
can describe more models of tree probability. Therefore, since many recent parsing
models [25, 44, 90] are based on PCFG, we should not expect to improve much on
them by moving to TIG, and not at all by moving to TSG or RF-TAG.

3.2 Lexicalized Probabilistic CFG

However, this result reveals a deeper insight into these models. The CFGs they are
based on are called lexicalized, which means that they have been modified so that
every nonterminal symbol contains a lexical item (see Figure 3.1 for an example
derivation). Before training, a set of rules [86] is used to identify a head child for
every node in the training data; then the training data are transformed in the follow-
ing way, bottom-up:
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S(would)

NP(Qintex)

NNP(Qintex)

Qintex

VP(would)

MD(would)

would

VP(sell)

VB(sell)

sell

PRT(off)

RP(off)

off

NP(assets)

NNS(assets)

assets

Fig. 3.1 Lexicalized PCFG tree.

1. If a node labeled X has a head child which is a terminal node labeled w, then
relabel the node X(w).

2. If a node labeled X has a head child labeled Y (w), relabel the node X(w).

The conventional wisdom regarding lexicalized PCFG is that it rearranges the lexi-
cal information in trees so that it can be used more effectively; specifically, it places
pairs of words into the same local domain so that bilexical statistics can be col-
lected. But experiments have shown [54, 72, 13] that bilexical statistics actually
help very little in parsing. We argue below that the lexicalization process does more
than rearrange lexical information to create bilexical dependencies.

Recall that a cover grammar has pieces of the covered derivations attached to its
productions, and it uses information transmitted through its nonterminal symbols to
ensure that the pieces are attached correctly. For example, one way to construct a
cover grammar for a TSG (see Section 2.5.1) could be:

1. For every non-substitution node labeled X with address η in an elementary tree
α , add as a decoration the singleton set

{〈α,η〉}

2. For every substitution node labeled X , add the decoration

{〈α,ε〉 | α is an elementary tree with root label X}

3. For every node labeled X with decoration {〈α,η〉} immediately dominating
nodes labeled X1, . . . ,Xn with decoration Δ1, . . . ,Δn, construct the CFG rules

X(α,η)→ X1(α1,η1), . . . ,Xn(αn,ηn) for all 〈αi,ηi〉 ∈ Δi
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If we further assume that each elementary tree α has a single lexical anchor wα ,
then observe that (α,η) subsumes (wα), so that the CFG with rules

X(wα)→ X1(wα1), . . . ,Xn(wαn) for all 〈αi,ηi〉 ∈ Δi

generates an approximate superset of the original TSG. But this grammar is none
other than a lexicalized PCFG. We may therefore think of a lexicalized PCFG as
an approximate cover of a TSG. If each elementary tree has a unique lexical anchor
and each node in a tree has a unique label, then the cover is exact.

Collins’ models decompose the generation of productions more finely; we omit
the details here, only noting that the use of a Markov process to generate adjuncts
makes an infinite number of productions possible. To avoid infinite grammars, we
add sister-adjunction (see Section 2.5.1), which can create new children under a
node in a manner similar to Collins’ Markov model.
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Fig. 3.2 Derivation of TSG with sister-adjunction corresponding to tree of Figure 3.1.

Therefore Collins’ Model 2, minus its distance measure, can alternatively be
thought of as defined on a TSG with sister-adjunction (see Figure 3.2). Since a
TSG’s derivations are distinct from its derived trees and contain more information
than them, we should likewise think of Collins’ Model 2 as being defined over richer
structural descriptions than are found in the Penn Treebank, and we should think of
the lexicalization process as reconstructing information rather than rearranging in-
formation, and this information is structural rather than lexical.

In the following section we build a parsing model from the ground up according
to this new perspective. This perspective also suggests an alternative to reconstruc-
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tion heuristics: to treat training as a partially-unsupervised learning problem and use
EM to train the model from partial structural descriptions.

3.3 A Probabilistic TIG Model

If lexicalized CFG is a cover grammar for something like a TAG, then perhaps a
statistical parsing model should be defined directly as one. In this section we define a
model based on probabilistic TIG with sister-adjunction. Such a formulation would
have several advantages:
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Fig. 3.3 Derivation of TIG with sister-adjunction corresponding to tree of Figure 3.1.

First, we noted that lexicalized CFG is only an approximate cover because it uses
lexical anchors as a proxy for their elementary structures. Various modifications to
lexicalized CFG have been found to improve parsing accuracy, for example:

• an S which does not dominate an argument NP to the left of its head is relabeled
SG, so that the attachment of the clause can be conditioned on whether it has a
subject [45]

• an NP which does not dominate another NP which does not dominate a POS is
relabeled NPB, and if its parent is not an NP, an NP node is inserted [45] because
PCFG mismodels Treebank-style two-level NPs [65]

• every node’s label is augmented with the label of its parent [26, 65]

Such changes are not always obvious a priori and often must be devised anew for
each language or each corpus. But the above modifications are not necessary in a
TAG-like model, because it has statistics of pairs of elementary trees and not just
pairs of words. Thus many dependencies that have to be stipulated in a PCFG by
tree transformations are captured for free in a probabilistic TAG model.

Second, TAG provides greater flexibility in defining heuristics. For example, we
might want elementary trees that contain both a preposition and the head word of
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the prepositional object, in the hope that the latter will help make PP attachment
decisions [46]. Or, in a sentence with an auxiliary verb, like the above example
“Qintex would sell off assets,” we might want the subject to attach to the tree for
‘sell’ instead of the tree for ‘would.’ It would be tricky to make such changes to a
head word percolation scheme, but easy with a TAG or TIG (see Figure 3.3 for a
TIG derivation of the latter example).

Third, by decoupling the reconstruction heuristics from the training process
proper, this new view suggests alternative training methods. Below we describe ex-
periments using Expectation-Maximization to train directly on the observed, not the
reconstructed data (a method explored previously by Hwa [63] for TIG).

Basic definition

The parameters of a probabilistic TAG model [105, 112] are:

∑
α

Pi(α) = 1

∑
α

Ps(α | η) = 1

∑
β

Pa(β | η)+Pa(NONE | η) = 1

where α ranges over initial trees, β over auxiliary trees, and η over nodes. Pi(α)
is the probability of beginning a derivation with α; Ps(α | η) is the probability
of substituting α at η ; Pa(β | η) is the probability of adjoining β at η ; finally,
Pa(NONE | η) is the probability of nothing adjoining at η . The probability of a
derivation can then be expressed as a product of the probabilities of the individual
operations of the derivation.

We restrict the TAG to be a TIG for efficiency reasons. The above model works
for TIG just as it does for TAG. However, the original definition of probabilistic TIG
[117] is flawed because it allows one left auxiliary tree and one right auxiliary tree
(but not more than one of each) to adjoin at the same node in either order, but the
probability model does not distinguish the two orders, so that the total probability
of all valid derivations is greater than one. Hwa [64, p. 30] describes how to fix the
problem, but our fix is simply to prohibit this type of simultaneous adjunction.

Our variant (henceforth TIG-SA) adds another set of parameters for sister-
adjunction:

∑
α

Psa(α | η, i,α ′)+Psa(STOP | η, i,α ′) = 1

where α and α ′ range over initial trees, and (η, i) over possible sister-adjunction
sites. Let n be the number of children of η; Psa(α | η , i,α ′), 0 ≤ i ≤ n, is the prob-
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ability of sister-adjoining α under η at position i, when α ′ is the previous1 tree to
have sister-adjoined at that position (or START if none). Thus modifier trees are
generated as a first-order Markov process, as in the model used in BBN’s SIFT
system [90] and the base-NP model of Collins [45].

Independence assumptions and smoothing

Since the number of parameters in this model is too high to get reasonable estimates
from corpus data, we generate an elementary tree in two steps and smooth each step:
first the tree template (that is, the elementary tree stripped of its anchor), then the
anchor. Thus:

Pi(α) = Pi1(τα)P2(wα | τα)

Ps(α | η) = Ps1(τα | η) ·P2(wα | τα , tη ,wη)

Pa(β | η) = Pa1(τβ | η) ·P2(wβ | τβ , tη ,wη)

Psa(α | η, i,α ′) = Psa1(τα | η, i,Xα ′) ·P2(wα | τα , tη ,wη ,Xα ′)

where τα is the tree template of α and wα is the lexical anchor of α , and similarly
for β ; wη is the lexical anchor of the elementary tree containing η , and tη is the
part-of-speech tag of that anchor. We have reduced α ′ to its root label Xα ′ . Note that
the same probability P2 is used for all three composition operations: for adjunction
and substitution, Xα ′ is assigned the value START.

These probabilities each have three backoff levels:

Ps1,a1(γ | · · ·) Psa1(α | · · ·) P2(w | · · ·)
1 τη ,wη ,ηη τη ,wη ,ηη , i,Xα ′ τγ , tη ,wη ,Xα ′
2 τη ,ηη τη ,ηη , i,Xα ′ τγ , tη ,Xα ′
3 τ̄η ,ηη τ̄η ,ηη , i τγ
4 Xη /0 tγ

where τη is the tree template of the elementary tree containing η , τ̄η is τη stripped
of its anchor’s POS tag, Xη is the label of η , and ηη is the address of η in its
elementary tree; τγ is the tree template of γ , and tγ is the POS tag of its anchor. The
backed-off models are combined by linear interpolation:

e = λ1e1 +(1−λ1)(λ2e2 +(1−λ2)(λ3e3 +(1−λ3)e4)) (3.5)

where ei is the estimate at level i, and the λi are computed by a combination of
formulas used by Collins [45] and Bikel et al. [16]:

1 Here “previous” means “next closest to the lexical anchor,” which presupposes a single lexical
anchor; we could alternatively define it to mean “next to the left,” which would be more general
but less efficient.
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λi =

(
1− di−1

di

)(
1

1+5ui/di

)
(3.6)

where di is the number of occurrences in training of the context at level i (d0 = 0),
and ui is the number of unique outcomes for that context seen in training.

To handle unknown words, we treat all words seen five or fewer times in training
as a single symbol UNKNOWN, following Collins [44].

Parsing

We used a CKY-style TIG parser similar to the one described by Schabes and Wa-
ters [117], with a modification to ensure completeness (because foot nodes are ef-
fectively empty, which standard CKY does not handle). We also extended the parser
to allow sister-adjunction.

The parser uses a beam search, assigning a score to each item [η, i, j] and pruning
away any item with score less than 10−5 times that of the best item for that span, fol-
lowing Collins [44]. The score of an item is its inside probability multiplied by the
prior probability P(η), following Goodman [56]. P(η), in turn, is decomposed as
P(τ̄η | tη ,wη) ·P(tη ,wη), so that the first term can be smoothed by linear interpola-
tion (as above) with the backed-off estimate P(τ̄η | tη), again following Collins [45].

As mentioned above, words occurring five or fewer times in training were re-
placed with the symbol UNKNOWN. When any such word w occurs in the test
data, it is also replaced with UNKNOWN. Following Collins [44], the parser only
allows w to anchor templates that have POS tags observed in training with w it-
self, or templates that have the POS tag assigned to w by MXPOST [104]; all other
templates are thrown out for w.

When parsing English, we use Collins’ comma rule: when the parser combines
two constituents, if the right-hand constituent has a comma to its left, it must also
have a comma (or the end of the sentence) to its right, or else the two constituents
cannot be combined. In our parser, because a binary-branching cover grammar is
used, this means that if a right modifier (substitution or sister-adjunction) has a
comma to its left, it must have a comma (or the end of the sentence) to its right; if a
left modifier has a comma to its left, then the parent node must have a comma to its
right.

3.4 Training from Partial Structural Descriptions

We want to obtain a maximum-likelihood estimate of these parameters, but cannot
estimate them directly from the Treebank, because the sample space of probabilistic
TIG-SA is the space of TIG-SA derivations, not the derived trees that are found
in the Treebank. For there are many TIG-SA derivations which can yield the same
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derived tree, even with respect to a single grammar. We need, then, to reconstruct
TIG-SA derivations somehow from the training data.

One approach, taken by Magerman [86] and others for lexicalized PCFGs and
Neumann [93] and others [132, 27] for TAGs, is to use heuristics to reconstruct
the derivations, and directly estimate the probabilistic TIG-SA parameters from
the reconstructed derivations. Another approach, taken by Hwa [63], is to choose
some grammar general enough to parse the whole corpus and obtain a maximum-
likelihood estimate by Expectation-Maximization. Below we discuss the first ap-
proach, and then a combination of the two approaches.

3.4.1 Rule-Based Reconstruction

Given a CFG and a Magerman-style head-percolation scheme, an equivalent TIG-
SA can be constructed whose derivations mirror the dependency analysis implicit in
the head-percolation scheme.

For each node η , the head-percolation and argument/adjunct rules classify ex-
actly one child of η as a head and the rest as either arguments or adjuncts. We use
Magerman and Collins’ rules with few modifications (see Tables 3.4 and 3.5), but
we treat coordination specially: if an X dominates a CC, and the rightmost CC has
an X to its left and to its right, then that CC is marked as the head and the two nearest
Xs on either side as arguments, and no further rules apply.

Using this classification into heads, arguments, and adjuncts, we can construct a
TIG-SA derivation (including elementary trees) from a derived tree as follows:

1. If η is an adjunct, excise the subtree rooted at η to form a sister-adjoined initial
tree.

2. If η is an argument, excise the subtree rooted at η to form an initial tree, leaving
behind a substitution node.

3. But if η is an argument and η ′ is the nearest ancestor with the same label, and
η is the rightmost descendant of η ′, and all the intervening nodes, including η ′,
are heads, excise the part of the tree from η ′ down to η to form an auxiliary tree,
leaving behind a head node.

Rules (1) and (2) produce the desired result; rule (3) changes things somewhat by
making trees with recursive arguments into auxiliary trees. Its main effect is to ex-
tract VP auxiliary trees for modal and auxiliary verbs. In the present experiments,
in fact, it is restricted to nodes labeled VP. The complicated restrictions on η ′ are
simply to ensure that a well-formed TIG-SA derivation is produced.

When we run this algorithm on sections 02–21 of the Penn Treebank [87], the
resulting grammar has 50,628 lexicalized trees (with words seen five or fewer times
replaced with UNKNOWN). However, if we consider elementary tree templates,
the grammar is quite manageable: 2104 tree templates, of which 1261 occur more
than once (see Figure 3.5). A few of the most frequent tree templates are shown in
Figure 3.4.
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So the extracted grammar is fairly compact, but how complete is it? Ideally the
size of the grammar would converge, but if we plot its growth during training (Fig-
ure 3.6), we see that even after training on 1 million words, new elementary tree
templates continue to appear at the rate of about four every 1000 words, or one
every ten sentences.

We do not consider this effect to be seriously detrimental to parsing. Since 90%
of unseen sentences can be parsed perfectly with the extracted grammar, its cov-



40 3 Statistical Parsing

1

10

100

1000

10000

1 10 100 1000 10000 100000

Fig. 3.6 Growth of grammar during training: types versus tokens (log-log).

erage is good enough potentially to parse new data with state-of-the-art accuracy.
Note that even for the remaining 10% it is still quite possible for the grammar to
derive a perfect parse, since there can be many TIG-SA derivations which yield the
same derived tree. Nevertheless, we would like to know the source of this effect and
minimize it. Three possible explanations are:

• New constructions continue to appear.
• Old constructions continue to be (erroneously) annotated in new ways.
• Old constructions continue to be combined in new ways, and the extraction

heuristics fail to factor this variation out.

In a random sample of 100 once-seen elementary tree templates, we found (by ca-
sual inspection) that 34 resulted from annotation errors, 50 from deficiencies in the
heuristics, and four apparently from errors in the text itself. Only twelve appeared
to be genuine.2

Therefore the extracted grammar is more complete than Figure 3.6 suggests at
first glance. Evidently, however, our extraction heuristics have room to improve. The
majority of trees resulting from deficiencies in the heuristics involved complicated
coordination structures, which is not surprising, since coordination has always been
problematic for TAG. In practice, we throw out all elementary tree templates seen
only once in training, on the assumption that they are most likely the result of noise
in the data or the extraction heuristics.

This method is extremely similar to that of Xia [132] and that of Chen [27], the
main difference being that these other methods tend to add brackets to the Treebank

2 This survey was performed on an earlier version of the extraction heuristics.
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in order to obtain a more sensible grammar, whereas our method tends to reproduce
the Treebank bracketing more closely, in order to facilitate comparison with other
statistical parsers.

≤ 40 words
Model LR LP CB 0CB ≤ 2 CB
PCFG [25] 71.7 75.8 2.03 39.5 68.1
Magerman [86] 84.6 84.9 1.26 56.6 81.4
Charniak [25] 87.5 87.4 1.0 62.1 86.1
present model 87.7 87.7 1.02 65.2 84.8
Collins [45] 88.5 88.7 0.92 66.7 87.1
Charniak [26] 90.1 90.1 0.74 70.1 89.6

≤ 100 words
Model LR LP CB 0CB ≤ 2 CB
PCFG [25] 70.6 74.8 2.37 37.2 64.5
Magerman [86] 84.0 84.3 1.46 54.0 78.8
Charniak [25] 86.7 86.6 1.20 59.5 83.2
present model 87.0 87.0 1.21 62.2 82.2
Collins [45] 88.1 88.3 1.06 64.0 85.1
Charniak [26] 89.6 89.5 0.88 67.6 87.7

Table 3.1 Parsing results using heuristics on English. LR = labeled recall, LP = labeled precision;
CB = average crossing brackets, 0 CB = no crossing brackets, ≤ 2 CB = two or fewer crossing
brackets. All figures except CB are percentages.

We trained the model using the extraction heuristics on sections 02–21 and tested
it on section 23. The results (Table 3.1) show that our parser lies roughly midway be-
tween the earliest [86] and latest [26] of the lexicalized PCFG parsers,3 and that both
do considerably better than a PCFG trained on Treebank trees qua CFG derivations
[25]. While these results are not state-of-the-art, they demonstrate that a probabilis-
tic TIG-SA parser can perform at the same level of accuracy as a lexicalized PCFG
parser—or, under our reinterpretation, that lexicalization makes PCFG parsers per-
form at the same level of accuracy as a probabilistic TIG-SA parser.

We suspect that our model does not match the best of the lexicalized PCFG mod-
els because it is not using the larger elementary structures of TIG-SA very robustly.
Fine-tuning the backoff model might bring accuracy closer to the state of the art, but
it may be more productive to look to maximum-entropy models to provide greater
flexibility in choosing model features with different amounts of context.

To see how this system would adapt to a different corpus in a different language,
we replaced the head rules and argument/adjunct rules with rules appropriate for
the Penn Chinese Treebank [133]. These were adapted from rules constructed by
Xia [132] and are shown in Tables 3.6 and 3.7. We also retained the coordination
rule described above.

We also made the following changes to the experimental setup:

3 Note that these scores are an improvement over an earlier version [31].
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• We lowered the unknown word threshold from five to one because the new train-
ing set was smaller.

• The POS tagger for unknown words had to be retrained on the new corpus.
• A beam width of 10−4 was used instead of 10−5, for speed reasons.
• The comma pruning rule was not used, because it is based on an empirical obser-

vation from the English Treebank which does not hold for the Chinese Treebank.

We then trained the parser on sections 001–270 of the Penn Chinese Treebank
(84,873 words) and tested it on sections 271–300 (6776 words). To provide a ba-
sis for comparison with performance on English, we performed two further tests.
First, we trained the parser on sections 001–270 of the English translation of the
Penn Chinese Treebank (118,099 words) and tested it on sections 271–300 (10,913)
words). Second, we trained the parser on sections 02–03 of the WSJ corpus (82,592
words) and tested it on the first 400 sentences of section 23 (9473 words) with the
same settings as the Chinese parser (but with the comma pruning rule). Note that
because of the relatively small datasets used, cross-validation would be desirable
for future studies.

≤ 100 words
Model Corpus LR LP CB 0CB ≤ 2 CB
present WSJ-small 82.9 82.7 1.60 48.5 74.8
present Xinhua-English 73.6 77.7 2.75 48.6 66.0
present Xinhua 75.3 76.8 2.72 46.0 67.0

≤ 40 words
Model Corpus LR LP CB 0CB ≤ 2 CB
present WSJ-small 83.5 83.1 1.42 50.4 77.2
present Xinhua-English 76.4 82.3 1.39 61.4 78.3
present Xinhua 78.4 80.0 1.79 52.8 74.8

Table 3.2 Parsing results using heuristics on Chinese. Abbreviations are as in Figure 3.1. Xinhua:
trained on Penn Chinese Treebank sections 001–270, tested on sections 271–300. Xinhua-English:
same, but on English translation. WSJ-small: trained on Penn Treebank, Wall Street Journal sec-
tions 02–03, tested on section 23, sentences 1–400.

The results, shown in Table 3.2,4 show that this parser is quite usable on a lan-
guage other than the one it was developed on. Indeed, it was the parser used to boot-
strap later releases of the Penn Chinese Treebank, providing rough parses which
human annotators can correct up to twice as fast as annotating from scratch [40].

4 Because of part-of-speech tagging errors on the part of either the corpus or the parser, two sen-
tences are flagged by the scorer as having the wrong length. The standard policy is to treat the
sentence as if it were not in either the gold standard file or the test file, but the more rigorous policy
used here is to keep the sentence but treat the test file as if it had not guessed any brackets. For the
WSJ corpus, the scores are not affected, but in this case, they are affected slightly. Using the stan-
dard policy, labeled recall would be 75.8% for sentences of length ≤ 100 and 79.2% for sentences
of length ≤ 40.
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3.4.2 Training by Expectation-Maximization

In the type of approach we have been discussing so far, we use hand-written rules to
reconstruct TIG-SA structural descriptions from the partial structural descriptions in
training data, and then train the TIG-SA model by maximizing the likelihood of the
reconstructed training data according to the model. However, the estimate we get
will maximize the likelihood of the reconstructed training data, but not necessarily
that of the observed training data itself. In this section we explore the possibility
of training a model directly on partial structural descriptions using the method of
Expectation-Maximization [47]; more specifically, a generalization of the Inside-
Outside algorithm [79].

This approach follows a very similar experiment by Hwa [63]. The difference
between the two is that whereas Hwa begins with a non-linguistically-motivated
grammar that is designed to be general enough to generate any bracketing, we use
the grammar and initial model induced by the heuristic method of the previous sec-
tion. For this reason, Hwa’s method is not able to take advantage of the information
in the nonterminal labels in the data, but only the bracketing information.

The expectation step (E-step) of the Inside-Outside algorithm is performed by a
parser that computes all possible derivations for each parse tree in the training data.
This algorithm is analogous to CKY for TAG [125], except instead of items of the
form [η , i, j,k, l], where η ranges over elementary tree nodes and i, j, k, and l range
over positions in the input string, it uses items of the form [η,θil,θ jk], where θil and
θ jk range over addresses in the input tree. By contrast, Hwa’s E-step uses a standard
TIG parser, but discards chart items with spans that cross a bracket in the input
tree. But because the TIG parser achieves its cubic time complexity by pretending
that foot nodes have zero spans, Hwa’s implementation of the E-step will not work
correctly if adjunction is allowed at spine nodes other than the root node. Since this
type of adjunction is necessary to show that TIG has greater tree generative capacity
than CFG, this implementation is not fully general.

The E-step then uses the derivation forest thus produced to compute inside and
outside probabilities and uses these, in turn, to compute the expected number of
times each decision occurred. Since a TIG-SA derivation forest has the same form as
a CFG derivation forest, this computation is identical to the standard Inside-Outside
algorithm; it is not necessary to define a specialized algorithm [112, 63].

For the maximization step (M-step), we obtain a maximum-likelihood estimate
of the parameters of the model using relative-frequency estimation, just as in the
original experiment, as if the expected values for the complete data were the training
data; the only difference is that the expected values may be fractional.

Smoothing presents a special problem: recall that our model uses several backoff
levels combined by linear interpolation. There are several ways one might incorpo-
rate this smoothing into the reestimation process, and we chose to depart as little as
possible from the original smoothing method: in the E-step, we use the smoothed
model, and after the M-step, we use the original formula (3.6) to recompute the
smoothing weights based on the new counts computed from the E-step. While sim-
ple, this approach has two important consequences. First, since the formula for the
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smoothing weights intentionally does not maximize the likelihood of the training
data, each iteration of reestimation is not guaranteed to increase the likelihood of the
training data. Second, reestimation tends to increase the size of the model in mem-
ory, since smoothing gives nonzero expected counts to many choices which were
unseen in training. Therefore, since the resulting model is quite large, if a choice
at a particular point in the derivation forest has an expected count below 10−15, we
throw it out.

Another method would be to permanently use the smoothing weights computed
on the initial model. This would restore the guarantee of nondecreasing likelihood,
and perhaps limit the growth of the model as well. Bikel [14] has performed some
initial experiments using this method.
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Fig. 3.7 Accuracy of reestimated models on held-out data: English, starting with full rule set.

We first trained the initial model on sections 02–21 of the WSJ corpus using the
original head rules, and then ran the Inside-Outside algorithm on the same data. We
tested each successive model on some held-out data (section 00), using a beam width
of 10−4, to determine at which iteration to stop. The F-measure (harmonic mean
of labeled precision and recall) for sentences of length ≤ 100 for each iteration is
shown in Figure 3.7. We then selected the ninth reestimated model and compared it
with the initial model on section 23 (see Table 3.3). This model did only marginally
better than the initial model on section 00, but it actually performs worse than the
initial model on section 23. One explanation is that the head rules, since they have
been extensively fine-tuned, do not leave much room for improvement. To test this,
we ran two more experiments.
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Fig. 3.8 Accuracy of reestimated models on held-out data: English, starting with simplified rule
set.

The second experiment started with a simplified rule set, which simply chooses
either the leftmost or rightmost child of each node as the head, depending on the
label of the parent: e.g., for VP, the leftmost child is chosen; for NP, the rightmost
child is chosen. The argument rules, however, were not changed. This rule set is
supposed to represent the kind of rule set that someone with basic familiarity with
English syntax might write down in a few minutes. The reestimated models seemed
to improve on this simplified rule set when parsing section 00 (see Figure 3.8);
however, when we compared the 30th reestimated model with the initial model on
section 23 (see Figure 3.3), there was no improvement.

The third experiment was on the Chinese Treebank, starting with the same head
rules used in [15]. These rules were originally written by Xia for grammar develop-
ment, and although we have modified them for parsing, they have not received as
much fine-tuning as the English rules have. We trained the model on sections 001–
270 of the Penn Chinese Treebank, and reestimated it on the same data, testing it at
each iteration on sections 301–325 (Figure 3.9). We selected the 38th reestimated
model for comparison with the initial model on sections 271–300 (Figure 3.3). Here
we did observe a small improvement: an error reduction of 3.4% in the F-measure
for sentences of length ≤ 40.

Our hypothesis that reestimation does not improve on the original rule set for
English because that rule set is already fine-tuned was partially borne out by the
second and third experiments. The model trained with a simplified rule set for En-
glish showed improvement on held-out data during reestimation, but showed no im-
provement in the final evaluation; however, the model trained on Chinese did show
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Fig. 3.9 Accuracy of reestimated models on held-out data: Chinese, starting with full rule set.

≤ 100 words
Model/Corpus Step LR LP CB 0CB ≤ 2 CB
English initial 87.0 87.0 1.21 62.4 82.3

9 86.4 86.7 1.26 61.4 81.8
English-simple initial 84.5 84.2 1.54 57.6 78.4

30 84.2 84.5 1.53 58.0 77.8
Chinese initial 75.3 76.8 2.72 46.0 67.0

38 75.2 78.0 2.66 47.7 67.6
≤ 40 words

Model/Corpus Step LR LP CB 0CB ≤ 2 CB
English initial 87.7 87.8 1.02 65.3 84.9

9 87.2 87.5 1.06 64.4 84.2
English-simple initial 85.5 85.2 1.29 60.7 81.1

30 85.1 85.4 1.30 60.9 80.6
Chinese initial 78.4 80.0 1.79 52.8 74.8

38 78.8 81.1 1.69 54.2 75.1

Table 3.3 Parsing results using EM. Original = trained on English with original rule set; Simple
= English, simplified rule set. LR = labeled recall, LP = labeled precision; CB = average crossing
brackets, 0 CB = no crossing brackets, ≤ 2 CB = two or fewer crossing brackets. All figures except
CB are percentages.
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a small improvement in both. We are uncertain as to why the gains observed during
the second experiment were not reflected in the final evaluation, but based on the
graph of Figure 3.8 and the results on Chinese, we believe that reestimation by EM
can be used to facilitate adaptation of parsing models to new languages or corpora.

3.5 Related Work

Subsequent to the work described in this chapter, there have been more ambitious
and successful attempts to learn probabilistic CFGs from partial structural descrip-
tions [100, 88], culminating in the Berkeley parser [98]. In these models, the non-
terminal symbols of the CFG are the nonterminal symbols observed in the training
data, augmented with a small set of hidden states. No assumptions are made about
the meaning of the states; the rule probabilities are simply randomly initalized and
estimated using Expectation-Maximization. When this is done carefully, the result-
ing probabilistic CFG achieves state-of-the-art performance across a number of lan-
guages.

In one respect, this work is a confirmation of the theoretical framework we have
presented here; in another respect, it is a conundrum. It is a confirmation of the cen-
tral prediction of the framework, namely, formalisms that extend CFG while still
being coverable by CFG (respecting trees) have the same SGC as CFG with re-
spect to the domain of weighted trees; therefore, they should not be able to describe
statistical parsing models that are any better than probabilistic CFG. In particular,
probabilistic TSG, RF-TAG, and component-local multicomponent CFG should not
be any better than probabilistic CFG. The Berkeley parser [98] confirms that excel-
lent parsing performance can indeed be achieved using probabilistic CFG.

On the other hand, because this CFG is constructed automatically, there seems
to be little hope of reversing the covering construction as we have done here for the
Collins parser [45]. That is, there is no clear way to reimagine the Berkeley parser
as the cover grammar or an approximation of a cover grammar for some grammar
formalism that generates trees directly (without annotations like heads or states) and
to reconstruct the original grammar formalism. The hidden states of the Berkeley
parser are claimed to be interpretable, and the states attached to part-of-speech tags
indeed have clear meanings (for example, NNP clearly splits into subcategories for
surnames, middle initials, place names, names of months or days of the week, etc.),
but it is much harder to see how the states attached to nonterminal symbols pass
useful information through the tree. Perhaps a different formalism could still shed
some light on why the Berkeley parser performs so well.
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3.6 Summary

We have shown how to define parsing models of a general nature based on gram-
mars, and found that many of the grammar formalisms that have been proposed
to increase the SGC of CFG in fact do not define any more parsing models than
PCFG does. We then showed how a lexicalized PCFG can be thought of as a com-
piled version of a model defined over richer structural descriptions than are found
in typical treebanks, and described our implementation of this new view in a proba-
bilistic TIG-SA which performs at the same level of accuracy as lexicalized PCFG.
This result demonstrates that TIG-SA is a viable framework for statistical parsing.
Moreover, it provides more flexibility than the head- and argument-finding rules of
current lexicalized PCFG models.
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Parent Child
ADJP first NNS; first QP; first NN; first $; first ADVP; first JJ; first VBN; first VBG; first

ADJP; first JJR; first NP; first JJS; first DT; first FW; first RBR; first RBS; first SBAR;
first RB; first *

ADVP last RB; last RBR; last RBS; last FW; last ADVP; last TO; last CD; last JJR; last JJ;
last IN; last NP; last JJS; last NN; last *

CONJP last CC; last RB; last IN; last *
FRAG last *
INTJ first *
LST last LS; last :; last *
NAC first NN; first NNS; first NNP; first NNPS; first NP; first NAC; first EX; first $; first

CD; first QP; first PRP; first VBG; first JJ; first JJS; first JJR; first ADJP; first FW;
first *

{NP,NX} last {NN,NNP,NNPS,NNS,NX,POS,JJR}
first NP
last {$,ADJP,PRN}; last CD; last {JJ,JJS,RB,QP}; last *

PP last IN; last TO; last VBG; last VBN; last RP; last FW; last *
PRN first *
PRT last RP; last *
QP first $; first IN; first NNS; first NN; first JJ; first RB; first DT; first CD; first NCD; first

QP; first JJR; first JJS; first *
RRC last VP; last NP; last ADVP; last ADJP; last PP; last *
S first TO; first IN; first VP; first S; first SBAR; first ADJP; first UCP; first NP; first *
SBAR first WHNP; first WHPP; first WHADVP; first WHADJP; first IN; first DT; first S;

first SQ; first SINV; first SBAR; first FRAG; first *
SBARQ first SQ; first S; first SINV; first SBARQ; first FRAG; first *
SINV first VBZ; first VBD; first VBP; first VB; first MD; first VP; first S; first SINV; first

ADJP; first NP; first *
SQ first VBZ; first VBD; first VBP; first VB; first MD; first VP; first SQ; first *
UCP last *
VP first TO; first VBD; first VBN; first MD; first VBZ; first VB; first VBG; first VBP;

first VP; first ADJP; first NN; first NNS; first NP; first *
WHADJP first CC; first WRB; first JJ; first ADJP; first *
WHADVP last CC; last WRB; first *
WHNP first WDT; first WP; first WP$; first WHADJP; first WHPP; first WHNP; first *
WHPP last IN; last TO; last FW; last *
X first *

Table 3.4 Head rules for the Penn (English) Treebank. Rules (delimited by line breaks or semi-
colons) apply sequentially for each parent node until a match is found. The symbol * stands for
any label.

Parent Child
S all {NP,SBAR,S} except A
{VP,SQ,SINV} all {NP,SBAR,S,VP} except A
SBAR all S except A
SBARQ all SQ except A
NP all NP except A
PP first {PP,NP,WHNP,ADJP,ADVP,S,SBAR,VP,UCP} after head

where A = {-ADV, -VOC, -BNF, -DIR, -EXT, -LOC, -MNR, -TMP, -PRP, -CLR}
Table 3.5 Argument rules for the Penn (English) Treebank. All rules apply to every parent-child
pair.



50 3 Statistical Parsing

Parent Child
ADJP last {ADJP,JJ}; last {AD,NN,CS}; last *
ADVP last {ADVP,AD}; last *
CLP last {CLP,M}; last *
CP last {DEC,SP}; first {ADVP,CS}; last {CP, IP}; last *
DNP last {DNP,DEG}; last DEC; last *
DVP last {DVP,DEV}; last *
DP first {DP,DT}; first *
FRAG last {VV,NR,NN}; last *
INTJ last {INTJ, IJ}; last *
LST first {LST,CD,OD}; first *
IP last {IP,VP}; last VV; last *
LCP last {LCP,LC}; last *
NP last {NP,NN,NT,NR,QP}; last *
PP first {PP,P}; first *
PRN last {NP, IP,VP,NT,NR,NN}; last *
QP last {QP,CLP,CD,OD}; last *
VP first {VP,VA,VC,VE,VV,BA,LB,VCD,VSB,VRD,VNV,VCP}; first *
VCD last {VCD,VV,VA,VC,VE}; last *
VRD last {VRD,VV,VA,VC,VE}; last *
VSB last {VSB,VV,VA,VC,VE}; last *
VCP last {VCP,VV,VA,VC,VE}; last *
VNV last {VNV,VV,VA,VC,VE}; last *
VPT last {VPT,VV,VA,VC,VE}; last *
UCP last *
WHNP last {WHNP,NP,NN,NT,NR,QP}; last *
WHPP first {WHPP,PP,P}; first *

Table 3.6 Head rules for the Penn Chinese Treebank. Rules (delimited by line breaks or semi-
colons) apply sequentially for each parent node until a match is found. The symbol * stands for
any label.

Parent Child
VP all {CP, IP,VP} except -ADV
CP all {CP, IP} except -ADV
PP all {NP,DP,QP,LCP,CP, IP,UCP} except -ADV
DNP all {NP,DP,QP,LCP,PP,ADJP,UCP} except -ADV
DVP all {NP,DP,QP,VP,ADVP,UCP} except -ADV
LCP all {NP,DP,QP,LCP, IP,PP,UCP} except -ADV
* all {-SBJ, -OBJ, -IO, -PRD} except -ADV

Table 3.7 Argument rules for the Penn Chinese Treebank. All rules apply to every parent-child
pair. The symbol * stands for any label.



Chapter 4

Machine Translation

In this chapter we discuss applications of grammars to natural language translation.
We define how to measure the power of grammar formalisms for translation and
find that this domain classifies formalisms more finely than in the previous chapter:
formalisms which were previously equivalent now separate into different levels of
power. This means that machine translation stands to gain more from richer gram-
mar formalisms than statistical parsing does; on the other hand, it is all the more im-
portant for machine translation research to find the right level of power and not give
up on grammar-based methods. We discuss the formal properties of synchronous
RF-TAG and the possibility of its use for language translation.

4.1 Measuring Translation Power

We can measure the translation power of a grammar formalism by its SGC with
respect to the domain of string pairs.

Definition 34. The interpretation domain of string pairs has interpretations which
are pairs of (tuples of) strings. For a formalism F , let Φstring be the interpretation
function in the domain of strings. Then Φ , the interpretation function in the domain
of string pairs, is

Φ(G) = { fs × ft | Φstring(G) = { fs},Φstring(G′) = { ft},∀G′ ∈ F} (4.1)

In other words, the interpretation of a derivation τ is the string yield of τ and the
string yield of τ in some other grammar from F .

For example, the following synchronous sLMG recognizes a simple English sen-
tence, and its interpretations in the domain of string pairs are translations into
Japanese, which has SOV word order:
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S(xy) :− NP(x),VP(y) 〈xy,x′y′〉 ←� 〈〈x,x′〉,〈y,y′〉〉 (4.2)
VP(xy) :− V(x),NP(y) 〈xy,y′x′〉 ←� 〈〈x,x′〉,〈y,y′〉〉 (4.3)

NP(i) 〈i,watashi wa〉 (4.4)
NP(the box) 〈the box,hako wo〉 (4.5)

V(open) 〈open,akemasu〉 (4.6)

However, it is more common to write grammars for translation as synchronous
grammars, which generate pairs of strings or structures in a way that is symmetric
between the source and target. The synchronous grammar formalisms we consider
here are subclasses of synchronous linear sLMG, introduced by Bertsch and Neder-
hof [12] as simple range concatenation transducers. We could redefine synchronous
sLMGs as follows:

Definition 35. A synchronous production is a multicomponent linear sLMG pro-
duction (see Section 2.5.2) whose predicates have exactly two components, called
the source and target components. All the arguments from the source component
of each right-hand side predicate appear only in the source component of the left-
hand side, and all the arguments from the target component of each right-hand side
predicate appear only in the target component of the left-hand side.

Definition 36. A synchronous sLMG is a linear sLMG whose productions are all
synchronous productions and with a two-component start predicate S. The string
relation defined by a synchronous linear sLMG is the set

{〈w1,w2〉 | S(w1 : w2) is derivable}

The above example as a synchronous sLMG would read:

S(xy : x′y′) :− NP(x : x′),VP(y : y′) (4.7)
VP(xy : y′x′) :− V(x : x′),NP(y : y′) (4.8)

NP(i : watashi wa) (4.9)
NP(the box : hako wo) (4.10)

V(open : akemasu) (4.11)

Definition 37. The source projection of a synchronous sLMG (according to Defi-
nition 36) is the sLMG formed by removing all the target components from all the
arguments in the grammar. Similarly, the target projection is the sLMG formed by
removing all the source components.

The reason for the linearity requirement is to guarantee that the projections of a
synchronous sLMG have the same derivation sets as the original.

It is not hard to see that the string-pair yields of a synchronous sLMG can also be
seen as interpretations of its source projection. Therefore, the WGC of synchronous
F (that is, the set of string pairs it generates) is the same as the SGC of F with
respect to the domain of string pairs. This is the measure we use for the translation
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power of a grammar formalism. If a grammar formalism can generate more string
relations, it will be a more flexible system for defining translations. Tree relations
are also a useful measure when constraints on phrase structures are needed.

4.2 Translation and Bitext Parsing

The two most common algorithms used with synchronous grammars are translation
and bitext parsing. In translation, we are given a source string and must compute the
possible target strings it translates to. To do this, we simply project the synchronous
grammar to its source side, apply the parsing algorithm of Section 2.5.3, and then
map from derivations to target strings. Thus translation is no more difficult than
parsing.1

In bitext parsing, the input is a pair of input strings w : w′ in the source and target
language, and our goal is to compute its possible derivations under the synchronous
grammar G. This is needed, for example, when using the Inside-Outside algorithm to
estimate production probabilities from a parallel text. To do this, we take G (written
as a synchronous sLMG) and add a single top-level production:

S′(x$x′) :− S(x : x′) (4.12)

where S′ and $ are a special nonterminal and terminal symbol, respectively, not
found elsewhere in G, and use the parsing algorithm of Section 2.5.3 to parse the
string w$w′.

Usually, the computational complexity of bitext parsing is the square of that of
translation. Thus, since parsing with a CFG in Chomsky normal form is O(n3), bi-
text parsing with a synchronous CFG in Chomsky normal form is O(n6). However,
as we will see below, synchronous grammars often have different properties from
their non-synchronous counterparts. For example, whereas a CFG can always be
converted into Chomsky normal form, a synchronous CFG in general cannot.

4.3 Synchronous CFG

Synchronous CFGs were originally known as syntax-directed transduction gram-
mars [81] or syntax-directed translation schemata [4]. We saw an example of a
synchronous CFG above; in more standard notation, this grammar would be:

1 However, when intersecting the target side grammar with an n-gram language model, as is com-
mon in machine translation [130, 36], the computational complexity of translation becomes more
like that of bitext parsing.
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〈S → NP 1 VP 2 ,S → NP 1 VP 2 〉 (4.13)
〈VP → V 1 NP 2 ,VP → NP 2 V 1 〉 (4.14)

〈NP → i,NP → watashi wa〉 (4.15)
〈NP → the box,NP → hako wo〉 (4.16)

〈V → open,V → akemasu〉 (4.17)

The boxed numbers i link up nonterminal symbols on the source side with nonter-
minal symbols on the target side: 1 links to 1 , 2 with 2 , and so on.

Just as we start in a CFG with a start symbol and repeatedly rewrite nonterminal
symbols using the productions, so in a synchronous CFG, we start with a pair of
linked start symbols (with the starting index 10 chosen arbitrarily),

〈S 10 ,S 10 〉

and repeatedly rewrite pairs of nonterminal symbols using the productions—with
two wrinkles. First, when we apply a production, we renumber the boxed indices
consistently to fresh indices that aren’t in our working string pair. Thus, applying
production (4.13), we get

⇒ 〈NP 11 VP 12 ,NP 11 VP 12 〉

Second, we are only allowed to rewrite linked nonterminal symbols. Thus we can
apply production (4.14) like so:

⇒ 〈NP 11 V 13 NP 14 ,NP 11 NP 14 V 13 〉

But now if we want to apply production (4.15), we can’t apply it to NP 11 on one
side and NP 14 on the other, like this:

�⇒ 〈i V 13 NP 14 ,NP 11 watashi wa V 13 〉

But we can apply it to any linked nonterminals, like so:

⇒ 〈i V 13 NP 14 ,watashi wa NP 14 V 13 〉
⇒ 〈i open NP 14 ,watashi wa NP 14 akemasu〉
⇒ 〈i open the box,watashi wa hako wo akemasu〉

Thus we have an English string and Japanese string which are translations of each
other.
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4.3.1 Applications to Translation

Inversion transduction grammar

Define the rank of a production to be the number of nonterminals on its right-hand
side (for CFG) or in the source or target component of its right-hand side (for syn-
chronous CFG). Whereas any CFG can be converted into a weakly equivalent CFG
whose productions have rank at most two, there exists, for all r ≥ 4, a synchronous
CFG of rank r that cannot be converted into an equivalent (with respect to the do-
main of string pairs) grammar of rank (r−1) [4]. For example, the following rank-4
production cannot be reduced to lower-rank productions:

〈A → B 1 C 2 D 3 E 4 ,A → D 3 B 1 E 4 C 2 〉 (4.18)

The case r = 2 is commonly known as inversion transduction grammar [131].
Inversion transduction grammars were proposed by Wu [131] as a candidate for-
malism for statistical machine translation. He proposed efficient algorithms for this
purpose, including for decoding with an n-gram target-side language model [130].

Yamada-Knight syntax-based model

The translation model of Yamada and Knight [134, 135] is formally a synchronous
CFG in which French productions are generated from English productions (follow-
ing the convention of Brown et al. [24]) through a sequence of transformations.

S

NP

N

John

VP

V

misses

NP

N

Mary

S

NP

N

Marie

VP

V

manque

PP

P

à

NP

N

Jean

Fig. 4.1 Example of a French-English tree pair that cannot be generated by synchronous CFG.

Above, we considered synchronous CFGs as defining relations on strings. Thought
of as defining a relation on trees, synchronous CFGs can only relabel nodes and re-
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order sisters. Thus we cannot write a synchronous CFG that can swap subjects and
objects, as in

(4.19) John misses Mary.

(4.20) Marie
Mary

manque
misses

à
to

Jean.
John

with trees shown in Figure 4.1, because [NP John] and [NP Mary] are not sister nodes
and cannot be swapped.

However, if we are willing to alter the trees, then there is an easy solution:

S → 〈NP 1 misses NP 2 ,NP 2 manque à NP 1 〉 (4.21)
NP → 〈John,John〉 (4.22)
NP → 〈Mary,Mary〉 (4.23)

By flattening the trees, we made [NP John] and [NP Mary] sister nodes so that they
could be swapped. (We also integrated the verb misses/manque à into the rule to
make sure that this swapping only occurs with this particular verb.)

S

NP

N

John

VP

V

misses

NP

N

Mary

⇒

S

NP

N

John

V

misses

NP

N

Mary

⇒

S → NP V NP

NP → N

N → John

N → Mary

V → misses

Fig. 4.2 Flattening of trees in the translation system of Yamada and Knight [134].

Yamada and Knight’s system flattens English trees by deleting nodes that have
the same head word as their parent according to the Magerman rules (see Fig-
ure 4.2). In particular, it deletes the VP nodes in the above example, enabling it
to perform subject-object swapping.

Hiero

Phrase-based translation models [95, 74] dramatically advanced the state of the art
by learning translations of multi-word units. The Hiero translation model [35, 36]
combines the formalism of synchronous CFG with phrase-based translation’s ability
to learn multi-word units. The synchronous CFG used in Hiero has a nonterminal



4.3 Synchronous CFG 57

alphabet with only two symbols, {S,X}. The grammar consists of two kinds of
rules. Most rules are of the form

〈X → γ ,X → α〉 (4.24)

where γ consists of French terminals and at most two occurrences of the nonterminal
X, and α consists of English terminals and at most two occurrences of the nontermi-
nal X. These rules can be automatically extracted from word-aligned parallel text.
The resulting grammar is large: a training corpus with hundreds of millions of words
can lead to a grammar with hundreds of millions of rules. In addition to these rules,
the grammar contains the two so-called glue rules

〈S → S 1 X 2 ,S → S 1 X 2 〉 (4.25)
〈S → X 1 ,S → X 1 〉 (4.26)

These allow the grammar to break a sentence into a sequence of smaller chunks;
since reordering does not occur among the chunks, this speeds up translation. Fi-
nally, the decoder dynamically intersects the target side of this synchronous gram-
mar with an n-gram language model. The resulting translation system can improve
significantly over phrase-based translation models, particularly on Chinese-English
translation.

4.3.2 Extensions

Synchronous TSG

Synchronous tree-substitution grammars [111, 51] are able to perform subject-
object swapping as in Figure 4.1 without flattening the trees. In a synchronous TSG,
the productions are pairs of elementary trees, and the leaf nonterminals are linked
just as in synchronous CFG (see Figure 4.3). Thus, if we care about the trees pro-
duced, synchronous TSG is a more powerful alternative to synchronous CFG.

Proposition 4. Synchronous TSG is strongly equivalent to synchronous CFG with
respect to the domain of string pairs but has greater SGC with respect to the domain
of tree pairs.

Proof. Any synchronous TSG can easily be converted into a synchronous CFG gen-
erating the same string pairs: for each tree pair 〈α1 : α2〉, create the production pair

〈root(α1)→ yield(α1) : root(α2)→ yield(α2)〉

where root and yield are functions returning the root and yield, respectively, of a
tree.

On the other hand, the following synchronous TSG generates a trivial example
of a tree relation that no synchronous CFG can generate:



58 4 Machine Translation
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S

NP VP

V

misses

NP

1

2

:

S

NP VP

V

manque

PP

P

à
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Fig. 4.3 Synchronous TSG demonstrating transposition of subject and object.
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because the tree relations generated by a synchronous CFG must always have equal
numbers of nonterminal nodes.

Synchronous TSG was proposed by Eisner [51] and Gildea [55] for use in statis-
tical machine translation. However, in a certain sense this had already been achieved
by the model of Yamada and Knight [134], which performed subject-object swap-
ping within a synchronous CFG by altering the trees. Just as the tree transformations
in Collins’ parser could be reinterpreted as a cover grammar for a TIG-SA, we can
also reinterpret Yamada and Knight’s model as a cover grammar for a synchronous
TSG (see Figure 4.4).

The string-to-tree model of Galley et al. [53, 52] and the tree-to-string models of
Liu et al. [82] and Huang et al. [60] are essentially synchronous TSGs, where the
source or target side, respectively, consists only of single-level elementary trees.
These grammars are extracted from parallel data where only one side has been
parsed; full elementary trees are extracted from the parsed side, whereas single-
level trees are extracted from the unparsed side, as in Hiero. These systems have
been quite successful, generally outperforming Hiero.

However, implementations of full synchronous TSG, that is, systems that gener-
ate linguistically reasonable trees on both sides, turn out to be overconstrained by
the syntax of the two languages [8, 83]. One solution is to restructure the trees [8];
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Fig. 4.4 Alternative view of flattening operation as extraction of unlexicalized TSG.

another is to extract grammars from forests of possible parses instead of a singly,
possibly noisy, parse [83]. A third solution is to extend the formalism beyond syn-
chronous TSG.

Synchronous tree sequence substitution grammar

For example, Zhang et al. [136] move to synchronous tree sequence substitution
grammar, which could be thought of as restriction of multicomponent TSG in which
the components of a set must substitute into sister substitution sites. This is a very
mild extension of TSG, but already seems to alleviate some of the most serious
nonisomorphisms that pure synchronous TSG cannot handle.

Synchronous TIG

Synchronous TIG extends synchronous TSG with an adjunction operation. Since
TIG has greater tree generative capacity than CFG, it follows that synchronous
TIG can generate more tree relations than synchronous CFG. However, the two for-
malisms generate exactly the same string relations, since the conversion from TIG
to CFG given by Schabes and Waters [116] preserves derivations [33].

Nesson et al. [92] have experimented with estimating the parameters of a small
probabilistic synchronous TIG from parallel data. DeNeefe and Knight [48] have
carried out much larger-scale experiments on a generalization of the Galley et
al. [53, 52] system to synchronous TIG, with promising results.
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4.4 Synchronous TAG

Synchronous TAG was first defined by Shieber [123] as a correction of an older
faulty definition [124]. The new definition, which requires that the source and
target derivations be isomorphic, is essentially a generalization to TAG of syn-
chronous CFG. In this definition, a synchronous TAG is a set of pairs of elemen-
tary trees in which input interior/substitution nodes are coindexed with output inte-
rior/substitution nodes.

Consider again the case of Dutch cross-serial dependencies from Section 1.3:

(4.27) (that) John saw Peter help the children swim

(4.28) (dat)
(that)

Jan
John

Piet
Peter

de
the

kinderen
children

zag
saw

helpen
help

zwemmen
swim

If we assume that both languages can stack an unbounded number of clauses this
way, then this translation between Dutch and English is provably beyond the power
of synchronous CFG and TSG. But it is easy to pair the TAG elementary trees from
Figure 1.1 with English elementary trees to peform this translation.

4.4.1 Synchronous Regular Form TAG

Synchronous RF-TAG has been proposed by Dras [49] as a meta-level grammar for
generating pairs of TAG derivation trees (see Section 4.4.2 below). We may also
consider synchronous RF-TAG on its own. Although weakly context-free, it has
strictly greater SGC with respect to the domain of string pairs (and therefore tree
pairs) than synchronous CFG does [33].

Lemma 1 (synchronous pumping lemma). Let L be a string relation generated
by a synchronous CFG. Then there is a constant n such that if 〈z : z′〉 is in L and
|z| ≥ n and |z′| ≥ n, then 〈z : z′〉 may be written as 〈uwy : u′w′y′〉, and there exist
strings v, x, v′, x′, such that |vxv′x′| > 0, |vwx| ≤ n, |v′w′x′| ≤ n, and for all i ≥ 0,
〈uviwxiy : u′v′iw′x′iy′〉 is in L.

Proof. The proof is analogous to that of the standard pumping lemma [59, pp. 125–
127]. However, a CFG cannot be put into Chomsky normal form without changing
its SGC with respect to the domain of string pairs, and there are both sides to take
into account. So we let m be the longest right-hand side in either grammar or the
number 2, whichever is greater, and k and k′ be the size of the two nonterminal
alphabets; then n = mkk′ . This guarantees the existence of a pair of corresponding
paths in the derivation of 〈z : z′〉 such that the same pair of nonterminals 〈A : A′〉
occurs twice:

〈S : S〉 ∗⇒ 〈uAy : u′A′y′〉 ∗⇒ 〈u1vAxy1 : u′1v′A′x′y′1〉 ∗⇒ 〈u1vwxy1 : u′1v′w′x′y′1〉
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If we let u = u1v and y = xy1, and likewise u′ = u′1v′ and y′ = x′y′1, then 〈z : z′〉 =
〈uwy : u′w′y′〉, and for all i ≥ 0, 〈uviwxiy : u′v′iw′x′iy′〉 ∈ L.

Proposition 5. The string relation

L = {〈ambncndm : bnamdmcn〉}

is generable by a synchronous RF-TAG but not by any synchronous CFG.

Proof. The following synchronous RF-TAG generates L:
⎛
⎜⎜⎜⎜⎜⎜⎝

A

B

ε

1

2 :

B

A

ε

2

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ A

a A d∗ 1

:
A

a A d∗ 1

⎞
⎟⎠

⎛
⎜⎝ B

b B c∗ 1

:
B

b B c∗ 1

⎞
⎟⎠

But suppose L can be generated by some CFG G. For any n given by the pumping
lemma, let 〈z : z′〉 = 〈anbncndn : bnandncn〉 satisfy the conditions of the pumping
lemma. Then vxv′x′ must contain only a’s and d’s, or only b’s and c’s, otherwise
〈uviwxiy : u′v′iw′x′iy′〉 will not be in L. But in the former case, |vwx|> n, and in the
latter case, |v′w′x′|> n, which is a contradiction.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S

NP VP

V

misses

NP

31

2

:

S

NP VP

V

manque

PP

P

à

NP

32

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

VP

V

seems

VP∗ :

VP

V

semble

VP∗

⎞
⎟⎟⎟⎟⎟⎠

(a) (b)

Fig. 4.5 Synchronous TAG fragment demonstrating long-distance transposition of subject and ob-
ject.

We saw above how synchronous TSG can be used to transpose subjects and ob-
jects. But synchronous TSG cannot perform the same translation with a raising verb
added:

(4.29) John seems to miss Mary.

(4.30) Marie
Mary

semble
seems

manquer
to miss

à
to

Jean.
John
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To do that, we need adjunction of an auxiliary tree pair (Figure 4.5), which stretches
the subject-object transposition apart arbitrarily. This is within the power of both
TIG and RF-TAG.2

4.4.2 Extensions

We can extend synchronous TAG by analogy with the above extensions of syn-
chronous CFG, using the notion of a meta-level grammar, also known as a control
grammar [129, 49]. In this arrangement, a grammar G1 (the meta-level grammar)
generates the derivations of another grammar G2 (the object-level grammar). To-
gether they can be thought of as a single grammar, G2 ◦G1. In the examples below,
the object-level grammar will be a TAG, and the meta-level grammar will generate
recognizable sets of trees (that is, tree sets that can be generated by a CFG and a
projection of labels).

Bounded nonisomorphisms: TAG◦TSG

Shieber notes that synchronous TAG (under the corrected definition) is too rigid to
handle the translation of certain constructions. He suggests that the isomorphism
requirement be relaxed to allow “bounded nonisomorphisms.” He does not define
this extension formally, but we may retroject Dras’s use of control or meta-level
grammars [49] into Shieber’s suggestion, defining it as synchronous TAG ◦TSG.
This system adds some flexibility to synchronous TAG, but does not permit any
more string-to-string mappings to be described.

Proposition 6. Synchronous TAG ◦TSG is strongly equivalent to synchronous TAG
with respect to the domain of string pairs.

As an example of how a meta-level grammar works and how synchronous TAG◦
TSG can be useful for translation, consider the nonisomorphism which Shieber calls
“elimination of dominance” in the following sentences:

(4.31) The doctor treats his teeth.

(4.32) Le
the

docteur
doctor

lui
him

soigne
treats

les
the

dents.
teeth

Since ‘his’ would adjoin into the tree for ‘teeth’ in (4.31), but ‘lui’ would not be
able to adjoin into the tree for ‘les dents’ in (4.32) but have to adjoin into the tree for

2 In our definition of RF-TAG, adjunction is allowed at foot nodes but not auxiliary root nodes,
contrary to typical TAG syntactic analyses. We could accept the divergence, or else we could
change the definition of RF-TAG to allow adjunction at root nodes instead of foot nodes, but this
would make parsing less simple.
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‘soigne’ instead, the two derivations will not be isomorphic (see Figure 4.7). This
nonisomorphism is bounded, however, because ‘his’/‘lui’ will never be more than
two steps away in the derivation tree from the object it semantically modifies.

IP

NP I′

I

treatsi

VP

V

ti

NP

IP

NP I′

I

soignei

VP

V

ti

NP

α1[treats] α1[soigne]

NP

D

his

NP∗

I

N

lui

I∗

β1[his] β1[lui]

Fig. 4.6 Grammar (object-level) for English-French clitic example (sentences 4.31 and 4.32).

α1[treats]

α2[doctor] α2[teeth]

β1[his]

α1[soigne]

α2[docteur] β2[lui] α2[dents]

Fig. 4.7 Nonisomorphic derivations for English-French clitic example (sentences 4.31 and 4.32).

We can use a TSG to generate the nonisomorphic derivations such that the noni-
somorphism is localized in a single meta-level elementary tree pair (see Figure 4.8).
These trees are labeled both with names of object-level elementary trees and with
nonterminal symbols. The latter are a bit of notational abuse: a node labeled with a
nonterminal symbol X actually stands for the auxiliary tree with a single node X∗.
These simply serve as placeholders where meta-level adjunction can take place.
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⎛
⎜⎜⎜⎜⎜⎝

α1[treats]

NP α2[teeth]

β1[his]

↓ 1 :
α1[soigne]

NP β2[lui] α2[dents]↓ 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ NP

α2[doctor]

:
NP

α2[docteur]

⎞
⎟⎠

(ℵ1) (ℵ2)

Fig. 4.8 Meta-level elementary tree pairs to localize nonisomorphism in English-French clitic ex-
ample (sentences 4.31 and 4.32).

A more substantial extension: TAG◦RF-TAG

Dras and Bleam [50] consider the parallel case in Spanish, where the nonisomor-
phism may be unbounded because the clitic ‘le’ can climb up to higher verbs in the
tree:

(4.33) The doctor treats his teeth.

(4.34) El
the

médico
doctor

le
him

examina
treats

los
the

dientes.
teeth

(4.35) The doctor wants to (be able to. . .) treat his teeth.

(4.36) El
the

médico
doctor

le
him

querı́a
wants

(poder. . .)
able

examinar
treat

los
the

dientes.
teeth

In our own work, we have tackled a similar problem identified by Schuler [118]
for translating between Portuguese and English [39]. However, the Spanish clitic-
climbing case is of more interest here. One of Dras and Bleam’s proposed solutions
uses a meta-level grammar to map between the nonisomorphic derivations; but since
TSG as a meta-level grammar cannot localize unbounded nonisomorphisms, they
use RF-TAG (see Section 2.5.1), following Dras’s original work on paraphrase [49].

The object-level grammar is shown in Figure 4.9. In order to generate sentences
4.35 and 4.36, we need the nonisomorphic derivations shown in Figure 4.10, assum-
ing that ‘le’ must adjoin into the elementary tree of the verb to which it cliticizes.
In order to generate these derivations, we need the meta-level RF-TAG shown in
Figure 4.11.

4.5 Summary

Figure 4.12 summarizes the relative SGC of various synchronous grammar for-
malisms with respect to the domain of string and tree pairs, including some results
from an earlier paper [33] not proven here. It is striking that SGC with respect to
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IP

NP I′

I

to

VP

V

treat

NP

IP

NP I′

I

examinari

VP

V

ti

NP

α1[treats] α1[examinar]

NP

D

his

NP∗

I

N

le

I∗

β1[his] β1[le]

I′

I

wantsi

VP

V

ti

IP

I′∗

I′

I

e

VP

V

querı́a

IP

I′∗
β2[wants] β2[querı́a]

I′

I

to

VP

V

be

VP

V

able

IP

I′∗

I′

I

e

VP

V

poder

IP

I′∗

β2[able] β2[poder]

Fig. 4.9 Grammar (object-level) for English-Spanish clitic-climbing example (sentences 4.35 and
4.36).
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α1[treats]

α2[doctor]
...

β2[able]

β2[wants]

α2[teeth]

β1[his]

α1[examinar]

α2[medico]
...

β2[poder]

β2[querı́a]

β2[le]

α2[dientes]

Fig. 4.10 Nonisomorphic derivations for English-Spanish clitic-climbing example (sentences 4.35
and 4.36).

⎛
⎜⎜⎜⎜⎜⎝

α1[treats]

NP I′ α2[teeth]

β1[his]

↓ 1 2 :

α1[examinar]

NP I′

β2[le]

α2[dientes]↓ 1 2

⎞
⎟⎟⎟⎟⎟⎠

(ℵ)

⎛
⎜⎜⎜⎜⎜⎝

I′

β1[able]

I′∗ 1

:

I′

β1[poder]

I′∗ 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

I′

β1[wants]

I′∗ 1

:

I′

β1[querı́a]

I′∗ 1

⎞
⎟⎟⎟⎟⎟⎠

(�[able : poder]) (�[wants : querı́a])

Fig. 4.11 Meta-level elementary tree pairs to localize nonisomorphism in English-Spanish clitic-
climbing example (sentences 4.35 and 4.36).

the domain of string pairs classifies formalisms quite finely: inversion transduction
grammar (2CFG), CFG, and RF-TAG all have different SGC with respect to the do-
main of string pairs even though all have the same WGC. With respect to the domain
of tree pairs, the formalisms are classified even more finely.

What can we conclude? With statistical parsing, we saw that there was only a
conceptual benefit gained by moving from probabilistic CFG to probabilistic TSG.
But with machine translation, the advantage of formalisms beyond synchronous
CFG is real. We cannot use synchronous CFG to get the same SGC as formalisms
like synchronous RF-TAG.

Current research in statistical machine translation has explored the use of syn-
chronous CFG as well as synchronous grammars which are TSGs on one side and
CFGs (i.e., one-level elementary trees) on the other side. Progress on using full syn-
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RF-TAG CL-MCCFG

CFG = TIG = TSG

2CFG

RF-TAG CL-MCCFG TIG

TSG

CFG

2CFG

(a) (b)

Fig. 4.12 Relative translation power of various formalisms: (a) string pairs; (b) tree pairs. An edge
connecting two formalisms indicates that the higher has greater SGC than the lower. CL-MCCFG
= component-local multicomponent CFG; 2CFG = rank-2 (binary branching) CFG.

chronous TSG to capture syntactic information on both sides has been slow, because
nonisomorphisms between source and target syntactic structures tend to overcon-
strain extraction of the grammar. Several lines of research have tried to attack this
problem, one of which is to extend the grammar formalism [48, 136]. It remains
to be seen whether further increasing the SGC of the formalism (with respect to
the domain of tree pairs) will provide all the flexibility needed to model syntactic
nonisomorphisms between languages.





Chapter 5

Biological Sequence Analysis: Basics

A central problem in computational biology is analyzing genetic sequences to de-
termine the structures of the molecules (RNAs, proteins) they code for. Since this
problem is analogous to the problem in computational linguistics of describing
what structural descriptions are specified by a given utterance, as first observed by
Searls [120], many researchers have tried using formal grammars to analyze biolog-
ical sequences as well [109, 1, 127, 106]. In this chapter we will attempt a synthesis
of this family of approaches, and investigate what properties of formal grammars
will determine their success.

5.1 Background

We first give an overview of some basic concepts in structural biology from a
formal-language-theoretic point of view. A more thorough and conventional intro-
duction can be found in biology textbooks [21, 7].

5.1.1 Sequences

DNA molecules are built out of nucleotides, which come in four kinds (adenine,
thymine, cytosine, and guanine, or A, T, C, and G for short). Each contains a five-
carbon sugar, and the only way for two nucleotides to combine is for the fifth (5′)
carbon of one to be joined by a covalent bond to the third (3′) carbon of the other
with a phosphate group in between (see Figure 5.1). This causes nucleotides to
form into chains; the end with its 5′ carbon free is called the 5′ end and the end
with its 3′ carbon free is called the 3′ end. This asymmetry is significant; the chain
is always synthesized starting with the 5′ end, for example. Thus we can think of
DNA molecules as strings over {a, t,c,g}.
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Fig. 5.1 Nucleotides combining to form (a segment of) a DNA/RNA molecule. The parenthesized
O is absent in DNA.

DNA is purely informational: it has no function other than to be replicated and
transcribed into other alphabets. One such alphabet is that of RNA, which is similar
to DNA in structure, except it uses uracil (U) instead of thymine. Thus we can think
of RNA molecules as strings over {a,u,c,g}. RNA is transcribed from DNA by
a base-to-base mapping (A → U,T → A,C → G,G → C). RNAs come in various
types: transfer RNAs are about 80–100 bases long, and ribosomal RNAs are about
120–2500 bases long.

Proteins are built out of amino acids, which come in twenty kinds (see Fig-
ure 5.3). Each amino acid contains an amino group (NH2) and a carboxyl group
(COOH), and the only way for two amino acids to combine is for the amino group
of one to be joined by a covalent bond to the carboxyl group of the other (see Fig-
ure 5.2). Thus in some diagrams the ends of a protein molecule are labeled N (for
the nitrogen atom in the amino group) and C (for the carbon atom in the carboxyl
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Fig. 5.2 Amino acids combining to form (a segment of) a protein. R indicates a side chain, which
varies from amino acid to amino acid.

A Ala alanine
R Arg arginine
N Asn asparagine
D Asp aspartic acid
C Cys cysteine
Q Gln glutamine
E Glu glutamic acid
G Gly glycine
H His histidine
I Ile isoleucine

L Leu leucine
K Lys lysine
M Met methionine
F Phe phenylalanine
P Pro proline
S Ser serine
T Thr threonine
W Trp tryptophan
Y Tyr tyrosine
V Val valine

Fig. 5.3 Amino acids and their abbreviations.

group). Thus, as with DNA and RNA, we can think of proteins as strings over the
set of amino acids. Proteins are transcribed from DNA via RNA by the so-called
genetic code, which maps triples of nucleotides (called codons) to amino acids (see
Figure 5.4). There are also start and stop codons which permit multiple proteins to
be encoded in a single strand of DNA. Proteins can be quite long, exceeding 5000
amino acids in length.

5.1.2 Structures

Though RNA molecules and protein molecules have a linear structure as described
above, they do not lie straight in space, because the chemical bonds in them are
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Fig. 5.4 The genetic code (DNA → amino acids).

Fig. 5.5 Example RNA secondary structure.

flexible. Nor do they get bent around every which way, because self-contacts form
between different parts of the molecule to give it a secondary structure (see Fig-
ure 5.5), the primary structure being the sequence itself. Distant parts of the sec-
ondary structure may come into contact to form a tertiary structure.

In RNA, bonds form between complementary bases: A with U, C with G.1 Thus
the secondary/tertiary structure of an RNA molecule is dependent on its primary
structure. This structure gives the molecule its particular function: transfer RNAs
pair codons with amino acids, and ribosomal RNAs form the machinery which as-
sembles amino acids into proteins.

1 Sometimes uracil can pair with other bases besides adenine.
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N

C

N

C

(a) (b)

Fig. 5.6 Example protein secondary structures: (a) α-helix; (b) β -sheet.

With proteins the secondary structure is again dependent on its primary structure.
Amino acids do not have complementary pairs, but do have varying properties that
make some pairings more favorable than others. Protein secondary structures are
observed to consist mainly of two types of substructure: α-helices and β -sheets.
Other regions are known as random coil. In an α-helix a single region is coiled
up into a helix (see Figure 5.6a); in a β -sheet several discontiguous regions are
stretched flat to form a sheet (Figure 5.6b). These fold up further into a tertiary
structure. As with RNAs, the structure of a protein determines its particular function.
They perform a wide range of functions, from catalyzing biochemical reactions to
giving cells their shape.

In this chapter, we assume that a molecule’s structure is uniquely specified by a
set of self-contacts, that is, pairs of string positions. This representation is commonly
used in the structure prediction literature, where it is also known as a polymer graph
or contact map.

5.2 Measuring Sequence Analysis Power

There is a long tradition of applying language-processing techniques (for example,
hidden Markov models) to genetic sequences, but the use of formal grammars orig-
inated with Searls [120]. Consider the following CFG for RNA sequences:

S → Z
X → aZu | uZa | cZg | gZc
Y → aY | uY | cY | gY | ε
Z → YXZ | Y

(5.1)

A derivation of a string w, represented as a tree (see Figure 5.7), has the same shape
as a secondary structure of w, because the grammar is written so that only comple-
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mentary bases appear in the same rule, and CFG derivation trees have the convenient
property that symbols from the same rule appear next to each other in the tree. For-
mal locality corresponds to spatial locality.

X

a X

c X

X

g X

c X

ε

g

c

X

u X

g X

ε

c

a

X

c X

a X

ε

u

g

g

u

Fig. 5.7 Example CFG derivation of RNA secondary structure, with superimposed primary struc-
ture. Nonterminal symbols other than X are suppressed for clarity.

It would seem that more complex formalisms do not have this property. For ex-
ample, in a TAG the adjunction operation can cause parts of an elementary tree to
be stretched arbitrarily far apart.2 But if we distinguish between spatial locality in
our drawings of derivations and spatial locality in real molecules, then it becomes
apparent that the former is convenient but not crucial. Even if formal locality can-
not correspond to spatial locality in our drawings of derivations, they can still cor-
respond to spatial locality in real molecules. In other words, derivations can still
describe molecules even if their drawings don’t look very much like them.

This gives us the following locality constraint: two nonadjacent monomers can
contact only if their corresponding symbols were generated in the same derivation
step. All uses of formal grammars to model biological molecules that we know of
are based on this principle, though with variations and sometimes only implicitly.

2 However, Rogers [108] explores the use of three-dimensional trees to represent derivations of
tree-adjoining grammars, and higher-dimensional trees for still more complex formalisms. In a
tree-adjoining grammar defined on three-dimensional trees, there is no stretching.
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In Searls’ original treatment [120] and that of Uemura et al. [127], any two bases
appearing in the same right-hand side are assumed to be in contact. Rivas and Eddy
[106] use diagrams reminiscent of Joshi’s links [67]. It is a deficiency of the model
of Abe and Mamitsuka [1] that they do not specify self-contacts on their elemen-
tary structures, with the result that a single derivation can correspond to multiple
structures.

Chen and Dill [29] do not use a grammar at all, but their model can be recast as
a CFG [37]. Strictly speaking, this grammar does not generate strings of monomers
but strings of covalent bonds. Below is a simplified version of their grammar:

S → Z | X
X → Z

Y → Y |
Z → YX | XZ | YXZ | Y

(5.2)

where is a terminal symbol (representing a covalent bond) and is not a symbol,
but simply a potential endpoint for a link. The advantage of using an alphabet of
covalent bonds here is that multiple rules can create links on one monomer. Indeed,
this grammar can generate an arbitrary number of links on a single monomer. In our
experiments in Chapter 6, we use a grammar of this type; however, since grammars
like (5.1) are more intuitive, we will use it as the basis for our examples below.

The grammars used for modeling molecules typically generate the language
Σ ∗, since we are generally not interested in accepting or rejecting molecules as
“grammatical,” but determining their structures. Weak generative capacity, then, is
not useful as an indicator of the usefulness of a grammar formalism for model-
ing molecules. What matters is a formalism’s derivational generative capacity (1.3),
which, as we have already seen, is a measure of ability to generate linked strings.

5.3 Linked Grammars for Sequence Analysis

(a) (b)

Fig. 5.8 Example RNA tertiary structures: (a) kissing hairpins; (b) pseudoknot.
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In the previous section we showed how CFG has been used to model RNA and
protein structures. Does CFG have enough DGC? It is commonly said that CFG
cannot generate crossing dependencies. This is not strictly true, since even a single
production can have crossing dependencies:

X → a b c d (5.3)

Nevertheless, there are patterns of crossing self-contacts which occur in nature
which are provably not generable by CFG (or by Chen and Dill’s model). For exam-
ple, helices involve unbounded series of short crossing self-contacts. RNA tertiary
structures involve long-distance crossing self-contacts, for example, kissing hairpins
and pseudoknots (Figure 5.8). Finally, protein β -sheets involve patterns of crossing
self-contacts that are well beyond the power of CFG.

5.3.1 Squeezing DGC

We first consider the use of grammar formalisms coverable by CFG which have
greater DGC than CFG.

Alpha-helices

Helices have crossing self-contacts of a very limited type. Below we will be in-
terested in helices in which the (2i)th monomer is in contact with the (2i− 3)rd
monomer, as this is how helices appear on a square lattice (see Figure 5.9a). As an
exercise, we may generate such helices with the following multicomponent CFG (in
the sLMG notation of Section 2.5.2):

S(a1a2ya3x) :− H(y : x) ai ∈ Σ

H(a1 : ya2x) :− H(y : x) ai ∈ Σ

H(a,ε) a ∈ Σ

(5.4)

Since this grammar is component-local, it can be covered by a CFG (indeed, by a
right-linear CFG or finite-state automaton). Its derivations can be faithfully repre-
sented as derivations of the dissolved grammar (for example, see Figure 5.9b).

Proposition 7. The linked language L generated by the above component-local mul-
ticomponent CFG cannot be generated by any CFG.

Proof. Suppose L is generated by a CFG G. If a linked string generated by a CFG
contains two crossing dependencies as in (5.3), all four terminal symbols involved
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must come from the same production. By induction, this means that all the terminals
in every string of L must come from the same production. Since L is infinite, G must
be infinite, which is a contradiction.

In a previous paper [33] we showed that component-local multicomponent CFG can
even generate linked languages that TAG cannot.

Other kinds of helices can be modeled as well; in particular, if we use an alphabet
of covalent bonds (instead of monomers), we can model helices in which the ith
monomer is in contact with the (i−4)th monomer, as in real α-helices. All of this
is somewhat academic, however, because it is easier just to write down the cover
grammar directly. For example, the Zimm-Bragg model [137] is a standard theory
of the helix-coil transition and can be thought of as a Markov chain.

S

a a H1

a

a H2

H1

a

a H2

H1

a

a H2

ε
(a) (b)

Fig. 5.9 (a) α-helix as modeled by square lattice; (b) α-helix represented by derivation of grammar
(5.4).

Limited RNA tertiary interactions

The following results show how regular form TAG (see Section 2.5.1) can be used
to model limited tertiary interactions in RNAs.

Lemma 2 (linked pumping lemma). Let L be a linked string set generated by a
CFG (or component-local multicomponent CFG). Then there is a constant n such
that if 〈z;∼z〉 is in L and |z| ≥ n, then z may be rewritten as uvwxy, with |vx|> 0 and
|vwx| ≤ n, such that for all i ≥ 1, there is a relation ∼i

z such that 〈uviwxiy;∼i
z〉 is in

L and ∼i
z does not relate any positions in w to any positions in u or y.

Proof. The proof is analogous to that of the standard pumping lemma [59, pp. 125–
127]. However, a CFG cannot be put into Chomsky normal form without changing
its DGC, so we let n = mk instead of 2k, where k is the size of the nonterminal
alphabet and m is the longest right-hand side or the number 2, whichever is greater.
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The key difference from the standard proof is the observation that since, for each i,
the derivation of uviwxiy can be written as

S ∗⇒ uAy ∗⇒ uviAxiy ∗⇒ uviwxiy

for some nonterminal A, no position in w can be contributed by the same derivation
step as any position in u or y.

The generalization to the multicomponent case is straightforward, since a component-
local multicomponent CFG G can be converted into a CFG G′ which generates
the same trees. G′ will not generate the same linked strings as G; nevertheless, the
equivalence relations generated by G can only relate terminal instances which are
first cousins in the derived tree, so for i ≥ 1, it remains the case that no position in
w is related to any position in u or y.

Proposition 8. The following linked string set is generable by an RF-TAG but not
by any CFG, nor indeed by any component-local multicomponent CFG:

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c a a · · · a c b · · · b b

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Proof. The following RF-TAG generates L:

X

c Y

c

Y

a Y b∗

But suppose L is generated by some CFG G. For any n given by the linked pumping
lemma, let z = cancbnc satisfy the conditions of the pumping lemma. It must be the
case that v and x contain only a’s and b’s, respectively, or else uviwxiy /∈ L1. But
then u, w, and y would each have to contain one of the c’s, and since the c’s are all
related, this contradicts the pumping lemma.

Grammars of this type could be used for structures in which all but a bounded num-
ber of self-contacts are nested. For example, in a cloverleaf structure (Figure 5.5),
the hairpins may “kiss” (Figure 5.8a), forming a small number of self-contacts cross-
ing over an unbounded number of nested self-contacts. If the number of such self-
contacts is indeed bounded, we can write an RF-TAG similar to the one above to
generate them (see Figure 5.10).
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S

X

a1 a2

X

a3 a4

X

ā2 ā1

X

a X ā∗

(α) (β )

Fig. 5.10 RF-TAG for cloverleaf with kissing hairpins. The initial tree α generates the loops (here
fixed to two monomers each), and β generates the stem regions.

5.3.2 Beyond CFG

We now examine some existing attempts to apply formalisms beyond CFG to more
complex structures.

Pseudoknots

Uemura et al. [127] use a grammar similar to the one shown in Figure 5.11 to
generate pseudoknot structures. A pseudoknot is generated by repeatedly adjoin-
ing β1 into α , then repeatedly adjoining β2 into the result. Their grammar belongs
to an O(n5)-time parseable subclass of TAG, which has been conjectured [71] to be
equivalent to the TAG restriction of Satta and Schuler [110].

X

ε

X

a X

ā X

na

∗

X

a X

X

ā

na

∗

(α) (β1) (β2)

Fig. 5.11 TAG fragment for pseudoknots, adapted from the grammar of Uemura et al. [127].

Rivas and Eddy [106] define a formalism called crossed-interaction grammar.
Their definition of this formalism is unclear in many places and seems to be as
powerful as type-0 grammars; but a little exegesis shows that what they had in mind
is something equivalent to linear sLMG. They then use a grammar similar to the
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one shown in Figure 5.12 to generate pseudoknot structures. The first three rules
generate basic pseudoknots just as the TAG of Figure 5.11. Like a TAG, Rivas and
Eddy’s grammar has a maximum arity of two and a maximum branching factor of
two and is therefore parsable in O(n6) time, but it lies outside the power of TAG.
For example, the last rule allows arbitrary-length chains of hairpins to be generated
(Figure 5.13 shows a chain of four), whereas TAG can only build such chains of up
to three hairpins.

W(x1y1x2y2) :− WH(x1,x2),WH(y1,y2)

WH(ax : yā) :− WH(x,y) a ∈ Σ

WH(ε,ε)
WH(x1y1x2,y2) :− WH(x1,x2),WH(y1,h2)

Fig. 5.12 sLMG fragment for pseudoknots, adapted from the grammar used by Rivas and
Eddy [106], as a linear sLMG.

Fig. 5.13 Chain of four hairpins beyond the power of TAG.

Beta-sheets

Abe and Mamitsuka [1] use a formalism called ranked node-rewriting grammar
(RNRG) to generate β -sheets. RNRG is essentially TAG with multiple foot nodes
on elementary trees; for the present discussion, it is enough to note that RNRG with
a branching factor of one is equivalent to linear sLMG with a maximum branching
factor of one. Figure 5.14 shows a grammar for generating a β -sheet of eight alter-
nating strands. Set-local multicomponent TAG offers a similar solution; Figure 5.15
shows a grammar to generate the five-strand sheet of Figure 5.6b.

The difficulty is that parsing of these grammars is exponential in the number
of strands per sheet. Moreover, every grammar imposes some upper bound, so that
there is no single grammar that can generate all β -sheets. For this reason, approaches
of this type appear to be prohibitively expensive.
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S(a1x1b1,a2x2b2,a3x3b3,a4x4b4) :− S(x1,x2,x3,x4) ai,bi ∈ Σ
S(ε,ε ,ε ,ε)

Fig. 5.14 sLMG fragment for β -sheet, adapted from one of the grammars of Abe and Mamit-
suka [1].

S

X X

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X

a1 X

a2 X a3

a4

na

∗

X

a5 X

X

na

∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 5.15 Set-local multicomponent TAG for protein β -sheet of Figure 5.6b.

A second problem is that this analysis is susceptible to a kind of spurious am-
biguity in which a single structure can be derived in multiple ways. For example,
consider Figure 5.16. In order to generate the β -sheet (a), we need trees like (b) and
(c). But either of these trees can be used by itself to generate the β -sheet (d). The
grammar must make room for the maximum number of strands, but when it does
not use all of it, ambiguity can arise. It should be possible to carefully write the
grammar to avoid much of this ambiguity, but we have not been able to eliminate all
of it even for the single-component TAG case.

X

a1 X

a2 X a3

a4

na

∗

X

a1 X

a2 X a3

a4

na

∗

(a) (b) (c) (d)

Fig. 5.16 Illustration of spurious ambiguity in a multicomponent TAG.
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5.4 Computing Probabilities and Partition Functions

(a)

(b) (c)

Fig. 5.17 All possible conformations of a 5-mer on a square lattice (modulo rotational and reflec-
tional symmetry), grouped according to structures, (a), (b), and (c).

Just as with natural language parsing, a grammar can assign many derivations
to a single string, and we would like some measure of the relative importance of
each of them—for example, a probability distribution. Attempts have been made to
estimate probabilities from databases [109, 1]. However, maximizing the likelihood
of a database would not seem to make much sense, since the database does not
represent a uniform sample of any naturally occurring distribution (as a text corpus
arguably does). Maximizing the conditional likelihood might be a sounder approach
(Hockenmaier, p.c.). But physical theory provides a more principled alternative. If
we have some way of calculating the energies of structures, minimizing the energy
will give us the most stable structure. In fact, statistical physics can tell us the full
probability distribution over structures in terms of their energy.

Consider a set of many identical molecules, each in a particular conformation,
or arrangement in physical space. In the HP lattice model [80], conformations are
represented by self-avoiding walks on a lattice (see Figure 5.17). Note that there
can be more than one conformation corresponding to a single structure; for ex-
ample, in Figure 5.17, all the conformations in the first row have the same struc-
ture. The maximum-entropy probability distribution over the conformations of these
molecules, subject to the constraint that their total energy must be constant, is known
as the Boltzmann distribution:

Pj =
e−E j/kT

Q
(5.5)
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where j ranges over conformations, E j is the energy of conformation j, T is the
temperature, k is Boltzmann’s constant, and

Q = ∑
j

e−E j/kT (5.6)

is known as the partition function. Since we are more interested in distributions over
structures than conformations, we may regroup both the Boltzmann distribution and
the partition function according to structure:

Pj =
Ω je−E j/kT

Q
(5.7)

Q = ∑
j

Ω je−E j/kT (5.8)

where j now ranges over structures, and Ω j is the number of conformations with
structure j.

When T is low, the Boltzmann distribution says that the most probable structure
will simply be the one(s) with the lowest energy: let Emin = minE j , then

lim
T→0

P( j) = lim
T→0

Ω je−E j/kT

∑ j′ Ω j′e−E j/kT (5.9)

= lim
T→0

Ω je−E j/kT+Emin/kT

∑ j′ Ω j′e−E j/kT+Emin/kT (5.10)

=

⎧⎨
⎩

Ω j
∑ j′ s.t. E j′ = Emin

Ω j′
if E j = Emin,

0 otherwise.
(5.11)

When T is high, the Boltzmann distribution predicts a uniform distribution of con-
formations, therefore giving preference to structures with more conformations.

The partition function gives the effective accessibility of each conformation (0
being fully inaccessible, 1 being fully accessible) and turns out to be the more useful
object to compute. All the statistical-mechanical properties of a system, including
the Boltzmann distribution, can be computed from it. We can use it, for example,
to understand the folding process of a molecule, or the changes it undergoes under
varying conditions, which can shed further light on its function.

How do we compute the partition function using a weighted grammar? If we can
assign quantities ωπ and ΔEπ to each elementary structure of the grammar π such
that for every structure j built out of elementary structures π1, . . . , πn,

∏
i

ωπi ≈ Ω j (5.12)

∑
i

ΔEπi ≈ E j (5.13)
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and assign the weight ωeΔE/kT to each elementary structure, then the weight of the
derivation of j will be

∏
i

ωπi e
−ΔEπi/kT ≈ Ω je−E j/kT (5.14)

The problem, then, is to design the grammar such that the energy increments
(ΔEπ ) and conformation counts (ωπ ) can be estimated accurately.

Calculating energies

Attaching energies to rules is common practice among previous grammatical ap-
proaches to structure prediction. Here we describe a particularly simple energy
model. In the HP model [80], monomers are classified as either hydrophobic (h)
or polar (p), and hh contacts are favorable. That is, the energy of an hh contact is
ε < 0, and the energy of other self-contacts is zero. Therefore, we can adapt gram-
mar (5.1) as follows, letting qhh = e−ε/kT :

S 1−→ Z

X
qhh−−→ hZh

X 1−→ hZp | pZh | pZp

Y 1−→ hY | pY | ε

Z 1−→ YXZ | Y

(5.15)

(We use the factor qhh = e−ε/kT here instead of the energy ε itself, so that the weights
can be multiplied instead of added, for consistency with the other grammars in this
section.) A parser that computes the minimum-weight derivation of a string under
this grammar would compute the native structure of the corresponding molecule.

Counting conformations

Attaching conformation counts to grammar rules has not been explored previously
to our knowledge. Chen and Dill [28] use a matrix computation to estimate con-
formation counts in polynomial time by dividing each structure into substructures
and ignoring excluded volume between substructures. That is, the substructures are
counted separately, and then the counts are multiplied together. The grammar can
check for collisions between substructures to the extent that the shape of a sub-
structure can be finitely encoded; but in general collisions between substructures
are ignored. Their algorithm may alternatively be viewed as a parser for an implied
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grammar [37]. We can similarly add conformation counts to grammar (5.15):

S
C(l−1)−−−−→ Zl

X
1
4U(l)qhh−−−−−→ hZlh

X
1
4U(l)−−−→ hZlp | pZlh | pZlp

Yl+1 1−→ hYl | pYl

Y0 1−→ ε

Zk+l+1 1−→ YkXZl

Zl 1−→ Yl

(5.16)

where the superscripts are counters used for measuring lengths. Y generates open
chains and X generates closed loops, and Z generates combinations of the two,
counting the latter as having length one. When an X forms a closed loop out of a Z
of length l, it multiplies in a conformation count of 1

4U(l), where U(l) is the number
of neighbor-avoiding loops of length l on the two-dimensional lattice (l even). When
S forms the whole molecule out of a Z of length l, it multiplies in a conformation
count of C(l − 1), where C(l) is the number of neighbor-avoiding walks of length
l. For large l we use approximations of the form Aμ l lγ−1 [85]. For U(l), we use
A = 1.3, γ = 11

32 ; for C(l) we use A = 0.034, γ = 0.5; for both formulas we use
μ = 2.3. These values were chosen to approximate the results of exact enumeration;
more precise or more theoretically-motivated values would be desirable.

Computing partial sums of the partition function

A weighted derivation forest lets us compute the total weight Q of the forest (using
the Inside algorithm), or the weight of a single derivation (corresponding to a single
structure). However, we may want to further group structures into bins in various
ways and compute the total weight of each bin. For example, we might want to
group structures according to their energy level and ask what the total contribution
of each energy level is. Or we might group structures according to how many self-
contacts are present or not present in the native structure [30].

To do this, we incorporate the bins into the nonterminal alphabet. For example,
to group the derivations of grammar (5.1) by the number of self-contacts, we would
write:
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Sn → Zn

Xn+1 → hZnh | hZnp | pZnh | pZnp

Y0 → hY0 | pY0 | ε

Zm+n → Y0XmZn

Z0 → Y0

(5.17)

This grammar has multiple start symbols Sn, one for each bin. The total weight of
Sn is the total weight of states with n self-contacts. Using this grammar we can also
calculate the mean and variance of the number of self-contacts, or the most likely
structure for each number of self-contacts. The rule weights come from grammar
(5.16); combining these two grammars, we get:

Sn C(l−1)−−−−→ Zl,n

Yl+1,0 1−→ hYl,0 | pYl,0

Y0,0 1−→ ε

Zk+l+1,m+n 1−→ Yk,0XmZl,n

Zl,0 1−→ Yl,0

Xn+1
1
4U(l)qhh−−−−−→ hZl,nh

Xn+1
1
4U(l)−−−→ hZl,np | pZl,nh | pZl,np

(5.18)

Parsing CFG typically has time complexity O(|G|n3). The fourth rule schema
above is the one which has the most instantiations: O(n2B2), where B is the number
of bins, for two length indices and two bin indices. However, l in this rule does not
contribute to parsing complexity because it is always equal to the width of the span
of the Y; therefore this grammar can be parsed in time O(n4B2). Note that B is the
number of bins for a given string, which needs to be finite. If the bins are energy
levels, they are all linear combinations (with integer coefficients) of the ΔE’s, which
are drawn from a fixed, finite set. If there is a number x such that each ΔE can be
expressed as an integer multiple of x (it suffices for the ΔE’s to be all rational),
then B will be linear in the number of self-contacts. If the number of self-contacts a
single terminal can participate in is bounded (in this case, it is bounded to one), then
B∈O(n), giving an overall complexity of O(n6). Similar reasoning fixes asymptotic
upper bounds on other binning schemes as well.

Implementation details

In practice it is more efficient to calculate the partition function (including energies,
lengths, counts, and bins) offline, after discarding chart items which are not part
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of a complete derivation. Since the nonterminal indices for lengths and bins do not
affect grammaticality, we can first parse with grammar (5.1) and then reparse only
the resulting forest with grammar (5.18).

5.5 Summary

In this chapter we have provided a synthesis of current research in the application of
formal grammars to biological sequence analysis. We have characterized the ability
of grammar formalisms to model secondary/tertiary structures by their DGC, and
introduced a few novel ways of using extra DGC to model more complex structures.
Finally, we have shown how to use extended weights in a grammar to compute
partition functions, thus reformulating Chen and Dill’s nongrammatical model as a
weighted CFG. In the next chapter we explore the use of the technique of intersec-
tion to extend this model to more complex structures like bundles of α-helices, or
possibly β -sheets.





Chapter 6

Biological Sequence Analysis: Intersection

Another strategy for obtaining more SGC out of a grammar formalism is to com-
bine multiple grammars into a single system which accepts the intersection of the
languages accepted by the component grammars, and which assigns to each string
the unification (in some sense) of the structural descriptions assigned by the com-
ponent grammars. This technique has not received much attention in computational
linguistics, probably because linguistic structures tend to be hierarchical, and it is
not very clear how to unify multiple hierarchical structures into a single one. With
molecular structures, on the other hand, there is a straightforward way of unify-
ing two linkings of a string: simply form the union of the links. In this chapter we
discuss the strengths and weaknesses of several variants of this strategy.

6.1 Intersecting CFLs and CFLs: a Critique

The simplest way to specify the intersection of two languages L = L1 ∩ L2 is to
provide separate grammars for L1 and L2. A string is recognized as belonging to L
just in case it is recognized as belonging to both L1 and L2. There is no interaction
between the two grammars at the level of their derivations or structural descriptions;
the only interaction is that each filters the other’s generated strings.

Context-free languages are not closed under intersection [59, pp. 134–135]. This
suggests the possibility of using two or more CFGs to recognize a language be-
yond the power of CFG. Brown and Wilson [23] propose just this approach for
RNA pseudoknots. They observe that {amg∗umc∗} and {a∗gnu∗cn} are context-free
languages, but their intersection is the non-context-free language {amgnumcn}. This
language is reminiscent of a set of pseudoknots: the m a’s and u’s form one hairpin,
and the n g’s and c’s are the other. Therefore this would seem to be an efficient way
of modeling pseudoknots.

However, in order for the pseudoknot to be well-formed, the two hairpins must
interlock without colliding. That is, the base pairings must cross, but no two pairings
should involve the same base. But the only reason the above example achieves this
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is because one hairpin has only a’s and u’s and the other has only c’s and g’s—that
is, each symbol indicates overtly which hairpin it belongs to. For real molecules,
both component grammars would have to generate at least all possible hairpins, or
{vwwRx}. In that case there would be no way of preventing the component gram-
mars from missing each other or colliding.

Brown and Wilson recognize that there is a problem, but it is not clear whether
they appreciate how serious it is. Their solution is to employ a special parsing strat-
egy that uses the results of parsing with the first grammar to constrain the parse with
the second; then the string is reparsed with the first, then again with the second. This
procedure works only for their pair of grammars and only approximates the desired
computation.

The root of the problem is that intersection only operates on strings, not structural
descriptions. It allows parallel structural descriptions to be derived independently,
then filters them on the basis of their string yields. The above example attempts to
harness this filtering to generate only well-formed pseudoknots, but in order to do
so it assumes that there is more information in the string languages than there really
is.

6.2 Intersecting CFGs and Finite-State Automata

Suppose, however, that G1 is a CFG and G2 is a right-linear CFG, or a grammar that
can be covered by a right-linear CFG. Since G2 generates a regular language and
CFLs are closed under intersection with regular languages, it is possible to construct
a new CFG G∩ that generates L(G1)∩L(G2). Though there is no increase in WGC as
in the previous section, there is still an increase in SGC, because the resulting system
assigns to each string the superposition of its structural descriptions assigned by G1
and G2.1 The advantage of this approach is that the two grammars are much easier
to control when encapsulated into a single grammar than in the previous section.

In Section 5.3.1 we mentioned the Zimm-Bragg model of α-helices [137],
which gives partition functions for conformations with local self-contacts. Chen
and Dill’s model gives partition functions for conformations with nested nonlocal
self-contacts, but thus far it has been impossible to compute partition functions for
chain molecules having both local and nonlocal interactions, as in bundles of helices
(Figure 6.1).

But the Zimm-Bragg model is formally a weighted finite-state automaton: every
helix unit preceded by a coil unit has weight σs, and every helix unit preceded by a
helix unit has weight s (Figure 6.2). Moreover, this automaton could be thought of
as a cover grammar for a component-local multicomponent CFG for helices (Sec-
tion 5.3.1). And we have already shown that Chen and Dill’s model is equivalent to
a weighted CFG. Therefore, we can use the machinery of formal grammars to com-

1 Of course, G∩ itself has no more power than an ordinary CFG; it is the combination of G1 and
G2 that has greater SGC. We leave for future work the question of when this combination can be
covered by a CFG.
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Fig. 6.1 Two-helix bundle.

qc qα

σs

1

1 s

Fig. 6.2 The Zimm-Bragg model as a weighted finite-state automaton.

bine these two models easily. The combined system would generate linked strings
representing two-helix bundles, and the constructed weighted CFG would correctly
calculate the partition function.

6.2.1 Integrating the Zimm-Bragg Model and the HP Model

Before integrating the Zimm-Bragg model into Chen and Dill’s model, we must first
adapt it to the HP lattice model which underlies Chen and Dill’s model. This will
apply both to our final grammar-based model as well as the exact enumeration we
will evaluate it against.

In a real α-helix, for each i, the ith monomer is in contact with the (i− 4)th
monomer, and between the ith and (i− 1)st monomer, there are two bond angles
(like hinges) which must be frozen into the correct shape. The Zimm-Bragg model
models the self-contacts by giving each an energy of εs, and it models the freezing
by giving a conformation count of r < 1 to each bond angle, representing the relative
lack of conformational freedom of a helix relative to random coil. Therefore the first
turn of the helix should get a weight of r6e−εs/kT . The r6 factor is for the six frozen
bond angles between the first through fourth monomers, and the e−εs/kT for the self-
contact between the first and fourth monomers. Then each subsequent monomer,
because it freezes two more bond angles and adds one more self-contact, gets a
weight of r2e−εs/kT . The simplest version of the model collapses the whole first turn
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into the first monomer; thus the first monomer gets a weight of σs, where σ ≈ r4

and s ≈ r2e−εs/kT , and subsequent monomers get a weight of s.
Now on a square lattice, a helix is modeled as shown in Figure 5.9a. This is

not completely accurate (cf. Figure 5.6a): only every other monomer creates a new
self-contact, and the (2i)th monomer is in contact with the (2i− 3)rd monomer.
Nevertheless, we still give every monomer an energy of εs, plus an energy of εhh for
every hh contact.

Since we explicitly count conformations on a lattice, we are already counting ran-
dom coil as having more conformations than helix—by a factor of approximately μ
(the connective constant from Section 5.4) per monomer. Ideally, then, the factor r
would be superfluous. In that case we would simply give each helix unit a weight
of s = e−εs/kT . However, because the lattice model does not match reality very ex-
actly, we keep a correction factor on s: s = s0e−εs/kT , where s0 ≈ μr2. Moreover,
in the lattice model the first turn is no more difficult to form than subsequent turns.
Therefore we must retain the σ parameter as well.

To summarize, the factors contributing the weight of a conformation are:

qhh = e−εhh/kT for every hh contact

s = s0e−εs/kT for every non-initial monomer in a helix
σs for the first monomer in a helix

6.2.2 Intersecting the Grammars

For the two-helix bundle problem, our grammar is the CFG (5.2), and our finite-
state automaton is shown in Figure 6.3. It is more complicated than the Zimm-
Bragg model because it tries to model the shape of a helix in a square lattice. Like
the Zimm-Bragg model, it does not explicitly generate self-contacts; but it can be
viewed as a cover grammar for a grammar which does (see Section 5.3.1).

The state qc is for coil; the states qi j are for helices, where i cycles through four
values corresponding to the periodicity of the shape of a helix in a square lattice (see
Figure 5.9a), and j is used to ensure that all helices are at least six monomers long.

The procedure for intersecting a context-free grammar with a finite-state automa-
ton is due to Bar-Hillel et. al [10, pp. 149–150]. Given a CFG G = 〈V,Σ ,S,P〉 and
a finite-state automaton (without ε-transitions) M = 〈Σ ,Q,Q0,Q f ,δ 〉, the new CFG
G′ has nonterminal alphabet Q×V ×Q∪ S′, where S′ is a new start symbol not in
V ; and its production set consists of all productions of the form

〈q0,X ,qn〉 → 〈q0,α1,q1〉〈q1,α2,q2〉 · · · 〈qn−1,αn,qn〉

where X → α1 · · ·αn ∈ P (n > 0), and for each i, either αi ∈ V or else αi ∈ Σ and
〈qi−1,αi,qi〉 ∈ δ ; and

〈q,X ,q〉 → ε
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Fig. 6.3 Automaton for helices in a square lattice. Nodes with the same label represent the same
state; the state is shown in multiple locations for visual clarity. The full automaton has the union
of the transitions shown in all six diagrams. The initial states are {qc,q00,q20}; the final states are
{qc,q12,q32}.
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for all q ∈ Q, where X → ε ∈ P; and, finally,

S′ → 〈q0,S,qf 〉

for all q0 ∈ Q0, q f ∈ Q f . The resulting grammar generates the language L(G)∩
L(M).

The difference between this construction and one like Brown and Wilson’s for
pseudoknots is that the two component grammars are fully integrated, so that we
may let them control each other however we please. For example, when two he-
lices come together to form a bundle, self-contacts should only be allowed between
monomers on the sides of the helices facing each other. Our original CFG had the
rule X → Z which generated a self-contact; in the intersected grammar its corre-
sponding productions include those of the form 〈qi j,X ,qi′ j′ 〉 → 〈qi j,Z,qi′ j′ 〉. We
may now stipulate that i, i′ ∈ {0,2} for such productions, which ensures that only
one side of a helix may participate in nonlocal contacts.

6.2.3 Computing the Partition Function

We compute the partition function offline as described in Section 5.4, with some
modifications. First, we incorporate the weights σ and s from the Zimm-Bragg
model, and an additional factor qhh for every helical hh contact.

Second, previously we estimated the number of conformations of a loop of length
l as 1

4U(l) and the number of conformations of the tails with combined length l as
C(l − 1). Now that these loops and tails may include helices, which are rigid, we
must adjust these estimates. Our current approach is simply to count each helix as
a single step in a neighbor-avoiding walk, without trying to take into account the
length of the helix.

Finally, since the grammar is most error-prone with closed conformations, we
use a special set of rules for loops of length eight or less, shown below (weights are
conformation counts only):
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X 1−→ HHHX′HHH

X 1−→ UX′HHH

X 1−→ HHHX′U

X 1−→ HXH

X 1−→ X′X′X′

X 4−→ CCCCCCC
X′ → X | C
U → H | C
H → 〈q,a,q′〉 〈q,a,q′〉 ∈ δH

C → 〈q,a,q′〉 〈q,a,q′〉 ∈ δC

(6.1)

These rules do not exhaustively cover all possible loops of length eight or less; a
number of possibilities were left out somewhat arbitrarily to limit overcounting.
Chen and Dill’s steric compatibility matrices might be a more principled solution.

6.2.4 Evaluation Against Exact Enumeration

(a) (b)

Fig. 6.4 Some favorable structures for example sequences: (a) hpphhpphhpphhpphhpph; (b)
hppphhppphhppphhppph. Hydrophobic monomers (h) are indicated by black circles; polar mono-
mers (p) by white circles.
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Fig. 6.5 Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; helix units
versus s and qhh. (a) Exact enumeration. (b) Parser.

We compared our parser against exact enumeration in various ways. First, we
tried the sequence hpphhpphhpphhpphhpph, which has minimum-energy structures
high in both helix units and hh contacts (Figure 6.4a). In this experiment and those
below, σ = 0.01. Figure 6.5 shows the average number of helix units as a function
of the parameters s and qhh, and Figure 6.6 shows superimposed cross-sections of
these functions; the output of the parser qualitatively agrees with that of the exact
enumerator. Figures 6.7 and 6.8 compare the average number of hh contacts; again
there is qualitative agreement, except for the region s < 2 of Figure 6.8b, which
is not very important because such low values for s make helix units unfavorable
relative to random coil, which is unrealistic.

We next tried the sequence hppphhppphhppphhppph, which has structures with
many hh contacts and structures with many helix units, but not both at the same
time (Figure 6.4b). Figures 6.9 and 6.10 compare the average number of helix units;
as with the first sequence, the parser’s output qualitatively agrees with the exact
enumerator’s.

Figures 6.11 and 6.12 compare the average number of hh contacts. The agree-
ment is not as good as before for high qhh due to both overcounting of some struc-
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Fig. 6.6 Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; helix units
versus s. (a) qhh = 1. (b) qhh = 10.

tures and undercounting of others. For example, the grammar is able to generate
small spirals, but does not have the “memory” needed to keep the spiral from col-
liding with itself. Figure 6.13a shows an unviable conformation generated by the
grammar. Such structures are causing the parser to overestimate the average number
of hh contacts for high qhh and low s (again, such low values are unrealistic). On
the other hand, the grammar does not have a rule that would let helices contact each
other at right angles. Figure 6.13a shows a viable conformation with three helices
that the grammar does not generate. Missing this structure is causing the parser to
underestimate the average number of hh contacts for high qhh and s. Nevertheless,
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Fig. 6.7 Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; hh contacts
versus s and qhh. (a) Exact enumeration. (b) Parser.

the parser agrees with the enumerator in predicting that the number of hh contacts
should decrease with s, in contrast to the first sequence.

The grammar could be modified to try to improve agreement, and this deserves
further work. It is possible that in a three-dimensional lattice, the problem of colli-
sions will be less severe because a greater proportion of structures will have viable
conformations.

6.3 Intersection in Nonlinear sLMGs

In a simple LMG there are no restrictions on what literals may be conjoined in the
right-hand side of a production. This makes sLMG closed under intersection: if S1
and S2 are the start symbols of two sLMGs G1 and G2(with disjoint nonterminal
alphabets), create a new start symbol S and add the production

S(x) :− S1(x),S2(x)
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Fig. 6.8 Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; hh contacts
versus s. (a) qhh = 1. (b) qhh = 10.

which recognizes L(G1)∩ L(G2). Thus sLMG internalizes the intersection oper-
ation, which allows more control than Brown and Wilson’s scheme. The caveats
from our critique of that scheme still apply, however. For example, Boullier [19]
gives a range concatenation grammar (which has an equivalent sLMG) which he
claims models German scrambling, a construction in which all the nouns of a sen-
tence can appear in any order. His grammar checks for a verb for every noun and
vice versa, using intersection to enforce all these constraints simultaneously. But
like Brown and Wilson’s system, it relies on false assumptions about the generated
string to ensure that the constraints are properly coordinated.
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Fig. 6.9 Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; helix units
versus s and qhh. (a) Exact enumeration. (b) Parser.

Nevertheless, nonlinear sLMG’s closure under intersection might be a useful
property for modeling complex folds like protein β -sheets. We start with some
building blocks:

Anti(a1X,Ya2) :− Anti(X ,Y ) ai ∈ Σ

Anti(ε,ε)
Par(a1X, a2Y ) :− Par(X ,Y ) ai ∈ Σ

Par(ε,ε)
Adj(X ,Y ) :− Ant(X ,Y )

Adj(X ,Y ) :− Par(X ,Y )

The predicates Anti and Par generate pairs of adjacent antiparallel and parallel
strands, respectively, and the predicate Adj generates two adjacent strands in either
configuration. Irregularities as in Figure 5.16a are also possible, but not shown here.
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Fig. 6.10 Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; helix units
versus s. (a) qhh = 1. (b) qhh = 10.

We can then use the intersection ability of sLMG to combine these pairs of
strands into a sheet. Thus the following grammar generates β -sheets where the
strands are arranged according to their order in the sequence:

Beta(AB) :− B(A,B)
B(ABY,B′) :− B(A,B),Adj(B,B′)

B(BY,B′) :− Adj(B,B′)
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Fig. 6.11 Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; hh contacts
versus s and qhh. (a) Exact enumeration. (b) Parser.

The first argument to B is a β -sheet minus the last strand, and the second argument is
the last strand. The second production forms a larger β -sheet out of a smaller one by
appending a new last strand and joining it to the previous last strand using Adj. This
production has O(n5) possible instantiations (because it takes six indices to specify
the variables on the left-hand side, but the arguments of B are always adjacent,
eliminating one index), and therefore the parsing complexity of this grammar is
also O(n5). Crucially, this complexity bound is not dependent on the number of
strands, because each series of contacts is generated in sister subderivations, unlike
the multicomponent TAG analysis.

But even sister subderivations can control each other via their root nonterminal
(predicate) symbols, as illustrated in the following example. A β -sheet can be rolled
into a cylinder to form a β -barrel (Figure 6.14). We can generate these as well, but
we must keep track of the direction of each strand so as not to generate any Möbius
strips, as in the grammar of Figure 6.15. Here B has three arguments: the first strand,
the middle part, and the last strand; there is an additional predicate symbol B′ which
is the same as B, except that B′ is for sheets with antiparallel first and last strands,
whereas B is restricted here to sheets with parallel first and last strands. The first
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Fig. 6.12 Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; hh contacts
versus s. (a) qhh = 1. (b) qhh = 10.

production joins the first and last strands to form a barrel; it uses the information in
the B vs. B′ distinction to join the strands so that no Möbius strips will be generated.

The strands of β -sheets do not always appear in linear order; they can be per-
muted as in Figure 6.16. We can model such permutations by increasing the degree
of synchronous parallelism (that is, the number of arguments to B), and therefore in-
creasing parsing complexity. By contrast, since multicomponent TAG already uses
synchronous parallelism to generate all the strands together, it allows permutations
of strands at no extra cost.
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(a) (b)

Fig. 6.13 Examples of grammar overcounting (a) and undercounting (b). Hydrophobic monomers
(h) are indicated by black circles; polar monomers (p) by white circles.

Fig. 6.14 β -barrel.

Barrel(ABC) :− B(A,B,C),Par(A,C)

Barrel(ABC) :− B′(A,B,C),Anti(A,C)

B(A,BCY,C′) :− B′(A,B,C),Anti(C,C′)
B(A,BCY,C′) :− B(A,B,C),Par(C,C′)

B(A,Y,A′) :− Par(A,A′)
B′(A,BCY,C′) :− B(A,B,C),Anti(C,C′)
B′(A,BCY,C′) :− B′(A,B,C),Par(C,C′)

B′(A,Y,A′) :− Anti(A,A′)

Fig. 6.15 sLMG for β -barrels.
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(a) (b) (c)

Fig. 6.16 Permuted β -sheets.

Suppose we envision a sheet being built up one strand at a time, each successive
strand being added to either side of the sheet:

Beta(ABCD) :− B(A,B,C,D)

B(ABC,D,Y,B′) :− B(A,B,C,D),Adj(B,B′)
B(A,B,CDY,B′) :− B(A,B,C,D),Adj(D,B′)

B(ε,B,Y,B′) :− Adj(B,B′)

Figure 6.16a shows an example sheet that can be generated by this grammar but
not the previous ones. In this grammar, the second and fourth arguments to B are
the leftmost and rightmost strands (not respectively) in the folded structure. The
second production adds a new strand on one side, and the third production adds a
new strand on the other. Both productions have O(n7) possible instantiations if we
take into account that the four arguments to B will always be adjacent.

Suppose we always build up a sheet out of two smaller sheets:

Beta(ABCDE) :− B(A,B,C,D,E)

B(ABC,D,EYA′,B′,C′D′E ′) :− B(A,B,C,D,E),B(A′,B′,C′,D′,E ′),Adj(B,D′)
B(A,B,CDEYA′,B′,C′,D′,E ′) :− B(A,B,C,D,E),B(A′,B′,C′,D′,E ′),Adj(D,D′)

B(ε,B,C,D,ε) :− Adj(B,D)

Figure 6.16b shows an example sheet that can be generated by this grammar but
not the previous ones. In this grammar, the second and fourth arguments are again
the leftmost and rightmost strands (not respectively) in the folded structure. The
second and third productions join two β -sheets together in two different ways; there
are conceivably four ways to join them together, but using only these two avoids
spurious ambiguity. Both productions have O(n12) possible instantiations if we take
into account that the five arguments to B will always be adjacent.

Figure 6.16c shows the only permutation of four strands that the above grammar
cannot generate. This does not seem problematic, since, at least for sheets formed
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out of two hairpin motifs, this permutation was not known as of 1991 to occur in
nature [21, p. 31].

It should be emphasized, however, that any energies or conformation counts
added to these grammars will not be able to make the self-contacts between two
strands dependent on self-contacts with other strands. Akutsu [6] and Lyngsø and
Pedersen [84] have shown that certain formulations of the problem of predicting
RNA secondary structures with generalized pseudoknots are NP-hard. It turns out
that both of these proofs assume some kind of dependence between nonadjacent
strands. Akutsu assumes that no base can participate in two pairs (one on either
side), which is true of RNA secondary structures but not of protein structures.
Lyngsø and Pedersen assume that the energy of a base pairing (i, j) can be affected
by another base pairing ( j − 1, i′) even if i and i′ are in different strands (or by
( j′, i+1) even if j and j′ are in different strands); it remains to be seen whether such
dependencies might be needed, for example, in calculating conformation counts for
β -sheets.

6.4 Summary

Intersection is a technique which has been somewhat neglected in computational
linguistics, but we have shown in this chapter that it has the potential to provide
extra SGC in a way that is useful for analyzing biological sequences. There is a
danger, however, of thinking that the extra WGC gained by intersection corresponds
with extra SGC. We have explored several ways of employing this technique: we
demonstrated a flaw in Brown and Wilson’s use of intersections of CFLs for RNA
pseudoknots, and we proposed intersections of CFGs and finite-state automata for
two-helix bundles and nonlinear sLMGs for larger helix bundles and β -sheets. For
future work we would like to extend the helix-bundle work to a three-dimensional
lattice and bundles of three or more helices, using a TAG or a nonlinear sLMG.
Since these larger bundles can be synthesized in the laboratory (Ken Dill, p.c.), such
a model could be evaluated more directly.



Chapter 7

Conclusion

We began this study with the question: What makes one grammar formalism better
than another? We developed a theoretical framework for dealing with this question,
drawing on ideas from Miller and Joshi and others: in this framework we measure
the generative power of grammars by choosing an interpretation domain suited to
the task and restricting the interpretation functions to be defined on local domains.
We applied this framework in three general areas: statistical parsing, machine trans-
lation, and biological sequence analysis.

Statistical parsing

The ability of a grammar formalism to describe statistical parsing models is charac-
terized by its SGC with respect to the domain of weighted trees (or other weighted
structures). This interpretation domain classifies formalisms rather coarsely: of the
weakly context-free formalisms we examined, only tree-insertion grammar had
greater statistical-modeling power than CFG. But this negative result led to a rein-
terpretation of lexicalized PCFGs as being cover grammars for grammars resem-
bling TAG. This reinterpretation gave some new insights into how lexicalized PCFG
parsers work and how to train them.

We demonstrated a model based on probabilistic tree-insertion grammar with
sister-adjunction, discussing implementation details and some of its conceptual ad-
vantages. We described how to train this model both using heuristic reconstruction
of structural descriptions and using EM to train directly on incomplete structural de-
scriptions. Results on the Penn (English) Treebank were comparable to lexicalized
PCFG parsers, and results on the Penn Chinese Treebank were state-of-the-art.
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Machine translation

The ability of a grammar formalism to describe translations between languages is
characterized by its SGC with respect to the domain of string (or tree) pairs. By con-
trast with the previous case, this interpretation domain classifies formalisms rather
finely. Much progress has been made in applying synchronous grammars (CFG and
TSG) to statistical machine translation, but a particularly challenging area has been
tree-to-tree translation. Richer synchronous grammar formalisms may provide the
power needed to model syntactic divergences, but because there are many different
levels of power, the right formalism must be chosen. It would be incorrect to con-
clude from the failure of one formalism that other more powerful formalisms are
not worth trying.

We focused on one synchronous formalism, synchronous regular-form TAG, as
a basis for translation systems. We formally demonstrated that it has greater transla-
tion power than other synchronous formalisms currently used for statistical machine
translation and provided some examples of how its extra power could be useful for
difficult constructions.

Biological sequence analysis

The ability of a grammar formalism to describe secondary/tertiary structures of
chain molecules is characterized by its SGC with respect to the domain of linked
strings. This interpretation domain, like the previous one, classifies formalisms
rather finely. We presented a synthesis of previous research in this area, discussing
both CFG and formalisms beyond CFG. We showed how Chen and Dill’s statistical-
mechanical model can be recast as a weighted CFG, and how several kinds of sec-
ondary/tertiary structures can be modeled by variants of TAG.

We then turned our attention to the mechanism of intersection, which has a more
natural interpretation in this domain than with syntactic structures. We took a close
look at uses and abuses of this mechanism, and described two legitimate uses. First,
we showed how to extend our CFG implementation of Chen and Dill’s statistical-
mechanical model to use a CFG intersected with a finite-state automaton, allowing
it to model helix bundles, which was not previously feasible. Second, we discussed
how nonlinear sLMGs might use intersection to model β -sheets more efficiently
than previous approaches.

Conclusion

Grammars are gaining or regaining attention in various quarters of research in nat-
ural language processing and structural biology. But the theory fueling these ap-
plications will not be fully effective unless it is able to ask and answer the right
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questions: Is this grammar formalism more powerful than that grammar formalism
for this particular application? We have set up a framework for carrying out such
comparisons, and used it to explore three areas of application. We hope that the ex-
ploration will continue: empirical evaluation of theoretical results presented here,
new results about other grammar formalisms, and investigation into further areas of
application.
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