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Preface

The book “Speech and Language Technologies” addresses state-of-the-art systems and
achievements in various topics in the research field of speech and language technolo-
gies. Book chapters are organized in different sections covering diverse problems,
which have to be solved in speech recognition and language understanding systems.

In the first section machine translation systems based on large parallel corpora using
rule-based and statistical-based translation methods are presented. The third chapter
presents work on real time two way speech-to-speech translation systems.

In the second section two papers explore the use of speech technologies in language
learning.

The third section presents a work on language modeling used for speech recognition.

The chapters in section Text-to-speech systems and emotional speech describe corpus-
based speech synthesis and highlight the importance of speech prosody in speech
recognition.

In the fifth section the problem of speaker diarization is addressed.

The last section presents various topics in speech technology applications, like audio-
visual speech recognition and lip reading systems.

I'would like to thank to all authors who have contributed research and application pa-
pers from the field of speech and language technologies.

Ivo Ipsic
University of Rijeka
Croatia
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Towards Efficient Translation Memory Search
Based on Multiple Sentence Signhatures

Juan M. Huerta
IBM T] Watson Research Center,
United States

1. Introduction

The goal of machine translation is to translate a sentence S originally generated in a source
language into a sentence T in target language. Traditionally in machine translation (and in
particular in Statistical Machine Translation) large parallel corpora are gathered and used to
create inventories of sub-sentenial units and these, in turn, are combined to create the
hypothesis sentence T in the target language that has the maximum likelihood given S. This
approach is very flexible as it has the advantage generating reasonable hypotheses even
when the input has not resemblance with the training data. However, the most significant
disadvantage of Machine Translation is the risk of generating sentences with unnaceptable
linguistic (i.e., syntactic, grammatical or pragmatic) incosistences and imprefections.
Because of this potential problem and because of the availability of large parallel corpora,
MT researchers have recently begun to expore the direct search approach using these
translation databases in support of Machine Translation. In these approaches, the
underlying assumption is that if an input sentence (which we call a query) S is sufficiently
similar to a previously hand translated sentence in the memory, it is, in general, preferable
to use such existing translations over the generated Machine Translation hypothesis. For this
approach to be practical there needs to exist a sufficiently large database, and it should be
possible to identify and retrieve this translation in in a span of time comparable to what it
takes for the Machine Translation engine to carry out its task. Hence, the need of algorithms
to efficiently search these large databases.

In this work we focus on a novel approach to Machine Translation memory lookup based on
the efficient and incremental computation of the string edit distance. The string edit distance
(SED) between two strings is defined as the number of operations (i.e., insertions, deletions
and substitutions) that need to be applied on one string in order to transform it into the
second one (Wagner & Fischer, 1974). The SED is a symmetric operation.

To be more precise, our approach leverages the rapid elimination of unpromising
candidates using increasingly stringent elimination criteria. Our approach guarantees an
optimal answer as long as this answer has an SED from the query smaller than a user
defined threshold. In the next section we first introduct string similarity translation memory
search, specifically based on the string edit distance computation, and following we present
our approach which focuses on speeding up the translation memory search using increasingly
stringent sentence signatures. We then describe how to implement our approach using a
Map/Reduce framework and we conclude with experiments that illustrate the advantages of
our method.
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2. Translation memory search based on string similarity

A translation memory consists of a large database of pre-translated sentence pairs. Because
these translation memories are typically collections of high quality hand-translations
developed for corpus building purposes (or in other «cases, created for the
internationalization of documentation or for other similar development purpoes), if a
sentence to be translated is found exactly in a translation memory, or within a relativelly
small edit distance from the query, this translation is preferred over the output generated by
a Machine Translation engine. In general, because of the nature of the errors introduced by
SMT a Translation Memory match with an edit distance smaller than the equivalent average
BLEU score of a SMT hypothesis is preferred. To better understand the relationship between
equivalend BLEU and SED the reader can refer to (Lin & Och, 2004).
Thus, for a translation memory to be useful in a particular practical domain or application,
3 conditions need to be satisfied:
e It is necessary that human translations are of at least the same average quality (or
better) than the equivalemtn machine translation output
e Itis necessary that there is at least some overlap between translation memory and the
query sentences and
e It is necessary that the translation memory search process is not much more
computationally expensive than machine translation
The first assumption is typically true for the state of the current technology and certainly the
case when the translations are performed professional translators. The second condition
depends not only on the semantic overlap between the memory and the queries but also on
other factors such as the sentence length distribution: longer sentences have higher chances
of producing matches with larger string edit distances nullifying their usefulness. Also, this
condition is more common in certain domains (for example technical document translation
where common technical processes lead to the repeated use of similar sentences). The third
assumption, (searching in a database of tens of millions of sentences) is not computationally
trivial especially since the response time of a typical current server-based Machine
Translation engine is of about a few hundred words per second. This third requirement is
the main focus of this work.
We are not only interested in finding exact matches but also in finding high-similarity
matches. Thus, the trivial approach to tackle this problem is to compute the string edit
distance between the sentence to be translated (the source sentence) and all of the sentences
in the database. It is easy to see how when comparing 2 sentences each with length n and
using Dynamic Programming based String Edit Distance (Navarro, 2001) the number of
operations required is O(n2). Hence, to find the best match in a memory with m senteces the
complexity of this approach is O(mn2). It is easy to see how a domain where a database
contains tens of millions of translated sentences and where the average string length is
about 10, the naive search approach will need to perform in the order of billions of
operations per query. Clearly, this naive approach is computationally innefficient.
Approximate string search can be carried out more efficiently. There is a large body of work
on efficient approximate string matching techniques. In (Navarro, 2001), there is a very
extensive overview of the area of approximate string matching approaches. Essentially,
there are two types of approximate string similarity search algorithms: on-line and off-line.
In the on-line methods, no preprocessing is allowed (i.e., no index of the database is built).
In off-line methods an index is allowed to be built prior to search.
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We now provide, as background, an overview of existing methods for approximate string
match as well as advantages and disadvantages of these in order to position our approach in
this context.

2.1 Off-line string similarity search: index based techniques

Off line string similarity approaches typically have the advantage of creating an index of the
corpus prior to search (see for example (Bertino et al., 1997). These approaches can search, in
this way, for matches much faster. In these methods terms can be weighted by their
individual capability to contribute to the overall recall of documents (or, in this case,
sentences) such as TD-IDF or Okapi BM25.

However, index-based approaches are typically based on so called bag-of-words distance
computation in which the sentences are converted into vectors representing only word
count values. Mainly because of their inability to model word position information, these
approaches can only provide a result without any guarantee of optimality. In other words,
the best match returned by an index query might not contain the best scoring sentence in the
database given the query. Among the reasons that contribute to this behavior are: the non-
linear weights of the terms (e.g., TF-IDF), the possible omission of stop words, and primarily
the out-of-order nature of the bag of words approach.

To overcome this problem, approaches based on positional indexes have been proposed
(Manning, 2008). While these indexes are better able to render the correct answer, they do so
at the expense of a much larger index and a considerable increase in computational
complexity. The complexity of a search using a positional index is O(T) where T denotes the
number of tokens in the memory (T=nm). Other methods combine various index types like
positional, next word and bi-word indices (e.g., (Williams et al., 2004)). Again, in these cases
accuracy is attained at the expense of computational complexity.

2.2 On-line string similarity matching: string edit distance techniques

There are multiple approaches to on-line approximate string matching. These, as we said, do
not benefit from an index built a-priori. Some of these approaches are intended to search for
exact matches only (and not approximate matches). Examples of on line methods include
methods based on Tries (Wang et al.,, 2010) (Navarro & Baeza-Yates, 2001), finite state
machines, etc. For an excellent overview in the subject see (Navarro, 2001).

Our particular problem, translation memory search, requires the computation of the string
edit distance between a candidate sentence (a query) and a large collection of sentences (the
translation memory). Because as we saw in the previous section the string edit distance is
an operation that is generally expensive to compute with large databases, there exist
alternatives to the quick computation of the string edit distance. In order to better explain
our approach we first start by describing the basic dynamic programming approach to
string edit distance computation.

Consider the problem of computing the string edit distance between two strings A and B.
Let A={ay,...a,} and B={by,...by;}. The dynamic programming algorithm, as explained in
(Needleham & Wunsch, 1970), consists of computing a matrix D of dimensions (m+1)x(n+1)
called the edit-distance-matrix, where the entry D[i,j] is the edit distance SED(Ai,Bj) between
the prefixes A; and B;. The fundamental dynamic programming recurrence is thus,

Dli-1,j]+1 ifi>0
D[i, j]=min Dli,j-1]+1 ifj>0 1.1)
Dli-1,j-1]+9,;, ifi>0j>0
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The initial condition is D[0,0]=0. The edit distance between A and B is found in the lower
right cell in the matrix D[m,n]. We can see that the computation of the Dynamic
Programming can be carried out in practice by filling out the columns (j) of the DP array.
Figure 1 below, shows the DP matrix between sentences Sentence;="A B C A A” and
Sentence,="D C C A C” (for simplicity words are considered in this example to be letters).
We can see that the distance between these two sentences is 3, and the cells in bold are the
cells that constitute the optimal alignment path.

2.2.1 Sentence pair improvements on methods based on the DP matrix

A taxonomy of approximate string matching algorithms based on the dynamic
programming matrix is provided in (Navarro, 2001). Out of this taxonomy, two approaches
are particularly relevant to our work. The first is the approach of Landau Vishkin 89, which
focusing on a Diagonal Transition manages to reduce the computation time to O(kn) where k
is the maximum number of expected errors (k<n). The second is Ukkonen 85b which based
on a cutoff heuristic also reduces the computation time to O(kn). Our work is based on a
multi-signature approach that uses ideas similar to the heuristics of Ukkonen.

1012345
ABCAA

1

0 o|1]2]3|4]5s
1 D 1{1]23]4]5
2 C 212122415
3 C 3|3 |3[2]3]4
4 A als3]a]s3|2]3
5 C slalalals]s

Fig. 1. Sample Dynamic Programming Matrix

2.2.2 Approximate string edit distance computation

In section 2.1 we described an off-line method for segment retrieval based on an index and a
bag of words approach. That approach does not intend to approximate the string edit
distance; rather, it calculates similarity based on term distribution vectors and thus produces
results that differ from the SED approach. To reduce this mismatch between off-line and
on-line methods, it is possible to approximate the SED (and the related Longest Common
Subsequence computation) based on a stack computation and information derived from a
positional index. This computation is possible through the use of a Stack structure and a A*
like algorithm as described in (Huerta, 2010b). In that paper, Huerta proposed a method
that takes O(m s log s) operations on average where s is the depth of the stack (typically
much smaller than T, or m) instead of O(T) using a positional index. This approach is
important because it improves the accuracy of an off line system using a position index by
using an approximation of the string edit distance without sacrificing speed. The results are
within 2.5% error (Huerta, 2010b). In this paper, we will focus exclusively on the on-line
approach.
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3. Multi-signature SED computation

Our approach is intended to produce the best possible results (i.e., find the best match in a
translation memory given a query if this exists within a certain k, or number of edits) at
speeds comparable to those produced by less accurate approaches (i.e., indexing), in a
way that is efficiently parallelizable (specifically, implementable in Map Reduce). To
achieve this, our approach decomposes the typical single DP computation into multiple
consecutive string signature based computations in which candidate sentences are rapidly
eliminated. Each signature computation is much faster than any of its subsequent
computations.

The core idea of the signature approach is to define a hypersphere of radius equal to k in
which to carry out the search. In other words, a cutoff is used to discard hypotheses.
Eventually the hypersphere can be empty (without hypotheses) if there is no single match
within the cutoff (whose distance is smaller than the cutoff).

The idea is that, at each signature stage the algorithm should be able to decide efficiently
with certainty if a sentence lies outside the hypersphere. By starting each stage with a
very large number of candidates and eliminating a subset, the algorithm shows the
equivalent of perfect recall but its  precision only increases with a rate inversely
proportional to the running speed. The signature based algorithms (the kernels) are
designed to be very fast at detecting out of bound sentences and slower at carrying out
exact score computations. We start by describing the 3 signature based computations of
our approach.

3.1 Signature 1: string length

The first signature computation is carried out taking into account the length of the query
string as well as the length of the candidate string. This first step is designed to eliminate a
large percentage of the possible candidates in the memory very rapidly. The idea is very
simple: a pair of strings S1 and S2 cannot be within k edits if |I/1-12|>k, where 1 is the
length of string 1 and so on.

Figure 1 below shows a histogram of the distribution of the length of a translation memory
consisting of 9.89 Million sentence pairs. As we can see, the peak is at sentences of length 9
and consists of 442914 sentences which correspond to about 4.5% of the sentences. But the
average length is 14.5 with a standard deviation of 9.18, meaning that there is a long tail in
the distribution (a few very long sentences). We assume that the distribution of the query
strings matches that of the memory. The worst case, for the particular case of k=2, constitutes
the bins in the range [1-k<I2<I1+[2. This in our case is the case of the query equals to 9. For
this particular case and memory the search space is reduced to 2.18M (i.e., to 22% and hence
reduced by 78%). This is in the worst case that happens only 4.5% of the time. The weighted
average improvement is a reduction of the search space to 10% of the original. This, in turn
speeds up search on average 10x.

An even faster elimination of candidates is possible if multiple values of k are used
depending on the length of the memory hypotheses. For example one can run with a
standard k for hypotheses larger than 10 and a smaller k for hypotheses smaller or equal to
10. One can see from the distribution of the data that the overall result of this first signature
step is the elimination of between 70% to more than 90% of the possible candidates,
depending on the specific memory distribution.
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5 10 15 20 25 30 35 40

Fig. 2. Histogram of distribution of sentence lengths for a Translation Memory

3.2 Signature 2: lexical distribution signature

The second signature operation is related to the lexical frequency distribution and consists
of a fast match computation based on the particular words of the query and the candidate
sentences. We leverage the Zipf-like distribution (Ha et al.,, 2001) of the occurrence
frequency of words in the memory and the query to speed up this comparison. To carry out
this operation we compute the sentence lexical signature, which for Sentence Si is a vector of
length Ii consisting of the words in the sentence sorted by decreasing rarity (i.e., increasing
frequency). We describe in this section an approach to detect up to k-differences in a pair of
sentence signatures in time (worst case) less than O(n) (where n is the sentence average
length). The algorithm (shown in figure 3 below) stops as soon as k differences between the
signature of the query and the signature of the hypothesis are observed, and the particular
hypothesis is eliminated.

=10
12 T T T v v T T T T
10+ 4
8 4

L ; N
00 5¢ 100 15¢ 200 250 300 350 400 450 500

Fig. 3. Frequency distribution of words in the sample Translation Memory
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To better motivate our algorithm let us explain a little bit the distribution of the words in the
translation memory we use as an example. First, we address the question, how unique is
the lexical signature of a sentence? Empirically, we can see in our sample translation
memory that out of the 9.89M sentences, there are 9.85M unique lexical signatures, meaning
that this information by itself could constitute a good match indicator. Less than 1.0% of the
sentences in the corpus share a lexical signature with another sentence. As we said, the
signature is based on the Zipf’s distribution of word frequencies. It has been observed (Ha
et al) that at least for the case of the most frequent words in a language is inversely
proportional to rank.

We now describe the algorithm to efficiently compute the bound in differences in lexical
items between two sentences.

Search Algorithm
construct the sorted vector of instances for A and B. Sa and Sb
i=0,j=0, d=0;
while number of differences is less than k (d<k)
if Sa[i]==Sb][j]
then
i++; j++; break;
else if Sa[i]>Sb[j]
d++;
j++ ;
else
d++;
it++;
end while

Fig. 4. Search Algorithm for Lexical Frequency Distribution String Signature

It is possible to show that the above code will stop (quit the while loop) on an average
proportional to O(alpha k) where alpha is bounded by characteristics of the word frequency
distribution. Also, the worst case is O(n) (when the source is equal to the target) this will
happen with an empiric probability of less than 0.01 in a corpus like the one we use. The
best case is O(k).

As we will see in later sections, this signature approach combined with Map-Reduce
produces very efficient implementations: the final kernel performs an exact computation
passing from the Map to the Reduce steps only those hypotheses within the radius. The
Reduce step finds the best match for every given query by computing the DP matrix for
each query/hypothesis pair. The speedup in this approach is proportional to the ratio of
the volume enclosed in the sphere divided by the whole volume of the search space.

3.3 Signature 3: bounded dynamic programming on filtered text

After the first two signature steps, a significant number of candidate hypotheses have been
eliminated based on string length and lexical content. In the third step a modified Dynamic
Programming computation is performed over all the surviving hypotheses and the query.
The matrix based DP computation has two simple differences from the basic algorithm
described before. The first one instructs the algorithm to stop after the minimum distance in
an alignment is k (i.e., when the smallest value in last column is k) and sets its focus on the
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diagonal. The second modification relates to the interchange of the sentences so that the
longest sentence in the columns and the shortest one in the rows. Figure 5 below shows an
example of a DP matrix in which in the second column is obvious that the minimum
alignment distance is at least 2. If, for this particular case, we were interested in k<2, then
the algorithm would need to stop at this point. An additional difference is also possible and
further increases the speed: each sentence in the memory (and the query itself) are
represented by non-negative integers, where each integer represents a word id based on a
dictionary. In our experiments we used very large dictionaries (400k), in which elements
such as URL’s and other special named entities are all mapped to the unknown word ID.

1012345

1

0 o1 | 2| 3|45

1 D 11| 2] 3|45 1
2 C 202 | 2] 2|45

3 C 33 ]3] 23]+

4 A ala ] al 3[2]3

5 C 514 4| 43| 3

Fig. 5. Bounded DP Matrix

3.4 Combining signatures: representation of the memory

We have described how to carry out the multi-signature algorithm. While this approach
significantly increases the search speed, for it to be truly efficient in practice, it should avoid
computing the signature information of the translation memory for each query it receives.
Rather it should use a slightly bigger pre-computed data structure in which for each
sentence, the length signature and the lexical signature are available.

The translation memory will thus consist of one record for each sentence in the memory.
Each record in the memory will consist of the following fields: The first field has the
sentence length. The second field has the lexical signature vector for a sentence. The third
field has the dictionary filtered memory sentence. The fourth field has the plain text
sentence. While this representation increases the size of the memory by a factor of at least 3,
we have found that it is extremely useful in keeping the efficiency of the algorithm.

4. Map/Reduce parallelization

We previously described that our multi-signature algorithm can be further sped-up by
carrying it out in a parallelized fashion. In this section we describe how to do so based on
the Map/Reduce formulation, specifically on Hadoop.

Map-Reduce (and in particular Hadoop) (Dean & Ghemawat, 2008) is a very useful
framework to support distributed in large computer clusters. The basic idea is to segment
the large dataset (in our case, the memory) and provide portions of this partition to each of
the worker nodes in the computing cluster. The worker nodes perform some operation on
the segment of the partition domain and provides results in a data structure (a hash map)
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consisting of key-value pairs. All the output produced by the worker nodes is collated and
post-processed in the Reduce step, where a final result set is obtained. An illustration of the
general process is shown in figure 6.

In our particular Map Reduce implementation the translation memory constitutes the input
records that are partitioned and delivered to the map worker nodes. Each Map job reads the
file with the translation queries and associates each with a key. Using the multi signature
approach described above, each worker node rapidly evaluates the SED-feasibility of
candidate memory entries and, for those whose score lies within a certain cutoff, it creates
an entry in the hash map. This entry has as the key the query sentence id, and as the value a
structure with the SED score and memory id entry.

In the reduce step, for every query sentence, all the entries whose key correspond to the
particular query sentence in question are collated and the best candidate (or top N-best) are
selected. Possibly, this set can be empty for a particular sentence if no hypotheses existed in
the memory within k-edits.

It is easy to see that if the memory has m records and the query set has g queries the
maximum set of map records is gm. Hadoop sorts and collates these map records prior to the
reduce step. Thus in a job where the memory has 10M records and the query set ha 10k
sentences, the number of records to sort and to collate are 100Billion. This is a significantly
large collection of data to organize and sort. It is crucial to reduce this number and as we
cannot reduce g our only alternative is to reduce m. That is precisely the motivation behind
the multi-signature approach. The multi-signature approach that is proposed in this work
not only avoids the creation of such large number of Map records but also reduces the exact
Dynamic Programming computation spent in the Map jobs.

Input Data
Map Map | Map Map
Map Output Records
‘/"
Reduce Reduce Reduce
\ J /
Reduce Output Records

Fig. 6. Map Reduce Diagram

5. Experiments

To conclude, this section binds all the previous themes by providing a set of experiments
describing the exact string similarity computation speed and coverage results. To test our
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algorithms we explored the use of an English-to-Spanish Translation memory consisting of
over 10M translation pairs.

Our test query sentences consist of a set of 7795 sentences, comprising 125k tokens (words).
That means the average query length is 16.0 words per sentence. Figure 7 shows the
histogram of the distribution of the lengths in the query set. We can see in this histogram
that there are 2 modes: one is for sentences of length 3 and the other is for sentences of
length 20.

Our Hadoop environment for Map Reduce parallelization consists of 5 servers: 1 name node
and 4 dedicated to data node servers (processing). The name nodes have 4 cores per CPU
resulting in a total of 16 processing cores. We partitioned the memories in 16 parts and
carried out 16 map tasks, 16 combine tasks (which consolidate the output of the map step
prior to the reduce task) and 1 reduce task. The file system was an HDFS (Hadoop
Distributed File System) consisting on one Hard Drive per server (for a total of 5 Hard
Drives).

GO0 T T T T T T T T T
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uﬂ 10 20 30 40 50 60 o il a0 100

Fig. 7. Histogram of distribution of sentence lengths for a Query Set

We ran two sets of experiments using various cutoff configurations. In the first set of
configurations, the map-reduce jobs use a single cutoff that is applied equally to all the
query sentences and hypotheses. In the second configuration for each sentence apply one of
2 cutoffs depending on the length of each query.

Table 1 shows the results for the case of the single cutoff (Cutoff 1= Cutoff 2). Column 1 and
2 correspond to the cutoff (which is the same), in Column 3 we can see the number of
queries found, Column 4 shows the total time it took to complete the batch of queries (in
seconds), and Column 5 shows the total number of Map records. As we can see the as we
increase the cutoff the number of output sentences, the time and the number of map records
increase. We will discuss in more detail the relationship between these columns. Table 2
shows the same results but in this case Cutoff 1 (for short queries) is not necessarily equal to
Cutoff 2 (for long queries).
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Cutoff 1 Cutoff 2 Output Sentences ~ Time (s) Map Records
1 1 773 148 773

2 2 1727 170 10.24M

3 3 2355 411 277M

4 4 2749 898 1.04B

5 5 3056 1305 2.048B

6 6 3285 2145 3.14B

Table 1. Experimental results for Cutoffl=Cutoff2

Cutoff 1 Cutoff 2 Output Sentences Time (s) Map Records
2 5 2770 271 20.4M
2 6 2999 475 344M
2 7 3271 581 716M

Table 2. Experimental results for length specific Cutoff

We can see that if we are allowed to have two length-related cutoffs, the resulting number of
output sentences is kept high at a much faster response time (measured in seconds per
query). So for example if one wanted to obtain 2700 sentences we can use cutoff 2 and 5 and
run in 271 seconds or alternatively use 4 and 4 and run in 898 seconds. The typical
configuration attains 2770 sentences (cutoffs 2 and 5) in 271 seconds for an input of size 7795
which means 34 ms per query. This response time is typical, or faster that a translation
engine and this allows for our approach to be a feasible runtime technique.

Figure 8 shows the plot of the total processing time for the whole input set (7795 sentences)
as a function of the input cutoff. Interestingly, one can see that the curve follows a non-
linear trend as a function of the cutoff. This means that as the cutoff increases, the number of
operations carried out by our algorithm increases non-linearly. But, how exactly are these
related?
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Fig. 8. Time as a function of single cutoff
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Fig. 9. Number of Output Hypotheses as a Function of Total Run Time

To explore this question, Figure 9 shows the total number of output sentences as a function
of total runtime. We see that in the first points there is a large increase in output hypotheses
per additional unit of time. After the knee in the curve, though, it seems that the system
stagnates as it reduces its output per increment in processing time. This indicates that the
growth in processing time that we are observing by increasing the threshold is not the direct
result of more output hypotheses being generated. As we will se below, rather it is the result
of a growth in processing map records.

In Figure 10 we show the total number of map records (in thousands) as a function of observed
total run-time. Interestingly, this is an almost linear function (the linear trend is also shown).As
we have mentioned, the goal of our algorithm is to minimize the records it produces. Having
minimized the number of records, we have effectively reduced the run-time.
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Fig. 10. Number of Map Records (in thousands) as a Function of Total Run Time
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Finally Figure 11 shows the number of records per number of output hypotheses. This
figure tells us about the efficiency of the system in producing more output. We can see that
as the system strives to produce more output matches a substantially larger number of
records needs to be considered considerably increasing the computation time.

6. Conclusion

We have presented here an approach to translation memory retrieval based on the efficient
search in a translation pair database. This approach leverages several characteristics of
natural sentences like the sentence length distribution, the skewed distribution of the word
occurrence frequencies as well as DP matrix computation optimization into consecutive
sentence signature operations. The use of these signatures allows for a great increase in the
efficiency of the search by removing unlikely sentences from the candidate pool. We
demonstrated how our approach combines very well with the map reduce approach.

In our results we found how the increase in running time experienced by our algorithm as
the cutoff is increased grows in a non-linear way. We saw how this run time is actually
related to the total number of records handled by Map Reduce. Therefore it is important to
reduce the number of unnecessary records without increasing the time to carry out the
signature computation. This is precisely the motivation behind the multi-signature approach
described in this work.

The approach described in this paper can be applied directly into other sentence similarity
approaches, such as sentence-based Language Modelling based on IR (Huerta, 2011) and
others where large textual collections are the norm (like Social Network data, (Huerta,
2010)). Finally, this approach can also be advantageously extended to other non-textual
domains in which the problem consists of finding the most similar sequence (e.g.,, DNA
sequences etc) where the symbol frequency distributions of the domain sequences is
skewed and there is a relatively broad sequence length distribution.
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Fig. 11. Number of Map Records as a Function of Total Output Hypotheses
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1. Introduction

In this chapter, we focus on the specific problem of sentence alignment given two comparable
corpora. This task is essential to some specific applications such as parallel corpora
compilation Utiyama & Tanimura (2007) and cross-language plagiarism detection Potthast
et al. (2009).

We address this problem by means of a cross-language information retrieval (CLIR) system.
CLIR deals with the problem of finding relevant documents in a language different from the
one used in the query. Different strategies are used, from ontology based Soerfel (2002) to
statistical tools. Latent Semantic Analysis can be used to get a list of parallel words Codina
et al. (2008). Multidimensional Scaling projections Banchs & Costa-jussa (2009) can also be
used in order to find similar documents in a cross-lingual environment. Other techniques are
based on machine translation, where the search is performed over translated texts Kishida
(2005). Within this framework, two basic components should be distinguished: a translation
model, and a retrieval model that may work as in the monolingual case. The translation can
be faced either in the query, or in the document. In the case of document translation, statistical
machine translation systems can be used for translating document collections into the original
query language. In the case of query translation, the challenges of deciding how a term might
be written in another language, which of the possible translations should be retained, and
how to weight the importance of translation alternatives when more than one translation is
retained should be considered.

Here, we use the query translation approach. Then, a segment of text in a given source
language is used as query for recovering a similar or equivalent segment of text in a different
target language. Given that we are using complete sentences which provide a certain context
for the terms to be translated, we do not have the disadvantages mentioned in the above
lines. Particularly, when using the query translation approach, we investigate if using either
a rule-based or a statitical-based machine translation system influence the final quality of the
sentence alignment. Additionally, we test if standard automatic MT metrics are correlated
with the standards metrics of the sentence alignment.

Rule-based machine translation (RBMT) systems were the first commercial machine
translation systems. Much more complex than translating word to word, these systems
develop linguistic rules that allow the words to be put in different places, to have different
meaning depending on context, etc. RBMT technology applies a set of linguistic rules in three
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different phases: analysis, transfer and generation. Therefore, a rule-based system requires:
syntax analysis, semantic analysis, syntax generation and semantic generation.

Statistical Machine Translation (SMT), a corpus-based approach, is a more complicated form
of word translation, where statistical weights are used to decide the most likely translation
of a word. Modern SMT systems are phrase-based rather than word-based, and assemble
translations using the overlap in phrases.

2. Organization of the chapter

The rest of this chapter is structured as follows. Next section describes several sentence
alignment approaches. Section 4 reports the motivation of our CLIR approach. Section
5 describes in detail how our sentence alignment system works. Section 6 describes the
two machine translation approaches that are used and compared in this chapter: rule-based
and statistically-based. Next, experimental framework and the proposed methodology are
illustrated by performing cross-language text matching at the sentence level on a tetra-lingual
document collection. Also, within this section, the performance quality of the implemented
systems is compared, showing that in this application the statistical system provides better
results than the rule-based system. Section 8 reports the translation quality of both
translation systems and reports the correlation among translation quality and cross-language
sentence matching quality. Finally, in section 9, most relevant conclusions derived from the
experimental results are presented.

3. Related work

Sentence alignment has been approached from different perspectives. In the following
subsections we briefly describe some well-known methods.

* Gale & Church (1993) proposed a sentence alginer provided a probability score for each
sentence pair based on sentence-length (number of characters). Their method use dynamic
programming to find maximum likelihood alignment.

¢ The Bilingual Sentence Aligner Moore (2002) combines sentence length based method with
word correspondence. It makes a first pass based on sentence length and a second pass
based on IBM Model-1. The former is based on the distribution of length variable and
the latter is trained during runtime and uses alignments obtained from the first pass. The
larger corpus size, the more effective (better model of distribution of word length variable
and word correspondence).

e Hunalign Varga et al. (2005) uses the diagonal of the alignment matrix, plus a bias of 10%.
The weights are a combination of length-based and dictionary-based similarity. If there
is no dictionary, they do length-based, estimate dictionary from result and reiterate once.
The main problems is that it is not designed to handle corpora of over 20k sentences, it
copes by splitting larger corpora and this causes worse dictionary estimates.

e Gargantua Braune & Fraser (2010) is an alignment model similar to Moore (2002), but it
introduces differences in pruning and search strategy.

¢ Bleualign Senrich & Volk (2010) is based on automatic translation of source text. It uses
dynamic programming to find path that maximizes BLEU scorePapineni et al. (2001)
between target text and translation of source text.
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Fig. 1. Block Diagram of the CLIR approach for Sentence Alignment.

4. Motivation

CLIR systems are becoming more and more accurate due to the improvement in machine
translation and information retrieval quality. As fas as we are concerned, CLIR have never
been used before for sentence alignment. However, with this study, we are demonstrating
that it is a nice shot to try. Building a CLIR system is relatively easy if using available tools.
In addition to testing a new methodology for sentence alignment, we want to experiment
with different machine translation systems. Particularly, we want to compare two translation
systems from different core technologies: rule-based and statistical. This two types of MT
commit different types of errors, which may have different effects on the sentence alignment
challenge. Although it is not objective of this work, we also report the correlation between
translation quality in terms of BLEU and sentence alignment quality.

5. Sentence alignment based on cross-language information retrieval

A cross-language information retrieval (CLIR) system can be used for sentence alignment.
The idea is to use a sentence as a query and search for the indexed sentence that matches best.
One of the most popular systems in CLIR is the query translation approach which consists of
concatenating a machine translation system and a monolingual information retrieval system.
See the block diagram in Figure 1.

Basically, an information retrieval (IR) system uses a query to find objects that are indexed
in a database. Several documents may match the same query but with different degrees of
relevance. In order to make information retrieval efficient, the queries and documents are
typically transformed into a suitable representation. One of the most popular representations
is the vector space model where documents and queries are represented as vectors, each
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interlingua
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source target
text text

Fig. 2. Machine translation approaches.

dimension corresponding to a separate term. Usually, terms are weighted with the term
frequency and inverse document frecuency (tf-idf) scheme.

The main challenge in CLIR with respect to IR is that the query language is different from
the document language. We approach the problem of sentence aligning by operating a
machine-translation-based CLIR system at the sentence level over a bilingual comparable
corpus. In this context, we are comparing the performance of two machine translation systems
with different core technologies: rule-based and statistical.

6. Machine translation core technologies

As mentioned, there are different core tecnologies in machine translation. Corpus-based
approaches (such as Statistical) use a direct translation and rule-based approaches use a
transfer translation. See Figure 2 !. As follows we briefly describe the two technologies.

6.1 Rule-based machine translation

Rule-based machine translation (RBMT) systems develop linguistic rules that allow the words
to be put in different places, to have different meaning depending on context, etc. The
Georgetown-IBM experiment in 1954 was one of the first rule-based machine translation
systems and Systran was one of the first companies to develop RBMT systems.

RBMT methodology applies a set of linguistic rules in three different phases: analysis, transfer
and generation. Therefore, a rule-based system requires: syntax analysis, semantic analysis,
syntax generation and semantic generation. In general terms, RBMT generates the target text
given a source text following the next steps.

Given a source text, the first step is to segment it, for instance, by expanding elisions or
marking set phrases. These segments are then looked up in a dictionary. This search returns

1 http:/ /en.wikipedia.org/wiki/Machine_translation
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the base form and tags for all matches (morphological analyser). Afterwards, the task is to
resolve ambiguous segments, i.e. source terms that have more than one match, by choosing
only one (part of speech tagger). Additionally, a RBMT system may add a lexical selection to
choose between alternative meanings. After the module taking care of the lexical selection,
two modules follow, namely the structural and the lexical transfers. The former consists of
looking up disambiguated source-language base work to find the target-language equivalent.
The latter consists in: (1) flagging grammatical divergences between source language and
target language, e.g. gender or number agreement; (2) creating a sequence of chunks; (3)
reordering or modifying chunk sequences; and (4) substituting fully-tagged target-language
forms into the chunks. Then, tags are used to deliver the correct target language surface form
(morphological generator). Finally, the last step is to make any necessary orthographic change
(post-generator).

One of the main problems of translation is choosing the correct meaning, which involves a
classification or disambiguation problem. In order to improve the accuracy, it is possible to
apply a method to disambiguate meanings of a single word. Machine learning techniques
automatically extract the context features that are useful for disambiguating a word.

RBMT systems have a big drawback: the construction of such systems demands a great
amount of time and linguistic resources, thus resulting very expensive. Moreover, in order
to improve the quality of a RBMT it is necessary to modify rules, which requires more
linguistic knowledge. The modification of one rule cannot guarantee that the overall accuracy
will be better. However, using rule-based methodology may be the only way to build an
MT system when dealing with minor languages, given that SMT requires massive amounts
of sentence-aligned parallel text. RBMT may use linguistic data without access to existing
machine-readable resources. Moreover, it is more transparent: errors are easier to diagnose
and debug.

6.2 Statistical machine translation

Statistical Machine Translation (SMT), which started with the CANDIDE system Berger et al.
(1994), is, at its most basic, a more complicated form of word translation, where statistical
weights are used to decide the most likely translation of a word. Modern SMT systems are
phrase-based rather than word-based, and assemble translations using the overlap in phrases.
The main goal of SMT is the translation of a text given in some source language into
a target language by maximizing the conditional propability of the translated sentence
given the source one. A source string s{ =51...8j...57 is translated into a target string

tl =t;...t;...t;. Among all possible target strings, the goal is to choose the string with the
highest probability:

= argmax P(t!|s])
tl

where I and | are the number of words in the target and source sentences, respectively.

The first SMT systems were reformulated using Bayes’ rule. In recent systems, such an
approach has been expanded to a more general maximum entropy approach in which
a log-linear combination of multiple feature functions is implemented (Och, 2003). This
approach leads to maximising a linear combination of feature functions:

F = argmax {Z%Zl Amhm(t,s)}.
t
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The job of the translation model, given a target sentence and a foreign sentence, is to assign

a probability that t/ generates s{. While these probabilities can be estimated by thinking

about how each individual word is translated, modern statistical MT is based on the intuition
that a better way to compute these probabilities is by considering the behavior of phrases
(sequences of words). The phrase-based statistical MT uses phrases as well as single words as
the fundamental units of translation. Phrases are extracted from multiple segmentations of the
aligned bilingual corpora and their probabilities are estimated by using relative frequencies.
The translation problem has also been approached from the finite-state perspective as
the most natural way for integrating speech recognition and machine translation into a
speech-to-speech translation system (Bangalore & Riccardi, 2000; Casacuberta, 2001; Vidal,
1997). The Ngram-based system implements a translation model based on this finite-state
perspective (de Gispert & Marifio, 2002) which is used along with a log-linear combination of
additional feature functions (Marifio et al., 2006).

In addition to the translation model, SMT systems use the language model, which is usually
formulated as a probability distribution over strings that attempts to reflect how likely a string
occurs inside a language (Chen & Goodman, 1998). Statistical MT systems make use of the
same n-gram language models as speech recognition and other applications do. The language
model component is monolingual, so acquiring training data is relatively easy.

The lexical models allow the SMT systems to compute another probability to the translation
units based on the probability of translating word per word. The probability estimated by
lexical models tends to be in some situations less sparse than the probability given directly by
the translation model. Many additional feature functions can also be introduced in the SMT
framework to improve the translation, like the word or the phrase bonus.

6.3 Challenges of RBMT and SMT
State-of-the-art rule-based MT approaches have the following challenges:

e Semantic. RBMT approaches concentrate on a local translation. Usually, this translation
tends to be literal and it lacks of fluency. Additionally, words may have different meanings
depending on their grammatical and semantic references.

e [Lexical. Words which are not included in the dictionary will have no translation. When
keeping the system updated, new language words have to be introduced in the dictionary.

State-of-the-art statistical MT approaches have the following challenges:

e Syntactic. The main challenge in this category is word reordering, which can be of two
natures: long reordering, as when translating between languages with different structures
(SVO versus VSO), and short reorderings, as such involving relative locations of modifiers
and nouns Costa-jussa & Fonollosa (2009); Tillmann & Ney (2003); Zhang et al. (2007).

® Morphological. Here there are chanllenges as gender and number agreement. For instance,
keeping number agreement when translating from English to Spanish in structures such
asNoun + Adjective de Gispert et al. (2006); Nieflen & Ney (2004).

e Lexical. Here there are the Out-of-Vocabulary words which can not be translated. The main
causes of out of vocabulary words is the dependency with the training data. In most SMT
approaches, the limitation of training data, domain changes and morphology are not taken
into account. Approaches such as the one from Langlais & Patry (2007) try to deal with
these challenges.
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The semantic and lexical problems may affect more to a CLIR system than the syntactic and
morphological errors, taking into account that IT systems work with bag-of-words and use
words and stems.

7. Experiments

As already mentioned in the introduction, in this work, we focus on the problem of sentence
alignment given two comparable corpora. In this particular task, a segment of text in a given
source language is used as query for recovering an equivalent segment of text in a different
target language. In this section, we evaluate a conventional query translation approach
first described by Chen & Bao (2009) which considers a cascade combination of a machine
translation system and a monolingual IR system. We use two machine translation systems
with different core technologies: a rule-based and a statistical-based machine translation
systems.

7.1 Multilingual sentence dataset

The dataset considered for the experiments is a multilingual sentence collection that was
extracted from the Spanish Constitution, which is available for downloading at the Spanish
government’s main web portal: www.la-moncloa.es. In this website, all constitutional texts are
available in five different languages, including the four official languages of Spain: Spanish,
Catalan, Galego and Euskera, as well as English. Given that the MT systems used do
not provide Euskera translation, we limited the experiments to four languages. The texts
are organized in 169 articles plus some additional regulatory dispositions. All texts were
segmented into sentences and the resulting collection was filtered according to sentence
length. More specifically, sentences having less than five words were discarded aiming at
eliminating titles and some other non-relevant information. Moreover, we had to perform a
manual postprocessing to correct some errors in the sentence alignment. Table 1 summarizes
the main statistics for both the overall collection.Table 2 shows a sentence example.

Collection English |Spanish |Catalan|Gallego

Sentences 611 611 611 611
Running words | 15285 | 14807 | 15423 | 13760
Vocabulary 2080 2516 2523 2667

Average sent. length| 25.01 | 2423 | 25.24 | 22.52

Table 1. Corpus statistics.

7.2 Evaluation of the methodology

The system to be considered implements a query translation strategy followed by a standard
monolingual information retrieval approach.

For the query translation step, we used the following MT systems:

1. A rule-based system implemented with the Opentrad platform?.  This system
Ramirez-Sanchez et al. (2006) constitutes a state-of-the-art machine translation service that
provides automatic translation among several language pairs including the four Spanish
languages plus English, Portuguese and French. See Figure 3. Besides, Opentrad is

2 http:/ /www.opentrad.com/
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Language |Sentence example

English|The entire wealth of the country in its different forms, irrespective of ownership,
shall be subordinated to the general interest.
Spanish|Toda la riqueza del pais en sus distintas formas y sea cual fuere su titularidad
estd subordinada al interés general.
Catalan|Tota la riquesa del pais en les seves diverses formes, i sigui quina sigui la
titularitat, resta subordinada a l'interés general.
Gallego|Toda a riqueza do pafs nas stas distintas formas e calquera que sexa a sta
titularida de estd subordinada 6 interese xeral.

Table 2. Sentence example from the Spanish Constitution.

designed to be adapted and configured according to user needs, allowing its integration
with other systems. Opentrad’s design allows for its customization and personalization
both from a linguistic point of view, adopting the style book of an organization, and from a
technical point of view, allowing its integration into IP networks or a full integration with
other systems.

® Opentrad
:mmmm ﬂh

TRANSLATE

The age of machine translation

Fig. 3. Opentrad screenshot

2. A statistical-based system implemented with the Google API translation®. See Figure 4.
Google’s research group has developed its statistical translation system for the language
pairs now available on Google Translate. Their system, in brief, feeds the computer with
billions of words of text, both monolingual text in the target language, and aligned text
consisting of examples of human translations between the languages. Then, they apply
statistical learning techniques to build a translation model.

3 http:/ /code.google.com/apis/ajaxlanguage/
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The detect language option automatically determines the language of the text the user is
translating. The accuracy of the automatic language detection increases with the amount
of text entered. Google is constantly working to support more languages and introduce
them as soon as the automatic translation meets their standards. In order to develop new
systems, they need large amounts of bilingual texts.

Google translata o e e

s g o | B e Cmem v| | e [ETpe—

[

Fig. 4. Google Translate screenshot

The monolingual information retrieval step was implemented by using Solr, which is an
XML-based open-source search server based on the Apache-Lucene search library *. See
Figure 5. Particularly, Solr is the popular, blazing fast open source enterprise search platform
from the Apache Lucene project. Its major features include powerful full-text search, hit
highlighting, faceted search, dynamic clustering, database integration, and rich document
(e.g., Word, PDF) handling. Solr is highly scalable, providing distributed search and index
replication, and it powers the search and navigation features of many of the world’s largest
internet sites.

Solr is written in Java and runs as a standalone full-text search server within a servlet container
such as Tomcat. Solr uses the Lucene Java search library at its core lecelfor full-text indexing
and search, and has REST-like HTTP/XML and JSON APIs that make it easy to use from
virtually any programming language. Solr’s powerful external configuration allows it to be
tailored to almost any type of application without Java coding, and it has an extensive plugin
architecture when more advanced customization is required.

Table 3 summarizes the results obtained from the comparative evaluation between the two
contrastive systems. We measure the quality of the system in terms of accuracy. We show top-1
and top-5 results. The former reports the percentage of times that the correct result coincides
with the top-ranked sentence retrieved by the system and the latter reports the percentage of
times that the correct result is within the top-five ranked sentences retrieved by the system.
The query translation system using statistical translation performs slightly better than the
rule-based system. It is worth noticing the high quality of cross-language sentence matching
using the query translation approach. This high quality is mainly due to the quality of
translation.

Figure 6 shows some examples of the system performance.

4 http:/ /lucene.apache.org/solr/tutorial. html
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[sraTistics] [1nFo] [DisTRIBUTION] [PING] [LOGGING]
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Query String: Solr
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Current Time: Wed Jan 12 10:20:27 CET 2011

Server Start At: Thu Dec 30 13:37:12 CET 2010

Fig. 5. SOLR screenshot
Source Target language
System | English | Spanish | Catalan | Gallego
language top-1|top-5|top-1|top-5|top-1|top-5|top-1|top-5

rule-based| 100 | 100 | 95.0 | 99.5 | 92.0 | 96.0 | 93.0 | 96.0

English

statistical | 100 | 100 | 100 | 100 | 100 | 100 | 97 | 100

rule-based| 96.0 | 99.0 | 100 | 100 | 100 | 100 | 99.0 | 100

Spanish

statistical | 97.5 | 100 | 100 | 100 | 100 | 100 | 96 | 99

Catalan

rule-based| 95.5 | 99.0 | 100 | 100 | 100 | 100 | 93.5 | 97.0

statistical | 99 |99.5| 100 | 100 | 100 | 100 | 96 | 99

rule-based| 93.5 | 97.5|99.5 | 99.5 | 83.5 | 90.5 | 100 | 100

Gallego

statistical | 97 [98.5| 97 | 99 [97.5| 99 | 100 | 100

Table 3. Comparative results.

8. Correlation between machine translation quality and sentence matching

performance

We evaluate the quality of the translation in terms of BLEUPapineni et al. (2001) and PER,
see table 4. BLEU stands for Bilingual Evaluation Understudy. It is a quality metric and it is
defined in a range between 0 and 1 (or in percentage between 0 and 100), 0 meaning the worst
translation (where the translation does not match the reference in any word), and 1 the perfect
translation. BLEU computes lexical matching accumulated precision for n-grams up to length

four Papineni et al. (2001).

PER stands for Position-Independent Error Rate (PER) and it is computed on a
sentence-by-sentence basis. The main difference with WER (Word error rate) is that it does
not penalise the wrong order in the translation. WER (McCowan et al., 2004) is a standard
speech recognition evaluation metric. A general difficulty of measuring performance lies
in the fact that the translated word sequence can have a different length from the reference
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Source: Si la mocién de censura no fuere aprobada por el Congreso, sus signatarios no podran
presentar otra durante el mismo periodo de sesiones.

Translation-Google: Si la moci6 de censura no fos aprovada pel Congrés, els signataris no podran
presentar cap més durant el mateix periode de sessions.

Retrieval: Si la moci6 de censura no fos aprovada pel Congrés, els signataris no en podran
presentar cap més durant el mateix periode de sessions.

Translation-Opentrad: Si la moci6é de censura no anas aprovada pel Congrés, els seus signataris
no podran presentar una altra durant el mateix periode de sessions.

Retrieval: Si la moci6 de censura no fos aprovada pel Congrés, els signataris no en podran
presentar cap més durant el mateix periode de sessions.

Reference: Si la moci6 de censura no fos aprovada pel Congrés, els signataris no en podran
presentar cap més durant el mateix periode de sessions.

Source:The Congress may require political responsibility from the Government by adopting a motion

of censure by overall majority of its Members.

Translation-Google: O Congreso pode esixir responsabilidade politica do Goberno, aprobando unha
mocién de censura por maioria absoluta dos seus membros.

Retrieval: O Congreso dos Deputados pode esixi-la responsabilidade politica do Goberno mediante
a adopcién por maiorfa absoluta da mocién de censura.

Translation-Opentrad: O Congreso pode requirir responsabilidade politica desde o Goberno por
adoptar unha mocién de censure por maioria total dos seus Membros.

Retrieval: O Congreso dos Deputados pode esixi-la responsabilidade politica do Goberno mediante
a adopcién por maiorfa absoluta da mocién de censura.

Reference: O Congreso dos Deputados pode esixi-la responsabilidade politica do Goberno mediante
a adopcién por maiorfa absoluta da mocién de censura.

Source:O Pleno poderd, con todo, avocar en calquera momento o debate e votacion de calquera
proxecto ou proposicién de lei que xa fora obxecto desta delegacion.

Translation-Google: The Chamber may, however, take over at any moment the debate and vote on any
project or proposed law that had already been the subject of this delegation.

Retrieval: However, the Plenary sitting may at any time demand that any Government or non-
-governmental bill that has been so delegated be debated and voted upon by the Plenary itself.
Translation-Opentrad: The Plenary will be able to, however, avocar in any moment the debate and vote
of any project or proposicién of law that already was object of this delegation.

Retrieval: However, the Plenary sitting may at any time demand that any Government or non-
-governmental bill that has been so delegated be debated and voted upon by the Plenary itself.
Reference: However, the Plenary sitting may at any time demand that any Government or non-
-governmental bill that has been so delegated be debated and voted upon by the Plenary itself.

Fig. 6. Examples of the system performance.

word sequence (supposedly the correct one). WER is derived from the Levenshtein distance,
working at the word level.

We see that Google translator is better than Opentrad in most translation pairs. It may be
possible that Google has part of the Spanish Constitution as training material in its system.
However, notice that we did not use directly the Spanish constitution that is available from
the website www.la-moncloa.es, we had to perform a manual postprocessing to correct some
errors in the sentence alignment.

After evaluating the quality of translation we computed correlation coefficients between
sentence matching accuracies and translation quality metrics. We found out that some of the
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Target language
System English Spanish Catalan Gallego
language BLEU| PER |BLEU| PER |BLEU| PER |[BLEU| PER
English rule-based| - - [20.80 |49.14|20.02 |51.66| 17.49 |55.34
statistical | - - | 44.73|31.38|37.98 |36.04| 16.75 |56.27
rule-based | 20.92 (48.53| - - |68.76 |15.65| 72.57 |14.56
statistical | 45.57 |31.44| - - | 78.55|11.05| 32.90 |39.78
rule-based | 20.95 |50.56| 70.52 |14.89| - - | 54.81|23.81
statistical | 45.86 [30.91|87.59 | 6.24 | - - 129.16 |42.49
rule-based | 18.67 |52.47| 75.85 |12.60| 57.71 |22.31| - -
statistical | 30.43 |41.52|53.02 [26.74| 43.53 [32.79| - -

Source

Spanish

Catalan

Gallego

Table 4. Comparative results between translation qualities of used rule-based and statistical
systems.

computed correlations were quite high, see table 5. All correlations are significant (p << 0.05)
except for the cases marked with . There is a slightly high correlation between BLEU and
top-1 measure in the statistical case, but it is not maintained in the rule-based case. Research
in finding an MT measure which is correlated with CLIR quality or sentence alignment quality
was not the objective of this work. However, it may be a nice topic for further research.

system |top-1| top-5 |BLEU
rule-based| -
statistical -
rule-based | 95.82 -
statistical | 76.28 -
rule-based|58.17 | 39.61%| -
statistical | 74.71 | 53.53 -
rule-based |-55.24(-36.39%|-99.37
statistical |-75.03| -50.16 |-99.46

top-1

top-5

BLEU

PER

Table 5. Correlations coeficients.* marks the non-significant correlations.

9. Conclusions

This chapter presented a cross-language sentence matching application. The proposed
approach was a query translation cross-language information retrieval system either using
a rule-based or a statistical-based translation system.

We tested the performance of rule-based and statistical systems in a multilingual collection
based on the Spanish Constitution.

Results show that the statistical-based system performed slightly better than the rule-based
system.

Looking at some examples we saw that the errors in sentence matching were different
depending on the kind of translation system we were using, which suggests that a system
combination strategy could improve the performance.

We evaluated the translation performance of the rule-based and the statistical-based
translation systems. The latter performed better in 12 out of 16 translation pairs.
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Finally, we saw that translation quality is correlated with the cross-language sentence
matching quality, specially in terms of BLEU and top-1 measures.
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The BBN TransTalk Speech-to-Speech
Translation System

David Stallard et al.*
Raytheon BBN Technologies,
USA

1. Introduction

Portable translation devices which enable people who speak different languages to
communicate with each another in voice are likely to have a far-reaching impact in both the
civilian and military worlds. While long a staple of science fiction, a la the "Star Trek
universal translator", devices that actually translate between languages have not been fully
realized. In the last decade, however, under the sponsorship of the Babylon and
TRANSTAC (Translation for Tactical use) programs of the US Defense Advance Research
Program Agency (DARPA), several research sites, including BBN (Stallard et al., 2007),
CMU (Waibel et al., 2003), IBM (Gao et al., 2006), SRI (Akbacak et al., 2009) and USC (Belvin
et al. 2005), have made significant progress in developing a real two-way speech-to-speech
(S2S) translation systems. These systems are not “universal translators” in the science-
fiction sense, in that must be configured for the language and conversational domain of
interest, rather than spontaneously understanding them. However, the technology is
language-independent, and under the auspices of the TRANSTAC program, systems have
been configured for several different foreign languages of interest to the US Government,
including Iraqi Arabic, Malay, Farsi, Dari, and Pashto. Though the technology is also
domain-independent, most of these systems support conversations in the so-called "force
protection" military domain, which is broadly construed to include not only conversations
relevant to checkpoints, searches, and other military operations, but also rapport building,
civil affairs, and basic medical conversations.

In this article, we describe BBN’s S2S system, TransTalk, which runs not only on laptops and
ultra-mobile PCs, but also on mobile Android Smartphones, running locally on the device
itself and not a server. In common with other TRANTSTAC systems, TransTalk’s technology
is language-independent, and has been configured to translate between English and
numerous other languages, including Iraqi Arabic, Dari, Pashto, Farsi, and Malay.
TransTalk also has a uniquely simple user interface which does not require the user to view
a screen. TransTalk integrates automatic speech recognition (ASR), machine translation
(MT), and text-to-speech (TTS) synthesis engines for converting speech in one language into
a different language. In particular, TransTalk uses the BBN Byblos ASR engine for
converting speech to text. BBN Byblos is a multi-pass, speaker-independent large

“Rohit Prasad, Prem Natarajan, Fred Choi, Shirin Saleem, Ralf Meermeir, Kriste Krstovski, Shankar
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vocabulary speech recognizer which uses n-gram language models instead of a finite state
grammar. For machine translation, TransTalk primarily uses a BBN-developed Statistical
Machine Translation (SMT) component. For text-to-speech synthesis, we use engines
developed by TTS research sites under the DARPA TRANSTAC program, which includes
CMU and Cepstral. TransTalk has consistently been a top performer in independent
applications conducted by the US government.

Of particular importance to the recent progress in S2S technology has been the adoption of
Statistical Machine Translation (SMT). SMT uses a statistical, corpus-driven approach,
rather than hand-coded translation rules; and is driven by automated rather than manual
performance evaluation. There are two advantages conferred by SMT. First, the statistical
paradigm generally provides better performance than approaches based on hand-written
rules, as these rules are often brittle and conflict with one another. Second, the automated
nature of the process allows much more rapid development and testing of new approaches
to improve performance. The resulting labor savings has greatly accelerated the progress of
both machine translation and S2S as a whole. In this way, SMT may be seen as following in
the footsteps of ASR, which also underwent dramatic improvement following the adoption
of statistical paradigms and automated evaluation.

S2S systems are configured for particular language pairs by training ASR and translation
models using speech and language data (recordings, transcriptions, and translations) in
the relevant languages. For optimal performance, the data collected should match the
intended domains of conversation of the system. That is, if the intended domain is force
protection, data should be collected for that domain. While data outside that domain can
be helpful for general modeling of the given language, it often lacks the key concepts and
constructions that are important in the specific application domain. In practice therefore,
the domain-relevant data is frequently collected in simulated translingual dialogs
between role-playing individuals. Because of the finite resources available for such data
collection, and because many of the languages of interest are low-resource themselves,
S2S technology must frequently cope with sparse data, which poses challenges for both
ASR and MT.

In this paper, we describe the individual components of our system, including its ASR, MT,
TTS, dialog manager, and user interface components, and their integration into a free-form
two-way S2S translation system. We present novel algorithms for overcoming specific
challenges posed by colloquial and low resource nature of the languages of interest.
Another important issue in speech-to-speech translation is using some form of confirmation
strategy for minimizing errors in transferring a concept from one direction to other. Such
errors can easily cause the dialog to drift or stall. Here, we present multiple confirmation
techniques for a user to get feedback from the system so as to detect errors in the concepts
being conveyed by the system. In addition, we describe a novel methodology for assessing
the usefulness of these user confirmation strategies.

The remainder of the paper is organized as follows. Section 2 gives a brief overview of the
our TransTalk system. Section 3 discusses our user-centered approach to system design
and interaction. Section 4 presents work we have done on our ASR component, with
particular emphasis on improving performance for colloquial dialects of low-resource
languages. Section 5 discusses the machine translation component of our system, and
continues the emphasis on low-resource languages. Section 6 presents live evaluation
results for our system, and Section 7 concludes.
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2. System overview

A block diagram of the BBN TransTalk system is shown in Figure 1. The BBN TransTalk
system uses BBN's Byblos speech recognizer (Nguyen and Schwartz, 1997), BBN's SMT
engine, and third-party text-to-speech synthesizer(s). Various input modalities are
supported, including both handheld and headset microphones. The primary physical
interface is the "BBN SuperMic", a handheld unit developed by BBN, which encompasses a
directional microphone, speakers, and two push-and-hold "listen" buttons, one for receiving
the English speech, and the other for receiving the foreign speech. Figure 2 shows the BBN
TransTalk system running on multiple platforms: (a) Ultra-Mobile PC (UMPC) with BBN
SuperMic, and (b) Android smartphone.

_| English->Arabic
g SMT

English
1-best / Lattice — 4

" Arabic Text
Information

/ English ASR ™ Extraction Arabic TTS \

4 Semantic Type, |NE, etc. f, 4]
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Fig. 1. Block Diagram for BBN TransTalk 2-Way S2S Translator.

English speech received through the physical interface device is sent to the English speech

recognizer, which outputs a sequence of words in the recognizer's vocabulary. This English

text is then sent to both the SMT component and to a separate information extraction
component. The information extraction component performs the following functions:

1. English speech received through the physical interface device is sent to the English
speech recognizer, which outputs a sequence of words in the recognizer's vocabulary.
This English text is then sent to both the SMT component and to a separate information
extraction component. The information extraction component performs the following
functions:

2. Canonicalization: matches the utterance to one of a set of utterances for which it has
stored translations (Stallard et al., 2007). If none is found, the output of the SMT
component is used instead. Arabic speech corresponding to the translation is then
played back. This may be a pre-recorded wave file, or more generally, the result of text-
to-speech synthesis.

3. Question Detection: determines whether the recognized utterance is a question or a
statement. This module also classifies the question as one of the pre-defined classes.}

4. Named Entity Detection: detects whether the spoken response has named entities such
as person names, place names, geo-political organizations, etc. (Prasad et al., 2008; Bikel
etal., 1999).

A composite foreign language translation ("Arabic") in Figure 1 is produced by the SMT

and the information extraction component. This translation is then either played as a pre-

recorded wave file, or more generally, by the text-to-speech synthesis.
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Fig. 2. BBN TransTalk Two-way S2S Translator on UMPC and Smartphone platform.

The foreign language speaker's reply ("Arabic" in Figure 1) is sent to the foreign language
recognizer, which outputs text in the foreign language. The foreign language text is
translated into English text with a process similar to the one in English-to-Foreign direction.
The translated text is then sent to a second speech synthesizer, which speaks it out for the
English speaker to hear, and/or displaying it on a screen.

3. User-centered interaction

3.1 Overall design

A key aspect of our TransTalk system is its user-centered interface. Our design of the
interface was guided by a number of desiderata. Obviously, the interface had to be simple,
easy to use, and efficient. But it also had to work without a screen display, so that it could
be used by soldiers in “eyes-free” operation. We also wanted it to be easy for the user to
detect when the system had made an error in translation, and to correct the error. Finally,
we wanted the user to be able to abort system output and barge in at any time to speak
again, no matter what the system was doing at the time. The user interface design we
developed provides an elegant joint solution to all of these goals.

In physical terms, the system’s user interface is indeed simple. It consists of just two push-
and-hold buttons, one labeled “YOU”, the other “HIM”. The YOU button commands the
system to begin listening for English speech, and performing ASR on it as soon as speech is
heard. The HIM button, similarly, causes the system to begin listening for speech in the
foreign language and performing ASR on it. When the button is released, the system stops
listening, finishes up ASR, and then passes the ASR output to MT for translation into the
opposite language, and then to TTS for speaking out to the other party.

The requirement that the ELS be able to detect translation errors has impact on the
interface’s behavior. It is simply a fact that despite ongoing improvements in the underlying
technologies, for the foreseeable future, S2S systems will make errors in translation. If
undetected, translation errors can lead to mutual incomprehension and a complete
breakdown of the dialog. To cope with this problem, our system presents the ELS with a
“confirmation” utterance that tells him what the system thought he said, so that he can
determine whether the system made an error. In the system’s usual mode of operation, this
confirmation utterance is simply a read-back of the English ASR result. (We discuss
alternatives such as “back-translation” in a later section).

Now, if a display screen were available, this confirmation utterance would simply be
displayed on the screen and the ELS could quickly scan it to determine whether he had been
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understood correctly. However, the TRANSTAC program requires (and most military users
prefer) that the system be usable without a display. The only way the confirmation
utterance can be delivered is through voice. One possibility would be for the system to
explicitly ask the user via TTS “Did you say ‘Show me your id’?”. However, this “explicit
confirmation” would slow down the dialog, and the repeated confirmation interactions
would likely be irritating to the user. Our system instead uses “implicit confirmation”, in
which it speaks out the confirmation utterance for the ELS to hear. If the ELS decides this is
correct, he takes no action, and the system’s processing continues as normally, generating
the translation and playing it out for the foreign language speaker (FLS) to hear. If the ELS
instead decides that the confirmation is incorrect, he simply presses the “YOU” button
again. This aborts any ASR, MT, or TTS activities the system may be performing, and in
particular halts voice output in either English or the foreign language. The system then
begins listening to the ELS, who may speak again, either repeating his utterance more
clearly, or rephrasing it, as he chooses.

Because it aborts all ongoing system activities, the “YOU” button effectively doubles as an
“abort” button. If the ELS wants to abort the system’s current activities, but does not want
to speak again right away, he can simply press the YOU button and then quickly release it
again, without speaking. The system recognizes this very short listening interval as being an
abort, rather than a speech event, and ignores the empty result that ASR returns. In this
way, we avoid the need for a dedicated third “abort” button, thereby retaining our
maximally simple two-button interface.

The above-described abort and barge-in functionality of the YOU button illustrates another
key design goal of our system, which might be stated as “The user controls the system; the
system does not control the user”. That is, the system does not constrain the ELS user’s
actions, but rather allows him to interrupt it at any time, and speak again without having to
wait for the system to be “ready”. He can simply assume that the system is always ready.
Such a capability is not straightforward to achieve, however. In the synchronous pipeline of
ASR, MT, and TTS, the various components can be in different states when the abort/barge-
in occurs. Example states include processing the last input, returning results for the last
input, aborting in response to the button push, and resetting internal data structures to
prepare for the next input. A component that is in any of these states will not be ready to
begin immediately processing new input. The easiest way to cope with this might be to
require all system components to return to their ready state before allowing new input from
the user (perhaps using a beep as a ready signal). However, the time that it would take all
the system’s components to return to their ready state is variable, and depends among other
things upon which component(s) were interrupted, and which state they were in when
interrupted. To force the ELS to wait until all components are in their ready state before he
speaks again, even by 10’s of milliseconds, is to invite user frustration and user error. In
particular, it would be very difficult to prevent the user from speaking too early, thus
resulting in truncated utterances being sent to the ASR, with the consequent loss of speech
recognition and translation accuracy.

Our approach avoids these problems. Instead of attempting to configure the user’s behavior to
cope with the situation, we configure the system’s internal behavior. That is, if a component is
not yet ready for new input, the system buffers the input until the component returns to the
ready state and can begin processing it. Examples include user speech (for ASR), English ASR
output (for MT), and foreign-text MT output (for TTS).The system begins to buffer user speech,
in particular, as soon as the button is pressed. Any slight latency that may results from this
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internal wait will be manifested only as a slight delay in the system’s final output, which will
probably not be noticeable by the user, rather than a delay enforced on the user’s input, which
would certainly be noticeable by him. The overall theme of our interface is that the system
retains its internal complexity inside itself, where it belongs, rather than imposing it upon the
user, who has more important things to do.

3.2 Improving the efficiency of voice confirmation

An obvious efficiency issue presented by voice confirmation is the additional time it costs
the interaction. Confirming the ELS’s utterance means that each English utterance is spoken
twice, first by the ELS, and then again by the system. To alleviate this, we can substantially
reduce the effective time that confirmation costs by performing the E2F MT concurrently
with the confirmation TTS. Since the E2F MT would have to be performed anyway whether
or not confirmation was done, doing it at the same time as confirmation, rather than waiting
until confirmation is done, saves time. Effectively, we are reducing the time that
confirmation TTS costs the dialog (avg. 3.0 seconds), by subtracting the time that the MT
takes to run (avg.1.2 seconds), yielding a relative reduction of 40%. Figure 3 illustrates this
time savings, with the top panel representing confirmation and MT running in series,
compared with confirmation and MT running in parallel.

Moreover, if the ELS and FLS are listening on separate channels, as is the case in the two-
phone configuration, we can obtain even greater time savings by also playing the Iraqi
translation TTS itself at the same time as the English confirmation TTS. In this mode, the
system begins playing the foreign TTS as soon as the E2F MT produces the foreign-language
utterance for it. Given that E2F is faster than confirmation, it will generally be the case that
the system will then be speaking English and foreign-language utterances simultaneously.
However, because each party has his own phone, neither hears the TTS output intended for
the other. Because the system is speaking in two different languages in parallel, we term this
technique “parallel confirmation”.

Serdal | confirmation TTS (1.8 sec) | MT (1.0 sec) Iraqi TTS (1.8 sec)
confirmation
Serial i i
Confirmation TTS Iraqi TTS
confimmation & ‘
with
parallel MT | MT
Parallel Confirmation TTS ‘
confinmation
MT Iraqi TTS ‘

Fig. 3. Different Confirmation Modes.

Figure 3 illustrates the benefits of this technique by graphically comparing Serial
Confirmation, Serial Confirmation with Parallel MT, and Parallel Confirmation. Note that
Parallel Confirmation effectively reduces the time-cost of confirmation to zero, since in this
configuration the confirmation is performed entirely in parallel with activities that would need
to be performed anyway, and whose combined duration exceeds that of the confirmation.

Note also an additional important benefit of parallel confirmation; namely, that it enables
improvements in the MT’s speed to increase the system’s overall translation speed,
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specifically, by reducing the lag before foreign TTS starts. By contrast, in Serial Confirmation
with Parallel MT, no further throughput increase is possible, once the time that the MT takes
to translate the ELS’s English utterance is less than the time that the English confirmation
TTS takes to speak that utterance.

We have used the parallel confirmation effectively in a two-phone configuration, where
each speaker has his own handset. The two phones communicate via Bluetooth and send
text back and forth, allowing confirmation TTS and translation TTS to be generated in
parallel on the respective handset.

3.3 Generating the confirmation utterance

As stated previously, our primary method of generating a confirmation utterance is to simply
read back the ASR output. The advantage of this approach is that it allows the user to catch
ASR errors quickly, which is important since ASR errors on concept words guarantee a wrong
translation. The disadvantage, of course, is that correctness of the ASR output says nothing
about whether the MT output itself was correct. In particular, it is perfectly possible for the
ASR output to be error-free, yet for the MT result for that output to be completely wrong.

An alternative strategy that addresses this issue is “back-translation”, in which the output of
ASR + MT into the target language is translated back into the source language, and the
result played back to the user for his approval. A back-translation that is close to the original
utterance in meaning can have the important psychological advantage of making the user
feel more secure that he was translated correctly. In fact, in informal interviews, users of
our S2S system who have use system with the back-translation alternative to cofirmation
express a strong approval of it.

The back-translation approach can be objected to, however, on two grounds.The first
objection is that the output of back-translation, having been passed through three successive
noisy channels (ASR, forward MT, and backward MT), will likely be hopelessly garbled,
causing most forward translations to appear wrong. The second objection is that even when
not garbled, back-translation may yet be misleading, since the same incorrect phrase pair
rule used in the forward direction may also be selected (in reversed form) in the backward
direction, leading back to the original source phrase again and leaving the error undetected.
The most straightforward way to evaluate the efficacy of back-translation and other
confirmation approaches would be to run two complete sets of live evaluations, one with
the approach in question and one without, and compare the results on measures such as
concept transfer, rate of concept transfer, user satisfaction, and the like. Unfortunately, given
the great expense of carrying out realistic evaluations, which involve assembling personnel
from multiple locations in the US, this is infeasible. We therefore must look for some offline
method of evaluating back-translation.

The implicit hope of back-translation, and indeed of any other confirmation utterance-based
strategy, is that the ELS could develop a mental model, based on his experience in using the
system, of the minimal level of back-translation quality that would predict that the forward
translation is correct. We do not concern ourselves here with how the ELS would develop
such a mental model, but rather seek to determine whether it is even possible to develop
such a model at all - that, to determine whether the data is sufficiently consistent that is
possible to infer useful prediction rules from it.

As a subjective measure of translation quality in either direction, we use the familiar 1-5
Likert scale to rank both forward translations (i.e. English-to-foreign), and back-translations.
We do not assume that users will actually assign Likert scores while using the system; but
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instead view the score as a numerical proxy for the user’s reaction. We assign the following
interpretations to the different elements of the Likert scale.

5: Essentially a perfect translation.

4: An adequate if slightly disfluent translation which conveys the utterance’s meaning

3: A partial translation which is missing one or more concepts, or is severely disfluent.

2: A translation which is missing most of the concepts.

1: A translation with no apparent relation to the input.
If back-translation were a perfectly effective diagnostic, the Likert rating of the back-
translation and the Likert rating of the forward translation would have the same value.
Obviously, this will seldom be the case, since both are noisy processes, with one of them
operating on the output of the other. One might then fall back to a weaker requirement, for
example only requiring that the back-translation and forward-translation quality be well-
correlated in a linear relationship.
Our approach to this problem is quite different. Note that we are not interested in predicting
the actual value of the Likert rating for the forward translation, but rather in simply
predicting whether or not the forward translation’s Likert rating is above a certain threshold
of acceptability. Therefore, we seek to use the back-translation for binary classification,
rather than regression.In particular, we choose a specific minimum acceptable Likert score F
for the forward translation - say, a score of 4. We then test various minimum thresholds B
for the back-translation Likert score. In particular, for utterances whose back-translation
score is at or above the threshold B, we test the prediction that the utterance’s forward
translation Likert score will be at or above the threshold F, and thus acceptable. Below B, we
predict that the forward translation Likert will be below F, and therefore unacceptable. We
compute precision, recall, and F-measure for each such threshold. Different costs for the
different error types, e.g. a higher penalty for false acceptance than for false rejection, can be
straightforwardly taken into account by using a weighted harmonic mean.
To test the evaluation methodology outlined above, we used a set of 779 English utterances
that were spoken to our system by ELS users during the TransTac live evaluation in June
2008, conducted by the US government’s National Institute of Standards and Technology
(NIST). In this evaluation, active-duty military personnel played the part of the ELS, while
native speakers of Iraqi Arabic were recruited to play the part of the FLS. The utterances of
both parties, and the system’s ASR and MT outputs for these, were recorded for later
analysis. The Iraqi translation output produced by the system for the ELS’s utterances was
Likert-scored by a native Arabic speaker experienced in the application domain. To produce
the back-translations, we ran (offline) our Arabic-to-English MT on the system’s Iraqi
translation outputs. These back-translations were then Likert-scored by a native English
speaker knowledgeable in the application domain. For comparison, the same English ranker
also Likert-scored the output of our system’s English ASR for these same 779 utterances (i.e.
the ASR read-back strategy).
The resulting scores are shown in Table 1. As can be expected, the highest mean Likert
scores were produced on ASR output, which tends to overestimate the true (forward) Likert
score, while the lowest were associated with back-translation output, which tends to
underestimate it. Both were approximately equally well-correlated with forward Likert
score, however, with a correlation coefficient of approximately 0.60. The English ASR WER
obtained on this corpus was 6.2%, while the English-to-Arabic BLEU score on this ASR
output was 56.7%.



The BBN TransTalk Speech-to-Speech Translation System 39

Some examples of back-translations and their Likert rankings are: "Turn off your vehicle"
(for "Turn your vehicle off"), ranked 5; "Construction prior experience do you have" (for "Do
you have prior construction experience"), ranked 4; and "How many subcontracting work"
(for "How many subcontractors work for you") ranked 3. Table 1 shows the mean Likert
scores for each of the conditions, namely, forward translation, back-translation, and ASR
output of Likert scores for the back-translation.

To obtain results on back-translation efficacy, we set the forward translation Likert score
threshold F to be 4.0. This may be considered a good minimum acceptable score for our
purposes, as scores below 4.0 are by definition associated with "semantic damage" to the
translation. Table 2 gives acceptance rate, false rejection rate, false acceptance, F-measure,
and precision-weighted F-measure for different back-translation Likert score cutoffs B. Each
row of this table can be interpreted as a prediction rule, which predicts that an utterance
whose back-translation Likert score is at or above the cutoff will have a forward translation
whose Likert score will be 4.0 or higher.

Forward-trans. Back-trans. ASR
4.42 3.99 4.64

Table 1. Mean Likert Scores.

For many S2S applications, a false acceptance can be regarded as worse than a false
rejection, because of the possibility of confusing the respondent, etc. For example, one might
decide that a false acceptance is twice as bad as a false rejection. The rightmost column of
Table 2 gives F-measure computed with these weights (0.67 vs. 0.33).

The results in Tables 1 and 2 seem to show that the worst fears regarding back-translation
are not realized. By no means does back-translation yield incomprehensible utterances for
most cases, nor is it a false and over-optimistic guide. Indeed, for cutoffs of 4.0 or higher, its
false acceptance rate is actually quite low. This precision does come at the expense of recall,
however, and in particular at a cutoff of 4.0 fully 39% of ELS utterances would be rejected
and have to be retried. A better strategy might be a slightly less strict cutoff of 3.5, which
yields a low false acceptance rate of 8%, while falsely rejecting only 14%. This rule
corresponds to a back-translation which subjectively seems rather poor, but which is not
completely deficient.

Cutoff Acpt FlsRej FlsAcc FMsr WFMsr
5.0 0.27 0.68 0.02 0.48 0.58
45 0.35 0.59 0.03 0.57 0.67
4.0 0.61 0.29 0.04 0.81 0.86
3.5 0.78 0.14 0.08 0.89 0.90
3.0 0.94 0.02 0.14 0.92 0.90
25 0.96 0.02 0.15 0.91 0.89
2.0 0.99 0.00 0.16 0.91 0.88
1.0 1.00 0.00 0.17 0.91 0.88

Table 2. Precision and Recall for Back-translation.

The key question to be addressed, however, is whether back-translation is better than our
default confirmation strategy of simply reading back the system’s English ASR output. To
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address this question, Table 3 repeats the above experiment, using Likert rankings on the
system’s English ASR output. Note the false acceptance rate is higher than for back-
translation, but the false rejection rate is much lower, yielding good F-measure scores at all
values of the cutoff. For most cutoff values, the ASR read-back strategy even slightly out-
performs back-translation on weighted F-measure.

Cutoff Acpt FlsRej FlsAcc FMsr WEFMsr
5.0 0.72 0.19 0.07 0.86 0.88
4.5 0.75 0.17 0.08 0.88 0.89
4.0 0.86 0.07 0.10 0.92 0.91
3.5 0.94 0.02 0.13 0.92 0.90
3.0 0.99 0.00 0.16 091 0.89
25 0.99 0.00 0.16 091 0.89
1.0 1.00 0.00 0.17 091 0.89

Table 3. Precision and Recall for ASR Readback.

It might seem from this analysis that ASR read-back is a superior strategy to back-
translation. It should be noted, however, that ASR read-back on this dataset has a floor of
7% false acceptance, below which it cannot possibly go. The back-translation strategy, by
contrast, can go as low as 2% false acceptance, albeit at the price of a very high false rejection
rate. If the goal were to fix a certain maximum allowable rate of false acceptance rate - say
8% - rather than maximizing F-measure, the back-translation strategy could be seen as
slightly superior, resulting in a 14% false rejection rate as opposed to ASR read-back's 17%.

4. Automated Speech Recognition (ASR)

4.1 Overview

The ASR component of our 525 system is the BBN Byblos speech recognizer (Nguyen and
Schwartz, 1997). Byblos models speech as the output of context-dependent phonetic Hidden
Markov Models (HMMs). The outputs of the HMM states are mixtures of multi-dimensional
diagonal Gaussians. Different forms of parameter tying are used in Byblos, including State
Tied Mixture (STM) triphone and State Clustered Tied Mixture (SCTM) quinphone models.
The mixture weights in both these cases are shared based on decision tree clustering using
linguistic rules. Decoding is performed using our patented two pass search strategy
(Nguyen and Schwartz, 1997). The forward pass is a fast-match beam search using an STM
acoustic model and an approximate bigram language model. The output of the forward
pass consists of the most likely word-ends per frame along with their partial forward
likelihood scores. The backward pass operates on the set of choices from the forward pass
to restrict the search space, and uses the more detailed SCTM quinphone model and a
trigram language model to produce the best hypothesis.

Development of ASR capability for our S2S system posed special challenges, as many of the
languages of interest, including Iraqi Arabic, Pashto, and Dari ,are not only low-resource, but
also of colloquial dialect. Such languages are challenging for ASR development for two
reasons. First, in many cases there is no standard written form for the colloquial dialects of a
language, leading to a lack of consistency in transcriptions of audio in that language. Second,
creating pronunciation lexicons for words in these dialects is challenging. Most ASR engines
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use phones as units for acoustic modeling, and each word in the recognition lexicon is
manually spelled using these phones. Given that skilled acoustic-phoneticians for low-
resource languages are few, the manual creation of phonetic spellings for large vocabulary
ASR in low-resource languages is generally impractical. Moreover, creating a phonetic
dictionary is even more difficult for languages that use the Arabic script for their writing
system. This is because in most of the colloquial dialects of such languages (e.g. Iraqi Arabic,
Farsi, Dari, and Pashto), short vowels do not correspond to characters of their own, but instead
appear as diacritic marks on other characters, and furthermore, are usually omitted. This
results in additional pronunciation ambiguity and language-model confusability for vowel-
less word forms which may correspond to several different actual words. A a classic example
is the Arabic root form having the meaning of writing or inscribing, “k-t-b”, which can appear
with many different vowel forms, some of which correspond to the “book”, “writer”, “he
wrote”, “bookdealer”, etc. Nevertheless, all these forms are typically written simply as “ktb”.
Given these challenges, most state-of-the-art ASR systems resort to the "grapheme-as-
phoneme" approach for lexicon creation (Billa et al., 2002).In this approach, the
pronunciation for a word is derived directly from the orthography by treating the
constituent character/grapheme as phones. The grapheme approach has several advantages
including: (1) it automates the dictionary creation process, thereby simplifying the ASR
training, (2) it does not suffer from inter-annotator differences in manual pronunciation
creation for words, and (3) it allows the automated addition of new vocabulary at runtime.
While the grapheme-as-phoneme approach has emerged as a promising approach for
mitigating the impact of inherent ambiguity introduced by absence of short vowels,
researchers have also explored automatic diacritization based on morphological analysis
(Xiang et al, 2006). However, such automatic diacritization methods have several
shortcomings, - most of which are due to the creation of large number of vowelization
variants, of which very few are actually useful. The increased number of pronunciation
variants for a given word has several undesirable effects. First, it typically increases the
word’s confusability with other words, because the difference in pronunciation between
words usually becomes smaller. Second, it increases the search space during decoding,
because the decoder has to consider a larger number of pronunciations for each word.
Finally, most of the rules used by morphological analyzers for a given language were
developed for the language’s formal form, and tend to break down when applied to
colloquial dialects. Therefore, the grapheme approach is usually still better than using
automatic diacritization for colloquial dialects. Nevertheless, the recognition performance
with grapheme-as-phonemes is significantly worse than with a high-quality, manually
created phonetic dictionary.

In this section, we present techniques that reduce the difference between grapheme and full
phonetic systems by using manual pronunciations for only a small fraction of words (Prasad
et al, 2010). Specifically, we investigate two different techniques for developing a recognizer
for colloquial Pashto. The first technique uses a modified version of the text-to-phoneme
(T2P) tool (Black et al., 1998). T2P is a decision tree approach that learns letter-to-sound rules
from a small set of manual pronunciations. The standard version of T2P has serious
limitations for languages for which the number of letters/graphemes is significantly
different from the number of phones. Here, we describe a novel approach for extending T2P
to deal with such languages. The second technique uses a hybrid phoneme/grapheme
recognition approach, similar to the one described in (Magimai-Doss et al., 2004).
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4.2 Automated lexicon creation

Grapheme-as-Phoneme: We developed a grapheme-as-phoneme (Billa et al., 2002) mapping
based on the orthography of the words in the Pashto data in the TRANSTAC corpus. The
Pashto corpus spans a wide range of scenarios, including checkpoint patrols, civil affairs,
medical interviews, facility inspections, etc. The audio in the corpus was segmented and
transcribed by Appen, Pty, Ltd. We first pre-processed Appen’s audio data and
transcriptions in order to eliminate segments with transcriptions that are not suitable for
either acoustic or language model training, e.g. unintelligible speech, long pauses,
overlapping, or foreign speech. Next, we divided the speakers and data into two sets: A 34-
hour (400K total, 10K unique words) training set and a 2-hour, 26K total word, test set.

We used a modified Buckwalter transliteration system to create Romanized forms of Pashto
letters. A total of 34 phones were derived from the graphemes after Romanization. Because
several letters map to the same sounds, the total number of graphemes is less than the total
number of letters in Pashto alphabet. In Table 4, we compare the phone set used for the
phonetic and grapheme representations.

Representation Pashto Sounds Non-speech Total Phonemes
Phonetic 42 3 45
Grapheme 34 3 37

Table 4. Pashto phoneme and grapheme representation

Learning Text-to-Phoneme Mappings: Our approach for text-to-phoneme conversion is based
on the set of public-domain tools from CMU (Black et al, 1998). The training of T2P models
with the CMU tools is performed in three steps:

1. Align letters to phonemes in the training dictionary

2. Extract contextual features from the alignments

3. Train a decision tree using the contextual features.

We found serious limitations in the alignment step of the standard T2P tool. Specifically, the
standard alignment process can only handle word and pronunciation pairs where the
number of letters is greater or equal to the number of phones, allowing no more than one
phone to be aligned to a given letter. While this may be acceptable for most of English
words, it does not work for many other languages including Pashto.

Therefore, we implemented a new alignment algorithm that overcomes the limitations of the
standard T2P tool. The algorithm uses iterative expectation maximization (EM) style
optimization to find alignments that best describe the training dictionary. Our updated
alignment algorithm has the following key steps:

1. Initialization
_ numdictionary pairs with both c and p

a. SetP(phone=p | letter =c) =
b. SetP(deletion | ¢) =0.1

2. [Iterate until convergence
a. Find best path (according to the current model) through [letters phones] grid using

dynamic programming and allowing any number of phones per letter
_ number of aligned pairs (p,c)

b. Update P(p | C) - total number of ¢

. _ number of unaligned c
c.  Update p(deletion | ¢) = ——————— of ¢

Hybrid Phoneme/Grapheme: In the hybrid phoneme/grapheme approach, during recognition
each word is modeled with two different phone sequences. The first phone sequence is created

num words with ¢
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manually by native speakers. The second sequence uses a grapheme-as-phone representation.
In training, we assume independence between the manual phone set, “P" and the grapheme
representation, “G", and train two different sets of context-dependent HMMSs. Words which
do not have any manually created pronunciations are spelt with just the grapheme-derived
phones. While performing recognition, one can also use pronunciation probabilities to weight
the grapheme and phoneme pronunciations differently.

4.2 Experimental results

In the following, we present experimental results on Pashto ASR for comparing the
different approaches outlined above. All recognition experiments used a three pass
recognition strategy in the BBN Byblos recognizer. The first pass, referred to as the
forward pass, uses context-dependent triphones with state-tied mixture (STM) parameter
tying and a bigram language model (LM). The second pass, referred to as the backward
pass, operates on the lattice from the forward pass using context-dependent quinphones
with SCTM configuration for acoustic models and a trigram LM. The output from the
backward pass is a lattice or an n-best list. The third and final recognition pass, referred
to as the rescoring pass, uses SCTM models trained with crossword quinphones to re-rank
the n-best list produced by the backward pass. All acoustic models in the results below
were trained using maximum likelihood estimation (MLE). LM training used a total of
700K words from Pashto transcriptions and translations available in the corpus provided
by Appen.

Our first experiment was designed to compare the quality of pronunciations produced by
standard T2P and the modified version using the improved alignment algorithm. We used
a set of 10K manually created word pronunciations to perform the comparison. We
compared the two approaches under two operating conditions. In the first condition, we
used 1K manually created word pronunciations for training and 9K for testing. In the
second, we divided the 10K words equally into two sets of 5K each. Table 2 shows the
percentage of words where the predicted pronunciations were identical to the
corresponding reference, i.e. the manual pronunciation. From Table 2, we conclude that
our updates to the T2P tool outperform the standard tool by a factor of 2 to 3 in prediction
accuracy. On analysis of the pronunciation errors from the modified T2P tool, we found
that most of the errors are single phone variations in the phonetic string. Therefore, we
adopted the improved approach for subsequent experiments that rely on creating
automatic phonetic pronunciations.

Train Test
#Wds T2P Modified T2P #Wds T2P Modified T2P
1K 36% 98% 9K 12% 22%
5K 29% 96% 5K 14% 42%

Table 5. Percentage of words where the predicted pronunciation from the two different text-
to-phone are identical to the reference pronunciation

Next, to perform a systematic comparison of different strategies for creation of
pronunciation lexicons, we explored three different scenarios by varying the amount of
words with manually created phonetic spellings:
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1. Low-resource that simulates having pronunciation for only the top-1K most frequent
words in the training data.}

2. Medium-resource with the top-5K words having manual pronunciations.}

3. Full-resource where every word has a manual pronunciation.}

For each of the aforementioned scenarios, we trained the following systems:

1. P: Phoneme-based systems that are estimated from the corresponding fraction of the
audio transcripts for which every word has a manually created pronunciation.}

2. Gt Single grapheme-based system trained over the entire training set.}

3. P+G: Hybrid phoneme/grapheme approach where the recognition dictionary uses two
pronunciations (phonetic and graphemic). For words that have a manual pronunciation
we use the phonetic representation and for words that do not have a manual
pronunciation we use the grapheme representation. During training, we estimate two
sets of context-dependent HMMs. The first set uses phonetic representation and is
trained from the corresponding fraction of the audio transcripts for which every word
has a manually created pronunciation. The second set uses grapheme representation
and is trained over the entire available training set. Thus, the grapheme-based HMMs
for all three training scenarios are estimated from the same amount of data. This
ensures that the grapheme HMMs use all available training data.}

4. P+T2P: In this approach, there is a common set of HMMs that use only phonetic
representation. For the words that do not have manual pronunciations, the trained
letter-to-sound rules from the modified T2P tool are used to create pronunciations
automatically. Therefore, the HMMs are trained over the entire training set. The only
difference between the three P+T2P systems is the fraction of words with manual and
automatic pronunciations.

Table 2 compares the performance of the systems trained from various dictionary

configurations as evaluated on the test set in terms of the word error rate (WER). All results

are reported with unsupervised constrained maximum likelihood linear regression

(CMLLR) speaker adaptation (Gales, 1998). Decoding was performed with the same 10K

vocabulary, except for the system P, where the vocabulary size is restricted to the number of

words with manual pronunciations. The out-of-vocabulary (OOV) rate for the test set with
the 10K vocabulary is 4%, whereas for system P the OOV rate is 5% for the 5K dictionary
and 12% for the 1K dictionary.

System # of Words with Manual Pronunciation
0K 1K 5K 10K (all)
P - 53.2% 46.2% 45.2%
P+ T2P - 45.7% 45.3% 45.2%
P+G 47.3% (G) 46.8% 45.5% 45.1%

Table 6. WER of systems trained from various dictionary configurations as evaluated on the
test set. Decoding was based on the same 10K vocabulary, except System P, where the
vocabulary is restricted to the number of words with manual pronunciations.

As one would expect, the grapheme system (System G in parentheses in the P+G row of
Table 2 results in the worst performance (WER of 47.3%) compared to the systems with the
same vocabulary. On the other hand, the phoneme system (System P), which uses manual
pronunciations for every word results in a WER of 45.2% - a 2.1% absolute reduction in
WER than the grapheme system.
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For the low (1K) and medium (5K) resource scenarios the P+T2P and P+G systems yields
better performance than the phoneme system. In particular, the P+T2P system significantly
outperforms the P+G system for the low-resource scenario (WER 45.7% vs. 46.8%). For the
medium-resource scenario, both P+T2P and P+G systems result in comparable performance.
Note that the P+G system uses pronunciation probabilities to assign a different weight to the
grapheme and phoneme pronunciations.

5. Machine translation

BBN's Statistical Machine Translation (SMT) engine is a phrase-based translation system
based on (Koehn, 2004). Word alignments between source-target sentence pairs are
generated using GIZA++ (Och and Ney, 2003). In order to improve the quality of the
alignments, word alignments in the forward and backward direction are merged as in
(Koehn et al., 2003). Phrase pairs are automatically extracted from the word alignments by
merging neighboring alignment groups using a set of rules. The decoder uses a log-linear
model of different features to choose between competing translation hypotheses. The
parameters of the model are estimated using statistics of the phrase pairs extracted from the
word alignments. The interpolation weights are optimized by minimizing the translation
errors on a held out development set.

The system uses a variety of techniques for increasing accuracy. Among these is the use of
multiple alignments, generated from morphological segmentation, as well as a technique for
inducing collocations on the English side of the parallel corpus. This technique uses the
Minimum Description Length (MDL) principle to find N-grams whose reduction to a single
token reduces the overall number of “bits” needed to encode the document. This has the
effect of partially “inflecting” the English, so that it better matches an inflected language on
the other side of the corpus. Other recent improvements have been the use of phrase
alignment confidence (PAC) (Ananthakrishnan et al.,, 2009) to deal with data sparseness,
and context-dependent lexical smoothing for incorporating context.

In this section, we present several enhancements for statistical machine translation in
context of speech-to-speech translation. We illustrate these improvements on
Pashto/English MT. We first describe our baseline system for Pashto/English translation.

5.1 Baseline Pashto/English MT

Pashto is an inflected language that follows a Subject Object Verb (SOV) word order versus
the Subject Verb Object (SVO) word order of English. Nouns and adjectives in Pashto are
inflected for gender, number, and case. Verbs in Pashto are complex both in form and in use.
Verbs agree in person and number with either the subject or the object of the sentence
depending on the tense and the particular construction. One or more affixes can be attached
to a word or to each other to form compound words, and components of compound words
can be joined or separated depending on style. The different dialects of Pashto show many
non-standard grammatical features, some of which are archaisms or descendants of old
forms that are discarded by the literary language.

Translation Direction #Pashto Words #English Words
Total Unique Total Unique
Pashto-to-English (76K sent. Pairs) 1.3M 20.0K 1.1M 10K
English-to-Pashto (34K sent. Pairs) 520K 13.5K 460K 6.7K

Table 7. Description of Pashto/English parallel data available for SMT training.
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The data available for training our SMT engine on Pashto/English is shown in Table 3. The
amount of data is significantly smaller than the typical broadcast news translation task, where
corpora are of the order of several million sentence pairs. Given the fairly small size of the
training data, we trained the translation systems on data from both translation directions. The
tuning set (held-out from training) comprises of 2K Pashto sentences and 2.3K English
sentences. For validation purposes, we report results on a set of 547 sentences for Pashto-to-
English (P2E) and 564 sentences for English-to-Pashto (E2P) with 4 references each.

For translating from Pashto-English, we also segment words in Pashto into its constituent
"morphemes", that is prefix, stem, and suffix before training in order to improve the quality
of the phrase alignments and subsequently the translation. We used the same
decomposition algorithm as in (Riesa et al., 2006) to segment our training data. We manually
selected 86 prefixes and 68 suffixes in Pashto. Given the list of predefined affixes and
uninflected words we iteratively stripped affixes from the word until a valid combination of
affixes and stem was found in a large dictionary. Segmentation into morphemes resulted in
a 27% reduction in the size of the Pashto vocabulary. It also reduced the number of
unknown tokens (untranslated words) by 38% on the validation set.

The training and decoding was performed as follows. We used GIZA++ (Och and Ney,
2003) to generate the word alignments in the source-target and target-source directions
according to IBM Model 4. The merged word alignments are used to generate a phrase
translation table which contains source-target phrase pairs and associated statistics. The log-
linear model includes features computed from the phrase table as well as the target side
language model. We use a 4-gram language model trained on 3M Pashto words for E2P and
a 5-gram language model trained on 20M English words for P2E. In our experiments, we
optimize the feature weights for maximum BLEU on the held-out tuning set. We then
decode the validation set with the same configuration but with the tuned weights instead.

5.2 Phrase alignment confidence

In phrase-based statistical machine translation systems, translation performance is
contingent on accurate estimation of the translation model parameters derived from the
phrase pair statistics. However, data sparsity, an inherent problem in SMT even with large
training corpora, often has an adverse impact on the reliability of the extracted phrase
translation pairs. A significant proportion of phrase pairs occurs just once (singletons) or a
few times in the training data, often resulting in unreliable estimates of the associated
statistics. For instance, the unsmoothed estimate of the translation probability of a singleton
phrase pair might be very large, but this estimate could be entirely invalid if the pair
originated from a word alignment error. Thus, it is desirable to have a measure of phrase
pair quality based on the reliability of the underlying word alignments. The lexical
smoothing probability used as a feature in the log-linear decoding framework is a well-
known, existing measure of phrase pair reliability. In Ananthakrishnan et al. (2009), the
notion of alignment entropy as a measure of automatic word alignment quality was used to
estimate a probability distribution over the alignments of a given source word, and thus
evaluate the uncertainty (entropy) of its Viterbi alignment in the original parallel corpus.
Their experiments indicated that alignment entropy is well-correlated with traditional
measures of alignment quality, such as Alignment Error Rate (AER). As an extension of
alignment entropy, we introduce a feature called phrase alignment confidence as a measure
of phrase pair quality derived from an ensemble of parallel corpora obtained by resampling
the original training.
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We identify occurrences of the same sentence pair in multiple parallel corpora, and
determine, based on the corresponding word alignments, whether the phrase pairs extracted
from this sentence pair are consistent across the corpora in which it occurs. The technique of
bootstrap resampling (Effron, 1979) can be used to construct such corpora. Assuming the
parallel training corpus (the pivot) contains N sentence pairs, we create K independent
resamples, each of size N, by sampling the original corpus with replacement. On average,
about 63% of sentence pairs in each resample will be unique, the remaining being
repetitions. Thus, a given sentence pair in the original corpus can be expected to occur 63 of
100 resamples. We invoke the Expectation-Maximization (EM) algorithm to perform
automatic word alignment (based on IBM Model 4) on each of the (K + 1) parallel corpora
(pivot + K resamples). As each resample contains a different set of sentence pairs drawn
from the pivot, the word alignments in each set can potentially be different. During the
phrase extraction process, we scan the pivot and identify valid phrase pairs based on the
word alignments. When extracting phrase translations from a given pivot sentence pair
(Si,Ti), we identify all resamples R;, in which that sentence pair occurs, and determine
whether the phrase pairs identified in the pivot sentence pair are consistently valid across
the resamples. We define the alignment confidence of a single instance of a phrase pair in
the pivot as the ratio of the number of resamples in which that instance is identified as a
valid phrase pair to the number of resamples in which the containing sentence pair occurs.
Note that this measure is computed for each instance of every phrase pair. For non-singleton
phrase pairs, we simply take the average of the phrase alignment confidences of each
instance across the pivot corpus. Thus, every phrase pair in the pivot corpus now has an
associated confidence score in addition to the original statistics. We refer to this measure as
phrase alignment confidence.

The discriminative translation framework of the decoder makes it relatively straightforward
to add new features to the system. In order to integrate the phrase alignment confidence
feature, we simply add to the log linear model an additional term consisting of the new
feature and its corresponding weight.

Tables 8 and 9 present results for P2E and E2P SMT after inclusion of the phrase alignment
confidence feature in decoding. We resampled the training corpus (pivot) with replacement to
generate K=99 resamples for a total of 100 parallel corpora. We then perform augmented
phrase pair extraction where, for each instance of every phrase pair in the pivot corpus, we
evaluated its consistency across all resamples in which the containing sentence pair occurs.
The augmented phrase table encodes this phrase alignment confidence feature in addition to
the original statistics. Integrating the proposed phrase alignment confidence feature improved
the BLEU score by 3.5% relative on the P2E validation set and 0.4% relative on the E2P set. We
believe that while the proposed feature is useful in its own right, it possesses less
discriminative power than the standard lexical smoothing feature. The length of a phrase pair
does not play a major role in evaluating the phrase alignment confidence feature, whereas
longer pairs are almost always de-emphasized by lexical smoothing. In the future, we plan to
extend our work on phrase pair quality measurement by taking phrase pair length and the
consistency of within-phrase alignments across the resamples into account, making it more
competitive with lexical smoothing as well as giving better additive improvements in
combination with the latter. We also plan to evaluate the relative usefulness of phrase
alignment confidence with respect to the amount of training data available, and to determine
whether its importance increases as the training corpus shrinks in size.
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Configuration BLEU # of Untrans. Words
Baseline 34.8 80
+ Phrase Alignment Confidence 36.0 80
+ Context-Dependent Lexical Smoothing 36.2 80
+ Back-off to a Bilingual Lexicon 36.2 63

Table 8. Experimental Results for Pashto-to-English Text-to-Text Translation.

Configuration BLEU # of Untrans. Words
Baseline 24.8 31
+ Phrase Alignment Confidence 24.9 31
+ Context-Dependent Lexical Smoothing 25.1 31
+ Back-off to a Bilingual Lexicon 25.1 16

Table 9. Experimental Results for English-to-Pashto Text-to-Text Translation.

5.3 Context-dependent lexical smoothing

In our phrase-based decoder, the likelihood of translation from a source phrase S = sy, sy, ...
sn to a target phrase T = ty, t, ... tn is primarily modeled with the rule translation probability
maximum likelihood estimates:

_ N(S,T)
P(SIT) = SONG.T)

_ N(S,T)
P(TlS) - ZTIN(S,T’)

where N(S,T) is the number of times the rule S—T was extracted from the training corpus.
However, translation probability is also modeled with an another feature, known as lexical
smoothing (Koehn, 2004). The forward lexical smoothing score for the rule S—T is defined
as:

P(tils)
ACE:1S, DI

i=1 seA(IS.T)
where P(t|s) = N(s,t)/X N(s,t") is the probability of the word-to-word translation S—T, and
A(t/S,T) is the set of source words aligned to ¢in the rule S—>T. In this case, N(t,s) counts the
number of times s is aligned to ¢ in the GIZA aligned training data. Also note that either s or
t can be NULL.
The backwards lexical smoothing score is analogously:

m

P(si|t)
lACs: 1S, DI

i=1 teA(s;|S,T)

Note that the lexical smoothing score is computed at the word level without factoring in
local context, even though intuitively we know that context is important for both human
and machine translation accuracy. On the other hand, the average word-to-word translation
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will be seen far more times in the training than the average phrase-to-phrase translation, so
the word-level maximum likelihood estimates P(t|s) and P(s|t) will be estimated than the
phrase-level maximum likelihood estimates P(S|T) and P(T|S).

Ideally, we would like to harness the increased contextualization of the rule translation
probabilities without sacrificing the accuracy of the word-to-word maximum likelihood
estimates. To that end, in the context-dependent lexical smoothing approach we condition the
word translation probabilities on local context, and then interpolate them context-
independent probabilities to ensure that the final probabilities are well-estimated.

We currently use previous word and next word as context types. Formally, these context-
dependent lexical probabilities are represented as:

N(Sivsi—lrt)
P(t|s;, s q) = =— 1 2
Elsisi-0) = 5§ NG s )

N(s;, Sjrq,t
P(tlsi sin) = e i Sir )

2 NG, Sipnt)

Rather than directly interpolating the probabilities or using an explicit back-off model, we
simply interpolate the lexical counts:

N(s;,t) + aN(s,s;_1,t) + BN(sS,S;41,t)
Y N(sit") + X aN(s,s;_q,t") + X BN(S,Si11,t')

where C(si) is the local context of source word si, and the interpolation weights a and {3 are
globally optimized on a tuning set. This type of count-based interpolation acts as an implicit
““back-off" model, since the more times a particular context type has been seen, the more
mass it adds to the final probability.

The interpolated probability P(t|s,C(s)) is used in the standard lexical smoothing formula
and this score is used as an additional log-linear decoding feature. We also use context-
dependent lexical smoothing in the backwards direction, conditioning on target context.
Tables 8 and 9 summarize the impact of using context-dependent lexical smoothing for P2E
and E2P SMT. As shown in the two tables, there is a modest improvement in BLEU scores
in both directions.

P(tls;) =

5.4 Effective use of bilingual lexicon

Often, the heuristics used to determine valid phrases in the phrase extraction step result
in unaligned source-target words occurring in the corpora being omitted from the phrase
translation table. Hence, a word that appears in the training corpus is not guaranteed to
have a translation during decoding. The use of a supplementary bilingual translation
lexicon that covers such words improves the coverage of the system. Traditionally
bilingual translation lexicons are used as additional training data for machine translation
systems and allowed to drive the word alignments. However, the entries in a lexicon have
such high phrase translation and lexical probabilities that they can cause serious word
sense errors if the particular source word occurs in a different context. If a word that
occurs in the lexicon is identified in the input sentence, its corresponding single word
translation from the lexicon will almost always be preferred over a longer phrase pair
whose source phrase contains that word. We tackle this issue by backing off to entries in
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the lexicon only if the source word cannot be translated as part of a source phrase existing
in the phrase translation table.
Using a bilingual expert, we created a bilingual lexicon consisting of a total of 30K entries. In
our experiments, using the bilingual translation lexicon did not improve the BLEU metric,
however it resulted in a 50% reduction in untranslated words for E2P and 21 % reduction for
P2E as shown in Tables 8 and 9.

6. Evaluation

From 2006 to 2010, BBN TransTalk has been evaluated in several US Goverment
sponsored evaluations conduced by an independent third party such as NIST and MITRE.
In these evaluations participating S2S systems are evaluated on several dimensions
include rate of concept transfer in live interactions with role players, odds of concept
transfer on offline data, and automated metrics such as word error rate (WER) and BLEU
scores computed on offline recorded audio. User surveys based on questionnaires are also
used to measure the ease of use, efficacy of interaction, etc. based on users’ impression of
the live interaction.
Table 10 summarizes BBN’s performance as measured against the following official
program metrics in the program for the past three years. The evaluations were typically on a
different language and often on different platforms.
High-level Concept Transfer (HCT): This metric is computed from live interaction of users
with the system in an allotted time interval (typically 20 minutes). A team of bilingual
judges compares the output of the TRANSTAC system to what was spoken by the role-
playing US military personnel, i.e., subject matter experts (SMEs) and foreign language
speaker (FLS). The judges are asked to rate, on an utterance-by-utterance basis, how well the
utterance spoken by the human speaker was translated by the system and how many times
the speaker attempted the utterance. When multiple attempts were made, only the best
translation was scored. Both English to foreign language and foreign language to English
directions were scored. The translation quality has four possible scorings:
1. Unknown - The utterance in the scenario was not attempted by the SME or FLS. A score
of “0” is assigned to this category.
2. Inadequate - None of the concepts came across in the utterances.A score of “0” is
assigned to this category.
3. Partially adequate - Some of the concepts came across in the utterance.
4. Adequate - All of the concepts came across in the utterance.
Partially adequate are given a score of 0.5, and adequate are given a score of 1. In the case
where multiple concepts were provided by the FLE in response to the SME’s question, each
answer is counted separately. These scores are then aggregated over the entire session, and
the transfer rate per ten minutes of conversation is computed.
Odds of Successful Low-Level Concept Transfer (LLCT): This metric is computed using the
system output and reference translations on an offline, pre-recorded data set. A bilingual
human annotator identifies low-level concepts (such as “car”, “door”, “black color”, etc.)
that are correct or incorrectly transferred in the system output. Next, the odds of successful
transfer of these low-level concepts are computed by dividing the number of successes by
the number of errors. The higher the odds of success, the better the system.
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Subject Matter Expert (SME) Utility Assessment (SUA): This metric is computed from
responses to questionnaire by SMEs after interacting with the system in any given session. A
utility score is computed by aggregating scores across sessions for each type of question.
The questions in the SME questionnaire range from: "I found the system easy to understand
in this interaction” to “I would use this system in the field in its current state of
functionality”.

Table 10 describes the performance of BBN systems in the evaluations in reverse
chronological order with most recent evaluations at the top of the table.

Eval. Date | Language Platform EoF HCT FoE EOF LLCT FoE SUA
Aug 2010 Dari Smartphone | 15 (Ist) | 25(1st) | 3.3 (2nd) | 1.5 (1st) st
April 2010 Pashto Smartphone | 19 (1st) | 30 (Ist) | 4.2 (1sH) | 3.0 (1s) st
June 2009 Dari UMPC 13 (1st) | 14 (Ist) | 3.5(1st) | 1.6 (Ist) | 1Tst
Nov 2008 Iraqi Laptop 22 (2nd) | 28 (2nd) | 7.3 (1st) | 5.6 (1st) st

Table 10. Performance of BBN TransTalk in recent DARPA TRANSTAC evaluations.

7. Conclusions

We have presented our speech-to-speech translation system, TransTalk, and outlined
several techniques for overcoming challenges in languages that it has been configured in.
For ASR, we described an approach for configuring the ASR system with limited amount of
manual pronunciations. Our approach extends existing approaches for languages that have
significant mismatch in number of phonemes and graphemes, and shows that comparable
performance to a full lexicon can be achieved by creating manual pronunciations for a small
fraction of words in the vocabulary. For MT, we discussed techniques for overcoming
challenges due to data sparsity such as the use of phrase alignment confidence and effective
backoff to a bilingual dictionary. We also presented a method for evaluating the
effectiveness of different user confirmation strategies, and shown that back-translation
provides higher precision than the simple strategy of reading back the ASR, at the expense
of recall.
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1. Introduction

The emergence of speech signal processing functions has allowed speech scientists to
analyse and modify speech with the aim of improving the perception and/or the production
of speech in adverse conditions and language learning. In most cases, these tools are all the
more efficient that they take into account the phonological system of each language.

The applications of these aids are numerous and include the improvement of speech
intelligibility in noise (Hazan & Simpson, 1998), and for hearing aids (Loizou, 1998),
computer assisted-aids for language learning devoted to speech therapists or learners of a
foreign language. They are concerned either with speech intelligibility (comprehension), or
with the perception and production of speech sounds and prosody. One of the best known
works in this domain, the study by Tallal (Tallal et al., 1996), published in Science, proposed
speech modifications for hearing impaired children.

Among signal modifications, the enhancement and slowing down of specific regions of
speech signals has been the object of numerous studies and applications. Ortega & Hazan
(1999) applied these techniques to the improvement of speech intelligibility in second
language learning. Colotte et al. (2001) also tackle speech intelligibility in second language
learning. By means of an entirely automatic method, they enhanced unvoiced stops and
fricatives and slowed down transitions.

This paper deals with the elaboration of advanced feedback devoted to aid learners in the
acquisition of the prosody of a foreign language, and presents a pilot experiment
investigating the immediate impact of such feedback on learners. Note that, from now on,
we will use L2 for second (non-native) language and L1 for the learners’ first (native)
language. A computer-assisted aid in language learning (a CALL system) and more
precisely in prosody can offer at least three kinds of feedback: (1) visual feedback, such as
visual displays of the learners’ melodic curves, often associated with those of reference
speakers (2) automatic diagnoses, based upon acoustical analyses of learners' realisations
and (3) "advanced" perceptual feedback, through speech manipulations.

Visualisation of melodic curves has been proposed since the early 60s, not only in second
language learning but also in other domains such as hearing deficiencies. Vardanian (1964)
was one of the first scientists to use melodic curve visualisation in second language learning
and test its impact on learners (Brasilian students learning English). Her results, may be due to
the poor quality of visualisation (oscilloscope displays) were far from convincing.
Nevertheless, after a first period of scepticism, speech specialists, like James (1977), who used
Philippe Martin’s melodic curve detection (Germain-Rutherford & Martin, 2000), or De Bot
(1983), agreed on the efficacy of visual patterns. Current commercial computer-assisted aid in
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language learning systems, such as "Tell me more" of Auralog, LangMaster or Better Accent
(Kommissarchik & Kommissarchik, 2004) propose visual display of learners” melodic curves.
The simple visualisation of melodic curves, although interesting, is not sufficient if one
wants to provide learners with clear feedback about their production. Indeed, as Chun
(1998) noted, if no further feedback is provided, the learners have to "extrapolate" their
deviations themselves. A more efficient aid would provide learners with indications about
their deviations and the way to improve their realisations. But the elaboration of automatic
diagnoses encounters at least two major problems. Firstly, an automatic diagnosis of a
learner’s intonation presupposes the segmentation and labelling of the signal in syllables
and in speech sounds. Yet this automatic segmentation, made by alignment if the text is
known, is risky for non-native speech. (See 2.1.). A second major problem stems from the
notion of "error" or "deviation". Indeed, we face issues such as "what are the links between
acoustic cues and categories?" and "what are the accepted deviations?" For the moment the
way to deal with this problem consists in proposing an evaluation of the degree of
difference between prosodic patterns produced by a reference (or references) and those of
the learner. Impact of feedback (diagnosis) on English intonation for French advanced
learners (students in English at university) has been elaborated and tested by Herry and
Hirst (Herry & Hirst, 2010). Learners did not improve their realisations due to diagnosis.
The authors underlined that students participating in the test were volunteers, which might
have influence results.

Another interesting way of helping learners in language learning relies upon speech
modifications. Winpitch LPL (Martin, 2004), a speech signal editor, proposes functions
especially designed for L2 teachers and learners, which enable the user to modify by hand
fundamental frequency! and duration and annotate prosodic displays. Manipulations of
prosodic cues are intended to make learners aware of prosodic patterns that do not exist in
their first language; they are in general realized through PSOLA (Pitch Synchronous Over-
Lap and Add) resynthesis. An interesting exploitation of speech manipulation consists in
replacing the learner’s prosodic cues by those of a reference without modifying the learner’s
timbre. WinSnoori (Laprie, 1999), software for speech analysis, enables users to realize this
substitution by hand. An automatic version of this substitution has been realized (Henry et
al.,, 2007) and implemented in WinSnoori. Other speech transformations based on an accent
morphing technique have been recently proposed in the domain of foreign language
intelligibility (Ingram et al., 2009; Yanagisawa & Huckvale, 2007). In particular, the last
authors modified the accent of the speaker whilst maintaining his identity to improve the
intelligibility of foreign-accented speech.

In this paper, we will present the various kinds of feedback (visual displays, diagnosis, and
perceptual feedback based upon prosodic cues substitution)? we elaborate for L2 prosody
learning (section 2), and a pilot experiment devoted to test their immediate impact (section
3). Results are given in section 4.

2. The L2 prosody learning platform

A platform designed for manual and automatic feedback of learners’” prosody has been
implemented in a research version of WinSnoori software. The platform contains classical

1 The variations of the fundamental frequency (FO) generate the melodic curve.
2 Parts of these tools have been presented in (Henry et al. 2007)
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functions such as spectrographic displays, speech recording, real-time FO (fundamental
frequency) display, and integrates three particularly interesting functions with respect to
language learning: an automatic text-to-speech alignment for native and non-native speech, a
module for modifying the speech signal manually (the fundamental frequency and duration
can be modified at the same time), and another module displaying automatic feedback on
learners’” (non-native) productions and exploiting most of the above-mentioned functions.
Besides classical FO displays, two kinds of feedback are provided to learners, each of them
based upon a comparison between a reference and the learner’s production. The first
feedback, a diagnosis, provided both in the form of a short text and visual displays such as
arrows, comes from an acoustic evaluation of the learner’s realisation; it deals with two
prosodic cues: the melodic curve, and phoneme duration. The second feedback is perceptual
and consists in a replacement of the learner’s prosodic cues (duration and F0) by those of the
reference. We will first describe the phonetic alignment, necessary for automatic diagnoses
and speech modifications, then the method developed to modify speech signals, and, finally,
perceptual feedback, diagnosis and the modus operandi.

2.1 Automatic text-to-speech alignment

Prosodic cues generally appear on well determined linguistic and phonetic entities. So a
preliminary segmentation into words, phones and syllables is necessary to localize the
prosodic events and to compare the learner’s realization with that of a reference. After users
produce a linguistic entity (a word, a group of words, or a sentence) from the corpus, a
segmentation of their realization is performed. First, a phonetization of the text is carried out
using the CMU dictionary. Then, the segmentation is computed with a text-to-speech
alignment, which establishes the correspondence between phonetic units and parts of the
speech signal. Text-to-speech alignment is achieved using Hidden Markov Models (Fohr et
al., 1996).

Two different kinds of model have to be used: one for native speakers and another one for
non-native speakers (learners). Indeed, since learners of a foreign language tend to replace
the sounds they do not know by sounds of their first language, models used for native
speakers (learned on the TIMIT database and developed for automatic speech recognition -
ASR- purposes) should be adapted to non-native speakers. Although we have already at our
disposal an ASR system designed for non-native speech recognition (Bouselmi et al., 2005)
we are still working on non-native alignment. Indeed, if ASR systems do not need precise
segment boundaries for typical applications such as automatic speech transcription or
translation, this is not the case for language learning applications where the production of a
subject is analysed and corrected. The need for precise boundaries is obvious for diagnosis
about segment durations, but is also important for speech modification functions such as the
ones we design. Since the detection of very precise segment boundaries is not always
possible, we need to associate confidence levels with detections. Then feedback can be
avoided in the cases where detections are not sufficiently reliable. We are presently working
on these two aspects of ASR for non-native speech: the improvement of segment boundary
precision and the elaboration of confidence levels. The syllabification program of NIST was
applied to the CMU dictionary in order to obtain a database of syllabified words.

2.2 Speech signal modification algorithm
Signal modification functions have been included in the platform. These functions are based
on an improved version of well known TD-PSOLA method (Colotte & Laprie, 2002;
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Moulines & Charpentier, 1990) and allow users to manually modify FO contours, speech
rates as well as phoneme durations. It means that we can apply a global or local
modification factor. For instance, we can slow down a particular part of the signal and speed
up another one of the same signal.

-—
_WW Mﬂsz_’\ PW\,AAUD,\_ Original waveform

Synthetic short
time signals

\ FLER / Synthesis
-MWW MK]XMMI’\# waveform
Analysis pitch marks Synthetic pitch marks

Fig. 1. Example of slowing down: the duration of the original signal is lengthened by a factor
2 (P'=P).

The modification method is based on the decomposition of the speech signal into
overlapping pitch synchronous frames and the modification of pitch or duration is obtained
by duplication/decimation of some frames.

Firstly, this method supposes the detection of the pitch marks: the signal periods are marked
at the maximum or minimum relevant peaks (for the voiced parts3). These marks are spaced
every pitch period and indicate the centre of the (analysis) frames (see fig.1 and 2).

Secondly, we need to compute the new position of these marked frames in the modified
signal. The main requirement is to maintain the consistency of mark location between
frames in order to preserve the original temporal structure of the signal under analysis. This
marking directly influences the quality of the resulting signal. In (Colotte & Laprie, 2002),
we have proposed a high precision algorithm for pitch marking at two levels: analysis and
synthesis marks. In one hand, dynamic programming selects peaks in the signal for marking
periods. Through correlation and pruning strategies, the algorithm overcomes errors which
may appear with other algorithms. In addition, the algorithm is very fast in computation,
which is very suitable for TD-PSOLA method. In the other hand, the combination of our
pitch marking with a fast re-sampling method (to obtain the true synthesis frame) during
the synthesis step increases the signal quality. This gain in accuracy avoids the reduction of
quality between original and synthetic signal observed with the classical TD-PSOLA
method: the level of noise between harmonics is reduced with our method.

Thirdly, each mark in the future signal is associated with a mark of the original signal. If we
want to slow down (resp. speed up) the signal, the space between frames needs to be
preserved (to keep the same pitch) and an original frame could be duplicated (resp.
removed) to obtain the good length of the signal (see fig.1). If we want to modify the pitch,
preserved, as for the slowing down, an original frame could be duplicated (or removed) to

3 For unvoiced part, by definition without period, an arbitrary spacing is used (for instance 5ms).
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obtain the good length with the good spacing (see fig.2). The pitch and duration
modifications can be merged together.
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Fig. 2. Example of pitch modification (here a lengthening of the period/a lowering of the
F0): the original pitch is lengthened by a factor 1.2 (P’=1.2P).

Finally, the signal is rebuilt from these frames (removed and/or duplicated) thanks to the
principle of overlapping.

The advantages of this method are that we work in the temporal domain without any
computation of transformation into the frequency space and the principle of using frames
synchronized with the pitch does not destroy the coherence of the signal for each frame
(notion of shape-invariance). We obtain a high quality of resynthesis without modification of
the timbre of the voice. The method allows us to lengthen the pitch period until 3 times the
initial period (i.e the FO can be lowered by 3). For the duration, the slow down is only limited
by the fact that a numerous duplication of the same part can create a new period (for unvoiced
sound) and a noise of voicing can appear where there was no voicing (the factor > 4-5 ). But
the slowdown is sufficiently local and generally small enough to avoid this drawback.

These modification functions can be use independently of the diagnosis process. The learner
or teacher can (manually) modify the signal as he wants, to become aware of the link
between prosodic cue variations and perception.

2.3 Automatic perceptual feedback

Such functions can be exploited to imitate the prosodic cues of a model, so that learners can
appreciate the differences between their realization and what they are expected to realize.
The signal is resynthesized with the required modifications, and the users can listen to the
modified signals as well as visualize their spectrographic representations and the new
melodic curves.

We have developed a module which realizes this imitation automatically. In a first step, the
relative durations of the learner’s phones are aligned with that of the reference. In a second
step, a new FO contour for the learner’s utterance is computed using a linear interpolation of
the model’s normalized FO contour. Then the learner’s realization is resynthesized and then
he/she can appreciate the resulting speech signal.

Note that the used resynthesis algorithm keeps the timbre of the learner’s voice, since only
FO and phoneme durations are modified. The copy of the F0 takes into account the mean F0O
(pitch) of the speaker.
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2.4 Diagnosis

The diagnosis is based upon a comparison between the realisation of the learner and that of
the reference speaker, as well as phonetic knowledge about prosodic patterns of L1 and L2.
Let us take the example of the realisation of English lexical stress in isolated words by
French speakers (the object of the experiment presented in section 3). The syllable which
should be stressed is assumed to be the one exhibiting the higher FO in the reference’s
production. Thus the system evaluates, in semi-tones, the peak height of this syllable with
respect to other syllables, in both realisations (the native and non-native ones) and returns a
comment indicating whether the prominent FO peak appears on the expected syllable of the
non-native realisation and if it is sufficiently marked. At the same time, visual displays are
shown on the spectrogram of the learners’ realizations: arrows indicate whether the pitch of
the target syllables should be raised or lowered (the colour of each arrow provides an
indication about the degree of difference between native and non-native realisations with
respect to FO height); a red curve represents the FO contour; the syllable and vowel durations
of the reference and those of the learner appear in the form of bars on the top of the learner’s
realization; the length of bars varying with the duration of these segments (see Fig. 3). The
reduction phenomenon requires a specific treatment. If learners do not reduce syllables
which have been strongly reduced by the English reference, they are invited to repeat their
realization and to reduce the appropriate syllable.
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Fig. 3. Example of automatic diagnosis and speech modifications. Each panel shows the
spectrogram, the melodic curve (in red) and the waveform (at the bottom, also in red) of a
realization of the word "important". The first panel show the realization of this word by an
English speaker; the second panel its realization by a French learner, with the diagnosis
provided by the software (see text), and the third panel the modification of the learner's voice.
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2.5 Modus operandi

Let us present the procedure proposed for providing automatic feedback to learners of a
foreign language. Before clicking on the function in the menu, the subject should record a
word or a small sentence, belonging to our database. He can, depending upon his wish or
the task he is involved in, listen to the English reference before producing the item. When
the subject selects the "correction" function, he is asked to choose a reference (one male and
one female English speakers have recorded the corpus). Then the software realizes a text-to-
speech automatic alignment of the native and non-native versions, and substitutes the
prosodic cues of the native speakers to those of the non-native speakers.

Then the subject is provided with three versions of the utterance analysed, displayed in
three windows, one per each version (see fig. 3). The first version consists in the native
speaker’s production, the second version is the learner’s production, and the third version is
the learner’s modified production. Each window contains the representation of the melodic
curve onto the spectrographic display, with the automatic alignment just under the
spectrogram. The automatic diagnoses appear onto the spectrogram of the second window,
that of the learner’s original production. The subject can listen to the three versions and is
invited to give a special attention to his own modified voice. The subject is free to produce
the word again or select another one.

3. Experiment

We conducted a pilot experiment to analyse the immediate impact of diagnosis and
advanced perceptual feedback on French subjects speaking English as a second language. In
France, teaching of English prosody for nonspecialists focuses on the main intonation
patterns as well as the place and strength of English lexical stress accent. We have chosen to
test the production of English lexical accent in isolated words by French speakers. French
and English are very different from a prosodic point of view since French is considered as a
syllable-timed language and English as stress-timed language (Dauer, 1983). The place of
the English lexical accent is free, whereas the French one is fixed, and the English accent is
very well marked on an acoustical point of view whereas the French one is relatively weakly
marked. Indeed, in English, the stressed syllable of isolated words is more intense, higher in
pitch and longer than the unstressed ones. Furthermore, post-stressed syllables are often
reduced: their vocalic nucleus tends to be very short, weak, and its vocalic timbre can
become similar to that of a schwa (the schwa is, as an example, the first and last vowels in
the word "America"). The French accent is essentially characterized by a lengthening of the
last syllable of a word or a group of words; non accentuated vowels are always produced
with their "full" timbre (there is no reduction).

It is commonly said that learners of a foreign language are "deaf" to its prosodic system. This
explains why learners tend to use the prosodic features of their mother language instead of
the prosodic features of the target language. For example, when speaking English, French
learners generally lengthen the last syllable of a word, even when they know that this
syllable is unstressed, and produce post-stressed vowels with their full timbre (without any
reduction).

3.1 Experimental protocol
3.1.1 Corpus and subjects
The corpus, made up of 40 English transparent words, has been recorded by two English
speakers, the "reference" speakers, one male and one female, born and educated in England,
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and currently living in France. Transparent words have similar spelling in French and
English but do not have the same pronunciation (e.g. "important", "favourite"). They
constitute a good way of making learners aware of the differences between accentuation in
both languages. The corpus was made up of two and three-syllable words of the type: *5152
(the accent is on the first syllable), S1°'S2S3 (accent on the second syllable) and “S1(52)S3.
Words with this last syllabic structure (e.g. "governor", "family"), are generally pronounced
by English speakers with a very strong degree of reduction on the second vowel whereas
French speakers pronounce this vowel with its full timbre. We kept ten words for a
"familiarization" phase, which precedes all the recording sessions; these words were
pronounced by speakers but not analysed. Thus thirty words -ten per each type- remained
for the analysis. Note that, in this corpus, the lexical accent never appears on the last syllable
of a word.

Ten French subjects, five male and five female speakers from 15 to 50 years old, participated
in the experiment. Taking into account learners’ pronunciation, we chose four (relatively)
advanced speakers and six low (production) level speakers. The advanced speakers have
lived for a short period in USA or made frequent trips in this country, whereas the six
speakers with a low oral production level (let us call them beginners, for short) have studied
English at school for at least five years but do not master English pronunciation. Since ten
subjects produced thirty words in each of the two recording sessions (presented below), the
corpus contains 600 words uttered by non-native speakers.

English reference speakers and French subjects recorded the corpus in a quiet office with a
Sennheiser headset microphone connected to a laptop. The mono signal was digitized at 16
bits with a sampling frequency at 22500 Hz. The software Audacity was used for all the
recording sessions except for the one requiring the use of the platform (second session of the
test condition).

3.1.2 Experimental conditions

There were two experimental conditions: the test and control ones, and two sessions of
recording for each condition. We selected five speakers for each condition, two advanced
speakers and three "beginners", trying to balance both groups. Note that we do not let
learners chose between the test or the control conditions.

The first session was the same for both conditions, subjects from both groups (the test and
control groups) recorded the corpus without listening previously to English references. This
gives us an indication of the learners” mastering of English lexical accent at the beginning of
the experiment. Each word was written on a sheet of paper in orthographic transcription.
To avoid the production of a list intonation, a short pause was enforced between each word.
In the second session, subjects participating in the test condition were submitted to the
platform for prosody learning. The procedure was the following: subjects were invited to
select a word, written in orthographic transcription, from a list corresponding to the corpus.
For the purpose of this experiment we asked subjects to follow the list order, and select a
male or a female reference according to their gender. Then subjects uttered the selected
word without listening previously to its English reference; the system analysed the
realisation, and visual, perceptual and textual (diagnosis) feedback was displayed on three
windows as explained in section 2.5. After subjects took knowledge of the various kinds of
feedback, they recorded the word one more time, and selected the following word to repeat
the procedure until the end of the list. Only word repetitions (the pronunciation after
feedback) have been analysed and compared to words pronounced during the first session.
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In order to avoid false corrections due to erroneous segment boundary detection, the
system stops just after the automatic alignment of the word under analysis to ask the
experimenter whether he/she desires to continue the process or modify speech
boundaries before. This is a necessary step if we want to test the impact of feedback
without incurring the risk of disconcerting the learner by inappropriate corrections. Let us
recall that we are currently working on the elaboration of confidence levels to limit the
risk of erroneous corrections.

In the second session, subjects participating in the control condition read each word on a
sheet of paper, listened to its reference, and uttered it.

Both conditions enable us to compare the effect of simple auditory feedback, received by
learners in control condition, with that of advanced feedback, received by learners in test
condition.

3.2 Acoustic cues
We estimated differences in height (FO) and duration ratios for ‘S1S2 and S1°52S3 words
with the lexical accent falling on the penultimate vowel, and we analysed the presence or
absence of reduction in the second syllable of 515253 words.
To analyse all productions, including those not analysed by the platform during the test
condition (second session), we segmented words into speech sounds, and estimated the
values of the acoustic cues taken into account, i.e. fundamental frequency and segment
duration. FO was evaluated in semi-tones.
For words with “S1S2 and S1°S2S3 syllabic structures, we estimated the following criteria.
1. The differences between FO values of the (to be) stressed vowel (VS) and the following
unstressed vowel (VUF, for unstressed final vowel) :
FO(VS) - FO(VUF) .
FO was averaged across all the frames of each vowel except the frames close to the
vowel boundaries.
2. The number of times the FO maximum fell on the right syllable (the theoretically
stressed one), given in percentage.
3. The ratio of the duration of the stressed vowel to that of the following unstressed
vowel:
D(VS)/D(VUF).
Note that VUF is the last vowel of the word, and could be lengthened by French
subjects. Taking into consideration ratio and not difference in the above formula allows
us to remove the effect of temporal variations due to speech tempo.
For "51(52)S3 words, we noted whether French learners pronounced the second vowel (V2)
with its full timbre. To estimate the presence/absence of reduction, we calculated the
duration of V2, when it was audible, and we compared it to the averaged duration of V1
and V3. If the duration of V2 was inferior to 40 ms and at least two times shorter than the
averaged duration of other vowels in the word, we considered that the vowel had been
reduced. With these criteria, all the second vowels in “S1(52)S3 words uttered by the
English speakers used as references in this study are considered as reduced.
We had also compared FO height and durations between the stressed and the initial
unstressed vowels (for S1°S2S3 words) but these parameters did not contribute a lot to
global results and we do not give them here in order to simplify the discussion.
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We used Student’s t-tests, paired samples, associating the data of each speaker and each
word to compare the pronunciation of the words in the first session (without feedback) to
their pronunciation in the second session (with feedback). Each condition (auditory
feedback and advanced feedback) and each group of speakers (i.e. advanced speakers and
beginners) were tested separately. We also used Student's t-tests to compare results obtained
in both conditions (only words uttered during the second session were taken into account).
Once more advanced speakers and beginners were considered separately. We accepted a
level of 0.05 for significant effect and considered that results were highly significant when
this level was inferior to 0.001. We submit the following parameters to statistical tests: the
first parameter (FO height), the third parameter (relative duration ratio) as well as, for vowel
reduction in 'S1S2S3 words, the ratio of the duration of the second vowel to that of other
vowels in the words.

4. Results

Table 1 provides, for each session, the results obtained for advanced learners and beginners
as well as the results for both reference speakers. Parameter values are averaged across all
words and all speakers of a given level (advanced or beginner). For estimating the averaged
differences in height (in semi-tones) between stressed and unstressed vowels (column 2), we
only took into account the cases where the FO maximum is on the correct syllable. The third
column displays the number of times the FO peak is located on the right syllable, and the
fifth column the number of times the second vowel in ‘S5152S3 words is reduced. The
duration ratios are given in the fourth column.

We also calculated the averaged values obtained for each speaker in each parameter, and we
discuss them below, when interesting.

Speakers (g% Max f(yoo)place Duration ratio Reduction (%)
REF (M) 11 100 1.7 100
REF (F) 9 100 1.7 100
Adv. 6.9 90 1.05 7.5
Adv. 74 100 1.2 100
Adv. 7.5 100 1.25 100
Beg. 2.5 33 0.85 2
Beg. 2.9 43 0.83 37
Beg. 3.9 75 1.1 63

Table 1. Results for the first session, without feedback (blue line) and for control and test
conditions with feedback (white and green lines, respectively), for advanced learners (Adv),
and beginners (Beg). Values for reference speakers, the male (M) and female (F) are given on
the top of the table. See text for more explanations.

4.1 First session
In this session, all learners (from test and control groups) uttered the words of the corpus
without listening previously to their English references.
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4.1.1 Reduction phenomon in "S1S2S3 words

Subjects utter these words the French way: they realize post-stressed vowels with their
full timbre. We note only few exceptions: one advanced speaker reduces the vowels in
approximately a third of the cases (probably when he knows well the word
pronunciation) and one beginner realizes one reduced vowel. For all other realizations the
duration of the second vowel varies between 45 and 130 ms and its averaged duration
with respect to other vowels of the word is approximately 0.8, for both groups. The
averaged percentages of reduction were 7.5% and 2% for advanced learners and
beginners, respectively.

4.1.2 Vowel duration ratio in 'S1S2 S1°'S2S3 words

Most speakers do not master L2 vowel durations (the averaged ratios are 1.05 and 0.85 for
advanced speakers and beginners). Indeed, for all learners but one, the duration ratio
(d(VS)/d(VUF)) is in between 0.7 and 1.1 (vs. 1.7 for English speakers). This confirms the
tendency, well known for French learners, to lengthen the last syllable of the word and
make relatively weak differences between syllable durations. The duration ratio is
relatively high (1.5) and close to that of English speakers for only one speaker (an
advanced one).

4.1.3 FO pattern in 'S1S2 and S1°S2S3 words

The realisation of this pattern seems to provide a good indication of the degree of
proficiency of the subjects involved in this experiment. Let us first present the case of
speakers with a low production level. We observe two kinds of pattern for these learners.
Most speakers exhibit relatively flat patterns, with sometimes a tendency to rise FO at the
end of word, a behaviour typical of beginners and people apprehensive about speaking in a
foreign language. One speaker exhibits systematically falling patterns. Since in the corpus,
the accent never falls on the last syllable of the word, the percentage indicating the number
of times the FO maximum is on the right syllable is relatively low (33%). The difference in
height, only taken into account when the FO maximum is on the correct syllable, is weak (2.5
semi-tones). The advanced learners tend to exhibit correct FO patterns, with the location of
the FO peak most of the times (90%) on the expected syllable and a substantial difference
between the height of the stressed vowel and that of the post-stressed vowel (6.9 semi-
tones).

4.1.4 Summary

To summarize the results of this first session, we remark strong differences in the mastering
of FO pattern and duration cues. Concerning duration, all speakers but one apply L1
duration rules when speaking English. Most of them are not aware of the reduction of post-
stressed vowels, and others seem to encounter problems in predicting its occurence. On the
contrary, some speakers, the more advanced ones, realize correct FO patterns.

4.2 Second session. Effect of feedback for advanced learners
In this subsection, we examine the effet of feedback for advanced learners: auditory
feedback (control condition) and diagnosis, FO displays, as well as speech modification (test
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condition). There is no statistical difference between results for advanced speakers in test
and control conditions so results for both groups are discussed at the same time.

4.2.1 Reduction phenomon in "S1S2S3 words

Feedback has a very high impact on advanced speakers, both in amplitude and degree of
significance, whatever the condition. Indeed, in both condition, all speakers change their
pronunciation to realize strongly reduced vowels for all words. We thus obtain a score of
100% for all speakers. It then appears here that auditory feedback was sufficient to enable
advanced learners to improve their realization.

4.2.2 Vowel duration ratio in 'S1S2 and S1°S2S3 words

All speakers who exhibit relatively low averaged ratios -ie. all but one- improve
themselves, whatever the condition, showing once more the high impact of auditory
feedback for advanced learners. The averaged ratios are 1.2 and 1.25 in control and test
conditions, respectively. This increase is mainly due to the lengthening of the stressed
vowel, rather than a shortening of the last one.

4.2.3 FO pattern in "S1S2 and S1'S2S3 words

We observed slight but significant increases (of about 0.6 semi-tones) in FO relative height in
both conditions. This might not be important on a perceptual point of view, but it seems that
learners are aware of the important difference in height exhibited by the reference speaker
between the stressed and the following unstressed vowel and try to imitate it. There was no
more error in the location of FO maximum.

4.2.4 Summary

Due to effect of feedback in both conditions, advanced speakers change the relative duration
of the vowels, and reduce vowels that have been strongly reduced by reference speakers.
For learners involved in this study, auditory feedback appears to be as efficient as more
complex feedback such as the one proposed in this study. This result appears to be in
agreement with that obtained by Herry and Hirst (2010) who tested advanced learners.

4.3 Second session. Effect of feedback for low production level speakers

4.3.1 Reduction phenomon in 'S1S2S3 words

Auditory feedback does not have a high impact on low production level speakers.
According to the comments they made after the experiment, they seem to have been
disturbed by the way English speakers utter seemingly familiar words (transparent words)
and slightly (but significantly) improved their realizations. On the whole, all speakers
diminish the averaged duration of the second vowel but the averaged percentage of
reduction is relatively low (37%).

Of course the effect of advanced feedback is far better. Indeed, the system detects the
number of syllables and when this number is different from that of the reference, subjects
were informed of this deviation and asked to change their pronunciation. Then, aware of
what is expected, subjects make strong efforts to reduce vowels. The results varies with
speakers and words: only one speaker reduces all vowels, but all speakers drastically reduce
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V2 averaged duration (this reduction was highly significant). The average percentage of
reduction was 63%. The difference between both conditions is highly significant.

4.3.2 Vowel duration ratio in 'S1S2 and S1°S2S3 words

In control condition, there is no significant improvement with respect to vowel duration.
The averaged duration ratio (d(VS)/D(UF)) estimated for all speakers stay in the same range
as that observed in the first session.

In test condition, subjects significantly improved their realization, making generally longer
stressed vowels (the averaged ratio rises from 0.84 up to 1.1). The difference between test
and control condition is highly significant.

4.3.3 FO pattern in "S1S2 and S1°'S2S3 words

In control condition, the observed improvement is very small in amplitude (0.4 semi-tones)
and significance and varies with speakers and words. Two speakers exhibit clear tendencies
to raise the pitch of the stressed syllables with respect to the unstressed one, but this rise not
systematic, i.e. not observed for all words. The overall percentage of words with the
maximum of FO on the right syllable increases from about 10%.

In test condition, there is a very significant improvement. All speakers were clearly
informed of what was expected from them (thanks to small texts and arrows) and improved
their realization most of the times (the percentage concerning the location of the FO
maximum raises from 30% up to 75%). The amplitude of the modification (1.4 semi-tones in
the average) varies with speakers and words. Once more, the difference between test and
control conditions is highly significant.

4.3.4 Summary

Due to effect of "advanced" feedback, subjects with a low oral production level significantly
improve their realizations. Advanced feedback appears to more interesting than simple
auditory feedback for these subjects.

5. Conclusion

Feedback on L2 prosody based upon visual displays, speech modifications and automatic
diagnosis has been elaborated and a pilot experiment undertaken to test its immediate
impact on listeners. Results show that the various kinds of feedback provided by the system
enable French learners with a low production level to improve their realisations of English
lexical accents more than (simple) auditory feedback. These results shoud be reinforced with
a large number of speakers but based upon the important differences between results
obtained for speakers in test and control conditions, we are confident in the interest of the
system presented here. In particular, the system analyses learners’ realisations and provide
indications on what they should correct, a guidance which is considered as necessary by
specialists in the oral aspects of language learning, such as Chun (1998) or Germain-
Rutherford (Germain-Rutherford & Martin, 2000).

The perspectives of this work are twofold, technological and experimental. On a
technological point of view, results from the experiment encourage us to pursue the work
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undertaken with the speech team ("Parole" team) at LORIA on speech alignment for non-
native speakers. This work concerns both the detection of precise segment boundaries
when possible and the elaboration of confidence levels on boundary detections. The
design of such confidence levels would allow the system to propose feedback only when
it can rely upon detections with high confidence levels and thus avoid erroneous
corrections. We also plan to refine our method for modifying learners' voice. We use (an
improved version) of TD-PSOLA method to modify segment durations and melodic
curves. This algorithm does not allow us to modifiy vowel quality. Yet automatic
modifications of vowel quality would be interesting to take into account vowel (timbre)
reduction in post-stressed vowels. This modification could be obtained by using
techniques such as voice morphing or techniques working in the frequency space. Since
these techniques could generate degradations in speech quality, compromises should be
found.

On an experimental point of view, it would be interesting to separate the impact of each
kind of feedback (visual displays, diagnosis and perceptual feedback based upon speech
modification). We also plan to investigate the long-term effect of automatic feedback should
in collaboration with teachers in foreign language at the University of Lorraine.
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1. Introduction

The teaching of the pronunciation of any foreign language must encompass both segmental
and suprasegmental aspects of speech. In computational terms, the two levels of language
learning activities can be decomposed at least into phonemic aspects, which include the
correct pronunciation of single phonemes and the co-articulation of phonemes into higher
phonological units; as well as prosodic aspects which include
e the correct position of stress at word level;
e the alternation of stress and unstressed syllables in terms of compensation and vowel
reduction;
. the correct position of sentence accent;
e the generation of the adequate rhymth from the interleaving of stress, accent, and
phonological rules;
e the generation of adequate intonational pattern for each utterance related to
communicative functions;
As appears from above, for a student to communicate intelligibly and as close as possible to
native-speaker's pronunciation, prosody is very important [2.]. We also assume that an
incorrect prosody may hamper communication from taking place and this may be regarded
a strong motivation for having the teaching of Prosody as an integral part of any language
course.From our point of view it is much more important to stress the achievement of
successful communication as the main objective of a second language learner rather than the
overcoming of what has been termed “foreign accent”, which can be deemed as a secondary
goal. In any case, the two goals are certainly not coincident even though they may be
overlapping in some cases. We will discuss about these matter in the following sections.
All prosodic questions related to “rhythm” will be discussed in the first section of this
chapter. In [62.] the author argues in favour of prosodic aids, in particular because a strong
placement of word stress may impair understanding from the listener’s point of view of the
word being pronounced. He also argues in favour of acquiring correct timing of
phonological units to overcome the impression of “foreign accent” which may ensue from
an incorrect distribution of stressed vs. unstressed stretches of linguistic units such as
syllables or metric feet. Timing is not to be confused with speaking rate which need not be
increased forcefully to give the impression of a good fluency: trying to increase speaking
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rate may result in lower intelligibility. The question of “foreign accent” is also discussed at
length in (Jilka M., 1999). This work is particularly relevant as far as intonational features of
a learner of a second language which we will address in the second section of this chapter.
Correcting the Intonational Foreign Accent (hence IFA) is an important component of a
Prosodic Module for self-learning activities, as categorical aspects of the intonation of the
two languages in contact, L1 and L2 are far apart and thus neatly distinguishable. Choice of
the two languages in contact is determined mainly by the fact that the distance in prosodic
terms between English and Italian is maximal, according to (Ramus, F. and J. Mehler, 1999;
Ramus F.,, et al., 1999).

1.1 Speech recognition and acoustic models

In all systems based on HMMs (Kawai G., K.Hirose, 1997; Ronen O. et al., 1997), student's
speech is segmented and then matched against native acoustic models. The comparison is
done using HMM loglikelihoods, phone durations, HMM phone posterior probabilities, and
a set of scores is thus obtained. They should represent the degree of match between non-
native speech and native models. In the papers quoted above, there are typically two
databases, one for native and another for nonnative speech which are needed to model the
behaviour of HMMs. As regards HMMs, in (Kim Y., et al. 1997) the authors discuss the
procedure followed to generate them: they are trained on the native speakers database
where dynamic time warping has applied in order to eliminate the dependency of scoring
for each phone model on actual segment duration. Duration is then recovered for each
phone from each frame measurements and normalized in order to compensate for rate of
speech. Phonetic time alignment is then automatically generated for the student's speech.
HMModels are inappropriate to cope with prosodic learning activities since theymay
produce distorted results in a teaching environment. This may be due, first of all, to the fact
that they produce a set of context-independent models for all phone classes and this fact
goes against the linguistically sound principle that says that learning a new phonological
system can only be done in a context-dependent fashion. Each new sound must be learnt in
its context, at word level, and words should be pronounced with the adequate prosody,
where duration plays an important role. One way to cope with this problem would be that
of keeping the amount of prosody to be produced under control: in other words to organize
tasks which are prosodically "poor" in order to safeguard students from the teaching of bad
or wrong linguistic habits.Then there is the well-know problem of the quantity of training
data to be used to account for both inter-speaker and intra-speaker variability. In addition,
since a double database should be used, one for native and one for non-native speakers, the
question is what variety of native and non-native is being chosen, seen that standard
pronunciation is an abstract notion. As far as prosody is concerned, we also know that there
is a lot of variability both at intraspeaker and interspeaker level: this does not hinder
efficient and smooth communication from taking place, but it may cause problems in case of
a student learning a new language. Other problems are related to well-known unsuitability
of HMM to encode duration seen that this parameter cannot be treated as an independent
variable (but see the discussion in the sections below). Other non-independent aspects
regard transitions onto and from a given phonetic segment together with carryover effects
due to the presence of previous syllabic nasal or similar sonorant units. In addition, the
maximum likelihood estimate and smoothing methods introduce errors in each HMM
which may be overlooked in the implementation of ASR systems for dictation purposes; but
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not in the assessment of Goodness of Pronunciation for a given student with a given

phoneme. Generally speaking, HMMs will only produce decontextualized standard models

to follow for the student, which are intrinsically unsuited to be used for assessment
purposes in a teaching application.

In pronunciation scoring, technology is used to determine how well the expected

word/utterance was said. It is simple to return a score; the trick is to return a score that

"means" something (Price P., 1998:105). Many ASR systems have a score as a by-product.

However, this score is tuned for use by native speakers, and does not tend to work well for

language learners. Therefore, unacceptable or unintelligible utterances may receive good

scores (false positives), and intelligible utterances may receive poor scores (false negatives).

SLIM makes use of Speech Recognition in a number of tasks which exploit it adequately

from the linguistic point of view. We do not agree with the use of speech recognition as

adequate assessment tool for the overall linguistic competence of a student. In particular, we
do not find it suited for use in language practice with open-ended dialogues given the lack
of confidence in the ability to discriminate and recognize Out-Of-System utterances (Meador

J., 1998). We use ASR only in a very controlled linguistic context in which the student has

one of the following tasks:

e repeat a given word or utterance presented on the screen and which the student may
listen to previously - the result may either be a state of recognition or a state of non-
recognition. The Supervisor will take care of each situation and then allow the student
to repeat the word /utterance a number of times;

e repeat in a sequence "minimal pairs" presented on the screen and which the student
may listen to previously - the student has a fixed time interval to fulfil the task, and a
certain number of total possible repetitions (typically twenty) - at the end, feedback will
be number of correct repetitions;

e speak aloud one utterance from a choice among one to three utterances appearing on
the screen as a reply to a question posed by a native speaker's voice or by a character in
a video-clip. This exercise is called Questions and Answers and is usually referred to a
False Beginner-Intermediate level of proficiency of the language. The student must be
able to understand the question and to choose the appropriate answer on the basis of
grammatical /semantic/pragmatic information available. The outcome may be either a
right or a wrong answer, and ASR will in both cases issue the appropriate feedback to
the student;

e do role-play, ie. intervene in a dialogue of a video-clip by producing the correct
utterance when a red light blinks on the screen, in accordance with a given
communicative function the student is currently practising. This is a more complex task
which is only allowed to be accessed by advanced students: the system has a number of
alternative utterances connected with each communicative function the student has to
learn. The interaction with the system may be both in real time or in slow-down motion:
in the second case the student will have a longer time to synchronize his/her spoken
utterance with the video-clip.

One might question the artificiality of the learning context by reminding the well-known

fact that a language can only be learnt in a communicative situation (Price P., 1998).

However we feel that the primary goal of speech technology is to help the student

develop good linguistic habits in L2, rather than engaging the student in the use of

"knowledge of the world/context" creatively in a second language. Thus we assume that
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speech technology should focus on teaching systems which incorporate tools for prosodic
analysis focussing on the most significant acoustic correlates of speech in order to help the
student imitate as close as possible the master performance, contextualized in some
communicative situation.

Some researcher have tried to cope with the problem of identifying errors in phones and
prosody within the same ASR technology (Eskénazi, M., 1999). The speech recognizer in a
"forced alignment mode" can calculate the scores for the words and the phones in the
utterance. In forced alignment, the system matches the text of the incoming signal to the
signal, using information about the signal/linguistic content that has already been stored in
memory. Then after comparing the speaker’s recognition scores to the mean scores for
native speakers for the same sentence pronounced in the same speaking style, errors can be
identified and located (Bernstein, J., & Franco, H., 1995). On the other hand, for prosody
errors, duration can be obtained from the output of most recognizers. In rare cases,
fundamental frequency may be obtained as well. In other words, when the recognizer
returns the scores for phones, it can also return scores for their duration. On the other hand,
intensity of the speech signal is measured before it is sent to the recognizer, just after it has
been preprocessed. It is important that measures be expressed in relative terms - such as
duration of one syllable compared to the next - since intensity, speaking rate, and pitch vary
greatly from one individual to another.

The FLUENCY system - which will be illustrated further on in the chapter - uses the
SPHINX II recognizer to detect the student's deviations in duration compared to that of
native speakers. The system begins by prompting the student to repeat a sentence. The
speech signal and the expected text are then fed to the recognizer in forced alignment mode.
The recognizer outputs the durations of the vowels in the utterance and compares them to
the durations for native speakers. If they are found to be far from the native values, the
system notifies the user that the segment was either too long or too short.

In Bagshaw et al. (1993) student’s contours are compared to those of native speakers in order
to assess the quality of pitch detection. Rooney et al. (1992)applied this to the SPELL foreign
language teaching system and attached the output to visual displays and auditory feedback.
One of the basic ideas in their work was that the suprasegmental aspects of speech can be
taught only if they are linked to syllabic information. Pitch information includes pitch
increases and decreases and pitch anchor points (i.e., centers of stressed vowels). Rhythm
information shows segmental duration and acoustic features of vowel quality, predicting
strong vs. weak vowels. They also provided alternate pronunciations, including predictable
cross-linguistic errors.As we will argue extensively in this part of the Chapter, we assume that
segmental information is in itself insufficient to characterize non-native speech prosody and to
evaluate it. In this respect, “forced alignment mode” for an ASR working at a segmental/word
level still lacks hierarchical syllabic information as well as general information on allowable
deviations from mother-tongue intonation models which alone can allow the system to detect
prosodic errors with the degree of granularity required by the application.

2. Section I: Prosodic tools for self-learning activities in the domain of
rhythm

2.1 General problems related to Rhythm
In prosodic terms, Italian/Spanish and English are placed at the two opposite ends of a
continuum where languages of the world are placed (Ramus, F. and J. Mehler, 1999; Ramus
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F., et al. 1999). This is dependent on their overall phonological systems, which in turn are
bound by the vocabulary of the languages. The Phonological system will typically
determine the sound inventory available to speakers of a given language; the vocabulary
will decide the words to be spoken. The Phonological system and the vocabulary in
conjunction will then determine the phonotactics and all suprasegmental structures and
features.

As far as syllables are concerned, we should also note that their most important structural
component, the nucleus, is a variable entity in the two language families: syllable nuclei can
be composed of just vowels or of vowels and sonorants. Vowel and sonorant sounds being
similar would account for the greatest impression of two languages sounding the same or
very close: from a simplistic segmental point of view, English and Italian/Spanish would
seem to possess similar prosodic behaviour as far as sonorants are concerned. On the
contrary, we should note the fact that English would syllabify a sonorant as syllable nucleus
- as would German - but this would be totally unknown to a Romance Italian/Spanish
speaker. Contrastive studies have clearly pointed out the relevance of phonetic and prosodic
exercises both for comprehension and perception. In general prosodic terms, whereas the
prosodic structure of Italian is usually regarded as belonging to the syllable-timed type of
languages, that of English is assumed to belong to stress-timed type of languages (Bertinetto
P.M., 1980; Lehiste 1., 1977). This implies a remarkable gap especially at the prosodic level
between the two language types. Hence the need to create computer aided pronunciation
tools that can provide appropriate feedback to the student and stimulate pronunciation
practice.

Reduced vowels typically affect duration of the whole syllable, so duration measurements
are usually sufficient to detect this fact in the acoustic segmentation. In stress-timed
languages the duration of interstress intervals tends to become isochronous, thus causing
unstressed portions of speech to undergo a number of phonological modifications detectable
at syllable level like phone assimilation, deletion, palatalization, flapping, glottal stops, and
in particular vowel reduction. These phenomena do not occur in syllable-timed languages -
but see below - which tend to preserve the original phonetic features of interstress intervals
(Bertinetto P.M., 1980). However a number of researcher have pointed out that isochrony is
much more a matter of perception than of production (see in particular, Lehiste I., 1977).
Differences between the two prosodic models of production are discussed at length in a
following section.

2.1.1 Segmental vs. syllable-based modeling

Prosodic data suffer from a well-known problem of sparsity (Delmonte R., 1999). In order to
reach a better understanding of this problem however, we would like to comment on data in
the literature (van Son R., J. van Santen, 1997; Umeda N., 1977; van Santen J., 1997) basically
related to English, apart from the latter, and compare them with data available on Italian.
We support the position also endorsed by Klatt and theoretically supported by Campbell
and Isard in a number of papers (Campbell W., S.Isard, 1991, Campbell W., 1993), who
consider the syllable the most appropriate linguistic unit to refer to in order to model
segmental level phonetic and prosodic variability.

The reason why the coverage of data collected for training corpus is disappointing is not
simply a problem of quantities, which can be solved by more training data. The basic
problem seems to be due to two ineludible prosodic factors:
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e the need to encode structural information in the syllable, which otherwise would
belong to higher prosodic units such as the Metric Foot, The Clitic Group, The
Phonological Group (which will be discussed in more detail below);

e the prosodic peculiarity of the English language at syllable level.

I am here referring to the great variety of syllabic nuclei available in English due to the

high number of vowels and diphthongs and also to the use of syllabic consonants like

nasals or liquids as syllable nuclei. the presence of a too large feature space, or too great
number of variables to be considered. When compared with a language like Chinese, we
see two languages at the opposite sides: on the one side a language like Chinese where
syllables have a very limited distribution within the word and a corresponding limitation
in the type of co-occuring vowel; on the other side very high freedom in the distribution
of syllables within the word as our data will show. As to stressed vs unstressed syllables
the variability is very limited in Chinese due to the number of stressable vowels, and also
due to the fact that most words in Chinese are monosyllabic. In addition, syllable
structure is highly simplified by the fact that no consonant clusters are allowed. In fact

(van Santen J., et al., 1997:321; Grover et al.,, 1998) reports the number of factors and

parameters used to compute the multilingual prosodic model for Chinese, French and

German we see that Chinese has less than one third the number of classes and less than

half the number of parameters than the other two languages. English, which is not listed,

is presented in (van Son R., J. van Santen, 1997) with the highest number of factors, 40.

Sparsity in prosodic data is then ultemately linked to the prosodic structure of the

language, which in turn is partly a result of the interaction between the phonological and

the lexical system of the language.

2.1.2 Evaluation tools for timing and rhythm

As stated in the Introduction, assessment and evaluation are the main goal to be achieved by
the use of speech technology, in order to give appropriate and consistent feedback to the
student. Theoretically speaking, assessment requires the system to be able to decide at
which point in a graded scale the student's proficiency is situated. Since students usually
develop some kind of interlingua between two opposite poles, non-native beginners and full
native pronunciation, the use of two acoustic language models should be targeted to low
levels of proficiency, where performance is heavily encumbered, conditioned by the
attempts of the student to exploit L1 phonological system in learning L2. This strategy of
minimal effort will bring as a result a number of typical errors witnessing to a partial
overlapping between the two concurrent phonetic inventories: phonetic substitutes, for
phonetic classes not attested in L2 will cause the student to produce words which only
approximate the target sound sequence perhaps by manner but not by place of articulation
as is the usual case with dental fricatives in English [0, 0]. Present-day speech recognizers
are sensitive exclusively to phonetic information concerning the words spoken - their
contents in terms of single phones. Phonetically based systems are language-specific, not
only because the set of phonemes is peculiar to the language but also because the
specification of phonetic context means that only certain sequences of phonemes can be
modeled. This presents a problem when trying to model defective pronunciations generated
by non-native speakers. For example, it might be impossible to model the pronunciation
[zeet] - typical of languages lacking dental fricatives - for the word that with a set of
triphones designed only for normal English pronunciations.
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Current large-vocabulary recognition systems use sub-word reference model units at the
phoneme level. The acoustic form of many phonemes depends critically on their phonetic
context, particularly the immediately preceding and following phonemes. Consequently,
almost all practical sub-word systems use triphone units; that is, a phoneme whose
neighbouring phoneme to the left and to the right is specified. Clearly, only in case some
errors are detected and evaluated, the system may try to guess which level of interlingua the
student belongs to.Thus the hardest task ASR systems are faced with is segmentation. In
Hiller et al. (1993) segmentation is obtained using a HMM technique where the labeling of
the incoming speech is constrained by a segmental transition network which is similar to
our lexical phonetic description in terms of phones with associated phonetic and
phonological information. In their model however, a variety of alternative pronunciations
are encoded, including errors predictable from the student’'s mother tongue. These
prediction are obtained from a variety of different sources (see ibid., 466). In our case,
assessment of the student’s performance is made by a comparative evaluation of the
expected contrastive differences in the two prosodic models in contact, L1 and L2.

As Klaus Zechner, et al. (2009) comment, while speech scoring systems for linguistically
simpler tasks such as reading or providing a short response have been in operation for some
time (Bernstein J., 1998, 1999, H. Franco et al.), few attempts have been made to
automatically score spontaneous, non-native speech where the term ‘spontaneous’ is
referred to high entropy speech where a large-vocabulary continuous speech recognition
(LVCSR) system needs to be used for recognizing speakers” utterances. ETS has, after several
years of research (see K. Zechner, I. I. Bejar, and R. Hemat), designed and implemented an
operational system, SpeechRater™, for scoring spontaneous non-native speech in the
context of the TOEFL® iBT Practice Online (TPO) Speaking practice program. In the
currently operational Version 1, however, the main area of feature coverage is fluency. The
architecture of the SpeechRater system is a concatenation of these three components: a arge-
vocabulary continuous speech recognition (LVCSR) system trained on non-native speech, a
feature computation module, and a multiple regression scoring module.The interesting
point is that the speech recognizer has been trained on "non-native" speech: in particular 30
hours of speech have been used and 100 hours for the language model training. The ASR
then computes a total of 40 features which are appropriate for the task and their usage fits
well with human raters' judgements.

C. Cucchiarini, S. Strik, and L. Boves (1997a) and C. Cucchiarini, S. Strik, and L. Boves
(1997b) describe a system for Dutch pronunciation scoring along similar lines. Their feature
set, however, is more extensive and contains, in addition to log likelihood Hidden Markov
Model scores, various duration scores, and information on pauses, word stress, syllable
structure, and intonation. In an evaluation, correlations between four human scores and five
machine scores range from 0.67 to 0.92.In a more recent paper on an algorithm called the
Goodness of Pronunciation, Sandra Kanters, Catia Cucchiarini, Helmer Strik compile an
inventory of pronunciation errors frequently made by foreigners speaking Dutch. On the
basis of this inventory they create artificial errors in a native development corpus, which in
turn were used to optimize thresholds for the Goodness of Pronunciation (GOP) algorithm,
which they use to give corrective feedback to users at the phoneme level.As the authors
comment, in pronunciation learning corrective feedback is particularly required because
very often learners are not awareof the pronunciation errors they make. Since exposure to
the L2 and L2 output will not automatically guarantee this kind of awareness, corrective
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feedback is required to make learners aware of their errors and stimulate them to attempt
self-improvement (Havranek, G.).

2.2 State of the art in CALL tools: rhythm

Here below we list and briefly present those CALL systems that are located on the web
which have tackled the problem of student’s assessment in the field of word and subword
syllable units using automatic visualization and correction methods. The comments and
pictures are taken from the website of come from a publication of the author.

2.2.1 WebGrader

WebGraderTM (Neumeyer L., et al, 1998) is a pronunciation grading tool designed for
practicing pronunciation in a second language. The system uses SRI's speech recognition
and pronunciation scoring technologies. The application client was implemented by using
the Java platform to facilitate deployment and updates of software and content over the
World Wide Web. We present the overall system architecture, user-interface design, scoring
algorithms, and a preliminary user study. WebGraderTM is organized in lessons. A lesson is
a collection of related sentences organized by themes such as transportation or eating in a
restaurant. Students can listen to natives saying the phrases, part of the phrases, or
individual words. They can also record themselves and obtain pronunciation scores for the
phrase and for individual words. Words that are hard to produce can be practiced by
selecting the target word and obtaining scores for that particular word. The content can
easily be updated, and additional lessons can be downloaded from a content server.

i

FRENCH PhONUNCIATION DEMONSTRATION

a la fin de la semaine paul prend le train et part en province

avec sa canne & péche

Unsigned Java &pplet Window

Fig. 1. WebGrader Visualization of graded pronunciation of French utterance

2.2.2 BetterAccent Tutor for English

BetterAccent Tutor (Komissarchik E., Julia Komissarchik, 2000a, 2000b) is designed for non-
native speakers of English, who would like to speak clearly, effectively and be easily
understood. Using advance unique patented speech analysis technology, Better Accent Tutor
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presents instant audio-visual feedback of users’ pronunciation. In American English three
components of speech that contribute the most to comprehensibility are intonation, stress and
rhythm. BetterAccent Tutor analyzes intonation, stress and rhythm patterns of a user-
recorded utterance and visualizes these patterns in an easy- to- understand manner. By
pinpointing the exact mistakes, BetterAccent Tutor allows users to focus on the problems
that are unique to their speech. It allows users to recordandplayback utterances. Analyzes and
visualizesintonation, intensity and rhythm patterns of recorded utterances. Visualizes the
syllabic structure of recorded utterances and highlights the syllables as they are played back.
Allows users to visually compare the user’s and native speaker’s intonation, intensity and
rhythm patterns. Contains an extensive set of exercises specially- designed for the BetterAccent
Tutor. Includes detailed explanations of each exercise. Includes a large collection of utterances by
native speakers to provide users with guidance and a yardstick for correct pronunciation.
Works well as a course supplement or as an interactive pronunciation coach for students’
independent study.

BetterAccent Tutor's purpose is to help students speak clearly and effectively and to be
easily understood. We believe that there is no such thing as right or wrong pronunciation;
not even two native speakers speak alike. But to be understood by native and non-native
speakers, it is imperative for non-native speakers to match native speakers at certain key
points. With visual feedback, the Tutor shows users’ speech characteristics that are most
important. As commented above, the three factors that have the biggest impact on
intelligibility of speech are intonation, stress and rhythm. BetterAccent Tutor analyzes and
visualizes intonation, stress and rhythm patterns of users' speech. By visualizing users'
pronunciation, the Tutor allows users to focus on the problems that are unique to their
speech. The Tutor is designed to give users the power to identify, understand and correct
pronunciation errors. Better Accent Tutor Comprehensive Curriculum includes: Word Stress;
Simple Statements; Wh-Questions; General Questions; Repeated Questions; Alternative
Questions; Tag Questions; Commands; Exclamations; Direct Address; Series of Items; Long
Phrases; Tongue Twisters

= BetterAcoant Tutor

a present vs. to present

" Intonation = Intensity/Rhythm = Waveform

Native
Speaker

IMlay

Fig. 2. BetterAccent Visualization of word stress example
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E BatterAcosnt Twbor

Intonation & Intensity/Rhythm < Waveform

Mative
Speaker

Student

Fig. 3. BetterAccent Visualization of utterance example

2.2.3 Fluency

The FLUENCY (Eskénazi, M., 1999; Eskénazi M., et al. 2000) project has investigated the
detection of changes in duration, amplitude, and pitch that can reliably detect where non-
native speakers deviate from acceptable native values, independently of L1 and L2. Thus, if
a learning system is applied to a new target language, its prosody detection algorithms do
not have to be changed in any fundamental way. Since they are separate from one another,
the three aspects of prosody can easily be sent to visual display mechanisms that show how
to correctly produce pitch, duration, or amplitude changes as well as compare a native
speaker’s production to that of a non-native speaker.

want
W A0 N TD
OK OK OK OK

Fig. 4. FLUENCY Visualization of utterance example
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2.2.4 Ordinate's PhonePass

Ordinate's patented PhonePass® (Bernstein J., 1998; Bernstein J., et al. 1998) testing system is
based on of years of research in speech recognition, statistical modeling, linguistics, and
testing theory. The technology uses a speech recognition system that is specifically designed
to analyze speech components from native and non-native speakers of English. In addition
to recognizing words, the system also locates and evaluates relevant segments, syllables,
and phrases in speech. The PhonePass system then uses statistical modeling techniques to
assess the spoken performance.Independent studies have shown that Ordinate's SET tests
(Spoken English Tests), which are powered by the PhonePass testing system, are more
objective and reliable in operation than today's best human-rated tests, including one-on-
one oral proficiency interviews. Using criteria developed by expert linguists, the PhonePass
testing system provides items and scores that have been validated with reference to human
judgments of proficiency, fluency, and pronunciation.

The PhonePass testing system uses speech recognition technology that was built to handle
the different rhythms and varied pronunciations used by native and non-native English
speakers. The system generates scores based on the exact words used in the spoken
responses, as well as the pace, fluency, and pronunciation of those words in phrases and
sentences. In addition to recognizing the words uttered, the system also aligns the speech
signal, ie. it locates the part of signal containing relevant segments, syllables, and
words.Base measures are then derived from the linguistic units (segments, syllables, words),
based on statistical models of native speakers. The base measures are combined into four
diagnostic sub-scores using advanced statistical modeling techniques. Two of the diagnostic
sub-scores are based on the content of what is spoken, and two are based on the manner in
which the responses are spoken. An Overall Score is calculated as a weighted combination
of the diagnostic sub-scores.

For the SET-10 test, responses to four item tasks are currently used for automated scoring.
These are: reading aloud, repeating sentences, building sentences, and giving short answers to
questions. In scoring, there is exactly one correct word sequence expected for each response to
the reading and repeat items. Expert judgment was used to define correct answers to the short-
answer question and sentence-build items. Most of the short-answer and some of the sentence-
build items have multiple answers that are accepted as correct. All short-answer questions
were pre-tested on diverse samples of native and non-native speakers. All items retained in
the item banks were answered correctly by at least 90% of the native sample.

2.2.5 SRI's EduSpeak

EduSpeak ® (Franco H., et al, 2000) is a speech recognition system that, through its

Software Development Kit, enables developers of multimedia applications to incorporate

continuous speaker-independent speech recognition into their applications.Developed in the

Speech Technology and Research (STAR) Laboratory of the Information and Computing

Sciences Division at SRI International, EduSpeak® is now available for licensing in the

Language Education, Reading Development, and Corporate Training markets. Interactive

English as Second Language (ESL) instructional CDs for elementary school children, using

EduSpeak®'s unique pronunciation scoring technology

¢  Computer-aided collection and grading of spoken language in education and corporate
settings

¢  Multimedia edutainment software with speech enhanced interactivity

¢ Language training courses for corporate travelers

Features & Benefits:
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Speaker independence: No user training required. Continuous speech capability: No need
for artificial pauses. State-of-the-art performance: High level of accuracy. Compact engine
and models downloads: Fast application loading and internet. Multiple native speech
models: Multiple language capability. Non-native speech models: Robustness to strong
accents. Children's speech models: Increased accuracy for children. Pronunciation grading
capability: Pronunciation feedback. Dynamically loadable vocabulary: Application
flexibility. Arbitrary grammars: Increased flexibilty in task design. Dynamically loadable
grammars task: Dynamic configuration of recognizer

— m EduSpeak® enables businesses

Lal'a Arastias dasaatiy dugtlaat who create instructional, training,

fo =l  and testing software to incorporate

= speech-based interactivity into

their products

B The EduSpeak® software
|mw.. development toolkit gives
= developers a compact,

yet state-of-the-art speech
recognition engine, a choice
of authoring interfaces,
and support for multiple
operating systems

e

S

Fig. 5. EduSpeak website advertisement

2.2.6 CMU Native Accent

NativeAccentTM(Eskénazi, M., 2007) is a pronunciation tutor using automatic speech
recognition from the CMU. It has gone through a full-fledged assessment by real users in
real situations, based on the customer’s own criteria instead of more academic measures,
and the variations in the customers” measures. Results in one study show that subjects who
used NativeAccentTM did more than twice as well as the control group while both groups
had human instruction.

It may bo easier for you to make the R sound by first making on L sound; -
this is done by touching the ridge behind your teeth with the tip of your Longue, lettling air
pass over the sides of your tongue.,

THEN hrinn uaiir tannns hack hunehinn it tawsrd the hank af une -.lﬂu-ﬁoll.l.lnlﬁlnhﬂ

Fig. 6. Main screen of NativeAccent showing feedback
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The system has been implemented for pronunciation error detection but also for a complete
course of study, with leveled corrective feedback information, a curriculum, a student
model, astrategy on how to proceed through the curriculum for differentlearners (fast and
slow, for example) and a reporting mechanism forthe teacher (to follow individual and
grouped student progress).

2.3 Self-aearning activities in the prosodic module: word stress and timing

We now presentSLIM an interactive multimedia system for self-learning of foreign
languages which is currently addressed to Italian speakers. It has been developed partly
under HyperCard™, and partly under MacroMedia Director™. However at present, the
Prosodic Module interacts in real time only with HyperCard™ [24].

2.3.1 Preprocessing phase and timing modeling

As far as prosodic elements are concerned, prosodic evaluation is at first approximated from
a dynamic comparison with the Master version of the current linguistic item to practice. In
order to cope with L1 and L2 on a fine-grained scale of performance judgement, we devised
and used in our system two types of models:

MODEL I: - Top-down Syllable-based Model for Syllable-Timed languages

It is a model in which durational structure for a phonological or an intonational phrase is
specified first, and then the segmental duration of the grammatical units in the words are
chosen as to preserve this basic pattern. The pattern is very well suited for syllable-timed
languages, in which the number of syllables and the speaking rate could alone determine
the overall duration to be distributed among the various phonetic segments according to
phonological and linguistic rules. Mean values for unstressed and stressed syllables could
be assigned and then refurbished according to number of phones, their position at clause
and phrase level, their linguistic and informational role. Lengthening and shortening apply
to mean durational values of segmental durations. In a partial version of this Model,
inherent consonant durations are applied at general phonetic classes in terms of
compressibility below/above a certain threshold and not at single segments. Since
variability is very high at segment level, we apply an "elasticity" model (Campbell W.,
S.Isard, 1991; Campbell W., 1993) which uses both position and prosodic type to define
minima and maxima, and then compute variations by means and standard deviations.

MODEL II: - Bottom-up Segment-based Model for Stress-Timed languages

In this model the starting point is the assignment of inherent duration to each phonetic
segment which is followed by use of phonological rules to account for segmental
interactions and influences of higher-level linguistic units. For English, Klatt (1987:132)
chooses this model which reflects a bias toward attempting to account for durational
changes due to local segmental environment first, and then looking for any remaining
higher level influences. In this model, the relative terms lengthening and shortening of the
duration of a segment has sense if related to inherent duration for a particular segment type.
The concept of a limiting minimum duration or equivalently the incompressibility can be
better expressed by beginning with the maximum segmental duration (Klatt, D., 1987:132).
In fact, we resort again to the "elasticity" hypothesis at syllable level, since we found that
working at segmental level does not produce adequate predictions.
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2.3.2 Segmentation and stress marking
Consider now the problem of the correct position of stress at word level and the
corresponding phenomena that affect the remaining unstressed syllables of words in
English. First of all, prominence at word level is achieved by increased duration and
intensity and/or is accompanied by variations in pitch and vowel quality (like for instance
vowel reduction or even deletion, in presence of syllabifiable consonant like "n, d"). To
detect this information, the system produces a detailed measurement of stressed and
unstressed syllables at all acoustic-phonetic levels both in the master and the student signal.
However, such measurements are known to be very hard to obtain in a consistent way
(Bagshaw P., 1994; Roach P., 1982): so, rather than dealing with syllables, we deal with
syllable-like acoustic segments. By a comparison of the two measures and of the remaining
portion of signal a corrective diagnosis is consequently issued.
The segmentation and alignment processes can be paraphrased as follows: we have a
preprocessing phase in which each word, phonological phrase and utterance is assigned a
phonetic description. In turn, the system has a number of restrictions associated to each
phone which apply both at subphonemic level, at syllabic level and at word level. This
information is used to generate suitable predictions to be superimposed on the
segmentation process in order to guide its choices. Both acoustic events and prosodic
features are taken into account simultaneously in order to produce the best guess and to
ensure the best segmentation.
Each digitalized word, phonological phrase or sentence is automatically segmented and
aligned with its phonetic transcript provided by the human tutor, with the following
sequence of modules:
e Compute acoustic events for silence detection, silence detection, fricatives detection,
noise elimination;
e  Extract Cepstral coefficient from the input speech waveform sampled at 16 MHz, every
5 ms for 30 ms frames;
e Follow a finite-state automaton for phone-like segmentation of speech in terms of
phonological features;
e  Match predicted phone with actual acoustic data;
¢  Build syllable-like nuclei and apply further restrictions.
As mentioned above, the student is presented with a master version of an utterance or a
word in the language he is currently practising and he is asked to repeat the linguistic item
trying to produce a performance as close as possible to the original native speaker version.
This is asked in order to promote fluency in that language and to encourage as close as
possible mimicry of the master voice.
The item presented orally can be accompanied by situated visual aids that allow the student
to objectivize the relevant prosodic patterns he is asked to mimic. The window presented to
the student includes three subsections each one devoted to one of the three prosodic
features addressed by the system: stressed syllable/syllabic segment - in case of words - or
the accented word in case of utterances, intonational curve, overall duration measurement.
Word-level exercises (see Figs. 7-8) are basically concentrated on the position of stress and
on the duration of syllables, both stressed and unstressed. In particular, Italian speakers
tend to apply their word-stress rules to English words, often resulting in a completely
wrong performance. They also tend to pronounce unstressed syllables without modifying
the presumed phonemic nature of their vocalic nucleus preserving the sound occurring in
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stressed position: so the use of the reduced schwa-like sound [5], which is not part of the
inventory of phonemes and allophones of the source language, must be learned.

Parole e sillabe g

Parola ‘ applicable ’
Accento principale master 2 plikabl
Accento principale studente aplikabl

A Ritmo studente Parla piu lento.

Allneamento

S EICIEN
E RO

I BB 2

lists attivid attivits sucoessiva

Fig. 7. Syllable Level Prosodic Activities

The main Activity Window for "Parole e Sillabe"/Words and Syllables is divided into three
main sections: in the higher portion of the screen the student is presented with the
orthographic and phonetic transcription(in Arpabet) of the word which is spoken aloud by a
native speaker's voice. This section of the screen can be activated or disactivated according
to which level of Interlingua the student belongs to. We use six different levels (Delmonte
R., Cristea D. et al. 1996; Delmonte R., et al. 1996). In particular, the stressed syllable is
highlighted between a pair of dots. The main central portion of the screen contains the
buttons corresponding to each single syllable which the student may click on. The system
then waits for the student performance which is dynamically analysed and compared to the
master's. The result is shown in the central section by aligning the student's performance
with the master's. According to duration computed for each syllable the result will be a
perfect alignment or a misalignment in defect or in excess. Syllables exceeding the master's
duration will be shown longer, whereas syllables shorter in duration will show up shorter.
The difference in duration will thus be evaluated in proportion as being a certain percentage
of the master's duration. This value will be applied to parameters governing the drawing of
the related button by HyperCard™. At the same time, in the section below the central one,
two warnings will be activated in yellow and red, informing the student that the
performance was wrong: prosodic information concerns the placement of word stress on a
given syllable, as well as the overall duration (see Bannert 1987; Batliner et al., 1998).

In case of error, the student practicing at word level will hear at first an unpleasant sound
which is then followed by the visual indication of the error by means of a red blinking
syllable button, the one in which he/she wrongly assigned word stress. This is followed by
the rehearsal of the right syllable which always appears in green. A companion exercise
takes care of the unstressed portion/s of the word: in this case, the student will focus on
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unstressed syllables and errors will be highlighted consequently in that/those portion/s of
the word. Finally the bottom portion of the window contains buttons for listening and
recording on the left, arrows for choosing a new item on the right; at the extreme right side a
button to continue with a new Prosodic Activity, and at the extreme left side a button to quit

Prosodic Activities.

| Sillabe atone
Parola

Accento principale master
Accento principale studente
Ritmo studente

legislative
le izlativ
le g1z lativ

Parla piu lento.

»

Allineamento
Hasler\ le ‘ &1z J‘ 1o ‘ tiv
ﬂ &1z J 1a ” tiv ]

| Sillaba tenica giusta
I sillaba tonica sbagliata

. Sillaba atona giusta
Sillaba atona sbagliata

izl ML <) &
Reqgistra Ascolta
lists attivits attivits successiva
Fig. 8. Word Stress Prosodic Activities
| Sillabe atone g
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legislative
le grzlativ
le g1z lativ

Parola 4
Accento principale master
Accento principale studente

Ritmo studente Parla piu lento.

»

Allineamento
Master le \ &1z H 1s ‘ tiv

__| Sillaba tonica giusta
Bl siliaba tonica sbagliata

DI

Registra

. Sillaba atona giusta
Sillaba atona sbagliata
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S

lists attivits

&

&

Stivits sucoessiva

Fig. 9. Unstressed Syllables Prosodic Activities
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2.3.3 Phonological rules for phonological phrases

Another important factor in the creation of a timing model of L2 is speaking rate, which may
vary from 4 to 7 syllables/sec. Changes in speaking rate exert a complex influence on the
durational patterns of a sentence. When speakers slow down, a good fraction of the extra
duration goes into pauses. On the other hand, increases in speaking rate are accompanied by
phonological and phonetic simplifications as well as differential shortening of vowels and
consonants. This usually constitutes another important aspect of English self-learning
courseware for syllable-timed L2 speakers. Effects related to speaking rate include
compression and elision which take place mainly in unstressed syllables and lead to
syllabicity of consonant clusters and of sonorants. As a result of the opposition between
weak and strong syllables at word level (Eskénazi, M., 1999), native speakers of English
apply an extended number of phonological rules at the level of Phonological Phrase, i.e.
within the same syntactic and phonological constituent. These rules may result in syllable
deletion, resyllabification and other assimilation and elision phenomena, which are
unattested in syllable-timed languages where the identity of the syllable is always preserved
word-internally. In rapid/quick colloquial/familiar style of pronunciation in RP of free
conversation and dialogue the effects of elision and compression of vowels and consonants
can reach 83% elision at word boundary and 17% internal elision (Delmonte R., 2000c).

As far as assimilation is concerned, the main phenomena attested are alveolarization,
palatalization, velarization and nasalization some of which are presented here below
together with cases attested in our corpus of British English.

¢  Homorganic Stop Deletion

The process of homorganic stop deletion is activated whenever a stop is preceded by a nasal
or a liquid with the same place of articulation and is followed by another consonant

e In front of voiced/unvoiced fricative

¢  Homorganic Stop Deletion with Glottalization

¢  Homorganic Liquid and Voiced Stop Deletion in Consonant Cluster

e Palatalization Rules affect all alveolar obstruents: /t, d, s, z/

e  Palatalization of Alveolar Fricative

¢  Palatalization of Alveolar Nasal

e Palatalization of Alveolar Stop

e Degemination

e Velarization

In order to have Italian students produce fluent speech with phonological rules applied
properly we decided to set up a Prosodic Activity which offered the two versions of a single
phrase taken from the general course being practised. The student could thus hear both the
"lazy" version, with carefully pronounced words, and no rule application taking place; then,
the second version, with a fluent and quicker speech is spoken twice. This latter version
starts flashing and stops only when the student records his/her version of the phrase.

A comparison then follows which automatically checks whether the student has produced
a phrase which is close enough to the "fluent" version. In case the parameters computed
are beyond an allowable threshold, the comparison proceeds with the "lazy" version in
order to establish how far the student is from the naive pronunciation. The assessment
will be used by the Automatic Tutor to decide, together with similar assessments coming
from Grammar, Comprehension and Production Activities, the level of Interlingua the
student belongs to.
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| Enunciato e parole fonologiche

Master
Prase g__How do vou do b
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Fig. 10. Phonological Phrase Level Prosodic Activities

3. Section IlI: Prosodic tools for self-learning activities in the domain of
intonation

3.1 General problems related to intonation in language teaching

In his PhD dissertation and in a number of recent papers M.Jilka (Jilka M. &Mohler, G.,
1998; Jilka M., 2000) analyzes the problem of intonational foreign accent (IFA) in the speech
of American speakers of German. The definition of what constitutes a case of intonational
foreign accent seems fairly straightforward: the intonation in the speech of a non-native
speaker must deviate to an extent that is clearly inappropriate for what is considered native.
The decision of what intonation is inappropriate or even impossible strongly depends on the
surrounding context, much more so than it is the case for deviations in segmental
articulation. It is therefore a prerequisite for the analysis of intonational foreign accent that
the context be so clear and narrow as to allow a decision with respect to the appropriateness
of a particular intonational realization.

This can be done in terms of a categorical description of intonation events based on ToBI
labelling. Results show that IFA does indeed include categorical mistakes involving
category type and placement, transfer of categories in analogous discourse situations, and
deviating phonetic realization of corresponding tonal categories. While such an
identification of IFA based on ToBI labeling can be easily achieved in an experimental
situation, where transcriptions are all done manually, in a self-learning environment the
same results would all be based on the ability of the underlying algorithm to achieve a
confident enough comparison between a Master and Student signal. To comply with the
idea that only categorical deviations are relevant in the determination of IFA and that it is
sensible to propose appropriate corrective feedback only in such cases we need to start from
semantically and pragmatically relevant intonational countours as will be discussed in a
section below.
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As Jilka (2000:Chapter 3) suggests, the main difference in evaluating segmental (allophones)
vs suprasegmental (allotones) variations in an L2 student’s speech, is that a broader
variational range seems to be allowed in the realization of intonational features. We are then
faced with the following important assumptions about the significance of variation in the
identification of intonational deviations:
¢ intonation can be highly variable without being perceived as foreign accented (A1)
e context-dependent variation in intonational categories is greater than in segmental
categories (A2)
The first assumption (A1) presupposes that the fact that intonation allows a high degree of
variation in the choice and distribution of tonal categories is a major aspect aggravating the
foreign accent identification process. Noticeable variations may retain the same or a slightly
different interpretation, but are not perceived as inappropriate, i.e. foreign-accented.
Measurable variations from an assumed prototypical realization may not be perceived at all
(thus being basically irrelevant), perceived as different, but not interpreted as such, or
actually interpreted as different, but not as foreign.Consequently, a second assumption (A2)
about variation in intonation must contend that intonational categories may have more
context-dependent different phonetic realizations (“allotones”) than segmental categories.
This further increases the difficulty in identifying intonational foreign accent, even though,
as already mentioned, a number of those additional phonetic realizations do not contribute
to foreign accent.
We will compare the two tone inventories as they have been reported in the literature and
then we will make general and specific comments on the possibility for an automatic
comparing tool to use them effectively. The American English inventory [46], contains five
types of pitch accent, two of them monotonal (H*, L¥), the other three bitonal (L*+H, L+H?*,
H+!H*), thus implying an inherent FO movement (rise or fall) between two targets. Phrasing
in American English is determined by two higher-level units, intermediate phrases (ip’s)
and intonation phrases (IP’s). Phrasal tones either high or low in the speaker’s pitch range
mark the end of these phrases. For intermediate phrases they are called phrase accents (H-,
L-), for intonation phrases the term boundary tone (H%, L%) is used. As the terminology
suggests, ip’s and IP’s are ordered hierarchically. An IP consists of one or more ip’s and one
or more IP’s make up an utterance. For this reason, the end of an IP is by definition also the
end of an ip, and a boundary tone is always accompanied by a phrase accent, allowing four
possible combinations: L-L%, L-H%, H-L% and H-H%.

American English Italian

Pitch accents H*, L*, L+H*, L*+H, H* L*, L+H*, L*+H,
H+IH* H+L*

Initial Phrasal tones %H %H

phrase accents H-, L- H-, L-

boundary tones L-L%, L-H%, H-L%, H-H% L-L%, L-H%, H-L%, H-H%

Table 1. Tone inventories of American English and Italian

Even though the two inventories are almost identical, the range of variation in intonation
contours is used in a much richer way in American English rather than in Italian (Avesani
C., 1995).The deviations are summarized in an inventory of nine major differences in the



90 Speech and Language Technologies

productions of the Dutch speakers (Willems, N., 1983). The listed deviations, which

correspond to distinct instances of intonational foreign accent, include what Willems terms:

e the direction of the pitch movement (Dutch speakers may use a rise where British
English speakers use a fall)

¢ the magnitude of the pitch excursion (smaller for the Dutch speakers)

e the incorrect assignment of pitch accents

o differences in the FO contour associated with specific tonal/phrasal contexts and
discourse situations such as continuations (Dutch speakers often produce falls)

o the FO level at the beginning of an utterance (low in Dutch speakers, but mid in British
English speakers) or

¢ the magnitude of final rises in Yes/No-questions (much greater in Dutch speakers).

Taking into consideration theory-dependent differences in terminology, a number of

Willems’ results are confirmed in this study’s comparison of German and American English.

3.1.1 Teaching intonation as discourse and cultural communicative means

Chun [13.] emphasizes the need to look at research been conducted to expand the scope of
intonation study beyond the sentence level and to identify contrasting acoustic intonational
features between languages. For example, (Hurley, D. S., 1992) showed how differences in
intonation can cause sociocultural misunderstanding. He found that while drops in
loudness and pitch are turn-relinquishing signals in English, Arabic speakers of English
often use non-native like loudness instead. This could be misinterpreted by English speakers
as an effort to hold the floor (ibid. :272-273). Similarly, in a study of politeness with Japanese
and English speakers, Loveday (1981) found more sharply defined differences in both
absolute pitch and within-utterance pitch variation between males and females in Japanese
than between English males and females in English politeness formulas. In addition, the
Japanese subjects transferred their lower native language pitch ranges when uttering the
English formulas. Low intonation contours are judged by native speakers of English to
indicate boredom and detachment, and if male Japanese speakers transfer their low
contours from Japanese to English when trying to be polite, this could result in
misunderstandings by native English speakers.

As evidence for culture-specificity with regard to the encoding and perception of affective
states in intonation contours, Luthy (1983) reported that although a set of "nonlexical
intonation signals" (ibid. :19) (associated with expressions like uh-oh or mm-hm in
English) were interpreted consistently by a control group of English native speakers, non-
native speakers of varied L1 backgrounds tended to misinterpret them more often. He
concluded that many foreign students appear to have difficulty understanding the
intended meanings of some intonation signals in English because these nuances are not
being explicitly taught.Kelm (1987), acknowledging that "correct intonation is a vital part
of being understood" (ibid. :627), focused on the different ways of expressing contrastive
emphasis in Spanish and English. He investigated acoustically whether the range of pitch
of non-native Spanish speakers differed from that of native Spanish speakers. Previous
research by Bowen (1975) had found that improper intonation in moments of high
emotion might cause a non-native speaker of Spanish to sound angry or disgusted. Kelm
found that the native Spanish-speaking group clearly varied in pitch less than the two
American groups; that is, native English speakers used pitch and intensity to contrast
words in their native language and transferred this intonation when speaking Spanish.
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Although the results showed a difference between native and non-native Spanish
intonation in contrasts, they did not show the degree to which those differences affect or
interfere with communication.

In intonation teaching, one focus has traditionally been contrasting the typical patterns of

different sentence types. Pitch-tracking software can certainly be used to teach these basic

intonation contours, but for the future, in accordance with the current emphasis on
communicative and sociocultural competence, more attention should be paid to discourse-
level communication and to cross-cultural differences in pitch patterns. According to Chun

(1998), software programs must have the capability to:

- Distinguish the meaningful intonational features with regard to four aspects of pitch
change: (a) direction of pitch change (rise, fall, or level), (b) range of pitch change
(difference between high and low levels), (c) speed of pitch change (how abruptly or
gradually the change happens), and (d) place of pitch change (which syllable(s) in an
utterance)

- Go beyond the sentence level and address the multiple levels of communicative
competence: grammatical, attitudinal, discourse, and sociolinguistic.

3.2 Intonation practice and visualizatio: our approach

As to Intonational Group detection and feedback, from a number of studies in Dialog Acts it
seems clear that intonation is very important in the development of DA classifiers and
automatic detector for conversational speech. From the work published in (Shriberg E., et
al., 1998) however, we may assume that in the 42 different DA classified only 2 acoustic
features were actually considered relevant for the discrimination task: duration and FJ
curve. This same type of information is used by our system for intonation teaching. We also
assume that word accent is accompanied by F&J movement so that in order to properly
locate pitch accent we compute FO trajectories first. Then we produce a piecewise stylization
which appears in the appropriate window section and is closely followed by the F&J
trajectory related to the student's performance so that the student can work both at an
auditory and at a visual level.

The stylization of an F@ contour aims at removing the microprosodic component of the
contour. Prosodic representation is determined after F&J has been resolved, since FJ acts as
the most important acoustic correlate of accent and of the intonational contour of an
utterance. Basically, to represent the intonational contour, two steps are executed: reducing
errors resulting from automatic pitch detection and then stylisation of F& contour. The
stylisation of F@ contour results in a sequence of segments, very closed to local movements
in speaker's intonation. We tackled these problems in a number of papers (see Delmonte R.
1983, 1985, 1987, 1988) where we discuss the relation existing between English and Italian
intonational systems both from a theoretical point of view and on the basis of experimental
work.

3.2.1 Intonational curve representation

In the generation of an acoustic-phonetic representation of prosodic aspects of speech for
computer aided pronunciation teaching, the stylization of an F@ contour aims to remove
the microprosodic component of the contour. Prosodic representation is determined after
the fundamental frequency has been resolved, since fundamental frequency acts as the
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most important acoustic correlate of accent and of the intonational contour of an
utterance. Basically, to represent the intonational contour, two steps are executed:
reducing errors resulting from automatic pitch detection and then stylization of FOJ
contour. The stylization of F&@ contour results in a sequence of segments, very closed to
local movements in speaker's intonation. As highlighted above, the pitch resulted is a
"direct-period" mirroring. To compute FOJ, one might implement the frequency function
FO(t) = 1/T(t). However, by this method dissimmetries will eventually result: on rising
portions of T(t), FA(t) is normally compressed, while on falling portions of T(t), F(t) is
stretched. As the displayed pitch is intended to put in evidence the rising portions of
F@(t) where accent appears, we prefer to simply compute a symmetric function of the T(t)
slope instead of calculating the FQ(t) as 1/T(t). In this way we achieve two goals at one
time: the normal compression is thus eliminated, and we save computation time [22.]
Delmonte 2010. To classify pitch movements we use four tone types: rising, sharp rising,
falling and sharp falling, where the “sharp” versions coincide in fact with main sentence
accent and should be time aligned with it. The classification is based on the computation
of the distance to the line between beginning and the end of a section, compared on the
basis of an a priori established threshold.

3.3 State of the art in prosodic CALL tools: intonation

As we did in the previous section, we report here below a select choice of commercial
products and prototypes documented in the literature as being concerned with self-learning
tools in the field of prosody, in particular tackling the problem of intonation. In some cases,
the same product presented in the previous section reappears here, without repeating the
comment, though.

3.3.1 Visi-Pitch visualization

One of the first examples of a program that displays visual pitch curves is a product from
Kay Elemetrics called Visi-Pitch that has been available for a number of years for DOS-based
personal computers (PCs). With Visi-Pitch, students are able to see both a native speaker's
and their own pitch curve simultaneously. Students first speak a sentence into a
microphone; their utterance is then digitized and pitch-tracked, and they can see a display
of their pitch curve directly under a native speaker's pitch curve of the same sentence.
Fig. 11 from Fischer (1986) shows the pitch contours of the French question Qu'est-ce qu'il
fait? (What is he doing?) as spoken by a native speaker in the top half, and the same
question produced by an American learner in the bottom half.

Native Spsaker

Fig. 11. Visi-Pitch Visualization of Pitch Curve
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3.3.2 Auralog’s TeLL me More

With the launch of the new version of TeLL me More in 2000 (see the website at URL?7),
Auralog allowed consumers to have easy access to resources that would enhance their
language learning.As well as the scoring system, the software also allows the student to
accurately visualise not only pronunciation, but also intonation. Two types of display
mode (waveform and pitch curve) are provided. The student can display them at the same
time, or individually. The waveform indicates the amplitude of the voice as a function of
time (the notion of energy). It represents the sound intensity of the voice and gives a view
of the structure of the pronunciation. The pitch curve represents frequency variations in the
voice. In tandem with the waveform, this curve enables students to make precise
comparisons of his or her own intonation with that of the model (high-pitched/deep). This
unique display mode is an innovation developed by Auralog. Auralog is the only software
publisher to offer applications which evaluate pronunciation and intonation of both
complete sentences and words, and which allows them to be visualised.

Describing Onese Il
I"raneacialion

Fig. 12. Auralog’s Visualization of Pitch Curve on top of waveform

3.3.3 BetterAccent tutor for english

We repropose here below the visualization of the minimal pair “a present”/”to
present” (Fig. 13) where however pitch is used to mark differences between the two phrases.
Notice that also the explanation which accompanies the exercise uses information related to
intonational curve (Fig. 13.1). The presentation of an utterance is carried out along the same
lines: “He said what” (Fig. 14; 14.1). The utterance is an echo question which requires a steep
rising tone in coincidence with the wh- word which has been positioned in situ.

3.4 Self-learning activities in the prosodic module: utterance level exercises

In Utterance Level Prosodic Activities the student is presented with one of the utterances
chosen from the course he is following. Rather than concentrating on types of intonation
contours in the two languages where performance-related differences might result in
remarkable intraspeaker variations, we decided to adopt a different perspective.
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[= BetterAcennt Tutor

a present vs. to present

= Intenation

< Intensity/Rhythm  © Waveform

Native
Speaker

—

Student

Fig. 13. BetterAccent Visualization of stylized word stress example
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Fig. 13.1 BetterAccent evaluation of word stress example
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Fig. 14. BetterAccent Visualization of stylized utterance example
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tising tone on
— | what
—_ =

———

the third step is

[ the highest and
| the longest
—

Fig. 14.1 BetterAccent evaluation of utterance example

Our approach is basically communicative and focuses on a restricted number of
communicative functions from the ones the student is practising in the course he is
following (for a different approach see 41 on Japanese-English). Contrastive differences are
thus related to pragmatic as well as performance factors. In the course, the student will
address some or all of the following communicative functions:
1. Describing actions: habitual, future, current, past; 2. Information: ask for, indicate
something/someone, denoting existence/non existence; 3. Socializing: introduce oneself; on
the phone; 4. Expressing Agreement and Disagreement; 5. Concession; 6. Rational enquiry
and exposition; 7. Personal emotions: Positive, Negative; 8. Emotional relations: Greetings,
Sympathy, Gratitude, Flattery, Hostility, Satisfaction; 9. Categories of Modal Meaning,
Scales of certainty: i. Impersonalized: Affirmation, Certainty, Probability, Possibility,
Negative Certainty; ii. Personalized: Conviction, Conjecture, Doubt, Disbelief; iii. Scale of
commitment; iv. Intentionality; v. Obligation; 10. Mental Attitudes: Evaluation; Veridiction;
Committal; Release; Approval, Disapproval;, Persuasion; Inducement; Compulsion;
Prediction; Tolerance.
All these communicative functions may be given a compact organization within the six
following more general functions or macrofunctions:
- ASK; GIVE, OFFER, CONSENT; DESCRIBE; INFORM; SOCIALIZE; ASSERT, SAY,
REPLY; EXPRESS EMOTIONS, MODALITIES; MENTAL ATTITUDES.
Each function has been given a grading according to a scale of six levels. The same applies to
the grading of grammatical items, be they syntactic or semantic, by classifying each
utterance accordingly. The level index is used by the Automatic Tutor which has to propose
the adequate type of exercise to each individual student (Delmonte R., Cristea D. et al. 1996;
Delmonte R. et al., 1996). As far as the Activity Window is concerned - "Enunciato e
Intonazione"/Utterance and Intonation, the main difference from Word Level Prosodic
Activities discussed above concerns the central main portion of the screen where, rather
than a sequence of syllable buttons, the stylized utterance contours appear in two different
colours: red for student, blue for master. After each student's rehearsal, the alignment will
produce a redrawing of the two contours with different sizes in proportion with the master's
one. In the example shown in Fig. 21 below, sentence accent goes on first syllable of the verb
“manage” in the Master version, while the student version has accent on the second syllable
of the same word “manage”.
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| Enunciato e Intonazione ﬂ

Frase

Accento principale master  can you®ma# nage
Accento principale studente can you ma®nage
Ritmo studente Va bene.

R ey e

‘ can you manage ’

Profilo intonatwo
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w | | 88
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Fig. 15. Utterance Level Prosodic Activities: 1

In the second example, we show a Tag-Question, where the difference between the two
performances are only in rhythm. Both the initial accent on “Mary” and the final rising pitch
on “it” are judged satisfactory by the system which can be seen on the back of the student’s

activity window.
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Frase ‘ mary isn't it

Accento principale master  *Mae ryisn'tit

Accento principale studente *Mae ryisn'tit
/A\ Ritmo studente Parla piu lento.

Profilo intonativo

T~ N
-~

ﬁ. W ML ) &
lists attivits Registra Ascolta

attivit suoces

Fig. 16. Utterance Level Prosodic Activities: 2

The third and final example is a simple utterance “Thank you”, which however exhibits a
big F@ range from the high level of the first peak on the word “Thank” to the low level of
the word “you”, making it particularly hard for Italian speakers to reproduce it correctly.
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| Enunciato e Intonazione g
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Frase ‘ thank you }
Accento principale master  *thanke you

Accento principale studente *thanke you

Ritmo studente Va bene.

Profilo intonativo

”_\

W I =0) 5@7
5 Registra Ascolta -
lists attivits attivits successiva

Fig. 17. Utterance Level Prosodic Activities: 3

4. Two systems with animated tutors

Eventually we present two systems that use animated agents or characters to provide
feedback to the student and also to guide their activities. The first one has been produced at
the Swedish Center for Speech Technology (CTT) at KTH and the second is the result of
research work of more than one center, the CSLR.

The Swedish system is called VILLE and is a virtual tutor for Swedish language learners that
uses knowledge of phonetics/phonology to help students learn pronunciation (see Engwall
and Balter, 2007, Wik et al., 2009). As the authors comment, “the use of embodied
conversational agents (ECAs) in computer assisted language learning (CALL) is seen as one
way to address feedback issues. Ville guides, encourages and gives corrective feedback to
students who wish to develop or improve their Swedish language skills. A first version of
Ville was offered in the fall of 2008 to all foreign students at KTH who wanted to learn
Swedish. The first version focused on helping students with vocabulary training, providing
a model pronunciation of new words and drilling students in memorization exercises... The
most serious errors with respect to intelligibility were found to be: lexical stress (insufficient
stress marking, or stress on the wrong syllable), consonant deletion in a cluster before a
stressed vowel, vowel insertion (epenthesis) in, or before a consonant cluster, vowel and
consonant duration errors, vowel quality (difficulties with Swedish vowels not present in
L1), and prosodic errors.”

The animated tutor has been expanded in its abilities to offer feedback for addressing
prosodic errors, in particular in the perception exercises. The result of the implementation of
the new 8 Ville capabilities has been studied by means of a questionnaire and students have
shown not to care too much to suggestions coming from Ville. In fact, only less skilled
students seemed to take advantage of it.
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Fig. 18. VILLE animated tutor giving feedback on prosodic exercises

The second system we will comment on is ILT (Italian Literacy Tutor). ILT is a fully
comprehensive system for language tutoring expressedly realized for children, the Colorado
Literacy Tutor and its companion the Italian Literacy Tutor. Interactive Books, such as that
illustrated in Fig. 25 below, incorporate leading edge speech recognition and generation
technology, natural language processing tools, computer vision and character animation
technologies which provide engaging and immersive learning experiences.The Italian
Literacy Tutor is the Italian counterpart of the “Colorado Literacy Tutor” (CLT), a project
developed at CSLR (Center for Spoken Language Research, Colorado University Boulder)
for English and currently in use in American schools. As its English companion, the ILT
integrates two sets of literacy tools, the first one based on speech and animation technology,
and the second based on language comprehension technology. These programs are critically
useful for children with special needs, in the following four populations: 1) students with
reading disabilities, 2) foreign-speaking students with limited Italian/English language
proficiency, 3) students with autism spectrum disorder, and 4) students with hearing
impairments.

Fig. 19. A phonological and linguistic interactive exercise with an animated agent (LUCIA)
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Tutors follow a default sequence from phonological awareness and decoding and encoding
of simple consonant-vowel-consonant (CVC) words to more complex orthographic patterns
into multisyllable words. Tutors are divided in fact into:

- Phonological Awareness (word, syllable, rhyme, phonemes), with all practice
identifying, matching, blending, segmenting, and manipulating these units of spoken
language. (see Fig. 19)

Alphabet and Letter-Sound Knowledge ; Reading of Regular Words, from CVC to complex

words; Spelling of Regular Words; Reading Sight Words; Spelling Sight Words; Vocabulary

- Comprehension strategies, come into place whenever the children are not successful
with the comprehension support and practice within the Books. Word reading,
vocabulary, fluency, and comprehension are taught and practiced in Interactive Books,
which also assess needs and assign Tutors based on those needs.

Reading Comprehension activites contemplates two types of exercises which requires NLP

tools to be used: the first activity is Question/ Answering on the contents of the text just

read; the other activity, which is more complex to evaluate, is Summarization again of the
text just read, which however is no longer visible to the student. In this case, the system

activates a Summary evaluation tool which analyses the student text and compares it to a

version of the chapter or long paragraph read in a semantic format called Discourse Model

(see Delmonte R. 2004, 2007, 2009).

Flower Hunter
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Fig. 20. An Interactive Book of the Italian version of the CLT with Animated Agent

4.1 Animated speech

Three dimensional animated computer characters associate production of natural or
synthetic speech, to a wide variety of facial expressions and emotions, and natural body
movements.

The characters' heads can be rotated and made semi or fully transparent, so children can
watch how sounds are made to improve their own speech clarity and to detect errors. If a
child has, for instance, left out the “1” in spelling “sled,” the coach can direct him to watch
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the tongue movement right after the /s/ in “sled” to discover the missing sound. Children
can also compare video capture of their own mouths, in speaking a sound or a word, to the
articulation of the coach's mouth. This encourages active and clear speech in the exercises, to
improve both the clarity of the child's speech and the underlying precision of his
phonological representations for words. They can narrate the book or engage the user in
conversational interaction or dialogues to train and test comprehension.

In addition to producing accurate visible speech with associated facial expressions and
gestures, animated characters can provide visual feedback to students during learning and
conversational interaction. The character can also provide visual feedback and
reinforcement, in the form of a head nod, smile, “thumbs up” or other gestures when the
student provides correct answers; or look puzzled if the system does not recognize what the
student is saying (Cosi et al., 2004a; Cosi et al.,2004b).

4.2 Conclusions and future directions

From what we have shown above, it is possible to make a number of concluding remarks
and observations. From what we have shown, it is possible to safely draw a positive
conclusion on the introduction of speech technologies in language learning tools. We have
also shown that the use of speech technologies is by itself very fruitful in language learning
environments but must be complemented by a whole lot of sophisticated tools which take
care of pedagogical issues involved in any learning scenarios. In addition to that, speech
technologies require empirical research to properly assess the adequateness of its
architecture and curriculum for the intended domain and pedagogical objectives, which do
not coincide directly with human directed teaching activities. It is still hard to think in terms
of linguistic issues when providing feedback to students: as we saw, only the identity of the
sounds or syllable or word involved in speech recognition can be addressed by feedback in
currently available ASR. As to prosodic issues, only a few of the problems involved in
prosodic learning can be detected and properly addressed when producing feedback. So
there is still a long way to go to teach using CALL systems (Delmonte R. 2002b, 2003a).

The most challenging scenario is certainlyrepresented by the system at the end of the paper,
where animated tutors are incorporated in a full-fledged system for literacy tutoring for
children or for the teaching of pronunciation.Animated characters incorporate the
technology of the future of language tutoring and constitute the test-bed for interactive
activities where both speech synthesis and recognition are used and require implementation
of modules for emotional speech. Here we would like to go back to the statements reported
at the beginning of this chapter, by Sproat and van Santen, where the complexity of the task
facing the use of speech technology is clearly outlined and covers the whole set of scientific
domains associated to human language sciences. Animated tutors will certainly become a
realilty in a near future, but a lot of work is still needed to address emotional issues both in
the visual and in the speech domain.
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1. Introduction

N-grams are very popular in automatic speech recognition (ASR) systems (Young et al., 2005),
(Lamere et al., 2004), (Whittaker & Woodland, 2003), (Hirsimaki et al., 2009). They have been
found as the most effective models for several languages. N-grams calculated by us will be
used for the language model of a large vocabulary Polish ASR system and other outside
application, first of them being SnapKeys virtual keyboard. Our earlier results and process
of collecting statistics were described already (Ziétko, Skurzok & Ziétko, 2010). In this chapter
we want to describe a complete model and its applications.

Creating a large vocbulary model of Polish is a difficult task because there are fewer Polish
text corpora then for English. What is more, Polish is very inflected in contrast to English. The
rich morphology causes difficulties in training language models due to data sparsity. Much
more text data must be used for inflected languages than for positional ones to achieve the
model of the same efficiency (Whittaker & Woodland, 2003).

2. Available text corpora for Polish

There are 280 000 words in Polish myspell dictionary. The number contains only basic forms.
With all inflections, over 1 000 000 words can be easily expected. This is just without proper
names. In our case we noted several million words, because of proper names and errors.

The IPI PAN Corpus (Przepiérkowski, 2004) is a the main professional and official corpus of
Polish texts. Currently, there are over 250 million segments which are morphosyntactically
annotated in a publicly available version. It was developed by the Linguistic Engineering
Group at the Institute of Computer Science, Polish Academy of Sciences. The same group
works on creating much larger corpus of Polish toegether with some publishers.

However, there are several larger corpora of Polish. They are often not annotated and not
available publicly. It is a result of a specific approach of Polish law to copyrights. It is legal to
download any texts from Internet, even, if they were put there without authors permission.
However, it is not legal to upload any such materials anywhere without persmission and this
law is very strictly enforced.

This is why natural language researchers working on Polish do not offer their resources both
for free or commercialy, eventhough, some of them collected relatively large data sets. For the
mentioned reason, it is not easy to estimate real sizes of corpora of Polish texts.

Newspaper articles in Polish were used as our first corpus. They are Rzeczpospolita
newspaper articles taken from years 1993-2002. Several millions of Wikipedia articles in Polish
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Corpus MBytes|Mwords |Perplexity
Rzeczpospolita journal| 879 104 8918
Wikipedia 754 97 16 436
Literature 490 68 9031
Transcripts 325 32 4374
Literature 2 6500 949 6181
Literature 3 285 181 4258

Table 1. Analysed text corpora with their sizes, perplexity. More data (websites and

literature) were already collected but not analysed yet

Corpus Basic forms| 1-grams | 2-grams | 3-grams
Rzeczpospolita journal| 832732 | 856349 | 18115373 | 43 414 592
Wikipedia 2084 524 |2 623 358| 31139 080 | 61 865 543
Literature 610174 |1151 043| 23 830 490 | 50 794 854
Transcripts 183363 | 381166 | 6848729 | 16283781
Literature 2 6162 530|153 152 158|441 284 743
Literature 3 1229331 36 297 382 | 93 751 340
Table 2. The number of different n-grams
Corpus single 1-grams| % |1-grams with errors| %
Rzeczpospolita journal 363 391 424 7435 0.86
Wikipedia 379147  |46.5 108 338 4
Literature 467 376 41 75204 6.5
Transcripts 147 440 39 1373 0.4
Literature 2 3552379 |57.6 343211 5.27
Literature 3 485713 39.5 6040 0.48

Table 3. Errors in the analysed corpora

made another corpus. The smallest articles were removed from the corpus. In this way we
avoided some Wikipedia patterns like Zawada - a village in Poland, located in Lodzki voivodeship,
in Tomaszewski powiat, in Tomaszéw Mazowiecki parish. During years 1975-1998, the village belonged
to piotrkowskie voivodeship. There are over 50 000 villages described using exactly same pattern.
As a result before we removed them, this pattern provided the list of 5 most common 3-grams,
even after combining Wikipedia with two other corpora. Several thousands literature books in
Polish from different centuries were used. The fourth corpus is a collection of transcripts from
the Polish Parliament, its special investigation committees and Solidarno$¢ meetings. They
contain mainly transcribed speech but also some comments on the situation in rooms. It is not
as big as others but the only one containing transcriptions of spoken language. What is more
its topics are law oriented, which corresponds very well with our project, which provides
ASR system for Police, administration and other governmental institutions. We are still in the
process of collecting more Polish text corpora and combining the statistics of the described
ones.

In all cases perplexity is very high comparing to typical English corpora. It is because of
inflected nature of Polish and significant number of proper names in the corpora.
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3. Problems with processing Polish corpora

Some English, Russian, Chinese and other foreign words appeared in the statistics as well
as single letters. Such words could be effects of including some foreign quotes in articles.
However, most of the foreign words are proper names and they appeared in Polish sentences.
After an analysis of results of collecting n-gram statistics from various corpora, we decided
that some supervised correction is necessary. Because of the amount of data, the choice
of strategy in this process was crucial from financial point of view. We designed and
implemented software Fixgram (Ziétko, Skurzok & Michalska, 2010) to optimise n-gram
corrections by time efficiency.

The list of words for corrections is preprepared on a server. This is why, it is partly
unsupervised method. Three schemes of preparing words were implemented. The first one
is finding pairs of words which are different only by orthographic notation, in example rz
and z. The second is by finding words with any non-Polish letters. The third method is by
comparison with myspell dictionary. The words which do not exist in myspell are also more
likely to be errors then others. A user of Fixgram receives a database of words chosen for
corrections to save time spent on automatic search for them in a database during human work.
All chosen words are given to the Fixgram user in order by the number of times they appeared
in a corpus. All, less common cases will be done automatically, typically by deleting. There
is no reason in spending human time for rare cases which are likely to be incorrect and not
crucial for statistics. The results from one corpus can be transferred to another one. Sometimes
human decisions can be generalised and used for less often cases.

A few types of problems were encountered. The first one are Chinese and English proper
names. They appeared quite frequently in the newspaper corpus. Often two Chinese names
were detected as orthographic errors because of differences only in ch and k. Chinese proper
names tend to be also often in addition to a Polish word, so one orthographic transcription is
for a correct Polish word and the other for Chinese proper name.

Another type of a problem are words which were split into two words with a space so they
appeared as two separate words in n-grams. These are difficult to be found automatically.
There are also words which are wrongly formatted (not in UTF-8). Most of them are not in any
of known to us standards for Polish letters. This is because we changed all typical standards
to UTF-8 before collecting the statistics. These words can still be recognised by a human, as
typically there is only one special Polish letter and other are standard Latin letters.

Fixgram (Fig. 1) (Ziétko, Skurzok & Michalska, 2010) presents contexts of each word (2- and
3-grams). It makes correcting these cases much easier. Apart from that, quite a lot of Russian
words and single letters (in Cyrillic) were discovered. All of them were removed.

Several automatically detected words were actually correct. For example, there are plenty
of similar surnames with an only difference in Polish special ortographic notation. There
were some other words which are correct with both orthographic transcriptions but different
senses, like morze (Eng. sea) and moze (Eng. maybe). These cases were kept in the n-gram
database by a human decision.

We have an extra collection of texts from Internet. However, to ensure proper quality, these
websites will be first filtered using statistics collected from literature and journals. Only
websites with very little new 1-grams will be accepted and added to the model. This process
will be repeated iteratively several times. The decisions can be also taken using phoneme
statistics of Polish which we also already calculated and currently are improving. In these
ways we want to use Internet resources to analyse as much text as possible, but to avoid
including texts of low quality or non-Polish ones.
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| Baza | Maprawa
Uszkodzona baza: D:/Praca/fixgram/rapid.baddb Poprawna baza D:/Praca/fixgram/rapid.db
14 s 1-gram with coding error
sie proposition of correction Cofnij Powtérz
1508359-2 siAs | (94725 sie =
n
cpl250  siAs 1-gram in different 309 |siebie propositions of similar
Hex 1369 C3 A7 character encodings _| |60 siedzial 1-grams
cpl252 sig 586 sity
1508359-1 sids 568 sie
IBM 850 sife n 436 siedem
llese 2-gram |« llosé 3-gram |«
1 stat sig 1 wreszcie stat sig c
1 sig troche i 1 stal sig troche |
2-grams with analysed word = 3-grams with analysed word
rozlaczenie sig 1 sig troche maniakiem
1 sigz 1 4 rozlgczenie sig
1 obracito sig 1 rozigczenie sigz
1 sig zwyciestwo 1 sig z lotem
1 dajgcej sic 1 i obracio sig
1 si¢ pocieszy N 1 obrécito sig zwyciestwo N
|| Tlosc 2-gramaw: 28 ilos 3-gramdw: 42

Fig. 1. Screenshot of our Fixgram (Ziétko, Skurzok & Michalska, 2010) software to correct
n-gram statistics

4. Results

The most common words in Polish are presented in Table 4. Most frequent 2-grams and
3-grams show Tables 5 and 6. Collected statistics show that the amount of text we used was
enough to create representative statistics for 1-grams, 2-grams and even for 3-grams. It is the
first such model for Polish.

The most popular 1-grams in Polish are mainly pronouns, what is not surprising. The most
popular 2- and 3- grams contain often a dot. Its commonality in the statistics is overhelming
but the probability that a particular word starts or ends a sentence is indeed much higher then
that two exact words appear next to each other.

The English translations were provided in Table 4 with 1-grams. However, it is quite difficult
to translate pronouns without a context. This is why, there are sometimes several translations
and eventhough, they are only brief and not complex translations. One of the commonly used
words is sie. It is a reflexive pronoun. It could be translated as oneself, but it is much more
common in Polish than in English. It is used always, if a subject activity is conducted on herself
or himself.

The distribution of 1-grams is presented in Fig. 2. The histogram has an expected shape,
similarly to histograms of 2- and 3-grams.
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word (Eng.) Y% word (Eng.) % word (Eng.) %

. 8.235| | kiedy (when) 0.160||niego (him) 0.085
i(and) 2.365||gdy (while) 0.157||jako (as) 0.085
w (in) 0.234||by (would) 0.150||1lecz (but) 0.083
sie (r.p.) 2.255||ten (this) 0.141||gdzie (where)  |0.082
nie (no,not) 1.714||ma (has) 0.139||je (them f., 0.081
na (on, at) 1.635||ktory (which m.) |0.138]|eats)

z (with) 1.498||jednak (however) |0.132||nich (them) 0.080
do (to,till) 1.093||ja (her) 0.131||nas (us) 0.078
to (it, this) 0.928||pod (under) 0.129||siebie (themselves)|0.078
ze (that) 0.890||byta (was f.) 0.129|(1ub (or) 0.078
a (and) 0.690||przed (before, |0.128||aby (so as) 0.077
o (about, at) 0.549||in front of) - te (these f.) 0.076
jak (how,like)  |0.485||nawet (even) 0.128||tych (these m.) |0.075
jest (is) 0.440||pan (master) 0.126||pani (madam) |0.075
po (after) 0.426||teraz (now) 0.124||niz (than) 0.074
ale (but) 0.396|ja (I) 0.123||ani (neither) 0.074
co (what) 0.393||bardzo (very) 0.122||(f. prop. name) |-

tak (yes) 0.366 || przy (next to) 0.121||mozna (may) 0.071
za (for, 0.343||sa (are) 0.119||nigdy (never)  [0.069
behind, by) - ktore (which f. pl.) |0.119|/wtasnie (just) 0.069
od (from, since) |0.319||tu (here) 0.114||sam (alone) 0.068
jego (his) 0.282||by¢ (be) 0.111||byty (were f.) 0.067
przez (through) |0.271||wiec (so) 0.110||ktoéra (which £.) 0.066
jej (her) 0.262||tez (also) 0.107||dobrze (well) 0.065
tym (this) 0.258 || tej (this f.) 0.106||niej (her) 0.065
go (him) 0.257||on (he) 0.102||takze (also) 0.064
juz (yet, 0.252||wszystko (all) 0.101 ||zawsze (always) [0.063
already) - tam (there) 0.101||ty (you) 0.061
tylko (only) 0.230|[jesli (if) 0.101 || ta (this f.) 0.060
czy (if) 0.223||nim (him) 0.101 ||domu 0.060
tego (that, hereof)|0.216||cos (something) [0.101 ||(house gen.) -
mnie (me) 0.211||bedzie (will be) [0.100||albo (or) 0.060
byl (was m.) 0.203||bo (because) 0.099 ||spos6b (way, 0.060
byto (was n.) 0.200||nic (nothing) 0.098 ||method) -

ze (of, by, 0.190||bez (without) 0.097||oczy (eyes) 0.060
about, with) - miat (had) 0.095||jakby (as if) 0.059
mu (him) 0.186||nad (over) 0.094||im (them) 0.059
dla (for) 0.185||zeby 0.094||mam (I have) 0.059
mi (me) 0.182||(in order to) - jestem (I am) 0.059
moze (maybe) |0.180(|ci (you) 0.092||oraz (and) 0.059
sobie (ourself) [0.179||powiedziat (said) [0.091||ludzi (people) |0.058
ich (their) 0.178||potem (afterwards)|0.089||raz (one) 0.058
jeszcze (still) 0.169||u (at) 0.086||lat (years) 0.058

Table 4. Top of the 1-gram statistics of Polish collected from literature corpus of 949 371 453
words, (r.p. — reflexive pronoun, m. — masculin, f. — feminine, n. — neuter, pl. — plural, gen. —
genitive). Approximated English translations are given in brackets
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word (Eng.) %o word (Eng.) % word (Eng.) %

chwili (moment) [0.575 ||glowa (head) 0.423||prosze (please) 0.336
az (till) 0.572 ||te (this) 0.423||byli (were) 0.333
ona (she) 0.558 ||chwile (moment) |0.411||czego (what) 0.331
wtedy (then) 0.548 ||dalej (farer) 0.411||pracy (woek) 0.330
no 0.547 ||ku (towards) 0.405||taki (such) 0.330
wiecej (more) 0.543 ||moj (my) 0.402||ziemi (ground, earth) |0.329
mogt (could) 0.5437 ||zas 0.390||czasie (time) 0.327
cie (you) 0.541 ||innych (others) 0.389||pierwszy (first) 0.327
miedzy (between) [0.540 ||cztowiek (human) |0.387||zaczat (started) 0.327
bardziej (more) [0.539 ||nikt (noone) 0.386||przyktad (example) |0.326
nia (her) 0.531 ||dlatego (therefore) |0.385||wszystkim (all) 0.325
gdyby (if) 0.528 ||kto$ (someone) 0.384||cztowieka (human)|0.325
roku (year) 0.527 ||powiedziala (said) |0.383||glos (voice) 0.325
ktérych (which) [0.526 |[swoje (one’s) 0.380||moge (can, may) |0.324
rowniez (also) |0.520 ||takie (such) 0.379||jakie (what) 0.324
czasu (time) 0.514 ||iz 0.378||musi (must) 0.323
wszystkie (all) |0.512 ||stowa (words) 0.378||temu (this) 0.323
jeden (one) 0.508 ||pozniej (later) 0.377 ||prawie (almost) 0.323
wiem (know) 0.500 ||troche (little) 0.375||trzy (three) 0.322
czym (what) 0.499 ||pana (master’s) 0.368||znéw (again) 0.321
wiele (many) 0.493 ||tyle (this much) 0.361||chciat (wanted) 0.319
ktérzy (which) ]0.488 ||zycie (life) 0.361 ||miejsce (place) 0.317
przeciez (after all) [0.485 ||twarz (face) 0.360||mysli (think) 0.316
we (in) 0.481 ||szybko (fastly) 0.359 || panie (sir) 0.314
czas (time) 0.481 ||koricu (end) 0.355||strony (pages,sides) |0.313
kto (who) 0.480 ||poniewaz (because) |0.351|obok (next to) 0.313
nam (us) 0.480 ||naprawde (really) |0.351||zupehnie (absolutely) |0.313
wszyscy (all) 0.476 ||caly (whole) 0.350||powiedzie¢ (to say) |0.313
miata (had) 0.476 ||niech (let) 0.348||gtowe (head) 0.313
kilka (a few) 0.475 ||jestes (you are) 0.347||rzekl (said) 0.310
drzwi (doors) 0.473 ||dopiero (but,until) 0.347 || mimo(despite) 0.310
wszystkich(all) |0.471 ||dzieci (childs) 0.344||nimi (them) 0.308
chyba (actually) |0.462 ||poza (apart from) 0.344||swego (own) 0.307
razem (together) |0.460 ||wreszcie (atlast) |0.344|/wielu(many) 0.306
ktérym (which) [0.453 ||ktéra (which) 0.342||rece (hand) 0.305
dlaczego (why) [0.453 ||tutaj (here) 0.342||strone (page, side)  |0.303
ktérej (which)  |0.442 ||zbyt (too) 0.342||wciaz (still) 0.301
ludzie (people) [0.438 ||znowu (again) 0.341||coraz 0.301
nagle (suddenly)|0.438 ||oczywiscie (of course) |0.341||moje (my) 0.297
dwa (two) 0.438 ||jezeli (if) 0.341||dzieri (day) 0.295
ktérego (which) [0.432 ||rzeczy (things) 0.340 || pokoju (room, peace) |0.294
trzeba (need) 0.430 ||dnia (day) 0.340||maja (have) 0.294
choé¢ (however) [0.429 ||jaki$ (some) 0.337||kazdy (each) 0.291
zycia (life) 0.428 ||podczas (during) |0.337||prawda (true) 0.290
soba (self) 0.428 ||ciebie (you) 0.336||zostatl (became) 0.288
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2-gram |%o |[|2-gram %o ||2-gram %0

. nie 3.13||. jest 0.32||. dlaczego |0.20
W 2.40||a potem 0.32||w ktérym |0.20
.a 1.69||. do 0.31||ze jest 0.20
siew 1.51||mu sie 0.31}|. tylko 0.20
.to 1.49||w tej 0.31||. zapytal ~ |0.20
.ale 1.24||. teraz 0.31||na pewno |0.20
. 1.19||to co 0.30||na niego  ]0.20
sie na 1.12||w koncu 0.29||ina 0.20
si¢ z 1.05||do tego 0.29||po czym 0.20
.na 1.03||na przykiad|0.29||jak to 0.20
sie do 1.02||z tego 0.29||do domu  |0.19
. tak 0.80||tak . 0.29||a nie 0.19
.z 0.74||z nich 0.29||. nic 0.19
.czy 0.71||po prostu  |0.28||w ogole 0.19
. po 0.71}|. byt 0.27||z tym 0.19
.Co 0.68|[to jest 0.27||co . 0.19
wtym  |0.66||. za 0.27||nie mégt  10.19
sie . 0.66||co sie 0.26||nie byt 0.19
sie ze 0.61||ze w 0.26||. nawet 0.19
ze nie 0.57||to ze 0.26||sie za 0.19
.jak 0.54|i tak 0.26||w ten 0.19
niema |0.53||iz 0.25||poraz 0.18
o tym 0.52|(sig o 0.25||nie moze  |0.18
.kiedy |0.50||sie od 0.25||jak sie 0.18
inie 0.47||. potem 0.24||siebie . 0.18
signie  |0.46||. od 0.24||jeden z 0.18
sie i 0.44||nic nie 0.24||. mam 0.18
niejest |0.41||jest to 0.24||domu . 0.17
.0 0.41||nie tylko ~ |0.24||. niech 0.17
to nie 0.41||. jego 0.24||jest w 0.17
.moze |0.41|lnie wiem |0.23||sie to 0.17
na to 0.40||tak jak 0.23||. on 0.17
iw 0.40||. przez 0.23||w czasie 0.17
.No 0.40||w jego 0.23||do mnie 0.17
nie bytlo |0.39||mnie . 0.22||. jestem 0.17
. jesli 0.39||sie po 0.22||nie bedzie [0.17
alenie |0.37|/z nim 0.22||. oczywiscie|0.17
nie . 0.37]]i to 0.22||. w strone |0.17
mi sie 0.37|law 0.21||a wiec 0.17
Ze to 0.35||doniego  |0.21||jak i 0.17
nigdy nie|0.34||glowa . 0.21||po chwili  |0.17
. gdy 0.34||. ten 0.21}|. byta 0.17
.ja 0.33||. juz 0.21||w nim 0.17

Table 5. Top of the 2-gram statistics of Polish from a literature corpus
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2-gram oo 2-gram Yoo 2-gram %00

nikt nie 0.166||tym razem |0.142 ||z pewnoscia |0.124
. prosze 0.163||sie tak 0.142||z nia 0.124
. spytat 0.162||na nia 0.142||wszystko co [0.123
. wszystko 0.162||od razu 0.142||. wiem 0.123
juz nie 0.161||. wiec 0.141||tym samym |0.122
.bo 0.161|ijego 0.141||z jego 0.120
na tym 0.160||tego co 0.141||powiedziat . |0.120
ten sposéb 0.160||poza tym |0.141||wcale nie |0.119
na mnie 0.160||ze soba 0.140||. nagle 0.119
co to 0.159||gow 0.139||drzwi . 0.119
. jezeli 0.158||to byto 0.137||dlatego ze |0.118
to. 0.157||. wszyscy |0.137||. dlatego  |0.118
aja 0.156 ||przez chwilg|0.137||a teraz 0.118
. nigdy 0.156(|. jej 0.137||. miat 0.117
do siebie 0.155||az do 0.137||si¢ przez  {0.117
nie miat 0.155||z powrotem |0.136||jak na 0.117
sie jak 0.155||byto to 0.136||co do 0.117
w stanie 0.154||dla mnie |0.135||w kazdym |0.117
do niej 0.154||w ciagu  |0.134||sobie ze ~ |0.117
na jego 0.153||. lecz 0.134||ale w 0.116
spojrzat na 0.153||nie mozna |0.134||. ty 0.116
za to 0.153||sie nad 0.134||. nikt 0.116
. jeszcze 0.153||ale to 0.133||tak samo  |0.115
wraz z 0.151||a moze 0.133||ludzi . 0.115
moze by¢ 0.150{|. pan 0.133||za nim 0.115
oto 0.150{|ze mna 0.133||sie stato 0.115
. gdyby 0.150||to w 0.133||nie byta 0.115
czy nie 0.148||. jednak  |0.132||niego . 0.114
to wszystko 0.148||w jej 0.132||jak w 0.114
. chyba 0.146||i ze 0.132||. wtedy 0.114
czy to 0.146||. byto 0.131}|lat . 0.113
u$miechnat sie |0.146(|a co 0.130||w kierunku [0.113
sig ze 0.146||nie mam  |0.129||w niej 0.112
przede wszystkim|0.145||. dobrze  [0.129||podobnie jak|0.112
tym ze 0.145||. kto 0.128||w sobie 0.112
jest. 0.145]|. dla 0.127||odezwat sie [0.112
nie moge 0.145||jeszcze nie |0.127||juzw 0.111
w domu 0.144||dobrze.  |0.126||go do 0.111
. przeciez 0.144||. ze 0.126||z tych 0.111
byé moze 0.144||. ta 0.125|/w ktérej  |0.111
oczy . 0.143||. bardzo  |0.125||zycia . 0.111
prawda . 0.143||sig juz 0.125||nadzieje ze |0.110
tego nie 0.143||a takze 0.124||dalej . 0.110
byt to 0.142||to znaczy |0.124|. gdzie 0.110
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2-gram %o ||2-gram Y00 ||2-gram Too0o

. mimo 0.109||sie pod 0.970||wszystko . 0.889
tej chwili 0.109||w takim 0.969||. przed 0.888
. przy 0.109]| ze si¢ 0.969||. zawsze 0.887
nawetnie  |0.109||do tej 0.966||. mgj 0.886
z powodu |0.109||w porzadku |0.966||to samo 0.884
ato 0.108||. jestes 0.962||nim . 0.880
g0 . 0.108]|. tym 0.961||. powiedzial  |0.879
. coZ 0.107||. cos 0.956||ale i 0.878
to sie 0.107{|o czym 0.952]|. te 0.877
.tu 0.106||0 czym 0.952||od czasu 0.875
mozna bylto [0.106||na chwile 0.950||ziemi . 0.872
w zyciu 0.106||. sam 0.950||jak gdyby 0.870
Z nimi 0.106||. tam 0.945||ci sie 0.870
raz pierwszy|0.105||chodzi o 0.939||. dopiero 0.867
ico 0.105||to byt 0.939||podczas gdy |0.867
ana 0.104||. sa 0.939||. musze 0.865
odwrdcit sie [0.104||. pod 0.938]|. jeden 0.864
tym co 0.103||. poza 0.935||byto . 0.864
. trzeba 0.103||nie sa 0.933||w poblizu 0.862
ipo 0.103||razem z 0.932]|. bez 0.861
w dot 0.103||na ziemi 0.932}|i do 0.860
wiem . 0.103||o co 0.929||zycie . 0.858
sie jej 0.102||zgodniez  |0.929||zrobi¢ . 0.858
od tego 0.102{|z toba 0.928||jeszcze raz 0.856
na temat 0.102||si¢ jeszcze  |0.927||na siebie 0.853
a nawet 0.101||za soba 0.923||wiecej niz 0.852
ja. 0.101||byt w 0.920||w ktorych 0.847
po co 0.101{|tona 0.919||. spytata 0.843
do nich 0.101||do korica 0.918||. wreszcie 0.841
w gore 0.101||sobie sprawe|0.918||tylko w 0.841
. wlasnie 0.100||to tylko 0.917||co z 0.841
wzgledu na |0.100||mySle ze 0.914||to z 0.838
sie przed 0.100||by sie 0.913||stato sie 0.838
byta to 0.100{|. ona 0.908||. tego 0.836
gona 0.100||nie mogta  |0.908||sie tylko 0.834
wiedziat ze |0.100]|i o 0.905||ze na 0.833
jednym z 0.099||. pani 0.903||. albo 0.830
przy tym  [0.099|/jednak nie |0.901||po to 0.829
go nie 0.099||tak sie 0.900||i jak 0.827
.och 0.098||dla niego 0.900||miedzy innymi|0.823
najej 0.098||tak ze 0.893||mimo to 0.823
nie jestem  [0.098||czy tez 0.893||ija 0.822
jesli nie 0.097||stalo . 0.891||w polsce 0.819
tojuz 0.097||. poniewaz |0.890||w swoim 0.815
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3-gram Yoo ||3-gram Yoo ||3-gram Tooo

w ten sposéb  |1.71 ||sie znim 0.613 ||. dlaczego . 0.480
. tak . 1.59 ||.noi 0.608 ||do siebie . 0.480
. nie . 1.55 ||. nie moge 0.607 ||w tym momencie |0.479
. nie wiem 1.32 ||. nie mam 0.598 ||. nic nie 0.477
. W tym 1.30 ||od czasu do 0.593 ||to nie jest 0.475
. nie ma 1.23 ||czasu do czasu |0.592 ||Ze nie ma 0.474
po raz pierwszy|1.13 ||w tym samym |0.592 ||po drugiej stronie|0.473
. to nie 1.10 ||. tym razem 0.589 ||.toco 0.472
. w koricu 1.07 ||o tym ze 0.585 ||w tym czasie 0.472
. ale nie 1.05 ||sobie sprawe ze |0.582 |/w ogdle nie 0.470
. awiec 0.998||. w kazdym 0.573 ||. ajesli 0.469
w tej chwili 0.985||. na pewno 0.572 ||. w takim 0.468
.aco 0.945||.1ito 0.572 ||. przez chwile 0.468
.czy to 0911|.aja 0.565 ||.poco 0.466
na to ze 0.901||. i nie 0.559 ||.co. 0.464
.amoze 0.821|/w takim razie [0.552 ||.ico 0.461
w kazdym razie|0.813||. nie nie 0.5525||. nie jestem 0.460
. po chwili 0.811||sie do niego 0.550 ||.aty 0.457
. poza tym 0.807||w jaki sposéb  |0.546 ||nie ma . 0.457
. nigdy nie 0.782||. nikt nie 0.539 ||do tej pory 0.446
. nie bylo 0.775||wydaje mi sie  [0.529 ||. wiem ze 0.446
mi sie ze 0.764||w porzadku .  |0.528 ||.jak sie 0.445
. ateraz 0.762||. na przyktad 0.524 ||. ajednak 0.442
. byl to 0.757||w stosunku do |0.516 ||. to byt 0.442
do domu . 0.751||mam nadziej¢ ze|0.513 ||. mam nadziej¢ |0.441
. by¢ moze 0.739]|. w ten 0.510 ||. niech pan 0.437
. W tej 0.733||. tak wiec 0.507 ||o tym. 0.435
. jest to 0.725||. to znaczy 0.507 ||. mimo to 0.434
ze wzgleduna |0.710|(|. no to 0.506 ||. nie chce 0.431
co sie stato 0.707||tak samo jak 0.506 ||co sie dzieje 0.429
.coto 0.704||.ato 0.506 ||.no coz 0.428
. a potem 0.703||. byta to 0.505 ||do wniosku ze  |0.416
. po prostu 0.688||okazato sie ze  |0.504 ||sie z nia 0.408
. myéle ze 0.676||. jeden z 0.501 ||. nie jest 0.403
.aleto 0.660||. byto to 0.497 ||sie do niej 0.399
. co sie 0.657 ||w zwiazku z 0.497 ||o tym nie 0.399
.itak 0.657||z drugiej strony |0.496 ||za kazdym razem|0.398
sie stato . 0.653||zwrocit sie do  |0.495 ||. spojrzal na 0.394
nie wiem . 0.641||nie byto . 0.489 ||na pewno nie 0.393
. to jest 0.639||. czy nie 0.488 ||. uSmiechnat sie |0.385
. jak to 0.626||. to byto 0.486 ||.poraz 0.320

Table 6. Top of the 3-gram statistics of Polish from a literature corpus. They are very good
data to model language but are difficult to be collected for inflected languages in amount
which is enough for applications. The model we manage to build seems to be large enough to
properly describe language by statistics of 3-grams
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3-gram %00 [|3-gram %00 ||3-gram Yooo

z tego co 0.319||. wszystko to 0.282||sig¢ na to 0.252
jesli chodzio |0.319||to wszystko . 0.282||i tak dalej 0.251
.wiedziatze  |0.319||.iw 0.282||. ale co 0.251
. moze to 0.317||sie¢ w nim 0.281||sig o tym 0.250
po to by 0.317]|. o co 0.281||sig o tym 0.250
na ziemie . 0.317||. cit . 0.280||w kazdej chwili {0.250
. tak to 0.316||. ale ja 0.279]|. a przeciez 0.249
. to wszystko |0.316||to prawda . 0.278||. nie tylko 0.248
odwrdcit siei  0.316||jak to sie 0.276||. okazalo sie 0.247
. to prawda 0.315||w gruncie rzeczy |0.276||wzgledunato |0.247
sie ze mna 0.315||. podobnie jak 0.275||sie w jego 0.247
. dobrze . 0.314||. janie 0.274||udato mi sie 0.245
.odwrdcit sie  [0.312||mu sie ze 0.274||pokrecit gtowa . |0.244
udato musie |0.311||lw poréwnaniuz |0.274||. po pierwsze 0.241
Ze jest to 0.310||. z drugiej 0.271}|. no tak 0.241
.oczywiscie. |0.309||na ziemi . 0.271||w dalszym ciagu|0.241
za to ze 0.308||z tego powodu 0.270||. a zatem 0.241
przed naszg era|0.308 ||w chwili gdy 0.269||. nie to 0.241
nie da sie 0.308||w dot . 0.269||. spojrzata na 0.241
. nie miat 0.307 ||sie dzieje . 0.268||. od czasu 0.240
ja. 0.307||na przyktad w 0.267||na zewnatrz . 0.240
to znaczy ze 0.306(|. w jego 0.267||sie z toba 0.239
. jesli nie 0.304||. zdaje sie 0.266||po co . 0.239
. dlaczego nie [0.303||. oczywiscie ze 0.259||z dala od 0.238
sig ze to 0.301||. przede wszystkim |0.259||sobie sprawe z |0.238
w tym miejscu |0.301 ||obawiam sie ze 0.259||. nawet nie 0.238
do czynienia z [0.301||. usSmiechneta sie  |0.258||. przykro mi 0.237
. to byta 0.300||. chyba nie 0.258||. to wtasnie 0.237
sie w strone 0.299||z nich . 0.258||na to . 0.237
po prostunie  |0.298||ze nie jest 0.258||sie do nich 0.236
z tego ze 0.297||o tym jak 0.258||. nie rozumiem |0.236
na mnie . 0.297||nie mozna byto 0.258||wygladanato |0.236
nie wiem czy  |0.295||z nich nie 0.257||co chodzi . 0.235
cotoza 0.294||w taki sposéb 0.257||. zgodnie z 0.234
si¢ w tym 0.293||wpatrywat sie w  |0.256||. naprawde . 0.234
to jest . 0.293||sie nad tym 0.255||jest w stanie 0.233
na niego . 0.292||do drzwi . 0.255||. co ty 0.232
ze to nie 0.290||. jeszcze nie 0.255||. i wtedy 0.232
.oile 0.290||tylko dlatego ze ~ |0.254||do niej . 0.231
.nie byt 0.289||i spojrzat na 0.254||tej samej chwili |0.231
. sadze ze 0.289||z powrotem . 0.253||. wydaje mi 0.230
za nim . 0.289||w tej sprawie 0.253||i z powrotem  |0.230
. nie mozna 0.285 ||w przeciwienstwie do|0.253||. do tego 0.229
. a kiedy 0.284||sie z nimi 0.253||odwrdcit sie do  [0.228
z jednej strony |0.284||ale to nie 0.252||. nie sadze 0.228
nie wiem co 0.282||nie moégt sie 0.252||to samo . 0.228
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3-gram %00 [|3-gram %00 ||3-gram Yooo

Z pewnoscia nie 0.228||a co z 0.210||. wyglada na 0.195
. spytat . 0.228||spojrzat na nia 0.210||w jednym z 0.195
potrzasnat glowa . |0.228]|. dlatego tez 0.209||w odniesieniu do|0.194
nie ma w 0.227||. co prawda 0.209||w jakis sposéb  |0.193
sie¢ coraz bardziej |0.227||nigdy sie nie 0.208||w zaleznoéci od |0.192
wydaje sie ze 0.226||. a czy 0.208||. nie mogta 0.192
po tym jak 0.226||przez jaki$ czas  |0.207||po raz ostatni 0.192
czy nie . 0.225]|. 0 czym 0.207||zwiazku z tym  |0.192
nie bylo to 0.225||o to ze 0.207|.co z 0.191
. tak sie 0.224]|. wcale nie 0.207||zdawato sie ze  |0.191
z toba . 0.224||.no . 0.206||. nie wolno 0.191
w gore . 0.224||na mysli . 0.206||. wiem . 0.190
wydawalo misie |0.224||na zawsze . 0.206||. po czym 0.190
za pozno . 0.224||. no wiegc 0.206||do przodu . 0.190
nie jest w 0.224||na to co 0.206||po raz drugi 0.190
. obawiam sie 0.222||nie zyje . 0.205||do pracy . 0.190
co to znaczy 0.222||. co do 0.205||. na tym 0.189
nie ma nic 0.222||. toja 0.204||. o tym 0.189
po obu stronach 0.221||w miare jak 0.204||tylko po to 0.189
nie bylo w 0.221||. ale jak 0.203||. ale . 0.189
nie wiem jak 0.220||. tak czy 0.203||to zrobi¢ . 0.188
. wydaje sie 0.219||nic z tego 0.202}|. to sig 0.188
.tojuz 0.219||sie w niej 0.202||ze nigdy nie 0.188
byt w stanie 0.218||. ale teraz 0.202|do tego ze 0.187
.zato 0.218||po to zeby 0.202||sie nie stato 0.186
. my$lalem ze 0.218||. to tylko 0.202||. zdziwit sie 0.186
jak na przyktad 0.217||. po kilku 0.202||. nie byla 0.186
znalazt sie w 0.217||. przeciez to 0.200||na miejscu . 0.185
.nato 0.217||. to bardzo 0.200||. nie mozemy 0.185
co$ w rodzaju 0.217||i w tym 0.200||o tej porze 0.185
ze sobg . 0.216||raz po raz 0.199||. przez caty 0.185
na $wiecie . 0.216||z punktu widzenia |0.199||wygladato na to |0.185
cosiez 0.215||zblizyt sie do 0.199||. zastanawiat si¢ |0.185
spojrzala na niego |0.215||znajduje sie w 0.199||na druga strone |0.184
. gdyby nie 0.215||to co sie 0.199||w ostatniej chwili |0.184
.no dobrze 0.214||z powrotem na 0.199||. a poza 0.184
zZnim . 0.213||do glowy . 0.199||w milczeniu . 0.184
. wydawato sie 0.213||w tym celu 0.199||. tak samo 0.184
z calg pewnoscia  |0.213]|. co wigcej 0.199||i w ogole 0.184
itak nie 0.213||. kiedy sie 0.198||. nie moglem 0.183
wszystko w porzadku |0.212||nie mam pojecia  [0.198||. nie bede 0.183
z tego . 0.212||sig z tego 0.197||co z tego 0.183
na niego z 0.212||sig¢ ze w 0.197||co do tego 0.183
nie byl w 0.211}|. ale czy 0.196||. chodzi o 0.183
na to nie 0.211||w glowie . 0.195||. ale przeciez 0.182
. myélisz ze 0.210{|na wszelki wypadek |0.195||niezaleznie od tego [0.182
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log10 of size of a group with given count

1-10 11-100 101-10001001-1000010e4-10e510e5-10e6 10e6-10e7 10e7-10e8
Count of 1-grams

Fig. 2. Histogram of 1-grams (in logarithm scale). There are many 1-grams which are very
rare. The amount goes down with increasing count of a 1-gram. The histograms of 2- and
3-grams are very similar

5. Implementation and applications

Storing large vocabulary n-gram model is another issue to concern. 2- and 3-grams cannot
be stored as strings because they would use too much disk space. This is why each 1-gram
(unigram on Fig. 3) has an ID. The 2-grams are stored as two 1-gram ID, which are integer
numbers. The each 2-gram has its id_bigram, so 3-grams are stored as a set of two id_bigrams.
The language properties have been very often modelled by n-grams (Huang & Lippman,
1988), (Young et al., 2005), (Manning, 1999), (Jurafsky & Martin, 2008), (Khudanpur & Wu,
1999), (Whittaker & Woodland, 2003), (Hirsimaki et al., 2009). Let us assume the word string
w € W consisting of n words wq, wy, w3, ..., wy,. Let P(W) be a set of probability distributions
over possible word strings W that reflects how often w € W occurs. It can be decomposed as

P(w) = P(wy)P(wy|wy)P(ws|wy, wy)...P(wn|wy, ..wy—1). (1)

It is theoretically justified and practically useful assumption that, P(w) dependence is limited
to n words backwards. Probably the most popular are trigram models where P(w;|w; », w; 1),
as a dependence on the previous two words is the most important, while model complication
is not very high. Such models still need statistics collected over a vast amount of text. As a
result many dependencies can be averaged. Simplified case of applying n-grams in speech
recognition is presented in Fig. 4.

N-grams are the most basic and common language model in ASR systems (Young et al., 2005),
(Lamere et al., 2004), (Whittaker & Woodland, 2003), (Hirsimaki et al., 2009). It is a result of
their simplicity end effectiveness Our attempt was to build such model for large vocabulary
Polish applications. The large number of analysed texts will allow us to predict words being
recognised and improve recognition of the ASR system highly.

Polish is highly inflected in comparison to English. The rich morphology causes difficulties in
training language models due to data sparsity. Much more text data must be used for inflected
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dictionaries |
~Hewdict_id [INT
rename VARCHAR(100)
dictentries . . -
rcdict_id INT p— unigram ort_phon
mxid_ort INT p Hpkid_ort INT ; rxid_ort INT
K Ortographic VARCHAR (100) rxid_phon IMT
word_rate DOUBLE comectness TINYINT
L ) proofreading TINYINT
[ phonetic ]
pxid_phon IMT
extranscription VARCHAR(100)
i 4
trigram
bigram pxid_trigram INT
pKid_bigram [NT + < ekid_bigram1 INT
Frcid_ort1  INT L45l:utu:l_ljigramjzIZ'-J"’
Feid_ort2  INT word_rate DOUBLE
word_rate DOUBLE

Fig. 3. Our n-gram model is a part of a dictionary implemented in SQL.

languages than for positional ones to achieve the model of the same efficiency (Whittaker &
Woodland, 2003).

The modified weighted Levenshtein distance (MWLD) (Zi6tko, Gatka, Skurzok & Jadczyk,
2010) and dynamic time warping (DTW) (Rabiner & Juang, 1993) algorithms allow to evaluate
a distance of words from an ASR system dictionary with a sequence of phoneme hypotheses.
In case of recognising continuous speech, this procedure have to be repeated hundreds
thousands of time for different words and different phoneme hypotheses. An optimal decision
is taken to find a sequence of word hypotheses. This processes is known as level builder.
Typically, the situation is even more complex. Instead of a sequence of words, a lattice of
words should be built. The final sentence hypothesis is taken from the lattice, by applying
syntax and semantic modelling.

Word hypotheses are sorted by natural logarithms of MWLD or DTW. The W words with
lowest distances are introduced to the lattice for each allowed start point of a word.

Let us assume a set of [ word hypotheses and matrix H € (C,R)"*¥ of phoneme hypotheses
where C stands for a set of characters representing Polish phonemes, } are logaritms of
propabilities, n is size of C (number of possible phoneme types) and k corresponds to time.
Let us introduce w;, as m-th word of a M size (0 < m < M) dictionary. Then, let us denote a;
as a start time of ith word hypothesis and b; as its end. Let us introduce ps, (a; = t1,b; = t) as
a probability that word w, is an ith observation for a sequence of phonemes from time 4; to
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prezydent wejscie strefy.
aportuje to )
portd) trafi szelke
rezydent dwiescie 0
do
t
aprobuje stepy szogun
prezydium niedcie
schengen
operuje dom
prezydent wejscie strefy.
trafi Ik
szelke
rezydent aportuje dwiescie to
o
stepy szogun
aprobuje L o 9
prezydium niescie do
schiengen
operuje o
prezydent wejscie strefy
d
¢ trafi Ik
szelke
rezydent aportuje dwiescie
o ste
Py szogun
prezydium aprobuje niescie
schengen

operuje dom
Fig. 4. The general word lattice is presented in the upper diagram. A lattice with stressing of
probable 1 grams (bold and undelined) and 2 grams (red arrows) is depicted in the middle
one. A word lattice with reduction of unprobable 2-grams is shown in the bottom one. In all
cases the correct sentence is marked by a purple shadow. In the second case it leads mainly
via strong n-grams. In the third case the proper path still exists in the lattice after reductions



122 Speech and Language Technologies

Fig. 5. Real word lattice generated by AGH ASR system shows complexity of the graph and
importance of applying language modelling like n-grams

Acoustical
hypotheses
hy .. hy

ar

A word from a
dictionary

Next word

Fig. 6. A level builder fits a dictionary word into acoustical hypotheses on different time
scales

time b; such as

_J1 for the words following a starting node @
i bi_j + 1+t for others !

where b;_; is an end of another word hypothesis and where t = 3 is a threshold of allowed
time distance between neighbouring words counted in the number of frames (phoneme
hypotheses). In the simplest case j = 1, but generally j < i (in case of a lattice). The task
of level building is to maximise p,(a; = t1,b; = tp) by changing m,a; and b;. Difference
b; — a; is constant for a particular word w,;, and there are restrictions for a; described above (a;
of a word has to follow b;_; of another word in time domain). Typically there are between 10
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—> cost =
Ala tadnego
01 ma; 0.3 ™ kota
ale—"",0.2 04 S
1 / 0.5
Ztamata tapie keta
1 1.2 1.3

Fig. 7. Simple example of word network showing usage of 2-grams to find the best path. The
words in the lattice mean: Ala — female name, ale — but, Ztamata — broke (feminine), ma — has,
fadnego - pretty (masculin), tapie — catches, kota — a cat (accusativus), keta — a chain (in
silesian dialect)

,S\Ia tadnego
ol
\.ale tapie

1
next cost
tadnego 0.2
tapie 1.1

Fig. 8. Example of calculating weights for a word using 3-grams. Its possible weights are
based on words preceding and following in the word network. English translations are in
Fig.7

.Alama
Ala ma tadnego

cost=0.1
ma tadnego kota

tadnego kota .

. Ala ma tadnego kota . |:> cost=0.4

Fig. 9. 3-grams used to decode a sentence from the example from Fig. 8. English translations
are in Fig. 7
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3-gram cost
*adnego . Ala ma 0.1
. @ . Ala tadnego 1
ma
next previous cost
tadnego 1
ma . 0.1
3-gram cost
. ale ma 1 next revious cost
. ma lp |
ma | . | 1
Ala tadnego |3-gram cost
0.1 % Ala ma tadnego 0.1
ale iapie ale ma Iad|j1ego 0.1
1 Ala ma tapie 1
ale ma tapie 1
next previous cost
Ala 0.1+0.1 = 0.2
fadnego
ale 1+0.1=1.1
Ala 0.1+1=1.1
tapie
ale 1+1=2
Ala 3-gram cost
Ala tadnego kota 1
ma Ala tadnego keta 1
ma tadnego kota 0.1
fadnego keta 1
Ztamat ma
amata Ztamata tadnego kota |1
next previous cost Ztamata fadnego keta |1
Ala 1+1=2
kota ma 0.2+ 0.1 =0.3
Ztamata 1+1=2
Ala 1+1=2
keta ma 1+1=2
Ztamata 1+1=2
3-gram cost
iadnego tadnego kota . 0.1
0.3 @ . |tapie kota . 1
tapie
PIe
next previous cost
fadnego 0.3+0.1=0.4
fapie 2+1=3

Fig. 10. Proces of finding the best path through the word network using 3-gram weights,
node after a node. English translations are in Fig. 7
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Ala tadnego
ma \ kota
ale —, ™~ .
Ztamata tapie keta /
10 nodes
17 edges

26 possible 3-grams

Fig. 11. Result of searching for the best path through the word network using 3-gram weight,
node after a node (see Fig. 10). English translations are in Fig. 7

and 50 parallel word hypotheses allowed to start from a particular time point in the described
way.

The word hypotheses are turned into a lattice by connecting nodes if ends and starts are closer
to each other in time then a chosen threshold.

Created word lattices are large, which makes searching for a best path time consuming, while
ASR system should work in real time. This is why, edges which statistically were found
unlikely by n-grams can be cut out.

Finding the best path can be provided using Dijkstra algorithm (Dijkstra, 1959). Applying
2-grams is very straightforward, but using 3-grams is more complex. This is why we will
disscuss its possible implementation considering an example. The whole network of our
example is presented in Fig. 7, but with simplified values from 2-grams only. Then calculating
probability for a particular word using 3-grams is presented in Fig. 8. It has to be stressed
that many more calculations have to be conducted to calculate these weights, and also many
more values have to be kept when the best path is searched. Fig. 9 shows the entire sentence
we want to decode and its weights using 3-grams being components of this sentence. Fig. 10
shows searching the best path node after a node. Our example has 10 nodes and 17 edges. It
results in 26 possible 3-grams (Fig. 11).

Typically n-grams of higher orders are smoothed by backing-off methods (Kneser & Ney,
1995; Ney et al., 1994). It can improve results by up to 5%. Another recently popular method
is to apply Bloom filter (Bloom, 1970) instead of backing-off.

The presented n-gram model of Polish will be licensed to be available for both research and
commercial applications. The first commercial usage will be an Imaginary Interface made
by SnapKeys. It has 4 imaginary letter keys at the begining. Afterwards a user can hide
them because they can begin to blind type anywhere on the screen. It leaves entire scrren
for displaying output data and allow faster typing thanks to smaller finger movements. The
interface connects several probability models to find words which a user wants — 1-gram being
one of them. The Polish version is now being developed using our model.

6. Conclusions

N-gram models are strightforward but very effective in language modelling. Large corpora
are necessary to build effective n-grams models. This and other problems make this task
especially complicated for languages like Polish which are highly inflected and without very
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large professional text corpora. Eventhough this difficulties, a succesful n-grams model of
Polish was build at AGH and offered to public.
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1. Introduction

Over the last decade a lot of TTS systems have been developed around the world that are
more or less language-dependent and more or less time and space-efficient (Campbell &
Black, 1996; Holzapfel, 2000; Raitio et al., 2011; Sproat, 1998; Taylor et al., 1998). However,
speech technology-based applications demand time and space-efficient multilingual,
polyglot, and multimodal TTS systems. Due to these facts and due to the need for a
powerful, flexible, reliable and easily maintainable multimodal text-to-speech synthesis
system, a design pattern is presented that serves as a flexible and language independent
framework for efficient pipelining all text-to-speech processing steps. The presented design
pattern is based on time and space-efficient architecture, where finite-state machines (FSM)
and heterogeneous relation graphs (HRG) are integrated into a common TTS engine through
the so-called “queuing mechanism”. FSMs are a time-and-space efficient representation of
language resources and are used for the separation of language-dependent parts from the
language-independent TTS engine. On the other hand, the HRG structure is used for storing
all linguistic and acoustic knowledge about the input sentence, for the representation of very
heterogeneous data and for the flexible feature constructions needed by various machine-
learned models that are used in general TTS systems. In this way, all the algorithms in the
presented TTS system use the same data structure for gathering linguistic information about
input text, all input and output formats between modules are compatible, the structure is
modular and interchangeable, easily maintainable and object oriented (Rojc & Kaci¢, 2007).
The general idea of corpus-based speech synthesis is the use of a large speech corpus for
acoustic inventory and for creating realistic-sounding, machine-generated speech from raw
waveform segments that are directly concatenated without any or only minimal signal
processing. Since only a limited size speech corpus can be used, a compromise between the
number of speech units in different prosodic contexts and the overall corpus size should
normally be reached. On the other hand, the unit selection algorithm has to select the most
suitable sequence of units from the acoustic inventory, where longer units should be
favoured. Namely, when using longer units, the number of concatenation points can be
reduced, resulting in more natural synthetic speech. The performance of the overall unit
selection algorithm for corpus-based synthesis, regarding quality and speed, depends on the
solving of several issues, e.g. preparation of text corpus, acoustic inventory construction



130 Speech and Language Technologies

using non-uniform units, reduction of unit search space, detection and removal of
acoustically very similar units, off-line calculation of concatenation costs between all speech
units in the acoustic inventory, their efficient representation, and their fast access within the
on-line system. Further, the optimisation of weights used within cost function is an
important issue, since these weights mainly influence the unit selection process performance
regarding synthesised speech quality and naturalness (Black et al., 1997; Christophe et al.,
2002). In the presented design pattern for corpus-based TTS systems, a gradient descent
based unit selection optimisation algorithm is proposed for optimising unit cost functions’
weights. Furthermore, the presented unit selection process addresses issues, such as:
efficient acoustic inventory construction, reduction of unit search space, detection and
removal of acoustically similar units, calculation of the concatenation costs, efficient
representation of concatenation costs, and fast lookup. An important aspect of the presented
cost functions” weights optimisation is that it also reduces laborious manual involvement
when preparing new voices and tuning the best possible quality of the corpus-based TTS
system. No matter what age, cultural background, or even what language people might
speak, facial expressions and different body gestures always occur in natural human-human
dialogues. Even when the dialogue is not face-to-face, people are prone to describing key
issues by using different facial expressions or even by hands that remain free. Therefore, the
first reason for using non-verbal modalities together with the TTS system, is to better
emulate the natural course of the dialogue, and to make people feel more comfortable when
“speaking” to a machine. The second reason is hidden in those issues that occur during the
usage of human-machine interaction systems. The need to repeat and the misinterpretation
of speaking terms are common features regarding the majority of users. Such behaviour
usually leads towards less-functional and less-efficient spoken dialogue systems (Cassell,
2000). If we were to have more appropriate social responses from the machine through
personification of the TTS system by using embodied conversational agents (ECA), people
will more readily respond with emotive socially-coloured responses. Therefore, human-
human-like communicative behaviour may be evoked in this way, giving the spoken
dialogue system the ability to shape and adjust the dialogue to its own rules. TTS systems
and believable characters (ECAs) can be used together to evoke communicative behaviour.
ECAs can often, by expressing social tendencies, shape and also lead the dialogue.
Understanding of attitude, emotion, together with how gestures (facial and hand) and body
movements complement, or in some cases, override any verbal information produced by the
TTS system thus providing crucial information for modelling both the dialogue and the
ECA’s socially-oriented responses. The social response (naturality) of the TTS system fused
with ECA can then be presented to the user in a more human-like form, using not just audio
but also facial expressions, such as: facial emotions, visual animation of synthesised speech,
and correlated head, hand, and body movements. Therefore, personificated TTS systems
enable the development of more advanced, personalized, and more natural multimodal-
output-based human-machine interfaces that are in demand more and more for today’s
applications and environments. The time and space-efficient architecture of the corpus-
based TTS system is presented in Section 2. The unit selection process for corpus-based TTS
systems is then described in Section 3. The next section describes in detail the novel EVA
framework that enables personification of the general TTS system. Slovenian
implementation of the multilingual and multimodal corpus-based PLATTOS TTS system is
presented in Section 5. A novel approach to distributive evaluation and the testing of TTS
systems is presented in Section 6. Conclusions are drawn at the end.
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2. Time and space-efficient TTS architecture

The corpus-based TTS architecture of the PLATTOS TTS system presented in Figure 1 is
modular, time and space-efficient, and flexible (Rojc, 2003; Rojc & Kaci¢, 2007). By following
the multilingual aspect, the language-dependent resources are separated from the language-
independent core TTS engine. Its modular structure allows for all modules within the
system to be easily maintained, and further improved by easy integration of new algorithms
into the TTS system.
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Fig. 1. The time and space-efficient architecture of the corpus-based TTS system.

2.1 Queuing mechanism used in the TTS architecture

An efficient queuing mechanism is implemented in the presented TTS architecture (Rojc &
Kaci¢, 2007), where each double-linked list is used for one processing step in the TTS
system. In this way all TTS processing steps are pipelined together. A queuing mechanism
enables flexible addition and removal of dequeues from the mechanism, thus allowing for
the merging of already existing processing steps, or adding new ones. The overall text-to-
speech process runs in a loop, when processing the input text. All TTS engine dequeues are
empty at the start. Firstly, the tokenizer module starts generating tokens from the input text
by using a finite-state machine (FSM) based lexical scanner. Two additional token types are
added for marking end-of-sentence or end-of-file conditions. These two tokens are only
used for controlling the overall queuing mechanism. Immediately after detection, either of
these two tokens, the following part-of-speech (POS) tagging dequeue is activated, taking all
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Fig. 2. The queuing mechanism.
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tokens from the previous tokenizer dequeue (for the current sentence). After the tagging
process, the grapheme-to-phoneme (G2P) conversion dequeue activates and grabs all tokens
from the POS tagging dequeue. In this way (at the sentence level) the text-to-speech process
continues until acoustic dequeue, where the speech signal for the corresponding sentence is
finally generated. All text-to-speech processing steps are sequential processes. Nevertheless,
the processing of several sentences within the presented queueing mechanism can run in
parallel, by processing each sentence within its own thread. At the end, only the correct
order from the input must be preserved, before playing-out generated speech signals.

2.2 Heterogeneous relation graphs used in the TTS architecture

All TTS processing steps contribute to the linguistic information used for generating the
speech signal. The heterogeneous relation graph (HRG) structure provides clean general-
purpose mechanisms for storing and representing all the information extracted by the TTS
system (Rojc & Kaci¢, 2007; Taylor et al., 2001). In the PLATTOS TTS architecture, one HRG
structure is used per each text sentence, and is accessible by all dequeues used in the TTS
system. In this way, all algorithms are able to access, change, or enrich stored information
when appropriate. Figure 3 illustrates the integration of the HRG structure into a queuing
mechanism. The HRG structure demonstrates the use of two different relation-structures for
storing extracted information, linear lists and trees. The linear lists are named Segment,
Syllable, Word, Phrase, IntEvent, and SynUnits in Figure 3, whilst the tree structures are
named SyllableStructure, PhraseStructure, IntonationStructure, SynUnitsStructure. The
linguistic objects within the relation-structures are e.g. words, syllables, segments, phrase-
breaks, intonation events, synthesis units, enriched with several attributes determined by
the algorithms used within the processing dequeues. Attributes are the properties used in
TTS system modules, e.g. part-of-speech, duration, phone-class and properties, intonation
event type, phrase-break type, prominence label-type, to name just a few. Linear lists are
used to specify the relation between linguistic items found in the specific processing step.
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Fig. 3. Interaction of a queuing mechanism and a HRG graph structure.
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Forward and backward traversals are possible within the structure. Additional tree relation-
structures add vertical information between those linguistic objects included in different
linear lists. In this way, very complex features for machine-trained models (e.g. CART trees,
NNs etc.) can be generated from the linguistic information stored in the HRG structure,
without any additional processing or extra work on feature construction. Furthermore, the
relation-structures used within a HRG structure can easily be changed and adapted to
different structures, following the processing needs of the modules used in the TTS system.

2.3 Finite-state machines used in TTS architecture

For multilingual and polyglot speech synthesis systems, it is important that the migration to
new language can be done with little or no intervention in the algorithms used. This can be
achieved by separating language-dependent language resources from the TTS engine, and
obtaining a language-independent TTS engine. The efficient separation of language-dependent
language resources is done within PLATTOS TTS architecture by finite-state machines (FSM)
(Mohri, 1995; Rojc & Kaci¢, 2007). Furthermore, FSMs are also used for the representation of
language resources and linguistic rules. FSMs can be constructed off-line and loaded into the
TTS engine during on-line operation. The corresponding representation offers fast lookup,
since the lookup does not depend on the size of the dictionary but only on the length of the
considered input string. Minimization algorithms allow one to reduce the sizes of these
devices to a minimum. The FSM compiler is used for the compilation of several regular
expressions into the finite-state machine, construction of finite-state machine-based tokenizers,
etc. In order to solve disambiguity problems, heuristically-defined or trained weights are
assigned to FSM transitions and final states, yielding weighted finite-state automata and
transducers (WFSA, WEFST) that can be integrated into the TTS architecture (Mohri, 1995). In
Figure 1 the tokenizer is marked as “T” in the TTS architecture. At this processing level two-
level rules or rewrite rules can be used, and compiled into finite-state machines by an FSM
compiler (Mohri, 1996). Namely, these rules can resolve much of the language-dependent
disambiguity present in the input texts. TTS system processes any given input text that often
contains more or less spelling mistakes (e.g. e-mails, SMS messages). Therefore, the finite-state
automaton ‘S” follows (represents efficiently large lists of valid words), and is used by the
spell-checking system (if it is included in the architecture). Using them, the spell-checking
system is able to detect invalid words and can guess the most suitable replacements. Next, the
POS-tagging module needs large-scale morphology lexicons. Therefore, the finite-state
transducer ‘P’ can be used here for time and space-efficient representation of large-scale
morphology lexicons. If TTS systems use rule-based POS-tagging algorithms (e.g. Brill, 1993),
the POS-tagging rules can be further compiled into finite-state machines, and become a
compact part of the TTS architecture (Emmanuel & Schabes, 1997). The grapheme-to-phoneme
(G2P) conversion module uses, in general, large-scale phonetic lexicons for common words,
proper names, and even foreign words, as found in the input text. All these resources can be
represented by the finite-state transducer (FST) ‘G’, as presented in Figure 1. Decision-tree
models can be included in the TTS architecture, since they represent efficient knowledge
representation regarding time and space requirements. They can be used in the prosody
modules (symbolic and acoustic prosody) for the prediction of phrase breaks, prominence and
intonation event labels, segment durations, pauses between segments and the acoustic
parameters of intonation events. Nevertheless, it has been shown that decision trees can also
be represented by weighted finite-state machines (labelled as WFST ‘SP’, WEST “AP’) (Sproat
& Riley, 1996). However, this step only makes sense when they are going to be merged with all
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other finite-state machines, as decision trees are already efficient knowledge-representation
structures. In corpus-based TTS systems, the unit selection search process represents a
significant time and space issue (large unit search space). Finite-state machines can be used
here for more efficient access to unit candidates stored in the acoustic inventory. In the
concatenation and acoustic modules, digital signal processing algorithms are used for the
processing of concatenation points, and for adapting unit candidate pitch and duration and, in
general, no external language-specific resources are needed.

3. Time and space efficient unit selection in corpus-based TTS systems

All the data-preparation steps needed for general corpus-based TTS systems are shown in
Figure 4. The acoustic inventory and concatenation costs (have to be represented in a time
and space efficient way) calculated between unit candidates are the result of these data
preparation steps. The optimality and quality of the final acoustic inventory (used by the
unit selection process) depends on several previous steps e.g. text-corpus construction,
segmentation, phonetic tree-based clustering of units, and the acoustic evaluation of unit
candidates. The last step takes care of removing acoustically similar units (the so-called
redundant units) that are unnecessary in the optimised acoustic inventory. Calculation of
concatenation costs then follows with a quantisation-based compression of these, and their
space and time efficient representation, where the concatenation costs’” matrix indices can be
stored in the form of FSM.

3.1 Acoustic inventory construction

In corpus-based TTS systems the idea is to use the whole speech database for acoustic unit
inventory, selecting the longest possible existing phonetic segments, and matching the target
unit's specification, as defined for the target sentence. Because of the complexity and
combinatorics of languages, it is important to find the best compromise: that has, on the one
hand, as small a speech database as possible and, on the other hand, ‘enough’ acoustic
realizations of those units found in several phonetic and prosodic contexts. Defining such a
compromise is one of the major issues for the corpus-based speech synthesis approach
(Bozkurt et al., 2003, Rojc, 2003). In PLATTOS TTS architecture diphone and triphone units
are used within a unit-selection algorithm, where the diphones are base units. The richness
of text corpus (regarding diphones and triphones) then has a significant impact on the
richness of the acoustic inventory, on the performance of the unit-selection algorithm, and
on the expected naturalness of the synthesised speech signal. A detailed analysis of several
tokenised text corpora has to be performed in order to collect the appropriate text of a given
language when striving to good acoustic inventory at the end.

Text corpus
construction
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Fig. 4. Data preparation steps for the efficient unit selection process (off-line process).
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After constructing a text corpus and recording speech database, the obtained database is
segmented into unit candidates. Automatic segmentation procedures are preferred for
segmentation of the database during the first step, but for optimal quality at least some
manual checking usually follows. Better results can be expected when canonical phonetic
transcriptions are verified and adapted to the recorded speech material, before running
automatic segmentation. The final size of the constructed acoustic inventory is important in
order to meet real-time requirements. In PLATTOS TTS architecture the starting acoustic
inventory consists of a large set of non-uniform units (diphones and triphones). It can be
expected that an acoustic inventory constructed directly from a segmented database, will
contain acoustically similar units (can be qualified as redundant units) that can be removed.
In order to detect these units, all units have to be acoustically evaluated regarding pitch,
duration, and energy. When the text corpus is well-defined, the recorded speech material
will more probably contain units with several distinct acoustical realisations, have less
redundant units and, consequently, will allow for a better quality of synthesised speech
from general input texts.

3.2 Acoustic inventory optimization

The search space for a unit-selection algorithm can already be reduced off-line during acoustic
inventory construction, and also during the on-line unit selection process (within the TTS
system) (Campbell & Black, 1996; Holzapfel, 2000). In the PLATTOS TTS system’s unit
selection approach, the reduction of the search space is proposed as a two-stage process
(performed off-line). During the first stage, the diphone and triphone unit candidates are
clustered according to their phonetic context and, during the second stage, acoustically similar
units (similarity measurements are determined by considering pitch, duration, and energy) are
automatically detected, and removed within the constructed tree-clusters. In order to detect
acoustically similar candidates within the tree-clusters, detailed acoustic analysis is performed
on all the cluster's unit candidates. Detecting acoustically similar units and removing them
from the acoustic inventory can be performed in a manner analogous to the perceptual stimuli
relationship. The final decision about which units should remain in the constructed clusters is
done after the acoustic characteristics of all the clusters' unit candidates are obtained during
analysis. The final optimised acoustic inventory contains, for each specified cluster, n units that
are then used in the unit selection algorithm. The concept of suitability functions can be used
in order to rank the unit candidates, where the setup and tuning of suitability functions can be
performed by using a hybrid approach (Holzapfel & Campbell, 1998). First, the mean values of
energy, pitch, and duration are calculated for each obtained tree cluster. All the mean values
then represent those target values having a suitability value of 1.0. Other target values for
energy, pitch, and duration, are defined for each unit candidate within a specific cluster by
using the cluster’s suitability functions' shape. Partial suitability functions must reflect acoustic
differences between unit candidates within a specific cluster. Differences in duration amongst
the units in the cluster ‘i’ are represented by using the following partial suitability function:
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Differences in pitch amongst the units in the cluster ‘i’ are calculated by using the following
partial suitability function:
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Differences in energy amongst the units in the cluster ‘i
following partial suitability function:
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In this way, the overall unit candidate’s suitability is ultimately defined by combining
partial suitability functions for pitch, duration and energy within the given cluster:

N
Sovemll = H Spartial (4)
i=1

At the end of the ranking process unit candidates are ranked within the region of 0 to 1 in all
tree clusters. This region is then divided into smaller sub-regions. Suitability values within a
specific sub-region correspond to those candidates that have similar acoustic characteristics,
meaning that they have small or insignificant differences regarding pitch, duration, and
energy. In this case, only one candidate from a specific sub-region is kept in the optimised
acoustic inventory, and all the others can be removed. Multiplication of the used partial
suitability functions ensures that differences in certain acoustic parameter are noticeable
within the overall suitability value for each unit candidate, and that the significance of a
particular acoustic feature is reflected by the shape of the used partial suitability function.

3.3 Concatenation cost calculation and representation

The calculation of concatenation costs (CC) is a very time-consuming step for corpus-based
TTS systems, especially if performed during the on-line unit selection process. Namely, the
CC costs must be calculated between all phonetically-matched candidates for each of the
two successive target units in the current sentence. Then, in order to evaluate any distortions
at concatenation points, the corresponding speech samples of all these candidates have also
to be loaded. In order to avoid this, the obvious solution can be the off-line calculation of all
CC costs. The disadvantage of this solution is that the target unit sequences are unknown
and, therefore, consideration of any phonetically-matched candidates in the acoustic
inventory must be taken into account. Furthermore, concatenation costs have to be
calculated between all unit pairs in the acoustic inventory (for large databases, non-uniform
acoustic inventories can have a lot of units), and this results in large CC cost-matrix
dimensions and storage requirements. In order to also solve this problem, the vector
quantisation algorithm (VQ) can be used. By using the VQ technique, we are able to
compress a CC cost-matrix into a much smaller one. This whole process can be easier
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performed by first splitting the large CC cost-matrix into smaller sub-matrices (speed and
memory problems). The CC costs for each pair of candidates are calculated for each sub-
matrix. The calculated costs within each sub-matrix are then quantisized into a
corresponding codebook of a pre-defined size (number of clusters) (Rojc & Kaci¢, 2007).
Without using vector quantisation, the storage requirements for each sub-matrix are (W -
size of the sub-matrix):

Storage= N - W -sizeof ( float) ®)
After using vector quantisation, the storage requirements drop down to:
Storage=VQ - W - sizeof ( float) (6)

VQ represents the codebook dimension regarding a pre-defined size for any specific sub-
matrix. After calculating codebooks for all sub-matrices, they are merged into one common
codebook, representing the compressed CC cost matrix. This representation is a space-
efficient representation of concatenation costs between all candidates in the acoustic
inventory. An index table is also built in addition to the constructed codebook, and used for
accessing the concatenation costs. In order to also make the CC cost lookup also time and
space-efficient, the CC cost indices are stored in the form of a finite-state transducer (FST)
(Mohri, 1997). In this way we are able to perform an efficient lookup process in the unit
selection algorithm.

3.4 On-line unit selection algorithm
The unit selection algorithm is a very important process in corpus-based concatenative
speech synthesis, since it searches for the best matching sequence of unit candidates with
those target units specified for the input sentence. The selection of non-uniform units
(diphones and triphones) from the acoustic inventory is based on minimising those acoustic
distortions that originate from concatenations, and minimising the needed modifications of
the unit candidates. In the PLATTOS TTS architecture, these distortions are described in the
form of two costs:
e target cost C' (u;,t;) : represents an estimation of the difference between unit candidate
u; in the acoustic inventory and target unit specification ¢;,
e concatenation cost C®(u;_q,u;): represents an estimation of the quality of the
concatenation of two successive units #;_; and u; .
Target unit specifications include e. g. phonetic symbol, symbolic prosody information (e.g.
stress indication), acoustic prosody information (e.g., desired unit duration and F0) etc. They
are used for calculating target cost (TC) in the on-line unit selection algorithm.
Concatenation cost (CC) is already calculated off-line (as suggested), and accessed through
an efficient lookup process. Common cost then reflects the differences in target and acoustic
realisations for specific unit candidates, and the expected distortions when the selected unit
candidates are concatenated together. In corpus-based TTS systems, a pitch and duration
modification algorithm (e.g. TD-PSOLA) is often applied to pre-stored candidates in the
acoustic inventory, in order to guarantee that the prosodic features of synthetic speech meet
the predicted target values. Then, using a good criterion for finding the best fitting unit
sequence from the acoustic inventory is crucial for generating high quality speech. In the
PLATTOS TTS architecture unit selection algorithm, the following equation is used for
calculating the common cost for each unit candidate:
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It follows from equation (7), that the target cost uses partial-suitability functions for
duration, pitch, and energy (equations (1), (2) and (3)). The mathematical framework behind
the computation of this common suitability is based on fuzzy-logic (Holzapfel & Campbell,
1998). The performance of the unit selection algorithm and, consequentially, the quality of
the synthesised speech, significantly depends on the partial suitability functions’
parameters. Furthermore, weight wj,,; is additionally included in order to have control
over the calculated concatenation cost between two unit candidates. Weight w,,; is
included in order to favour the selection of longer units during the unit selection process
(e.g. triphones, instead of diphones). Finally, weight w, is included in order to control the
influence of concatenation cost on the common cost C(u;). And S, represents the
distortion measure between two successive unit candidates, based on an acoustic cost that is
calculated by using signal processing based on spectral analysis (suggested to be performed
offline).

3.5 Gradient-descent based unit selection process optimization

An important common cost calculation issue is the optimal setup and tuning of those
parameters used within partial-suitability functions (equations (1), (2) and (3)), and other
weights used in equation (7). Parameters a, b, ¢, d, and e influence the shapes of the partial-
suitability functions and, consequently, influence the significance of a particular criterion
(duration, pitch, energy) within the unit selection process. Furthermore, searching for the
best unit sequence using a unit selection algorithm is a multidimensional problem.
Heuristics is usually used for setting up parameters and weights, or extensive subjective
listening tests are performed, resulting in more or less optimal solutions. Such an approach
is at least time consuming and laborious. Besides, parameters and weights have to be
adapted for each new TTS voice. Instead, the PLATTOS TTS system uses an automatic
optimisation approach of cost function’s weights based on a relaxed gradient descent
algorithm (RGD) (Figure 5).
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Fig. 5. Unit-selection optimisation process.
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The input into the unit-selection optimisation process is a set of prosodically annotated
sentences (HRG utterance structures), off-line calculated CC costs, and acoustic inventory.
The unit selection algorithm then selects a sequence of units for each input sentence by
using an initial setup of weights (the initial setup of values is set by a hybrid approach, as
proposed in (Holzapfel & Campbell, 1998)). Automatic unit selection process evaluation is
performed during the next step, by calculating the pitch deviations of neighbouring selected
candidates, and deviations between selected candidates’ durations and those durations
predicted by prosody. The obtained evaluation result represents initial common error ‘E’ for
the unit selection optimisation process. The process then keeps running within a loop, and
the weights and parameters are iteratively updated by using the RGD technique. The
optimisation loop consists of several processing steps. During each iteration, a common
error ‘E’ is calculated as the sum of pitch differences (between predicted pitch f, (k) and the
selected unit candidate’s pitch fo(k)), and the duration differences (between predicted
duration d(k) and the selected unit candidate’s duration d(k) ):

o o)~ o) [a0) -a(w)
fo(K) (k)

The computation of common error ‘E” includes differences in durations (time) and FO values
(frequency). Therefore, differences in duration and FO value are normalized in equation (8).
In order to minimize these differences (and common error ‘E’), the RGD technique is used,
optimizing the initial setup of the unit-cost functions' weights and parameters. In other
words, the goal is to minimize the cumulative common error ‘E’. All weights and
parameters are stored in a vector p:

N
E=Y[ef , o ®)
k=1
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This vector is then iteratively updated in such a direction that the change results in a smaller
common error ‘E’. This direction is searched for by a gradient calculation, performed for
each value in vector p: VE(p). An adjustment of each vector value is then performed by the
following update rule:

Pus1 = P —diag(u,)- VE(p,,) (10)

The obtained gradient vector consists of the partial derivatives of the unit cost functions,
with respect to each value of the vector p (e.g. partial derivative of ‘E” with respect to p; ):
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The adaptation rate p must be selected so that the convergence of the algorithm is
guaranteed, since the performance of the algorithm is quite sensitive to a proper setting of
the adaptation rate. Namely, if the adaptation rate is too high, the algorithm may oscillate
and become unstable. On the other hand, if the adaptation rate is too low, the algorithm will
take too long to converge. The optimisation process is repeated, until obtaining the
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predefined minimal error. When this happens, the set of weights and parameters is stored,
and can be used for the on-line unit selection algorithm in the corpus-based TTS system. The
approach is fully automatic, and can be repeated for each new voice used in the TTS system.

4. Personification of the TTS systems

The idea of advanced human-machine interfaces and spoken dialogue systems is to emulate
natural and highly-complex human-human interactions. Substantial effort by several
researchers has already been devoted to this task, by taking into account multimodal-input
and multimodal-output contexts. An understanding of attitude, emotion, together with how
gestures (facial and hand) and body movement complements, or in some cases even
overrides verbal information, provides crucial information about modelling interactive
management. It influences both input and output perspectives of the realization of natural
human-machine interaction and, consequently, the personification of those TTS systems
used in e.g. spoken dialog systems. Personification of TTS systems, therefore, not only relates
to the transformation of a TTS system’s output into ECA’s visually-presented articulation
within the mouth region (visualizing verbal behaviour), but also to the visualization of non-
verbal behaviour. The most natural way to visualize (emulate face-to-face conversation) both
verbal and non-verbal information is to translate it into a human-body representation.
Embodied conversational agents (ECA’s) are widely used concepts for the visualization of
conversation and are used in many spoken dialogue systems. ECA implementations range
from talking heads (Poggi et al, 2005), to agents that can move and use the whole
representation of the human body (Heloir & Kipp, 2009; Thiebaux et al., 2008). There are many
implementations of ECA’s that can, in one way or another, emulate natural human behaviour
and evoke emotional and social responses within human-machine dialogue. (Ball & Breese,
2000) describe the generation of emotional responses and the recognition of emotions by
humans, and the additional adaption of ECA’s personality to that of the human. (Poggi
&Pelachaud, 2000) generate communicative behaviours on the basis of speech acts and
concentrate on one facial expression and speech act performatives. Performatives are a key
part of the communicative intent of a speaker, along with propositional and interactional acts.
In general terms, all conversational behaviour in conversational models must support
conversational functions and different input/output modalities. Any conversational action in
any modality can result in several (sometimes contradictive) communicative goals. The
general architecture of a system that can visualize and personificate a general TTS system,
used in e.g. a spoken dialog system, is formed as shown in Figure 6.
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Fig. 6. General architecture of an ECA visualization system.

The idea of visualizing suggests that different input modalities are combined into different
behavioural events. Different input modalities are commonly generated as abstract behaviour
descriptions provided in XML based description schemes such as Affective Presentation Mark-
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up Language (APML) (DeCarolis et al., 2004), and behavioural mark-up language (BML)

(Vilhjalmsson et al., 2007). These are general description languages that can be used to describe

any movement/action realized within the scope of human-machine dialogue. The task of an

input manager, commonly referred to as a behaviour modeller, is to process different
modality-dependent inputs, and to transform them into a time-referenced set of behavioural
events. The key concern of such a time-scheduling process is to synchronize verbal with non-
verbal behaviour, such as facial expressions, head movements, gaze and head gestures. Such
behaviour often relies on the semantic information of data, such as non-standard sync-points
at word breaks, dialogue markers, etc. The behavioural events (behaviour controllers) then
form speech-synchronized descriptions of motion that should be transformed into movement
on an ECA’s articulated model (body). Different types of articulated bodies can be used

(Gudiikbay et al., 2008). In general 3D models can be grouped into:

o Stick figure models: models based on sets of rigid elements, and connected to joint chains.

o Surface models (mesh-based models): represent an upgrade of stick figure models. In this
case, a polygonal mesh-layer (skin) is applied on the skeleton chains.

o Volumetric models: use simple volumetric primitives such as spheres, cylinders and
ellipsoids, in order to construct the body shape.

e Multilayered models (muscle-based models): present anatomically-correct models. The
animator of such models introduces different kinds of constraints to the relationship
between layers.

The ECA realization engine (Figure 6) is used to store the articulated models of different ECA’s
(different bodies), and to apply behavioural events in the form of different transformations on
the control units (parts of the articulated model used to generate movement). These
transformations result in animated movement. The type of animation technique used depends
on the type of articulated model. Most commonly, such animations are performed in the form
of skeletal joint transformations and morphed-shaped transformations. The proprietary EVA
framework (Mlakar & Rojc, 2011), developed to evoke a social response in human-machine
interaction, is a python-based software environment that can convert a TTS system’s output
into audio-synchronized animated sequences of speech. ECA’s provided by EVA framework
can generate social responses in the form of facial expressions, gaze, head and hand movement
and, most importantly, in the visual form of synthesized speech. The EVA framework
provides a description script, an animation engine and articulated 3D models, and provides
visual representation of synthesized speech sequences in the form of different types of video
streams (in addition to synthesis into a video file/screen). Figure 7 outlines the modular
architecture of the EVA framework.
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Fig. 7. Architecture of the EVA framework.
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In order to personificate a TTS system by using the EVA framework, the TTS system has to
produce TTS output according to the framework’s specifications, based on the EVA Script
XML scheme (Mlakar & Rojc, 2011). These XML schemes specify the desired ECA facial
animations and body movements. The animation engine translates them onto the articulated
3D model of a human body in the form of animated movement. A TTS system’s output can
contain acoustic, linguistic, syntactic, semantic, and temporal information about general
input texts that can be realized within a two stage visualization concept. The first stage is
called ‘Animation building’ and the second ‘Animation realization’. The Animation
building stage transforms TTS output in the form of the EVA script XML scheme into
animation parameters mapped to different control units of the ECA’s 3D articulated model.
The transformation from abstract to animatable content is then performed by the Animation
parameter’s builder. Such a transformation can be described as interfacing different XML
tags using different ECA resources. Each ECA generated by the EVA framework has two
types of resources. The 3D multi-part actor resources (Figure 7) contain different 3D-
submodels of body (e.g. hair-style, eyes, teeth, dresses, etc.). Each 3D-submodel is associated
with its corresponding textures, polygonal meshes and sets of different control units
(morphed shapes, skeletal chains). The Personality template resources contain different
behavioural templates written in the EVA script. These templates describe the common
articulation of an ECA (e.g. how should, in general, specific viseme be formed), triggering
words to gesture translations (e.g. what is a common gestural sequence when a certain word
occurs), and other distinctive features of an ECA (e.g. eye-blinks, probability of gesturing,
etc.) making each ECA an individual "person’. The Animation parameters builder, therefore,
translates the labelled text by interfacing each EVA script tag with a control unit, or
behavioural template, and forms different groups of movements. Each group of movement
is defined by semantic (which control units in which order), temporal (the duration of
stroke, hold, and retraction phases) and spatial features (ending position of the control unit).
The Animation realization phase transforms animation parameters into animated sequences.
The animation parameters present raw data that describes how the Animation engine
should move different control units. The Animation engine of the EVA framework takes
care of animating and rendering the obtained animation parameter sets. It is based on the
Panda 3D game engine (Goslin & Mine, 2004). In essence, this animation engine transforms
the animation parameter sets into corresponding sequential and/or parallel movements of
control-points (bones, or morphed shapes) lerp intervals. Each control-point in 3D space can
be moved, either by 3D transitional or 3D rotational vectors (as specified in MPEG4
standard). The Forward kinematics and animation engine’s generator provide procedures
for the synchronization of such movements, and implement the animation-blending
technique used on those animated segments that have to be controlled by different gestures
at the same time (e.g. both smile and viseme can try to control the lower jaw joint; in such
cases most of the influence is given to the viseme, and only a small portion is left to the
facial gesture smile). Based on the semantics of the animation parameter sets, the animation
groups the control units into sets of sequential and concurring movements and associates
each movement with its temporal and spatial features, therefore forming personalized body
movements. The EVA framework also presumes that no movement is linear and should,
therefore, be interpolated against its interpolation curve. The EVA framework provides
three types of non-linear interpolation for each personalized movement: Easeln (slow-start
and ramp-to-full, abrupt finish), EaseOut (starts with full speed and in the last n frames
decelerates to a slow stop), and EaseInOut (starts slowly, ramps to full speed and after the
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constant phase, if it exists, slowly decelerates to full stop). The rendering process is frame
based and at each frame is interpolated against its non-linear interpolation curve. At any
given frame the animation can also be stopped/paused or re-adjusted to its given
temporal/spatial features. The EVA scripts describe both verbal and non-verbal behavior,
independently. The verbal behaviour is contained within speech XML tags named speech,
and the non-verbal behaviour may be contained within fgesture and bgesture tags
describing facial expressions, and different body gestures. The verbal parameters can be
described by the semantic, temporal, and articulation features of a sequence, whereas non-
verbal behaviour involves describing the presence level of facial expressions and different
body gestures. All speech-driven non-verbal behaviour can be defined in the TTS system’s
output directly, or indirectly by derivation of several non-verbal parameters found in the
TTS generated output. Non-verbal parameters, such as emphasis, phrase/word breaks, and
key phrases (e.g. dialogue discourse markers) are used when the non-verbal behaviour is
controlled by a TTS system. The non-verbal feature allocators, fgesture and bgesture unify a
set of control units, assigned to control different parts of the body. The facial expressions
contain control units that can be physically assigned to the human face (e.g. control units
such as lower-jaw, mouth corners, etc.). Similarly, body gestures allocate control units, such
as: left elbow, neck, control units for fingers, etc. In addition, the left and right-eye control
units are also assigned to the body gesture group. By describing the temporal and spatial
features of movement in the form of sequential or parallel groups, the EVA framework
enables hierarchical levels of animation for both fgesture and bgesture objects. Each
movement can, therefore, be built from different control units with either sequential or
concurrent movement. In the context of spoken dialogue systems using TTS systems, the
EVA framework not only enables more realistic human-machine interaction, but can also
evoke emotional and social responses that exist in face-to-face human-human spoken
dialogues.

5. Multilingual and multimodal PLATTOS TTS system for the Slovenian
language

This section presents an implementation of the corpus-based PLATTOS TTS system for the
Slovenian language, using a concatenative approach and a TD-PSOLA speech-synthesis
algorithm. The dequeues are tied together into a common time and space-efficient TTS
engine, using the HRG structure for the representation of linguistic information. Finite-state
machines, however, are used for efficient language resource representation, and separation
of the language-dependent part from the language-independent TTS engine. The fsmHal
library is used to efficiently construct the necessary finite-state machines used (Rojc, 2000;
Rojc 2003). All modules, as specified in the TTS system architecture (Figure 1), are included
and used. In the following subsections, implementation of those modules used for the
personalized PLATTOS TTS system regarding the Slovenian language is presented in detail.

5.1 Tokenizer dequeue

All tokens are specified off-line in the form of regular expressions. Then the FSM compiler is
used for the construction of a tokenizer finite-state machine. The additional part of the
tokenizer module is the spell checker. It is used in order to prevent erroneous words that
corrupt the performance of other modules within the TTS system, e.g. obtained prosody
patterns result in speech signals with lower intelligibility. The spell-checking algorithm uses
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a large word list, containing a set of valid words. Represented as FSA, the corresponding list
is then used for edit distance calculations and searching for the best possible replacements
for the misspelled words found in the input text. An additional part of the tokenizer is the
normalisation process. Number tokens’ factorization is performed firstly, in order to convert
the numbers into the corresponding word forms. Some languages (e.g. German and
Slovene) need additional filter (FST), for handling language-specific decade flop
phenomenon. The core number lexicon is constructed from the Sllex lexicon (Rojc & Kaci¢,
2000), represented as FST. Additional rewrite rules are used for language-specific word
insertions (special words such as “and” (English), “und” (German) or “in/and” (Slovene).
Compiling rewrite rules into a FST is performed, since it is more efficient and requires a
limited number of operations (Sproat, 1998). Furthermore, an important issue is the
normalisation process of abbreviations, especially in the cases of inflectional languages.
When considering the context a decision has to be made about which conversions are
possible and which are impossible. The marking of unacceptable and acceptable conversions
for a given context is done using the rewrite rules, and written by an expert. For processing
special symbols (e.g. %), the construction of FSM representing lexical analysis for a given
symbol, is performed for the conversion of a special symbol into word forms. In those cases
where more possible conversions are preserved at the end, the most appropriate one is
obtained using the BestPath algorithm (Rojc & Kaci¢, 2007).

5.2 POS-tagging dequeue

The POS tagging approach performed in the PLATTOS TTS system is based on the Brill’s
POS tagging approach. The POS tagging process consists of several steps. Firstly, the
morphology lexicon is used as obtained from the training. Within this lexicon each entry is
assigned the most probable POS tag found in the training corpus. If a word is not found, the
SImlex morphology lexicon (Rojc & Kaci¢, 2000) is used next. Deterministic and minimized
FST representation of SImlex lexicon represents time and space-efficient representation and
fast lookup time. Morphological analysis then follows, which uses the so-called guessing
automata, constructed for unknown words (this FSA tries to guess the POS tag by analysing
word endings) (Daciuk, 1998). POS tagging context rules are used at the end. Within the
scope of the post-processing stage, local grammars are used to resolve possible remaining
ambiguities, e.g. as a consequence of systematic tagging errors that are unsolved during the
POS-tagging process (Rojc & Kaci¢, 2007).

5.3 Grapheme-to-phoneme conversion dequeue

The Slflex phonetic lexicon for common words is first used during the unified approach to
grapheme-to-phoneme conversion (Rojc & Kaci¢, 2007). Additionally, the Slplex phonetic
lexicon for proper names is included, followed by the homograph detection step. Next,
possible unknown words are converted into phonetic transcription by using trained CART
tree models for stress, grapheme-to-phoneme, and syllable prediction. The HRG utterance
structure is used as a linguistic knowledge source and for feature construction. Therefore,
several complex features can be easily constructed by using a textual list of the linguistically
attributed names. Syllable markers are also inserted into phonetic transcriptions (in the case
of unknown words), since this information is important later for prosody modules. In the
final stage of the unified G2P process, several rules have to be applied for performing the
post-processing of the canonical phonetic transcriptions, by also considering cross-word
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contexts. Namely, in the Slovenian language cross-word context has a significant impact on
pronunciation and must be considered within the whole G2P conversion process. The expert
defines these rules for all phoneme conversions, occurring at word beginnings and word
endings. Furthermore, input texts often contain words or phrases from some other
language. The first problem that has to be solved is to detect such words in efficient ways,
and the second is to specify the corresponding pronunciations. When e.g. the Slovenian
input sentence contains a German name “Gerhard Schréder”, these two words have to be
detected, and then converted into the phonetic transcriptions using Slovenian phonemes. As
suggested in (Rojc & Kaci¢, 2007), a G2P conversion module for the German language (using
SIplex lexicon) is used first, and then German phonemes are mapped into the most suitable
phoneme substitutions defined for the native language. This mapping can be done by using
the phoneme mapping table constructed by the phonetic experts. This polyglot functionality
is currently supported for German and English names.

5.4 Symbolic and acoustic prosody dequeues

Within symbolic prosody module the prediction of phrase breaks, prominence labels, and
Tilt intonation labels (based on syllable level) is performed (Taylor, 2000). CART trees are
used, since classification is performed on several discrete linguistic attributes during
training. The phrase break prediction model inserts phrase break labels, the prominence
prediction model marks the prominent syllables, and the intonation prediction model
assigns Tilt intonation labels to each syllable. In the PLATTOS TTS system for the Slovenian
language, a B3 label is used for labelling major phrase breaks, and a B2 label for minor
phrase breaks. Additionally, phrase break positions are used for pause insertions in the
sentence. Prominence labels on syllables are marked as PA (primary accent, assigned to the
most accentuated syllables inside the intonation prosodic phrase), and as NA (marking
secondary accents in the prosodic phrase). Tilt intonation event labels (a ¢ 1 m fb rb afb arb
Ifb mrb mfb Irb) are assigned to each syllable in the sentence. In the acoustic prosody
module prediction is performed for segment durations, pause durations at phrase break
positions, and the prediction of Tilt acoustic parameters for each Tilt intonation event. Here,
regression trees are used because of the nature of the used data. Separate prediction models
are used for vowel phoneme duration prediction, and for the prediction of consonant
phoneme durations. An additional tree model is trained for the prediction of pause
durations, using only sentence internal pauses in the recorded Slovenian speech database
(female voice). After the Tilt acoustic parameters have been predicted, reconstruction of the
specified FO contour can also be performed (for subsequent modules), and is stored within
the HRG structure (Rojc & Ka¢i¢, 2007).

5.5 Unit selection dequeue

The input text corpus (newspapers, literature, internet) used for recording the Slovenian
speech database consists of approximately 31 million words. The main criteria for selecting
sentences were: richness with different diphone and triphone units, maximal final size of the
speech database, and the minimal and maximal lengths of the sentences (Rojc, 2003). Before
the segmentation process of the database into monophone, diphone and triphone units, the
canonical phonetic transcriptions were manually verified, and adapted to the recorded
material of the database. The initial acoustic inventory was constructed from a large set of
non-uniform units (diphones and triphones). Then, the two-stage search space reduction
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process was performed, as presented in section 3.2. During the first stage, all diphones and
triphones were clustered by considering the phonetic contexts of the units (by using a tree-
based clustering technique). The constructed trees were used in the next stage - in the
process of eliminating acoustically-similar unit candidates (redundant units). Since
calculation of concatenation costs is a very time consuming process, they are calculated off-
line, as presented in 3.3, in order to achieve better time and space efficiency of the on-line
unit selection process. A vector quantisation algorithm (VQ) was also used in order to
minimize the huge CC cost matrix. The final VQ codebook and the FST with CC cost indices
then enable an efficient CC cost lookup process in the on-line unit selection dequeue. As
already mentioned, at the end of symbolic and prosodic dequeue, the sequence of target
units with predicted symbolic and acoustic prosodic parameters is already defined. The next
step is then to search in the optimised acoustic inventory for the best matching unit
candidates. The basic strategy in the PLATTOS TTS system is to find the longest non-
uniform unit for each target, ensuring also that the acoustic features and phonetic contexts
of the unit candidates are as close as possible to the target unit specifications (stored as HRG
utterance structure).
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Fig. 8. Common error ‘E’ during the unit selection optimisation process.

As presented in 3.5, an important issue for an on-line unit selection process based on
common unit cost calculation is the proper setup and tuning of partial suitability functions’
parameters and weights, as used in equation (7). The tuning of these parameters and
weights is performed from non-optimised acoustic inventory containing all database
diphone and triphone units, together with the off-line calculated concatenation costs. The
initial weights and parameters are defined by using the hybrid approach. The input into the
unit selection optimisation process is a set of prosodically-annotated database utterances
(100 sentences). When considering the defined prosody and the existing unit candidates in
the acoustic inventory for each sentence unit, the optimisation process iteratively searches
for a sequence of such units that would result in minimal FO mismatches between selected
candidates, and in minimal duration deviations towards the predicted prosody. After each
iteration, the RGD algorithm evaluates the common error ‘E’ made by selecton of candidates
(regarding pitch and duration), and updates parameters and weights before the next unit
selection process occurs. Common error ‘E” distribution across all iterations for the set of
database utterances (female voice) is presented in Figure 8. The iteration having the smallest
common error ‘E’ specifies the proper set of weights and parameters to be used in the on-
line unit selection algorithm. As can be seen, the RGD algorithm does not stop if the
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common error ‘E” starts to increase, in order to avoid local minima - otherwise the unit cost
functions” weights would have been already specified at visible minimum found after 30
iterations. The optimised acoustic inventory, tuned unit cost functions’ parameters, and
weights are then used in the on-line unit selection algorithm. The best sequence of unit
candidates is found by using finite-state machine based BestPath algorithm that minimises
the two costs along the input sentence: target cost and concatenation cost. The unit selection
algorithm significantly reduces the amount of needed signal processing in order to meet the
predicted prosody characteristics at the end, which naturally improves the quality of the
generated speech. Figure 9 shows the common error 'E' per sentence (in the set of 100
sentences). It is composed of FO mismatches between selected candidates, and of selected
units’ duration deviations towards unit target specifications, defined by both prosody
modules. All errors are summed within each sentence and then divided by the number of
selected units in the sentence. Therefore, the normalised common error values are actually
presented, in order to compare the obtained values between sentences in the given test set. It
can be seen that the common error 'E' across the whole set of sentences is significantly larger
when running a non-optimised unit selection algorithm (x markers), and that the common
errors 'E' in the case of the optimised unit selection algorithm are smaller (circle markers).
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Fig. 9. Common errors ‘E’ on the set of test sentences (100 sentences).
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Fig. 10. Selected unit candidates when using (a) optimised cost functions” weights, and (b)
non-optimised cost functions” weights.

Further, the sequences of the best candidates selected by using optimised and non-
optimised unit functions’” weights and parameters are shown in Figure 10. Here, each
selected unit candidate (diphone/triphone) is represented by a straight line. The length
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represents the duration of the selected unit candidate. The start and end-points of each line
are characterized by the FO values at the start and end of each unit candidate selected from
the acoustic inventory. Naturally, the goal of the unit selection process is that observed FO
differences between successive straight lines are as small as possible, and that pitch values
between candidates are also as close as possible. Namely, this will result in lesser-needed
signal post-processing to be performed by TD-PSOLA. When comparing figures (a) and (b),
it can be seen that by using an optimised unit cost functions” weights and parameters, the FO
mismatches are smaller (and FO points between successive units are closer), which results in
a more fluent and more natural synthesized speech signal.

5.6 Concatenation and acoustic dequeue

The concatenation module processes those units selected by the unit selection process in the
previous dequeue. Since the following acoustic module is based on the TD-PSOLA
algorithm, this module takes care of the following processing steps: calculation of analysis
pitches, searching for an optimal concatenation point between two successive units,
matching of analysis and synthesis pitches, and the smoothing of concatenation points. The
acoustic module based on the TD-PSOLA algorithm is then used for changing the durations
and pitch on those selected units, where existing FO mismatches and duration deviations are
unacceptable (Rojc & Kaci¢, 2007).

5.7 PLATTOS ECA — EVA -

ECA EVA (Mlakar & Rojc, 2011) is a PLATTOS TTS system’s conversational agent that can
be used in different spoken dialog systems. ECA EVA represents the personification of the
PLATTOS TTS system, implemented by using the EVA framework. The PLATTOS TTS
system output's synthesised speech and linguistic and acoustic data of the input sentence
(contained in the HRG structure) in the format of the EVA XML script. Currently, these
scripts contain sequences of phonemes, visemes, and gesture triggers. Each generated EVA
script includes corresponding temporal (duration), and spatial information (e. g.
articulation). By using this input, the EVA framework is then able to visualize a PLATTOS
TTS system’s output in the form of animated verbal and rule-based non-verbal behavioural
response. ECA EVA is a female agent, since the selected ECA gender depends on of the
voice used in the TTS system. It can synthesize expressive speech sequences based on
different levels of co-articulation, head and hand gestures, facial expressions and emotions,
and gaze. The lip-sync process synthesizes verbal features, and employs the articulation
parameter (stress) at spoken sequence and utterance levels. At the spoken sequence level of
articulation all utterances are additionally modified to meet the general articulation
properties of the sequence as a whole. Articulation at the utterance level only modifies the
spatial properties of the selected utterance. In this way, spoken dialogue-flow can not only
adapt articulation, but also influence the speed at which a certain answer is spoken.
Therefore, in addition to articulation relating verbal features, the general articulation can
also define several personality features of an ECA (e.g. fast-speaker, speaker with good
articulation etc.). If, for instance, the user did not understand the different parts of the
spoken sequences, such sequences can be repeated at a slower rate and with a higher level
of articulation. Therefore, such a personificated PLATTOS TTS system can also be used as a
tool for learning pronunciations and other learning/entertainment applications. The rule-
based non-verbal behaviour, such as: emotion, facial expressions, head and hand



Multilingual and Multimodal Corpus-Based Text-to-Speech System — PLATTOS — 149

movements, are generated based on linguistic and acoustic information (stored in the HRG
structures) that the PLATTOS TTS system can currently provide (e.g. morphology
information, phrase-break labels, prominence labels, trigger words and phrases, stress
levels, pitch etc.). By using emphasis markers word/phrase-break markers, ECA EVA can
generate different speech-driven pointing gestures that can visually emphasize a certain
word/ phrase. By interfacing words/ phrases with different emotions, and facial expressions,
EVA can visually generate speech-driven facial expression, such as: speaking with a gentle
smile, saying something sadly, etc. All these features represent an essential part of the visual
synthesis from TTS output. Figure 11 demonstrates the personification of the PLATTOS TTS
system including expressiveness and emotions that are already well-supported by the EVA
framework. Different speech segments can be accompanied by different facial gestures, e.g.
emphasis can be defined by a higher level of articulation, slightly lower pronunciation rate,
and by raising eyebrows. Negation can be further emphasized by repetitive nods.
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Fig. 11. Personification of the PLATTOS TTS system output.

The gestures used on the right-hand side (Expressive behaviour) of Figure 11 are
independent and don’t directly influence each other. The animation blending technique
enables the deployment of facial expressions, emotions, and speech, simultaneously. The
bone-based ECA automatically removes most of the “jerky”, or unnatural poses that usually
result when animating expressive ECAs, such as: the eyes don’t follow whilst the head is
turning etc. Since the multipart concept uses a shared skeleton, even though the eyes and
head are of different body types, the eyes will automatically be sub-parented to the joint
chain of the head (to the one among the joints in the head joint-chain). This will result in the
eyes following the head’s movements. Therefore, when the eyes move, head will be
uninfluenced, but when the head moves, eyes will move according to an automatic gaze
generation process. Furthermore, gestures, emotions, gaze and verbal communication (lip-
sync), can vary in composition (which combinations of control points are used to form
them), in amplitude (to what extent a gesture forms; e.g. co-articulation of utterances), in
speed, and in repetitiveness. The expressive behaviour presented was generated by
specifying each of the gesture types in the form of the EVA Script, provided by the
PLATTOS TTS system. ECAs generated by the EVA framework and PLATTOS TTS system
can generate different speech-driven types of gestures, gaze, and both simple and complex
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emotions, in an expressive, fully adjustable way. All the ECA’s body movements within are
defined and described hierarchically, as a composition of movements of the control units.
The PLATTOS ECA-EVA enables the animation of rich sets of gestures, expressions, or
event speech utterances that can vary in time, space and composition.

6. Evaluating multilingual and multimodal TTS systems

Constant evaluation as a constituent part of research activities has proven to be a successful
approach for enhancing progress in almost all areas of speech technology, such as speech
recognition, speech synthesis, or speech translation, especially if organized in the form of
evaluation campaigns, e.g. TC-STAR!, Blizzard? etc. (Rojc et al., 2009). As we know, the
traditional evaluations are not performed ‘on-line’, the transport of test data and results has
to be treated manually, and the test data are not ‘secret’. Furthermore, the connecting of
different developers” modules cannot be handled without an exchange of software to be
integrated locally. In order to solve all these issues of traditional evaluations for testing TTS
systems, a RES (remote evaluation system) evaluation framework has been established over
recent years for speech synthesis technology within the ECESS consortium?.
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Fig. 12. RES framework for developing and evaluating multilingual and multimodal TTS
systems and components.

The key element of the RES is its specification for a set of separate modules: e.g. for text
processing, prosody generation, acoustic synthesis modules etc., that can be combined
together into a complete text-to-speech system. Being able to split into any number of such
modules has the advantage that the developers of an institution can concentrate its efforts
on a single module, and test its performance within a complete system, using missing
modules from the developers of other institutions etc. In this way high-performance
multilingual and multimodal TTS systems can be built by using the high-performance
modules of different institutions. A common evaluation methodology has been developed

T www.tc-star.org (EU project TC-STAR)
2 http:/ /festvox.org/blizzard/ (The Blizzard challenge)
3 www.ecess.eu (ECESS - European Center of Excellence in Speech Synthesis)
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to assess the performances of the modules that are based on the common use of those
module-specific evaluation criteria and module-specific language resources needed for
training and testing the modules. The RES was designed, not only to evaluate TTS modules,
but also to support the developers of TTS modules. Developers/researchers can use RES in a
test/development modus, in order to improve the performances of their TTS module(s), and
evaluators can use RES in an evaluation modus for measuring the performances of the
selected TTS modules. The distributed architecture of the RES is shown in Figure 12. As can
be seen, the system consists of several RES clients (for developers, researchers, and
evaluators), the RES server (managing unit), and RES module servers encapsulating the TTS
modules (developers, and researchers). The RES server communicates simultaneously with
several RES clients, and also supports the RES module servers when communicating with
several RES clients at the same time. When performing testing or evaluating, developers,
researchers and evaluators only select the desired TTS modules via RES clients and provide
corresponding input for the selected task. The given input is then automatically transferred
within the RES to the selected TTS modules, and generated output is returned to the RES
client.

7. Conclusion

The presented design pattern for multilingual and multimodal corpus-based TTS systems
shows that it is possible to integrate all modules of the TTS system, from text processing
to acoustic processing, into an efficient and flexible queuing mechanism. Time and space-
efficient FSMs are used for separating language dependent resources from a language-
independent TTS engine, for the time and space-efficient representation of language
resources, and for fast information lookup. A HRG structure is used for storing complex
and heterogeneous sentence information, and for flexible construction of complex
features. Furthermore, optimisation of the unit-selection process is one of the most
important issues for corpus-based TTS systems, where several processing steps have
important impacts on the achieved performance of the TTS system, regarding quality and
efficiency. A RGD algorithm for cost functions” weights optimisation is proposed within
the unit-selection process. Objective and subjective measures show that such optimisation
results in a better quality of generated speech, a smaller common error ‘E’ regarding unit
duration deviations and pitch disagreements between selected speech segments, is fully
automatic and language-independent. It is, therefore, very helpful for tuning a general
unit selection process, and can speed-up the generation of new voices for corpus-based
TTS systems. The presented design pattern was demonstrated on the implementation of
the Slovenian corpus-based PLATTOS TTS system; however, it can be used for the
construction of TTS systems for other languages, for which the necessary language
resources exist. By personification of the PLATTOS TTS system using ECA EVA, it can be
used in advanced multimodal spoken dialogue systems. PLATTOS TTS system and EVA
framework together provide flexible and efficient audio-visual multimodal output,
enriched with a rich set of gestures, expressions, and emotions. Namely, by using EVA
Script schemes, synthesized speech can be enhanced with several body movements,
several types of visually represented articulation, different facial expressions (e.g. eye-lid
movement, gaze, smile, emotions, etc.), and different body gestures (hand gestures, head
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movement, etc.). All these features personificate machine generated responses, and
provide means for more natural human-machine interaction to be used in multimodal
spoken dialogue systems. The ability, not only to articulate but also to control the speed
and level of articulation, additionally enhances human-machine interfaces.
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1. Introduction

Recent advances in mobile wireless communication devices have made possible speech
communication in a variety of noise environments which were not possible before. Also,
sophisticated speech encoders, echo control devices, and noise canceling devices have caused
artificial synthetic noise, e.g. musical noise, which were not seen before with analog or simple
PCM speech communication. Thus, a need for comprehensive speech communication quality
measures and frequent evaluation efforts have become a necessity. Speech quality is generally
measured in one of two measures. The overall listening quality, such as the “naturalness” of
the test speech, is typically measured as the Mean Opinion Score (MOS) (ITU-T, 1996). The
other criteria is speech intelligibility, which tries to measure the accuracy with which the test
speech material carries its spoken content. We will deal mainly with the latter measure in this
chapter.

There were not many variations in the types of degradations seen in conventional speech
communication systems. Common types of degradations seen were simple ones, such as band
limitation and additive noise. Thus, evaluation procedures were fairly simple. Traditionally,
Japanese intelligibility tests often used stimuli of randomly selected single mora, two morae
or three morae speech (Iida, 1987). The subjects were free to choose from any combination
of valid Japanese syllables. This quickly became a strenuous task as the channel distortion
increases. Thus, intelligibility tests of this kind is known to be unstable and often do not
reflect the physically evident distortion, giving surprising results (Nishimura et al., 1996).
English intelligibility tests are also reported to show similar trends. Accordingly, the
Diagnostic Rhyme Test (DRT) (Voiers, 1977; 1983), a closed set selection test that restricted
the reply to two words, was proposed. This test is said to be effective in controlling various
factors including the amount of training and phonetic context, and is known to give stable
intelligibility scores. The DRT has now become an ANSI standard (ANSI, 1989).

In this chapter, we will briefly describe a DRT-type closed set selection test in Japanese (Kondo
et al., 2007; 2001). We categorized Japanese consonants into the same taxonomy used for the
English tests, and proposed a minimum-pair list accordingly which differ only by the initial
consonant and by a single phonetic feature. Subjective test results are also shown with various
noise under various SNR.

Then, we will investigate on methods to estimate intelligibility through objective measures. If
this is possible with reasonable accuracy, we should be able to “screen” the intelligibility in
many of the conditions, and limit the need for full-scale subjective test to a minimum subset.
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[Feature o e 1 Jb [ g wle [ [ 15 5 [ Jp £ [k [n [N o Js |
Voicing + |+ [+ [+ [+ [+ [+ |+ [+ [+ |=-1=-]=|-1-1=1-1- 1|+ |- |-
(vocalic-nonvocalic)

Nasality (nasal-oral) rl+ -~~~ FIF==IT=T=TIT+&--
Sustention - =-[+1-1-1--1-[+1[++++1+1]-1-1-1-1+1[- |- [+
(continuant-interrupted)

Sibilation (strident-mellow)|— |- [+ [+ |- |- |- |- |- [- |- [+ [+ [+ |- |- |- |- |- |+ |-
Graveness (grave-acute) + = = [0 |+ |- 0 |+ |- |0 010 [+[-10]0 [0 |- |0
Compactness - =11+~ 1+1+1=1-1+1+1 - [+
(compact-diffuse)

Vowel-like (glide-nonglide) |- |- |- |- [- [- |- [+ |+ [+ |- |- |- |- |- |- |- |- |- |- |-

Table 1. The Japanese consonant taxonomy

We will describe our efforts using PESQ (Perceptual Evaluation of Subjective Quality) scores,
an ITU standard which estimates MOS from both degraded and original speech, and try to
map PESQ-derived MOS to intelligibility.

2. The Japanese diagnostic rhyme test

2.1 Diagnostic rhyme test

Diagnostic Rhyme Tests (DRT) are speech intelligibility tests that forces the tester to choose
one word that they perceived from a list of two rhyming words. The two rhyming words
differ by only the initial consonant by a single distinctive feature.

DRT assumes the following simplification and principles which will enable even naive
listeners to provide stable and efficient intelligibility scores (Voiers, 1977; 1983).

e Additive and convolutional noise mostly affect consonants, which carry the bulk of
linguistic information, and not vowels. Thus, exact reproduction of consonants are
essential in voice communications. This is also the basis for the Fairbanks Rhyme Tests
(Fairbanks, 1958), which tested only consonant recognizability.

e Consonant apprehensibility in the initial, intervocalic and final positions are strongly
correlated. Thus, one can measure apprehensibility in all positions just by measuring at
the initial position. This assumption is backed by experiments by Suzuki et al. (Suzuki
et al., 1998), in which they found that there is a strong correlation in the articulation scores
of the first and second mora.

e The effect of word familiarity and phonetic context can be neglected if the number of
response choices (Miller et al., 1951; Voiers, 1977). In the case of the DRT, the response
is restricted to one word out of a pair of words.

In accordance with these assumptions, the DRT uses word-pairs which are minimal pairs in
which only the initial consonant differs by a single phonetic attribute as defined by Jakobson,
Fant, and Halle (Jakobson et al., 1952). The choice of word-pairs from which the listener selects
their response always contains the correct word.

2.2 The Japanese consonant taxonomy

We first proposed a consonant taxonomy for Japanese with the same feature classification used
in English, which were drawn from the classification by Jakobson, Fant and Halle (Jakobson
et al., 1952) (to be denoted as JFH classification). Table 1 shows the proposed Japanese
consonant taxonomy. The “+” shows that the feature is present, the “-” shows the absence,
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and “0” shows that the feature does not apply to the consonant. The following seven features
were used.

1. Voicing: corresponds to the vocalic-nonvocalic classification by JFH. This is a trivial
classification.

2. Nasality: corresponds to the nasal-oral classification by JFH. This is also a fairly trivial
classification.

3. Sustention: corresponds to the continuant-interrupted classification. This classifies
consonants into clearly continuous consonants and other transient phones, such as
plosives.

4. Sibilation: corresponds to the strident-mellow classification. This roughly corresponds to
the randomness of the consonants.

5. Graveness: corresponds to the grave-acute opposition. If the spectrum of the consonant
concentrates in the low frequency region, it is classified as grave, and vice versa. Also, the
oral cavity is not obstructed with grave consonants, while with acute consonants, the oral
cavity is divided into compartments with the tongue.

6. Compactness: corresponds to the compact-diffuse opposition. If the spectrum of the
consonant largely concentrates around the formant, it is classified as compact, and vice
versa.

7. Vowel-like: this classification is not used. It classifies consonants into glides and other true
consonants.

We classified most consonants in Japanese speech roughly in the same manner as English.
However, several exceptions were noted.

¢ The consonant [g] is often nasalized in intervocalic positions. However, since we are only
dealing with initial consonants, this consonant was classified as oral. Thus, nasality was
classified as “-” (feature absent).

e Allophones such as [y] were not classified.

2.3 The Japanese DRT word-pair list

The consonant taxonomy was then used to compile a word-pair list to be used as stimuli
for the DRT. Ten word-pairs per each of the 6 features, one pair per each of the five vowel
context, were proposed for a total of 120 words (Fujimori et al., 2006; Kondo et al., 2007).
The word-pairs are rthyme words, differing only in the initial phoneme. The proposed
word-pair list is shown in Table 2. The first words in the word-pair list are words whose
initial consonants have the consonant feature under test, and the initial consonants in the
latter words do not. Note that all five vowel context are covered.

The following is specific for the Japanese list:

® Only two morae words were initially considered. Longer words will be considered as
needed.

e Foreign words were avoided when possible. However, words starting with the [p] context
are mostly foreign words, and thus foreign words were included in this case.

* Only words with the same accent type were selected as a word-pair.

e We tried to select mostly common nouns. Proper nouns, slang words and obscure words
were avoided where possible.
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[ Voicing [ Nasality [ Sustention [ Sibilation [ Graveness [Compact’ness]
Zai - Sai Man - Ban |Hashi - Kashi | Jamu - Gamu | Waku - Raku | Yaku - Waku
Daku - Taku| Nai - Dai Hata - Kata |Chaku - Kaku Pai - Tai Kai - Pai
Giji - Kiji | Misu - Bisu | Shiri- Chiri | Shiki - Hiki Mie - Nie Gin - Bin
Gin-Kin | Miru-Biru | Hiru-Kiru | Chiji-Kiji | Misu-Nisu | Kiza - Piza
Zui - Sui Muri - Buri | Suki - Tsuki | Chuu - Kuu | Muku - Nuku | Kuro - Puro
Guu - Kuu |Mushi - Bushi| Suna - Tsuna | Jun-Gun [Mushi-Nushi| Yuu-Ruu
Zei - Sei Men - Ben Hen - Ken Shea - Hea Men - Nen Gen - Ben
Deba - Teba | Neru - Deru | Heri-Keri | Sheru - Heru Pen - Ten Ken - Pen
Z00-S00 | Mon-Bon |Hoshi-Koshi| Joo-Goo Moo - Noo | Goki - Boki
Goji - Koji | Nora - Dora | Horu - Koru | Shoji- Hoji | Poro-Toro | Yoka - Roka

Table 2. Japanese DRT word-pair list

e Words which include double consonants and palatalized syllables were excluded when
possible.

Additionally, rare consonant-vowel combinations were substituted with other syllables where
possible.

As stated before, familiarity may affect the intelligibility scores, although using word-pairs
will most likely mitigate this effect. However, to be safe, we selected words which have
relatively high phonetic-text familiarity (average 5.5, standard deviation 0.72 on a 7-point
scale) according to the familiarity listing compiled by Amano ef al. (Amano & Kondo, 1999).
Word accents types were judged with reference to both (Amano & Kondo, 1999) and
(NHK Broadcasting Culture Research Institute, 1998). Over 77 % of the words were accent
type 1 (high to low pitch accent transition), and 2 % were type 0 (flat). Both words in the
word-pair had the same accent type. When multiple accent types exist, the speakers were
asked to record using the specified accent type, with the same accent type as the other word
in the word-pair. The recorded speech was checked for clear pronunciation and accent, and
re-recorded as needed.

2.4 The DRT evaluation procedure

Words spoken by multiple speakers should be used. At least 8 listeners should be employed
for the test. The listener listens to the stimulus word speech, and selects the correct answer
from one of the words in the word-pair. The ordering of the stimulus can be completely
random, or it can cycle through the vowel context (i.e. form a 5-word cycle covering the five
vowel context). The intelligibility is measured by the average correct response rate over each
of the six consonant features, or by the average over all features. The correct response rate
(CACR) should be calculated using the following formula to compensate for the chance level,

_ 100(R — W)

> T

[%] €]
where S is the response rate adjusted for chance (“true” correct response rate), R is the
observed number of correct responses, W the observed number of incorrect responses, and
T the total number of responses. In other words, since this is a two-to-one selection test, a
completely random response will result in half of the responses to be correct. With the above

formula, completely random response will give average response rate of 0 %.
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Fig. 1. Comparison of DRT scores for speech with three types of noises

2.5 DRT evaluation experimental setup

We evaluated the DRT on a relatively large Japanese speech database with three typical noise
types in order to compare its sensitivity to noise with DRT results in English. We collected
speech from eight untrained speakers, four male (all in their twenties) and four female (three
in their twenties, and one in her fifties). All words in the DRT word list were recorded using a
head-mount electret microphone (Sennheiser HD 410-6) at a sampling rate of 16 kHz, 16 bits
per sample. No directions on the pronunciation and accents were initially given, so that the
speakers would be able to speak naturally. Re-recordings were made as needed when the
speech samples were not of standard accent, or unclear. White noise, multi-speaker (babble)
(Rice University, 1995) and pseudo-speech noise (Tanaka, 1989) were mixed into these samples
at an SNR of —15, —10, 0 and 10 dB, respectively. Speech for words in the word-pair list
was played out in random order. All speech were played out diotically through headphones
(Sennheiser HD 25-1 II) at the listener’s preferred output level. The listeners were shown
both words in the word-pair to choose from. Eleven listeners underwent the tests for speech
mixed with white noise, and 5 listeners tested speech in pseudo-speech and babble noise.
All listeners were native Japanese speakers in their twenties with reportedly normal hearing.
Each listener listened to 8 speakers, 5 noise levels including clean, 6 phonetic features, and 20
words per feature, bringing the total to 4800 spoken words per noise type.

2.6 Results and discussion
Figure 1 shows the average DRT scores (the chance adjusted correct response percentage,
CACR) over all phonetic features for the three types of noise tested. Figures 2, 3, and 4 show
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Fig. 2. DRT scores for speech mixed with white noise

CACRs for each of the mixed noise types by the phonetic feature. Two-way ANOVA tests
have confirmed SNR and phonetic feature to be main effects in all noise types tested.

The overall trend for all noise types generally agrees with English results obtained by Voiers
(Voiers, 1977; 1983). The following can be drawn from the results:

1.

The average DRT score over all phonetic feature vs. SNR is similar regardless of the noise
type. However, white noise seems to affect the scores most, followed by pseudo-speech
noise, and babble. The reason for this seems to be the bandwidth of the noise, especially in
the high frequency regions.

. Sibilation generally shows high scores when white noise level is low. However, the scores

decrease quickly as white noise level increases. This again agrees well with results by
Voiers (Voiers, 1977; 1983). The reason for this can be that phones with sibilation show wide
frequency bandwidth, similar to white noise. This may also be the reason the scores are
not affected as much by other types of noise since these have much narrower bandwidth.

. Much less difference by features is seen with pseudo-speech and babble noise compared

to white noise. In other words, each of the phonetic feature is affected similarly with
these noise types. Nasality, sustention, and compactness especially show insignificant
differences. This was observed in English tests as well. The reason for this again may
be the bandwidth of the added noise.

Figure 5 compares the DRT scores for white noise-added speech by speaker gender. As shown
by this figure, the DRT scores are virtually same for both male and female speech for all ranges
of SNR tested, and thus the gender of the speaker has insignificant effect on the DRT scores.
This was also confirmed with ANOVA.
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3. Estimation of DRT scores using objective measures

In this section, we will describe our approach to estimating the subjective intelligibility DRT
scores using objective measures. Even though the proposed DRT tests were much simpler
than conventional intelligibility tests, the DRT test still requires human listeners to rate more
than one hundred words per noise condition. Accordingly, in the following, we attempted
to estimate subjective DRT scores using objective measures obtained by some calculations
without human participants. If estimation of intelligibility, at least to some degree, is possible,
we should be able to “screen” the intelligibility in many of the conditions, and limit the need
for full-scale subjective tests to a minimum.

3.1 Estimation of DRT using PESQ

In this section, we will describe results of experiments to estimate DRT scores from PESQ
(Perceptual Evaluation of Speech Quality) scores (Kaga et al., 2006). PESQ is an international
standard which tries to estimate subjective Mean Opinion Scores (MOS) (ITU-T, 1996) from the
original and the degraded signal (Beerends et al., 2002; ITU-T, 2001; Rix et al., 2002). PESQ is
known to be one of the most accurate objective methods to estimate subjective MOS. Although
MOS is a subjective measure of the overall speech quality, we can assume that speech quality is
“loosely” correlated with speech intelligibility. Thus, we can assume that speech intelligibility
is related to estimated MOS values, at least to some degree.

Kitawaki and Yamada have recently conducted a small scale test to employ PESQ to estimate
word intelligibility (Kitawaki & Yamada, 2007). They used speech categorized into four
classes of word familiarity. They found relatively high correlation between subjective word
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intelligibility and estimated word intelligibility using PESQ scores, especially when the word
familiarity is low. Beerends et al. also used PESQ to estimate intelligibility (Beerends et al.,
2009). They found that PESQ fails to predict intelligibility especially at lower SNR. Thus,
they use several methods to improve the estimation in this region, e.g, the use of spectral
subtraction, silent interval deletion, and steady-state suppression. They show some success
in improving the accuracy. On the other hand, Liu et al. have recently attempted to estimate
speech intelligibility from a number objective measures including PESQ scores (Liu et al.,
2008). They used digits for their speech samples, and found very low correlation between
intelligibility and PESQ scores. In fact, they found low correlation in most of the objective
measures they attempted, highlighting the difficulty of this problem.

3.2 Perceptual Evaluation of Speech Quality (PESQ)

The Perceptual Evaluation of Speech Quality (PESQ) (ITU-T, 2001; 2003; 2005) is an
international standard for estimating the Mean Opinion Score (MOS) from both the clean and
degraded signal. It evolved from a number of prior attempts to estimate MOS, and is regarded
as one of the most sophisticated and accurate estimation methods available today. PESQ was
officially standardized by the International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T) as recommendation P.862 in February, 2001, and extended to
wideband speech as recommendation P.862.2 in November, 2005. A simplified diagram of the
PESQ is shown in Fig. 6.

PESQ uses a perceptual model to covert the input and the degraded speech into an internal
representation. The degraded speech is time-aligned with the original signal to compensate
for the delay that may be associated with the degradation. The difference in the two internal
representation is then used by the cognitive model to estimate the MOS.
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Fig. 6. Simplified diagram of the PESQ algorithm

Figure 7 is the result of an experiment we conducted to estimated the MOS-LQO (Listening
Quality Objective), which is an estimated MOS output of the PESQ algorithm (ITU-T, 2003).
We used read Japanese sentences of two male and two female speaker, five per speaker for
a total of 20 sentences. White noise was added to these speech samples at 30, 10, and -5dB.
We also encoded and decoded speech samples with the G.729 CS-ACELP codec (ITU-T, 2007).
This codec is commonly used in VOIP applications nowadays. All samples were sampled at
8 kHz, 16 bits per sample. The MOS-LQO for all degraded samples were estimated using
PESQ. We also ran MOS tests using 10 listeners with the same degraded samples and the
original speech. As can be seen this figure, the estimated MOS-LQO generally agrees well
with subjective MOS. The line included in the figure is the fitted line using least mean square
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error, which came out to be a gradient of 1.024, also showing that the estimated MOS-LQO
generally are accurate estimation of the subjective MOS.

3.3 Correlation between PESQ MOS-LQO and DRT intelligibility score (CACR)

We selected two male and two female speech with standard Japanese DRT words from the
collected data described in section 2. All samples were sampled at 16 kHz, 16 bits monaurally.
These speech samples were mixed with white noise and babble (Rice University, 1995) at SNR
of -15, -10, 0 and 10 dB. Standard subjective DRT tests were run with these samples. Ten
listeners were employed. We also estimated MOS-LQO of the degraded samples using PESQ.
The wide-band option (+wb) was used in all tests.

Figures 8, and 9 plots the estimated MOS-LQO using PESQ against the corresponding DRT
Chance-Adjusted Correct Response (CACR) for speech mixed with white noise, and babble
noise, respectively. The speech was pooled for both speakers, for all of the SNR tested in each
Figure. As can be seen in both noise types, the correlation between raw MOS-LQO and CACR
is quite low. In fact, the Pearson correlation coefficient is 0.47 and 0.44 for female and male
speech mixed with white noise, and 0.36 and 0.42 for babble noise. Most of the MOS-LQO
is close to the lower end of the scale, i.e. well below 2.0, close to 1.0. This is not surprising
since PESQ was designed to estimate MOS, and not intelligibility. MOS generally measures
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the overall speech quality with relatively small degradation, i.e. high SNR range, typically
well above 0 dB. However, as we have seen in the previous section, intelligibility is measured
in the lower SNR range, typically -20 to 0 dB. Thus we need to re-map the MOS-LQO to match
the SNR range of interest for intelligibility estimation.
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Fig. 8. MOS estimation of DRT words using PESQ (white noise)

3.4 Estimation of intelligibility by mapping per-word MOS-LQO to DRT CACR

We now attempt to map MOS-LQO to CACR using polynomial mapping. We estimated a
quadratic polynomial to map the estimated MOS-LQO to DRT CACR on one training speaker.
Then we used this polynomial to map MOS-LQO of a different test speaker to DRT CACR.
The mapping was estimated for each noise type since it is reasonable to assume that we
can obtain a small sample of the noise environment in which we want to estimate the DRT
CACR beforehand. We also estimate one polynomial for each phonetic feature, as well as
over all features. Table 3 shows an example of the estimated coefficients of the polynomials
used to map the female speech mixed with white noise, y = a;x* + a»x + a3, where x is the
MOS-LQO, and y the estimated CACR. As can be seen, the coefficients differ significantly
by phonetic feature. The coefficients were also shown to differ significantly by noise type or
speaker gender as well.

Tables 4 through 7 tabulate the root mean square DRT CACR estimation error, and the Pearson
correlation between subjective and estimated DRT CACR for speech (female and male) mixed
with white noise and babble noise, respectively. As can be seen, average estimation errors
range from approximately 0.2 to close to 0.7 in some cases. The correlation also ranges from
0.7 to virtually 0.0 in one extreme cases. Thus, the estimation accuracy varies widely by the
phonetic feature. Estimation over all features generally perform worse than when using a
single phonetic feature.
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]Phonetic feature[ | [ a [ as [
voicing -0.853| 2.80 [-1.35
nasality -1.93 | 6.15 |-3.75

sustention -3.28 | 10.3 |-7.06
sibilation -1.50 | 5.15 |-3.26
graveness -1.75| 6.02 |-4.22
compactness | 0.76 |-0.893|0.513

| all features [-1.84] 6.06 [-3.94]

Table 3. Polynomial coefficients of the mapping function used to map PESQ MOS-LQO to
DRT CACR (white noise, female speech)

Figure 10 plots the subjective DRT CACR vs. the estimated DRT CACR for female speech
samples for sustention mixed with white noise. This is one of the combinations showing the
lowest RMSE and the highest correlation, i.e. one of the best predictions. However, the plots
scatter widely from the equal rate line. Still the plots are evenly spaced around the equal rate
line, and the best fit line is almost equal to the equal rate line. This gives us a clue leading to
the approach taken in the next section.

3.5 Estimation of intelligibility by mapping per-feature MOS-LQO to DRT CACR
The standard procedure to measure the subjective intelligibility of a phonetic feature, as
measured by CACR, is to test all 20 words on a large listener population, and average



Estimation of Speech Intelligibility Using Perceptual Speech Quality Scores 167

l Phonetic feature \ RMSE \ Correlation‘

voicing 0.20 0.51
nasality 0.23 0.59
sustention 0.26 0.77
sibilation 0.34 0.54
graveness 0.30 0.63
compactness | 0.34 0.49

| allfeatures [ 0.65 [ 023 |

Table 4. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (white noise, female speech)

| Phonetic feature [ RMSE [ Correlation‘

voicing 0.68 -0.06
nasality 0.21 0.65
sustention 0.30 0.67
sibilation 0.35 0.52
graveness 0.32 0.61
compactness | 0.39 0.41

| allfeatures [ 033 ] 055 |

Table 5. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (white noise, male speech)

l Phonetic feature \ RMSE \ Correlation‘

voicing 0.27 0.42
nasality 0.33 0.50
sustention 0.32 0.50
sibilation 0.08 0.38
graveness 0.29 0.66
compactness | 0.28 0.54

| allfeatures [ 052 026 |

Table 6. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (babble noise, female speech)

the correct response rates for each of the conditions, e.g. noise type, SNR, etc. This is
because subjective test inherently include a large degree of variations, both due to the tester
individuality, and due to variations in the acoustics of the test word speech. By averaging the
results for sufficiently large population of testers and over all words in the test list, we can
expect to obtain stable reproducible results.

We will attempt the same procedure used to calculate the subjective CACR with the estimated
per-word CACR to obtain the per phonetic feature DRT CACR. We pooled all CACR for a
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l Phonetic feature \ RMSE \ Correlation‘

voicing 0.49 0.16
nasality 0.31 0.58
sustention 0.30 0.54
sibilation 0.08 0.36
graveness 0.31 0.61
compactness | 0.30 0.56
| allfeatures [ 031 ][ 030 |

Table 7. Root mean square estimation error and correlation of DRT CACR estimated from

PESQ MOS-LQO (babble noise, male speech)
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Fig. 10. Subjective CACR vs. estimated CACR (sustention, female speech with white noise)

single phonetic feature, per noise level (SNR) and type, into one CACR. The same quadratic
polynomial mapping is used to map the MOS-LQO to DRT CACR, one mapping function
per phonetic feature. Again, the mapping was calculated on one training speaker, and this
mapping function was used to map MOS-LQO obtained using the PESQ algorithm to calculate
the estimated DRT CACR for a different test speaker.
Figures 11 and 12 plot the subjective DRT CACR vs. estimated DRT CACR by pooling for
female and male speech in white noise, respectively, while Figures 13 and 14 plot the DRT
CACR for female and male speech in babble noise, respectively. Compared to Fig. 10, all plots
in these figures are generally much closer to the equal rate line, as expected. This is the result
of averaging out the deviation that was present with each of the words in the test word per
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phonetic feature. However, as can be seen in Fig. 14, we do not see any estimated DRT CACR

below 0.4 for male speech in babble noise. This is due to the limited range that is seen with
MOS-LQO under these conditions.
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Fig. 11. Subjective CACR vs. estimated CACR (pooled for each feature, female speech with
white noise)

Table 8 tabulates the root mean square estimation error and the correlation between subjective
and estimated DRT CACR. The RMSE decreased to below 0.2, but even more surprising is the
correlation, which is generally above 0.8 now. This level of accuracy is well within practical

range if we want to “screen” tested conditions before testing with actual human listeners, as
was stated as the goal of this research.

[ Noise [speaker gender[RMSE[Correlation]

white female 0.15 0.88
white male 0.20 0.80
babble female 0.18 0.78
babble male 0.17 0.82

Table 8. Root mean square estimation error and correlation of DRT CACR estimated from
pooled PESQ MOS-LQO
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Fig. 12. Subjective CACR vs. estimated CACR (pooled for each feature, male speech with
white noise)

4. Conclusion

In this chapter, we have shown that it is possible to estimate the subjective speech
intelligibility, as measured by the Diagnostic Rhyme Test (DRT) Chance-Adjusted percentage
Correct Rate (CACR), from objective PESQ MOS-LQO scores if we have a mapping function
for the noise and the phonetic feature to be tested beforehand. PESQ itself was proven to
be too sensitive to noise to serve as a good scale to map to DRT CACR for wide range of
signal to noise ratio. In other words, PESQ MOS-LQO saturated quickly to low scores as
noise is increased, while DRT CACR stayed relatively high even with considerable noise. This
suggests that PESQ may not be a good match to serve as estimation variable for DRT scores
for the whole range of SNR we are interested in.

We then attempted to map the MOS-LQO of a test word to DRT CACR using polynomials
trained on a training speaker, and mapped the MOS-LQO of an unknown speaker to the DRT
CACR. If we use one mapping function per phonetic feature, we showed that it is possible to
map the MOS-LQO to DRT CACR to some extent. However, this mapping per word generally
showed a large root mean square estimation error (RMSE), mostly larger than 0.3, and the
correlation between estimated and subjective DRT CACR was generally low, below 0.5 in
most cases.

We then pooled the CACR of the words in each phonetic feature category to estimate the
CACR for each feature, as is done in subjective testing. This was shown to dramatically
decrease the error, resulting in RMSE below 0.2, and increase the correlation, to above 0.8
in most cases. This dramatic improvement was seen because the estimated CACR for the
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Fig. 13. Subjective CACR vs. estimated CACR (pooled for each feature, female speech with
babble noise)

individual words in a phonetic feature category was evenly distributed around the subjective
CACR values. By pooling all CACR, we were able to average out this deviation.

Although we have shown that it is possible to estimate the DRT CACR using PESQ-derived
MOS-LQO, we still can only do so with limited accuracy. This is because PESQ itself is too
sensitive to any amount of noise. Thus, we need to use the internal representation within
PESQ and calculate a measure which has more linear correlation with noise levels, or we need
to look at completely different objective measures. Accordingly, we have started looking at
other candidate objective measures which may show higher correlation with intelligibility, i.e.
DRT CACR. Segmental SNR and its derivatives, e.g. frequency-weighed segmental SNR (Hu
& Loizou, 2008), seems to show much higher correlation. The composite measure proposed
by the same author, which combines several objective measures, seem to be promising as
well (Hu & Loizou, 2008). These measures can be mapped to DRT CACR using polynomials
per phonetic feature as we have done in this paper. Preliminary results show significantly
improved estimation accuracy. We plan to reveal these results in the near future in a separate
paper and conference presentations.

On the other hand, we are also trying out a completely different approach to the same
problem. We applied automatic speech recognizers with language models that force one of the
words in the word-pair, mimicking the human recognition process of the DRT. The acoustic
models were adapted to each of the speakers in the corpus, and then adapted to noise at
a specified SNR. We tested with white noise, babble noise, and pseudo-speech noise. The
match between subjective and estimated scores improved significantly with noise-adapted
models compared to speaker-independent models and the speaker-adapted models, when
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Fig. 14. Subjective CACR vs. estimated CACR (pooled for each feature, male speech with
babble noise)

the adapted noise level and the tested level match. However, when SNR conditions do not
match, the recognition scores degraded especially when tested SNR conditions were higher
than the adapted noise level. Accordingly, we adapted the models to mixed levels of noise,
i.e., multi-condition training. The adapted models now showed relatively high intelligibility
matching subjective intelligibility performance over all levels of noise. The correlation
between subjective and estimated intelligibility scores increased to 0.94 with babble noise,
0.93 with white noise, and 0.89 with pseudo-speech noise, while the root mean square error
(RMSE) reduced from more than 0.40 to 0.13, 0.13 and 0.16, respectively. Detailed results are
described in a separate paper (Kondo & Takano, 2010; Takano & Kondo, 2010).
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1. Introduction

The methods of analysis of human voice are based on the knowledge of speaker
individuality. One of basic studies on speaker acoustic characteristics can be found in
(Kuwabara & Sagisaka 1995). According to them the voice individuality is affected by the
voice source (the average pitch frequency, the pitch contour, the pitch frequency fluctuation,
the glottal wave shape) and the vocal tract (the shape of spectral envelope and spectral tilt,
the absolute values of formant frequencies, the formant trajectories, the long-term average
speech spectrum, the formant bandwidth). The most important factors on individuality are
the pitch frequency and the resonance characteristics of the vocal tract, though the order of
the two factors differs in different research studies.

According to (Scherer 2003) larynx and pharynx expansion, vocal tract walls relaxation, and
mouth corners retraction upward lead to falling first formant and rising higher formants
during pleasant emotions. On the other hand, larynx and pharynx constriction, vocal tract
walls tension, and mouth corners retraction downward lead to rising first formant and
falling higher formants for unpleasant emotions. Thus, the first formant and the higher
formants of emotional speech shift in opposite directions in the frequency ranges divided by
a frequency between the first and the second formant. In practice, the formant frequencies
differ to some extent for different languages and their ranges are overlapped. According to
(Stevens 1997) the frequency of vibration of the vocal folds during normal speech
production is usually in the range 80 + 160 Hz for adult males, 170 + 340 Hz for adult
females, and 250 + 500 Hz for younger children. It means that female pitch frequencies are
about twice the male pitch frequencies, pitch frequencies of younger children are about 1.5-
times higher than those of females and about 3-times higher than those of males. As regards
the formant frequencies, females have them on average 20 % higher than males, but the
relation between male and female formant frequencies is nonuniform and deviates from a
simple scale factor (Fant 2004).

Emotional state of a speaker is accompanied by physiological changes affecting respiration,
phonation, and articulation. These acoustic changes are transmitted to the ears of the listener
and perceived via the auditory perceptual system (Scherer 2003). From literature and our
experiments follows that different types of emotions are manifested not only in prosodic
patterns (FO, energy, duration) and several voice quality features (e.g. jitter, shimmer,
glottal-to-noise excitation ratio, Hammarberg index) (Li et al. 2007) but also by significant



176 Speech and Language Technologies

changes in spectral domain (Nwe et al. 2003). Several spectral features (spectral centroid,
spectral flatness measure, Renyi entropy, etc.) quantify speaker-dependent as well as
emotion-dependent characteristics of a speech signal (Hosseinzadeh & Krishnan 2008). It
means these features provide information which complements the vocal tract characteristics.
This paper describes analysis and comparison of basic spectral properties (values and
ranges of cepstral coefficients, positions of formants), complementary spectral features
(spectral flatness measure), and prosodic parameters (FO and energy, microintonation, and
jitter) of male and female acted emotional speech in Czech and Slovak languages. We
perform statistical analysis for four emotional states: joy, sadness, anger, and a neutral state.

2. Subject and methods

Our experiments are aimed at statistical analysis and comparison of the spectral and
prosodic features in emotional and neutral speech. It comprises comparison of basic
statistical parameters (minimum, maximum, mean values, and standard deviation) and
calculated histograms of distribution. Extended statistical parameters (skewness, kurtosis)
are subsequently calculated from these histograms and/or the histogram can be evaluated
by the analysis of variances (ANOVA) approach. Hypothesis tests are used for objective
classification of neutral and different emotional styles.

2.1 Evaluation of results based on statistical analysis

The resulting parameters obtained from our analysis experiment in the form of histograms
of distribution can be applied to visual classification (determination) of speech in different
emotional states (typical shapes of particular histograms), or extended statistical parameters
can be subsequently calculated from these histograms for objective matching. The skewness
y and kurtosis k of a distribution is defined as

_E@-w)’ | _Ea-p)’
S S Y (1)
g o

where 4 is the mean and o is the standard deviation of the random variable X, and E(¢)
represents the expected value of the quantity f. Skewness is a measure of asymmetry of the
data around the sample mean. If skewness is negative, the data are spread out more to the
left of the mean than to the right. If skewness is positive, the data are spread out more to the
right. Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the
normal distribution is 3. Distributions that are more outlier-prone than the normal
distribution have kurtosis greater than 3; distributions that are less outlier-prone have
kurtosis less than 3. On the other hand, some definitions of kurtosis subtract 3 from the
computed value, so that the normal distribution has kurtosis of 0 (Suhov & Kelbert 2005).
We use this approach for calculation of kurtosis values in this study.
For objective comparison and matching the evaluation by ANOVA with multiple
comparison of groups can be applied (Everitt 2006). This approach is more simple than
recent speech recognition methods using evaluation by hidden Markov models (Srinivasan
& DeLiang 2010) and is often used in other areas of biomedical research (Volaufova 2005),
(Hartung et al. 2001). ANOVA gives also F statistics and results of the hypothesis test
including probability values. Unlike the ANOVA F statistics, the Ansari-Bradley test (Suhov
& Kelbert 2005) compares whether two independent samples come from the same
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distribution against the alternative that they come from distributions having the same
median and shape but different variances. The result is 1 = 0, if the null hypothesis of
identical distributions cannot be rejected at the 5% significance level, or = 1, if the null
hypothesis can be rejected at the 5% level. The hypothesis test also returns the probability of
observing the given result. Small values of this probability cast doubt on the validity of the
null hypothesis.

Application of described evaluation approach is demonstrated on example of the Spectral
Power Density (SPD) values in [dB] of spectrograms of the sentence “Viak uz nejede” (Czech
male speaker) uttered in neutral and three emotional styles. Fig. 1a) contains the box plot of
basic statistical parameters, Fig. 1b) shows visualization multiple comparison of group
means applied to the results of ANOVA statistics - each group mean is represented by a
symbol and an interval around the symbol. Three means are significantly different if their
intervals are disjoint, and two groups (“Neutral” and “Joy”) are not significantly different if
their intervals overlap. Corresponding values of Ansari-Bradley test are stored in Table 1.
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Fig. 1. Box plot of basic statistical parameters (a), visualization of multiple comparison of
group means applied to the results of ANOVA statistics (b).

h/p Neutral Joy Sadness Anger
Neutral 0/1 0/0.309 1/3.73 10-30 1/8.66 10-5
Joy 0/1 1/9.64 10-46 1/3.14 102
Sadness 0/1 1/1.05 10-169
Anger 0/1

Table 1. Results of the Ansari-Bradley hypothesis test of values corresponding to multiple
comparison of group means in Fig. 1b).

2.2 Analysis and evaluation of basic spectral properties

Speech spectrum is represented very well by a pole/zero model using cepstral coefficients
in comparison with linear predictive coding (LPC) corresponding only to an all-pole
approximation of the vocal tract. From the input samples of the speech signal (after
segmentation and weighting by a Hamming window) the complex spectrum by the Fast
Fourier Transform (FFT) algorithm is calculated. In the next step the powered spectrum is
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computed and the natural logarithm is applied. Second application of the FFT algorithm
gives the symmetric real cepstrum

{Cl/l} :{ CO’Cl""’CN”-T/2 |CN}TT/271’“.’C1} . (2)

By limitation to the first No+1 coefficients, the Z-transform of the real cepstrum can be obtained
_ -1 -2 -N,
C(z)=co+ez +6z " oty z 0. (3)
The truncated cepstrum represents an approximation of a log spectrum envelope

Ny

E(f)=co+2D c,cos(n-27f). 4

n=1

The cepstral speech synthesis is performed by a digital filter implementing approximate
inverse cepstral transformation. The system transfer function of this filter is given by an
exponential relation where the exponent is the Z-transform of the truncated speech
cepstrum and it represents the minimum phase approximation of the real cepstrum.
Approximation of the system transfer function can be performed by a cascade connection of
Ny elementary filter structures. Using the Padé approximation of the exponential function it
has been found out that the minimum number of Ny (25/50 at 8/16 kHz sampling
frequency) cepstral coefficients is necessary for sufficient approximation error (Vich 2000).
As the value range of the cepstral coefficients exponentially falls, only the first eight
coefficients are analyzed (the remaining coefficients practically have not influence on the
filter stability, structure, and implementation).
The basic cepstral analysis scheme including the spectral features calculation is shown in the
block diagram in Fig. 2. Described method of cepstral speech analysis was supplied with
determination of the fundamental frequency FO and the energy En (calculated from the first
cepstral coefficient co). After removal of the low energy starting and ending frames by the
energy threshold (Enmin) the limited working length (number of frames) for next processing
was obtained - see Fig. 3. Cepstral analysis must be preceded by classification and sorting
process of the cepstral coefficients in dependence on the voice type (male / female) and the
speech style (neutral / emotional). Realization of analysis of the cepstral coefficient
properties was processed in following phases:
a. manual (subjective) classification of voice type and emotional speech style, further
automatic processing,
b. cepstral analysis of speech signal (from the main two speech databases consisting of short
utterances of male/female voice pronounced in neutral and different emotional styles).
As a graphical output, the histogram of cepstral coefficients for every emotional state was
also constructed. For objective comparison, the extended statistical parameters of skewness
and kurtosis were subsequently calculated. The performed statistical analysis of cepstral
coefficients consists of four parts:
1. determination of basic statistical parameters of the cepstral coefficients (minimum,
maximum, mean value, and standard deviation),
2. calculation and building of histograms,
3. calculation of extended statistical parameters from histograms (kurtosis and skewness),
4. comparison of the mean values and the ranges of the cepstral coefficients for emotional
and neutral states.
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Fig. 2. Block diagram of used cepstral analysis method (No = 50, and the sampling frequency
fs =16 kHz).
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Fig. 3. The processed sentence “Zivot a fe¢” (Life and speech), Czech male speaker: speech
signal with FO contour (a), En contour calculated from the first cepstral coefficient ¢y (b).



180 Speech and Language Technologies

In frequency domain we analyze the first three formant positions (F1, F2, and F3), and the

difference between smoothed spectra for comparison of analyzed speech on segmental or

phoneme level. Smoothed spectra are computed from the chosen region of interest (ROI)

areas of voiced part of speech by the Welch method (Oppenheim et al. 1999). From these

mean periodograms the first three formats are determined as the first three local maxima of

the Welch’s periodogram where its gradient changes from positive to negative.

From the summary comparison of cepstral speech analysis follows that emotional speech

brings about the most significant spectral changes for voiced speech (see spectrogram in

Fig. 4) therefore the extended analysis by mean periodograms of sounds was subsequently

performed. For this purpose the second database consisting vowels “a”, “e”, “i”, “0”, “u”

and voiced consonants “m”, “n” and “1” was used. The whole spectral analysis with the

help of Welch's periodograms was practically performed in five steps:

1. calculation of smoothed spectra in the form of Welch’s periodograms from the selected
ROIs of voiced part of neutral and emotional speech signal,

2. determination of the first three formant positions (F1, F2, and F3) from the obtained

periodograms,

calculation of mean emotional-to-neutral formant position ratios,

4. calculation and visual comparison of mean periodograms of sounds from the database
of vowels and voiced consonants,

5. numerical matching of results from the calculated spectral distances between
corresponding periodograms by the RMS method.
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Fig. 4. Processed sentence “Poslal sluhu” (He sent his servant), Slovak male speaker: speech
signal (a), corresponding spectrogram (b), calculated mean periodogram estimate in [dB] of
selected ROI with determined formant positions F1,F2, and F3 (c).
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2.3 Analysis of complementary spectral feature
As a complementary spectral feature, the spectral flatness measure (SFM) was analyzed.

This spectral feature is calculated during cepstral speech analysis (see block diagram in
Fig. 2) using absolute value of the fast Fourier transform denoted as | S(k) |

Npgr /2 ﬁ
I1 |s<kﬂ

SFMJ k=

Nigp /2 ' ()

According to psychological research of emotional speech different emotions are
accompanied by different spectral noise (Scherer et al. 2003). In cepstral speech synthesis the
spectral flatness measure SFM was used to determine voiced/unvoiced energy ratio in
voiced speech analysis (Vich 2000). The SFM values lie generally in the range of (0 + 1) — the
zero value represents totally voiced signal (for example pure sinusoidal signal); in the case
of SFM =1, the totally unvoiced signal is classified (for example white noise signal).
According to the statistical analysis of the Czech and Slovak words the ranges of
SFM = (0 + 0.25) for voiced speech frames and SFM = (0 + 0.75) for unvoiced frames were
evaluated (Madlova & Pfibil 2000). The demonstration example in Fig. 5 shows the input
speech signal with detected pitch frequency FO and calculated SFM values with voiceness
classification.

150

~ 100
L
£ =0
=)
g 0
2]
| 50
-1000
a)
0.5
— Voiced frames
P s U NN [ Unvoiced frames | |
g
n
\
b)

—> N [frames]

Fig. 5. Demonstration of SFM calculation: input speech signal - sentence “Lenivy si a zle

gazdujes” (You are lazy and you keep your house ill) pronounced in angry emotional style, male
Slovak speaker with FO contour (a), SFM values for voiced and unvoiced frames (b).
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In our algorithm, the values of SFM are obtained from the voiced speech frames and are
separately processed in dependence on voice type (male / female). For every voice type the
SFM values were subsequently sorted by emotional styles and stored in separate stacks.
These classification operations were performed manually, by subjective listening method.
Next operations with the stacks were performed automatically - calculation of statistical
parameters: minimum, maximum, mean values, and standard deviation. From the mean
spectral feature values the ratio between emotional and neutral states is subsequently
calculated. As a graphical output used for visual comparison (subjective method) the
histogram of sorted spectral features values for each of the stacks is also calculated.
Consequently the extended statistical parameters of histograms (skewness and kurtosis)
were subsequently calculated. The second approach based on ANOVA was applied to SFM
values together with multiple comparison of groups test as an objective evaluation method-
see block diagram in Fig. 6.
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Fig. 6. Block diagram of processed operations with the stacks filled with classified spectral
feature values.

2.4 Analysis of prosodic parameters and their comparison

Melody of speech utterances is given by the fundamental frequency (FO0) contour.

Microintonations as well as jitter together with the sentence melody and the word melody

also represent the speech melody. Microintonation can be supposed to be a random, band-

pass signal described by statistical parameters.

The whole prosodic parameter analysis procedure is divided into four phases:

1. analysis of the speech signal: determination of FO and energy contour,

2. analysis of FO contour, microintonation extraction, determination of pitch periods in the
voiced parts of the speech signal - see example in Fig. 7,

3. statistical evaluation of FO, energy, microintonation, zero crossings, and calculation of
ratios for emotional / neutral states (see block diagram in Fig. 8),
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4. microintonation signal spectral analysis and 3-dB bandwidth (Bs) determination from

the concatenated signal.
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Fig. 7. Demonstration of microintonation analysis: speech signal with FO contour (a), the

second voiced part: original FO, mean FO, and LT (b), energy contour (c), differential signal
after FOmean and LT subtraction (d) - the sentence “Rekl Radomil” (Radomil said) uttered by a

male Czech speaker.
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The introductory microintonation processing phase consists of the following steps:

1. determination of the melody contours from the voiced parts of speech smoothed by a
median filter,

2. determination of FO mean values, FOrange (as difference of minimum and maximum) and
calculation of the linear trend (LT) by the mean square method,

T (a,b)=a+bn, (6)
where n=1,2,..Nr and Nr is number of frames of the FO contour. The best linear fit to

a given set of FO values is solved by least squares fitting technique of linear regression
yielding

%, Zn —Z ano N ZnFO NZ %F()n

Q= n=1 n=1 b= n=1 1 (7)

che (5] v b3

3. calculation of differential microintonation signal FOpirr by subtraction of these values
from the corresponding FO contours (FOmean and LT removal) - see Fig. 7b)

FODIFF( ) (FO( ) Omeun) LT(”)’ 8)

4. calculation of the absolute jitter values Javs, as the average absolute difference between
consecutive pitch periods L measured in samples (Farrts et al. 2007)

1 N, -1
Japs == 3 [Lo-L
Abs fs(NL_l) ngl| n

where f; is the sampling frequency and N is the number of extracted pitch periods,

5. detection of zero crossings, calculation of zero crossing periods Lz.

Spectral analysis of concatenated differential microintonation signal is also carried out for all

emotions. This analysis phase is divided into three steps:

1. Calculation of the frequency parameters from the zero crossing periods
Lz = {LZmin/ LZmax/ LZmean/ LZrel/ LZstd} as Fzyg = fF/(Z LZX)/ where fF is the frame
frequency.

2. Microintonation signal spectral analysis by periodogram averaging using the Welch
method.

3. Determination of B3 values from these spectra for each of the emotion types.

To obtain spectrum of smoothed microintonation signal (see Fig. 9b), the concatenated

differential FO signal is filtered by a moving average (MA) filter of the length Mr (voiced

parts shorter than Mr+2 frames are not processed in further analysis) - see Fig. 9a).
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Fig. 9. Demonstration of microintonation smoothing and spectrum determination (obtained
from the same sentence as in Fig. 7): basic differential FO signal and the one filtered by
moving average (a), corresponding spectra and their 3-dB bandwidths B3 (b).

3. Material, experiments and results

As follows from our previous experiments, the basic spectral properties (cepstral
coefficients and formant positions) as well as the complementary spectral features depend
on a speaker but they do not depend on nationality (it was confirmed that it holds for the
Czech and Slovak languages). Therefore, the created speech database consists of neutral
and emotional sentences uttered by several speakers (extracted from the Czech and
Slovak stories performed by professional actors). The speech material was collected in two
databases (separately from male - 134 sentences, and female voice - 132 sentences, 8+8
speakers altogether) consisting of sentences with duration from 0.5 to 5.5 seconds,
resampled at 16 kHz representing four emotional states (sad, joyful, angry, and neutral for
comparison). Classification of emotional states was carried out manually by subjective
listening method.

The FO vales (pitch contours) were given by autocorrelation analysis method (Oppenheim
1999) with experimentally chosen pitch-ranges by visual comparison of testing sentences
(one typical sentence from each of emotions and voice classes) as follows: 35+250 Hz for
male, and 105+350 Hz for female voices. The FO values were next compared and corrected
by results obtained with the help of the PRAAT program (Boersma & Weenink 2008) with
similar internal settings of FO values.

Speech signal analysis was performed for total number of 25988 frames (8 male speakers)
and 24017 frames (8 female speakers). The formant positions and the spectral flatness values
were determined only for the voiced frames (totally 11639 of male and 13464 of female
voice). In the case of prosodic parameters analysis, the minimum length of the processed
voiced parts was set to 10 frames and the corresponding length of Mr =8 for moving
average filter was chosen. Number of analyzed voiced parts / voiced frames) was in total:

a. Male: neutral - 112/2698, joy - 79/1927, sadness - 128 /3642, anger - 104/ 2391.

b. Female: neutral - 86/2333, joy - 87/2541, sadness - 92/2203, anger - 91/2349.

3.1 Results of analysis of basic spectral properties
Results of determined basic statistical parameters of the first 8 cepstral coefficients for
different speech styles are shown in the form of box plot graph in Fig. 10 (male voice).
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Summary histograms of cepstral coefficients (ci-cs) are shown in Fig. 11 and comparison of
histogram contours for different emotions of cepstral coefficients (c;-c4) is shown in Fig. 12
(both male voice). Table 2 contains values of kurtosis parameters and Table 3 contains
values of skewness obtained from the compared histograms of c;-c4 (for male and female
Voices).
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Fig. 10. Box plot of basic statistical parameters of the first 8 cepstral coefficients for different
speech styles - male voice.
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Fig. 11. Histograms of the first 8 cepstral coefficients for different speech styles (male voice):
“neutral” speech (a), “joy” (b), “sadness” (c), and “anger” (d).
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Fig. 12. Histogram comparison for different speech styles (male voice): for cepstral
coefficients c; (a), coefficients c; (b), coefficients c3 (c), and coefficients c4 (d).
. Male voice Female voice
Emotion
1 C2 C3 Ca 1 C2 C3 Cq
Neutral 3.93 1.36 1.17 0.65 7.82 5.86 1.42 -0.26
Joy 2.53 0.91 0.31 0.01 6.16 3.86 0.11 -0.09
Sadness 1.72 0.82 0.29 -0.06 4.03 2.81 -0.09 -0.24
Anger 1.12 0.01 0.11 0.04 2.78 1.45 0.11 -0.04
Table 2. Kurtosis parameters determined from histograms of ci-c4 cepstral coefficients for
male and female voices.
. Male voice Female voice
Emotion
C1 C2 C3 Cyq C1 C2 c3 Ca
Neutral -1.79 -0.99 -0.93 -0.73 -2.47 -1.54 -0.63 -0.14
Joy -1.20 -0.64 -0.42 -0.22 -2.00 -1.65 -0.33 -0.21
Sadness -1.03 -0.75 -0.46 -0.13 -1.64 -1.45 -0.26 -0.13
Anger -0.84 -0.36 -0.12 0.09 -1.42 -1.09 -0.29 -0.16

Table 3. Skewness parameters determined from histograms of c;-c4 cepstral coefficients for
male and female voices.

Results of basic statistical parameters for the first three formant positions F1, F2, and F3 of
male and female voice in neutral speech are shown are shown in Fig. 13, detailed histograms
of distribution are shown in Fig. 14. Comparison of histograms of F1, F2, and F3 for different
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speech styles are introduced in Fig. 15 (male voice) and Fig. 16 (female voice). Table 4 contains
values of kurtosis parameters and Table 5 contains values of skewness obtained from the
compared histograms of F1, F2, and F3 (for male and female voices). Summary results of mean
neutral-to-emotional formant position ratios for both voices can be seen in Table 6.
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Fig. 13. Box plot of basic statistical parameters of analysis of the first three format positions
(male and female voice, neutral speech style).

—> Relative occurence [%]

")
400

500 600

—> F1[Hz]

Fig. 14. Detailed histograms of the first three format positions -

neutral speech style.

50 50
&40 £
8 8
& &
5 30 5 30
3 3 | |
g g
g g ‘ ‘
22 220 - - - =7
8 8
8 8 ‘ ‘
~ 10 ~ 10 — — - — - =+ - =
| | | |
0 0 ! A !
700 800 1000 1200 1400 1600 1800 2000 2000 2200 2400 2600 2800 3000
— F2[Hz] — F3[Hz]

male and female voice,

—— Neutral
Joy
Sadness
Anger

%0 | | | %0 | |
| | | —— Neutral | | —— Neutral
S a0 — - - — 4 - — A Joy £ 40 Joy
3 | | I Sadness 2 Sadness
2 g
| I D R Anger g 3 Anger
8 | | | | | 8 |
° I I | | I ° |
Lo R Qo0 - - - - - kL - - -
e | | i | | E |
2 | | | | | 2 |
A‘loffﬂffﬂ*ﬂ.‘ e Tm Il
| Y | |
0 | . LY . o .
200 300 400 500 600 700 800 1000 1200 1400 1600 1800 2000
— F1[Hz] — F2[Hz]

0
2000

2200 2400 2600

— F3[Hz]

2800 3000

Fig. 15. Comparison of histograms of the first three formant positions for different speech

styles - male voice.
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Fig. 16. Comparison of histograms of the first three formant positions for different speech

styles - female voice.
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Emotion Fl male FZ male F3 male Fl female FZ female FS female
Neutral 2.702 9.257 4.884 2.771 11.440 9.823
Joy 3.298 10.457 5.253 2.613 12.155 10.376
Sadness 2.095 10.655 5.406 2.594 13.919 10.257
Anger 1.694 8.263 5.389 2.054 11.121 10.476

Table 4. Kurtosis parameters determined from histograms of the first three formant

positions for male and female voices.

Emotion Fl male FZ male F3 male Fl female FZ female F3 female
Neutral -1.081 0.207 -0.554 -0.999 0.532 0.266
Joy -1.044 0.372 -0.439 -1.029 0.596 0.369
Sadness -1.195 0.404 -0.458 -1.101 0.777 0.352
Anger -1.297 0.100 -0.435 -1.141 0.471 0.349

Table 5. Skewness parameters determined from histograms of the first three formant

positions for male and female voices.

Formant ratio Fimale Fomate F3male Fitemale Fatemale F3temale

Joyous: neutral 0.712 1.025 1.038 0.898 1.082 1.049
Sad: neutral 1.043 0.813 0.899 1.353 0.948 0.938

Angry: neutral 1.123 0.795 0.762 1.282 0.885 0.887

Table 6. Summary results of mean emotional-to- neutral formant position ratios.

P dB]

Neutral
Joyous

— P [dB]

—> f [kHz]

Fig. 17. Mean periodograms of analyzed voiced speech parts corresponding to sounds: “a”
(a), “e” (b), “i” (c), “0” (d), “u” (e), and “1” (f) - male voice.
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Fig. 18. Mean periodograms of analyzed voiced speech parts corresponding to sounds: “a”
(a), “e” (b), “i” (c), “0” (d), “u” (e), and “1” (f) - female voice.

Results of extended analysis of formant positions by Welch’s periodograms of sounds from
the database of vowels and voiced consonants (detailed periodograms corresponding to
sounds “a”, “e”, “i”, “0”, “u” and “1”) are shown in Fig. 17 (male voice) and Fig. 18 (female
voice). The spectral distances calculated between mean periodograms in “neutral” and

emotional styles are summarized in Table 7.

Male voice Female voice
Neutral - to: P :

joyous sad angry joyous sad angry
Drus of “a” [dB] 2.517 4.516 5.845 4.598 7.223 8.382
Drums of “e” [dB] 2.608 3.551 4.862 5.708 6.599 13.012
Drus of “i” [dB] 2.427 3.769 5.279 5.794 7.236 8.060
Drus of “0” [dB] 2.710 3.639 6.110 3.841 5.866 6.370
Drus of “u” [dB] 3.509 4.596 5.846 2.692 4.973 6.298
Drys of “m”[dB] 2.205 4.809 6.595 4.186 4724 4774
Drus of “n”[dB] 2.160 3.852 4.615 3.985 6.597 8.909
Drus of “1” [dB] 2.839 3.408 6.063 3.207 6.929 8.064

Table 7. Summary results of spectral distances of analyzed sounds (Drws are calculated
between periodograms of “neutral” and emotional styles) for male and female voices.

3.2 Results of analysis of a complementary spectral feature

The results of basic statistical parameters of the spectral flatness values for male and female
voice analysis determined only from the voiced frames are summarized in Table 8. Histograms
of SFM values for different emotions together with visualization of the difference between
group means calculated using ANOVA statistics are shown in Fig. 19 (male voice) and Fig. 20
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(female voice). Corresponding values of Ansari-Bradley test are stored in Table 9 (male voice)
and Table 10 (female voice). The main result - mean spectral flatness value ratios between

different emotional states and a neutral state - is given in Table 11.

E . Male voice Female voice
motion - T
mean min max std mean min max std
Neutral | 0.00286 | 3.78-105 | 0.03215 | 0.00364 | 0.00274 | 3.15-10-5 | 0.03731 | 0.00346
Joy 0.00662 | 1.36:104 | 0.04327 | 0.00650 | 0.00784 | 2.07-10+4 | 0.05414 | 0.00726
Sadness | 0.00444 | 1.12-104 | 0.05540 | 0.00462 | 0.00506 | 9.48-10-5 | 0.06694 | 0.00674
Anger 0.00758 | 2.28-104 | 0.04228 | 0.00614 | 0.00807 | 1.41-104 | 0.05129 | 0.00692

Table 8. Summary results of basic statistical analysis of the spectral flatness values for male
and female voice, voiced frames.
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Fig. 19. Histograms of SFM values for different speech styles (a), the difference between
group means with the help of ANOVA statistics (b) - male voice, voiced frames.
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Fig. 20. Histograms of SFM values for different speech styles (a), the difference between
group means with the help of ANOVA statistics (b) - female voice, voiced frames.
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h/p Neutral Joy Sadness Anger
Neutral 0/1 1/3.60 1020 1/0.002 1/2.101011
Joy 0/1 1/3.9510-46 1/1.211035
Sadness 0/1 1/1.5210-39
Anger 0/1
Table 9. Results of the Ansari-Bradley hypothesis test of SFM values corresponding to Fig.
19D).
h/p Neutral Joy Sadness Anger
Neutral 0/1 1/2.78 1012 1/0.0015 1/8.3410°
Joy 0/1 1/5.57 10-26 1/2.081015
Sadness 0/1 1/4.27 10-1t
Anger 0/1
Table 10. Results of the Ansari-Bradley hypothesis test of SFM values corresponding to Fig.
20b).
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Fig. 21. Histograms of spectral flatness values calculated from the unvoiced frames (male

voice): “neutral” style (a), and emotions - “joy” (b), “sadness” (c), and “anger” (d).

mean SFM ratio joy:neutral sadness:neutral anger:neutral
male voice 1.349 1.725 1.321
female voice 1.455 1.795 1.377

Table 11. Mean spectral flatness values ratios between different emotional states and a
neutral state (for voiced frames only).
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3.3 Results of analysis of prosodic parameters

FO contour was created from the frames with energy exceeding a chosen threshold.
Histograms of FO values distribution are shown in Fig. 22, the basic statistical parameters of
FOpirr and Lz values for male and female voices of neutral and emotional speech as the box
plots are presented in Fig. 23. Results of statistical analysis of energy contours (calculated
from the first cepstral coefficient c) are shown in Fig. 24 and Table 12 consists of energy and
absolute jitter ratios for emotional speech styles and neutral style for both voices. In Table
13, there are stored together mean FOprr values and absolute jitter values. Resulting
summary emotional-to-neutral ratios of mean FOpirr and FO rance for male and female voice
are in Table 14.

Results of basic statistical analysis of zero crossing periods Lz are shown in Table 15. For
objective matching of Ly the ANOVA and multiple comparison of group means together
with the Ansari-Bradley test were performed - see Fig. 25 and results in Tables 16 to 18.
Zero crossing periods were next used to calculate microintonation signal spectral analysis.
Summary results including the 3-dB bandwidth values for male and female voices are
shown in Table 19. The average microintonation spectra can be seen in Fig. 26 (male voice)
and Fig. 27 (female voice).
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Fig. 22. Histograms of F0 values for male and female voices in “neutral” style (a), and
emotions “joy” (b), “sadness” (c), and “anger” (d).
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Fig. 23. Box plot of basic statistical parameters of FOprr (a) and Lz values (b) for male and

female voices.
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Fig. 24. Results of statistical analysis of energy contours (calculated from the first cepstral
coefficient cg): male / female voice, neutral / emotional states.

. energy ratio X:neutral Jabs ratio X:neutral
Voice , :
joy sadness anger joy sadness anger
Male 1.32 0.95 1.70 2.45 1.55 2.77
Female 1.50 0.73 1.84 1.94 1.41 2.06

Table 12. Summary male and female energy and absolute jitter ratios between different
emotional states and a neutral state.

Emotion FOpiFFmean male | FODiFFmean female Jabs male Jabs female
Neutral 2.66 3.67 0.29 0.17
Joy 7.27 8.49 0.71 0.33
Sadness 4.02 6.29 0.45 0.24
Anger 8.62 10.16 0.60 0.35

Table 13. Mean values of differential FO in [Hz] (calculated from positive microintonation
values) together with absolute jitter values (in [ms]).



Spectral Properties and Prosodic Parameters of Emotional Speech in Czech and Slovak

195

FO ratio F(.)mean Fomean Fomean F(.)range Forange Forange
joy sadness anger joy sadness anger
male voice 1.18 0.81 1.16 1.25 0.62 1.30
female voice 1.32 0.79 1.27 1.52 0.65 1.68

Table 14. Summary male and female FO parameters modification ratio values between
emotional and neutral speech.

Emotion Male voice Female voice
LZmax LZmeem LZstd LZmax LZmean LZstd
Neutral 57 6.82 5.69 40 6.64 5.23
Joy 23 6.74 457 28 5.26 3.78
Sadness 59 8.26 6.52 40 6.69 5.43
Anger 26 6.04 419 30 6.32 443

Table 15. Summary results of zero crossing basic statistical analysis (zero crossing period Lz
parameters in [frames]) - male and female voice, Lzmin = 1.
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Fig. 25. Graphical results of zero crossing periods Lz multiple comparison of ANOVA (male
and female voice groups) for corresponding emotions.

h/p Neutral Joy Sadness Anger
Neutral 0/1 1/3.37107 1/ 0.035 1/ 0.066

Joy 0/1 1/8.99107 1/ 0.006
Sadness 0/1 1/0.021
Anger 0/1

Table 16. Partial results of zero crossing periods Lz Ansari-Bradley hypothesis test based on
comparison of distributions - male voice group.

h/p Neutral Joy Sadness Anger
Neutral 0/1 1/ 4.881015 1/ 0.006 1/0.017

Joy 0/1 1/ 0.002 1/4.01.108
Sadness 0/1 1/ 0.002
Anger 0/1

Table 17. Partial results of zero crossing periods Lz hypothesis test - female voice group.
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Neutral Joy Sadness Anger
h/p 0/ 0.4397 0/ 0.8926 0/ 0.6953 0/0.5773

Table 18. Summary results of zero crossing periods Lz hypothesis test (comparison male vs.
female voice group) between particular emotions.

Male voice Female voice
FZminl) FZmean FZrel BS B3F 2 FZminl) FZmean FZrel BS BSF 2
Neutral 1.60 6.89 8.83 | 6.75 | 4.56 2.23 11.88 | 14.60 | 11.59 | 6.71
Joy 0.71 5.04 6.45 | 456 | 3.82 1.56 941 1194 | 9.03 | 5.61
Sadness 0.73 6.11 778 | 439 | 2.69 1.56 933 |11.66 | 7.20 | 3.17
Anger 1.81 6.18 8.00 | 5.37 | 4.07 2.08 9.88 |12.59|10.74 | 5.86

D Lzmin =1 = Fzmax= fr / 2
2 3-dB bandwidth for signal smoothed by MA filter with Mr =8

Emotion

Table 19. Summary results of spectral analysis (frequency parameters in [Hz] derived from
concatenated differential FO signal) - male and female voice.
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Fig. 26. Spectra of microintonation used for 3-dB bandwidth determination for emotions
(with and without smoothing by moving average): “neutral” (a), “sadness” (b), “joy” (c),
and “anger” (d) - male voice.
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Fig. 27. Spectra of microintonation used for 3-dB bandwidth determination for emotions
(with and without smoothing by moving average): “neutral” (a), “sadness” (b), “joy” (c),
and “anger” (d) - female voice.

4. Discussion and conclusion

Results of performed analysis and comparison (consequently computed parameter ratios
between emotional and neutral states) will be applied for extension of the text-to-speech
(TTS) system enabling expressive speech production of voices (male / female) or it be also
used in emotional speech transformation (conversion) method based on cepstral speech
description (Pfibil & Pfibilova 2008). The main advantage of this approach consists in a fact
that only new cepstral description must be created and the original speech database is
applied as a common area for all voices.

Statistical analysis of cepstral coefficients and the first three formant positions has shown
that different emotional states are manifested in a speech signal in observed parameters.
Spectrograms, histogram envelopes together with other parameters may be used for
identification of individual emotions. This method can also be used for evaluation of
emotional synthetic speech as a supplementary approach parallel to the listening tests.

From visual comparison of these spectrograms and histograms follows that emotional
speech brings about the most significant spectral changes for voiced speech. Therefore, the
extended analysis of sounds based on Welch's periodograms was subsequently performed.
Comparison of calculated spectral distances between “neutral” and transformed emotional
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styles of voiced sounds shows that the spectral changes (formant position and bandwidth)
are the greatest for “angry” and the smallest for “joyous” style. These results are in
correspondence with the applied emotional transformation method which means this
approach is fully usable for detailed spectral analysis of voiced parts of speech. But a weak
point of this method is the manual selection of ROIs. Speech recognition approach (Vich et
al. 2008) can be used here (e.g. in the form of a simple phoneme alignment procedure) to get
these ROIs automatically.

Results of the spectral flatness ranges and values statistical analysis show good correlation
for both types of voices and all three emotions. The greatest mean SFM value is observed in
“anger” style for both voices. Similar shape of SFM histograms can be seen in Fig. 19a) and
Fig. 20a) comparing corresponding emotions for male and female voices. On the other hand,
it was confirmed that only SFM values calculated from voiced frames of speech give
sufficient information - in Fig. 21 it is evident that the histograms are practically the same
for all three emotions. This subjective result is confirmed by the objective method - multiple
comparison of groups based on results of ANOVA statistics and hypothesis test. Our final
aim was to obtain the ratio of mean values which can be used to control the high frequency
noise component in the mixed excitation during cepstral speech synthesis of voiced frames
(Vich 2000). From summary results follows that the ratio of mean values is 1.18 times higher
for female voice than for male voice.

From comparison of basic statistical microintonation analysis follows that absolute jitter
values are in accordance with the human vocal tract properties. But there should be a
problem with accuracy of jitter measurements, caused by the fact that jitter estimation on
running speech (in contrast to steady vowels) is very difficult (Sun et al. 2009). Female
shorter pitch periods are accompanied with shorter values of the absolute jitter but higher
relative changes in the frequency domain (mean FOprrr values). The highest values of jitter
correspond to “joy” and the lowest ones correspond to “sadness” for both voices. Similar
results are shown in (Tao et al. 2006). The same tendency can be observed for statistical
results of zero crossing analysis. Although different frame lengths were used in
microintonation frequency analysis for male and female voices, we can see matched similar
values for all corresponding emotions. Visual comparison of histograms of zero crossing
periods Lz is not significant but higher relative occurrence of low Lz values can be noticed in
“neutral” style for both voices. On the other hand, as regards visual comparison of average
spectra, similar curves can be matched in Fig. 26 and Fig. 27 for male and female voice for all
corresponding emotions. Obtained results of microintonation spectral analysis (especially
the B3 values) can be used to synthesize a digital filter for suppression of microintonation
component of a speech signal. From objective statistical comparison of zero crossing periods
by Ansari-Bradley hypothesis test follows that the null hypotheses were rejected at the 5%
significance level for each emotion type inside the gender group and simultaneously, the
null hypotheses between the corresponding emotions of both types of voices are in all cases
fulfilled at the same significance level. The result of final multiple comparison of ANOVA
also confirms good correlation between particular emotions.

In the next future, we plan to use results of ANOVA and hypothesis test for creation of the
database of values for emotional speech classifier based on statistical evaluation approach
(Iriondo et al. 2009), or it can be used for identification of speaker emotional states or in real-
time emotion recognition systems (Attasi & Smékal 2008).
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1. Introduction

Recently, ASR (Automatic Speech Recognition) functions have commercially been used for
various consumer applications including car navigation systems. However, many technical
and usability problems still exist before ASR applications are on real business use. Our goal
is to make ASR technologies for a real business use. To do so, we first evaluate a car
navigation interface which has ASR as an input method, and second evaluate an ASR
module using real noisy in-car speech. For ASR applications, we envision mobile
environments, e.g. mobile information service systems such as car navigation systems and
cellular phones on which an embedded speech recognizer (Kokubo et. al., 2006) is running
and which are connected to remote servers that support various information-seeking tasks.
Taking a look at commercially available car navigation systems, currently over 75% systems
have ASR interfaces, however, there are very few drivers who have experiences to use the
ASR interfaces. What is the problem? This is caused by the ASR usability problems.

In this chapter, we report two experimental evaluation results of ASR interface for mobile
use, especially for car navigation applications. First, we evaluate the usability aspects of
speech interface and second, we evaluate in-car noise speech problems to propose an
effective method to cope with noisy speech. For the first evaluation, we use a prototype
which has a promising speech interface called FlexibleShortcuts and Select&Voice produced
by Waseda University (Nakano et. al., 2007). We found many undesirable OOV (Out-Of-
Vocabulary) utterances which make the interface worse. From the second experiment to
check car-noise problems, we propose an array microphone + Spectrum Subtraction (SS)
technique to increase recognition accuracy.

2. Problems of ASR car use

2.1 System concept of network applications
As information technology expands into the mobile environment to provide ubiquitous
communication, intelligent interfaces will be a key element to enable mobile access to
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networked information. For mobile information access, HMIs (Human Machine Interfaces)
using speech might be the most important and essential as speech interfaces are more
effective for small, portable devices. Mobile terminals such as cellular phones, PDAs
(Personal Digital Assistants) and Hand-held PCs (Personal Computers) are connected to
networks like the Internet to access information from web servers. For mobile information
access, speech processing and image processing will be key technologies on intelligent
mobile terminals.

Especially, Car Telematics refers to a new service concept where mobile terminals (e.g. car
navigation systems, cellular phones) are used to connect to networked information services.
Figure 1 illustrates a total service system concept, which consists of three parts, e.g.
terminal/client, network, and center/server. For the terminals, sophisticated HMIs are
required to handle various inquiries and to deliver information from the center using speech
and image input/output.

Web Server CENTER

Information Center B
Web Server

Information Center A
Web Server

TERMINAL INTERNET Web Server
NETWORK
Information Center C
Web Server

Information Web Server,

Delivery

HMIs: Human Machine Interfaces

Fig. 1. Service System Image (Terminal, Network, and Center)

The network is typically the Internet; and via the Internet, the user’s requests are transferred
to related Web servers at the center, and required information will be provided from the
center to users via networks and terminals (Hataoka et. al., 2004).

2.2 Technical t problems for automotive use

In cars, HMIs based on speech processing such as ASR and TTS are essential to provide a

safe driving environment. However, there are many problems to be solved before a real use

of ASR and TTS as follows;

1. Usability problem: All interfaces should have a transparent navigation model.
However the interfaces using ASR do not have this function/feature. If the input is
misrecognized, the user can not understand why the misrecognition occurred and then
can not manage the next action.

2. OOV (out of vocabulary) problem: There are many ways to express one
meaning/location. For example, we can say either “Starbucks” or “Staba” to show the
same coffee shop. It is essential for the ASR to handle this OOV problem (Vertanen,
2008)
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3. Robustness issue: The in-car speech has noise including an engine noise and audio
noise etc. To enhance the degraded speech is essential for ASR. The array microphones
are used to locate sound source and reduce environmental noise (Obuchi & Hataoka,
2006).

In this chapter, to deal with these problems, first we evaluated usability issues of ASR

interface on a car navigation system, and second evaluated robustness of ASR module on

the car navigation interface.

3. ASR interface evaluation

3.1 Pre-evaluation using commercial product

3.1.1 Evaluation setup and task

To make real problems of ASR interfaces clear, first, we evaluate a speech interface of a
commercial product (Figure 2: PIONEER Carrozzeria AVIC-HRZS88II) using two
environments. The first environment is in a laboratory room and the second one is in a noisy
driving car. The number of subjects is 20 people. All are university students and no one has
an experience of using speech interfaces. At the beginning, each subject was instructed how
to use a car navigation ASR interface by an operator.

Fig. 2. Evaluated Car Navigation System (PIONEER)

Two tasks are evaluated under two environments of the room and the in-car. The evaluation

tasks are as follows;

1. Command input: audio (radio/DVD etc) and air conditioner operation, i.e. “FM radio
channel 4” etc.

2. Destination setting for navigation: Two utterance ways were evaluated, first utterance
from the written vocabulary and second prompt utterance (free word)

3.1.2 Evaluation results

1. Room environment: Figure 3 shows evaluation results. The recognition success turn
times are shown.

2. In-car environment: Figure 4 shows evaluation results of driving car environment. The
results became worse than those of in room environment.
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Fig. 3. Evaluation Results (laboratory room)
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3.1.3 Consideration

The OOV issue was crucial which occurred at the free word utterance. Then we are
developing an overcoming system to cope with this OOV problem. The system consists of
terminals and centers, and when recognition errors and interruption of the speech input
occur, the system sends all interaction records and speech data files to the center. At the
center, a full specification of continuous ASR can recognize the data and then deliver a new
vocabulary set to terminals.

3.2 Evaluation using prototype system

3.2.1 Philosophy for evaluation

First, we use the ASR prototype system called FlexibleShortcuts and Select&Voice. The
FlexibleShortcuts can handle both of voice input and menu input and for the voice input
many short-cuts are available to say related words directly. The Select&Voice has framed-
based input windows to utter input words. The FlexibleShortcuts and Select&Voice are
useful for car navigation task. Second, we use a location retrieval task in that many OOV
utterances would be observed frequently in order to check how users act when the OOV
utterances occur.

3.2.2 FlexibleShortcuts and Select&Voice

For the evaluation of OOV problems, we used a system consisting of FlexibleShortcuts and
Select&Voice which have been developed by Waseda University (Nakano et. al., 2007).
Waseda University is developing the Proxy-Agent as the platform of ASR application
systems by the Japanese National Found Research Project called “Fundamental Technology
Development on Speech Recognition.” This found was for three years from fiscal year of
2006 to 2008. The Proxy-Agent has characteristic features of plug-in based function merging
and connection to network servers. The function merging is independent from ASR engines
to do data collection, new ASR engine adding, and co-use of possible ASR parts etc.

The FlexibleShortcuts and the Select&Voice are the speech interface functions which are
developed as an application development tool in the Proxy-Agent framework. The
FlexibleShortcuts is a speech interface having flexible selection of speech inputs and/or
menu inputs and also shortcut functions. In the menu expression, if a user knows the
shortcut way meaning the final word to say, the user can utter this final word to reach the
destination. For example, in the menu expression FM radio is under a radio category, but we
can say “FM radio” directly to reach the FM radio handling process. The Select&Voice is a
speech interface for data input which has been developed according to the analogy of GUI
(Graphical User Interface). The Select&Voice has the framed-based input windows. This is
named because the input processes are first “Select” input frame “And” then utter “Voice.”
The car navigation system which has the speech interface based on FlexibleShortcuts and
Select&Voice is evaluated on the location/address retrieval task.

3.2.3 Evaluation experiment details

1. Evaluation Purpose

In this experiment, we evaluate whether the subjects can realize their OOV utterances and if
so, when they can realize OOV utterances and how they act after realization using the
framework of FlexibleShortcuts+ Select&Voice. We carefully select a task in which OOV will
occur easily. From this viewpoint, we select a city and town setting task in which many city
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and town name changes occur after city and town merging by the local government. All
actions are recorded as input and output logs using the Proxy-Agent architecture. Finally we
analyze subjects” behaviors using recognition results and recorded logs.

2. Data Collection Environment

To focus on the OOV utterance and subject’s action (behavior), the quiet environment of a
laboratory room is set for the evaluation experiments.

3. Evaluated System/Equipment

We use the PC system consisting of FlexibleShortcuts+ Select&Voice developed by Waseda
University on the car navigation task. Figure 5 shows a PC and a controller. Both menu
selection and voice utterance are possible using the controller.

Fig. 5. PC and Controller used for Evaluation

4. Experimental Subjects

The number of subjects is 10 (ten) consisting of 5 (five) subjects who have experiences to use
this kind of speech interface and 5 (five) subjects who have not experiences. The input and
output logs and utterances are recorded using PC and a video recorder.

5. Utterance Conditions

Each subject retrieves ten (10) locations/addresses using speech utterance. In the ten
locations, two names are changed by the new city merging. This means former names are
OOVs. Figure 6 shows a display example of the Select&Voice interface showing prefecture,
city, area, and address numbers.

Prefecture Name
City/Ward/Town
Address

Map Drawing

Fig. 6. Display of Location Retrieval Task

3.2.4 Evaluation experiment setup

At first, an experimental operator introduces how to use the system to subjects and then
subjects start evaluation experiments after short use of the system. In the evaluation stage,
there is no advice and suggestion from the operator. The display of PC is recorded using a
video recorder and all utterances and input and output logs are recorded in the PC memories.
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3.2.5 Evaluation results

1. Evaluation Data for Location Retrieval

In the ten locations, two names of locations/addresses have been changed by the city
merging. The following data show two names changed.

(Dbefore: Aijyo 1-1, Osato-machi, Osato-gun, Saitama
changed to Aijyo 1-1, Kumagaya-shi, Saitama

(2)before: Okisu 1-1, Kamisu-machi, Kashima-gun, | baragi
changedto Okisu 1-1, Kamisu-shi, Ibaragi

Others are three ordinance-designated city names which have area’s name “ku.” We
normally do not understand how to separate “ku” and the following location names. Other
5 locations/addresses are normal names.

2. OOV Ratio

Table 1 shows evaluation results showing ratios of correct recognition, OOV, and
misrecognition, respectively. In the experienced group, the total number of utterances is 352
and the number of correct recognition is 191 (54%), the number of OOV is 86 (24%), and the
number of misrecognition is 74 (21%). In the non-experienced group, the total number of
utterances is 601 and the numbers of correct recognition, OOV, and misrecognition are 304
(50%), 151 (26%) and 146 (24%), respectively.

Experienced @(pglric; ced
No. Ratio No. Ratio
Correct

recognition 191 54% 304 50%
oov 86 24% 151 26%
Mis-

recognition 74 21% 146 24%
bug 1 1
total 352 601

Table 1. Evaluation Results according to Experience

3. Feature of OOT Utterances

The varieties of OOV of the location/address retrieval task are complete OOV utterances,
mis-division of ordinance-designated city names, input frame errors, and OOV utterances at
the top display level of the FlexibleShortcuts stage. Table 2 shows details of OOV utterances.
For the total 951 utterances, the number of OOV is 237 consisting of 112 complete OOVs, 55
address division errors, 21 input frame errors, and 49 top-display-level OOVs.
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Complete Address Input frame | Top display Total
OO0Vs division errors errors level

112 55 21 49 237
47% 23% 9% 21%

Table 2. The Number of OOV Utterances

4. Subject Action/Behavior after OOV Utterance

The following remarks are subjects’ actions after OOV utterances.

a. Complete OOV utterances:

Table 3 shows an example in which a subject realized OOV after four (4) utterances
(repeated). This subject realized an OOV utterance checking a vocabulary list shown using
the controller. Figure 7 shows the number of utterances when subjects realized OOV
utterances. The numbers of cases in which subjects realized OOVs at the second utterance,
third one, forth one, fifth one, sixth one, seventh one, eighth one, and ninth one are 1 (5%), 3
(15%), 4 (20%), 1 (5%), 2 (10%), 6 (30%), 0 (0%), and 3 (15%), respectively.

Utterances Recognition results

Content Recognized word Reason

Ibaragi Ibaragi (correct)
Kashima-gun Kamisu-cho Kusumigaura-shi ooV
Kashima-gun Kamisu-cho Sarushima-gun, Gosumi-cho ooV
Kashima-gun Kamisu-cho Sarushima-gun, Sakae-cho ooV
Kashima-gun Kamisu-cho Sarushima-gun, Sakae-cho ooV

To the next address retrieval step

Table 3. Example of OOV Utterances (address task)

b. Address Division Errors

To retrieve ordinance-designated cities, users should utter city name and “ku” name
together, however most people utter city name and “ku” name separately. (Example:
Sapporo-shi and Chuou-ku separately instead of Sapporo-shi Chuou-ku) Firstly, subjects
utter these city and “ku” names separately, but when connected error output of city and
“ku” names appeared on the display subjects understood how to utter ordinance-designated
city names. Finally subjects could retrieve locations/addresses correctly. This is advantage
of the Select&Voice architecture based on input frames.

c. Input Frame Errors

Subjects should select input frames correctly. If not so, subject’s utterance will be an OOV
utterance. From the check of logs, subjects can change the input frames correctly after
realizing the misrecognition results in this case.
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The improvement of ASR interfaces and how to deal with OOV utterances are the most
important and urgent issues to be solved. To create new vocabularies (the same meaning,
but different utterance styles) from original vocabulary automatically is one of future
research issues.

@o0% <N 2nd
b E5%

W5y 3rd O 3rd

B 0% O15% @ ath

4th B 5th

H 30% @20% 3 6th

'm 5% B 7th

O 10% O gth

M oth

Fig. 7. The No. of Utterances when Subjects Realized OOV

4. In-car noise speech evaluation

4.1 Speech data collected in driving car

For the robustness of ASR interface, we evaluate in-car noisy speech and propose an
effective pre-processing technique to cope with in-car noise. We used in-car speech data
which were collected in moving cars using array microphones (Waseda 2007).

The recording was done in downtown Tokyo where the car was forced to drive slowly with
frequent stops due to the traffic jam. Therefore, a large part of the background noise was
from the surrounding environment such as other cars, constructions, etc. The speaker was
sitting on the passenger seat, and there was a linear microphone array on the dashboard in
front of the speaker shown Figure 8. The array consists of 7 (seven) microphones, which are
located at the interval of 10cm, 5cm, 5cm, 5¢m, 5cm, and 10cm. The array microphones were
labeled as #1 to #7 from the driver seat side to the window side, so the central microphone
was #4. Also, the headset microphone (#8) was used to collect noise-free speech.

Fig. 8. A Microphone Array in Car
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4.2 Original data analysis

We have collected the speech data from 18 speakers (11 males and 7 females, all in their
early twenties). 3,620 utterances for 152 POIs (Point of Interests) were collected in total, and
they were roughly segmented using a fixed time period from the beep. After segmentation,
the length of the data was approximately 7 hours in total. The number of utterances per
speaker ranged from 134 to 326, and the number of utterances per POI ranged from 10 to 48.
We then estimated the signal-to-noise ratio (SNR) by comparing the power of speech and non-
speech segments. Table 4 shows the estimated SNR for each microphone. Since the noise
spectrum has a strong peak in the low-frequency range, we also calculated the SNR after
applying a bandpass filter of 400Hz to 5500Hz range. It is interesting that the estimated SNR
does not have any correlations with distance between speakers and microphones, although
speech recognition rate has correlations with distance of speakers and microphones. The
recognition rate of headset microphone #8 is the best and would be the target rate.

Figure 9 shows ASR recognition rate for each microphone after low power cut processing.
The low power cut frequencies are 20Hz for males and 40Hz for females.

mic. ID | SNR (full band) dB | SNR (400-5500Hz) dB| Rec. rate(%)
1 -05 9.3 83.2
2 -2.8 121 86.3
3 -34 8.6 86.8
4 -3.0 9.2 87.8
5 -2.7 11.7 88.7
6 -3.8 85 85.6
7 -2.9 105 76.4
close-talk 56.7 83.2 95.2

Table 4. Estimated SNR of Each Microphone Data (Obuchi & Hataoka, 2006)
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Fig. 9. Feature of Each Microphone
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4.3 Experimental procedure

4.3.1 Free/open CSR software Julius/Julian

Free CSR (Continuous Speech Recognition) software Julian (Julius/Julian URL) was used as
an ASR engine. There are two types of CRS engines such as Julian and Julius. The Julius is
using language models based on N-gram and the Julian is using language models based on
network grammars. The only difference between Julius and Julian is the language model.
Both engines are using the same speech analysis and the same search algorithm. The search
algorithm is based on two pass algorithm; the first search is a rough search using mono-
phone HMMs and the second search by tri-phone HMMs. Julius is using bigram for the first
search and trigram for the second search. We evaluate many noise handling techniques
using a Julian decoder in automotive environments to make technical problems of speech
processing modules clear.

4.3.2 Recognition experiments using various techniques

We carried out evaluation experiments of 152 POI isolated word recognition using Julian
decoder for 5-male and 5-female data on a Linux machine. For Julian conditions, the sample
acoustic model with PTM triphones was used. Among various variations of Julian, the
Julian-v3.4.2 grammar driven decoder with 12 MFCC and log power, plus their first-order
time derivatives is used. All the data were originally sampled by 44.1kHz, but down-
sampled to 16kHz prior to the experiments.

The results of the baseline experiments (Table 1) showed the recognition rate of distant-talk
was 88.7% (mic. #5) and that of close-talk was 95.2%. In the experiments, the individual
recognition rate ranged from about 81% to 92% (average of all microphones).

The following pre-evaluation experiments are carried out to check problems of noisy speech
data.

1. Evaluation of Low Power Cut and Spectrum Subtraction (SS)

According to many reports, the engine noise is ranging under 100Hz, so we carried out low
power cut before the recognition stage. We checked frequency ranges of low power cut from
20Hz to 100Hz by 20Hz step size. Figure 10 shows results of low power cut (mic.#5). The cut
of frequency 20Hz showed the best results (all average 88.8%), especially to female data.

91.00

89.00

87.00

—— Maeav.
85.00 —®— Female av.
\ —— All av.

83.00 \

81.00 \!

79.00 : :
OHz 20Hz 40Hz 60Hz 80Hz 100Hz

Fig. 10. Evaluation Experiments of Low Power Cut
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There are many parameters for setting SS processing. We used standard function supported
by the Julius/Julian software. Figure 11 shows all evaluation results, e.g. original data, low
power cut data, and SS data (for all distant-talk microphones). These results show that the
recognition rate and the pre-processing effects depend on talkers deeply.
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Fig. 11. Summary of Evaluation Experiments (Original/ Low Power Cut/SS)

2.  Weighted Summation of Array Microphones (WS) + Spectrum Subtraction (SS)

We tried the combination of array microphones and Spectrum Subtraction (SS). First, we
summed speech data of possible array microphones, and then the SS processing was carried
out to summed speech data. This array microphone technique is called Weighted
Summation of Array Microphones (WS).

For SS, the following equation is used and two parameters a,  are checked from the
viewpoint of recognition accuracy.

S = X(A) - o N(f)
N() = (1— B) N'(f) +B N(f) )

Rl(f): estimated noise, Iﬁl (f): previous estimated noise

o dphaparameter, 4. floor parameter
In the Julian software, the default of a = 2.0, and the default of § = 0.5. We checked a = 2.0,
3.0,3.5,4.0and 5.0.
For WS, three types of summation of microphones are used; microphones #3 + #4,
microphones #4 + #5, and microphones #3 + #4 + #5.
Figure 12 shows recognition rate using the SS pre-processing method according to the value
of parameter a. The pair of microphone #4 and #5, and the parameter a = 3.5 gave the best
recognition accuracy. For all pairs of #3, #4, and #5, the high average was obtained by a=4.0.
However, the case of a = 3.5 gave a recognition dip for the pair of #3 and #4.
Figure 13 shows recognition results according to pre-processing, i.e. S5, WS, and SS+WS.
The headset microphone gave the best recognition accuracy (around 98%), and WS of
microphone #4 and #5 (+#3), and SS gave the second best accuracy (around 90%). However,
there is still a big gap between the headset and array microphones + SS pre-processing.
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Fig. 13. Recognition Results according to Pre-processing

4.3.3 Consideration

In this work, we carried out possible tecuniques of the signal processing level to get a robust
noise reduction method. Especially, we tried Weighted Summation of Array Microphones
and Spectrum Subtraction. We obtained improvement using WS + SS, however there is still
a big gap of recognition rate between the headset (98%) and WS + SS (90%), i.e. 8%. The
recognition rate by the headset is the target one, so the further analysis is needed to reach
the target accuracy by the pre-processing techniques.

5. Future work

The improvement of ASR interfaces and how to deal with OOV utterances are the most
important and urgent issues to be solved. Also, more compact and more noise robust
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embedded version of Julius should be developed. For the noise robust technique, we are
trying the subtractive array-microphone method for the adaptive noise estimation.
Moreover the use of Missing Feature Theory (Raj et. al., 2005) is a promissing one for the
noisy speech.

6. Conclusions

This chapter described two experimental evaluation results of ASR interface for mobile use,
especially for car navigation applications. First, we evaluated the usability aspects of speech
interface on a car navigation system and second, we evaluated in-car noisy speech by the
various pre-processing techniques. For the first evaluation, we used a prototype which has a
promising speech interface called FlexibleShortcuts and Select&Voice produced by Waseda
University. To check OOV (Out-Of-Vocabulary) problems, we used the special case in that
many location names have been changed by the town/city merging. This means that
previous old location names are OOVs. For the location setting applications on the car
navigation system, we found many undesirable OOV utterances occurred which made the
interface worse. From the second experiment to check car-noise problems, we propose the
combination method of Weighted Summation of Array Microphone (WS) + Spectrum
Subtraction (SS) to increase recognition accuracy.
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1. Introduction

This chapter aims to present some of the recent Bayesian approaches to speaker diarization
(SD). SD is the task of grouping an audio document into homogenous regions, where each
region should ideally correspond to the complete set of utterances that belong to a single
speaker. Rich transcription, speaker adaptation of speech recognition systems and speaker
recognition are some of the applications that require such a clustering procedure. Broadcast
News, meeting, and telephone conversations are the main domains that SD is applied to.

SD is a fully unsupervised clustering task. Not only we are not allowed to use any
target-speaker enrollment data to detect the target speakers through the acoustic stream,
but the number of speakers should be considered as an unknown, too. Moreover,
text-independence should also be assumed, meaning that no transcript is available, either.
Despite the effectiveness of several approaches and frameworks that have been proposed
and tested in literature, the most natural and systematic approach to SD is to treat it as a
model’s order selection task. Once the order is estimated (i.e. the number of speakers) the task
reduces to a familiar (but not trivial at all) machine learning task where the latent variables
(i.e. the speaker indicators of each utterance) of given cardinality should be estimated from the
observations. Therefore, a major issue we deal with is how to assess the number of speakers
in a way that is simultaneously robust and efficient.

Bayesian machine learning is a highly principled paradigm and can naturally tackle model
selection problems. It does so by applying consistently the rules of probability in order to infer
the desired quantities, including the order of the model. Its superiority over the frequentistic
statistical framework (e.g. Maximum Likelihood estimates, Classical Hypothesis testing) or
semi-Bayesian approaches (e.g. MAP estimation, penalized maximum likelihood criteria) in
model selection, averaging and density estimation has been verified in most (if not all) of the
speaker related tasks, including identification and verification.

Several drawbacks however still exist, most of which stem from the intractability of the
majority of the ideal Bayesian solutions. Many well known and effective machine learning
tools cannot be applied or require severe adaptation that may drastically increase their
computational complexity. Nevertheless, the introduction of powerful approximate inference
method (e.g. Variational Bayes, Expectation Propagation), novel Markov-Chain Monte
Carlo techniques, along with the rapid development of the Bayesian nonparametric models
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(Infinite-HMMs, Dirichlet process mixture models, a.0.) allows us to create new approaches
that are based on the statistical coherency of the Bayesian framework.

The rest of the chapter is organized as follows. In Section 2, some of the non- and
semi-Bayesian approaches to SD is reviewed, along with some definitions and general
algorithms strategies. In Section 3, the basic theory of Variational Bayes inference is presented
with emphasis on mixture models, while a Variational Bayes algorithm that uses supervectors
is examined in Section 4. In Section 5, we consider the use of infinite models to SD, while some
ideas about further applications of Bayesian inference in diarization are discussed in Section
6. Finally, an introduction to some novel features that are utilized in speaker verification and
recently in diarization are presented in the Appendix.

2. Short overview of speaker diarization approaches

In this section, a brief introduction to SD is presented, followed by some approaches that have
been proposed in literature. We will refer to several algorithmic approaches and discuss some
of their strengths and weaknesses. For a more complete overview of these methods we refer
to (Tranter & Reynolds, 2006).

2.1 Front-end features and preprocessing steps

Before we examine the several algorithmic approaches, let us review some aspects that
are common to all systems. The majority of SD systems use Mel-Frequency Cepstral
Coefficients (MFCC) as front-end features, although other feature spaces have been proposed,
such as Linear Frequency Cepstral Coefficients (LFCC) and Perceptual Linear Predictive
(PLP), (Hermansky et al., 1985). Some systems utilize prosodic features to augment the
cepstral representation (see Friedland et al. (2009)) while other approaches attempt to fuse
several spaces and increase the diarization accuracy, (Gupta et al., 2007). Depending on the
application field, one may consider techniques to normalize the MFCC stream, (Pelecanos &
Sridharan, 2001), (Xiang et al., 2002), (Hermansky et al., 1992). These techniques aim to remove
the linear channel effect and possibly the additive noise introduced by the recording chain,
and are compulsory when a speaker may speak with more than one recording chains. In SD,
such techniques may not be necessary; a standard assumption is that each speaker speaks only
under identical conditions, i.e. recording equipment and background noise. Moreover, since
the channel is unknown, these techniques unavoidably remove information that is related to
the speaker and therefore increase the similarity between different speakers.

In the multiple-microphone setting (e.g. meetings), two are the main approaches. The first is
to apply acoustic array processing techniques (i.e. beamforming) in order to mix the signals
into a unique enhanced signal, (Anguera et al., 2007). A second approach is to utilize the
estimated direction-of-arrivals (DOA) and fuse spatial and cepstral information, (Pardo et al.,
2007). In our review, we will focus on the former approach when multiple microphones are
in-hand.

A second step that is common to most of the algorithms is Speech Activity Detection (SAD).
Silent regions of duration more that 200ms should be detected and removed from the steam.
The official scoring method of NIST, the Diarization Error Rate (DER), penalizes false alarm
and missed detection rates linearly. A common approach to detect speech is to assume
that speech and silence follow a normal distribution each, in the log-energy domain. An
Expectation Maximization (EM) algorithm with two Gaussian components is then applied,
using the log energy as features. The energy feature stream is calculated using sliding
windows of typically 30ms duration, with 20ms overlap, so that it is aligned with the MFCC
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stream. Temporal smoothing techniques are then applied on the binary labels to discard
regions of less that 200ms duration. Hidden Markov Model (HMM)-based EM may also be
considered as well, in order to avoid the need of ad-hoc or morphological filtering techniques.
Apart from the energy, periodicity based methods have been proposed. These methods utilize
the facts that vowels exhibit strong (quasi-)periodicity and apply it to discriminate speech
from silence. Periodicity based approaches are usually more robust to noisy environments,
however they require more computational effort than the energy-based ones, (Ishizuka et al.,
2010).

Finally, in the Broadcast News field, most systems discriminate between acoustic classes like
speech, music, music and speech, and silence. To do so, supervised learning techniques are
applied. Each class is modeled with a GMM with 128 or 256 diagonal Gaussian components
using labeled training data. During the classification stage, regions that are classified as
non-speech are removed from the stream, after a proper temporal smoothing on the class-label
domain.

2.2 General algorithmic approaches

After the preprocessing steps described above, SD algorithms diverge into two main
directions. Those that apply segmentation to the MFCC stream, which might be uniform
or based on the speaker change detection algorithms (see (Chen & Gopalakrishnam, 1998)),
and those that do not apply such segmentation. Following the terminology of (Meignier et al.,
2006) we will refer to the former branch as step-by-step algorithms, while to the latter as
integrated algorithms. Both algorithmic approaches exploit a certain characteristic that the
speaker labels exhibit, which is the temporal continuity. To realize the minimum range of
this continuity, note that a speaker’s turn lasts no less than 1 or 2s while the MFCC rate is
10ms, typically. Step-by-step algorithms exploit this continuity in order to turn the problem
into a typical unsupervised clustering task. They represent each segments using a statistical
model (a single Gaussian or a GMM) and they apply clustering techniques to group them
into speakers. On the contrary, the integrated algorithms exploit the temporal continuity
by assuming that the transitions between speakers follow a stochastic process which can
be modeled by a (first-order and time-independent) Markov chain, where the probability of
self-transition is significantly greater than the one of departing from the current state. Since
the labels are not directly observed (in fact, they are the desired quantities) an observation
model should be added, to link each distinct label (or state) with the observations. The
overall model is therefore a HMM, where the observation model (i.e. the state-emission
probabilities) is usually a GMM for each state, that is capable of capturing the multimodality
of the state-conditional distribution.

2.3 Distance-based and model-based approaches to speaker clustering

However, what restrain us from using standard clustering or HMM techniques is the lack of
knowledge regarding the number of speakers, say K. If we a priori knew K then we would
apply an EM-algorithm to learn both the model and the latent variables (i.e. the label of
each MFCC frame). ! Two are the main approaches to deal with this issue. The first approach,
which is extremely common to step-by-step algorithms, is to apply agglomerative hierarchical
clustering (AHC) to merge those segments being close enough, in a statistical sense. What is
required is a measure of similarity (or equivalently dissimilarity) and usually a predefined

! This is partially true however; phoneme rate, pitch, intensity and other emotional variations that
speakers may exhibit during their speech may cause failure even in this setting.
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threshold. We refer to these approaches as distance-based. Most step-by-step approaches use
a two stage AHC procedure; at the first stage the segments (and consequently the clusters)
are modeled using a single Gaussian of full covariance matrix, while GMMs are deployed
only on the next stage, to merge those clusters that had not been merged during the first
step. Several of the similarity measures that are used in the second stage are discussed in the
Appendix, along with the MAP-EM algorithm that is applied to train the GMMs. Note also
that several hybrid algorithms exist as well. For example, the highly robust and tuning-free
approach proposed in (Ajmera & Wooters, 2003) uses a uniform segmentation stage and
applies a Viterbi re-segmentation algorithm each time a pair of clusters is merged. Finally,
several other alternative to AHC algorithms have been proposed, including Self-Organized
Maps, Spectral Clustering and the Mean-Shift algorithm, that produce competing or better SD
results, (Lapidot, 2003), (Ning et al., 2006), (Stafylakis et al., 2010b).

l

Front-end
processing

Speech activity
detection

Segmentation

[

Clustering

I

Viterbi
Resegmentation

Output file
Fig. 1. Flow-chart of a baseline step-by-step algorithm

The main problem, however, regarding the distance-based approaches is their heuristic
nature, in the sense that they do not propose a method to score overall clustering hypotheses.
Note that the distance-based category of approaches may include even methods that rely on
similarity measures that are derived from model-selection. For example, the local-Bayesian
Information Criterion (BIC) ((Zhu et al., 2005), (Barras et al., 2004)) might be a model-based
dissimilarity measure, however it does not correspond to the difference between scores of
competing clustering hypotheses, (Stafylakis et al., 2010a). A desired property of a clustering
algorithm is to be capable of providing a score to every single possible configuration of the
latent variables. This is the essence behind the model-based approaches, (Fraley & Raftery,
1998). A model-based approach may be applied to a broad range of algorithms, which
includes the AHC as well. To do so, we need to consider the dissimilarity between any pair
of segments (or clusters of segments) as the increase or decrease of the overall score caused
by the action of merging this pair. The global and the segmental settings of BIC are such
examples, (Stafylakis et al., 2010a).

2.4 Penalized likelihood and its limitations
The most significant gain, however, from using model-based approaches is that it allows us to
make use of the most natural and powerful tool of learning with missing data, that is the broad
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class of EM algorithms, (Dempster et al., 1977), (Amari, 1995). The integrated approaches
typically use an evolving HMM (E-HMM), that is an HMM with increasing number of states.
For each number of states, the Viterbi of Baum-Welch algorithm is deployed to learn the
latent variables and estimate the emissions. To estimate the true number of speakers and the
corresponding clustering hypothesis, an appropriate model selection method is compulsory.
In the step-by-step approach, a form of EM algorithm can be applied instead of the AHC
algorithm, over the range of a priori plausible number of speaker and a model selection
method is required in order to select amongst them, (Mackay, 2003).

The penalized likelihood criteria have become very popular, for two main reasons. First of
all, they can be used to apply model selection without altering the non- or semi-Bayesian way
we estimate the parameters of the model with missing data. For example, in the E-HMM
approach to SD, one may use the standard Maximum Likelihood (or MAP estimate) and
penalize it according to the well-known BIC penalty term. The second reason is that under
some regularity conditions they are limits of the desired Bayesian quantity; the marginal
likelihood of the model. The BIC is derived by approximating the marginal likelihood of the
model with the Laplace method, and discarding those terms that do not scale with the number
of observations.

However, there are certain drawbacks regarding this semi-Bayesian approaches. For example,
there are several models for with the consistency of the BIC has not been proven. This includes
all the mixture models, including GMMs and HMMs as well. Even though in cases where
the regularity conditions hold, the Laplace approximation is usually inaccurate for small
sample sizes. Moreover, a MAP estimate is still point estimate, since the uncertainty about
the estimate is being ignored, (Mackay, 2003). Finally, many of the powerful Bayesian tools,
like the use of explicit priors or the use of hierarchies to tie several parameters cannot be
combined in a profound way with the BIC approximation. Therefore, it becomes evident that
a fully-Bayesian treatment of SD is required, which is the objective of the rest of this chapter.

3. Methods based on Variational Bayes approximate inference

In this chapter, the use of a fully Bayesian framework to SD is examined. The term Variational
Bayes (VB) refers to a set of methods (the most popular of which being the mean-field VB)
that approximate the desired quantities (e.g. marginal likelihoods, posterior probabilities,
predictive densities) by bounding the marginal likelihood of the model from below. The use
of VB is SD has been pioneered by F. Valente (Valente, 2005) and has been refined by P. Kenny
et al. (Kenny et al., 2010) by applying it to i-vectors. We should emphasize that VB is a general
purpose (approximate) inference method and its use is not limited to finite mixture models. On
the contrary, it can be applied to nonparametric models, too (e.g. Dirichlet Process Mixture
Models, (Blei & Jordan, 2005)).

3.1 Fundamentals of Variational Bayes

Let as consider a family of nested models M and let K denote the order of the model (e.g. the
number of components of a GMM, the number of states of an HMM, etc.). Let the parameter
space be denoted by ® while the set of latent variables by X. The most probable order of the
model given Y is the one that maximizes P(K|Y) « p(Y|K)P(K). Assuming uniform prior
over the hypothesis space (i.e. P(K) o 1), we need to maximize the marginal likelihood of the
model with respect to (w.r.t.) K, i.e.

p(Y|K) = /p(Y, X, ©)dXd0 (1)
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Alike BIC and other Laplace approximation based approaches, the VB framework defines
a lower bound of (1). It does so by (i) introducing the variational posterior 4(X,®) (the
conditioning on Y is kept implicit) and (ii) applying the Jensen inequality, as follows

log p(Y|K) :1og/%q(x,@)dxfz® > [10g (%) 4(X,0)dXd0 ()

The bound that (2) defines is known as the (negative) Variational free energy Fx(q(X,®)),
while the difference between log p(Y|K) and Fx(-) is equal to Dgr(q(X,0)||p(X,0]Y)).
However, no further improvement can be attained without making some assumptions about
the functional form of (X, ®). The mean field VB pretends that X|Y and ®|Y are independent,
and therefore assumes that (X, ®) admits a factorization of the form ¢(X,®) = q(X)q(®).
We say so, since this factorization is only a priori possible. A posteriori, the observation of
Y induces an (at least weak) correlation between X and ®. However, this independence
assumption allows as to make the optimization problem tractable by applying calculus of
variations.

3.2 The VB-EM algorithm
By maximizing Fx (q(X)q(®)) w.r.t. to 4(X) and q(®) we end up with the VB-EM algorithm
described below

VB-E step: q(X) = Zixedog p(Y,X|©®)> ) 3)
VB-M step: 4(®) = ;Gg<108P(Y,X|®)>q(X)p(®|K) @)

where < a >, denotes the expected value of 2 w.r.t b, while Zx and Zg are the corresponding
normalizing constants. Note that the existence of p(®|m) at the M-step induces no asymmetry
between X and ©®; the prior of X is incorporated through the complete-data likelihood
p(Y,X|©) = p(Y|X,0)p(X|m).

The severe distinction between ML-EM (or MAP-EM) and VB-EM is that while the former
proceeds with simple point masses J(®, ®) placed at the ML or MAP estimates of ®, VB-EM
captures the uncertainty in these estimates, through the posterior distribution of ®. Each
estimate of X is obtained by averaging w.r.t. to the posterior of ®, and not by §(®,0).
Furthermore, the benefits from using such a fully probabilistic approach are not restricted
to obtaining much richer inferences about ® and X. Contrary to ML- and MAP-EM, VB-EM
aims to maximize the marginal likelihood of models, which is the key quantity in assessing K.
No penalty term is required; the marginal likelihood is all we need to obtain in order to select
between the rival models.

However, we should re-emphasize that the quantity being maximized by VB is Fx(9(X, ©))
and not logp(Y|K). We saw that the difference between the two terms is equal to
Dg1(q(X|K)q(®|K)||p(X,0]Y,K)) > 0 which increases with K. Therefore, the approximation
of log p(Y|K) by Fx(9(X, ®)) induces a systematic bias towards simpler models and therefore
VB may underestimate the true number of speakers.

3.3 Hyperparameters: centering and strength

So far, we have assumed that the hyperparameters (i.e. the variables that parametrize
the prior) remain fixed during the VB-EM. Let us denote the set of hyperparameters by
H. By restricting ourselves to the conjugate family of priors, the hyperparameters can be
distinguished into two sets H = [H¢, H°]. Those that parametrize expected values of elements of
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O (the prior centers, denoted by H¢) and those that determine the amount of virtual observations
carried into the prior, also known as the strength of the prior (e.g. the relevance factor r in (42)),
denoted by H®. Priors with large strength are called informative, in the sense that their impact
on the posterior is significant, at least when dealing with small or medium T. In cases where
only vague, unreliable, or no information at all is available about ©, a good strategy is to keep
the prior as non-informative as possible. Jeffreys’ priors, defined as follows

pl(0) o« |Zo(0)|'/? ®)

where Zg(0) denotes the Fisher information matrix and 6 an element of ®, are flat in the
sense that they place equal probability mass on each natural volume element of the statistical
manifold, (Snoussi, 2005). They are also limits of conjugate priors, defined as below

p(611, 1) o |Zo (6)['/? exp (—13Diu (5116)) (6)

by letting the strength go to zero. However, they are rarely proper, since [ |Zg(6)|!/?d0 usually
goes to infinity, and therefore inadequate for the model selection task. Hence, one may use
conjugate priors and place hj equal to the minimum value (or the minimum integer) for which
(6) is proper.

A further issue regarding the strength of the prior is whether the overall amount of virtual
observations should remain fixed or be allowed to vary with K. For example, the standard
penalty term of BIC implies a strength that remains fixed. Hence, the more parameters we
add to the model, the less informative the (implied) prior will be for each single parameter.
However, this strategy can be restrictive for models having parameters whose prior requires
a minimum amount of strength to be proper (e.g. covariance matrices). In such cases,
this strategy bounds from above the overall number of parameters that can be used and,
consequently, the number of clusters. On the contrary, letting the strength grow with the
number of parameters can cause overestimation of the true order of the model.

In any case, if we choose to optimize the hyperparameters, a straightforward solution is to
solve the following maximization problem

gD = argmafo(q(X)q(G)),H(i)) (7)
H

As an alternative, hierarchical priors may be considered. In this approach, one may attach
priors to the hyperparameters as well, that are governed by hyper-hyperparameters, and so
on. Thus, one may consider marginalizing w.r.t to the parameters instead of maximizing.
This approach is used in (Kenny, 2010) where a vague Gamma (hyper)-prior is attached to
the precision of the Gaussian prior, resulting in an overall student-t prior distribution of
the speaker factor. The experimental results of the 2010 speaker verification competition of
NIST showed that the inclusion of this additional level of hierarchy increases significantly the
verification accuracy.

4. A Variational Bayes approach to speaker diarization using supervectors

In this section, we examine in detail a VB approach to SD that utilizes supervectors in order
to represent speech segments. Supervectors are high-dimensional vectors that are formed
by concatenating the mean values of a GMM. The GMM is MAP-adapted from a Universal
Background Model (UBM), where only the means are allowed to be adapted (see Appendix).
Each supervector is then projected onto a space of lower dimensionality and VB inference in
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adopted to estimate the number of speakers and the assignment of segments to speakers. VB
methods that do not make use of the supervector representation can be found in (Valente,
2005),

4.1 Supervectors and modeling assumptions

As explained in the Appendix, supervectors are high-dimensional vectors that are capable
of capturing speaker characteristics in great detail, and are applied to speaker verification
and recently in diarization, too. A main assumption used in the proposed method is that a
supervector M can be described by a mid-dimensional vector w, as follows

M~ M+ Vw 8)

where M) the center of the acoustic space (i.e. the supervector of the UBM) and V a low
rank (say p) rectangular matrix. The columns of V are the eigenvectors and have been
extracted off-line. Furthermore, the columns of V' are properly scaled with the corresponding
eigenvalues so that w ~ N (0, Ip). Finally, let X be the diagonal covariance matrix of My (see
(Kenny et al., 2005) for a detailed derivation).

Let us assume (i) that a segmentation of the stream Y into segments has been applied. A
uniform segmentation of 1s duration is proposed in (Kenny et al., 2005), however, speaker
change detection techniques may be applied as well. The segmented MFCC stream is denoted
by Y = {ym}M_,. For a given number of speaker K, an K-dimensional indicator vector iy, is
used to indicate the speaker it belongs to, that is 7, = 1, if and only if y,, belongs to the kth
speaker. The collection of these vectors is denoted by Z = {i, }%:1. Moreover, the parameter
vector of the kth speaker is denoted by wy and their collection as W = {wk},{(:l.

We further assume (ii) that an upper bound of the number of speakers (say Kjx) is given and
that the mixing coefficients 7 = {7, }X_; (i.e. the prior probabilities of each speaker) can be
estimated by maximizing the marginal likelihood

/ p(Y, W, Z|)dWdZ )

w.r.t. 77. This technique, known as Maximum Likelihood II (ML-II) clearly diverges from the
Bayesian framework. A fully-Bayesian approach attaches priors (e.g. Dirichlet) to {nk}le
and integrates out these parameters, too, instead of maximizing w.r.t. them. However, this
technique enables us to estimate K without resorting to comparison between the marginal
likelihood of several K, which can be time consuming when dealing with a large range of
candidate number of speakers. On the contrary, by using this technique, we can estimate K
simply by counting the number of mixture coefficients assigned non-zero values by ML-II,
(Corduneanu & Bishop, 2001).

Finally, we assume (iii) that the alignment of frames with GMM-level mixture components is
given. This assumption uses the final E-step of the EM algorithm as an estimate of the missing
data (i.e. the component indicators). Using this assumption, we not only have to deal with
the a single set of missing data, i.e. 7 = {im}%:y but we are able to represent segments
with sufficient statistics and utilize closed-form expressions to calculate the desired statistical
quantities. This is due to the fact that the complete-data likelihood of a GMM belong to an
exponential family, while the incomplete-data likelihood does not.
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4.2 Working with the complete-data

To stress the benefits from the third assumption, let us derive some useful formulae that will
be used, namely the likelihood, the posterior and the marginal likelihood of a single GMM
that is represented by w. Let y, = {y'};—15,.. be the MFCC coefficients of a segments. We
parametrize the (centralized) statistics of each segment as

Ne =Y 7'(c) (10)
t

=T (v - i) -
and
~ . !
Sc = diag <;7t(6) (yt - V(c)) (yt - Vg) ) 1

where 7!(c) the posterior probability that y' belongs to the cth component, given by the
MAP-EM algorithm. This is our estimate of the missing data, that is already in-hand from
the MAP-EM algorithm. For notational compactness, let us define N the Cd x Cd diagonal
matrix, whose C diagonal block are defined as { N, Id}leo Let also F a Cd dimensional vector
(i-e. a centralized supervector) by concatenating all F; and finally, let S be the Cd x Cd diagonal
matrix, whose C diagonal block are {S.}C_,.

To calculate the complete-data likelihood of a model with fixed parameters w given y,, the
following closed form expressions can be utilized

log p(zu|lw) = G + H(w) (13)
where
1 . C
G=_-tr (2*15) — Y Nelog [271%, |1/ (14)
2 c=1
and 1
H(w) =w"viz™! (F - ENVw) (15)

and zy = (Yu, 7u) the (estimated) complete data.
The posterior distribution of w given z, is also Gaussian w ~ N (@, A~1), where

@ =A1VvTs 1 (16)

and
A=1,+VIZ7INV (17)

the precision matrix of the posterior. Recall that w ~ N(0, I,)) a priori.
Finally, the marginal likelihood p(z,|S = 1) is given by the following formula

logp(zy|S=1) = log/p(zu|w,5 =1)p(w)dw = G — %|A\ + %ﬁTZflVAflVTZ'le (18)

The existence of the above closed-form expressions is a consequence of using the (estimated)
complete-data likelihood instead of the incomplete-data likelihood.
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4.3 The VB algorithm

In order to solve the intractable problem of estimating Z and S, a VB can been developed.
Assume again that the variational posterior that can be factorized as Q(Y,Z) = Q(Y)Q(Z).
Note though that in this setting, all the posteriors are conditional on (i) the complete-data
{zm}%:1 and (ii) on a point-estimate of 7z. To update this estimate a further step should be
added to the general VB-EM iteration, which is the maximization of the marginal likelihood
w.r.t 71. We initialize our variables by setting K equal to the maximum number of speaker
Kinax, and by setting 7t as uniform, i.e. 71, = %, m=1,..., M.

The E-step is responsible for estimating the assignment Z given the current posterior
distribution of the parameters {wy } ]Ile and the current point-estimate /7. Note that due to the
conditioning on 7, the factorization Q(Z) = HAm/Izl Q(im) ({im}ff:l are conditionally i.i.d.).
Using the general update rule in (3) and after some matrix algebra, we end-up with

K -
VB-E step: Q(im) = H g, where g, = Kq# (19)
k=1 Yio—1 Gmk
and .
Gms = TP (2m | Tg) exp (—Etr (VTN,,,Z’1VA,<’1>) (20)

where p(z;,|@;) and Ay are given in (13) and (17), respectively. Both quantities are estimated
during the M-step of the previous iteration. Moreover, note as tr (A;l) — 0, i.e. no

uncertainty is assumed regarding the estimates, the E-step degenerates to the corresponding
step of the MAP-EM.

Similarly, the VB-M step is given according to the general rule in (4). After some matrix
algebra we obtain

VB-M step: Q(wy) ~ N (wk,A,;1> 1)

ie. will be a normal distribution with mean @; and precision Ay given in (16) and (17),
respectively. Note again that the M-step of the MAP-EM is recovered by letting tr (A;l) — 0.

Finally, the additional step for re-estimating 7 is derived by maximizing the marginal
likelihood w.r.t 7r. By rejecting irrelevant terms, the maximization problems becomes the
following

M K K
7t = argmax Z Z Gmi log 7y, subject to Z =1 (22)
T m=1k=1 k=1
which yields
1 M
7T update step: 7 = i Z Gk (23)

m=1

By iteratively applying (19), (21) and (23) the algorithm converges to a maximum. After
convergence is reached, the assignment of segments to speakers Z and consequently the
number of speakers K are estimated from (19) by simply assigning the mth segments to the
speaker that maximizes Q (i, ).
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4.4 Experiments

So far, the proposed system has been tested only against telephone conversation datasets.
This setting differs from the usual diarization systems, since we a priori know the number
of speakers (i.e. K = 2). Therefore, the strength of the proposed VB-system as a model
selection tool cannot be assessed from this series of experiments. However, the results show a
drastic reduction in terms of Diarization Error Rate (DER,%). In Table 1, the DER on NIST
2008 SRE Summed Channel Test Data made by the VB-system are presented, for several
front-end features. Details about the features can be found in (Kenny et al., 2010). The most

[ configuration [mean DER(%)[c(%)]
[ BUT features [

1 VB without Viterbi 9.1 11.9
2 VB with Viterbi 45 8.5
3[|VB with Viterbi and 29 pass 38 7.6
[ CRIM features [
’4“ VB with 20d pass, no Viterbi ‘ 33 ‘ 7.8 ‘
[ [l Raw cepstral features |

5[] VB with 29 pass, no Viterbi 22 5.8
6|| VB with 2nd pass, no Viterbi 1.9 5.6

Table 1. DER (%) NIST 2008 SRE Summed Channel Test Data using the VB-system. The standard
deviation of the Diarization Errors is denoted by ¢.

successive front-end configuration includes 20 static-only MFCC, a 1024-component UBM and

a gender-independent factor analysis model with 300 eigenvoices. The ond pass means that
the speaker change points found by Viterbi resegmentation were used to initialize a second
run of Variational Bayes and this was followed by another Viterbi resegmentation.

In Table 1, the best performance of the VB-system is compared to (i) a baseline diarization
system (i.e. speaker change detector, BIC-based AHC with single Gaussians and Viterbi
resegmentation) augmented by a soft-clustering postprocessing stage, and (ii) a streaming
system that operates on speaker factors and was introduced in (Castaldo et al., 2008) as a
stream-based approach to performs online diarization. The conversation is seen as a stream
of fixed-duration time slices and the system operates in a causal fashion. Speakers detected
in the current slice are compared with previously detected speakers to determine if a new
speaker has been detected or previous models should be updated. Further details about the
implementation may be found in (Kenny et al., 2010).

[ System [[mean DER(%)[c(%)]
Baseline with soft-clustering 3.5 8.0
Streaming with Viterbi 4.6 8.8
VB with raw cepstra, Viterbi and ond pass 1.0 3.5

Table 2. Best results obtained on the NIST 2008 SRE Summed Channel Telephone Data using the
baseline, the streaming and the VB systems.
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5. An HMM-based approach using hierarchical dirichlet processes

In this chapter, we present a recent SD approach that is based on Bayesian nonparametric
modeling, (Fox et al., 2009). This approach utilizes the HMM framework to model the
inter-speaker dynamics, mixture models for the emission probabilities and (averages of)
MFCC as front-end-features. Its main contribution is the use of infinite models on both of
the HMM levels, i.e. on the multimodal emission probabilities and on the states and the
transitions between them.

5.1 General about infinite models

The use of infinite models is a natural way to overcome the issue of how to determine a priori
the order of a model. First, consider the problem of determining the order of the GMM that
should be used to model the distribution of a speaker. A fully Bayesian modeling should
consider the order of the model as a random variable, and treat it in the same way it treats
the rest of the parameters; the order should be integrated out, too, just like the weights, the
means and the covariance matrices. On the HMM-level, a classical approach to determine the
number of states K is to apply Viterbi, Baum-Welch or VB-EM type of learning for each of the
candidate K by conditioning on K (i.e. on the hypothesis), and select the order that maximizes
the evidence (or an approximation) of the model. The Evolving-HMM and the VB approach
of (Valente, 2005) are typical examples of this framework. However, such exhaustive search
solutions may lack of efficiency, especially in cases where the hypothesis space is quite large
(e.g. Broadcast News). A more flexible solution is offered by infinite HMM, where the number
of states are not specified a priori, but is rather inferred in a more data-driven way.

5.2 Infinite mixture models and the Dirichlet processes
We begin the analysis by describing the Dirichlet process (DP), which is the building block
in most of the infinite models, (Ferguson, 1973). The DP can be considered as a infinite
extension of the Dirichlet distribution. In the same way the Gaussian process can be utilized
in Bayesian inference as a prior (i.e a measure) on functions, the DP can be used as a measure
on measures. Moreover, much like the derivation of the familiar Gaussian process from the
Gaussian distribution, the DP may be explicitly derived from the Dirichlet distribution by
letting its order go to infinity.
Let us assume that p = {,Bk}}le follows a symmetric Dirichlet distribution of order K and
strength wy, i.e.

Blag ~ Dir(ag/K, ..., a0/K) (24)

K components

where 0 < By < 1,k = 1,...,K and ZkK:1 Bx = 1. Suppose we aim to construct a
generative model for GMMs. Then, § can be used as the weights of the model. We also
need an appropriate base measure Gy. In the DP-GMM case, Gy is the prior distribution of the
components, e.g. a Normal-Inverse Wishart distribution if conjugacy is desired. By sampling
the measure Gy K times, i.e. 6, ~ Go,k = 1,...,Kwe get a set of K atoms that can be associated
with {8 }K_,. The distribution of 6 given {By, 0 }X_, can expressed as 6|GF ~ G* where

K
GX =Y Brd, (25)
k=1
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where 8, = 6(-,6;). The distribution GX can now be used in order to generate random
samples from GK. One should first sample 8|GX ~ GX and then sample y|6 ~ F(8), where
F(-) is the Gaussian distribution.

Suppose now that we let K — co. Then, B|ag follows a DP with concentration parameter w.
The random draw from the DP becomes an infinite mixture, i.e.

G =Y B, (26)
=1

We say that G follows a DP and we denote it by
G~ DP((X(), Go) (27)

Let us consider N samples from G, denoted by {¢, ﬁ]:l, ¢n|G ~ G. What prevents K
from going to infinity as N — oo is a fundamental property of the Dirichlet distribution
Dir({gx}K_,). Starting from gy = 1,k = 1,...,K and letting g; — 0, the probability mass is
being increasingly concentrated on areas close to the K vetrices of the (K — 1)-simplex. Hence,
even if N — 0o, G remains discrete and the cardinality of the set finite.

The posterior of G, i.e. conditioned to a set {¢, }\_, is a DP, parametrized as follows

1 N
G ~ DP + N, —— Go + 0, 28
(oco ol LU n;l <p,,] ) (28)
or equivalently
1 K
~ DP _— 2
G <a0+N, TN aoGo +k21Nk59kD (29)

where N, = ZnNzl 6(¢pn, 0y) and Z,Ile N = N.
It order to create samples from the DP, we may proceed as follows

1 N
Pn1l{pn iy ~ Wi N (“OGO + ng,l 5¢n> (30)

i.e. there is no need to refer to G. What (30) shows is that as N grows, the probability of getting
previously unseen samples decreases linearly. Furthermore, the probability of the new sample
to be equal to 6y is equal to (ag + N )~ Ny. Finally, high values of &g corresponds to high rates
of generating unseen atoms.
Given ay, the prior of the number of distinct atoms K after N samples is given by
I'(ap) K

p(K|D((),N) = F(DCQ—FN)S(NIK)OCO (31)
where s(N, K) are unsigned Stirling numbers of the first kind.
A intuitive and constructive interpretation of B is the stick-breaking process, (Sethuraman,
1994). For the finite case, we saw that B follows the Dirichlet distribution. In order to
create samples of § for the infinite case, however, the following sampling scheme is useful.
Considering a stick of unitary length. Fork =1,2,.. .,

uy|ag ~ Beta(1,ag) (32)
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k—1 k—1
Br = ux (1 Z/sk,> =ue [T(1—up) (33)
kK'=1 kK'=1

Therefore, uy is distributed as Beta(1,ap) and covers a fraction of uy of the remaining stick.
Hence, the overall length that covers is equal to B, given by (33). Note that a usual notation
from the stick-breaking weights is  ~ GEM(ag), where GEM stands for Griffiths, Engen and
McCloskey. The generative model is depicted in Fig. 2(a).

5.3 Infinite Hidden Markov Models and the hierarchical DP
Let us now examine how can we apply similar ideas to a dynamic network, namely the
(time-independent) HMM. An HMM can be considered as a collection of GMMs, that differ
only on their weights which correspond to the rows of the transition matrix A. Each row
Ap. = [Ag, -+, Ark], k= 1,...,Kis the conditional probability of Ml =11= 1,...,Kgiven
x! = k. Moreover, the initial probabilities 2 = [a1, ..., ax] may also be treated in a similar way,
by defining the non-emitting zero state. This allows us to include all the transition parameters
in a unique matrix, defined as the augmented transition matrix At = [aT, AT} T,
In the finite-state case, a standard Bayesian strategy is to place a common prior on each line of
Aeg.

p(Ag.lv) = Dir(y/K,...,v/K) (34)

Two are the drawbacks of this approach. The first is that the state-persistence that several
dynamic systems exhibit is not captured explicitly in this prior. As we show next, this can be
solve rather easily, by adding an extra hyperparameter to the diagonal of A that is capable of
biasing the dynamics towards self-transition. A further and more severe in our case drawback
is that such a prior cannot be extended to the infinite case. This is because the tying between
the weights Ay, = [Ayq, ..., Akk), k = 1,...,K that is offered by placing a common prior is
weak when K — co. What this prior implies is that each Aj. should simply be a independent
draw from a DP having a common concentration parameter oy and a common continuous base
measure H. Hence, the set of atoms between every pair of draws would be disjoint, leading
to no sparse solutions at all. As proposed in (Teh et al., 2006), what is required to tackle this

(a) (b)

Fig. 2. Plate notations of the DP-mixtures. (a) The original DP-mixture model, (b) The
Hierarchical DP-mixture model
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problem is to add another level in the hierarchy. On the uppermost level, a single draw Gy
from DP(vy, H) is generated, i.e.

Goly,H ~ DP(v,H) (35)
This draw is then used to parametrize the DP prior of each of the states, i.e.
Gk|lXQ,GONDP((X(),G()),k:l,...,OO (36)

The generative model is depicted in Fig. 2(b). Contrary to the previous approach, the base
measure of Gy (denote by Gp) is not only common to all states, but is moreover discrete, since

[e'e]
Golv, H =Y, Brdy, (37)
k=1

Hence, each Gy would be a (weighted) collection of the same set of atoms. Moreover, not
only the set is the same, but identically weighted by = {f;}3,. Using the stick-breaking
construction, each row of the transition matrix is distributed as follows. For k = 1,2,... and

K=12,...
k/
Uik [g ~ Beta (’XO.Bk’r‘XO (1 - ﬁz)) (38)
i=1

kK=1
Ao = uge [ (1 — ug) (39)
=1
The expected values of each Aj. will be equal to B;. Moreover, the concentration ay now
controls both the state-connectivity and the similarity between each Aj.. High values of «g
means that most of the samples will be generated directly from Gy, which increases the state
connectivity and decreases the variability between {Ay. }X_,. Contrarily, for low values of ag
the HMM may exhibit sparse state-connectivity, i.e. each state may be accessible only via a
subset of the other states.

5.4 Hierarchical DP HMM with DP mixture models as emission probabilities

Let us recapitulate the above modeling. We showed that the Hierarchical DP is a natural
extension of the original DP, that is suitable in cases where the overall model is decomposed
to a collection of submodels that share some certain properties. HMMs are such models,
since they can be considered as collections of conditional mixtures, where the conditioning
is w.r.t. the current state. We emphasize that these mixtures should not be confused with
the possibility of modeling the emissions probabilities with mixture models. The emission
probabilities are governed completely by the base measure H(-). If we desire to include
finite mixtures (e.g. GMMs) then H(-) should be the Dirichlet-Normal-Inverse Wishart
prior distribution, if conjugacy is desired. The tth observation y' will then follow a GMM
distribution, y*|0,+ ~ F(0,+). Thus, each atom ) will be a parametrization of a GMM, capable
of describing the multimodal distribution of a speaker.

For describing the distribution of a speaker, the use of DP-mixture models may be considered
as well. This means that both the HMM and its emissions may be considered as infinite (i.e.
nonparametric), which is the method proposed in (Fox et al., 2009). However, in order to
avoid fast transitions between states, a bias towards self-transitions is adopted, that allows
to distinguish between the underlying HDP-HMM states and the within-speaker multimodal
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emissions. Moreover, non-overlapping 250ms frames are used as front end features while a
minimum duration of 5001s is imposed on speaker segments. The resulting model, termed as
the Sticky-HDP-HMM produced state-of-the-art results even without any prior tuning. In fully
Bayesian approaches, tuning is related to the hyperparameters of the uppermost layer. We
also emphasize that the use of infinite models is SD has previously been proposed in (Valente,
2006). It uses a DP-mixture model for the emissions and an Infinite-HMM for modeling the
transition dynamics. However, the HMM used was degenerated (all rows of A are assumed
to be equal) making the hierarchical DP unnecessary. A VB algorithm was proposed, based
on the mean-field approximation, while a slight improvement was reported over the baseline
VB with finite mixtures.

5.5 Inference

Methods of inference of the Sticky-HDP-HMM is out of the scope of this review. The interested
reader is encouraged to examine the inferential procedures given in (Teh et al., 2006) and (Fox
et al., 2009).

In general, to infer such models, the most usual way is the family of Markov Chain Monte
Carlo (MCMC) methods. Like any sampling method, MCMC aims to estimate any desired
quantity by sample averages, generated according a proper measure. In cases where all of
the distributions are conjugate to their priors, Gibbs sampling is usually a sufficient and easy
to implement MCMC method. It proceeds with sampling each random variable, conditioned
on all the others, which are set to their current values. The Gibbs sampler is not a unique
technique in the models described above. This is because there are alternative generative
models by which the same process can be defined. Several Gibbs samplers have been
proposed, that vary according to their mixing rates and their implementation effort that
is required. A detailed implementation of these such samplers, along with a comparison
between them can be found in (Teh et al., 2006). Other approaches, that are better suited
the HMM framework are presented in (Fox et al., 2009). Finally, we mention the possibility
of applying variational inference to infinite models. Such approaches are analyzed in (Blei &
Jordan, 2005) and (Valente, 2006) and can be much faster that MCMC.

5.6 Experiments

The experiments of the Sticky-HDP-HMM presented in (Fox et al., 2009) are based on the
NIST-2007 meeting data and are being compared to (i) the non-sticky-HDP-HMM and to (ii)
the ICSI diarization system, (Wooters & Huijbregts, 2008). The latter system is based on AHC
and was the winner of the competition, scoring a 18.37% DER. It uses ML-GMMs to model
the emission probabilities, a penalty free BIC-like approach and a Viterbi algorithm after each
cluster merging. The comparison between the two HDP systems is presented in Table 3.
The number in the parentheses is the performance when running the 16/ meeting for 50,000

[ Overall DERs (%)  [[Min Hamming[Max Likelihood|2-Best[5-Best]

Non-Sticky HDP-HMM 23.91 2591 23.67 | 21.06
Sticky HDP-HMM 19.01 (17.84) 19.37 16.97 | 14.61

Table 3. Best results obtained on the NIST-2007 Meeting Data using the Sticky and the Non-Sticky
HDP-HMM.

Gibbs iterations, instead of the fixed number of 10,000 iterations. The results clearly show
the usefulness of the state persistence parameter in avoiding the unrealistic fast transitions
between speakers that is translated to an approximate 20% relative improvement in DER.
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Compared to the ICSI system, the Sticky-HDP-HMM performed slightly worst, if we consider
the setting with 10.000 iterations. We should note though that no tuning has been applied, i.e.
the priors on the hyperparameters are very vague, and are therefore placing significant prior
mass over areas that are unrealistic for the specific application field. Hence, by assuming a
proper tuning of the uppermost hyperperameters, a further increase in the accuracy should
normally be expected.

Note finally, that due to the fully Bayesian paradigm, several alternative state-sequences may
be sampled from the posterior. As Table 3 shows, if the best per-meeting DER for the five
most likely samples is considered, our overall DER drops to 14.61%. Finally, the possibility of
providing multiple state-sequences, along with their posterior probability mass, is a desirable
property when applying fusion techniques. In such cases, the relative uncertainty of the
decisions made by each information stream should also be assessed in order to fuse the
streams in a fully probabilistic manner.

6. Conclusions and further research directions

In this chapter, we presented a introduction to some of the recent methods that have been
proposed in SD. We restricted ourselves to some novel fully-Bayesian approaches, that are
based on (i) finite mixtures with Variational Bayes inference methods, and (ii) nonparametric
(i.e. infinite) Bayesian approaches. These methods are applicable to numerous problems that
deal with clustered data and are gaining increasing attention in several fields. We analyzed
some of the theoretical advantages over non- or semi-Bayesian approaches and their strength
and flexibility in learning the clustered structures of the data.

Bayesian nonparametrics may be used to tackle several other tasks in speaker and audio
problems, as well. For example, speaker verification is another major task that can be treated
as a model selection problem (that is one versus two speakers), and the effectiveness of
fully-Bayesian approaches has recently been proven, (Kenny, 2010). Furthermore, SVM-based
verification is a field where Bayesian approaches can be examined. A severe problem with
SVMs is that their soft-outputs cannot be regarded as probabilistic. On the contrary, relevance
vector machines (RVM) are fully-probabilistic analogues to SVMs and as such they can be
used as an alternative discriminative framework, (Tipping, 2001). Speaker separation from
multiple (or single) microphones is another related task to SD. A Bayesian nonparametric
model, termed as infinite factorial HMM has been used to separate the speakers and infer
their number, (Van Gael et al.,, 2009). Such approaches can be used in SD as well, in
order to detect and identify overlapping speakers. Finally, several inference methods can
be tested in speaker technologies, such as the Annealing Importance Sampling (Neal, 1998)
and Expectation-Propagation (Minka, 2001) that produce state-of-the-art results in many other
fields.

7. Appendix: Super- and i-vectors feature spaces

We review here some of the new feature spaces that are used in most of the contemporary
speaker verification systems and recently in several SD systems as well. These features are
derived by (i) adapting a UBM with the observation vectors of a speech segment (using
the standard EM-MAP of (Reynolds et al., 2000)) and (ii) mapping the high-dimensional
concatenated mean vector (or supervector) to a mid-dimensional subspace, resulting in the
identity vector, or simply the i-vector. The transformation rule is derived offline, using
enrollment data, and aims to reduce the dimensionality of the new feature space, while
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discarding those directions that do not carry speaker discriminant information.

The major advantage of the new feature space is the mapping of variable-length utterances
onto a space of fixed dimensionality, through a well-tested statistical intermediate description
(i.e. the UBM-based adaptation scheme). Using the i-vector representation, several
kernel-based and other general purpose algorithms can be applied in order to perform
identification, verification, and clustering. Finally, the i-vectors of a speaker have a rather
Gaussian distribution since they represent mean values, projected onto a lower dimensional
basis and they take values on R”. Hence, several algorithms that have been developed
assuming Euclidean spaces (i.e. of constant metric tensor) can be applied without much
adaptation. This is in contrast to representations that lie on spaces where the natural statistical
divergences (e.g. KL, Hellinger) have complex expressions that are far from being (squared)
Euclidean distances, such as those that include weights or covariance matrices.

MAP-estimate based on UBM and the supervector representation

As discussed in section 2, a typical preprocessor applies MFCC extraction, delta-feature
calculation and voice activity detection. When performing speaker verification, normalization
methods such as mean and variance normalization, RASTA filtering and feature warping are
essential in order to compensate for the channel-effects, (Kinnunen & B, 2010).

An effective statistical representation of the stream Y = {yt}le of front-end features is a
Gaussian Mixture Model (GMM). The model, however, is not trained from scratch. Instead
of a Maximum Likelihood (ML) estimate, the observations are used to adapt a well-trained
model (Universal Background Model, UBM) with parameters A, = {7, ;49,29}5:1 that
denote weights, means and (diagonal) covariance matrices, respectively. The UBM is a GMM
that is trained offline with the standard ML-EM algorithm, using hours of speech data and a
huge number of speakers. The final estimate Ay of the p.d.f. of Y is the Maximum A Posteriori
(MAP) estimate of Ay, and is calculated by a MAP-Expectation-Maximization (MAP-EM)
algorithm. Moreover, only the mean-values are allowed to be adapted, which implies that
the mean values {7ﬁc}§:1 are sufficient to represent the model Ay for a fixed UBM.

The E-step of the ith iteration is carried as

~(i—1
p(yt ", £0)

P(c\yt,}\g}'_1> = - (40)
£C, alp(y Y, x0)
followed by the corresponding M-step
1 =l ge+ (1 —al))p (41)
where
W _ _n
ne’ +r
D _ v (i-1)
ne’ =Y Plcly', Ay™) (43)
t=1
and
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The above expressions reveal that A, and r are completely specifying the prior of { yc}cczl.
Its density is as follows

pelr, e ~ N (;40 12°> (45)

where N (p,X) denotes the normal p.d.f., with mean and covariance matrix p and X
respectively. The parameter r corresponds to the strength of the prior of {p.}< =y ie. the
equivalent number of virtual observations that are backing the initial estimate p2.
Apart from the increase in the robustness of the estimate of Ay, a further severe benefit from
using a UBM is the common ordering that it establishes to the C open areas of the observations’
space. Consider the MAP estimates 7\yﬂ and ;\yb given Y; and Y, respectively. Due to their
common initialization by A4, Ay, and ;\yb are directly comparable, in the sense that their
corresponding entries carry information about the same a priori area of the observations’
space, apart from the dimension. Such a correspondence cannot be achieved when the models
are trained using ML-EM algorithm, making several fast scoring methods and dimensionality
reduction techniques inapplicable. The concatenated vector My € RC? of the means { ﬁc}cczl
is termed supervector and can be considered as a novel fixed-size way for representing Y.

Likelihood ratios in verification and clustering
A standard way to score a new set of observation against a model As is based on the
normalized log-likelihood ratio between the As and Ay, i.e.

- 1 L A
NLLR(As|Y, Auom) = 7 Z % (46)
= uom

The coupling between A; and the UBM increases drastically the robustness of the ratio, and
allows fast scoring methods to be applied.

The NLLR can be deployed in order to apply both verification and clustering. In verification,
NLLR is normalized properly according to a set of cohort speakers and then a simple threshold
is applied to verify the claimed identity. Several score-level normalization methods have
been proposed (e.g. z-norm, {-norm, s-norm) and are aiming to compensate the speaker and
channel dependent behavior of the statistic NLLR.

In most step-by-step SD approaches, UBM-based models are used only after a first clustering
pass with single-Gaussian models. The clusters that are created are then used to initialize
further iterations of UBM-based hierarchical clustering. To define a similarity measure
between two clusters Y;; and Y}, the Cross Likelihood Ratio (NCLR)

CLR(Y,,Yy) = NLLR(A,4|Yy, Ay ) + NLLR(Ay|Ya, Aups) (47)

and the Normalized Cross Likelihood Ratio (NCLR)

M) p(y'[Aa)
NCLR(Ya, Yp) = = log — log ——=—+ (48)
) =, T o Rt o D

are both symmetric measures that have been applied successfully, (see (Le et al., 2007) for a
comparison). However, a predefined threshold is required to decide whether a pair of clusters
should be merged or not, (Zhu et al., 2005).
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Kernels based on supervectors

One of the drawbacks of a likelihood ratio-based verification and clustering algorithms is their
dependence on the data Y. This problem arises from the fact that the likelihood function of the
incomplete data

p(ylA) = Z 7ep (e, Xe) (49)

c=1
does not belong to an exponential family and, therefore, a sufficient statistic does not exist,
(Wainwright & Jordan, 2008). On the contrary, the complete-data likelihood, i.e. the likelihood of
z! = (x!,y") where X = {x'}]_| denotes the alignment of Y to components - belongs to the

exponential family
C

(x,y|A) = Z ¢, x)7eep(ylpe, Zc) (50)

and therefore several closed-form expressions can be utilized. The obvious problem is that
we do not know xt. However, their MAP estimate %! of x is already in-hand, from the last
E-step of the EM algorithm. This is the rationale for the use of similarity measures between
utterances that are not based on likelihood-ratios. In (Campbell, Sturim & Reynolds, 2006), a
KL divergence-like kernel that is proposed

5 3 :C e 1/2(0a N\ ! ([ s—1/2(5b 0
K(/\ﬂ/)‘b) Z ( TECzc (yc Vc)) ( HCZC (ﬂc ]’lc)) (51)
c=1

Such kernels implicitly make use of the complete-data likelihood, and the corresponding
closed-form expressions. Once the kernel is defined, one may consider the use of Support
Vector Machines (SVMs) to perform verification. During training, the separating hyperplane
should be estimated, based on a labeled training set that consists of both positive and negative
examples {A;, ;}I |, where t; € {—1,+1}. During verification, a sparse subset A, of these
examples (i.e. the support vectors) {A;, t;};ca, along with their weights {«;};c, and the bias
term b are needed to perform verification, according to sgn( f(A")), where

=) at;K(A,A;) +b (52)
€A

denotes the function that defines the hyperplane. Several other kernels and additional
information regarding the SVM-based verification can be found in (Campbell, Campbell,
Reynolds, Singer & Torres-Carrasquillo, 2006).

From supervectors to i-vectors

In practice, the dimensionality of supervectors is very large to handle (e.g. dim(My) = 77824
for (d,C) = (38,2048)). Therefore, it is a natural field for applying dimensionality reduction
(DR) methods. A common method for DR is Principal Component Analysis (PCA). The
eigenvectors having the highest corresponding eigenvalues are termed eigenvoices, inspired
from the similar concept of eigenfaces in face recognition, (Turk & Pentland, 1991).

However, PCA is an unsupervised method, and as such, it does not take into account neither
the clustered structure of the enrollment data nor the classification purpose of the DR. Linear
Discriminant Analysis (LDA) is a popular supervised method for defining such bases and is
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the one that is used to extract the i-vectors. The supervector M (of x = Cd dimensions) is
assumed to be generated from the following equation

M=My+Tw+e (53)

where My the supervector of the UBM, T a (x X p)-dimensional matrix (where p < «, typically
p = 400), w a p-dimensional vector having a standard normal distribution, i.e. w ~ N(O,I p)
and e the approximation error. The matrix T is called total variability matrix and its columns
are forming the LDA-derived subspace with which M is expressed. The term total variability
matrix stems from the fact that the labeling used in LDA treats each speaker recording (i.e.
each set of utterances of a speaker from the same session) as a distinct class, (Dehak et al.,
2011). This strategy is in contrast to a former one, that applies Joint-factor Analysis (JFA) to
model separately between-speaker and within-speaker variability.

To calculate the i-vector w of an utterance u that consists of Y, assuming a UBM and a basis
T, one should (i) adapt the UBM using the standard MAP-adaptation scheme, and (ii) use the
centralized mean vectors to calculate the i-vector with the following formula

—1
w= (1,, n TnglNuT) 1T 1E, (54)

In (54), F, denotes the centralized supervector of the utterance, i.e. F, = M, — My, N, a
x X x diagonal matrix, whose K diagonal blocks are defined as n.I; and n, given in (43), and
finally ¥, a x x x diagonal covariance matrix, estimated during LDA, that models the expected
variance of the approximation error e.

These vectors may be considered as lying on a feature space that is well suited to tasks like
speaker verification, identification and diarization.
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1. Introduction

Speaker recognition (SRE), also called as voiceprint recognition, is the problem of determining
the identity of the speaker from a sample of speech signal. It is an important branch of speech
signal processing and has many potential applications such as in telephone banking, access
control, information security, law enforcement and other forensic applications (Bimbot et al.,
2004; Campbell Jr., 1997; Cole et al., 1997; Kinnunen & Li, 2010; Reynolds, 2002).

Compared with other biometrics techniques, speaker recognition has its own advantages: (1)
It is very convenient, natural and low-cost to acquire the speech sample: it does not need
the special devices; the telephone, mobile phone or ordinary microphone is adequate. (2) It
can be used remotely: with the ubiquitous telecommunications networks and the Internet,
the speech sample can be easily transferred through telephone or VoIP, which makes the
remote recognition possible. (3) The speech sample contains many inborn characters: from
the speech, we can extract some information about vocal tract, mouth, tongue, soft palate,
nasal cavity, and etc. (4) The speech sample also contains some acquired characters, such as
tone, volume, pace, rhythm, rhetoric, which reflect speaker’s place of living, education level,
and some personal habits information.

In speaker recognition, the Gaussian mixture model - universal background model
(GMM-UBM) is a classical yet widely used method for text-independent speaker verification
(Reynolds et al., 2000). In this method, the target speaker is modeled as a GMM and the
imposters are modeled as a UBM. When testing, the speech sample is scored as likelihood
by the GMM and UBM respectively, and then the likelihood ratio hypothesis test is used for
speaker verification. Besides the GMM-UBM, several other methods are developed recently.
The most successful ones include the support vector machine using GMM supper vector
(GSV-SVM) (Campbell et al., 2006), which concatenate the GMM mean vectors as the input
for SVM training and test, and joint factor analysis (JFA) (Kenny et al., 2007), which jointly
models the channel subspace and the speaker subspace. Although other methods achieve
rapid progress, GMM-UBM is still the basis for their developments.

As the meanwhile, the discriminative technologies, such as minimum classification error
(MCE), maximum mutual information (MMI), minimum phone error (MPE), feature domain
MPE (fMPE), have been achieved great success in speech recognition and language
recognition (Burget et al., 2006; Juang & Katagiri, 1992; Povey & Kingsbury, 2007; Woodland
& Povey, 2002).
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In speaker recognition, many discriminative approaches have been reported. As for the
GMM-UBM method, the approaches can be divided into two catalogs. (1) Some approaches
aim to jointly train the target speaker model and corresponding anti-model. For example, In
(Korkmazskiy & Juang, 1996), the MCE criterion is used to adapt talker model (i.e., speaker
model) parameters and the corresponding anti-talker model parameters. In (Rosenberg
et al., 1998), the minimum verification error (MVE) criterion is used to train the speaker and
anti-speaker models and also the decision threshold. In (Ma & Chang, 2003), MMI, MCE,
figure of merit (FOM) criteria are used to train the target speaker model and corresponding
imposter model. In (Angkititrakul & Hansen, 2007), the training process is divided into two
stages: in the first stage, the MCE is used minimize the classification error among the in-set
speaker models; in the second stage, the MVE is used to minimize the verification error
between the in-set and background models. In (Chao et al., 2008; 2009), the MVE methods
are used to reinforce the discriminability between the target speaker model and the target
speaker dependent anti-model. (2) Other approaches attempt to discriminatively adapt the
target speaker model from the UBM, which can be viewed as the modification of the classical
maximum a posteriori (MAP) adaptation (Gauvain & Lee, 1994). For example, In (Zhao
et al., 2006), a new speaker adaptation method which combines MAP and reference speaker
weighting (RSW) adaptation is presented in a hierarchical multigrained mode. In (Longworth
& Gales, 2006), an MMI based adaptation method is reported.

From the discriminative approaches mentioned above, we can find that the UBM is either
unchanged or adapted to the target speaker dependent anti-model. If the anti-model is target
speaker dependent, it will not be the universal background model anymore. But sometimes
we have to use the UBM. For example, for fast scoring in GMM-UBM method, we need
UBM to determine the orders of mixtures; in the state-of-the-art JFA and GSV-SVM methods,
we need UBM to calculate the statistics or the GMM mean vectors. So herein, we want to
discriminatively train the UBM to improve its performance.

In order to improve the quality of UBM, many researchers try to select suitable data. For
example, in (Hasan et al., 2010; Huang & Li, 2010; Zhang et al., 2010), the data selection based
on sub-sampling, maximum entropy and vocal tract length methods are introduced. But as
the authors known, there is little report on training the UBM discriminately.

In this chapter, we will discuss the discriminative UBM training method. Firstly we will
give a brief review of the GMM-UBM method. After that, we propose our discriminative
UBM training method. We will discuss its principle and implementation details. At last, the
presented method will be evaluated through large-scale experiments. The results on NIST
speaker recognition evaluation dataset will be reported.

2. Overview of GMM-UBM

The GMM-UBM can be viewed as a likelihood-ratio detector: the UBM is trained to represent
the speaker-independent distribution of features while the GMM is adapted from the UBM
to depict the individual speaker characteristics. In GMM-UBM system, as shown in Fig. 1,
a UBM is firstly trained to capture the general characteristics of all the speakers, so it is
called universal background model. The UBM parameters include weights, mean vectors
and covariance matrices, usually denoted by A = {wy,, pm, Em}%:y where M is the number
of Gaussian mixtures. In speaker recognition, usually the value of M is large, varied from
several hundred to several thousand, and the covariance matrices are often set in diagonal
form, which facilitates the fast computation.
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Fig. 1. The basic framework of GMM-UBM system

For the t-th frame of feature vector x;, the UBM gives the likelihood as

M
P(mt\)\) = Z me(wt}Hmz z'm)

m=1

)

For a T-frame segment = {mt};‘rzl, the likelihood is approximated via frame independent

assumption as
T
p(@A) = Tp(@N)
t=1

Usually, the logarithm form of likelihood is used for calculation.

@)

The UBM is usually trained by using the Baum-Welch algorithm (Huang et al., 2000) based
on a maximum likelihood (ML) criterion. The Baum-Welch algorithm is in fact a type of
expectation-maximization (EM) algorithm and can be implemented iteratively. Suppose the

current parameters are obtained, then the new parameters can be updated as
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Ym (@) is m-th mixture of occupation probability

Wi N (45 o, Zm)
YM L wuw N (@ o, T )

The initial parameters can be set as: w,;, = 1/M, L;; = I and each p;; can be randomly
selected from the training samples or use the finer Lind-Buzo-Gray (LBG) algorithm to get
the initial values. Through enough iterations, the local maximum of the likelihood can be
achieved and the parameters become stable.

After the UBM is trained, in the enrollment stage, the mean vectors of UBM is adapted by
using enrollment data «° of speaker s under MAP criterion (Gauvain & Lee, 1994).

Ym(®t) = )

s _ _Mm fm v
Hom My + Y N nm_"_,)/lim

(10)

where n,; and f;; are calculated by using enrollment segment «°, -y is the relevance factor, and
usually set as 16 (Reynolds et al., 2000). Note that, the weights and covariance matrices are
not updated. Thus, the parameters for GMM of speaker s are X° = {wy;, 15, Z }%:1.

In the speaker verification stage, the log-likelihood-ratio (LLR) of the test segment x” is
calculated by using the GMM and the UBM, and compared with threshold to give the last
acceptance or rejection decision.

s(a', 3%, A) = 7-(10g p(a'|\%) ~ log pla’ I)) 2 s, a1

where T, is the number of frames of verification segment x”. This equation can be expanded
as

Ty M M
S(2, X A) = - ) (log ) wi N (af; piy, ) —log ) wN (xf; pm, Zn))  (12)
Tr t=1 m=1 m=1

Note that in our case, wj, = wy,, I;, = Ly, and p, is adapted from p,. This means that
the scores calculated by the corresponding mixtures of GMM and UBM are approximately
equal. According to the property of GMM, we know that each feature frame is located at a
local region, that is to say, most mixtures will give very small scores for each frame. So we can
neglect these mixtures and only calculate top N mixtures for LLR scoring.

r 1 T’ N r N s
s(@, 2% 0) = = ) (log Y wy, (N (@545, 1T, ) —108 Y W, (90N (3 B, (1) B, (1))
r n=1 n=1

t=1
(13)
where {my(t)}N_, are the top N scoring mixture indices calculated by UBM for the frame ;.
This fast scoring strategy is introduced in (Reynolds et al., 2000) and widely used in
GMM-UBM method and other similar circumstances.

3. Discriminative UBM training

From the above section, we can see that the UBM is trained under ML criterion. This criterion
is asymptotically optimal, in another word, it is optimal if there are infinite amount of training
data. In practice, this condition can not be satisfied. The available training data is always
limited. As a consequence, likelihood based training can not guarantee optimal performance.
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For speaker verification systems, the most important performance measure is the verification
errors. So we borrow the minimum verification error (MVE) criterion (Rosenberg et al., 1998)
to develop a discriminative UBM training method.

Note that our motivation is different to other discriminative approaches for speaker
recognition: we only want to obtain a high quality UBM. The flowchart is showed in Fig. 2.
We can observed that, the enrollment data and verification data are all our training data.

Threshold

Verification Data Result

—p

Enroliment Data

Fig. 2. The flowchart for discriminative UBM training

3.1 Discriminative framework

Similar to MCE criterion (Juang & Katagiri, 1992), the MVE criterion also can optimized by
using generalized probabilistic descent (GPD) framework. To implement it, a smoothed loss
function should be defined first and then the gradient descent method is used to obtain the
(local) minimum of the loss function.

Firstly, we define the false verification function (similar to discriminant function in MCE) as

d(i,A) = [log p(z'|A°) —log p(x"|A) — sun] sign(i) (14)

where i denotes the i-th trial which involves s-th speaker model and r-th verification segment,

and
-1 ifiist t trial
sign(i) = 1 1 et a9
1 if i is non-target trial

From (14), we can see that d(i, A\) > 0 indicates trial i is a false verification and d(i,A\) < 0
implies a correct verification. The value of the false verification function indicates the
distortion between the models and the corresponding training data. The larger the false
verification function is, the more adjustment of the model parameters is required to improve
the verification performance.

Next, we will define the loss function. In general, the loss function is a function of the false
verification function. Obviously, the loss function and the false verification function can be
defined individually. Loss function is used to show the cost of mis-verification a trial. It is
required that the loss function should be a differentiable, and monotonically non-decreasing
function. Usually, sigmoid function is a good choice. The gradients of this function are easy
to be obtained. The loss function is defined as

cost(i)

l(i, )\) = 1+ exp{fucd(i, )\)} (16)

where « is the slop parameter of sigmoid function. cost(i) is the cost of false verification of
i-th trial.
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Then, the objective function (total loss) need to be minimized is

I
LX) =Y 10, A)u(l(i,X) +6) (17)
i=1
where u(-) is a unit function
1 ifx>0
= - 18
u(x) {0 ifx<0 (18)

and ¢ is a small positive number.
From (17), it is clear that the incorrectly verified trials (for the trials such that (i, A) > 0)
and the correctly verified but near the decision boundary trials (for the trials such that 0 >
1(i,A) > —0) are used for training.

We can use the gradient descent algorithm to optimize this objective function. Note that herein
we only discuss the mean vectors. Other parameters can be obtained similarly. The update
formula is

oL(X)

v (19)

H;n(n + 1) = Nm(n) —&n

where ¢, is the step factor.
In practise, we can use Baum-Welch algorithm to obtain the parameters of UBM initially, then
use (19) to update its mean vectors discriminatively.

3.2 Gradients

For the gradient descent algorithm, the most important step is to obtain the gradients of the
objective function. It is not easy but straightforward. We will solve this problem step by step.
The gradient of the objective function w.r.t the mean vector is

AL(A) _ & 0I(i, )
Opn 71':21 o
LAl A) 8d(i, A)
7,; 9d(i)  dpim
I = s (i
B ; cost() (M) leost(d) = 1(i, M)} %Sign(i) (20)

where 05(i, A) /9y, consists of two items

ds(i,A) 1 <E)logp(wr|)\5) B 8logp(w’|)\)>
B ap,m ala"m

Ot T,

(21)

For the first item, because

T,
log p(z"|A) = ) log p(xf|X)
t=1
T, M

= Elog Z Wi N (2]; o, T ) (22)
t=1

m=1
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thus, we can obtain

dlog p(z'|A) _ L 1 3me(90§; JTE M
Ok = p(f|A) m
T,
=Y 2vm(@)E, (@] — pm) (23)
t=1

For the second item, according to (10), we know that {y5,}M | is a function of {g, }M ;.
Based on the chain rule for derivation, we have

Aogp(ajA) _ & 1 M 3(p,)T 9wl N (2 sy Ty

= 24
O i P 2, v 1y @
Similar to (23), we can obtain
1 ws N () 1S, 25 ) _
S 30t 20l ey () (25, (] — 10y (25)

P(ﬂfIIAS) Oty
where 75, (x}) is the m’-th mixture occupation of @] calculated by GMM of speaker s
Substitute (25) to (24), we get
s )T

T, M a(H,
; Z: 2')/m’ mf) a;

m

dlog p(x}|A%)
I

(Z5) " (@ — piw) (26)

Next, we will get 9(5,,)T /9. This can be divided into two cases. When m’ = m

d m s
O(pap)T _ (L0 T @) 9D (e 4 7) = o (2 (@) + i)
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where Ts is the number of frames of enrollment segment x° and
9vm () _
o = 20vm(@) =77 @) Ey (@] — pan) (28)
When m' # m
a !
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where

90m ()

Opem
Until now, we have obtained all the gradients through manual derivation. The computation
of these gradients are not easy to implement, so we only consider the diagonal elements of

o(ps,) T/ Oum. We define

= 29 () ym () 20" (25 — fam) (30)

(31)

D Y11 2(ym(af) — 73 ()T (a2 — ) (2§ — )T+ 7T
= e o ¥y

Using this diagonal matrix, (21) will become

as(i/)‘) _ 2 & s r 5 \— r s r\y — r
. _Tr {t; ['Ym(wt)D(Zm) 1(“”1& — Moy) — ’Ym(wt)):ml(mt - Hm)] } (32)

Substitute (32) to (20), we can get the simplified version of gradients.

4. Squared loss function

In the gradient-type descent algorithms, the loss function decrease as the false verification
function decreases. However, if the loss function is defined improperly, the verification
performance will not be improved through discriminative training.

Besides the sigmoid loss function, the squared loss function (Chao et al., 2008) is also used. It
can be expressed as

. (33)
0 otherwise

1A = {cost(i)a(d(i, A)+6)2 ifd(i,A) > 6
where a and J are control parameters. Unlike sigmoid function, the squared loss function
has greater gradient for large d, which gives more penalty for the severe false verification
segments. To give an intuitive illustration, we borrow a figure from (Chao et al., 2009) and
show it in Fig. 3.

sigmoid loss squared loss

d -0 d
(a) sigmoid loss function (b) squared loss function

Fig. 3. Comparison of sigmoid loss function and squared loss function (Chao et al., 2009)
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Using this squared loss function, the gradient of the objective function w.r.t the mean vector
will be

agliz) _ gzacost(i)(d(i/)‘) +5)%“

gn(i) (34)
Other derivations are the same as that in Section 3.

5. Approximate conjugate gradient algorithm

To decrease the object function, gradient descent algorithms in Section 3. In fact, in
optimization, other methods, such as conjugate gradient algorithm, are usually used.
The gradient descent algorithm is simple to implement, since it only requires first-order
derivatives. But its convergent rate is slow. In contrast, the conjugate gradient algorithm has
good convergent property, but unfortunately it requires second-order derivatives. In Section
3, we can see that the first-order derivatives are very difficult to deal with, not to mention
the second-order derivatives. Herein, we introduce another optimization method, namely,
approximate conjugate gradient algorithm (Dixon, 1972), which only needs the first-order
derivatives but with fast convergent rate. For convenient expressing, we first define

_ oL(X) (35)
Opim
By using the approximate conjugate gradient algorithm, the update formula will be
pm(n+1) = pm(n) — enpn (36)

where ¢, is the step factor and p;, can be viewed as modified gradient, which can be expressed

as
Pn = gn — BPn-1 (37)
where
(91— Gu-1)
B=""r—7 (38)
lgnll3
and | - ||} is the squared 2-norm.

6. Experimental results

6.1 Experimental setup

In this section, the experiments are carried out on NIST speaker recognition evaluation
corpora (NIST, 2010). The UBM training (i.e., ML traing) data are selected from SRE04
1-side training set. The discriminative UBM training data come from SRE05 core test
condition (1lconv4w-lconv4w) dataset. The test data come from SREO06 core test condition
(1conv4w-1conv4dw) dataset. The numbers of trials of SRE05 and SRE06 are summarized in
Table 1.

For the frontend, speech/silence segmentation is performed by a G.723.1 VAD detector. 12
MEFCC coefficients plus CO are computed using 20 ms window and 10ms shift. Cepstral
mean subtraction and feature warping (Pelecanos & Sridharan, 2001) with a 3 s window are
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Dataset  |Target trial Non-target trial
SREQ5 female| 1540 16238
SREO05 male 1226 12398
SRE06 female 2712 27913
SRE06 male 2061 21211

Table 1. NIST SRE05 and SRE06 1conv4w-1conv4w trial summary

applied for channel mismatch compensation. Delta, acceleration and triple-delta coefficients
are appended to each feature vector, which results in a dimensionality of 52. After that, 25%
of low energy frames are discarded using a dynamic threshold. Then, HLDA is employed to
decorrelate features and reduce the dimensionality from 52 to 39. Finally, a feature domain
latent factor analysis (fLFA) (Vair et al., 2006) is applied to compensate the channel distortion.
The performance measures are the same as NIST speaker recognition evaluation (NIST, 2010),
using equal error rate (EER) and minimum detection cost function (DCF). DCF is defined as

DCF = 0.1Pp;s + 0.99P, (39)

where Ppss is the miss probability and P, is false alarm probability. We vary the decision
threshold, the EER is achieved when Py is equal to Py,; the min DCF is achieved when DCF
get its minimum.

6.2 Baseline performance

A GMM-UBM system has been built as baseline for contrastive analysis. The
gender-dependant UBMs with 256 mixtures are trained. No score normalization technology
is used.

The performance of GMM-UBM system on SRE06 dataset is listed in Table 2. The EERs for
female is 7.76% and for male is 6.47%. For 256-mixture GMM-UBM system, this is a quite
good baseline.

Gender |EER (%) min DCF (x100)
female | 7.76 3.63
male 6.47 2.90

Table 2. Performance of baseline GMM-UBM system

6.3 Sigmoid loss function

In this section, discriminative UBM training with sigmoid loss function is tested. We use
SREO5 as training set and SREQ6 as test set. The performance on training set and test set are
both given in Fig. 4, and the results on test set are listed in Table 3. We can see that after
discriminative UBM training, the EERs and min DCFs for female and male are all decreased
slightly. This shows that the discriminative UBM training is better than the generative
training.
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Fig. 4. Performance of discriminative UBM training with sigmoid loss function

Gender |EER (%) min DCF (x100)
female | 7.59 3.61
male 6.37 2.87

Table 3. Performance of discriminative UBM training with sigmoid loss function

6.4 Squared loss function

In this section, we change the sigmoid loss function to squared loss function. The performance
on training set and test set are both given in Fig. 5, and the results on test set are listed in
Table 4. Compared these results with that in Section 6.3, it can be observed that the squared
loss function is better than the sigmoid loss function. This is due to the more penalty for the
falser verification segments.

6.5 Approximate conjugate gradient algorithm
In this section, we change the gradient descent algorithm to approximate conjugate gradient
algorithm. The EERs and min DCFs are showed in Fig. 6 and Table 5. We can see that
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Fig. 5. Performance of discriminative UBM training with squared loss function

Gender |EER (%) min DCF (x100)
female | 7.45 3.59
male 6.16 2.85

Table 4. Performance of discriminative UBM training with squared loss function

the last female performance of approximate conjugate gradient algorithm is similar to that
of gradient descent algorithm, but with faster convergence speed. For the male gender, the
approximate conjugate gradient algorithm is better than the gradient descent algorithm. This
shows the effectiveness of the approximate conjugate gradient algorithm. At last, we compare
the detection error tradeoff (DET) curves (Martin et al., 1997) of the the baseline system and
discriminative UBM training with approximate conjugate gradient algorithm in Fig. 7. In the
figures, The circles denote the min DCF operating points. From the DET curves, we can see
that our proposed discriminative UBM training method achieves slightly better performance.



Discriminative Universal Background Model Training for Speaker Recognition

253

Gender |EER (%) min DCF (x100)

female | 7.45
male 5.93

3.59
2.84

Table 5. Performance of discriminative UBM training with approximate conjugate gradient
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7.Conclusion

In this chapter, we present a discriminative UBM training method for speaker recognition.
We build the discriminative framework and derive the update formula under minimum
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verification error criterion. In this framework, we compare the sigmoid loss function and
squared loss function, the gradient descent algorithm and the approximate conjugate gradient
algorithm. The experimental results show that the our proposed discriminative UBM training
method is better than the prevalent ML training method.
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1. Introduction

Automatic speech recognition (ASR) holds the promise of providing a natural, efficient, and
safer means for communication between humans and computers and can profoundly
change the way we live. Since its invention in the 1950s, ASR has witnessed considerable
research activities and in recent years is finding its way into practical applications as
evidenced by more and more consumer devices such as PDAs and mobile phones adding
ASR features. While mainstream ASR has focused almost exclusively on the acoustic signal,
the performance of these systems degrades considerably in the real-world in the presence of
noise. One way to overcome this limitation is to supplement the acoustic speech with a
visual signal that remains unaffected in an audibly noisy environment, yielding what is
known as audio-visual automatic speech recognition (AVASR).

While previous research demonstrated that the visual modality is a viable tool for
identifying speech [1-4], the visual information has yet to become utilized in mainstream
AVASR. Despite years of research attention, there has been limited success in creating a
system that can reliably detect lips in unconstrained imagery. Existing systems employ
methods such as snake and active shape models [5,6], Markov Random Field (MRF)
techniques [7], and multi-class, shape-guided fuzzy c-means (FCM) clustering algorithm [8],
to detect and locate lips within an image. While the results are commendable, the extensive
calculations demanded by these methods are significant. Moreover, a majority of existing lip
localization techniques focused on lip parameter extraction within controlled environments
with ample image resolution. Within the unconstrained visual environment, AVASR
systems must compete with constantly changing lighting conditions and background clutter
as well as subject movement in three dimensions. The difficulty of accurately and reliably
detecting and tracking lips in unconstrained imagery is a major obstacle in the development
of a practical AVASR system in the real world.

In this work we directly address the unconstrained imagery in the development of the
visual front end of a practical AVASR system. Generally, the in-car audio-visual
environment can be considered as a worst-case scenario for AVASR. Background noise and
mechanical vibrations from traveling vehicles severely decreases operational signal-to-noise
ratios for audio processing. Several products such as Ford Motor Company’s Sync® and
BMW’s high-end Voice Command System use strictly audio information to recognize user
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requests. However these systems notably suffer from user voice dependence and
background noise such as open windows or ambient noise from highway speeds. Likewise,
the visual environment inside a car is also challenging, imposing rapidly changing lighting
conditions, moving faces within the vehicle, and constantly changing background clutter. In
this work, algorithms were developed based on training and test datasets drawn from the
AVICAR database [9] that was collected in such an environment. This database contains
audio-visual recordings of 50 male and 50 female participants with varying ethnicities,
constantly changing lighting conditions and cluttered background within a moving
automobile. Video and image resolution for this database is 240-by-360 pixels, height-by-
width.

The goal of this work is to develop a robust image lip localization algorithm designed as a
visual front end of an AVASR system in vehicle environments. First, we address one
essential first step - accurately and reliably locate the face in a moving car. In this work,
both color and spatial information are exploited to find a face in a given image. A novel
Bhattacharyya-based face detection algorithm is used to compare candidate regions of
interest with a unique illumination-dependent face model probability distribution function
approximation. In the subsequent step, a lip-specific Gabor filter based feature space is then
utilized to extract facial features and locate lips within the frame. In both modules, extensive
training and test sets from the AVICAR database will be used to justify design decisions and
performance.

2. Face detection

Accurate face detection plays a critical role in successful lip localization and subsequent
interpretation of the spoken words through extractred lip parameters. The relatively small
size and constantly changing shape of lips does not realistically allow for feasible direct lip
detection. Coupled with the difficulties introduced by an unconstrained operational
environment, a robust, computationally efficient face detection algorithm is desirable to
precede lip localization itself. Many facial recognition methods exist, such as the popular
face detector proposed by Viola and Jones in 2001 [10]. However this and many other
detectors requires only the intensity component of an image without taking full advantage
of the inherent color information which is readily available in most images. In addition, they
tend to break down in imagery with complex background such as the database in this study.
We believe color could be used as a far more efficient criteria that could drastically reduce
the search area and simplify the face detection process. The following sections offer a fast
and noise-resistant face detection algorithm by which skin is first classified in an
appropriate color space and then subsequently classified as a face or non-face.

2.1 Skin classification via sHSV color space

To determine the optimal color space for efficient skin and face detection, various color
spaces have been examined, such as RGB, nrgb, YcbCr, YIQ, and HSV in [11]. Manaully
drawn lip masks were constructed from a database of over 400 images that were
subsequently used to develop statistical models of Lip, Non-lip, and Skin classes.
Histograms were generated for each class and color space and, when applicable, the
Gaussian approximations are calculated. Fig.l shows the approximated Gaussian
distributions for each of the three components in five color spaces. Each color spaces’
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components are then compared among the three regions to determine the minimum
correlation between non-lip, skin and lip regions. Referencing Fig. 1, while the low variances
of the (r,g,b), (Cb, Cr), and (I,Q) components provide a relatively uniform representation for
the given region, the non-lip, skin, and lip regions are highly correlated (demonstrated by
the overlap seen in the Guassian distributions). Therefore, these components are poor
classifiers for discerning lips and skin from that of the background. Additionally, (R,G,B),
(Yor) and (Yig) show high correlation between the regions, resulting in a similarly poor
classifier. The hue component, on the other hand, provides the maximum separation
between skin and non-skin regions and, therefore, is the strongest classifier. Since face
images in the database were taken under varying illumination conditions and for different
skin tones, hue also provides an illumination-independent and race-independent
component, making it ideal for simple, uniform-color thresholding for skin classification.
Because of the hue’s color wheel effect, to simplify thresholding operations, the standard
hue is shifted to the right by a value of 0.2 (72°), resulting in a shifted HSV color space, or
sHSV, where region of interest (skin color) incurs no discontinuity. By deploying Bayesian
classifier, optimal decision boundaries for the classification can be determined [12]. Fig. 2
illustrates the un-normalized posterior hue distributions, where shifted hue for skin class is
approximated by N (0.34, 0.112) and the non-skin class by N (0.55, 0.172). Here the green
lines represent the zero-dimensional decision boundaries that separate the skin and non-
skin regions. Between these boundaries, from a shifted hue value of 0.052 to 0.325, the skin
posterior distribution surpasses that of non-skin and will classify as a skin pixel.

Building upon the theoretical Bayes classifier, the final skin classification system adds
robustness and decrease computational requirements for subsequent face detection. To
promote skin region continuity, a hysteresis threshold that uses both spatial and hue
information was then employed. Additionally, to increase the skin detection robustness in
low-light conditions, a minimum value component of 0.2 is set for all skin pixels, due to the
study showing that more than 90% of skin exists above luminosities value of 0.15 when
approximated by a Gaussian distribution [12]. To decrease computational demands, the
original input image is downsampled to reduce computational complexity when these
operations are performed.

Skin (=0.34,0=0.11)

Non-Skin (1=0.66,5=0.17)

Posterior Probability {Unnormalized)

Nongki Skin NonSkin
0 01 02 03 04 05 06 07 08 09 1
h

Fig. 2. Un-Normalized Posterior Distributions for Skin and Non-Skin Classes
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2.2 Filtering and binary clustering

The unprocessed skin-classified binary images suffer from two main undesirable effects.
One type of the error includes single-element impulse noise existing throughout the binary
image as false positives within background regions as well as false negatives within skin
regions, shown in green boxes in Fig. 3(b). Since false positives were deemed more
detrimental to locating the dominant facial skin region, a 33d percentile order-statistic filter
of size 3x3 was selected as a more appropriate filter than the 50th percentile standard median
filter. An extra benefit of this filter is that it better separates facial skin regions with skin
colored car backgrounds. The red bounding box in Fig. 3(b) illustrates such a boundary,
which is preserved via the 33rd percentile filter from (b) to (c). Had a median filter been
applied to this image, the segregation would have disappeared and complicated face
candidate localization and subsequent face detection. This is an important performance
increase as the cluttered and similarly colored car backgrounds often result in false skin
detection.

© (d)

Fig. 3. Sample Post-Processing Imagery by Step (a) Original Image (b) Skin Classified Binary
Image (c) 33rd Percentile Filtered (d) Application of Opening Operation.

The second type of error includes larger, false-positive regions that tend to dominate
background (non-skin) regions. The binary morphological operation opening is utilized to
minimize this effect. Notice the elimination of the leftmost background cluster in (c) and the
reduction in size of the rightmost cluster. Since one face is assumed in each image, the
largest skin cluster is selected as the region of interest, shown as the green bounding box in
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(d), via the connected component labeling. This cluster will now be the input to the
subsequent face localization algorithm.

2.3 Face candidate localization algorithm

Despite the filtering and classification methods employed, large regions of falsely classified
background pixels still comprise part of the largest cluster returned by the pre-processing
algorithm outlined in Section 2.2. Resulting from the unconstrained environment, these
problem regions include skin-colored car interior regions, such as a car’s roof, and window
areas. Fig. 4 illustrates one such distinct, false positive protrusion resulting from a skin
colored brick wall behind the car’s back windshield. The goal of the face candidate
localization algorithm is to simply determine such falsely classified regions attached to the
largest cluster and remove them from the region of interest’s (ROI's) bounding box. Fig. 5
provides an face candidate localization algorithm flow diagram to be developed within this
section.

Fig. 4. Example Face Candidate Protrusion

Per Fig.5, the MxN. binary image face candidate, BIV,, is first input to the algorithm. To
more effectively separate face candidates without significant background inclusions, an
initial candidate screening takes place at the beginning of the algorithm. Sources cite that
the average height-to-width ratio of the human face is approximated by the well-known
golden ratio of 1.618:1. Accounting for facial tilt and out-of-frame rotation, typical face
candidate ROI height-width ratio were found to exist between values of 1.2:1 and 1.7:1
through database measurements over the test subset. Hence, all face candidate ROI's whose
height-to-width ratio, M./ N,, does not fall within the range [1.2, 1.7] will be subject to the
remainder of the ROI pruning process.

For images which fall outside of the acceptable height-width ratio, further filtering takes
place. To eliminate clear protrusions which are comparable in size to the face region itself a
two-pass spatial filtering technique was employed. This technique locates sudden
deviations in cluster configuration between the top and bottom of the face candidate cluster.
While other more accurate methods, such as flood-fill techniques, exist to segment binary
clusters, these methods are more computationally intensive, requiring several iterations of
initial condition- and parameter-dependent morphological operations. Hence, the following
computationally inexpensive method was employed to roughly locate distinct binary cluster
protrusions similar to that in Fig.4, while preserving the roughly vertically oriented elliptical
face region.
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START
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Candidate
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size: 2Mc/3 x 5MJ12
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Pass Mask Once through
Middle 2/3 of Image
result: middle column cent., Cmid

Pass Mask Once through
Top 2/3 of Image
result: upper column signal, U(c)

Pass Elliptical Mask Once
through Bottom 2/3 of Image
result: lower column signal, L(c)

Find occurrence which
maximizes dT(c) for each side of
Cmig, If €Xists
result: new column boundaries

Find Median Height of Resized
ROI about Seed Locations -t

result: new row boundaries

-

RETURN
output: un/adjusted ROI
boundaries

Fig. 5. Face Candidate Localization Algorithm Flow Diagram
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The spatial filtering discussed is the result from passing an elliptical binary mask once
through the top two-thirds and bottom two-thirds of the face candidate binary image, BWV..
The height of the elliptical binary mask, called H, was chosen to be two-thirds the input
candidate ROI's height, M.. The width of the ellipse was chosen to mimic the average
dimensions of the human face, which is 1.6 times less than its height. Hence, the final size of
the elliptical mask is M, x Nj, where M, = floor(2M,/3) and N}, = floor(5M,/12). The
composition of the mask, H, is defined per the following equation

1 if z-z'<1
H(z)= _ 1)
0 otherwise
r—r c—c
where z= H,cen B ¢y en=Nj, /2, and T cen =My /2
rH,cen CH,czn

where r and c are the row and column location of the elliptical mask. Thusly defined, the
elliptical mask is not convolved with the face candidate binary image in the strictest sense.
Rather, the elliptical mask, H, is passed once through the top two-thirds and once through
the bottom two-thirds of the candidate ROI, centered about one-thirds and two-thirds of the
candidate ROI's height, respectively. At each column location, the mask and image are
multiplied and then summed by element, returning a value equivalent to the total number
of skin-classified pixels enclosed within the mask H at that location. Let U(c) and L(c) be the
column signals resulting from the upper and lower passes through the candidate ROI, BWV,,
respectively. To preserve the accuracy of the spatial filtering, it should be noted that the
input binary image, BW,, was padded column-wise with Ni/2 zeros on each side of the
largest cluster. Then the ratio of the upper signal to the lower signal is given by:

U(c)+ &
L(c)+e

R(c)= c=12,..,N, 2
where ¢ is a small positive integer introduced to safeguard against L(c)=0. This ratio signal
effectively shows the relative distribution of the face candidate cluster with R(c)>1
indicating a greater concentration at the cluster’s top and with R(c)<1 indicating a greater
concentration at the cluster’s bottom. Fig. 6 (a) contains an annotated example of the relative
size and shape of the elliptical mask, the resulting upper and lower column signals, U(c) and
L(c), as well as the ratio signal, R(c). Note that for clarity this example normalizes each
column signal to the area of the elliptical mask.

After the ratio signal has been calculated over the width of the binary image, the binary
image is summed across the row dimension yielding a total column vector, T(c).
Equivalently, this total signal can be expressed as

Mc
T(c)=D BW,(r,c) ¢=1,2,.,N, ©)

r=1

Where r and c are the row and column indices, respectively, from the face candidate binary
image. Next, an absolute difference signal, dT(c), is derived from T(c) per the following
equation:
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dT(c)=abs(T(c+1)-T(c)) ¢=1,2,..,N. -1 )

Next, a value of two is chosen to select the factor by which the upper and lower signals can
deviate and still be considered part of the facial region. Then, letting C be the set of all
column locations for which R(c)>2 or R(c)<0.5, the new horizontal boundaries, ¢ and
Cerignt, Of the candidate ROI is then selected by the following equation.

arg. max{dT(c)|ce C} 1<c<c,;; if C<c,y#9
C =
eleft =11 otherwise

_Jarg.max{dT(c)|ce C} ¢,g<c<N. if C>¢,#D
Ceright =11 otherwise

where Conid = median{c | T(c)= max(T(c))} c=1,2,.., N,

where c. iz and c,rign: are the new left and right ROI boundaries, respectively, and cyiqs is the
median value of ¢ for which T(c) is maximum over the candidate’s entire width. In words,
the new boundaries are selected by maximizing the difference signal for all locations where
the upper and lower mask differ by a factor of two. This method effectively selects new
boundaries located where an abrupt change in top-bottom concentration occurs.

My/3—

2My/3

M, L

it Norm. Top. Resp
02k Norm. Bot. Resp

Ratio of Top to
/ Bot. Resp.

5 10 15 20 25 30 35

New Bdry.: Cen New Bdry.: Cignt

(@) (b)
Fig. 6. Sample Face Candidate Localization Process (a) Original Face Candidate Cluster and
Spatial Filter and Ratio Responses; (b) Successfully Modified Bounding Box

Lastly, new top and bottom boundaries, rctp and rcpot, are created by median filtering the
top and bottom cluster edges within N, /20 pixels of the new ROI’s horizontal center.
Hence, the new face candidate ROI is now bounded horizontally over [cip, crigni] and
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vertically over [ryp, 0], noting that these ranges are referenced to the origin of the original
candidate binary image, BWV,. Fig. 6 (b) illustrates a successfully modified ROI bounding box
resultant from this algorithm. Note the correspondence between where the ratio signal
drops below one-half and where the new boundaries are located. Also note that these new
coordinates are referenced to the downsampled (MixNj) image space and will require
conversion back to the original resolution space. Now that the face candidate is localized by
its four boundaries, it is subject to the next step, where the face detection algorithm
determines whether it indeed is a face.

2.4 Face model joint histogram estimation

A critical component of face detection is modeling the variable human face such that a given
algorithm provides accurate, repeatable, and reliable results. For this reason, selection of a
proper feature set and development of an extensive, representative training set is critical for
successful face detection algorithm. Building upon previous work [12], a joint shifted hue
and saturation feature space was selected as the basis for face representation since it
captures skin color information as well as the variation in saturation incurred around facial
features such as eyes, nose, and mouth. Next, the joint probability density function was
approximated as a histogram which quantizes the discussed two-dimensional feature space
into a finite number of bins. To incorporate spatial information as well, the Epanechnikov
kernel is employed in the histogram estimation. The Epanechnikov kernel weights a given
ROI heavier towards the center and radially less towards the ROI's perimeter. Hence, it
minimizes the effect of background pixels and skin edge pixels which are not always
representative of the face itself. Crow utilized the Epanechnikov kernel noting similar
advantages and associated performance increases [12]. Another benefit of the Epanechnikov
kernel is that it is elliptically symmetric about the ROI's central coordinate, mirroring the
natural shape of the human face within the ROL.

2.4.1 Forming the face model joint density estimators

It is observed that while illumination content remains relatively constant within any given
image, the average illumination within a given ROI directly impacts the distribution of the
face within the joint shifted hue and saturation feature space. Hence, average intensity was
chosen as an easily calculable metric which represents the face’s ambient lighting
conditions. For the sake of consistency, the illumination space was also quantized into a
discrete number of bins and the Epanechnikov kernel will weight a pixel’s contribution to
the average illumination. Borrowing from previous work, the histogram bin count for each
feature component, 1 and s, and the intensity information, I, will be segmented into 16
discrete bins uniformly spread about the respective spaces. This value minimizes storage
requirements while mitigating the risk of overfitting the actual distribution.

To construct the face model joint density estimators, training set containing 150 images from
five individuals of varying skin tone taken under a range of ambient lighting conditions
were collected. Care was taken to ensure that across each subject average illumination levels
remained within 1/30 of each of the 30 values uniformly spread over the range [0,1]. For
each image within the training set, the kernel-weighted intensity and the joint PDF
histogram were calculated for each image after conversion to the sHSV color space. Selected
results obtained by three of the five subjects are detailed in Fig. 7-9 representing light-,
medium-, and dark-skinned individuals, respectively. It can be seen that changes in average
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Fig. 9. Face Model Illumination Dependence Training Set, Subject 3

illumination directly impact the distribution of the largely unimodal (singly peaked) shifted
hue and saturation joint PDF. Furthermore, it can be seen across all PDF histograms that a
majority of the hue content is contained within three or four histogram bins across all
illumination values. However, saturation content varies from more tightly concentrated at
low values under high illumination to roughly three times more spread about the saturation
axis under low illumination. Differences in the PDF histograms between light and dark skin
tones were slight, involving a positive one-bin shift of the general unimodal distribution
along the hue axis. Moreover, at high illumination levels spreading about the hue axis
occurred largely due to overexposure at the imaging device itself. Hence, the decision was
made to replicate this dependence in the final face model.

The entire 150-image training database was utilized to construct a joint shifted hue and
saturation histogram-estimated PDF for each discrete ROI average illumination bin. In
words, the face model hisgram set is derived by summing each histogram over the training
set whose parent image has the average illumination level and then normalizing each
illumination level’s PDF histogram independently to unity. The resulting face model PDF
histogram approximation across each illumination level is displayed in Fig. 10. Here the
value of I, refers to the average illumination component value which corresponds to the
center (midpoint) of the discrete illumination bin, i. This face model histogram set will be
stored in memory to be accessed by the face detection algorithm discussed in Section 2.5 to
follow.
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2.4.2 Forming the face candidate joint density estimators

With the face model density estimate in place, the face candidate density joint PDF must be
constructed so that it can be compared with the model distribution. Derivation of the
candidate’s histogram approximated joint PDF is straightforward as it only entails the
histogram associated with one ROI and its corresponding average illumination value. To
complete this task, the face candidate which results from the face candidate localization
algorithm (see Section 2.3) is converted to the original coordinate and resolution space.
Next, the converted sHSV ROI will be kernel weighted and the histogram estimation
process will take place. This face candidate joint density estimate, P;, will be compared with
the face model histogram of the same illumination level, Q;, via the face detection algorithm
outlined in the next section.

2.5 Face detection and test results
With a face model and candidate distributions in hand, candidate ROI's output from the
skin detection and filtering algorithm can now be processed for the presence of a face. The
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face detection algorithm implemented in this work utilizes the Bhattacharyya coefficient as a
means by which the similarity between the generated face model joint histogram and that of
a candidate ROI is measured.

The major advantage of the Bhattacharyya coefficient is that, unlike the Mahalanobis
distance, it requires no statistical measure from each distribution, drastically reducing
computational time and complexity. Remapping the definition of the Bhattacharyya to two
dimensions, the Bhattacharyya coefficient can be defined as

p(P,Q)= 3 S JP(ie)-Qlhs) ©)

h=1s=1

where p(P, Q) is the Bhattacharyya coefficient between the m-by-n bin candidate histogram
P and m-by-n bin model histogram Q, and P (h,s) and Q (h,s) are the density of the candidate
and model histograms, respectively, at bin location [h,s]. After the Bhattacharyya
coefficient for a given set of candidate and model histograms has been calculated, a simple
threshold is applied in order to claffiy the candidate ROI as either a Face or a NonFace. As
expected, false positive error rates decreases as the threhold was increased as higher
threholds effectively increased he similarity measure relative to the face model required for
face detection. Conversely, false negative failure rates increased as the threshold was
increased as an increased number of candidates failed to adequately compare in similarity to
the model distribution. Via iterative analysis over the training set composed of 160 images,
the Bhattacharyya coefficient threshold of 0.5 was then selected to minimize false negative
and false positive error rates.

. Successful Localization Set* Complete Test Set
Face Detection Result
Instances Percentage Instances Percentage
Positive Face Detection (p = 0.5) 139 94.6% 144 90.0%
Negative Face Detection (p < 0.5) 8 5.45% 16 10.0%
Total Images 147 160

“successful localization is defined as ROI contains 75% to 125% of the visible face.
Table 1. Face Detection Algorithm Results

To test the performance of the face detection algorithm, another 160-image test set was created
from the AVICAR database, not containing any images found in the face model or skin
classification training sets. The test set was composed of 40 subjects at four different time
instances throughout the video data. The performance of the face detector using this test set
illustrates the success of the algorithm in response to variation in the subject’s skin tone as well
as any lighting or background changes over time. Recall that this test set also generated the
face localization results from Section 2.3, where 147 of the 160 images incurred successful face
localization. Table 1 details the true positive and false negative detection rates for both the
complete test set and the subset for which the face candidate was successfully localized. As
seen, the face detection algorithm achieved an overall accuracy of 90% across all test set
images. The accuracy of the algorithm improves by 5% when the face itself is successfully
bounded as a result of the face localization algorithm. Sample positive (Face) and negative
(NonFace) classifications are contained within Fig.11 (a) and (b), respectively.
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Fig. 11. Sample (a) Positive Face and (b) Negative Face Detections

3. Lip feature extraction

The Gabor filter is a linear filter whose impulse response is defined as a sinusoidal function
multiplied by a Gaussian function in the following form

y-n —((Otx, )2 +(ﬁ% )2) '272'Fa(x cos @+ sin9+¢)
G(X,y|Q,FO,NX,Ny,j/,ﬂ,¢)=_e 6‘] ¢ Ye
T

Vxe[L,N,], ye[1,N,]

. _F _F N _N/
Wlth a_%lﬂ_%/xu_ %ryﬂ_ yz (7)

where Ny and Ny are the width and height of the Gabor filter mask, respectively, ¢ is the
phase of the sinusoid carrier, F,is the digital frequency of the sinusoid, € is the sinusoid
rotation angle, y is the Along-Wave Gaussian envelope normalized scale factor, and 7 is the
Wave-Orthogonal Gaussian envelope normalized scale factor. These parameters define the
size, shape, frequency, and orientation of the filter among other characteristics. G is the Ny-
by-N, Gabor filter and [y,x] is the spatial location within the filter. The Gabor filter’s
invariance to illumination, rotation, scale, and translation, and its effective representation of
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natural images, make the filter an ideal candidate for detecting the facial features in less
than desirable circumstances [13].

Utilizing the 160-image training set from the AVICAR database, measurements of upper
and lower lip thicknesses and orientations were recorded. It was found the upper lip
thickness ratio h,/ M. and lower lip thickness ratio hi../ M., yield an average value of 0.136
and 0.065, respectively, where M. measures height of the candidate’s facial bounding box.
Lip orientation, Af;;,, was recorded as the absolute rotation of the mouth opening axis from
horizontal and has an average measurement of 11.250. With this data, the Gabor filter set can
now be created to more accurately represent the lip region. The final 12-component Gabor
filter set, G, is thus defined as,

G:{Gn,t,f =G(x,y|6=6,F, :Ff'Nx :Nn'Ny =Nn/7’/77,¢)}

N,e {ﬂoor[l\gc j, ﬂoor(l\zf J} n=1,2

with y=n=1 and ¢=0

where G is defined in Eq. (8) and n, ¢, and f are the set indices of the (square) Gabor filter
size, sinusoid angle, and digital frequency sets, respectively. In words, the Gabor filter
set, G, is the set of Gabor filters for every combination of 1, t, and f. The orientation
values, 61,3, were chosen such that the sinusoid orientation was vertically oriented
(0=90°) and +2A), away from vertical, where the factor of two was experimentally
determined. In addition, the Gabor filter’s size, N, -by-N, |,c1,, was selected such that
over 80% of the total energy contained in the unbounded Gabor filter is contained within
the N,-by-N, mask for any value of Fr (which depends upon N,) and 8;. The relative size
and frequency of the Gabor filter to the candidate’s height allows for a more scale-
invariant design.

3.1 Gabor filtering algorithm

With the establishment of the lip-specific Gabor filter set, processing of the face-classified
region of interest can proceed. Here, the sHSV triplet’s value (illumination) component is
selected as the feature space of choice for Gabor filtering since it best separates lip and
surrounding face.

First, 12 Gabor filter responses are generated by performing two-dimensional convolution of
the face-classified image’s value component, V, independently with each Gabor filter
configuration. Next, all 12 Gabor responses are summarized element by element. Due to the
positive- and negative-valued modes of the Gabor filters, the total Gabor response is then
normalized to the range [0,1] and further remapped to stress the maximal and minimal
Gabor jet values. The final, normalized, and remapped Gabor filter response is denoted as
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Gy, and has size M-by-N. where M. and N, are the row and column sizes of the face
candidate, respectively.

Subsequently, the Gabor filter response, G5, undergoes mean-removal where all response
pixel values are set to zero if they are less than the total response’s sample mean and are left
unchanged if the values are above the mean. Furthermore, to remove false positives within
the background surrounding the face, the skin-classified binary mask is applied over the
mean removed response. Fig. 12(b) shows a mean-removed and masked Gabor response,
Gy, of the original image in (a). As can be seen, smooth skin surfaces, such as the cheeks,
provide minimal response while the mouth opening, lips, nostrils, eyes, and eyebrows
provide much elevated responses. In addition, the cross section of the lip from chin to the
region above the lip involves many oscillatory changes in intensity value. Mean removal
effectively eliminates the contribution of background pixels to subsequent processing. The
skin-classification masking also noticeably reduces the effect of several high-intensity non-
face background regions.

3.2 Lip center coordinate estimation

Given the mean-removed and masked Gabor response, G,, a number of possible lip
locations, called seeds, will be generated. Here, a column concentration signal, D,, is first
calculated from the G, Then, seed row coordinates, 7, are chosen as local maxima of D,,
see colored crosses in Fig. 12(c). Peaks above image mean row value which do not exceed
signal’s mean are discarded. Finally, seed column coordinates cy;, are chosen as midpoint of
longest nonzero response chain in row. Hence, the ith seed point now has the location
[xicpori]. Fig. 12(b) shows the Gabor response, G, overlaid with the seed locations
indicated by the colored crosses.

8 10
Column Concentration Signal, D,(r)

~d
k
@ ) ©

Fig. 12. Sample Lip Coordinate Estimation Process. (a) Original RGB Face Candidate (b)
Seed Locations within Mean-Removed, Masked Gabor Response (c) Seed Row Locations
Overlaid on Dc Plot
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Following seed generation, key parameters which are indicative of the presence of lips will
be calculated. Utilizing these parameters, the figure of merit (FOM) will then be calculated as

FOM ={FOM} = {Dloc,i “Dppi- rpk,i}

Dloc,i 21, Dpk,i 21, rpk,i € [/Ur'Mc]

©)

where FOM is the set of all figure of merit values, FOM,;, at seed index i, D is the local two-
dimensional concentration of G, about the seed, D, is the sum of all column concentration
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signal peaks about the seed, and 7, is the seed row location. Conceptually, the figure of
merit in Eq. (9) combines the most visually apparent features of the lips into a single
function. It has been argued that the lip’s central coordinates are the coordinates for which
the established figure of merit is maximal.

The lip center coordinate estimator was applied to the test set used in the previous sections.
It was found that the figure of merit and Gabor filter system utilized in the lip coordinate
estimate yields comparable results to those of the face detector algorithm of Section 2. Of the
139 images for which the face candidate ROI was successfully localized and classified as a
face, the algorithm placed the lip coordinates on the lips for 89.2% of the time. When
applied to the test set in its entirety, the lip coordinate estimation algorithm placed the
estimated coordinate on the lips 83.8% of the time.

3.3 Lip localization and test results

Vertical lip localization within an image is inherently more complex than horizontal
localization due to the striation (layers) of the Gabor response in the lip axis direction. Due
to this, horizontal lip localization will be performed first to increase accuracy of the vertical
localization. Fig. 13 illustrates lip localization procedure. To locate the lips in the horizontal
axis, the row concentration signal D,(c) is computed over the lip region, shown in (c). Then,
the left and right boundaries are determined where D,(c) is at 10% of that signal’s maximum
value above the mean.

Row Location within Window ()
&

80 -60 -0 20 0

Column Concentration Signal, D, ()

Integral Signal, S(r)

(@)

Column Location within Window (c)
o

5 \
4

0 20 30 40 5 60 70
Row Concentration Signal, D (c)

© (d)

Fig. 13. Sample Horizontal and Vertical Lip Localization Procedure and Result. (a) Gabor
Response within Lip Region (b) D.. and S, Signals over Lip Region Row (c) D, Signal over
Lip Region Column and (d) Lip Localization Result
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After horizontal lip localization, vertical localization is undertaken, utilizing the returned
left and right boundaries. To do so, the column concentration signal, D.(r), and column
discrete integral signal, S,(r), are calculated between the left and right bounds only (see
(b)). The integral signal is the summation of the mean-removed column concentration
signal from the top of the lip region to row index r. Mean subtraction was performed on
the column concentration signal such that lower intensity regions (rows) of pixels would
count negatively toward the integral signal and higher intensity regions would positively
count toward the signal. Finally, the lip localized upper and lower boundaries are found
where the points are at 10% of Sy.. above the upper and lower minimum values,
respectively. Sample lip localization success and failures are shown in Fig.14(a) and (b),
respectively. When applied to the 160-image test set, factoring in face detection, the
overall accuracy of 75.6%. Note that if the detected lip boundary is more than 5 pixels
away from the lip corner or the closest lip point vertically, it is considered as a failure. The
last image in Fig. 14 is considered a failure because the detected region contains more
than 125% of the actual lips. While the overall accuracy is less than ideal, the challenges of
the sub-optimal image quality and the unconstrained car environment make this a
respectable value.

4. Conclusion and future work

Relative to previous work, positive face detection rates rose from 75% to 90% while
effective lip localization rates rose from 65% to 75% when considering face detection as a
front end to lip localization [12]. Among many techniques considered, the unique
illumination-dependent face model and the adjusted skin classifier are considered
successful and critical to the stated performance increase in face detection. The lip
localization algorithm proposed a unique Gabor response feature space which relied upon
a figure of merit rather than heuristic approximations, making it more versatile within the
unconstrained environment.

Despite the stated performance increases, common sources of error include limited image
resolution, skin-colored car environments, and overly bright and dark operating conditions
without sufficient image dynamic range. The most notable improvement to the lip
localization algorithm would be realized through the inclusion of time into the algorithm.
Advanced difference imaging, the detection of movement between frames, would improve
face localization and detection while reducing additional processing. Furthermore, face and
lip spatial movement are generally orthogonal to each other, aiding the lip localization
process even further.

Fig. 14. Sample Lip Localization (a) Success and (b) Failures
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1. Introduction

Lip reading is used to understand or interpret speech without hearing it, a technique
especially mastered by people with hearing difficulties. The ability to lip read enables a
person with a hearing impairment to communicate with others and to engage in social
activities, which otherwise would be difficult. Recent advances in the fields of computer
vision, pattern recognition, and signal processing has led to a growing interest in
automating this challenging task of lip reading. Indeed, automating the human ability to lip
read, a process referred to as visual speech recognition (VSR) (or sometimes speech
reading), could open the door for other novel related applications.

VSR has received a great deal of attention in the last decade for its potential use in
applications such as human-computer interaction (HCI), audio-visual speech recognition
(AVSR), speaker recognition, talking heads, sign language recognition and video
surveillance. Its main aim is to recognise spoken word(s) by using only the visual signal that
is produced during speech. Hence, VSR deals with the visual domain of speech and involves
image processing, artificial intelligence, object detection, pattern recognition, statistical
modelling, etc.

There are two different main approaches to the VSR problem, the visemic* approach and the
holistic approach, each with its own strengths and weaknesses. The traditional and most
common approaches to automatic lip reading are based on visemes. A Viseme is the mouth
shapes (or appearances) or sequences of mouth dynamics that are required to generate a
phoneme in the visual domain. However, several problems arise while using visemes in
visual speech recognition systems such as the low number of visemes (between 10 and 14)
compared to phonemes (between 45 and 53). Visemes cover only a small subspace of the
mouth motions represented in the visual domain, and many other problems. These
problems contribute to the bad performance of the traditional approaches; hence, the
visemic approach is something like digitising the signal of the spoken word, and digitising
causes a loss of information.

The holistic approach such as the “visual words” (Hassanat, 2009) considers the signature of
the whole word rather than only parts of it. This approach can provide a good alternative to
the visemic approaches to automatic lip reading. The major problem that faces this approach
is that for a complete English language lip reading system, we need to train the whole of the
English language words in the dictionary! Or to train (at least) the distinct ones. This

* Related to a Viseme.
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approach can be effective if it is trained on a specific domain of words, e.g. numbers,
postcodes, cities, etc.

A typical VSR system consists of three major stages: detecting/localizing human faces, lips
localization and lip reading. The accuracy of a VSR system is heavily dependent on accurate
lip localisation as well as the robustness of the extracted features. The lips and the mouth
region of a face reveal most of the relevant visual speech information for a VSR system (see
Figure 1).
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Fig. 1. A typical VSR system.

The last stage is the core of the system in which the visual features are extracted and the
words are recognised. Unlike the visemic approach, this study proposes an holistic
approach to tackle the VSR problem, where the system recognizes the whole word rather
than just parts of it. In the proposed system, a word is represented by a signature that
consists of several signals or feature vectors (feature matrix), e.g. height of the mouth,
mutual information, etc.

Each signal is constructed by temporal measurements of its associated feature. The mouth
height feature, for instance, is measured over the time period of a spoken word. This
approach is referred to as the “visual words” (VW) approach. A language model is an
optional step that can be used to enhance the performance of the system.

1.1 Human lip reading skills

Lip reading is not a contemporary invention; it was practised as early as 1500 AD, and
probably before that time. The first successful lip reading teacher was the Spanish
Benedictine monk, Pietro Ponce, who died in 1588. Lip reading teaching subsequently
spread to other countries. The German Samuel Heinecke opened the first lip reading school
in Leipzig in 1787. The first speech reading conference was held at Chautauqua, USA in 1894
(Bruhn, 1920).

Several different methods have been described in the literature for human lip reading such
as the Muller-Walle, Kinzie, and the Jena methods. The Muller-Walle method focuses on the
lip movement to produce a syllable as part of words, and the Kinzie method divides lip
reading teaching into 3 teaching levels, depending on the difficulty (beginners, intermediate
and advanced) (De Land, 1931). Although only 50% or less of speech can be seen, the reader
must guesstimate those words that he/she has missed. This was the core of the Jena
method: training the eye and exercising the mind (De Land, 1931). However, regardless of
the variety of known lip reading methods, all methods still depend on the lip movement
that can be seen by the lip reader.
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Potamianos et al. (2001) described a human speech perception experiment. A small number
of human listeners were presented with the audio once and the audio and video of 50
database sequences from an IBM ViaVoice database single speaker, with different bubble
noises added each time. The participants were asked to transcribe what they heard and
viewed.

Potamianos et al.’s (2001) experiment is not a pure lip reading experiment, as its aim was to
measure the effect of the visual cues on the human speech perception, rather than the
perception of the speech without the audio. The experiment showed that human speech
perception increases by seeing the video and watching the visual cues. The word error rate
was reduced by 20% when participants viewed the video, showing that the human audio-
visual speech perception is about 62% word accuracy. According to the previous study,
about 30% of the participants were non-native speakers, and this is one of the reasons why
the recognition rate was very low, despite both the audio and video signals being revealed.
A human lip reading experiment was conducted in this study to roughly measure the
human ability for lip reading, and the amount of information that can be seen from speech.
Four video sequences from the PDA Database (Morris, et al., 2006) were used in this
experiment, 2 males and 2 females; each video spoke 10 digits; the digits and their sequences
are different from one video to another, and the audio signals were removed from the four
videos. Fifty five participants were asked to transcript what each video spoke; each
participant can play each video up to 3 times, so participants would have enough time to
decide what the spoken digits were, and they would not be fooled by the speed of the video.
These videos were uttering only digits, {1,2,3,...,9}, the participants were informed about
this domain (the speech subject), hence it is much easier for humans to read lips if they
know the subject of the talk, and also it mimics automatic lip reading experiments since the
recognizer algorithm knows in advance and is trained on all the classes (the words) to be
classified; the average word recognition rate for all the participants was 53%. See Table 1.

Subject Result
1 (Female) 61%
2 (Male) 50%
3 (Male) 37%
4 (Female) 63%
Average 53%

Table 1. Human lip reading results.

As can be seen from Table 1, some videos were easier to read than others (61% and 63% for
videos 1 and 4 respectively), where some other videos have less information for lip readers,
or those people by nature either speak faster than normal, or do not produce enough
information for the lip readers. We can notice that the females give more information for the
readers; it is, of course, difficult to substantiate such a claim because this is a small
experiment using a small number of videos, so it is too early to draw such conclusions with
such evidence. The most important thing that this experiment can reveal so far is the overall
human lip reading ability, which is 53%. Another interesting thing to mention is that
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different people also have different abilities to perceive speech from visual cues only. In this
experiment the best lip reader result was 73%, while the worst was 23%. These experiments
illustrate the variation in individual lip reading skills, and the variation in individual ability
to produce a clear readable visual signal, which would add to the challenge of designing an
automatic lip reading system.

The human ability for lip reading varies from one person to another, and depends mainly on
guessing to overcome the lack of visual information. Needless to say, lip readers need to
have a good command of the spoken language, and in some cases the lip reader improvises
and uses his/her knowledge of the language and context to pick the nearest word that
he/she feels fits into the speech. Moreover, human lip readers benefit from visual cues
detected outside the mouth area (e.g. gestures and facial expressions). The complexity and
difficulties of modelling these processes present serious challenges to the task of automatic
visual speech recognition.

1.2 In-house video database

Some of the methods discussed in this chapter are evaluated using an in-house video
database (Hassanat, 2009). This database consists of 26 participants of different races and
nationalities (Africans, Europeans, Asians and Middle Eastern volunteers). Each participant
recorded 2 videos (sessions 1 and 2) at different times (about a 2 month period in time
between the two recordings). The participants were 10 females and 16 males, distributed
over different ethnic groups: 5 Africans, 3 Asians, 8 Europeans, and 10 Middle Eastern
participants. Six of the males had both beard and moustache, and 3 males had moustache
only.

The videos were recorded inside a normal room, which was lit by a 500-watt light source,
using Sony HDR-SR10E high definition (HD) 40GB Hard Disc Drive Handy-cam Digital
Camcorder - 4 Mega Pixels. The videos were de-interlaced then compressed using Intel
IYUV codec, converted to AVI format, and resized to (320 x 240) pixels, because it is easier to
deal with AVI format, and it is faster for training and analyzing the videos with smaller
frame sizes. Each person in each recorded video utters non-contiguous 30 different words
five times, which are numbers (from 0-9), short look-alike words (knife, light, kit, night, fight)
and (fold, sold, hold, bold, cold), long words: (appreciate, university, determine, situation, practical)
and five security related words (bomb, kill, run, gun, fire).

1.3 Chapter overview

This chapter consists of 7 sections. In the first section, we presented a brief introduction to
the VSR and human ability to read lips, and briefly described a typical VSR system. Section
2 briefly reviews automatic lip reading literature and describes some of the (state-of-the-art)
approaches to VSR. Section 3 presents different approaches to face detection/localization.
Lip localization approaches are reviewed in section 4. Section 5 is dedicated to the features
extraction and recognition method. Some experimental results are presented in section 6.
The chapter summary and some conclusions are discussed in section 7.

2. VSR literature review

Most of the work done on VSR came through the development of AVSR systems, as the
visual signal completes the audio signal, and therefore enhances the performance of these
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systems. Little work has been done using the visual only signal. Most of the proposed lip

reading solutions consist of two major steps, feature extraction, and Visual speech feature

recognition. Existing approaches for feature extraction can be categorised as:

1. Geometric features-based approaches - obtain geometric information from the mouth
region such as the mouth shape, height, width, and area.

2. Appearance-based approaches - these methods consider the pixel values of the mouth
region, and they apply to both grey and coloured images. Normally some sort of
dimensionality reduction of the region of interest (ROI) (the mouth area) is used such as
the principal component analysis (PCA), which was used for the Eigenlips approach,
where the first n coefficients of all likely lip configurations represented each Eigenlip.

3. Image-transformed-based approaches - these methods extract the visual features by
transforming the mouth image to a space of features, using some transform technique,
such as the discrete Fourier, discrete wavelet, and discrete cosine transforms (DCT).
These transforms are important for dimensionality reduction and to redundant data
elimination.

4. Hybrid approaches, which exploit features from more than one approach.

2.1 Geometric features-based approaches

A geometric features-based approach includes the first work on VSR done by Petajan in
1984, who designed a lip reading system to aid his speech recognition system. His method
was based on using geometric features such as the mouth’s height, width, area and
perimeter (Petajan, 1984).

Another recent work in this category is the work done by (Werda et al., 2007), where they
proposed an Automatic Lip Feature Extraction prototype (ALiFE), including lip localization,
lip tracking, visual feature extraction and speech unit recognition. Their experiments
yielded 72.73% accuracy of French vowels, uttered by multiple speakers (female and male)
under natural conditions.

2.2 Appearance-based approaches

Eigenlips are the compact representation of mouth Region of Interest using PCA. This
approach was inspired by the methods of (Turk & Pentland, 1991), and first proposed by
(Bregler & Konig, 1994). Another Eigenlips-based system was investigated by (Arsic &
Thiran, 2006), who aimed to exploit the complementarity of audio and visual sources.
(Belongie & Weber, 1995) introduced a lip reading method using optical flow and a novel
gradient-based filtering technique for the features extraction process of the vertical lip
motion and the mouth elongation respectively.

In a more recent study, (Hazen et al., 2004) developed a speaker-independent audio-visual
speech recognition (AVSR) system using a segment-based modelling strategy. This AVSR
system includes information collected from visual measurements of the speaker's lip region
using a novel audio-visual integration mechanism, which they call a segment-constrained
Hidden Markov Model (HMM). (Gurban & Thiran, 2005) developed a hybrid SVM-HMM
system for audio-visual speech recognition, the lips being manually detected. The pixels of
down-sampled images of size 20 x 15 are coupled to get the pixel-to-pixel difference
between consecutive frames. (Saenko et al.,, 2005) proposed a feature-based model for
pronunciation variation to visual speech recognition; the model uses dynamic Bayesian
network DBN to represent the feature stream.
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(Sagheer et al., 2006) introduced an appearance-based lip reading system, employing a novel
approach for extracting and classifying visual features termed as “Hyper Column Model”
(HCM). (Yau et al., 2006) described a voiceless speech recognition system that employs
dynamic visual features to represent the facial movements. The system segments the facial
movement from the image sequences using motion history image MHI (a spatio-temporal
template). The system uses discrete stationary wavelet transform (SWT) and Zernike
moments to extract rotation invariant features from MHL

2.3 Image-transformed-based approaches

(Lucey & Sridharan’s, 2008) work was designed to be posing invariant. Their audio-visual
automatic speech recognition was designed to recognize speech regardless of the pose of the
head, the method starting with face detection and head pose estimation. They used the pose
estimation method described by (Viola & Jones, 2001). The pose estimation process
determines the visual feature extraction to be applied either on the front face, the left or the
right face profile. The visual feature extraction was based on the DCT, which was reduced
by the linear discriminative analysis (LDA), and the feature vectors were classified using
HMM.

A very recent study which also fits into this category was done by (Jun & Hua, 2009), where
they used DCT for feature extraction from the mouth region, in order to extract the most
discriminative feature vectors from the DCT coefficients. The dimensionality was reduced
by using LDA. In addition, HMM was employed to recognize the words.

2.4 Hybrid approaches

(Neti et al., 2000) proposed an audio-visual speech recognition system, where visual features
obtained from DCT and active appearance model (AAM) were projected onto a 41
dimensional feature space using the LDA. Linear interpolation was used to align visual
features to audio features.

A comparative Viseme recognition study by (Leszczynski & Skarbek, 2005) compared 3
classification algorithms for visual mouth appearance (Visemes): 1) DFT + LDA, 2) MESH +
LDA, 3) MESH + PCA. They used two feature extraction procedures: one was based on
normalized triangle mesh (MESH), and the other was based on the Discrete Fourier
Transform (DFT), the classifiers designed by PCA and LDA.

Yu (2008) made VSR the process of recognizing individual words based on a manifold
representation instead of the traditional visemes representation. This is done by introducing
a generic framework (called Visual Speech Units) to recognise words without resorting to
Viseme classification.

The previous approaches can be further classified depending on their recognition and /or
classification method. Researchers usually use dynamic time warping (DTW), e.g. the work
done by Petajan. Artificial neural networks (ANN), e.g. the work done by Yau et al. and
Werda et al.. Dynamic Bayesian Network (DBN), e.g. the work done by Belongie and Weber,
and support vector machines (SVM), e.g. the work done by Gurban and Thiran, and Saenko
etal.

The most widely used classifier in the VSR literature is the hidden Markov models (HMM).
Methods that use HMM include Bregler and Konig; Neti, et al.; Potamianos et al.; Hazen et
al.; Leszczynski and Skarbek; Arsic and Thiran; Sagheer, et al.; Lucey and Sridharan; Yu;
and Jun and Hua.
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Each of the previous approaches has its own strengths and weaknesses. Sometimes the data
reduction methods cause the loss of a considerable amount of related data, while using all
the available information takes a much longer processing time, and not necessarily to obtain
better results due to video or image-dependent information. More effort should be invested
to propose any combination of the different approaches, to trade the disadvantages of each
individual approach.

Most of the previous studies on VSR contain promising solutions, especially when
combining an audio signal with a video signal. Although most of these systems rely on a
clean visual signal (Saenko et al., 2005), still, for visual alone speech reading systems or
subsystems, they have a high word error rate (WER). Sometimes WER is more than 90% for
large vocabulary systems (Hazen et al., 2004; Potamianos, et al., 2003) and a range of 55% to
90% for small vocabulary systems (Yau et al., 2006). The main reason behind this high WER
is that VSR problems represent a very difficult task by nature, as the visual side provides
little information about speech. Other reasons that increase WER include: Large variations
in the way that people speak (Yau et al., 2006), errors in pre-process steps of VSR systems
such as face detection and lips localization, visual appearance differences between
individuals, particularly, in speaker-independent systems, the visemes problems, and other
general problems like light conditions and video quality.

3. Face detection

Face detection is an essential pre-processing step in many face-related applications (e.g. face
recognition, lips reading, age, gender, and race recognition). The accuracy rate of these
applications depends on the reliability of the face detection step. In addition, face detection
is an important research problem for its role as a challenging case of a more general
problem, i.e. object detection.

The most common and straightforward example of this problem is the detection of a single
face at a known scale and orientation. This is a nontrivial problem, and no method has yet
been found that can solve this problem with 100% accuracy. Factors influencing the
accuracy of face detection include variation in recording conditions/parameters such as
pose, orientation, and lighting. However, there are several algorithms and methods that deal
with this problem, attaining various accuracy rates under varied conditions. Most existing
schemes are based on somewhat restrictive assumptions. Some of the most successful
methods used 20%20 (or so) pixel observation window across the image for all possible
locations, scales, and orientations. These methods include the use of support vectors
machines (Osuna et al., 1997), neural network (Rowley et al., 1998) or the maximum
likelihood approach based on histograms of feature outputs (Schneiderman and Kanade,
2000). Others use a cascaded support vector machine (Romdhani, et. al., 2004). Some
researchers use the skin colour to detect the face in coloured images (Garcia, & Tziritas,
1999).

In their study, (Yang et. al., 2002) classified face detection methods in still images into four

categories:
1. Knowledge-based methods. These methods require human knowledge about facial
features.

2. Feature invariant approaches. Designed to find structural features that are not affected
by the general problems as with the face detection process, such as pose and light
conditions. The targeted features vary from one researcher to another, but mostly they
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concentrated on facial features, texture, skin colour, or a combination of the previous
features.

3. Template matching methods. Using one or more patterns to describe a typical face, then
comparing this pattern with the image to find the best correlation between the pattern
and a window in the targeted image. These templates can be predefined templates or
deformable templates.

4. Appearance-based methods. Like the previous approach, but the template is not
previously declared, rather it is learned from a set of images, then the learned template
is used for detection. A variety of methods fill in this gap, such as: Eigenface (e.g.
Eigenvector decomposition and clustering), distribution-based (e.g. Gaussian
distribution), see (Sung & Poggio, 1998; Samaria, 1994), Neural networks, support
vector machines, Hidden Markov Model, Naive Bayes classifier, and information-
theoretical approach.

Others classified face detection methods into two approaches: features-based approaches
and image-based approaches (Hjelmas, & Low, 2001). The problem with most of these
methods is that they are very sensitive to variation in light conditions and complex
backgrounds. However, the one proposed by Rowley et al. (1998) for face detection is one of
the best face detection methods created so far, and is used as a benchmark test by many
researchers.
Rowley’s et al. (1998) method for face detection consists of two stages, first applying a
neural network-based filter that receives a 20 x 20 pixel region of the input image, and
output values ranging from -1 to 1, which means non-face or face respectively. Assuming
that faces in an image are upright and looking at the camera, the filter is applied to all
locations in the image, to obtain all the possible locations of the face. To solve the scale
problem, the input image is repeatedly sub-sampled by a factor of 1.2. The input image is
pre-processed before inputting the proposed system. Light correction and a histogram
equalizer were used to equalize the intensity values in each window.

The second stage focuses on merging overlapping detections and the arbitration process.

The same face is detected many times with adjacent locations, the centre of these locations

being considered as the centre of the detected face, and if two face locations are overlapped,

the one with the highest score is considered the face location. Multiple networks were used
to improve detection accuracy by ANDing (or ORing) the output of two networks over
different scales and positions. Rowley’s system was evaluated using 130 images containing

507 faces, the images having been collected from newspaper pictures, photographs and the

World Wide Web. To train the system on false examples, 1000 images with random pixel

intensities were generated. The detection rate of this system ranged from 78.9% - 90.5%

depending on the arbitration used (ANDing or ORing).

Rowley’s scheme is tested on our video database and detected al I the faces in the videos,

and therefore was used for the purpose of this study.

4. Lip detection

Over the last few decades, the number of applications that are concerned with the automatic
processing/analysis of human faces has grown remarkably. Many of these applications have
a particular interest in the lips and mouth area. For such applications a robust and real-time
lips detection/localization method is a major factor contributing to their reliability and
success. Since lips are the most deformable part of the face, detecting them is a nontrivial
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problem, adding to the long list of factors that adversely affect the performance of image
processing/analysis schemes, such as variations in lighting conditions, pose, head rotation,
facial expressions and scaling.

The lips and mouth region are the visual parts of the human speech production system;
these parts hold the most visual speech information, therefore it is imperative for any VSR
system to detect/localize such regions to capture the related visual information, i.e. we
cannot read lips without seeing them first. Therefore, lip localization is an essential process
for any VSR system.

4.1 Existing trends in lip detection

Many techniques for lips detection/localization in digital images have been reported in the

literature, and can be categorized into two main types of solutions:

1. Model-based lips detection methods. Such models include “Snakes”, Active Shape
Models (ASM), Active Appearance Models (AAM), and deformable templates.

2. Image-based lips detection methods. These include the use of spatial information, pixel
colour and intensity, lines, corners, edges, and motion.

4.1.1 Model-based lip detection methods

This approach depends on building lip model(s), with or without using training face images
and subsequently using the defined model to search for the lips in any freshly input image.
The best fit to the model, with respect to some prescribed criteria, is declared to be the
location of the detected lips. For more about these methods see (Cootes & Taylor, 1992; Kass,
et. al., 1987; Yuille, et. al, 1989).

4.1.2 Image-based lip detection methods

Since there is a difference between the colour of lips and the colour of the face region around
the lips, detecting lips using colour information attracted researchers’ interest recently
because of simplicity, not being time consuming, and the use of fewer resources, e.g. low
memory, allowing many promising methods for lip detection using colour information to
emerge. The most important information that researchers focus on include the red and the
green colours in the RGB colour system, the hue of the HSV colour system, and the
component of the red and blue in the YCbCr colour system. Some researchers used more
information from the lip edges and lip motion. A well known mixed approach is called the
“hybrid edge” (Eveno, et. al., 2002).

4.2 The adopted lip detection method

Among the model-based lip-detection methods, the active shape models are the most
common and best performing technique for lip detection. However, this approach is
basically affected by factors such as facial hair and does not meet some of the functional
requirements (e.g. in terms of speed). “The implementation of Active Shape Model ASM
was always difficult to run in Real-Time” (Guitarte, et. al., 2003). The same thing applies to
the AAM approach. In fact, AAM is slower than ASM.

In grey level images and under diffuse lighting conditions, the external border of the lip is
not sharp enough (see Figure 2a), and this makes the use of techniques based on the
information provided by these images alone ineffective (Coianiz, et. al., 1996). Moreover,
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the ASM and the AAM algorithms are sensitive to the initialization process. When
initialization is far from the target object, they can converge to local minima (see Figure
2a).

Other problems, like the appearance of the moustache, beard, and accessories, contribute to
the problems and challenges that model-based lip detection methods undergo. Figure 2b
illustrates some of these problems.

Fig. 2. Facial features detection using MASM*, (a) lip detection converges to local minima,
(b) the effect of facial hair on ASM convergence.

Since the VSR problem needs several pre-processing steps, e.g. face and lips detection, it is
vital for the VSR system to have faster solutions for these steps in order that the final
solution can work in real time.

Fig. 3. The different stages of the “nearest colour”, a) face detection followed by ROI
defining, b) initial clustering using the YCbCr, c) binary image of ROI resulting from the
nearest colour algorithm, d) final lip detecting.

*“MSAM” is a state-of-art ASM free library, developed by (Milborrow & Nicolls, 2008), and can be
downloaded from the following link: http:/ /www.milbo.users.sonic.net/stasm/download.html
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In order to overcome the above-mentioned difficulties, we shall use a colour-based method
(for lip localization in our study), in spite of being vulnerable to variations in light
conditions. Such an effective method is described in our previous work (Hasanat, 2009). This
method is based on using the YCbCr approach to find at least any part of the lip as an initial
step. Then we use all the available information about the segmented lip-pixels such as r, g,
b, warped hue, etc. to segment the rest of the lip. The mean is calculated for each value, then
for each pixel in RO, and Euclidian distance from the mean vector is calculated. Pixels with
smaller distances are further clustered as lip pixels. Thus, the rest of the pixels in ROI will be
clustered (to lip/non-lip pixel) depending on their distances from the mean vector of the
initial segmented lip region. See Figure 3.

The method was evaluated on 780,000 frames of the in-house database; the experiments
show that the method localizes the lips efficiently, with high level of accuracy (91.15%).

5. Features extraction and recognition

VSR systems require the analysis of feature vectors, which are extracted from the speech-
related visual signals, in ROI in the sequence of the speaker face frames while uttering the
spoken word/speech. Ideally, the required feature representations of words must capture
specific visual information that is closely associated with the spoken word, to enable the
recognition of the word and distinguish it from other words. Unlike the visemic approach,
the visual words technique depends on finding a signature for the whole word, instead of
recognizing each part (Viseme) of the word alone. To find such a signature, or a signal for
each word, we need to find a proper way of extracting the most relevant features, which
play an important role in recognizing that word.

An appearance-based approach to visual speech feature extraction ignores the fact that
mouth appearance varies from one person to another (even when two persons speak the
same word). Thus, using the appearance-based feature extraction alone does not take
individual differences into consideration, and leads to inaccurate results. Moreover,
appearance-based feature extraction methods mostly lack robustness in certain illumination
and lighting conditions (Jun & Hua, 2009).

In this chapter, we adopt the hybrid-based approach, and we expand on the list of features
beyond traditionally adopted ones such as the height and width of the speaker’s lips.
Indeed, there is valuable information encapsulated within the ROI that has a significant
association with the spoken word, e.g. the appearance of the tongue and teeth in the image
during the speech. The appearance of the teeth (for instance) occurs while uttering specific
phonemes (the dentals and labio-dentals). At the same time, focusing only on the image-
based features (appearance and transformed-based features) yields image-specific features,
and it is sometimes difficult to generalize about those features on other videos or speakers.
These results are backed up by (Jun & Hua, 2009).

The visual signal associated with a phoneme is rather short and hence their visual features
are extracted from “representative” image frames. However, the visual signals associated
with words are of longer duration involving tens of frames that vary in many ways. Hence
the need to supplement/modify the set of features used in a visemic system by including
some features relating to variation of frames along the temporal axis. There are many ways
to represent such features, but we shall include two seemingly obvious features: an image
quality parameter that measures the deviation/distortion of any frame from its predecessor,
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as well as the amount of mutual information between a frame and its predecessor. Such

features are expected to compensate for the fact that many words do share some phonemes.

The list of features adopted in this chapter is by no means exclusive, but it was limited out

of a desire to minimize the number for efficiency purposes and to a manageable set of

features for which their impact on the accuracy of the intended VSR system can be estimated
experimentally. The following is the proposed list of features that will be extracted from the

sequences of the ROIs of the mouth areas during the uttering of the word (see Figure 4):

1. The height (H) and width (W) of the mouth, i.e. ROI height and width (geometric-based
features).

2.  The mutual information (M) between consecutive frames ROI in the discrete wavelet
transform (DWT) domain (image-transformed-based features based on temporal
information).

3. The image quality value (Q) of the current ROI with reference to its predecessor
measured in the DWT domain (image-transformed-based features based on temporal
information).

4. The ratio of vertical to horizontal features (R) taken from DWT of ROI (image-
transformed-based features based on temporal information).

5. The ratio of vertical edges to horizontal edges (ER) of ROI (image-transformed-based
features).

6. The amount of red colour (RC) in ROI as an indicator of the appearance of the tongue
(image-appearance-based features).

7. The amount of visible teeth (T) in the ROI (image-appearance-based features).

Feature
extraction

KNN H Word
output

Fig. 4. The proposed feature extraction and recognition method.

As can be noticed from Figure 4, for each spoken word, eight feature vectors of length n
(number of frames) are extracted, forming 8 different signals. This feature extraction method
produces 8 signals for each uttered word, creating 8-dimensional feature space. Those
signals maintain the dynamic of the spoken word, which contains a good portion of
information; on the contrary, the visemic approach does not take into consideration the
dynamic movement of the mouth and lips to produce a spoken word (Yu, 2008).
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Accordingly, for each word we would extract a time-series of 8-dimensional vectors. The
main difficulties in analysing of these time-series stem from the fact that their lengths not
only differ between the spoken words, but also differ between different speakers uttering
the same word and between the different occasions when the same word is uttered by the
same speaker. In what follows we describe each of the 8 features. We assume that for each
frame of a video, the speaker’s face and lips are first localized (see sections 3 and 4) to
determine the ROI from which these features are extracted (see Figure 5).

5.1 The height and width features of the mouth

Some VSR studies used lip contour points as shape features to recognise speech. For
example, Wang et al. (2004) used a parameter set of a 14 points ASM lip to describe the outer
lip contour. In addition, Sugahara et al. (2004) employed a sampled active contour model
(SACM) to extract lip shapes. Determining the exact lips contour is rather problematic due
to the little differences in the pixel values between the face and the lips. Here, we argue that
it is not necessary (redundant) to use all or some of the lip’s contour points to define the
outer shape of the lips, where the height and width of the mouth backed up with a
bounding ellipse is enough to approximate the real outer contour of the lips (see Figure 5).

Width
e

| — e ]

- Height

-

Fig. 5. Lips geometric feature extraction; width and height.

! 2 = 4 5 6 7 8 9 10
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Fig. 6. The change of the mouth shape while uttering the word “Zero”, the blue dotted
ellipse shows the approximated lip contour using the ellipse assumption.
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In our proposal, the height and width of the mouth area are determined by an
approximation of the minimal rectangular box that contains the mouth area. The corners of
the detected mouth box will be eliminated using the assumption that the mouth shape is the
largest ellipse inside the minimal box. This assumption also helps in reducing redundant
data when extracting the other features in the scheme. Sometimes lips are not horizontally
symmetric due to different ways of speaking, the ellipse assumption forces such
symmetries, and alleviates such differences between individuals (see Figure 6). These
changes in height and width of the mouth create two signals (W and H) that represent
changes during the time of uttering a specific word.

5.2 The mutual information (M) feature

Mutual information between 2 random variables X and Y defines the dependency of these
variables, i.e. mutual information reveals how much X contains information about Y, and
vice versa. Mutual information can be utilized to quantify the temporal correlation between
frames of a video sequence, so it can calculate the amount of redundancy between any two
frames. The temporal change of the appearance of ROl is caused by uttering a new/ different
phoneme. For example, the mouth appearance will change while switching from phoneme
[é] to phoneme [d] when uttering the word “feed”. Therefore, it is sensible to use the mutual
information to measure some aspects of the change in the mouth area between consecutive
ROIs. The mutual information M between two random variables X and Y is defined by:

v) = + oe| PEY)
M(X;Y) ;;M Yl g(p(x)p(y)] )

where p(x,y) is the joint probability mass function (PMF) of random variables X and Y (in
our case mouth image (ROI) in current frame X, and previous mouth image in frame Y), p(x)
and p(y) represent the marginal PMF of X and Y respectively. To use the mutual information
formula, the size of both of the random variables must be the same, but because the height
and width of ROI are changing over time while uttering different phonemes, consecutive
ROIs might not be of the same size. To solve this problem, both ROIs are scaled to a
predefined size, say 50 x 50 pixels.

Computing the mutual information in the spatial domain is inefficient and is influenced by
many factors including the presence of noise and variation in lighting conditions. Instead,
measuring the mutual information in the frequency domain provides a more informative
mechanism to model changes between successive ROIs in different frequency sub-bands.
Here we apply the DWT on both the current and the previous ROI. The mutual information
formula is applied 4 times, one for each wavelet sub-band, and the average of the four
values is taken as the mutual information feature for that frame or ROI (see Figure 7).
Transforming both ROIs into the wavelet domain helps to reduce the effect of noise and
variation in lighting conditions. For simplicity and efficiency, the DWT decomposition of the
ROlIs is implemented using the Haar filter.

5.3 The quality measure (Q) feature
There are many image quality measures proposed in the literature. Most of them attempt to
find the amount of distortion in one image by referring to another image. Unlike the mutual
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information measurement, which attempts to measure the amount of dependency or
similarity between two images, quality measures attempt to measure how different one
image is from another.

Thinking again of the consecutive ROIs, a quality measure between them can tell something
about change/distortion occurring due to an uttered phoneme. Therefore, any distortion in
the current ROJI, as compared to the previous ROI, is an indicator of changes in the structure
of the mouth region. The amount of distortion can be measured by a quantitative quality
measure, and considered as a feature at that frame or ROIL.

This study utilizes a universal image quality index proposed by (Wang & Bovik , 2002)
because it is a fast mathematical quality measure, and models image distortion as a
combination of loss of correlation, luminance distortion, and contrast distortion. The quality
measure Q is given by:

@
where Q € [-1,1],
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The best value for Q is when there is no distortion in the current ROI compared to the
previous ROL the value then is equal to 1 or -1 and the maximum distortion is measured
when Q = 0.

This formula is very sensitive to luminance, because it models image distortion as
luminance distortion, as well as loss of correlation and contrast distortion. This problem is
solved by using the same approach that was used for the mutual information feature, i.e.
using the DWT decomposed ROIs. Again, 4 quality measures (Q) are computed, one for
each wavelet sub-band (the HH, HL, LH, and the LL). Then the average of the four values is
taken as the quality measure feature for that frame or ROI (see Figure 7). For compatibility,
we also use the Haar filter and then both ROIs are scaled to 50 x 50 pixels. The average of
both the mutual M, and the quality Q features is defined by:

M; = 1 ©)
Q= Q(LL;;LL; 1)+ Q(HL;; HL; 1)+ Q(LH;; LH; 1)+ Q(HH;;HH; 1)
’ 4 4)

where M; and Q; are the mutual and quality features at frame i respectively, LL;, HL;, LH; and
HH; are the wavelet sub-bands of the current ROI, and LL;;, HL;.;, LH;; and HH;; are the
wavelet sub-bands of the previous ROL
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Fig. 7. (1st row) The previous mouth and its Haar wavelet, (2nd row) Current mouth and its
Haar wavelet.

5.4 The ratio of vertical to horizontal features (R)

The DWT of an image I, using any wavelet filter, then histogram of the approximation sub-
band LL approximates that of the original image while the coefficients in each of the three
other sub-bands have a Laplacian distribution with 0 means (Al-Jawad, 2009). Moreover, in
each non-LL-sub-band the further away from the mean a coefficient is, the more likely it is
associated with a significant image feature such as edges/corners.

Here we adopt the above approach to identify feature-related pixels as the significant
coefficients in the Non-LL sub-bands, i.e. the feature points are the ones with values greater
than (median + standard deviation), and less than (median - standard deviation). The ratio
(R) of the vertical features obtained from wavelet sub-band HL to the number of the
horizontal ones gained from the LH is given by:

R T ©)

where V = number of vertical features, and H = number of horizontal features. Accordingly,
by substituting V and H in equation 5, we get equation 6.

zz 1 (HLmedian + UHL) < HL(x']/) < (HLmedirm + 0-HL)
¥ Y 10 otherwise
1 (LHmediun + GLH) < LH(.’X, ]/) < (LHmedian + 0HL)
0 otherwise

R

b5

where HLegian and LH edian are the medians of the wavelet sub-band HL and LH respectively,
HL(x,y) and LH(x,y) the intensity value at location (x,y) in both HL and LH wavelet sub-
bands, onr and orp are the standard deviation in both of the mentioned sub-bands. Figure 8
demonstrates the correlation between the mouth appearance and its ratio (R) property while
speaking.

" = = ~ =
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0.95 1.05

Fig. 8. The co-relation between the mouth appearance and its ratio (R).
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As can be seen from Figure 8, the ratio R is high when there are a lot of vertical features of
ROI compared to the horizontal ones (the mouths on the right), and R is low when vertical
features are low and/or horizontal features are high (the mouths on the left).

5.5 The ratio of vertical edges to horizontal edges (ER)

The ratio of vertical edges to horizontal edges (ER) of ROI is obtained by using the Sobel
edge detector. The summation of the absolute values of the vertical filter demonstrates the
amount of vertical edges in the ROL. In addition, the summation of the absolute values of the
horizontal filter demonstrates the amount of horizontal edges in the ROI The ratio of the
vertical edges to the horizontal ones is given by:
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where ROI(x,y) is the intensity value at the location (x,y) of the mouth region, W is the
width of ROI, H is the height of ROIL Sv, and Sh are Sobel vertical and horizontal filters
respectively.

When the mouth is stretched horizontally, the amount of horizontal edges increases, so ER
decreases. When the mouth is opened, the amount of vertical edges tends to increase, and
this increases the ER. Therefore, ER reveals something about the appearance of the mouth at
a particular time.

5.6 The appearance of the tongue (RC)

Some phonemes like [th] involve the appearance of the tongue, i.e. moving the tongue and
showing it helps to utter such phonemes. Therefore detecting the tongue in the ROI reveals
something about the uttered phoneme and, by implication, the visual word.

However, it is difficult to model the tongue; the only available cue is its red colour.
Therefore, the amount of red colour (RC) in the ROI will be taken to represent the
appearance of the tongue, as well as the lip colour. Since the lip is captured within the ROI,
the change of the red colour amount is then a cue for the appearance of the tongue. The
different size of the tongue and lip from person to person is not problematic, hence all the
features are scaled to the range [0,1], and the ratio of the red colour to the size of ROI is
considered. This ratio can be calculated using the following equation:

w

z i red(ROI(x,y))
RC = x1y=1

(W)(H) ®

where red(ROI(x,y)) is the red component value of the RGB colour system at the (x,y) of the
mouth region, W is the width of ROI, H is the height of ROL
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5.7 The appearance of the teeth (T)

Some phonemes like [s] incorporate the appearance of the teeth, i.e. showing teeth helps to
utter such phonemes. Therefore detecting teeth in the ROI is a visual cue for uttering such
phonemes and enriches the visual words signatures. The major characteristic that
distinguishes teeth from other parts of the ROI is the low saturation and high intensity
values (Goecke, 2000). By converting the pixels values of ROI to 1976 CIELAB colour space
(L*, a*, b*) and 1976 CIELUV colour space (L*, u* v*), the teeth pixel has a lower a* and u*
value than other lip pixels (Liew et. al., 2003). A teeth pixel can be defined by:

1 a* S(:ua 'O-u)

t= 11/{*3(/1”-0'”) (9)
0 otherwise

where u,, 0, and y,,0, are the mean and standard deviation of a* and u* in ROI
respectively. The appearance of the teeth can be defined by the number of teeth pixels in
ROL. Therefore, the amount of teeth in ROl is given by:

W H
T=2 2 txy) (10)

=1y=1

=

5.8 The classification process

All the previous features are normalized to the range [0,1] to alleviate the individual
differences, and different scales of mouth caused by different distances from the camera, i.e.
the different sizes of ROIs. For each property, a feature vector (a signal) is obtained to
represent the spoken word from that feature perspective. Consequently, for each spoken
word we get a feature matrix. The feature matrix has a fixed number of columns, but with a
different number of rows, depending on the uttered word, and on the different speed of
uttering words.

To compare signals with different lengths, we use the Dynamic Time Warping (DTW)
method, and linear interpolation. For the fusion of the aforementioned features, we used
score level fusion, which includes the use of each feature vector alone, using an empirical
weighting technique to give different weights for the features, to capture the reliability of
each feature vector, depending on how informative they are.

For each signal, the distances are measured with other signals from the training data, using
DTW or Euclidian distance after linear interpolation, to overcome the different signal
lengths. According to the K-Nearest-neighbour (KNN), the minimum k weighted averages
are considered to predict the class (word) by announcing the maximum occurrence class in
the nearest k as the predicted class.

6. Some experimental results

We evaluate the discussed VSR system using our in-house video database, in addition to the
following main types of experiments:
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1. Speaker-dependent experiment: this was conducted on each subject alone, all the test
examples, and the training examples pertaining to the same subject (person). The main
goal of this experiment is to test the way of speaking unique to each person, and each
one’s ability to produce a visual signal that was easily read. These experiments use
leave-one example-out cross-validation protocol, test samples came from session 1 and
training samples from session 2 for the same subject.

2. Speaker-independent experiment: In this type of experiment, the computer tests each
subject against the rest of the subjects. Each time, one subject is taken out of the training
set and is tested against the remaining subjects in the database. The training set does
not contain any examples belonging to the tested subject. So the leave-one-subject-out
cross-validation is used to evaluate the system. This type of experiment neglects the
individual differences in appearance, and in the way of speaking.

. Speaker Speaker . Speaker Speaker
Subject de}l))endent indfpendent Subject degendent indgpendent
FemaleO1 69% 27% Male04 63% 16%
Female02 97% 49% Male05 85% 36%
Female03 87% 35% Male06 65% 19%
Female04 81% 39% Male07 84% 36%
Female05 83% 26% Male08 75% 27%
Female06 75% 43% Male09 92% 41%
Female07 82% 31% Malel0 88% 31%
Female08 85% 29% Malell 84% 53%
Female09 81% 41% Malel2 69% 26%
Femalel0 88% 42% Malel3 53% 15%
Male01 79% 43% Malel4 69% 33%
Male(2 61% 15% Malel5 83% 39%
Male03 44% 23% Malel6 62% 28%

All 76.38% 33%
Females 83% 36%
Males 72% 30%
Excluding moustache & beard 77 % 33%
Moustache & beard 71% 30%

Table 2. VSR system Word recognition rates

It can be noticed from Table (2) that the overall WER of speaker-dependent experiments was
(76.38%), and it was only 33% for the speaker-independent experiment. Our experiments
show that the speaker-dependent word recognition rate is much higher than that of the
speaker-independent; this claim is backed up by several researchers such as (Jun & Hua,
2009). Individual differences in the mouth appearance, and in the way of talking, produce
different visual and audio signals for the same spoken word, which emphasizes that the
visual speech recognition problem is a speaker-dependent problem.



298 Speech and Language Technologies

We can notice also the negative effect of the facial hair on the results, when excluding
subjects with moustaches and beards performance increased by 6% (from 71% to 77%). This
explains the female’s best results (83%). Moreover, the training set contains native and non-
native speaker subjects, and each of the non-native speakers has his/her own way of
uttering English words, for example the word “determine” is pronounced in 3 different
ways by the non-native subjects, “di-tur-min”, “de-teir-main” and “de-ter-men”. This gives
the training set different signatures for the same word, which confuses the recognition
algorithm and contributes to the “bad examples” pool”. Moreover, the training set contains
different ethnic groups, African, Asian, Middle Eastern and European; these groups are
different in appearance. Furthermore, there are also differences in the appearance of males
versus females, and the differences between age groups, i.e. different colours and shapes of
the lips and mouth region. This variety leads to different features being extracted from the
same word, which again contributes to the “bad examples” pool and leads to unexpected
results.

Another interesting observation is the large difference between the individual ability to
produce the visual signal while talking (word recognition rate varies from 44% to 97%). We
found that some participants have less ability to produce this signal, i.e. they talk with
minimum lip movement, which makes it a difficult task to read their lips, even by human
intelligence. We termed those persons “visual-speechless persons” (VSP). In our
experiments, we found that Male02 and Malel3 are VSP (see Figure 9).

Subject |Visual representation

Male02 B ]

Female2

Fig. 9. Illustrating VSP concept, 1st and 2nd rows show the appearance of the word “two”
uttered by two VSPs and the 3rd row shows the same word uttered by a normal person.

The previous Figure (9) shows that the VSPs do not produce clear visual signals. i.e. the
appearance, shape and dynamic of ROI from the 1st to the last frame, seems to be the same
(unchanged to some extent), which makes it difficult to produce a unique signature for their
visual speech, resulting in low WER for such subjects.

7. Chapter summary and conclusion

In this chapter, we described a complete VSR system, which includes face and lip
detection/localization, features extraction and recognition. We evaluated the described
scheme using two types of experiments, speaker-dependent and speaker-independent.

* Some examples in the training set, which are meant to represent some words, are closer to other
words, e.g. outliers.
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These experiments were carried out using a special database, which was designed for
evaluation purposes. There were high word recognition rates for some subjects, and low
ones for some others. Several reasons were found that affected the various results such as
the appearance of facial hair, and the individual’s aptitude to produce a clear visual signal.
Some subjects produce weak signals (termed as VSP).

Results of the speaker dependents experiments were much better than that of the speaker
independent. Therefore, we consider the VSR as speaker dependent problem, and to
confirm such a result we need to further investigate VSR using different databases, and try
to find some appearance invariant features, to minimize the effect of the visual appearance
differences between individuals.

The major challenge for VSR is the lack of information in the visual domain, compared to
the audio domain, perhaps because humans have yet to evolve to have need of a more
sophisticated communication system. For example, it was sufficient for man’s survival to
use sound to warn friends if there was an enemy or a predator around without having to see
them. Therefore, humans did not worry about producing a sufficient visual signal while
talking. This major challenge, along with some others, opens the door for more research in
the future, to compensate for the lack of information.
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1. Introduction

Speech is the most natural form of communication for human beings and is often described as
a unimodal communication channel. However, it is well known that speech is multimodal in
nature and includes the auditive, visual, and tactile modalities. Other less natural modalities
such as electromyographic signal, invisible articulator display, or brain electrical activity or
electromagnetic activity can also be considered. Therefore, in situations where audio speech is
not available or is corrupted because of disability or adverse environmental condition, people
may resort to alternative methods such as augmented speech.

In several automatic speech recognition systems, visual information from lips/mouth and
facial movements has been used in combination with audio signals. In such cases, visual
information is used to complement the audio information to improve the system’s robustness
against acoustic noise (Potamianos et al., 2003).

For the orally educated deaf or hearing-impaired people, lip reading remains a crucial speech
modality, though it is not sufficient to achieve full communication. Therefore, in 1967, Cornett
developed the Cued Speech system as a supplement to lip reading (O.Cornett, 1967). Recently,
studies have been presented on automatic Cued Speech recognition using hand gestures in
combination with lip/mouth information (Heracleous et al., 2009).

Several other studies have been introduced that deal with the problem of alternative
speech communication based on speech modalities other than audio speech. A method for
communication based on inaudible speech received through body tissues has been introduced
using the Non-Audible Murmur (NAM) microphone. NAM microphones have been used
for receiving and automatically recognizing sounds of speech-impaired people, for ensuring
privacy in communication, and for achieving robustness against noise (Heracleous et al., 2007;
Nakamura et al., 2008). Aside from automatic recognition of NAM speech, silicon NAM
microphones were used for NAM-to-speech conversion (Toda & Shikano, 2005; Tran et al.,
2008).



304 Speech and Language Technologies

A few researchers have addressed the problem of augmented speech based on the activation
signal of the muscles produced during speech production (Jou et al., 2006). The OUISPER
project (Hueber et al., 2008) attempts to automatically recognize and resynthesize speech
based on the signals of tongue movements captured by an ultrasound device in combination
with lip information.

In this article, automatic recognition of Cued Speech for French and Non-Audible Murmur
(NAM) recognition are introduced. Cued Speech is a visual mode for communication in
the deaf society. Using only visual information produced by lip movements and hand
shapes, all the sounds of a spoken language can be visually distinguished and thus enabling
deaf individuals to communicate with each other and also with normal-hearing people.
Non-Audible Murmur is very quietly uttered speech which can be perceived by a special
acoustic sensor (i.e., NAM microphone). NAM microphones can be used for privacy, for
robustness against noise, and also by speech-impaired people. In this study, experimental
results are also presented showing the effectiveness of the two methods in augmentative
speech communication.

2. Cued Speech

To date, visual information is widely used to improve speech perception or automatic speech
recognition (lipreading) (Potamianos et al., 2003). With lipreading technique, speech can be
understood by interpreting the movements of lips, face and tongue. In spoken languages,
a particular facial and lip shape corresponds to a specific sound (phoneme). However,
this relationship is not one-to-one and many phonemes share the same facial and lip shape
(visemes). It is impossible, therefore to distinguish phonemes using visual information alone.
Without knowing the semantic context, one cannot perceive the speech thoroughly even
with high lipreading performances. To date, the best lip readers are far away into reaching
perfection. On average, only 40 to 60% of the vowels of a given language (American English)
are recognized by lipreading (Montgomery & Jackson, 1983), and 32% when relating to low
predicted words (Nicholls & Ling, 1982). The best result obtained amongst deaf participants
was 43.6% for the average accuracy (Auer & Bernstein, 2007; Bernstein et al., 2007). The
main reason for this lies in the ambiguity of the visual pattern. However, as far as the
orally educated deaf people are concerned, the act of lipreading remains the main modality of
perceiving speech.

To overcome the problems of lipreading and to improve the reading abilities of profoundly
deaf children, Cornett (O.Cornett, 1967) developed in 1967 the Cued Speech system to
complement the lip information and make all phonemes of a spoken language clearly visible.
As many sounds look identical on face/lips (e.g., /p/, /b/,and /m /), using hand information
those sounds can be distinguished and thus make possible for deaf people to completely
understand a spoken language using visual information only.

Cued Speech [also referred to as Cued Language (Fleetwood & Metzger, 1998)] uses hand
shapes placed in different positions near the face along with natural speech lipreading to
enhance speech perception from visual input. This is a system where the speaker faces
the perceiver and moves his hand in close relation with speech. The hand, held flat and
oriented so that the back of the hand faces the perceiver, is a cue that corresponds to a unique
phoneme when associated with a particular lip shape. A manual cue in this system contains
two components: the hand shape and the hand position relative to the face. Hand shapes
distinguish among consonant phonemes whereas hand positions distinguish among vowel
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phonemes. A hand shape, together with a hand position, cues a syllable. Cued Speech

d (dos) k (car) s (sel) b (bar)
P (par) v [va) R (rat) n (non)
3 (joue) z (base) Yy (lui)
t (bar) [ {0 a (gare) 1 (fie)
m (mare) I (enar) n (camping)
f (fa) n (vigne)
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Fig. 1. Hand shapes for consonants (top) and hand position (bottom) for vowels in French
Cued Speech.

improves the speech perception of deaf people (Nicholls & Ling, 1982; Uchanski et al., 1994).
Moreover, for deaf people who have been exposed to this mode since their youth, it offers
a complete representation of the phonological system, and therefore it has a positive impact
on the language development (Leybaert, 2000). Figure 1 describes the complete system for
French. In French Cued Speech, eight hand shapes in five positions are used. The system was
adapted from American English to French in 1977. To date, Cued Speech has been adapted in
more than 60 languages.

Another widely used communication method for deaf individuals is the Sign Language
(Dreuw et al., 2007; Ong & Ranganath, 2005). Sign Language is a language with its own
grammar, syntax and community; however, one must be exposed to native and/or fluent
users of Sign Language to acquire it. Since the majority of children who are deaf or
hard-of-hearing have hearing parents (90%), these children usually have limited access to
appropriate Sign Language models. Cued Speech is a visual representation of a spoken
language, and it was developed to help raise the literacy levels of deaf individuals. Cued
Speech was not developed to replace Sign Language. In fact, Sign Language will be always
a part of deaf community. On the other hand, Cued Speech is an alternative communication
method for deaf individuals. By cueing, children who are deaf would have a way to easily
acquire the native home language, read and write proficiently, and communicate more easily
with hearing family members who cue them.

In the first attempt for vowel recognition in Cued Speech, in (Aboutabit et al., 2007) a method
based on separate identification, i.e., indirect decision fusion was used and a 77.6% vowel
accuracy was obtained. In this study, however, the proposed method is based on HMMs
and uses concatenative feature fusion to integrate the components into a combined one and
then perform automatic recognition. Fusion (Adjoudani & Benoit, 1996; Hennecke et al., 1996,
Nefian et al., 2002) is the integration of all available single modality streams into a combined
one. In this study, lip shape and hand components are combined in order to realize automatic
recognition in Cued Speech for French.
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3. Non-Audible Murmur (NAM)

Non-Audible Murmur (NAM) refers to a very softly uttered speech received through the
body tissue. A special acoustic sensor (i.e., the NAM microphone) is attached behind the
talker’s ear. This receives very soft sounds that are inaudible to other listeners who are in
close proximity to the talker.

The attachment of the NAM microphone to the talker is shown in Figure 2. The first NAM
microphone was based on stethoscopes used by medical doctors to examine patients, and was
called the stethoscopic microphone (Nakajima et al., 2003). Stethoscopic microphones were
used for the automatic recognition of NAM speech (Heracleous et al., 2004). The silicon NAM
microphone is a more advanced version of the NAM microphone (Nakajima et al., 2005). The
silicon NAM microphone is a highly sensitive microphone wrapped in silicon; silicon is used
because its impedance is similar to that of human skin. Silicon NAM microphones have been
employed for automatic recognition of NAM speech as well as for NAM-to-speech conversion
(Toda & Shikano, 2005). Similar approaches have been introduced for speech enhancement
or speech recognition (Jou et al., 2004; Zheng et al., 2003). Further, non-audible speech
recognition has also been reported based on electromyographic (EMG) speech recognition,
which processes electric signals caused by the articulatory muscles (Walliczek et al., 2006).

NAM microphone

Fig. 2. NAM microphone attached to the talker

The speech received by a NAM microphone has different spectral characteristics in
comparison to normal speech. In particular, the NAM speech shows limited high-frequency
contents because of body transmission. Frequency components above the 3500-4000 Hz range
are not included in NAM speech. The NAM microphone can also be used to receive audible
speech directly from the body [Body Transmitted Ordinary Speech (BTOS)]. This enables
automatic speech recognition in a conventional way while taking advantage of the robustness
of NAM against noise.

Previous studies have reported experiments for NAM speech recognition that produced very
promising results. A word accuracy of 93.9% was achieved for a 20k Japanese vocabulary
dictation task when a small amount of training data from a single speaker was used
(Heracleous et al., 2004). Moreover, experiments were conducted using simulated and real
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noisy test data with clean training models to investigate the role of the Lombard reflex
(Heracleous et al., 2007; Junqua, 1993) in NAM recognition.

In the present study, audio-visual NAM recognition is investigated by using the concatenative
feature fusion, the multistream HMM decision fusion, and late fusion to integrate the audio
and visual information. A statistical significance test was performed, and audio-visual NAM
recognition in a noisy environment was also investigated.

4. Experiments

4.1 Cued Speech automatic recognition

The data for vowel- and consonant recognition experiments were collected from a
normal-hearing cuer. The female native French speaker employed for data recording
was certified in transliteration speech into Cued Speech in the French language. She regularly
cues in schools. The cuer wore a helmet to keep her head in a fixed position and opaque
glasses to protect her eyes against glare from the halogen floodlight. The cuer’s lips were
painted blue, and blue marks were marked on her glasses as reference points. These
constraints were applied in recordings in order to control the data and facilitate the extraction
of accurate features.

The data were derived from a video recording of the cuer pronouncing and coding in Cued
Speech a set of 262 French sentences. The sentences (composed of low predicted multi-syllabic
words) were derived from a corpus that was dedicated to Cued Speech synthesis (Gibert
et al., 2005). Each sentence was dictated by an experimenter, and was repeated two or three
times (to correct the pronunciation errors) by the cuer resulting in a set of 638 sentences.

Fig. 3. Parameters used for lip shape modeling.

The audio part of the video recording was synchronized with the image. Figure 3 shows the
lip shape parameters used in the study. An automatic image processing method was applied
to the video frames in the lip region to extract their inner and outer contours and derive the
corresponding characteristic parameters: lip width (A), lip aperture (B), and lip area (S) (i.e.,
six parameters in all).

The process described here resulted in a set of temporally coherent signals: the 2D hand
information, the lip width (A), the lip aperture (B), and the lip area (S) values for both inner
and outer contours, and the corresponding acoustic signal. In addition, two supplementary
parameters relative to the lip morphology were extracted: the pinching of the upper lip (Bsup)
and lower (Binf) lip. As a result, a set of eight parameters in all was extracted for modeling lip
shapes. For hand position modeling, the xy coordinates of two landmarks placed on the hand
were used (i.e., 4 parameters). For hand shape modeling, the xy coordinates of the landmarks
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placed on the fingers were used (i.e., 10 parameters). Non-visible landmarks received default
coordinates [0,0].

During the recording of Cued Speech material for isolated word recognition experiments,
the conditions were different from the ones described earlier. The system was improved by
excluding the use of a helmet by the cuer, enabling in this way the head movements during
recording. The subject was seated on a chair in a way to avoid large movements in the third
direction (i.e. towards the camera). However, the errors that might occur have not been
evaluated. In addition, the landmarks placed on the cuer’s fingers were of different colors in
order to avoid the hand shape coding and the finger identification, and this helped to simplify
and speed up the image processing stage. In these recording sessions, a normal-hearing cuer
and a deaf cuer were employed. The corpus consisted of 1450 isolated words with each of 50
words repeated 29 times by the cuers.

In the phoneme recognition experiments, context-independent, 3-state, left-to-right,
no-skip-phoneme HMMs were used. Each state was modeled with a mixture of 32 Gaussians.
In addition to the basic lip and hand parameters, first- (A) and second-order derivatives (AA)
were used as well. For training and test, 426 and 212 sentences were used, respectively. The
training sentences contained 3838 vowel and 4401 consonant instances, and the test sentences
contained 1913 vowel and 2155 consonant instances, respectively. Vowels and consonants
were extracted automatically from the data after a forced alignment was performed using the
audio signal.

For isolated word recognition experiments two HMM sets were trained (deaf and
normal-hearing). Fifteen repetitions of each word were used to train 50, 6-state, whole word
HMMs, and 14 repetitions were used for testing. Eight and ten parameters were used for lip
shape and hand shape modeling, respectively.

In automatic speech recognition, a diagonal covariance matrix is often used because of the
assumption that the parameters are uncorrelated. In lipreading, however, parameters show
a strong correlation. In this study, a global Principal Component Analysis (PCA) using all
the training data was applied to decorrelate the lip shape parameters and then a diagonal
covariance matrix was used. The test data were then projected into the PCA space. All PCA
lip shape components were used for HMM training. For training and recognition the HTK3.1
toolkit (Young et al., 2001) was used.

For the integration of the lip shape and hand shape components, feature concatenative fusion
was used. Feature concatenation uses the concatenation of the synchronous lip shape and
hand features as the joint feature vector

T T
oF = [0/, 0" T e RP M

where OF is the joint lip-hand feature vector, Ot(L) the lip shape feature vector, Ot(H) the
hand feature vector, and D the dimensionality of the joint feature vector. In vowel recognition
experiments, the dimension of the lip shape stream was 24 (8 basic parameters, 8 A, and 8
AA parameters) and the dimension of the hand position stream was 12 ( 4 basic parameters,
4 A, and 4 AA parameters). The dimension D of the joint lip-hand position feature vectors
was, therefore 36. In consonant recognition experiments, the dimension of the hand shape
stream was 30 (10 basic parameters, 10 A, and 10 AA parameters). The dimension D of the
joint lip-hand shape feature vectors was, therefore 54. Figure 4 shows the vowel recognition
results. As shown, by integrating hand position component with lip shape component, a
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Fig. 4. Cued Speech vowel recognition using only lip and hand parameters based on
concatenative feature fusion.

vowel accuracy of 85.1% was achieved, showing a 53% relative improvement compared to the
sole use of lip shape parameters.

Using concatenative feature fusion, lip shape component was integrated with hand shape
component and consonant recognition was conducted. For hand shape modeling, the xy
coordinates of the fingers, and first- and second-order derivatives were used. In total, 30
parameters were used for hand shape modeling. For lip shape modeling, 24 parameters were
used. Figure 5 shows the obtained results in the function of Gaussians per state. It can be
seen that when using 32 Gaussians per state, a consonant accuracy of 78.9% was achieved.
Compared to the sole use of lip shape, a 56% relative improvement was obtained.

[ Lips M LipstHand
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50 | 48.
40 - 37,
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Fig. 5. Cued Speech consonant recognition using only lip and hand parameters based on
concatenative feature fusion.
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Fig. 6. Word accuracy for isolated word recognition in the case of a normal-hearing subject.

Figure 6 shows the isolated word recognition results obtained in the function of several
Gaussians per state in the case of the normal-hearing cuer. In the case of a single Gaussian
per state, using lip shape alone obtained a 56% word accuracy; however, when hand shape
information was also used, a 92.8% word accuracy was obtained. The highest word accuracy
when using lip shape was 72%, obtained in the case of using 4 Gaussians per state. In that case,
the Cued Speech word accuracy using also hand information was 94.9%. Figure 7 shows the
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Fig. 7. Word accuracy for isolated word recognition in the case of a deaf subject.

obtained results in the case of a deaf cuer. The results show that in the case of the deaf subject,
words were better recognized when using lip shape alone compared to the normal-hearing
subject. The fact that deafs rely on lipreading for speech communication may increase their
ability not only for speech perception but also for speech production. The word accuracy in
the case of the deaf subject was 89% compared to the 94.9% in the normal-hearing subject.
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HMMs
Test data|Normal |Deaf|Normal+Deaf
Normal | 949 | 0.6 92.0
Deaf 2.0 |89.0 87.2

Table 1. Word accuracy of a multi-speaker experiment

The difference in performance might be because of the lower hand shape recognition in the
deaf subject. It should also be noted that the normal-hearing cuer was a professional teacher
of Cued Speech. The results show that there are no additional difficulties in recognizing Cued
Speech in deaf subjects, other than those appearing in normal-hearing subjects.

A multi-cuer isolated word recognition experiment was also conducted using the
normal-hearing and the deaf cuers’ data. The aim of this experiment is to investigate whether
it is possible to train speaker-independent HMMs for Cued Speech recognition. The training
data consisted of 750 words from the normal-hearing subject, and 750 words from the deaf
subject. For testing, 700 words from normal-hearing subject and 700 words from the deaf
subject were used, respectively. Each state was modeled with a mixture of 4 Gaussian
distributions. For lip shape and hand shape integration, the concatenative feature fusion was
used.

Table 1 shows the results obtained when lip shape and hand shape features were used. The
results show, that due to the large variability between the two subjects, word accuracy of
cross-recognition is extremely low. On the other hand, the word accuracy in normal-hearing
subject when using multi-speaker HMMs was 92%, which is comparable with the 94.9% word
accuracy when cuer-dependent HMMs were used. In the case of the deaf subject, the word
accuracy when using multi-cuer HMMs was 87.2%, which was also comparable with the 89%
word accuracy when using speaker-dependent HMMs.

The results obtained indicate that creating speaker-independent HMMs for Cued Speech
recognition using a large number of subjects should not face any particular difference, other
than those appear in the conventional audio speech recognition. To prove this, however,
additional experiments using a large number of subjects are required.

4.2 NAM automatic recognition

The corpus used in the experiment was 212 continuous Japanese utterances, containing
7518 phoneme realisations. A 3-state with no skip HMM topology was used. Forty-three
monophones were trained using 5132 phonemes. For the purpose of testing, 2386 phonemes
were used. The audio parameter vectors were of length 36 (12 MFCC, 12AMFCC, and 12
AAMEFCC). The HTK3.4 Toolkit was used for training and testing.

The face and profile views of the subject were filmed under conditions of good lighting.
The system captured the 3-D positions of 112 colored beads glued on the speaker’s face at
a sampling rate of 50 Hz (fig. 8), synchronized with the acoustic signal sampled at 16000 Hz.
The collection of 30 lip points using a generic 3-D geometric model of the lips is shown in
Figure 9 (Revéret & Benoit, 1998).

The shape model is built using the Principal Component Analysis (PCA). Successive
applications of PCA are performed on the selected subsets of the data, which generate the
main directions. These directions are retained as linear predictors for the whole data set. The
mobile points P of the face deviate from their average position B by a linear composition of
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Fig. 8. Characteristic points used for capturing the movements.
the basic components M loaded by factors « (articulatory parameters) (Revéret et al., 2000).
P=B+aM ()

Only the first 5 parameters of the extracted 12 linear components M were used. These
explained more than 90% of the data variance using the following iterative linear prediction
on the data residual: the first component of the PCA on the lower teeth (LT) values leads to
the "first jaw" predictor. The PCA on the residual lips values (without jaw1 influence) usually
presented three pertinent lip predictors (i.e., lips protrusion, lips closing mainly required for
bilabials, and lips raising mainly required for labiodental fricatives). The movements of the
throat linked the underlying movements of the larynx and the hyoid bone, and served as
the fifth one. The video parameters were interpolated at 200 Hz to synchronize with the
audio analysis frame rate. For audio-visual NAM recognition, concatenative feature fusion,

Inner
Median
Quter

‘\ - .
Contours Bottom

Fig. 9. The 30 control points and the 3 basic contour curves.

multistream decision fusion, and late fusion methods were used.
Multistream HMM fusion is a state synchronous decision fusion, which captures the reliability
of each stream by combining the likelihoods of single-stream HMM classifiers (Potamianos
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et al., 2003). The emission likelihood of the multistream HMM is the product of the emission
likelihoods of the single-stream components, weighted appropriately by stream weights.
Given the O combined observation vector, that is, the NAM and visual elements, the emission
score of multistream HMM is given by:

S M
b]'(ot) = H[ Z stmN(Ost;ﬂjsm/ stm)})\s 3)

s=1 m=1

where, N(O; j, %) is the value in O of a multivariate Gaussian with mean p and covariance
matrix ¥, and S is the number of the streams. For each stream s, My Gaussians in a mixture
are used, each weighted with cjs;;. The contribution of each stream is weighted by As. In
the present study; it is assumed that the stream weights do not depend on state j and time t.
However, two constraints were applied, namely:

0<{An Ao} <1, and Ay+A,=1 (4)

where A, is the NAM stream weight, and A, is the visual stream weight. In these experiments,
the weights were experimentally adjusted to 0.6 and 0.4 values, respectively. The selected
weights were obtained by maximizing the accuracy on several experiments.

A disadvantage of the previously described fusion methods is the assumption that there is a
synchrony between the two streams. In the present study, late fusion was applied to enable
asynchrony between the NAM stream and the visual stream. In the late fusion method,
two single HMM-based classifiers were used for the NAM speech and the visual speech,
respectively. For each test utterance (i.e., isolated phone), the two classifiers provided an
output list, which included all the phone hypotheses with their likelihoods. Subsequently, all
the separate mono-modal hypotheses were combined into the bi-modal hypotheses using the
weighted likelihoods, as given by:

logPny (h) = AulogPn(h|Qn) + AvlogPy (1|Oy) ®)

where, logPyy (h) is the score of the combined bi-modal hypothesis &, logPy(h|Oy) is the
score of the 1 provided by the NAM classifier, and logPy (h|Oy,) is the score of the h provided
by the visual classifier. A, and A, are the stream weights with the same constraints applied in
multi-stream HMM fusion.

The procedure described in this study finally resulted in a combined N-best list in which
the top hypothesis was selected as the correct bi-modal output. A similar method was also
introduced in (Potamianos et al., 2003).

A comparison of the three classification methods used in the present study is shown in Table 2.
As seen in the table, the highest classification accuracies are achieved when late fusion is used.
The second best classification accuracies are achieved when using multistream HMM decision

Fusion Method
Late|Multistream |Feature
Phonemes |71.8 68.9 67.8
Vowels |86.2 83.7 83.3
Consonants|64.1 59.7 58.2

Table 2. Comparison of the fusion methods in NAM automatic recognition.
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fusion. Finally, the lowest accuracies are observed when using feature fusion. Specifically,
when using late fusion, an accuracy of 71.8% is achieved for phoneme classification, 86.2%
accuracy for vowel classification, and 64.1% accuracy for consonant classification. The highest
accuracies, when using late fusion, might be an evidence of asynchrony between the NAM
speech and the visual stream. In the following experiments late fusion is used to integrate the
NAM audio speech with the visual data. The results obtained when using visual data, NAM

[Jvisual B NAM [0 NAM+Visual
90 86.2

80 4
71.8

64.1 62.3

60 1

40 —

30

Classification accuracy [%]
B
o

20

Vowels Consonants All

Phoneme group

Fig. 10. Phoneme classification in a clean environment.

data, and visual-NAM data are shown in Figure 10. The results indicate that the classification
accuracy is very low when only visual data is used. As many sounds appear to be similar on
the lips/face, the sole use of visual parameters cannot distinguish these sounds. In the case
of NAM data, the accuracies are higher in comparison to visual data. Specifically, an accuracy
of 79.2% was achieved for vowel recognition, 49.8% accuracy for consonant recognition, and
59.7% accuracy for phoneme recognition. It is observed that the accuracy is considerably
lower for consonant recognition in comparison to vowel recognition. However, because of
the unvoiced nature of NAM, both voiced and unvoiced sounds articulated at the same place
become similar, resulting in a larger number of confusions between consonants.The significant
improvements in accuracy, when visual data were fused with NAM speech, are shown in
Figure 10. Specifically, a relative improvement of 33% was achieved for vowel recognition,
28% for consonant recognition, and 30% for phoneme recognition.

The McNemar’s test (Gillick & Cox, 1989) was performed to determine whether the
differences were statistically significant . The p-values in all the cases were 0.001, which
indicated that the differences were statistically significant.

Table 3 and Table 4 show the confusion matrices of the plosives sounds when using NAM
and NAM-visual speech, respectively. As is shown, the number of confusions decreases when
visual information was also used resulting in a higher accuracy.

In another experiment, office noise recorded by a NAM microphone was superimposed on
clean NAM speech on several Signal-to-Noise-Ratio (SNR) levels. The noisy data were used
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/p/ /b/ /t/ /d/ /K/ /g/

/p/| O
/b/| 0
/t/] 2
/d/| 0
/k/| 1
/g/| 0

0 5 0
8 5 1
0 36 3
2 6 14
0 8 0
1 0 2

2
3
12
4
45
6

1

N == O

20

Table 3. Confusion matrix of Japanese plosives using NAM speech.

/p/ /b/ /t/ /d/ /K/ /g/

/p/| 3
/b/
/t/
/d/
/k/
/g/

OO OO

0 5 0
13 3 0
0 39 1
0o 7 17
0o 7 0
0 0 1

0

0
0
1
2
3

22

Table 4. Confusion matrix of Japanese plosives using NAM-visual speech.

to train HMMs of a desired SNR level. In addition, the noisy NAM data were fused with the

visual parameters and audiovisual NAM HMMs were trained.

The classification accuracies in the function SNR levels for the visual, the NAM, and the
NAM-visual cases are shown in Figure 11 . As seen in the figure, the accuracy of NAM
recognition decreases when noisy data is used. However, the accuracy drastically increases
when NAM speech is integrated with visual information. In such a case, an average of 15%
absolute increase in accuracy was obtained.
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Fig. 11. Phoneme classification in noisy environment.
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5. Conclusion and future word

In this chapter, two methods for augmentative speech communication were introduced.
Specifically, automatic recognition for Cued Speech for French and Non-Audible Murmur
recognition were reported. The authors demonstrated the effectiveness of both methods
in alternative speech communication, when modalities other than the audio one are used.
Regarding Cued Speech automatic recognition, the experimental results obtained showed
recognition rates comparable to those obtained when audio speech is used. In addition, the
results showed that using hand information as complement to lip movements, significantly
higher rates achieved compared to the sole use of lip movements. With concern to
Non-Audible Murmur recognition, the results showed that the unvoiced nature of NAM
speech causes a higher number of confusions. Using, however, visual information produced
by face/lips further improvements achieved compared with using NAM speech only. As
future work, the authors plan to investigate the Cued Speech for Japanese, and also to evaluate
the intelligibility of audible NAM speech in clean and noisy environments. This work has
been partially supported by JST CREST "Studies on Cellphone-type Teleoperated Androids
Transmitting Human Presence’
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Soccer Event Retrieval Based on Speech
Content: A Vietnamese Case Study

Vu Hai Quan
University of Science, VNU-HCM,
Vietnam

1. Introduction

Video is a self-contained material which carries a large amount of rich information, far
richer than text, audio or image. Researches (Amir et al., 2004), (Fleischman & Roy, 2008),
(Fujii et al., 2006) have been conducted in the field of video retrieval amongst which content-
based retrieval of video events is an emerging research topic. Figure 1 illustrates an ideal
content-based video retrieval system which combines spoken words and imagery. Such
ideal system would allow retrieval of relevant clips, scenes, and events based on queries
which could include textual description, image, audio and/or video samples. Therefore, it
involves automatic transcription of speech, multi-modal video and audio indexing,
automatic learning of semantic concepts and their representation, advanced query
interpretation and matching algorithms, imposing many new challenges to research.

There is no universal definition of video event, and the existing definitions can be classified
into two types: one is being abnormal and the other is interesting to users (Babaguchi et al.,
2002). In the first type of definition, an event may be either normal or abnormal. Generally
speaking, only the abnormal event, which has more information than the normal one, is
meaningful to the users. This event definition is suitable for the video analysis under
restricted circumstance such as surveillance. The event definition of interesting to users is
based on the users” description and domain prior knowledge (Sun & Yang, 2007). Suitable
examples of this category are sport-video events such as ones in soccer and baseball. Several
popular soccer events are shown in Fingure 2, including scoring, corner kick, yellow card
and foul events.

Soccer video analysis plays an important role in both research and commerce. The basic idea
of soccer events retrieval is to infer and retrieve the interesting events, and its goal is to
make the results accord with human’s visual perception as much as possible (Xu et al.,
2001). Inference of events can be stemmed from either the semantic visual concepts or the
spontaneous speech embedded in the videos. This chapter approaches soccer-video event
retrieval in an audio aspect (i.e., the problem of spontaneous speech recognition). In this
case, an event is defined as the spatiotemporal entity interesting to users, which is remarked
by the announcer’s spoken words. By exploiting spoken information of the video, soccer
events are detected using an automatic speech recognition (ASR) system. However, as
soccer videos vary in both speech quality and content, a canonical speech recognizer would
not perform well without modifications and improvements. There are three main problems
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induced by data diversity: noisy speech, foreign term interferences, and emotional
variations in speech prosody.

+
Spoken-information| Visual-information
Retrieval Retrieval

Fig. 1. A full-fledged content-based video retrieval system

To cope with these problems, a noise reduction scheme, a cross-lingual transliteration
model, and an advanced acoustic modelling technique are proposed. In the remainder of
this chapter, Section 2 gives a detailed specification of the retrieval system. Section 3 focuses
on experimental evaluations. And finally, Section 4 concludes the discussions.

(a) Scoring (b) Corner Kick (c) Foul (d) Yellow Card

Fig. 2. Soccer events

2. The retrieval system

This section gives a detailed specification of the proposed retrieval system for soccer video
database. Figure 3 illustrates four main parts comprising the system: a speech recognizer, a
transliteration model, a noise suppressor, and a search engine. Each one plays an
indispensable role in the whole system. The speech recognizer manages video transcriptions
with the aid of transliteration model and the noise suppressor, while search engine deals
with the tasks of indexing and retrieving transcribed text.

The following subsections will focus on each of the components respectively. As for the
search engine, this system makes use of standard information retrieval techniques (e.g.,
indexing, matching, etc.). Therefore, it will not be covered in this chapter.
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- Transcription System ==-=---=--=--=
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Speech Search
Recognizer Engine

Videos Transcribed text

Fig. 3. The retrieval system

2.1 Viethamese speech recognition

The speech recognition system that was reported in (Vu et al., 2006) is employed as the
recognizer for the retrieval system. In this subsection, modifications in acoustic modelling
and transcription process to the recognizer are discussed.

2.1.1 Advanced acoustic modeling

The acoustic modelling technique described in (Vu et al., 2006) is designed in the usual
approach as for Chinese (Mori et al., 1997) in which each syllable is decomposed into initial
(I) and final (F) parts (Figure 4a). While most of Vietnamese syllables consist of an Initial and
a Final, some of them only have the Final. The initial part always corresponds to a
consonant. The final part includes a main sound plus tone and an optional ending sound.
This decomposition has two advantages. First, the number of monophones is relatively
small (44 monophones). Second, by treating tone as a distinct phone, followed immediately
after the main sound, the context-dependent model for tone can be built straightforwardly.
It means that the recognition of tones was fully integrated in the system in just one
recognition pass. However, distinct representations of tones have brought upon a
disadvantage: the deficiency in modelling emotional variations of speech prosody. Since
emotional prosody is expressed in the main tonal sound, separating tone from vowel would
degrade the parameterization of tonal vowels.

To better model emotional prosodies, a modification to the acoustic model is proposed, in
which tones are integrated into tonal vowels. This results in a new acoustic model consisting
of 99 monophones including 27 phones for consonants, 12 phones for non-tonal vowels, and
60 phones for tonal vowels as shown in Figure 4b. Table 1 gives examples showing the
differences between tone representations.
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T —

E —

Fig. 4a. Separated tone modeling

E —

Fig. 4b. Integrated tone modeling

[ F
VT [E]

bcchddgghgihkkhlmn
ngnghnhpphqursttrthvx

addeéi

odouuy

</[><\><?><~>< . >

cchngnhmnpt

[ F
V [E]

bcchddgghgihkkhlmn
ngnghnhpphqursttrthvx

adaeéiodouuy
didééiodsuny
aiaediooouuy
aaaeéiodbouuy
aiagéioocuuy
addeciodouuy

cchngnhmnpt

Word Separated tone Integrated tone
chao ch a<\>o chao
chao chao chao
cheo che<\>o cheo

Table 1. Examples of tone representations

2.1.2 Video transcription

Speech in soccer videos is different from a typical speech training corpus in terms of quality
and speaker-variations. This mismatch leads to serious degradation in system performance.
In order to minimize errors, the soccer speech is put through a two-stage recognition process
as shown in Figure 5. In the first stage, input speech along with its transcription, produced
by the recognizer, are used to modify acoustic parameters. This is indeed the unsupervised
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mode of acoustic adaptation. Gaussian components of the recognizer are adapted using the
maximum likelihood linear regression (MLLR) technique. A global regression class is
considered for adapting mean vectors with full transformation matrices. In the second stage,
final transcriptions of input speech are generated by the adapted model.

Wave form
—>| Base Recognizer

Best | path
Y

Acoustic
Adaptation

Adapted | parameters
Y

Adapted .
Recognizer Hypothesis

Fig. 5. Two-stage transcription process

2.2 Transliteration of foreign terms

The inability to deal with words in foreign languages causes recognition rates to drop
drastically in ASR systems. A common solution to this problem is to look up a
pronunciation dictionary. Despite its effectiveness, this approach has serious limitations:
making a cross-lingual pronunciation dictionary of large size by hand is costly and required
a lot of effort. Furthermore, the number of available entries is finite and therefore not
flexible because speech recognition systems are expected to handle arbitrary words.
Alternatively, data-driven approaches can be employed to overcome these limitations by
learning samples and predicting unseen words. In the retrieval system, joint-sequence
model (Bisani & Ney, 2008), a data-driven approach, is applied to transliterate foreign words
into Vietnamese syllables.

The fundamental idea of joint-sequence model is based on the concept of graphone, a joint
unit between graphemes and phonemes. In the assumption of joint- sequence model, each
word and its pronunciation are generated by a common sequence of graphones, but the
number of possible graphone sequences varies depending on the ways of segmentation. For
instance, the word “David” and its pronunciation can be represented by one of the graphone
sequences shown in Figure 6.

Graphone inventory can be estimated from training data using discounted EM algorithm
(Bisani & Ney, 2008). The transliteration process searches for the most likely graphone
sequence which matches the same spelling as given, and then projects it into phonemes.
The resulting phonemes can then be assembled into Vietnamese syllables for speech
recognition. It is worth noting that due to the co-segmentation characteristic of graphones,
transliteration can be applied bidirectionally. It means that given a sequence of
Vietnamese syllables, the corresponding foreign word can be obtained in the same way as
presented.
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d a - \ i d
(d] | al | [yl || [v1 | OGI | [t
“david” = d a v i d
[day vit] [d] | fayl| [vl || 01 | [t]

da | vid
[day]| [vit]

e

Fig. 6. Co-segmentations of the word “David” and its Vietnamese pronunciation

2.3 Noise reduction

Environmental variation has greatly affected the performance of ASR systems. A number of
techniques have been proposed for dealing with environmental noise, especially additive
noise which commonly plagues sport-domain speech. Additive noise is noise from external
sound sources like wind or cheering that is relatively constant and can be modelled as a
noise signal that is just added to the clean speech waveform to produce the noisy speech.
One of the most popular methods for reducing the effect of additive noise is spectral
subtraction (Katagiri et al., 1998). As depicted in Figure 7, the noise spectra S, estimated
during non-speech regions are subtracted from the noisy speech spectra Sy:

S, =S,-as, )

x Y

where a is the scaling factor for emphasis or de-emphasis of the noise spectra. Enhanced
speech is then reconstructed based on the resulting spectra S.

Enframed

Noise Spectrum Noisy-speech
Spectrum

Y VY

Subtraction

Enhanced Spectrum
Inverse DFT
Overlap add

~-'u'\"‘J1fl‘k1.I"1.|'1.r"."'L|"|,'I".u"l-']'J"u"-.-"-.-'v-ﬂ-"w“

Fig. 7. Spectral subtraction
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To minimize the word error rate induced by additive noise contained in soccer videos,
magnitude spectrum subtraction is used to enhance speech quality of the videos. In
addition, the smoothing technique, that was presented and proved in (Wojcicki et al., 2006)
to be effective against the residual effect caused by spectral subtraction, is also employed.

3. Experiments

This section focuses on two main experiments: evaluations of the speech recognizer and the
retrieval system. Both of them are conducted on the datasets described below.

3.1 Datasets

3.1.1 Speech and text corpora

The recognizers are trained with the speech corpus that was collected in 2005 from VOV - the
national radio broadcaster (mostly in Hanoi and Saigon dialect), with a total duration of 20
hours. It was manually transcribed and segmented into sentences, which resulted in a total of
19496 sentences and a vocabulary size of 3174 words as shown in Table 2. All the speech was
sampled at 16 kHz and 16 bits. They were further parameterized into 12 dimensional MFCC,
energy, and their delta and acceleration (39 length front-end parameters).

Dialect Duration # Sentences
Hanoi 18 hours 17502

Saigon 2 hours 1994
Total 20 hours 19496

Table 2. The VOV speech corpus

Language models (bigram and trigram) for the recognizer are built using the 146M-word
text corpus collected from newspaper text sources available on the Internet between 4/2008
-10/2009. In addition, the text corpus (livescore - 2008) in soccer domain, consisting of 1M
words, is also employed for language model adaptation.

3.1.2 Video database

For evaluation purposes, the AFF Suzuki-cup video database (2008) is demuxed into 14-
hour speech channels. It is also manually transcribed and segmented into 11593 sentences,
with a vocabulary size of 1810 words as shown in Table 3. The speech was sampled at
multiple different rates, but was converted to an identical format of 16 kHz and 16 bits. This
database will be served as the test-set for every experiment.

Dialect Duration # Sentence # Foreign terms
Mixed 14 hours 11593 892

Table 3. The AFF video database

3.2 Evaluation metrics
Performance of an ASR system is typically measured in terms of word error rate (WER):

WER =S +1+D @)
N
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where N is the total number of words in the test-set, and S, I, D are the total number of
substitutions, insertions, and deletions respectively. This is indeed the edit distance between
the automatically generated transcription and the reference one that was manually
transcribed. This chapter makes use of word accuracy rate (WAR), which is defined as WAR
=1 - WER, to report performances of the recognizer.

In order to evaluate performances of the retrieval system, event-detection rates are
measured in terms of recall and precision which are given by:

# correctly retrieved events

Precision = -
# retrieved events

®)

# retrieved events
# relevant events in the database

Recall =

3.3 Transcription evaluation
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Fig. 8. Performances of the recognizers

In this experiment, the recognizer is evaluated on the task of soccer video transcription. To
measure improvements obtained from the proposed methods of transliteration, acoustic
modelling and noise reduction, the experiment is conducted in a comparative manner
between the original recognizer (without any modifications presented in this chapter) and
the modified one. Both are trained using the same corpora described in Subsection 3.1.1.
Figure 8 plots performance functions of the two recognizers. As the number of Gaussian
mixtures increases, the enhanced recognizer becomes dominant and an improvement of
11.9% can be seen in best case, where WAR reaches 83.3%.

3.4 Event detection evaluation

For evaluations of the retrieval system, Nutch! - an open source framework is deployed in role
of the search engine. Several typical soccer events are selected as test cases, including: thé vang
(yellow card), thé¢ d6 (red card), phat géc (corner kick), viét vi (offside), pham 15i (foul), ghi
ban/ban thing (scoring), Cong Vinh (a Vietnamese player), Sukha (a Thai player). Table 4
reports their detection rates in the form of recalls along with the corresponding precisions.

Thttp:/ /nutch.apache.org.
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Event # RIE* # RtE** # CRtE*** % Recall % Precision
Yellow Card 32 20 17 62.50 85.00
Red Card 3 2 2 66.67 100.00
Corner Kick 56 38 32 67.86 84.21
Offside 48 34 30 70.83 88.24
Foul 121 65 59 53.72 90.77
Scoring 35 14 12 40.00 85.71
Cong Vinh 153 104 83 67.97 79.81
Su Kha 117 76 57 64.96 75.00
Average - - - 61.81£9.56  86.09 £ 6.96

*RIE: Relevant events
**RtE: Retrieved events
***CRtE: Correctly retrieved events

Table 4. Event detection rates

Most of the detection rates (i.e., recall) are above moderate while their precisions are pretty
high. The average rates of 61.81% recall and 86.09% precision indicate a reasonable result for
the proposed methods and their application in soccer event retrieval. This is indeed the
single event detection mode in which each event is defined by a single keyword. Figure 9
gives examples of several single events and their false detections as well. Since events are
remarked by the announcers’ spoken works, errors in transcriptions will result in missing
retrievals. And also, the context in which event-keywords are spoken will be responsible for
the false detections. For instance, “scoring/goal” could be spoken in a regular comment
(e.g., “van chua c6 ban thing/still no goal”) rather than an authenticated scoring event.
Another way of retrieving soccer events is to combine several keywords together. These
events will be denoted as “combined events.” Figure 10 illustrates several combined events
along with their false detections. Most of the false detections are caused by unexpected
combinations between keywords in the results. For example, the combined query “Cong
Vinh” & “yellow card” can be resulted in “a yellow card for player A for an unfair act with
Cong Vinh” rather than the expected event “a yellow card for Cong Vinh.” Someone may
suggest enforcing phrase querying, but then again the phrase might not match the
announcers’ spoken phrase.

# Correctly

Event # Retrieved events . % Precision
retrieved events

“Cong Vinh” &

“Yellow Card” 4 2 50.00

“Cong Vinh” &

“Offside” 7 7 100.00

”Con% Vinh” & 9 7 7778
Foul

Cong Vinh” & 10 2 20.00
Scoring

Average - - 61.95 + 30.01

Table 5. Performance of combined-event retrieval

Table 5 summarizes the performances of combined-event retrieval. Since the total number of
retrieved events might exceed the number of relevant events, only precisions are reported.
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e T T

(a) Scoring event (b) False detection of scoring
(“ban thing mé ti s6”) event (“van chua c6 ban thing”)

(c) Foul event (d) False detection of foul event
(“pham 16i”) (“khéong c6 pham 18i”)

Fig. 9. False detections of single events.

3.5 Running-time evaluation

In this experiment, the retrieval system is evaluated in the manner of searching speed. Test
cases/queries are generated randomly with respect to both single and combined events.
Arbitrary phrase queries (with average syllable length of five) are also taken into account.
Table 6 reports the average searching time for single keywords, combined keywords, and
arbitrary phrases each with 200 different queries. All the tests were conducted in a standard
server with a 16x3.02GHz processor and 32GB RAM.

Category Searching time

(seconds)
Single keyword 0.15
Combined keyword 0.24
Arbitrary phrase 0.31
Average 0.23 = 0.07

Table 6. Average searching time
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@" Coflg\Vinh: & ”f,coriAng” (b) False detection of “Cong Vinh” &
ev‘ent”( ban thang cta Cong “scoring” event (“chut xiu nita 1a Céng
Vinh”) Vinh da c6 ban thing”)

GI=ES(=

Japan’s Le:

-

(c) “Cong Vinh” & “yellow card” event (d) False detection of “Cong Vinh” & .
(“mot chiéc thé vang cho Cong Vinh”) “yellow card” event (“v6i pha pham l6i

v6i Cong Vinh trudc d6 thi Alam Shah
da phai nhin thé vang”)

Fig. 10. False detections of combined events

A demo version of this system is available for testing at:
www.ailab.hcmus.edu.vn

4. Conclusion

This chapter has presented a spoken information based approach for the retrieval of soccer
video events - the first one to apply ASR in sport event retrieval. The entire retrieval system
is centred on an automatic speech recognizer. To be applicable in the soccer domain, three
modifications for the recognizer are proposed to resolve the problems of noisy speech,
foreign term interferences, and prosody variations. Experiments on the video database give
reasonable results for the proposed methods. In the near future, this system will be
incorporated with the visual-information retrieval system to provide a flexible mechanism
for the detection of semantic video events.
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1. Introduction

The web has been largely mute and deaf but since the beginning of the 21st century this
scenario is changing with the possibility of using intelligent voice interfaces on web systems.
In this paper we present the Voice Mosaic - a system that allows voice interactions on the
web through the telephone. Its voice interface uses speech recognition and synthesis
solutions developed with VoiceXML, an open-standard in voice technologies adopted by the
W3C. Voice Mosaic is an artwork that allows people to get in touch with the possibility of
talking to the web, intending to cause awareness about it. Since the technology used in Voice
Mosaic can be used to improve accessibility (for visual impaired people) and digital
inclusion (since the telephone is one of the cheapest devices in the world), dissolving
borders and amplifying the pervasiveness, we believe that the concepts presented here can
be useful to other developers.

2. Voice Interfaces

Voice interfaces are a fascinating subject. The human dream of talking to computers in a
natural way is not new. Science fiction books and movies that live in our imagination
present several examples of this aspiration, as old television and movie series like “Star
Trek,” where the Enterprise’s staff talk to the ship systems and androids like commander
DATA; “Lost in Space,” where Will Robinson had in his robot a very loyal and confident
friend; the conversations and human interactions with the robots C3PO and R2-D2 in “Star
Wars”; “Blade Runner” and its androids and voice driven interfaces; among others
(Perkowitz, 2004).

Until recently, talking to computers was in the realm of fiction - the web has been largely
mute and deaf. However in the beginning of the 21st century talking to computers has
become possible and easy due the enormous advances in speech synthesis and voice
recognition technologies as well as the open standards adopted by the W3C (such as
VoiceXML). The accuracy level reached by voice technologies now has allowed us to use
them widely on the web.
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The potential of using voice interfaces is explosive. From speech-only applications
integrated to the whole web, to multi-modal applications combining aural and visual
abilities into web browsers, voice interfaces add to the flavor of the web a fundamental
spice, which is surely going to impact it.

Tim Berners-Lee said at SpeechTEK 2004, NY- “Speech technology is an important
ingredient for the Web to realize its full potential.” In fact, voice interfaces on the web bring
undeniable resources for several areas, as convenience for mobile users, v-commerce,
natural interactions, and usability. Beyond the more obvious utilizations for voice interfaces,
the ability to talk to the web also provides an important way to improve web-accessibility -
not only by multi-modal applications, but also through speech-only ones. Besides that,
speech-only applications liberate users from any client computer device to access the
internet - in this case, all they need is any telephone in any place in the world. In this sense,
since the telephone is one of the cheapest devices in the world, voice interfaces can help
improving digital inclusion. This is the alliance of the widest computing network with the
most pervasive communication device on Earth - internet & telephone.

However, talking to computers adds “ears” and “mouths” to the Internet organism,
changing the way we interact with it, bringing new possibilities and new challenges as well.
We must face the increasing complexity that voice interfaces bring to the web while we also
open new channels for digital inclusion, provide more accessibility and increase mobility
through voice. All these things affect the human role inside the high-tech social structure we
live in, at once causing excitement and fear.

2.1 Voice interfaces characteristics
Voice interfaces are specialized computational systems that allow that dialogs happen
between human beings and computers (other computational systems) in a way that the
computational commands be synthesized in voice in order to be understood by humans,
and the human speeches be recognized and transformed into computational codes by the
computers. In this way, for instance, instead of accessing a visual page on the web via a
browser to fill in a form to book a flight, one could do it via a voice interface, talking to the
page.
Voice interfaces are exclusive in a way since they are based on the spoken language. The
oral communication plays a big role in the human daily life. Since the youngest ages we
spend a substantial part of our waken hours in conversations (Cohen 2004: 7).
According to Pinker (2002: 10), language is an instinct - a biological adaptation to convey
information. The idea of the language as a kind of instinct was mentioned for the first time
by Darwin in 1871 and in the 20t century, the most famous thesis about the language as an
instinct was created by Noam Chomsky (Pinked, 2002: 14). Being the language a natural
instinct, it is no wonder that since the machines exists in the human imagination, the
utilization of the natural language to talk to them is a latent desire. According to Wilson:
“The ability of producing and understanding the spoken language was identified by
anthropologists as one of the main realizations of our species. Other animals, like
dolphins and the primates, may have significant capabilities of vocal communications,
but they not get close to the human capabilities.” (Wilson, 2002: 775)
However, in despite of the fact that to speak is the most natural and human way of
interacting, to access the internet via voice interfaces is as different from navigating on the
web via a visual browser as to talk on the telephone is different from reading a letter.
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Nowadays we are used to ‘browse” and ‘write” on the web, which is very different from
“talking’ to the web.
Thinking about the differences from visual and aural interfaces, we can start listing the
particularities of the voice characteristics. The first one is the transiency. As soon as it is
spoken or listened to, the voice disappears and demands that we remember what has been
said. On the other hand, visual elements are persistent:
“The voice is an one-dimensional media with zero persistence. The computational
monitor is a bi-dimensional media that combines persistence (you can look to them as
long as you want) with selective actualization (you can type a value in any field of the
screen without changing the rest of it.” (Nielsen, 2003).
Adding to that, according to Santaella:
“The first principle of sonority is in its evanescence, something that the passage of time
makes disappear (...), and the first principle of visuality is in the form that makes itself
present before our eyes.” (Santaella, 2001: 369).
The second particularity of the voice is the invisibility. That makes it more difficult to
indicate to the user which options he can execute and what he needs to say in order to
execute them. In visual interfaces, we can always have visible menus and instructions that
follow each step of the process in execution.
The third particularity is the asymmetry of the voice. The voice can be produced much faster
than being understood; an user can speak faster than typing; and an user can listen slower
than reading. In visual interfaces, the user has his own interaction pace to synchronize
before continuing the process. In voice interfaces, the pace is not always controlled by the
user, but by the interface.
We could say that, according to Cohen (2004: 6), there are two possible modalities of voice
interfaces regarding the human senses used - 1) purely aural: where all the process occurs
only via sounds and the orality of the speech, without using any visual support, and; 2)
multimodal: where the process of interfacing via voice is supported by some kind of visual
system associated to it. In the first case, pure voice interfaces, we can mention as an example
the access to a system via telephone (see, for example, the artwork Voice Mosaic ahead in
this chapter). In the second case, we can mention as an example the multimodal browsers
like Opera, which allows access to visual information while one interacts simultaneously via
voice (see the application Multimodal Chinese Food, using the Opera browser at
[http:/ /www-306.ibm.com/software/pervasive/multimodal/chinese/], developed by
IBM).
The methodologies and principles for voice interface (VUI - Voice User Interface) design
overlap substantially with other types of interface design. However, there is an amount of
characteristics of voice interfaces that presents unique design challenges and opportunities.
Two of these characteristics stand out when the modality of the interface is purely aural and
the interaction happens via spoken language (Cohen, 2004: 6).
Besides the fact that the particularities of the voice affect the purely aural voice interfaces,
their operation also differs from the visual interfaces, according the table 1.
According to the Gartner Group (Farber, 2004), in 2015 the interfaces will be invisible and
ubiquitous. Although the sensors are the main responsible for the transparent interface of
the future, probably the voice interfaces will have their share of responsibility in this
process too, since the invisibility is one of the aural characteristics of the pure voice
interfaces.
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Visual Interfaces Pure Aural Voice

Interfaces
Based on Visual pages Blocks of dialogs
Designed for | Control by the eyes Control by the ears
User action Bra}n/ touch (mouse clicks / Brain / speech
typing)

Multi-task (several windows

User control .
/screens simultaneously)

Mono-task (one conversation a time)

Computer (the server controls the
voice browser - the browser controls
the process)

Interaction User (the user controls the visual
control browser - user in command)

Table 1. Comparison between the functioning of visual and pure aural voice interfaces

Kerckhove (2003: 21) says that “apparently in the western art and history during the ancient
times and, again, from the Renaissance to the modern times, the dominant sensorial bias has
been the vision. (...) Nowadays, thanks to the electricity, the actual dominant bias is
challenged by the tactile bias” (2003: 21), since we use mouse, keyboard, etc., during most of
our computational interaction processes. If we think about the invisible interface we should
remember that invisible is not the same as inexistent. Invisible can be immaterial, but the
possibility of projecting visual interfaces on eyesphones?, for example, combines the trend of
sensors and invisible computers with the human dominance visual and tactile.
Johnson (2001: 101) argues that “simple words keep playing an enormous role in the
interface nowadays. And this role seems fated to become more decisive to our informational
space in the next decade.” Considering that the text editor affects profoundly our way of
creating and writing, and that each modality of interface changes our way of thinking and
acting in the world, it is expected that all kind of interfaces co-exist and bring hybridizations
of the media and forms, as it happened with the email, which, due its frailty and digital
form, created a more casual and colloquial style of writing, a mix of the written letter with
the talk on the telephone (Johnson, 2001: 105).
In our actual technological scenario, Wilson states that:
“Computers have a conceptual background from its historical origins from commercial
companies and military. The computer screen and its conventions derive from the long
history of the representation in the Western culture, from painting, perspective,
photography, cinema, to graphic animations and computer metaphors. Similarly, the
computer conventional physical interface with keyboard and mouse has a significant
cultural baggage. Its restrictions have limited the imagination in thinking about ways of
integrating the digital information to human life. (...) Researchers and artists have
started to question how the interface between digital systems and people could extend
more widely in the human life. Going beyond keyboard and mouse, how the computers
could read the human actions such as movement, gesture, touch, look, speech and
interactions with physical objects? The wearable computer can convert the body action
into information function.” (Wilson: 2002: 729).

1Eyesphones are small glasses that can be connected to computers that project the screen in front of the
eyes.
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Voice interfaces are a new option in the actual scenario. According to Wilson (2002: 775),
“the extension of speech to machines will mark a significant cultural event that will mobilize
the artistic attention.”
Considering that to “speak” is not the same as “reading” and “writing”, and that these
processes co-exist along the human history since the most ancient known references, we
could suggest here that the most likely scenario is that all different kinds of interface -
visual, oral, sensorial, tactile, gestural, etc. - co-exist in the future to answer to the different
human needs, instead of replacing each other. Of course, each new kind of interface brings
some benefits that answer to more specific needs, but the human needs are diverse and
varies according to the context, culture and convenience.
According to Nielsen (2003), “Voice interface will not replace the screens (visual interfaces)
as a matter of choice of most users. (...) Several people have overrated impression about rhe
benefits of voice interfaces, probably based on the prominence of the voice operated
computers in Star Trek.” Nielsen also points out that voice interfaces have their great
potential in the following cases:
- Users with disabilities that do not allow them to use mouse and/or keyboard or that
cannot see;
- Users in situations with busy eyes or hands, for example when driving a car or fixing a
complex equipment;
- Users that do not have access to a keyboard and/or monitor, and therefore could use a
telephone.
Therefore, for general applications, we believe that voice interfaces can be a great promise as
an additional component to multimodal dialogs, more than as an unique interface channel.
However, in the case of users with visual or manual disabilities, voice interfaces can be an
important channel for inclusion and accessibility.
A research conducted at University of Mariland, consisting in a functional experience for
comparing voice controlled web browsers (in the multimodal mode) with mouse controlled
web browsers, showed that the voice control improved the performance time in
approximately 50% for some kinds of tasks. Subjective measures of satisfaction indicate that
for voice navigation, text links are preferable to numeric links, but yet the mouse navigation
is still easier to use for general purpose navigation on the web (Christian, 2000).
We can highlight other possibilities for voice interfaces, such as in situations where users
prefer to talk to the computer instead of talking to people, as mentioned by Cohen (2004: 9):
when the subject of the conversation can cause some kind of embarrassment to the user (for
example, when he wants to know about financing values for longer periods and get
uncomfortable to ask about low financial rates or about too many options), the user prefer to
talk to a voice interface. Although this factor is not exclusive related to voice interfaces,
being present in any impersonal man-computer interface, the fact of being able to use
natural language to “talk” to a computer about the embarrassing subjects as if one was
talking to another person, can provide a better experience that is attractive and pleasant and
at the same time answers to the user needs (Cohen, 2004: 11).
According to Nass & Brave (2005), people are ‘activated by voice’: we respond to voice
technologies as we respond to people and we behave as we were in any social situation,
and, therefore, the voice interfaces can really emerge as the next frontier for a efficient and
friendly technology.
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Considering that telephones - either fixed lines as cell phones - exist in larger number and
with more penetration in the planet than computers (some places in Africa, for example,
where there are not computers available, have a big probability of having telephones
available), we can say that voice interfaces reach wider than visual interfaces.

Thinking about the artistic possibilities that the voice interfaces bring, beyond of talking to
computers in natural language itself, we could use several voice characteristics regarding
the production of artworks, as aesthetical and informational potential. It has become
possible in the speech synthesis the manipulation of tone, gender, volume, speed, intonation
and voice stress and it can be used to create different perceptions and reactions in the
interactors. This possibility of manipulation of vocal characteristics allows generating a
dynamic narrative (even in real-time) for stories allowing the use of different personages,
according to different contexts and situations. Besides that, in a given moment, we could use
phrasal loopings, in another moment, phrases that overlap with each other creating a
tridimensional space - louder in the foreground, softer in the background, associating with
other temporalities. The sounds could be used accompanied with visual elements in a way
that the tridimensional environment would get sound spatiality, and so on.

In the voice interfaces, and probably in any interface, ‘what is said” (content) is the most
important question in the interaction functional project, and the most important factor
that determines usability, according Nielsen (2003). Therefore, the voice interface do not
liberate us from the most substantial problems related to interface design: 1) to select the
tasks to be supported; 2) to determine the structure of the dialog; 3) to decide which
commands or functionalities will be available; 4) to let the users specify what they want,
and; 5) to make that the computer give feedback about its actions. As previously
mentioned, according to Cohen, “The methodologies and principles of voice interface
design substantially overlap with those used in other kinds of interface design. However,
there are a number of characteristics in voice interfaces that pose unique challenges and
opportunities” (2004:6). Although the main focus of this text is not the interface project
itself, it is important to highlight here, as mentioned in Cohem (2004: 4) that the
understanding of basic human capabilities and the user needs and goals are the keys for a
successful interface design.

The introduction of intelligent voice technologies in the present scenario increases the
sonority complexity when compared with previous computational stages, because besides
working like an instrument that allows the extension of hearing capabilities, they also allow
the complete digitalization and inscription of the voice into computational language,
together and mixed with the verbal language (commands or voice information recognized
by intelligent voice interfaces become commands or verbal or textual data). According to
Santaella (2001: 371), “The verbal language is the most mixed of all languages, because it
absorbs the syntax of the sound domain and the form of the visual domain.”

Voice interfaces are a new step and possibility for the human-computer interaction, in a
process of dissolving the border line between telephone and the internet, and co-existing
with other types of interfaces. It is clear that they find their biggest potential in activities and
applications in which the modality is auditory and the interaction happens through the
spoken language. Due its own peculiar characteristics, the voice brings new artistic
potentialities associated with other limits, specialties and complexities, and allow, through
the convergence that the technology permits, a new way and new media for
communicating, interacting and creating.
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2.2 Hypermedia

It is well known that the internet is formed by several servers and clients, and that the most
common types of clients, so far, are based on visual interfaces, like email clients (for
example, Outlook Express or Gmail), web browsers (for example, Internet Explorer, Firefox,
etc.), telnet clients (as Hyperterminal), etc. On the other hand, voice interfaces add one more
kind of client to the network, not affecting its topology in terms of servers, but changing
drastically the client.

The voice client, i.e., the voice browser, can be a hardware (like the telephone), a software
that emulates the telephone (like VoIP softwares, for example), a multimodal browser (like
Opera, for example), or even computational devices (like microphones/speakers). Although
in voice interfaces the clients are different from those that use visual interfaces, we can have
the same applications using simultaneously these two kinds of interfaces. According to
Palazzo (2002), the hypertextual system architecture is divided in three levels: presentation
level, abstract machine level and database level. Voice interfaces are in the presentation level
and can change the system structure specifically in that level, leaving the other levels intact

as shown in the figure 1.
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Fig. 1. Diagram showing how voice interfaces created with VoiceXML works in the
presentation level, simultaneously with the visual browser.

As can be seen in the figure 1, the line “Telephone USER / VoiceXML Gateway / VXML”
represents the application presentation level when accessed by the voice interface, via
telephone. The line “Internet USER / HTML” represents the application presentation level
when accessed by a visual web browser. The abstract machine level is the box “Web App”,
which is accessed in the same way by both kinds of interfaces - visual and voice interfaces.
From the abstract machine happens the accesses to the databases - the database level - that
can also be the same for any kind of interfaces, regardless which technologies are used on
the three levels - presentation, abstract machine and database.

When the system (web app) accessed by different kinds of interfaces (visual and aural) is the
same, the data captured in the interfaces cannot differ neither in quality nor in quantity,
since they are the necessary input for the abstract machine. However, the data input usually
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needs completely different treatment between visual and aural interfaces. For example, in a
visual form it is possible to present all European countries at once as options to be selected
by the user. To create a way for the user to choose an European country in a voice interface,
maybe the options must be divided in regions (like North, South, East, West), and then be
refined to allow the choice of the country. Once the need data (for example, the choice of the
European country chosen by the user) is available, regardless where it came from (visual or
aural interface), it goes to the same abstract machine. In those cases, the same application
can be used simultaneously by both interfaces - visual and aural.

The fact that we can have multiple interfaces without having to change the abstract machine
is a very important factor to allow systems integration and hybridization, since it is
necessary that there be some common level in the intermixed systems in order to allow the
intermixing process.

Of course, voice interfaces allow specific functionalities and data inputs that are not possible
in visual interfaces, like voice recording, for example. Applications that benefits from voice
interfaces specific capabilities may eventually need to capture / process / store data in
specific ways too, separately from the main application, in order to be able to deal with
those specific data. However, this situation of having specific data to treat is not new - even
in visual systems, according to their devices and its technological capabilities, it is very
common to find diverse characteristics in diverse devices/interfaces that need a different
treatment in parallel with the main system. One example of that are the web browsers for
smartphones that many times have several limitations and/or differences regarding the
type of information they can provide to the main systems, when compared with desktop
computational browsers. However, the challenge is to keep the same abstract machine and
database levels regardless the kind of interface or device in the presentation level, even if it
means to build broader databases that comprise optional specific data according to the
interface type. That trend, regulated by the W3C (World Wide Web Consortium) open
standards, aims to allow a bigger web integration and interoperability, making it easier the
convergence and hybridization.

Voice interfaces, therefore, work like an entrance door or like an initial center for the system
that connects the user to a larger hypermidiatic context on the web, in a way that the
interactor can ‘write’ his path on the web in a non-linear way starting from the available
options in the voice interface. However, when analyzing the ‘reading’ process starting from
the decisions taken in the voice interface, there is no way to escape from the linearity
inherent to orality: the options are presented in a linear order to allow a subsequent non-
linear choice by the user.

Considering that the orality presents linear characteristics regarding the user reception, one
could initially conclude that voice interfaces would not be hypermidiatic systems and that
the complexity level would be small when compared to visual interfaces in the network.
However, linearity is just a particular case of non-linearity and voice interfaces are part of
bigger hypertextual systems, acting as nodes and transitory centers, connecting the
interactor to the further levels in the network. According to Murray (2003:10), the term “non-
linear’ should be replaces by ‘multisequencial’ and ‘multiform’, as expressions to
understand the new narratives forms that: allows the ability to navigate through inter-
crossed paths from different points of view, in the first case; and in multiple versions
generated from the same fundamental representation, in the second. Besides that, the voice
particularities - transience, invisibility, asymmetry, imperfections and limitations - increase



Voice Interfaces in Art — An Experimentation with Web Open
Standards as a Model to Increase Web Accessibility and Digital Inclusion 339

the complexity level of the system and, consequently, the necessity of organizational rigor.
The voice asymmetry, for example, requires a rigorous voice interfaces analysis and
program in order to adequate the rhythm of voice reproduction/comprehension.
Although the presentation of each level of a voice interface is done through the linear
orality, the user navigation between levels follow a hypertextual path, i.e., non-linear, which
can even intercross and interconnect with visual and/or hybrid systems in the network,
making the complexity even bigger. An example of such hybrid system is the artwork Voice
Mosaic (that will be presented ahead in this text), in which the options and fragments of
recorded voices made in the system through a voice interface accessed by phone, configure
and present visual and aural records in a visual web interface. The signs - visual and aural -
stored in the same database are accessed, generated and experienced by two distinct
hypermidiatic interfaces - the voice and the visual ones.
Due the voice transience, the paths and options presented during the speech in a voice
interface need to be kept in our short memory. In order to be accessed in a comfortable way
to be used, it is necessary that the amount of those paths and options be much more limited
than in a visual interface, where they can be presented on a computer screen not needing to
be transferred to our short memory. As studied by Miller (1956) and explained by Zakia
(1997: 82), we can see that we are limited regarding the amount of information we can keep
correctly in our short memory:
“All of our senses are connected in memory. We have memories not only for visual
experiences but also of experiences involving sound, smell, taste, touch, movement, and
balance. The memories we remember for a long time are called long-term memories
(LTM) and are contrasted with short-term memories (STM) that we remember just long
enough to use and then forget. (...) There is a limit to the amount of unrelated
information a person can hold in STM, from five to nine items, averaging seven.”
Therefore, our capability for using spoken options is smaller than our capabilities for using
them in the visual mode, where besides of not requiring that the options be all memorized
(since they are persistent in the visual and not transient like the voice), it also has a larger
associated memory to it.

2.3 Interactivity

Although voice interfaces provide a more natural and human way of interaction between
man/computer, they present several differences from visual interfaces.

The first difference is related to how visual screen browsers (like Firefox or internet
Explorer, for example) and voice browsers (like the telephone) works. In the first case, the
user has a much bigger control over the process because he dominates the time and space
when using a visual browser. In the second case, it is the computer that determines the
rhythm of the voice browser, by phone (or any equivalent system, such as VoIP) and
controls the time/space of the process.

Besides that, in the case of visual browsers, the simultaneous windows and processing allow
the multiplication of the user identities in the cyberspace through the simultaneous
persistence of several windows and processing. In the case of oral processes, even if we opt
to follow a link to an option and then come back to the previous context, there is no way to
keep both oral contexts simultaneously. In a moment we are in one context, in the other
moment we are in another. Different oral contexts cannot persist simultaneously due their
dependence of the time - the voice transience. Therefore, although voice interfaces allow the
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hypermidiatic access to a bigger context, they limit some aspects of the interaction that are
usually possible through visual interfaces.

Still due to the transience, invisibility and asymmetry inherent to oral processes in voice
interfaces, the limitation in the information processed, and that determines the possibilities
of interactions, also differ from the traditional computational voice interfaces. For example,
the search for a keyword is perfectly possible in a voice interface as much as in a visual one.
However, what is the limit of information that we can analyze via an oral result? According
to Kerchhove (2003: 20), the difficulty of closing the process is bigger in the oral case.
Therefore, voice interfaces make it harder to process large amount of information due the
peculiarities of orality.

In this context, the balance between control/pleasure and frustration of the user stays in a
fragile zone. According to Murray (2003: 127), “When the things we do bring tangible
results, we experience the second pleasure typical of electronic environments - the sense of
agency. Agency is the rewarding capability of realizing significant actions and seeing the
results of our decisions and choices”. When the volume of information and rhythm of voice
interfaces allow the closing and control of the process by the user, the agency pleasure really
happens. However, a slight deviation that may prevent the control by the user in the agency
process and its consequent pleasure can cause frustration and even abandonment of the
process. The challenges are big, but no more than the possibilities that rise in the horizon of
voice interfaces.

The experimentation of those limits and the combination of possibilities bring additional
options to applications that can be explored to deliver richer user interfaces, improving the
user experience and increasing the accessibility level.

2.4 Art as tool for experimenting voice interfaces

In this context, in 2004, it was created the Voice Mosaic - a web-art work that allows voice
interactions on the web through the telephone, causing border dissolution between Internet
and telephone. As said once by Hendrik Willem Van Loon (1937), “The arts are an even better
barometer of what is happening in our world than the stock market or the debates in congress." and
we believe that artworks help people to understand and experience the new emergent
techno-social world that surround us, where convergence and hybridization have become
ubiquitous and easy, and “to talk to computers or the web” is going to become common.
Since the technologies used in Voice Mosaic can be used in other kinds of voice applications
on the web, improving accessibility and digital inclusion, we will present next the work and
its main aspects, regarding either the art concept or the technological implications. This
artwork received several awards and was also presented at SIGGRAPH Art Gallery 2006, in
Boston, MA (USA).

3. Voice mosaic

The Voice Mosaic (figure 2) is a web-art application that combines speech and image,
building a visual mosaic on the web with the chosen colors and recorded voices of people
who interact with it from any place in the globe. The voice interface, developed with open-
standards in speech synthesis and voice recognition technologies (VoiceXML), works
through phone calls from any telephone - mobile or not. To participate in English, call in
US: (800) 289.5570 or (407) 386-2174 / PIN number: 9991421055. The mosaic is accessed on
the web at www.voicemosaic.com.br.
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portugués english espanol

Fig. 2. Screeshot of the artwork Voice Mosaic showing the tiles

The application was developed in 2004, in three languages - Portuguese, English and
Spanish - in order to encourage global participation. The phone calls form the mosaic on the
web, and it happens spontaneously, therefore the mosaic changes as time goes on and its
ongoing aesthetics and final result are unpredictable.

In this context, the work causes time-space collapse, and maps in one screen the
participations that comes from several different geographical places, in different languages,
and different times. Furthermore, using the search field, one can easily locate his/her
participation by searching his/her own phone number. Also, one can locate all tiles in the
mosaic within the same telephone area, which means to map geographical participations in
the visual work.
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The work puts together several dualities that do not oppose each other, but complete each
other: speech / image, simple / complex, old / new, low-tech / high-tech, time / space,
individual / community, passive / active, expected / uncertain, among others, in order to
cause reflection and awareness about talking to the web, media convergence and
hybridization between the telephone and the web.

3.1 Interfaces and technology

The work has two interfaces (see figure 1) - the voice interface accessed by phone and the
web interface. As the web interface uses common and well known technologies - html, data
base and Flash --, we will focus here on the voice interface, which is the core of the system.
The voice interface works via phone (mobile or not) interacting with the web. It is developed
with VoiceXML, a structured language that offers support to build dialogs. When accessed
by phone, the interface uses a Voice Gateway which allows voice recognition and speech
synthesis during the conversation.

During the interaction by phone the person talks to the interface, choosing a color and
recording a free speech message.

There are seven options available for choosing the color. This number, seven, is due the limit
of information that a person can hold in the short-term memory. As mentioned previously
in this text, according to Miller (1956) and explained in Zakia (1997), “There is a limit to the
amount of unrelated information a person can hold in short-term memory (STM), from five
to nine items, averaging seven. (...) Since we are limited in the amount of information we
can retain correctly in STM, one should be cautious with the amount of information
included in a multimedia program if it is going to have some memorable impact”.

The free speech message is limited to 15 seconds because of the web interface where it will
be listened - recorded files longer than 15 sec. would generate WAV files larger than 100kb,
which is the maximum file size to allow a comfortable user experience while clicking and
listening to the mosaic tiles without waiting too long to start playing.

The voice interface was designed using both pre-recorded human voice (in the welcome
message) and synthesized text-to-speech voices to instruct the user, in order to cause the
experimentation of the differences and similarities between them. Also, it is used touch tone
and speech tone interactions in order to put side by side voice recognition (human-like
feature) and touch recognition (machine-like feature) intending to cause reflection about the
two ways of interacting by phone - talking and dialing.

In order to allow data visualization either by tracking or by locating the interactions in the
visual mosaic, the voice interface records the Caller ID phone number. Due that we can
know where the interactions come from in the globe and also locate all the interactions from
within a specific area code. This reveals the space collapse in the mosaic on the web.

The phone calls, through the voice interface, are the way the data (and people) enter the
Voice Mosaic on the web. No data enters the work via its web interface, which is used only
for purposes of data visualization, interpretation and reflection.

4. Conclusion

The web and telephone have been the realm for the state of the art in voice technologies.
Voice Mosaic is on the web, and it has received voice participation for more than two years
now, summing up about 800 tiles. Although we could realize that people do not know much
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about the technology they are experiencing in the work, they use it easily and get excited
about “talking to the web” and becoming immediately a permanent tile there. We also
realized that technical people (IT, engineers, etc.) were more resistant to first experiment
with the work than lay people. The kind of messages people create is also interesting - they
range from recorded music and people singing to love declarations and creative use of the
voice.

The same kind of VoiceXML based voice interface created for the artwork Voice Mosaic can
be used for any kind of application on the web, allowing people to “talk” to the web instead
of only seeing it. This ability of dialoging with the web provides a better experience for
users with visual disabilities while navigating online.

From now on we think that it will be possible to provide wider and deeper experimentation
with voice interfaces due to the available technologies integrating the web and telephone.
We expect it will probably allow us all to break frontiers and go further in human
accessibility and digital inclusion developments.
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