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Abstract

In this thesis we define and study the expressive power and thedata complexity of a certain number
controlled languages for ontology-based data access systems (OBDASs), in which data stored in
relational databases is queried through an ontology (i.e.,a “conceptual” or “intensional”) middle
layer and can be modeled by description logics.

Controlled languages and controlled language interfaces have been proposed as a means of
enhancing the usability of human interfaces to informationsystems, and, in particular to OBDASs.
Controlled languages are subsets of natural languages (such as English) with a limited vocabulary
and syntax, designed to avoid the ambiguity inherent to arbitrary natural language utterances, that
is very difficult to process.

These restrictions, however, do not address the impact the algebraic (a.k.a. assemantic expres-
siveness) and combinatorial/computational (a.k.a. assemantic complexity) properties the seman-
tics of controlled languages might have on OBDASs. In particular, on thescalability to dataof an
OBDAS, viz., the computational complexity of query evaluation in the size of the data, a.k.a. the
data complexityof query evaluation for OBDASs. Different combinations of controlled language
function words (expressing different logical operations)may give rise to different computational
properties.

We study this problem by proposing declarative and interrogative controlled languages that
translate exactly and compositionally into (orexpress) different query and ontology languages, to
single out combinations that are(i) maximal w.r.t. tractable data complexity(PTime or less) or
(ii) minimal w.r.t. intractable data complexity(NPTime-hard or more), if not undecidable. We
propose the following controlled languages. Lite-English, that expresses the description logic
DL-Lite. DL-English, that expresses the description logicALCI. EL-English, that expresses
the description logicELI. The IS-Ais, which lie between Lite-English and DL-English. GCQ-
English, that expresses tree-shaped queries. ATCQ-English, that expresses aggregate tree-shaped
conjunctive queries.

We, moreover(i) propose a certain answers semantics (a generalization of the certain answers
semantics for non-aggregate SQL queries over incomplete databases) for aggregate tree-shaped
queries over OBDASs, and(ii) show that this semantics is a restriction ofHo semantics to aggre-
gate tree-shaped queries. We also analyze, by means of resolution decision procedures, the data
complexity and expressiveness I. Pratt and A. Third’s fragments of English.

It follows that, contrary to plain databases, where all these combinations taken together scale
to data, any “Boolean closed” combination of controlled language constructors (function words)
gives rise to intractable data complexity w.r.t. OBDAS query evaluation, while adding further
restricted anaphoric pronouns may result in undecidability (and does when we consider arbitrary
anaphoric pronouns).
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Chapter 1

Introduction

1.1 Controlled Languages and their Scalability to Data

1.1.1 Natural Language Interfaces and the Usability Gap

Data is ubiquitous. Whether stored in relational databasesor in knowledge bases the task of struc-
turing, modelling, declaring, updating and querying data is a difficult one. In database manage-
ment systems (DBMSs) the user executes these tasks using formal query languages, based often
on formal logic, that combine both declarative and imperative features: for example the so-called
Structured Query Language (SQL) orDatalog (see [AHV95, EN04] for a general discussion
on relational databases).

However, using these query and conceptual modelling languages requires previous training
and can prove counterintuitive to the casual end-user. Database administration and data mining
skills, together with domain expertise might be required, skills and expertise beyond those of ca-
sual end-users. Analogous problems have to be faced when dealing with knowledge bases [Sow99]
or when “hybrid” systems are devised – that is, data management systems over which a reason-
ing layer, based on knowledge bases and ontologies, has beenadded. These drawbacks might be
termed theusability gapin the management of databases and knowledge bases [KB07].

A proposal to bridge this usability gap arenatural language interfaces, in which the casual
end-user is allowed to type natural language questions, declarations and commands [ART95].
Such interfaces build a formal query making use of one of several language technologies. Studies
have shown that in the context of data access, users indeed prefer natural language interaction, to,
say, visual or formal query languages [KB07]. On the other, hand, as J. Sowa in [Sow99] accu-
rately says, natural language is the ultimate knowledge representation language: we humans can
depict naturally to our fellow human beings the world that surrounds us up to Cantor’s paradise,
to use a metaphor, and be understood.

Crucially, a natural language front end should map, by meansof a mapping calledtranslation
function, natural language questions, declarations and orders to, resp., the formal queries, formal
constraints and commands supported by the back-end, while preserving the semantics of those
natural language expressions. To avoid tedious configuration and portability issues, it is custom-
ary to map natural language utterances first to an intermediate language, i.e., something like the
interlingua or pivot of machine translation and only later, through drivers and bridges turn this
into input for the DBMSs or information system [ART95]. Suchapproach implies several layers
of processing, from the surface forms (the strings) to the syntax (the grammar) and the underlying
semantics of the utterances (see Figure 1.1). Depending on how deep the translation method is,
natural language interfaces can be classified into three main types:

– Pattern-matching systems.Queries are built via shallow parsing, using, e.g., regularexpres-
sions.

1



2 1. Introduction

   input
language

  target
language

pivot language

(strings)

(grammar)

(semantics)

analysis synthesis

Figure 1.1: Machine translation.

– Syntax-based systems.Queries are built via (eventually probabilistic) parsing,using syntactic
grammars such as unification grammars.

– Semantic-based systems.Queries are built via deep parsing using semantic (or dependency)
grammars and in general grammars that generate semantic representations.

Many different natural language interfaces, mostly to DBMSs, have been proposed over the
years. In general, the tendency has been to use deep translations combined with interlingua(s)
based on formal logic. Among these we can mention the work by Clifford in [Cli88] in which a
(symbolic) syntax and semantic-based system coupled with higher order logic (Ho) as pivot (or
interlingua) and (temporal) SQL as target language is proposed, whereHo is the logic obtained
by enriching first order logic (Fo) with the types and constructors of the simply-typed lambda
calculus [Car97]. STEP by Minock et al. [MON08, Min05] makesuse of semantic grammars
(domain-dependent but otherwise easy to define) and heuristics-based incremental deep semantic
parsing coupled, again withHo as interlingua and SQL as target language. The ORAKEL system
by Cimiano et al. [CHH+08] is geared instead towards semantic web knowledge bases rather than
towards plain databases, and makes use of a (statistical) syntax-based system coupled withHo,
frame logic and an ontology layer. The system PRECISE by Popescu et al. [PEK03] proposes a
pattern-matching system in which graph-theoretical algorithms are used to map a natural language
question (seen as a sequence of words) to an SQL query. Similarly, in [DMB03] Dittenbach et al.
propose a pattern-based natural language interface based on statistical machine translation. Fi-
nally, Giordani et al. propose in [Gio08, GM09] a syntax-based translation technique that predicts
(via machine learning kernels that guess a SQL query plan, given a parse tree) the most likely SQL
translation of a natural language question.

1.1.2 Ontology-Based Data Access Systems

In this thesis we are interested in one kind of information system, viz. in semantic webontology-
based data access systems(OBDASs). Anontology is, in general, a conceptualization of a do-
main of interest, providing the basic vocabulary and constraints holding over such a domain (see
[Gua98] and [SS04], Chapter 1). They represent the intensional knowledge of the domain with
a logical theory (i.e., a set of axioms) and can be of different kinds, e.g., foundational, domain,
application ontologies, etc. Ontologies have been writtenin various formalisms, some of which
are pictorial, like ER diagrams [Che76], UML class diagrams1, conceptual graphs or semantic

1http://www.uml.org/
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networks (see [BCN+03], Chapter 4). and others are based on notational, machine-processable
variants ofFo [CLN99, BCD05].

In the semantic web and OBDAS settings attention is restricted to OWL and description logic
(description logic) ontologies. The World Wide Web Consortium standard for semantic web on-
tologies, the Web Ontology Language2 (OWL) is formally underpinned by description logic ontol-
ogy languages. An OBDAS is an information system in which an ontology is used as an interface
or conceptual viewto (possibly many) relational datasources accessed in the back-end of the sys-
tem [CdL+05b]. Formally, it can be modelled as a triple(O,M,D), whereO is an OWL or
description logic ontology (the conceptual layer),D a database (the logical layer and its physical
implementation(s)) andM a set of mappings linking the concepts and relations of the ontology to
D’s relational schema, in a way similar to the Global-as-Viewperspective for database integration
systems [Len02]:

mappingsM{
Conceptual layer

Logical layer
Data layer

(ontologyO)

(databaseD)

OBDASs have been proposed as a specialization of semantic web ontologies and knowledge
bases to data-intensive scenarios (e.g., accessing and integrating data from very large databases)
[CdL+05b], where by a knowledge base we understand now a pair(O,DM), whereDM is a
virtual database, i.e., a set of relations populated modulo a set of mappingsM (typically, SQL
views). Such scenario can be regarded as anincomplete informationsetting, since databases in
OBDASs specify only partially the knowledge of the domain. It is the ontology and its constraints
or axioms that “completes” the knowledge of the domain by specifying the conditions any database
that increases the factual information about the domain must comply with (see [SS04], Chapter 1).
An OBDAS characterizes or represents aclassof state of affairs, unlike databases that characterize
a singlestate of affairs (i.e., they characterize completely the domain of interest). Queries, on the
other hand, are SQL queries formulated over the vocabulary of the (top-level) ontology.

These intuitive notions can be given a formal meaning inFo. All OBDASs and knowledge
bases can be seen, ultimately, asFo axiomatics and (core) SQL queries as syntactic sugar forFo
formulas (see [AHV95], Chapter 8). Thus, the semantics of OBDASs can be captured by aFo
entailmentwherein we check whether queries are logically entailed by the OBDAS (or knowledge
base). To be more precise, we are interested in retrieving the answers that hold inall the logical
modelsof the system, a.k.a. ascertain answers(see [CdL+05b, Len02] and [AHV95], Chapter
19).

1.1.3 Controlled Languages and the Ambiguity Problem

Since in OBDASs it is important to retrieve the exact set of answers of an information request,
semantic- or syntax-based natural language interface making use of a deep and symbolic transla-
tion would be desirable. Building such an interface must tackle, however, the problem of natural
languageambiguity: the same utterance may be parsed differently, or it can be ascribed different
semantic representations. A proposal to overcome the problem of ambiguity in natural language
interfaces for OBDASs arecontrolled languagesandcontrolled language interfaces[BKGK05,
KF06, SLH03, SKC+08, KB07]. A controlled language is a fragment of natural language (say, of
English), with a limited lexicon and a small set of grammar rules [HSG04, MC99, Sow99]. Most
importantly, controlled languages are engineered to stripthem clean of ambiguity, so that their ut-
terances “compile” into a unique ontology axiom and/or query, by restricting their syntax and their

2http://www.w3.org/TR/owl-ref/
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lexicon. They constitute a trade-off between the rigor of formal query and ontology languages and
the intuitive appeal of natural language.

The lexiconof a controlled language is constituted by the set of its natural language words
which, as in natural language, are partitioned into wordcategories(a.k.a.parts-of-speech), such
as: common nouns (Ns, such as “car”), proper nouns (Pns, such as “John”), adjectives (Adjs,
such as “big”), intransitive, transitive and ditransitiveverbs (IVs,TVs andDTVs such as, resp.
“runs”, “eats” or “gives”), coordinators (Crds, such as “and”, “or”) pronouns (Pros, such as
“it” or “that”), determiners (Dets, such as “every”) and prepositions (Preps, such as “to”), to
name some. Words possessmorphological featuressuch as number, gender, tense, mood or voice,
and combine recursively by means of a grammar (or set of syntax rules) into (potentially infinitely
many)constituentsandsentencesor utterances. Such constituents can be classed into noun phrases
(NPs), verb phrases (VPs), nominal compounds (Noms, Ns), relative clauses (Sgs), preposi-
tional phrases (PPs), etc.

The meaning of controlled language utterances iscompositional, i.e., a function of the mean-
ing of their syntactic constituents. Such compositionality can be logically modelled by formal
and computational semanticscompositional translationsτ(·) that recursively map natural (and
controlled) language utterances toFo and/orHo formulas known asmeaning representations
[Car97, Mon70, Moo97, HK98, Gam91, PWt93, BB05a], and whichcan be used as controlled
language interface interlinguas.

Modulo τ(·), we can(i) specify (or declare) the ontology (the domain constraints)with con-
trolled language universally quantified declarative sentencesS, (ii) specify and (or declare) infor-
mation (or data) through controlled language factsF and(iii) formulate information requests (or
queries) through controlled language questionsQ. To retake the diagram we exhibited earlier, this
amounts to adding a “natural language” layer to OBDASs:

translationτ(·) {
controlled language layer

mappingsM{
Conceptual layer

Logical layer
Data layer

(controlled language interface)
(ontologyO)

(databaseD)

The syntax of OWL, which is based on that of XML [SS04], is not meant for humans. Nor
are description logics easy to manipulate for a user with no formal logic training. As an example
consider the following English statement that affirms that for every human person, a parent exists

Every person has a father. (1.1)

In OWL, this mandatory participation of persons in the relation hasParent, holding among in-
stances ofPersonandMale, would be written as:

<owl2xml:SubClassOf>
<owl2xml:Class owl2xml:URI="&;Person"/>
<owl2xml:ObjectSomeValuesFrom>

<owl2xml:ObjectProperty owl2xml:URI="&;hasParent"/>
<owl2xml:Class owl2xml:URI="&;Male"/>

</owl2xml:ObjectSomeValuesFrom>
</owl2xml:SubClassOf>

and in description logic syntax asPerson⊑ ∃hasParent.Male. Using a controlled language that
translates unequivocally into description logic or OWL assertions overcomes the issue of human
readability and understandability by non-logicians, preserving, at the same time, the properties of
the (formal) ontology languages [KF06].
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Figure 1.2: The architecture of RACE, the ACE Reasoning Engine, the ACE-based front end to knowledge
bases [Sch05].
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Most of the controlled language approaches to data management in the broad sense that ex-
ist are based on English. Of these, maybe the most interesting is Attempto Controlled English
(ACE), a controlled language developed by Fuchs et al. at theuniversity of Zürich [FS95, FKS05,
FSH+05]. ACE is specifically devoted to knowledge representation tasks, i.e., declaring, updating,
querying and reasoning over knowledge bases. In ACE,Fomeaning representations are obtained
modulo an interlingua ofdiscourse representation structures, a notational variant ofFo that copes
with discourse anaphora [BB05b, KRv05]. What this means forontology implementations is de-
picted by the architecture of the ACE Reasoning Engine (see Figure 1.2): ACE declarations (the
“text” in the diagram) and questions (the “query” in the diagram) are parsed and translated intoFo, then aFo theorem prover (Satchmo) or model builder (Otter), that checks whether they are
consistent and/or entailed by a knowledge base, is invoked and the answers together with the proof
(the “justification”) are returned to the user.

Authoring the ontology of an ODBAS may also be seen as a data management task. As a
result many controlled languages are geared towards OWL (and RDF) ontology authoring and,
more in general, user specifications and constraint authoring, such as Schwitter’s PENG (Process-
able English), Sowa’s CLCE (Common Logic Controlled English), Rabbit or CLoNE, [BBSS09,
TBC+07, BKGK05, ST06, SLH03, SKC+08]. ACE itself has a fragment, ACE-OWL, that can
used to author OWL ontologies [Kal07, FK06, FKS05]. Controlled languages have been a topic
of interest in industry as well as a means of writing down technical documents endowed with
a common and unequivocal semantics: AECMA Simplified English [Unw05], for instance, has
been proposed for standardizing official document translation within the European aerospace in-
dustry. Controlled language interfaces have also been proposed as DBMS front-ends: an example
of an industrially developed controlled language for databases is Microsoft’s English Query, which
adds natural language support to Microsoft SQL servers [Blu99] or λ-SQL by Winter et al. See
Table 1.1 for a summary.

1.1.4 Semantic Complexity and the Scalability Problem

If controlled languages and controlled language interfaces provide an answer to the problem of
ambiguity (thereby bridging the usability gap) and, furthermore, provide an answer that is tractable
w.r.t. to natural language processing (compositional translationsτ(·) can be computed in time
polynomial in the size of the input controlled language utterances), we must also consider their
semantic complexity. By the semantic complexity of a controlled language, or, more in general,
any fragment of a natural language such as English, we understand, following Pratt in [PH08a] the
computational complexity of the logic reasoning decision problems that apply to their meaning
representations. One such problem is the satisfiability (SAT) problem of a set of natural language
utterances, wherein we check whether their meaning representations contain no inconsistencies.

Semantic complexity may affect the performace of an ontology authoring tool insofar as
these tools are constantly checking for the satisfiability (consistency) of the ontologies authored
[SKC+08]. This observation holds also for controlled language interfaces to OBDASs. Crucially,
query and ontology language constructs affect thedata complexityof data management tasks, i.e.,
the computational complexity of OBDAS reasoning and query evaluation measured w.r.t. thesize
of the data[Var82]. Data complexity provides a measure of thescalability to dataof an OBDAS
or a relational database: tractable data complexity implies scalability, while intractable data com-
plexity, i.e., exponential in the data, precludes (good) scalability (see [CdL+06, Var82, OCE08,
GHLS07], together with [AHV95], Chapter 16, and [SS04], Chapter 1).

Now, semantics (and formal semantics) allows us to group thecategories of controlled lan-
guage lexicons into two main classes:

– Content words. Content words are words that denote individuals, sets and relations, viz.,
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resp.,Pns (individuals),Ns, Adjs, IVs (sets),TVs andDTVs (binary and ternary rela-
tions). It is said to be an open class since nothing prevents anatural language or a controlled
language from having arbitrarily many (see [JM09], Chapter5).

– Function words. Function words are words that denote functions among those individuals,
sets and relations. They basically belong to theDet, Pro, Crd, Relp andPrep categories
and constitute a closed class (see [JM09], Chapter 5).

In particular, function words map moduloτ(·) into Fo constructors (Dets and indeterminate
Pros map into quantifiers,Crds map into logical conjunction and disjunction, and so forth). This
means that the coverage, and especially the function words (or, by abuse, constructs) present in the
controlled language will affect moduloτ(·) the performance of OBDASs. Using a pair of declar-
ative and interrogative controlled languages covering a combination oftractableconstructors will
give rise to scalable systems, whereas anintractablecombination will have the opposite effect.

Results regarding controlled languages and natural language fragments w.r.t. SAT (using com-
putational semantics techniques) can be found already in the literature. Slavkovic in [Sla07] and
Pratt et al. in [PH01, PHT06, PH04, PHM09, PH08a] provide both lower and upper complexity
bounds for SAT. In the case of [Sla07], upper bounds (by means of answer set programming)
are given for fragments and controlled languages that map into the two variable fragment ofFo.
In the case of Pratt et al. a family offragments of English, powerful enough to capture common-
sense syllogistic reasoning, is proposed and tight complexity bounds (by means of resolution au-
tomated theorem proving procedures) are shown. Full ACE is known to be undecidable for SAT

[FK06, FKS05], whereas ACE-OWL is decidable for SAT, which follows from the decidability of
the description logic it expresses,SROIQ [HKS06].

1.2 Aims and Methodology of this Thesis

1.2.1 Aims and Goals

In this thesis we pursue two goals. On the one hand, we want to study theexpressive powerof
controlled languages. On the other hand, theirsemantic complexity, with particular emphasis on
data complexity. We believe that expressive power and data complexity provide good tools for
understanding the scalability to data of controlled languages for OBDASs.

As we have seen, controlled language interfaces to OBDASs assume as source language a
controlled language, which is to be translated by a rule-based, symbolic and compositional syntax-
directed translation algorithm (in a way similar to programming languages’ compilation [AUS86])
into a formal query and/or ontology language. In particular, this translation algorithm computes
a so-called formal semantics compositional translationτ(·) and is sound and complete w.r.t. such
translationτ(·), thus ensuring complete accuracy. Moreover, such computation is polynomial in
the input strings and independent from the data for the purposes of data access. This is important
since query evaluation algorithms for the back-end OBDAS should be sound and complete and
therefore not subject to precision and/or recall information theoretic metrics.

However, under these requirements and assumptions, different computational properties for
query evaluation may arise with different choices of natural language constructors, and this may
penalize the scalability of the controlled language interface. To understand how and why this may
happen, we focus on two of the main OBDAS management tasks, namely (i) query evaluation,
which we model through the knowledge basequery answeringdecision problem (KBQA), and(ii)
knowledge and data specification, which we model through theknowledge baseconsistencydeci-
sion problem (KBSAT). A fine-grained analysis of the computational properties of these decision
(or reasoning) problems involves analyzing the interaction of data and constraints, by possibly
fixing (or “parameterizing”) some of their inputs:
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– data complexity: we want to know their computational complexity when we consider the data
as their only input, while the ontology and the query are considered fixed.

– combined complexity: we want to know their computational complexity when we consider
all their inputs (database, ontology and query).

The data complexity analysis is the most relevant measure inthe setting we consider: in relational
database and/or OBDAS settings the size of the data (measured in terms of the tuples and/or
individuals in the database) will outsize, by and large, thesize of the queries and/or that of the
ontology.

1.2.2 Methodology and Scope

The methodology we propose is toexpressKBSAT and KBQA in controlled language. By this
we mean three things:(i) define a declarative controlled language,(ii) define an interrogative
controlled language and(iii) define compositional translations mapping the former to a formal
ontology language and the latter to a formal query language.This done, consider the resulting
formal query and ontology languages and study both their (relative and absolute) expressive power
and their computational properties. This is to be done, moreover, “piece-meal” or “incrementally”,
i.e., construct-wise, so that we can study the properties ofthe controlled language constructs in
isolation by answering in particular the following questions:

– which combinations of controlled language constructs in declarative sentences and questions
give way tomaximal(w.r.t. expressive power) tractable (i.e.,PTime or less) data complexity
for either KBSAT or KBQA, and

– which combinations of controlled language constructs in declarative sentences and questions
give way tominimal(w.r.t. expressive power) intractable (i.e., at leastNPTime or coNPTime-
hard) data complexity for either KBSAT or KBQA?

– which is the expressiveness (i.e., the model theoretic properties) of the controlled languages
defined in this manner?

In so doing we rely on and extend results coming from both the formal semantics and ontology
literature. Compositional translations are defined exploiting all the possibilities set byHo typing
(see [Moo97, Car97, Mon70, PWt93, HK98, Gam91]) and by the theory of generalized quantifiers
(see [Mon73, BC80]) to express complex ontology languages and query languages containing,
possibly, SQL aggregation functions (which require a so-called bag-set semantics).

Regarding in particular questions, we extend the work of Karttunen [Kar77] and Clifford
[Cli88] by considering more expressive classes of questions (aggregate questions), queries (SQL
aggregate queries) andHo meaning representations. Regarding semantic complexity,we gener-
alize the work on the (syllogistic) Fragments of English by Pratt & Third [PHT06] by studying
the computational properties (the data complexity) of theFo characterizations of the semantics
of OBDASs as stated by Calvanese et al. [CdL+06], thus restricting our attention to description
logic-based ontologies.

1.3 Structure of this Thesis

Chapters 2and3 provide the basic notions and notation of this thesis.Chapter 2 recalls formal
semantic theory, compositional translations and semantically enriched grammars (the formalism
we mainly use for defining controlled languages) and the ensuing notion of semantic complex-
ity. Pratt and Third’s fragments of English are also recalled. Chapter 3 introduces description
logic-based ontology languages, knowledge bases, conjunctive queries (the formal counterpart of
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SELECT-PROJECT-JOINSQL queries), tree-shaped conjunctive queries and, specifically, the
family of DL-Lite description logics, whose computational properties we also outline. We pro-
pose to derive computational properties byexpressingin controlled language formal ontology and
query languages and their decision problems.

Chapter 4 is devoted to the definition of the declarative controlled language Lite-English,
expressingDL-Lite, and of the interrogative controlled language GCQ-English, expressing tree-
shaped conjunctive queries, to their expressiveness and semantic complexity. In particular, we
compare the expressiveness of Lite-English to that of Prattand Thirds fragments of English.

In Chapter 5 we express aggregate tree shaped queries in controlled language by means of the
controlled language ATQ-English. Such queries are syntactic sugar for SQL aggregate queries. We
propose a certain answers semantics for answering aggregate tree shaped queries over ontologies,
OBDASs and knowledge bases. We show thatHo meaning representations capture such queries
exactly and thatHo is powerful enough to capture their certain answers semantics. We then pro-
ceed to extend the coverage to full negation, universal restrictions and comparisons/comparatives
(not covered by tree shaped queries) and look at data complexity. We show that aggregations
do not significantly increase data complexity, but that comparisons, full negation and universal
restrictions turn data complexity hard forcoNPTime.

In Chapter 6 we study a family of controlled languages that express description logics that lie
betweenDL-Lite and the description logicALCI (the least description logic closed under boolean
operations containingDL-Lite): the IS-Ais, EL-English and description logic-English and study
their data complexity for query answering. This with the purpose of defining controlled languages
that are maximal w.r.t. tractable data complexity and minimal w.r.t. intractable data complexity.

In Chapter 7 we study the data and combined complexity of query evaluation and consistency
checking for Pratt’s fragments of English. We also strengthen Pratt’s undecidability results to
those fragments and questions covering (restricted) anaphoric pronouns.

Chapter 8 summarizes the results of the thesis and outlines the possible directions in which
this research can be extended.



Chapter 2

Compositionality and Semantic Complexity

In this chapter we give an overview of formal and computational semantics for English, of some
standard methods (viz., semantically enriched grammars) used to generate such formal semantics
and of the crucial issue of thesemantic complexityof English (introduced by I. Pratt and Allan
Third in [PHT06]) that ensues. Intuitively, to achieve a formal semantics for English, we need to
use formal logic(s), namely first order logic (Fo) and higher order logic (Ho) as “glue”, which,
modulo a compositional translation, recursively put in correspondence natural language surface
forms to set-theoretical denotations. Such translations can be easily defined using semantically
enriched grammars.

The logic expressions associated to natural language utterances by compositional translations
are known in the literature asmeaning representations. Many natural language complete utter-
ances possessFo meaning representations. Semantic complexity describes the computational
properties of the decision reasoning problems to whichFo andHo natural language meaning
representations give rise.

Such semantic model makes in particular clear that English function words (Dets,Relps, etc.)
denote logical operators and content words (Ns, TVs, etc.),n-ary relations and individuals (of
some domain of interest). We also introduce a certain numberof formal semantic notions and no-
tation that will be used throughout the remainder of this thesis. We finish by briefly recalling Pratt
and Third’s important family of fragments of English, to which the notion of semantic complexity
was first applied.

The sections on the typed-lambda calculus,Ho and compositionality are based on Chapters
2 and 3 of [Car97]. The standardHo meaning representations for natural language constituents
are also derived mainly from Chapter 3 of [Car97]. Regardingsemantically enriched grammars,
we adapt [JM09], Chapter 18. Finally, the section on semantic complexity is an elaboration of
[PHT06] and (to a lesser extent) [PH08a].

2.1 Formal And Computational Semantics

2.1.1 First Order Logic and Higher Order Logic

As is customary in the literature, we introduceHo as the restriction of a more powerful system,
the simply-typed lambda calculus. Thereafter,Fo can be defined as a proper fragment ofHo.
Proceeding in this manner has its advantages: although bothHo and its fragmentFo are unde-
cidable, forFo sound and complete deductive calculi exist, i.e., we can provide combinatorial
characterizations of what it means to derive truths from truths.

Let C := {ci | i ∈ N} be a a countably infinite set ofconstantsandV := {xi | i ∈ N}
a countably infinite set ofvariables. The setExp of expressionsor termsu of the simply typed

11
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lambda calculusis defined by the grammar

u→ ci | xi | u(u
′) | λxi.u.

Given a termu, the setFV(u) of its free variables is defined by induction onu as follows:
(i) FV(c) := ∅, (ii) FV(x) := {x}, (iii) FV(u(u′)) := FV(u) ∪ FV(u′) and (iv) FV(λx.u) :=
FV(u) \ {x}.

Let B := {ti | i ∈ N} be a countably infinite set ofbasic types. The setSTof simple typesT
is defined by the grammar

T → ti | T → T.

A typing is a functionχ : Exp → ST. Wheneverχ(u) = T we write u:T , and call it a
declaration. A contextis a finite setE := {x1:T1, . . . , xn:Tn} of variable declarations. We say
that an expressionu is typablewith typeT w.r.t. contextE and writeE ⊢ u:T wheneverx:T ∈ Γ,
for everyx ∈ FV(u). A typing ruleis any of the following:

dv
E, x:T ⊢ x:T

E ⊢ u:T E ⊢ u′:T → T ′
app

E,E′ ⊢ u′(u):T ′

E, x:T ⊢ u:T ′

abs
E ⊢ λxT .u:T → T ′

A type judgementis a finite tree rooted on an expressionu typable with typeT w.r.t. a context
Γ and recursively generated using the typing rules. An expression u is said to bewell-typedof
typeT iff there exists a type judgment rooted onE ⊢ u:T with E = ∅ [Lal97].

A substitutionis a partial mappingσ : V → Exp, consistent with typing in the sense that
σ(x) := u iff x andu are typed identically. Substitutions can be inductively extended to a mapping
over arbitrary terms in the usual way. We denote byuσ the result of applyingσ to termu. As is
common in the literature, we denote substitutions by sets{x1 7→ u1, . . . , xn 7→ tn} of associations
mapping the variablexi to the expressionui, for i ∈ [1, n].

We say that a termu reduces in a single stepto a termv, denoted⊲1, iff u = λx.u′(u′′) and
v = u′′{x 7→ u′}. The relation denoted⊲, calledbeta reduction, is the reflexive and transitive
closure of reduction in one step.

A termu is said to be aredexif it is of the formu = λx.u′(u′′). Otherwise it is called areduct.
A term u is said to be(strongly) normalizableiff there exits a reductv and a finite sequence of
reductions s.t.u ⊲ u1 ⊲ . . . ⊲ un ⊲ v, in which casev is called thenormal formof u. Simply-
typed lambda calculus well-typed expressions are stronglynormalizable. Furthermore, the normal
form is unique and normalization order-independent.

Definition 2.1.1(Higher Order Logic). The system ofHo is obtained by restricting the setBas of
basic types of the simply typed lambda calculus to{e, t}, wheree stands for the type of individuals
andt for that of Booleans (truth values).

A Ho formula is an expressionϕ of type t and asentencea formula s.t.FV(ϕ) = ∅. Notice
that we use Greek letters,ϕ,ψ, etc. to denote formulas and sentences. Formulas and sentences are,
in particular, built using theHo constants∧:t→t, ¬:t→t, some:(T→t) → t and≈ :T→(T→t),
and by setting, forϕ andψ of the convenient type,∃xTϕ := someT (λxT .ϕ), ∀xTϕ := ¬∃xT¬ϕ,
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ := ¬ϕ ∨ ψ andϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

The semantics of the simply typed lambda calculus and a fortiori that ofHo is given by
mapping type-theoretical expressions to denotational frames. We adopt the convention of writing
typeT1 → (. . . (Tn → T ) . . . ) asT1 × · · · × Tn → T .
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Let {Dti}i∈N be a family ofbasic domains(i.e., one for every basic typeti). Denotational
framesDom are defined by structural recursion on types as follows:

Domti := Dti ,

DomT→T ′ := Dom
DomT

T ′ ,

Dom :=
⋃

T∈ST
DomT .

An interpretation functionis a mapping·I : C → Dom s.t. cI ∈ DomT iff c is a constant
of type T . An interpretation is a tupleI := (DI , ·

I) where(i) DI ⊆ Dom and (ii) ·I is an
interpretation function. Anassignmentis a functionγ : V → Dom such thatγ(x) ∈ DomT iff
x is a variable of typeT .

Definition 2.1.2 (Denotation). ThedenotationuIγ of an expressionu w.r.t. γ andI is defined by
recursion on expressions as follows:

– xIγ := γ(x),
– cIγ := cI ,
– u(v)Iγ := uIγ (v

I
γ ) and

– λx.uIγ := the functionf s.t.f(c) = uIγ[x:=c],

whereγ[x := c] is the assignment identical toγ.

Definition 2.1.3 (Satisfaction). We say that an interpretationI satisfiesaHo formulaϕ w.r.t.
assignmentγ whenever the following conditions hold:

– I, γ |= ϕ iff ϕI
γ = 1,

– I, γ |= ¬ϕ iff I, γ 6|= ϕ,
– I, γ |= ϕ ∧ ψ iff I, γ |= ϕ andI, γ |= ψ, and
– I, γ |= ∃xTϕ iff there exists someγ′[x := d] s.t.I, γ′[x := d] |= ϕ.

We say thatI is a modelof formulaϕ, written I |= ϕ, whenever for allγ, I, γ |= ϕ. For
every set of formulasΓ, we writeI |= Γ if, for all ϕ ∈ Γ, I |= ϕ. We denoteMod(ϕ) (resp.
Mod(Γ)) the (class of) models ofϕ (resp.Γ). We say thatψ (resp.Γ) entailsϕ, writtenψ |= ϕ
(resp.Γ |= ϕ), wheneverMod(ψ) ⊆ Mod(ϕ) (resp.Mod(Γ) ⊆ Mod(ϕ)). When the converse also
holds, we say thatϕ andψ areequivalentand writeϕ ≡ ψ.

Definition 2.1.4 (First Order Logic). The system ofFo can be seen as a subset ofHo, where
formulas are built from the following basic syntactic constructs: (i) individual variablesx of type
e, (ii) individual constantsc of typee, (iii) function constantsf of arityn and typee×· · ·×e→ e
and(iv) predicate constantsR of arity n and typee× · · · × e→ t.

The set ofFo termst is built in the usual way by recursively combining individual constants,
individual variables and function constants together (see[Car97], Chapter 3). AFo signatureis
a tripleSig := (C,F,R), whereC is a set of individual constants,F a set of function constants
(a.k.a. function symbols) andR a set of predicate/relation constants (a.k.a. predicate/relation
symbols).

Remark 2.1.5. Since predicate symbols inFo denotecharacteristic functionsand can be seen
as denotingset-valued relations, the domain is accordingly restricted toDom := De. Similarly,
interpretationsI map: (i) individual constantsc to pointscI ∈ DI , (ii) function constantsf of
arity n to functions,fI : DnI → DI and(iii) predicate constantsS of arity n to subsetsSI ⊆ DnI .
Assignments map variables to elements inDom := De. Notice, finally, that nowI, γ |= S(t̄)
wheneverγ(t̄) ∈ SI .
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NL Ho FSτ(·) ·I

·I ◦ τ(·)

Figure 2.1: The homomorphism principle and the syntax-semantics interface between natural language
syntax (NL) and formal semantics (FS).

2.1.2 Compositional Translations and Grammars

Following the work laid out by logicians such as R. Montague [Mon70, Mon73], there is a broad
consensus that(i) the notion of meaning relies on the notion of denotation and truth (i.e., truth
conditions)(ii) meaning exhibits a predicate-argument (or functional) structure(iii) meaning is
compositional, i.e., satisfies thecompositionality(Com) principle:

The meaning of a sentence is a function of the meaning of its constituents. (Com)

The so-calledsyntax-semantics interfaceaims at studying the relationships that exist between
natural language syntax and natural language semantics. Montague [Mon70, Mon73] and Lam-
bek [Lam58], and later Moortgat in [Moo97], showed that the syntax-semantics interface can be
realized and conditions(i) – (iii) satisfied by adopting the strategy depicted in Figure 2.1.

Such a strategy consists in defining a homomorphic mappingτ(·), known in the literature as a
compositional translation, between a fragment (or controlled fragment) of a natural language like
English and formal logic, in particular higher order logic (Ho). Modulo this mappingτ(·) one can
assignHo denotations to language constituents by composingτ(·) with ·I . Actually, Montague
used a system that extendsHo with modalities, intensional logic, which can be used to capture,
compositionally, e.g., English moods and tense [Mon70, Mon73]. Given that we do not consider
modalities or tense in the controlled languages studied in this thesis, we will not consider such
extension either.

Compositional Translations. Let Σ denote analphabetor set of basic symbols, andΣ∗ its
Kleenestar, the set of all finite strings (sequences of symbols) i.e., the closure ofΣ under the
string · concatenation operator. Alanguageis any subset ofΣ∗. By Σ+ we denote the positive
star ofΣ, i.e.,Σ∗ \ {ǫ}, whereǫ denotes the empty string (see [UHM01], Chapter 1).

Definition 2.1.6 (Compositional Translation). Let L be asourcelanguage over an alphabetΣ
(i.e.,L ⊆ Σ∗), andL′ a target language over an alphabetΣ′ (i.e.,L′ ⊆ Σ′∗). A compositional
translationfromL toL′ is a functionτ(·) fromΣ∗ toΣ′∗ such that the following conditions hold:

– for allw1 · · ·wn ∈ L, τ(w1 · · ·wn) = τ(wπ(1)) · · · τ(wπ(n)), whereπ(·) is a permutation over
{1, . . . , n}, and

– for allw ∈ Σ∗, w ∈ L iff τ(w) ∈ L′.

For every setW ⊆ L, we defineτ(W ) := {τ(w) | w ∈ W}. Note that permutations are
needed since word order in the source language may not necessarily reflect word order in the
target language.
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Semantically Enriched Grammars. Given a fragment (controlled or otherwise) of natural lan-
guage, we can build grammars which define both the language utterances and the compositional
translationτ(·). Many classes of grammars can be used to this purpose. A well-known class is
the class of categorial grammars, also called logical or type-theoretical grammars [Car97, Moo97,
Lam58]. Another, more simple, class, based on the context-free grammar model, is the class of
grammars with semantic actions (see [JM09], Chapter 18). Grammars with semantic actions are
context-free grammars that have been put in correspondencewhich a set of semantic actions that
defineτ(·).

Definition 2.1.7. A semantically enriched grammaris a context-free grammar of the formG :=
(Σ,Cat,Lex,Rul,S, τ(·)) where

– Σ is an alphabet, a.k.a. set ofwords,
– Cat is a set of symbols calledcategories,
– Lex ⊆ Cat×Σ is a lexicon,
– Rul ⊆ Cat× (Σ ∪Cat)+ is a set ofphrase structure rules,
– S ∈ Cat is a distinguished category called theterminalcategory, and
– τ(·) is aHo compositional translation.

Any sequencew ∈ (Σ × Cat)∗ is called aconstituent. If (C,w) ∈ Lex or (C,w) ∈ Rul

we writeC → w. Moreover, as customary in the literature, we partitionCat into two sets,
viz., a set ofbasiccategories and a set ofnon-basiccategories. Basic categories are those that
occur in the lexicon, and correspond to the parts of speech: the common noun (N), the adjective
(Adj), the relative pronoun (Relp), the determiner (Det), etc. Categories can be, furthermore,
subcategorized, i.e., multiplied so as to model (morphological) agreementin person number,
gender, tense, polarity, mood, voice, etc. (e.g.,Nm

pl would stand for a masculine plural (common)
nounN).

By exploiting the phrase structure rules and lexicon of a grammarG, τ(·) can be defined by
means ofsemantic actions:

– for eachC → w ∈ Lex, we specifyτ(C), and
– for eachC → C1 · · ·Cn ∈ Rul, we writeτ(C) := τ(Cπ(1))(. . . τ(Cπ(n)) . . . ).

This means thatτ(·) will be recursively defined on syntactic constituents, i.e., if w is a
word from the alphabet, thenτ(w) is aHo expression and ifw = w1 · · ·wn, then τ(w) :=
τ(wπ(1))(. . . τ(wπ(n)) . . . ) (or, to be more, precise, itsβ-reduct). Notice that semantically en-
riched context-free grammars are, essentially, the context-free grammars with semantic actions of
compiler theory (see, e.g., [AUS86], Chapter 4).

We say thatG derives in one stepa constituentw from a categoryC, written C =⇒G w
wheneverC → w ∈ Lex andτ(C) is a well-typedHo formula. Thederivesrelation=⇒∗

G is
then defined as the reflexive and transitive closure of=⇒G. If C =⇒∗

G w, we say that there is a
derivation ofw rooted in categoryC. Thegenerated languageof G is then defined asL(G) :=
{w ∈ Σ∗ | S =⇒∗

G w}. The indexG can be omitted whenever the grammar is clear by context.
The logic fragmentexpressedbyG and/orL(G) is theHo fragmentLL(G) := {τ(w) | w ∈

L} = τ(L(G)). Every meaning representationτ(w) ∈ LL(G) is said to beexpressedbyG and/or
L(G).

As it is typical of context-free grammars, derivations can be captured by parse trees. Once
a parse tree is computed, the compositional translationτ(·) can be trivially computed bottom-up
from leaves to root by applying siblings to each other, normalizing and checking well-typedness.
The computation can be done on the fly. Parsing and semantic evaluation take time polynomial in
the length|w| of an input stringw.



16 2. Compositionality and Semantic Complexity

τ(S) = Woman(Mary):t

τ(NP) = λP e→t.P (Mary):(e→t)→t

τ(Pn) = λP e→t.P (Mary):(e→t)→t

Mary

τ(VP) = λxe.Woman(x):e→t

is aτ(N) = λxe.Woman(x):e→t

woman.

Figure 2.2: Parse tree for the COP sentence “Mary is a woman.”.

Meaning Representations, Content and Function Lexicons. TheHo-valued compositional
translationτ(·) defined by a semantically enriched grammar associates to each of the constituents
of the language it generatesHo expressions calledmeaning representations. A Ho fragmentL
and aHo formulaϕ are said to beexpressibleby a controlled or non controlled fragmentL of
natural language whenever a semantically enriched grammarG that generatesL and expressesL
andϕ exists.

Complete sentences are associated toHo formulas, which in most cases areFo formulas,
but not always: the semantics of significant fragments of languages like English requires fullHo
[BC80]. Syntactic constituents below the sentence level are mapped to arbitraryHo expressions.
In addition, the definition ofτ(·) over grammar lexicons gives rise to their partition into:

– An arbitrarily largecontent lexiconwhose (content) words, nouns (Ns like “beer”), proper
nouns (Pns like “Max”), transitive verbs (TVs like “drinks”), etc., stand forindividualsand
relations, e.g.:

Pn → Max τ(Pn) := λP e→t.P (Max)
N → beer τ(N) := λxe.Beer(x)

TV → drinks τ(TV) := λβ(e→t)→t.λxe.β(λye.drinks(x, y))

– A finite function lexiconwhose (function) words stand forlogical operationsover individu-
als and relations. Relatives (Relps like “who”) and conjunctions (Crds like “and”) express
Boolean intersection (or conjunction), determiners (Dets like “some”) express quantification,
negation (“not”) Boolean complementation (or negation), e.g.:

Det → some τ(Det) := λP e→t.λQe→t.∃xe(P (x) ∧Q(x))
Relp → that τ(Relp) := λP e→t.λQe→t.λxe.(P (x) ∧Q(x))
Neg → not τ(Neg) := λP e→t.λxe¬P (x)
Crd → and τ(Crd) := λP e→t.λQe→t.λxe.(P (x) ∧Q(x))

Example 2.1.8. To illustrate the notions of this section we use as an examplePratt and Third’s
fragment of English COP defined by the following semantically enriched context free grammar:

(Phrase Structure Rules) (Semantic actions)

S →NP VP τ(S) := τ(NP)(τ(VP))
VP→ is aN τ(VP) := τ(N)
VP→ isNeg aN τ(VP) := τ(Neg)(τ(N))
NP→ Pn τ(NP) := τ(Pn)
NP→Det N τ(NP) := τ(Det)(τ(N))
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(Content Lexicon)

N → woman τ(N) := λxe.Woman(x)
N → man τ(N) := λxe.Man(x)
N → person τ(N) := λxe.Person(x)
N → human τ(N) := λxe.Human(x)

Pn → Mary τ(Pn) := λP e→t.P (Mary)
...

...

(Function Lexicon)

Det → every τ(Det) := λP e→t.λQe→t.∀xe(P (x)⇒ Q(x))
Det → some τ(Det) := λP e→t.λQe→t.∃xe(P (x) ∧Q(x))
Det → no τ(Det) := λP e→t.λQe→t.∀xe(P (x)⇒ ¬Q(x))
Neg → not τ(Det) := λP e→t.λxe.¬P (x)

As the reader can see, the lexicon of COP is divided into a finite function lexicon containing
entries for “not”, “some”, “no” and “every”, and an arbitrarily large content lexicon of common
and proper nouns. To each lexical entry and each grammar rewriting rule a semantic action is
associated. The words in the function lexicon expressFo universal and existential quantification,
in addition to a (very restricted) form of negation. The content lexicon specifies aFo signature
composed of unary predicates and individual constants.

Suppose now we want to check whether the sentence

Mary is a woman. (2.1)

is a COP sentence and whether it compositionally translatesinto Woman(Mary).
Grammar derivations, as is typical with ordinary context-free grammars, are captured by parse

trees. Figure 2.2 shows the parse tree of sentence (2.1). At each internal node, child nodes are ap-
plied to each other, in accordance with the semantic actions, and normalized. Such application(s)
and normalization(s) must comply with the typing rules. Forexample, at the root nodeS, the fol-
lowing typing judgement occurs, which, modulo normalization, yieldsWoman(Mary) as theFo
meaning representation of the complete utterance (note that we make the typing explicit1):

⊢ λP e→t.P (Mary):(e→t)→t ⊢ λxe.Woman(x):e→t

⊢ λP e→t.P (Mary)(λxe.Woman(x)):t

λP e→t.P (Mary)(λxe.Woman(x)) ⊲ Woman(Mary)

The computation ofτ(·) can be done on the fly, i.e., side-by-side with the computation of the
parse tree. In a similar manner, we can say “Mary is not a man.”and translate it into¬Man(Mary).
In fact, we can express all theseFo sentences:

Woman(Mary) Mary is a woman.
¬Man(Mary) Mary is not a man.
∃x(Person(x) ∧Woman(x)) Some person is a woman
∃x(Person(x) ∧ ¬Woman(x)) Some person is not a woman.
∀x(Man(x)⇒ Person(x)) Every man is a person.
∀x(Person(x)⇒ Human(x)) Every person is a human.
∀x(Woman(x)⇒ ¬Man(x)) No woman is a man.

1In this example types are a little redundant, but we will see controlled languages later in this thesis that do exploit
typing.
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More in general, by suitably modifying the content lexicon,we can expressany Fo sen-
tence of these forms. This defines a proper fragment ofFo, which we may denote byLCOP.
The signature ofLCOP will be “defined” by COP’s content lexicon. In the example,SigCOP =
({Mary, . . . }, ∅, {Person,Man,Human,Woman, . . . }). Notice that if the content lexicon is finite
(i) only a finite number of sentences will be generated and(ii) bothLCOP and its signature will
be finite. COP’s grammar defines no recursive constituents: the number of utterances that can
be generated (and the number of expressibleFo formulas) is bounded by the size of the content
lexicon [PHT06].

Notice that this greatly limits the expressiveness of COP. Formulas are built out of unary
predicates, contain at most two predicate symbols, make useof at most one variable and quantifier
prefix, etc. Thus, COP gives rise only to a (restricted) form of negation and conjunction. In
particular,LCOP is neither closed under negation nor under conjunction and hence is not “Boolean
closed”. ♣

2.2 Semantic Complexity

Modulo formal semantics, the coverage of a fragment of natural language (whether controlled
or not), gives rise to a certain number of computational properties, viz., to a certain number of
reasoning problems associated to their meaning representations whose computational complexity
can be studied. Such computational properties depend mainly on the different combinations of
function words of the fragments, which stand for logical operators.

Reasoning Problems. A decision problemP is usually described in terms of itsinput(s) and
of a questionor property we want to verify. Areasoning problemis, in particular, any decision
problem related to a logicL (Fo, Ho or any of their fragments). Decision problems can be
modelled aslanguagesP⊆ {0, 1}∗, whereas algorithms can be modelled as Turing machines. A
Turing machineM is said todecidea problemP whenever, for allw ∈ {0, 1}∗, M halts in an
accepting state ifw ∈ P, and halts in a non-accepting state otherwise. Such a computation makes
use oftimeandspaceresources, which can be measured as a function of the size|w| of the Turing
machine’s inputw.

Such space and time resources give rise to thecomputational propertiesof decision problems,
viz., the so-calleddecision classesinto which they can be classified. In this thesis we only deal
with the basic decision classes, as studied in, e.g., [Pap94] and [GJ79]. LSpace is the class of
problems decidable by a deterministic Turing machine usinglogarithmic space,NLSpace is the
class decidable by a non-deterministic Turing machine using logarithmic space,PTime is the
class of problems decidable by a deterministic Turing machine in polynomial time,NPTime2 is
the class decidable by a non-deterministic Turing machine in polynomial time, etc. [Pap94, GJ79].

The following inclusions among decision classes hold:LSpace ⊆ NLSpace⊆ PTime ⊆
NPTime ⊆ PSpace⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace. Furthermore, in addition to this,
coNLSpace= NLSpace, coLSpace= LSpace, coPTime = PTime, and, in general, all de-
terministic time decision classes and non-deterministic space decision classes aboveNPTime are
closed under complement. It is commonly believed thatPTime ( NPTime and thatcoNPTime
andNPTime only overlap, with none containing the other, but no proof ofthese conjectures has
been found so far.

Given a classC, a problem P is said to beC-hard whenever for each problem P′ ∈ C there
exists a Turing machineM , called alog-space reduction(or simply reduction), s.t., for allw ∈
{0, 1}∗, w ∈ P iff M(w) ∈ P′, and that runs in space logarithmic in|w|. A C-hard problem is as

2We use a notation different from the traditional one to avoidconfusion with noun phrase constituents,NPs.
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hard as any problem inC, possibly harder, i.e., reductions makeC a complexity lower bound for
P. If, in addition,C is a complexity upper bound for P, i.e., if P can be shown to be in C, P is
said to beC-complete. Since log-space reductions are closed under composition, to show that a
problem isC-hard it suffices to reduce to P a problem P′ that is already known to beC-hard.

Semantic Complexity. The different combinations of function and content words covered by
natural language fragments and their impact on the expressiveness of their associated (Ho andFo) meaning representations give rise to the notion of semantic complexity. Such semantic com-
plexity depends mainly on the combinations of function words covered by such fragments. In
particular, fragments expressing full Boolean negation and conjunction, viz., “Boolean closed”
fragments can be shown to be hard forcoNPTimeor NPTime for most of the reasoning problems
studied in this thesis.

Definition 2.2.1 (Semantic complexity). Thesemantic complexityof a fragmentL of English is
the class of all the computational properties of the logic reasoning problemsP related to their (Fo
orHo) meaning representationsτ(L).

Pratt and Third when introducing in [PHT06] the notion of semantic complexity for a fragment
of English considered only the computational complexity ofthe satisfiability problem (SAT) of
their meaning representations. We thus generalize their notion to cover all possible reasoning
problems, which makes sense insofar as in many cases such problems do not reduce to each other.

2.3 Pratt and Third’s Fragments of English

In the remainder of this thesis, we will be using as a benchmark for the semantic complexity and
expressive power of controlled languages, I. Pratt and A. Third’s fragments of English. The frag-
ments of English aim at capTuring in English common-sense reasoning, such as, e.g., syllogistic
reasoning [PHT06, PH01, PH04, Thi06], that comprises reasonings of the form

Every person is human. ∀x(Person(x)⇒ Human(x))
Some woman is a person. ∃x(Woman(x) ∧ Person(x))
∴ Some woman is human.∴ ∃x(Woman(x) ∧ Human(x))

The fragments of English are built “incrementally” using semantically enriched context-free
grammars. A base fragment, COP, devoid of recursive constituents and coveringNs,Pns,VP

negation, and theDets “some”, “every” and “no” is first defined (recall Example 2.1.8). Each
successive fragments of English extends COP’s coverage to afresh English construct (TVs,Relps,
anaphora, etc.). Table 2.2 summarizes their coverage of English. Notice that negation expresses
full Boolean negation. Relative clauses introduce both conjunction and recursion. Thus, each
fragment above COP+Rel is “Boolean closed”. Finally, each fragment gives rise to a fragment ofFo, as outlined in Table 2.1. For a detailed definition we send the reader to [PHT06].

Consider now thesatisfiabilityreasoning problem (SAT) defined by

– Input: a formulaϕ from L.
– Question: does a model forϕ exists?

The SAT problem for the COP fragment can be shown to be inNLSpace. This is because
of its limited expressiveness. By contrast, “Boolean closed” fragments of English (COP+Rel can
express the propositional calculus) are alreadyNPTime-hard and even harder (ExpTime-hard)
when, in addition,TVs are considered. Unrestricted anaphoric pronouns make SAT undecidable
(by a reduction from the undecidable unbounded tiling problem [PHT06]). Table 2.2 summarizes
the semantic complexity for SAT of the fragments of English.
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COP Copula, common and proper nouns, negation, universal and
existential quantifiers

COP+Rel COP plus relative pronouns
COP+TV COP plus transitive verbs

COP+TV+ COP+TV plus ditransitive
DTV verbs

COP+TV+ COP+TV+DTV plus anaphoric pronouns
DTV+RA (e.g., he, him, it, herself)

COP in NLSpace
COP+TV NLSpace-complete
COP+DTV in PTime
COP+TV+DTV in PTime
COP+Rel NPTime-complete
COP+TV+Rel ExpTime-complete
COP+TV+Rel+RA ExpTime-complete
COP+DTV+Rel NExpTime-complete
COP+TV+DTV+Rel NExpTime-complete
COP+TV+Rel+GA undecidable
COP+TV+DTV+Rel+RA undecidable
COP+TV+DTV+Rel+GA undecidable

Table 2.2: Above: Coverage of the main fragments of English (the other fragments are obtained by com-
bining them together).Below: Their semantic complexity w.r.t. SAT [PHT06, PH09, PHM09].

2.4 Summary

In this chapter we have briefly recalled the theory of formal and computational semantics for nat-
ural languages and their fragments, and the ensuing notionsof semantically enriched grammars,
meaning representations and semantic complexity. Since natural language meaning representa-
tions are based onHo andFo, we defined the syntax and the semantics of both logics. The
notation introduced there will be used throughout the remainder of this thesis. We also showed
how formal semantics enforces clustering natural languagewords into content words, expressing
relations and individuals, and function words, expressingoperations over such individuals and re-
lations. In particular, the different coverage of functionwords by fragments (controlled or not) of
natural languages like English has a crucial impact on theirsemantic complexity. This is because,
modulo compositional translations, those fragments express or map to logical fragments (ofFo
andHo), and their function words map to logical operators or constructors.





Chapter 3

Ontology Languages and Conjunctive Queries

In this chapter we give an overview of description logic ontologies and knowledge bases, which
formally underpin OWL ontologies and OBDASs. We also provide some background on formal
query languages and on data complexity. Last, but least, we explain how ontology and formal
query languages can be used to understand the scalability ofcontrolled language interfaces by
expressing them in controlled English. This means: definingsemantically enriched grammars
(and hence controlled fragments of English), equipped witha compositional translationτ(·), that
express those ontology and formal query languages. With this technique we can exploit the com-
putational properties of the ontology and query languages to study the semantic complexity of
controlled languages and their scalability to data. This chapter is derived mainly from [BCN+03],
Chapters 2 and 3, [AHV95], Chapters 4 and 17, and [CGL+07].

3.1 Description Logic Ontologies

In an OBDAS, an ontology provides a conceptual view on the data stored in a database, which
can be accessed by formulating formal queries over the ontology. Ontologies are formally under-
pinned by description logics, which are a family of knowledge representation formalisms based on
decidable fragments ofFo [BCN+03]. In description logics, the domain of interest is structured
in terms of instances (standing for the individuals in the domain), concepts (standing for classes of
individuals/instances) and roles (standing for binary relations among individuals/instances). The
instances, concepts and roles provide the basic vocabularyof the domain. Concepts and roles are
then combined together into sets of constraints that hold among domain instances (i.e., a logical
theory) which give rise to concept and role hierarchies. Description logics are also known as on-
tology languages. Formal queries are, typicallyFo (orHo) formulas that specify an information
request. The semantics of query evaluation in OBDASs is based onFo entailment: the system
checks if the query is logically entailed by the ontology andthe database.

3.1.1 Ontology Languages andDL-Lite

The OWL-DL fragment of OWL is underpinned by the descriptionlogic SROIQ. We are inter-
ested in description logics of different expressiveness, ranging from theDL-Lite family [CGL+07]
to ALCHQI. The DL-Lite family [CdL+06, CdV+06, CdL+05a] is a family of ontology lan-
guages optimized for data access in OBDASs. They can be defined as fragments ofALCHQI,
by suitably restricting its syntax.

23
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Syntax Semantics

c cI ∈ DI

A AI ⊆ DI

∃≥kR:C (∃≥kR:C)I := {c | #({c′ s.t. (c, c′) ∈ RI andc′ ∈ CI}) ≥ k}
¬C (¬C)I := DI \ C

I

C ⊓ C ′ (C ⊓ C ′)I := CI ∩ C ′I

r rI ⊆ DI × DI

r− (r−)I := {(d, d′) | (d′, d) ∈ rI}
C ⊑ C ′ I |= C ⊑ C ′ iff CI ⊆ C ′I

R ⊑ R′ I |= R ⊑ R′ iff RI ⊆ R′I

A(c) I |= A(c) iff cI ∈ AI

r(c, c′) I |= r(c, c′) iff (cI , c′I) ∈ rI

O I |= O iff for all α ∈ O,I |= α
D I |= D iff for all α ∈ D,I |= α

(O,D) I |= (O,D) iff I |= O andI |= D

Table 3.1: Semantics ofALCHQI (and its fragments).

The description logicALCHQI. In theALCHQI description logic,conceptsC androlesR
are formed according to the following syntax:

C → A | ∃≤kR:C | ¬C | C ⊓ C
R → r | r−

whereA stands for an atomic concept orconcept name(a unary predicate),r for a role name(a
binary predicate) andr− for its inverse. We can enrich the set ofALCHQI concepts, modulo the
following (explicit) definitions:

⊥ := ¬A ⊓A C ⊔ C ′ := ¬(¬C ⊓ ¬C ′)
∃≥kR:C := ¬(∃≤k+1R:¬C) ∃R := ∃R:⊤
∃R:C := ∃≥1R:C ∀R:C := ¬(∃R:¬C)
∃=k := ∃≤kR:C ⊓ ∃≥kR:C ⊤ := ¬⊥

whereA is some atomic concept.
In aALCHQI ontologyO, intensional knowledge is specified by means of a set ofassertions

α, viz.,

– concept inclusionsof the formC ⊑ C ′, stating IS-A (set inclusion) between the instances of
the conceptsC andC ′, and

– role inclusionsof the formR ⊑ R′, stating IS-A (set inclusion) among role instances.

Thesize#(O) of an ontologyO where#(S) denotes the cardinality of setS, is given by the
number of assertions it contains.

A database, expressing extensional knowledge, is a finite setD of unary and binary ground
atoms of the formA(c), r(c, c′), wherec, c′ are individual constants. Theactive domain adom(D)
of a databaseD is the set of all the pairwise distinct constants that occur among the ground atoms
of D. Thesizeof a databaseD is given by#(adom(D)).

A knowledge baseis a pair(O,D), whereO is an ontology andD a database.
We consider framesDom constituted of countably many individualobject namesor individual

constants, i.e.,Dom ⊆ C, whereC is countably infinite. This semantic assumption for ontology
languages is known the literature as thestandard domain assumption(SDA).
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GivenDom, the semantics of concepts, assertions, ontologies and knowledge bases is spec-
ified by consideringFo interpretationsI whereDI ⊆ Dom and the interpretation function·I

maps(i) concept namesA and rolesr into, resp., subsets of the domain and of its cross product,
and(ii) object namesc to elements of the domain. It can be extended to complex conceptsC and
rolesR by structural recursion as shown in the first part of Table 3.1.

An interpretationI is said to be amodelof a concept inclusionC ⊑ C ′, role inclusionI |=
R ⊑ R′ or membershipA(c), r(c, c′) assertion when, resp.,I |= C ⊑ C ′, I |= R ⊑ R′, or
I |= A(c) andI |= r(c, c′). It is said to be amodelof an ontologyO or a databaseD when, resp.
I |= O or I |= D. It is said, finally, to be amodelof a knowledge base(O,D) whenI |= (O,D),
i.e., when it is a model ofO andD. See the second and third parts of Table 3.1.

Two conceptsC andC ′ are said to beequivalentiff, for all I, CI = C ′I . An assertionα is
to implyα′, in symbolsα |= α′, iff, for all interpretationsI, I |= α impliesI |= α′. When the
converse also holds, we say that they areequivalent, in symbolsα ≡ α′. These notions can be
generalized to ontologies in the obvious way.

The semantics ofALCHQI allows us to introduceglobal functionalityassertions of the form
(functR) stating that any instance or object falling underR’s domain is connected toat most one
R-successor, since

(functR) ≡ ⊤ ⊑ ∃≤1R:⊤

is a trivial consequence ofALCHQI semantics.

The FragmentsALCI and ELI. The description logicALCI is the fragment ofALCHQI
with syntax

C → A | ∃R:C | C ⊓ C | ¬C
R → r | r−

A(c), r(c, c′)
C ⊑ C ′

Notice thatALCI is closed under negation. In other words, inALCI we disallow concepts
of the form∃≤kR:C (calledqualified number restrictions) but introduce explicitly∃R:C (called
qualified existential). Moreover, we disallow role inclusions in the ontology.

By disallowing further concept negation we can define the description logicELI, with syntax

C → A | ∃R:C | C ⊓ C
R → r | r−

A(c), r(c, c′)
C ⊑ C ′

which we can extend withuniversal restrictionsto the right of⊑ since

A ⊑ ∀r:A′ ≡ ∃r−:A ⊑ A′.

The DL-Lite family. In theDL-Lite family of description logics we restrict the syntax and con-
structors of the conceptsCr to theright andCl to theleft of thesubsumptionsymbol⊑. In addi-
tion, ontology assertions are also restricted. Different restrictions give way to different description
logics. It is precisely these restrictions which give rise to the good computational properties for
data access that they exhibit, as we shall see later in this chapter..

Table 3.2 shows the four basic members of theDL-Lite family, viz., DL-Litecore (the core
fragment),DL-LiteR, DL-LiteF andDL-Lite⊓. The essential features ofDL-Litecore are: (i) only
unqualified existential roles∃R are admitted(ii) negation is restricted toright concepts, without
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DL-Litecore DL-LiteR
Cl→A | ∃R
Cr→¬A | ¬∃R | Cl | Cr ⊓ C

′
r

R→ r | r−

A(c), r(c, c′)
Cl ⊑ Cr

Cl→A | ∃R
Cr→¬A | ¬∃R | Cl | Cr ⊓C

′
r

R→ r | r−

A(c), r(c, c′)
Cl ⊑ Cr
R ⊑ R′

DL-LiteF DL-Lite⊓
Cl→A | ∃R
Cr→¬A | ¬∃R | Cl | Cr ⊓ C

′
r

R→ r | r−

A(c), r(c, c′)
Cl ⊑ Cr
(functR)

Cl→A | ∃R | Cl ⊓ C
′
l

Cr→¬A | ¬∃R | Cl | Cr ⊓C
′
r

R→ r | r−

A(c), r(c, c′)
Cl ⊑ Cr

Table 3.2: TheDL-Lite family.

closing them (it can only be applied to atomic or unqualified existential roles),(iii) conjunction is
restricted to right concepts,(iv) no number restrictions are allowed, and(v) no role inclusions or
role functionality assertions are allowed.

The other three description logics extendDL-Litecore by, resp., adding role assertions, func-
tionality assertions and by closing left concepts under conjunction. The remaining members of the
family, DL-LiteR,⊓, DL-LiteF,R andDL-LiteF,⊓ are built by pairwise merging the basic fragments.

Figure 3.1 below shows the resulting lattice of inclusions.We have highlighted (in black)
the sublattice that we will study in the following chapters.As the figure shows, they are all
subsumed byALCHQI, but are, in general, incomparable withELI and/orALCI (although
bothDL-Litecore andDL-Lite⊓ can be subsumed byALCI).

We can extend the syntax ofDL-Litecore with: (i) conjunctionCr ⊓ C ′
r among right concepts,

(ii) disjunctionCl ⊔ C ′
l among left concepts, since

Cl ⊑ Cr ⊓ C
′
r ≡ {Cl ⊑ Cr, Cl ⊑ C

′
r},

Cl ⊔ C
′
l ⊑ Cr ≡ {Cl ⊑ Cr, C

′
l ⊑ Cr},

and thefalsum (iii)⊥ among right concepts, since

Cl ⊑ ⊥ ≡ Cl ⊑ Cr ⊓ ¬Cr,

whereCr is a “fresh” concept. Moreover, we can extend the syntax ofDL-LiteR with right quali-
fied existential roles, since

Cl ⊑ ∃R:Cr ≡ {Cl ⊑ ∃R,R ⊑ R′,∃R′− ⊑ Cr},

whereR′ is a “fresh” role.
Note that for theDL-Lite family, two additional semantic assumptions can hold. Given a

databaseD, every interpretationI must map any pair of distinct constantsc, c′ ∈ adom(D) to
distinct elements of its domainDI . This assumption is known as theunique name assumption
(UNA). In addition, we may also enforce that for allc ∈ adom(D), cI := c. This stronger
assumption is known as thestandard names assumption(SNA).
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ALCHQI

DL-LiteR,⊓ DL-LiteF,R DL-LiteF,⊓

DL-LiteR DL-Lite⊓ DL-LiteF

DL-Litecore

Figure 3.1: The relative expressive power of theDL-Lite family.

3.1.2 Basic Properties

The description logics presented in this chapter are contained in the2-variable fragment ofFo
with counting quantifiers,C2. This can be made explicit by means of the·tx,y and·ty,x translations.
We define the translations·tx,y and·ty,x from ALCHQI toC2 by mutual recursion on concepts
and roles as follows:

Rtx,y :=

{
r(x, y), if R = r
Rty,x , otherwise

Rty,x :=

{
r(y, x), if R = r−

Rtx,y , otherwise
Atx,y := A(x) Aty,x := A(y)

(¬C)tx,y := ¬Ctx,y (¬C)ty,x := ¬Cty,x

(C ⊓ C ′)tx,y := Ctx,y ∧ C ′tx,y (C ⊓C ′)ty,x := Cty,x ∧ C ′ty,x

(∃≤kR:C)tx,y := ∃≤ky(R
tx,y ∧ Cty,x) (∃≥kR:C)ty,x := ∃≥kx(R

ty,x ∧ Ctx,y)

We can extend·tx,y (resp.·tx,y ) to ontology assertions with:

(C ⊑ C ′)tx,y := ∀x(Ctx,y ⇒ C ′tx,y)

(R ⊑ R′)tx,y := ∀x∀y(Rtx,y ⇒ R′tx,y)

Finally, we extend·tx,y (resp.·ty,x) to ontologies as follows:Otx,y := {αtx,y | α ∈ O}. Since
databases are setsFo atomic sentences, there is nothing to do in that case.

Notice that all suchC2 formulas are guarded and belong thus to the2-variable guarded frag-
ment ofFo with counting quantifiers,G
2 [BCN+03]. For description logics such asALCI,
ELI and theDL-Lite description logics without functionality assertions, thetranslation rules in-
volving qualified number restrictions can be replaced by thefollowing ones involving only quali-
fied existentials

(∃R:C)tx,y := ∃y(Rtx,y ∧ Cty,x) (∃R:C)ty,x := ∃x(Rty,x ∧Ctx,y)

which do not require counting quantifiers. As a result, theselogics are contained in the two-
variable guarded fragment ofFo,Gf2.
Proposition 3.1.1([BCN+03]). AnALCHQI conceptC is satisfiable iffCtx,y (resp. Cty,x) is
satisfiable.
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Proof. It can be easily shown by induction onC that, for some interpretationI, c ∈ DI and
assignmentγ:

c ∈ CI iff I, γ[x := c] |= Ctx,y ,

and, resp., for·tx,y . This closes the proof.

Thenegation normal form·NNF transformation of anALCI conceptC is defined by structural
recursion onC with

ANNF := A (¬A)NNF := ¬A
(∃R:C)NNF := ∃R:CNNF (¬(∃R:C))NNF := ∀R:(¬C)NNF

(C ⊓ C ′)NNF := CNNF⊓ CNNF (¬(C ⊓ C ′))NNF := (¬C)NNF⊔ (¬C ′)NNF

and
(¬(¬C))NNF := CNNF

An ALCHQI conceptC is saidto be in negation normal form(NNF) wheneverCNNF = C.
It immediately follows:

Proposition 3.1.2([BCN+03]). For every conceptC in ALCI, there exists an equivalentALCI
conceptC ′ in NNF, and ifC is in NNF, then negation is restricted to atomic concepts.

3.2 Conjunctive and Tree-Shaped Queries

We use queries to retrieve information from OBDASs. As querylanguages, we considerconjunc-
tive queries(CQs) andtree shaped conjunctive queries(TCQs) which are those CQs built using
only unary and binary relations and that are tree-isomorphic. By default, and unless explicitly
stated otherwise, formal queries are built over the signature Sig := (∅, {Ai | i ∈ N}, {rj | j ∈
N}) of ontology language concept names and role names.

Definition 3.2.1 (Conjunctive queries and their unions). A conjunctive queryis an existentially
quantified conjunction of positiveFo relational atoms

ϕ(x̄) := ∃ȳϕ(x̄, ȳ) (CQ)

over variables̄x andȳ, where the free variables̄x are known also as the CQ’sdistinguished vari-
ables. The length|x̄| of the sequence of distinguished variables is known as thearity of the CQ.
A union of conjunctive queriesis a disjunction

ϕ(x̄) := ∃ȳ1ϕ1(x̄, ȳ1) ∨ · · · ∨ ∃ȳkϕ1(x̄, ȳk) (UCQ)

of CQs, all of the same arity. CQs and UCQs are said to bebooleanwhen they contain no free
variables. The integer|ϕ| denotes thesizeof UCQϕ, i.e., its number of symbols.

Intuitively, non-distinguished variables combined with the relational conjunctions stand for
relational database table joins and selections, and distinguished variables for the information
we want to project in the result: UCQs thus constitute a declarative specification of a SQL
SELECT-PROJECT-JOIN-UNIONquery result table (see [AHV95], Chapter 7). We will write
ϕ instead ofϕ(x̄) whenever the free variables are clear from context.

Given a databaseD, I(D) denotes theinterpretation associated withD, viz., the (Herbrand)
interpretation obtained by interpreting each relation symbol S of arity k occurring inD (hence,
in particular, concept namesA and role namesr) by SI(D) := {(c1, . . . , ck) ∈ adom(D)n |
S(c1, . . . , ck) ∈ D}.

Let ϕ be a UCQ andD a database. Answers to databases are based on theFo assignments
γ : FV(ϕ)→ DI(D) which are satisfying overI(D). An assignmentγ is said tosatisfyϕ w.r.t.D
wheneverI(D), γ |= ϕ. We denote bySatD(ϕ) the set ofsatisfying assignmentsfor ϕ overI(D).
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Definition 3.2.2(Database answers). The set ofanswersto a UCQϕ of distinguished variables̄x
over a databaseD is defined as

ans(ϕ,D) := {γ(x̄) ∈ D
|x̄|
I(D) | there existsγ ∈ SatD(ϕ)}. (Ans)

Letϕ be a UCQ, and(O,D) a knowledge base. Answers to knowledge bases are based on theFo groundingsσ : FV(ϕ)→ Dom that guaranteeϕ’s being logically entailed by(O,D), i.e., s.t.
(O,D) |= ϕσ. We say in that case that such groundings arecertain. We denote bySatOD(ϕ) the
set of certain groundings forϕ over(O,D).

Definition 3.2.3(Certain answers). The set ofcertain answersto a UCQϕ of distinguished vari-
ablesx̄ over a knowledge base(O,D) is defined as

cert(ϕ,O,D) := {σ(x̄) ∈ adom(D)|x̄| | there existsσ ∈ SatOD(ϕ)}. (Cert)

Remark that this implies that, when we ask aboolean(U)CQϕ to a databaseD or a knowledge
base(O,D) we will get as answer or, resp., as certain answer,{()}, viz., theempty tuplewhenever
I(D) |= ϕ or, resp.,(O,D) |= ϕ. Otherwise, we will get an empty set of answers or certain
answers.

Example 3.2.4. Answering a UCQ over an OBDAS, i.e., returning a certain answer, exploits
logical reasoning to “complete” the missing and/or incomplete factual information it may contain.
Consider the following ER diagram for the student domain:

Student attends Course

takesExam

comesFrom

hasCredits:Integer

Country

(1,n)

(1,n)(1,n)

(0,n)

(0,n)

(0,n)

It states, basically, IS-A among two relation types,takesExamandattends, which hold among the
entity typesStudentandCourse, and to which cardinality constraints have been ascribed1.

TheDL-Lite family of description logics can capture, notwithstandingits simplicity, the main
features of conceptual modelling languages, such as ER diagrams (and which constitute an alter-
native standard notation for ontologies). It is captured bythe DL-LiteR,⊓ ontologyOs. Entities
correspond to concepts, relations to roles, and IS-A and cardinality constraints to assertions:

Student⊑ ∃attends takesCourse⊑ attends
∃attends⊑ Course ∃attends− ⊑ Student

Let nowDs be the database

takesCourse(Jay,TOC) Student(Joe)

1The pair of integers(n,m) to the left (resp., right) of a relation type state that the cardinality of its domain (resp.,
range) ranges betweenn andm.
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Suppose we want now to ask to the knowledge base/OBDAS(Os,Ds) whether Joe studies
something and whether Jay is a student, viz.,

ϕs := ∃y attends(Joe, y) and ϕ′
s := ∃y Student(Jay)

Clearly, a lot of explicit information is missing fromDs. However, in both cases, the certain
answers semantics returns a positive answer. Indeed,(Os,Ds) |= ϕs and(Os,Ds) |= ϕ′

s. Hence,
cert(Os,Ds, ϕs) = cert(Os,Ds, ϕ′

s) = {()}.
Observe that, in contrast to DBMSs, queries are formulated over the roles and concepts of

both the ontology and the database. Moreover, databases in OBDASs provide only an incomplete
specification of the explicit information known about the domain, which is to be completed via the
implicit knowledge contained in the ontology through logical reasoning.

In the example, theattendsrole is empty inDs. However, since any subsequent “state” (or
model)D′ ⊇ Ds must comply withOs (i.e.,I(D′) |= Os), and in particular with the role inclusion
assertiontakesCourse⊑ attends, the tuples in roletakesCoursecan be “propagated” (viaFo
entailment and certain answers) to the roleattends, thus allowing the(Os,Ds) system to answer
the queryϕs. ♣

A well-known property of the certain answers of an UCQϕ over a knowledge base(O,D), is
that it can be characterized in terms of the answers toall the databasesD compatiblewith (O,D),
i.e., the databasesD′ extendingD which “comply with”O, i.e., such that its derived interpretation
I(D′) is a model ofO.

Proposition 3.2.5([CdV+06]). For each UCQϕ of distinguished variables̄x, every knowledge
base(O,D) and every sequence of constantsc̄,

(O,D) |= ϕ{x̄ 7→ c̄} iff c̄ ∈
⋂

D⊆D′

I(D′)|=O

ans(ϕ,D′).

By definition UCQs are contained in the positive existentialfragment ofFo, Fo+
∃ . Adding

negation to UCQs gives rise to the class ofFo queries. Hence, core SQL (SQL without aggre-
gations) is syntactic sugar forFo andFo queries and itsSELECT-PROJECT-JOIN-UNION
fragment forFo+

∃ . Tree-shaped queries are defined as a proper fragment of UCQsand thus in-
herit their properties.

Definition 3.2.6 (Tree-shaped queries and their unions). A tree-shaped queryϕ(x) is a CQ with
one distinguished variablex, calledroot, defined inductively by

ϕ(x) → A(x) | ∃yR(x, y) | ∃yR(x, y) ∧ ϕ(y) | ϕ(x) ∧ ϕ′(x)
R(x, y) → r(x, y) | r(y, x)

(TCQ)

A union of tree-shaped queriesis a union

ϕ(x) := ϕ1(x) ∨ · · · ∨ ϕk(x) (UTCQ)

of TCQs. TCQs and UTCQs are said to bebooleanwhen they contain no free variables.

Every TCQϕ(x) rooted inx can be (bijectively) mapped to a directed adorned treeTϕ: each
atomr(z, z′) gives rise to two nodesz andz′ and an edge(z, z′) with tagr and each atomA(z)
to tagA over nodez [GHLS07, HT02].
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3.3 Reasoning Problems

An OBDASs has to fulfil two key tasks:(i) it has to access the information its database stores, viz.,
compute the certain answers of a conjunctive query, and(ii) it has to be able to check whether any
update violates an ontology constraint. Inspired by Vardi in [Var82] we are interested in knowing
how difficult these tasks are w.r.t. thesize of the data, a.k.a.data complexity. This is motivated
by practical reasons. Relational databases may be very large. They may store terabytes of data.
Queries and ontologies, on the other hand, tend to be comparatively small, often of negligible size
compared to the sheer number of records in the tables to be joined, filtered and projected away
to the answers, or updated. Thus, the main requirement of these systems is that theyscale to
the data. It is also of interest to consider the performance of the system w.r.t. all its inputs. To
measure their scalability it is customary to consider the computational complexity of the decision
problems associated to tasks(i) and(ii) , namely, knowledge base query answering and knowledge
base satisfiability:

Definition 3.3.1 (Knowledge base query answering). The query answering(KBQA) decision
problem for UCQs and knowledge bases is theFo entailment problem stated as follows:

– Input(s): a knowledge base(O,D), a UCQϕ of distinguished variables̄x and a sequencēc
of |x̄| constants.

– Question: does there exist a substitutionσ(·) s.t. (i) σ(x̄) = c̄ and(ii) (O,D) |= ϕσ?

Definition 3.3.2 (Knowledge base satisfiability). The knowledge basesatisfiability (KBSAT) de-
cision problem for knowledge bases is theFo satisfiability problem stated as follows:

– Input(s): a knowledge base(O,D).
– Question: Is (O,D) satisfiable?

Formally, thedata complexityof KBQA and KBSAT arises when we considerD as the only
input of the problem(s) [Var82]. When all the inputs of thesereasoning problems are considered,
we speak about theircombined complexity.

Optimal data complexity is reached when KBQA and KBSAT are in LSpace, which is the
complexity of relational database query evaluation. Indeed, such optimum is achieved when a log-
space (in the data) reduction, known asperfect rewritingfrom KBQA and KBSAT to relational
database query evaluation exists [CdL+06, CdV+06, CdL+05a].

Definition 3.3.3 (Database query answering). The query answering(QA) decision problem for
UCQs and databases is theFo model checking problem stated as follows:

– Input(s): a databaseD, a UCQϕ of distinguished variables̄x and sequencēc of |x̄| constants.
– Question: does there exist an assignmentγ(·) s.t. (i) γ(x̄) = c̄ and(ii) I(D), γ |= ϕ?

Theorem 3.3.4.The problem ofQA is:

1. in LSpacew.r.t. data complexity for UCQs and
2. NPTime-complete w.r.t. combined complexity for (U)CQs.

Proof. Vardi shows in [Var82], that answering arbitraryFo queries over databases is inLSpace
in data complexity (by reduction to theFomodel checking problem). On the other hand, it can be
shown that QA for UCQs is polynomially equivalent to thequery equivalenceproblem in which
we check whether, for any two queriesϕ andϕ and every databaseD, ans(ϕ,D) = ans(ϕ′,D).
The query equivalence problem for UCQs is known to beNPTime-complete (see [CM77]).
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Given the semantics of OBDAS, both data and combined complexity are influenced by the
constructors allowed or dissallowed in the ontology and query languages supported by the system.
In particular, full boolean conjunction and negation in theontology and/or the query language give
rise, in general, tocoNPTime-hard data complexity for KBQA. The logics of theDL-Lite family,
not being closed by neither construct, exhibit optimal datacomplexity, whileELI is still scalable
(recall that it lacks negation), i.e., inPTime. The description logicALCI (andALCHQI), since
closed under negation and conjunction, is on the other hand,coNPTime-hard in data complexity.
These results are formalized in the theorems below.

Theorem 3.3.5([CdV+06, OCE08, LK07, Ros07]). The problem ofKBQA is:

1. inLSpacew.r.t. data complexity for UCQs and DL-Lite, DL-LiteR, DL-LiteF and DL-LiteR,⊓
ontologies;

2. PTime-complete w.r.t. data complexity for U(T)CQs andELI ontologies;
3. coNPTime-complete w.r.t. data complexity for (T)CQs andALCI and/orALCHQI ontolo-

gies;
4. NPTime-hard w.r.t. combined complexity for CQs andELI ontologies; and
5. 2-ExpTime-complete w.r.t. combined complexity for (U)CQs andALCI andALCHQI

ontologies.

Theorem 3.3.6([CdV+06, BCN+03]). The problem ofKBSAT is:

1. in LSpacew.r.t. data complexity for knowledge bases from DL-Lite, DL-LiteR, DL-LiteF and
DL-LiteR,⊓; and

2. ExpTime-complete w.r.t. combined complexity forALCI andALCHQI knowledge bases.

3.4 Related Formalisms

Ontology and query languages are thus closely related to (more precisely, contained in) a certain
number of fragments ofFo, which possess interesting properties. In particular, thenotions of
knowledge base and queries can be generalized toFo: ontologies can be seen asFo axiomatics,
whereas queries are specificFo formulas.

A restrictedk-variable fragment ofFo, denotedFok, is any fragment constituted of all theFo formulas built using onlyk variables. In particular, the2-variable fragment ofFo [GKV97],Fo2, is the fragment constructed using only two variables. The the extensionC of Fo with
counting quantifiersis defined as the smallest set of formulas containingFo and such that the
formula

∃≤kxϕ(x),

whereϕ(x) is inC, is inC. Let S(x̄) denote an arbitraryFo relational atomic formula of arity
|x̄|. The formulas ofGf, theguardedfragment ofFo [Grä99] are defined inductively by

ϕ→ S(x̄) | ϕ ∧ ϕ′ | ¬ϕ | ∃x̄(S(x̄) ∧ ϕ),

if x̄ ⊆ FV(ϕ). The formulas ofFo+
∃ , thepositive existentialfragment ofFo are defined induc-

tively by
ϕ→ S(x̄) | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ∃x̄ ϕ.

Combining together these fragments gives rise to other interesting fragments. In particular,(i)Gf2 the2-variable guarded fragment ofFo, defined byGf2 := Fo2 ∩Gf,
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(ii) C2, the2-variable fragment ofFo with counting quantifiers, defined byC2 := Fo2 ∩C,
and(ii) G
2, the2-variable guarded fragment ofFo with counting quantifiers, defined byG
2 := C2 ∩Gf.

TheFo2,Gf andGf2 fragments defined above are known to be decidable for SAT [GKV97,
Grä99]. An important property ofFo+

∃ (and hence of UCQs) is that its formulas are closed under
homomorphisms among interpretations.

Definition 3.4.1 (Homomorphism). An homomorphismh among two interpretationsI andI ′,
denotedI →֒h I

′, is a functionh : DI → DI′ s.t. for all relation symbolsR of arity n and all
(c1, . . . , cn) ∈ DnI , if (c1, . . . , cn) ∈ SI , then(h(c1), . . . , h(cn)) ∈ SI′

.

If the converse also holds, then we say that two interpretationsI andI ′ arehomomorphically
equivalent, and writeI ∼h I ′. A Fo formula ϕ is said to beclosed under homomorphisms
whenever, for all interpretationsI andI ′ if I |= ϕ andI →֒h I

′, thenI ′ |= ϕ.

Theorem 3.4.2([CK90], Exercise 2.1.3). Fo+
∃ formulas, and a fortiori UCQs, are closed under

homomorphisms.

The database (Ans) and certain answers (Cert) semantics for UCQs that we introduced, since
based onFo semantics, generalizes toFo queries and arbitraryFo knowledge bases. Clearly,
Proposition 3.2.5 also generalizes toFo queries and arbitraryFo knowledge bases. This gives
rise to a certain number of formal results that we will apply repeatedly in this thesis.

Theorem 3.4.3([PH08b]). The data complexity ofKBQA is coNPTime-complete forG
2 andFo+
∃ queries.

Theorem 3.4.4([PH08b], Theorem 1). The data complexity ofKBSAT is NPTime-complete forC2.

Since UTCQs areC2 formulas, this implies:

Corollary 3.4.5. The data complexity ofKBQA is coNPTime-complete forC2 and (U)TCQs.

These computational properties are inherited by the fragments they subsume.

3.5 Expressing Ontologies and Queries with Controlled English

In Chapter 3 we said that controlled languages (and in general, any fragment of a natural lan-
guage) express, modulo compositionality, compositional translationsτ(·) and semantically en-
riched grammars, logic fragments, namely, the set of their (Fo andHo) meaning representations.
Thereafter, their semantic complexity can be studied.

In this thesis we intend to engage in a fine-grained analysis of the data complexity of controlled
English for data access. We would like, moreover, to make useof the wealth of proof techniques
and results related to formal ontology and query languages to fullfill this aim. To this end, we
propose to express in controlled English ontology and querylanguages:

Definition 3.5.1(Expressing Query Languages). Given a query languageQ, to expressQ in con-
trolled language, define a semantically enriched grammarGQ of compositional translationτQ(·)
defining an interrogative controlled languageL(GQ) s.t. τQ(L(GQ)) = Q.
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Definition 3.5.2 (Expressing Ontology Languages). Given an ontology languageL, to expressL
in controlled language, define a semantically enriched grammarGL of compositional translation
τO(·) defining a declarative controlled languageL(GL) s.t. τO(L(GL)) = L.

Clearly, if a controlled language or a pair of controlled languages, one declarative,LL, one
interrogativeLQ, express an ontology languageL and a query languageQ then, the semantic
complexity ofLL andLQ will coincidewith the (set of) computational properties ofL andQ.
In particular, this analysis can be doneconstruct by construct, i.e., by examining the different
combinations of function and content words covered by the controlled languages, insofar as their
semantics will be captured exactly, moduloτ(·), by the ontology and query language constructors
into which they translate (as we saw in Chapter 3).

3.6 Summary

In this chapter we have overviewed the syntax, the semanticsand the main (known) computational
properties of the ontology and query languages that we will study in this thesis. On the one hand
the following fragments ofALCHQI: theDL-Lite family, ALCI andELI. On the other hand,
as formal queries, (U)TCQs and (U)CQs. We have also recalledthe decision problems we want to
focus on: KBSAT (knowledge base satisfiability) and KBQA (knowledge base query answering),
emphasizing why, in the context of OBDASs, we must focus on their data complexity. Our pur-
pose is to express these ontology and query languages later in this thesis with several controlled
languages. We argue that, modulo compositionality, this allows to provide a fine-grained analysis
of their scalability to data based on the different combinations of function and content words they
cover.



Chapter 4

ExpressingDL-Lite and Tree-Shaped Queries

In this chapter we show two main results:(i) We express in controlled language the members of
theDL-Lite family of description logics discussed and highlighted in Chapter 4. To express these
description logics we define a declarative controlled language, Lite-English, expressingDL-Lite⊓,
which we later extend to express functionality and role assertions, i.e., to expressDL-LiteF,⊓
and DL-LiteR,⊓. SinceDL-Lite⊓ extendsDL-Litecore, DL-LiteF,⊓ extends bothDL-LiteF and
DL-Lite⊓, andDL-LiteR,⊓ extends bothDL-LiteR and DL-Lite⊓ (recall Figure 3.1 from Chap-
ter 4), Lite-English expresses these description logics aswell1. (ii) We express in controlled lan-
guage TCQs. To express TCQs we define the interrogative controlled language GCQ-English, that
expressesgraph-shaped conjunctive queries(GCQs), a slight extension of TCQs which allows a
restricted kind of loop in the tree-structure of TCQs.

Two reasons guide the choice of GCQs. On the one hand, we want to express in controlled
language an optimal case of KBQA: answering CQs (a query language strictly more expressive
than either TCQs or GCQs) over knowledge bases expressed in someDL-Lite description logic is
in LSpace(recall Theorem 3.3.5 from Chapter 4). On the other hand, we want the declarations
and questions of our fragments to remain close to grammatically correct English declarations and
questions.

In particular, expressing the restricted loops allows a restricted coverage of English anaphoric
pronouns by GCQ-English. Such coverage represents a trade-off between expressiveness and
simplicity. CQs use arbitrary many variables, which, in formal semantic theory, correspond to
anaphoric pronouns. However, we do not want to burden the casual user with arbitrarily long
co-reference chains (which are in general difficult for speakers to keep in mind).

We also characterize therelative and absolute expressive powerof Lite-English, by comparing
the expressive power of theDL-Lite family and Pratt and Third’s fragments of English [PHT06].
In particular, since SAT is tractable in combined complexity for theDL-Lite logics (SAT reduces to
database query evaluation, see [CGL+07]), we consider the tractable fragments of English, viz.,
COP, COP+TV and COP+TV+DTV. We exhibit a number ofclosure propertiesof the DL-Lite
family (simulations, closure under unions of chains) andlogic embeddingsamong theDL-Lite
family and the fragments of English to establish, respectively, absolute and relative expressive
power. This strategy allows us to pinpoint thereafter the controlled language constructs we gain
with Lite-English, i.e., the English function words occurring in a controlled or heavily restricted
form in Lite-English (negation, relatives) that give rise to intractability when used without restric-
tions in Pratt and Third’s fragments.

The results on expressive power were first published in [BCT07a]. The results on GCQs and
GCQ-English were first published in [Tho08].

1The work on Lite-English stems from joint work with R. Bernardi and D. Calvanese in [BCT07b].
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4.1 Lite-English

In this section we present the syntax and vocabulary of Lite-English. Lite-English aims at ex-
pressing firstly the description logicDL-Lite⊓ and, secondly, by means of suitable extensions,
DL-LiteR,⊓ andDL-LiteF,⊓, and thus all the other description logics of interest from theDL-Lite
family of description logics,DL-Litecore, DL-LiteR andDL-LiteF which the former three subsume.

As Lite-English meaning representations we will consider theFo counterpartsCtx,yl andCtx,yr

of DL-Lite left and right conceptsCl andCr rather than the concepts themselves, and call them
left andright formulasand/or concepts. Similarly, we will use the binary atomRtx,y to denote the
roleR. This makes sense since as we saw in the previous chapter, modulo the translations·tx,y

and·ty,x the logics of theDL-Lite family can be seen as fragments ofFo. Accordingly, we will
consider

– instead of concept inclusion assertionsCl ⊑ Cr, sentences∀x(Ctx,yl ⇒ C
tx,y
r ),

– instead of role inclusion assertionsR ⊑ R′, ∀x∀y(Rtx,y ⇒ R′tx,y), and
– instead of functionality assertions(functR), ∀x(⊤tx,y ⇒ ∃≤1R

tx,y ∧ ⊤ty,x).

Please notice that since types and typed lambda expressionsare not strictly necessary for ex-
pressingDL-Lite⊓, we will omit any explicit mention of the them in the definition of Lite-English
and of the compositional translationτ(·). To simplify the proofs that show that a controlled lan-
guage expresses an ontology language and/or a query language, we introduce the notion ofstruc-
tural equivalence:

Definition 4.1.1 (Structural equivalence). A Ho formulaψ := λx1 · · ·λxn.χ is said to bestruc-
turally equivalentto aFo formulaϕ with n free variables, in symbolsϕ ≡s ψ, wheneverχ ≡ ϕ,
i.e., wheneverχ andϕ areFo equivalent (i.e., wheneverMod(χ) = Mod(ϕ)).

4.1.1 ExpressingDL-Lite⊓

Lite-English is defined by a semantically enriched context-free grammar whose phrase structure
rules are shown in Figure 4.1 and whose content and function lexicon are shown in Figure 4.2.
We consider as function words: pronouns (e.g., “somebody”), determiners (e.g. “every”), con-
junctions (e.g. “and”), etc., which express, ultimately,DL-Lite⊓ logical operators inFo format.
As content words we consider: common nouns (e.g. “man”), proper nouns (e.g. “Julian”), at-
tributive and qualificative (a.k.a. intersective) adjectives (e.g., “brave”), intransitive and transitive
verbs (e.g., “leaves” or “loves”). We do not consider ditransitive verbs (i.e., we exclude verbs like
“gives” from our lexicon).

Proper nouns stand for individuals, common nouns forDL-Lite⊓ atomic concepts, adjec-
tives for attributes, and recursive set-typed constituents (verb phrases and nominals), for arbitrary
DL-Lite⊓ concepts.

We subcategorizesyntactic categories intoleft andright categories (by means of the indexes
l andr, respectively), to capture the distinction made inDL-Lite⊓ among left and right concepts.
Thus, our grammar contains two separate sets of phrase structure rules, one defining left con-
stituents, which express left conceptsCl, and another that defines right constituents, which express
right conceptsCr.

Inverted roles can be expressed by considering their passive forms. For simplicity, however, we
will disregard all morphosyntactic issues, which are, anyway, easy to deal with. We will consider
declarative sentences inflected in the third person, of masculine gender and singular number, and
in present tense and active voice.

Lemma 4.1.2. For every sentenceD of Lite-English, there exists an assertionα of DL-Lite⊓ s.t.
τ(D) ≡s α.
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(Phrase structure rules) (Semantic actions)

SO→NPlVPr τ(SO) := τ(NPl)(τ(VPr))

Slg →VPl τ(Slg) := τ(VPl)

Srg →VPr τ(Srg) := τ(VPr)

Nl→NlRelCl τ(Nl) := τ(RelCl)(τ(Nl))
Nl→N τ(Nl) := τ(N)
Nl→AdjNl τ(Nl) := τ(Adj)(τ(Nl))
Nr→NrRelCr τ(Nr) := τ(RelCr)(τ(Nr))
Nr→N τ(Nr) := τ(N)
Nr→AdjNr τ(Nr) := τ(Adj)(τ(Nr))

VPl→TVNPl τ(VPl) := τ(NPl)(τ(TV))
VPl→ IV τ(VPl) := τ(IV)
VPl→ isAdj τ(VPl) := τ(Adj)
VPl→ is aNl τ(VPl) := τ(Nl)
VPl→VPlCrdVPl τ(VPl) := (τ(Crd)(τ(VPl)))(τ(VPl))
VPr→VPrCrdVPr τ(VPr) := (τ(Crd)(τ(VPr)))(τ(VPr))
VPr→TVNPr τ(VPr) := τ(TV)(τ(NPr))
VPr→ isAdj τ(VPr) := τ(Adj)
VPr→ is aNr τ(VPr) := τ(Nr)
VPr→ IV τ(VPr) := τ(IV)
NPl→ProlRelCl τ(NPl) := τ(Prol)(τ(RelCl))
NPl→DetlNl τ(NPl) := τ(Detl)(τ(Nl))
NPr→DetrNr τ(NPr) := τ(Detr)(τ(Nr))

RelCl→RelpSlg τ(RelCl) := τ(Relp)(τ(Slg))

RelCr→RelpSrg τ(RelCr) := τ(Relp)(τ(Srg))

SD→NPDVPD τ(SD) := τ(NPD)(τ(VPD))

VPD→ isAdj τ(VPD) := τ(Adj)
VPD→ is aN τ(VPD) := τ(N)
VPD→TVNPD τ(VPD) := τ(TV)(τ(NPD))
NPD→Pn τ(NPD) := τ(Pn)

Figure 4.1: Lite-English
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(Function lexicon)

Prol→ anybody τ(Prol) := λP.λQ.∀x(P (x)⇒ Q(x))
Detl→ every τ(Detl) := λP.λQ.∀x(P (x)⇒ Q(x))
Detl→ no τ(Detl) := λP.λQ.∀x(P (x)⇒ ¬Q(x))
Prol→ somebody τ(Prol) := λP.∃xP (x)
Pror→ somebody τ(Pror) := λP.∃xP (x)
Crd→ and τ(Crd) := λP.λQ.λx.(P (x) ∧Q(x))
Relp→who τ(Relp) := λP.λx.P (x)
Relp→ that τ(Relp) := λP.λQ.λx.(P (x) ∧Q(x))

(Content lexicon)

N→man τ(N) := λx.Man(x)
N→woman τ(N) := λx.Woman(x)

...
TV→ attacks τ(TV) :=λβ.λx.β(λy.attacks(x, y))
TV→ loves τ(TV) :=λβ.λx.β(λy.loves(x, y))
TV→ likes τ(TV) :=λβ.λx.β(λy.likes(x, y))

...
IV→ runs τ(IV) :=λx.Run(x)

...
Pn→ Julian τ(Pn) :=λP.P (Julian)
Pn→Persia τ(Pn) :=λP.P (Persia)

...

Figure 4.2: Lite-English
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Proof. To prove this result we need to prove that

for eachVPf or Nf constituent, forf ∈ {l, r}, there exists
a conceptCf (x) s.t. τ(VPf ) ≡s Cf (x) or τ(Nf ) ≡s Cf (x)

(†)

by mutual induction on the lengthn of derivations rooted inVPfs andNfs.

– (n = 1) There are five possibilities. EitherNf =⇒ N, VPf =⇒ IV, VPf =⇒ is aN or
VPf =⇒ isAdj, for f ∈ {l, r}. In all four casesτ(·) maps them toλx.A(x), whereA(x) is
a concept name or atomic formula.

– (n = k + 1) We look at a couple of cases only. The argument is similar forall the remaining
cases.

• VPl =⇒
k+1 VP′

lCrdVP′′
l . ThenVP′

l =⇒
k w′ andVP′′

l =⇒k w′′, for some se-
quencesw′, w′′ of terminals and non-terminals. By IH there existC ′

l(x) andC ′′
l (x) s.t.

τ(VP′
l) ≡s C

′
l(x) andτ(VP′′

l ) ≡s C
′′
l (x). Whence:

τ(VPl)=df τ(Crd)(τ(VP′
l))(τ(VP′′

l ))
=ih λP.λQ.λx.P (x) ∧Q(x)(λz.C ′

l(z))(λw.C
′′
l (w))

⊲ λx.(C ′
l(x) ∧C

′′
l (x)),

which is structurally equivalent to the left conceptCl(x) = C ′
l(x) ∧ C

′′
l (x).

• Nr =⇒k+1 Nr RelCr =⇒k N Relp Srg. Now Srg =⇒ VPr andVPr =⇒k−1 w′′

for some sequencew′′ of terminals and non-terminals. By IH on derivations of length
≤ k rooted inVPr, VPr ≡s Cr(x), for some right conceptCr(x). On the other hand
Nr =⇒

k−1 w′ with τ(Nr) ≡s C
′
r(x), again by IH. Therefore,

τ(Nr)=df τ(Relp)(τ(Nr))(τ(S
r
g))

=ih λP.λQ.λx.P (x) ∧Q(x)(λz.C ′
r(z))(λw.C

′′
r (w))

⊲ λx.C ′
r(x) ∧ C

′′
r (x),

andτ(Nr) ≡s C
′
r(x) ∧ C

′′
r (x), a right concept or formula.

We are now ready to associate a complete meaning representation to each Lite-English sentence
D. We have two cases to consider

i. SO =⇒∗ NPl VPr =⇒
∗ Detl Nl VPr, and

ii. SO =⇒∗ NPl VPr =⇒
∗ Prol RelCl VPr.

In both cases, modulo (†) is is easy to see thatτ(SO) ≡s ∀x(Cl(x)⇒ Cr(x)).

Lemma 4.1.3.Every DL-Lite⊓ assertionα is the image byτ(·) of a sentenceS of Lite-English up
to structural equivalence.

Proof. To prove this result we need to prove that

for eachDL-Lite⊓ Cf (x) concept, there exists a Lite-EnglishVPf

or Nf s.t. τ(VPf ) ≡s Cf or τ(Nf ) ≡s Cf , for f ∈ {l, r}
(†)

by (a tedious, albeit simple) structural induction on conceptsCf (x). We do it only for left con-
cepts. The proof for right concepts proceeds similarly.

– (Basis)There are two possibilities. EitherCl(x) := A(x), for which we considerNl =⇒
∗

N =⇒∗ A (resp. VPl =⇒
∗ is aN =⇒∗ is aA) or Cl(x) := ∃yR(x, y) and we consider:

VPl =⇒
∗ TV NPl =⇒

∗ TV Prol =⇒
∗ Rs somebody.
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– (Inductive step)Cl(x) := C ′
l(x) ∧ C

′′
l (x). By IH there exists aVP′

l and aVP′′
l (resp. a

N′
l and aN′′

l) s.t. VP′
l =⇒

∗ w′ andVP′′
l =⇒

∗ w′′ with, resp.,τ(VP′
l) ≡s C

′
l(x) and

τ(VP′′
l) ≡s C

′′
l (x). The desiredVPl (or Nl) is given byVPl =⇒

∗ VP′
l Crd VP′′

l =⇒
∗

w′ andw′′ of meaning representationC ′
l(x) ∧ C

′′
l (x).

We now need to show that when put together into assertions, they can be captured by some Lite-
English sentence. Letα := ∀x(Cl(x) ⇒ ±Cr(x)) be aDL-Lite⊓ assertion. There are two
possibilities:

i. eitherSO =⇒∗ NPl VPr =⇒
∗ Detl Nl VPr =⇒

∗ no/everyw w′, or
ii. SO =⇒∗ NPl VPr =⇒∗ Prol Relpl Slg VPr =⇒∗ ProlRelplVPlVPr =⇒∗

anybody whoVPlVPr =⇒
∗ anybody whoww′.

Modulo (†), this means that “no/everyNl VPr” and “anybody whoVPl VPr” are the desired
Lite-English sentences (or sentence patterns).

From Lemmas 4.1.2 and 4.1.3 we immediately derive:

Theorem 4.1.4(Lite-English). Lite-English expresses DL-Lite⊓.

In general, Lite-English sentences respect the patterns

SO → Detl NlVPr and SO → Detl RelCl VPr

whereDetl Nl (resp. Detl RelCl) corresponds to thesubjectof the sentence andVPr to
the predicate of the sentence. Subjects map to leftCl(x) concepts and predicates to rightCr(x)
concepts. Such sentence patterns are ultimately mapped, modulo τ(·) and structural equivalence,
to Fo sentences∀x(Cl(x) ⇒ Cr(x)), which are the image by translations·tx,y and ·ty,x of a
DL-Lite⊓ assertionCl ⊑ Cr.

For example, existential quantification, conveyed by thePror andProl “somebody” (and of
meaning representationλP.∃xP (x), i.e., a generalized quantifier [BC80]), can occur both in the
subjectNl orRelCl constituents or in the predicateVPr constituent (and within their arbitrarily
nested subordinated clauses). This is becauseDL-Lite⊓ unqualified existential roles (inFo: for-
mulas like∃y r(x, y) with one free variable) can occur both to the left and to the right of⇒ (or of
⊑ in description logic notation), as seen in Chapter 4, Table 3.2.

Example 4.1.5.Figure 4.3 shows that

Every man loves somebody. (4.1)

is in Lite-English and expresses the assertion∀x(Man(x) ⇒ ∃yloves(x, y)), which corresponds
to theDL-Lite⊓ ontology assertionMan⊑ ∃love. At each node, the meaning representation built
is the reduct (by⊲) of its immediate successors, down to the yield. Similiarly, Figure 4.4 shows
that

Julian attacks Persia. (4.2)

is also recognized. As hinted above, the final logical assertion is attained through lambda calculus
β-reduction. On the other hand, English sentences like

*Some man loves anybody. (4.3)

do not belong to Lite-English. Why? Because(i) “some” cannot occur in subject position,(ii)
”anybody” cannot occur in predicate position. ♣
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τ(SO) = ∀x(Man(x) ⇒ ∃y(loves(x, y))

τ(NPl) = λQ.∀x(Man(x) ⇒ Q(x))

τ(Detl) = λP.λQ.∀x(P (x) ⇒ Q(x))

Every

τ(Nl) = λx.Man(x)

τ(N) = λx.Man(x)

man

τ(VPr) = λx.∃y.loves(x, y)

τ(TV) = λβ.λy.β(λx.loves(x, y))

loves

τ(NPr) = λP.∃yP (y)

τ(Pror) = λP.∃yP (y)

somebody.

Figure 4.3: Parse tree for “Every man loves somebody”.

τ(SD) = attacks(Julian,Persia)

τ(NPD) = λP.P (Julian)

τ(Pn) = λP.P (Julian)

Julian

τ(VPD) = λx.attacks(x,Persia)

τ(TV) = λβ.λx.β(λy.attacks(x, y))

attacks

τ(NP) = λQ.Q(Persia)

τ(Pn) = λQ.Q(Persia)

Persia.

Figure 4.4: Parse tree for “Julian attacks Persia.”

4.1.2 ExpressingDL-LiteF,⊓ and DL-LiteR,⊓

To express the description logicsDL-LiteF,⊓ and DL-LiteR,⊓ we enrich the grammar of Lite-
English with two separate (i.e., disjoint) sets of ad hoc phrase structure rules designed to parse
solely role inclusions and functionality assertions, obtaining Lite-EnglishR and Lite-EnglishF .
As DL-LiteF,⊓ containsDL-LiteF , DL-LiteR,⊓ containsDL-LiteR, and all, includingDL-Lite⊓,
containDL-Litecore, we express all theDL-Lite logics that interest us. Figure 4.6 shows a sample
Lite-EnglishR parse tree, while Figure 4.5 shows a Lite-EnglishF parse tree.

The extension of the grammar for Lite-EnglishF is as follows:

(Phrase structure rules) (Semantic actions)

SF →NPl
F VPF τ(SF ) := τ(NPl

F )(τ(VPF ))

NPl
F →DetlF NF τ(NPl

F ) := τ(DetlF )(τ(NF ))
NPr

F →DetrF NF τ(NPr
F ) := τ(DetrF )(τ(NF ))

VPF → TV NPr
F τ(VPF ) := τ(TV)(τ(NPr

F ))
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(Function lexicon)

DetrF → every τ(DetrF ) := λP.λQ∀x(P (x)⇒ Q(x))

DetlF → at most one τ(DetlF ) := λP.λQ∃≤1x(P (x) ∧Q(x))

(Content lexicon)

NF → thing τ(NF ) := λx.⊤(x)

Theorem 4.1.6.For each Lite-EnglishF sentenceDF there exists a DL-LiteF,⊓ assertionαF s.t.
τ(DF ) ≡s αF . Conversely, each DL-LiteF,⊓ assertionαF is the image byτ(·) of a sentenceDF

of Lite-EnglishF .

Proof. In neither case is there any induction to be made, since thereare no recursive constituents.
We just need to reason by cases considering all the possible (finite) combinations of phrase-
structure grammar rules as we did when closing the proof of Lemmas 4.1.2 and 4.1.3.

The extension of the grammar for Lite-EnglishR is as follows:

(Phrase structure rules) (Semantic actions)

SR → NPl
i,j VPR

i,j τ(SR) := τ(NPl
i,j)(τ(VPR

i,j))

NPl
i,j → Proli RelCl

i,j τ(NPl
i,j) := τ(Proli)(τ(RelCl

i,j))

RelCl
i,j → Relpli S

l
gi,j

τ(RelCl
i,j) := τ(Relpli)(τ(S

l
gi,j

))

Slgi,j → NPgi VPr
i,j τ(Sgi,j) := τ(NPgi)(τ(VPr

i,j))

VPR
i,j → TV NPR

j τ(VPR
i,j) := τ(TV)(τ(NPR

j ))

NPR
i → ProRi τ(NPR

i ) := τ(ProRi )

(Function lexicon)

Proli → anybody τ(Proli) := λP.λQ.∀x(P (x)⇒ Q(x))
Prori → somebody τ(Prori ) := λP.∃xP (x)
NPl

gi → ti τ(NPl
gi) := λP.P (x)

Relpli → who τ(Relpli) := λP.λx.P (x)

ProRi → him τ(ProRi ) := λP.P (x)

Theorem 4.1.7.For each Lite-EnglishR sentenceDR there exists a DL-LiteR,⊓ assertionαR s.t.
τ(DR) ≡s αR. Conversely, each DL-LiteR,⊓ assertionαR is the image byτ(·) of a sentenceDR

of Lite-EnglishR.

Proof. Again, no inductions are needed, since there are no recursive constituents. We just need
to reason by cases considering all the possible (finite) combinations of phrase-structure grammar
rules as we did when closing the proof of Lemmas 4.1.2 and 4.1.3.

Remark 4.1.8. Notice that in figure 4.6,τ(·) assigns to the subjectNPl
i,j constituent the meaning

representationλP.∀x∀y(loves(x, y) ⇒ P (x)) rather thanλP.∀x(∃yloves(x, y) ⇒ P (x)). How-
ever, sincey does not occur free inP (x), both expressions are logically equivalent. This proviso
allows us to correctly generate a role inclusion from an input utterance.
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4.1.3 Expressive Power of Lite-English

The (semantic) expressive power of a logic (in the restricted sense of a fragment ofFo orHo)
consists in its model-theoretic properties. But there are alternative ways of defining expressive
power. One can speak about(i) absoluteand(ii) relative expressive power.

Absolute expressive power is conveyed by so-calledcharacterizationtheorems that stateclo-
sure propertiesthat hold for their models, and provide a criterion for delimiting the logic’s class
of models.

Relative expressive power can be explored, on the other hand, by simulatinga logic, viz., by
defining a model-preserving logic embedding.

Modulo simulations, embedding logics inherit the properties of the embedded logic [Str05].
In this section we consider only fragments ofFo. LetSigbe aFo signature and letForSig denote
the set of allFo formulas that can be constructed overSig. A logic or logic fragmentis then every
L ⊆ ForSig.

Definition 4.1.9 (Semantic expressiveness). A semantic propertyis a class of interpretations. It
said to beexpressibleby a logicL iff there exists a formulaϕ ∈ L such that its class of models
Mod(ϕ) coincides with this property. Theexpressive powerof L is the union of all such express-
ible properties.

Definition 4.1.10(Logic simulation). Let L, L′ be two logics over signaturesSig andSig’. L′

is said to beat least as expressive asL, or, equivalently,L is contained inL′, iff there exists a
translation·t from ForSig to ForSig′ such that, for everyϕ ∈ L, and every interpretationI over
Sig,

I |= ϕ iff I |= ϕt. (Sim)

The translation·t is called in such case amodel-preservingtranslation, asimulationor by
others, alogic (homomorphic) embedding[Str05]. It can be extended to sets of formulas in the
usual way. The contains relation is trivially a pre-order (i.e., reflexive and transitive). Its symmetric
closure, theequally expressive asrelation, is therefore an equivalence relation.

Proposition 4.1.11.LetL,L′ be two logics s.t.L is contained inL′. Then every semantic property
expressible inL is expressible inL′.

However, this does not preclude their expressive power fromoverlapping: logicL is said to
overlapin expressive power withL′ iff there exists a semantic property expressible by bothL and
L′.

Expressive Power ofFo. In this section we introduce some model-theoretic properties ofFo
on which we leverage later. Among these, a closure property of Fo ∀∗∃∗-sentences: closure
under unions of chains2. We follow in this section Cori and Lascar (see [CL03], Vol. 2, Chapter
8, Section 5.5).

Definition 4.1.12 (Sub-interpretation). Given two interpretationsI andI ′ over aFo signature
Sig without function symbols,I is said to be asubinterpretationof I ′, in symbolsI F I ′,
whenever:
– DI ⊆ D′

I ,
– SI = SI′

∩ DnI , for everyn-ary relation symbolS, and
– cI = cI

′

, for every constantc.

2In general, closure under union of chains can be generalizedto formulasby considering the stronger notion of
elementary subinterpretation, but the current notion suffices for our proofs.
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COP+TV COP DL-Lite

Figure 4.7: Relattive expressive power of theDL-Lite family, COP and COP+TV.

Definition 4.1.13 (Closure under unions of chains). Let ϕ be aFo sentence. We say thatϕ is
closed under unions of chainsiff for any modelI, and any family{Ii}i≥0 of extensions ofI s.t.
i ≤ j impliesIi F Ij, the structureI∞, calledunion interpretationand defined below, is also a
model ofϕ:

– DI∞ :=
⋃

i≥0DIi ,
– SI∞ :=

⋃

i≥0 S
Ii , and

– cI∞ := cIi , for i ≥ 0.

We say thatϕ is aFo ∀∗∃∗-sentenceiff ϕ is of the formϕ = ∀x1 · · · ∀xn∃y1 · · · ∃ymψ, that is,
a quantifier-free matrixψ prefixed byn universal quantifiers followed bym existential quantifiers
(with n,m ≥ 0). Such∀∗∃∗-sentences are closed under unions of chains:

Theorem 4.1.14([CL03]). A Fo sentenceϕ is closed under unions of chains iff there exists an
∀∗∃∗-sentenceϕ′ logically equivalent toϕ.

Comparing the DL-Lite Family to the Fragments of English. In this section we prove that
COP is strictly subsumed byDL-Litecore and hence byDL-Lite⊓, DL-LiteF , DL-LiteR, DL-LiteR,⊓
and DL-LiteF,⊓. The other fragments overlap only in expressive power withDL-Litecore. The
general picture is summarized by Figure 4.7.

Theorem 4.1.15.COP is contained in DL-Litecore, and hence in every the logic of the DL-Lite
family.

Proof. Let Γ ∪ ∆ be a set of COP meaning representations, withΓ a set of quantified meaning
representations and∆ a set of non-quantified meaning representations (a set ofFo atomic sen-
tences). We sketch a simulation mappingΓ ∪ ∆ to a DL-Litecore knowledge base(OΓ,D∆) as
follows.

We map (universal) sentences∀x(P (x) ⇒ ±Q(x)) to DL-Litecore inclusion assertionsAP ⊑
±AQ. By Skolemizing and dropping UNA over the new Skolem constants, we can map the mean-
ing representations∃x(P (x)∧±Q(x)) ∈ Γ to the (database) assertions/factsAP (c

′) and±AQ(c′),
wherec′ is a (fresh) Skolem constant that does not occur in eitherΓ or ∆. Next, for each existing
or newly introduced negative atom¬AP (c), we(i) introduce a fresh unary predicateA′

P , (ii) a dis-
jointness assertionA′

P ⊑ ¬AP and(iii) map fact¬AP (c) to factA′
P (c) and assertionA′

P ⊑ ¬AP .
We get as a result theDL-Litecore knowledge base(OΓ,D∆).
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Clearly, for all interpretationsI,

I |= Γ ∪∆ iff I |= (OΓ,D∆). (†)

Furthermore, this simulation proceeds in timeO(#(Γ )+#(∆)), usingO(log#(∆)) space,
where#(Γ) denotes the number of setences inΓ and#(∆) the number of constants occuring
among the atomic sentences in∆.

Theorem 4.1.16.DL-Litecore, and hence every logic of the DL-Lite family, is not contained in
COP.

Proof. To show that this theorem holds, we exhibit a semantic property that is expressible in
DL-Litecore but not in COP. Consider theFo sentence

ϕ := ∀x(A(x)⇒ ∃yr(x, y)),

which corresponds toDL-Litecore assertions of the formA ⊑ ∃r. The models of sentenceϕ are the
interpretationsI where every point inAI ⊆ DI is connected byrI ⊆ DI×DI to some (arbitrary)
point inDI , viz., the models whereAI ⊆ {c ∈ DI | existsc′ ∈ DI s.t. (c, c′) ∈ rI}. But this
semantic property cannot be expressed in COP because the signatureSigCOP of LCOP contains no
relation symbols.

Theorem 4.1.17.COP+TV is not contained in either DL-LiteR,⊓ or DL-LiteF,⊓, and hence in no
logic of the DL-Lite family.

Proof. To prove this theorem, we show thatDL-LiteR,⊓ andDL-LiteF,⊓ are closed under unions
of chains, but not COP+TV. Assertions in theDL-Lite family yield Fo ∀∗∃∗-sentences. Hence,
all these logics are closed under unions of chains.

Suppose by constradiction that COP+TV is contained in in either DL-LiteR,⊓ or DL-LiteF,⊓.
Then (modulo some translation/simulation·t), the same closure property should hold for COP+TV.
In particular, the closure under unions of chains property should hold for the meaning representa-
tion

∃x(P (x) ∧ ∀y(Q(y)⇒ S(x, y)))

which, after prenexing, gives rise to the (equivalent)∃∗∀∗-sentence

ϕ := ∃x∀y(P (x) ∧ (Q(y)⇒ S(x, y))).

But this is impossible. To see this consider the following modelI of ϕ:

– DI := N,
– P I := QI := DI , and
– SI :=≤N . (i.e. the usual loose order over positive integers).

Notice that(N,≤N) is well-founded and has0 as least element;I is isomorphic to this structure.
Define now a sequence{Ii}i≥0 of interpretations as follows:

– I0 is the model where

• DI0 := DI ∪ {c0},

• P I0 := QI0 := DI0, and

• SI0 := SI ∪ {(c0, 0)}.

– Ii+1 is the model where

• DIi+1 := DIi ∪ {ci+1},
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b b

0 n cn 0 n

Figure 4.8: The interpretationsI0 andI∞.

• P Ii+1 := QIi+1 := DIi+1 , and

• SIi+1 := SIi ∪ {(ci+1, ci)}.

Clearly, for all i ≥ 0, Ii F Ii+1. Hence{Ii}i≥0 is a chain ordered byF. Finally, consider the
union structureI∞ for this chain. One can easily see thatI∞ is not a model ofϕ, since the relation
RI∞ in I∞ has no more a least element (I∞ is now isomorphic to(Z,≤Z)).

Theorem 4.1.18.DL-Litecore, and hence every logic of the DL-Lite family, is not contained in
COP+TV.

Proof. In theDL-Lite family we can writerole-typingassertions of the form∃r ⊑ A, or equiva-
lently inFo, sentence

ϕ := ∀x(∃yr(x, y)⇒ A(x)).

The models ofϕ belong to the class of interpretationsI in which the domain of relationrI is a
subset ofAI . On the other hand, COP+TV can only express finitely many semantic properties
(i.e., classes of interpretations), since we can generate only finitely manyFo sentences from its
meaning representations (see [PHT06] and Table 2.1). By inspection one can see that none of such
expressible properties coincides with the “role typing” property. Hence, role typing assertions are
not expressible by COP+TV.

Comparing the Controlled Language Constructs. Lite-English (with its two extensions Lite-
EnglishF and Lite-EnglishR) expresses the ontology languagesDL-Litecore, DL-Lite⊓, DL-LiteF ,
DL-LiteR, DL-LiteF,⊓ andDL-LiteR,⊓, thus inheriting their nice computational properties. These
properties propagate to its function words:

– (Quantification) In Lite-English, universal quantification can occur onlyonceand be followed
by (possibly)n ≥ 0 existential quantifiers. In COP+TV(+DTV) quantifiers may occur in any
order. Furthermore it is restricted to subjectNPs

– (Negation) The Lite-English disallows negated facts. Negation is not Boolean: it can only
occur on predicateVPs and is expressed by the negative (left) determiner “no”.

– (Relatives) Lite-English covers a restricted case of relative clauses,that neither COP nor
COP+TV(+DTV) cover, which may occur only in subjectNPs.

Notice also that, by constrast to COP, COP+TV(+DTV), Lite-English can generate an infinite
number of English utterances (it contains recursive constituents).

4.1.4 DL-Lite⊓ and Disjunction

A closureor invariance propertyis a relation∼c over (Fo) interpretations, s.t., for each pair of
interpretationsI andI ′ and allFo formulasϕ, if I ∈ Mod(ϕ) andI ∼c I ′, thenI ′ ∈ Mod(ϕ).
In such case, we say thatϕ is closed under∼c.

Closure properties can be used to characterize theabsoluteexpressive power of a logicL. We
say that a logicL is closed underan invariance property∼c, whenever, for eachFo formulaϕ, ϕ
is (logically) equivalent to someϕ′ ∈ L iff ϕ is closed under∼c.
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We can prove that no characterization theorem exists for assertions forDL-Lite⊓ and a fortiori
Lite-English. We rely on the fact thatDL-LiteR,⊓ cannot express disjunction:

Proposition 4.1.19.Disjunction is not expressible in DL-LiteR,⊓.

Proof. DL-LiteR,⊓ is contained inHorn, the set ofFo Horn clauses [CGL+07, CAKZ07],
which cannot express disjunctions of the formϕ := A(c) ∨ A′(c′). Otherwise, letH with DH :=
{c} andAH := {c} andH′ with DH := {c′} andAH := {c′} be two Herbrand models ofϕ.
Clearly,H andH′ are minimal (w.r.t.F) models ofϕ s.t.H 6= H′. But this is impossible, sinceHorn verifies the least (w.r.t.F) Herbrand model property ([Lal97], Proposition VI-2).

Theorem 4.1.20.There is no relation∼c over interpretations such that, for everyFo sentenceϕ,
ϕ is equivalent to a DL-Lite⊓ assertion iffϕ is closed under∼c.

Proof. Recall that aFo sentence is aFo formula with no free variables. Suppose the contrary
and consider the sentenceA(c). Let I andI ′ be two structures s.t.I ∼c I ′ and suppose that
I |= A(c). Clearly, this implies thatI |= A(c) ∨ A′(c). Since, on the other hand, by hypothesis,
A(c) is closed under∼c, it follows that I ′ |= A(c) too. But then, sinceI ′ |= A(c) implies
I ′ |= A(c) ∨A′(c), this means thatA(c) ∨A′(c) is closed under∼c and is a fortiori equivalent to
someDL-Lite⊓ assertion. But this is impossible, because disjunction is not expressible.

4.2 GCQ-English

In this section we expressgraph-shaped conjunctive queries. Graph-shaped conjunctive queries
are a slight generalization of TCQs which(i) allow for constants and(ii) allow for some simple
loops on top of their tree structure. This is reflected in English by, on the one hand, proper
names and, on the other hand, personal pronouns (“him”, “himself”, “it”, “itself”, “herself”, if
we consider gender).

Definition 4.2.1 (Graph-shaped conjunctive queries). A graph-shaped conjunctive queryis a CQ
ϕ(x) of distinguished variablex over a signature of relations of arity≤ 2whereϕ(x) is inductively
defined as follows.

ϕ(x)→A(x) | R(x, x) | R(x, c) | ∃yR(x, y) | ϕ′(x)∧ϕ′′(x) | ∃y(R(x, y)∧ϕ′(y))
R(x, y)→ r(x, y) | r(y, x) | R(x, y) ∧R′(x, y)

(GCQ)

A BooleanGCQ is a query of the form∃xϕ(x), whereϕ(x) is as above.

Basically, a GCQ can be mapped into a labelled graph that is almost a tree, but where, in
addition: (i) there can be loops over each node and(ii) there can be directed edges connecting
nodes at leveli, for i ≥ 2, to its ancestor node at leveli − 2. In general, variables and constants
correspond to nodes and binary relations to directed edges.

GCQs are captured by the interrogative controlled languageGCQ-English. Questions in GCQ-
English fall under two main classes :(i) Wh-questions, that will map into non-Boolean GCQs and
(ii) Y/N-questions, that will map into Boolean GCQs. Figure 4.9 shows GCQ-English’s gram-
mar. Some basic morpho-syntactic and semantic features areattached to (some) constituents. The
feature·− means that the constituents is of negative polarity. Absence of features indicates that
constituents are in positive polarity. Notice that as for Lite-English, we disregard all other mor-
phosyntactic features.

Personal pronouns (“him”) co-refer with the closestNP in argumentposition. Reflexive pro-
nouns (“himself), like relative pronouns, co-refer with their closestNP in subjectposition. The
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(Phrase structure rules) (Semantic actions)

Qwh→ Intpro Ni Sgi? τ(Qwh) := τ(Intpro)(τ(Ni))(τ(Sgi))
Qwh→ Intproi Sgi? τ(Qwh) := τ(Intproi)(τ(Sgi?))

QY/N → doesNP−
i VP−

i ? τ(QY/N ) := τ(NP−
i )(τ(VP−

i ))

QY/N → isNPi VPi τ(QY/N ) := τ(NPi)(τ(VPi))

Sgi →NPgiVPi τ(Sgi) := τ(NPgi)(τ(VPi))
Ni→Adj Ni τ(Ni) := τ(Adj)(τ(Ni))
Ni→Ni Relpi Sgi τ(Ni) := τ(Relpi)(τ(Ni))(τ(Sgi)))

VPi→ isAdji τ(VPi) := τ(Adji)
VPi→ is aNi τ(VPi) := τ(Ni)
VPi→VPi Crd VPi τ(VPi) := τ(Crd)(τ(VPi))(τ(VPi))
VP−

i →VP−
i Crd VP−

i τ(VP−
i ) := τ(Crd)(τ(VP−

i ))(τ(VP−
i ))

VPi→ IVi τ(VPi) := τ(IVi)
VP−

i → IV−
i τ(VP−

i ) := τ(IV−
i )

VPi→TVi,i+1 NPi+1 τ(VPi) := τ(TVi,i+1)(τ(NPi+1))
VP−

i →TV−
i,i+1 NPi+1 τ(VP−

i ) := τ(TV−
i,i+1)(τ(NPi+1))

NPi→Proi τ(NPi) := τ(Proi)
NP−

i →Pro−
i τ(NP−

i ) := τ(Pro−
i )

NPi→Det Ni τ(NPi) := τ(Det)(τ(Ni))
NPi→Pni τ(NPi) := : τ(Pni)
NPgi → ti τ(NPgi) := λP.P (x)

(Function lexicon)

Det→ some τ(Det) := λP.λQ.∃x(P (x) ∧Q(x))
Proi→ somebody τ(Proi) := λP.∃xP (x)
Pro−i →anybody τ(Pro−

i ) := λP.∃x.P (x)
Crd→and τ(Crd) := λP.λQ.λx.(P (x) ∧Q(x))

Relpi→who τ(Relpi) := λP.λx.P (x)
Intpro→which τ(Intpro) := λP.λQ.λx.P (x) ∧Q(x)
Intproi→who τ(Intproi) := λP.λx.P (x)

(Content lexicon)

Proi−2→ him τ(Proi−2) := λP.P (x)
Proi−1→ himself τ(Proi−1) := λP.P (x)

...
...

Figure 4.9: GCQ-English.
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loves

loves

loves

loves

loves

Figure 4.10: Left: A GCQ for “Does somebody love somebody who loves him?”.Right: A GCQ for
“Does somebody love somebody who loves himself?”

co-reference of pronouns is captured by playing with the indexes of constituents. A reflexive pro-
noun (resp. a personal pronoun) dominated by anNPi of index i co-refers with anNPi−1 of
index i − 1 (resp. anNPi−2 of index i − 2). The grammar of GCQ-English assigns consecu-
tive integers as indexes to denoting constituents. The definition of grammar derivations can be
easily extended to cover this phenomenon, by “unifying” constituents with the same indexes. For
simplicity, we only specify partially the (arbitrarily large) content lexicon.

Example 4.2.2.A typical Boolean GCQ over, say, the constant Mary and the binary predicates
lovesandhatesis

∃x(loves(Mary, x) ∧ ∃yhates(x, y)) (4.4)

which we express with the controlled language Y/N-question

Does Mary love somebody who hates somebody? (4.5)

A typical non-Boolean graph-shaped query over the same set of relational symbols is

∃y(loves(x, y) ∧ hates(y, x)) (4.6)

which we express with the controlled language Wh-question (containing an anaphoric pronoun)

who loves somebody who hates him? (4.7)

On the other hand

*Which teacher gives a lesson to his pupils? (4.8)

lies outside this controlled language. Why? Because we haveno possessive adjectives (e.g., “his”)
and no ditransitive verbs (e.g., “gives”).

Similarly, the Y/N questions

Does somebody love somebody who loves him? (4.9)

and
Does somebody love somebody who loves himself? (4.10)

are GCQ-English questions. The personal pronoun “him” co-refers with the first “somebody”,
which means that question (4.9) translates into

∃x(∃y(loves(x, y) ∧ loves(y, x))) (4.11)

whereas question (4.10) translates into

∃x(∃y(loves(x, y) ∧ loves(y, y))). (4.12)

Figure 4.10 shows how these co-references are reflected by the graph-structure of the query ex-
pressed. ♣
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τ(Qwh) = λx.loves(x,Mary)

τ(Intproi) = λP.λz.P (z)

Who

τ(Sgi ) = loves(x,Mary)

τ(NPgi ) = λQ.Q(x)

ti

τ(VPi) = λx.loves(x,Mary)

τ(TVi,i+1) = λβ.λx.β(λy.loves(x, y))

loves

τ(NPi+1) = λP.P (Mary)

τ(Pni+1) = λP.P (Mary)

Mary ?

Figure 4.11:Translating “Who loves Mary?”.

Theorem 4.2.3(Expressing GCQs). For every questionQ in GCQ-English, there exists a GCQ
ϕ s.t. τ(Q) ≡s ϕ. Conversely, every GCQϕ is the image byτ(·) of some questionQ in GCQ-
English.

Proof. (⇒) As for Lemma 4.1.2, we need to show, by mutual induction on thelengthn of deriva-
tions rooted inNs andVPs, that

for everyN (resp.VP) in GCQ-English there
exists a GCQϕ(x) s.t. τ(VP) ≡s ϕ(x). (resp.τ(N) ≡s ϕ(x)).

(†)

The basis (i.e.,n = 0) is trivial. For the inductive step (i.e.,n = k + 1) we will show only one
case. All the other cases are analogous. LetVPi =⇒ TVi,jNPj =⇒ TVi,jDetNj =⇒

k−1

Rs somew, with Ni =⇒
k−2 w. By IH, τ(Ni) ≡s ϕ(x). Therefore,

τ(VPi) =df λβ.λx.β(λy.r(x, y))(λP.λQ.∃z(P (z) ∧Q(z)))
(τ(Ni))

=ih λβ.λx.β(λy.r(x, y))(λP.λQ.∃z(P (z) ∧Q(z)))
(λw.ϕ(w))

⊲ λx.∃y(r(x, y) ∧ ϕ(y))

which is a formula structurally equivalent to a GCQ. With claim (†) established, we can consider
full questions. Since the argument is similar both for Y/N and Wh-questions, we will only deal
with one of the four possible cases. LetQwh =⇒ IntproNi Sgi =⇒ IntproNiVPi =⇒

∗

whichw′ w′′. Then

τ(Qwh) =df λP.λQ.∃x(P (x) ∧Q(x))(λz.ϕ′(z))(λw.ϕ′′(w))
⊲ λx.ϕ′(x) ∧ ϕ′′(x)

which is structurally equivalent to a GCQ. Note that, as before, we discard, when parsing, all
possible parse states where constituents do not satisfy co-indexing, polarity and typing constraints
(i.e., when features do not unify).

(⇐) The proof is analogous to that of Lemma 4.1.3: we prove, by induction onϕ(x) (a non-
Boolean GCQϕ of distinguished variablex) that

for each GCQϕ(x) we can construct a GCQ-English
constituentw s.t.ϕ(x) is the image ofw by τ(·)

(‡)
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up to structural equivalence. Claim (‡) entails that “whichw?” and/or “whow?” is the question
we are looking for. Recall that unary predicatesA are captured byNs of meaning representation

λx.A(x),

relation symbolsr by TVs of meaning representation

λβ.λx.β(λy.r(x, y))

and individual constantsc by Pns of meaning representation

λP.P (c).

Similarly, relative pronouns (Relps like “who”) and conjunctions (Crds like “and”), of mean-
ing representation

λP.λQ.λx(P (x) ∧Q(x)),

express conjunctions, whereas thePro “somebody”, of meaning representation

λP.∃xP (x)

expresses existential quantification.
By combining together such meaning representations followingHo typing rules as we did in

Lemma 4.1.3, it is easy to see that:

• (Basis)ϕ(x) is of the formA(x), r(x, x), r(x, c) or ∃yr(x, y). Accordingly, it is the image
of either “is anA”, “Rs himself”, “rs c” or “ rs somebody”.

• (Inductive step)We will only look at one case. Letϕ(x) be of the form∃y(r(x, y)∧ϕ′(y)).
Assume in addition thatR(x, y) := r1(x, y) ∧ · · · ∧ rk(x, y) Thenϕ(x) is the image of
“r1s somebody whow andr2s him and . . . andrks him”, by IH onϕ′(y), up to structural
equivalence. The other cases are similar.

This closes the proof.

4.3 Data and Combined Complexity

In this section we study briefly the computational complexity of KBQA for Lite-English and GCQ-
English. Since Lite-English and GCQ-English express, whentaken together, a restricted case of
KBQA for DL-LiteR,⊓ ontologies and UCQs ((U)GCQs and (U)TCQs are a fragment of (U)CQs),
they inherit their computational properties. This observation holds both for the data and the com-
bined complexity of KBQA.

Theorem 4.3.1.KBQA is in LSpacew.r.t. data complexity for Lite-English and GCQ-English (in
fact, for UCQs).

Proof. LetS andF be a set of Lite-English declarations and facts, respectively. We know by The-
orem 4.3.1 that KBQA is in LSpace in data complexity when we consider UCQs andDL-Lite⊓
knowledge bases. On the other hand, compositional translationsτ(·) encodeF into a content lex-
icon using space logarithmic in the number#(F) of proper nouns (i.e., object names, to which
a lexical entry is associated). Since we have shown that Lite-English expressesDL-Lite⊓ (Theo-
rem 4.1.4) and GCQ-English GCQs (Theorem 4.2), the result follows.
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Theorem 4.3.2. KBQA is in LSpacew.r.t. data complexity for COP and GCQ-English (in fact,
for UCQs).

Proof. Since COP is contained inDL-Lite by Theorem 4.1.15, membership inLSpacefor KBQA

is a corollary of Theorem 4.3.1.

Furthermore, by applying Theorem 3.3.6, we get, as an immediate corollary of these proofs:

Corollary 4.3.3. KBSAT is in LSpace in data complexity for COP and Lite-English knowledge
bases.

A perfect reformulationis an algorithm that takes as input a description logic ontologyO and
a UCQϕ of arity n and rewritesϕ w.r.t. O into a UCQϕO s.t., for every databaseD and every
sequencēc of n constants it holds that:(O,D) |= ϕ(c̄) iff I(D) |= ϕO(c̄).

Proposition 4.3.4([CdV+06]). A perfect reformulation exists for DL-LiteR,⊓.

Theorem 4.3.5. KBQA for empty ontologies isNPTime-hard in combined complexity. It is in
NPTime for DL-LiteR,⊓.

Proof. (Membership) Let (O,D) be aDL-LiteR,⊓, knowledge base,ϕ a UCQ of arityn andc̄ a
sequence ofn constants. Letϕ(c̄) denote the grounding ofϕ by c and suppose that(O,D) |= ϕ(c̄).

We know thatO can be “compiled” intoϕ by a perfect reformulation, yielding a UCQϕO(c̄) :=
ϕO
1 (c̄, ȳ1) ∨ · · · ∨ ϕ

O
k (c̄, ȳk). Guess in time polynomial in#(D), #(O) and |ϕ|, where|ϕ| de-

notes the number of symbols in UCQϕ, a disjunctϕO
i (c̄, ȳi), for somei ∈ [1, k]. Clearly,

(O,D) |= ϕ(c̄) iff I(D), γ |= ϕO
i (c̄, ȳi), for some assignmentγ. Guess now an assignment

γ : FV(ϕO
i ) → DI(D). This can be done in time polynomial in|ϕ|, #(O) and#(D). Finally,

check in time polynomial on#(D), #(O) and|ϕ| whetherI(D), γ |= ϕO
i (c̄, ȳi).

(Hardness) By reduction from the graph homomorphism problem, where, given two graphs
G = (V,E) andG′ = (V′,E′) we ask whether there exists an homomorphismh from G to G′. A
graph homomorphism, we recall, is a functionh : V → V′ s.t. for all(u, v) ∈ E, (h(u), h(v)) ∈
E′. This problem is known to theNPTime-complete [GJ79]. We will consider empty ontologies.
Polynomially encodeG andG′ as follows:

– for each(u, v) ∈ E, add the facte(cu, cv) to the databaseDG ,
– for each(u′, v′) ∈ E′, add the ground atome′(cu′ , cv′) to the Boolean UCQϕG′ .

We now claim that

there existsh from G′ to G iff () ∈ cert(ϕG′ , ∅,DG). (†)

Consider now anemptyperfect reformulation forDL-LiteR,⊓. It follows that(∅,DG) |= ϕG′

iff I(DG) |= ϕG′ iff I(DG) |= ϕG′ for some assignmentγ. Now, clearly,I(DG) = G. Thus, the
composition·I(DG) ◦ γ can be seen as an homomorphism mappingϕG′ to G. Finally, given that
ϕG′ encodesG′, the claim follows.

It immediately follows:

Corollary 4.3.6. KBQA is NPTime-complete in combined complexity for Lite-English and COP
knowledge bases and GCQ-English questions (in fact, for UCQs).
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4.4 Summary

In this chapter we have defined the declarative controlled languages Lite-English, Lite-EnglishF
and Lite-EnglishR , expressing theDL-Lite family of description logics, and an interrogative con-
trolled language, GCQ-English, expressing GCQs and TCQs. This can be achieved using standardHomeaning representations, by constraining the behavior of syntactic constituents.

In the case of theDL-Lite family, constraining the behavior of syntactic constituents involves
the widespread use of subcategorization. Constituents have to be subcategorized into left and right
constituents depending on whether they are meant to expressa rightCr or a leftCl concept in an
concept inclusion assertionCl ⊑ Cr. We recall that in theDL-Lite family left and right concepts
are given a separate syntax. This distinction is essential for the good computational properties of
these description logics.

We have have studied the relative expressive power of Lite-English and of theDL-Lite family
by comparing it with the fragments of English. We have shown that(i) Lite-English contains COP
and that(ii) Lite-English overlaps with COP+TV. We have also shown that absolute expressive
power of DL-Lite⊓ ontologies and assertions cannot be, however, characterized, and that, as a
result, neither can the absolute expressive power of Lite-English.

Last, but not least, we have studied the data and combined complexity of KBSAT and of KBQA

w.r.t. GCQs and Lite-English.





Chapter 5

Expressing Aggregate Queries

In earlier chapters we have shown how to express TCQs in controlled language, covering a signifi-
cant fragment of UCQs, which make up about 80% of database queries [AHV95, EN04]. Further-
more, we noted in Chapter 3 (recall Theorems 3.3.5 and 3.3.4)that such queries can be processed
efficiently by both database engines and OBDASs [CdV+06] based on theDL-Lite family of de-
scription logics. Controlled languages such as GCQ-English show that TCQs can be expressed
quite naturally with English Wh- and Y/N-questions allowing for (i) existential generalized de-
terminers,(ii) arbitrary nesting of subordinated (with gaps being filled byits closest headNP)
clauses and(iii) VP andN coordination (conjunction). However, over some domains ofinter-
est, users might be interested in issuing more complex information requests. Consider the student
domain one more time. Recall Example 3.2.4 from Chapter 3. Suppose we have now a richer
ontologyOs of the domain as shown Figure 5.1. Suppose, in addition, thatnowDs contains the
following tables

takesCourse
SName Course
Luca TOC
Luca ADS
James German

Student
SName
Luca
James

comesFrom
SName CoName
Luca Italy
James UK

Course
CName Cred
TOC 4
ADS 4

German 0

Country
CoName

Italy
UK

where “TOC” stands for Theory of Computing and “ADS” for Algorithms and Data Structures.
A user might want to mine this information and extract some very basic statistics, e.g., count
how many of the enrolled students attended lectures. Suppose, finally, that she intends to do this
through a controlled English interface. She would ask to theOBDAS (Os,Ds) the questionQs

Which is the number of distinct students per country who study some course? (5.1)

which the system would translate into anaggregateSQL query

SELECT cf.CoName,COUNT(DISTINCT(cf.SName))
FROM comesFrom cf, attends at
WHERE cf.SName=at.SName)
GROUP BY cf.CoName

(5.2)

to be evaluated over(Os,Ds). Aggregates naturally arise in domains and systems containing
numerical data, e.g., geographical information systems, or whenever we want to mine a statistic
of any kind from a dataset ([AHV95], Chapter 7). SQL aggregate queries extend the syntax
of SELECT-PROJECT-JOIN-UNION queries withaggregation functions(SUM, MAX, COUNT,
etc),GROUP BYandHAVINGclauses. This raises three problems:

1. We need to know which is the semantics of aggregate queriesin OBDASs.

57
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Figure 5.1: A conceptual diagramOs of the student domain.

2. We need to know how to express such aggregate queries in controlled English.
3. We need to know whether the queries and the controlled English questions scale to data.

The semantics of aggregate queries in relational databasesis well-understood, less is known
instead about their semantics in OBDASs. Relational engines evaluate aggregate queries by(i)
grouping database values into bags known asgroups(defined by theGROUP BYclause and the
HAVINGclause that acts as a filter over the group(s)) and(ii) applying (bag-valued) aggregation
functions over those groups, and(iii) returning the answers obtained (see [CNS07] and [AHV95],
Chapter 7). A naive solution would be to reduce the semanticsof aggregate queries over OBDASs
to the database case by analogy to UCQs. Indeed, Proposition3.2.5 from Chapter 3 says that the
certain answers of a UCQ over an OBDAS are exactly those tuples that are answers over every
database compatible with the OBDAS. But if we apply this definition, the answers of query (5.2)
will always be empty. This is because an aggregate query can give rise to a different group (and a
different aggregate value) over each compatible database [CNKT08]. A detailed example of this
is given later in Example 5.1.6.

We do not know much either on how to express aggregate queriesin natural language. A
reasonable assumption is that aggregation functions are conveyed by EnglishdefiniteNPs, such as
“the highestN”, “the total number ofNs”, “the average number ofN”, etc. The Geoquery corpus1

is a corpus of English US geographical questions (e.g., “Which is the longest river in Iowa?”):
by assuming that questions containing “some”, relatives, “and” plus possibly “or” as function
words express UCQs, corpus statistics suggest that(i) aggregate determiners occur frequently,(ii)
they occur in combination with UCQ constructs and(iii) they occur way more frequently than
questions with negations like “is not” or “does not” (see Table 5.1). However, it is not immediate
to formalize these intuitions in formal semantics.

It is, however, clear, that no answer to the third problem canbe found without answering the
first two. That is, without proposing a reasonable semanticsfor the queries and for the natural
language questions.

To tackle these three problems, we will pursue in this chapter the following strategy. We will
define a class of aggregate queries,aggregate tree-shaped queries, that extend the syntax of TCQs
with SQL aggregation functions. Such queries provide a logic-based declarative specification of
a significant class of SQL aggregate queries. Next, we will proceed to extend (and modify) the
traditional certain answers semantics of UCQs over OBDASs to aggregate tree-shaped queries2.
Thirdly, we will define a controlled fragment of aggregates questions that expresses precisely this

1http://www.cs.utexas.edu/ ˜ ml/geo.html
2Such syntax and semantics is derived from joint work with D. Calvanese, E. Kharlamov and W. Nutt on so-called

epistemic aggregate queriesin [CNKT08].
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UCQs UCQs + Agg UCQs + Neg

Questions 34.54% 65.35% 0.11%

Table 5.1: Frequency of questions “expressing” aggregate queries in the Geoquery corpus.

class of queries. Finally, modulo compositionality, we will study data complexity.
Note that we consider an ontologyO to be an arbitrary set ofFo axioms, written in one of

many possible syntax such as ER diagrams, description logicontologies or controlled English. We
proceed analogously for databasesD, which we will write down sometimes in description logic
format as sets of ground facts (orFo atomic sentences) or as relational database instances. We
extend the notion of a knowledge base(O,D) accordingly. We enforce, however, the semantic
assumptions of ontology languages, UNA, SDA and SNA, introduced in Chapter 4. Part of the
results of this chapter were first published in [TC09] and [Tho08].

5.1 Aggregate Tree-Shaped Queries

Aggregate tree-shaped queries provide aFo-based declarative specification of a significant frag-
ment of SQL aggregate queries as studied in [CNKT08, CNS07, CNS03]. In particular, their their
semantics is an instantiation of the epistemic certain answers semantics for epistemic aggregate
queries defined and studied in [CNKT08].

5.1.1 Syntax

We consider now the following standard SQLaggregation functions, viz., max, min, count,
cntd, sum andavg. In what followsagg will denote an arbitrary aggregation function. Given
this, we call anaggregation termany expression of the formagg(y), wherey is called anaggre-
gation variable.

Definition 5.1.1(Aggregate tree-shaped query). An aggregate tree-shaped queryis an expression
of the form

ϕ := {(x,agg(y)) | ψ} (ATCQ)

wherex is called agrouping variable, agg(y) is an aggregation term, andψ is the the query’s
body, which is a formula

ψ := ψ1(x) ∧ r(x, y) ∧ ψ2(y)

with ψ1 a TCQ rooted inx, ψ2 a TCQ rooted iny, r(x, y) an atom,{x, y} = FV(ψ) andy 6= x.
Thecoreϕ̃ of ϕ is defined as thequantifier-freeversion of its bodyψ (i.e., a quantifier-free CQ).

Example 5.1.2.Consider thecntd ATCQ

ϕs := {(x, cntd(y)) | ∃z(Student(y) ∧ attends(y, z) ∧ Course(z)∧
∧ comesFrom(y, x) ∧ Country(x))}.

(5.3)

The ATCQϕs captures the SQL query (5.2) from the preamble of this chapter. The CQ

ϕ̃s := Student(y) ∧ attends(y, z) ∧ Course(z) ∧ comesFrom(y, x) ∧ Country(x) (5.4)

is its core. ♣
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5.1.2 Certain Answers Semantics

In this section we extend the semantics of SQL aggregation functions to ontologies and knowledge
bases. In relational databases SQL aggregation functions are computed over an specific kind of
bag, known as a group, and return a numeric value. Bags (or multisets) are a generalization of the
notion of set in which the same element may occur repeatedly many times.

Definition 5.1.3 (Bags). Let X be a set. Abag or multisetB (overX) is a functionB : X →
N∪ {∞}. The integerB(x) is called themultiplicity of x in B. Theadditive unionB ⊎B′ of two
bags overX is the bag where(B ⊎ B)(x) := B(x) + B′(x), for all x ∈ X. Thecarrier ξ(B) of
a bagB overX is the set{x ∈ X | B(x) ≥ 1}. Bags can be denoted by extension or intension
using the special brackets{| · |}.

Definition 5.1.4 (Aggregation functions). Let B[X] denote the set of all bags over setX. An
aggregation function is one of the following functions:

max : B[X]→ Q ∪ {∞} s.t.

max(B) :=

{
max
x∈ξ(B)

x, if it exists,

∞, otherwise.

min : B[X]→ Q ∪ {∞} s.t.

min(B) :=

{
min
x∈ξ(B)

x, if it exists,

∞, otherwise.

sum : B[X]→ Q ∪ {∞} s.t.

sum(B) :=







∑

x∈ξ(B)

B(x) · x, if defined andB is finite,

∞, otherwise.

count : B[X]→ N ∪ {∞} s.t.

count(B) :=







∑

x∈ξ(B)

B(x), if defined andB is finite,

∞, otherwise.

avg : B[X]→ Q ∪ {∞} s.t.

avg(B) :=

{
count(B)
#(X) , if defined andB is finite,

∞, otherwise.

Notice that∞ is a special value that stands for the cases in which the valueof the aggregate
function is not an integer or a rational number or is undefined. Themultiplicity insensitivesib-
lings avgd, mind, maxd sumd andcntd of aggregation functions are defined by composing
aggregation functions and the carrier operation, e.g.,cntd(B) := count(ξ(B)).

Groups intuitively collect the values of a (numerical or symbolic) attribute w.r.t. some given
object in a database, which acts as the group identifier (see [EN04], Chapter 8). The syntax and
semantics of ATCQs respect these features. In ATCQs, grouping variables stand for (or are bound
to) such SQL group identifiers. On the other hand, aggregate variables stand for the attributes
upon which groups are defined [CNS03, CNS07].

Definition 5.1.5 (Groups and database answers). Let ϕ be an ATCQ of grouping variablex and
aggregation variabley. LetD be a database. Thegroupof tuplec is the bag

Gc := {|γ(y) | c = γ(x), γ ∈ SatD(ϕ̃)|}. (Group)
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and the set ofaggregate answersof ϕ over(O,D) is

ansa(ϕ,D) := {(γ(x),agg(Gγ(x))) | γ ∈ SatD(ϕ̃)}. (Aans)

However, contrary to databases, knowledge bases deal with incomplete information and work
under the open world assumption (OWA), i.e., their databases are a partial description of the do-
main of interest that the ontology “completes” by intuitively characterizing the space of all the
databases compatible with it [CNKT08]. In each such database an object may possess differ-
ent attributes, giving rise to different groups and different values for aggregation functions. This
precludes our naively applying the certain answers semantics for UCQs.

Example 5.1.6.We can encode the studentDs relational database from the preamble into the set
of facts

takesCourse(Luca,TOC)
takesCourse(Luca,ADS)
takesCourse(James,German)
Course(TOC)
Course(ADS)
Course(German)

hasCredits(TOC, 4)
hasCredits(ADS, 4)
hasCredits(German, 0)
Student(Luca)
Student(James)

comesFrom(Luca, Italy)
comesFrom(James,UK)
Country(Italy)
Country(UK)

and theOs conceptual model from Figure 5.1 into theDL-LiteR ontology

∃takesCourse⊑ Student ∃takesCourse− ⊑ Course
∃attends⊑ Student ∃attends− ⊑ Course

∃comesFrom⊑ Student ∃comesFrom− ⊑ Country
∃hasCredits⊑ Student ∃hasCredits− ⊑ Integer
takesCourse⊑ attends Student⊑ ∃attends

Student⊑ ∃comesFrom

in which a role,hasCredits, connecting each course to its credit worth is used to capture the
attribute. The pair(Os,Ds) constitutes a description logic knowledge base.

Suppose now we want to query(Os,Ds) with ϕs from Example 5.1.2 (i.e., query 5.3). Since
the semantics ofϕs over databases is well understood, we might want to reduce OBDAS query
evaluation to relational database evaluation by analogy toUCQs. Recall that by Proposition 3.2.5
from Chapter 4 this is possible for UCQs: their (certain) answers over OBDASs can be charac-
terized as their answers over all the databasesD that “comply with” the OBDAS (or knowledge
base)(Os,Ds). But this makes no sense in the presence of aggregations. To see why, assume that

certa(ϕs,Os,Ds) :=
⋂

{ansa(ϕs,D
′
s) | Ds ⊆ D

′
s andI(D′

s) |= Os} (†)

and that we have two databasesD′
s andD′′

s defined by

– D′
s := Ds ∪ {comesFrom(Paolo, Italy), takesCourse(Paolo,TOC)} and

– D′′
s := Ds ∪ {comesFrom(Mike,UK), takesCourse(Mile,ADS)}.

The databasesD′
s andD′′

s (i) containDs, (ii) satisfy all the domain constraints stated byOs
and(iii) record respectively that a further Italian student, Paolo,attends TOC (D′

s) and a further
British student, Mike, attends ADS (D′′

s ). Thus, inD′
s two students from Italy and one from the

UK are known to attend some course, while inD′′
s the numbers get inverted, and, as a consequence

ansa(ϕs,D
′
s) ∩ ansa(ϕs,D

′′
s ) = {(Italy, 2), (UK, 1)} ∩ {(Italy, 1), (UK, 2)} = ∅

i.e., the “naive” certain answers of query (5.2) over(Os,Ds) are empty.
In general, for every ATCQϕ and every knowledge base/OBDAS(Os,Ds), applying defini-

tion (†) will always yield an empty set of certain answers, since every database compatible with
(Os,Ds) may give rise to adifferentgroup. ♣
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To obtain a meaningful notion of certain answers for aggregates over knowledge bases and
OBDASs, so that thesamegroup arises over each compatible database, weexploit the notion of
core. The coreϕ̃ of an ATCQϕ is a CQ; therefore, to obtain always the same group(s), it suffices
to group overϕ̃’s certain answers. More precisely, we propose to adopt the following semantics:
given an ATCQϕ with aggregation functionagg and a knowledge base/OBDAS(O,D), we

1. return the certain answers of its coreϕ̃,
2. return the groups these certain answers give rise to and
3. return the value ofagg over each group.

This intuition is captured by the following formal definition:

Definition 5.1.7(Certain groups and certain answers). Let ϕ be an ATCQ of grouping variablex
and aggregation variabley, and(O,D) a knowledge base. Thecertain groupof tuplec is the bag

Hc := {|σ(y) | c = σ(x), σ ∈ SatOD(ϕ̃)|}. (Cgroup)

and the set ofaggregate certain answersof ϕ over(O,D) is the set

certa(ϕ,O,D) := {(σ(x),agg(Hσ(x))) | σ ∈ SatOD(ϕ̃)}. (Acert)

Example 5.1.8. Consider again the ATCQϕs (query (5.3)). The certain answers semantics for
aggregate queries propagates the data inDs through the constraints ofOs. In particular, it propa-
gates the tuples in thetakesCourserelation or table to theattendsrelation. Its corẽϕs (query (5.4))
gives rise to three satisfying groundings over(Os,Ds), namely:σ := {x 7→ Italy, y 7→ Luca, z 7→
TOC}, σ′ := {x 7→ Italy, y 7→ Luca, z 7→ ADS} andσ′′ := {x 7→ UK, y 7→ James, z 7→ ADS}.
This gives rise to the certain groupsHItaly = {|Luca,Luca|} andHUK = {|James|}. Sincecntd
collapses multiplicities, askingϕs to (Os,Ds) thus results in

certa(ϕs,Os,Ds) = {(Italy, 1), (UK, 1)}.

Asking instead thecount ATCQ

ϕ′
s := {(x, count(y)) | ∃z(Student(y) ∧ attends(y, z) ∧ Course(z)∧

∧ comesFrom(y, x) ∧ Country(x))}
(5.5)

will yield
certa(ϕ

′
s,Os,Ds) = {(Italy, 2), (UK, 1)},

i.e., Luca is counted twice, becausecount is sensitive to multiplicities. In SQL we would have
written

SELECT cf.CoName,COUNT(cf.SName)
FROM comesFrom cf, attends at
WHERE cf.SName=at.SName)
GROUP BY cf.CoName

(5.6)

in place of query (5.2). ♣

Remark 5.1.9. By definition TCQs are special cases of ATCQs. Therefore, forTCQs the notion
of aggregate (certain) answers coincides with the notion of(certain) answer: ifϕ is a TCQ, then,
for all ontologiesO and databasesD,

certa(ϕ,O,D) = cert(ϕ,O,D) and ansa(ϕ,D) = ans(ϕ,D)
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that is, our semantics is a generalization of the standard database and OBDAS semantics to aggre-
gates; moreover,

certa(ϕ,O,D) =
⋂

{ans(ϕ,D′) | D ⊆ D′ andI(D′) |= O},

as expected.
Note also that aggregate certain answers semantics can alsobe applied to aggregate conjunc-

tive queries, viz. queries of the form{(x̄,agg(y)) | ψ}, whereψ is a UCQ, over OBDASs and
knowledge bases [CNKT08]. �

Remark 5.1.10.Considering the corẽϕ of an ATCQϕ, has the effect of “closing” the knowledge
required for answeringϕ over a knowledge base(O,D). Whenever a certain answer forϕ̃ exists,
the variables ofϕ̃ will be instantiated by constants in the active domainadom(D) of (O,D).
This follows from the domain independence property of UCQs (see [AHV95], Chapter 5). In
addition, deleting the quantifiers preservesall the multiplicities insofar as the same variable(s) can
be instantiated possibly many times to the same constant(s)by possibly many pairwise distinct
assignments. �

Finally, we define the associated knowledge base (and database) query answering problem,
which, by a slight abuse of notation, we denote also KBQA (resp., QA):

Definition 5.1.11. The knowledge base query answering(KBQA) problem (resp. thedatabase
query answering problem(QA)) for for ATCQs are is the decision problem:

– Input: a tuple(c, n), an ATCQϕ and a knowledge base(O,D) (resp. a databaseD).
– Question: does(c, n) ∈ certa(ϕ,O,D) (resp.ansa(ϕ,D))?

As before, we are interested in the data complexity of KBQA.

5.2 ATCQ-English

In this section we express ATCQs with the controlled language ATCQ-English, by ascribingbag
typesto controlled language constituents. To stress our use of bag-typed expressions, we make
the typing of ATCQ-English constituents explicit. The definition of τ(·) generalizes the formal
semantic analysis of Clifford in [Cli88] and Winter in [MHWB06] and of Karttunen in [Kar77]
for English questions and database questions. As was the case for TCQs, we will consider a
slightly more expressive counterpart of ATCQs, viz.,graph-shaped aggregate queries.

Definition 5.2.1(AGCQs). A graph-shaped conjunctive aggregate queryis an aggregate query

ϕ := {(x,agg(y)) | ψ} (AGCQ)

of body
ψ := ψ1(x) ∧ r(x, y) ∧ ψ2(y)

whereϕ1(x) andϕ2(y) are GCQs andr(x, y) an atom.

AGCQs contain ATCQs, GCQs and TCQs, but as their bodies are UCQs, the aggregate certain
answers (and database) semantics defined in the previous section still applies. We would like our
controlled language to express queries like, e.g.,

{max(n) | ∃x(Course(x) ∧ hasCredits(x, n))} (5.7)
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with controlled language Wh-question like

Which is the average credit worth of courses? (5.8)

Or queries computing an average

{avg(n) | ∃x(Course(x) ∧ hasCredits(x, n))} (5.9)

with the question
Which is the average height of courses? (5.10)

in addition to GCQs.
Since Kartunnen in [Kar77], it is customary to associateHo meaning representations of type

e→t to questions and to assume that they denote the set of their answers. This assumption basically
coincides with the database and certain answers semantics of UCQs and their fragments, e.g.,
GCQs, which aresets{c1, . . . , cn} of constants. Such was the strategy we followed when defining
GCQ-English in Chapter 4.

To generalize this correspondence to AGCQs (and ATCQs) we intend to associate meaning
representations of typee→(Q→t), viz., e×Q→t, to controlled English questions. This is because
the (database or certain answers) semantics of an aggregatequery is a set{(c1, n1), . . . , (ck, nk)}
of ordered pairsof constants and rational numbers. However, as numbersn1, . . . , nk are the result
of applying an aggregation function to abag, abag-valuedsemantics for English constituents has
to be adopted, wherein English words denote bags (the content words) and operations over such
bags (the function words).

This makes sense, because a bag-valued semantics can be seenas a generalization of theset-
valuedBoolean semantics of English. Indeed, bag-valuedn-ary relations are expressed with typed
lambda calculus expressions of typeT1×· · ·×Tn→N, whereN stands (by notation abuse) for the
type of non-negative integers, rather than by expressions of T1×· · ·×Tn→t, as would be the case
for set-valuedn-ary relations. Notice, however, that such bags arise when (and from) answering
questions or queries: the data itself does not contain redundancies3.

Therefore, in order to deal with aggregate questions and queries in controlled English, some
criteria must be met:

1. we have to consider amany-sortedextension ofHo where expressions are built using the set
of basic types{e, t,N,Q},

2. such expressions will be interpreted over standardHo orFo models with possiblynumber
domains,

3. we need to understand how (controlled) English can express bags and aggregations, and
4. we need to expressbothaggregate and non-aggregate GCQs.

5.2.1 Expressing Aggregate and Non-Aggregate Queries

ExtendingHo. Expressions are built using the set{e, t,N,Q} of basic types. Notice that this
implies that logic constants in particular and expressionsis general are either polymorphic or
overloaded (i.e., interpreted differently according to their typing context).

Conjunction and existential quantification receive now a bag-valued interpretation: the deno-
tation of an expressionϕ ∧ ψ:N, w.r.t. a frameI and an assignmentγ will now be

(ϕ ∧ ψ)Iγ := ϕI
γ · ψ

I
γ ,

3In the relational model (and real-world databases), on which OBDASs are based, database relations contain no
repeated tuples.
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and of an expression∃xeϕ:N,

(∃xeϕ)Iγ :=
∑

{ϕI
γ[x:=d] | d ∈ DI},

whereas aHo interpretationI is now said tosatisfyan expressionϕ of typeN w.r.t. an assignment
γ, in symbolsI, γ |= ϕ, wheneverϕI

γ ≥ 1.

Attributes. Aggregation functions are in most cases defined over bags of rational numbers. In
ontologies and OBDASs, such numerical values arise fromattributes(and, by extension, attribute
domains), conveyed by special “attribute” roles likehasHeightor hasAge[CdL+05b]. When
combined with a concept instancec, they associate a (possibly unique) rational numbern to c.
Attributes can be expressed in controlled English withattributeconstituents like

Att→ credit worth of τ(Att) := λP e→N.λyQ.∃xe(hasCredits(x, y) ∧ P (x)),

that when combined with a bag-typed nominalN of typee→ N, give rise to a nominalN of type
Q→ N that denotes abag of rational numbers. Attributes are dealt with also by means of content
lexicon entries.

Grouping PPs. Another important feature of ATCQs and AGCQs is grouping, bymeans of
which a quantity obtained from the bag or group of (numerical) attributes of a tuple by applying
an aggregation function can be associated to such tuple. In our grammar we have chosen to convey
grouping (i.e.,SQL GROUP BYclauses) by introducing (again in the content lexicon)grouping
prepositional attachments(groupingPPs) of the form

PP → per country τ(PP) := λP e→N.λye.(P (y) ∧ Country(z) ∧ comesFrom(y, z))

which again combine with bag-typed nominalsN to give rise to a bag-typed nominalN.
Notice that they contain afreevariablez, which will be only abstracted at the root constituent

of controlled English questions (and not at any of its dominated constituents), in order to bind
together groups and group identifiers (i.e., values of grouping variables).

Aggregate Determiners. Next, we need to define a finite family of distinguished English aggre-
gate determinersthat express aggregation functions over bags of rational numbers or individuals.
Such aggregate determiners, when combined with a bag-typednominalN, give rise to a meaning
representation (and a controlled English constituent) of typeQ.

Definition 5.2.2 (Aggregate Determiners). To express SQL aggregation functions we useaggre-
gate determinersDet of global type(e→N)→Q or (Q→N)→Q:

Det → the greatest τ(Det) := λPQ→N.max(P )
Det → the smallest τ(Det) := λPQ→N.min(P )
Det → the total τ(Det) := λPQ→N.sum(P )
Det → the number of τ(Det) := λP e→N.count(P )
Det → the average τ(Det) := λPQ→N.avg(P )

Such family can be extended to cover multiplicity insensitive aggregation functions by adding
the qualifier “distinct” to the determiner, e.g., “the number of distinct” maps to the expression
λP e→N.cntd(P ) of global type(e→N)→Q.
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Non-aggregate GCQs. To express GCQs (and TCQs), or, more, precisely, to capture their set-
based (database and certain answers) semantics we rely on the carrierξ(·) function and on a func-
tion ς(·) that “collapses” non-negative integers into Booleans, andturn them into the denotation
of the following “overloaded” constantC, by putting, for all interpretationsI and assignmentsγ,

(C(ϕ))Iγ :=

{
ξ(ϕI

γ ), if ϕ:e→N,

ς(ϕI
γ ), if ϕ:N.

Such multiplicity-collapsing (and type-casting) operators will be applied when parsing and
translating a Y/N- or Wh-question expressing a Boolean or non-Boolean GCQ. It will collapse
together repeated occurrences of the same tuple, thus transforming Y/N-question meaning repre-
sentations of typeN into expressions of typet and Wh-question meaning representations of type
e→N into expressions of typee→t.

Bag-Preserving Structural Equivalence. As before, our controlled language will not translate
directly into AGCQs and ATCQs, but into (extended)Ho expressions structurally equivalent to
such queries. To this end, we need to extend the notion of structural equivalence introduced in the
previous chapter. Two formulas or expressionsϕ andψ are said to beisomorphicwhen they are
identical up to the renaming of their variables.

Definition 5.2.3 (Structural Equivalence). An (extendedHo) expressionψ := λxe.λnQ.n ≈
agg(λye.χ(x, y)):e→(Q→t) is said to bestructurally equivalentto an ATCQ or AGCQϕ :=
{(x,agg(y)) | χ′(x, y)}, in symbolsϕ ⋍s ψ, wheneverχ′(x, y) is isomosphic toχ(x, y). Sim-
ilarly, if ψ := C(λxe.χ(x)), ϕ := {x | χ′(x)} andχ(x) is isomosphic toχ′(x), ψ ⋍s ϕ. More
in general, for each expressionϕ := λxe.χ(x):e→T and eachFo formulaψ := χ′(x), ϕ ⋍s ψ
wheneverχ(x) is isomorphic toχ′(x).

The notion of isomorphism is stronger than the notion of logical equivalence on which the
standard previous notion of structural equivalence (i.e.,≡s) relies. Equivalence, while preserving
answers, does not preserve their multiplicities.

Isomorphism does preserve multiplicities, provided that we reason over UCQs as shown by
Chaudhuri and Vardi in [CV93], or, more in general, over formulas built using∃, ∧ and∨. It is
also a sufficient, but not necessary, condition of logical equivalence. The following proposition
follows immediately from this observation.

Proposition 5.2.4.Letϕ andψ be twoFo orHo formulas built using∃, ∧ and∨. Thenϕ ⋍s ψ
impliesϕ ≡s ψ, but the converse does not hold.

Later on, in Theorem 5.2.12, we will see that structural equivalence does, indeed, preserve the
aggregate database and certain answers semantics of ATCQs and AGCQs.

ATCQ-English. We are now ready to introduce the interrogative controlled language ATCQ-
English. As for GCQ-English, we will disregard morphosyntax, since modelling morphosyntactic
agreement by means of feature unification is straightforward. We make explicit, instead, co-
reference links, co-indexing denoting constituents, in the manner of GCQ-English. Note also
that, as discussed above, nominal (i.e.,N) constituents, which introduce, together withVP-
coordination, recursion in the language, can be modified, inaddition to adjectives and relative
clauses, by attributes and grouping attachments. See Figure 5.2. In Figure 5.3 the reader will see
a function and a content lexicon for the running example.

ATCQ-English does not express ATCQs or AGCQs directly, but relies instead (modulo⋍s) on
extendedHomeaning representations, of which, as we will see later on, ATCQs and AGCQs turn
out to beFo syntactic sugar.
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(Phrase structure rules) (Semantic actions)

Qwh→ Intproi Ni Sgi? τ(Qwh) :=C(λz̄e.τ(Intproi)(τ(Ni))(λx
e.τ(Sgi)))

Qwh→ Intproi Ni Sgi? τ(Qwh) :=λz̄e.τ(Intproi)(τ(Ni))(λx
Q.τ(Sgi))

Qwh→ Intproi Sgi? τ(Qwh) :=C(λz̄e.τ(Intproi)(λx
e.τ(Sgi?)))

Qwh→ Intproi Sgi? τ(Qwh) :=λz̄e.τ(Intproi)(λx
Q.τ(Sgi?))

QY/N → doesNPi VPi? τ(QY/N ) :=C(τ(NPi)(τ(VPi)))

QY/N → isNPi VPi? τ(QY/N ) :=C(τ(NPi)(τ(VPi)))

Sgi →NPgi VPi τ(Sgi) := τ(NPgi)(τ(VPi))
Ni→Ni RelCi τ(Ni) := τ(RelCi)(τ(Ni))
Ni→Ni PP τ(Ni) := τ(PP)(τ(Ni))
Ni→Adj Ni τ(Ni) := τ(Adj)(τ(Ni))
Ni→Att Ni τ(Ni) := τ(Att)(τ(Ni))

RelCi→Relpi Sgi τ(RelCi) := τ(Relpi)(λx
e.τ(Sgi))

RelCi→Relpi Sgi τ(RelCi) := τ(Relpi)(λx
Q.τ(Sgi))

VPi→ isAdj τ(VPi) := τ(Adj)
VPi→VPi Crd VPi τ(VP) := τ(Crd)(τ(VPi))(τ(VPi))
VPi→ is aNi τ(VPi) := τ(Ni)
VPi→TVi,i+1 NPi+1 τ(VPi) := τ(TVi,i+1)(τ(NPi+1))
VPi→ IVi τ(VPi) := τ(IVi)
VPi→COPi,i+1 NPi+1 τ(TVi) := τ(COPi,i+1)(τ(NPi+1))
NPi→Det Ni τ(NPi) := τ(Det)(τ(Ni))
NPi→Proi τ(NPi) := τ(Proi)
NPi→Pni τ(NPi) := τ(Pni)
PP→PPi RelCi τ(PP) := τ(PPi)(τ(RelCi))

Figure 5.2: ATCQ-English phrase structure rules.Ns are of typee→N or Q→N. By λz̄e we denote a
(possibly empty) sequenceλxe0 · · ·λy

e
n of abstractions with̄z ⊆ FV(λxQ.τ(Sgi)). Polarity, tense, number,

gender, etc., features are for the sake of simplicity disregarded.
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Figure 5.4: Parsing in ATCQ-English.

Theorem 5.2.5. For every ATCQ-English questionQ there exists an AGCQϕ s.t. τ(Q) ⋍s ϕ.
Conversely, every AGCQϕ is the image byτ(·) of some AGCQ-English questionQ.

Proof. (⇒) We need to show that for every Wh-questionQ in ATCQ-English there exists an
AGCQϕ s.t. τ(Q) ⋍s ϕ. QuestionsQ are of three kinds,(i) aggregate Wh-questions,(ii) non-
aggregate Wh-questions and(iii) (non-aggregate) Y/N-questions. To prove this result, we show
something more general, namely that

for eachN and/orVP constituent of ATCQ-English, there exists
a GCQψ(x) s.t. τ(N) ⋍s ψ(x) and/orτ(VP) ⋍s ψ(x)

(†)

We prove (†) by mutual induction on grammar derivations rooted inVPs and/orNs, taking
care that types, polarity and morphosyntactic features, unify. For simplicity, we disregard indexes.
It is then easy to see that, for instance, “which isDet N per N”, where Det stands for an
aggregate determiner, maps to

λxe.λnQ.n ≈ agg(λye.ψ(y) ∧ ψ′(y)):e→(Q→t),

that “doesNPVP” maps to
C(∃xeψ(x)):t,

or that “whichN VP” maps to
C(λxe.ψ(x)):e→t.

(⇐) We need to show that for each AGCQϕ there exists a questionQ in ATCQ-English s.t.
τ(Q) ⋍s ϕ. To prove this, we show, by induction on GCQsψ(x) rooted inx, that there exists
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either aN or aVP constituent in ATCQ-English s.t.τ(N) ⋍s ψ(x) (resp. τ(VP) ⋍s ψ(x)):

– (Basis)ψ(x) is the image of either “is anA” or “ rs himself” or “rs him” or “rs c” or “ rs
somebody” or “rs somebody whor′s him”, which are clearly aN constituent (with possibly
m ≤ 0 subordinated clauses). The other case is analogous.

– (Inductive step) If ψ(x) = ψ′(x) ∧ ψ′′(x), by IH ψ′(x) is the image of someN or VP

and similarly forψ′′(x). Hence,ψ(x) has as preimage either “N RelC” (where, e.g.,RelC

rewrites into theVP associated toψ′′(x)) or “VP andVP′”. The argument is similar for the
remaining case.

Clearly then, the AGCQ

{(x,agg(y)) | ψ(x) ∧ r(x, y) ∧ ψ′(y)},

or, more precisely, its⋍s-equivalentHomeaning representation,

λye.λnQ.n ≈ agg(λxe.ψ(x) ∧ r(x, y) ∧ ψ′(y)):e→(Q→t)

will have as preimage in ATCQ-English the question “which isDet N perN′?”, whereDet is
an aggregate determiner. On the other hand,{x | ψ(x)} will be the image of “what/whoVP?”
and{∃xψ(x)} will be the image of “does anybodyVP?” or “is anybodyVP?”.

Example 5.2.6.Consider again questionQs (i.e., question (5.1)). This question belongs to ATCQ-
English. The grammar of ATCQ-English gives rise to the parsetree from Figure 5.4. An aggregate
determiner is associated to the definiteNP “the number of distinctN” while the grouping com-
plement(a PP attachment) “perN” expresses grouping. We claim that the controlled question
(5.1) expresses the ATCQϕs from Example 5.1.8 (i.e., query (5.3)).

The value ofτ(·) on the whole question (i.e., the value ofτ(·) on the (root) componentQwh)
afterλ-application and abstraction andβ-normalization is

λze.λmQ.m ≈ cntd(λxe.Student(x) ∧ ∃ye(attends(x, y))∧
Course(y) ∧ comesFrom(x, z) ∧Country(z)):e→(Q→t),

(5.11)

and that, clearly,τ(Qs) ⋍s ϕs. Notice that in the topmost gapped subordinated sentence, viz.,
Sgi , two lambda abstractions are performed:(i) on the variablez : e, coming all the way down
from the groupingPP, and(ii) on the variablek : Q, coming from the trace noun phraseNPgi .
Similarly, question (5.8) expresses ATCQ (5.7). See Figure5.5. ♣

5.2.2 Adequateness

In this section we show that the structural equivalence⋍s among ATCQs and AGCQs and ATCQ-
English meaning representations does, indeed, preserve both the database and certain answers
semantics of aggregations, a condition we term “adequateness”. This result strengthens or general-
izes Theorem 5.2.5. This is no surprise:Fo is a fragment ofHo, soHo and simply-typed lambda
calculus expressions give a more “basic” or fundamental glance on the semantics of queries. More-
over, Libkin et al. have shown in [HLNW99] that query languages with aggregations qre more
expressive thatFo.

Given a databaseD we will denote byI ′(D) := (DI′(D), ·
I′(D)) theHo interpretation induced

byD, where:

– DI′(D) ⊆ Dom is aHo frame of basic domainsadom(D) andQ, and
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– ·I
′(D) maps(i) each constantc ∈ adom(D) to itself, (ii) each aggregation function symbol

agg to an aggregation functionaggI′(D), and(iii) each relation symbolS of arity n (hence,
in particular, concept namesA and role namesr) to a characteristic functionSI′(D) where, for
each(c1, . . . , cn) ∈ adom(D)n, SI′(D)(c1, . . . , cn) = 1 iff S(c1, . . . , cn) ∈ D.

Definition 5.2.7(Adequateness). We say that an (extendedHo) expressionψ := λxe.λmQ.m ≈
agg(λye.χ′(x, y)):e→(Q→t) is adequatefor an ATCQϕ := {(x,agg(y)) | χ(x, y)} w.r.t. a
databaseD, whenever, for all tuples(c, n) of constants,(c, n) ∈ ansa(ϕ,D) iff for some assign-
mentγ,I ′(D), γ |= m ≈ agg(λye.χ′(x, y)):t., whereI ′(D) is theHo interpretation induced by
databaseD.

Lemma 5.2.8. Letϕ be an ATCQ,D a database andψ an expression such thatψ ⋍s ϕ. Thenψ
is adequate forψ w.r.t.D.

Proof. Let ϕ, ψ andD be as in the statement of the Lemma. Let(c, n) be a tuple of individual
and numerical constants. We need to prove that

(c, n) ∈ ansa(ϕ,D) iff for someγ,I ′(D), γ |= m ≈ agg(λye.χ′(x, y)):t. (†)

(⇒) If (c, n) ∈ ansa(ϕ,D), then, there existsγ s.t. γ(x) = c, n = agg(Gγ(x)), and
I(D), γ′′ |= χ(x, y), for all γ′′ s.t. γ′′(x) = γ(x). Let I ′(D) be theHo counterpart ofI(D).
Defineγ′ overI ′(D) from γ by puttingγ′(x) := γ(x) andγ′(m) := n. Now, recall thatϕ ⋍s ψ.
Multiplicities are preserved modulo this condition byγ′ andI ′(D), since, indeed

γ′(m) = agg(Gγ(x))

= agg({|γ′′(y) | γ′′(x) = γ(x),I(D), γ′′ |= χ(x, y)|})

= aggI′(D)({|γ′′′(y) | γ′′′(x) = γ′(x),I ′(D), γ′′′ |= χ′(x, y):t|})

= aggI′(D)((λye.χ(x, y):e→N)
I′(D)
γ′ ),

and, as a result,I ′(D), γ′ |= m ≈ agg(λye.χ(x, y)):t as desired.
(⇐) Let I ′(D), γ′ |= m ≈ agg(λye.χ(x, y)) be as in the statement of the claim. LetI(D) be

theFo counterpart ofI ′(D). Define an assignmentγ ∈ SatD(ϕ̃) by exploitingγ′, viz., by putting
γ(x) := γ′(x). Such assignment preserves multiplicities and groups, since, moduloϕ ⋍s ψ,

n = aggI′(D)((λye.χ(x, y):e→N)
I′(D)
γ′ )

= aggI′(D)({|γ′′′(y) | γ′′′(x) = γ′(x),I ′(D), γ′′′ |= χ′(x, y):t|})
= agg({|γ′′(y) | γ′′(x) = γ(x),I(D), γ′′ |= χ(x, y)|})
= agg(Gγ(x))

and(c, n) ∈ ansa(ϕ,D) as desired.

As we observed in Remark 5.1.10, the domain-independence ofUCQs implies that the vari-
ables of ATCQs and AGCQs will be instantiated to points in theactive domain of knowledge
bases. Clearly, we must be sure that the structural equivalence⋍s relation preserves domain-
independence, in addition to multiplicities.

Domain-independence can be formally defined through the notion of relativization. Given a
setD ⊆ Dom we define therelativization to D of an expressionu by structural recursion on
lambda-expressions as follows

rel(c,D) := c
rel(x,D) := ⊤D(x)

rel(u(u′),D) := rel(u,D)(rel(u′,D))
rel(λxT .u,D) := λxT .rel(u,D)
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where⊤D(·) is the function or constant s.t., for alld ∈ Dom and all interpretationsI,

⊤I
D(d) :=

{
d, if d ∈ D,
0, otherwise.

We say that an expressionu is domain-independent, iff, for all interpretationsI = (DI , ·
I),

all setsDI ⊆ D ⊆ Dom and all substitutionsσ : FV(u) → Dom, uσI = rel(u,D)Iσ. Clearly,
structural equivalece preserves this property (and hence applies to ATCQ-English semantic repre-
sentations).

Proposition 5.2.9. If ψ is an extendedHo expression andϕ an ATCQ or an AGCQ s.t.ϕ ⋍s ψ,
thenψ is domain-independent.

Modulo domain-independence, we can now show that structural equivalence preserves not
only aggregate database answers, but also aggregate certain answers.

Definition 5.2.10(Adequateness). We say that an (extendedHo) expressionψ := λxe.λmQ.m ≈
agg(λye.χ′(x, y)):e→(Q→t) is adequatefor an ATCQϕ := {(x,agg(y)) | χ(x, y)} w.r.t. a
knowledge base(O,D), whenever, for all tuples(c, n) of constants,(c, n) ∈ certa(ϕ,O,D) iff
O ∪D |= ψ(c)(n):t.

Lemma 5.2.11. Let ϕ be an ATCQ,(O,D) a knowledge base andψ an expression such that
ψ ⋍s ϕ. Thenψ is adequate forϕ w.r.t. (O,D).

Proof. Letϕ,ψ and(O,D) be as in the statement of the Lemma. Let(c, n) be a tuple of individual
and numerical constants. We need to prove that

(c, n) ∈ certa(ϕ,O,D) iff O ∪D |= ψ(c)(n):t. (†)

(⇒) Given an arbitraryD ⊆ D′, let I ′(D′) be an arbitraryHo model of(O,D). Given an
arbitrary satisfying substitutionσ, it is easy to see using an argument analogous to those employed
for Lemma 5.2.8, that, moduloϕ ⋍s ψ, for every arbitrary assignmentγ′ overI ′(D′) such that
γ′(x) := σ(x), γ′(m) = agg(Hσ(x)), i.e., multiplicities are preserved. Hence, sinceγ′ was
arbitrary,I ′(D′) |= ψ(c)(n):t and a fortioriO ∪D |= ψ(c)(n):t.

(⇐) We know that(O,D) |= ψ(c)(n):t. This means that for allD ⊆ D′ s.t. I ′(D′) |= O and
I ′(D′) |= ψ(c)(n),

nI
′(D′) = aggI′(D′)((λye.χ′(cI

′(D′), y):e→ N)I
′(D′)), (‡)

wherecI
′(D′) ∈ adom(D). Let I(D′) be an arbitraryFo model of(O,D) derived fromI ′(D′).

Let σ be the substitution such thatσ(x) := cI
′(D′). Sinceχ(x, y) ⋍s χ

′(x, y) by hypothesis,
this together with (‡) implies that(i) σ ∈ SatOD(ϕ̃), (ii) Hσ(x) = (λye.χ′(σ(x), y):e→N) and,
ultimately,(iii) (c, n) ∈ certa(ϕ,O,D).

From Lemmas 5.2.8 and 5.2.11 we immediately derive the “adequateness” theorem.

Theorem 5.2.12.Let ϕ be an ATCQ,O an ontology,D a database andψ an (extendedHo)
expression such thatψ ⋍s ϕ. Thenψ is adequate forϕ w.r.t. bothD and(O,D).

Interestingly, this theorem substantiates the strategy followed in this chapter and, it can be
claimed, in [CNKT08], when we defined the notion of certain answers, viz., to aggregate on top
of the certain answers of a core. Furthermore, it generalizes to AGCQs and aggregate UCQs.
By considering AGCQs, it immediately follows that ACTQ-English does indeed capture exactly
AGCQs.
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5.3 Bags, Nested Queries and Ambiguity

Although ATCQ-English is a controlled language where each question is compositionally mapped
by τ(·) to aunique(up to structural equivalence) ATCQ or AGCQ, some residual ambiguity might
still arise from the formal queries themselves. ATCQs are anabstract, logic-based notation for
SQL queries where(i) existential quantifiers and(ii) conjunctions in positive conjunctive bodies
model eachtwodifferent SQL constructs (see [EN04], Chapter 8):

– existential quantifiers stand both for SQLnested existential conditionsand table projection
(theπ operator of relational algebra);

– conjunction stands both for boolean conjunction and tablenatural join (the1 operator of rela-
tional algebra).

These different interpretations affect multiplicities ingroups: SQLnestedexistential condi-
tions or queries evaluate to true as soon as a tuple verifies them, disregarding its multiplicity. As
such, they are often used instead of theDISTINCT operator to collapse multiplicities in aggregate
queries. ButFo-based notations cannot capture this subtlety.

Example 5.3.1.Consider Table 5.2. Thecount ATCQ

{count(x) | ∃y(loves(x, y) ∧ ∃z hasChild(y, z))} (5.12)

that asks for the number of men who love women with daughters.It gives to two SQL queries,
one of which (the second reading) contains a nested condition or query. The same holds for the
non-aggregate core TCQ

∃y(loves(x, y) ∧ ∃z hasChild(y, z)) (5.13)

that asks for the men who love women with daughters and that gives also rise to two SQL queries.
Consider now the following family databaseDf , wheref stands for “family”,

loves
MName WName

John Laura

hasChild
WName CName
Laura Sara
Laura Sandra

The nested SQL query counts joinsonly once, whereas the non-nested SQL countsall joins,
thus affecting the multiplicity of John. Under the first reading, we getG() = {|John, John|}, and
hence as answer{2}, whereas under the second reading, we get insteadG() = {|John|} and hence
as answer{1}.

This problem does not arise with the readings of the TCQ, because the semantics of TCQs
(and, more in general, of UCQs) isset based. Under both readings we get as answer the singleton
{John}, i.e., they areequivalent. ♣

Notice that this ambiguity is directly linked to the bag semantics of aggregate queries. It can
be prevented by ruling out the nested readings of ATCQs and AGCQs. With this proviso, ATCQ-
English questions can be mapped not only to a unique ATCQ or AGCQ, but also to auniqueSQL
query.
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5.4 Comparisons,∨, ¬ and ∀

In some question corpora4, questions withcomparisons, negationand universal quantification,
also occur rather frequently. For instance, in a corpus of questions issued to the U.S. National
Library of Medicine web interface5 one can observe that more than 40% contain negation(s) and/or
disjunction(s) and that more than 15% contain universal quantification(s).

In natural language, comparisons are expressed by comparatives (both majorative and diminu-
tive) and equative adjectives, to be interpreted over some totally ordered domain. Disjunctions
are expressed by the coordinating particle “or”. Negation is expressed by the negative particle
“not” (alone or in combination with an auxiliar verb such as “does”). Universal quantification is
expressed by many differentDets such as “every”, “all”, “no” and “only”. Examples of English
questions consistent with the student domain of our runningexample which contain such lexical
entries are:

Which course is harder than (strictly harder than, as hard as) ADS? (5.14)

Which student does not attend ADS? (5.15)

Which student attends only courses harder than ADS? (5.16)

Where by “harder than” we may mean (to follow, again, the running example) that a course
has more credits (credits provide a measure of a course’s relevance and difficulty). Cleary, since
real users might use such questions, it makes sense to ask whether adding comparisons, negation
and universal quantification give rise to tractable or to intractable data complexity.

The strategy we propose is extending the syntax and semantics of ATCQs and studying the
computational properties of the resoluting knowledge basequery answering problem (i.e., of
KBQA).

In SQL, universal quantifiers, comparisons and negation typically occur in theWHEREand
HAVINGclauses, viz., as (complex) Boolean selection conditions which are used as “filters” over
joins of relations, that is, as conditions that filter away from such joins those tuples that do not
satisfy the Boolean selection condition. As such, they are essentially set-valued and thus cannot
be per se subject to the bag typing and the bag semantics outlined for ATCQs and AGCQs. To
make explicit this implicit typing, we enrich on the one handthe syntax of queries and modify on
the other hand the notion of core, so that these new constructs do not give rise to multiplicities.

Definition 5.4.1(Extended aggregate tree shaped query). An extendedATCQ is as a query of the
form

ϕ := {(x,agg(y)) | ψ1(x) ∧ r(x, y) ∧ ψ2(y)}

where the tree-shaped queryψ1(x) (resp.ψ2(y)) is a conjunction

ψ1(x) := ψ1,b(x) ∧ ψ1,s(x)

of a bag conditionψ1,b(x) and a (set-valued)selection conditionψ1,s(x). The coreϕ̃ of such
extended ATCQs is now defined as the underlying TCQ obtained by deleting all the quantifiers
thatdo not occurwithin its selection conditionsψ1,s(x) andψ2,s(y).

The notions of aggregate database answers and aggregate certain answers are left unchanged:
by leaving the quantifiers in the selection conditions of cores, multiple instantiations of variables
under differentFo assignments are disregarded.

4This observations stem from joint work with E. Bonin, D. Carbotta, R. Bernardi and D. Calvanese on answering
natural language questions over the QUONTO OBDAS using wide coverage combinatorial grammar-based statistical
parsersing in [BBC+07].

5http://gateway.nlm.nih.gov
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¬≤-(A)TCQs

¬-(A)TCQs

≥-(A)TCQs ∀-(A)TCQs ∨-(A)TCQs

(A)TCQs

Figure 5.6: Expressive power of the extensions of (A)TCQs.

By default, set conditions are TCQs, and hence built using existential quantification and con-
junction over unary and binary atoms, in which case no real expressivity is added to (A)TCQs.
By contrast, expressiveness increases if wecloseTCQs under negation, disjunctions or universal
restrictions, or if we add comparisons, by stipulating that

– if ψ(x) is a selection condition, so is¬ψ(x) (¬-(A)TCQs) ,
– if ψ(x) andψ(x)′ are selection conditions, so isψ(x) ∨ ψ′(x) (∨-(A)TCQs),
– if ψ(x) is a selection condition,∀y(R(x, y)⇒ ψ(y)) (∀-(A)TCQs), and
– selection conditions can contain atomsx θ y, for θ ∈ {≤,≥, <,>,≈} (≥-(A)TCQs).

Figure 5.6 shows the resulting lattice. Notice that universal restriction can be defined in terms
of negation and existential quantification and that∀-(A)TCQs are contained in¬-(A)TCQs.

Extending the controlled interrogative language is a much harder issue, though. In languages
such as English it is unclear under which conditions the function words “or”, “only” and “not”
receive a bag-valued as opposed to a set-valued interpretation, or under which set-valued con-
stituents combine with bag-valued constituents. We will therefore not deal with this issue in this
thesis, but will proceed under the assumption that expressing extended ATCQs in (controlled) En-
glish is possible. This assumption is reasonable because, in the context of formal query languages
and computational semantics, set semantics is a special case of bag semantics.

Notice that since∨-TCQs,≤-TCQs,¬-TCQs,∀-TCQs and¬≤-TCQs are restricted kinds of
first order queries, we will repeatedly invoke(i) the definition of certain answers for UCQs and first
order queries and(ii) Proposition 3.2.5 when deriving data complexity lower and upper bounds.
This is due to the fact that certain answers are based onFo entailment and can be immediately
generalized (or extended) to arbitraryFo formulas (see [AHV95], Chapter 19).

5.5 Data Complexity

In this section we show that adding∀, ≤ and¬ to conditions make query answering hard. The∨
operator alone, however, does not [CdL+06]. We give complexity upper bounds for themost ex-
pressivelanguages and lower bounds for theleast expressivelanguages. We consider as “ontology
languages” the following controlled languages seen thus far: Lite-English, COP and COP+TV.
Note that “only” and “or” in questions (and queries) are expressible as soon as we add “not” to
ATCQ-English (and hence close ATCQ bodies under negations). Table 5.4 summarizes the main
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Algorithm 1 Deciding the aggregate certain answers ofsum-TCQs

1: procedure CERTsum(ϕ,O,D, c, n)
2: ϕ̃← CORE(ϕ);
3: for σ ∈ SatDO(ϕ̃) do
4: nσ(x) ← 0;
5: for σ′ ∈ SatDO(ϕ̃) do
6: if σ′(y) = σ(y) then
7: nσ(x) ← nσ(x) + σ(y);
8: if (c, n) = (σ(x), nσ(x)) then
9: return true;

10: end if
11: end if
12: end for
13: end for
14: return false;
15: end procedure

data complexity results shown in this section.

In what follows, we will derive complexity lower bounds by defining reductions from the
NPTime-complete satisfiability problem for2+2 formulasstudied by Scharf in [Sch93] (whose
proof we repeatedly adapt).

Definition 5.5.1. The satisfiability problem forpropositional 2+2 formulas(2+2-SAT) is the de-
cision problem defined by

– Input: a propositional formula in conjunctive normal formψ := ψ1 ∧ · · · ∧ ψk where each
conjunctψi := pi1 ∨ pi2 ∨ ¬ni1 ∨¬ni2 is a disjunction of two positive (non-negated) and two
negative (negated) propositional atoms.

– Question: does there exist a truth assignmentδ(·) s.t. δ(ψ) = 1?

Interestingly, answering aggregate queries can be reducedto answering their cores. To check
whether a tuple(c, n) is a certain answer to a (possibly extended) ATCQϕ := {(x,agg(y)) |
ψ} over a knowledge base(O,D), in general, we(i) check whetherx is instantiated toc by a
certain groundingσ ∈ SatOD(ϕ̃) and then(ii) loop over the (finitely many) certain groundings
σ′ ∈ SatOD(ϕ̃) for y, updating at each step the value ofagg on the groupHc, until agg returns
n. Otherwise, our procedure will return a negative answer. The data complexity of answeringϕ
thus depends on computingSatOD(ϕ̃) and is bounded above by the data complexity of answering
its coreϕ̃. Updating the value ofagg adds aO(adom(D)) space overhead on top of the certain
assignmentsSatOD(ϕ̃) computation.

This procedure is spelled out forsum-queries by Algorithm 1, where the imbricated for-
loops compute, essentially, the certain answers of the core, viz., in the outer loop, the answers
that contribute to comouting group identifiers and, in the inner loops, the answers that give rise
to groups. Notice that when computing a sum, we add rational numbers. The resulting quantity
can therefore be any positive or negative fraction. By making some minor modifications, the same
algorithm can be used formax,min, count andavg-queries. Notice also that storing the current
valuenγ(x) of the sum requires at mostO(adom(D)) space.
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5.5.1 ∨-(A)TCQs

Theorem 5.5.2.Answering∨-ATCQs over Lite-English and COP knowledge bases is inLSpace
in data complexity.

Proof. Lite-English expresses theDL-Liteontology languages (Theorems 4.1.4–4.1.7). Moreover,
it contains COP (Theorem 4.1.15). On the other hand, we can reduce answering an∨-ATCQϕ to
answering its corẽϕ. The coreϕ̃ is a∨-TCQ, hence a UCQ. The result then follows from the data
complexity of answering UCQs overDL-Lite knowledge bases (Theorem 3.3.5).

Theorem 5.5.3.Answering∨-ATCQs over COP+TV knowledge bases is inPTime in data com-
plexity.

Proof. We reason as before, noting that later (see Chapter 7) in thisthesis we show (Theo-
rem 7.5.4) that answering UCQs over COP+TV knowledge bases is in PTime in data complex-
ity.

5.5.2 ¬- and ∀-(A)TCQs

To obtain adata complexityreduction from 2+2-SAT, we encode 2+2 formulasψ into databases
Dψ. Thereafter, by considering afixedontologyO and afixedTCQϕ, we show that the computa-
tion of the certain answers can be used as an algorithm that checks forψ’s satisfiability.

Theorem 5.5.4.Answering∀-TCQs over knowledge bases(O,D) whereO contains disjointness
assertions iscoNPTime-hard in data complexity. It is incoNPTime for COP+TV, Lite-English,
COP and∀-ATCQs.

Proof. (Hardness)By reduction from 2+2-SAT. A disjointnessassertion is a description logic
assertion of the formC ⊑ ¬C ′ (that states that conceptsC andC ′ have a disjoint denotation). Let
ψ := ψ1 ∧ · · · ∧ ψk be a 2+2 formula over the propositional atomsAt(ψ) := {l1, . . . , lm} with,
for i ∈ [1, k],

ψi := pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2.

Consider the role namespos1, pos2, neg1 andneg2, the concept namesAf andAt, and the
attribute role hasValue. The reduction proceeds as follows:

– Mapψ to the databaseDψ:

{pos1(c1, p11),pos2(c1, p12),neg1(c1, n11),neg2(c1, n12),

...

pos1(ck, pk1),pos2(ck, pk2),neg1(ck, nk1),neg2(ck, nk2), At(true)}.

– Consider the ontology

O := {Af ⊑ ¬At}.

– Consider the (boolean)∀-TCQ query

ϕ := ∃x∃y1∃y2∃y3∃y4(pos1(x, y1) ∧ ∀z1(hasValue(y1, z1)⇒ Af (z1)) ∧ pos2(x, y2)∧
∀z2(hasValue(y2, z2)⇒ Af (z2)) ∧ neg1(x, y3) ∧ ∃z3(hasValue(y3, z3) ∧At(z3))∧
neg2(x, y4) ∧ ∃z4(hasValue(y4, z4) ∧At(z4))).
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We claim that
() 6∈ cert(ϕ,O,Dψ) iff ψ is satisfiable. (†)

(⇐) If ψ is satisfiable, then there exists a truth assignmentδ : At(ψ) → {0, 1} s.t. δ(ψ) = 1.
Construct an interpretation ofDψ that is a model ofO as follows. Consider a databaseD ⊇ Dψ.
Clearly,I(D) |= Dψ. Next, pick av ∈ adom(Dψ) and put, forl ∈ At(ψ),

(l, v) ∈ hasValueI(D) andv ∈ AI(D)
t iff δ(l) = 1.

One can see thatI(D) is as desired and that, for all variable assignmentsγ, I(D), γ 6|= ϕ, i.e.,
that() 6∈ cert(ϕ,O,Dψ).

(⇒) If the certain answers are empty, then there exists a interpretationI |= (O,Dψ), s.t.,
I 6|= ϕ. Define now a truth assignmentδ : At(ψ)→ {0, 1} by putting, for alll ∈ At(ψ),

δ(l) = 1 iff for somev, (p, v) ∈ hasValueI andv ∈ AI
t .

Clearly,δ(ψ) = 1, i.e.,ψ is satisfiable. Claim (†) follows.
Intuitively, the soundness and the completeness of the reduction come from the fact that we

can “simulate” boolean negation or complementation. Indeed, I |= Af ⊑ ¬At in combination
with the fact thatI 6|= ϕ induces a partitioning ofDI , since, fori ∈ [1, 4], it holds that

{c ∈ DI | I, γ[yi := c] 6|= ∀zi(hasValue(yi, zi) ∧At(yi))} =
DI \ {c ∈ DI | I, γ[yi := c] |= ∃zi(hasValue(yi, zi) ∧ ¬At(yi))}.

(Membership) We show that we we can (polynomially) reduce KBQA for (A)TCQs and Lite-
English, COP+TV and COP knowledge bases toCOKBSAT for Fo2, i.e., to the unsatisfiability
problem forFo2 knowledge bases. Letϕ be an∀-ATCQ and(O,D) be a Lite-English, COP or
COP+TV knowledge base.

As we discussed before, we can reduce answeringϕ over knowledge base(O,D) to answering
its coreϕ̃, which is an∀-TCQ. Now, the meaning representations of Lite-English, COP+TV and
COP are contained inFo2, whence(O,D) is aFo2 knowledge base. On the other hand, the
∀-TCQ ϕ̃ is a formula fromFo2. SinceFo2 is closed under negation, this means that¬ϕ̃ is a
also aFo2 formula. Notice that all these transformations are independent from the data and do
not affect data complexity. Moreover,

(O,D) |= ϕ̃ iff (O ∪ {¬ϕ̃},D) is unsatisfiable. (‡)

where(O ∪ {¬ϕ̃},D) is aFo2 knowledge base. This reduction is trivially sound and complete.
Since the data complexity of KBSAT for C2 and a fortiori forFo2 (that it subsumes) is in

NPTime (see Chapter 3, Theorem 3.4.4), the result follows immediately.

Theorem 5.5.5.Answering¬-TCQs over knowledge bases(O,D) whereO is an empty ontology
is coNPTime-hard in data complexity. It is incoNPTime for Lite-English, COP+TV, COP and
¬-ATCQs.

Proof. By reduction, again from 2+2-SAT. The proof is a variation of the previous one. We put
O := ∅, leaveDϕ unchanged and consider the (boolean)¬-TCQ

ψ := ∃x∃y1∃y2∃y3∃y4(pos1(x, y1) ∧ ¬At(y1) ∧ pos2(x, y2) ∧ ¬At(y2)∧
neg1(x, y3) ∧At(y3) ∧ neg2(x, y4) ∧At(y4))

The intuition is that a propositional atoml of a 2+2 formula is true under some truth assignment
δ(·) iff l ∈ AI

t , for someI |= (∅,Dψ), holds. The negation inϕ induces again a partitioning
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of DI into AI
t andDI \ A

I
f and allows us to “simulate” full boolean negation, thus ensuring the

soundness and the completeness of the reduction.
For the upper bound we reason as in the previous theorem, by observing that the cores̃ϕ of

¬-ATCQsϕ are also contained inFo2, together with Lite-English, COP and COP+TV meaning
representations.

5.5.3 (¬)≤-(A)TCQs

Aggregation functions require data value domains. Moreover, real-world databases and hence,
OBDAS, contain concrete data (integers, floats, strings, etc.). The question is: how difficult is
(i.e., which is the data complexity of) query evaluation over OBDASs when we consider all the
possibleorderingsto which a domain of interest may be subject? Orderings of domains can be
partial, total, strict, dense, discrete, may or may have endpoints (a greatest or a least element).

Lemma 5.5.6.KBQA for≤-TCQs and empty ontologiesO is coNPTime-hard in data complexity.

Proof. The proof is by reduction again from 2+2-SAT. Letψ := ψ1 ∧ · · · ∧ ψk be a 2+2 formula
over the propositional atomsAt(ψ) := {l1, . . . , lm} with, for i ∈ [1, k],

ψi := pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2.

Assume thatFo framesDom are totally ordered by some relation≤Dom. The reduction
proceeds as follows:

– We map formulaψ to the knowledge base(∅,Dψ), whereadom(Dψ) is totally ordered by
≤Dom:

{pos1(c1, p11),pos2(c1, p12),neg1(c1, n11),neg2(c1, n12),

...

pos1(ck, pk1),pos2(ck, pk2),neg1(ck, nk1),neg2(ck, nk2), Z(d)},

– We consider the (boolean)≤-TCQ

ϕ := ∃x∃y1∃y2∃y3∃y4(pos1(x, y1) ∧ ∃z1(y1 ≤ z1 ∧ Z(z1)) ∧ pos2(x, y2) ∧ ∃z2(y2 ≤ z2∧
Z(z2)) ∧ neg1(x, y3) ∧ ∃z3(y3 > z3 ∧ Z(z3)) ∧ neg2(x, y4) ∧ ∃z4(y4 > z4 ∧ Z(z4))).

Computing(O,Dψ) andϕ is polynomial on the number of propositional atoms ofψ, which is
≤ 4k. Furthermore, the only input of the of the reduction that depends onψ isDψ. Therefore, we
are reasoning on the data complexity of KBQA. We now claim that

ψ is unsatisfiable iff (∅,Dψ) |= ϕ. (†)

(⇒) Suppose that(∅,Dψ) 6|= ϕ. We want to show thatψ is satisfiable. We know that
(∅,Dψ) 6|= ϕ iff there exists an interpretationI ∈ Mod(Dψ) s.t. I 6|= ϕ. Now, sinceI |= Dψ,
this means thatI makes true all the atoms ofDψ, pos1(c1, p11), neg1(c1, n11), etc. On the other
hand,I 6|= ϕ, implies that, for all assignmentsγ : {x, y1, . . . , y4, z1, . . . , z4} → DI , whenever
γ(x) = ci, for i ∈ [1, k], either(i) γ(y1) >Dom d andγ(y1) = pi1, or (ii) γ(y2) >Dom d and
γ(y1) = pi2, or (ii) γ(y3) ≤Dom d andγ(y1) = ni1, or (ii) γ(y4) ≤Dom d andγ(y1) = ni2.

That is, every satisfying assignmentγ over every modelI of (∅,Dψ) “sets” the non-negated
atoms of conjunctψi to 1 and the negated atoms to0. On the basis of this, we define a truth
assignmentδ : At(ψ)→ {0, 1} by putting, forl ∈ At(ψ),

δ(l) :=

{

1, if γ(l) >Dom d,

0, otherwise.
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Ordering (¬)≤-(A)TCQs
TO (TOLG,TOL,TOG) coNPTime-complete

TPO (TPOLG,TPOL,TPOG) coNPTime-complete

Table 5.3: Data complexity of KBQA for (¬)≤-(A)TCQs,∀∗-ontologies and total universal orderings.

Clearly, for alli ∈ [1, k], it holds thatδ(pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2) = 1, and hence thatδ(ψ) = 1.
(⇐) Assume thatψ is satisfiable. We build a databaseD such thatI(D) |= (∅,Dψ) but

I(D) 6|= ϕ. If ψ is satisfiable this means that there exists a truth assignment δ : At(ψ) → {0, 1}
such that, for alli ∈ [1, k], δ(ψi) = 1. DatabaseD can be therefore defined as the database
D ⊇ Dψ where, for alli ∈ [1, k] andj ∈ {1, 2},

posj(ci, pij) ∈ D whenδ(pij) = 1,

posj(ci, nij) ∈ D whenδ(nij) = 1,

pij ≤ d ∈ D whenδ(pij) = 1 and

Z(d) ∈ D,

whenceI(D) |= (∅,Dψ), butI(D) 6|= ϕ.
Notice that the ordering induces a partitioning of the domain and is used to “simulate” boolean

negation or complementation.

To derive acoNPTimedata complexity upper bound we consider different kinds of possible
orderings of the domain of interest and ontologies for whicha finite class of Herbrand models
can be constructed. In particular, we will show that a non-deterministic polynomial time query
answering algorithm exists for all the resulting combinations, with the exception dense orderings.
We exploit the fact that the active domainadom(D) of a knowledge base or OBDAS(O,D) is
ordered provided that the modelsI ∈ Mod(O ∪ D) satisfy the differentFo axiomatisations of
orderings.

Definition 5.5.7. Let I = (DI , ·
I) be a aFo interpretation. A relationSI ⊆ DI × DI overI ’s

domain is said to

– be astrict partial ordering(O) or, simply, anordering, whenI is a model of

∀x¬S(x, x) (irreflexivity )

∀x∀y∀z(S(x, y) ∧ S(y, z)⇒ S(x, z)) (transitivity )

– betotal (T), whenI is a model of

∀x∀y(S(x, y) ∨ S(y, x) ∨ x = y) (tricotomy )

– have aleast element(L) whenI is a model of

∃x∀yS(x, y)

– have agreatest element(G) whenI is a model of

∃x∀yS(y, x)
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– be apartial ordering (PO) whenI is a model of

∀xS(x, x) (reflexivity )

∀x∀y(S(x, y) ∧ S(y, x)⇒ x = y) (antisymmetry)

∀x∀y∀z(S(x, y) ∧ S(y, z)⇒ S(x, z)) (transitivity )

These axioms can be combined together into:total orderings(TO), total dense orderings
(TODen),orderings with endpoints(OLG), etc.

A Fo universalor ∀∗-formula is a formula in prenex normal normal formϕ := ∀x1 · · · ∀xnψ,
where∀x1 · · · ∀xn is a sequence ofn ≥ 0 universal quantifier prefixes andψ is quantifier-free.

The following orderings are calleduniversal orderingsbecause their axioms are∀∗-formulas:
O, T, PO, TPO and TO. If we Skolemize such axiomatisations universal orderings can be ex-
tended to all the possible combinations of L and G with O, T, PO, TPO and TO. Notice that dense
orderings, are not universal in this sense, since characterized by the∀∗∃∗-sentence (or axiom)
∀x∀y(S(x, y)⇒ ∃z(S(x, y) ∧ S(z, y))).

A ∀∗-ontologyO is a set ofDL-Lite⊓ inclusion assertionsA ⊑ A′, ∃R ⊑ A, A ⊑ ¬A′ and
∃R ⊑ ¬A, all of which yield, when translated intoFo, (function-free)∀∗-formulas (sentences, to
be more precise). Notice that COP is included in this fragment of DL-Lite⊓.

Lemma 5.5.8. KBQA for ¬≤-ATCQs, universal ontologiesO and total universal orderings is in
coNPTimew.r.t. data complexity.

Proof. Letϕ be a fixed¬≤-ATCQ,(O,D) a knowledge base whereO is∀∗-ontology, and assume
that both the active domainadom(D) of the databaseD and the domainDI of every modelI of
(O,D) are ordered by TO (TOLG,TOL,TOG) or TPO (TPOLG,TPOL,TPOG).Consider now a
sequencēc of constants. The equivalence

c̄ 6∈ cert(ϕ̃,O,D) iff c̄ 6∈
⋂

{ans(ϕ̃,D′) | D ⊆ D′ andI(D′) |= O} (†)

holds whenever̄c 6∈ ans(ϕ̃,D′) for someD′ s.t.I(D′) |= (O,D). It thus suffices to show that we
can guess such a database and check whetherc̄ 6∈ ans(ϕ̃,D′) in time polynomial in#(adom(D)).

AsO contains only universal sentences, the classMod(O∪D) of models of(O,D) coincides
with the classModh(O ∪ D) of its Herbrand models. In particular,Modh(O ∪ D) constitutes a
finite lattice of finite (Herbrand) models ordered by the subinterpretationF ordering (see [Lal97],
Proposition IV-5). Furthermore, for eachH ∈ Modh(O ∪D), DH ⊆ adom(D).

Construct the databaseD′ as follows. Guess aH ∈ Modh(O ∪ D). We can guessH in time
polynomial in#(adom(D)). DatabaseD′ will then be the database s.t.H = I(D′) and can be
computed fromH in time polynomial in#(adom(D)).

Finally, to check whether̄c 6∈ ans(ϕ̃,D′), check whether there exists an assignmentγ s.t.
H, γ 6|= ϕ̃, andγ(x̄) = c̄. Sinceϕ is aFo formula this can be done in time polynomial in
#(adom(D)) (see [AHV95], Theorem 17.1.1). Table 5.3 summarizes these results.

Theorem 5.5.9.KBQA is

1. coNPTime-complete in data complexity for≤-(A)TCQs, universal COP ontologies and uni-
versal orderings.

2. coNPTime-hard in data complexity for≤-(A)TCQs, Lite-English and COP+TV ontologies
and total orderings.
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∨-(A)TCQs ≤-(A)TCQs ∀-(A)TCQs ¬-(A)TCQs
Lite-English in LSpace coNPTime-hard coNPTime-completecoNPTime-complete

COP in LSpace coNPTime-completecoNPTime-completecoNPTime-complete
∀∗-ontologies in LSpace coNPTime-completecoNPTime-completecoNPTime-complete

COP+TV in PTime coNPTime-hard coNPTime-completecoNPTime-complete

Table 5.4: Data complexity of aggregations w.r.t.∨, ∀, ¬ and comparisons. We assume orderings to be(i)
total and(ii) universal.

Proof. The first claim’s upper bounds follow from Lemma 5.5.6. The first claim’s lower bounds
follow from Lemma 5.5.8. This is because one can transform byskolemization COP meaning
representations into function-free∀∗ sentences. Such transformation, which can be computed in
time at most polynomial in the data, preserves (aggregate) certain answers. The second claim
follows from Lemma 5.5.6.

5.6 Summary

We have proposed a class of aggregate queries, viz., tree-shaped aggregate queries (ATCQs),
equipped with a certain answers semantics. ATCQs can be considered a subclass of the so-called
epistemic aggregate queries defined in [CNKT08]. ATCQs provide aFo formal notation for a
significant number of SQL aggregate queries, and are built ontop of GCQs and TCQs. Aggre-
gate SQL queries areSELECT-PROJECT-JOINqueries with aggregate functions (COUNT, AVG,
SUM, etc.), nested sub-queries, andGROUP BYandHAVINGclauses.

We have shown how to express ATCQs in controlled English by means of the controlled lan-
guage ATCQ-English, the extension of GCQ-English to aggregations. We analyzeGROUP BY
clauses as modifiers of the question’s subject (i.e., its subject N constituent). By using higher or-
dering logic (Ho) and, hence, (bag) typed, intermediate semantic representations, we ensure that
the translationτ(·) is compositional. To express, in particular, SQL aggregatefunctions, which are
defined over bags of values (i.e., groups), we propose a classof aggregate generalized determiners.

We also show that theHomeaning representations obtained are sound and complete w.r.t. the
certain answers of the targeted ATCQs providing a further justification of(i) our particular notion
of certain answers and of(ii) considering some kind of SQL query as the intended meaning of
a question with sums, counts, superlatives and/or comparatives. We pinpoint some (possible)
residual ambiguities that arise from the bag-set semanticsof the ATCQs (and not of our controlled
language questions which map into an unique ATCQ, up to structural equivalence).

We have also considered other ways of extending ATCQ- and GCQ-English by considering
comparisons/comparatives, full negation and universal restrictions in queries. This done, we show
(see Tables 5.3 and 5.4) that, whereas answering queries with aggregations can be (polynomially)
reduced to answering those same queries without, and that, therefore, aggregate operations do
not significantly increase data complexity, negations, universal restrictions and comparisons, yield
intractability (by reduction from thecoNPTime-complete 2+2-SAT problem):

– KBQA for ATCQs with disjunctions and either COP or Lite-English ontologies is inLSpace
w.r.t. data complexity.

– KBQA for ATCQs with comparisons, negations and universal restrictions and disjointness as-
sertions (expressible by COP, COP+TV and Lite-English) iscoNPTime-hard w.r.t. data com-
plexity.



Chapter 6

DL-English and the {IS-Ai}i∈[0,7] Family

Recently [BKGK05, MHWB06, Sch08, SLH03, SKC+08, ST06], controlled language interfaces
to ontology-based data access systems (OBDASs) centered mostly around the W3C standard on-
tology language OWL1 (Web Ontology Language) [FK06, KF07] have been proposed. They have
given rise to a number of applications and implementations [BKGK05, MHWB06], among which
ACE-OWL [FK06, KF07], which maps to OWL-DL and fragments of it (such as OWL-Lite). The
formal underpinning of OWL-DL is provided by description logics [BCN+03, HPSv03], in par-
ticular, OWL Lite corresponds to the description logicSHIF (Actually SHIF(D), but we do
not consider datatypes).

The data complexity of query answering inSHIF , and thus in OWL Lite and ACE-OWL Lite
(the fragment of ACE that maps to OWL Lite) is known to becoNPTime-complete: SHIF
is subsumed by the description logicALCHQI for which these computational properties hold
(recall Theorem 3.3.5 from Chapter 4). Hence, controlled languages like ACE-OWL do not scale
to data, although they contain fragments that do. This computational behavior depends on the
language constructs they cover. It would be of interest, therefore, for controlled language designers
working with OBDASs to know which natural language constructs (and in which combinations)
give rise to this computational properties.

In Chapter 5, we have shown how to express the description logic DL-Liteand TCQs, for which
KBQA is in LSpace [CdL+06], with the controlled languages Lite-English and GCQ-English,
respectively. In this chapter we extend those results by considering fragments of ACE-OWL that
are(i) maximalw.r.t. tractable data complexity (i.e., inPTime) when combined with TCQs and/or
GCQ-English questions, and hence scale to data, and(ii) minimal w.r.t. intractable data complexity
(i.e.,coNPTime-hard), and hence do not. The results of this chapter will appear in [TC10a].

6.1 Expressing the Description LogicALCI with DL-English

Figure 6.2 introduces thet grammar of the controlled language DL-English. Following the usual
description logic conventions [BCN+03], we associate (and map) the non-recursive word cate-
goriesN, Adj andIV to atomic concepts. CategoryTV is associated to role names. Recursive
constituents, by contrast, are associated to arbitrary concepts. For reasons of simplicity and space,
we disregard morphology and polarity issues. We also omit specifying the (open) class of content
words. Figure 6.1. Accordingly, examples of sentences in DL-English (we spell out the meaning

1http://www.w3.org/TR/owl-ref/
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representations underneath) are:

No man who runs some business that does not make some money is shrewd.
Man⊓ ∃run:(Business⊓ ¬(∃make:Money)) ⊑ ¬Shrewd

(6.1)

Nobody eats only apples.
∀eats:Apple⊑ ⊥

(6.2)

Everybody sleeps.
⊤ ⊑ Sleep

(6.3)

Every man loves some woman.
Man⊓Married ⊑ ∃has:Wife

(6.4)

Anybody who has some car drives some new car or old car.
∃has:Car⊑ ∃drives:((Car⊓New) ⊔ (Car⊓Old))

(6.5)

We recall that derivations in context-free grammars and, hence, in semantically enriched gram-
mars, are in one-to-one correspondance with parse trees andparsing, viz, the construction of such
parse trees with the so-called history of the grammar derivation (see [JM09], Chapter 13).

More precisely, parsing amounts to walking or searching (depth or breadth first) a tree-shaped
space ofparse statesδ := (w, β, T,E), wherew stands for a controlled language syntactic con-
stituent,β for its meaning representation (aHo expression),T for its type andE for its typing
context. Transition between states is based on unification and type-checking, and is fired by the
grammar rules. Meaning representations are computed on thefly, during parsing. The states may
also encode morphosyntactic information.

Such walk through the parsing space can be represented by means of (unification grammar-
like) derivation treeswhose nodes are the parse statesδ and whose stand for transitions of two
kinds: (i) OR-transitions, which point to the different possible successor statesδ′ of δ, and(ii)
AND-transitions, which point to those statesδ′ to which the grammar rules applicable toδ may
give rise. A derivation is said to besuccesfulif it results in a root state(w, β, T, ∅) whereinw is a
“well-typed” DL-English constituent (of semanticsτ(w) = β:T ).

This notion of derivation tree and parse states will prove useful in showing why DL-English
does not overgenerate, insofar as the typing of constituents prevent this from happening.

Lemma 6.1.1. For all sentencesD in DL-English, there exists an assertionα in ALCI s.t.
τ(D) ≡s α.

Proof. In order to prove this lemma we will prove something more general, namely, that,

for eachVP or N constituent, there exists a conceptC in ALCI
s.t. τ(VP) ≡s C (resp.τ(VP) ≡s C).

(†)

We prove (†) by mutual induction in the lengthn (for n ≥ 1) of DL-English derivations rooted in
aVP or aN. We make use of unification to prune away undesired parse (sub)trees when walking
through the space of parsing states, whenever (semantic) types and (morphosyntactic) features fail
to unify. See Figures 6.4 and 6.3 for examples.

– (n = 1). We consider in this case the derivations

VP =⇒ IV =⇒ A, VP =⇒ isAdj =⇒ A,

N =⇒ is aN =⇒ is aA,

which are in DL-English provided that we consider as part of our content lexicon the produc-
tions

IV→ A, τ(IV) := A:e→t, N→ A, τ(N) := A:e→t,

Adj→ A, τ(Adj) := A:e→t,
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(Phrase structure rules) (Semantic Actions)

S→NPVP τ(S) := τ(NP)(τ(VP))
NP→DetN τ(NP) := τ(Det)(τ(N))
NP→Pro τ(NP) := τ(Pro)
NP→ProRelpVP τ(NP) := τ(Pro)(τ(Relp)(τ(VP)))
VP→TVNP τ(VP) := τ(NP)(τ(TV))
VP→ is aN τ(VP) := τ(Neg)(τ(NP)(τ(TV)))
VP→ isTV by NP τ(VP) := τ(NP)(τ(TV))
VP→ is NegAdj τ(VP) := τ(Neg)(τ(Adj))
VP→VPCrdVP τ(VP) := τ(Crd)(τ(VP))(τ(VP))
VP→ isAdj τ(VP) := τ(Adj)
VP→ IV τ(VP) := τ(IV)
VP→ isNegTV by NP τ(VP) := τ(NP)(τ(Neg)(τ(TV)))
VP→ doesNegIV τ(VP) := τ(Neg)(τ(IV))
VP→ is NegaN τ(VP) := τ(Neg)(τ(N))
N→NRelpVP τ(N) := τ(N)(τ(Relp)(τ(VP)))
N→AdjN τ(N) := τ(Adj)(τ(N))
N→NCrdN τ(N) := τ(Crd)(τ(N))(τ(N))

(Function lexicon)

Pro→ anybody τ(Pro) :=λP e→t.λQe→t.P ⊑ Q

Pro→ somebodyτ(Pro) :=λSe→(e→t).∃S
Pro→ nobody τ(Pro) :=λP e→t.λQe→t.P ⊑ ¬Q

Pro→ nobody τ(Pro) :=λSe→(e→t).¬∃S
Crd→ and τ(Crd) :=λP e→t.λQe→t.P ⊓Q
Crd→ or τ(Crd) :=λP e→t.λQe→t.P ⊔Q
Relp→who τ(Relp) :=λP e→t.P
Relp→who τ(Relp) :=λP e→t.λQe→t.P : Q
Neg→ not τ(Neg) :=λP e→t.¬P

Pro→ only τ(Pro) :=λP e→t.λSe→(e→t).∀S:P
Pro→ everybody τ(Pro) :=λP e→t.⊤ ⊑ P
Pro→ nobody τ(Pro) :=λP e→t.P ⊑ ⊥
Det→ some τ(Det) :=λP e→t.λSe→(e→t).∃S:P
Det→ every τ(Det) :=λP e→t.λQe→t.P ⊑ Q
Det→ no τ(Det) :=λP e→t.λQe→t.P ⊑ ¬Q

(Content Lexicon)

TV→ loves τ(TV) := loves:e→(e→t)
IV→ sleepsτ(IV) := sleeps:e→t
N→man τ(N) :=Man:e→t

Adj→ new τ(Adj) :=λP e→t.P ⊓ New
...

...

Figure 6.2: DL-English.



Expressing the Description LogicALCI with DL-English 89

whenceτ(TV) = τ(N) ≡s A, whereA is an atomic concept.
– (n = k + 1). By induction hypothesis, for every derivation of lengthi ≤ k rooted inVP or

N, there exists a conceptC s.t.

VP =⇒i w andτ(VP) ≡s C or N =⇒i w andτ(N) ≡s C, (IH)

wherew stands for a component derived (in DL-English) fromVP (resp.N) in i ≤ k steps.
We want to prove that the property holds forVP =⇒k+1 w andN =⇒k+1 w. We have
several cases to consider, namely as many as there are recursive rules forVP andN in DL-
English. In what follows, we will only look at some of them, given that the proof proceeds
analogously for the remaining cases.

• N =⇒ AdjN =⇒k ww′. By induction hypothesis, there exists a conceptC ′ s.t.
τ(w′) ≡s C

′. Now, Adj is a qualificative adjective and we know from DL-English
that in this caseAdj =⇒ A with meaning representationτ(Adj) := λDe→t.(A ⊓
D):(e→t)→(e→t). Thus,

τ(Aw′) =df λP e→t.A ⊓ P (τ(w′)):e→t
=ih λDe→t.A ⊓ P (C ′):e→t
⊲ A ⊓C ′:e→t,

andA ⊓ C ′ is the concept we were looking for. Notice that any other choice forAdj

in the same position (i.e., with meaning representationτ(Adj) := A:e→t) would have
resulted in a non-derivation, due toHo type constraints.

• N =⇒ NRelpTV =⇒k w whow′′. By induction hypothesis, there exists a conceptC
s.t. τ(w) ≡s C and a conceptC ′′ s.t. τ(w′′) ≡s C

′′. On the other hand, we have that in
DL-Englishτ(Relp) := λP e→t.λQe→t.(P ⊓Q):(e→t)→((e→t)→(e→t). Hence,

τ(w whow′) =df λP e→t.λQe→t.P ⊓Q(τ(w))(τ(w)) : e→t
=ih λP e→t.λQe→t.P ⊓Q(C)(C ′′):e→t
⊲ C ⊓C ′′:e→t,

and therefore,τ(VP) ≡s C ⊓ C
′′, which is anALCI concept.

• VP =⇒ TVNP =⇒ TVDetN =⇒k−1 ww′w′′. By induction hypothesis, there
exists a conceptC ′′ s.t. τ(w′′) ≡s C

′′. We know that in DL-EnglishTV =⇒ r, with
τ(TV) ≡s r. There are only two possibilities forDet:

Det =⇒ only or Det =⇒ some.

Let us focus, w.l.o.g. on the former. We know that in such caseit holds thatτ(Det) :=
λP e→t.λSe→(e→t).(∀S:P ):(e→(e→t))→((e→t)→(e→t)). Therefore,

τ(r onlyw′′) =df λP e→t.λSe→(e→t).∀S:P (τ(w′′))(r):e→t
=ih λP e→t.λSe→(e→t).∀S:P (C ′′)(r):e→t
⊲ ∀r:C ′′:e→t,

and, clearly,τ(VP) ≡s ∀r:C ′′. Notice that any other choice forDet would prevent any
derivation of the whole constituent. For instance, whileDet =⇒ every, constituent of
(partial) meaning representationτ(Det) := λP e→t.λQe→t.P ⊑ Q:t, we cannot apply
λQe→t.C ′′ ⊑ Q:e→t to r : e→(e→t), due to ourHo type system.
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• VP =⇒ isNeg aN =⇒k ww′. By induction hypothesis, there exists a conceptC ′ s.t.
τ(w′) ≡s C

′. Now, in DL-English we have thatN =⇒ not with meaning representation
τ(Neg) := λP.¬P :e→t. Therefore,

τ(is not aw′) =df λP e→t.¬P (τ(w′)):e→t
=ih λP e→t.¬P (C ′):e→t
⊲ ¬C ′:e→t,

and thus¬C ′ is the concept we were looking for.

• All the other cases are dealt with analogously.

We now turn to complete utterances, viz. to DL-English sentences. There a few number of
different ways in which a sentenceD can be generated in our controlled language, namely:

– S =⇒ NPVP =⇒ DetNVP =⇒∗ ww′w′′ (with S = ww′w′′). We know thatτ(w′) ≡s
C ′ and thatτ(w′′) ≡s C

′′. Due to the typing constraints, the only possibilities forDet are:

Det =⇒ every or Det =⇒ no,

with meaning representationτ(Det) := λP e→t.λQe→t.P ⊑ Q:(e→t)→((e→t)→t) (resp.
τ(Det) := λP e→t.λQe→t.P ⊑ ¬Q:(e→t)→((e→t)→t)). Hence,

τ(everyw′w′′) =df λP e→t.λQe→t.P ⊑ Q(τ(w′))(τ(w′′)) : t
=† λP e→t.λQe→t.P ⊑ Q(C ′)(C ′′) : t
⊲ C ′ ⊑ C ′′ : t.

– S =⇒ NPVP =⇒ ProRelpVPVP =⇒∗ ww′w′′w′′′ (with S = ww′w′′w′′′). Observe
that the only two possible derivations rooted inPro that yield a successful overall derivation
are

Pro =⇒ everybody or Pro =⇒ nobody,

with meaning representation, for the latter,τ(S) := λP e→t.λQe→t.P ⊑ ¬Q:(e→t)→((e→t)→t)
(the former is similar). Similarly, the only partial derivation for Relp is

Relp =⇒ who

with meaning representationτ(Relp) := λP e→t.P :(e→t)→(e→t). By applying the same
argument as before, together with the definition ofτ(·) given by DL-English, it follows that
τ(S) = C ′′ ⊑ C ′′′ : t.

– S =⇒ NPVP =⇒ ProVP =⇒∗ ww′ (with S = ww′). The only two possibilities forPro

are the following:

Pro =⇒ nobody or Pro =⇒ anybody.

with meaning representation, resp.τ(Pro) := λP e→t.⊥ ⊑ P : (e→t)→t andτ(Pro) :=
λP e→t.⊤ ⊑ P : (e→t)→t. Therefore,τ(S) = ⊥ ⊑ C ′ : t (resp.,τ(S) = ⊤ ⊑ C ′:t).

Therefore, for eachD in DL-English there exists an assertionα s.t. τ(D) ≡s α. This closes the
proof.

Lemma 6.1.2. For all assertionsα in ALCI, there exists a sentenceD in DL-English s.t. (i)
τ(D) ≡s α

′, whereα′ is anALCI assertion, and (ii)α′ is equivalent toα.
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(S, β, T,E)

(NP ·VP, β′(β′′), app(T ′, T ′′), E′ ∪ E′′)

(NP, β′, T ′, E′)

(Pro, β′, T ′, E′)

(Everybody, λP.⊤ ⊑ P, (e→t)→t, ∅) . . .

�

. . .

�

. . .

�

. . .

�

(VP, β′′, T ′′, E′′)

(IV, β′′, T ′′, E′′)

(left., leaves, e→t, ∅) . . .

�

. . .

�

. . .

�

. . .

�

. . .

�

. . .

�

⊢ λP e→t.⊤ ⊑ P :(e→t)→t ⊢ Leaves:e→t

⊢ λP e→t.⊤ ⊑ P (Leaves):t

λP e→t.⊤ ⊑ P (Leaves) ⊲ ⊤ ⊑ Leaves

τ(S) = ⊤ ⊑ Leaves:t

τ(NP) = λP e→t.⊤ ⊑ P :(e→t)→t

τ(Pro) = λP e→t.⊤ ⊑ P :(e→t)→t

Everybody

τ(VP) = Leaves:e→t

τ(IV) = Leaves:e→t

left.

Figure 6.3: Top: A succesful derivation for “Everybody left.”. The dots indicate failed transitions,app(·, ·)
indicates a type unification function and angles indicate AND-transitions.Middle: Transitions only suc-
ceed when meaning can be applied to each other, their contexts merged and their types unified.Bottom:
Resulting DL-English parse tree. The information propagated from leaves to root via unification yields,
ultimately, the state(everybody left,⊤ ⊑ leaves, t, ∅).
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(VP, β, T,E)

(TV ·NP, β′(β′′), app(T ′, T ′′), E′ ∪ E′′)

�

(TV, β′, T ′, E′)

(loves, loves, e→(e→t), ∅)

(NP, β′′, T ′′, E′′)

(Det ·N, β′′′(β′′′′), app(T ′′′, T ′′′′), E′′′ ∪E′′′′)

(Det, β′′′, T ′′′, E′′′)

(every, λP.λQ.P ⊑ Q, (e→t)→((e→t)→t), ∅)

(N, β′′′′, T ′′′′, E′′′′)

(man,Man, e→t, ∅)

Figure 6.4: A failed derivation for theVP “loves every man”, sinceapp(e→(e→t), e→t) is undefined
(unification is not possible). The string is not well-typed and is thus devoid of a meaning representation and
a parse tree.

Proof. Again, in order to prove this lemma, we prove a more general claim, namely, that

for each conceptC in NNF, there exists either aVP or aN
s.t. τ(VP) ≡s C

′ or τ(N) ≡s C
′,

(†)

whereC ′ is equivalent toC. This we prove by induction onC.

– (Basis). There are two cases to consider, given thatC is in NNF.

• C := A. Notice thatA is already in NNF. Include in the function lexicon of DL-English
the (terminal) productionN→ A with lexical semanticsτ(N) := A:e→t. There are two
possibilities:

i. eitherN =⇒ N =⇒ A,
ii. or VP =⇒ is aN =⇒ is aN =⇒ is aA

Notice, furthermore that we can express⊤ with the ad hocN ”thing”, which is the usual
description logic convention [BCN+03].

• C := ¬A. thenVP =⇒ isNeg aN =⇒ is not aN =⇒ is not aA, with τ(VP) ≡s
¬A, by the same argument as before, which is in NNF.

– (Inductive step). By inductive hypothesis we know that, for all subconceptsC ′ of C, there
exists a componentw rooted in aVP or N s.t.:

VP =⇒∗ w andτ(VP) ≡s C
′′ or N =⇒∗ w andτ(N) ≡s C

′′, (IH)

whereC ′′ is a concept equivalent toC ′. This leaves two cases to consider, namely:

• C := ∃r:C ′. By (IH), there exists aw′ s.t. eitherVP =⇒∗ w′ andτ(VP) ≡s C
′′, or

N =⇒∗ w′ τ(N) ≡s C
′′, andC ′′ is equivalent toC ′. This gives us two possibilities for

∃r:C, namely:

i. VP =⇒ TVNP =⇒ TVDetN =⇒∗ r somew′, with semVP,≡s ∃r:C ′,
which is equivalent to∃r:C, or
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ii. VP =⇒ TVNP =⇒ TVProRelpVP =⇒∗ r somebody whow′, where
τ(VP),≡s ∃r:C ′, which is equivalent to∃r:C.

• C := C ′ ⊓ C ′′. Again, by (IH), there exists aw′ (resp. aw′′) s.t. eitherVP =⇒∗ w′

andτ(VP) ≡s C
′′′ (resp.C ′′′′), or N =⇒∗ w′ τ(N) ≡s C

′′′ (resp.C ′′′′), andC ′′′ is
equivalent toC ′ (resp.C ′′′′ is equivalent toC ′′). As before, we have two cases:

i. VP =⇒ VPCrdVP =⇒∗ w′ andw′′, whenceτ(VP) ≡s C
′′′ ⊓ C ′′′′ and

C ′′′ ⊓ C ′′′′ is equivalent toC ′′′ ⊓C ′′.
ii. N =⇒ NRelpVP =⇒∗ w′ andw′′, whenceτ(N) ≡s C

′′′⊓C ′′′′ andC ′′′⊓C ′′′′

is equivalent toC ′′′ ⊓C ′′.

Let now beC ⊑ C ′ be anALCI assertion withC, C ′ in NNF. We can capture this assertion in
either of two ways in DL-English:

– eitherS =⇒∗ everyNVP =⇒∗ everyww′,
– orS =⇒∗ everybody whoVPVP =⇒∗ everybody whoww′,

for some (two) componentsw′ andw′ whose existence is guaranteed by (†). Clearly, in both cases
τ(S) ≡s C

′′ ⊑ C ′′′. Moreover, it is evident thatC ′′ ⊑ C ′′′ is equivalent toC ⊑ C ′. This closes
the proof.

From Lemmas 6.1.1 and 6.1.2 follows immediately that DL-English expressesALCI (up to
equivalence).

Theorem 6.1.3(DL-English). DL-English expressesALCI.

6.2 The family {IS-Ai}i∈[0,7] of Controlled Languages.

We now turn to the computational properties of each of the constructsin isolationof DL-English.
We do it by essentially restricting the kind ofright (i.e.,Cr) and left (i.e.,Cl) concepts we may
express. All utterances comply with the sentence patterns

“everywl wr” and “everybody whowl wr”.

The constituentswl andwr map to, respectively, left and right concepts, while sentences map
to IS-A assertions of the formCl ⊑ Cr. We consider in this paper only8 out of all possible
combinations obtained by allowing inCl andCr some subset of the description logic constructs
in Figure 6.2, giving rise to the family{IS-Ai}i∈[0,7] of controlled languages shown in Figure 6.1.
The basic kind of assertion they all express is IS-A among atomic concepts, viz.,A ⊑ A′, captured
by IS-A0.

Theorem 6.2.1(IS-Ais). For eachi ∈ [0, 7] and each sentenceDi in IS-Ai, there exists an asser-
tion αi s.t. τ(Di) ≡s αi. Conversely, for each assertionαi there exists a sentenceDi in IS-Ai s.t.
τ(Di) ≡s α

′
i andα′

i is equivalent toαi.

Proof. The theorem can be proved for each fragment in a manner analogous to DL-English. Basi-
cally, we consider two cases both on the (⇒) and the (⇐) directions of the proof, viz., a (mutual)
induction on either(i) Nl andVPl constituents or(ii) on theNr andVPr constituents for the if
direction and a (mutual) induction over(i) aCl or (ii) aCr concept for the only if direction. With
some routine adjustments to the specific syntax of the fragments and their meaning representa-
tions, we adapt each time the proof of Theorem 6.1.3.
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S→NPlVPr NPl→ProlRelplVPl NPl→DetlNl

Prol→ anybody Relpl→who Detl→ every

ConceptCf Constituent γf Grammar Rules

∃r:A
TV someNf

TV somebody whoVPf

VPf → is aNf | IV | isAdj

Nf →N

∃r−:A
is TV by someNf

is TV by somebody
whoVPf

VPf → is aNf | IV
| isAdj | TVNPf

Nf →N

NPf →Detf Nf

| Prof Relpf VPf

Detf → some
Relpf → who
Prof → somebody

∀r:A
TV only VPf

TV only whoVPf

VPf → is aNf | IV
| isAdj | TVNPf

Nf →N

NPf →Detf Nf

| Prof Relpf VPf

Detf → only
Relpf → who
Prof → only

A
Nf

VPf

VPf → is aNf | IV | isAdj

Nf →N

A1 ⊓ · · · ⊓An

AdjNf

Nf whoVPf

Nf andNf

VPf andVPf

VPf → is aNf | IV
| isAdj | VPf Crdf VPf

Nf →N | AdjNf

| Nf Crdf Nf

| NfRelpf VPf

Relpf → who
Crdf → and

∃r
TV something
TV somebody

VPf → TVProf
Prof → somebody| something

A1 ⊔ · · · ⊔An VPf orVPf

VPf → is aNf | IV
| isAdj | VPf andVPf

Nf →N | Nf andNf

¬A
is notAdj

does notIV
is not aNf

Nf →N

VPf → does notIV
| is notAdj

| is not aNf

Table 6.1: Expressing conceptsCf , for f ∈ {l, r}, and assertionsCl ⊑ Cr, by restricting and subcatego-
rizing rules in DL-English.
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Assertionsαi Example(s)

IS-A0 A ⊑ A1 ⊓ · · · ⊓An Every businessman is a cunning man

IS-A1 A ⊑ ∀r:A Every herbivore eats only herbs
eats only herbs.

IS-A2 A1 ⊓ · · · ⊓An ⊑ ∀r:(A1 ⊓ · · · ⊓Ak) Every Italian man drinks
only strong coffee.

IS-A3 ∃r:A ⊑ A1 ⊓ · · · ⊓An Anybody who murders some
person is a heartless killer.

∃r−:A ⊑ A1 ⊓ · · · ⊓An Anybody who is loved by
some person is a happy person.

A ⊑ ∃r Every driver drives something.
IS-A4 A1 ⊓ · · · ⊓An ⊑ A1 ⊓ · · · ⊓Ak Every cruel man is a bad man.

∃r:(A1 ⊓ · · · ⊓An) ⊑ A1 ⊓ · · · ⊓Ak Anybody who runs some bankrupt
company is a bad businessman.

IS-A5 ∀r:A ⊑ A1 ⊓ · · · ⊓An Anybody who values only money is a
greedy person.

IS-A6 A ⊑ A1 ⊔ · · · ⊔An Every mammal is male or is female.
IS-A7 ¬A ⊑ A1 ⊓ · · · ⊓An Anybody who is not selfish is a

reasonable person.

Table 6.2: Defining the{IS-Ai}i∈[0,7] controlled languages. Each IS-Ai, for i > 0, contains the assertions
of IS-A0.

6.3 Data Complexity

In this section we state the main data complexity results forthe{IS-Ai}i∈[0,7] fragments.

Theorem 6.3.1.The data complexity ofKBQA for (T)CQs is

1. in LSpacefor IS-A0,
2. PTime-complete for IS-A2, IS-A3 and IS-A4 and
3. coNPTime-complete for IS-A5, IS-A6, and IS-A7.

Proof. The controlled language IS-A0 is subsumed by the controlled language Lite-English, which
as we have shown elsewhere (see Theorem 4.1.4, Chapter 5) expresses the description logic
DL-Lite⊓ for which KBQA w.r.t. CQs is inLSpacein data complexity (see Theorem 3.3.5, Chap-
ter 3).

The lower bounds for IS-A2, IS-A3 and IS-A4 follow from the results in [CdL+06]. For IS-A2
the result is derived from Theorem 7, case 2. For IS-A3, it is derived from Theorem 6, case
1. Finally, the lower bound for IS-A4 follows from from Theorem 7, case 3. Basically, this is
because our controlled languages subsume the description logics for which those theorems hold.
PTime-hardness in all three cases holds already for atomic queries. The complexity upper bounds,
on the other hand, follow from results by [LK07] for the description logic EL, which subsumes
the description logic assertions IS-A2, IS-A3 and IS-A4 express and hold for CQs.

The lower bounds for IS-A5, IS-A6, and IS-A7 follow also from [CdL+06]: for IS-A5, we
apply Theorem 8, case 3; for IS-A6, we apply Theorem 8, case 2; and for IS-A7, Theorem 8, case
1. In these three cases, TCQs are used to define a reduction from theNPTime-complete 2+2-SAT

problem (recall Chaper 6, Section 5.5). ThecoNPTimeupper bounds for these fragments, on the
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other hand, derive from thecoNPTimedata complexity upper bounds for KBQA over expressive
description logics (containingALCI) shown in [OCE08] and hold, again, for CQs.

Theorem 6.3.2.KBQA for IS-A1 and (T)CQs isNLSpace-complete w.r.t. data complexity.

Proof. (Hardness) Calvanese et al. show in [CdL+06] (by reduction from the reachability prob-
lem for directed graphs) that any description logic capableof expressing assertions of the form
A ⊑ ∀r.A′, or, equivalently, of the form∃r−.A ⊑ A′, is NLSpace-hard for KBQA. This result
holds already for atomic queries. Note that such assertionsare expressed in our fragments by
sentences of the form “EveryA rs onlyA′s”, rather than by sentences like “EveryA rs everyA′”.

(Membership) Let ϕ := ψ(x̄, ȳ) be afixedCQ, c̄ a fixed tuple,O a fixedset of universally
quantified IS-A1 meaning representations andD a set of facts. We will reduce KBQA for IS-A1

to KBQA for linearDatalog, which is known to beNLSpace-complete in data complexity
(see [EGDV01], Theorem 4.3). The only inclusion assertionsexpressible by our fragment areA ⊑
A′ and∃r.A ⊑ A′, which can be transformed into an (equivalent) setPO of clauses¬A(x)∨A′(x)
and¬r(x, y) ∨ ¬A(x) ∨ A′(y), called a linearDatalog program. While CQϕ may not be a
linearDatalog goal,ψ(x̄, ȳ) consists of a conjunction ofk atomsS1(z̄1)∧ · · · ∧Sk(z̄k), where
x̄∪ȳ = z̄1∪· · ·∪ z̄k. If we were to transform such atoms into a family of atomic queries (which are
linearDatalog goals), by means of some satisfaction-preserving reduction that requires only
O(log#(D)) space, the data complexity upper bound would immediately follow.

Start by computing the programPO as described above. SinceO is fixed, transforming it into
PO does not affect data complexity. We transform nowψ(x̄, ȳ), in space logarithmic in#(D), into
such family of linearDatalog goals, thus reducing answeringϕ overO andD to answering
a family of atomic goals overPO andD. Groundϕ by σ := {x̄ 7→ c̄}. Groundingϕ by σ,
which returns (the CQ)ψ(c̄, ȳ), does not affect, once again, data complexity. Next, consider all
the possible groundings{ȳ 7→ c̄′} with c̄′ ∈ adom(D)|ȳ| and apply them toψ(c̄, ȳ). There are
O(#(D)|ȳ|) such groundings. This yields a family of CQsψ(c̄, c̄′), whose atoms can be stored in
a registry ofO(log#(D)) size (we can encode such grounded atoms usingO(log#(D)) bits).
This reduction is sound and complete. Indeed

(O,D) |= ψ(c̄, ȳ) iff PO ∪ D |= Si(c̄
′′), for all i ∈ [1, k] and

somec̄′′ ∈ adom(D)|z̄i| ”compatible” with c̄,
(†)

where by “compatible” we mean thatc̄′′ coincides with̄c on the distinguished variables (note that
z̄i may containbothdistinguished and non-distinguished variables).

The (⇒) direction is immediate. To prove the (⇐) direction, we reason as follows. Assume
for contradiction that there exists an interpretationI s.t. I |= PO ∪ D but I 6|= Si(c̄

′′), for some
i ∈ [1, k] and everyc̄′′ ∈ adom(D)|z̄i| ”compatible”, again, with̄c. SinceI |= PO ∪ D, we
have thatI |= (O,D) andI |= ψ(c̄, ȳ). Therefore, for some groundingσ′ from ȳ into adom(D),
I |= S + +i(z̄i)σσ

′. Now, clearly,c̄′′ = c̄′′1 ∪ c̄
′′
2 with c̄′′2 ⊆ c̄, andz̄i = z̄i1 ∪ z̄i2 with z̄i2 ⊆ x̄.

Therefore,σ′(z̄i2) ∈ adom(D)|z̄i2|. On the other hand,I 6|= Si(c̄
′′), for all c̄′′. Hence,σ′(z̄i2) 6= c̄′′2

andσ′(z̄i2) 6∈ adom(D)|z̄i2|. Contradiction.
The algorithm then proceeds by loopingO(#(D)|ȳ|) times over theSi(c′′)s (stored in the

O(log#(D)) registry), checking each time whether, for alli ∈ [1, k], there exists some “com-
patible” c̄′′ s.t. PO ∪ D |= Si(c̄

′′) holds. For each atom the algorithm runs a linearDatalog
non-deterministic check that uses at mostO(log#(D)) space. Clearly, such a non-deterministic
algorithm decides KBQA using, overall, at mostO(log#(D)) space.
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(T)CQs (T)CQs
IS-A0 LSpace EL-English PTime-complete
IS-A1 NLSpace-complete IS-A5 coNPTime-complete
IS-A2 PTime-complete IS-A6 coNPTime-complete
IS-A3 PTime-complete IS-A7 coNPTime-complete
IS-A4 PTime-complete DL-English coNPTime-complete

Table 6.3: Summmary of data complexity results.

6.3.1 Minimal Intractable Constructs

We can now individuate the constructs of DL-English, and a fortiori of any controlled language
expressing acoNPTime-hard ontology language such asSHIF (as does ACE-OWL) that nega-
tively affect the scalability of controlled language interfaces to OdatabaseASs, namely:

– “only” in subject position (coNPTime-hardness of IS-A5),
– disjunction in predicate position (coNPTime-hardness of IS-A6),
– negation in subject position (coNPTime-hardness of IS-A7).

6.3.2 Maximal Tractable Constructs

The constructs from Figures 6.2 and 6.1 also allow us to identify maximalcontrolled languages
contained in DL-English (and a fortiori ACE-OWL) w.r.t. scalability (i.e., tractable data complex-
ity). By merging the (tractable) fragments IS-Ai, for i ≤ 4, we essentially express theELI
ontology language (see Chapter 4).

That is, the description logic where negation- and disjunction-free existential concepts are
allowed to arbitrarily nest onbothsides of⊑. ELI induces aPTime-complete fragment of DL-
English, that we term EL-English, which captures most of theconstraints and axioms of real-world
large-scale biomedical ontologies such as GALEN or SNOWMED[LK07]. We can define EL-
English top-down pretty easily by removing from DL-Englishthe grammar rules for negation,
disjunction, and universal quantification, and the negative function words. Whence:

Proposition 6.3.3. KBQA for EL-English and (T)CQs isPTime-complete in data complexity.

In such a controlled language arbitrary sentence subordination (and relatives), in combination
with, existential quantification and conjunction amongVPs orNs is allowed. Universal quantifi-
cation is highly controlled and negation and disjunction are ruled out.

6.4 Summary

In this chapter we have proposed several declarative controlled languages, viz., DL-English, EL-
English and the IS-Ais, for which KBQA of TCQs is on the one hand(i) maximal w.r.t. tractable
(PTime or less) data complexity and(ii) minimal w.r.t. intractable (NPTime-hard or more) data
complexity. This controlled languages were defined by expressing a space of description logics
whose expressiveness lies between that ofDL-Lite andALCI.

The strategy adopted was that of expressing firstALCI, a description logic where left and
right conceptsC,C ′ occurring to the left and to the right of the subsumption symbol in ontology
assertionsC ⊑ C ′ are closed under Boolean operations and symmetrical, and then restricting the
syntax of DL-English through subcategorization, to accomodate non-symmetrical and possibly
non-Boolean closed left and right concepts, giving way to EL-English and the IS-Ais.
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The crux of the intractabiliy results lie in our being able toexpress (or simulate), on top of
concept disjointness, i.e., an assertionCl ⊑ ¬Cr that can be captured sentences of the form “no
Cl is aCr”, concept partitioning, i.e., an assertion¬Cl ⊑ C ′

r, that can be captured by sentences
of the form “anybody who is not anCl is aC ′

r”.
In general, intractability (w.r.t. data complexity) will arise in every controlled language that

induces a partitioning of the data of the OBDAS’s database. This will happen whenever their
meaning representations can simulate full negation, conjunction and disjunction: the technical
coNPTime-hardness results from [CdL+06], on which we ground our own work, are based on
this intuition. We can thus say that controlled languages like IS-A5, IS-A6, IS-A7 and a fortiori
DL-English (which contains them all) are “Boolean closed”.EL-English, on the other hand, by
being a negation-free fragment of DL-English, remains tractable.

Computational complexity will be even higher if we considercombined complexityi.e., when
we considerall the inputs of KBQA (which however does not provide as accurate a measure for
OBDAS efficiency as data complexity). On the other hand, KBSAT forALCI and a fortiori KBQA

w.r.t. TCQs isExpTime-complete (Recall Theorem 3.3.5 from Chapter 3).



Chapter 7

The Complexity of Pratt and Third’s Fragments

In this chapter we study the computational complexity of KBSAT and KBQA for I. Pratt and
A. Third’s fragments of English [PHT06, PH01, PH04, Thi06],which we outlined in Chapter 4.
The fragments of English are interesting in that they can capture many forms of common-sense
reasoning such as syllogistic reasoning, that was historically (with Aristotle), the starting point of
all research in formal logic. They also overlap in expressiveness with conceptual modelling (e.g.,
ER-diagrams) and ontology (e.g., OWL, description logics)languages as we saw in Chapter 5.

But just how good would they behave as controlled interface languages? We would like to
know to what extent their coverage of English impacts on the data and combined complexity of
query evaluation in OBDASs and, in particular, how good theyfare as opposed to the description
logic-based controlled languages we defined in this thesis,viz., Lite-English, DL-English and the
IS-Ais. In particular, data complexity will provide a measure of their scalability. In so doing, we
consider

– KBQA w.r.t., on the one hand, TCQs (and their extension to ternarypredicate symbols, gener-
alized TCQs) and, on the other hand, arbitrary CQs.

– KBSAT for English andFo knowledge bases.

Though focused mainly on data complexity, we also take into account combined complexity.
In particular, we show which fragments are tractable (PTime or less) w.r.t. data complexity for
KBQA and KBSAT, intractable (NPTime or coNPTime-hard) w.r.t. data complexity for KBQA

and KBSAT, and undecidable.
Since the fragments of English are, in general, othogonal inexpressiveness to ontology lan-

guages, only some of the traditional techniques for deriving data complexity bounds are applicable.
We therefore adopt the following strategy, that generalizes theresolution-based saturation deci-
sion proceduresfrom [PHT06] to KBQA and KBSAT: we define a family of resolution procedures
that decide several of the fragments of English. Resolution, in general, does not terminate. Joyner
in [Jr.76] showed, however, that(i) when clauses do not grow beyond a certain depth bound and a
certain length bound, i.e., when such bounds exist, it does terminate, and(ii) that some sufficient
conditions, i.e., severalrefinementsof resolution (in its ordered form) induce the existence of such
bounds.

When applied to several fragments ofFo, whose clauses are subsumed by theS
+ clause
fragment (see [FLHT01], Section 3.5), conditions(i) and(ii) give rise to resolution decision pro-
cedures for those fragments ofFo. As we shall see, saturationsΓ∞ for (sets of) clausesΓ from
such fragments terminate after polynomially many (deterministic or non-deterministic, depending
on the refinements used) steps in the number of individual constants inΓ (i.e., in data complexity).

Pratt and Third show in [PHT06] that we can reduce (un)satisfiability for their fragments to
monadic (un)satisfiability. We will see that the resulting monadic clauses are subsumed byS
+,
a class of clauses decidable by resolution. Thereafter, theresolution refinements will allow us to
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derive tight data complexity bounds for thecoNPTimeor NPTime-hard fragments. As we shall
see, undecidability arises when we extend coverage in questions and/or declarations toarbitrary
pronouns. We also show that for the simpler fragments of English a reduction toDatalog query
evaluation (which isPTime-complete w.r.t. data complexity) is possible by defining intermedi-
ate fragments of English that we dubpositive fragments. Other properties of resolution can be
exploited to provide reductions to QA (which is inLSpacefor full Fo). The Tables 7.3 and 7.4
summarize the data and combined complexity results obtained. The results from this chapter have
been partly published in [TC10b].

We consider as knowledge bases setsΓ∪∆ of non-ground clauses (i.e.,Γ) and ground literals
(i.e., ∆): non-ground clauses specify the constraints that hold over the domain (the ontology),
whereas ground literals specify the extensional data (the database). We will not distinguish ei-
ther between theFo meaning representations of a fragment of English and their equisatisfiable
clauses resulting from Skolemization and clausification. The integer#(∆) denotes the number of
constants in the active domainadom(∆) of ∆ (by analogy to description logic knowledge bases).

Formal queries ((U)CQs, (U)TCQs, GCQs) will be accordinglydefined over theFo signature
Sig = (C,F,R) of such setsΓ ∪ ∆ of meaning representations, or rather, over their setR of
relations symbols (instead of ontology language role and concept names).

We adopt throughout this chapter ontology language semantic conventions. We assume(i)
SDA (which implies UNA): framesDom consist of (countably infinite) set of individual (pairwise
distinct) constant symbols. Thus, domains of interpretation DI ⊆ Dom consist ofFo constants
(i.e., syntactic entities). Furthermore, given a “database” ∆ we assume, for all interpretations
I, (ii) SNA: cI := c, for each constantc ∈ adom(∆) that has not been been introduced by
Skolemization; observe moreover thatadom(∆) ⊆ DI .

7.1 First Order Resolution

The resolution calculus was first proposed by Robinson in [Rob65] as a sound and refutation-
complete (modulo Skolemization and clausification), backward-chaining deductive calculus forFo. More recently, forward-chaining (a.k.a. saturation-based) variants, have been proposed. For-
ward chaining variants are useful because they make it easier to define SAT decision procedures
for several fragments ofFo. Furthemore, unsuccesful saturations can be used to generate mini-
mal (w.r.t. set inclusion and/or the sub-interpretationF ordering) Herbrand models. The present
section is based mainly on [FLHT01] and on [TS00], Chapter 7.

Terms and Clauses. A term t is either a variablex, a constantc or an-ary function symbol
f(t1, . . . , tn) applied ton terms. We denote byVar(t) andTer(t) the set of its variables and terms,
respectively. IfVar(t) = ∅, we say thatt is ground. We denote byCTer(t) the set of ground terms
of a termt.

A literal L is aFo atom. We denote byVar(L), Ter(L) andCTer(L) the set of its variables,
terms and closed terms, respectively. Literals are said to be negative, writtenL (resp. positive,
written L) if they are prefixed with an odd (resp. even) number of negations. We write±L to
denote an arbitrary (i.e., negative or positive) literal. They are said to begroundwhenVar(L) = ∅.

A clauseC is a disjunction

C := L1 ∨ · · · ∨ Ln ∨ Ln+1 ∨ · · · ∨ Ln+p

of literals. IfC consists of one literal, it is said to be aunit clause. The clause⊥ denotes theempty
clause, i.e., a clause that has no model. A clause all of whose literals are negative is denotedC.
Given a clauseC (resp. a setΓ of clauses), we denote byVar(C) (resp. Var(Γ)), Ter(C) (resp.
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Ter(Γ)) andCTer(C) (resp.Ter(Γ)) its set of variables, terms and closed terms. A clause is said
to begroundwhenVar(C) = ∅.

The depthd(t) of a term t is recursively defined as follows:(i) d(x) = d(c) := 0, (ii)
d(f(t1, . . . , tn)) := max {d(ti) | i ∈ [1, n]} + 1. Thedepthof a literalL is defined asd(L) :=
max {d(t) | t ∈ Ter(L)}, thedepthof a clauseC asd(C) := max {d(L) | L is a literal ofC} and
the depth of a setΓ of clauses asd(Γ) := max {d(C) | C ∈ Γ}.

Horn Clauses and Definite Programs. If n ≤ 1, C is said to be aHorn clauseof headL1 and
bodyL2∨· · ·∨Lk. The fragment ofFo induced by Horn clauses is denotedHorn. Horn clauses
are divided into three kinds:(i) goals, whenn = 0 (i.e., the head is empty),(i) facts, whenp = 0
(i.e., the body is empty), and(ii) rules.

A set of facts, goals and rules is also known in the literatureas alogic programand denoted
P. By convention, Horn clausesL1∨L2∨ · · · ∨Ln are writtenL1 ← L2∧ · · · ∧Ln and programs
P as

L1 ← L2 ∧ · · · ∧ Ln (rules)
← L2 ∧ · · · ∧ Ln (goals)

L1 ← (facts)

Horn clauses that contain no function symbols are known asdefinite clausesand their programs
asdefinite programs. The fragment they induce is known as (positive)Datalog .

Substitutions and Unifiers. A unifier for two termst andt′ is a substitutionσ s.t. tσ = t′σ. A
unifierσ is said to be amost general unifier(mgu) oft andt, when, for every other unifierσ′, there
exists a renamingσ′′ s.t. σ = σ′σ′′. As a consequence, a most general unifierσ has the property
of being unique up to renamings.

The Resolution Calculus. The unrestricted resolution calculus is defined by the rules

C ∨ L C ∨ L′
res

(C ∨ C ′)σ
C ∨ L ∨ L′

fact
(C ∨ L)σ

(σ = mgu(L,L′))

A clause obtained by the application of eitherres or fact is called aresolventand the clauses
involved thehypothesisof the rule.

We give a forward reasoning (a.k.a. saturation-based) account of resolution where we generate
all the possible clausesC derivable from a setΓ of clauses, i.e., the deductive closureΓ∞ of Γ
under the rulesresandfact. Let ρ denote a function from sets of clauses into sets of clauses that
associates to each setΓ its set of (possibly factored) resolvents. Define theresolution calculusas
a functionR s.t.R(Γ) := Γ ∪ ρ(Γ). Define thesaturationof Γ byR inductively by putting

R0(Γ) := Γ
Rk+1(Γ) :=R(Rk(Γ))

R∞(Γ) :=
⋃

n∈N
Ri(Γ)

andΓ∞ := R∞(Γ).
A derivationπ of C from Γ is a finite sequenceΓ0,Γ1, . . . ,Γn of sets of clauses, calledgoals

or statess.t., for all i ∈ [1, n], Γi ⊆ R(Γi−1), Γ0 = Γ andC ∈ Γn. If C = ⊥ we call π a
refutation. A (saturation) derivationπ is said to befair if, for all i ∈ N and every pair of clauses
C,C ′ ∈ Ri(Γ), there exists aj ≥ i s.t. C ′′ ∈ Rj(Γ) whereC ′′ is the resolvent ofC andC ′;
fairness intuitively says that it is possible to restrict w.l.o.g. attention to non-redundant clauses
when searching for a derivation. The positive integeri denotes the sizes(π) of the derivation.
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Furthermore,R is monotone increasing (w.r.t.⊆) andΓ∞ is its fixpoint. The·∞ operator is
monotonic and idempotent (on sets of clauses) i.e.,(Γ∞)∞ = Γ∞ and ifΓ ⊆ Γ′, Γ∞ ⊆ Γ′∞, for
all setsΓ, Γ′ of clauses.

TheR calculus is known to be sound and refutation complete forFo (modulo Skolemization
and clausification), though not terminating, by observing,on the one hand, that(i) entailment can
be reduced to unsatisfiability, i.e.,Γ |= ϕ iff Γ ∪ {¬ϕ} is unsatisfiable, and, on the other hand,
that(ii) aFo formulaϕ is satisfiable iffϕcl, i.e., the clause resulting from Skolemizingϕ and by
rewriting it in conjunctive normal form, is satisfiable.

Theorem 7.1.1(Robinson). LetΓ be a set of clauses andC a clause. Then:

1. (Soundness)If C ∈ Γ∞, thenΓ |= C.
2. (Completeness)If Γ |= C, then⊥ ∈ (Γ ∪ {C})∞.

Given a clauseC, theHerbrand domain HDC of C is the set of all the ground terms that can
be generated withC ’s constants and terms. The set

HBC := {S(t1, . . . , tn) | R is an-ary relation ofC andti ∈ HDC , for i ∈ [1, n]}

is theHerbrand baseof C. A Herbrand interpretationfor C is any interpretationH := (DH, ·
H)

with DH ⊆ HDC . By abusing notation a little, it is possible to identify every Herbrand interpreta-
tionH of C with a subset of the Herbrand base ofC, i.e.,H ⊆ HBC . This is because the Herbrand
models ofC are isomorphic to the subsets ofHBC ([Lal97], Proposition IV-5). Hence, for a given
C, there are2#(HBC) possible Herbrand interpretations. IfC contains no functional terms,HDC

andHBC are finite, infinite otherwise. This notion generalizes alsoto setsΓ of clauses.

Theorem 7.1.2(Herbrand). LetC be aFo clause. Then the following are equivalent:

1. C has a model.
2. C has a Herbrand model.
3. The set GR(C) of ground clauses ofC has a model.

If ⊥ 6∈ (Γ∪{C})∞, one can derive from(Γ∪{C})∞ a Herbrand modelH of Γ. The Herbrand
theorem enforces that the problem of finding a resolution refutation for a clauseC from a setΓ
reduces, to the problem of showing that the set

GR(C) := {Cσ | σ : FV(C)→ Con(C)}

of ground clauses ofC has a model. Clearly, this notion generalizes immediately to setsΓ of
clauses.

TheR calculus provides a sound and complete (though not necessarily terminating) query
answering algorithm for certain answers.

Corollary 7.1.3. Let (O,D) be a knowledge base. Let bodyϕ(x̄) be a UCQ. Let̄c be a sequence
of |x̄| constants. Then the following are equivalent:

1. c̄ ∈ cert(ϕ,O,D).
2. ⊥ ∈ (Ocl ∪ Dcl ∪ {ϕ(c̄)cl})∞.
3. GR(Ocl,Dcl, ϕ(c̄)cl) has no model.
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Separation Property. In resolution derivations the order (or strategy) in which clauses are re-
solved with each other is irrelevant. In particular, we can delay using ground clauses to the last
steps of derivations. This property that we callseparationwill be quite useful when analyzing
data complexity later on.

Proposition 7.1.4.LetΓ be a set of non-ground clauses,∆ a set of ground literals andC a clause.
Then, if there exists a derivationπ ofC fromΓ∪∆, we can transformπ into a derivationπ′ where
resolutions involving ground literals in∆ are delayed to its last steps.

Proof. By induction in the sizes(π) of derivations. Ifs(π) = 0, then the property holds trivially,
since neitherresnor fact have been applied and eitherC ∈ Γ or C ∈ ∆. Suppose by IH that the
property holds for every derivation of sizek. Let π be a derivation withs(π) = k + 1. Thenπ is
of the following form:

Γ

π0
...

C ∨ L1 ∨ L0

∆

π2
...

L′
0res

(C ∨ L1)σ0

Γ

π1
...

C ′ ∨ L′
1res

(C ∨ C ′)σ1

with σ0 = mgu(L0, L
′
0) andσ1 = mgu(L1, L

′
1). Let π′0 andπ′1 be the derivations thus obtained.

Put z̄ := Var(L0) andw̄ := Var(C,L1) \ z̄. Let c̄ be the constants occuring in the ground literal
L′
0. Then, by inspection it turns out thatσ0 = {z̄ 7→ c̄, w̄ 7→ w̄} andσ1 = σ0{w̄ 7→ t̄, ū 7→ t̄′},

for all variablesū ⊆ Var(Cσ0, C ′σ0), wheret̄ andt̄′ are arbitrary (sequences of) terms. By IH the
property holds for the subderivationsπ0 andπ1 of C ∨L0 ∨L1 andC ′ ∨L′

1 from Γ (which are of
size≤ k). We can thus transformπ into the following derivationπ′ (with subderivationsπ′0 and
π′1):

Γ

π′0
...

C ∨ L0 ∨ L1

Γ

π′1
...

C ′ ∨ L′
1res

(C ∨ C ′ ∨ L0)σ
′
1

∆

π2
...

L′
0res

(C ∨ C ′)σ′0

whereσ′1 := {w̄ 7→ t̄, z̄ → z̄} andσ′0 := σ′1{z̄ 7→ c̄, ū → t̄′}. Clearly,σ′0 = mgu(L0, L
′
0)

andσ′1 = mgu(L1, L
′
1). Furthermore,(C ∨ C ′)σ′0 is identical to(C ∨ C ′)σ1 up to renaming of

variables. Therefore,π′ is the derivation we were looking for.

Lemma 7.1.5. Let Γ be a set of clauses and∆ a set of ground clauses s.t.Γ is satisfiable. If
⊥ ∈ (Γ ∪∆)∞, then there exists a setΓ′ ⊆ Γ∞ s.t. (i) d(Γ′) ≤ d(∆), (ii) ⊥ ∈ (Γ′ ∪∆)∞ and
(iii) Γ′ is finite.

Proof. By Proposition 7.1.4, we know that we can transform any resolution derivationπ of a
clauseC from hypothesesΓ ∪∆ into a derivationπ′ where resolutions involving ground literals
(i.e., ground unit clauses) in∆ have been delayed to the last steps in the derivation. This property
holds in particular for refutations. Therefore, if⊥ ∈ (Γ ∪ ∆)∞, there exists ani ∈ N s.t. ⊥ ∈
(Ri(Γ) ∪∆)∞. Clearly,Ri(Γ) ⊆ Γ∞.
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We now claim that there exists a setΓ′ ⊆ Ri(Γ) s.t. (i) Γ′ is finite, (ii) ⊥ ∈ (Γ′ ∪∆) and(iii)
d(Γ′) ≤ d(∆).

Within Ri(Γ) we can distinguish the clausesC that resolve with a unit ground clauseL ∈ ∆
and those that do not. It is from those clauses that⊥ will be derived. Moreover, since∆ is a
finite set, finitely many such clauses will be used. Unification and a fortiori resolution would fail
(by occurs-check or clash) if such clausesC were of depth> d(∆). PutΓ′ := {C ∈ Ri(Γ) |
C resolves with someL ∈ ∆}. Clearly,Γ′ satisfies conditions(i)–(iii) .

Lemma 7.1.6(Separation). Let Γ be a set of clauses and∆ a set of ground clauses s.t.Γ is
satisfiable. Then,⊥ ∈ (Γ ∪ ∆)∞ iff there exists a setΓ′ ⊆ Γ∞ s.t. (i) d(Γ′) ≤ d(∆), (ii)
⊥ ∈ (Γ′ ∪∆)∞ and (iii) Γ′ is finite.

Proof. The (⇒) direction follows from Lemma 7.1.5. For the (⇐) direction, suppose that such a
Γ′ exists. Then

(Γ′ ∪∆)∞ ⊆ (Γ∞ ∪∆)∞ (by monotonicity)
⊆ ((Γ ∪∆)∞ ∪ (Γ ∪∆)∞)∞ (by monotonicity)
= ((Γ ∪∆)∞)∞

= (Γ ∪∆)∞ (by idempotence)

holds, whence⊥ ∈ (Γ′ ∪∆)∞ implies⊥ ∈ (Γ ∪∆)∞, which is what we wanted to prove.

7.2 Refinements of Resolution

As we said, unrestricted resolution, though sound and (refutation) complete, does not provide, per
se, decision procedures. A saturation-based derivation may not terminate even when applied to
a decidable setΓ of clauses. This is because theresandfact rules may generate clauses of arbi-
trary depth and/or length. Decidability can be achieved by consideringrefinementsof resolution,
in which (i) well-founded and substitution-invariant orderings on literals (a.k.a.acceptable order-
ings) constrain the application of the calculus rules and(ii) new rules that control clause growth are
used. This section derives from results that originate in [Jr.76] and that [BG01, FLHT01] extend.

A-ordered Resolution. A (strict) partial order≺ on literals is an irreflexive and transitive rela-
tion on literals. An order≺ on literals is said to be anacceptableorder (A-order) whenever(i) ≺
is well-founded (i.e., contains no infinite descending chains · · · ≺ Li−1 ≺ Li ≺ · · · ≺ L0) and is
liftable or invariant under substitutions, i.e., ifL ≺ L′, thenLσ ≺ L′σ, for all σ.

Such orderings can be extended to clauses and sets thereof inthe standard way by putting, on
the one hand, thatC ≺ C ′ whenever for each literalL of C, there exists a literalL′ of C ′ s.t.
L ≺ L′, and, on the other handΓ ≺ Γ′ whenever, for every clauseC ∈ Γ, there exists a clause
C ′ ∈ Γ′ s.t.C ≺ C ′. With≺ one canrestrict the un-restricted resolution calculusR by resolving
and factoring upon literals and clauses that are maximal w.r.t. ≺.

We also define therelative depthof variablex w.r.t. termst and literalsL s.t.x ∈ Var(L) and
x ∈ Var(t) as follows:(i) d(x, x) := 0, (ii) d(x, f(t1, . . . , tn)) := max {d(x, ti) | i ∈ [1, n]} + 1
and(iii) d(x,L) := max {d(x, t) | t ∈ Ter(L)}.

Lemma 7.2.1.Let≺ be an ordering over literals. If≺ is an A-order, thenR restricted by≺ yields
a sound and refutation-complete resolution calculus.

Proof. Robinson showed in [Rob65] that one can prove the refutation-completeness of resolution
usingsemantic treeswhich basically constitute a method for constructing a Herbrand model from
a saturation in which⊥ does not occur (see [BG01], Section 7.6). A-orderings are known to be
compatible with this construction.
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Definition 7.2.2. The orderings≺a+d and≺d over literals (and clauses and sets theoreof) are
defined as follows:

L ≺d L
′ iff d(L) < d(L′),

Var(L) ⊆ Var(L′) and
for all x ∈ Var(L), d(x,L) < d(x,L′).

L ≺a+d L
′ iff (i) ar(L) < ar(L′) or

(ii) ar(L) = ar(L′) andL ≺d L′.

Orderings≺d and≺a+d yield the functionsρd, ρa+d, and the ordered resolution calculiRa+d
andRd. We say that a resolution calculusR is contained in a resolution calculusR′, which we
express in symbols byR ⊆ R′ (thus overloading the set containment symbol) whenever every
derivationπ inR of a clauseC from Γ can be transformed into a derivationπ′ inR′ of C from Γ.

Proposition 7.2.3. The inclusions≺a+d⊆≺d andRa+d ⊆ Rd ⊆ R hold.

Proof. Immediate from the definition.

Theorem 7.2.4.The orderings≺a+d and≺d are well-founded and liftable.

Proof. Immediate from the definition.

By applying Lemma 7.2.1 we immediately derive:

Corollary 7.2.5. The ordered resolution calculiRa+d andRd are sound and refutation-complete.

A-orderings are important in that, on the one hand, they reduce the search space for resolution
derivations (when resolution is a decision procedure) and,on the other hand, they limit the depth
of clauses.

A literal L is said to becoveringif L contains only variables or constants, or, if it contains a
function termt, thenVar(t) = Var(L). A clauseC is said to becoveringwhen, for allL ∈ Lit(C),
L is covering. Given two covering clausesC andC ′, the depthd(C ′′) of their≺d-ordered resolvent
C ′′ will be bounded by the depth or their hypothesis, viz.,d(C ′′) ≤ max {d(C), d(C ′)}, i.e., as
long as covering is preserved, depth does not grow (see [BG01], Lemma 3.6).

Resolution with Splitting and Condensation. Ordered resolution alone, while preventing (by
resolving upon covering literals) arbitrary nesting of function terms and thus arbitrarily deep terms,
literals and clauses, may not prevent clause length growth.

We need to introduce two more refinements that prevent deriving arbitrarily long clauses, viz.,
the splitting rule split, and thecondensationrule cond. The latter deletes repeated literals in
clauses belonging to a saturation state. The former splits saturations into subsaturations where
clauses have been split, provided that their literals shareno variables. These rules are sound and
refutation-complete:

C ∨ L ∨ L′

C ∨ L
...

C ′σ

C ∨ L′

...

C ′σsplit (x̄ ∩ x̄′ = ∅, σ mgu)
C ′σ

C ∨ L ∨ Lcond
C ∨ L

wherex̄ = Var(L) and x̄′ = Var(L′) (i.e.,L andL′ must not share any variables). Notice that
these two rules areorder independant(A-orders affect onlyresandfact).
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Proposition 7.2.6.Resolution and A-ordered resolution with splitting and condensation are sound
and refutation-complete.

Proof. Joyner shows in [Jr.76], Theorem 7.2 that adding the condensation rule to acomplete
(w.r.t. semantic trees) resolution calculus, results in a complete resolution calculus. Similarly, it
is known (see [FLHT01], Section 2) that splitting preservescompleteness. These facts, combined
with Corollary 7.2.5 imply this result.

Monadizations. Monadizations, introduced by Joyner in [Jr.76] are yet another refinement of
resolution that ensures a finite bound to the depth (some particular classes of) clauses when applied
in combination with resolution saturations.

Let t be a term. A literalL is said to be

– essentially monadic ont whenever(i) t ∈ Ter(L) and(ii) for all t′ ∈ Ter(L), eithert′ = t or
t = c, for some constantc

– almost monadic ont whenever(i) t ∈ Ter(L), (ii) t is of the formt = f(t1, . . . , tn) and(iii)
for all t′ ∈ Ter(L), eithert′ = t, t = c, for some constantc or t = x, for somex 6∈ Var(t).

Monadizations are defined on almost and essentially monadicliterals and clauses. Two previ-
ous notions are needed. LetC be a finite set of constants. On the one hand, we define the set of
therelativized substitutionsof aFo formulaϕ to Conof constants and a termt

ΣC
t,ϕ := {σ | σ : Var(ϕ) \ Var(t)→ {t} ∪C}

and, on the other hand, the set ofrelativized variantsof ϕ to C andt

ε(t, ϕ,C) := {ϕσ | σ ∈ ΣC
t,ϕ}.

We can now define, for every clauseC, themonadizationof clauseC w.r.t. C as follows:

– if for everyL ∈ Lit(C), L is almost monadic ont ∈ Ter(L), we set

µ(C,C) := ε(t, C,C),

– if C is function free and there is exactly onex ∈ Var(C) s.t. for everyL ∈ Lit(C) with
#(Var(L)) ≥ 2, x ∈ Var(L), we set

µ(C,C) := ε(x,C,C),

– otherwise we set
µ(C,C) := {C}.

Finally, for every setΓ of clauses we define themonadizationof Γ as

µ(Γ) :=
⋃

C∈Γ

µ(C,Con(Γ)). (Mon)

Proposition 7.2.7([Jr.76], Theorem 9.1). Resolution and A-ordered resolution with monadization
are sound and refutation-complete.

The key idea of monadizations is to transform sets of non-covering clauses which are, however,
almost and/or essentially monadic clauses can be transformed (”monadized”) into sets of covering
clauses. This, we know, entails the existence of a depthd ∈ N bound. This expedient, combined
with A-ordered resolution (the≺d ordering) condensantion and possibly splitting gives riseto
several resolution saturation-based decision procedures.
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split mon cond cond split split split
mon cond mon mon

cond

R1,1 R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 R1,8

d R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 R2,8

d+ a R3,1 R3,2 R3,3 R3,4 R3,5 R3,6 R3,7 R3,8

Table 7.1: Resolution calculi.

Resolution Decision Procedures. By combiningresandfact with the A-orders≺d and≺d+a,
thesplit andcondrules and the monadization refinement we obtain a family of24 possible calculi,
that we spell out in Table 7.1. We define the saturation ofΓ∞ by any of the resolution calculi, for
i ∈ [1, 3], j ∈ [1, 8] inductively as follows:

R0
i,j(Γ) := Γ,

Rk+1
i,j (Γ) := Ri,j(R

k
i,j(Γ)),

R∞
i,j(Γ) :=

⋃

k∈N
Rki,j(Γ),

whenceΓ∞ := R∞
i,j(Γ). Denote byκ the function that maps sets of clauses into their consensed

sets. LetΓ := Γ′ ∪{C ∨L∨L′}, Γ1 := Γ′ ∪{C ∨L} andΓ2 := Γ′ ∪{C ∨L′} be sets of clauses
whereVar(L) ∩ Var(L′) = ∅. ThenR2,8 will be, for instance, defined as

R2,8(Γ) := (κ(µ(Rd(Γ1))) ∪ Γ) ∪ (κ(µ(Rd(Γ2))) ∪ Γ). (R2,8)

Notice that whenever we make use of the splitting rule, saturation derivationsπ become trees.
ConsiderR2,8. A derivation in this calculus is a tree of rootΓ = Γ0,1, where every internal node
Γi,j, for i, j ∈ N, has at most two siblings,Γi+1,2j−1 andΓi+1,2j , s.t. Γi+1,2j−1 ∪ Γi+1,2j ⊆

Ri+1
2,8 (Γ). Each such node is called astate. See Figure 7.1.

A derivationπ is said to be a refutation whenever, for every leaf stateΓi,j, ⊥ ∈ Γi,j. The
integeri ∈ N is called thedepthor rank of the (saturation) tree.

Notice that without splitting saturations are linear (i.e., a sequence). Notice also that a non-
refutation provides a way for specifying a model ofΓ. Finally, observe thatR = R1,1,Rd = R2,1

andRd+a = R3,1.

Decidable classes. In this section we recall the definition of the classS
+ of clauses for which
A-ordered resolution withall the refinements, viz., monadization, splitting and condensation, con-
stitutes a decision procedure.

TheS
+ class extends the Ackermann∃∗∀∃∗ and Gödel∃∗∀2∃∗Fo fragments (see [FLHT01],
Section 3.5). In particular,∃∗∀∃∗ can be decided without using the splitting rule [Jr.76]. We recall
that a∃∗∀∃∗- or ∃∗∀2∃∗- formula is a formulaϕ := ∃x1 · · · ∃xn∀xn+1∃xn+2 · · · ∃xn+mψ, resp.
ϕ := ∃x1 · · · ∃xn∀xn+1∀xn+2∃xn+3 · · · ∃xn+mψ, in prenex normal form withn,m ≥ 0 andψ
quantifier-free.

Definition 7.2.8. The classS
+ of clauses is the class where everyC satisfies

– Var(C) = Var(t), for every functional termt ∈ Ter(C), and
– either#(Var(L)) ≤ 1 or Var(L) = Var(C), for all L ∈ Lit(C).

Theorem 7.2.9([FLHT01], Theorem 3.25 and [Jr.76], Corollary 9.3). The resolutionR2,8 cal-
culus is a decision procedure forS
+ and the∃∗∀2∃∗ fragment. Similarly, the resolutionR2,6

calculus is a decision procedure for the∃∗∀∃∗ fragment.
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7.3 Resolution Decision Procedures and Data Complexity

Given a finite signatureSig = (C,F,R) with #(C) constants and a setΓ of clauses over this
signature beloging to a class decidable by resolution, we show that we can check for unsatisfiability
of Γ in time deterministic polynomial in#(C) (if we omit splitting) or in time non-deterministic
polynomial in#(C).

Lemma 7.3.1.LetSig = (C,F,R) be a first order finite signature. Consider a clause setΓ over
a (finite) setV of variables and suppose there exist both a term depth boundd ∈ N and a clause
length boundk ∈ N. Then

1. the number of clauses derivable by the saturation is

i. exponential in#(C) and double exponential inmax {#(F),#(R)}, if we use the
splitting rule, or

ii. polynomial in#(C) and exponential inmax {#(F),#(R)} otherwise,

3. the depth of the saturation is polynomial in#(C) and exponential inmax {#(F),#(R)},
and

4. there are polynomially many in#(C) and exponentially many inmax {#(F),#(R)} clauses
of length≤ k.

Proof. Assume that a nesting depth boundd exists for terms and a length boundk for clauses and
which are independent ofc. Consider now the following parameters:

– c is the number#(C) of constant symbols inC,
– v is the number#(V) of variables inV,
– f is the number#(F) of function symbols inF,
– p is the number#(R) of predicate symbols inR,
– the maximum arity of the function symbols isarf , and
– the maximum arity of the predicate symbols isarp.

We can define the maximal numberti of terms of depthi inductively by setting

t0 := v + c

ti+1 := f · t
arf
n

and, sincei ≤ d, derive an upper bound to the numbert of terms of depth≤ d

t ≤
∑d

i=0 ti
= t0 + (f · t

arf
0 ) + · · ·+ (f · t

arf
d−1)

= f0 · (v + c)ar0
f + · · ·+ fd · (v + c)ard

f

:= pt(c)

(7.1)

thus defining a polynomialpt(c) of degree deg(pt) ≤ ardf . This in its turn yields as upper bound
to the numberl of positive and negative literals

l ≤ 2 · p · tarp

≤ 2 · p · pt(c)
arp

:= pl(c)
(7.2)

thus defining a polynomialpl(c) of degree deg(pl) ≤ ardf ·arp. Finally, froml we derive an upper
bound to the numbercl of clauses of length≤ k

cl ≤ lk

≤ pl(c)
k

:= pcl(c)
(7.3)
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Γ0

Γ1

Γ2

Γpcl(c)

Γ0,1 s(π)=0

Γ1,1 ∪ Γ1,2 s(π)=1

Γ2,1 ∪ Γ2,2 ∪ Γ2,3 ∪ Γ2,4 s(π)=2

. . . ∪ . . . ∪ . . .

Γpcl(c),1 ∪ . . . . . . ∪ . . . . . . ∪ Γpcl(c),2pcl(c)
s(π)=pcl(c)

Figure 7.1: A saturationπ with and without splitting.

which again defines a polynomialpcl(c) of degree deg(pcl) ≤ ardf · arp · k.
The splitting rule splits the states of a saturation derivation into two separate states, thus yield-

ing a derivation tree of branching factor2, depth≤ pcl(c), states of size≤ pcl(c) and overall
(worst-case) size≤ 2pcl(c). If we omit the splitting rule, the saturation, now linear, stops after
deriving a a sequence of≤ pcl(c) states, each of size≤ pcl(c).

Set nows := max {v, f, p,arf ,arp, d, k}. Clearly, as the reader can see:(i) we can derive
from (7.1) an exponential functionexpt of bases and exponents s.t. t ≤ expt(s, s); (ii) we
can derive from (7.2) an exponential functionexpl of bases and exponents s.t. l ≤ expt(s, s);
and (iii) we can derive from (7.3) an exponential functionexpcl of bases and exponents s.t.
cl ≤ expcl(s, s).

This in its turn entails thatπ is of depth≤ expcl(s, s), has states of maximum size≤
expcl(s, s) and stops after generating either≤ 2expcl(s,s) or ≤ expcl(s, s) states in caseπ is
built using or not using the splitting rule, depending in theRi,js, for i ∈ [1, 4], j ∈ [1, 8]. See Fig-
ure 7.1. Notice that the bound2expcl(s,s) is a double exponential ins and may not be optimal.

Theorem 7.3.2.KBSAT is in NPTime in data complexity forS
+, ∃∗∀∃∗ and∃∗∀2∃∗.

Proof. Let Σ ∪ ∆ be a set ofS
+ clauses (resp.∃∗∀∃∗ or ∃∗∀2∃∗ formulas). Consider now a
R2,5-saturation. CalculusR2,5 decidesS
+ and saturations finitely converge. Assume w.l.o.g.
thatΣ contains no constants and that∆ is of depthd(∆) = 0 and has#(∆) distinct constants.
By Lemma 7.3.1 we know that the saturation will be tree-shaped, of rank≤ p(#(∆)), of size
≤ 2p(#(∆)) and of maximal state of size≤ p(#(∆)).

Outline a non-deterministic algorithm for KBSAT as follows. Start withΣ∪∆. For each rank
i ∈ [0, p(#(∆))] of the saturation, guess/choose a statej ∈ [0, 2i]. Notice that the algorithm will
make polynomially many choices in#(∆). Finally, check, in time polynomial in#(∆) whether
⊥ is in the resulting state, and, if no, compute, in time polynomial in #(∆), a Herbrand model of
Σ ∪∆.

7.4 The Positive Fragments

Before looking in detail at KBQA and KBSAT for the fragments of English, we study a simpler
case, viz., the case of thepositive fragments. These fragments are defined by eliminating negation,



110 7. The Complexity of Pratt and Third’s FragmentsFo fragment Data complexity of KBSATS+ in NPTime [Th 7.3.2]
∃∗∀∃∗ in NPTime [Th 7.3.2]
∃∗∀2∃∗ in NPTime [Th 7.3.2]

Table 7.2: KBSAT data complexity upper bounds forS
+, ∃∗∀∃∗ and∃∗∀2∃∗.

i.e., the generalized negative determiner “no” of meaning representation, we recall,

λP.λQ.∀x(P (x)⇒ ¬Q(x)),

expressingset disjointnessand the Boolean operator “is not” or “does not” for negatingVPs, of
meaning representation

λP.¬P

from COP, COP+TV, COP+DTV and COP+TV+DTV. This gives rise tothe following classes of
meaning representations:

– IS-A∀
∃ meaning representations are defined as follows:

P (c)
Q1x1(P (x1), Q(x1))

– IS-A∀
∃+TV meaning representations contain, in addition:

S(c, c′)
Q1x1(P (x1), χ(x1))

Q1x1(P (x1), Q2x2(Q(x2), χ(x1, x2)))

– IS-A∀
∃+DTV meaning representations contain, in addition:

T (c, c′, c′′)
Q1x1(P (x1), ζ(x1))

Q1x1(P (x1), Q2x2(Q(x2), ζ(x1, x2)))
Q1x1(P (x1), Q2x2(Q(x2), Q3x3(N(x3), ζ(x1, x2, x3))))

where(i) P,Q,N , etc., denote unary predicate symbols,(ii) S, S′, etc., binary symbols,(iii) T, T ′,
etc., ternary symbols,(iv) Qixi(ϕ,ψ) stands for either∀xi(ϕ ⇒ ψ) or ∃xi(ϕ ∧ ψ), (v) χ(x̄)
denotes a binary atom wherēx occurs free, and(vi) ζ(x̄) denotes a ternary atom wherex̄ occurs
free. Finally, IS-A∀∃+TV+DTV is the fragment that subsumes them all. The reader will find a
diagram describing their relative expressiveness in Figure 7.3.

Theorem 7.4.1.KBQA is in LSpacein data complexity andNPTime-complete in combined com-
plexity for IS-A∀∃ and (U)CQs.KBSAT is also inLSpacein data complexity.

Proof. By definition, IS-A∀∃ is contained in COP. By Theorem 4.1.15 we know that COP is con-
tained inDL-Lite and a fortiori by Lite English. The result follows from this combined with
Corrollaries 4.3.2 and 4.3.6. Membership inLSpacefor KBSAT follows from results forDL-Lite
knowledge bases [CdV+06].

Lemma 7.4.2. Let Γ ∪ ∆ be a set of IS-A∀∃+TV meaning representations andϕ a UCQ. We
can transformΓ ∪ ∆ in time polynomial on#(Γ) into a setΓ′ ∪ ∆′ of Fo ∀∗∃∗-sentences s.t.
cert(ϕ,Γ,∆) = cert(ϕ,Γ′,∆′).
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Proof. TransformΓ ∪∆ into a setΓ′ ∪∆′ of ∀∗∃∗-sentences of the form∀x̄(ϕ(x̄)⇒ ψ(x̄)) and
∀x̄(ϕ(x̄)⇒ ∃ȳψ(x̄, ȳ)). Start by puttingΓ′ := ∅ and∆′ := ∆. Next, for eachχ ∈ Γ,

– if χ = ∀x(P (x)⇒ Q(x)), thenΓ′ := Γ′ ∪ {χ},
– if χ = ∃x(P (x) ∧Q(x)), then∆′ := ∆′ ∪ {P (c), Q(c)},
– if χ = ∀x(P (x)⇒ ϕ(x)), thenΓ′ := Γ′ ∪ {χ},
– if χ = ∃x(P (x) ∧ ϕ(x)), then∆′ := ∆′ ∪ {P (c′), ϕ(c′)},
– if χ = ∀x(P (x)⇒ ∃y(S(x, y) ∧Q(y))), thenΓ′ := Γ′ ∪ {χ},
– if χ = ∃x(P (x) ∧ ∀y(S(x, y)⇒ Q(x))), then

• ∆′ := ∆′ ∪ {P (d)} and

• Γ′ := Γ′ ∪ {∀y(S(c′, y)⇒ Q(x))}.

Wherec′ is a fresh Skolem constant. This rewriting procedure forΓ ∪∆ introduces≤ #(Γ) new
Skolem constantsc′1, . . . , c

′
#(Γ) and proceeds in time linear in#(Γ). We now claim that

Γ′ ∪∆′ |= ϕ(c̄) iff Γ ∪∆ |= ϕ(c̄). (†)

(⇒) AssumeΓ′∪∆′ |= ϕ(c̄) and letI |= Γ∪∆. Then we can define an arbitrary expansionI ′

of I s.t.I ′ |= Γ′ ∪∆′, which implies, by hypothesis, thatI ′ |= Γ∪∆ too. Now, ifI ′ is a Skolem
expansion ofI, thenI is then the restriction ofI ′ to the language/signature ofI. Therefore,I
andI ′ coincide onϕ(c̄), whenceI |= ϕ(c̄).

(⇐) AssumeΓ ∪∆ |= ϕ(c̄) and letI ′ be an arbitrary interpretation s.t.I ′ |= Γ′ ∪∆′. Since
Γ′ ∪∆′ is a (partial) Skolem theory, the models ofΓ′ ∪∆′ are contained by the models ofΓ ∪∆,
whenceI ′ |= Γ ∪∆ and, therefore,I ′ |= ϕ(c̄).

In what follows we perform a reduction to KBQA in theDatalog query language, which
is known to be inPTime in data complexity (see [EGDV01], Theorem 4.4). To this purpose,
we will define a structure that, although not being necessarily a model of a knowledge base, can
be, however, homomorphically embedded into its models. Since we are interested in answering
UCQs, this suffices, because, as we saw in Theorem 3.4.2 from Chapter 3, UCQs are closed under
homomorphisms. This structure is defined using the∼Γ equivalance relation onDom that we
introduce below.

Definition 7.4.3. Let Γ be a finite set of existentially quantifiedFo formulas. Define an equiva-
lence relation∼Γ onDom by putting:

c ∼Γ c
′ iff there exists an interpretationI, a formula∃yϕ ∈ Γ and assignmentsγ, γ′ s.t.

(i) γ(y) = c, (ii) γ′(y) = c′, (iii) I, γ |= ϕ and (iv)I, γ′ |= ϕ.

We denote by[c] the equivalence class ofc by∼Γ, i.e., the set{c′ ∈ Dom | c ∼Γ c
′}.

This yields (at most) the following#(Γ) equivalence classes:[c1],. . . ,[c#(Γ)]. We denote by
Dom/∼Γ

the quotient set ofDom by∼Γ. SetDom′ := Dom ∪Dom/∼Γ
. In Lemma 7.4.4 we

consider assignmentsγ that map variables to elements inDom′ and interpretationsI = (DI , ·
I)

whereDI ⊆ Dom′. We will also apply the (countable version of the) so-calledaxiom of choice
(AC) of set theory (see [CL03], Vol. 2, Chapter 7), stated thus:

Let {Xi}i≥0 be a family of sets. Ifi > 0 andXi 6= ∅, for all i ≥ 1,
then there exists a functionc : N→

⋃
{Xi | i ≥ 1}, known as a

choice function, s.t.c(i) ∈ Xi, for all i ≥ 1.
(AC)
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I I∗

c c

c1 c2 . . . ci [ci]

RI RI RI RI∗

c(i)

Figure 7.2: The interpretationI∗.

Lemma 7.4.4.LetΓ∪∆ be a set of IS-A∀∃+TV meaning representations andϕ(x̄) a UCQ. We can
construct an interpretationI∗ overDom′ s.t., for all sequencēc of |x̄| constants,I∗ |= ϕ(c̄) iff
c̄ ∈ cert(ϕ,Γ,∆).

Proof. Let Γ′ ∪ ∆′ be as in Lemma 7.4.2. Consider the sentences inΓ. There are≤ #(Γ′)
sentencesϕ1, . . . , ϕ#(Γ′) of the formϕi := ∀x(ϕ(x)⇒ ∃yψ(x, y)). Define a finite interpretation
I∗ by putting

RI∗

:= {(c, [c′]) ∈ adom(∆′)×Dom/∼Γ
| Γ′ ∪∆′ |= R(c, c′), i ∈ [1, p]}

∪{(c, c′) ∈ adom(∆′)× adom(∆′) | Γ′ ∪∆′ |= R(c, c′)},
P I∗

:= {[c′] ∈ Dom/∼Γ
| Γ′ ∪∆′ |= P (c′)}

∪{c′ ∈ adom(∆′) | Γ′ ∪∆′ |= P (c′)},

for every unary predicateP and every binary predicateR in the signature ofΓ∪∆. It is of domain
DI∗ := adom(∆′) ∪Dom/∼Γ

. We claim that this finite interpretationI∗, that is not necessarily
a model ofΓ′ ∪∆′, is such that

Γ′ ∪∆′ |= ϕ(c̄) iff I∗ |= ϕ(c̄). (†)

(⇒) We claim thatI∗ is a model ofΓ′ ∪∆′. Clearly, by definition,I∗ |= ∆′. Consider now
χ ∈ Γ′. If χ 6= ϕi, I∗ |= χ. Otherwise, whenχ = ϕi := ∀x(ϕ(x) ⇒ ∃yψ(x, y)), then, let
γ : {x} → DI∗ be an assignment s.t.I∗, γ |= ϕ(x). Observe thatψ(x, y) := A(y) ∧ R(x, y).
Let c be the constant s.t.γ(x) = c. Define now an assignmentγ′ : {x, y} → DI∗ by putting(i)
γ′(x) := γ(x) and (ii) γ(y) := [c′] iff Γ′ ∪ ∆′ |= A(c′) ∧ R(c, c′). Clearly,γ′(y) ∈ AI∗

and
(γ′(x), γ′(y)) ∈ RI∗

, i.e., I∗, γ′ |= ψ(x, y) and a fortioriI∗ |= χ andI∗ |= Γ′. Therefore,
I∗ |= ϕ(c̄).

(⇐) We prove thatI∗ can be homomorphically mapped to every modelI of Γ′ ∪ ∆′. Since
UCQs are basicallyFo+

∃ formulas, which are preserved under homomorphisms (Theorem 3.4.2,
Chapter 4), the claim will follow. We can defineh as the identity overadom(∆′). For the other
elements we apply the following argument. Notice that for every sentenceϕ1, . . . , ϕ#(Γ′) ∈ Γ′,
there might be≥ 1 elementsc ∈ DI bound to the existentially quantified variabley by some
assignmentγ (i.e., s.t.γ(y) := c). Let c be a choice function from{1, . . . ,#(Γ)} to [c1] ∪ · · · ∪
[c#(Γ)] (i.e., s.t. c(i) ∈ [ci], for all i ∈ [1,#(Γ)]). Modulo (AC), we can assume thatc makes
always the “right” choice. Thus, we seth([ci]) := c(i), for i ∈ [1,#(Γ)]. This is depicted by
Figure 7.2.

Finally, by combining (†) with Lemma 7.4.2 we close the proof.
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Theorem 7.4.5.KBQA is in PTime in data complexity for IS-A∀∃+TV and UCQs.

Proof. Let Γ ∪ ∆ be a set of IS-A∀∃+TV meaning representations. Letϕ(x̄) be a UCQ. Let
c̄ ∈ Dom|x̄|. Let Γ ∪ ∆ be as in Lemma 7.4.2 andI∗ as in Lemma 7.4.4 We now show that
there exists a a positiveDatalog programPϕΓ′ such that, for all̄c ∈ Dom, c̄ ∈ cert(ϕ,Γ,∆)
iff c̄ ∈ PϕΓ′(∆′), by showing thatI∗ is essentially the minimal model of this program up to homo-
morphical equivalence.

Notice thatϕ(x̄) is already a positiveDatalog goal. Notice too that∆′ is a set of positiveDatalog ground facts. Thus, we only need to take care ofΓ′. Recall that inΓ′ there are
at most#(Γ′) sentences of the formϕi := ∀x(ϕ(x) ⇒ ∃yψ(x, y)). Replace eachϕi with
ϕ′
i := ∀x(ϕ(x) ⇒ ψ(x, c′i)) wherec′i is a fresh Skolem constant, yieldingΓ∗. By clausifyingΓ∗

we obtain a set of positiveDatalog rules. Denote byPϕΓ′ the resulting program. We now claim
that

I∗ |= ϕ(c̄) iff c̄ ∈ PϕΓ′(∆
′), (†)

(⇒) LetH∗ be the least Herbrand model ofPϕΓ′ ∪∆′. Defineh as the identity overadom(∆)
and put, for each1 ≤ i ≤ #(Γ′), h([ci]) := c′i. Clearly,h is an homomorphism fromI∗ toH∗.
ThereforeH∗ |= ϕ(c̄) (since UCQs are closed under homomorphisms) and a fortioric ∈ PϕΓ′(∆′),
as desired.

(⇐) By hypothesis,H∗ |= ϕ(c). Define an homomorphismh from H∗ to I∗ as the identity
overadom(∆) and by putting, for each1 ≤ i ≤ #(Γ′), h(c′i) := [ci]. Again, as UCQs are closed
under homomorphisms, the claim follows.

Define now a query answering algorithm for IS-A∀
∃+TV and UCQs as follows. GivenΓ ∪∆,

ϕ and tuplēc:

1. compute, in time constant in#(∆), Γ′ ∪∆,
2. compute, in time constant in#(∆), PϕΓ′ , and
3. check, in time polynomial in#(∆′) and a fortiori in#(∆′), whether̄c ∈ PϕΓ′(∆′).

That this algorithm is sound and complete can be proven thus:

c̄ ∈ cert(ϕ,Γ,∆) iff I∗ |= ϕ(c̄) (by Lemma 7.4.4)
iff c̄ ∈ PϕΓ′(∆′) (by (†))

Which means that checking whetherc̄ is an answer can be done in time polynomial on#(∆).
This closes the proof.

Remark 7.4.6. If we replace “every” with “only” in predicate position, then KBQA becomes
NLSpace-complete for IS-A∀∃+TV. On the one hand, Calvanese et al. show in [CdL+06] (by
reduction from the reachability problem for directed graphs) that any logic capable of express-
ing Fo sentences of the form∀x(P (x) ⇒ ∀y(S(x, y) ⇒ Q(y)), or, equivalently, of the form
∀x(∃y(S(y, x) ∧ P (y) ⇒ Q(x), is NLSpace-hard for KBQA. We can express such assertions
with sentences of the form “EveryP Ss onlyQs”, whence the lower bound. We recall that mean-
ing representations for “only” (a.k.a.universal restrictions) are of the form

λP.λQ.∀x(Q(x)⇒ P (x))

(notice thatP andQ get inverted). On the other hand, it turns out that all of the meaning represen-
tations generated by our fragment would be linearDatalog rules, goals and facts and KBQA

for linearDatalog is in NLSpace(see [EGDV01], Theorem 4.3).

Corollary 7.4.7. The combined complexity ofKBQA for IS-A∀∃+TV meaning representations and
(U)CQsNPTime-complete.
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7.5 The Fragments of English.

We now turn to Pratt and Third’s fragments of English. In [PHT06] they show how to design
resolution procedures to decide SAT (see also Table 2.2 in Chapter 4), which imply as corrollary,
tight complexity bounds for the combined complexity of KBSAT and lower bounds for, again the
combined complexity of KBQA. In this section we complement these results with data complexity
results for KBSAT and KBQA and with complexity upper bounds for the combined complexity of
KBQA. In Figure 7.3 the relative expressive power of the fragments is spelled out. Note also
that, by definition, the positive fragment IS-A∀∃ is subsumed by COP, IS-A∀∃+TV by COP+TV,
IS-A∀

∃+DTV by COP+DTV and IS-A∀∃+TV+DTV and by COP+TV+DTV. Unrestricted resolution
does not terminate on even some of the simplest fragments of English.

Proposition 7.5.1. Unrestricted resolution does not terminate on COP+TV meaning representa-
tions.

Proof. Consider the COP+TV sentences “Every man trusts some male.”, “Every male is a man.”
and “John is a male.”, their meaning representations and theclauses thereof derivable:

Γ =

{
Man(x) ∨ Trusts(x, f(x)),Man(x) ∨Male(f(x)),

Male(x) ∨Man(x),Man(John)

}

.

ThenΓ∞ is infinite, since{Man(f i(John)) | i ∈ N} ⊆ Γ∞.

However, an important Lemma by Pratt and Third in [PHT06] that we state below, allows us to
reduce SAT to SAT for unaryclauses fromS
+ and apply the (terminating) resolution procedures
from Table 7.1 to derive complexity upper bounds.

Lemma 7.5.2([PHT06], Lemma 4.5). Let Γ be a set of clauses obtained by Skolemization and
clausification from COP+TV+DTV+Rel meaning representations (or any fragment thereof). Then,
we can construct in time polynomial on#(Γ), a setΓu of unary clauses (of depthd(Γu) ≥ d(Γ))
s.t.Γ is satisfiable iffΓu is satisfiable.

For studying in particular KBQA for the positive fragments and the fragments of English, we
consider in this section three classes of queries:

– UCQs,
– TCQs and
– generalized tree shaped queries (GTCQs)

where GTCQs are defined thus:

Definition 7.5.3. A generalized tree-shaped conjunctive query(GTCQ)ϕ(x) is a query of arity
n = 1 defined as follows:

ϕ(x) → P (x) | ∃yS(x, y) | ∃y∃zT (x, y, z) | ϕ′(x) ∧ ϕ′′(x)
| ∃y(S(x, y) ∧ ϕ(y)) | ∃x∃z(T (x, y, z) ∧ ϕ′(y) ∧ ϕ′′(z))

(GTCQ)

which is basically the generalization of TCQs to signaturesSig = (∅, ∅,R) whereR contains
both binary and ternary predicate symbols.

7.5.1 Fragments with Tractable Data Complexity

Theorem 7.5.4. KBQA is in PTime in data complexity for COP+TV meaning representations
and UCQs.
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F∗+DTV+GA

F∗+DTV F∗+GA

COP+TV+Rel+RA
︸ ︷︷ ︸

F∗

COP+TV+DTV+Rel

COP+TV+DTV COP+DTV+Rel COP+TV+Rel

COP+DTV COP+TV COP+Rel

COP

IS-A∀
∃+TV+DTV

IS-A∀
∃+DTV IS-A∀

∃+TV

IS-A∀
∃

Figure 7.3: Comparative expressive power of the fragments of English. The top diagram shows theminimal
undecidable fragments [PHT06].
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Proof. Let Γ ∪ ∆ be a set of COP+TV meaning representations,ϕ a UCQ of arityn and body
ϕ(x̄), andc̄ be a sequence ofn constants. ConsiderΓ. We say that a sentenceϕ ∈ Γ is positive,
denotedϕ+, if ϕ is of the form

∀x(ϕ(x)⇒ ψ(x)), ∀x(ϕ(x)⇒ ∀yψ(x, y)), or ∀x(ϕ(x)⇒ ∃yψ(x, y))

We say thatϕ is negative, denotedϕ−, whenϕ is of the form

∀x(ϕ(x)⇒ ¬ψ(x)), ∀x(ϕ(x)⇒ ¬∀yψ(x, y)), or ∀x(ϕ(x)⇒ ¬∃yψ(x, y)).

The facts in∆ are treated similarly. This induces a partitioning ofΓ into Γ+ ∪ Γ− and of∆ into
∆+ ∪∆−. We claim that, ifΓ ∪∆ is satisfiable, then it holds that

c̄ ∈ cert(ϕ,Γ,∆) iff c̄ ∈ cert(q,Γ+,∆+). (†)

Assume thatΓ ∪∆ is satisfiable. The (⇐) direction is immediate, sinceΓ+ ∪∆+ ⊆ Γ ∪∆.
To prove the converse, suppose for contradiction thatc̄ 6∈ cert(ϕ,Γ+,∆+). Then, there exists a
modelI of Γ+ ∪∆+ s.t. I 6|= ϕ(c̄). On the other hand, since by assumption,Γ ∪∆ is satisfiable
andc̄ ∈ cert(ϕ,Γ,∆), then for some modelI ′ of Γ ∪∆, I ′ |= ϕ(c̄). Define an homomorphismh
from I ′ to I by putting:

– on the one hand,h(c) := c, for all c ∈ adom(∆) (notice thatadom(∆) is a subset of bothDI

andDI′), and
– for all c1, c2 ∈ DI′ \ adom(∆), if (c1, c2) ∈ RI′

, h(ci) := the least (w.r.t. lexicographic
ordering)c′i ∈ DI′, for i = 1, 2, s.t. (c′1, c

′
2) ∈ R

I .

Clearly I ′ →֒h I, whence, since UCQs are closed under homomorphisms (Theorem 3.4.2), it
follows thatI |= ϕ(c̄). Contradiction.

Notice thatΓ+∪∆+ is now a set of IS-A∀∃+TV meaning representations to which we can apply
the (query answering) algorithm sketched in Theorem 7.4.5.Hence, sketch a query answering
algorithm for COP+TV as follows. GivenΓ ∪∆, ϕ and sequencēc:

1. check, in time polynomial in#(∆), whetherΓ ∪∆ is satisfiable,
2. if it is unsatisfiable, answer yes,
3. otherwise, check, in time polynomial in#(∆+) and a fortiori in#(∆), whether it is the case

that c̄ ∈ cert(ϕ,Γ+,∆+).

This algorithm (on the grounds of (†)) is trivially sound and complete and runs in time polynomial
in #(∆).

The theorem sketches also anNPTime algorithm in combined complexity. Since KBQA is
bounded below by SAT in combined complexity, it follows from Table 2.2, Chapter 2, that:

Corollary 7.5.5. KBQA is NPTime-complete in combined complexity for COP+TV and (U)CQs

Theorem 7.5.6.KBSAT is in LSpacein data complexity for

1. COP+TV and
2. COP+TV+DTV.

Proof. Consider a setΓ ∪ ∆ of COP+TV+DTV and/or COP+TV meaning representations (with
no cycles). Since we are interested only in data complexity,we can assumeΓ to be fixed. LetΓcl

be the(i) Skolemization and(ii) clausification ofΓ (this can be done in constant time, sinceΓ is



The Fragments of English. 117

fixed). Clearly,∆cl = ∆. Pratt and Third in [PHT06] show that the clauses inΓcl ∪∆cl are of the
form

±P (c) ±L
¬P (x) ∨ ±Q(x) ¬P (x) ∨ ±L(x)
¬P (x) ∨Q(f(x)) ¬P (x) ∨ ¬Q(y) ∨ ±L(x, y)






= COP+TV

¬P (x) ∨ ¬Q(y) ∨ ¬N(z)± L(x, y, z)
¬P (x) ∨ ¬Q(y) ∨N(g(x, y))







= COP+TV+DTV

whereL(x̄) denotes a unary, binary or ternary literal over the variables x̄: COP+TV meaning
representations use unary and binary relation symbols, whereas COP+TV+DTV meaning repre-
sentations make use of unary, binary and ternary relation symbols. For example,L, which contains
no free variables, can be of the formP (c), R(c, c′), P (f(c)), etc.

We can assume w.l.o.g.∆cl to contain only positive ground atoms, since, similarly to the
proof of Theorem 4.1.15 from Chapter 5, we can “define out” a negative binary ground atom
(unary atoms are dealt with similarly)¬R(c, c′) by introducing a fresh relationS, a disjointness
rule ¬R(x, y) ∨ ¬S(x, y) and, finally, (i) replacing every occurrence ofR by S in Γcl and (ii)
replacing the atom¬R(c, c′) by S(c, c′). This transformation does not affect data complexity,
since it does not affect tuples of constants.

To prove claim(1) we reason as follows. Observe that COP+TV clauses satisfy the following
properties:

– all literals are covering and
– literals are either monadic or, ifL is not monadic in clauseC, thenVar(C) = Var(L),

which imply thatΓcl ∪∆cl ⊆ S
+. In addition, by inspection, we can see that applying theres,
factandcondrules results in(i) clause length not growing beyond some finite boundl ∈ N and(ii)
covering clauses. Therefore, the A-ordered resolution calculusR2,4 from Table 7.1 is a decision
procedure for such clauses, since≺d prevents clause depth from growing beyond some finite
boundd ∈ N. Moreover, since ground atomsP (c), R(c, c′) ∈ ∆cl are of null depth (and so are the
ground atoms generated when resolving clauses from solelyΓcl), we can apply the “separation”
Lemma 7.1.6 and saturate firstΓcl, yielding the finite saturation (that does not depend on the data)
(Γcl)∞.

Inconsistency in(Γcl)∞ ∪∆cl may arise by(i) conflicting constraints in(Γcl)∞ or by (ii) the
data in∆cl being in conflict with the constraints in(Γcl)∞, in which case⊥ would be derived in
at mostO(#(∆)) steps. Now, checking whether(Γcl)∞ is independant from the data in∆cl and
can be done in time constant in#(∆). In addition to this, it is clear that∆cl can be saved in a
register using at mostO(log#(∆)) space. Hence, an algorithm checking for the satisfiability of
((Γcl)∞ ∪∆)∞, and hence ofΓ ∪ ∆, would proceed by loopingO(#(∆)) times over∆cl until
either⊥ is derived or no other derivation steps are possible.

The proof of claim(2) is similar. COP+TV+DTV clauses satisfy the following property:

– literals are either monadic or, ifL is not monadic in clauseC, thenVar(C) = Var(L)

although they may not be covering, i.e., there might be some clauseC with a literal±L(x, y) :=
±L′(x, y, f(x)) which is not covering (even thoughVar(C) = Var(L′). However, they are still
contained inS
+ and A-ordered resolution can be used to decide KBSAT.

Indeed, literalL′(x, y, f(x)) is almost monadiconx, hence, applying (Mon) would yield the
covering literalL′(x, x, f(x)) (recall that by Theorem 7.2.7, adding (Mon) toRd with condand,
possibly,split, gives rise to sound and refutation-complete calculi forS
+). On the other hand, by
inspection we can see that resolution does not make the length of clauses increase beyond a finite
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boundl ∈ N. To control the depthd we use the A-ordered resolution calculusR2,5. Thereafter
we reason as before, applying Lemma 7.1.6.

Corollary 7.5.7. The data complexity ofKBSAT is in LSpace for IS-A∀∃+TV, IS-A∀∃+DTV and
IS-A∀∃+TV+DTV.

Theorem 7.5.8.The data complexity ofKBSAT is in LSpacefor COP+Rel.

Proof. Let Σ ∪ ∆ be a set of COP+Rel meaning representations, whereΣ is fixed (and#(Σ) a
constant) and letΣcl ∪∆cl be their clausification and Skolemization.Σcl ∪∆cl can be computed
in O(log#(∆)) space. This gives way to#(∆)+ k constants, for some fixed integerk ≤ #(Σ).
Now, the clauses inΣcl ∪∆cl are

– monadic, and
– if in Σcl, Boolean combinations of unary atoms over the single variable x, and containing no

function symbols.

Thus, satisfiability (by the Herbrand theorem) reduces to Herbrand satisfiability and propo-
sitional satisfiability, by computingGR(Σcl,∆cl), i.e., the set of propositional clauses resulting
from grounding the clauses inΣcl with the constantsc ∈ adom(∆cl)1. SinceΣ is fixed, the
#(Σcl) ·#(∆cl) groundings can be stored usingO(log#(∆)) space.

Let p be the number of unary predicates occurring among the clauses in Σcl; as such it is a
constant that depends onΣcl. Since the Herbrand domainHDΣcl∪∆cl of Σcl ∪∆cl is adom(∆) ∪
{c1, . . . , ck}, the Herbrand baseHBΣcl∪∆cl is of sizep ·#(∆)+ k and can be stored, again, using
O(log#(∆)) space.

The models, that is, the truth value assignmentsδ(·) for GR(Σcl,∆cl) are essentially the Her-
brand modelsH ⊆ HBΣcl∪∆cl of Σcl ∪∆cl, since

δ(pP (c)) = 1 iff P (c) ∈ H,

of which≤ 2p·#(∆)+k (i.e., finitely many) of size≤ p · #(∆) + k exist, each of which can be
stored using at mostO(log#(∆)) space.

A satisfiability checking algorithm will loop through such space of≤ 2p·#(∆)+k truth value
assigments until someH ⊇ ∆cl s.t. H |= Σcl is found, in which case it would return “true”,
or else, if no such model exists, it will return “false” afterits last iteration. As it would at most
O(log#(∆)) space, the result follows.

7.5.2 Fragments with Intractable Data Complexity

Lemma 7.5.9. KBQA is coNPTime-hard in data complexity for COP+Rel and TCQs.

Proof. We define a reduction from 2+2-SAT (recall Chapter 6, Section 5.5). Letψ := ψ1∧· · ·∧ψk
be a 2+2-formula over the propositional atomsAt(ψ) := {l1, ..., lm} where, fori ∈ [1, k],

ψi := pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2

is a disjunction of two non-negated and two negated propositional atoms from{l1, . . . , lm}.
To encodeψ, we give ourselves four transitive verbs,N1 (for “has as first negative atom”),

N2 (for “has as second negative atom”),P1 (for “has as first positive atom”) andP2 (for “has as
second negative atom”), plus the nounsA (for “atom”), Af (for “false atom”) andAt (for “true
atom”). For each conjunctψi in ψ, for i ∈ [1, k], we introduce a proper nameci and a proper name
l for everyl ∈ At(ψ).

We encodeψ into
1The ground atomP (c) is encoded by the propositional atompP (c).
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Fψ :=







p11 is anA. p12 is anA. n11 is anA. n12 is anA.
...

pk1 is anA. pk2 is anA. nk1 is anA.nk2 is anA.
c1 P1sp11. c1 P2sp12. c1 N1sn11. c1 N2sn12.

...
ck P1spk1. ck P2spk2. ck N1snk1. ck N2snk2.







and consider, resp., the sentences and the TCQ

S :=

{
NoA is not anAt that is not anAf .
NoAt is anAf . NoAf is anAt.

}

ϕ := ∃x∃y(P1(x, y) ∧Af (y)) ∧ ∃z(P2(x, z) ∧Af (z))∧
∃w(N1(x,w) ∧At(w)) ∧ ∃v(N2(x, v) ∧At(v))).

Observe thatϕ could have been expressed by the GCQ-English questionQψ: “Does somebody
P1 someAf andP2 someAf andN1 someAt andN2 someAt?”. We now claim that

ψ is satisfiable iff τ(S ∪ Fψ) 6|= ϕ (†)

(⇒) Suppose thatψ is satisfiable and letδ(·) be such model (a truth assignment). Then, for all
i ∈ [1, k], δ(ψi) = 1, i.e.,δ(pi1) = 1 or δ(pi2) = 1 or δ(ni1) = 0 or δ(ni2) = 0. Given this, we
can construct an interpretationI = (DI , ·

I) s.t.I |= τ(S ∪ Fψ) butI 6|= ϕ as follows:

– DI := {ci, pij, nij | i ∈ [1, k], j = 1, 2},
– AI := {l ∈ At(ψ) | A(l) ∈ τ(Fψ)},
– P I

j := {(ci, pij) | Pj(ci, pij) ∈ τ(Fψ), i ∈ [1, k]},
– NI

j := {(ci, nij) | Nj(ci, nij) ∈ τ(Fψ), i ∈ [1, k]},
– AI

f := {l ∈ AI | δ(l) = 0} and

– AI
t := {l ∈ AI | δ(l) = 1}.

(⇐) Let I be a modelτ(S ∪ Fψ) of s.t.I, γ 6|= ϕ for all γ. We want to show that there exists
a taδ(·) s.t. δ(ψ) = 1. Let δ : At(ψ)→ {0, 1} be the truth assignment s.t.

δ(l) = 1 iff l ∈ AI
t .

Now, by assumptionI, γ 6|= ϕ, for all γ. This implies, for alli ∈ [1, k], that eitherpi1 6∈ AI
f or

pi2 6∈ A
I
f or ni1 6∈ AI

t or ni2 6∈ AI
t . Now, recall thatI |= τ(S), whereτ(S) contains the axioms

∀x(A(x)⇒ At(x) ∨Af (x)), ∀x(At(x)⇒ ¬Af (x)),
∀x(Af (x)⇒ ¬At(x))

that “say” that an atom is either true or false, but not both. Hence ifpi1 6∈ AI
f , then, by definition

of δ(·), δ(pi1) = 1 and similarly for the other cases. Therefore,δ(ψi) = 1, for all i ∈ [1, k], and
thusδ(ψ) = 1.

Lemma 7.5.10.KBQA is coNPTime-hard in data complexity for COP+Rel+DTV and GTCQs.

Proof. ThecoNPTimedata complexity lower bound for COP+Rel+DTV follows also byreduc-
tion from 2+2-SAT, by considering the following minor adjustments to the reduction defined in
Lemma 7.5.9. LeaveS unchanged. Regardingϕ andFψ proceed as follows. Instead of con-
sideringNj andPj , for j = 1, 2, binary, we consider themDTVs expressingternary predicate
symbols. As such, whenever, fori ∈ [1, k], pi1 ∨ pi2 ∨¬ni1 ∨¬ni2 is one of thek conjunctsψi of
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a 2+2 formulaψ over the propsitional atoms{l1, . . . , lm}, add the facts “ci P1spi1 to ci”, “ ci P2s
pi2 to c”, “ ci N1sni1 to c” and “ci N2sni1 to c” to Fψ, wherec is a “dummy”Pn different from
every otherPn in adom(F). Finally, consider the GTCQ

ϕ := ∃x∃y(P1(x, y, c) ∧Af (y)) ∧ ∃z(P2(x, z, c) ∧Af (z))∧
∃w(N1(x,w, c) ∧At(w)) ∧ ∃v(N2(x, v, c) ∧At(v))).

The remainder of the proof is analogous to that for COP+Rel and TCQs.

Lemma 7.5.11.KBQA is in coNPTime in data complexity for COP+Rel+TV+DTV and GTCQs.

Proof. Observe that GTCQsϕ are expressible by COP+Rel+TV+DTV meaning representations
(it is trivial to extend its grammar to express such formal queries). Also, the negation¬ϕ of a
GCTQϕ is expressible in COP+Rel+TV+DTV. Thus, given a setΓ ∪∆ of COP+Rel+TV+DTV
meaning representations and a GTCQϕ, it is immediate to see that

Γ ∪∆ |= ϕ iff Γ ∪∆ ∪ {¬ϕ} is unsatisfiable. (†)

Moreover, such a reduction is constant in#(∆). If we where able to reduceΓ ∪∆ ∪ {¬ϕ}
to a set ofS
+ clauses and apply Theorem 7.3.2, we would derive acoNPTimedata complexity
(upper) bound for answering (G)TCQs.

Pratt and Third in [PHT06] show that COP+Rel+TV+DTV meaningrepresentations inclausal
form have one of the following forms:

±P (c) ±L
¬P (x) ∨ ±Q(x) ¬P (x) ∨ ±L(x)
¬P (x) ∨ ±Q(x) ∨N(x) ¬P (x) ∨ ¬Q(y) ∨ ±L(x, y)
¬P (x) ∨Q(f(x)) ¬P (x) ∨ ¬Q(y) ∨ ¬N(z) ∨ ±L(x, y, z)

¬P (x) ∨ ¬Q(y) ∨N(g(x, y))

whereL(x̄) denotes as before a unary, binary or ternary literal over thevariablesx̄.
By applying Pratt and Third’s Lemma 7.5.2,Γ ∪ ∆ ∪ {¬ϕ} can be transformed into a set of

unaryclausesKcl
u := Γclu ∪∆cl

u ∪ {ϕ
cl
u }. By inspection, one can see that, for all clausesC in Kcl

u

and all literalsL ∈ Lit(C),

– either#(Var(L)) ≤ 1 or
– Var(L) = Var(C).

Thus,Kcl
u is a set ofS
+ clauses. Thereafter, A-ordered resolution with monadization and

splitting (e.g.,R3,8) can be used to guess a saturationKcl
u , which we can then ground in time

polynomial in, ultimately,#(∆) and check for satisfiability, by guessing a truth assignmentδ(·),
again, in time polynomial in#(∆). Hence, KBQA is in coNPTime.

Theorem 7.5.12.The data complexity ofKBQA is coNPTime-complete for the following frag-
ments: COP+Rel, COP+Rel+DTV, COP+Rel+DTV and COP+Rel+TV+DTV.

Proof. The hardness follows from Lemma 7.5.9. Membership follows from Lemma 7.5.11.

Theorem 7.5.13.The data complexity ofKBSAT is NPTime-complete for the following frag-
ments: COP+Rel+TV, COP+Rel+DTV and COP+Rel+TV+DTV.

Proof. Membership inNPTime for COP+Rel+TV and COP+Rel+TV+DTV is derived as follows.
Consider a setΓ ∪∆ of COP+Rel+TV or COP+Rel+TV+DTV meaning representations.Clausi-
fying such meaning representations can be done in time constant in#(∆). By Lemma 7.5.2, we
know that we can reduce, in time polynomial in#(∆), their satisfiability to that of a setΓu ∪∆u



The Fragments of English. 121

of monadic clauses. By inspection we can moreover observe that such classes belong to theS
+

class. We can now apply Theorem 7.3.2, whence it follows thatKBSAT is in NPTime.
On the other hand,NPTime-hardness for the fragments COP+Rel+TV, COP+Rel+DTV and

COP+Rel+TV+DTV can be inferred by a reduction from theNPTime-complete 2+2-SAT prob-
lem (by means of proofs analogous to those for KBQA).

7.5.3 Combined Complexity

Theorem 7.5.14.The combined complexity ofKBQA for arbitrary CQs isNPTime-hard for the
six fragments IS-A∀∃+TV, IS-A∀∃+DTV, IS-A∀∃+TV+DTV, COP+TV, COP+DTV and COP+TV+DTV.

Proof. Checking whether a tuplēc is an answer to CQϕ over an arbitrary databaseD/setF of
facts isNPTime-hard inD/F andϕ (with O/S empty), by reduction from, e.g., theNPTime-
complete graph homomorphism problem (recall the proof of Theorem 4.3.1 from Chapter 5). This
lower bound propagates to all the fragments.

Theorem 7.5.15([PHT06, PH08b, PHM09, PH09]). The combined complexity ofKBSAT is

1. in NLSpacefor IS-A∀∃ and COP,
2. NLSpace-complete for IS-A∀∃+TV and COP+TV,
3. in PTime for the fragments IS-A∀∃+DTV, IS-A∀∃+TV+DTV, COP+DTV and COP+TV+DTV,
4. NPTime-complete for COP+Rel,
5. ExpTime-complete for COP+Rel+TV, and
6. NExpTime-complete for COP+Rel+DTV+TV

Proof. The proof is in all cases immediate: KBSAT for all those fragments is polynomially equiv-
alent in combined complexity to SAT, whose computational complexity for the fragments consid-
ered is well-known.

TheNLSpaceupper bound for IS-A∀∃, IS-A∀
∃+TV, COP and COP+TV follows from [PHT06].

See Table 2.2, Chapter 4.
The NLSpace lower bound for IS-A∀∃+TV and COP+TV follows from [PH08b], Theorem

4.11, where a reduction from theNLSpace-complete reachability problem for directed graphs is
sketched. However, since the instance (i.e., the directed graph) is encoded there without making
use of COP+TV sentences with negations, the reduction holdsalso for IS-A∀∃+TV.

The fragments IS-A∀∃+DTV, IS-A∀
∃+TV+DTV, COP+DTV are all contained in COP+TV+DTV.

Since [PHT06] shows that SAT is in PTime for COP+TV+DTV, the result follows again from Ta-
ble 2.2.

Finally, the computational properties for COP+Rel, COP+Rel+TV and COP+Rel+DTV+TV
are, yet again, trivial corollaries of Table 2.2.

Theorem 7.5.16.The combined complexity ofKBQA when we consider TCQs is

1. coNPTime-hard for COP+Rel,
2. ExpTime-complete for COP+Rel+TV, and
3. coNExpTime-hard COP+Rel+DTV and COP+Rel+DTV+TV.

Proof. We can reduce SAT for all these fragments (see, again, Table 2.2 from Chapter 4) to KBQA

by reusing the reduction defined in the proof of Theorem 7.5.17. This, added to the observation
that coExpTime = ExpTime (i.e., this decision class is closed under complement) implies the
lower bounds.
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The membership inExpTime for COP+Rel+TV follows from the fact that(i) TCQs can be
expressed by COP+Rel+TV by some minor adjustments to its grammar, extending its coverage to
questions, and(ii) by observing that COP+Rel+TV is closed under negation (see Table 2.1 from
Chapter 4). LetΓ∪∆ be a set of COP+Rel+TV meaning representations,c a constant andϕ(x) a
TCQ. Then, clearly,Γ ∪∆ |= ϕ(c) iff Γ ∪∆ ∪ {¬ϕ(c)} is unsatisfiable. Since (un)satisfiability
for COP+Rel+TV is inExpTime, we conclude.

7.5.4 Undecidable Fragments

Proposition 7.5.17.KBQA is undecidable for COP+Rel+TV+GA, COP+Rel+TV+DTV+GA and
COP+Rel+TV+DTV+RA and atomic queries.

Proof. We reduce the satisfiability problem for these fragments to KBQA ’s complement. We will
consider only the case for COP+Rel+TV+GA, since the other are analogous. LetΓ ∪ ∆ be a
set of COP+Rel+TV+GA meaning representations. Consider now the two COP+Rel+TV+GA
sentences,(i) “No P is aQ.” and(ii) “c is anP .”, and the (Boolean) atomic queryQ(c). Then, for
all groundingsσ,

Γ ∪∆ ∪ {τ(NoP is aQ.), τ(c is anP .)} 6|= ϕσ iff Γ ∪∆ is satisfiable. (†)

(⇐) If Γ ∪ ∆ is satisfiable, then there exists and interpretationI s.t. I |= Γ ∪ ∆. Suppose
for contradiction thatΓ ∪ ∆ ∪ {τ(NoA is aB.), τ(c is anA.)} |= ϕσ, i.e., that it holds that
Γ ∪∆ ∪ {∀x(A(x)⇒ ¬B(x)), A(c)} |= B(c). ThenI |= B(c) andI 6|= B(c), which is absurd.

(⇒) If Γ ∪∆ ∪ {τ(No P is aQ.), τ(c is anP .)} 6|= ϕσ, then there exists an interpretationI
s.t. I |= Γ ∪∆ ∪ {τ(NoP is aQ.), τ(c is anP .)} andI 6|= B(c). This implies thatI |= Γ ∪∆,
for some interpretationI. Therefore,Γ ∪∆ is satisfiable.

Since by Table 2.2 from Chapter 5 we know that COP+Rel+TV+GA is undecidable for SAT,
this closes the proof.

7.5.5 Enriching the Interrogative and Declarative Fragments

Tilings are a family of combinatorial problems which have been widely used to prove the unde-
cidability of several fragments ofFo and of a wide variety of decision problems. Atiling grid
or grid is a tupleT = (T,V,H), whereT := {c1, . . . , ck} is a finite set ofk tiles andV and
H are binary relations overT, called, resp., thevertical andhorizontal relations. Atiling is a
function t : N × N → T that verifies the horizontal and vertical constraints, i.e., for all i, j ∈ N,
(t(i, j), t(i, j + 1)) ∈ H and(t(i, j), t(i + 1, j)) ∈ V. See [GGB01], Appendix A, for a general
introduction to tilings.

Definition 7.5.18. The unbounded tiling problem(TP) is the undecidable decision problem de-
fined by

– Input: a gridT = (T,V,H).
– Question: does a tilingt exist forT ?

Ian Pratt in [PH08b] shows that KBQA for Fo2 and CQs is undecidable by a reduction from
TP. The same technique is used in [PHT06] to shown that SAT for COP+Rel+TV+GA is undecid-
able. In this subsection we show a similar result for COP+Rel+TV+RA meaning representations
and CQs by adapting his proof (i.e., his reduction) to COP+Rel+TV+RA with indeterminate pro-
nouns, viz., “anybody”, “somebody”, etc., of semantics

λP e→t.∀xeP (x) and λP e→t.∃xeP (x).



The Fragments of English. 123

Lemma 7.5.19. There exists a setST ∪ FT of COP+Rel+TV+RA sentences and a questionQ
expressing a CQ, s.t., for every tiling gridT there exists a tilingt for T iff τ(ST ∪ FT ) 6|= τ(Q)

Proof. LetT = (T,V,H) be a tiling grid ofk+1 tilesT := {c1, . . . , ck} andT andV (horizontal
and vertical) relations overT. We can encodeT with a setST ∪ FT of COP+Rel+TV+RA
sentences as follows.

We start by defining the setST that encodes the tiling horizontal and vertical constraints. The
transitive verbsH andV encode the horizontalH and verticalV relations resp., whereas each
nounCi encodes a tileci ∈ T, for i ∈ [0, k],:

EverythingHs something. (7.4)

EverythingV s something. (7.5)

For all0 ≤ i < j ≤ k: Anything that is not aCi is aCj. (7.6)

For all0 ≤ i < j ≤ k: NoCi is aCj . (7.7)

For all (c, c′) 6∈ V: Everybody whoHs somebody is aC.
Everybody who isHd by somebody is aC ′.

(7.8)

For all (c, c′) 6∈ H: Everybody whoV s somebody is aC.
Everybody who isV d by somebody is aC ′.

(7.9)

Everybody whoH̄s somebody does notH him.
Everybody who does notH somebodyH̄ ′s him.

(7.10)

Next, we defineFT , that encodes the tiling proper:

FT :=







c0 is aC0. c0Hs c1.
...

...
ck is aCk. ck−1Hs ck.







Consider now the following Y/N-question that asks whether there exist (at least) four tiles for
which the grid is not closed (grid closure is a necessary condition for a tiling to exist), question

Q := Does somebodyH somebody whoV s somebody andV somebody
such that the latter̄Hs the former?

Whose meaning representationτ(Q) is the CQ

ϕ := ∃x∃y∃z∃w(H(x, y) ∧ V (y,w) ∧ V (x, z) ∧ H̄(z, w)),

Consider now theFo sentence

χ := ∀x, y, z, w(H(x, y) ∧ V (x, z) ∧ V (y,w)⇒ H(z, w))

and notice that the sentences in (7.10) fromST express an (explicit) definition for̄H, that is, that
the meaning representation

τ(Everybody who does notH somebodyH̄ ′s him.)

and the meaning representation

τ(Everybody whoH̄s somebody does notH him.)
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ci,j+1 ci+1,j+1 ci,j+1 ci+1,j+1

ci,j ci+1,j ci,j ci+1,j

(ϕ) (χ)

V V

H

V V

H

H

Figure 7.4: Sentenceχ closes the grid, whereas queryϕ leaves it open.

together imply theFo axiomξ := ∀x, y(H̄(x, y) ⇔ ¬H(x, y)) and a fortiori imply thatτ(ST ∪
FT ) 6|= ϕ holds iff τ(ST ∪ FT ) ∪ {χ} has a model.

We now claim that

τ(ST ∪ FT ) ∪ {χ} has a model iff there exists a tilingt for T . (†)

(⇒) Let I = (DI , ·
I) be a model ofτ(ST ∪ FT ) ∪ {χ}. Define a mappingf : N × N→ DI

recursively as follows:

– Fori ∈ [0, k], f(i, 0) := cIi .
– Fori ≥ k, f(i+ 1, 0) := somec s.t. (f(i, 0), c) ∈ HI .
– Fori ≥ k, j ≥ 0, f(i+ 1, j + 1) := somec s.t. (f(i, j), c) ∈ HI .

Now, f is well-defined since(i) any grid point has always anHI -succesor (sinceI |=
τ((7.4)) ∧ τ((7.5))), (ii) the grid is always closed (sinceI |= χ) and (iii) HI is non-empty
(sinceI |= FT ). Furthemore, by observing thatI is moduloτ(·) both a a model of (7.6)–(7.10)
and a model ofχ (and that henceI 6|= ϕ), one can prove by double induction on(i, j) ∈ N × N

that

– (f(i, j), f(i, j + 1)) ∈ HI and
– (f(i, j), f(i + 1, j)) ∈ V I ,

that is,f satisfies the horizontal and vertical constraints. Finally, to define the tilingt : N×N→ T

we put, for all(i, j) ∈ N× N,

t(i, j) := c iff f(i, j) ∈ CI .

(⇐) For the converse lett be a tiling forT = (T,V,H). We have to build a modelI s.t.
I |= τ(ST ∪ FT ) andI 6|= ϕ. DefineI as follows:

– DI := N×N.
– HI := {((i, j), (i, j + 1)) ∈ DI × DI | ((i, j), (i, j + 1)) ∈ H}.
– V I := {((i, j), (i + 1, j)) ∈ DI × DI | ((i, j), (i + 1, j)) ∈ V}.
– CI

i := {(i, 0) ∈ DI | ci is aCi ∈ FT }, for i ∈ [0, n].
– cIi := (i, 0), for i ∈ [0, n].
– H̄I := (DI × DI) \H

I .

Clearly,I is the model we are looking for.

Theorem 7.5.20.KBQA is undecidable for COP+Rel+TV+RA when we consider arbitrary CQs.
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7.6 Summary

In this chapter we have studied the data complexity of KBSAT and of KBQA in combination with
(T)CQs for the fragments of English. Since the expressiveness of the fragments of English is or-
thogonal to that of known ontology languages, instead of using techniques coming from ontology
languages, we chose instead the following strategy.

On the one hand, we studied the computational complexity of these problems for the so-called
positive fragments (the fragments of English without negation), and showed that we can reduce
KBQA for COP+TV to that of its positive counterpart, IS-A∀

∃+TV and this one toDatalog, for
which data compelxity is known to be tractable.

RegardingNPTime-hard and/orcoNPTime-hard (though decidable) fragments of English, we
made use of resolution decision procedures in the spirit of Joyner that, we show, decide the∃∗∀∃∗,
∃∗∀2∃∗ andS
+ classes in time non-deterministic polynomial in the numberof constants of their
input knowledge bases or clause sets to deriveNPTime andcoNPTime data complexity upper
bounds. This result can be applied to COP+TV+Rel, COP+DTV+Rel and COP+TV+DTV+Rel
modulo a reduction (shown in [PHT06]) of their meaning representations to the monadic case that,
we show, reduces the (un)satisfiability of their meaning representations to that ofS
+ clauses.

We also strengthen the result by Pratt in [PH08b] on the undecidability of KBQA for arbi-
trary CQs overFo2 knowledge bases to COP+TV+DTV+Rel+RA knowledge bases (viaa reduc-
tion from TP). Thus, anaphoric pronouns (even if restricted) both in theontologies and in the
queries/questions make query evaluation impossible to compute.

Tables 7.3 and 7.4 summarize the results of this chapter. Known results (and their corollaries)
are stated together with a reference to the paper in which they were first published. New results
refer to our theorems and their proofs.





Chapter 8

Conclusions

Computational, formal semantics provides a framework for studying both the algebraic and the
combinatorial properties (resp. the semantic expressiveness and the semantic complexity) asso-
ciated to the semantics of controlled languages. In particular, it allows to study the scalability
of controlled languages and controlled language interfaces in ontology-based data access systems
(OBDASs).

Scalability in OBDASs is influenced by the computational data complexity of the(i) query
answering (KBQA) and(ii) knowledge base consistency (KBSAT) decision problems. By express-
ing, modulo a formal semantics compositional translationτ(·), the query and ontology languages
involved in KBQA and KBSAT in controlled language (i.e., by “reverse-engineering” controlled
languages that map compositionally into exactly those query and ontology languages), controlled
language scalability can be understood. Controlled languages possessingPTime or less data com-
plexity scale to data. Controlled languages which possess acoNPTime- or NPTime-hard data
complexity or higher cannot scale to data. Intractability arises when fragments become “Boolean
closed”, viz., capable of expressing complete sets of Boolean functions.

In Chapter 4 we expressed ontology and query languages which, like theDL-Lite family of
description logics and graph-shaped conjunctive queries (GCQs) give rise to optimal data com-
plexity (LSpace) for both KBQA and KBSAT. To this end, we defined the controlled languages
Lite-English and GCQ-English. In particular, the distinction (critical for its good computational
properties) between left and right concepts within theDL-Lite family is captured by syntactically
subcategorizing constituents. Thus defined, they inherit the scalability of the theDL-Lite family
and GCQs.

We studied also the relative and the absolute semantic expressiveness of Lite-English. In
particular, we have shown that it overlaps in expressiveness with I. Pratt and A. Third’s fragments
of English, but that its absolute expressive power cannot becharacterized. In Lite-English function
words like “who” (i.e., relatives, expressing Boolean conjunction) can only occur in subject noun
phrases (NPs), while “not” (i.e., negations) can only occur in predicate verb phrases (VPs).
Furthermore, “every” and “no” (i.e., universal quantification) can only occur once and only in
subjectNPs. Clearly, Lite-English is not “Boolean closed”.

In Chapter 5 we extended GCQ-English to cover aggregations.More in general, we studied the
issue of expressing SQL aggregate functions in controlled languages for OBDASs. Aggregate SQL
queries (the SQLSELECT-PROJECT-JOIN fragment withGROUP BYandHAVINGclauses,
and aggregation functions such asMAX, MIN, COUNTor SUM) express a significant number of
information requests to databases containing numerical data. In addition, corpus analysis showed
that questions containing definiteNPs like, e.g., “the number of students”, “the smallest integer”,
“the total number of men” (which combine with common nouns ornominals), which express
intuitively such aggregation functions, can occur frequently. However, neither the semantics of
SQL aggregation functions in OBDASs (or knowledge bases), nor the formal semantics of such
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Declarations Questions

Constructs – Negation in predicateVPs, – Existential quantifiers,
that scale relatives in predicateVPs, conjunction, relatives,
(PTime conjunction in predicateVPs. aggregations, disjunctions.
or less) – Relatives and conjunction

in subjectNPs and predicate
VPs, but no negation.

Constructs – Negation in subjectNPs. – Full negation.
that do not – Relatives and negation in – Comparisons.

(coNPTime-hard) subjectNPs and predicateVPs – Universal restrictions.
predicateVPs

Undecidable – Transitive verbs, relatives, – Transitive verbs, existential
Constructs negation, existential and universalindeterminate pronouns,

quantifiers, restricted anaphoric relatives and restricted
pronouns and indeterminate anaphoric pronouns.
pronouns in subjectNPs and
predicateVPs, plus copula.

Table 8.1: Combinations of controlled language constructs that scaleto and do not scale to data
w.r.t. OBDAS query evaluation. Note that the question constructs occur freely inNP andVP constituents.
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definite EnglishNPs were clear.

To tackle these two problems, we adopted the following strategy. On the one hand, we pro-
posed aFo-based subset of SQL with aggregations, aggregate tree- andgraph-shaped queries
(ATCQs and AGCQs) and extended the certain answers semantics (and, accordingly, KBQA)
of core SQL queries (viz., of SQLSELECT-PROJECT-JOIN-UNION queries) to cover these
classes of queries. On the other hand, we provided a compositional semantic analysis of ag-
gregations by proposing a class ofaggregate determinersthat express standard SQL aggregation
functions. This gave way to the interrogative controlled language ATCQ-English that expresses
ATCQs and AGCQs. Moreover, we showed thatHo semantic analysis actually justifies our def-
inition of certain answers. We also showed that aggregations are easy to compute. What does
make query evaluation intractable (coNPTime-hard) are negations (“not”), universal quantifica-
tion (“only”) and comparatives (“higher than”, “greater than”, etc.) in the questions or formal
queries.

In Chapter 6 we investigated the space of declarative controlled languages for which the data
complexity of KBQA ranges fromLSpace to coNPTime-hard. To this end, we introduced the
IS-Ai∈[0,7] family of controlled languages, orthogonal in expressiveness to Lite-English (and the
DL-Lite family), EL-English (which expresses the description logic ELI) and DL-English (which
expresses the description logicALCI). The computational properties of the declarative controlled
languages (and, accordingly, of the ontology languages) depend on whether we allow or not certain
function words (“not”, “only”, “who”, “some”) to occur in either the subjectNP or the predicate
VP constituents of a sentence. Data complexity bounds were inferred by reasoning over the on-
tology languages expressed and/or induced by the resultingmeaning representations. In particular,
the IS-Ais induce a family of ontology languages for which the constructors of the concepts oc-
curring to the left and to the right of the subsumption symbol⊑ are non-symmetrical. This is
achieved, once again, by subcategorizing controlled language constituents.

In Chapter 7 we studied the data complexity of KBSAT and of KBQA (with TCQs and/or
GCQ-English questions as query language/interrogative controlled language) of I. Pratt’s and A.
Third’s fragments of English, to see whether combinations of linguistically motivated declarative
and interrogative fragments of English have better computational properties than description logic-
based controlled languages. In these fragments, lexicon and syntax are restricted, but function
words, with the exception of negation (“not”) may occur within any constituent. Their expressive
power thus depends on their coverage of English function words (and to a lesser degree, content
words).

To study the data complexity of Pratt and Third’s fragments we proposed several saturation-
based resolution decision procedures. Such procedures allow to infer coNPTime andNPTime
data complexity upper bounds for, resp., KBQA and KBSAT for all the fragments for which sat-
isfiability is decidable. Our analysis showed, roughly, that tractability and scalability arise in the
fragments containing “some”, “every”, with ”no” and “not” restricted to (predicate)VPs, and
containing no function words (“and”, “who”) or syntactic constructions (coordination, sentence
subordination) expressing Boolean conjunction. When the latter are added, “Boolean closed”
fragments are obtained and data complexity becomes intractable. In all cases, though, their data
complexity is lower than their complexity for satisfiability. Going further, that is, allowing for
restricted anaphoric pronouns, gives rise to undecidability.

More in general and as Table 8.1 summarizes, different combinations of constructs in the
declarative controlled language (i.e., the ontology) and in the interrogative controlled language
(i.e., the queries) give rise to different computational properties. Briefly, “Boolean closed” combi-
nations, i.e., combinations expressing at the same time full Boolean negation (or complementation)
and full Boolean conjunction (or intersection) are data intractable. When only restricted forms of
conjunction and negation are expressed, the combinations remain tractable. Adding to a “Boolean
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closed” combination restricted anaphors results in undecidability. Such construct-wise data com-
plexity analysis can be used, we believe, as a basis for controlled language and controlled language
interface design, insofar as intended for OBDASs, pinpointing the combination(s) of constructs to
be covered when a compositional, efficient and completely accurate translation is targeted.

The table is to be read this way: each bullet states a certain combination of constructs in
either the question or the declaration. In the top row we state maximal combinations of declarative
and interrogative constructors (i.e., function words). Inthe middle row, the minimal intractable
combinations. In the last row we state a minimal undecidablecombination (strengthening Pratt’s
result forFo2 and SQLSELECT-PROJECT-JOIN-UNIONqueries).

To finish, we single out three possible future lines of research stemming from the results of
this thesis.(i) To see whether empirical evaluations of the different intractable controlled language
constructs do indeed blow-up an OBDAS’s data access and management routines and if so, how
frequently.(i) Consider controlled language questions with arbitrary generalized determiners like,
e.g., “most”, “a little”, insofar as common in question corpora. (iii) Generalize the data complexity
results from OBDASs to arbitrary incomplete databases.
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he graduated first of his class. In 2003 he finished a French Maitrise in Logic at Paris 1 Uni-
versity, Paris, France. In 2004 he finished a DEA (Diplôme d’Etudes Approfondies) in Artificial
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