

A Computational Model
of Natural Language Communication

Roland Hausser

AComputationalModel
of Natural Language
Communication
Interpretation, Inference, and Production
in Database Semantics

123

Author

Roland Hausser

Friedrich Alexander University Erlangen Nürnberg
Department of Computational Linguistics
Bismarckstr. 6
91054 Erlangen, Germany
rrh@linguistik.uni-erlangen.de

Cover picture: Japanese, katabori netsuke, foo dog (temple lion),
Meiji period, ivory, 3.9 x 2.8 x 3.8 cm, private collection

Library of Congress Control Number: 2006928954

ACM Computing Classification (1998): I.2, H.1.2, H.3.1, H.5.2, D.2.11, J.5

ISBN-10 3-540-35476-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35476-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Typeset by the author using a Springer TEX macro package
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

Preface

In the preface to the first edition of The Principia,1 Sir Isaac Newton distinguished two
aspects of mechanics: theoretical and practical. The theoretical aspect, called rational
by Newton, consists in accurate demonstration. The practical aspect includes all the
manual arts. What would be the result of applying a corresponding distinction to the
current state of linguistics?

Instead of first praising the importance of our field – as Newton would – let us go
straight to the questions at hand: What is theoretical linguistics and what is practical
linguistics? Practical linguistics is instantiated by such tasks as speech recognition,
desktop publishing, word processing, machine translation, content extraction, classi-
fication, querying the Internet, automatic tutoring, dialogue systems, and all the other
applications involving natural language. They have generated a huge demand for prac-
tical linguistic methods.

Compared to the users’ needs and expectations, however, the results leave much to
be desired. Today, the most successful applications in practical linguistics are based
on the methods of statistics and metadata mark-up. These are smart solutions,2 which
try to get by without a general theory of how communicating with natural language
works. Instead they aim to maximally exploit the special properties and natural limi-
tations of each application or kind of application.

Now consider practical mechanics: It is instantiated by tasks ranging from accu-
rately predicting the tides, to predicting the future positions of the planets, to aiming
cannon balls, to landing on the moon. These applications have created an equally large
demand for applied methods as in linguistics.

In contrast to linguistics, however, the field of mechanics was able to satisfy any
such demands far beyond the users’ imagination. This was possible because New-
ton’s general theory can be translated into the specific applications while maintaining
compatibility with traditional craft skills. Each translation is hard work and requires
theoretical knowledge as well as practical experience, but the results are nothing but
spectacular.

The example of Newton’s mechanics leads naturally to the question: Can we do
the same in linguistics? Can we conceive a new framework suitable to fulfill all the

1 Orginal Latin title: Philosophiæ Naturalis Principia Mathematica (1687), complete English title The
Principia: Mathematical Principles of Natural Philosophy.

2 Cf. FoCL, Section 2.3. The alternative is a solid solution.

VI Preface

wide-ranging demands of the users by simply translating the linguistic theory into the
limited and specialized contexts of various practical applications? This question may
be taken as a worthy challenge to our basic research.

As a first step towards a complete, general linguistic framework, let us reconstruct
the cognitive ‘mechanics’ of natural language communication between humans. The
theory, called Database Semantics3 (DBS) is presented here as the declarative speci-
fication of a talking robot. It is in the nature of our project that its potential to improve
practical applications correlates directly with its relative success in adequately mod-
eling human cognition.4

The declarative specification of a talking robot must be designed as a functional
model, which effectively realizes the mechanism of natural language communication.
To ensure completeness, the model must take the language-based interaction between
humans as its prototype. The model’s functionality and data coverage must be ver-
ified automatically by an efficient implementation as a running computer program.
This combination of functionality, completeness, and verifiability constitutes the best
scientific basis for the long-term success of upscaling the model.

The resulting system is able to serve in all the practical applications involving natu-
ral language communication. In most cases it is sufficient to simply reduce the func-
tionality and the data coverage of the model to fit the demands of the application at
hand. For example, when using the cognition of the talking robot for building an au-
tomatic dialogue system used over the phone, there is no need for artificial vision,
manipulation, or locomotion.5

Other applications, notably machine translation, not only allow a reduction, but also
require an extension of the theory. For such extensions, however, Database Semantics
provides a solid basis, given that it models monolingual communication, including
monolingual language understanding.

Furthermore, any application-independent (theoretical) improvements regarding the
data coverage of the lexicon, of automatic word form recognition, of syntactic–
semantic parsing, of absolute and episodic world knowledge, of inferencing, etc.,
may directly benefit existing practical applications simply by routinely replacing their
components with improved versions. This is possible because the theory provides
functionally motivated modules with clearly defined interfaces.

The following pages aim at presenting Database Semantics as directly and simply
as possible. Intended audiences are graduate students, researchers, and software engi-

3 As the name of a specific scientific theory, the term Database Semantics is written with initial capital
letters. This use is distinct from referrring to generic issues, for example semantic constraints on
databases (cf. Bertossi, Katona, Schewe, and Thalheim (eds.) 2003).

4 Like any basic science with practical ramifications, a computational reconstruction of natural lan-
guage communcation raises the threat of possible misuse. This must be curtailed by developing re-
sponsible guidelines for clearly defined laws to protect privacy and intellectual property while main-
taining academic liberty, access to information, and freedom of discourse.

5 Similar reductions apply to such applications as automatic grammar checking, content extraction,
indexing to improve recall and precision of Internet querying, or supporting automatic speech recog-
nition.

Preface VII

neers in linguistics and natural language processing. The text may also be of interest to
scholars in philosophy of language, cognitive psychology, and artificial intelligence.

As background literature for readers who are new to computational linguistics in
general and Database Semantics in particular, Foundations of Computational Linguis-
tics (1999, 2nd ed. 2001) is recommended. FoCL’99 is a textbook that systematically
describes the traditional components of grammar, compares a wide range of differ-
ent linguistic approaches in their historical settings, and develops the SLIM theory of
language, which is also used here.

A complementary effort in cognitive psychology is the ACT-R theory by Ander-
son (cf. Anderson and Lebiere 1998). Like Database Semantics, ACT-R is essentially
symbol-based rather than statistical, and uses computational modeling as the method
of verification. However, ACT-R focusses on memory, learning, and problem solving,
while Database Semantics concentrates on modeling the speaker and the hearer mode
in natural language communication.

ACKNOWLEDGEMENTS

This book evolved in the context of the laboratory of Computational Linguistics of
the University Erlangen–Nürnberg (CLUE). I am grateful to the members of my team
(in alphabetical order), Matthias Bethke, Johannes Handl, Besim Kabashi, and Jörg
Kapfer, who discussed the technical and conceptual issues of the theory and the im-
plementation at great length and in great depth, and contributed many ideas. I am
also grateful to my students, especially Arkadius Kycia, who programmed the first
JavaTM implementation of DBS.1 and DBS.2 in the speaker, the think, and the hearer
mode. I would like to thank Brian MacWhinney (Carnegie Mellon University, Pitts-
burgh) and Haitao Liu (Communications University of China, Bejing) for providing
detailed comments on an earlier stage of the manuscript. Mike Daly (Dallas) proof-
read the manuscript and made many valuable suggestions. I am indebted to Marie
Hučinova (Charles University, Prague), Vladimir Petroff (Northeastern University,
Boston), Kiyong Lee (Korea University, Seoul), and a team of copy editors at Springer
for numerous improvements in the final phase of the manuscript. All remaining mis-
takes are mine.

February 2006 Roland Hausser
Erlangen–Nürnberg

VIII Preface

ABBREVIATIONS REFERRING TO PREVIOUS WORK

SCG’84 = Hausser, R. (1984) Surface Compositional Grammar, pp. 274,
München: Wilhelm Fink Verlag

NEWCAT’86 = Hausser, R. (1986) NEWCAT: Parsing Natural Language Using
Left-Associative Grammar, Lecture Notes in Computer Science 231,
pp. 540, Berlin Heidelberg New York: Springer

CoL’89 = Hausser, R. (1989) Computation of Language, An Essay on Syntax,
Semantics, and Pragmatics in Natural Man-Machine Communication,
Symbolic Computation: Artificial Intelligence, pp. 425, Berlin
Heidelberg New York: Springer

TCS’92 = Hausser, R. (1992) “Complexity in Left-Associative Grammar,”
Theoretical Computer Science, 106.2:283-308, Amsterdam: Elsevier

FoCL’99 = Hausser, R. (1999/2001) Foundations of Computational Linguistics,
Human–Computer Communication in Natural Language, 2nd ed.,
pp. 578, Berlin Heidelberg New York: Springer

AIJ’01 = Hausser, R. (2001) “Database Semantics for natural language.”
Artificial Intelligence, 130.1:27–74, Amsterdam: Elsevier

L&I’05 = Hausser, R. (2005) “Memory-Based pattern completion in Database
Semantics,” Language and Information, 9.1:69–92, Seoul: Korean
Society for Language and Information

Contents

Introduction . 1

Part I. The Communication Mechanism of Cognition

1. Matters of Method . 9
1.1 Sign- or Agent-Oriented Analysis of Language? 9
1.2 Verification Principle . 11
1.3 Equation Principle . 13
1.4 Objectivation Principle . 14
1.5 Equivalence Principles for Interfaces and for Input/Output 16
1.6 Surface Compositionality and Time-Linearity . 17

2. Interfaces and Components . 21
2.1 Cognitive Agents with and without Language . 21
2.2 Modalities and Media . 23
2.3 Alternative Ontologies for Referring with Language 25
2.4 Theory of Language and Theory of Grammar . 26
2.5 Immediate Reference and Mediated Reference . 27
2.6 The SLIM Theory of Language . 29

3. Data Structure and Algorithm . 35
3.1 Proplets for Coding Propositional Content . 35
3.2 Internal Matching between Language and Context Proplets 36
3.3 Storage of Proplets in a Word Bank . 38
3.4 Time-Linear Algorithm of LA-Grammar . 40
3.5 Cycle of Natural Language Communication . 43
3.6 Bare Bone Example of Database Semantics: DBS-letter 46

4. Concept Types and Concept Tokens . 51
4.1 Kinds of Proplets . 51
4.2 Type–Token Relation for Establishing Reference 54
4.3 Context Recognition . 57

X Contents

4.4 Context Action . 58
4.5 Sign Recognition and Production . 59
4.6 Universal versus Language-Dependent Properties 61

5. Forms of Thinking . 65
5.1 Retrieving Answers to Questions . 65
5.2 Episodic versus Absolute Propositions . 69
5.3 Inference: Reconstructing Modus Ponens . 71
5.4 Indirect Uses of Language . 75
5.5 Secondary Coding as Perspective Taking . 78
5.6 Shades of Meaning . 79

Part II. The Major Constructions of Natural Language

6. Intrapropositional Functor–Argument Structure 87
6.1 Overview . 87
6.2 Determiners . 89
6.3 Adjectives . 94
6.4 Auxiliaries . 97
6.5 Passive . 98
6.6 Prepositions . 100

7. Extrapropositional Functor–Argument Structure 103
7.1 Overview . 103
7.2 Sentential Argument as Subject . 105
7.3 Sentential Argument as Object . 107
7.4 Adnominal Sentential Modifier with Subject Gap 108
7.5 Adnominal Sentential Modifier with Object Gap 111
7.6 Adverbial Sentential Modifier . 112

8. Intrapropositional Coordination . 115
8.1 Overview . 115
8.2 Simple Coordination of Nouns in Subject and Object Position 118
8.3 Simple Coordination of Verbs and of Adjectives 123
8.4 Complex Coordination of Verbs and Objects: Subject Gapping 126
8.5 Complex Coordination of Subjects and Objects: Verb Gapping 130
8.6 Complex Coordination of Subjects and Verbs: Object Gapping 133

9. Extrapropositional Coordination . 137
9.1 Overview . 137
9.2 Interpretation and Production of Extrapropositional Coordination 138
9.3 Simple Coordinations as Sentential Arguments and Modifiers 141

Contents XI

9.4 Complex Coordinations as Sentential Arguments and Modifiers 147
9.5 Turn-Taking in Questions and Answers . 153
9.6 Complex Propositions as Thought Structures . 157

10. Intrapropositional and Extrapropositional Coreference 161
10.1 Overview . 161
10.2 Intrapropositional Coreference . 163
10.3 Langacker–Ross Constraint for Sentential Arguments 165
10.4 Langacker–Ross Constraint for Adnominal Sentential Modifiers 168
10.5 Langacker–Ross Constraint for Adverbial Sentential Modifiers 171
10.6 Handling Pronominal Coreference by Means of Inference 174

Part III. The Declarative Specification of Formal Fragments

11. DBS.1: Hearer Mode . 183
11.1 Automatic Word Form Recognition . 183
11.2 Lexicon of LA-hear.1 . 185
11.3 Preamble of LA-hear.1 . 187
11.4 Definition of LA-hear.1 . 188
11.5 Interpreting a Sequence of Sentences . 191
11.6 Storing the Output of LA-hear.1 in a Word Bank 195

12. DBS.1: Speaker Mode . 197
12.1 Definition of LA-think.1 . 197
12.2 Navigating with LA-think.1 . 199
12.3 Automatic Word Form Production . 202
12.4 Definition of LA-speak.1 . 203
12.5 Producing a Sequence of Sentences . 204
12.6 Summarizing the DBS.1 System . 207

13. DBS.2: Hearer Mode . 209
13.1 Lexicon of LA-hear.2 . 209
13.2 Preamble and Definition of LA-hear.2 . 216
13.3 Interpreting a Sentence with Complex Noun Phrases 220
13.4 Interpreting a Sentence with a Complex Verb Phrase 226
13.5 Interpreting a Sentence with a Three-Place Verb 229
13.6 Storing the Output of LA-hear.2 in a Word Bank 234

14. DBS.2: Speaker Mode . 237
14.1 Definition of LA-think.2 . 237
14.2 Definition of LA-speak.2 . 240
14.3 Automatic Word Form Production . 243

XII Contents

14.4 Producing a Sentence with Complex Noun Phrases 249
14.5 Producing a Sentence with a Complex Verb Phrase 254
14.6 Producing a Sentence with a Three-Place Verb . 258

15. DBS.3: Adnominal and Adverbial Modifiers . 263
15.1 Interpreting Elementary and Complex Modifiers 263
15.2 ADN and ADA Interpretations of Prepositional Phrases 272
15.3 ADV Interpretation of Prepositional Phrases . 277
15.4 Intensifiers in Noun Phrases and Prepositional Phrases 282
15.5 Elementary Adverbs with Intensifiers . 288
15.6 Definition of LA-hear.3 . 291

Appendices

A. Universal Basis of Word Order Variation . 303
A.1 Overview of the Basic Railroad System . 303
A.2 Incremental Language Production Based on Navigation 307
A.3 Realizing Alternative Word Orders from One-Place Propositions 310
A.4 Realizing Basic SO Word Orders from Two-Place Propositions 312
A.5 Realizing OS Word Orders from Alternative Navigations 316
A.6 Realizing Basic Word Orders from Three-Place Propositions 318

B. Declarative Description of the Motor Procedure 321
B.1 Start State Application . 321
B.2 Matching between Proplet Patterns and Language Proplets 324
B.3 Time-Linear Breadth-First Derivation Order . 326
B.4 Rule Application and the Basic Structure of the LA-Hear Motor 327
B.5 Operations . 330
B.6 Basic Structure of the LA-Think and the LA-Think–Speak Motor 332

C. Glossary . 335
C.1 Proplet Attributes . 335
C.2 Proplet Values . 335
C.3 Variables, Restrictions, and Agreement Conditions 337
C.4 Abstract Surfaces . 339
C.5 Rule Names . 339
C.6 List of Analyzed Examples . 341

Bibliography . 347

Name Index . 357

Subject Index . 361

Introduction

I. BASIC ASSUMPTIONS

A computational model of natural language communication cannot be limited to the
grammatical analysis of the language signs. Instead it must start with the general
recognition and action procedures of the cognitive agents, treating language interpre-
tation and production as special cases.

Recognition and action are based on the external interfaces of the cognitive agent’s
body, which contains a database for storing content. Agents without language have
only one level of cognition, called the context level. Agents with language have two
levels of cognition: the context level and the language level. The connection between
language and the world, i.e., reference, is established solely by the cognitive proce-
dures of the agent. Reference is based (i) on the external interfaces, and (ii) on relating
the cognitive levels of language and context using pattern matching.1

Database Semantics (DBS) models the behavior of natural agents, including lan-
guage communication, by automatically (a) reading propositional content resulting
from recognition into the agent’s database and (b) reading content out of the agent’s
database resulting in action. Recognition and action are (c) related by a control struc-
ture based on reasoning which results in sensible (meaningful, rational, successful)
conduct.

II. COMPONENTS OF A COGNITIVE AGENT

At the most abstract level, cognitive agents consist of three basic components. These
are (i) the external interfaces, (ii) the database, and (iii) the algorithm.2 They use a
common format, called the data structure,3 for representing and processing content.

1 Autonomy from the metalanguage. See FoCL’99, pp. 382–383.
2 These components correspond roughly to those of a von Neumann machine (vNm): The external

interfaces represent the vNm input-output device, the database corresponds to the vNm memory, and
the algorithm performs the functions of the vNm arithmetic-logic unit. For a comparison of standard
computers, robots, and virtual reality machines see FoCL’99, p. 16.

3 The term “data structure” is closely related in meaning to the term “data type.” Even though there
has been some argument that the format in question should be called an abstract data type rather
than a data structure, the latter term is preferred here to avoid confusion with the classic type/token
distinction (cf. Sect. 4.2). It is for the same reason that we use the term “kind of sign” rather than
“sign type” (cf. Sect. 2.6), “kind of sentence” rather than “sentence type,” “kind of word” rather than
“word type,” “kind of coordination” rather than “coordination type,” etc.

2 Introduction

The external interfaces are needed by the agent for recognition and action. Recog-
nition is based, for example, on eyes to see, and ears to hear. Action is based, for
example, on a mouth to talk, hands to manipulate, and legs to walk. Without them the
agent would not be able to tell us what it perceives and to do what we tell it to do.

The agent’s database is needed for the storage and retrieval of content provided by
the interfaces. Without it, the agent would not be able to determine whether or not
it has seen an object before, it could not remember the words of language and their
meaning, and it would be limited to reflexes connecting input and output directly.

The algorithm is needed to connect the interfaces and the database (i) for reading
content provided by recognition into the database, and (ii) for reading content out
of the database into action. Also, the algorithm must (iii) process the content in the
database for determining goals, planning actions, and deriving generalizations.

In the cognition of natural agents, the external interfaces, the data structure, and
the algorithm interact very closely. Therefore, in a computational model of natural
cognition they must be codesigned within a joint functional cycle. The three basic
components may be simple initially, but they must be general and functionally inte-
grated into a coherent framework from the outset.

III. TREATING NATURAL LANGUAGE

A model of natural language communication requires the traditional components of
grammar, i.e., the language-specific lexicon and the language-specific rules of mor-
phology, syntax, and semantics. During communication, these components must co-
operate in (i) the hearer mode, (ii) the think mode, and (iii) the speaker mode.

In the hearer mode, the external interfaces provide the input, consisting of language
signs. The algorithm parses the signs into a representation of content which is stored
in the database. The parsing of the signs is based on a system of automatic word form
recognition and a system of automatic syntactic–semantic analysis.

In the think mode, the algorithm is used for autonomously navigating through the
database, thus selectively activating content. This general method of navigation is also
used for deriving inferences which relate the current input and the content stored in
the database to derive action.

In the speaker mode, the activation of content and the derivation of inferences is
used for the conceptualization of language production, i.e., choosing what to say.
The production of language from activated content requires the selection of language-
dependent word form surfaces, and the handling of word order and agreement.

IV. DIFFERENT DEGREES OF DETAIL

In the following chapters, some components of DBS are worked out in great detail,
while others are only sketched in terms of their input, their function, and their output.
This is unavoidable because of the magnitude of the task, its interdisciplinary nature,
and the fact that some technologies are more easily available than others.

Introduction 3

For example, realizing Database Semantics as the prototype of an actual robot with
external interfaces for recognition and action, i.e., artificial vision, speech recogni-
tion, robotic manipulation, and robotic locomotion, was practically out of reach. This
is regrettable because the content in the database is built from concepts which are
“perceptually grounded” in the agents’ recognition and action procedures (Roy 2003).

While the external interfaces of the artificial agent are described here at a high level
of abstraction, the algorithm and the data structure are worked out not only in princi-
ple, but are developed as “fragments,” that model the hearer, the think, and the speaker
mode using concrete examples. These fragments are defined as explicit rule systems
and are verified by means of a concomitant implementation in JavaTM.

V. AVAILABLE SYSTEMS AND APPROACHES

Today many kinds of parsers are available. Some are based on statistical methods,
such as the Chunk Parser (Abney 1991; Déjean 1998; Vergne and Giguet 1998), the
Brill Tagger and Parser (Brill 1993, 1994), and the Head-Driven Parser (Collins 1999;
Charniak 2001). Others are based on the rules of a Phrase Structure Grammar such as
the Earley Algorithm (Earley 1970), the Chart Parser (Kay 1980; Pereira and Shieber
1987), the CYK Parser (Cocke and Schwartz 1970; Younger 1967; Kasami 1965), and
the Tomita Parser (Tomita 1986).

Also, there are many theories of syntax. Some are based on Categorial Grammar
(Leśniewski 1929; Ajdukiewicz 1935; Bar-Hillel 1964). Related to Categorial Gram-
mar is the approach of Valency Theory (Tesnière 1959; Herbst 1999; Ágel 2000;
Herbst et al. 2004) and Dependency Grammar (Mel’čuk 1988; Hudson 1991; Hellwig
2003). Others are based on Phrase Structure Grammar (Post 1936; Chomsky 1957),
for example Generalized Phrase Structure Grammar (GPSG, Gazdar et al. 1985), Lex-
ical Functional Grammar (LFG, Bresnan 1982, 2001), Head-Driven Phrase Structure
Grammar (HPSG, Pollard and Sag 1987, 1994), and Construction Grammar (Östman
and Fried 2004; Fillmore et al. forthcoming).

Similarly, there are many approaches to semantic analysis. Some are based on
Model Theory (Tarski 1935, 1944; Montague 1974), others on Speech Act Theory
(Austin 1962; Grice 1957, 1965; Searle 1969), or Semantic Networks (Quillian 1968;
Sowa 1984, 2000). In addition, there is Rhetorical Structure Theory (RST, Mann
and Thompson 1993), Text Linguistics (Halliday and Hasan 1976; Beaugrande and
Dressler 1981) as well as different approaches to the definition of concepts in cog-
nitive psychology, such as the schema, the template, the prototype, and the geon ap-
proach (cf. Sect. 4.2).

This list of partial systems may be continued by pointing to efforts at providing a
more general theory of machine translation (Dorr 1993), finding a universal set of se-
mantic primitives (Schank and Abelson 1977; Wierzbicka 1991), application-oriented
systems of language production (Reiter and Dale 1997), as well as efforts to improve
indexing and retrieval on the Internet by means of metadata mark-up based on XML,

4 Introduction

RDF, and OWL (Berners-Lee, Hendler, and Lassila 2001). This raises the question:
Which of the partial systems should be chosen to serve as components of a general,
complete, coherent, computational model of natural language communication?

On the one hand, there is little interest in reinventing a component that is already
available. On the other hand, reusing partial theories by integrating them into a general
system of natural language communication comes at a considerable cost: Given that
the available theories have originated in different traditions and for different purposes,
much time and effort would have to be spent on making them compatible.

Apart from the time-consuming labor of integrating partial theories there is the more
general question of which of them could be suitable in principle to be part of a coher-
ent, functional theory of how natural language communication works. This question
has been investigated in FoCL’99 for the majority of the systems listed above.4

As a result, Database Semantics was developed from scratch. Thereby many of the
ideas and methods of the above systems have been absorbed. The most basic ideas
are the notions of a proposition, as formulated by Aristotle, and of the time-linear
structure of language, as emphasized by de Saussure.

While our grammatical analysis is very traditional in many respects, it does not
adopt the commonly practiced separation between syntax (combinatorics) and seman-
tics (interpretation). Instead, syntactic and semantic composition are derived simulta-
neously (cf. Tugwell 1998) in a time-linear order. Thus, the only difference between a
purely syntactic and a syntactic–semantic grammar is that the former defines (i) fewer
lexical properties of the parts, and (ii) fewer relations between the parts, than the latter.

VI. FORMAL FOUNDATIONS

Database Semantics is the first and so far the only rule system in which natural lan-
guage interpretation and production are reconstructed as turn-taking, i.e., the cognitive
agent’s ability to switch between the speaker and the hearer mode. The reconstruction
of the communication cycle in Database Semantics is founded on two innovations:

The algorithm of Left-Associative Grammar (LA-grammar, TCS’92):
LA-grammar is based on the principle of possible continuations. This is in contrast
to the algorithms commonly used in today’s linguistics, namely Phrase Structure
Grammar (PSG) and Categorial Grammar (CG), which are based on the principle
of possible substitutions. Computing possible continuations models the time-linear
structure of natural language and permits us to handle turn-taking as the interaction
of three kinds of LA-grammar, namely LA-hear, LA-think, and LA-speak.

4 These analyses are conducted at a high level of abstraction. For example, rather than discussing in
detail how Situation Semantics might differ from Discourse Semantics, FoCL’99 concentrates on
the more basic question of whether or not a metalanguage-based truth-conditional approach could in
principle be suitable for a computational model. Similarly, rather than comparing GPSG, LFG, HPSG,
and GB, FoCL’99 concentrates on the question of whether or not the algorithm of substitution-based
Phrase Structure Grammar could in principle be suitable for modeling the speaker and the hearer
mode.

Introduction 5

The data structure of a Word Bank (AIJ’01):
A Word Bank stores propositional content in the form of flat (nonrecursive) fea-
ture structures called proplets. While the substitution-based approaches embed, for
example, the feature structure of the subject into the feature structure of the verb
(unification, cf. 3.4.5), no such embedding is allowed in Database Semantics. In-
stead, the individual proplets code the grammatical relations between them in terms
of features (i.e., attribute-value pairs) only. As a consequence, content represented
as a set of proplets is well-suited for (i) storage and retrieval in a database, and
for (ii) pattern matching, as needed to relate (iia) the levels of grammar rules and
language (cf. 3.4.3 and 3.5.1) and (iib) the levels of context and language (cf. 3.3.1).

The algorithm of LA-grammar and the data structure of a Word Bank together provide
the basis for an autonomous navigation through propositional content, utilizing the
grammatical relations between proplets as a kind of railroad system and LA-grammar
as a kind of locomotive which moves a unique focus point along the rails. This new
way of combining a data structure and an algorithm serves as our basic model of
thought. It may be used for merely activating content selectively in the Word Bank
(free association), but may also be extended into a control structure which relates the
agent’s recognition and action using stored knowledge and inferences.

VII. SCOPE OF THE LINGUISTIC ANALYSIS

Our linguistic analysis aims at a systematic development of the major constructions of
natural language. These are (i) functor–argument structure, (ii) coordination, and (iii)
coreference. They occur intra- and extrapropositionally, and may be freely mixed.

The major constructions are analyzed in a strictly time-linear derivation order, in
the hearer mode and in the speaker mode. It is shown that the much greater functional
completeness of Database Semantics as compared to the sign-oriented approaches is
no obstacle to a straightforward, linguistically well-motivated, homogeneous analysis,
which provides for a highly efficient computational implementation.

The analyses include constructions which have eluded a generally accepted treat-
ment within Nativism.5 These are the gapping constructions (cf. Chaps. 8 and 9),
especially “right-node-raising”, and coreference (cf. Chap. 10) in the “donkey” and
the “Bach–Peters” sentence.

VIII. STRUCTURE OF THE BOOK

The content of this book is presented in three parts. Part I presents the general frame-
work of the SLIM Theory of Language (FoCL’99) in terms of the cognitive agent’s
external interfaces, data structure, and algorithm. This part addresses many questions

5 Nativism (Chomsky 1957 et seq.) is a sign-oriented theory of language using substitution-based
Phrase Structure Grammar. Nativism aims at characterizing the speaker hearer’s innate knowledge
of language (competence) – excluding the use of language in communication (performance).

6 Introduction

which are crucial for the overall system, but cannot be pursued in further detail. Exam-
ples are the nature of concepts and their role in recognition and action, the reference
mechanisms of the different sign kinds, and the formal structure of the context level.

Part II systematically analyzes the major constructions of natural language, pre-
sented as schematic derivations of English examples in the hearer and the speaker
mode. The hearer mode analyses show the strictly time-linear coding of functor–
argument structure and coordination into sets of proplets, treating coreference as a sec-
ondary relation based on inferencing. The speaker mode analyses show the retrieval-
based navigation through a Word Bank (conceptualization), as well as the language-
dependent sequencing of word forms and the precipitation of function words.

Part III presents fragments of English. Expanding on Montague’s use of this term, a
“fragment” refers to a system of natural language communication which is function-
ally complete but has limited coverage. The fragments show the interpretation and the
production of small sample texts in complete detail, explicitly defining the lexicon
and the LA-hear, LA-think, and LA-speak grammars required.

The different scope and the different degrees of abstraction characterizing the three
parts may be summarized schematically as follows:

schematic derivations
in the speaker and the

hearer mode

fo
rm

al
fr

ag
m

en
ts

Part I

Part II

Part III

abstraction level I (high)

abstraction level II (intermediate)

abstraction level III (low)

interfaces, components, ontology,
data structure, algorithms

A high degree of abstraction corresponds to a low degree of linguistic and technical
detail, and vice versa.

The general framework outlined in Part I is built upon in Part II. The methods of
analysis presented in Part II are built upon in Part III. The analyses and definitions
of Part II and III have served as the declarative specification of an implementation
called JSLIM (Kycia 2004), which is currently being reimplemented by Jörg Kapfer
and Johannes Handl using JavaTM version 5 (1. 5).

Part I

The Communication Mechanism of Cognition

1. Matters of Method

In science, the method of verification is the outermost line of defense against error.
It may be crude as long as it can be made objective. Designed for a particular theory
(or kind of theories), the verification method should interact with its theory in such a
way that there constantly arise new questions of a kind (i) which can be decided more
or less conclusively by the method of verification, and (ii) the answers to which are
relevant to the theory’s further development.

In natural science, verification consists in experiments which are (i) specified ex-
actly in quantitative terms and (ii) which can be repeated by anybody anywhere. This
requires that the notions and structures of the theory are so precise that they are suit-
able for the scientific setup of experiments. For the grammatical analysis of language,
however, the quantitative verification method happens to be unsuitable.

The method we propose instead consists in building a functional model of natu-
ral language communication. This requires (i) a declarative specification in combi-
nation with an efficiently running implementation (prototype of a talking robot), (ii)
establishing objective channels of observation, and (iii) equating the adequacy of the
robot’s behavior with the correctness of the theory – which means that the robot must
have (iv) the same kinds of external interfaces as humans, and process language in a
way which is (v) input/output-equivalent with the language processing of humans.

1.1 Sign- or Agent-Oriented Analysis of Language?

A natural language manifests itself in the form of signs, the structures of which have
evolved as conventions within a language community. Produced by cognitive agents
in the speaker mode and interpreted by agents in the hearer mode, these signs are used
for the transfer of content from the speaker to the hearer. Depending on whether the
scientific analysis concentrates on the isolated signs or on the communicating agents,
we may distinguish between sign-oriented and agent-oriented approaches.1

Sign-oriented approaches like Generative Grammar, Truth-Conditional Semantics,
and Text Linguistics analyze expressions of natural language as objects, fixed on pa-
per, magnetic tape, or by electronic means. They abstract away from the aspect of
communication and are therefore neither intended nor suitable to model the speaker

1 Clark (1996) distinguishes between the language-as-product and language-as-action traditions.

10 1. Matters of Method

and the hearer mode. Instead, linguistic examples, isolated from the communicating
agents, are analyzed as hierarchical structures which are formally based on the prin-
ciple of possible substitutions.

The agent-oriented approach of Database Semantics (DBS), in contrast, analyzes
signs as the result of the speaker’s language production and as the starting point of the
hearer’s language interpretation. Inclusion of the agents’ production and interpretation
procedures requires a time-linear analysis which is formally based on the principle of
possible continuations.

The goal of Database Semantics is a theory of natural language communication
which is complete with respect to function and data coverage, of low mathematical
complexity, and is suitable for an efficient implementation on the computer. The cen-
tral question of Database Semantics is:

How does communicating with natural language work?

In the most simple form, this question is answered as follows.
Natural language communication takes place between cognitive agents. They have

real bodies “out there” in the world with external interfaces for nonverbal recognition
and action at the context level, and verbal recognition and action at the language level.
Each agent contains a database in which contents are stored. These contents consist
of the agent’s knowledge, its memories, current recognition, intentions, plans, etc.

The cognitive agents can switch between the speaker and the hearer mode (turn-
taking).2 In a communication procedure, an agent in the speaker mode codes content
from its database into signs of language which are realized externally via the language
output interface. These signs are recognized by another agent in the hearer mode via
the language input interface, their content is decoded, and is then stored in the second
agent’s database. This procedure is successful if the content coded by the speaker is
decoded and stored equivalently by the hearer.

In Database Semantics, the modeling of turn-taking is based on a special data struc-
ture in combination with the time-linear algorithm of Left-Associative Grammar (LA-
grammar).3 The algorithm is used in three variants, called LA-hear, LA-think, and
LA-speak. In communication, these three LA-grammars cooperate as follows:

1.1.1 THE BASIC MODEL OF TURN-TAKING

sLA hear LA speak

LA think

hearer mode speaker mode

2 For a study of turn-taking see Thórisson (2002).
3 For the formal definition and complexity analysis of LA-grammar as well as a detailed comparison

with Phrase Structure Grammar and Categorial Grammar see FoCL’99, Part II.

1.2 Verification Principle 11

In the agent shown on the right (speaker mode), LA-think selectively activates content
stored in the agent’s database. The activated content is mapped into surfaces of a
natural language by LA-speak, which are realized as external signs (represented by
the small box containing s). In the agent shown on the left (hearer mode), LA-hear
interprets the signs, which are stored in the agent’s database.

The representation of turn-taking shown in 1.1.1 may be interpreted in two ways:

1.1.2 TWO VIEWS OF TURN-TAKING

1. Viewed from the outside:
Two communicating agents are observed as they are taking turns. This is repre-
sented by 1.1.1 when the two boxes are taken to be two different agents, one in
the hearer and the other in the speaker mode.

2. Viewed from the inside:
One communicating agent is observed as it switches between being the speaker
and the hearer. This is represented by 1.1.1 when the two boxes are taken to be the
same agent switching between the speaker and the hearer mode (with the dotted
right-hand arrow indicating the switch).

In DBS, turn-taking is regarded as a well-defined, well-motivated computational prob-
lem, which is central to the linguistic analysis of natural language: all syntactic and
semantic analysis must be integrated into turn-taking as the most basic mechanism of
communication. Without it, there is only one-sided monologue as the limiting case.

1.2 Verification Principle

Our theory of natural language communication is developed as a functional model,
presented as a declarative specification for an efficient computer program with associ-
ated hardware. A declarative specification describes the necessary properties of a soft-
ware, such as the external interfaces, the data structure, and the algorithm. Thereby,
the accidental4 properties of an implementation, such as the choice of programming
language or the stylistic idiosyncrasies of the programmer, are abstracted away from.

In contrast to an algebraic definition5 in logic, a declarative specification is not based
purely on set theory. Instead, it takes a procedural point of view, specifying the gen-
eral architecture in terms of components with input and output conditions as well as
the functional flow through the system. A declarative specification must be general
enough to provide a solid mathematical foundation and structure, and detailed enough
to permit easy programming in different environments.

A declarative specification is needed because machine code is not easily read by
humans. Even programs written in a higher level programming language such as Lisp

4 The term accidental is used here in the philosophical tradition of Aristotle, who distinguishes between
the necessary and the accidental (or incidental – kata sumbebêkos).

5 The algebraic definition of LA-grammar in CoL’89 benefited greatly from help by Dana Scott.

12 1. Matters of Method

are meaningful only to experts. What one would like to see in a piece of software is
the abstract functional solution to the task it was designed to perform.

The declarative specification for a certain application consists of two levels: (i) a
general theoretical framework (e.g., a functional system of natural language commu-
nication) and (ii) a specialization of the general framework to a specific application
(e.g., English, German, Korean, or any other natural language). The theoretical frame-
work in combination with a specialized application may in turn be realized (iii) in
various different implementations, written in Lisp, C, or Java, for example.

1.2.1 CORRELATION OF DECLARATIVE SPECIFICATION AND IMPLEMENTATIONS

specialized
application 1

theoretical framework

etc.
specialized specialized
application 2 application 3

declarative
specification

implemen

etc.

implemen

implemen

etc.

implemen
tation 1.1

tation 1.2

tation 1.3

implemen

implemen

implemen
tation 2.1

tation 2.3

implemen
tation 3.1

tation 3.2 implementations
different

tation 2.2

etc.

(i)

(ii)

(iii)

A declarative specification may have many different implementations which are
equivalent with respect to the necessary properties. In Database Semantics, the evolv-
ing declarative specification must always be accompanied by at least one up-to-date
implementation in order to automatically demonstrate the functioning of the theory
in its current stage, and to test it with respect to an ever-widening range of various
tasks. In this way, errors, incompletenesses, and other weaknesses of the current stage
may be determined (explicit hypothesis formation, cf. FoCL’99, 7.2.3), which is a
precondition for developing the next improved stage of the declarative specification.

The cycle of theory development and automatic testing is the verification method of
Database Semantics. It differs from the quantitative methods of the natural sciences
(repeatability of experiments) as well as the logical-axiomatic methods of mathemat-
ics (proof of consistency), though it is compatible with them.

The verification method6 of Database Semantics is important for the following rea-
sons. First, the signs of natural language are based on conventions which are not sus-

6 See also FoCL’99, Introduction VIII–X.

1.3 Equation Principle 13

ceptible to the quantitative methods of the natural sciences. Second, the analysis of
the natural languages in linguistics and neighboring fields such as the philosophy of
language is fragmented into a very large number of different schools and subschools,
which raises the question of their comparative evaluation.

1.3 Equation Principle

Database Semantics aims at modeling the language communication of artificial agents
as naturally as possible for two reasons. First, maximal user-friendliness should be
provided in practical applications. User-friendliness in man–machine communication
means that the human and the robot can understand each other (i) correctly and (ii)
without the human having to adapt to the machine.7

Second, long-term upscalability in theory development should be ensured. Upscal-
ing in the construction of a talking robot means that one can proceed without diffi-
culty from the current prototype to one of greater functional completeness and/or data
coverage.8 In the history of science, difficulties in upscaling have practically always
indicated a fundamental problem with the theory in question.9

To ensure user-friendliness and upscalability in the long run, Database Semantics
must strive to approximate at the various levels of abstraction what has been called
“psychological reality.” For this purpose, we propose the following principle, which
equates the correctness of the theoretical description with the behavioral adequacy of
the electronic model (prototype of a talking robot).

1.3.1 THE EQUATION PRINCIPLE OF DATABASE SEMANTICS

1. The more realistic the reconstruction of cognition, the better the functioning of
the model.

7 For this, the robot must be designed to have procedural counterparts of human notions. For example,
in order to understand the word red, the robot must be capable of physically selecting the red objects
from a set; in order to understand the notion of being happily surprised, the robot must be capable of
experiencing this emotion itself; etc.

Given that the technical preconditions for this kind of user-friendliness will not become available
for some time, Liu (2001) proposes to integrate current robotic capabilities with practical tasks guided
by humans. This is a positive example of a smart solution, like the use of restricted language in
machine translation (cf. FoCL’99, p. 47).

8 For example, functional completeness requires the ability of automatic word form recognition in
principle. Extending the data coverage means that more and more word forms of the language can be
recognized; similarly, functional completeness requires the ability of contextual action in principle.
Extending the data coverage means that more and more contextual action types such as different kinds
of locomotion, manipulation, etc., become available.

9 Problems with upscaling in Truth-Conditional Semantics arise in the attempts to handle the Epi-
menides Paradox (cf. FoCL’99, Sect. 19.5), propositional attitudes (cf. ibid, Sect. 20.3), and vagueness
(ibid, Sect. 20.5). Problems with upscaling in Generative Grammar arise in the attempts to handle the
constituent structure paradox (ibid, Sect. 8.5) and gapping constructions (cf. Chaps. 8 and 9 below).

14 1. Matters of Method

2. The better the functioning of the model, the more realistic the reconstruction of
cognition.

The first part of the Equation Principle looks for support from and convergence with
the neighboring sciences in order to improve the performance of the prototype. This
means, for example, that we avoid conflicts with established facts or strong conjec-
tures regarding the phylogenetical and the ontogenetical development as provided
by ethology and developmental psychology, include the functional explanations of
anatomy and physiology, and take seriously the results of mathematical complexity
theory (no undecidable or exponential algorithms).

The second part of the equation principle provides a heuristic strategy in light of the
fact that the “real” software structures of cognition (at their various levels of abstrac-
tion) are not accessable to direct observation.10 Our strategy tries to achieve a realistic
reconstruction indirectly by aiming for functional completeness and completeness of
data coverage in the incremental upscaling of an artificial cognitive agent.

1.4 Objectivation Principle

For a functional reconstruction of cognition in general and natural language commu-
nication in particular, different kinds of data are available. The differences stem in part
from alternative constellations in which the data originate, and in part from alternative
channels which are used in the respective constellations.

The constellations regard the interaction between (i) the user, (ii) the scientist, and
(iii) the electronic model (robot). They are distinguished as follows:

1.4.1 CONSTELLATIONS PROVIDING DIFFERENT KINDS OF DATA

1. Interaction between (i) the user and (iii) the robot

2. Interaction between (i) the user and (ii) the scientist

3. Interaction between (ii) the scientist and (iii) the robot

Depending on the constellation, data can be transmitted via the following channels:

1.4.2 DATA CHANNELS OF COMMUNICATIVE INTERACTION

1. The auto-channel processes input automatically and produces output autonomous-
ly, at the context as well as the language level. In natural cognitive agents, i.e., the
user and the scientist, the auto-channel is present from the very beginning in its

10 A notable exception is the direct study of central cognition in neurology, especially fMRI or functional
magnetic resonance imaging (cf. Matthews et al. 2003; Jezzard et al. 2001). Currently, however, these
data leave room for widely differing interpretations, and are used to support conflicting theories.

1.4 Objectivation Principle 15

full functionality. In artificial agents, in contrast, the auto-channel must be recon-
structed – and it is the goal of Database Semantics to reconstruct it as realistically
as possible.

2. The extrapolation of introspection is a specialization of the auto-channel and re-
sults from the scientists’ effort to improve man–machine communication by tak-
ing the view of the human user. This is possible because the scientist and the user
are natural agents.

3. The service channel is designed by the scientist for the observation and control
of the artificial agent. It allows direct access to the robot’s cognition because its
cognitive architecture and functioning is a construct which in principle may be
understood completely by the scientist.

The three constellations and the role of the three data channels in the interaction be-
tween user, scientist, and robot may be summarized graphically as follows:

1.4.3 INTERACTION BETWEEN USER, ROBOT, AND SCIENTIST

robot
user

scientist

auto channel

extrapolation
of introspection service channel

(i)
(iii)

(ii)

The scientist observes the external behavior of the user and the robot via the auto-
channel, i.e., the scientist sees what they do and can also interview them about it.
In addition, the scientist observes the cognitive states of (a) the user indirectly via a
scientifically founded extrapolation of introspection and (b) the robot directly via the
service channel. For the scientist, the user and the robot are equally real agents “out
there” in the world, and their cognitive states have the same ontological status.

Of the three channels, the auto-channel is available to the user, the robot, and the
scientist. It is the channel used most, but it is also most prone to error: At the level of
context there are the visual illusions, for example, and at the level of language there are
the misunderstandings. In addition, one has to take into account the possibility that the
partner of discourse might deviate from the truth, either consciously or unconsciously.

As long as everyday access to the partner of discourse is restricted to the auto-
channel, we can never be completely certain whether what we said was really un-
derstood as intended by us, or whether we really understood what was intended by

16 1. Matters of Method

the other, or whether what was said was really true. In philosophy, this is the much
discussed problem known as solipsism (Wittgenstein 1921).

For a scientific analysis of natural language communication, however, there are the
priviledged accesses of (i) the extrapolation of introspection and (ii) the service chan-
nel. In the extrapolation of introspection, the discourse between the scientist and the
user is restricted to the domain of user–robot interaction. Therefore, misunderstand-
ings between the scientist and the user are much less likely than in free communica-
tion, though they are still possible. The direct access to the robot via the service chan-
nel, furthermore, allows the scientist to determine objectively whether or not the cog-
nition of the artificial agent is functioning properly. Thus, artificial cognitive agents
are special insofar as they are not subject to the problem of solipsism.

1.5 Equivalence Principles for Interfaces and for Input/Output

The methodological principles of Database Semantics presented so far, namely

1. the Verification Principle
i.e., the development of the theory in the form of a declarative specification which
is continuously verified by means of an implemented prototype (cf. Sect. 1.2),

2. the Equation Principle
i.e., the equating of theoretical correctness with the behavioral adequacy of the
prototype during long-term upscaling (cf. Sect. 1.3), and

3. the Objectivation Principle
i.e., the establishing of objective channels for observing language communication
between natural and artificial agents (cf. Sect. 1.4),

are constrained by

4. the Interface Equivalence Principle, and

5. the Input/Output Equivalence Principle.

According to the Principle of Interface Equivalence (4), the artificial surrogate must
be equipped with the same interfaces to the external world as the natural original. At
the highest level of abstraction, this requires the external interfaces of recognition and
action at the context and the language level (cf. 2.1.3). At lower levels of abstraction,
the interfaces in question split up into the different modalities (cf. Sect. 2.2) of vision,
audio, tactile, etc., for recognition, and locomotion, manipulation, etc., for action.

The Interface Equivalence between the model and the natural original is crucial for
the automatic reconstruction of reference, i.e., the relation between language and the
world. For example, if the robot cannot perceive, it cannot understand the human’s
reference to a new object in their joint task environment. The Interface Equivalence

1.6 Surface Compositionality and Time-Linearity 17

Principle has fundamental consequences on the theory of semantics for natural lan-
guage, especially the ontological foundations (cf. 2.3.1).

The Principle of Input/Output Equivalence (5) presupposes Interface Equivalence
(4). Input/Output Equivalence requires that the artificial agent (i) takes the same input
and produces the same output as the natural original, (ii) disassembles input and out-
put in the same way into parts, and (iii) orders the parts in the same way during intake
and discharge. The input and output data, like the external interfaces, are concretely
given and therefore are susceptible to an objective structural analysis.

The Input/Output Equivalence between the model and the natural original is espe-
cially relevant for the automatic interpretation and production of the signs used in
natural language communication. Therefore, this principle has fundamental conse-
quences on the theory of grammar for natural language.

The two Equivalence Principles constitute a minimal requirement for any scientific
reconstruction of cognition in general and the mechanism of natural language commu-
nication in particular. The reason is as follows: If we had direct access to the architec-
ture and the functioning of cognition, comparable to the investigation of the physical
structures and functions of the bodily organs in the natural sciences (anatomy, phys-
iology, chemistry, physics), the resulting model would certainly have to satisfy the
Principles of Interface Equivalence and Input/Output Equivalence.

If, due to the absence of direct access, the nature of the cognitive system must be
inferred indirectly, namely in an incremental process of upscaling the functional com-
pleteness and the data coverage of an artificial surrogate, this does not diminish the
importance of the external interfaces and the input/output data. On the contrary, as
concretely given, directly observable structures they constitute the external fixpoints
for any reconstruction of the internal cognition procedures which is scientifically well-
founded.

1.6 Surface Compositionality and Time-Linearity

The general principles of Interface Equivalence and Input/Output Equivalence require
a careful analysis and reconstruction (i) of the natural agent’s recognition and action
components and (ii) of the data being passed through these components. One impor-
tant kind of data are the expressions of natural language produced in the speaker mode
and interpreted in the hearer mode.

Externally, these data are objects in a certain medium, represented by sounds, hand-
written or printed letters, or gestures of a sign language, which can be recorded on
film, tape, or disc, and measured and described with the methods of the natural sci-
ences. Given that these objects are concretely given, they constitute the empirical ba-
sis which linguistic analysis should neither add to nor subtract from. This elementary
methodological principle is known as Surface Compositionality (SCG’84):

18 1. Matters of Method

1.6.1 SURFACE COMPOSITIONALITY

A grammatical analysis is surface compositional if it uses only the concrete
word forms as the building blocks of composition, such that all syntactic and
semantic properties of a complex expression derive systematically from the
syntactic category and the literal meaning of the lexical items.

Surface Compositionality is best illustrated by examples which violate it, such as the
following grammatical analysis:

1.6.2 ANALYSIS VIOLATING SURFACE COMPOSITIONALITY

girl drank every

(sn’ np) (sn) (np’ np’ v)

water

(sn’ np) (sn)

(np) (np)

(np’ v)

(v)

In order to treat the noun phrases every girl and water alike, this analysis postulates
the zero element Φ. The presumed “linguistic generalization” is illegitimate, however,
because the postulated determiner Φ of water is not concretely given in the surface.

Nevertheless, the categories of 1.6.2 are well-motivated and defined as follows:

1.6.3 THE CATEGORIES OF 1.6.2

(sn’ np) = determiner, takes a singular noun sn’ and makes a noun phrase np.
(sn) = singular noun, fills a valency position sn’ in the determiner.
(np’ np’ v)= transitive verb, takes a noun phrase np and makes an intransitive verb (np’ v).
(np) = noun phrase, fills a valency position np’ in the verb.
(np’ v) = intransitive verb, takes a noun phrase np and makes a (v).
(v) = verb with no open valency positions (sentence).

The rules generating Example 1.6.2 are based on the principle of possible substitu-
tions, and are defined as follows:

1.6.4 RULES COMPUTING POSSIBLE SUBSTITUTIONS FOR DERIVING 1.6.2

(v) → (np) (np’ v)
(np) → (sn’ np) (sn)
(np’ v) → (np’ np’ v) (np)
(sn’ np) → every, Φ
(sn) → girl, water
(np’ np’ v) → drank

Each rule replaces the category on the left-hand side of the arrow by the categories on
the right-hand side (top-down derivation). It is also conceivable to replace the cate-
gories on the right-hand side by the one on the left-hand side (bottom-up derivation).

1.6 Surface Compositionality and Time-Linearity 19

Without the zero determiner postulated in 1.6.2, at least one additional rule would
have to be defined. However, according to the Principle of Surface Compositional-
ity, it is methodologically unsound to simply postulate the existence of something
that is absent, but considered necessary or desirable.11 Failure to maintain Surface
Compositionality leads directly to high mathematical complexity and computational
intractability.

Having determined the basic elements of linguistic analysis, i.e., the surfaces in
the concretely given sign and their standard lexical analysis, let us turn to the proper
grammatical relations between these basic items. The most elementary relation be-
tween the words in a sentence is their time-linear order. Time-linear means linear like
time and in the direction of time (cf. Sect. 3.4).

The time-linear structure of natural language is so fundamental that a speaker cannot
but utter a text sentence by sentence, and a sentence word form by word form. Thereby
the time-linear principle suffuses the process of utterance to such a degree that the
speaker may decide in the middle of a sentence on how to continue.

Correspondingly, the hearer need not wait until the utterance of a text or sentence
has been finished before his or her interpretation can begin. Instead the hearer will in-
terpret the beginning of the sentence without having to know how it will be continued.

Example 1.6.2 violates not only Surface Compositionality, but also Time-Linearity.
The grammatical analysis is not time-linear because it fails to combine every girl with
drank directly. Instead, based on the principle of possible substitutions, the complex
expression drank water must be derived first.

A time-linear analysis, in contrast, is based on the principle of possible continua-
tions. As an example, consider the following time-linear derivation, which uses the
same categories (cf. 1.6.3) as the non-time-linear derivation 1.6.2:

1.6.5 SATISFYING SURFACE COMPOSITIONALITY AND TIME-LINEARITY

drank watergirlevery

(sn’ np) (sn) (np’ np’ v) (sn)

(np)

(np’ v)

(v)

This bottom-up derivation always combines a sentence start with a next word into a
new sentence start, using the following (simplified) rules of Left-Associative Gram-
mar:
11 The inverse kind of violating Surface Compositionality consists in treating words which are con-

cretely given in the surface as if they weren’t there, simply because they are considered unnecessary
or undesirable for one’s “linguistic generalization.” For a more detailed discussion see SCG’84 and
FoCL’99, Sects. 4.5, 17.2, 18.2, and 21.3.

20 1. Matters of Method

1.6.6 RULES COMPUTING THE POSSIBLE CONTINUATIONS FOR DERIVING 1.6.5

(VAR’ X) (VAR) ⇒ (X)
(VAR) (VAR’ X) ⇒ (X)

Each rule consists of three patterns. The patterns are built from the variables VAR,
VAR’, and X.12

The first pattern of a rule, e.g., (VAR’ X), represents the sentence start ss, the second
pattern, e.g., (VAR), the next word nw, and the third pattern, e.g., (X) the resulting
sentence start ss’. The variables VAR and VAR’ are restricted to a single category
segment, while X is a variable for a sequence of category segments consisting of zero
or more elements.

Rules computing possible continuations are based on matching their patterns with
the input expressions, thereby binding their variables:

1.6.7 APPLICATION OF A RULE COMPUTING A POSSIBLE CONTINUATION

ss nw ss’
rule patterns (VAR’ X) (VAR) ⇒ (X)

| | | | matching and binding
categories (sn’ np) (sn) (np)
surfaces every girl every girl

During matching, the variable VAR’ is “vertically” bound to sn’, the variable X to np,
and the variable VAR to sn. In the result, the valency position sn’ of the determiner
category (sn’ np) has been filled (or canceled), producing the ss’ category (np), and
the input surfaces every and girl are concatenated into every girl.

To handle the combination between a verb and object nouns with or without a de-
terminer, e.g., ...drank + a coke versus ...drank + water, in a surface compositional
manner, the possible values of the variables VAR and VAR’ are restricted13 and corre-
lated as follows:

1.6.8 VARIABLE DEFINITION OF THE TIME-LINEAR RULES FOR DERIVING 1.6.5

If VAR’ is sn’, then VAR is sn. (identity-based agreement)
If VAR’ is np’, then VAR is np, sn, or pn. (definition-based agreement)

The formalism of a time-linear derivation sketched in 1.6.5–1.6.8 is of a preliminary
kind. It was used in NEWCAT’86 for the automatic time-linear analysis of 221 syn-
tactic constructions of German and 114 of English, complete with LISP source code.
It was also used in CoL’89 for 421 syntactic–semantic constructions of English with
a sign-oriented, hierarchical semantic analysis.

12 There is a convention in Database Semantics that constants are written in lowercase Roman letters,
while variables are written in uppercase Roman letters or in lowercase Greek letters. Cf. Appendix C,
Sect. C.3.

13 The variable restrictions for handling agreement in English are summarized in the Appendix C, C.3.4.

2. Interfaces and Components

That cognitive agents have bodies1 with interfaces for transporting cognitive content
from the external world into the agent (recognition) and out of the agent into the ex-
ternal world (action) is hardly controversial. The properties of the interfaces may be
established externally by observing the interaction of other agents with their environ-
ment and with each other, and internally by observing the functioning of one’s own
interfaces through introspection (cf. 1.4.3). In addition, there is the analysis of the ex-
ternal interface organs involved, provided by the natural sciences such as physiology
and anatomy, as well as the modeling of these organs in robotics.

Yet starting the reconstruction of cognition with the agents’ external interfaces de-
termines the ontological foundations of Database Semantics (DBS) in a way which
makes it incompatible with the traditional sign-oriented theories. The reason is that
the sign-oriented theories abstract the cognitive agent away, defining semantics as
a direct relation between “language and the world.” This may have advantages, yet
without an agent there cannot be external interfaces, and a cognitive theory without
external interfaces is unsuitable as the control unit of a talking robot

There remains the possibility of extending the sign-oriented theories without exter-
nal interfaces into ones which have them. This is not a promising option, however, as
shown by the analogy with software development: A piece of running software can
practically never be extended to an interface which was forgotten in the initial design
– except for ad hoc emergency measures cleverly adapting some accidental feature of
the program. For a clean solution, the program has to be rewritten from scratch.

2.1 Cognitive Agents with and without Language

There are cognitive agents without language which have external interfaces very sim-
ilar to those of cognitive agents with language. A squirrel, for example, has two eyes,
two ears, a nose, etc., for recognition, and hands, hind-legs, a mouth, etc., for action.
It can bury a nut, when needed retrieve it even after a long time, and eat it.

In our terminology, the squirrel has a very good context component, but no language
component.2 If we could use the cognition of an artificial squirrel as our context, we

1 The role of the body has recently been reemphasized by Emergentism, cf. MacWhinney (1999).
2 Though this may be debated. See Hauser (1996).

22 2. Interfaces and Components

would adapt the ears to hearing language, add synthesizers for speaking, provide am-
ple computing power, and design a theory to use it for natural language communica-
tion. Such a theory is the topic of this book.

As no artificial squirrels are available at present, let us briefly outline the basic struc-
ture of the context component required. That we begin our model of natural language
communication with the context level may be motivated as follows:

2.1.1 SUPPORT FOR BUILDING THE CONTEXT COMPONENT FIRST

1. Constructs from the context-level may be reused at the language level. This holds
for (i) the concepts, as types and as token, (ii) the external interfaces for input and
output, (iii) the data structure, (iv) the algorithm, and (v) the inferences.

2. The context is universal – in the sense of being independent of a particular lan-
guage, yet all the different languages may be interpreted relative to the same kind
of context component.

3. In phylogeny (evolution) and ontogeny (child development) the context compo-
nent comes first.

The external interfaces of the context component correspond to those of a cognitive
agent without language, and may be shown schematically as follows:

2.1.2 EXTERNAL INTERFACES OF A COGNITIVE AGENT WITHOUT LANGUAGE

external reality

(i) context recognition
(ii) context action

peripheral cognition

central cognition

cognitive agent

For present purposes we deal with the interfaces at a very high level of abstraction,
such that the distinction between recognition and action in general is sufficient.

The differentiation of the external interfaces into different modalities such as vi-
sion, audio, variants of locomotion, manipulation, etc., will be the topic of the follow-
ing Sect. 2.2. It is relevant here only insofar as peripheral cognition during recogni-
tion translates the heterogeneous modality-dependent data of the different interfaces
into the homogenous coding of central cognition. During action, peripheral cognition
translates the homogeneously coded commands of central cognition into the hetero-
geneous modality-dependent kinds of different external action procedures.3

3 We know of two kinds of homogeneous coding: neurological in natural agents and electronic in com-
puters. Functionally, the task of central cognition is the analysis and storage of modality-independent
(homogenous) content, inferencing on the content, and turning the result of these inferences into
action schemata.

2.2 Modalities and Media 23

The step from agents without language to agents with language can be visualized as
a doubling of the context, whereby the newly gained component is reutilized for the
purposes of language.4 For example, the existing interfaces for (i) context recognition
and (ii) context action can be reused by the new language component for (iii) sign
recognition and (iv) sign synthesis, respectively.

2.1.3 EXTERNAL INTERFACES OF A COGNITIVE AGENT WITH LANGUAGE

central cognition

peripheral cognition

(i) context recognition
(ii) context action

(iii) sign recognition
(iv) sign synthesis

external reality

cognitive agent

The distinction between the external interfaces of language (upper level) and context
(lower level) may be motivated by differences in their interpretation. For example,
when we observe some vague pattern on the bark of a tree we may not be sure whether
it is accidentally provided by nature or produced on purpose by another human as a
sequence of letters, e.g., Caution, Tiger! When we suddenly realize that the pattern
is a sign intended for communication, the raw visual input is still the same, but the
significance of its interpretation becomes completely different: We switch from the
context to the language level.5

2.2 Modalities and Media

For natural language communication, different input and output devices may be used.
Sign recognition may be based on the input interfaces of the ears (spoken language),
the eyes (written, signed language), and the skin (Braille). Sign production may be
based on the output interfaces of the vocal tracts in combination with the mouth (spo-
ken language), the hand (written language, including Braille), and hand–arm–face
gestures (signed language).
4 This is in line with the Emergentist view (MacWhinney 1999) of evolution reusing older forms for

newer functions.
5 On the functioning of written language see FoCL’99, Sect. 6.5.

24 2. Interfaces and Components

The different input and output interfaces are called the modalities, at the language
as well as the context level. Translating between the modality-dependent data of the
different interfaces and the homogenous coding of central cognition is the task of
peripheral cognition. The following example shows the switching between modality-
independent and modality-dependent coding in the transfer of a language sign from
the speaker to the hearer:

2.2.1 MODALITY-INDEPENDENT AND MODALITY-DEPENDENT CODING

dependent
modality

interface
dependent
modality

interface

speakerhearer

central cognition

peripheral cognition

modality independent modality dependent

realization of the signcoding of the sign

central cognition

peripheral cognition

modality independent
coding of the sign

The peripheral cognition of the speaker translates the sign from a modality-indepen-
dent (homogeneous) coding into a modality-dependent coding which is realized exter-
nally. The peripheral cognition of the hearer translates the modality-dependent coding
of the sign back into a modality-independent coding.6

The modalities of action differ from the modalities of recognition. For example,
spoken language is produced with the mouth, but recognized with the ears. Simi-
larly, written and signed language is produced with the hands, but recognized with the
eyes. Furthermore, there are monomodal and multimodal recognition and action. An
example of a multimodal contextual recognition is simultaneously seeing, touching,
smelling, and hearing another agent. An example of multimodal contextual action is
holding and biting a fruit. Recognition and action may also combine, as when seeing
(recognition) and reaching for (action) an object.

Even more diverse than the different modalities are the forms of existence in the ex-
ternal world, such as different materials, physical states, motions, natural laws, social
conventions, etc., which can all be recognized, processed, and acted upon. Due to the
translation of peripheral cognition, however, these diverse forms of existence are rep-

6 Let us assume, for example, that language in central cognition is coded homogeneously in ASCII
(American Standard Code for Information Interchange). Externally the signs of language may be rep-
resented acoustically as spoken language, or visually as hand-written, printed, or signed language. In
sign production (speaker mode), the agent must select a modality in which to realize a word; thus the
single ASCII coding of the word is translated by peripheral cognition into one of practically infinitely
many different modality-dependent realizations based on visual, acoustic, or tactile representations.
In sign recognition (hearer mode), the many possible modality-dependent representations of the word
as bitmap outlines, sound waves, or raised dots (Braille) are translated by peripheral cognition back
into an equivalent single ASCII coding.

2.3 Alternative Ontologies for Referring with Language 25

resented in the form of a homogenous coding inside the cognitive agent – inasmuch
as they have been perceived at all.

In any modality, we must distinguish between immediate recognition and action and
mediated recognition and action. The latter is related to the frequently used notion of
the medium or the media, for example, print or television. Basically, different me-
dia are different substances for the mediated storing and reactivating of content. For
example, we can see and hear an oncoming train immediately in reality, or we can
see and hear a mediated image in a cinema, whereby the event has been stored and
reactivated in the medium of film. In both cases the recognition is here multimodal.

While the notion of modality refers to the input/output devices of the cognitive
agent, the choice of a medium refers to a means of agent-external storage (cf. Meyer-
Wegener 2003). The notions of medium and modality are related, however, because
each medium, e.g., print, is designed for a certain modality, e.g., vision, or modalities.

2.3 Alternative Ontologies for Referring with Language

Relating language expressions to the intended objects or events in the world is called
reference. The agent-oriented approach of Database Semantics reconstructs reference
as a cognitive procedure in the agent’s head. In addition to the external interfaces at
the levels of language and context, this requires the definition of (i) a data structure
for representing content inside the agent and (ii) an algorithm for reading content into
and out of the agent’s database.

The sign-oriented approach of Truth-Conditional Semantics, in contrast, treats ref-
erence as an external relation between “language and the world,” whereby the latter is
defined as a set-theoretical model. The reference relation is established by means of
definitions formulated in a metalanguage. The metalanguage, the definitions relating
language to the model, and the model itself are all constructed by the logicians.

The different ontologies underlying the sign-oriented approach of Truth-Conditional
Semantics and the agent-oriented approach of Database Semantics may be compared
schematically as follows:

2.3.1 REFERENCE IN ALTERNATIVE ONTOLOGIES

Julia sleeps

Database Semantics

external reality

cognitive

agent

Truth Conditional Semantics

set theoretical model

oo
o o

o

sleep(Julia)

26 2. Interfaces and Components

In Truth-Conditional Semantics, the sentence at the language level is formalized as
sleep(Julia), indicating that sleep is a functor denoting a set while Julia is an argu-
ment denoting an element. The metalanguage-defined relation between the language
expressions and their set-theoretic denotations is indicated by the dotted lines. The ap-
proach is sign-oriented insofar as there is no agent and consequently there are no exter-
nal interfaces. Thus there is neither a need nor a place for an agent-internal database,
or an algorithm for reading content into and out of the agent’s database. Also, there is
no distinction between the speaker and the hearer mode.

In Database Semantics, the example shows an agent in the hearer mode.7 The agent
relates the sentence Julia sleeps to the referent provided by contextual recognition.
The agent, the language expression, and the referent with its property of sleeping are
all part of the real world. The real world is treated as given and there is no attempt to
model it set-theoretically or in any other way. Instead, the goal of Database Semantics
is to model the agent. This includes the agent’s recognition of the real world at the
language and the context level, as well as the agent’s actions – externally relative to
the real world, but also internally in the form of such procedures as free association,
inference, derivation of plans, wishes, etc.

2.4 Theory of Language and Theory of Grammar

Database Semantics establishes the relation of reference between the language expres-
sions and the referents procedurally rather than metalanguage-based.8 As a first step
towards a procedural reconstruction of reference, let us transfer the distinction be-
tween the levels of language and world, familiar from Truth-Conditional Semantics,
into the head of the cognitive agent. Thereby, the “world” changes into an agent-
internal representation of episodic and absolute knowledge, called the context.

2.4.1 STRUCTURING CENTRAL COGNITION IN AGENTS WITH LANGUAGE

peripheral cognition

central cognition

sign recognition
sign synthesis

context action
contex recognition

language component

context component

pragmatics

Cognitive Agent

External Reality

theory of grammar

theory of language

2.5 Immediate Reference and Mediated Reference 27

Compared with 2.1.3, central cognition has a more differentiated structure: There is
a distinction between the language and the context component, and the connection
between the two is provided by the operations of language pragmatics.9

Pragmatics in general is defined as the theory of use. Examples of pragmatic tasks
are the use of a screwdriver to fasten a screw, the use of one’s legs to go from a to
b, the nightly scavenging of food from the refrigerator to fix a sandwich and satisfy
one’s hunger, or the request that someone else fix and serve the sandwich.

Depending on whether or not an act is performed by means of language signs, we
speak of language or of context pragmatics. Language pragmatics must be analyzed
as a phylogenetical and ontogenetical specialization of context pragmatics, just as
language recognition and synthesis are analyzed as phylogenetical and ontogenetical
specializations of contextual recognition and action, respectively.

The context component has long been neglected in linguistics, even though it is
functionally essential for modeling natural language communication. Without a con-
text component, the artificial cognitive agent cannot report to us what it perceives
(contextual recognition), and cannot do what we tell it to do (contextual action).

The language component is traditionally described by the theory of grammar, and
includes the subcomponents of the morphology, the lexicon, the syntax, and the se-
mantics. For the purposes of Database Semantics, the language component must not
merely analyze the signs as isolated objects, but must provide declarative specifica-
tions of the computational procedures which map meanings into surfaces (speaker
mode) and surfaces into meanings (hearer mode).

The language component, the context component, and the language pragmatics
combine into the theory of language. For the purposes of Database Semantics, the
theory of language must model reference with language to external objects, in the
speaker as well as the hearer mode. Furthermore, it must provide a natural method
of conceptualization, i.e., the speaker’s choice of what to say and how to say it, as
well as for handling nonliteral language use in the speaker and the hearer mode (cf.
Sects. 5.4 and 5.5).

2.5 Immediate Reference and Mediated Reference

From an ontogenetical and phylogentical point of view, the most basic form of ref-
erence is immediate reference. It consists in referring with language to objects in the
immediate task environment of the communicating agents, for example, to the book

7 The different constellations of recognition and action at the language and the context level are cate-
gorized as the 10 SLIM states of cognition (cf. FoCL’99, Sect. 23.5).

8 In order to utilize metalanguage definitions computationally, they must be reconstructed procedurally.
Most existing metalanguage-based systems, for example, modal logic, are unsuitable for a procedural
reconstruction. See FoCL’99, Sect. 19.4.

9 Thus, one of the functions of pragmatics in Database Semantics is to perform the role of the meta-
language in Truth-Conditional Semantics, namely to establish the connection between “language and
the world,” here the agent-internal levels of language and context.

28 2. Interfaces and Components

in front of them. Thereby, the agents’ external interfaces are involved at the language
as well as the context level (as in 2.4.1).

In addition, there is also the referring with language to referents which are not in the
immediate task environment, but that exist solely in the databases of the communicat-
ing agents, for example, the historical figure of Aristotle. In this mediated reference,
only the external interfaces of the language level, but not of the context level, are
involved:10

2.5.1 USE OF EXTERNAL INTERFACES IN MEDIATED REFERENCE

sign recognition
sign synthesis

context component

language component

pragmatics

Even though immediate reference is phylogenetically and ontogenetically primary, it
is a special case of mediated reference from a theoretical point of view. This is because
the cognitive procedures of mediated reference are used also by immediate reference.
In other words, the functional difference between immediate and mediated reference
consists in that immediate reference requires the additional external interfaces of the
context level.

Cognitive agents without contextual interfaces but with language (and thus limited
to mediated reference) are interesting for the following reasons. First, the contextual
recognition and action capabilities of today’s robots are still far removed from those
of a squirrel, for example. Recognition and action at the language level, in contrast,
can always be managed without principled loss of function by using the keyboard and
the screen of today’s standard computers. Thus, if we want to model natural language
communication with today’s technologies, i.e., without suitable robots, we must make
due with cognitive agents which lack contextual interfaces and are therefore incapable
of immediate reference.

Second, there are many tasks for which agents without contextual interfaces but
with language are sufficient. In research, this applies to the modeling of cognitive
operations which are based on stored data alone. In practice, it applies to such appli-
cations as the natural language interaction with databases and the Internet, involving
the reading in of new content and the answering of queries.
10 For further discussion of immediate and mediated reference see FoCL’99, Sect. 4.3.

2.6 The SLIM Theory of Language 29

In the long run, however, an absence of external interfaces at the context level (with
the associated capabilities of recognition and action) has the following disadvantages:

2.5.2 DISADVANTAGES OF NOT HAVING CONTEXTUAL INTERFACES

1. The conceptual core of language meanings remains undefined.
Most basic concepts originate in agents without language as recognition and ac-
tion procedures of their contextual interfaces, and are reused as the core of lan-
guage meanings in agents with language.11 Therefore, agents with language but
without contextual interfaces use meanings which are void of a conceptual core –
though the relations between the concepts, represented by placeholder words, may
still be defined, both absolutely (for example, in the is-a or is-part-of hierarchies)
and episodically.

2. The coherence or incoherence of content cannot be judged autonomously.
The coherence of stored content originates in the coherence of the external
world.12 Therefore, only agents with contextual interfaces are able to relate con-
tent “imported” by means of language to the data of their own experience. An
agent without contextual interfaces, in contrast, has nothing but imported data –
which is why the responsibility for their coherence lies solely with the users who
store the data in the agent.

Due to the absence of suitable robots, the software development of Database Se-
mantics is currently limited to standard computers. As soon the technologies needed
for contextual interfaces become available, however, the theoretical framework of
Database Semantics will be ready for the extension. The reason for this is – roughly
speaking – that immediate reference is a special case of mediated reference.

Thus, all the components developed for the version without contextual interfaces
will be suitable to serve in the extended system as well. This holds, for example, for
the components of the lexicon, the automatic word-form recognition and production,
the syntactic–semantic and semantic–syntactic parsers, and the pragmatic inferences
in the speaker and the hearer mode.

2.6 The SLIM Theory of Language

The theory of language which Database Semantics is based on is called SLIM. In
contrast to other theories of language such as Structuralism, Behaviorism, Nativism,
Model Theory, or Speech Act Theory, SLIM has been designed from the outset to
explain the understanding and purposeful production of signs in terms of completely
explicit, mechanical (i.e., logically electronic) procedures.

11 Cf. FoCL’99, Sect. 22.1.
12 Ibid, Sect. 24.1.

30 2. Interfaces and Components

The letters of the acronym SLIM have the following interpretation:

S = Surface Compositionality (methodological principle, cf. 1.6.1):
Syntactic–semantic composition assembles only concrete word forms, ex-
cluding the use of zero-elements, identity mappings, or transformations.

L = time-Linearity (empirical principle, cf. 1.6.5):
Interpretation and production of utterances are based on a strictly time-linear
derivation order.

I = Internal (ontological principle, cf. 2.3.1):
Interpretation and production of utterances are analyzed as cognitive proce-
dures located inside the speaker–hearer.

M = Matching (functional principle, cf. 3.2.3):
Referring with language to past, current, or future objects and events is
modeled in terms of pattern matching between language meanings and a con-
text.

SLIM models communication based on the Seven Principles of Pragmatics.

2.6.1 FIRST PRINCIPLE OF PRAGMATICS (POP-1)

The speaker’s utterance meaning2 is the use of the sign’s literal meaning1

relative to an internal context.

Meaning1 is the literal meaning of the sign; meaning2 is the speaker meaning of an
utterance in which the sign’s meaning1 is used. Even in the hearer mode, meaning2 is
called the “speaker meaning” because communication is successful only if the hearer
uses the sign’s meaning1 to refer to the same objects or events as the speaker.

A sign can only be used successfully if the context of interpretation has been deter-
mined (and delimited) correctly. Finding the context is based on the sign’s STAR:

S = space (location where the sign has been uttered)
T = time (time when the sign has been uttered)
A = author (agent who produced the sign)
R = recipient (agent intended to receive the sign)

The role of the STAR is described by the Second Principle of Pragmatics:

2.6.2 SECOND PRINCIPLE OF PRAGMATICS (POP-2)

A sign’s STAR determines the entry context of production and interpretation
in the contextual databases of the speaker and the hearer.

Once the initial context of interpretation has been found, based on the STAR, other
contexts may be accessed according to the Third Principle of Pragmatics:

2.6 The SLIM Theory of Language 31

2.6.3 THIRD PRINCIPLE OF PRAGMATICS (POP-3)

The matching of signs with their respective subcontexts is incremental, whereby
in production the elementary signs follow the time-linear order of the under-
lying thought path, while in interpretation the thought path follows the time-
linear order of the incoming elementary signs.

In natural language communication, PoP-3 presupposes PoP-2. The first step in the
production or interpretation of a natural language sign is to determine the entry context
as precisely as possible (PoP-2). Then the complex sign is matched word form by word
form with a sequence of referents at the level of context (PoP-3).13

Next, the meaning1 and the associated reference mechanisms of the three basic
kinds of signs, namely symbol, indexical, and name, are defined. The literal meaning1

of a symbol is a concept type (as illustrated by the analysis of the word square in Sect.
4.2).

2.6.4 FOURTH PRINCIPLE OF PRAGMATICS (POP-4)

The reference mechanism of a symbol is based on a meaning1 which is defined
as a concept type. Symbols refer from their place in a positioned sentence by
matching their meaning1 with corresponding concept tokens at the context
level.

The reference mechanism of symbols is called iconic because the functioning of sym-
bols and icons is similar: Both can be used to refer spontaneously to new objects of
a known kind. The difference resides in the relation between the meaning1 and the
surface, which is arbitrary in the case of symbols, but motivated in the case of icons.

The literal meaning1 of an indexical is defined as a pointer. Examples of indexicals
are the words here, now, I, you, and this.

2.6.5 FIFTH PRINCIPLE OF PRAGMATICS (POP-5)

The reference mechanism of an indexical is based on a meaning1 which is
defined as one of two characteristic pointers. The first points into the agent’s
context and is called the context pointer or C. The second points at the agent
and is called the agent pointer or A.

The two kinds of pointers are illustrated by the following examples:

13 The time-linear derivation order in the speaker and the hearer mode is strongly supported by exper-
imental results in cognitive psychology, especially regarding the interpretation of spoken language.
For example, Sedivy, Tanenhaus, et al., (1999, p. 127) present “compelling evidence for a processing
model in which linguistic expressions are undergoing continuous, moment-by-moment semantic in-
terpretation, with immediate mapping onto the a referential model.” Similarly, Eberhard, et al., (1995,
p. 422) report that subjects incrementally “interpreted each word of the spoken input with respect to
the visual discourse model and established reference as soon as distinguishing information was re-
ceived.” See also Spivey et al. (2002) in a similar vein.

32 2. Interfaces and Components

2.6.6 INDEXICALS AS NOUNS AND ADJECTIVES WITH A AND C POINTERS

noun A noun C adj A adj C

I, we you here there
he, she, it now then
this, they

Indexicals sharing the same pointer may differ in terms of additional symbolic-
grammatical distinctions. For example, the context pointer of the word this is restricted
to single, nonanimate referential objects, while the word they is restricted to a plurality
of referential objects which may be animate or inanimate. Similarly, you is restricted
to referential objects of any number and gender which are potential partners of com-
munication, while he is restricted to a single referential object of male gender which
currently is not regarded as a partner of communication.

In names like John or R2D2, the role of the literal meaning1 is taken up by private
identity markers. They originate at the level of context in order to indicate that differ-
ent appearances of a referential object are recognized as being the same individual.

In cognitive agents with language, (copies of) the private markers are reused by at-
taching them to public surfaces in an act of naming. Thereafter, reference with a name
uses the public surface to call up each agent’s private marker to match the correspond-
ing marker in each agent’s cognitive representation of the referential object.

2.6.7 SIXTH PRINCIPLE OF PRAGMATICS (POP-6)

The reference mechanism of a name is based on a private marker which
matches a corresponding marker contained in the cognitive representation of
the object referred to.

Acts of naming may be explicit, as in a ceremony of baptism, or implicit, as in the
following example: Agent A observes an unfamiliar dog running around, appearing
and disappearing in the bushes. For continuity, the private identity marker $#%& is
inserted into the cognitive structures representing the different appearances of the dog
in A’s context, indicating that they represent the same individual. Later, the owner
calls the dog by its name Fido. Agent A adopts the name by attaching $#%& to the
public surface Fido. Henceforth, the name Fido refers for A to the dog in question
by matching the private marker attached to the name with the corresponding marker
inserted into (the cognitive representations of) the referent.

The distinction between the different kinds of signs, i.e., symbol, indexical, and
name, is orthogonal to the distinction between the main parts of speech, i.e., verb,
adjective, and noun. For example, an adjective (part of speech) can occur as a symbol
or an indexical (kind of sign) – but not as a name.

This independence is functionally motivated: The part of speech controls the com-
binatorics of a word in a sentence (horizontal relations), while the kind of sign de-
termines the reference mechanism which relates the word meanings to the context

2.6 The SLIM Theory of Language 33

(vertical relations, cf. 3.2.4). The correlation between the kinds of signs and the parts
of speech is described by the Seventh Principle of Pragmatics:

2.6.8 SEVENTH PRINCIPLE OF PRAGMATICS (POP-7)

Symbols occur as verbs, adjectives, and nouns. Indexicals occur as adjectives
and nouns. Names occur only as nouns.

This means conversely that nouns occur as symbols, indexicals, and names; adjectives
occur as symbols and indexicals; and verbs occur only as symbols.14

As an illustration, consider the following example:

2.6.9 RELATION BETWEEN THE KINDS OF SIGN AND THE PARTS OF SPEECH

seeblack

here

Fido

this

dog

noun verb

symbol

indexical

name

adj.

The kind of sign that is the most general with respect to the parts of speech is the
symbol, while the name is the most restricted. Conversely, the part of speech that is
the most general with respect to different kinds of sign is the noun (object, argument),
while the verb (relation, functor) is the most restricted.

The different parts of speech combine into propositions, regardless of the kind
of sign used. For example, the following two sentences combine the same parts of
speech, but use different kinds of signs:

2.6.10 CORRELATION OF PART OF SPEECH AND KIND OF SIGN IN SENTENCES

noun verb adjective
name John
symbol slept
symbol in the kitchen

indexical he
symbol slept
indexical there

The Seven Principles of Pragmatics are not merely of academic interest, but have
far-reaching implications for the practical implementation and the basic functioning
14 This applies to the semantic core, and is not in conflict with the fact that verbs in English, German,

and other European languages integrate a strongly indexical component, namely the tense system –
which is absent in Chinese, for example.

34 2. Interfaces and Components

of the system in communication. PoP-1 allows to separate the literal meaning1 of the
sign type from the meaning2 aspects of using tokens of the sign in an utterance –
which is a precondition for a systematic syntactic–semantic analysis in accordance
with surface compositionality. PoP-2 provides the point of reference for the spatio-
temporal interpretation of indexicals, and is thus a precondition for finding the correct
context of use. PoP-3 establishes a uniform mechanism of interpretation which works
in the speaker and the hearer mode. PoP-4, PoP-5, and PoP-6 explain for each kind
of sign how it relates to the intended referent in the context of interpretation. PoP-7
specifies which of the three mechanisms of reference must be implemented for which
of the three parts of speech.

Based on the Seven Principles of Pragmatics, the SLIM theory of language models
the natural communication mechanism at a level of abstraction where the meaningful
use of language (i) between a human and a human, and (ii) between a human and a
suitably constructed cognitive machine function in the same way – just as a sparrow
and a jumbo jet are based on the same aerodynamic principles for being airborne (cf.
FoCL’99, pp. 4 ff.).

Database Semantics was developed as the technical realization of SLIM in the form
of a running software program. The construction of the intuitive SLIM theory evolved
in parallel with the technical means required for Database Semantics, in particular
the algorithm of LA-grammar in CoL’89 and the data structure of a Word Bank in
FoCL’99 (see also TCS’92 and AIJ’01).

3. Data Structure and Algorithm

While the external interfaces of an agent as well as their input and output can be
observed directly (cf. 1.4.3), the data structure and the algorithm must be inferred from
their functions in natural cognition. In the case of natural language communication,
the algorithm must (i) map the input provided by the sign recognition component into
a format suitable for storage in the agent’s database (hearer mode), (ii) selectively
activate and modify content in the database (think mode), and (iii) provide the sign
synthesis component with suitably formatted content to be read out of the database in
the form of natural language surfaces (speaker mode).

In Database Semantics, these functions are performed by the algorithm of time-
linear LA-grammar, used in three variants called LA-hear, LA-think, and LA-speak.
The data structure supporting the algorithm is a classic network database (cf. Elmasri
and Navathe 1989), called Word Bank; it stores flat (nonrecursive) feature structures,
called proplets, which are structurally equivalent to the records of classic databases.

3.1 Proplets for Coding Propositional Content

A feature structure is defined as a set of features. The features are defined as attribute–
value pairs (avp).1 In proplets, the attributes are displayed in a predefined standard
order (for better readability and improved computational efficiency). The values of
proplet attributes are restricted to lists which consist of one or more atomic items; the
embedding of feature structures as attribute values is not allowed.2

For example, the propositional content of an agent perceiving a barking dog (recog-
nition) and running away (action) is represented as the following set of proplets:

3.1.1 CONTEXT PROPLETS REPRESENTING dog barks. (I) run.
⎡
⎢⎣

sur:
noun: dog
fnc: bark
prn: 22

⎤
⎥⎦

⎡
⎢⎢⎣

sur:
verb: bark
arg: dog
nc: 23 run
prn: 22

⎤
⎥⎥⎦

⎡
⎢⎢⎣

sur:
verb: run
arg: moi
pc: 22 bark
prn: 23

⎤
⎥⎥⎦

1 This terminology follows general practice in computer science (e.g., Carpenter 1992). The ISO stan-
dard CD 2460-1 defines a feature structure as a set of feature–value pairs.

2 This is in contradistinction to the use of recursive feature structures within Nativism, for example, in
LFG (Bresnan 1982) , GPSG (Gazdar et al. 1985), or HPSG (Pollard and Sag 1994). See 3.4.5.

36 3. Data Structure and Algorithm

The semantic relations between these proplets are coded solely by means of nonre-
cursive features, i.e., attribute–value pairs which do not contain feature structures as
values. For example, the functor–argument relation between the argument dog and the
functor bark is coded by the attribute fnc (functor) of the dog proplet having the value
bark, and the attribute arg (argument) of the bark proplet having the value dog.

The proplets of a proposition are held together by a common proposition number.
For example, the first two proplets in 3.1.1, representing the proposition dog bark,
have the same prn value, namely 22. Different propositions may be concatenated by
means of the attributes nc (next conjunct) and pc (previous conjunct) contained in the
verb proplets (see bark and run). For unique identification of successor or predecessor
proplets, the nc and pc values are preceded by their prn value, for example, [nc: 23
run] or [pc: 22 bark].

The noncombinatorial semantic content of a proplet is coded as the value of its core
attribute. Possible core attributes are noun, verb, and adj. In accordance with PoP-7
(cf. 2.6.8), core attributes may take a concept (PoP-4, 2.6.4), a pointer (PoP-5, 2.6.5),
or a marker (PoP-6, 2.6.7) as their values. For example, the first proplet in 3.1.1 has
the core attribute noun with the concept dog as its core value.

Concepts originate as patterns for recognition and action in the agent’s peripheral
cognition. As values of the core attribute of proplets, concepts also provide the main
key for the storage and retrieval of context proplets in central cognition.

By embedding concepts as core values into proplets, the semantic relations between
concepts (i.e., their combinatorial aspects) are defined not directly on the concepts,
but in terms of the proplets containing them, as visualized by the dotted lines in the
following example:

3.1.2 CODING OF RELATIONS BETWEEN CONCEPTS VIA PROPLETS

sur: sur:

fnc: bark arg: dog

prn: 22
nc: 23 runprn: 22

context level: noun: verb:
sur:

prn: 23
pc: 22 bark
arg: moi
verb:dog bark run

This method of coding grammatical relations between proplets solely by means of
nonrecursive features (i.e., flat attribute–value pairs) is called bidirectional pointering.

3.2 Internal Matching between Language and Context Proplets

In order to ensure a proper functional interaction between the language and the context
level, the two levels must be structurally compatible. This is achieved by representing
content at the language level with proplets which resemble the context proplets except
that their sur (for surface) attribute must have a non-NIL value.

The sur value of a language proplet is a specialized, language-dependent concept
pattern for a word surface, for example, the German sound form Hund. A sequence of

3.2 Internal Matching between Language and Context Proplets 37

concatenated propositions coded with language proplets is illustrated in the following
variant of Example 3.1.1 using German surfaces:

3.2.1 LANGUAGE PROPLETS REPRESENTING dog barks. (I) run.

⎡
⎢⎣

sur: Hund
noun: dog
fnc: bark
prn: 122

⎤
⎥⎦

⎡
⎢⎢⎣

sur: bellt
verb: bark
arg: dog
nc: 123 run
prn: 122

⎤
⎥⎥⎦

⎡
⎢⎢⎣

sur: fliehe
verb: run
arg: moi
pc: 122 bark
prn: 123

⎤
⎥⎥⎦

While a context proplet has only one main key, namely the core value, a language pro-
plet has two, the surface and the core value. The sur value is used in the lexical lookup
of the hearer mode for retrieving a language proplet corresponding to a given surface.
The value of the core attribute is used in the lexical lookup of the speaker mode for
retrieving a language proplet corresponding to the value, e.g., a certain concept.

3.2.2 KEYS FOR LEXICAL LOOKUP IN THE SPEAKER AND THE HEARER MODE⎡
⎢⎣

sur: Hund
noun: dog
fnc:
prn

⎤
⎥⎦
← key for lexical lookup in the hearer mode
← key for lexical lookup in the speaker mode

The relation between the language and the context level, needed for reference, is
formally based on a matching between language proplets and context proplets. Such
a match is successful if the proplets involved fulfill the following conditions:3

3.2.3 CONDITIONS ON SUCCESSFUL MATCHING

1. Attribute condition
The matching between two proplets A and B requires that the intersection of their
attributes contains a predefined list of attributes regarded as relevant:

{list} ⊆ {{proplet A attributes} ∩ {proplet B attributes}}

2. Value condition
The matching between two proplets requires that the variables (and a fortiori the

constants) of their common attributes are compatible.4

These conditions apply also in the application of LA-grammar rules, which is based on
matching the proplet patterns of a rule with the proplet tokens of its input (cf. 3.4.3).

3 The matching condition 3.2.3 may be used for a computational realization of Frege’s relation be-
tween the sense and the referent (cf. 4.5.2), though in an ontologically different setting (cf. FoCL’99,
Sect. 20.4).

4 In order for language and context proplets to match, their prn values need not agree. Their purpose
is to hold the proplets of a proposition “horizontally” together by means of a common proposition
number. For example, in 3.2.4 the prn values at the language level are 122/123, but 22/23 at the
context level.

38 3. Data Structure and Algorithm

For simplicity, matching language and context proplets in the following examples
have the same set of attributes.

In the matching between the language and the context component, the speaker mode
and the hearer mode must be distinguished. In the speaker mode (mapping contextual
content into language), context proplets are matched by compatible language pro-
plets and their language-specific surfaces are uttered. In the hearer mode (embedding
language-coded content into the context), language proplets are matched with com-
patible context proplets, which are then stored in the context.

Even though the (vertical) matching takes place between individual proplets, the
(horizontal) semantic relations holding between the proplets at each of the two levels
are taken into account as well. As an example, consider the matching between the
context proplets of 3.1.1 and the language proplets of 3.2.1:

3.2.4 IMPACT OF INTERPROPLET RELATIONS ON MATCHING

sur: bellt

arg: dog

prn: 122
nc: 123 run

sur: fliehe

prn: 123
pc: 122 bark
arg: moi

sur: sur:

fnc: bark arg: dog

sur:

prn: 22 prn: 23
nc: 23 run pc: 22 barkprn: 22

arg: moi

language level:

context level:

(horizontal relations)

(horizontal relations)

matchinginternal (vertical relations)

sur: Hund

fnc: bark
prn: 122

noun:
verb: verb:

noun: verb:

dog
bark run

dog bark runverb:

The automatic extension of vertical matching between individual proplets (reference)
to their horizontal grammatical relations is best illustrated by a matching failure. As-
sume, for example, that the noun proplet dog at the language level has the fnc value
bark, while the corresponding proplet at the context level had the fnc value sleep. In
this case, the two proplets would be vertically incompatible – due to their horizontal
relations to different verbs, coded as different values of their respective fnc attributes.

3.3 Storage of Proplets in a Word Bank

By coding the relations within propositions (intrapropositional relations) and between
propositions (extrapropositional relations) solely by means of features, the proplets of
the language and the context level are autonomous items which can be represented
and stored independently of any restrictions imposed by two-dimensional space (as in
trees). In other words, the constellation of proplets is completely free, and the principle
for their storage can be chosen according to the needs of one’s database.

In Database Semantics, proplets are stored in token lines. A token line is a sequence
of proplets with the same core value. A collection of token lines is called a Word Bank.

3.3 Storage of Proplets in a Word Bank 39

A Word Bank has the structure of a classical network databank: Each token line begins
with an “owner record,” followed by an arbitrary number of “member records.”

Consider the Word Bank of a cognitive agent with language which contains the
context and language proplets defined in the previous examples 3.1.1 and 3.2.1:

3.3.1 DATA STRUCTURE OF A WORD BANK

prn: 22

sur:
verb: bark
arg: dog

context
action

prn: 123
pc: 22 bark
prn: 23

arg: moi
verb: run
sur:

verb: run
arg: moi
pc: 122 bark

language
action

fliehesur: fliehe

recognition
context

recognition
language

verb: bark
arg: dog

sur: bellt bellt

prn: 122

sur: Hund
noun: dog

Hund

prn: 22
nc: 23 run
fnc: bark
noun: dog
sur:

fnc: bark
nc: 123 bark
prn: 122

bark

dog

run in
te

rn
al

 m
at

ch
in

g
fr

on
ti

er

For easier presentation of the token lines, the context and language “levels” have been
rotated by 90 degrees such that the internal matching frontier between context and
language proplets is vertical rather than horizontal (cf. double arrows). Thus, the area
on the left of the Word Bank contains the context proplets, while the area on the right
contains the language proplets. (Note that the notions of “horizontal” and “vertical”
relations continue to be used in the sense of the intuitive representation of 3.2.4.)

In the Word Bank example 3.3.1, three token lines are shown. When viewed from
the left, each token line begins with a concept, here bark, dog, and run, followed by
an arbitrary number of context proplets (indicated by dots). When viewed from the
right, each token line begins with a language-dependent surface, here bellt, Hund and
fliehe, followed by an arbitrary number of language proplets (also indicated by dots).

A Word Bank is connected to the world via the agent’s recognition and action in-
terfaces at the language and the context side. Therefore, artificial cognitive agents
containing a Word Bank satisfy the Interface Equivalence Principle (cf. Sect. 1.5, 4)
at the highest level of abstraction (i.e., independently of the different modalities). By
folding the schema 3.3.1 along its horizontal middle, the input and the output devices
are oriented in the same direction, enabling hand–eye coordination, for example.

40 3. Data Structure and Algorithm

3.4 Time-Linear Algorithm of LA-Grammar

Next we return to the Principle of Input/Output Equivalence (cf. Sect. 1.5, 5). It applies
to the algorithm operating on the data structure. What it means for an artificial agent
to (i) take the same input and produce the same output as the natural original, (ii)
disassemble input and output in the same way into parts, and (iii) order the parts in
the same way during intake and discharge is especially clear in the case of language:

3.4.1 APPLYING THE INPUT/OUTPUT EQUIVALENCE PRINCIPLE TO LANGUAGE

1. Input and output at the language level are signs of natural language, such as
phrases, sentences, or texts.

2. The parts into which the signs of natural language disassemble during intake and
discharge are word forms.

3. The order of the parts during intake and discharge is time-linear.

The algorithm of LA-grammar (LAG) models time-linearity by taking a sequence
of word forms, e.g., a b c d e ..., as input, and by combining what has been analyzed
so far, called sentence start, with the current next word into a new sentence start, i.e.,
a and b into (a b), (a b) and c into ((a b) c), ((a b) c) and d into (((a b) c) d), etc. This
kind of combination is called left-associative – which gives LAG its name.

The following example shows the LA-grammatical derivation of the sentence Julia
knows John in the hearer mode of Database Semantics:

3.4.2 TIME-LINEAR DERIVATION (PRINCIPLE OF POSSIBLE CONTINUATIONS)

lexical lookup

syntactic semantic parsing:

1

2

arg:

prn:
mdr:mdr:

fnc:

prn:
mdr:
arg:

result of syntactic semantic parsing:

mdr:mdr: mdr:

mdr:mdr:
prn: 22 prn: 22

prn: 22 prn: 22 prn: 22

prn: 22

Julia knows John

fnc:
mdr:
prn:

fnc:
mdr:
prn:

fnc:
mdr:
prn:

noun: Julia noun: John

noun: Julia verb: know

verb: know

noun: Julia
fnc: know arg: Julia

noun: John

noun: Julia

verb: know

fnc: know
verb: know
arg: Julia John

noun: John
fnc: know

3.4 Time-Linear Algorithm of LA-Grammar 41

Incremental lexical lookup replaces the incoming surfaces Julia, knows, and John with
“isolated” proplets, most attributes of which have no value yet. Incremental syntactic–
semantic parsing turns these proplets into “connected” proplets by means of copying
values between the proplets (indicated by the arrows). The final result is a set of
autonomous proplets, held together by a common proposition number (here [prn: 22]).
They are ready to be sorted automatically into the Word Bank.

This analysis is input-equivalent with a natural hearer insofar as it takes a time-
linear sequence of unanalyzed surfaces as input and reconstructs the functor–argument
structure by means of lexical lookup and syntactic–semantic parsing. The derivation
is based on the rules of an LA-grammar which is called LA-hear. The following
example shows the rule application of the first composition (explanations in italics).
Complete LA-hear grammars are defined in 3.6.2, 11.4.1, 13.2.4, and 15.6.2:

3.4.3 EXAMPLE OF AN LA-hear RULE APPLICATION

rule name ss-pattern nw-pattern operations rule package

rule level NOM+FV:

[
noun: α
fnc:

] [
verb: β
arg:

]
copy α nw.arg
copy β ss.fnc {FV+OBJ, ...}

proplet level

⎡
⎢⎣

noun: Julia
fnc:
mdr:
prn: 22

⎤
⎥⎦
⎡
⎢⎣

verb: know
arg:
mdr:
prn:

⎤
⎥⎦

The rule level consists of (i) a rule name, (ii) a pattern for the sentence start, (iii) a
pattern for the next word, (iv) a set of operations, and (v) a rule package. The rule
patterns are matched with the proplets at the proplet level, whereby the conditions5 of
3.2.3 apply. During matching, the variables of the rule level are vertically6 bound to
corresponding values at the proplet level. This is the basis for executing the rule level
operations at the proplet level. The output is as follows:

3.4.4 RESULT OF THE LA-hear RULE APPLICATION⎡
⎢⎣

noun: Julia
fnc: know
mdr:
prn: 22

⎤
⎥⎦

⎡
⎢⎣

verb: know
arg: Julia
mdr:
prn: 22

⎤
⎥⎦

In the next time-linear combination, the current result serves as the sentence start,
while lexical lookup provides the proplet John as the next word (cf. 3.4.2, line 2).

The substitution-based algorithm of Phrase Structure Grammar (PSG), in contrast,
is not time-linear, as illustrated by the following derivation of the same example:

5 In rule applications, the attribute condition is simplified and merely requires that the attributes of the
pattern must be a subset of the attributes of the matching proplet.

6 The vertical variable binding of Database Semantics is based on matching between the grammar and
the proplet level, in contrast to the horizontal variable binding based on quantifiers, as in Predicate
Calculus (cf. Sects. 5.3 and 6.2).

42 3. Data Structure and Algorithm

3.4.5 NON-TIME-LINEAR DERIVATION (PRINCIPLE OF POSS. SUBSTITUTIONS)

S

NP VP

NPV
derivation
structure
phrase

lexical lookup

unification

tense: pres
subj:
obj:

Julia knows John

tense: pres
subj:
obj:

tense: pres

obj:

subj:

noun: Julia

gen: fem

verb: know noun: John

gen: masc

verb: know

noun: John

gen: masc

verb: know

noun: Julia

gen: fem

noun: John

gen: masc

num: sg num: sg

num: sg

num: sg

num: sg

result

This PSG analysis begins with the start symbol S, from which the phrase structure
tree is derived by substituting NP and VP for S, etc., until the terminal nodes Julia,
knows, and John are reached (phrase structure derivation). Next the terminal nodes
are replaced by feature structures via lexical lookup. Finally, the lexical feature struc-
tures are unified (indicated by the dotted arrows), resulting in one big recursive feature
structure (result). The order of unification mirrors the derivation of the PS tree.7 Be-
cause the PSG derivation does not analyze the sentence word by word starting at the
beginning, it violates the Principle of Input/Output Equivalence (cf. Sect. 1.5, 4).

As a sign-oriented approach, PSG also violates the Principle of Interface Equiva-
lence (cf. Sect. 1.5, 5) in that the declarative specification of its rules and derivations
does not provide any relation to the recognition and action components of the cogni-
tive agent: All PS trees are derived from the same start symbol S via different substi-
tutions.8 Because the feature structure resulting from unification directly mirrors the

7 The sample derivation is generalized insofar as it emphasizes what is common to the different variants
of Nativism, such as GPSG, HPSG, LFG, and (somewhat more obscurely) GB.

8 Because of the principle of possible substitution in combination with missing external interfaces,
PSG-based parsers require a sizeable work-around based on often huge intermediate structures, called
charts, tables, or state-sets. Accordingly, in comparison with LA-parsers, PSG-parsers are inefficient.

3.5 Cycle of Natural Language Communication 43

structure of the PS tree, the recursive embedding of subfeature structures is essential.
For the same reason, only isolated sentences can be represented in PSG.

In LAG, in contrast, each rule has an interface to the external data. It consists in the
rule patterns which input proplets are matched with (cf. 3.4.3). Furthermore, repre-
senting a sentence analysis as a set of autonomous proplets is the precondition for the
storage in, and retrieval from, a Word Bank. This storage and retrieval, in turn, is the
precondition for the time-linear functioning of the hearer mode and the speaker mode.
Proplets permit not only intrapropositional concatenation for representing functor–
argument structure, coordination, and coreference, but also the corresponding ex-
trapropositional concatenation between propositions, as in a text of arbitrary length.

3.5 Cycle of Natural Language Communication

In a normal conversation between two agents A and B, A talks and B listens, then B
talks and A listens, and so on. This cycle of natural language communication requires
that A and B are capable of switching between the speaker and the hearer mode (turn-
taking, cf. 1.1.1). Database Semantics models the cycle of natural language communi-
cation by realizing the external interfaces of language recognition (hearer mode) and
language action (speaker mode) as variants of LA-grammar. These external interfaces,
called LA-hear and LA-speak, are firmly attached to the agent’s Word Bank.

A third variant of LA-grammar, called LA-think, is located in the context section of
the agent’s Word Bank and has the task of moving a unique focus point through the
data in order to selectively activate content. Thereby, the semantic relations between
proplets are used as a kind of railroad system and LA-think as a kind of locomotive
which moves the focus point along the rails (autonomous navigation).

The rules of LA-think resemble those of LA-hear (cf. 3.4.3). The function of the
LA-think rules, however, is to power the navigation by retrieving a successor proplet
for any given proplet in the Word Bank. The following example shows the application
of an LA-think rule to the know proplet of the proposition derived in 3.4.2 (explana-
tions in italics). Complete LA-think grammars are defined in 3.6.7, 10.6.1, 12.1.1, and
14.1.1:

3.5.1 EXAMPLE OF AN LA-think RULE APPLICATION

rule name ss-pattern nw-pattern operations rule package

rule level V_N_V:

[
verb: β
arg: X α Y
prn: k

] [
noun: α
fnc: β
prn: k

]
output position ss
mark α ss {V_N_V, ...}

proplet level

⎡
⎢⎣

verb: know
arg: Julia John
mdr:
prn: 22

⎤
⎥⎦

Cf. FoCL, Part II.

44 3. Data Structure and Algorithm

The ss-pattern of the rule matches an activated proplet in the Word Bank, vertically
binding the variable β to the value know, α to Julia or John, and k to 22. Assuming
that α has been bound to Julia, the rule retrieves (activates) the Julia proplet using the
prn value 22, and returns to the verb proplet (operation output position ss). In order
to prevent repeated traversal of the same proplet (relapse, see tracking principles,
FoCL’99, p. 454), the arg value currently retrieved is marked with “!”:

3.5.2 RESULT OF THE LA-think RULE APPLICATION⎡
⎢⎣

verb: know
arg: !Julia John
mdr:
prn: 22

⎤
⎥⎦

⎡
⎢⎣

noun: Julia
fnc: know
mdr:
prn: 22

⎤
⎥⎦

Next, the rule V_N_V can apply again (see rule package in 3.5.1), this time activating
the proplet John.

Given that any proplet in the Word Bank usually provides more than one possible
successor,9 LA-think must make choices. The most basic solutions are either random
selection or fixed selection according to some predefined schema. For rational behav-
ior, including meaningful natural language communication, however, the LA-think
grammar must be refined into a control structure which intelligently chooses between
continuation alternatives based on the evaluation of external and internal stimuli, the
frequency of previous traversals, learned procedures, theme/rheme structure, etc.10

For present purposes we assume the fixed schemata of a standard navigation, starting
with the verb (functor, relation) and continuing with the nouns (arguments, objects)
in the order given in the arg slot of the verb. Such a navigation may be represented
schematically as VNN, with V representing the verb proplet, the first N the subject,
and the second N the object (cf. Appendix A).

In principle, any such navigation through the Word Bank is independent of lan-
guage. However, in agents with language, the navigation serves as the speaker’s con-
ceptualization, i.e., as the speaker’s choice of what to say and how to say it.

A conceptualization defined as a time-linear navigation through content makes lan-
guage production relatively straightforward: If the speaker decides to communicate a
navigation to the hearer, the core values of the proplets traversed by the navigation are
translated into their language-dependent counterparts and realized as external signs.
In addition to this language-dependent lexicalization of the universal navigation, the
system must provide language-dependent

1. word order,
2. function word precipitation,11 and
3. word form selection for proper agreement.

9 For example, the know proplet provides two successors, namely Julia and John. If John were chosen
first (backward navigation), the resulting surface in English would be a passive (cf. Sect. 6.5).

10 To what degree such a control structure can eventually match human intelligence is another, contro-
versial question. For a combination of historical and recent discussions, see Shieber (2004).

3.5 Cycle of Natural Language Communication 45

This process is handled by language-dependent LA-speak grammars in combination
with language-dependent word form production. For example, the word form ate is
produced from an eat proplet, the sem attribute of which contains the value past.
Complete LA-speak grammars are defined in 12.4.1 and 14.2.1.

Language production based on LA-think and LA-speak may be presented in a sim-
plified format, illustrated below with the realization of Julia knows John. from a VNN
navigation. The derivation characterizes the incremental handling of word order and
function word precipitation, while morpho-syntactic details are omitted:

3.5.3 SCHEMATIC PRODUCTION OF Julia knows John.

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n n n fv n

V N N
i.4 fv p n n n fv n p

V N N

The letter “i” stands for the sentence number. The letters n, fv, and p are abstract
surfaces for name, finite verb, and punctuation (here full stop), respectively.

In line i.1, the derivation begins with a navigation from V to N, based on LA-think.
Also, the N proplet is realized as the n Julia by LA-speak. In line i.2, the V proplet is
realized as the fv knows by LA-speak. In line i.3, LA-think continues the navigation to
the second N proplet, which is realized as the n John by LA-speak. Finally, LA-speak
realizes the p . from the V proplet (line i.4). Thus, a VNN navigation is realized here
as a surface with the word order n fv n p.

This method of production can be used to realize not only a subject–verb–object sur-
face (SVO)12 as in the above example, but also an SOV and (trivially) a VSO surface
(cf. Appendix A). The word order and lexicalization of different natural languages are
handled by the rules of language-specific LA-speak grammars, whereby their design
is supported conceptually by abstract derivations like 3.5.3.

The operations of the three LA-grammars partially13 determine the possible states
of the artificial agent: When LA-hear is active, the agent is in the hearer mode; when
LA-think is active, the agent is in the think mode; when LA-think and LA-speak are
active, the agent is in the speaker mode.
11 Function word precipitation during production (e.g., 6.2.2) is the counterpart to function word ab-

sorption during interpretation (e.g., 6.2.1).
12 The SVO, SOV, VSO terminology follows Greenberg (1963).
13 Additional factors are possible input/output activities at the context level.

46 3. Data Structure and Algorithm

The interaction of the three variants of LA-grammar in the cycle of natural language
communication is summarized in the following schema:

3.5.4 THE CYCLE OF NATURAL LANGUAGE COMMUNICATION

sign

recognition

action

proplets proplets proplets proplets
languagecontextlanguagecontext

LA speak

LA hear

LA thinkLA think

hearer mode speaker mode

The schema shows two agents, one in the hearer mode and the other in the speaker
mode. Each agent contains its own Word Bank with a context and a language section
as well as external interfaces for recognition and action.

The agent in the speaker mode happens to use only the interface for language action,
i.e., LA-speak, while the agent in the hearer mode happens to use only the interface for
language recognition, i.e., LA-hear. In other words, the interaction between the two
agents happens to be an instance of mediated reference (no external interface activity
at the context level), corresponding to 2.5.1.

The sequencing of word forms during production originates in the time-linear nav-
igation through the set of context proplets in the speaker’s Word Bank, powered by
LA-think and indicated as a zig-zag line in the agent on the right. The context proplets
traversed are matched by corresponding language proplets, which serve as input to
LA-speak. The output of LA-speak is the external sign, i.e., a sequence of unanalyzed
surfaces, which serves as input to LA-hear. The proplets derived by LA-hear recon-
struct the speaker’s navigation, whereby the external order of the incoming proplets is
lost during their sorting into appropriate token lines. Communication is successful if
the content coded by the speaker is reconstructed equivalently by the hearer.

3.6 Bare Bone Example of Database Semantics: DBS-letter

The basic functioning of Database Semantics in a simple, but complete system is
illustrated below with the formal definition of DBS-letter. Having no linguistic moti-
vation, this example uses a suitable LA-hear grammar for the time-linear parsing of
letter sequences into sets of connected proplets, sorts them into a Word Bank, and
uses a suitable LA-think/LA-speak grammar for reading the sequences out again.

The input to DBS-letter are letters defined as proplets. Below, the letters of the
sample words LOVE, LOSS, and ALSO are lexically defined, in alphabetical order:

3.6 Bare Bone Example of Database Semantics: DBS-letter 47

3.6.1 ISOLATED PROPLETS REPRESENTING THE LETTERS A, E, L, O, S, V⎡
⎢⎣

lett: A
prev:
next:
wrd:

⎤
⎥⎦

⎡
⎢⎣

lett: E
prev:
next:
wrd:

⎤
⎥⎦

⎡
⎢⎣

lett: L
prev:
next:
wrd:

⎤
⎥⎦

⎡
⎢⎣

lett: O
prev:
next:
wrd:

⎤
⎥⎦

⎡
⎢⎣

lett: S
prev:
next:
wrd:

⎤
⎥⎦

⎡
⎢⎣

lett: V
prev:
next:
wrd:

⎤
⎥⎦

The core attribute of these proplets is lett, the continuation attributes are previous and
next, and the bookkeeping attribute is wrd (cf. 4.1.2).

The LA-hear grammar of DBS-letter is called LA-letter-IN. It copies the value of
the lett attribute of the current proplet into the prev slot of the next proplet, and the
value of the lett attribute of the next proplet into the next slot of the current proplet.

3.6.2 DEFINITION OF LA-letter-in FOR CONNECTING ISOLATED PROPLETS

ST_S = {(lett: α, {r-in})}

r-in:

[
lett: α
prev:
next:

] [
lett: β
prev:
next:

]
copy α nw.prev
copy β ss.next {r-in}

ST_F = {(lett: β, rpr−in) }

Like any LA-grammar, LA-letter-IN has a start state STS , a set of rules (here con-
taining only one), and a set of final states STF . The values α and β are unrestricted
variables which may be (vertically) bound to any value at the level of input proplets.
An application of the rule r-in is illustrated below:

3.6.3 EXAMPLE OF AN LA-letter-in RULE APPLICATION

rule name ss-pattern nw-pattern operations rule package

rule level r-in:

[
lett: α
prev:
next:

][
lett: β
prev:
next:

]
copy α nw.prev
copy β ss.next {r-in}

proplet level

⎡
⎢⎣

lett: L
prev:
next:
wrd:

⎤
⎥⎦

⎡
⎢⎣

lett: O
prev:
next:
wrd:

⎤
⎥⎦

After binding α to the value L and β to the value O, the operations copy these values
into their opposite slots, resulting in the following output:

3.6.4 RESULT OF THE RULE APPLICATION 3.6.3⎡
⎢⎣

lett: L
prev:
next: O
wrd: 1

⎤
⎥⎦

⎡
⎢⎣

lett: O
prev: L
next:
wrd: 1

⎤
⎥⎦

In addition to the cross-copying of continuation values based on the grammar rules,
the control structure of the parser provides the wrd value “1,” indicating that the pro-
plets L and O belong to the same word.

The derivation of a letter sequence is shown schematically below (similar to 3.4.2):

48 3. Data Structure and Algorithm

3.6.5 TIME-LINEAR DERIVATION CONNECTING THE LETTERS OF love

L O EV
lexical lookup

sequence of isolated proplets

syntactic semantic parsing:

2

1connecting
proplets

connecting
proplets

3proplets
connecting

result of syntactic semantic parsing:

prev:
next:

next:
wrd:

next: next:
wrd: wrd:

next:
prev:

wrd:

next:
prev:

next:
prev:

wrd:

next:
prev:

wrd:
next:

prev: prev: l

next:
prev:

lett: L lett: O lett: V lett: E

lett: L lett: O

lett: L lett: O lett: V

lett: L lett: O lett: V

next:
prev:

wrd:

lett: E
prev: L

lett: L lett: O lett: V

next: E

lett: E

prev:prev:prev:

next:O
prev:O prev:V

next:O next:V
prev:O

next:O

next:V
prev:L

wrd: 1

wrd: 1 wrd: 1

wrd: 1 wrd: 1 wrd: 1

wrd: 1 wrd: 1 wrd: 1 wrd: 1

input

The derivation is based on three time-linear applications of the rule r-in. In the result,
the beginning of the word is indicated formally by a proplet the prev attribute of which
has the value NIL (represented by space). Similarly, the end of the word is represented
by a proplet the next attribute of which has the value NIL. The derivation of the words
LOSS and ALSO is analogous to 3.6.5.

The Word Bank of DBS-letter stores the resulting connected proplets as follows:

3.6.6 PROPLETS FOR love, loss, and also IN A WORD BANK

owner records member records

[
lett: A

]
⎡
⎢⎣

lett: A
prev:
next: L
wrd: 3

⎤
⎥⎦

[
lett:E

] ⎡
⎢⎣

lett: E
prev: V
next:
wrd: 1

⎤
⎥⎦

[
lett:L

] ⎡
⎢⎣

lett: L
prev:
next: O
wrd: 1

⎤
⎥⎦

⎡
⎢⎣

lett: L
prev:
next: O
wrd: 2

⎤
⎥⎦

⎡
⎢⎣

lett: L
prev: A
next: S
wrd: 3

⎤
⎥⎦

[
lett: O

]
⎡
⎢⎣

lett: O
prev: L
next: V
wrd: 1

⎤
⎥⎦

⎡
⎢⎣

lett: O
prev: L
next: S
wrd: 2

⎤
⎥⎦

⎡
⎢⎣

lett: O
prev: S
next:
wrd: 3

⎤
⎥⎦

3.6 Bare Bone Example of Database Semantics: DBS-letter 49

owner records member records

[
lett: S

] ⎡
⎢⎣

lett: S
prev: O
next: S
wrd: 2

⎤
⎥⎦
⎡
⎢⎣

lett: S
prev: S
next:
wrd: 2

⎤
⎥⎦

⎡
⎢⎣

lett: S
prev: L
next: O
wrd: 3

⎤
⎥⎦

[
lett: V

]
⎡
⎢⎣

lett: V
prev: O
next: E
wrd: 1

⎤
⎥⎦

Compared to 3.3.1, this Word Bank is simplified in that there is no distinction between
the context and the language area/level.

Next let us turn to production. It begins with the autonomous navigation through the
Word Bank 3.6.6. The LA-think grammar of DBS-letter is called LA-letter-OUT. It
is defined to navigate from any letter proplet to the continuation proplet specified in
terms of the values of the next and wrd attributes.

3.6.7 DEFINITION OF LA-letter-out FOR TRAVERSING CONNECTED PROPLETS

ST_S = {(lett: α, { r-out})}

r-out:

[
lett: α
next: β
wrd: k

] [
lett: β
prev: α
wrd: k

]
output position nw {r-out}

ST_F = {(lett: β, rpr−out) }

The rule application navigating from L to O of word 1 is illustrated below:

3.6.8 EXAMPLE OF AN LA-letter-out RULE APPLICATION

rule name ss-pattern nw-pattern operations rule package

rule level r-out:

[
lett: α
next: β
wrn: k

] [
lett: β
prev: α
wrn: k

]
output position nw {r-out}

proplet level

⎡
⎢⎣

lett: L
prev:
next: O
wrn: 1

⎤
⎥⎦

Based on the value assignment to the variables α, β, and k, the rule r-out activates the
successor proplet O, using the retrieval mechanism of the database:

3.6.9 RESULT OF THE LA-letter-out RULE APPLICATION⎡
⎢⎣

lett: L
prev:
next: O
wrn: 1

⎤
⎥⎦

⎡
⎢⎣

lett: O
next: V
prev: L
wrn: 1

⎤
⎥⎦

50 3. Data Structure and Algorithm

The derivation continues by navigating from O to V, and from V to E, using the same
rule (see rule package of r-out as defined in 3.6.7).14

The proplets traversed are the input to an LA-speak grammar. In our example, this
LA-speak grammar is trivial in that it simply realizes the core values of the proplets
activated by the navigation, in the order of their traversal and without change.

Extending the purposely simple system of DBS-letter into a full-fledged system for
natural language communication requires the following steps:

3.6.10 EXTENSIONS NEEDED FOR NATURAL LANGUAGE COMMUNICATION

1. Automatic word form recognition and production:
Instead of LA-letter-IN recognizing only elementary letters like L or O, a full
system must recognize complex word forms in different languages, and similarly
for LA-letter-OUT and word form production.

2. Separation of navigation and language realization:
Instead of LA-letter-OUT treating the core values of proplets in the database
and the surface items of the output as the same, a full system must handle the
functions of navigation and language realization separately by means LA-think
and LA-speak, respectively (cf. 3.5.4). This requires a distinction between the
core and the surface attributes of proplets (cf. 3.2.2).

3. Distinction between language and context data:
The distinction between language and context requires a division of the Word
Bank into a context and a language area (compare 3.6.6 and 3.3.1). Reference to
the external world requires that the input-output component of the language level
is complemented with an input-output component at the context level (compare
2.5.1 and 2.4.1).

4. Extending the navigation into a control structure:
Instead of LA-letter-OUT merely following the continuations coded into the pro-
plets, a full system must extend the navigation into a method of inferencing. This
requires a distinction between absolute propositions15 and episodic propositions
(cf. Sect. 5.2). After complementing the agent with a value structure, the infer-
encing must be extended into a control structure.

Of these extensions, the first two are mainly in the area of natural language processing,
while the latter two require contextual interfaces provided by robotics. The extensions
1 and 2 will be realized in Parts II and III.

14 Given the continuation attributes prev and next and the definition of the rule r-out in 3.6.7, LA-letter-
OUT is limited to forward navigation. An extension to backward navigation would require a second
rule, in which the ss- and nw-patterns of the current rule are reversed.

15 Also called eternal sentences (Quine 1960).

4. Concept Types and Concept Tokens

Having outlined the external interfaces, the data structure, and the algorithm of a talk-
ing robot, we turn now to a rather sensitive topic: meaning. We approach this notion
on the basis of a straightforward task, namely the artificial agent’s ability to recognize
new objects of a known type, like a brand new pair of shoes. We would like the system
to be forgiving in marginal cases, like clogs, but give a clear “no” when it comes to
wheelchairs or shovels. This kind of classification requires the ability to distinguish
between necessary and accidental properties.

Our solution consists in applying the type–token distinction1 to concepts: Concepts
are defined as feature structures such that concept types represent accidental properties
by means of variables, while concept tokens instantiate them by means of constants
(cf. FoCL’99, Sect. 3.3). This way of utilizing the distinction between constants and
variables for characterizing the type–token relation in concepts is not only intuitively
adequate, but provides also for a straightforward computational implementation.

Concepts are integrated into the framework of Database Semantics as the core val-
ues of certain proplets, whereby some proplets take concepts types and others concept
tokens. A computationally realized type–token correspondence in concepts has im-
portant uses. It is employed here in the following locations (cf. 2.4.1): (i) The “middle
part” of reference, i.e., the internal matching between the language and the context
level, (ii) the “lower interface,” i.e., contextual recognition and action, and (iii) the
“upper interface,” i.e., language interpretation and production.

4.1 Kinds of Proplets

A proplet is composed of attributes and their values. Jointly they are the basis for
two kinds of relations to other proplets: The “horizontal” relations concern the se-
mantic relations of functor–argument structure, coordination, and coreference, intra-
and extrapropositionally; the “vertical” ones concern the reference relation between
language proplets and context proplets, in the speaker and the hearer mode (cf. 3.2.4).

In Database Semantics, these relations are coded by means of only three basic kinds
of proplets for representing propositions. They reflect the ontological distinction be-
tween (i) object, (ii) relation, and (iii) property.2 The corresponding distinction in lan-
1 The notions of type and token were introduced by Peirce (CP, Vol.4, p. 537).
2 See FoCL’99, Sect. 3.4, for a more detailed discussion of propositions.

52 4. Concept Types and Concept Tokens

guage is between the traditional parts of speech, (i) noun, (ii) verb, and (iii) adjective.
The corresponding logical notions are (i) argument, (ii) functor, and (iii) modifier.

The distinction between the three basic kinds of proplets is formally expressed in
terms of the core attributes (i) noun, (ii) verb, and (iii) adj – at the language and the
context level. Apart from their core attributes, proplets employ partially the same and
partially different attributes, as illustrated by the following examples:

4.1.1 EXAMPLES OF THE THREE MAIN KINDS OF PROPLETS

noun proplet verb proplet adj proplet⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: book
cat: sn
sem: def sg
mdr: blue
fnc: buy
idy: 3
nc:
pc:
prn: 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: read
cat: decl
sem: pres
mdr:
arg: John book
pc: 15 sit
nc: 17 sleep
prn: 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: blue
cat: adn
sem:
mdr: B
mdd: book 3
idy: B
nc:
pc:
prn: 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The attributes of a proplet may be classified as follows:

4.1.2 PROPLET ATTRIBUTES AND THEIR VALUES

1. Surface attribute: sur
All proplets have a surface attribute. If it has the value NIL, the proplet is a context
proplet. In language proplets, it gets its non-NIL value from the lexicon.

2. Core attributes: noun, verb, adj
The core attribute of a proplet gets its unique value from the lexicon. From a sign-
theoretic point of view,3 the core values may be a concept, a pointer, or a marker,
which correspond to the sign kinds of symbol, indexical and name.

3. Grammatical attributes: cat, sem
The grammatical attributes cat (category) and sem (semantics) get their initial
values from the lexicon; they may be modified during the derivation.

4. Intrapropositional continuation attributes: fnc, arg, mdd, mdr
The intrapropositional continuation attributes get their value(s) by copying during
the time-linear composition of proplets (cf. 3.4.2). The values consist of characters
(char), which represent the names of other proplets. In complete propositions,
the values of fnc (functor), arg (argument), and mdd (modified) must be non-
NIL (obligatory continuation attributes), while that of mdr (modifier) may be NIL
(optional continuation attribute).

3 See Sect. 2.6 above, and FoCL’99, Chapt. 6.

4.1 Kinds of Proplets 53

5. Extrapropositional continuation attributes: nc, pc, idy
The extrapropositional continuation attributes nc (next conjunct), pc (previous
conjunct), and idy (identity) are used extra- and intrapropositionally. Their ex-
trapropositional use is obligatory (in a text, at least one of these attributes must
have a non-NIL value), while their intrapropositional use is optional. Like in-
trapropositional continuation attributes, they get their values by copying.4

6. Bookkeeping attribute: prn
The bookkeeping attribute prn (proposition number) gets its value from the control
structure of the parser and consists of a number (integer). Additional bookkeeping
attributes are wrn (word number), and trc (transition counter), which serve in the
implementation.

For reasons of simplicity, attributes which are not relevant for the discussion at hand
will usually be omitted.

To generalize over attributes and values in certain rules or for purposes of designing
the lexicon, Database Semantics uses the replacement variables RA.n for attributes
and RV.n for values. In contrast to a “binding variable” (for example, α in 3.6.8),
a replacement variable is not bound to a value, but replaced by it. A lexical proplet
which has a replacement variable RV.n as its core value is called a proplet shell:

4.1.3 SUBSTITUTING A REPLACEMENT VARIABLE WITH A CORE VALUE

semantic core proplet shell lexical proplet

apple
⎡
⎢⎣

noun: RV.1
fnc:
mdr:
prn:

⎤
⎥⎦

⎡
⎢⎣

noun: apple
fnc:
mdr:
prn:

⎤
⎥⎦

The lexical proplet results from substituting the replacement variable RV.1 of the core
attribute noun in the proplet shell with the concept apple.

If the replacement variable of a proplet shell is replaced by a binding variable, the
result is a rule pattern suitable to match a lexical proplet:

4.1.4 RELATING PROPLET SHELLS, LEXICAL ITEMS, AND RULE PATTERNS

rule pattern

lexical item

proplet shell

fnc:
mdr:
prn:

noun:
fnc:
mdr:
prn:

noun: apple
fnc:
mdr:
prn:

noun: RV.1
compatible for matching

4 nc and pc were used in 3.1.1 ff. and will be formally introduced in 11.2.5. idy is discussed in Chapt. 10
and Appendix A.

54 4. Concept Types and Concept Tokens

The proplet shell, the rule pattern, and the lexical item differ only in their core values.
The core value of the proplet shell is the replacement variable RV.1. The core value of
the lexical item is the concept apple. The core value of the rule pattern is the binding
variable α, which can be vertically bound to any core value during a rule application
(cf. 3.4.3).

While the content of a proplet is represented by the value of its core attribute,
its combinatorics is represented by (i) the obligatory continuation attribute(s), e.g.,
fnc, (ii) the optional continuation attribute(s), e.g., mdr, and (iii) the bookkeeping at-
tribute(s), e.g., prn. This way of separating the content and the combinatorial aspect
of a proplet allows to treat the combinatorics relatively independently of the content
and vice versa.

For handling the combinatorial aspect of proplets, the core values may be repre-
sented by placeholders, i.e., names which have no explicitly defined referents (e.g.,
concepts). A working model of communication (talking robot), however, requires core
values which have declarative specifications with adequate procedural counterparts.

For example, if we present different geometric objects to a talking robot and tell it to
pick up a square, it must be able to (i) interpret the word square at the language level,
(ii) distinguish the shape in question at the context level, and (iii) relate the language
meaning to the corresponding contextual referent. As a sign, the word square is of the
kind symbol, and thus takes a concept as the value of its core attribute.

Correspondingly, if a feature like [noun: apple] appears as the core value of a pro-
plet, then the value apple should not be merely a placeholder, but represent a concept
suitable for recognizing appropriate referents. For this, the concept must have been
implemented as an effective recognition procedure of the cognitive agent (robot).

4.2 Type–Token Relation for Establishing Reference

In order for a language and a context proplet to match, the value condition 3.2.3 (2)
requires that the values of corresponding attributes must be compatible. To get an
upper bound on the cost of fulfilling this condition let us see which kind of features
would be the most challenging for a computational implementation of matching.

Of the six kinds described in 4.1.2, neither the sur attribute nor the bookkeeping
attributes are relevant for matching between the language and the context level. The
continuation attributes are relevant, but the compatibility of their values is not difficult
to implement because these values are merely names for other proplets (whereby the
names must agree in order for matching to be successful). The only demanding cases
are the core attributes with their values of concepts, pointers, and markers. Of these,
the concepts are perhaps the most demanding.

The considerable literature on concepts presents the schema (Piaget 1926; Stein and
Trabasso 1982), the template (Neisser 1964), the feature (Hubel and Wiesel 1962;
Gibson 1969), the prototype (Bransford and Franks 1971; Rosch 1975), and the geon

4.2 Type–Token Relation for Establishing Reference 55

(Biederman 1987) approach. For simplicity, let us join the debate at a slightly higher
level of abstraction by beginning with a distinction which should be common to all of
these approaches, namely the distinction between concept types and concept tokens.

For present purposes, we define concepts as feature structures, i.e., as sets of fea-
tures, each defined as an attribute-value pair – like proplets. The necessary properties
of a type are represented by the attributes and certain constant values. These are shared
with the tokens. The accidental properties are represented in the type by certain vari-
able values, which are instantiated in different tokens as different constants. Thus, to
a given type there corresponds an infinite number of tokens which differ from their
type in that the type’s variables have been replaced by specific values.

To simplify the explanation of the most basic notions, we use here a preliminary
holistic representation, which will have to be replaced by the declarative specification
of incremental, time-linear procedures for recognizing concepts based on geons, and
geons based on features (cf. L&I’05).5 Consider the following example using the
preliminary holistic representation:

4.2.1 TYPE AND TOKEN OF THE CONCEPT square

type token⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

edge 1: α
angle 1/2: 90o

edge 2: α
angle 2/3: 90o

edge 3: α
angle 3/4: 90o

edge 4: α
angle 4/1: 90o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

edge 1: 2 cm
angle 1/2: 90o

edge 2: 2 cm
angle 2/3: 90o

edge 3: 2 cm
angle 3/4: 90o

edge 4: 2 cm
angle 4/1: 90o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The necessary properties, shared by the type and its token, are represented by four
attributes for edges and four attributes for angles. Furthermore, all angle attributes
have the same value, namely the constant “90 degrees” in the type and the token. The
edge attributes also have the same value, though it is different for the type and the
token.

The accidental property of a square is the edge length, represented by the variable
α in the type. In the token, all occurrences of this variable have been instantiated

5 The incremental time-linear recognition procedure described in L&I’05 is based on the data structure
of DBS. The procedure begins with detecting some arbitrary feature of the object to be recognized,
such as a line or an edge. Then all the previously encountered connections of this feature to other
features are retrieved from memory and actively checked, beginning with the most frequent ones. If a
match for such a combination is found in the external object, all previously encountered connections
of this combination to other features are retrieved from memory and actively checked, etc. It is shown
that this method converges very quickly at the level of features, resulting in the recognition of geons
(cf. Biederman 1987, Kirkpatrick 2001). At the level of geons, the same incremental method can be
used, resulting in the recognition of concepts.

56 4. Concept Types and Concept Tokens

by a constant, here 2 cm. Because of its variable, the type of the concept square is
compatible with infinitely many corresponding tokens, each with another edge length.

We have chosen this simple example to illustrate (i) how concepts are embedded into
proplets as core values and (ii) how they play a central role in the internal matching
between the language and the context level, based on the type–token relation:

4.2.2 CONCEPTS AS VALUES OF THE CORE ATTRIBUTES

language levelconcept type

concept token

mdr:
prn:

fnc:

sur:
context level

proplets

match
match

sur: square

mdr:
prn:

fnc:

noun:

noun:

square

square

cm

cm

cm

cm

edge 1:
angle 1/2: 90
edge 2:
angle 2/3:
edge 3:
angle 3/4: 90
edge 4:
angle 4/1: 90

edge 1: 2 cm
angle 1/2: 90
edge 2: 2 cm
angle 2/3: 90
edge 3: 2 cm
angle 3/4: 90
edge 4: 2 cm
angle 4/1: 90

o

o

o

90 o

o

o

o

o

The matching between the language proplet and the context proplet is successful be-
cause (i) the language proplet and the context proplet have the same attributes and (ii)
the values of their respective core attributes noun are compatible – due to the fact that
they happen to be the type and a token of the same concept (other values have been
omitted for simplicity).

The great utility of the type–token relation in the matching between language and
context proplets wich contain concepts as values may be summarized as follows:

4.2.3 WHY THE TYPE–TOKEN RELATION IS IMPORTANT

Type–token relations based on feature structures with variables and constants
are easily computed. Procedures matching the concept type of a language
proplet with the concept token of a context proplet enable the language proplet
to refer in different utterance situations to different context proplets, including
reference to items never encountered before.

Let us assume, for example, that the robot is shown new geometrical objects which
differ from previous ones in terms of their size. If we say: Pick the square!, then at least
the middle part of the robot’s reference mechanism, i.e., the matching between the

4.3 Context Recognition 57

language and the context level, will be able to do it (as shown by 4.2.2). The associated
upper and lower interfaces, consisting of recognition and action at the language and
context levels, are the topics of the following sections 4.3 and 4.4.

4.3 Context Recognition

The type–token relation of concepts is central also to the external interfaces at the con-
text level. In contextual recognition, concept type and concept token function together
as follows:

4.3.1 CONCEPT TYPE AND CONCEPT TOKEN IN CONTEXTUAL RECOGNITION

changes in the
external environment

sensory
surface

type
concept concept

memory

token

cognitive agent without language

perception

The sensory surface produces incoming parameter values, for example, in the form of
a bitmap, which are matched by a concept type provided by the database. Thereby, the
variables of the type are instantiated by constants. The resulting concept token may
be stored in memory.

The matching process shown in 4.3.1 is illustrated below in more detail with the
recognition of a square:

4.3.2 CONCEPT TYPE AND CONCEPT TOKEN IN RECOGNIZING A SQUARE

angle 4/1: 90°

angle 3/4: 90°

angle 2/3: 90°

angle 1/2: 90°
edge 1: 2 cm

edge 2: 2 cm

edge 3: 2 cm

edge 4: 2 cm
angle 4/1: 90°

angle 3/4: 90°

angle 2/3: 90°

angle 1/2: 90°
edge 1: cm

edge 2: cm

edge 3: cm

edge 4: cm

concept type concept token

bitmap outline

The type can be matched with the outline of all kinds of different squares, whereby
its variables are instantiated accordingly.

Our preliminary holistic method of representing the concept square may be applied
to other polygons, using the same recognition procedure based on matching concept

58 4. Concept Types and Concept Tokens

types with bitmap outlines. The approach may also be extended to other kind of data,
such as the recognition of colors, defining concept types as certain intervals in the
electromagnetic spectrum and the tokens as particular constant values in such an inter-
val (cf. CoL’89, pp. 296 ff.). The method is even suitable to implement the recognition
of relations like “A is contained in B.”

Today, there already exist pattern recognition programs which are quite good at
recognizing geometric objects. They differ from our approach in that they are based
almost completely on statistics. However, even if the terms of type and token may not
be found in their theoretical descriptions, the type–token distinction is nevertheless
implicit in any pattern recognition process. Furthermore, the rule-based, incremental
procedures of pattern recognition presented in L&I’05 are well-suited to be combined
with statistical methods.

As shown by the work of Steels (1999), suitable algorithms can evolve new types
automatically from similar data by abstracting from what they take to be accidental.
For Database Semantics, the automatic evolution of types has to result in concepts
which correspond to those of a language community. This may be achieved by pre-
senting the artificial agent with properly selected data in combination with human
guidance.

4.4 Context Action

Having examined incoming data in terms of perception and recognition, let us turn
to the outgoing data, which are analyzed in terms of intention and action. Intention
is the process of developing an action cognitively, while action is the mechanism of
realizing an intention by changing the environment.

Like recognition, action is based on concept types and concept tokens, but in the in-
verse order: While recognition is based on the sequence periphery–type–token, action
is based on the sequence token–type–periphery, as shown in the following schema:

4.4.1 CONCEPT TYPES AND CONCEPT TOKENS IN ACTION

changes in the
external environment type

concept concept

memory

token

component

cognitive agent without language

action

realization

4.5 Sign Recognition and Production 59

The input to an action is an intention. Intentions (in the sense of wanting to act in a
certain way) must be specific with respect to time and space as well as to the properties
of the objects involved. Therefore, intentions are defined as concept tokens.

Actions, as the corresponding concept types, are defined as general realization pro-
cedures, for example, drinking from a cup. They are provided by the database for a
given intention. The action procedure (type) is matched with the intention (token),
whereby the variables of the action type are instantiated by the constants of the in-
tention (specialization). The specialized action is realized by peripheral cognition as
changes in the environment. Tasks for which no standard action is available, like the
creative opening of a difficult lock in an unfamiliar door, are realized by trying differ-
ent combinations of smaller standard actions.

4.5 Sign Recognition and Production

From the recognition and action procedures at the context level let us turn next to the
corresponding procedures at the language level. There, recognition is called interpre-
tation and action is called production.

Taking the view point of evolution, we regard sign interpretation and production at
the language level as a secondary use of recognition and action at the context level.
Just as the recognition of the object of a square at the context level is based on param-
eter values in a certain modality (here vision) which are matched by a concept type
and instantiated as a concept token, the recognition of the surface of the word square
is based on parameter values in a certain modality (e.g., hearing) which are matched
by a surface type and instantiated as a surface token, and similarly for surface synthe-
sis in language production. In short, the surface types and tokens used at the language
level are a special kind of the concept types and tokens used at the context level.

As physical objects, e.g., as sound waves or dots on paper produced by the speaker
and perceived by the hearer, the surfaces carry neither a syntactic category nor a se-
mantic representation nor any other grammatical property. Within cognition, however,
the surfaces serve as keys: For the hearer, each recognized external surface provides
access to a lexical entry stored in memory, which contains a corresponding surface:

4.5.1 LEXICAL LOOKUP OF GERMAN Apfel IN THE HEARER MODE

lexical lookup

sign recognition

external sign

fnc:

Apfel Apfel

sur:
noun: apple

Apfel

mdr:
prn:

agent in the hearer mode

60 4. Concept Types and Concept Tokens

Within the lexical entry, the surface is firmly attached to a battery of properties, such
as a specific part of speech (here noun), morpho-syntactic properties (omitted), and a
literal meaning (here apple). In Database Semantics, these properties are represented
in the form of an isolated proplet. The connection between the surface of a lexical
entry and the associated set of grammatical properties is established by conventions,6

which each member of the language community has to learn.
The processing of surfaces in the speaker and the hearer mode constitutes the third

application based on the type–token relation between concepts (besides recognition
and action at the context level, and the vertical matching between the language and
the context level). The threefold function of the type–token relation in the cycle of
natural language communication may be summarized as follows:

4.5.2 THREE TYPE–TOKEN RELATIONS IN THE CYCLE OF COMMUNICATION

internal
matching

hearer

Look, a square!

surface tokenexternal surface

proplet lookup

lexical lookup

context level

language level

noun: square_type

surface type

square square

squaresur: _token

square_token[noun:]

external object concept tokenconcept type

square square

The three instances of a type–token relation are indicated by *. As shown in FoCL’99,
Sect. 23.5, there are altogether 10 different variants of 4.5.2, depending on differ-
ent combinations of recognition and action at the language and the context level. In
4.5.2, the hearer mode is shown in a constellation of immediate reference (SLIM 8, cf.
FoCL’99, 23.5.8).

At the language level, recognition of the external surface square is based on match-
ing it with a surface type and instantiating it as a token. The type triggers the lexical
lookup of an appropriate proplet. The surface token replaces7 the original type value
of the sur attribute (indicated as [sur: square_token]). The lexical value of the core
attribute noun is the concept type square (indicated as [noun: square_type]).

6 The convention-based connection between surface and meaning was described in 1913 by de Saussure
in his first principle as l’arbitraire du signe. For further discussion see FoCL’99, Sect. 6.2

7 This is because the hearer remembers the pronunciation of a word. Also, we would like to maintain
symmetry with the context level. The current JSLIM implementation simplifies the issue by turning
language proplets into context proplets right after lexical lookup by deleting the surface values.

4.6 Universal versus Language-Dependent Properties 61

At the context level, recognition of the external object is based on a concept type,
which is instantiated as a concept token. The type triggers lookup of a correspond-
ing context proplet. The token replaces the original type value8 of the core attribute
of the context proplet (indicated as [noun: square_token]). As a result, the feature
[noun: square_type] at the language level can be matched with the feature [noun:
square_token] at the context level.

Apart from the vertical internal matching of types with tokens, there is also the
possibility of matching types with types. This case arises in the interpretation of abso-
lute, rather than episodic, propositions (cf. Sect. 5.2). For example, in the proposition
A square has four corners, the context proplet square would contain the concept type
rather than a token as its core value. This is no problem for matching with a corre-
sponding language proplet, however, because matching a type with a type is struc-
turally straightforward.

4.6 Universal versus Language-Dependent Properties

Given that the function of natural language is communication and that form (including
the form of language) follows function, Database Semantics, as an abstract declarative
specification, is common to all natural languages – simply for reasons of how natural
language communication works. Consequently, all the differences between the various
natural languages like English, Chinese, Tagalog, or Quechua have no effect on the
basic framework of Database Semantics. This raises the following questions:

• What are the differences between natural languages?

• How should these differences be integrated into Database Semantics?

The most obvious difference between natural languages are in their surfaces. This dif-
ference is handled in the lexical proplets by having different values of the sur attribute
(cf. 3.2.1). If two languages are sufficiently close to have similar concepts in content
words, this is expressed by using the same core value (cf. 3.2.2).

For two languages or groups of languages to be unrelated, the traditional criterion
is their having different roots, for example, the Indo-European languages versus the
Finno-Ugric languages. If these roots represent well-defined, simple concepts like
father, mother, or water, they can be represented by the same core values. Otherwise,
new concepts have to be defined and the relation between incommensurable roots
must be specified.

Finally, there are the language-dependent differences as to which grammatical re-
lations and distinctions are coded analytically by means of function words (e.g., de-
terminers, conjunctions, prepositions) or synthetically in terms of morphology (e.g.,

8 In the current implementation, concepts are represented by placeholders. This is because without
contextual interfaces (as in 2.5.1), concepts defined as effective procedures are not yet available. In
placeholders, the distinction between concept types and concept tokens is in name only.

62 4. Concept Types and Concept Tokens

inflection, agglutination, derivation, composition). In Database Semantics, these as-
pects are treated by language-dependent LA-grammars with a suitable lexicon and
associated systems of automatic word form recognition and production, restrictions
on variables (e.g., 13.2.2) for handling agreement (e.g., 13.2.3), and a rule system for
handling word order (e.g., 13.2.4).

From a functional point of view, Database Semantics treats the differences between
natural languages as relatively minor variations at certain low-level locations, such as
the values of certain attributes. From a linguistic point of view, however, the handling
of the universal versus language-dependent aspects of natural language in Database
Semantics may be characterized in terms of the following hierarchy:

4.6.1 HIERARCHY OF NOTIONS AND DISTINCTIONS IN DATABASE SEMANTICS

number
sg pl

number
sg pl

verb

symbol

adjective

indexical name

word forms

content word

relations

reference

vertical horizontal

noun

time linear concatenation0

function word

1

2

3

4

present imperfect future...

N N_A N_D N_D_A ...

1. pers 2. pers 3.pers

active passive medium ...
adnominal adverbial

pos cmp sup

nom gen dat acc ...

masc fem neut

case

gender

5

6

9

8

7

valency

det, conj, prep, ...

degrees

indicative subjunctive...

functor argument coordination

language dependent

universal

At the root of the hierarchy tree there is the time-linear concatenation of word forms
(level 0). This most basic structural property of natural language is illustrated by the
DBS-letter system defined in Sect. 3.6.

Level 1 is divided into (i) word forms and (ii) relations. The word forms are divided
into content words and function words (level 2), while the relations are divided into
vertical and horizontal relations.

The content words are divided into the three basic kinds of signs, namely symbol,
indexical, and name (level 3). In the branch of relations, the kinds of signs serve the
vertical relation of reference (level 3), implemented as a matching between the levels
of language and context (cf. 3.2.4).

4.6 Universal versus Language-Dependent Properties 63

The kinds of signs (level 3) are correlated with the parts of speech (level 4). Sym-
bols can be verbs, adjectives, or nouns; indexicals can be adjectives or nouns; and
names can be nouns only. This is shown graphically by the lines relating the kinds of
signs and the parts of speech. In the branch of relations, the parts of speech serve the
horizontal relations (cf. 3.2.4) of functor–argument structure and coordination.

The structures shown above the dotted line separating levels 4 and 5 are universal:
All natural languages are based on a time-linear concatenation of word forms, the dis-
tinction between content and function words, the three kinds of signs, the three parts
of speech,9 the vertical relation of reference, and the horizontal relations of functor–
argument structure and coordination.

The structures shown below the dotted line are language-dependent. For the verbs
of the Indo-European languages, for example, this holds for the genus, modus, and
tempus verbi (levels 5, 6, and 7), the valency structure (level 8), as well as the person
and number distinction (level 9). For the adjectives, it holds for the distinction between
adnominal and adverbial use, and for the synthetic handling of the degrees (positive,
comparative, superlative). For the nouns, it holds for the different case systems, and
the number and gender distinctions (which are absent,10 for example, in Korean).

9 Typologically speaking, this applies to the “functional” level, i.e., the level of the semantic represen-
tations, rather than the “formal” level, i.e., the level of structural surface properties (cf. Stassen 1985,
pp. 14–15; Croft 1995, pp. 88–89).

10 In the sense that they are not inherent in the nouns and do not impose any combinatorial restrictions
such as agreement. Cf. Choe et al. (2006).

5. Forms of Thinking

Section 5.1 shows that the DBS data structure is well-suited for question answering.
Furthermore, the data structure is easily extended1 to the distinction between episodic
and absolute propositions (Sect. 5.2), which in turn is the basis for implementing in-
ferences, here modus ponens (Sect. 5.3). This inference is employed for implementing
an indirect use of language (Sect. 5.4). Finally, it is shown how the intuitive meaning
of a word is composed of several ingredients, some of which are derived from the
agent’s personal experiences and socio-cultural background (Sects. 5.5 and 5.6).

5.1 Retrieving Answers to Questions

So far, the data structure of a Word Bank, consisting of ordered token lines listing
connected proplets with the same core value (cf. 3.3.1, 3.6.6), has been used (i) for
the storage in the hearer mode and (ii) for the retrieval of successor proplets in the
most basic kind of the think mode, namely free association based on fixed patterns,
serving as an example of the speaker’s conceptualization. We turn now to another kind
of thinking supported by this data structure, namely (iii) moving along a token line.

Consider an agent thinking about girls. This means activating the corresponding
token line, such as the following example:

5.1.1 EXAMPLE OF A TOKEN LINE

owner record member records

[
noun: girl

] ⎡
⎢⎣

noun: girl
fnc: walk
mdr: young
prn: 10

⎤
⎥⎦

⎡
⎢⎣

noun: girl
fnc: sleep
mdr: blond
prn: 12

⎤
⎥⎦

⎡
⎢⎣

noun: girl
fnc: eat
mdr: small
prn: 15

⎤
⎥⎦

⎡
⎢⎣

noun: girl
fnc: read
mdr: smart
prn: 19

⎤
⎥⎦

As indicated by the fnc and mdr values of the connected proplets (member records),
the agent happened to observe or hear about a young girl walking, a blonde girl sleep-
ing, a small girl eating, and a smart girl reading.

Traversing the token line of any given concept is powered by the following LA-think
grammar, called LA-think.LINE:

1 That a framework developed for certain purposes turns out to be suitable for other purposes as well is
a kind of convergence. Convergence is one of most significant indicators in science for being on the
right track (cf. FoCL’99, Sect. 9.5).

66 5. Forms of Thinking

5.1.2 DEFINITION OF LA-think.LINE
STS: {([RA.1: α]{1 rforwd 2 rbckwd})}

rforwd

[
RA.1: α
prn: n

] [
RA.1: α
prn: n+1

]
output position nw {rforwd}

rbckwd

[
RA.1: α
prn: n

] [
RA.1: α
prn: n–1

]
output position nw {rbckwd}

STF : {([RA.1: α] rpforwd), ([RA.1: α] rpbckwd)}

The core attribute is represented by the replacement variable RA.1 (cf. 4.1.3, C.3.2),
which is restricted to the attributes noun, verb, or adj. The prn values n, n+1 and
n–1 follow the convention that n+1 stands for the proplet immediately following the
current proplet n in the token line, and n–1 for the proplet immediately preceding. The
rule rforwd traverses a token line from left to right (forward), following the temporal
order, while the rule rbckwd moves right to left in the antitemporal order (backward).

Consider the application of rforwd to the proplet with the prn value 12 in 5.1.1:

5.1.3 EXAMPLE OF AN LA-think.LINE RULE APPLICATION

rule name ss-pattern nw-pattern operations rule package

rule level rforwd:

[
RA.1: α
prn: n

] [
RA.1: α
prn: n+1

]
output position nw {rforwd}

proplet level

⎡
⎢⎣

noun: girl
fnc: sleep
mdr: blonde
prn: 12

⎤
⎥⎦

During matching, the replacement variable RA.n is substituted by the attribute noun,
and the binding variables α and n are bound to the values girl and 12, respectively.
The application of this rule to the token line example 5.1.1 has the following result:

5.1.4 RESULT OF THE LA-think.LINE RULE APPLICATION⎡
⎢⎣

noun: girl
fnc: sleep
mdr: blonde
prn: 12

⎤
⎥⎦

⎡
⎢⎣

noun: girl
fnc: eat
mdr: small
prn: 15

⎤
⎥⎦

Such moving along the token line of an activated concept is naturally extendable
to answering questions. There are two kinds of basic query, called (i) wh questions
and (ii) yes/no questions,2 illustrated below with examples relating to the token line
example 5.1.1.

5.1.5 BASIC KINDS OF QUERY IN NATURAL LANGUAGE

wh question yes/no question
Which girl walked? Did the young girl walk?

2 The expressions used in these questions are of the sentence mood interrogative. Explicit syntactic–
semantic derivations of interrogatives, including long distance dependency, are shown in Sect. 9.5.

5.1 Retrieving Answers to Questions 67

In Database Semantics, these questions translate into the following proplet patterns:

5.1.6 SEARCH PROPLETS ILLUSTRATING THE TWO BASIC TYPES OF QUESTIONS

wh question yes/no question⎡
⎢⎣

noun:girl
fnc: walk
mdr: σ
prn: n

⎤
⎥⎦

⎡
⎢⎣

noun:girl
fnc: walk
mdr: young
prn: n

⎤
⎥⎦

In the search proplet of the wh question, the mdr attribute has the variable σ and
the prn attribute the variable n as value; in the search proplet of the yes/no question,
only the prn attribute has a variable as value. Technically, the answer to a question
consists in binding the variables of the search proplet to suitable values. Consider the
application of the wh question search pattern in 5.1.6 to the token line 5.1.1:

5.1.7 WH SEARCH PATTERN CHECKING A TOKEN LINE⎡
⎢⎣

noun:girl
fnc: walk
mdr: σ
prn: n

⎤
⎥⎦ search pattern

matching?

[
noun: girl

]⎡⎢⎣
noun: girl
fnc: walk
mdr: young
prn: 10

⎤
⎥⎦

⎡
⎢⎣

noun: girl
fnc: sleep
mdr: blonde
prn: 12

⎤
⎥⎦

⎡
⎢⎣

noun: girl
fnc: eat
mdr: small
prn: 15

⎤
⎥⎦
⎡
⎢⎣

noun: girl
fnc: read
mdr: smart
prn: 19

⎤
⎥⎦ token line

The indicated attempt at matching fails because the fnc values of the proplet pattern
(i.e., walk) and of the proplet token (i.e., read) are incompatible. The same holds after
moving the pattern one proplet to the left. Only after reaching the leftmost proplet is
the matching successful. Now the variable σ is bound to young and the variable n to
10. Accordingly, the answer provided to the question Which girl walked? is The young
girl (walked). This procedure is formalized by the following LA-think grammar:

5.1.8 DEFINITION OF LA-think.Q1 (wh question)

STS: {(

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: σ
prn: n

⎤
⎥⎦{r1, r2}), (

⎡
⎢⎣

noun: RV.1
fnc: RV.2
mdr: σ
prn: n

⎤
⎥⎦{ }) }

r1:

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: σ
prn: n

⎤
⎥⎦

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: σ
prn: n–1

⎤
⎥⎦ output position nw {r1 r2}

r2:

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: σ
prn: n

⎤
⎥⎦

⎡
⎢⎣

noun: RV.1
fnc: RV.2
mdr: σ
prn: n–1

⎤
⎥⎦ output position nw { }

68 5. Forms of Thinking

STF : {(

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: σ
prn: n–1

⎤
⎥⎦ rp1), (

⎡
⎢⎣

noun: RV.1
fnc: RV.2
mdr: σ
prn: n–1

⎤
⎥⎦ rp2) }

The proplets in the start states, the rules, and the final states represent search patterns,
whereby RV.1 and RV.2 are replacement variables for a core and a continuation value,
respectively, while σ, n, and n–1 are binding variables. For example, applied to the
wh search pattern of 5.1.6, RV.1 is replaced with girl and RV.2 with walk.

For the feature [fnc: ¬ RV.2] to match it must not be compatible with the input. In
the definition of LA-think.Q1 in 5.1.8, this is specified for the first start state, the
sentence start and the next word of r1, the sentence start of r2, and the first final state.
In contrast, the corresponding feature [fnc: RV.2] in the second sentence start, the next
word of r2, and second final state, does have to be compatible to match the input.

If the last proplet of a token line does not match the search pattern, the rules r1
and r2 are both activated (cf. rule package of the first start state). If the next to last
proplet does not match either, r1 is successful; otherwise r2 is successful. As long as
there are proplets in the token line for r1 to apply successfully (i.e., matching fails),
the derivation continues; when no token remains, the grammar algorithm enters the
first final state, realized in English as I don’t know. If the derivation completes with
a successful application of r2, the grammar enters the second final state, realized in
English as a noun phrase based on the matching proplet, here the young girl.

A yes/no question is handled in a similar manner. For example, Did the young girl
walk?, based on applying the yes/no search pattern of 5.1.6 to the token line 5.1.1,
results in the answer yes, due to a successful matching between the search pattern and
the proplet with the prn value 10. The procedure is formalized as LA-think.Q2:

5.1.9 DEFINITION OF LA-think.Q2 (yes/no question)

STS: {(

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: ¬ RV.3
prn: n

⎤
⎥⎦{r1, r2}), (

⎡
⎢⎣

noun: RV.1
fnc: RV.2
mdr: RV.3
prn: n

⎤
⎥⎦{ }) }

r1:

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: ¬ RV.3
prn: n

⎤
⎥⎦

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: ¬ RV.3
prn: n–1

⎤
⎥⎦ output position nw ({r1 r2})

r2:

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: ¬ RV.3
prn: n

⎤
⎥⎦

⎡
⎢⎣

noun: RV.1
fnc: RV.2
mdr: RV.3
prn: n–1

⎤
⎥⎦ output position nw ({ })

STF : {(

⎡
⎢⎣

noun: RV.1
fnc: ¬ RV.2
mdr: ¬ RV.3
prn: n–1

⎤
⎥⎦ rp1), (

⎡
⎢⎣

noun: RV.1
fnc: RV.2
mdr: RV.3
prn: n–1

⎤
⎥⎦ rp2) }

In LA-think.Q2, RV.1, RV.2, and RV.3 are replacement variables, while n and n–1 are
binding variables. The answers are based on the final states STF , the first of which
represents the answer no and the second the answer yes. For example, in the attempt

5.2 Episodic versus Absolute Propositions 69

to answer the question Did the blonde girl walk? relative to the token line 5.1.1, the
search will be in vain; having applied r1 to all proplets in the token line, LA-think.Q2
terminates in the first final state, which is realized in English as the answer no. The
question Did the young girl walk?, in contrast, results in the second final state, which
is realized in English as the answer yes. For further discussion see Sect. 9.5.

5.2 Episodic versus Absolute Propositions

Another kind of thinking, besides (i) navigating along interproplet relations (cf. 3.5.1)
and (ii) moving along token lines (cf. 5.1.3), are (iii) inferences. In Database Seman-
tics, inferences are based on absolute propositions, as opposed to episodic proposi-
tions (cf. FoCL’99, Sect. 22.4; AIJ’01).

Absolute propositions represent content which holds independently of any STAR
(cf. 2.6.2), such as scientific or mathematical content, but also personal beliefs like
Mary takes a nap after lunch. Episodic propositions, in contrast, require specification
of the STAR in order for the content to be coded correctly.3

In DBS, episodic and absolute propositions are distinguished by the value of their
prn attribute, as illustrated by the following example showing the proplets of the
propositions A dog is an animal (absolute) and the dog is tired (episodic):

5.2.1 ABSOLUTE AND EPISODIC PROPLETS IN A WORD BANK (context level)

owner records absolute proplets episodic proplets

[
noun: animal

]
. . .

⎡
⎢⎣

noun: animal
fnc: is
mdr:
prn: a-11

⎤
⎥⎦

[
verb: be

]
. . .

⎡
⎢⎣

verb: be
arg: dog animal
mdr:
prn: a-11

⎤
⎥⎦ . . .

⎡
⎢⎣

verb: be
arg: dog
mdr: tired
prn: e-23

⎤
⎥⎦

[
noun: dog

]
. . .

⎡
⎢⎣

noun: dog
fnc: be
mdr:
prn: a-11

⎤
⎥⎦ . . .

⎡
⎢⎣

noun: dog
fnc: be
mdr:
prn: e-23

⎤
⎥⎦

[
adj: tired

]
.

⎡
⎢⎣

adj: tired
mdd: be
mdr:
prn: e-23

⎤
⎥⎦

In addition to the different prn values, here a-11 versus e-23, absolute and episodic
proplets differ in that the core value of absolute proplets is a concept type, while the
core value of episodic proplets is a concept token:
3 Absolute propositions of the context level are coded in language as generic sentences which express

their atemporal character by using present tense. Episodic propositions of the context level are coded
in language as sentences which usually contain temporal and local adjectives, and a verb which is not
in present tense.

70 5. Forms of Thinking

5.2.2 CORE VALUES AS CONCEPT TYPES AND CONCEPT TOKENS

mdr:

[noun: dog] noun: dog
fnc: be

prn: a 11
mdr:

noun: dog
fnc: be

prn: e 23

type token

owner record

absolute proplet episodic proplet

token line:

(key)

type

Thus, at the context level the core values of episodic proplets are typed indirectly by
the associated owner record.

The distinction between absolute and episodic proplets leads to an additional divi-
sion of fields in a Word Bank, both in the area of context and of language proplets:

5.2.3 AREAS OF EPISODIC VS. ABSOLUTE PROPLETS IN A WORD BANK

absolute
language
proplets

episodic
language
proplets

episodic
context

proplets

absolute
context

propletsrecords
owner

records
owner

context language

1 2 3 4 5 6

To obtain matching frontiers (cf. 3.3.1) between the areas of context and language for
the absolute as well as the episodic propositions, absolute and episodic proplets are
stored conceptually in two levels, as indicated by the following representation:

5.2.4 MATCHING FRONTIERS IN A THREE-DIMENSIONAL REPRESENTATION

matching
absolute context and language proplets

records
owner

context language
owner
records

episodic
context
proplets

language
proplets

episodic

proplets
context
absolute

proplets
language
absolute

2

3 5

4
1 6

matching
episodic context and language proplets

(keys) (keys)

Presenting the absolute proplets above the episodic ones is motivated by the transition
of frequent episodic propositions of the same content into an absolute proposition, as
illustrated below:

5.3 Inference: Reconstructing Modus Ponens 71

5.2.5 FROM EPISODIC PROPOSITIONS TO AN ABSOLUTE PROPOSITION

(Monday)

(Wednsday)

(Thursday)

episodic propositions

(Friday)

absolute proposition

Mary takes a nap after lunch.

Mary takes a nap after lunch.

Mary takes a nap after lunch.

Mary takes a nap after lunch.

Mary takes a nap after lunch.

Mary takes a nap after lunch.(Tuesday)

Episodic propositions represent isolated events, bound to a particular STAR. If their
STAR grounding turns out to be redundant (because it does not seem to matter), they
may be summarized as an absolute proposition, in which the STAR is omitted.

From a technical point of view, it must be emphasized that the structuring of a Word
Bank indicated in 5.2.4 is purely conceptual and does not restrict the storage loca-
tions in the actual implementation of the database. This is because relations between
proplets are coded solely in terms of attributes and their values.

5.3 Inference: Reconstructing Modus Ponens

Before we turn to the handling of inferences in Database Semantics, let us consider
the classical inferences of Propositional Calculus. In the following summary, A and
B are true propositions, ¬ is sentential negation, & is logical and, ∨ is logical or,
→ is logical implication, the expressions above the horizontal line are the premise or
premises, and the expression below is the conclusion, indicated by �:

5.3.1 INFERENCE SCHEMATA OF PROPOSITIONAL CALCULUS

1. A,B 2. A ∨ B,¬A 3. A → B,A 4. A → B,¬B

� A&B � B � B � ¬A

5. A&B 6. A 7. ¬A 8. ¬¬A

� A � A ∨ B � A → B � A

In the inference schema 1, called conjunction, the truth of two arbitrary proposi-
tions A and B implies the truth of the complex proposition A&B. If the inference
of conjunction were reconstructed in Database Semantics, it would amount to an op-
eration which establishes new extrapropositional relations between arbitrary propo-
sitions, based on the conjunction and. This operation may be characterized as the
following LA-grammar rule.

72 5. Forms of Thinking

5.3.2 LA-RULE FOR THE INFERENCE OF conjunction (HYPOTHETICAL)

inf1:

[
verb: α
prn: m

] [
verb: β
prn: n

]
=⇒

⎡
⎢⎣verb: α

prn: m
cnj: m and n

⎤
⎥⎦

⎡
⎢⎣verb: β

prn: n
cnj: m and n

⎤
⎥⎦

The patterns to the left of the arrow each match the verb proplet of some arbitrary
proposition, thereby binding the variables α, β, m, and n. To the right of the arrow the
same patterns are shown with the additional feature [cnj: m and n]. Thus, inf1 produces
the extrapropositional relation of coordination between two arbitrary propositions m
and n by adding cnj attributes with values to their proplets in the word bank. These new
connections enable new navigations, from any proposition to any other proposition
asserted in the Word Bank.

In its Truth-Conditional Semantics interpretation, the inference in question ex-
presses a conjunction of truth and is, as such, intuitively obvious. From this point
of view, it is not relevant which propositions are conjoined. The only condition for the
inference to be valid is that the two propositions in the premise happen to be true.

From the view point of Database Semantics, in contrast, there arises the question of
why two – previously unconnected – propositions should be concatenated with and.
For example, even though conjoining Lady Marion smiled at Robin Hood and The
glove compartment was open might not result in asserting a falsehood, it would make
little sense. Because an uncontrolled application of inf1 would create new, unmotivated
connections between hitherto unconnected propositions, the coherence of content in a
word bank would be destroyed by it.

The example of conjunction has shown how a classical inference can be recon-
structed in Database Semantics. We have also seen that the classical inference sche-
mata may change their character substantially when transferred to Database Seman-
tics. Therefore they should not be transferred blindly.

Let us turn now to modus ponens. Its inference schema (cf. 3 in 5.3.1) may be
illustrated in Propositional Calculus as follows:

5.3.3 modus ponens IN PROPOSITIONAL CALCULUS

Premise 1: If the sun is shining, Mary takes a walk. A → B
Premise 2: The sun is shining. A
Conclusion: Mary takes a walk. � B

Because Propositional Calculus treats propositions as unanalyzed constants. e.g., A
and B, this form of modus ponens is suitable to assert the inference relation between
sentences, but not between individuals. Let us therefore consider modus ponens in
Predicate Calculus (cf. Bochenski 1961, 16.07 ff., 43.16 ff.), which analyzes the in-
ternal structure of propositions using the connectives ¬, &, ∨, and → of Propositional
Calculus plus one- and two-place functor constants like f, g, and h, and the quantifiers
∃ and ∀ horizontally binding the variables x, y, z:

5.3 Inference: Reconstructing Modus Ponens 73

5.3.4 modus ponens IN PREDICATE CALCULUS

∀x[f(x) → g(x)], ∃x[f(x) & h(x)]
� ∃x[g(x) & h(x)]

Thus, if f is realized as dog, g as animal, and h as tired, the inference would read:

Premise 1: For all x, if x is a dog, then x is an animal. ∀x[dog(x) → animal(x)]
Premise 2: There exists an x, x is a dog and x is tired. ∃x[dog(x) & tired(x)]
Conclusion: There exists an x, x is an animal and x is tired. � ∃x[animal(x)&tired(x)]

Because the binding of variables in Prepositional Calculus is horizontal (e.g.,
∃x [... x]), but vertical in Database Semantics, and because the parts of a logical for-
mula are ordered, while proplets are unordered, this inference cannot be transferred to
Database Semantics directly. Instead, modus ponens may be reconstructed by repre-
senting (i) the premise with the universal quantifier as an absolute proposition, e.g., A
dog is an animal, (ii) the premise with the existential quantifier as an episodic propo-
sition, e.g., The dog was tired, and (iii) the conclusion as the following rule:

5.3.5 INFERENCE RULE INF2 FOR RECONSTRUCTING modus ponens

inf2:

⎡
⎢⎢⎢⎣

verb: be
arg: α
mdr: β
prn: e-n

⎤
⎥⎥⎥⎦

⎡
⎢⎣noun: α

fnc: be
prn: e-n

⎤
⎥⎦

⎡
⎢⎢⎢⎣

adj: β
mdd: be
mdr:
prn: e-n

⎤
⎥⎥⎥⎦

⎡
⎢⎣verb: is-a

arg: δ γ
prn: a-m

⎤
⎥⎦ if α instantiates δ,

replace α with γ
and replace e-n with e-n’

{ . . . }

The proplets with the prn value e-n represent the episodic premise, the one with the
prn value a-m the absolute premise, and the operation realizes the conclusion.

This inference rule may be restated informally as the following abstract paraphrase:

5.3.6 ABSTRACT PARAPHRASE

1. Absolute premise: noun type δ is-a noun type γ.
2. Episodic premise: noun token α happens to be adjective β.
3. Episodic conclusion: If noun token α instantiates noun type δ, then noun token γ

happens to be adjective β.

This reconstruction is based semantically on equating the grammatical terms noun,
verb, and adjective with the logical terms argument, functor, and modifier, and the
ontological terms object/individual, relation, and property, respectively (cf. FoCL’99,
Sect. 3.4). Furthermore, while the two premises of modus ponens in Predicate Cal-
culus are connected – roughly speaking – by a quantifier-kind of Substitutivity of
Identicals (cf. FoCL’99, Sect. 20.1), in Database Semantics the connection is based
on the type–token relation “instantiates.” This is shown by the following example,
which realizes the variables of the abstract paraphrases as concrete terms:

74 5. Forms of Thinking

5.3.7 CONCRETE EXAMPLE BASED ON THE ABSTRACT PARAPHRASE

1. Absolute premise: dog type is-a(n) animal type.
2. Episodic premise: dog token happens to be tired.
3. Episodic conclusion: If dog token instantiates dog type, then animal token hap-

pens to be tired.

In the formal definition of the rule inf2, the distinction between concept tokens and
concept types is left implicit for simplicity.4

Consider the application of the rule inf2 to proplets in the Word Bank 5.2.1:

5.3.8 APPLYING INF2 TO THE WORD BANK 5.2.1

inf2:

⎡
⎢⎣

verb: be
arg: α
mdr: β
prn: e-n

⎤
⎥⎦

[
noun: α
fnc: be
prn: e-n

] ⎡
⎢⎣

adj: β
mdd: be
mdr:
prn: e-n

⎤
⎥⎦

[
verb: is-a
arg: δ γ
prn: a-m

]
if α instantiates δ,
replace α with γ
and replace e-n with e-n’

{ . . . }

⎡
⎢⎣

verb: be
arg: dog
mdr: tired
prn: e-23

⎤
⎥⎦
⎡
⎢⎣

noun: dog
fnc: be
mdr:
prn: e-23

⎤
⎥⎦
⎡
⎢⎣

adj: tired
mdd: be
mdr:
prn: e-23

⎤
⎥⎦
⎡
⎢⎣

verb: is-a
arg: dog animal
mdr:
prn: a-11

⎤
⎥⎦

In this example, the first three patterns of the rule are matched with the episodic pro-
plets be, dog, and tired, thereby vertically binding the variable α to the value dog
and the variable β to the value tired. The fourth pattern is matched with an absolute
proplet. The variables δ and γ are vertically bound to the values dog and animal, re-
spectively. Because the token bound to the variable α instantiates the type bound to
variable δ, the operation of the rule replaces α with γ, resulting in the following new
proposition, which represents the conclusion of the inference:

5.3.9 RESULT OF APPLYING INF2 TO THE WORD BANK 5.2.1⎡
⎢⎣

verb: be
arg: animal
mdr: tired
prn: e-23’

⎤
⎥⎦

⎡
⎢⎣

noun: animal
fnc: be
mdr:
prn: e-23’

⎤
⎥⎦

⎡
⎢⎣

adj: tired
mdd: be
mdr:
prn: e-23’

⎤
⎥⎦

In this way, the original episodic proposition the dog is tired with the prn value e-23
is complemented by the variant the animal is tired with the prn value e-23’.

Therefore, prior to this application of modus ponens, querying the Word Bank 5.2.1
with the question Was the animal tired? would result in the answer no. Once the in-
ference is applied, however, the answer is yes – which is in concord with intuition.
Technically, the application of inf2 is an instance of nonmonotonic reasoning.

The method of inferring illustrated with inf2 may be extended to episodic proposi-
tions of other structures, e.g., one-place main verbs, two-place main verbs, etc., and
applied to proplets of all absolute propositions with the verb is-a, i.e., to all the ele-
ments of the is-a hierarchy. Similar rules may be defined for the other hierarchies.

5.4 Indirect Uses of Language 75

5.4 Indirect Uses of Language

The strict correspondence between language and context proplets illustrated in 3.2.4
raises the question of how to extend internal matching to nonliteral uses. As an exam-
ple (borrowed from FoCL’99, p. 92), consider a hearer who has just entered a room
containing only an orange crate. If the speaker commands Put the coffee on the table!,
the hearer will infer that table refers to the orange crate. Given the small number of
referential candidates in this limited context of use, the minimal meaning1 of the word
table best fits the structure of the orange crate (best match).

5.4.1 NONLITERAL USE OF THE WORD table

on the table
Put the coffee

[concept]

Put the coffee
on the table on the table

Put the coffee

[concept]

hearer speaker

orange crate

However, if a prototypical table were placed next to the orange crate, the hearer would
interpret the sentence differently, putting the coffee not on the orange crate, but on the
table. This is not caused by a change in the meaning1 of table, but by the fact that the
context of use has changed, providing an additional candidate for best match.5

The importance of metaphor as a basic principle of natural language communication
has been emphasized by Lakoff and Johnson (1980) and subsequent work. However,
their approach is quite different from ours because it is based on the following mean-
ing definition by Grice:

5.4.2 GRICE’S DEFINITION OF MEANING

Definiendum: U meant something by uttering x.
Definiens: For some audience A, U intends his utterance of x to produce in A
some effect (response) E, by means of A’s recognition of the intention.6

One problem with this definition is that it is not suitable for a computational model.7

4 Whether a concept happens to be a type or a token may be inferred from the distinction between
absolute and episodic propositions, formally marked by the prn values.

5 The principle of best match can only function properly if the choice of possible candidates is re-
stricted. Therefore the selection and delimitation of the context of use based on the sign’s STAR
is crucial for the successful interpretation of natural language. Cf. 2.6.2 above. For a more detailed
discussion see FoCL’99, pp. 93 ff., Sect. 5.3.

6 Cf. Grice (1957) and (1965).
7 For a more detailed discussion see FoCL’99, pp. 84–86.

76 5. Forms of Thinking

Regarding metaphor, the difference between the two approaches may be demon-
strated with the following example from Lakoff and Johnson (1980, p. 12). They
present the utterance Please sit in the apple juice seat as referring to the seat with
the apple juice setting, and continue: “In isolation this sentence has no meaning at all,
since the expression ‘apple juice seat’ is not a conventional way of referring to any
kind of object.” For the SLIM theory of language, the question is whether Lakoff and
Johnson use the term “meaning” as the meaning1 of the sign, or the meaning2 of the
utterance (cf. 2.6.1). If “meaning” is to be interpreted as the literal meaning1 of the
sign apple juice seat, then the sentence clearly does have such a meaning, composi-
tionally derived from the meaning1 of its words. If “meaning” is to be interpreted as
meaning2, however, then it holds by definition that no sentence has a meaning2 in
isolation, i.e., as a sign type and without an associated context of interpretation.

According to our analysis, the metaphoric reference in this example comes about
by matching the meaning1 of the expression with a context containing a seat with an
apple juice setting. The meaning1 derived from the words apple, juice, and seat is
minimal in the sense of seat related to apple juice. Given the limited set of referential
candidates in the context in question, this literal meaning is sufficient to pick out the
intended referent based on the principle of best match.

For Database Semantics, the crucial question raised by this analysis of indirect use
is how the principle of best match should be implemented formally. Rather than loos-
ening the matching conditions defined in 3.2.3 (as would be suggested by the intuitive
approach illustrated in 5.4.1), Database Semantics handles nonliteral (indirect) lan-
guage uses on the basis of inferencing.

Direct and indirect uses differ as follows: In direct use, the language and the con-
text proplets match in accordance with the matching condition 3.2.3, as illustrated in
3.2.4, whereas in indirect use, inferences first map some of the context proplets into
a secondary coding that is then matched by corresponding language proplets directly,
again in accordance with the matching condition 3.2.3.8 For example, if the contextual
content the dog is tired is to be coded into language as the animal is tired, then is tired
is a direct use while the animal is an indirect use based on the absolute proposition a
dog is an animal (see 5.3.5–5.3.9):

5.4.3 CONTEXTUAL INFERENCE UNDERLYING A NONLITERAL USE

tokentoken
animal tired

animal tired
type type

internal matching

language level

context level

inference

dog
token

5.4 Indirect Uses of Language 77

In the speaker mode, the proposition dog tired is extended at the context level into
the secondary coding animal tired. This secondary coding is matched directly with
language proplets. In the hearer mode, the language proplets animal tired are matched
directly with corresponding context proplets. By looking for an appropriate instanti-
ation of animal at the context level, the hearer reconstructs the primary coding from
the secondary coding via an inference.

With this approach, direct and indirect uses of language differ solely in whether
or not the proplet representing the referent is the referent itself (primary coding) or
instead some other proplet related to the referent via an inference (secondary coding).
This way of handling inferences, secondary codings, and indirect language uses has
the following advantages:

5.4.4 ADVANTAGES OF HANDLING INDIRECT USES VIA INFERENCES

1. Direct and indirect uses of language are based on the same method of strict inter-
nal matching (cf. 3.2.3), which greatly facilitates computational realization.

2. The inferencing underlying indirect uses is restricted to the level of context.
Therefore, agents with and without language can use the same cognitive system.

3. Inferencing at the level of context is much more powerful and flexible than the
traditional inferencing based on isolated signs of language.

4. Assuming that natural language directly reflects the contextual coding, the con-
textual inferences can be studied by analyzing their language reflections.

Let us consider the inference, the secondary coding, and the indirect use of language
in a few more examples. Another kind of indirect use, called pars pro toto, is based
on the inference of choosing a prominent property of the referent, as when observing
girl with pink dress wants to sing (context level) and expressing it with the sentence
The pink dress wants to sing (language level).

Other inferences underlying a secondary coding select a characteristic behavior to
refer to an individual, as in The man eater went back into the jungle, where the subject
refers to a tiger preying on humans. Indirect uses arise also with absolute propositions.
For example, The master of the animal kingdom lives in Africa (language level) may
be used to express The lion lives in Africa (context level).

Indirect uses and the inferences on which they are based apply to all three parts
of speech. An indirect use of a verb is illustrated by Julia did the dishes. Here an
inference selects the verb from a higher place in the semantic hierarchy associated
with wash, just as in our initial nominal example of referring to a dog with the word
animal. The indirect use of an adjective, finally, is illustrated by easy money, where
easy is a secondary coding expressing the manner in which the money is obtained.

8 For example, the inference underlying 5.4.1 is based on the absolute propositions A table has a flat
surface and An orange crate has a flat surface. Rather than formally reconstructing this inference, we
use the inference defined in the previous section for the following Example 5.4.3.

78 5. Forms of Thinking

Indirect uses arise not only with the sign kind of symbols, as when referring to
the context proplet dog using the symbolic language proplet animal, but also with
indexicals and names. For example, there are indirect uses of referring with a concept
to a referent represented by a name proplet, as in calling Richthofen the red baron,
referring with an indexical to a name proplet, as in calling Julia she, referring with
an indexical to a referent represented by a concept proplet, as in calling the book in
front of me it, etc. All these forms of reference are based on a secondary coding with
associated inferencing at the level of context.

5.5 Secondary Coding as Perspective Taking

The derivation of secondary codings, defined solely at the level of context, is indepen-
dent of whether or not the agent has the language faculty. Accordingly, even a dog, for
example, could view an entity from a certain subjective perspective, such as viewing
the mail man as an enemy. The role of secondary codings in agents with and without
language may be shown schematically as follows:

5.5.1 CODING LEVELS IN AGENTS WITH AND WITHOUT LANGUAGE

primary codingprimary coding

secondary coding

language coding

agent with language

secondary coding

input
output

input
output

indirect language uses

direct language uses

agent without language

output
input

In terms of evolution, the levels of primary and secondary coding in agents without
language are being reused essentially unchanged in agents with language. The whole
machinery of inferencing and secondary coding is already present when language is
added. The adding of language is based on matching the primary and the secondary
codings directly (vertical arrows).

The functions of the three kinds of coding may be summarized as follows:

5.5.2 FUNCTIONS OF CODING LEVELS IN DATABASE SEMANTICS

1. Primary coding at the context level:
Represents contextual recognition and action at a low level of abstraction in a
simple standardized format in order to ensure veracity.

5.6 Shades of Meaning 79

2. Secondary coding at the context level:
Consists of inferencing over the primary coding in order to obtain sufficient ex-
pressive power at varying levels of abstraction.

3. Language coding:
Represents primary and secondary context coding in a natural language.

Primary and secondary codings are related to each other by inferences. They are re-
lated to the language coding by a strict method of internal matching.

The combination of primary and secondary coding allows content to be represented
from different points of view at different levels of abstraction. Thereby the primary
contextual coding can be left intact, at least in short-term memory. Long-term storage,
however, may involve a fusion of primary and secondary coding into a condensed form
– depending on the amount of content and the limits of storage.

While the primary coding of a given content is basically the same in different agents,
their secondary codings may vary widely, depending on their knowledge and pur-
poses. For example, an experienced scout and a greenhorn may see the same broken
twig in primary coding. In secondary coding, however, the scout may spontaneously
see the twig as a trace of whatever they pursue, while the greenhorn does not. Using
language, however, the scout may adjust the greenhorn’s secondary coding to his own.

5.6 Shades of Meaning

It seems to be taken for granted that a native speaker’s intuitions about the meaning
of a word could never be modeled in an artificial agent. This, however, is an un-
justified assumption. In fact, the meaning of a word consists of several well-defined
ingredients. That some of them consist of (i) personal experiences and (ii) implicit
assumptions of the surrounding culture does not mean that they cannot be modeled.

The ingredients of a word meaning are based on the distinctions (i) between concept
types and concept tokens, (ii) between episodic and absolute propositions, and (iii)
between primary and secondary codings. Consider the word dog, for example.

First, there is the result of lexical lookup:

5.6.1 LEXICAL LOOKUP OF THE WORD dog⎡
⎢⎢⎣

sur: dog
noun: dog
fnc:
mdr:
prn:

⎤
⎥⎥⎦

Lexical lookup provides the semantic core, here dog, defined as a concept type and
serving as the meaning1.

Then there are all the absolute proplets containing the concept type dog listed in the
absolute part of the token line of this concept (cf. 5.2.3 and 5.2.4, field 2):

80 5. Forms of Thinking

5.6.2 ABSOLUTE PART OF THE TOKEN LINE OF dog

[
noun: dog

]
⎡
⎢⎣

noun: dog
fnc: be
mdr:
prn: a-1

⎤
⎥⎦

⎡
⎢⎣

noun: dog
fnc: have
mdr:
prn: a-2

⎤
⎥⎦ . . .

These absolute proplets are connected: Based on their continuation values, all the
absolute propositions about dogs may be activated, lighting up a subnetwork in the
Word Bank. In this way, the semantic core of the lexical proplet (meaning1) is com-
plemented compositionally with the agent’s general knowledge about dogs. This as-
pect of meaning is represented in the following schema as the second circle, called
absolute connections:

5.6.3 COMPLEMENTATION OF A LITERAL MEANING1 (CONCEPT TYPE)

absolute
connections

concept

connections
episodic

type
concept

tokens

In addition to complementing a literal meaning1, represented by a concept type, with
all the absolute connections related to it there are the episodic proplets in the token line
of the concept (cf. 5.2.3 and 5.2.4, field 3). If the concept is dog, for example, then the
episodic proplets in its token line complement the core value type of the lexical item,
e.g., 5.6.1, with all the core value tokens of dogs the agent has encountered and stored
so far. These core value tokens may have any degree of detail, such as the kind of dog,
the color of fur, the sound of barking, etc., depending on the memory available to the
agent as well as the individual importance of each token. Given that these tokens arise

5.6 Shades of Meaning 81

at the level of context, they constitute an aspect of meaning which is generalized in
the sense that it is independent of a particular utterance (cf. concept tokens in 5.6.3).

Finally, the episodic proplets in the token line of dog are the starting points of all
the episodic propositions involving dogs, including secondary codings based on infer-
ences. Using the retrieval mechanism of the Word Bank, the proplets of these propo-
sitions may be activated. In this way, the generalized aspect of meaning represented
by the set of dog tokens is complemented compositionally with the agent’s individual
dog experiences (cf. episodic connections in 5.6.3).

Thus, the build-up of structure, from concepts types to absolute connections to con-
cept tokens to episodic connections can well explain why a concept type, as the min-
imal literal meaning1 used for matching between the language and the context level
(cf. 4.2.2), is intuitively shrouded behind a cloud of individual differentiations. These
consist of the agent’s various tokens of the concept instantiating the type (content as-
pect of the word) and the various absolute and episodic connections (combinatorial
aspects of the word). Due to the data structure of a Word Bank, they can all be acti-
vated with great ease, and jointly represent the associations an agent may have with a
word’s concept.9

9 In some natural languages, e.g., German, the meaning of a sentence or phrase may be shaded by using
a fairly large number of “particles.” Examples in German (cf. Weydt (1969), Engel (1991), Ickler
(1994)) are aber (but), auch (also), bloss (merely), as in Das ist aber schön! (That is but
beautiful!), Sind Sie auch zufrieden? (Are you also content?), Was hat sie sich bloss
gedacht?! (What has she herself merely thought?!), etc. Their main contribution to
the overall interpretation is the triggering of certain inferences about the speaker’s perspective.

Remark Concluding Part I

This part has presented a high-level description of Database Semantics (DBS). As an
abstract model of natural language communication between humans, it provides the
theoretical foundation for building artificial cognitive agents which human users can
communicate with freely in their accustomed language.

The more this goal is being reached, the more the use of programming languages
may be relegated to the maintenance routines of specialized “robot doctors.” Accord-
ingly, the keyboard and the screen of today’s computers may be reduced to the arti-
ficial agent’s service channel, while the communication with the user is entrusted to
the newly developed auto-channel (cf. 1.4.3) using natural language.

In the following Part II, the focus changes from the interfaces and components of a
cognitive agent to a systematic analysis of the major constructions of language, using
English as our example. The purpose of these analyses is to show (i) how the compo-
sitional aspect of natural language meaning is coded in the semantic representations
of DBS, (ii) how this coding is derived from the natural surface in the hearer mode,
and (iii) how the correct natural surface is derived from the semantic representation in
the speaker mode.

Part II

The Major Constructions of Natural Language

6. Intrapropositional Functor–Argument Structure

The major constructions of natural language consist of the primary relations of (i)
functor–argument structure and (ii) coordination, and the secondary relation of (iii)
coreference, occurring (a) intra- as well as (b) extrapropositionally. Analyzing these
six basic constellations requires the use of examples. Moreover, in order to be con-
crete, these examples must be from at least one real natural language. Thus, the task
at hand has a strongly sign-oriented aspect.

Nevertheless, our approach is also agent-oriented insofar as the examples are an-
alyzed in the speaker mode and the hearer mode. In the hearer mode, an LA-hear
grammar maps the language-dependent surface into a set of proplets suitable to be
stored in a Word Bank. In the speaker mode, an LA-think grammar navigates along
the grammatical relations established between the language-independent proplets in
the Word Bank while an LA-speak grammar realizes the traversed proplets in a natural
language of choice, here English.

In this chapter, we begin the systematic investigation of the major constructions with
the analysis of intrapropositional functor–argument structure. The grammatical ana-
lyses are presented at an intermediate level of abstraction, using the formats illustrated
in 3.4.2 and 3.5.3 for the hearer mode and the speaker mode, respectively.

6.1 Overview

In Database Semantics, the analysis of a grammatical construction comprises three
basic tasks: (i) Designing the semantic representation of the relevant natural language
example as a set of proplets, (ii) automatically deriving the semantic representation
from the example surface (hearer mode) and (iii) automatically deriving the surface
from the semantic representation (speaker mode).

The semantic representation of an intrapropositional functor–argument structure is
the set of proplets of an elementary proposition (cf. FoCL’99, p. 62). It consists of one
verb (relation, functor) with one, two, or three nouns (objects, arguments), the number
of which is determined by the verb. There may be adjectives (properties, modifiers)
modifying either the verb (adverbial use) or a noun (adnominal use).

To emphasize that the set of proplets serving as a semantic representation is un-
ordered, the following examples present the proplets in the alphabetical order of their
core values (rather than the order suggested by the natural surface).

88 6. Intrapropositional Functor–Argument Structure

6.1.1 EXAMPLES OF INTRAPROPOSITIONAL FUNCTOR–ARGUMENT STRUCTURE

1. Representing The man gave the child an apple (three-place verb)⎡
⎢⎣

noun: apple
fnc: give
mdr:
prn: 1

⎤
⎥⎦

⎡
⎢⎣

noun: child
fnc: give
mdr:
prn: 1

⎤
⎥⎦

⎡
⎢⎣

verb: give
arg: man child apple
mdr:
prn: 1

⎤
⎥⎦

⎡
⎢⎣

noun: man
fnc: give
mdr:
prn: 1

⎤
⎥⎦

2. Representing The little black dog barked (adnominal adjectives)⎡
⎢⎣

verb: bark
arg: dog
mdr:
prn: 2

⎤
⎥⎦

⎡
⎢⎣

adj: black
mdd: dog
mdr:
prn: 2

⎤
⎥⎦

⎡
⎢⎣

adj: little
mdd: dog
mdr:
prn: 2

⎤
⎥⎦

⎡
⎢⎣

noun: dog
fnc: bark
mdr: little black
prn: 2

⎤
⎥⎦

3. Representing Julia has been sleeping deeply (adverbial adjective)⎡
⎢⎣

adj: deep
mdd: sleep
mdr:
prn: 3

⎤
⎥⎦

⎡
⎢⎣

noun: Julia
fnc: sleep
mdr:
prn: 3

⎤
⎥⎦

⎡
⎢⎣

verb: sleep
arg: Julia
mdr: deep
prn: 3

⎤
⎥⎦

These semantic representations show the coding of grammatical relations. The func-
tion words have been absorbed by fusing them with the associated content words. The
contributions of the function words as well as other morpho-syntactic details are spec-
ified in the attributes cat (for category) and sem (for semantics), which are omitted
here for simplicity.1 For complete semantic representations see Part III.

In Example 1, the verb give takes the noun arguments man, child, and apple. These
grammatical relations are coded by the value give in the fnc slot of the noun proplets
man, child, and apple, and by the values man, child, and apple in the arg slot of the
verb proplet give. The different case roles of the arguments are specified in terms of
their order in the arg slot of the verb proplet. The lexical proplets of the determiners
have been fused with their noun proplets, whereby their contributions are represented
as values of the cat and sem attributes (not shown, cf. Sect. 13.4).

In Example 2, the noun dog is modified by the adnominal adjectives little and black.
These grammatical relations are coded by the value dog in the mdd slot of the adjective
proplets little and black, and by the values little and black in the mdr slot of the noun
proplet dog. The adnominal use of the adjectives is specified as the value adn of the
cat attribute (not shown, cf. Sect. 13.3) of the adjective proplets.

In Example 3, the verb sleep is modified by the adverbial adjective deep. This rela-
tion is coded by the value sleep in the mdd slot of the proplet deep, and by the value
deep in the mdr slot of the verb proplet sleep. The adverbial use of the adjective is
specified as the value adv of the cat attribute (not shown) of the adjective proplet.

1 For example, in the derivation of Example 3 from the surface Julia has been sleeping deeply, the
contributions of the auxiliaries has been and the progressive form are specified in the verb proplet by
the feature [sem: hv_pres perf prog] to indicate the tense of the input sentence (cf. 13.4.7).

6.2 Determiners 89

6.2 Determiners

We turn now to deriving the semantic representation 6.1.1 (1) from a suitable English
surface (hearer mode). The result is an intrapropositional functor–argument structure
consisting of a three-place verb and its arguments. The derivation illustrates how de-
terminers and their nouns are fused by absorbing the noun into the determiner.

6.2.1 THREE-PLACE PROPOSITION: The man gave the child an apple

prn:
mdr:
arg:
verb: give

mdr:
fnc:

prn:

noun: child noun: apple
fnc:

prn:
mdr:

noun: man
fnc:
mdr:
prn:

mdr:
fnc:

prn:

fnc:
mdr:
prn:

noun: n_1
fnc:
mdr:
prn:

noun: n_2 noun: n_3

man

lexical lookup

the gave the child an apple

syntactic semantic parsing:

result of syntactic semantic parsing:

6
mdr:
prn: 23

mdr:
prn: 23

mdr:
prn:

1
mdr:
prn: 23

2 mdr:
prn: 23

3 mdr:
prn: 23

arg: man
mdr:
prn:

4 mdr:
prn: 23

mdr:
fnc: give

prn: 23
mdr:
fnc:

prn:

arg: man n_2

mdr:
prn: 23

noun: n_1
fnc:

noun: man
fnc:

noun: man
fnc:

prn:
mdr:
arg:
verb: give

noun: man
fnc: give

verb: give noun: n_2
fnc:

mdr:
prn: 23

5 mdr:
prn:

noun: man
fnc: give

verb: give noun: n_2 noun: child

mdr:
prn: 23

mdr:
prn: 23

arg: man child

prn:
mdr:

noun: man
fnc: give

verb: give

mdr:
prn: 23

noun: child
fnc: give

noun: n_3
fnc:

mdr:
prn: 23

mdr:
prn: 23

mdr:
prn: 23

mdr:
prn: 23

noun: man
fnc: give

verb: give
arg: man child n_3

noun: child
fnc: give

noun: n_3
fnc: give

noun: apple
fnc:

mdr:
prn: 23

noun: man
fnc: give

mdr:
prn: 23

arg: man child apple
verb: give noun: child

fnc: give
noun: apple
fnc: give

That the derivation 6.2.1 is time-linear (cf. 1.6.5) is apparent from the stair-like struc-
ture resulting from adding exactly one new “next word” in each new proplet line.
The derivation is also surface compositional (cf. 1.6.1) because each word form in the
surface has a lexical analysis and there are no “zero elements” postulated in the input.

In line 1, the substitution value n_1 of the determiner proplet is replaced by the
value man of the noun proplet, which is then discarded (function word absorption).
The result is shown in the first proplet of line 2. In the combination of the proplets
man and give, the core value of man is copied into the arg slot of the verb and the core

90 6. Intrapropositional Functor–Argument Structure

value of give into to fnc slot of the noun. In line 3, the value give is copied into the fnc
attribute of the next word proplet the, and the substitution value n_2 of the is copied
into the arg slot of the verb.2 In line 4, both instances of the substitution value n_2 are
replaced by the value child of the next word. Integration of the noun proplet apple in
lines 5 and 6 is analogous to that of child in lines 3 and 4. The result of the derivation
is shown in the bottom line, using the natural surface order.

Once these proplets have been stored in the Word Bank, they support various LA-
think traversals which use the relations between proplets for retrieval. One of these
traversals is the standard VNNN navigation (cf. Appendix A), where the first N is the
subject, the second N the indirect object, and the third N the direct object. Consider
the production of the English input sentence from such a VNNN navigation:

6.2.2 SCHEMATIC PRODUCTION FROM A THREE-PLACE PROPOSITION

activated sequence realization
i

. . . V
i.1 d d

V N
i.2 d nn d nn

V N
i.3 fv d nn d nn fv

V N
i.4 fv d nn d d nn fv d

V N N
i.5 fv d nn d nn d nn fv d nn

V N N
i.6 v d nn d nn d d nn v d nn d

V N N N
i.7 fv d nn d nn d nn d nn fv d nn d nn

V N N N
i.8 fv p d nn d nn d nn d nn fv d nn d nn p

V N N N

Like 3.5.3, this derivation shows the handling of word order, function word precipita-
tion, and the switching between LA-think and LA-speak. The abstract surfaces d, nn,
fv, and p stand for determiner, noun, finite verb, and punctuation, respectively.

In Database Semantics, the meaning of the determiners (here the) is handled in terms
of the atomic values exh, sel, sg, pl, def, and indef (cf. 6.2.9) in the sem attribute (cf.
6.2.7) of the noun proplets. This is different from the treatment of determiners as
quantifiers in Predicate Calculus, beginning with Russell’s (1905) celebrated analysis

2 To distinguish different determiners, the substitution values n_1, n_2, n_3, etc., are automatically
incremented during lexical lookup (cf. 13.3.5, 13.5.4, and 13.5.6).

6.2 Determiners 91

of “definite descriptions” and still being expanded within the framework associated
with Montague (1974), e.g., Barwise and Perry (1983); Kamp and Reyle (1993); and
others. Consider the following example:

6.2.3 PREDICATE CALCULUS ANALYSIS OF All girls sleep

∀x [girl(x) → sleep(x)]

The interpretation of such a formula is defined with respect to a model and a variable
assignment. Following Montague (1974), the model @ is defined as a tuple (A,F),
where A is a set of individuals, e.g., {a0, a1, a2, a3}, and F is an assignment function
which assigns to every one-place predicate in the formal language an element of 2A

(i.e., the power set of A) as an interpretation (and accordingly for two-place predicates,
etc.). For example, F(girl) might be defined in @ as {a1, a2} and F(sleep) as {a0, a2}.
This means that a1 and a2 in the model are girls, while a0 and a2 are sleeping.

The dependence of the truth-value of a formula on the actual definition of the model
and a variable assignment is represented by Montague by adding @ and g as super-
scripts to the end of the formula:

6.2.4 INTERPRETATION RELATIVE TO A MODEL

∀x [girl(x) → sleep(x)]@,g

The interpretation of the quantifier ∀ is based on the variable assignment g as follows:
The whole formula is true relative to the model @ if it holds for all possible variable
assignments g′ that the formula without the outermost quantifier is true:

6.2.5 ELIMINATION OF THE OUTERMOST QUANTIFIER

[girl(x) → sleep(x)]@,g′

The purpose of eliminating the quantifier is to reduce the Predicate Calculus formula
to Propositional Calculus and its truth tables (cf. Bochenski 1961). This is achieved
by systematically assigning all possible values in the set of individuals A =def {a0, a1,
a2, a3} to the variable x and determining the truth-value of the subformulas girl(x) and
sleep(x) for each assignment. Thus, g′ first assigns to the variable x the value a0, then
the value a1, etc. Given the definition of the model @ =def (A,F), we can now check
for each such assigment whether or not it makes the formula 6.2.5 true.

For example, the first assignment g′(x) = a0 makes the formula true: a0 is not in the
set denoted by F(girl) in @; therefore, based on the truth table of p → q in Propositional
Calculus, the formula in 6.2.5 is true for this assignment. The second assignment
g′(x) = a1, in contrast, makes the formula in 6.2.5 false: a1 is in the set denoted by
F(girl), but not in the set denoted by F(sleep) in @. Having shown that not all variable
assignments g′ make the formula in 6.2.5 true, the interpretation of the formula in
6.2.3 is determined to be false relative to @. Given how the model @ =def (A,F) was
defined, this is in accordance with intuition.

92 6. Intrapropositional Functor–Argument Structure

This method of treating determiners at the highest level of the logical syntax leads
to ambiguities because the quantifiers may have different orders.3 For example, the
Predicate Calculus analysis of Every man loves a woman has the following readings:

6.2.6 ANALYZING Every man loves a woman IN PREDICATE CALCULUS

Reading 1: ∀x [man(x) → ∃y [woman(y) & love(x,y)]]
Reading 2: ∃y [woman(y) & ∀x [man(x) → love(x,y)]]

On reading 1, it holds for every man that there is some woman whom he loves. On
reading 2, there is a certain woman, e.g., Marilyn Monroe, who is loved by every man.

The two formulas of Predicate Calculus are based on the notions of functor–
argument structure, coordination, and coreference, though in a manner different from
their use in Database Semantics. Functor–argument structure is used in man(x),
woman(y), and love(x,y); coordination is used in [man(x) → P] and [woman(y) & Q];
and coreference is expressed by the quantifiers and the horizontally bound variables
in ∀x [man(x) ... love(x,y)] and ∃y [woman(y)... love(x,y)].

In Database Semantics, in contrast, the meanings of the determiners every and a are
expressed by atomic values pl exh of the sem attribute of the noun proplets:

6.2.7 RESULT OF PARSING Every man loves a woman IN DBS⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: man
cat: snp
sem: pl exh
mdr:
fnc: love
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

sur:
verb: love
cat: v
sem: pres
mdr:
arg: man woman
prn: 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: woman
cat: snp
sem: indef sg
mdr:
fnc: love
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In this analysis, the sentence is not ambiguous: It has only reading 1 of 6.2.6 – which
is entailed by reading 2 (i.e., reading 1 is true whenever reading 2 is true, but not vice
versa). In other words, whether or not some (or even all) of the men happen to love
the same woman is treated as a private matter in Database Semantics.

Furthermore, the Database Semantics analysis uses only intrapropositional functor–
argument structure: As in the natural surface, there is neither coordination nor coref-
erence. Treated as determiners, the “quantifiers” every and a are each fused with their
noun into a single proplet (similar to 6.2.1, 6.3.1, 6.5.1, 6.6.2, 8.2.1, and 8.3.2).

The atomic values exh (exhaustive), sel (selective), sg (singular), pl (plural), def
(definite), and indef (indefinite) are used in different combinations to characterize the
following kinds of noun phrases in English:
3 Cf. Kempson and Cormack (1981). In recent years, Minimal Recursion Semantics (MRS, Copestake,

Flickinger et al. 2006) has devoted much work to avoid the unnatural proliferation of readings caused
by different quantifier scopes, using “semantic under-specification.” In MRS, under-specification is
limited to quantifier scope (see also Steedman 2005). In Database Semantics, which has neither quan-
tifiers nor quantifier scope, semantic under-specification applies to all content coded at the language
level and is being used for the matching with a delimited context of use (cf. FoCL’99, Sect. 5.2).

6.2 Determiners 93

6.2.8 THE sem VALUES OF DIFFERENT DETERMINER–NOUN COMBINATIONS

a girl [sem: indef sg]
some girls [sem: indef pl sel]
all girls [sem: exh pl]
the girl [sem: def sg]
the girls [sem: def pl]

The atomic values have the following set-theoretic interpretations:

6.2.9 SET-THEORETIC INTERPRETATION OF exh, sel, sg, pl, def, indef

sg pl def indefexh sel

The value exh refers to all members of a set, called the domain, while sel refers only
to some. The value sg refers to a single member of the domain, while pl refers to more
than one. The value def refers to a prespecified subset of the domain, while no such
subset is presumed by indef.

Each value can only be combined with a value from the other pairs. Thus exh cannot
combine with sel, sg cannot combine with pl, and def cannot combine with indef.
However, the combinations exh pl, sel sg, sel pl, def sg, def pl, indef sg, indef pl, etc.,
are legitimate and have different meanings. The combination exh sg is theoretically
possible, but makes little sense (pace Russell 1905) because the domain would have
to be a unit set.

Regarding the interpretation of determiners in Database Semantics during commu-
nication, consider a robot in the speaker mode. If it perceives the set-theoretic situ-
ation corresponding to exh and pl as shown in 6.2.9, it will use the determiner all,
and similarly with the other values. Correspondingly, if a robot in the hearer mode
hears the noun phrase all girls, for example, it will be able to draw the corresponding
set-theoretic situation or to choose the right schema from several alternatives.

The Database Semantics approach differs from Predicate Calculus in that Predicate
Calculus uses the words some and all in the metalanguage to define the words some
and all in the object-language (as shown by the use of the variable assignment function
g′ described above), while Database Semantics is based on a procedural interpretation.
This difference is based on profoundly different ontological assumptions of the two
approaches, illustrated in 2.3.1 with the most simple sentence Julia sleeps.

A related difference is that the semantics of Predicate Calculus is based on truth-
conditions, while that of Database Semantics is not. Instead, Database Semantics
handles truth as procedural assertions. For example, if a robot observes correctly that
every girl is sleeping and communicates this fact by saying every girl is sleeping, it is

94 6. Intrapropositional Functor–Argument Structure

speaking truly. Semantically, every girl is sleeping asserts that there is a set of more
than one girl and all elements of the set participate in whatever is asserted by the verb.

6.3 Adjectives

A form of noun phrase more complex than the determiner–noun combination shown
above includes one or more adnominal adjectives, as illustrated by the following ex-
ample of a (short) modifier recursion:

6.3.1 PARSING The little black dog barked IN THE HEARER MODE

mdd:
prn:

adn: black
mdd:
prn:

adn: little
fnc:
mdr:
prn:

noun: dog

fnc:

prn: 23
mdr: little black

noun: dog

prn: 23

adn: little
mdd: dog

adn: black

prn: 23
mdd: dog mdr:

arg:

prn:

verb: bark

4

prn: 23
mdr: little black

noun: dog
fnc: bark

prn: 23

adn: little
mdd: dog

adn: black

prn: 23
mdd: dog

mdr:
arg: dog

prn: 23

verb: bark

fnc:
mdr:
prn:

noun: dog

lexical lookup

syntactic semantic parsing:

fnc:
mdr:
prn:

arg:

prn:
mdr:

verb: bark

the little black dog barked

result of syntactic semantic parsing:

noun: n_1

mdd:
prn:

adn: little
fnc:

prn: 23
mdr:1

fnc:

prn: 23
mdr: little 2

prn: 23

adn: little
mdd:
prn:

adn: black

noun: n_1

mdd: n_1
noun: n_1

3
prn: 23

adn: little adn: black

prn: 23
fnc:

prn: 23
mdr: little black

noun: n_1
mdd: n_1 mdd: n_1

In line 1, the core value of the adnominal adjective little is copied into the mdr slot
of the determiner, and the substitution value n_1 is copied into the mdd slot of the
proplet little. In line 2, the core value of the adnominal adjective black is copied and
added to the mdr slot of the determiner, and the substitution value n_1 is copied into
the mdd slot of the proplet black. In line 3, all three instances of the substitution value
n_1 are simultaneously replaced by the core value of the lexical proplet dog, which
is then discarded. In line 4, the core value of the former determiner proplet is copied
into the arg slot of the verb proplet bark, and the core value of the verb is copied into
the fnc slot of the former determiner proplet. As a result any adnominal, e.g., black,

6.3 Adjectives 95

allows the retrieval of the associated noun, here dog, and any noun allows the retrieval
of the associated adnominal(s), here little and black.

The (re)production of the input sentence from a standard VNAA navigation in the
speaker mode is characterized below.

6.3.2 SCHEMATIC PRODUCTION OF THE The little black dog barked

activated sequence realization
i

V
i.1 d d

V N
i.2 d an d an

V N A
i.3 d an an d an an

V N A A
i.4 d nn an an d an an nn

V N A A
i.5 fv d nn an an d an an nn fv

V N A A
i.6 fv p d nn an an d an an nn fv p

V N A A

The abstract surfaces d, an, nn, fv, and p stand for determiner, adnominal, noun, finite
verb, and punctuation, respectively.

Next consider the time-linear derivation of a sentence with an adverbial adjective:

6.3.3 PARSING Fido barked loudly IN THE HEARER MODE

fnc:
mdr:
prn:

noun: Fido
arg:

prn:
mdr:

verb: bark

arg:

prn:
mdr:

verb: bark

mdd:
prn:

adn: loud

mdd:
prn:

adn: loud

lexical lookup

syntactic semantic parsing:

1

2

Fido barked loudly

fnc:
mdr:

noun: Fido

result of syntactic semantic parsing:

prn: 17

mdr:

noun: Fido

mdr:

verb: bark
fnc: bark arg: Fido

prn: 17 prn: 17

mdr:

noun: Fido verb: bark
fnc: bark arg: Fido

adn: loud

mdr: loud mdd: bark

prn: 17 prn: 17 prn: 17

96 6. Intrapropositional Functor–Argument Structure

In adverbial use, the adjective proplet contains a copy of the core value of the modified
verb in its mdd slot – in contrast to adnominal use, in which the adjective proplet
contains a copy of the core value of the modified noun. Furthermore, in adverbial use
it is the verb which contains a copy of the adjective’s core value in its mdr slot, while
in adnominal use it is the noun.

The (re)production of the input sentence from a standard VNA navigation in the
speaker mode is characterized below:

6.3.4 SCHEMATIC PRODUCTION OF THE Fido barked loudly

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n av n fv av

V N A
i.4 fv p n av n fv av p

V N A

The abstract surfaces n and av stand for name and adverbial, respectively.
In Database Semantics, adnominal and adverbial modifiers are treated as variants of

the same part of speech: adjective. The Latin root of this term means “what is thrown
in,” which aptly characterizes the optional quality of modifiers in general.

6.3.5 RELATION OF THE TERMS Adjective, Adnominal, and Adverbial IN DBS

adverbial

adjective

adnominal

fast

beautiful beautifully

in ten seconds

The morphological motivation for treating adnominals and adverbials as instances of
the same part of speech is their similarity. Consider, for example, the adnominal ad-
jective beautiful and the adverbial adjective beautifully in English, or schöne, schöner,
schönes, etc., (adnominal adjectives) and schön (adverbial adjective) in German. The
two uses resemble each other also in their analytic degrees, as in more beautiful (ad-
nominal) and more beautifully (adverbial). In synthetic degrees, as in faster, the ad-
nominal and the adverbial form are not even distinguished in English.

Modifier proplets have the core attribute adj, which represents the part of speech. If
there is no morphological distinction between the adnominal and adverbial use of a

6.4 Auxiliaries 97

modifier and its grammatical role is still undefined, it is called an adjective. Modifiers
which are restricted morphologically or by their syntactic environment to adnominal
use are called adnominals, and accordingly for adverbials. Just as there are elemen-
tary nouns like Fido and complex nouns like the little black dog, there are elementary
adjectives like fast and complex adjectives like in ten seconds.

6.4 Auxiliaries

Another kind of function word besides determiners are auxiliaries. They combine with
nonfinite forms of the main verb to form complex constructions:

6.4.1 COMPLEX VERB PHRASE: Fido has been barking

result of syntactic semantic parsing:

verb: bark

prn:

arg:
mdr:
prn:

arg: Fido

prn: 24

noun: Fido

mdr:
prn: 24

noun: Fido
fnc:
mdr:
prn: 24 prn:

mdr:
arg:

syntactic semantic parsing:

Fido has been barking

arg:
mdr:
prn:

noun: Fido
fnc:
mdr:
prn:

arg:

prn:
mdr:

verb: bark
arg:
mdr:
prn:

lexical lookup

1

2

3 mdr:
arg:

prn: 24 prn: 24

arg: Fido
mdr:

verb: barknoun: Fido
fnc: bark
mdr:

verb: v_1 verb: v_2

verb: v_1

fnc: v_1
verb: v_1 verb: v_2

mdr:

noun: Fido

prn: 24
mdr:
fnc: v_2 arg: Fido

mdr:
prn: 24

verb: v_2

Just as the determiners have the substitution values n_1, n_2, etc., (cf. 6.2.1), the
auxiliaries have the substitution values v_1, v_2, etc.„ as their core values.

In line 1, the value v_1 is copied into the fnc slot of Fido, and the core value of Fido
is copied into the arg slot of the first auxiliary. In line 2, the two instances of v_1 are
replaced by the value v_2 serving as the core value of the second auxiliary. In line 3,
the two instances of v_2 are replaced by the core value of the proplet bark, which is
then discarded (function word absorption). The contribution of the two auxiliaries and
the progressive form of the nonfinite main verb is represented by the values of the cat
and sem attributes (not shown, cf. Sect. 13.4) of the resulting verb proplet.

The production of auxiliaries (function word precipitation) is derived as follows:

98 6. Intrapropositional Functor–Argument Structure

6.4.2 SCHEMATIC PRODUCTION OF Fido has been barking

activated sequence realization
i.

V
i.1 n n

V N
i.2 ax n n ax

V N
i.3 ax ax n n ax ax

V N
i.4 ax ax nv n n ax ax nv

V N
i.6 ax ax nv p n n ax ax nv p

V N

Here, the abstract surfaces n, ax, nv, and p stand for name, auxiliary, nonfinite verb,
and punctuation, respectively.

6.5 Passive

Another kind of complex verb construction is passive. In grammar, active and passive
are called the genus verbi or voice of the verb. In Database Semantics, passive is
viewed as a certain perspective (cf. Sect. 5.5) on a propositional content, resulting
from backward navigation (see also Sect. 9.6).

6.5.1 INTERPRETATION OF PASSIVE: The book was read by John

arg:
mdr:
prn:

mdr:
arg: book

prn: 25

verb: v_1

verb: v_1

arg:
mdr:
prn:

verb: v_1
arg:
mdr:
prn:

mdr:
prn: prn:

Johnread by

verb: read
arg:
mdr:
prn:

verb: read
fnc:

noun: John
fnc:
mdr:

noun: n_3

was
lexical lookup

prn:
mdr:
fnc:

noun: book

prn:
mdr:
fnc:

the book

syntactic semantic parsing:

noun: n_1

1 fnc:
mdr:

prn:
mdr:
fnc:
noun: book

prn: 25

noun: n_1

2

noun: book
fnc:
mdr:
prn: 25

3
noun: book

mdr:
prn: 25

fnc: v_1

6.5 Passive 99

noun: book
fnc: read
mdr:
prn: 25

noun: John
fnc: read
mdr:
prn: 25

verb: read
arg: John book
mdr:
prn: 25

noun: book
fnc: read
mdr:
prn: 25

4
noun: book
fnc: read
mdr:
prn: 25 prn:

mdr:
fnc:

result of syntactic semantic parsing:

5 fnc: read
mdr:

noun: John
fnc:

prn:
mdr:

prn: 25

verb: read

mdr:
prn: 25

verb: read

mdr:
prn: 25

arg: n_2 book

arg: n_3 book

noun: n_3

noun: n_3

Up to line 2, the voice of the verb is undecided: The sentence start the book was could
be continued as an active, as in the book was lying on the table, or as the passive in
question. However, as soon as the past participle of read is added in line 3, the order of
the values in the arg attribute of the verb proplet is adjusted by inserting the nominal
substitution value n_2, fixing the switch to passive. The result is shown by the verbal
proplet in line 4.

At this point, the sentence could be completed as The book was read. Such a sup-
pression of the agent is an option typical of passive. In our derivation, it is expressed
by the feature [arg: n_2 book] of the verb proplet. It would be up to inferencing to
determine the agent by finding a suitable value for n_2. However, as the sentence con-
tinues with the by-phrase, the value n_2 is replaced by the value n_3. The nominal
proplet John is added and absorbed into the by-proplet, replacing all occurrences of
n_3 with the value John. The result is the same set of proplets as would be derived
from the corresponding active.

Once the proplets have been stored in the Word Bank, they can be traversed forward
or backward. A simple way to characterize a standard forward navigation is by show-
ing the steps as V . VN . VNN, while the alternative backward navigation through the
same set of proplets is shown as the steps V . V_N . VNN. This method presupposes
that the role of the verbal arguments is expressed by their order: The first N is the
agent or (deep) subject and the second N the patient or object; if there is a third N, the
second N is the indirect object and the third N is the direct object. In other words, the
same order is used in the arg attribute of verbal proplets, regardless of verbal voice.4

Based on a V . V_N . VNN navigation, the input sentence is (re)produced as follows:

6.5.2 SCHEMATIC PRODUCTION OF The book was read by John

activated sequence realization
i

V
i.1 d d

V N

4 Expressing the grammatical role in terms of order is a terminological choice. The same content could
be expressed by introducing additional attributes like agent. We do not take this option in order to

100 6. Intrapropositional Functor–Argument Structure

i.2 d nn d nn
V N

i.3 ax d nn d nn ax
V N

i.4 ax nv d nn d nn ax nv
V N

i.5 ax nv by d nn d nn ax nv by
V N N

i.6 ax nv by n d nn d nn ax nv by n
V N N

i.7 ax nv p by n d nn d nn ax nv by n p
V N N

The corresponding active is produced from the same set of proplets, but is activated
in the standard V . VN . VNN navigation order. A production of passive in the inter-
rogative mood is shown in A.5.2. For a more detailed analysis of passive in Database
Semantics, see Twiggs (2005).

6.6 Prepositions

We conclude our survey of intrapropositional functor–argument structures with prepo-
sitional phrases in adnominal and adverbial use (“PP attachment”). In certain posi-
tions, both interpretations are possible. For example, in Julia ate the apple on the
table, the prepositional phrase on the table can modify eat (in the sense of Julia sitting
on the table while eating) or apple (in the sense of eating the apple which was on the
table). In DBS, this ambiguity is handled in terms of semantic doubling:5

6.6.1 SEMANTIC DOUBLING OF A PREPOSITIONAL PHRASE

on the table+

[ADN] [ADV]

Julia ate the apple

According to this analysis, the example, is unambiguous syntactically because only
one representation is derived. It is ambiguous semantically, however, in that the prepo-
sitional phrase has an ADN (adnominal) and an ADV (adverbial) meaning attached
to it. It is assumed that the alternative ADN and ADV meanings are positioned rela-
tive to the context of use, whereby the choice between the alternatives is based on the
principle of best match.

The formal realization of semantic doubling is shown by the following derivation:

maintain the flat (nonrecursive) feature structure of proplets.
5 The method of semantic doubling was first proposed in CoL’89, pp. 219–232 and pp. 239–247. See

also FoCL’99, pp. 234 ff.

6.6 Prepositions 101

6.6.2 ADJECTIVAL PHRASE: Julia ate the apple on the table

noun: Julia
fnc: eat
mdr:
prn: 25

noun: Julia

prn: 25

fnc: eat
mdr:

prn:

noun: Julia
fnc:
mdr:

noun: apple
fnc: eat
mdr:
prn: 25

noun: table

mdr:
prn:

fnc:

adj: on table
mdd:%apple

%eat
prn: 25

verb: eat
arg: Julia apple
mdr:
prn: 25

verb: eat

mdr:%on table
prn: 25

arg: Julia apple

noun: Julia
fnc:
mdr:
prn: 25

prn: 25

noun: Julia
fnc: eat
mdr:

noun: Julia

prn: 25

fnc: eat
mdr:

noun: Julia
fnc: eat
mdr:
prn: 25

1

2

3

4

5

6

Julia

lexical lookup

syntactic semantic parsing:

result of syntactic semantic parsing:

the

fnc:
mdr:
prn:

fnc: eat
mdr:
prn: 25

noun: apple
fnc: eat

prn: 25

noun: apple
fnc: eat
mdr:%on table
prn: 25

table

noun: table

prn:
mdr:
fnc:

the

fnc:

prn:
mdr:

prn:
mdd:

on

mdd:

prn:

prn: 25

mdd:%apple
%eat

apple

noun: apple
fnc:
mdr:
prn:

noun: apple
fnc:
mdr:
prn:

adj: on n_2

adj: on n_2

mdd:%apple
%eat

prn: 25

noun: Julia

prn: 25
mdr:
fnc: eat

noun: apple
fnc: eat

prn: 25

ate

verb: eat
arg:
mdr:
prn:

verb: eat
arg:
mdr:
prn:

verb: eat
arg: Julia
mdr:
prn: 25

verb: eat

prn: 25
mdr:

arg: Julia apple
verb: eat

prn: 25
mdr: %on n_2 mdr: %on n_2

fnc:
mdr:
prn:

prn: 25

verb: eat
arg: Julia apple
mdr:%on n_3 mdr:%on n_3

noun: n_3

adj: on n_3

noun: n_1

fnc:
mdr:
prn:

noun: n_1

noun: n_1
arg: Julia n_1

adj: on n_2 noun: n_3

In line 4, the adj value of the preposition is copied into the mdr slot of both the verb
proplet eat and the noun proplet apple. Furthermore, the core values of the verb and
the noun are both copied into the mdd slot of the preposition on. To indicate that
the copied values are only one of several possible interpretations (here two), they are
preceded by % (cf. line 5). The fusion of the proplets on, the, and table into one is
another instance of function word absorption.

When the resulting proplets are stored, the ambiguity may be resolved by an infer-
ence which removes a pair of %-values, for example, %on table in the mdr-slot of the
eat proplet and %eat in the mdd-slot of the on table proplet. However, the proplets
may also remain as they are, leaving the ambiguity in place.

Turning to the (re)production of the input sentence in its two interpretations, con-
sider the retrieval connections of the output of 6.6.2:

102 6. Intrapropositional Functor–Argument Structure

6.6.3 RETRIEVAL DURING NAVIGATION

noun: Julia

prn: 25
mdr:%on table
prn: 25

fnc: eat
mdr:

arg: Julia apple fnc: eat mdd:%apple
%eat

prn: 25
mdr:%on table
prn: 25

adj: on tablenoun: appleverb: eat

Starting with the V proplet eat, the navigation retrieves the N proplet Julia, returns
to the V, and retrieves the N proplet apple. At this point it may either return to the
V to continue from there to the adverbial interpretation of on table (dashed arrows),
or it may continue directly to the adnominal interpretation (dotted arrow). Either case
produces a standard VNNA navigation, serving as the basis of the following schematic
production:

6.6.4 PRODUCTION OF Julia ate the apple on the table

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n d n fv d

V N N
i.4 fv n d n n fv d n

V N N
i.5 fv n d n pp n fv d n pp

V N N A
i.6 fv n d n pp d n fv d n pp d

V N N A
i.7 fv n d n pp d nn n fv d n pp d nn

V N N A
i.8 fv p n d n pp d nn n fv d n pp d nn p

V N N A

The abstract surface pp stands for a preposition.
Treating “PP-attachment” by means of semantic doubling is especially beneficial

in more complex examples containing potentially unlimited sequences of preposi-
tional phrases, as in Julia ate the apple on the table in the garden behind the tree
There, semantic doubling reduces the mathematical complexity from the exponential
complexity of the Nativist approach to linear complexity.6 For a detailed analysis of
“prepositional phrase attachment” in the hearer mode see Chapt. 15.

6 Cf. FoCL’99, Sect. 12.5.

7. Extrapropositional Functor–Argument Structure

In natural language, extrapropositional relations can be intrasentential or extrasen-
tential. This distinction is best explained with extrapropositional coordination. For
example, Julia sleeps and Susanne sings. is intrasentential extrapropositional, while
Julia sings. Susanne sleeps. is extrasentential extrapropositional.

Extrapropositional functor–argument structure is always intrasentential. In the sim-
plest case, there are two propositions, one representing the higher and the other the
lower clause. The lower clause serves in the higher clause as (i) a sentential argument
or (ii) a sentential modifier.

In sentential arguments, the subordinate proposition functions like a noun, serving
as the subject or as an object. In sentential modifiers, the subordinate proposition
functions like an adjective, serving as an adnominal or as an adverbial. Adnominal
sentential modifiers are also known as relative clauses.

7.1 Overview

The two propositions of a simple extrapropositional functor–argument structure are
each represented by a set of proplets. The proplets of the first proposition are held
together by being co-indexed, in the sense of having the same prn value. The proplets
of the other proposition are co-indexed as well, and distinguished from the first by
having a different prn value.

In sentential argument and adverbial modifier constructions, the connection between
the higher and the lower proposition is established by the verb proplet of the higher
proposition taking the prn and the core value of the verb proplet of the lower propo-
sition as one of its arg or mdr values, for example, [arg: 27 bark Mary] (subject sen-
tence), [arg: John 31 bark] (object sentence), or [mdr: 36 bark] (adverbial sentence).
In adnominal modifier constructions (relative clauses), the connection in question is
established by a noun proplet in the higher proposition taking the prn and the core
value of the lower verb as the values of its mdr attribute.

The inverse connection between the lower and the higher proposition is based on
two new kinds of proplets with the core attributes n/v and a/v. The attribute n/v in-
dicates that the verb proplet of a sentential argument proposition functions (i) as a
nominal argument in the higher and (ii) as the verb of the lower proposition. Similarly,

104 7. Extrapropositional Functor–Argument Structure

the attribute a/v indicates that the verb of a sentential modifier proposition functions
(i) as an adjective in the higher and (ii) as the verb of the lower proposition.

The essential attributes and values of n/v and a/v proplets in sentential arguments,
adverbials, and adnominals may be shown schematically as follows:

7.1.1 VERB PROPLETS OF SUBORDINATE CLAUSES

subject or object sentence adverbial sentence adnominal sentence⎡
⎢⎣

n/v: verb of the subclause
arg: noun(s) of the subclause
fnc: verb of the higher clause
prn: number of the subclause

⎤
⎥⎦

⎡
⎢⎣

a/v: verb of the subclause
arg: noun(s) of the subclause
mdd: verb of the higher clause
prn: number of the subclause

⎤
⎥⎦

⎡
⎢⎣

a/v: verb of the subclause
arg: noun(s) of the subclause
mdd: noun of the higher clause
prn: number of the subclause

⎤
⎥⎦

To serve as a noun of the higher clause, an n/v proplet must have a fnc attribute. To
serve as an adjective in the higher clause, an a/v proplet must have an mdd attribute.

As in the preceding chapter, we begin with the semantic representations of the differ-
ent constructions by analyzing them as sets of proplets, concentrating on the grammat-
ical relations. To facilitate understanding, the proplets are shown in the order which
would result from the time-linear analysis of the surfaces specified in English (rather
than in the alphabetical order of their core values, as in 6.1.1).

7.1.2 EXAMPLES OF EXTRAPROPOSITIONAL FUNCTOR–ARG. STRUCTURE

1. Representing That Fido barked amused Mary (subject sentence)⎡
⎢⎣

n/v: that bark
arg: Fido
fnc: 28 amuse
prn: 27

⎤
⎥⎦

⎡
⎢⎣

noun: Fido
fnc: bark
mdr:
prn: 27

⎤
⎥⎦

⎡
⎢⎣

verb: amuse
arg: 27 bark Mary
mdr:
prn: 28

⎤
⎥⎦

⎡
⎢⎣

noun: Mary
fnc: amuse
mdr:
prn: 28

⎤
⎥⎦

2. Representing John heard that Fido barked (object sentence)⎡
⎢⎣

noun: John
fnc: hear
mdr:
prn: 30

⎤
⎥⎦

⎡
⎢⎣

verb: hear
arg: John 31 bark
mdr:
prn: 30

⎤
⎥⎦

⎡
⎢⎣

n/v: that bark
arg: Fido
fnc: 30 hear
prn: 31

⎤
⎥⎦

⎡
⎢⎣

noun: Fido
fnc: bark
mdr:
prn: 31

⎤
⎥⎦

3. Representing The dog which saw Mary barked (adnominal sent., subject gap)⎡
⎢⎣

noun: dog
fnc: bark
mdr: 33 see
prn: 32

⎤
⎥⎦

⎡
⎢⎣

a/v: see
arg: # Mary
mdd:32 dog
prn: 33

⎤
⎥⎦

⎡
⎢⎣

noun: Mary
fnc: see
mdr:
prn: 33

⎤
⎥⎦

⎡
⎢⎣

verb: bark
arg: dog
mdr:
prn: 32

⎤
⎥⎦

4. Representing The dog which Mary saw barked (adnominal sent., object gap)⎡
⎢⎣

noun: dog
fnc: bark
mdr: 35 see
prn: 34

⎤
⎥⎦

⎡
⎢⎣

a/v: see
arg: Mary #
mdd:34 dog
prn: 35

⎤
⎥⎦

⎡
⎢⎣

noun: Mary
fnc: see
mdr:
prn: 35

⎤
⎥⎦

⎡
⎢⎣

verb: bark
arg: dog
mdr:
prn: 34

⎤
⎥⎦

5. Representing When Fido barked Mary smiled (adverbial sentence)⎡
⎢⎣

a/v: when bark
arg: Fido
mdd:37 smile
prn: 36

⎤
⎥⎦

⎡
⎢⎣

noun: Fido
fnc: bark
mdr:
prn: 36

⎤
⎥⎦

⎡
⎢⎣

noun: Mary
fnc: smile
mdr:
prn: 37

⎤
⎥⎦

⎡
⎢⎣

verb: smile
arg: Mary
mdr: 36 bark
prn: 37

⎤
⎥⎦

7.2 Sentential Argument as Subject 105

Extrapropositional values are preceded by a prn number, e.g., [fnc: 28 amuse].
In sentential argument constructions, there is a gap in the higher clause. Located in

the arg slot of the higher verb proplet, it is filled by a pointer to the lower clause, e.g.,
[arg: 27 bark Mary] (with 27 bark serving as a subject sentence, cf. 7.1.2, 1) and [arg:
John 31 bark] (with 31 bark serving as an object sentence, cf. 7.1.2, 2).

In adnominal modifiers, there is a gap in the lower clause. Because a relative clause
modifies a noun in the higher clause, the pointer to it must be located in the mdd slot
of the a/v proplet, e.g., [mdd: 32 dog]. As a consequence, the gap in the arg slot of the
lower a/v proplet remains unfilled and is represented by #, e.g., [arg: # Mary] (subject
gap, cf. 7.1.2, 3) and [arg: Mary #] (object gap, cf. 7.1.2, 4).

The distribution and grammatical function of gaps in extrapropositional functor–
argument structures is indicated schematically below (in corelation with 7.1.2):

7.1.3 EXTRAPROPOSITIONAL FUNCTOR–ARGUMENT STRUCTURES

the dog barked the dog barked

saw Mary Mary saw

 subject object:(3) (4)

(ii) sentential modifier, adnominal (relative clause)

Mary smiled

when Fido barked

(5)

(iii) sentential modifier, adverbial

Fido barkedFido barked

amused Mary John heard
 subject: object:(1) (2)

(i) sentential argument

In the adverbial modifier construction (iii) there is no gap. Instead, the grammatical
relation between the higher and the lower proposition is established by the mdr at-
tribute of the higher verb, e.g., [mdr: 36 bark], and the mdd attribute of the lower verb,
e.g., [mdd: 37 smile] (cf. 7.1.2, 5).

7.2 Sentential Argument as Subject

In the time-linear derivation of the subject sentence construction That Fido barked
amused Mary, the lexical analysis of the function word that (subordinating conjunc-
tion) provides the attributes n/v and fnc. Because the verb is absorbed into the con-
junction, the standard lexical analysis of the verb (as in 6.3.1, 6.4.1) is sufficient:

106 7. Extrapropositional Functor–Argument Structure

7.2.1 INTERPRETATION OF That Fido barked amused Mary

prn:
mdr:
arg:
verb: bark

mdr:
fnc:

prn:

noun: Mary

prn:
mdr:
arg:
verb: bark

mdr:
fnc:

prn:

noun: Mary

prn:
mdr:
fnc:

that

lexical lookup

Fido

noun: Fido

Mary

arg:

prn:

barked

prn:
mdr:
arg:

amused

verb: amuse

syntactic semantic parsing

result of syntactic semantic parsing:

fnc:

mdr:
fnc:

prn:

noun: Fido

1

mdr:
fnc: v_1

prn: 27

noun: Fido

prn: 27

arg: Fido2

mdr:
prn: 27

fnc: bark
noun: Fido

prn: 27
fnc:
arg: Fido3

prn:
mdr:
arg:
verb: amuse

mdr:
prn: 27

fnc: bark
noun: Fido

mdr:
arg: 27 bark

prn: 28prn: 27

arg: Fido
4

verb: amuse

mdr:
prn: 27

fnc: bark
noun: Fido

prn: 27
mdr:
arg: 27 bark Mary

prn: 28
mdr:

noun: Mary

prn: 28

arg: Fido
verb: amuse

fnc: amuse

arg:

prn: 27
fnc:

fnc:

fnc: 28 amuse

fnc: 28 amuse

n/v: that v_1

n/v: that v_1

n/v: that v_1

n/v: that bark

n/v: that bark

n/v: that bark

In line 1, the substitution value v_1 of the n/v attribute of that is copied into the
fnc slot of Fido, and the core value of Fido is copied into the arg slot of that. In
line 2, the two instances of v_1 are replaced by the core value of the bark proplet,
which is then discarded. As in 6.4.1, this is an instance of function word absorption
involving a verb. In line 3, the bark value of the initial proplet is copied into the
arg slot of the verb proplet amuse, and amuse is copied into the fnc slot of the bark
proplet, establishing the desired connection between the subordinate subject sentence
and the higher clause. For unique identification, the copied (clause-external) values
are preceded by the proposition number of their proplets, as shown in line 4.

The (re)production of the input sentence is based on a VNVN navigation:

7.2.2 PRODUCTION OF That Fido barked amused Mary

activated sequence realization
1

V
1.1 sc sc

V N

7.3 Sentential Argument as Object 107

1.2 sc n sc n
V N

1.3 sc fv n sc n fv
V N

2.1 sc fv n fv sc n fv fv
V N V

2.2 sc fv n fv n sc n fv fv n
V N V N

2.3 sc fv n fv p n sc n fv fv n p
V N V N

The abstract surface sc stands for subordinating conjunction. It is produced from the
verb proplet of the lower clause.

7.3 Sentential Argument as Object

Next consider the interpretation of an object sentence. In this example, the verb proplet
bark represents the subclause, serving as the object of the higher clause:

7.3.1 INTERPRETATION OF John heard that Fido barked

prn:
mdr:
arg:
verb: bark

prn:
mdr:
arg:
verb: bark

mdr:

noun: Fido
fnc: v_1

prn: 31

prn:
mdr:
fnc:
noun: Fido

mdr:

noun: Fido
fnc: bark

prn: 31

Fido barked

prn:
mdr:
fnc:
noun: Fido

syntactic semantic derivation

result of syntactic semantic parsing:

2

3

4 mdr:

noun: John

prn: 30

verb: hear

mdr:
fnc: hear

prn: 30

arg: John 31 v_1

mdr:
fnc:
noun: John

prn: 30

verb: hear

prn:
mdr:
arg:1

mdr:

noun: John

prn: 30

verb: hear

mdr:
fnc: hear

prn: 30

arg: John

mdr:

noun: John

prn: 30

verb: hear

mdr:
fnc: hear

prn: 30

arg: John 31 v_1

mdr:

noun: John

prn: 30

verb: hear

mdr:
fnc: hear

prn: 30

arg: John 31 bark

lexical lookup

John heard

mdr:
fnc:

prn:

noun: John

prn:
mdr:

prn: 31

arg: Fido

prn:

arg:

arg:
fnc: 30 hear
prn: 31

prn: 31

arg: Fido

that

prn:
fnc:

fnc:

fnc: 30 hear

fnc: 30 hear

n/v: that v_1

n/v: that v_1

n/v: that v_1

n/v: that v_1

n/v: that bark

verb: hear
arg: arg:

108 7. Extrapropositional Functor–Argument Structure

In line 2, the core value of the proplet that, i.e., the substitution value v_1, is copied
into the arg slot of the proplet hear, taking second (i.e., object) position. Also, the core
value of the proplet hear is copied into the fnc slot of the proplet that. In line 3, v_1
is copied into the fnc slot of the Fido proplet, and the core value Fido is copied into
the arg slot of the that proplet. In line 4, the three instances of v_1 are simultaneously
replaced by the core value of the proplet bark, which is then discarded.

The (re)production of this input sentence is based on a VNVN navigation:

7.3.2 SCHEMATIC PRODUCTION OF John heard that Fido barked

activated sequence realization
1

V
1.1 n n

V N
1.2 fv n n fv

V N
2.1 fv n sc n fv sc

V N V
2.2 fv n sc n n fv sc n

V N V N
2.3 fv n sc fv n n fv sc n fv

V N V N
2.4 fv p n sc fv n n fv sc n fv p

V N V N

The abstract surface p (punctuation) is generated from the V proplet of the higher
clause, while sc (subordinating conjunction) is generated from the V proplet of the
lower clause – as in 7.2.2.

7.4 Adnominal Sentential Modifier with Subject Gap

Turning from sentential arguments to sentential modifiers, we start with the adnomi-
nals. Adnominal adjectives occur as elementary words, e.g., little (cf. 6.3.1), as prepo-
sitional phrases, e.g., on the table (cf. 6.6.2), and as adnominal sentences, such as
which Mary saw (cf.7.1.2, 3, subject gap) and which saw Mary (cf.7.1.2, 4, object gap).
In English, adnominal propositions are called relative clauses, and are connected to
the higher clause by the function words who, whom, or which, which lexically intro-
duce the core attribute a/v (with the core value v_1) and an mdd attribute.

Adnominal propositions differ from adverbial ones insofar as the core value of the
lower verb proplet is copied into the mdr slot of a noun of the higher proposition (and
not of the verb). Furthermore, the mdd attribute of the adnominal a/v proplet takes the
core value of the higher noun proplet as its value (and not of the verb).

7.4 Adnominal Sentential Modifier with Subject Gap 109

In the following example, a relative clause attaches to the higher noun with a sub-
ject gap. In order to show the compatibility between an extrapropositional adnominal
modifier and an intrapropositional adverbial modifier, the example includes the ad-
verb quickly. Due to its position, it is ambiguous between a reading modifying saw
(7.4.1) and one modifying bark (7.4.2).

7.4.1 INTERPRETATION OF The dog which saw Mary quickly barked

prn:
mdr:
fnc:
noun: Mary

barked

mdr:
prn:

arg:
verb: bark

prn: 33prn: 32

noun: dog

mdr: 33 see mdd: see mdr: mdr:
prn: 33

noun: Mary
fnc: see

adj: quick verb: bark
mdr:fnc: bark arg: dog

prn: 32

prn:
mdr:
fnc:

mdr:
fnc:
noun: n_1

prn: 32

mdr:
fnc:

prn: 32

fnc:

prn: 32

fnc:

prn: 32

mdd:
prn:

noun: dog

noun: dog

noun: dog

noun: dog

mdr: 33 see

mdr: 33 v_1

fnc:

prn: 32

noun: dog

mdr: 33 see mdr:
prn: 33

noun: Mary
mdr:
adj: quick

fnc: see

syntactic semantic parsing

1

2

3

4

5

6

verb: see

mdr:
prn:

arg:

prn: 33

prn: 33
mdd: see mdr:

prn:
mdr:
prn: 33

noun: Mary
fnc: see

adj: quick verb: bark
arg:mdr:

result of syntactic semantic parsing:

fnc:

prn: 32

noun: dog

mdr: 33 see

a/v: see
arg: # Mary
mdd: 32 dog

prn: 33
mdr:

a/v: see

prn: 33
mdr: quick

arg: # Mary
mdd: 32 dog

a/v: see
arg: # Mary

prn: 33
mdr: quick
mdd: 32 dog

a/v: v_1
arg: #

prn: 33
mdr:

a/v: v_1
arg: #

prn: 33

mdd: 32 dog
mdr:

a/v: see
arg: #
mdd: 32 dog
mdr:

lexical lookup
the

mdr:
fnc:
noun: n_1

prn:
mdd:
prn:prn:

mdr:
fnc:

dog quickly

mdr:
noun: dog adj: quick

prn:
mdr:
fnc:

Mary

noun: Mary

which saw

prn:
mdr:
arg:
verb: seea/v: v_1

mdr:
prn:

arg: #

mdd:

mdd:

The a/v proplet which has the substitution value v_1 as its core value and the gap #
in its arg slot. It also provides an mdd slot to take the head noun as value and an mdr
attribute to accommodate the modifier quickly.

In line 2, the core value of dog is copied into the mdd of the a/v proplet, and the
v_1 value of the a/v proplet is copied into the mdr slot of the dog proplet. In line 3,
both occurrences of v_1 are replaced by the core value of the proplet see, which is

110 7. Extrapropositional Functor–Argument Structure

then discarded. In line 4, the object of the relative clause is added by copying Mary as
the second value into the arg slot of the a/v proplet, and the core value see of the a/v
proplet into the fnc slot of the proplet Mary. In line 5, the adverb quick is added to the
relative clause by copying see into the mdd slot of quick, and quick into the mdr slot
of see. In line 6, the verb of the main clause is added by copying bark into the fnc slot
of dog and dog into the arg slot of bark.

Next consider the other reading of this sentence:

7.4.2 SECOND READING OF 7.4.1 WITH quickly MODIFYING bark

prn: 32

noun: dog

mdr: 33 see
fnc: bark

mdr:
prn: 33

noun: Mary
fnc: see

adj: quick verb: bark
arg: dog
mdr: quick

prn: 32 prn: 32

mdd: bark
mdr:

a/v: see

prn: 33
mdr:
mdd: 32 dog
arg: # Mary

The two readings are distinguished only in terms of different attribute values. On the
first reading, the mdd attribute of the quick proplet has the value see, on the second,
the value bark. Correspondingly, on the first reading, quick is the value of the mdr
attribute of the proplet see, but of the proplet bark on the second reading.

The following (re)production of the first reading is based on a VNVNA navigation.

7.4.3 PRODUCTION OF The dog which saw Mary quickly barked

activated sequence realization
1

V
1.1 d d

V N
1.2 d nn d nn

V N V
2.1 d nn wh d nn wh

V N V
2.2 d nn wh fv d nn wh fv

V N V
2.3 d nn wh fv n d nn wh fv n

V N V N
1.3 d nn wh fv n av d nn wh fv n av

V N V N A
1.4 fv d nn wh fv n av d nn wh fv n av fv

V N V N A
1.5 fv p d nn wh fv n av d nn wh fv n av fv p

V N V N A

The abstract surface av represents the adverbial adjective quickly. The abstract surface
wh stands for the relative pronoun, here which. Relative clauses resemble wh interrog-

7.5 Adnominal Sentential Modifier with Object Gap 111

atives (cf. Sections 5.1 and 9.5) in that both have a gap. This may be the reason why
both kinds of sentences use wh words in English.

7.5 Adnominal Sentential Modifier with Object Gap

Next consider the derivation of a relative clause with an object gap. In the following
example, the higher noun dog is modified (i) by the elementary adnominal little and
(ii) the sentential adnominal (relative clause) which Mary saw, illustrating the compat-
ibility of these two kinds of adnominal adjectives when modifying the same noun.

7.5.1 INTERPRETATION OF The little dog which Mary saw barked

prn:
mdr:
fnc:
noun: dog

a/v: see

prn: 33
mdd: 32 dog
arg: Mary #

prn:
mdr:
arg:
verb: see

prn:
mdr:
fnc:
noun: Mary

lexical lookup
the

mdr:
fnc:
noun: n_1

prn:

1

dog

prn:
mdr:
fnc:
noun: dog

prn:
mdr:
fnc:
noun: Mary

prn:
mdr:
arg:
verb: see

mdr:
prn:

arg:
verb: bark

sawMary barkedlittle

syntactic semantic parsing

adj: little
mdd: n_1
mdr:

adj: little

mdr:
mdd: dog

prn:
mdr:

adj: little
mdd:

prn: 32

prn: 32

adj: little

mdr:
mdd: dog

prn: 32

adj: little

mdr:
mdd: dog

prn: 32

prn:
mdr:

adj: little
mdd:

adj: little

mdr:
mdd: dog

prn: 32

adj: little

mdr:
mdd: dog

prn: 32

a/v: v_1

prn: 33

a/v: v_1

prn: 33

prn: 33

a/v: see

prn:

a/v: v_1
arg: #

arg: #
mdd: 32 dog

mdd: 32 dog

mdd: 32 dog

arg: Mary #

arg: Mary #

mdr:

noun: Mary
fnc: v_1

prn: 33

mdr:

noun: Mary

prn: 33
mdr:

verb: bark
arg: dog

prn: 32

mdr:

noun: Mary

prn: 33

fnc: see

fnc: see

mdr:
prn:

arg:
verb: bark

fnc:
noun: dog

prn: 32

fnc:
noun: n_1

mdr: little

fnc:
noun: dog

mdr: little

mdr:
fnc:
noun: n_1

prn: 32

prn: 32

prn: 32

fnc:
noun: dog

prn: 32

mdr: little 33 v_1

noun: dog

prn: 32
mdr: little 33 see
fnc: bark

fnc:
noun: dog

prn: 32
mdr: little 33 see

2

3

4

5

6

7

mdr: little 33 v_1

result of syntactic semantic parsing:

which

a/v: v_1
arg: #

prn:
mdd:

mdd:

112 7. Extrapropositional Functor–Argument Structure

Up to line 4, this derivation is the same as in 7.4.1, apart from the elementary adnom-
inal modifier little in 7.5.1. The derivations diverge in line 5: In 7.5.1, the core value
of the proplet Mary is copied into the first position of the arg slot of the a/v proplet,
thus pushing the gap indicator # into second (object) position. The remainders of the
two derivations are again analogous, apart from the elementary adverbial modifier
quickly in 7.4.1. For the semantic representation of 7.4.1 and 7.5.1 without elementary
adjectives, see 7.1.2, 3 and 4, respectively.

The following (re)production of the input sentence is based on a VNAVN naviga-
tion.

7.5.2 PRODUCTION OF The little dog which Mary saw barked

activated sequence realization
1

V
1.1 d d

V N
1.2 d an d an

V N A
1.3 d nn an d an nn

V N A
2.1 d nn an wh d an nn wh

V N A V
2.2 d nn an wh n d an nn wh n

V N A V N
2.3 d nn an wh fv n d an nn wh n fv

V N A V N
1.4 fv d nn an wh fv n d an nn wh n fv fv

V N A V N
1.5 fv p d nn an wh fv n d an nn wh n fv fv p

V N A V N

In line 1.4, the second fv is realized from the initial V proplet, just as the punctuation
p in line 1.5.

7.6 Adverbial Sentential Modifier

Finally, let us consider adverbial modifiers. Adverbial adjectives are like adnominal
adjectives in that they occur as elementary word forms, e.g., loudly (cf. 6.3.4), as
prepositional phrases, e.g., on the table (cf. 6.6.2), and as adverbial sentences, as in
when Fido barked (cf 7.1.2, 5). The latter construction resembles the examples sen-
tential subject 7.2.1 and sentential object 7.3.1 as well as adnominal adjective with

7.6 Adverbial Sentential Modifier 113

subject gap 7.4.1 and object gap 7.5.1 insofar as the verb of the lower proposition is
fused with a clause-initial function word, here when.

Like adnominal which (cf. 7.4.1 and 7.5.1), the lexical proplet of adverbial when
introduces an a/v and a mdd attribute – in contradistinction to that (cf. 7.2.1 and 7.3.1),
which introduces an n/v and a fnc attribute (see also 7.1.1):

7.6.1 INTERPRETATION OF When Fido barked Mary smiled

prn:
mdr:
arg:
verb: bark

mdr:
fnc:

prn:

noun: Mary

prn:
mdr:
arg:
verb: bark

mdr:
fnc:

prn:

noun: Mary

mdr:
fnc:

prn:

noun: Mary

prn:
mdr:
fnc:

lexical lookup

Fido

noun: Fido
arg:
mdd:
prn:

barkedwhen Mary

prn:
mdr:
arg:
verb: smile

smiled

syntactic semantic parsing

result of syntactic semantic parsing:

mdr:
prn: 27

fnc: bark
noun: Fido

prn: 27

arg: Fido

prn: 28

verb: smile
arg: Mary
mdr: 27 barkmdr:

noun: Mary

prn: 28

fnc: smile

mdr:
fnc:

prn:

noun: Fido

1 arg:

prn: 27

mdr:
fnc: v_1

prn: 27

noun: Fido

prn: 27

arg: Fido2

mdr:
prn: 27

fnc: bark
noun: Fido

prn: 27

arg: Fido3

mdr:
prn: 27

fnc: bark
noun: Fido

prn: 27

arg: Fido
4 mdr:

prn: 28

verb: smile
arg:

mdd:

mdd

mdd:

mdd:

mdd: 28 smile

a/v: when v_1

a/v: when v_1

a/v: when v_1

a/v: when bark

a/v: when bark

a/v: when bark

After completing the adverbial subclause in line 2, the subject Mary of the main clause
is added to the set of proplets, but cannot be related grammatically to any previous
proplet. Instead, it is suspended until the verb of the main clause is available for at-
tachment (line 4).1

The production of the input sentence 7.6.1 is based on a VNVN navigation:

1 Suspension is quite common in SOV languages like Korean. For example, in mannom herdat appleacc

gave, all three arguments are suspended until the verb finally arrives (Lee 2002, 2004). Even though
the same verb-final word order occurs in German subordinate clauses, there is no suspension due
to the presence of a clause-initial function word, i.e., the subordinating conjunction, in which the
arguments can be collected until the verb is absorbed into it.

114 7. Extrapropositional Functor–Argument Structure

7.6.2 PRODUCTION OF When Fido barked Mary smiled

activated sequence realization
1

V
1.1 sc sc

V N
1.2 sc n sc n

V N
1.3 sc fv n sc n fv

V N
2.1 sc fv n n sc n fv n

V N V N
2.2 sc fv n fv n sc n fv n fv

V N V N
2.3 sc fv n fv p n sc n fv n fv p

V N V N

Suspension also shows up in the production: In line 2.1, the navigation has to traverse
the verb and the noun of the higher clause before production of the next word (here
Mary) can take place. Other instances of suspension occur in object-gapping (cf. 8.6.1
and 8.6.4), extrapropositional coordination (cf. 9.2.1 and 9.2.2), and adverbials in
prenominative position (cf. 15.3.7 and 15.3.10).

In summary, this and the preceding chapter have shown that the handling of sen-
tential arguments and sentential modifiers is based on exactly the same grammatical
relations as the handling of elementary arguments (cf. 3.4.2) and elementary modi-
fiers (cf. 6.3.1, 6.3.3) as well as phrasal arguments (cf. 6.3.1) and phrasal modifiers
(cf. 6.6.2). This is a substantial linguistic generalization of Database Semantics.

8. Intrapropositional Coordination

The other primary grammatical relation besides functor–argument structure (hypo-
taxis) is coordination (parataxis). While functor–argument structure typically com-
bines different parts of speech, i.e., verbs with nouns, adjectives with nouns, and ad-
jectives with verbs, coordination combines expressions of the same kind, i.e., nouns
with nouns, verbs with verbs, and adjectives with adjectives.

The expressions being combined in a coordination are called conjuncts. The re-
lations between conjuncts may be conjunctive, disjunctive, or adversative, as spec-
ified by the function words and, or, and but, respectively. These are called coordi-
nating conjunctions (cc), in contradistinction to the subordinating conjunctions (sc),
such as that (sentential argument, cf. Sects. 7.2 and 7.3) and when (adverbial modi-
fier, cf. Sect. 7.6). In intrapropositional coordination, the conjuncts may be elemen-
tary or phrasal, and a conjunction is required. In extrapropositional coordination (cf.
Chap. 9), the conjuncts are sentential and the conjunction is optional.

8.1 Overview

The semantic interpretation of coordination raises two fundamental questions. The
first is how to build the relations between the conjuncts in a sequence, and applies
to intra- and extrapropositional coordination alike. The second question is how to
integrate a coordination into the functor–argument structure of a proposition, and is
naturally restricted to intrapropositional coordination.

In Database Semantics, the conjuncts are connected by the values of their nc (next
conjunct) and pc (previous conjunct) attributes. This is illustrated by the following
example showing the proplet structure of an intrapropositional noun coordination:

8.1.1 GRAMMATICAL RELATIONS OF the man, the woman, and the child

prn: 26
pc: woman
nc:
mdr:

noun: childnoun: woman

mdr:

prn: 26

mdr:

prn: 26
pc:

fnc: fnc: fnc:

nc: woman
pc: man
nc: child

noun: man &

The nc attribute of the man proplet specifies woman as the next conjunct; the pc and
nc attributes of the woman proplet specify man as the previous and child as the next

116 8. Intrapropositional Coordination

conjunct, respectively; and the pc attribute of the child proplet specifies woman as
the previous conjunct. The coordinating conjunction is indicated after the core value
of the first conjunct (here [noun: man &]). The elements of the coordination are held
together by a common proposition number (here [prn: 26]).1

The integration of such a coordination into the proposition’s functor–argument
structure is based on using only the initial conjunct for establishing the grammatical
relation in question. This is shown by the following example in which the coordination
the man, the woman, and the child (cf. 8.1.1) is combined with the verb sleep:

8.1.2 GRAMMATICAL RELATIONS OF The man, the woman, and the child slept

pc:
nc:
mdr:

verb: sleep

prn: 26
pc: woman
nc:
mdr:

noun: childnoun: woman

mdr:

prn: 26

mdr:

prn: 26
pc:

fnc: sleep

prn: 26

nc: woman

noun: man &
fnc: fnc:

nc: child
pc: man

arg: man &

The arg slot of the verb proplet sleep has the value man &; thus, only the initial con-
junct is specified as the verb’s argument. Correspondingly, only the initial conjunct
man has a core value marked with & and the fnc value sleep, while the noninitial con-
juncts woman and child are unmarked and their fnc slots are empty. They are, however,
connected to the initial conjunct via their nc and pc features (cf. 8.1.1).

Using only the initial conjunct for establishing the functor–argument structure pro-
vides a coding of grammatical relations in the semantic representation which is as
complete as necessary and as parsimonious as possible – not only for modeling the
time-linear interpretation and production of the surface, but also for supporting the
required retrieval. For example, even though the sleep proplet in 8.1.2 does not ex-
plicitly specify child as its arg value, and the child proplet does not explicitly specify
sleep as its fnc value, the correct answer to the question Did a child sleep? relative to
a Word Bank containing 8.1.2 should be yes.

One method to answer the question is to look through all sleep proplets (cf.
Sect. 5.1) and find the ones with the arg value child. Yet if child happens to be a
noninitial conjunct, it will not be specified directly in the sleep proplet. However, if
the arg slot of the verb proplet contains the conjunction marker & it will trigger a
subnavigation through all the conjuncts of the associated coordination, ensuring that
the child conjunct in 8.1.2 will not be overlooked. And correspondingly for the other
method, which is to check all child proplets to find the ones with the fnc value sleep.

Different kinds of coordination may be distinguished with respect to (i) the parts
of speech serving as conjuncts, i.e., nouns, verbs, or adjectives, (ii) the number of
coordinated arguments in a proposition, i.e., one, two, or three, and (iii) the alternative
between simple and complex coordinations. Consider the following examples:

1 Our treatment of coordination as a grammatical relation like functor–argument structure, handled in
terms of the attributes and values of proplets, differs from the approach of Lobin (1993a): “The best
way of dealing with coordination is not to deal with it at all, but ‘process it away immediately’.”

8.1 Overview 117

8.1.3 DIFFERENT KINDS OF COORDINATIONS

1. One simple noun coordination (subject, cf. 8.2.1, 8.2.2)
The man, the woman, and the child slept.

2. One simple noun coordination (object, 8.2.4, 8.2.5)
John bought an apple, a pear, and a peach.

3. Two simple noun coordinations (subject object, cf. 8.2.3)
The man, the woman, and the child bought an apple, a pear, and a peach.

4. One simple verb coordination (cf. 8.3.1, 8.3.2, 8.3.3)
John bought, cooked, and ate the pizza.

5. Three simple coordinations of noun, verb, and noun (subject verb object)
The man, the woman, and the child bought, cooked, and ate the steak, the pota-
toes, and the broccoli.

6. One simple adjective coordination (adnominal, cf. 8.3.4)
John loves a smart, pretty, and rich girl.

7. One simple adjective coordination (adverbial, cf. 8.3.5)
John talked gently, slowly, and seriously.

8. One simple noun coordination in a prepositional phrase
The company has offices in London, Paris, and New York.

9. One simple noun coordination in a genitive construction
John visited the house of Julia, Susanne, and Mary.

10. One complex verb–object coordination (subject gapping, cf. 8.4.1, 8.4.5)
Bob ate an apple, # walked his dog, and # read a paper.

11. One complex subject–object coordination (verb gapping, cf. 8.5.1, 8.5.4)
Bob ate an apple, Jim # a pear, and Bill # a peach.

12. One complex subject–verb coordination (object gapping,2 cf. 8.6.1, 8.6.4)
Bob bought #, Jim peeled #, and Bill ate the peach.

The above examples have been limited to intrapropositional constructions excluding
modifier recursion. This resulted in a short but essentially complete list of the most
basic possibilities regarding the correlation of intrapropositional functor–argument
structure and coordination. Once extrapropositional functor–argument structure (i.e.,
subordination, cf. Chap. 7) is included, however, the number of coordinations in a
sentence (though not a proposition) is unlimited – at least in theory. Consider for
example, The man, who bought an apple, a pear, and a peach, the woman, who read
a paper, a novel, and a poem, etc.

In 8.1.3, the coordinations’ part of speech is indicated in the subheadings. Examples
1, 2, 4, 6, 7, 8, and 9 contain one simple coordination each, 10, 11, and 12 contain

2 This construction is also known as “right-node-raising.” Cf. Jackendoff (1972); Hudson (1976); and
Sag, Gazdar, Wasow, and Weisler (1985).

118 8. Intrapropositional Coordination

one complex coordination each, 3 contains two simple coordinations, and 5 contains
three. The distinction between simple and complex coordination3 concerns the rela-
tion between the conjuncts, as illustrated below:

8.1.4 COMPARING SIMPLE AND COMPLEX COORDINATION

(i) two simple coordinations
Bob, Jim, and Bill bought, peeled, and ate the peach.

(ii) one complex coordination
Bob bought #, Jim peeled #, and Bill ate the peach.

The two examples consist of exactly the same word forms, though in different order.
Example (i) consists of two simple coordinations, one conjoining nouns, the other
verbs. Example (ii) consists of one complex coordination, the conjuncts of which
consist of noun-verb pairs. While (i) merely asserts that three subjects performed three
actions as a group, (ii) associates each subject with only one of the three actions.

Regarding frequency, März (2005) determined the following results for German,
using the LIMAS corpus.4 It has a total of 77 500 sentences, of which 27 500 contain
the coordinating conjunctions und (and), oder (or), or aber (but). The conjunction und
was by far the most frequent, used in 21 420 sentences.

Of all the coordinations, 57% consist of nouns and 24.3% of verbs. Of the noun
coordinations, 25% function in prepositional phrases (cf. 8.1.3, 8), 13% as subjects
(cf. 8.1.3, 1), 7% as objects (cf. 8.1.3, 2), and 6.5% in genitives (cf. 8.1.3, 9). Gapping
occurs in only 0.1% of the coordinations, with no example of object gapping (cf.
8.1.3, 12). Given that all of these constructions provide equally clear grammaticality
intuitions, and may be found in a wide range of languages (such as Chinese, Tagalog,
Russian, Georgian, Czech, and Korean),5 the least frequent constructions are just as
interesting for a systematic grammatical analysis as the most frequent ones.

8.2 Simple Coordination of Nouns in Subject and Object Position

Having characterized the grammatical relations of a functor–argument structure con-
taining a coordination as a set of proplets (cf. 8.1.1 and 8.1.2), we turn next to the
tasks of (i) deriving the semantic representation from the corresponding surface of
English (hearer mode, interpretation) and (ii) deriving the surface of English from the
semantic representation (speaker mode, production).
3 The terminological distinction between simple and complex coordination follows Greenbaum and

Quirk (1990, pp. 271ff). Within Nativism, simple coordination is called “constituent coordination,”
and complex coordination is called “nonconstituent coordination.” Different kinds of complex coor-
dination are distinguished here in terms of subject gapping, verb gapping, and object gapping.

4 The LIMAS corpus (Heß, Lenders, et al. 1983) was designed as a balanced and representative corpus
of German, built in analogy to the Brown corpus (Kučera and Francis 1967).

5 I would like to thank Hsiao-Yun Huang (China), Guerly Soellch (The Philippines), Katja Kalender
(Russia), Sofia Tkemaladze (Georgia), Marie Hučinova (Czech Republic), and Soora Kim (South
Korea) for their native speaker grammaticality judgments during a seminar at CLUE.

8.2 Simple Coordination of Nouns in Subject and Object Position 119

8.2.1 NOUN COORDINAT. (SUBJECT): The man, the woman, and the child slept

fnc:
mdr:
nc:
pc:
prn: 26

1

noun: n_1 noun: man
fnc:
mdr:
nc:
pc:
prn:

lexical lookup

the

fnc:
mdr:
nc:
pc:
prn:

and the the

fnc:
mdr:
nc:
pc:
prn:

cnj: &noun: n_1 noun: n_2
fnc:
mdr:
nc:
pc:
prn:

noun: n_3

man

noun: man
fnc:
mdr:
nc:
pc:
prn:

noun: woman
fnc:
mdr:

pc:
prn:

nc:

woman

fnc:
mdr:
nc:
pc:
prn:

noun: child

child

arg:
mdr:

prn:

nc:
pc:

verb: sleep

slept

syntactic semantic parsing:

noun: woman

mdr:

prn: 26

fnc:

nc: child
pc: man pc:

nc:
mdr:

verb: sleep

prn: 26

arg: man &

prn: 26
pc: woman
nc:
mdr:

noun: child
fnc:

mdr:

prn: 26
pc:

fnc: sleep

nc: woman

noun: man &

prn: 26
pc:
nc:
mdr:
fnc:
noun: man

2

prn:
pc:
nc:
mdr:
fnc:
noun: n_2

3

prn: 26

nc:
pc: man

mdr:
fnc:
noun: n_2noun: man

prn: 26
pc:

mdr:
fnc:

nc: n_2

prn:
pc:
nc:
mdr:
fnc:
noun: woman

4

fnc:
mdr:
nc: woman
pc:
prn: 26

noun: man
fnc:
mdr:
nc:
pc: man
prn: 26

noun: woman cnj: &

fnc:
mdr:

pc:
prn: 26

nc: woman

noun: man & noun: woman
fnc:
mdr:

prn: 26
pc: man
nc:5

fnc:
mdr:
nc:

prn:
pc:

noun: n_3

mdr:
fnc:

prn: 26
pc:
nc: woman

noun: man &

prn:
pc:
nc:
mdr:
arg:
verb: sleep

7

noun: woman
fnc:
mdr:

prn: 26

nc: child
pc: man

prn: 26
pc: woman
nc:
mdr:
fnc:
noun: child

prn: 26
pc:

mdr:
fnc:
noun: man &

nc: woman

noun: woman
fnc:
mdr:

prn: 26

nc: _n3
pc: man

result of syntactic semantic parsing:

6

noun: child
fnc:
mdr:

prn:
pc:
nc:

prn: 26
pc: woman
nc:
mdr:
fnc:
noun: n_3

120 8. Intrapropositional Coordination

In line 1, the lexical proplets the and man are fused (function word absorption). In
line 2, the core value n_2 of the second the is copied into the nc slot of man, and the
core value of man is copied into the pc slot of the. In line 3, the two occurrences of
the substitution value n_2 are replaced by the core value of the lexical proplet woman.
In line 4, the core value of the conjunction is added to the core value of man. In line
5, the core value n_3 of the third the is copied into the nc slot of woman, and the core
value of woman is copied into the pc slot of the. In line 6, the two occurrences of the
substitution value n_3 are replaced by the core value of the lexical proplet child. In
line 7, the core value of the initial conjunct, i.e., man &, is copied into the arg slot of
sleep, and the core value of sleep is copied into the fnc slot of the initial conjunct.6

In the result, the initial conjunct man contains & in its core attribute, and specifies
the verb see as its fnc value. The noninitial conjuncts woman and child have no fnc
value. It may be obtained from the initial conjunct, however, to which the noninitial
conjuncts are connected via their nc and pc features. The verb proplet see specifies
only the initial conjunct man in its arg slot, marked by &.

The (re)production of this sentence from the set of proplets just derived is based on
a VNNN sequence, whereby the three Ns constitute a noun coordination.

8.2.2 PRODUCTION OF The man the woman and the child slept

activated sequence realization
i.

V
i.1 d d

V N
i.2 d nn d nn

V N
i.3 d nn d d nn d

V N N
i.4 d nn d nn d nn d nn

V N N
i.5 d nn cc d nn d nn d nn cc

V N N
i.6 d nn cc d nn d d nn d nn cc d

V N N N
i.7 d nn cc d nn d nn d nn d nn cc d nn

V N N N
i.8 fv d nn cc d nn d nn d nn d nn cc d nn fv

V N N N
i.9 fv p d nn cc d nn d nn d nn d nn cc d nn fv p

V N N N

8.2 Simple Coordination of Nouns in Subject and Object Position 121

The coordinating conjunction cc is lexicalized from the first conjunct in line i.5. Due
to this late realization, it appears between the penultimate and the ultimate conjunct.

While a coordination in subject position is built first and then combined with the
verb, a coordination in object position is attached to the verb incrementally. This is
indicated by the schematic characterization of the grammatical relations in the man,
the woman, and the child bought an apple, a pear, and a peach:

8.2.3 SIMPLE COORDINATIONS OF SUBJECT AND OBJECT NOUNS

noun: man &

nc:
pc:

fnc: buy fnc:
nc:
pc:

noun: woman
fnc:
nc:
pc:

noun: child verb: buy
arg: man & apple &

noun: apple &

nc:
pc:

fnc: buy fnc:
nc:
pc:

noun: pear
fnc:
nc:
pc:

noun: peach

When the subject coordination is combined with the verb, the conjunction has been
parsed, marking the initial conjunct, here [noun: man &]. Thus it is clear which proplet
of the coordination must serve as the arg value of the verb. When the object noun is
started, it is open whether or not it will turn out to be a coordination. In any case, the
first object noun encountered will be the proper value for the arg slot of the verb.

The following example shows the incremental build-up of a noun coordination serv-
ing as the object, using a proper name as subject:

8.2.4 NOUN COORDIN. (OBJECT): John bought an apple, a pear, and a peach

fnc:
mdr:
nc:
pc:
prn:

noun: John noun: apple
fnc:
mdr:
nc:
pc:
prn:

noun: apple
fnc:
mdr:
nc:
pc:
prn:

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy arg: John n_1
mdr:
nc:
pc:

noun: n_1
fnc: buy

prn: 27prn: 27

3

fnc:
mdr:
nc:
pc:
prn:

noun: n_2
fnc:
mdr:

pc:
prn:

nc:

noun: pear cnj: &
fnc:
mdr:
nc:
pc:
prn:

noun: n_3
fnc:
mdr:
nc:
pc:
prn:

noun: peach
fnc:
mdr:
nc:
pc:
prn:

noun: n_1

apple pear and peach

1
arg:
mdr:

prn:

nc:
pc:

verb: buy
fnc:
mdr:
nc:
pc:

noun: John

prn: 27

arg:
mdr:

prn:

nc:
pc:

verb: buy

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

2
fnc: buy arg: John

prn: 27

fnc:
mdr:
nc:
pc:

noun: n_1

prn:

an a aboughtJohn
lexical lookup

syntactic semantic parsing:

6 Given the disambiguating function of the commas in the surface, they should eventually be repre-
sented as lexical proplets and added by suitable rules. For a syncategorematic treatment of commas
see NEWCAT’86.

122 8. Intrapropositional Coordination

fnc:
mdr:
nc:
pc:
prn:

noun: n_2

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy

prn: 27

arg: John apple
mdr:
nc:
pc:

fnc: buy

prn: 27

noun: apple

4

fnc:
mdr:

pc:
prn:

nc:

noun: pear

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy

prn: 27

arg: John apple
mdr:

pc:

fnc: buy

prn: 27

noun: apple

5
nc: n_2

fnc:
mdr:
nc:

noun: n_2

pc: apple
prn: 27

cnj: &

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy

prn: 27

arg: John apple fnc:
mdr:
nc:
pc: apple
prn: 27

6

noun: pear

mdr:

pc:

fnc: buy

prn: 27

noun: apple

nc: pear

fnc:
mdr:
nc:
pc:
prn:

noun: n_3

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy

prn: 27

fnc:
mdr:
nc:
pc: apple
prn: 27

6

noun: pear
arg: John apple &

mdr:

pc:

fnc: buy

prn: 27

nc: pear

noun: apple &

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy

prn: 27

fnc:
mdr:

pc: apple
prn: 27

noun: pear
arg: John apple &

mdr:

pc:

fnc: buy

prn: 27

nc: pear

noun: apple &

7
nc: n_3

fnc:
mdr:
nc:
pc:
prn:

noun: peach
fnc:
mdr:
nc:

noun: n_3

pc: pear
prn: 27

mdr:
nc:
pc:

verb: buy

mdr:
nc:
pc:

noun: John

prn: 27

fnc: buy

prn: 27

fnc:
mdr:

pc: apple
prn: 27

noun: pear
arg: John apple &

mdr:

pc:

fnc: buy

prn: 27

nc: pear

noun: apple &

7
fnc:
mdr:
nc:
pc: pear
prn: 27

nc: peach

noun: peach

result of syntactic semantic parsing:

The first three proplets in line 4 are the same as in the derivation of John bought
an apple. The fourth proplet, however, continues the object noun apple as a noun
coordination: The lexical proplet the attaches to the apple proplet by copying the
substitution value n_2 into the nc slot of apple and the core value of apple into the
pc slot of the. The remainder of the derivation is analogous to that of the subject
coordination in 8.2.1, lines 1–6.

In the result, the initial noun conjunct apple contains the conjunction marker & in
its core attribute, and specifies the verb buy as its fnc value (similar to the subject
coordination 8.2.1). The noninitial noun conjuncts pear and peach have no fnc value.
It is obtainable from the initial conjunct, however, to which the noninitial conjuncts
are connected via their nc and pc values. The verb proplet contains the initial nominal
conjunct, here as the object, in its arg slot. It is marked with &, which is sufficient to
make the noninitial conjuncts available for querying as well.

The (re)production of this sentence from the semantic representation just derived is
based on a VNNNN navigation, whereby the last three Ns constitute a noun coordi-
nation.

8.3 Simple Coordination of Verbs and of Adjectives 123

8.2.5 PRODUCTION OF John bought an apple, a pear, and a peach

activated sequence realization
i.

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n d n fv d

V N N
i.4 fv n d nn n fv d nn

V N N
i.5 fv n d nn d n fv d nn d

V N N
i.6 fv n d nn d nn n fv d nn d nn

V N N N
i.7 fv n d nn cc d nn n fv d nn d nn cc

V N N N
i.8 fv n d nn cc d nn d n fv d nn d nn cc d

V N N N N
i.9 fv n d nn cc d nn d nn n fv d nn d nn cc d nn

V N N N N
i.10 fv p n d nn cc d nn d nn n fv d nn d nn cc d nn p

V N N N N

As in 8.2.2, the coordinating conjunction cc is lexicalized from the first conjunct, here
in line i.7.

8.3 Simple Coordination of Verbs and of Adjectives

While the initial conjunct of a noun coordination serves as a value in the arg slot of
the verb (cf. 8.2.3), the initial conjunct of a verb coordination serves as the value of
the fnc slot of the noun(s). This partial inversion of the grammatical relations in the
coordination of verbs versus nouns is shown by the distribution of & markers in the
following schematic characterization of a coordination of two-place verbs:

8.3.1 COORDINATION OF TWO-PLACE VERBS

nc:
pc:

arg:
verb: cook

nc:
pc:

arg:
verb: eat

nc:
pc:

verb: buy &

nc:
pc:

noun: John
fnc: buy & arg: John pizza

nc:
pc:

fnc: buy &
noun: pizza

This example has the following time-linear derivation:

124 8. Intrapropositional Coordination

8.3.2 VERB COORDINATION: John bought, cooked, and ate the pizza

cnj: &

and ate

arg:
mdr:
nc:
pc:
prn:

verb: eat

prn:
pc:

mdr:
nc:

arg:
verb: cook

pizza

fnc:
mdr:
nc:
pc:
prn:

noun: pizza

noun: John

nc:
pc:

verb: buy
arg:
mdr:
nc:
pc:
prn:

fnc:
mdr:

prn: 27

1

noun: John

nc:
pc:

verb: buy

mdr:
nc:
pc:

prn:
pc:

mdr:
nc:

arg:
verb: cook

mdr:
fnc: buy arg: John

prn: 27 prn: 27

2

cnj: &noun: John

pc:

verb: buy

mdr:

pc:

mdr:
nc:

arg:
verb: cook

mdr:
fnc: buy arg: John

prn: 27 prn: 27

nc: nc: cook
pc: buy
prn: 27

3

verb: eat
arg:
mdr:
nc:
pc:
prn:

verb: cook
arg:
mdr:

prn: 27

nc:
pc: buy

4

noun: John

nc:
pc:
prn: 27

fnc: buy &
mdr:

arg: John
mdr:

pc:
prn: 27

nc: cook

verb: buy &

verb: eat
arg:
mdr:
nc:

prn: 27
pc: cook

prn:
pc:
nc:
mdr:
fnc:

5

noun: John

nc:
pc:
prn: 27

verb: cook
arg:
mdr:

prn: 27

nc: eat
pc: buy

fnc: buy &
mdr:

arg: John
mdr:

pc:
prn: 27

nc: cook

verb: buy & noun: n_1

verb: eat
arg:
mdr:
nc:

prn: 27
pc: cook

fnc:
mdr:
nc:
pc:
prn:

noun: pizza

lexical lookup

boughtJohn cooked

noun: John

nc:
pc:
prn:

verb: buy
arg:
mdr:
nc:
pc:
prn:

fnc:
mdr:

prn:
pc:
nc:
mdr:
fnc:

the

noun: n_1

syntactic semantic parsing:

noun: John

nc:
pc:
prn: 27

pc:
nc:
mdr:

prn: 27

fnc: buy &

6

fnc: buy &
mdr: mdr:

pc:
prn: 27 prn: 27

verb: cook
arg:
mdr:
nc: eat
pc: buy

nc: cook

verb: buy & noun: n_1
arg: John n_1

noun: John

nc:
pc:
prn: 27

verb: eat
arg:
mdr:
nc:

prn: 27
pc: cook pc:

nc:
mdr:

prn: 27

noun: pizza
fnc: buy &fnc: buy &

mdr:

prn: 27

verb: buy & verb: cook
arg:
mdr:

prn: 27

nc: eat
pc: buypc:

nc: cook
mdr:
arg: John pizza

result of syntactic semantic parsing:

In line 2, the arrival of a second verb triggers its attachment to the first verb as a verbal
conjunct, coded by copying the core value of buy into the pc slot of cook and the core

8.3 Simple Coordination of Verbs and of Adjectives 125

value of cook into the nc slot of buy.7 In line 3, the conjunction marker & is added to
the core value of the initial verb conjunct buy and to the fnc value of the subject John.
In line 4, the third verb conjunct eat is added. In line 5, the core value buy & of the
initial verb conjunct is copied into the fnc slot of the beginning of the object, i.e., the
determiner the. In line 6, the two occurrences of n_1 are replaced by the core value of
the lexical proplet pizza, which is then discarded.

In the result, the initial verb conjunct buy contains & in its core attribute, and spec-
ifies the noun fillers John and pizza as its arg values. The noninitial verb conjuncts
cook and eat have no arg values. They are obtainable from the initial conjunct, how-
ever, to which the noninitial conjuncts are connected via their nc and pc values. The
noun proplets John and pizza specify only the initial verb conjunct, marked with &.
This is sufficient to make the noninitial verb conjuncts available for querying.

The (re)production of this sentence from the proplets just derived is based on a
VNVVN navigation, whereby the three Vs constitute a verb coordination.

8.3.3 PRODUCTION OF John bought, cooked, and ate the pizza

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n fv n fv fv

V N V
i.4 fv cc n fv n fv fv cc

V N V
i.5 fv cc n fv fv n fv fv cc fv

V N V V
i.6 fv cc n fv fv d n fv fv cc fv d

V N V V N
i.7 fv cc n fv fv d nn n fv fv cc fv d nn

V N V V N
i.8 fv cc p n fv fv d nn n fv fv cc fv d nn p

V N V V N

Up to line i.2, the derivation resembles a sentence start without a verb coordination,
e.g., John bought. When the navigation returns from John to buy, however, the con-
junction marker (cf. result in 8.3.2) triggers the production of the verb coordination.
Its end is indicated by the empty nc-attribute of eat, telling LA-speak to lexicalize the
conjunction, using the & in the core attribute of the first conjunct buy.
7 As mentioned before, a compositional treatment of commas is omitted here for simplicity.

126 8. Intrapropositional Coordination

We conclude the discussion of simple coordination with a look at the third basic part
of speech, namely adjectives (modifiers8). For brevity, the time-linear interpretation
and production of the surfaces is omitted, limiting the analysis to semantic represen-
tations which characterize the grammatical relations as sets of proplets.

Consider the semantic representation of coordinated adjectives in adnominal use:

8.3.4 ADNOMINAL COORDINATION: John loves a smart, pretty, and rich girl⎡
⎢⎢⎢⎢⎣

noun: John
fnc: love
mdr:
nc:
pc:
prn: 21

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: love
arg: John girl
mdr::
nc:
pc:
prn: 21

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: girl
fnc: love
mdr: smart &
nc:
pc:
prn: 21

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: smart &
mdr: B
mdd: girl
nc: pretty
pc:
prn: 21

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: pretty
mdr: B
mdd:
nc: rich
pc: smart
prn: 21

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: rich
mdr: B
mdd:
nc:
pc: pretty
prn: 21

⎤
⎥⎥⎥⎥⎦

The first adjective conjunct smart contains the conjunction marker & in its core at-
tribute, and specifies the modified (here the noun girl) as its mdd value. The noninitial
adjectival conjuncts pretty and rich have no mdd value. It is obtainable from the initial
conjunct, to which the noninitial conjuncts are connected via their nc and pc values.
The modified proplet girl contains & in its mdr slot, which specifies only the ini-
tial adjectival conjunct. Because elementary adnominals are intraphrasal in English,
speaker–hearers seem to prefer modifier recursion (cf. 6.3.1) over coordination.

Next, consider the coordination of adjectives in adverbial use:

8.3.5 ADVERBIAL COORDINATION: John talked slowly, gently, and seriously⎡
⎢⎢⎢⎢⎣

noun: John
fnc: talk
mdr:
nc:
pc:
prn: 29

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: talk
arg: John
mdr: slow &
nc:
pc:
prn: 29

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: slow &
mdr: B
mdd: talk
nc: gentle
pc:
prn: 29

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: gentle
mdr: B
mdd:
nc: serious
pc: slow
prn: 29

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: serious
mdr: B
mdd:
nc:
pc: gentle
prn: 29

⎤
⎥⎥⎥⎥⎦

The first adjective conjunct slow contains the conjunction & in its core attribute, and
specifies the modified (here the verb talk) as its mdd value. The noninitial adjective
conjuncts have no mdd value. It is obtainable from the initial conjunct, to which they
are connected via their nc and pc values. The modified proplet talk specifies only the
initial adjectival conjunct, marked with &, in its mdr slot.

8.4 Complex Coordination of Verbs and Objects: Subject Gapping

We turn now to propositions with a complex coordination (gapping constructions),
beginning with an example of subject gapping: Bob ate an apple, walked his dog, and
read the paper. The parallel construction with two simple coordinations (cf. 8.1.4)
would be *Bob ate, walked, and read an apple, his dog, and the paper, clearly indicat-
ing the need for different analyses of simple and complex coordinations:
8 Modifier coordination is in competition with modifier recursion (cf. Sect. 6.3), the latter belonging to

functor–argument structure.

8.4 Complex Coordination of Verbs and Objects: Subject Gapping 127

8.4.1 Bob ate an apple, # walked his dog, and # read a paper

cnj: &

fnc:
noun: n_1

nc:
pc:
prn:

fnc:
noun: apple

nc:
pc:
prn:

cnj: &

fnc:
noun: n_1

nc:
pc:
prn:

fnc:
noun: apple

nc:
pc:
prn:

verb: eat

pc:
nc:
pc:

fnc: eat
noun: apple

arg: Bob apple
nc:

verb: eat

pc:
nc:
pc:

fnc: eat
noun: apple

arg: Bob apple
nc:

prn:

verb: eat

pc: pc:

fnc: eat
noun: apple

arg: Bob apple
nc:

verb: eat

pc: pc:

fnc: eat
noun: apple

arg: Bob apple
nc:

verb: walk
arg:

verb: walk
fnc:
nc:
pc:
prn:

nc:

nc:

verb: walk

verb: walk

fnc:
nc:
pc:
prn:

noun: dog

noun: dog

pc: eat

pc: eat

pc:

pc:

pc:
nc:

pc:

nc: nc:

nc:

nc: nc:
pc:
prn:

nc: nc:
fnc:
nc:
pc:
prn:

verb: walk noun: dog verb: read
arg:

noun: dog

verb: eat &

verb: eat & verb: walk verb: read
arg:

pc: walk

pc: eat

nc: read
pc: eat

nc: read
pc: eat

verb: walk

verb: walk

nc: read
pc: eat

noun: dog

noun: dog

verb: read

pc: walk

verb: read

pc: dog

noun: paperverb: eat &

verb: eat &

arg:

fnc: walk

arg: # dog fnc: walk

arg: # dog fnc: walk

arg: # dog fnc: walk

arg: # dog fnc: walk

arg: # dog fnc: walk

fnc: readarg: # n_1

arg: # paper

pc:

noun: Bob
fnc: eat

pc:

noun: Bob
fnc: eat

pc:

noun: Bob
fnc: eat

pc:

noun: Bob
fnc: eat
nc: Jim

pc:

pc:

noun: Bob

noun: Bob

4

5

6

7

8

9

pc:

noun: Bob
10

anate apple

verb: eat

nc:
pc:
prn:

arg:
nc:
pc:
prn:

and

nc:
pc:
prn:

fnc:
nc:
pc:
prn:

fnc:
nc:
pc:
prn:

fnc:
nc:
pc:
prn:

verb: walk

dog

noun: dog

walked read

noun: paper

paper

arg: arg:

verb: eat

nc:
pc:

arg: Bob

verb: eat

nc:
pc:
prn:

arg:

verb: eat

nc:
pc:

arg: Bob n_1
noun: n_1

nc:
pc:

fnc: eat

1

2

3

nc:
pc:

noun: Bob
fnc: eat

fnc:
nc:
pc:

noun: Bob

a

pc:

noun: Bob

prn: 30 prn: 30 prn: 30 prn: 30 prn: 30

nc:

noun: paper
fnc: read

prn: 30

prn: 30prn: 30prn: 30prn: 30prn: 30prn: 30

prn: 30 prn: 30 prn: 30 prn: 30 prn: 30

prn: 30prn: 30prn: 30prn: 30

prn: 30 prn: 30 prn: 30 prn: 30 prn: 30

prn: 30prn: 30prn: 30prn: 30prn: 30

prn: 30 prn: 30 prn: 30 prn: 30

prn: 30prn: 30prn: 30

noun: Bob

nc:
pc:

fnc: eat

prn: 30 prn: 30 prn: 30

prn: 30 prn: 30

prn: 30

nc:

nc:

nc:

nc:

nc:

nc:

nc:

arg: Bob apple

arg: Bob apple

arg: Bob apple

arg: Bob apple fnc: eat &

pc:

pc:

noun: apple

pc:

pc:

prn: 30

prn: 30

prn: 30

prn: 30

noun: apple

noun: apple

noun: apple

fnc: eat

fnc: eat

fnc: eat

fnc: eat fnc: eat &

fnc: eat &

fnc: eat &

nc: walk

nc:
pc: eat pc:

pc:

pc:

pc:

nc:
pc:

nc:
pc: pc:

nc: walk

nc: walk

nc: walk

nc: walk

nc: walk

nc: walk

nc:

nc:

nc:

nc:

nc:

his

nc:
pc:

Bob

fnc:
nc:
pc:
prn:

noun: Bob

lexical lookup

syntactic semantic parsing

result of syntactic semantic parsing:

pc:

fnc:
nc:
pc:
prn:

noun: n_2 noun: n_3

noun: n_2

noun: n_2

fnc:
nc:
pc:
prn:

noun: n_3

noun: n_3

arg: # n_2

verb: read

This example contains one coordination, albeit a complex one. Its verb–object con-
juncts are eat-apple, walk-dog, and read-paper. The two proplets of a conjunct are
connected by copying the core value of the verb, e.g., walk, into the fnc slot of the
object, and the core value of the object, e.g., dog, into the second position of the arg

128 8. Intrapropositional Coordination

slot of the verb; the first arg position of, e.g.„ walk is filled by #, thus characterizing
the value dog as an object.

To compare the structure of Example 8.4.1 with that of a corresponding simple
coordination, let us change the words without changing the grammatical structure.
Our modified example of subject gapping is Bob bought an apple, peeled a pear, and
ate a peach, which consists of the same words as Bob bought, peeled, and ate an
apple, a pear, and a peach (two simple coordinations). The grammatical relations
within the complex conjuncts may be shown graphically as follows:

8.4.2 INTRACONJUNCT RELATIONS OF COMPLEX VERB–OBJECT COORDINAT.

nc:
pc:

noun: Bob
fnc: buy &

pc:

arg: Bob apple
verb: buy &

nc: peel

nc:
pc:

nc:
pc:

noun: pear

nc:
arg: # peach
verb: eat

pc: peel

shared subject

verb: peel
arg: # pear
nc: eat
pc: buy

fnc: peelfnc: buy
noun: apple

nc:
pc:

noun: peach
fnc: eat

The intraconjunct relations are indicated by vertical lines. Each of the three conjuncts
is surrounded by a rectangle consisting of dots.

The external relations (i) between the shared subject and the initial conjunct and (ii)
between the conjuncts may be shown graphically as follows, using the same proplets
as 8.4.2, which correspond to the result of 8.4.1:

8.4.3 EXTRACONJUNCT RELATIONS OF COMPLEX VERB–OBJECT COORDINAT.

verb: peel
arg: # pear

pc: buy
nc: eat

nc:
pc:

noun: peach
fnc: eat

nc:
pc:

noun: Bob
fnc: buy &

pc:

arg: Bob apple
verb: buy &

nc: peel

noun: apple

nc:
pc:

fnc: buy
nc:
pc:

noun: pear
fnc: peel

nc:
arg: # peach
verb: eat

pc: peel

shared subject

The conjuncts of the complex coordination are surrounded by a dashed rectangle.
In comparison, consider the grammatical relations of the corresponding example

with two simple coordinations:

8.4.4 CORRESPONDING SIMPLE VERB AND OBJECT COORDINATIONS

verb: peel
arg:
nc: eat
pc: buy pc:

noun: apple &

nc: pear nc:
fnc:fnc: buy &
nc: peach
pc: apple

fnc:

pc: pear

noun: pear noun: peach

shared subject

arg: Bob apple & arg:
verb: eat

nc:
pc: peelpc:

verb: buy &

nc: peelnc:
pc:

noun: Bob
fnc: buy &

8.4 Complex Coordination of Verbs and Objects: Subject Gapping 129

This representation of Bob bought, peeled, and ate an apple, a pear, and a peach
shows two simple coordinations, each surrounded by a dashed rectangle, one serving
as the verb, the other as the object. For the comparison with 8.4.2, the conjuncts are
surrounded by dotted rectangles.

In contradistinction to the complex conjuncts in 8.4.2 and 8.4.3, the arg slots of the
noninitial conjunct proplets peel and eat in 8.4.4 have no values, just as the fnc slots
of the noninitial conjunct proplets pear and peach. These values may be obtained,
however, by navigating to the initial conjuncts buy and apple, respectively. While in
a complex verb–object coordination the number of verbs and objects must be equal,
there is no such restriction in a simple coordination.

Based on the grammatical relations shown in 8.4.2 and 8.4.3, the surface of the
complex coordination 8.4.1 is derived using a VNNVNVN navigation:

8.4.5 PRODUCTION OF Bob ate an apple, walked his dog, and read a paper

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n d n fv d

V N N
i.4 fv n d nn n fv d nn

V N N
i.5 fv n d nn fv n fv d nn fv

V N N V
i.6 fv n d nn fv d n fv d nn fv d

V N N V N
i.7 fv n d nn fv d nn n fv d nn fv d nn

V N N V N
i.8 fv cc n d nn fv d nn n fv d nn fv d nn cc

V N N V N
i.9 fv cc n d nn fv d nn fv n fv d nn fv d nn cc fv

V N N V N V
i.10 fv cc n d nn fv d nn fv d n fv d nn fv d nn cc fv d

V N N V N V N
i.11 fv cc n d nn fv d nn fv d nn n fv d nn fv d nn cc fv d nn

V N N V N V N
i.12 fv cc p n d nn fv d nn fv d nn n fv d nn fv d nn cc fv d nn p

V N N V N V N

130 8. Intrapropositional Coordination

Up to line i.4, the derivation resembles that of Bob ate an apple without a coordina-
tion. When the navigation returns from apple to eat, however, the conjunction marker
in the verb triggers the production of the complex verb–object coordination.

8.5 Complex Coordination of Subjects and Objects: Verb Gapping

The second kind of complex coordination is based on subject–object conjuncts sharing
the verb (verb gapping). In contrast to 8.4.1, we illustrate the complex coordination
with an example which is suitable to be reformulated as a simple coordination with
a reasonable meaning. The complex coordination example is Bob ate an apple, Jim
a pear, and Bill a peach, while the parallel example with two simple coordinations is
Bob, Jim, and Bill ate an apple, a pear, and a peach.

8.5.1 VERB GAPPING: Bob ate an apple, Jim # a pear, and Bill # a peach

fnc:
noun: n_1

nc:
pc:
prn:

fnc:
noun: apple

nc:
pc:
prn:

fnc:
noun: n_1

nc:
pc:
prn:

fnc:
noun: apple

nc:
pc:
prn:

cnj: &
fnc:
noun: peach

nc:
pc:
prn:

verb: eat

pc:
nc:
pc:

noun: Bob
fnc: eat

nc:
pc:

fnc: eat
noun: apple

arg: Bob apple
nc: Jim

noun: Jim

nc:
pc: Bob

verb: eat

pc:
nc:
pc:

noun: Bob
fnc: eat

pc:

fnc: eat
noun: apple

arg: Bob apple
nc: Jim

noun: Jim

nc:
pc: Bob

verb: eat

pc:
nc:
pc:

noun: Bob
fnc: eat

pc:

fnc: eat
noun: apple

arg: Bob apple
nc: Jim

noun: Jim

nc:nc: pear
pc: Bob

nc:
pc:
prn:

nc:
pc: apple

nc:
pc: apple

noun: pear

fnc:
noun: pear

nc:
pc:
prn:

cnj: &

prn: 31 prn: 31 prn: 31 prn: 31 prn: 31

prn: 31prn: 31prn: 31prn: 31prn: 31

anBob ate apple Jim

verb: eat
fnc:
nc:
pc:
prn:

nc:
pc:
prn:

arg:
noun: Bob

1

2

3

4

verb: eat

nc:
pc:

nc:
pc:

noun: Bob
fnc: eat

nc:
pc:

fnc: eat
noun: apple

arg: Bob apple

syntactic semantic parsing

fnc:
noun: Jim

nc:
pc:
prn:

noun: Jim

nc:
pc:
prn:

verb: eat
fnc:
nc:
pc:

nc:
pc:
prn:

arg:
noun: Bob

verb: eat

nc:
pc:

nc:
pc:

noun: Bob
fnc: eat arg: Bob

verb: eat

nc:
pc:

nc:
pc:

noun: Bob
fnc: eat arg: Bob n_1

noun: n_1

nc:
pc:

fnc: eat

prn: 31 prn: 31 prn: 31

5

6

7

prn: 31 prn: 31 prn: 31 prn: 31

prn: 31 prn: 31 prn: 31

prn: 31prn: 31

prn: 31

fnc: #

fnc: # fnc: #

fnc: # fnc: #

fnc: # fnc: #

verb: eat

pc:
nc:
pc:

fnc: eat
nc: Jim

noun: Jim

nc:
pc: Bob

noun: Bob &

nc:
pc: apple

noun: pear noun: Bill

nc:
pc:
prn:prn: 31prn: 31prn: 31prn: 31

8 arg: Bob & apple &

pc:
nc: pear

noun: apple &

prn: 31

fnc: eat fnc: # fnc: # fnc: #

lexical lookup
a pear and Bill

fnc:
noun: Bill

nc:
pc:
prn:

fnc:
noun: pear

nc:
pc:
prn:

fnc:
nc:
pc:
prn:

a

fnc:
nc:
pc:
prn:

peach

noun: n_2 noun: n_3

noun: n_2

noun: n_2

nc: n_2

8.5 Complex Coordination of Subjects and Objects: Verb Gapping 131

verb: eat

pc:
nc:
pc:

fnc: eat
nc: Jim

noun: Jim

pc: Bob

noun: Bob &

nc: Bill

result of syntactic semantic parsing:
verb: eat

pc:
nc:
pc:

fnc: eat
nc: Jim

noun: Jim

pc: Bob

noun: Bob &

nc: Bill

verb: eat

pc:
nc:
pc:

fnc: eat
nc: Jim

noun: Jim

pc: Bob

noun: Bob &

nc: Bill

nc:
pc: apple

noun: pear noun: Bill

nc:

pc: apple

noun: pear noun: Bill

nc:
pc: Jim

nc: peach

pc: apple

noun: pear noun: Bill

nc:
pc: Jim

nc: n_1

nc:
pc: pear

noun: peach

nc:
pc: pear

fnc:
noun: peach

nc:
pc:
prn:

prn: 31 prn: 31 prn: 31 prn: 31 prn: 31 prn: 31

prn: 31prn: 31prn: 31prn: 31prn: 31prn: 31

prn: 31 prn: 31 prn: 31 prn: 31
pc: Jim
prn: 31

9

10

pc:

fnc: eat
nc: pear

noun: apple &

pc:

fnc: eat
nc: pear

noun: apple &

pc:

fnc: eat
nc: pear

noun: apple &

prn: 31

prn: 31

prn: 31

arg: Bob & apple &

arg: Bob & apple &

arg: Bob & apple &

fnc: # fnc: # fnc: #
nc:
pc:
prn:

fnc: #

fnc: # fnc: #fnc: # fnc: #

fnc: # fnc: # fnc: # fnc: #

noun: n_3

noun: n_3

The one coordination of this example has three complex subject–object conjuncts,
namely Bob-apple, Jim-pear, and Bill-peach. The grammatical relations within and
between the complex conjuncts may be shown graphically as follows:

8.5.2 GRAMMATICAL RELATIONS IN COMPLEX SUBJECT–OBJECT COORDINAT.

pc:
prn: 31

verb: eat
arg: Bob & apple &
nc:

pc:
prn: 31

fnc: eat
nc: pear

noun: apple &

prn: 31

noun: Jim

pc: Bob

fnc: #
nc: Bill

prn: 31

noun: pear

nc: peach
pc: apple

fnc: #

prn: 31

nc:

noun: Bill

pc: Jim

fnc: #

prn: 31

nc:

noun: peach

pc: pear

fnc: #

pc:
prn: 31

fnc: eat
noun: Bob &

nc: Jim

shared vcrb

The three complex conjuncts are surrounded by dotted rectangles. They constitute one
coordination surrounded by a dashed rectangle.

While the parts of a noninitial subject gapping conjunct, e.g., read-paper (cf.
Sect. 8.4) can be naturally connected via the arg slot of the verb and the fnc slot of the
noun, this is not possible for the two nouns constituting the parts of a noninitial verb
gapping conjunct, e.g., Bill-peach. Instead, the connection between the two nouns
must be established via the shared verb. The navigation traversing the shared verb is
triggered by the # in the fnc slot of the noun proplets of the noninitial conjuncts. It
represents the shared verb – just as # indicates the shared subject in 8.4.3.

Next consider the grammatical relations of the corresponding example Bob, Jim,
and Bill ate an apple, a pear, and a peach. It contains the two simple coordinations
Bob, Jim, Bill and apple, pear, peach.

8.5.3 GRAMMATICAL RELATIONS IN SIMPLE SUBJECT AND OBJECT COORDINAT.

pc:

fnc: eat
noun: Bob &

nc: Jim

noun: Jim

pc: Bob
nc: Bill
fnc:

nc:

noun: Bill

pc: Jim

fnc:

pc:

fnc: eat
nc: pear

noun: apple & noun: pear

nc: peach
pc: apple

fnc:
nc:

noun: peach

pc: pear

fnc:

prn: 25 prn: 25 prn: 25 prn: 25 prn: 25 prn: 25
pc:

verb: eat
arg: Bob & apple &
nc:

prn: 25

132 8. Intrapropositional Coordination

Leaving the spatial layout and the prn values aside, the only difference between the
complex coordination 8.5.1/8.5.2 and the parallel simple coordinations 8.5.3 are the #
markers in the fnc slots of the noninitial conjuncts in the complex coordination, which
are missing in the simple coordinations.

Based on the grammatical relations shown in 8.5.2, the surface of the complex coor-
dination 8.4.1 is derived using a VNNNNNN navigation, whereby the six N constitute
three complex subject–object conjuncts:

8.5.4 PRODUCTION OF Bob ate an apple, Jim a pear, and Bill a peach

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n d n fv d

V N N
i.4 fv n d nn n fv d nn

V N N
i.5 fv n d nn n n fv d nn n

V N N N
i.6 fv n d nn n d n fv d nn n d

V N N N N
i.7 fv n d nn n d nn n fv d nn n d nn

V N N N N
i.8 fv cc n d nn n d nn n fv d nn n d nn cc

V N N N N
i.9 fv cc n d nn n d nn n n fv d nn fv d nn cc n

V N N N N N
i.10 fv cc n d nn n d nn n d n fv d nn n d nn cc n d

V N N N N N N
i.11 fv cc n d nn n d nn n d nn n fv d nn n d nn cc n d nn

V N N N N N N
i.12 fv cc p n d nn n d nn n d nn n fv d nn n d nn cc n d nn p

V N N N N N N

Up to line i.4, the derivation resembles that of Bob ate an apple without a complex
subject–object coordination. Then the # value in the fnc slot of the noun proplet Jim,
indicating the shared verb, triggers the production of the complex subject–object co-
ordination.

8.6 Complex Coordination of Subjects and Verbs: Object Gapping 133

8.6 Complex Coordination of Subjects and Verbs: Object Gapping

The third basic kind of complex coordination is based on subject–verb conjuncts shar-
ing the object (object gapping).9 Consider the following hearer mode derivation:

8.6.1 OBJECT GAPPING: Bob bought #, Jim peeled #, and Bill ate the peach

cnj: &

Bill

fnc:
nc:
pc:
prn:

noun: Bill

nc:
pc:
prn:

arg:
verb: peel

fnc:
noun: n_1

nc:
pc:
prn:

fnc:
nc:
pc:
prn:

noun: peach

nc:
pc:
prn:

arg:
verb: eat

nc:
pc:
prn:

arg:
verb: eat

cnj: &

fnc:
nc:
pc:
prn:

noun: Bill

fnc:
noun: n_1

nc:
pc:
prn:

fnc:
nc:
pc:
prn:

noun: peach

noun: Jim verb: peel

prn: 32
pc: buy
prn: 32

fnc: peel arg: Jim #
nc: eatnc:

pc:

noun: Jim verb: peel

prn: 32
pc: buy
prn: 32

fnc: peel arg: Jim #
nc: eatnc:

pc:

Bob

fnc:
nc:
pc:
prn:

noun: Bob

1

2

4

syntactic semantic parsing

fnc:
nc:
pc:

nc:
pc:
prn:

arg:
noun: Bob

5

6

7

8

bought

prn: 32

verb: buy

nc:
pc:

nc:
pc:

noun: Bob

prn: 32 prn: 32

3

result of syntactic semantic parsing:

pc: pc:
prn: 32 prn: 32

nc: peel

verb: buy &

fnc: buy

pc:
nc:
pc:

noun: Bob

prn: 32 prn: 32

pc: pc:

noun: Bob

prn: 32

verb: buy

prn: 32

nc: peel

pc: pc:
prn: 32 prn: 32

nc: peel

verb: buy &

pc: pc:
prn: 32 prn: 32

nc: peel

verb: buy &

pc: pc:
prn: 32 prn: 32

nc: peel

verb: buy &

fnc: buy

fnc: buy

fnc: buy &

pc: pc:
prn: 32 prn: 32

nc: peel

verb: buy &
fnc: buy &

fnc: buy &

fnc: buy &

fnc: buy &

noun: Bob

noun: Bob

noun: Bob

noun: Bob

noun: Bob

verb: buy

verb: buy

nc:

nc:

nc:

nc:

nc:

nc:

nc:

Jim peeled peach

fnc:
nc:
pc:
prn:

noun: Jim

and ate the

fnc:
nc:
pc:
prn:

noun: Jim

noun: Jim

nc:

verb: peel

prn: 32
pc: buy
prn: 32

fnc: peel arg: Jim # fnc:
nc:

noun: Bill

prn: 32

fnc:
nc:

noun: Jim

nc:
pc:
prn:

arg:
verb: peel

prn: 32

nc:

noun: Jim

nc:

verb: peel

prn: 32
pc: buy
prn: 32

fnc: peel

nc:

noun: Jim

nc:

verb: peel

prn: 32
pc: buy
prn: 32

fnc: peel arg: Jim #

noun: Jim verb: peel

prn: 32
pc: buy
prn: 32

fnc: peel arg: Jim #
nc:

noun: Bill

prn: 32

nc: eat nc:

verb: eat

pc: peel

fnc: eat

prn: 32

nc:

noun: Bill

prn: 32

nc:

verb: eat

pc: peel

fnc: eat

prn: 32

nc:

noun: Bill

prn: 32

nc:

verb: eat

pc: peel

fnc: eat

prn: 32

pc:

pc:

pc:

nc:
pc:

nc:
pc:

pc:

pc:

pc:

pc:

nc:
pc:
prn:

arg:
verb: buy

nc:
pc:
prn: 32

noun: n_1

nc:
pc:
prn: 32

noun: peach

lexical lookup

arg: Bob peach

arg: Bob n_1

arg: Bob

arg: Bill #

arg: Bill #

arg: Bill #

arg: Bob

arg: Bob

arg: Bob

arg: Bob

arg: Bob

fnc: buy

fnc: buy

arg: Jim #

9 This construction is also known as “right-node-raising,” a technical term motivated by methods not
used in Database Semantics. See Van Oirsouw (1987) for an overview of the Nativist literature on
gapping.

134 8. Intrapropositional Coordination

The complex coordination consists of the three subject–object conjuncts Bob-buy,
Jim-peel, and Bill-eat. The two proplets of a noninitial conjunct are connected by
copying the core value of the verb, e.g., eat, into the fnc slot of the subject, and the
core value of the subject, e.g., Bill, into the first position of the arg slot of the verb.
The second arg position is filled by #, characterizing the other value as the subject.

Let us go through the derivation step by step. When the second subject Jim is at-
tached in line 2, it cannot be connected, resulting in a suspension (cf. Sect. 7.6). When
the second verb peel is added in line 3, it is bidirectionally connected with Jim (in-
traconjunct relation) as well as with the first verb buy (extraconjunct relation). The
interpretation of Jim as the beginning of a subject–verb coordination rather than an
object results in marking the second arg position of peel with #, indicating an object
gap.

In line 4, the conjunction marker is added to the fnc value of Bob and the core value
of the first verb, characterizing buy as (the head of) the initial conjunct. In line 5, Bill
is added as the beginning of the third conjunct, resulting in another suspension. In line
6, eat is connected to Bill (intraconjunct relation) and to peel (extraconjunct relation).
The interpretation of Bill as the beginning of a subject–verb coordination results in
marking the second arg position of eat with #, indicating an object gap. In lines 7 and
8, finally, the object peach is connected to the verb of the first conjunct.

The resulting grammatical relations may be summarized as follows:

8.6.2 GRAMMATICAL RELATIONS IN COMPLEX SUBJECT–VERB COORDINATION

verb: peel
arg: Jim #
nc: eat
pc: buy

nc:
pc:

noun: Bob
fnc: buy &

shared object

pc:

verb: buy &
arg: Bob peach
nc: peel nc:

pc:

noun: peach
fnc: buy

nc:

noun: Jim

pc:
nc:
pc:

noun: Bill

pc: peel
nc:

verb: eat

fnc: eat

arg: Bill #

fnc: peel

Because of the functor–argument relations between the two parts of each complex
conjunct, object gapping is more similar to subject gapping than to verb gapping.

In comparison, the parallel example with two simple coordinations Bob, Jim, and
Bill bought, peeled, and ate the peach has the following grammatical relations:

8.6.3 RELATIONS IN SIMPLE SUBJECT AND VERB COORDINATIONS

pc:
nc: peel

verb: buy &
arg: Bob & peach

verb: peel

nc: eat
pc: buy

arg:
verb: eat

pc: peel
nc:
arg:

noun: Jim
fnc:
nc: Bill
pc: Bob

nc:

noun: Bill
fnc:

pc: Jimpc:

fnc: buy &
noun: Bob &

nc: Jim

shared object

nc:
pc:

noun: peach
fnc: buy &

8.6 Complex Coordination of Subjects and Verbs: Object Gapping 135

Based on the grammatical relations shown in 8.6.2, the surface of the complex co-
ordination 8.6.1 is derived using a VNVNVNN navigation, whereby the VNVNVN
sequence constitutes the three conjuncts of a complex subject–verb coordination:

8.6.4 PRODUCTION OF Bob bought, Jim peeled, and Bill ate the peach

activated sequence realization
i

V
i.1 n n

V N
i.2 fv n n fv

V N
i.3 fv n n n fv n

V N V N
i.4 fv n fv n n fv n fv

V N V N
i.5 fv cc n fv n n fv n fv cc

V N V N
i.6 fv cc n fv n n n fv n fv cc n

V N V N V N
i.7 fv cc n fv n fv n n fv n fv cc n fv

V N V N V N
i.8 fv cc n fv n fv n d n fv n fv cc n fv d

V N V N V N N
i.9 fv cc n fv n fv n d n fv n fv cc n fv d nn

V N V N V N N
i.10 fv cc p n fv n fv n d nn n fv n fv cc n fv d nn p

V N V N V N N

The two suspensions in the time-linear hearer mode derivation of this construction in
8.6.1 are clearly visible also in the time-linear speaker mode derivation (see lines i.3
and i.6).

Despite the fact that gapping constructions have a very low frequency in corpora,
their grammaticality judgments are quite clear. For example, while Bob bought, Jim
peeled, and Bill ate the peach (object gapping) is grammatical, *Bob bought the peach,
Jim peeled, and Bill ate is not. Therefore, analyzing the time-linear build-up of gram-
matical relations in the hearer mode (interpretation) and the production of surfaces
from a time-linear navigation along these grammatical relations in the speaker mode
(production) provides an insight into which kinds of content-coding are possible in
human cognition and which are not.

For example, it is remarkable that complex subject–object coordination (verb gap-
ping, cf. Sect. 8.5) correlates the noninitial conjuncts without any internal functor–

136 8. Intrapropositional Coordination

argument connection. Apparently, the nc and pc connections between the parts of the
conjuncts, and the functor–argument relation within the initial conjunct are sufficient
to establish the necessary grammatical relations in the noninitial conjuncts (cf. 8.5.2).
Fortunately, the pattern-matching-based rules of LA-grammar are well-suited to han-
dle these kinds of corelations without any increase in mathematical complexity.

It is also remarkable that the structure of intrasentential coordination, i.e., con-
junct_1, conjunct_2, ..., conjunct_n-1, conjunction conjunct_n, turns out to be the same
in many languages of the world10 (disregarding interpunctuation). This must be seen
in light of the fact that the coding of functor–argument structure – as it appears in the
internal structure of complex noun phrases, complex verb phrases, word order, agree-
ment, etc., – varies widely between different natural languages (cf. Nichols 1992).

10 Apart from English, German, French, Italian, and Spanish, we know this of Czech, Russian, Georgian,
Chinese, Korean, and Tagalog.

9. Extrapropositional Coordination

Extrapropositional coordination encodes the temporal sequence of incoming proposi-
tions (e.g., 3.1.1). At the language level, extrapropositional coordination may occur
intrasententially, as in Julia sleeps and John sings. (complex sentence), and extrasen-
tentially, as in Julia sleeps. John sings. (sequence of sentences in a text or dialogue).
Intrasentential extrapropositional coordination requires a conjunction word like and,
placed between the last two conjuncts. In extrasentential coordination, the sequenc-
ing of sentences is sufficient; if there is a coordinating conjunction, it is placed at the
beginning of a sentential conjunct.

9.1 Overview

In Database Semantics, the coordination of propositions is coded in their verb pro-
plets’ nc and pc attributes. Consider the following set of proplets representing Julia
sang. Then Sue slept. John read.:

9.1.1 GRAMMATICAL RELATIONS BETWEEN CONCATENATED PROPOSITIONS

pc:
nc:
mdr:

noun: Julia
fnc: sing

mdr:

verb: sing
arg: Julia

prn: 10 prn: 10
pc:

noun: John

nc:
mdr:
fnc: read

mdr:

verb: read
arg: John

nc:

prn: 12prn: 12
pc:

65

pc: 11 sleeppc:

mdr:
fnc: sleep

nc:

noun: Sue

mdr:

verb: sleep
arg: Sue

prn: 11 prn: 11

nc: 12 read

1 2 3 4

nc: > 11 sleep
pc: < 10 sing

There are no proplets with values followed by a conjunction marker such as &. This
is because without an integration of the coordination into a functor–argument struc-
ture there is no purpose to distinguish the initial conjunct from the noninitial ones (cf.
8.1.2). The extrapropositional nature of the coordination is indicated by the proposi-
tion numbers preceding the nc and pc values, e.g., [pc: 11 sleep] in proplet 6.

The optional conjunctions of extrapropositional coordination are specified in the
nc and pc slots (in contradistinction to intrapropositional coordination, in which the
conjunctions are obligatory and specified in the core attribute). For example, in 9.1.1
the coordinating conjunction then is added before the proposition number, e.g., [nc: >
11 sleep] in proplet 2 and [pc: < 10 sleep] in proplet 4, whereby then is represented as
> or as <, depending on the direction of the connection.

138 9. Extrapropositional Coordination

Given that intrapropositional verb coordination (cf. 8.3.2) and extrapropositional
coordination may be combined, they must be compatible. Intrapropositional conjunc-
tion assigns no value to either the first conjunct’s pc attribute or the last conjunct’s nc
attribute. Therefore, these attributes are available for extrapropositional coordination.

As an example, consider Sue slept. John bought, cooked, and ate a pizza. Julia
sang. This example consists of an extrasentential coordination of three propositions,
whereby the middle one contains an intrapropositional verb coordination.

9.1.2 COMBINING INTRA- AND EXTRAPROPOSITIONAL COORDINATIONS

mdr:

verb: sleep

prn: 26
pc:
nc: 27 buy &

arg: Sue

pc:

mdr:
fnc: sleep

prn: 26

nc:

noun: Sue

1

noun: John

nc:
pc:
prn: 27

fnc: buy &
mdr:

3

prn: 27

verb: buy &

nc: cook
mdr:
arg: John pizza

pc: 26 sleep

4

verb: cook
arg:
mdr:

prn: 27

nc: eat
pc: buy

5

verb: eat
arg:
mdr:

prn: 27
pc: cook
nc: 28 sing

6

pc:
nc:
mdr:

prn: 27

noun: pizza
fnc: buy &

7

pc:
nc:
mdr:

noun: Julia
fnc: sing

prn: 28

8

mdr:

verb: sing
arg: Julia

nc:

prn: 28
pc: 27 eat

2 9

The relations of extrapropositional coordination are indicated by dashed lines, while
those of the intrapropositional coordination are indicated by solid lines.

The first proposition 26 is connected extrapropositionally to the second proposition
27 by copying the core value sleep of proplet 2 into the pc slot of proplet 4, and the
core value buy & of proplet 4 into the nc slot of proplet 2. As a consequence, the pc slot
of proplet 4 (i.e., buy of the second proposition) is not empty any more. Nevertheless,
proplet 4 is still characterized as the initial conjunct of an intrapropositional verb
coordination because (i) its core value is followed by the conjunction marker ([verb:
buy &]), and (ii) the value of its pc slot is preceded by a proposition number ([pc: 26
sleep]), indicating an extrapropositional relation.

Correspondingly, proposition 27 is conjoined with proposition 28 by copying the
core value sing of proplet 9 into the nc slot of proplet 6, i.e., the final verb conjunct,
and by copying the core value eat of proplet 6 into the pc slot of proplet 9. Despite its
nonempty nc slot, proplet 6 is still characterized as a final intrapropositional conjunct
because its nc value is preceded by a proposition number ([nc: 28 sing]), indicating an
extrapropositional relation.

9.2 Interpretation and Production of Extrapropositional Coordination

The elements of an extrapropositional coordination may have any of the internal struc-
tures discussed in Chaps. 6–8, at any degree of complexity: Each one of them may be
an intra- or an extrapropositional functor–argument structure with a one-, two-, or
three-place verb, various adnominal and adverbial adjectives, and various simple or
complex intrapropositional coordinations. While functor–argument structures of arbi-
trary complexity are always intrasentential at the level of language, their coordination
may be either intra- or extrasentential.

9.2 Interpretation and Production of Extrapropositional Coordination 139

In Database Semantics, the distinction between intra- and extrasentential coordina-
tion is a relatively minor surface phenomenon: If of two sentences in sequence the first
one ends with a sentential punctuation mark such as “.”, “?”, or “!”, the coordination is
extrasentential; if the first sentence is continued with a coordinating conjunction such
as and, or or but, in contrast, the coordination is intrasentential. In verb proplets repre-
senting extrapropositional conjuncts, punctuation marks are used not only to indicate
the sentence mood, but are also treated as the default kind of an extrapropositional
conjunction, which need not be explicitly listed in the nc and pc values.

The following time-linear derivations in the hearer mode (interpretation) and in the
speaker mode (production) treat a simple extrasentential example:

9.2.1 DERIVATION OF Julia slept. John sang.

noun: Julia verb: sleep

prn:

fnc: arg:
mdr: mdr:
nc: nc:
pc: pc:
prn:

noun: John
fnc:
mdr:
nc:
pc:
prn:

verb: sing
arg:
mdr:
nc:
pc:
prn:

noun: John
fnc:
mdr:
nc:
pc:
prn:

verb: sing
arg:
mdr:
nc:
pc:
prn:

noun: Julia verb: sleep

mdr: mdr:
nc: nc:
pc: pc:

fnc: sleep arg: Julia

prn: 29 prn: 29

John sangsleptJulia .

lexical lookup

1

noun: Julia verb: sleep

prn:

fnc: arg:
mdr: mdr:
nc: nc:
pc: pc:
prn: 29

3

syntactic semantic parsing:

noun: Julia verb: sleep

mdr: mdr:
nc:
pc: pc:

fnc: sleep arg: Julia

prn: 29 prn: 29

result of syntactic semantic parsing:

noun: John
fnc:
mdr:
nc:
pc:
prn: 30

5

4

2

noun: Julia verb: sleep

mdr: mdr:
nc:
pc: pc:

fnc: sleep arg: Julia

prn: 29 prn: 29

noun: Julia verb: sleep

mdr: mdr:
nc:
pc: pc:

fnc: sleep arg: Julia

prn: 29 prn: 29

noun: Julia verb: sleep

mdr: mdr:
nc:
pc: pc:

fnc: sleep arg: Julia

prn: 29 prn: 29

.

noun: John

mdr:
nc:
pc:

verb: sing

mdr:

prn: 30 prn: 30

arg: Johnfnc: sing

noun: John

mdr:
nc:
pc:

verb: sing

mdr:
nc:

prn: 30 prn: 30

arg: Johnfnc: sing

pnc:. pnc:.

pnc:.

pnc:.

nc:

nc:

nc: 30 sing
pc: 29 sleep

nc: 30 sing nc:
pc: 29 sleep

140 9. Extrapropositional Coordination

In line 2, the value “.” of the pnc (punctuation) proplet is used to specify the sen-
tence mood in the verb proplet as declarative (not shown here, but see 11.5.2); as
the extrapropositional default, the core value of the punctuation/conjunction it is not
added to the nc slot of sleep. In line 3, there is an instance of suspension (cf. 7.6.1
ff.): The subject of the second sentence is added to the set of proplets without being
grammatically connected.

In line 4, there are two kinds of value copying. The first kind reconstructs the
functor–argument structure of John sings, copying John into the arg slot of the proplet
sing, and sing into the fnc slot of the proplet John. The second kind of value copying
makes up for the suspension in line 3. It establishes the extrapropositional connections
between the two verb proplets by copying sleep into the pc slot of the proplet sing,
and sing into the nc slot of sleep.

Thus, even without an explicit conjunction, the two sentences are extrapropositio-
nally conjoined: The nc slot of the first sentence specifies the proposition number and
the core value of the verb proplet of the second sentence, while the pc slot of the
second sentence specifies the corresponding values of the first.

The schematic production of this example from an VN VN navigation is as follows:

9.2.2 PRODUCTION OF Julia slept. John sang.

activated sequence realization
1

V
1.1 n n

V N
1.2 fv n n fv

V N
1.3 fv p n n fv p

V N
2.1 fv p n n n fv p n

V N V N
2.2 fv p n fv n n fv p n fv

V N V N
2.3 fv p n fv p n n fv p n fv p

V N V N

After the initial LA-think navigation from V to N, LA-speak produces the abstract n fv
p surface in lines 1.1–1.3. Thereby the sentence-final punctuation mark is lexicalized
using the sentence mood specified in the verb proplet. Then LA-think traverses the
second VN proplet sequence, from which LA-speak produces the second abstract n
fv p surface in lines 2.1–2.3. The suspension shows up in line 2.1 in a way similar
to example 7.6.2. See Chaps. 11 and 12 for the explicitly defined LA-hear, LA-think,
and LA-speak grammars handling extrapropositional coordination.

9.3 Simple Coordinations as Sentential Arguments and Modifiers 141

9.3 Simple Coordinations as Sentential Arguments and Modifiers

The analysis of coordinations in Chap. 8 considered only intrapropositional functor–
argument structures, for example, the man, the woman, and the child slept (simple
coordination, cf. 8.2.1) and the man bought, the woman peeled, and the child ate the
peach (complex coordination, object gapping, cf. 8.6.1). We turn now to the task of
integrating coordinations into extrapropositional functor–argument structures.

In this section, we begin with simple coordination, going systematically through the
constructions analyzed in Chap. 7, namely (i) sentential arguments serving as subject
(subject sentences), (ii) sentential arguments serving as object (object sentences), (iii)
sentential modifiers in adnominal use with a subject gap (relative clauses with the head
serving as the subject), (iv) sentential modifiers in adnominal use with an object gap
(relative clauses with the head serving as the/an object), and (v) sentential modifiers
in adverbial use (adverbial sentences).

Given that the hearer and speaker mode derivations of extrapropositional functor–
argument structure and intrapropositional coordination have already been presented
in Chaps. 7 and 8, the following examples are analyzed as semantic representations
only. As sets of proplets, they are by definition unordered. However, because their
presentation requires the choice of some spatial lay-out, we choose to show them as
sequences which are motivated in part by the surface order of the associated language
example, and in part by the desire to bring out the relation between the coordination
and the extrapropositional functor–argument structure as clearly as possible.

9.3.1 SIMPLE COORDINATIONS IN SENTENTIAL ARGUMENTS 1
(subject sentence, cf. 7.2, 8.2.1, 8.2.2)

1. Noun coordination as the subject of a subject sentence:
That the man, the woman, and the child slept surprised Mary.

⎡
⎢⎣

n/v: that sleep
arg: man &
fnc: 9 surprise
prn: 8

⎤
⎥⎦

⎡
⎢⎢⎣

noun: man &
fnc: sleep
nc: woman
pc:
prn: 8

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: woman
fnc:
nc: child
pc: man
prn: 8

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: child
fnc:
nc:
pc: woman
prn: 8

⎤
⎥⎥⎦

[
verb: surprise
arg: 8 sleep Mary
prn: 9

] [
noun: Mary
fnc: surprise
prn: 9

]

The grammatical relation between the subject sentence that the man ... slept and
the main sentence # surprised Mary is established by the [fnc: 9 surprise] feature
of the n/v proplet sleep and the [arg: 8 sleep Mary] feature of the verb proplet
surprise. This example may be turned into the corresponding proposition without
a coordination by deleting (i) the & markers, (ii) the noninitial conjunct proplets
woman and child, and (iii) the value woman of the nc attribute in the initial con-
junct proplet man.

142 9. Extrapropositional Coordination

2. Verb coordination in a subject sentence:
That the man bought, cooked, and ate the pizza surprised Mary.

[
noun: man
fnc: buy &
prn: 10

] ⎡
⎢⎢⎢⎢⎣

n/v: that buy &
arg: man pizza
fnc: 11 surprise
nc: cook
pc:
prn: 10

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: cook
arg:
nc: eat
pc: buy
prn: 10

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg:
nc:
pc: cook
prn: 10

⎤
⎥⎥⎦

[
noun: pizza
fnc: buy &
prn: 10

]

[
verb: surprise
arg: 10 buy & Mary
prn: 11

] [
noun: Mary
fnc: surprise
prn: 11

]

The grammatical relation between the subject sentence that the man bought ...
the pizza and the main sentence # surprised Mary is established by the [fnc: 11
surprise] feature of the n/v proplet buy and the [arg: 10 buy & Mary] feature of the
higher verb proplet surprise. The conjunction markers & ensure that the noninitial
conjuncts of the verb coordination can be accessed from the subject and the object
of the lower, and from the arg value of the higher proposition. The example may
be turned into the corresponding construction without a coordination by deleting
(i) the & markers, (ii) the noninitial conjunct proplets cook and eat, and (iii) the
value cook of the nc attribute in the initial conjunct proplet buy.

3. Noun coordination as the object of a subject sentence:
That Bob ate an apple, a pear, and a peach, surprised Mary.

[
noun: Bob
fnc: eat
prn: 12

] ⎡
⎢⎣

n/v: that eat
arg: Bob apple &
fnc: 13 surprise
prn: 12

⎤
⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: eat
nc: pear
pc:
prn: 12

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc:
nc: peach
pc: apple
prn: 12

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc:
nc:
pc: pear
prn: 12

⎤
⎥⎥⎦

[
verb: surprise
arg: 12 eat Mary
prn: 13

] [
noun: Mary
fnc: surprise
prn: 13

]

The grammatical relation between the subject sentence that Bob ate an apple...
and the main sentence # surprised Mary is established by the [fnc: 13 surprise]
feature of the n/v proplet buy and the [arg: 12 eat Mary] feature of the higher verb
proplet surprise. This example may be turned into the corresponding proposition
without a coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets pear and peach, and (iii) the value pear of the nc attribute in the initial
conjunct proplet apple.

9.3.2 SIMPLE COORDINATIONS IN SENTENTIAL ARGUMENTS 2
(object sentence, cf. 7.3, 8.2.4, 8.2.5)

The crucial difference between the following three examples and those in 9.3.1 above
is that the sentential and nonsentential arg values of the higher verb proplets (surprise,
see) are in inverse order: In 9.3.1(1) they are [arg: 8 sleep Mary] (subject sentence),
while in 9.3.2(1) they are [arg: Mary 15 sleep] (object sentence); in 9.3.1(2) they are

9.3 Simple Coordinations as Sentential Arguments and Modifiers 143

[arg: 10 buy & Mary] (subject sentence), while in 9.3.2(2) they are [arg: Mary 17 buy &]
(object sentence); and in 9.3.1(3) they are [arg: 12 buy Mary] (subject sentence), while
in 9.3.2(3) they are [arg: Mary 19 buy] (object sentence).

1. Noun coordination as the subject of an object sentence:
Mary saw that the man, the woman and the child slept.

[
noun: Mary
fnc: see
prn: 14

] [
verb: see
arg: Mary 15 sleep
prn: 14

]

⎡
⎢⎣

n/v: that sleep
arg: man &
fnc: 14 see
prn: 15

⎤
⎥⎦

⎡
⎢⎢⎣

noun: man &
fnc: sleep
nc: woman
pc:
prn: 15

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: woman
fnc:
nc: child
pc: man
prn: 15

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: child
fnc:
nc:
pc: woman
prn: 15

⎤
⎥⎥⎦

2. Verb coordination in an object sentence:
Mary saw that the man bought, cooked, and ate the pizza.[

noun: Mary
fnc: see
prn: 16

] [
verb: see
arg: Mary 17 buy &
prn: 16

]

[
noun: man
fnc: buy &
prn: 17

]
⎡
⎢⎢⎢⎢⎣

n/v: that buy &
arg: man pizza
fnc: 16 see
nc: cook
pc:
prn: 17

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: cook
arg:
nc: eat
pc: buy
prn: 17

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg:
nc:
pc: cook
prn: 17

⎤
⎥⎥⎦

[
noun: pizza
fnc: buy &
prn: 17

]

3. Noun coordination as the object of an object sentence::
Mary saw that Bob bought an apple, a pear, and a peach.

[
noun: Mary
fnc: see
prn: 18

] [
verb: see
arg: Mary 19 buy
prn: 18

]

[
noun: Bob
fnc: buy
prn: 19

] ⎡
⎢⎣

n/v: that buy
arg: Bob apple &
fnc: 18 see
prn: 19

⎤
⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: buy
nc: pear
pc:
prn: 19

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc:
nc: peach
pc: apple
prn: 19

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc:
nc:
pc: pear
prn: 19

⎤
⎥⎥⎦

The reductions of the above examples to propositions without coordinations are anal-
ogous to those in 9.3.1.

9.3.3 SIMPLE COORDINATIONS IN SENTENTIAL MODIFIERS 1
(adnominal sentence/relative clause with a subject gap, cf. 7.4, 8.3.2, 8.3.3)

1. Noun coordination as the subject of an adnominal sentence with a subject gap:
structurally excluded!

A relative clause with a subject gap cannot have a subject coordination because
the gap (represented in English by a relative pronoun) cannot be part of a noun
coordination.

144 9. Extrapropositional Coordination

2. Verb coordination in an adnominal sentence with a subject gap:
Mary saw the man who bought, cooked, and ate the pizza.[

noun: Mary
fnc: see
prn: 20

] [
verb: see
arg: Mary man
prn: 20

] ⎡
⎢⎣

noun: man
fnc: see
mdr: 21 buy &
prn: 20

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

a/v: buy &
arg: # pizza
mdd: 20 man
nc: cook
pc:
prn: 21

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: cook
arg:
nc: eat
pc: buy
prn: 21

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg:
nc:
pc: cook
prn: 21

⎤
⎥⎥⎦

[
noun: pizza
fnc: buy &
prn: 21

]

The grammatical relation between the noun man and the relative clause # buy ...
pizza is established by (i) the [mdr: 21 buy &] feature of the higher noun proplet
man and (ii) the [arg: # pizza] and the [mdd: 20 man] features of the a/v proplet
buy. This example may be turned into the corresponding proposition without a
coordination by deleting (i) the & markers, (ii) the noninitial conjunct proplets
cook and eat, and (iii) the value cook of the nc attribute in the initial conjunct
proplet buy with the core attribute a/v.

3. Noun coordination as the object of an adnominal clause with a subject gap:
Mary saw the man who bought an apple, a pear, and a peach.

[
noun: Mary
fnc: see
prn: 22

] [
verb: see
arg: Mary man
prn: 22

] ⎡
⎢⎣

noun: man
fnc: see
mdr: 23 buy
prn: 22

⎤
⎥⎦

⎡
⎢⎣

a/v: buy
arg: # apple &
mdd: 22 man
prn: 23

⎤
⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: buy
nc: pear
pc:
prn: 23

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc:
nc: peach
pc: apple
prn: 23

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc:
nc:
pc: pear
prn: 23

⎤
⎥⎥⎦

The grammatical relation between the noun man and the relative clause # buy
apple ... is established by (i) the [mdr: 23 buy] feature of the higher noun proplet
man and (ii) the [arg: # apple &] and the [mdd: 22 man] features of the a/v proplet
buy. This example may be turned into the corresponding proposition without a
coordination by deleting (i) the & markers, (ii) the noninitial conjunct proplets
pear and peach, and (iii) the value pear of the nc attribute in the initial conjunct
proplet apple.

9.3.4 SIMPLE COORDINATIONS IN SENTENTIAL MODIFIERS 2
(adnominal sentence/relative clause with an object gap, cf. Sect. 7.5)

The crucial difference between the following three examples and those in 9.3.3 above
is the position of the gap marker # in the arg values of the respective lower a/v proplets
buy and see: in 9.3.3(2) the values are [arg: # pizza] (subject gap), while in 9.3.4(1)

9.3 Simple Coordinations as Sentential Arguments and Modifiers 145

they are [arg: Bob & #] (object gap); and in 9.3.3(3) the values are [arg: # apple &]
(subject gap), while in 9.3.4(2) they are [arg: man #] (object gap),

1. Noun coordination as the subject of an adnominal clause with an object gap:
Mary saw the pizza which Bob, Jim, and Bill ate.

[
noun: Mary
fnc: see
prn: 24

] [
verb: see
arg: Mary pizza
prn: 24

] ⎡
⎢⎣

noun: pizza
fnc: see
mdr: 25 eat
prn: 24

⎤
⎥⎦

⎡
⎢⎣

a/v: eat
arg: Bob & #
mdd: 24 pizza
prn: 25

⎤
⎥⎦

⎡
⎢⎢⎣

noun: Bob &
fnc: eat
nc: Jim
pc:
prn: 25

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Jim
fnc:
nc: Bill
pc: Bob
prn: 25

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Bill
fnc:
nc:
pc: Jim
prn: 25

⎤
⎥⎥⎦

The grammatical relation between the noun pizza and the relative clause with ob-
ject gap Bob ... eat # is established by (i) the [mdr: 25 eat] feature of the higher
noun proplet pizza and (ii) the [arg: Bob & #] and the [mdd: 24 pizza] features of the
a/v proplet eat. This example may be turned into the corresponding proposition
without a coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets Jim and Bill, and (iii) the value Jim of the nc attribute in the initial con-
junct proplet Bob.

2. Verb coordination in an adnominal clause with an object gap:
Mary saw the pizza which the man bought, cooked, and ate.

[
noun: Mary
fnc: see
prn: 26

] [
verb: see
arg: Mary pizza
prn: 26

] ⎡
⎢⎣

noun: pizza
fnc: see
mdr: 27 buy &
prn: 26

⎤
⎥⎦

[
noun: man
fnc: buy &
prn: 27

]
⎡
⎢⎢⎢⎢⎣

a/v: buy &
arg: man #
mdd: 26 pizza
nc: cook
pc:
prn: 27

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: cook
arg:
nc: eat
pc: buy
prn: 27

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg:
nc:
pc: cook
prn: 27

⎤
⎥⎥⎦

The grammatical relation between the noun pizza and the relative clause with ob-
ject gap man buy ... # is established by (i) the [mdr: 27 buy &] feature of the higher
noun proplet pizza and (ii) the [arg: man #] and the [mdd: 26 pizza] features of the
a/v proplet buy. This example may be turned into the corresponding proposition
without a coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets cook and eat, and (iii) the value cook of the nc attribute in the initial
conjunct proplet buy with the core attribute a/v.

3. Noun coordination as the object of the adnominal clause with an object gap:
structurally excluded!

A relative clause with an object gap cannot have an object coordination because

146 9. Extrapropositional Coordination

the gap (represented in English by a relative pronoun) cannot participate in a
coordination.

9.3.5 SIMPLE COORDINATIONS IN SENTENTIAL MODIFIERS 3
(adverbial sentence, cf. Sect. 7.6)

1. Noun coordination as the subject of an adverbial sentence:
Mary arrived after Bob, Jim, and Bill had eaten a pizza.

[
noun: Mary
fnc: arrive
prn: 28

] ⎡
⎢⎣

verb: arrive
arg: Mary
mdr: 29 eat
prn: 28

⎤
⎥⎦

⎡
⎢⎣

a/v: after eat
arg: Bob & pizza
mdd: 28 arrive
prn: 29

⎤
⎥⎦

⎡
⎢⎢⎣

noun: Bob &
fnc: eat
nc: Jim
pc:
prn: 29

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Jim
fnc:
nc: Bill
pc: Bob
prn: 29

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Bill
fnc:
nc:
pc: Jim
prn: 29

⎤
⎥⎥⎦

[
noun: pizza
fnc: eat
prn: 29

]

The grammatical relation between the main sentence Mary arrived and the ad-
nominal sentence after Bob... had eaten a pizza is established by the [mdr: 29 eat]
feature of the higher verb proplet arrive and the [mdd: 28 arrive] feature of the
a/v proplet eat. This example may be turned into the corresponding proposition
without a coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets Jim and Bill, and (iii) the value Jim of the nc attribute in the initial con-
junct proplet Bob.

2. Verb coordination in an adverbial sentence:
After Bob had bought, cooked, and eaten the pizza, Mary arrived.

[
noun: Bob
fnc: buy &
prn: 30

] ⎡
⎢⎢⎢⎢⎣

a/v: after buy &
arg: Bob pizza
mdd: 31 arrive
nc: cook
pc:
prn: 30

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: cook
arg:
nc: eat
pc: buy
prn: 30

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg:
nc:
pc: cook
prn: 30

⎤
⎥⎥⎦

[
noun: pizza
fnc: buy &
prn: 30

]

⎡
⎢⎣

verb: arrive
arg: Mary
mdr: 30 buy
prn: 31

⎤
⎥⎦

[
noun: Mary
fnc: arrive
prn: 31

]

The grammatical relation between the main sentence Mary arrived and the adver-
bial sentence after Bob had bought ... the pizza is established by the [mdd: 31
arrive] feature of the a/v proplet buy and the [mdr: 30 buy] feature of the higher
verb proplet arrive. This example may be turned into the corresponding propo-
sition without a coordination by deleting (i) the & markers, (ii) the noninitial
conjunct proplets cook and eat, and (iii) the value cook of the nc attribute in the
initial conjunct proplet buy with an a/v core attribute.

9.4 Complex Coordinations as Sentential Arguments and Modifiers 147

3. Noun coordination as the object of an adverbial sentence:
Mary arrived after Bob had eaten an apple, a pear, and a peach.[

noun: Mary
fnc: arrive
prn: 32

] ⎡
⎢⎣

verb: arrive
arg: Mary
mdr: 33 eat
prn: 32

⎤
⎥⎦

[
noun: Bob
fnc: eat
prn: 33

] ⎡
⎢⎣

a/v: after eat
arg: Bob apple &
mdd: 32 arrive
prn: 33

⎤
⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: eat
nc: pear
pc:
prn: 33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc:
nc: peach
pc: apple
prn: 33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc:
nc:
pc: pear
prn: 33

⎤
⎥⎥⎦

This example may be turned into the corresponding proposition without a coordi-
nation in the same way as 9.3.1 (3).

9.4 Complex Coordinations as Sentential Arguments and Modifiers

Corresponding to the grammatical analysis of simple subject, verb, and object coor-
dinations in extrapropositional functor–argument structures, we turn now to complex
verb–object, subject–object, and subject–verb coordinations (i.e., subject, verb, and
object gapping, respectively). As before, their grammatical function is investigated in
a (i) subject sentence, (ii) an object sentence, (iii) an adnominal sentence with subject
gap, (iv) an adnominal sentence with object gap, and (v) an adverbial sentence.

9.4.1 COMPLEX COORDINATIONS IN SENTENTIAL ARGUMENTS 1
(subject sentence, cf. Sect. 7.2)

1. Verb–object coordination (subject gapping, cf. 8.4) in a subject sentence:
That Bob ate an apple, walked his dog, and read a paper, amused Mary.

[
noun: Bob
fnc: eat &
prn: 29

] ⎡
⎢⎢⎢⎢⎣

n/v: that eat &
arg: Bob apple
fnc: 30 amuse
nc: walk
pc:
prn: 29

⎤
⎥⎥⎥⎥⎦

[
noun: apple
fnc: eat
prn: 29

] ⎡
⎢⎢⎣

verb: walk
arg: # dog
nc: read
pc: eat
prn: 29

⎤
⎥⎥⎦

[
noun: dog
fnc: walk
prn: 29

]

⎡
⎢⎢⎣

verb: read
arg: # paper
nc:
pc: walk
prn: 29

⎤
⎥⎥⎦

[
noun: paper
fnc: read
prn: 29

] [
verb: amuse
arg: 29 eat & Mary
prn: 30

] [
noun: Mary
fnc: amuse
prn: 30

]

The grammatical relation between the main sentence # amused Mary and the sub-
ject sentence that Bob ate an apple ... is established by the [fnc: 30 amuse] feature
of the n/v proplet eat and the [arg: 29 eat & Mary] feature of the higher verb proplet
amuse. This example may be turned into the corresponding proposition without
complex coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets walk, dog, read, and paper, and (iii) the value walk of the nc attribute in
the initial conjunct proplet eat with the core attribute n/v.

148 9. Extrapropositional Coordination

2. Subject–object coordination (verb gapping, cf. 8.5) in a subject sentence:
That Bob ate an apple, Jim a pear, and Bill a peach, amused Mary.

⎡
⎢⎣

n/v: that eat
arg: Bob & apple &
fnc: 32 amuse
prn: 31

⎤
⎥⎦

⎡
⎢⎢⎣

noun: Bob &
fnc: eat
nc: Jim
pc:
prn: 31

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: eat
nc: pear
pc:
prn: 31

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Jim
fnc: #
nc: Bill
pc: Bob
prn: 31

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc: #
nc: peach
pc: apple
prn: 31

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Bill
fnc: #
nc:
pc: Jim
prn: 31

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc: #
nc:
pc: pear
prn: 31

⎤
⎥⎥⎦

[
verb: amuse
arg: 31 eat Mary
prn: 32

] [
noun: Mary
fnc: amuse
prn: 32

]

The grammatical relation between the main sentence # amused Mary and the sub-
ject sentence that Bob ate an apple ... is established by the [fnc: 32 amuse] feature
of the n/v proplet eat and the [arg: 31 eat Mary] feature of the higher verb proplet
amuse. This example may be turned into the corresponding proposition without
a complex coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets Jim, pear, Bill, and peach, and (iii) the values Jim and pear of the nc
attributes in the initial conjunct proplets Bob and apple, respectively.

3. Subject–verb coordination (object gapping, cf. 8.6) in a subject sentence:
That Bob bought, Jim peeled, and Bill ate the peach, amused Mary.

[
noun: Bob
fnc: buy &
prn: 33

] ⎡
⎢⎢⎢⎢⎣

n/v: that buy &
arg: Bob peach
fnc: 34 amuse
nc: peel
pc:
prn: 33

⎤
⎥⎥⎥⎥⎦

[
noun: Jim
fnc: peel
prn: 33

] ⎡
⎢⎢⎣

verb: peel
arg: Jim #
nc: eat
pc: buy
prn: 33

⎤
⎥⎥⎦

[
noun: Bill
fnc: eat
prn: 33

] ⎡
⎢⎢⎣

verb: eat
arg: Bill #
nc:
pc: peel
prn: 33

⎤
⎥⎥⎦

[
noun: peach
fnc: buy
prn: 33

] [
verb: amuse
arg: 33 buy & Mary
prn: 34

] [
noun: Mary
fnc: amuse
prn: 34

]

The grammatical relation between the main sentence # amused Mary and the sub-
ject sentence that Bob bought ... the peach is established by the [fnc: 34 amuse]
feature of the n/v proplet buy and the [arg: 33 buy & Mary] feature of the verb
proplet amuse. This example may be turned into the corresponding proposition
without a complex coordination by deleting (i) the & markers, (ii) the noninitial
conjunct proplets Jim, peel, Bill, and eat, and (iii) the value peel of the nc attribute
in the initial conjunct proplet buy with the core attribute n/v.

9.4.2 COMPLEX COORDINATIONS IN SENTENTIAL ARGUMENTS 2
(object sentence, cf. Sect. 7.3)

The relation between subject and object sentences with complex coordinations is
analogous to that between subject and object sentences with simple coordinations
(cf. 9.3.1 and 9.3.2). The crucial difference between the following three examples and

9.4 Complex Coordinations as Sentential Arguments and Modifiers 149

those in 9.4.1 above is that the sentential and nonsentential arg values of the higher
verb proplets (amuse, see) are in inverse order: in 9.4.1(1) they are [arg: 29 eat & Mary]
(subject sentence), while in 9.4.2(1) they are [arg: Mary 35 eat &] (object sentence); in
9.4.1(2) they are [arg: 31 eat Mary] (subject sentence), while in 9.4.2(2) they are [arg:
Mary 37 eat] (object sentence); and in 9.4.1(3) they are [arg: 33 buy & Mary] (subject
sentence), while in 9.4.2(3) they are [arg: Mary 39 buy &] (object sentence).

1. Verb–object coordination (subject gapping, cf. 8.4) in an object sentence:
Mary saw that Bob ate an apple, walked his dog, and read a paper.

[
noun: Mary
fnc: see
prn: 34

] [
verb: see
arg: Mary 35 eat &
prn: 34

] [
noun: Bob
fnc: eat &
prn: 35

]
⎡
⎢⎢⎢⎢⎣

n/v: that eat &
arg: Bob apple
fnc: 34 see
nc: walk
pc:
prn: 35

⎤
⎥⎥⎥⎥⎦

[
noun: apple
fnc: eat
prn: 35

]

⎡
⎢⎢⎣

verb: walk
arg: # dog
nc: read
pc: eat
prn: 35

⎤
⎥⎥⎦

[
noun: dog
fnc: walk
prn: 35

] ⎡
⎢⎢⎣

verb: read
arg: # paper
nc:
pc: walk
prn: 35

⎤
⎥⎥⎦

[
noun: paper
fnc: read
prn: 35

]

2. Subject–object coordination (verb gapping, cf. 8.5) in an object sentence:
Mary saw that Bob ate an apple, Jim a pear, and Bill a peach.

[
noun: Mary
fnc: see
prn: 36

] [
verb: see
arg: Mary 37 eat
prn: 36

] ⎡
⎢⎢⎣

noun: Bob &
fnc: eat
nc: Jim
pc:
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎣

n/v: that eat
arg: Bob & apple &
fnc: 36 see
prn: 37

⎤
⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: eat
nc: pear
pc:
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Jim
fnc: #
nc: Bill
pc: Bob
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc: #
nc: peach
pc: apple
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Bill
fnc: #
nc:
pc: Jim
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc: #
nc:
pc: pear
prn: 37

⎤
⎥⎥⎦

3. Subject–verb coordination (object gapping, cf. 8.6) in an object sentence:
Mary saw that Bob bought, Jim peeled, and Bill ate the peach .

[
noun: Mary
fnc: see
prn: 38

] [
verb: see
arg: Mary 39 buy &
prn: 38

] [
noun: Bob
fnc: buy &
prn: 39

]
⎡
⎢⎢⎢⎢⎣

n/v: that buy &
arg: Bob peach
fnc: 38 see
nc: peel
pc:
prn: 39

⎤
⎥⎥⎥⎥⎦

[
noun: Jim
fnc: peel
prn: 39

] ⎡
⎢⎢⎣

verb: peel
arg: Jim #
nc: eat
pc: buy
prn: 39

⎤
⎥⎥⎦

[
noun: Bill
fnc: eat
prn: 39

] ⎡
⎢⎢⎣

verb: eat
arg: Bill #
nc:
pc: peel
prn: 39

⎤
⎥⎥⎦

[
noun: peach
fnc: buy
prn: 39

]

150 9. Extrapropositional Coordination

The reductions of the above examples to propositions without complex coordinations
are analogous to those in 9.4.1.

9.4.3 COMPLEX COORDINATION IN SENTENTIAL MODIFIERS 1
(adnominal sentence/relative clause with subject gap, cf. Sect. 7.4)

The following relative clause example(s) containing complex coordinations are analo-
gous to those in 9.3.3, which contain simple coordinations. However, in relative
clauses with complex coordinations two constructions are structurally excluded, in
contrast to simple coordinations, which exclude only one.

1. Verb–object coordination (subject gapping) in an adnom. sent. with subject gap:
The man who ate an apple, walked his dog, and read a paper loves Mary.

⎡
⎢⎣

noun: man
fnc: love
mdr: 41 eat &
prn: 40

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

a/v: eat &
arg: # apple
mdd: 40 man
nc: walk
pc:
prn: 41

⎤
⎥⎥⎥⎥⎦

[
noun: apple
fnc: eat
prn: 41

] ⎡
⎢⎢⎣

verb: walk
arg: # dog
nc: read
pc: eat
prn: 41

⎤
⎥⎥⎦

[
noun: dog
verb: walk
prn: 41

] ⎡
⎢⎢⎣

verb: read
arg: # paper
nc:
pc: walk
prn: 41

⎤
⎥⎥⎦

[
noun: paper
verb: read
prn: 41

] [
verb: love
arg: man Mary
prn: 40

] [
noun: Mary
fnc: love
prn: 40

]

The grammatical relation between the noun man and the relative clause # ate an
apple ... is established by (i) the [arg: # apple] and the [mdd: 40 man] features of the
a/v proplet eat and (ii) the [mdr: 41 eat &] feature of the higher noun proplet man.
The subject gap indicated in the [arg: # apple] feature of eat is implicitly filled
by the [mdd: 40 man] feature in the same proplet. The noninitial verb conjuncts
walk and read have similar gaps in their arg attributes, the filler of which can be
recovered from the mdd slot of the initial conjunct eat.

2. Subject–object coordination (verb gapping) in an adnom. sent. with subject gap:
structurally excluded!

A subject–object coordination as the subject of a relative clause with the head
serving as the subject is excluded, because the subject position is taken by the
gap (represented in English by a relative pronoun) – which cannot participate in a
coordination.

3. Subject–verb coordination (object gapping) in a adnominal sent. with subject gap:
structurally excluded!

This construction is excluded for the same reason as the one above.

9.4.4 COMPLEX COORDINATION IN SENTENTIAL MODIFIERS 2
(adnominal sentence/relative clause with object gap, cf. Sect. 7.5)

9.4 Complex Coordinations as Sentential Arguments and Modifiers 151

The following relative clause example(s) containing complex coordinations are analo-
gous to those in 9.3.4, which contain simple coordinations. However, as in the subject–
gap relative clauses 9.4.3 with complex coordinations, two constructions are excluded,
in contrast to simple coordinations, which exclude only one.

1. Verb–object coordination (subject gapping) in a adnominal sent. with object gap:
structurally excluded!

A verb–object coordination as the object of a relative clause with the head serv-
ing as the object is excluded, because the object position is taken by the gap
(represented in English by a relative pronoun) – which cannot participate in a
coordination.

2. Subject–object coordination (verb gapping) in an adnominal sent. with object gap:
structurally excluded!

This construction is excluded for the same reason as the one above.

3. Subject–verb coordination (object gapping) in an adnominal sent. with object gap:

Mary saw the peach which Bob bought, Jim peeled, and Bill ate.

[
noun: Mary
fnc: see
prn: 42

] [
verb: see
arg: Mary peach
prn: 42

] ⎡
⎢⎣

noun: peach
fnc: see
mdr: 43 buy &
prn: 42

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

a/v: buy &
arg: Bob #
mdd: 42 peach
nc: peel
pc:
prn: 43

⎤
⎥⎥⎥⎥⎦

[
noun: Bob
fnc: buy
prn: 43

]

⎡
⎢⎢⎣

verb: peel
arg: Jim #
pc: buy
nc: eat
prn: 43

⎤
⎥⎥⎦

[
noun: Jim
fnc: peel
prn: 43

] ⎡
⎢⎢⎣

verb: eat
arg: Bill #
nc:
pc: peel
prn: 43

⎤
⎥⎥⎦

[
noun: Bill
fnc: eat
prn: 43

]

The grammatical relation between the noun peach and the relative clause which
Bob bought, ... is established by (i) the [arg: Bob #] and [mdd: 42 peach] features
of the a/v proplet buy and (ii) the [mdr: 43 buy &] feature of the higher noun proplet
peach. The object gap indicated in the [arg: Bob #] feature of buy is implicitly filled
by the [mdd: 42 peach] feature in the same proplet. The noninitial verb proplets
peel and eat have similar gaps in their arg attributes, the filler of which can be
recovered from the mdd slot of the initial conjunct buy.

9.4.5 COMPLEX COORDINATIONS IN SENTENTIAL MODIFIERS 3
(adverbial sentence, cf. Sect. 7.6)

1. Verb–object coordination (subject gapping, cf. 8.4) in an adverbial sentence:
Mary arrived after Bob had eaten an apple, walked his dog, and read a paper.

152 9. Extrapropositional Coordination

[
noun: Mary
fnc: arrive
prn: 44

] ⎡
⎢⎣

verb: arrive
arg: Mary
mdr: 45 eat &
prn: 44

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

a/v: after eat &
arg: Bob apple
mdd: 44 arrive
nc: walk
pc:
prn: 45

⎤
⎥⎥⎥⎥⎦

[
noun: Bob
fnc: eat
prn: 45

] [
noun: apple
fnc: eat
prn: 45

]

⎡
⎢⎢⎣

verb: walk
arg: # dog
nc: read
pc: eat
prn: 45

⎤
⎥⎥⎦

[
noun: dog
fnc: walk
prn: 45

] ⎡
⎢⎢⎣

verb: read
arg: # paper
nc:
pc: walk
prn: 45

⎤
⎥⎥⎦

[
noun: paper
fnc: read
prn: 45

]

The grammatical relation between the main sentence Mary arrived and the adver-
bial sentence after Bob had eaten an apple... is established by the [mdr: 45 eat
&] feature of the higher verb proplet arrive and the [mdd: 44 arrive] feature of
the a/v proplet eat. This example may be turned into a corresponding proposition
without a complex coordination by deleting (i) the & markers, (ii) the noninitial
conjunct proplets walk, dog, read, and paper, and (iii) the nc value walk in the
initial conjunct proplet eat with the core attribute a/v.

2. Subject–object coordination (verb gapping, cf. 8.5) in an adverbial sentence:
After Bob had eaten an apple, Jim a pear, and Bill a peach, Mary arrived.⎡
⎢⎣

a/v: after eat
arg: Bob & apple &
mdd: 47 arrive
prn: 46

⎤
⎥⎦

⎡
⎢⎢⎣

noun: Bob &
fnc: eat
nc: Jim
pc:
prn: 46

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: apple &
fnc: eat
nc: pear
pc:
prn: 46

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Jim
fnc: #
nc: Bill
pc: Bob
prn: 46

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pear
fnc: #
nc: peach
pc: apple
prn: 46

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Bill
fnc: #
nc:
pc: Jim
prn: 46

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: peach
fnc: #
nc:
pc: pear
prn: 46

⎤
⎥⎥⎦

[
noun: Mary
fnc: arrive
prn: 47

] ⎡
⎢⎣

verb: arrive
arg: Mary
mdr: 46 eat
prn: 47

⎤
⎥⎦

The grammatical relation between the main sentence Mary arrived and the adver-
bial sentence after Bob had eaten an apple... is established by the [mdr: 46 eat]
feature of the higher verb proplet arrive and the [mdd: 47 arrive] feature of the a/v
proplet eat. This example may be turned into a corresponding proposition without
a complex coordination by deleting (i) the & markers, (ii) the noninitial conjunct
proplets Jim, pear, Bill, and peach, and (iii) the nc values Jim and apple in the
initial conjunct proplets Bob and apple, respectively.

3. Subject–verb coordination (object gapping, cf. 8.6) in an adverbial sentence:
Mary arrived after Bob had bought, Jim had peeled, and Bill had eaten the peach.

[
noun: Mary
fnc: arrive
prn: 48

] ⎡
⎢⎣

verb: arrive
arg: Mary
mdr: 49 buy &
prn: 48

⎤
⎥⎦

[
noun: Bob
fnc: buy &
prn: 49

]
⎡
⎢⎢⎢⎢⎣

a/v: after buy &
arg: Bob peach
mdd: 48 arrive
nc: peel
pc:
prn: 49

⎤
⎥⎥⎥⎥⎦

9.5 Turn-Taking in Questions and Answers 153

[
noun: Jim
fnc: peel
prn: 49

] ⎡
⎢⎢⎣

verb: peel
arg: Jim #
nc: eat
pc: buy
prn: 49

⎤
⎥⎥⎦

[
noun: Bill
fnc: eat
prn: 49

] ⎡
⎢⎢⎣

verb: eat
arg: Bill #
nc:
pc: peel
prn: 49

⎤
⎥⎥⎦

[
noun: peach
fnc: buy
prn: 49

]

The grammatical relation between the main sentence Mary arrived and the adver-
bial sentence after Bob had bought ... the peach is established by the [mdr: 49
buy &] feature of the higher verb proplet arrive and the [mdd: 48 arrive] feature of
the a/v proplet buy. This example may be turned into a corresponding proposition
without complex coordination by deleting (i) the & markers, (ii) the noninitial
conjunct proplets Jim, peel, Bill, and eat, and (iii) the nc value peel of the initial
conjunct proplet buy with the core attribute a/v.

9.5 Turn-Taking in Questions and Answers

Having analyzed extrapropositional coordination in a sequence of sentences, as in a
text (Sect. 9.2), and the integration of intrapropositional coordination into extrapropo-
sitional functor–argument structures (Sects. 9.3 and 9.4), we turn now to extrapropo-
sitional coordination in a dialog (turn-taking, cf. 1.1.1). While in a text, the sequence
of propositions is produced by the same agent, in a dialog the propositions, or even
just parts of propositions, in the sequence are produced by different agents.

This difference is formally characterized by the STAR of the propositions (cf. 2.6.2).
Consider the following examples, showing the STAR as superscripts:

9.5.1 COMPARING COORDINATION IN A TEXT AND A DIALOG

1. Coordination of two propositions in a text
Julia ate an apple.STAR Susanne ate a pear.(STAR)

2. Coordination of two propositions in a dialog
Julia ate an apple.STAR Susanne ate a pear.STA′R′

3. Coordination of a question and an answer in a dialog
Who is singing? STAR Julia.STA′R′

Example 1 is a simple text consisting of two propositions, both of which were pro-
duced by the same author A and intended for the same recipient R (two identical
STARs). Example 2 consists of the same propositions as Example 1, but was pro-
duced by two different authors, A and A′, for two different recipients R and R′, such
that R=A′ and R′=A (STAR versus STA′R′). Example 3 resembles Example 2 except
that parts of only one proposition are coordinated by the two authors.

For reasons explained in FoCL’99, Sects. 5.3–5.5, the STAR is essential for connect-
ing an episodic proposition (i) to past, present, and future states of the world, and (ii)
to content in the database. Formally, the STAR is coded as the value of an additional
proplet attribute. We have omitted the STAR to this point for clarity of exposition.

154 9. Extrapropositional Coordination

In complete propositions of arbitrary complexity, the STAR is coded in the main
verb proplet. In a continuous text, as in Example 1, it is usually sufficient to specify
the STAR only once in a while. However, if the propositions are produced by different
authors, as in example 2, the STAR must be specified after each turn-taking. In a
question–answer sequence, as in Example 3, the two parts may be treated as belonging
to the same proposition, sharing a common prn value, yet be properly separated by
different STAR values.

These distinctions are illustrated below by simplified versions of the examples in
9.5.1, formalized as sets of proplets:

9.5.2 ILLUSTRATING KINDS OF COORDINATION AS SETS OF PROPLETS

1. Julia is singing.STAR Susanne is dreaming.(STAR)⎡
⎢⎢⎢⎢⎣

noun: Julia
fnc: sing
nc:
pc:
STAR:
prn: 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: sing
arg: Julia
nc: 5 dream
pc:
STAR: s t John Bill
prn: 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Susanne
fnc: dream
nc:
pc:
STAR:
prn: 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: dream
arg: Susanne
nc:
pc: 4 sing
STAR:
prn: 5

⎤
⎥⎥⎥⎥⎦

In this minimal text, the STAR of the second verb is redundant because its values
are the same as those of the first verb’s STAR attribute, namely S = s, T = t, A =
John, and R = Bill. The two propositions are distinguished by prn values, here 4
and 5, and connected by the nc and pc values of their verb proplets.

2. Julia is singing.STAR Susanne is dreaming.STA′R′⎡
⎢⎢⎢⎢⎣

noun: Julia
fnc: sing
nc:
pc:
STAR:
prn: 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: sing
arg: Julia
nc: 5 dream
pc:
STAR: s t John Bill
prn: 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Susanne
fnc: dream
nc:
pc:
STAR:
prn: 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: dream
arg: Susanne
nc:
pc: 4 sing
STAR: s t Bill John
prn: 5

⎤
⎥⎥⎥⎥⎦

In this minimal dialog, the STAR attributes of the two verb proplets sing and
dream have inverse values: the STAR attribute of sing specifies the values S = s,
T = t, A = John, and R = Bill, while the STAR attribute of dream specifies the
values S = s, T = t, A = Bill, and R = John. Otherwise the two propositions are
distinguished and connected as in Example 1.

3. Who is singing? STAR Julia.STA′R′⎡
⎢⎢⎢⎢⎣

noun: q_1
fnc: sing
nc: Julia
pc:
STAR:
prn: n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: sing
arg: q_1
nc:
pc:
STAR: s t John Bill
prn: n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Julia
fnc: sing
nc:
pc: q_1
STAR: s t Bill John
prn: n

⎤
⎥⎥⎥⎥⎦

9.5 Turn-Taking in Questions and Answers 155

A common prn value, n, marks the elements of this question–answer pair as be-
longing to the same proposition. Unlike the two previous examples, the coordi-
nation is here between two nouns, as indicated by the nc value of who and the
pc value of Julia. Thus, this kind of question–answer pair is analyzed as an in-
trapropositional noun coordination. While the who proplet inherits its STAR val-
ues implicitly from the verb sing, the answer proplet Julia must specify its own
STAR values.

The interpretation and production of a question–answer pair may be experienced by an
agent in the following constellations: (i) as the hearer of the question and the speaker
of the answer, (ii) as the speaker of the question and the hearer of the answer, and
(iii) as the hearer of the question and the answer (i.e., as an observer). These differ-
ences appear only in the STAR and the prn values, without affecting the grammatical
analysis of the expressions used. Consider the following example:

9.5.3 DERIVATION OF A WH INTERROGATIVE IN THE HEARER MODE

mdr:
prn:

arg:
verb: sing

singing

mdr:
prn:

arg:
verb: sing

mdr:
prn:

arg:
verb: v_1noun: q_1

fnc:
mdr:

1

Who is

mdr:
prn:

arg:
verb: v_1noun: q_1

fnc:
mdr:
prn: n

prn: n

mdr:

verb: v_1noun: q_1

mdr:

2 fnc: v_1 arg: q_1

prn: n prn: n

mdr:

noun: q_1

mdr:
arg: q_1
verb: sing

fnc: sing

prn: n prn: n

lexical lookup

syntactic semantic parsing

result of syntactic semantic parsing

The hearer’s pragmatic use of this expression for querying consists in applying the
verb proplet to the token line of sing (cf. Sect. 5.1):

9.5.4 FINDING THE ANSWER [
verb:sing
arg: q_1
prn: n

]
search pattern

matching?[
verb: sing

][verb: sing
arg: Bill
prn: 10

] [
verb: sing
arg: Susanne
prn: 12

] [
verb: sing
arg: Mary
prn: 15

][
verb: sing
arg: Julia
prn: 19

]
token line

Given the present progressive tense of the question, the search pattern is matched
with the last (and thus most recent) item in the token line of sing, thereby binding the

156 9. Extrapropositional Coordination

variable q_1 to Julia and the variable n to 19. Thus the proplet underlying the answer
to the question may be derived by navigating from sing to Julia, using the latter to
produce the answer:

9.5.5 DERIVATION OF THE ANSWER[
verb: sing
arg: Julia
prn: 19

] [
noun: Julia
fnc: sing
prn: 19

]

The interrogatives used in wh questions and yes/no questions (cf. Sect. 5.1) may
be arbitrarily complex, based on sentential arguments and modifiers. “Long-distance
dependencies” are particularly interesting constructions in English:

9.5.6 DERIVING Who did John say that Bill believes that Mary loves?

mdr:
prn:

verb: believe
arg:

mdr:
prn:

arg:
verb: love

fnc:
mdr:
prn:

noun: John

fnc:
mdr:
prn:

noun: John

fnc:
mdr:
prn:

noun: Bill

mdr:
prn:

verb: believe
arg:

fnc:
mdr:
prn:

noun: Mary

mdr:
prn:

arg:
verb: love

fnc:
mdr:
prn:

noun: Bill

that Bill believes that Mary loves saydid John

mdr:
prn:

arg:
verb: say

mdr:

noun: John

mdr:

verb: v_1
arg: John fnc: v_1

mdr:
prn:

arg:
verb: say

prn:

n/v: that v_2

mdr:
prn:

arg:
verb: v_1noun: q_1

fnc:
mdr:

noun: q_1
fnc:
mdr:

mdr:
arg:
verb: v_1noun: q_1

fnc:
mdr:

mdr:

noun: John

mdr:
arg: John
verb: say

fnc: say

prn:

n/v: that v_2noun: q_1
fnc:
mdr:

mdr:

noun: John

mdr:
arg: John
verb: saynoun: q_1

fnc:
mdr:

n/v: that believe

mdr:

noun: Bill
fnc: believe fnc:

mdr:
prn:

noun: Mary

mdr:

noun: John

mdr:
arg: John
verb: saynoun: q_1

mdr:

n/v: that believe

mdr:

noun: Bill
fnc: believe

mdr:

noun: Mary
fnc: love

mdr:

noun: John

mdr:
arg: John
verb: saynoun: q_1

mdr:

n/v: that believe

mdr:

noun: Bill
fnc: believe

mdr:

noun: Mary
fnc: v_3fnc: v_3

fnc: love

1

2

syntactic semantic parsing

3

4

5

6

7

8

9

result of syntactic semantic parsing

Who
lexical lookup

mdr:
prn:

arg:
verb: v_1noun: q_1

fnc:
mdr:
prn: n

prn: n

prn: n prn: n+1

prn: n prn: n+1 prn: n+1

prn: n prn: n+1 prn: n+1

mdr:

noun: John

mdr:
arg: John
verb: say n/v: that v_2noun: q_1

fnc:
mdr:

mdr:

noun: John

mdr:
arg: John
verb: say n/v: that v_2noun: q_1

fnc:
mdr: mdr:

noun: Bill
fnc: v_2

mdr:

noun: John

mdr:
arg: John
verb: saynoun: q_1

fnc:
mdr:

n/v: that believe

mdr:

noun: Bill
fnc: believe

prn: n prn: n+1 prn: n+1 prn: n+2

prn: n prn: n+1 prn: n+1

prn: n prn: n+1 prn: n+1

prn: n prn: n+1 prn: n+1

prn: n prn: n+1prn: n+1

prn: n+2

prn: n+2

prn: n+2

prn: n+2

prn: n+2

prn: n+2

prn: n+2

prn: n+2 prn: n

prn: n prn: n+1 prn: n+2 prn: n+2 prn: n

fnc: say n+2 v_2

fnc: say n+2 believe

fnc: say n+2 v_2

fnc: say n+2 believe

fnc: say n+2 believe

fnc: say n+2 believe

prn: n+1

arg:
fnc:

prn:

n/v: that v_3
arg:
fnc:

arg:
fnc:

arg:
fnc: n+1 say

arg: Bill
fnc: n+1 say

prn:

n/v: that v_3

fnc:
arg:

arg: Bill n love
fnc: say

n/v: that v_3

n/v: that love

n/v: that v_3

prn: n

prn: n

prn: n

arg: Mary q_1
fnc: n+2 believe

arg: Bill n v_3
fnc: say

arg: Bill n v_3
fnc: say

arg: Bill
fnc: n+1 say

fnc: n+2 believe
arg:

fnc: n+2 believe
arg: Mary q_1

9.6 Complex Propositions as Thought Structures 157

This construction is based on a recursion of two object sentences (cf. Sect. 7.3).
During the derivation, two local ambiguities occur. One arises when the first verb is

added, resulting in:
Who did John say

This could be a complete interrogative, provided who was changed to what, or say to
see. As soon, however, as the very next word, that, is added, this possibility is dis-
carded. The same kind of local ambiguity arises when the verb believes is added – and
just as soon discarded. For a discussion of ambiguity in LA-grammar see FoCL’99,
Sect. 11.3. For automatically derived LA-grammar analyses of interrogatives, includ-
ing several with long-distance dependencies, see NEWCAT’86, pp. 448–474.

9.6 Complex Propositions as Thought Structures

In Database Semantics, there is a fundamental distinction between the representation
of content and its activation (cf. FoCL’99, Sect. 23.1). The representation of content
is based on encoding all intra- and extrapropositional relations between proplets in
a distributed, bidirectional manner by means of features. The activation of content
is based on the principle of navigation: the intra- and extrapropositionally connected
proplets provide a kind of railroad system for navigating through a proposition and
from one proposition to the next.

This setup allows for the possibility that one and the same content may be traversed
in alternative ways, depending on where the thought path is coming from and where
it is going (cf. Appendix, Sect. A.1). Such alternative navigations explain certain al-
ternative language surfaces. Consider the following example:

9.6.1 SIMPLE EXTRAPROPOSITIONAL COORDINAT. OF SIMPLE PROPOSITIONS

1. Extrapropositional forward navigation:
Peter left the house. Then Peter crossed the street.⎡

⎢⎢⎣
noun: Peter
fnc: leave
nc:
pc:
prn: 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: leave
arg: Peter house
nc: > 2 cross
pc:
prn: 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: house
fnc: leave
nc:
pc:
prn: 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Peter
fnc: cross
nc:
pc:
prn: 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: cross
arg: Peter street
nc:
pc: < 1 leave
prn: 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: street
fnc: cross
nc:
pc:
prn: 2

⎤
⎥⎥⎦

2. Extrapropositional backward navigation:
Peter crossed the street. Before that Peter left the house.⎡

⎢⎢⎣
noun: Peter
fnc: cross
nc:
pc:
prn: 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: cross
arg: Peter street
nc: < 1 leave
pc:
prn: 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: street
fnc: cross
nc:
pc:
prn: 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Peter
fnc: leave
nc:
pc:
prn: 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: leave
arg: Peter house
nc: > 2 cross
pc:
prn: 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: house
fnc: leave
nc:
pc:
prn: 1

⎤
⎥⎥⎦

158 9. Extrapropositional Coordination

The two sequences consist of exactly the same proplets. Thus, as representations of
content in the Word Bank they are the identical. However, if we interpret the differ-
ence in order as alternative activations, the two sequences may be associated with the
different language surfaces specified above the proplets.

The surfaces differ (i) in the order of the two sentences and (ii) in the realization of
the coordinating conjunction, i.e., then (forward navigation) versus before that (back-
ward navigation). The distinction between forward and backward navigation arises
also intrapropositionally, as shown by the alternative between active and passive (cf.
Sect. 6.5).

It would be nice if different surface realizations of the same (or closely related) con-
tent could all be based solely on alternative traversal orders of simple coordinations of
simple propositions. However, our analyses of sentential arguments, sentential mod-
ifiers, and complex coordination have resulted in different representations even for
similar contents. This is illustrated below with two complex propositions representing
contents which are closely related to that of 9.6.1.

9.6.2 DIFFERENT EXTRAPROPOSITIONAL FUNCTOR–ARGUMENT STRUCTURES

1. Adnominal sentence with subject gap:
Peter, who had left the house, crossed the street.⎡

⎢⎣
noun: Peter
fnc: cross
mdr: 2 leave
prn: 1

⎤
⎥⎦

⎡
⎢⎣

a/v: leave
arg: # house
mdd: 1 Peter
prn: 2

⎤
⎥⎦

[
noun: house
fnc: leave
prn: 2

] [
verb: cross
arg: Peter street
prn: 1

] [
noun: street
fnc: cross
prn: 1

]

2. Adverbial sentence:
After Peter had left the house, he crossed the street.[

noun: Peter
fnc: leave
prn: 1

] ⎡
⎢⎣

a/v: leave
arg: Peter house
mdd: > 2 cross
prn: 1

⎤
⎥⎦

[
noun: house
fnc: leave
prn: 1

] [
noun: Peter
fnc: cross
prn: 2

] ⎡
⎢⎣

verb: cross
arg: Peter street
mdr: < 1 leave
prn: 2

⎤
⎥⎦

[
noun: street
fnc: cross
prn: 2

]

These two representations are different from those in 9.6.1, and different from each
other.

More specifically, as extrapropositional functor–argument structures, both examples
in 9.6.2 background the content of proposition 2 (hypotaxis) – in contradistinction to
the examples of extrapropositional coordination in 9.6.1 (parataxis). The two exam-
ples in 9.6.2 differ from each other, furthermore, in that they represent alternative per-
spectives on the content: The adnominal (or relative) clause attaches the background
content to the noun Peter while the adverbial clause attaches it to the verb cross.

This raises the question of whether the special representations of complex propo-
sitions (i.e., sentential arguments, sentential modifiers, and complex conjunctions)
should (i) be used at the language and the context level, or (ii) be limited to the lan-
guage level by transforming the special representations into simple coordinations of

9.6 Complex Propositions as Thought Structures 159

simple propositions at the context level (hearer mode), and vice versa (speaker mode).
Let us consider these two alternatives.

Alternative (ii) has the disadvantage that it requires a transformation of a complex
proposition (language level) into a simple coordination of simple propositions (con-
text level) during language interpretation, and a transformation of a simple coordina-
tion of simple propositions (context level) into a complex proposition (language level)
during language production. Moreover, the contents represented by simple coordina-
tions of simple propositions and by the related special representations as complex
propositions are not really the same, making the required transformations awkward
and unnatural. The apparent advantage of this costly procedure, however, would be
that inferencing at the context level would not have to deal with complex proposi-
tions.

Alternative (i) has the advantage that the language and the context level use the
same coding, thus making any transformations unnecessary. Furthermore, the infer-
encing in LA-grammar (cf. Sect. 5.3) is sufficiently powerful to derive all the required
conclusions from the simple as well as from the special representations. For example,
both special representations in 9.6.2 support inferring the answer yes to the question
Did Peter leave the house – as do both simple representations in 9.6.1.

The remaining question is whether or not it is correct to assume that complex propo-
sitions, such as extrapropositional functor–argument structure, complex intraproposi-
tional coordination, and their combination, should actually arise at the level of con-
text – and thus represent thought structures which might potentially be present even
in agents without language. To answer this question let us consider a related issue,
namely the representation of temporal information.

At the levels of context and language, the order of proplets in the token lines reflects
the order in which the information is coming in (like sediment), and is going out. At
the level of language this principle applies to the moment of production in the speaker
mode and the moment of interpretation in the hearer mode. It does not apply, however,
to the temporal information coded within the language expressions.

Assume, for example, that agent A observes on Monday that Mary arrives and tells
this on Tuesday to agent B by saying Mary arrived yesterday. This communication
event is stored by agent B at the Tuesday STAR. Agent B’s interpretation of the sign,
however, raises the question of whether B should store its content (i) as Mary arrived
yesterday at the Tuesday STAR or (ii) as Mary arrives at the Monday STAR. Alterna-
tive (ii) requires not only a transformation of the content, but also finding the correct
new storage position, while alternative (i) requires neither. Moreover, alternative (i)
allows one to infer the correct temporal location whenever needed, whereby the in-
coming information may continue to accumulate in agent B’s database undisturbed.

Alternative (i) receives additional support from a slight change of the example. Let
us assume that agent A observes on Monday that Mary arrives and tells this on Friday
to agent B by saying Mary arrived a few days ago. Now it is impossible for agent
B to do find the correct new storage location, as required by alternative (ii). This is

160 9. Extrapropositional Coordination

because the vague temporal information in the language sign does not permit agent B
to determine a sufficiently precise STAR for the proposition Mary arrives.

Our choice of alternative (i) implies that the perspectives represented by extrapropo-
sitional functor–argument structure (cf. Chap. 7), complex intrapropositional coordi-
nation (cf. Sects. 8.4–8.6) and their combination (cf. Sect. 9.4) are essentially thought
structures. They are perspectives which arise already at the level of context and are
merely reflected in language – just as the secondary coding underlying indirect (e.g.,
metaphoric) uses of language described in Sects. 5.4 and 5.5.1

1 Another related issue is pattern completion (cf. L&I’05), which raises the question of whether an
unknown object of a known kind, e.g., a car, should be stored in memory including a hypothetical
reconstruction of the unseen side(s), or solely from the perspective actually seen so that the unseen
side is reconstructed hypothetically only when needed. For an explanation of the reconstruction on
the basis of frames, see Barsalou (1999).

10. Intrapropositional and Extrapropositional Coreference

In this chapter we turn to the secondary grammatical relation of coreference. The
distinction between primary and secondary relations is defined as follows: Primary
relations are built directly during a time-linear derivation (hearer mode). This applies
to functor–argument structure and to coordination. Secondary relations, in contrast, (i)
presuppose the primary relations and (ii) modify or complement some of the values
assigned by the primary relations. In Database Semantics, secondary relations are
implemented as inferences (cf. Sect. 5.3).

An important kind of secondary relation is identity. During a time-linear derivation
in the hearer mode, noncoreference between different noun proplets is assumed as
the default: The value of the idy (identity) attribute of each new noun proplet is au-
tomatically incremented, regardless of whether the noun is a symbol (cf. 2.6.4), an
indexical (cf. 2.6.5), or a name (cf. 2.6.7). Under certain conditions, the default values
are modified by inferences which establish coreference between certain nonindexical
and indexical nouns (pronouns) by setting their identity values to be equal.

10.1 Overview

Given that the sentence is the largest unit of grammatical analysis, the most basic
structural distinction of natural language is the one between the sentence moods,
i.e., between declarative, interrogative, and imperative sentences, whereby some lan-
guages have additional moods (cf. Portner 2005), like the optative in classical Greek.

10.1.1 CORRELATING THE MAJOR CONSTRUCTIONS

secondary relation: coreference

declarative interrogative imperativesentential mood:

primary relations: fa structure coordination

complexity: intra propositional extra propositional

162 10. Intrapropositional and Extrapropositional Coreference

The variants of sentence mood are subject to the primary relations of functor–
argument structure and coordination. These primary relations occur both intrapropo-
sitionally (cf. Chaps. 6 and 8) and extrapropositionally (cf. Chaps. 7 and 9). The
secondary relation of coreference is defined across the primary relations, including
extrasentential coordination.

Consider the following examples of coreference:

10.1.2 DIFFERENT KINDS OF COREFERENCE

1. Name-based coreference in an extrasentential coordination

Julia ate an apple. Then Julia took a nap.⎡
⎢⎢⎣

noun: Julia
fnc: eat
mdr:
idy: 1
prn: 36

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg: Julia apple
pc:
nc: > 37 take
prn: 36

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: apple
fnc: eat
mdr:
idy: 2
prn: 36

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: Julia
fnc: take
mdr:
idy: 3 (=1)
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: take
arg: Julia nap
pc: < 36 eat
nc:
prn: 37

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: nap
fnc: take
mdr:
idy: 4
prn: 37

⎤
⎥⎥⎦

The two propositions are coordinated extrapropositionally via the features [nc: >
37 take] of the first verb proplet eat and [pc: < 36 eat] of the second verb proplet
take. The noun proplets Julia, apple, Julia, and nap receive the default idy values
1, 2, 3, and 4, respectively. It is the job of the coreference inference to set the idy
value of the second Julia proplet equal to that of the first (cf. [idy: 3 (= 1)]).

2. Pronoun-based coreference in an extrasentential coordination

Julia ate an apple. Then she took a nap.⎡
⎢⎢⎣

noun: Julia
fnc: eat
mdr:
idy: 5
prn: 38

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: eat
arg: Julia apple
pc:
nc: > 39 take
prn: 38

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: apple
fnc: eat
mdr:
idy: 6
prn: 38

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: pro_1
fnc: take
mdr:
idy: 7 (=5)
prn: 39

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: take
arg: pro_1 nap
pc: < 38 eat
nc:
prn: 39

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: nap
fnc: take
mdr:
idy: 8
prn: 39

⎤
⎥⎥⎦

This coordination of two propositions resembles Example 1, except that the sub-
ject of the second proposition is she rather than Julia. Again, the noun proplets
Julia, apple, she, and nap receive default idy values, here 5, 6, 7, and 8, respec-
tively. It is the job of the coreference inference to set the idy value of the she
proplet equal to that of the first (cf. [idy: 7 (= 5)]).

3. Blocked intrapropositional coreference between two equal names

%John shaved John.⎡
⎢⎣

noun: John
fnc: shave
idy: 9
prn: 40

⎤
⎥⎦

⎡
⎢⎣

verb: shave
arg: John John
mdr:
prn: 40

⎤
⎥⎦

⎡
⎢⎣

noun: John
fnc: shave
idy: 10
prn: 40

⎤
⎥⎦

As indicated by the marker %, the example is grammatically well-formed, but no
coreference is possible between the subject and the object, even though they are
represented by the same name. Thus the different idy values 9 and 10 assigned as
defaults must remain, and no coreference inference can apply.

10.2 Intrapropositional Coreference 163

4. Intrapropositional coreference between a name and a reflexive pronoun

John shaved himself.⎡
⎢⎣

noun: John
fnc: shave
idy: 1
prn: 1

⎤
⎥⎦

⎡
⎢⎣

verb: shave
arg: John rfl_1
mdr:
prn: 1

⎤
⎥⎦

⎡
⎢⎣

noun: rfl_1
fnc: shave
idy: 2
prn: 1

⎤
⎥⎦

This semantic representation shows the value [idy: 2] assigned to the reflexive pro-
noun as a default. The required coreference inference will be explicitly derived
in the following section (cf. 10.2.3 for the version after the coreference adjuste-
ment). Coreference is obligatory here, in contradistinction to the examples 1 and
2 with nonreflexive pronouns, in which it is optional. That nonreflexive personal
pronouns do not require a coreferential interpretation is because they can always
have a noncoreferential, indexical interpretation instead.

5. Coreference between a nominal symbol and an intrapropositional coordination

The man washed his hands, clipped his nails, and shaved himself.⎡
⎢⎢⎣

noun: man
fnc: wash
mdr:
idy: 13
prn: 42

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: wash &
arg: man hand
nc: clip
pc:
prn: 42

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: hand
fnc: wash
mdr:
idy: 14
prn: 42

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: clip
arg: # nail
nc: shave
pc: wash
prn: 42

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: nail
fnc: clip
mdr:
idy: 15
prn: 42

⎤
⎥⎥⎦

⎡
⎢⎢⎣

verb: shave
arg: # rfl_2
nc:
pc: clip
prn: 42

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: rfl_2
fnc: shave
mdr:
idy: 16(=13)
prn: 42

⎤
⎥⎥⎦

In this example of subject gapping (cf. Sect. 8.4), the reflexive pronoun may occur
in any of the verb-object conjuncts, and must be set to be coreferential with the
subject (cf. [idy: 16(=13)] in the last proplet).

Given the varieties of coreference, the structures treated in the following sections are
limited to the basic cases. These are (i) intrapropositional coreference with a reflexive
pronoun (LA-think.pro-1, Sect. 10.2), and (ii) extrapropositional coreference in ac-
cordance with the Langacker–Ross Constraint. The latter is shown for sentential argu-
ments (LA-think.pro-2, Sect. 10.3), adnominal sentential modifiers (LA-think.pro-3,
Sect. 10.4), and adverbial sentential modifiers (LA-think.pro-4, Sect. 10.5). In Sect.
10.6, the different LA-think.pro grammars are combined, and are applied to a notori-
ously difficult example, known as the Bach–Peters sentence.

10.2 Intrapropositional Coreference

As an example of intrapropositional coreference consider John shaved himself, a clas-
sic example since Lees and Klima (1963). The initial interpretation of this simple
functor–argument structure is as in Example 4 of 10.1.2: The noun proplets John and
himself have been assigned the idy values 1 and 2, respectively, as a default.

Resetting these idy values to be equal is handled by an inference, defined here as an
LA-think grammar, called LA-think.pro-1. The input to this grammar is the sequence
of nouns n-1, n-2, n-3, ... surrounding the reflexive pronoun in the proposition. Thus,
the noun proplets must have the same prn value as the reflexive pronoun.

164 10. Intrapropositional and Extrapropositional Coreference

10.2.1 DEFINITION OF LA-think.pro-1

STS =def { (
[
noun: RFL_n

]
{ rfl-0 rfl-1}) }

rfl-0:

⎡
⎢⎣

noun: RFL_n
cat: X’
idy: j
prn: k

⎤
⎥⎦
⎡
⎢⎣

noun: α
cat: X
idy: i
prn: k

⎤
⎥⎦ if X is not compatible with X’

set nw = preceding noun {rfl-0, rfl-1}

rfl-1:

⎡
⎢⎣

noun: RFL_n
cat: X’
idy: j
prn: k

⎤
⎥⎦
⎡
⎢⎣

noun: α
cat: X
idy: i
prn: k

⎤
⎥⎦ if X is compatible with X’

set j = i {}

STF =def {(
[
noun: α

]
rprfl−1)}

The variable RFL_n is restricted to the core value of reflexive pronouns. The prn val-
ues, represented by the variable k, are specified to be equal.

When LA-think.pro-1 is triggered by a language proplet matching the start state
STS , the two rules called by STS are applied to the relative pronoun and the noun
n-1. If rule rfl-1 is successful, the idy number of the pronoun is adjusted to that of the
coreferential noun and the inference is completed successfully. However, if rule rfl-0
is successful (i.e., if the inference fails on the noun n-1), both rules are tried on the
next noun n-2, and so forth, until rule rfl-1 happens to be successful (or the end of the
sequence has been reached and the interpretation fails).

Consider the following application of rfl-1 to the proplets of 10.1.2 (4), whereby the
proplet himself is the noun n and the proplet John is the noun n-1 (see idy values at
the language level):

10.2.2 APPLYING THE INFERENCE RULE rfl-1

rule level rfl-1:

⎡
⎢⎣

noun: RFL_n
cat: X’
idy: j
prn: k

⎤
⎥⎦
⎡
⎢⎣

noun: α
cat: X
idy: i
prn: k

⎤
⎥⎦ if X is compatible with X’

set j = i { }

language level

⎡
⎢⎢⎣

noun: rfl_1
fnc: shave
cat: m sg
idy: 2
prn: 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: John
fnc: shave
cat: m sg
idy: 1
prn: 1

⎤
⎥⎥⎦

The rule level presents the explicit definition of the rule. Like all LA-grammar rules,
the rule consists of a rule name (here rfl-1), a pattern for the sentence start (here
for a reflexive pronoun), a pattern for the next word (here for a coreferential noun
candidate), a set of operations, and a rule package, here empty.

The input patterns at the rule level are matched with suitable proplets at the language
level. Because the candidates fulfill the agreement condition of the operation (i.e., X
is compatible with X’), the idy value of the reflexive pronoun is adjusted to that of
John. As a result, the interpretation of our example is revised as follows:

10.3 Langacker–Ross Constraint for Sentential Arguments 165

10.2.3 INTERPRETATION OF John shaved himself AFTER INFERENCE⎡
⎢⎢⎣

noun: John
cat: m sg
fnc: shave
idy: 1
prn: 1

⎤
⎥⎥⎦

[
verb: shave
arg: John, rfl_1
prn: 1

] ⎡
⎢⎢⎣

noun: rfl_1
cat: m sg
fnc: shave
idy: 2 (=1)
prn: 1

⎤
⎥⎥⎦

The requirement of compatibility between the cat values of the reflexive and its an-
tecedent (cf. rule rfl-1) will also provide for the correct interpretation of examples like
John showed Mary himself and John showed Mary herself.

The question of whether or not two nouns in the input sequence (hearer mode)
can be coreferential is empirically somewhat complex, and different for pronouns,
names, and various determiner-noun combinations. For example, in a sentence like
John shaved John (cf. 10.1.2, 3), the two names cannot be coreferential. In coordi-
nations like John, Bill, and Ben shaved Bill, Ben, and John, however, coreference is
possible, with the same names referring to the same individuals (as long as they are
shaving each other, and not themselves).

The production of pronouns (speaker mode) is fairly straightforward. In the Word
Bank, certain noun proplets have been set to be coreferent by an inference like 10.2.2.
When a noun proplet is to be lexicalized, the system checks whether there is another
noun proplet with the same idy value recently activated in order to decide whether
one of them should be realized as a pronoun or not. The constellations triggering the
choice of a pronoun are summarized in Helfenbein (2005).

10.3 Langacker–Ross Constraint for Sentential Arguments

Like intrapropositional coreference (cf. Sect. 10.2), extrapropositional coreference is
a secondary relation, based on inferences which adjust default idy values assigned
during syntactic–semantic parsing. Like extrapropositional coordination (cf. Chap.
9), extrapropositional coreference occurs intra- and extrasententially.1

The most famous restriction on intrasentential coreference is the Langacker–Ross
constraint (Langacker 1969; Ross 1969). It applies to sentential arguments serving as
subjects (cf. Sect. 7.2) and objects (cf. Sect. 7.3) as well as to sentential modifiers
serving as adnominals (cf. Sects. 7.4 and 7.5) and adverbials (cf. Sect. 7.6).

In DBS, the formulation of the constraint is based on the distinction between a
higher proposition H and a lower proposition L in an extrapropositional functor–
argument relation (cf. 7.1.3). The two propositions may occur in the order LH and
HL. If one proposition (marked with ’) contains a personal pronoun compatible with
a noun in the other, there result four possibilities, namely LH’, H’L, L’H, and HL’.
The constraint says that the H’L constellation does not allow coreference between the
pronoun in H’ and any compatible noun in L, while the other three constellations do.

1 The linguistic literature on extrapropositional coreference has dealt mostly with intrasentential struc-
tures, Grosz and Sidner (1986) being a notable exception.

166 10. Intrapropositional and Extrapropositional Coreference

Using sentential arguments serving as subjects and objects, the constraint may be
illustrated as follows:

10.3.1 LANGACKER–ROSS CONSTRAINT IN SENTENTIAL ARGUMENTS

1. LH’: That Mary had found the answer pleased her.
2. H’L: %She knew that Mary had found the answer.
3. L’H: That she had found the answer pleased Mary.
4. HL’: Mary knew that she had found the answer.

The relevant noun–pronoun pairs are shown in italics. The coreferential noun (cnn)
is called antecedent or postcedent depending on whether it precedes or follows the
pronoun. The H’L constellation is marked with “%,” indicating that the example is
grammatically well-formed, but does not permit a coreferential interpretation of she
and Mary.

The inference which resets the idy value of the pronoun to that of the ante- or postce-
dent is defined as a navigation which starts from the pronoun and searches through all
noun candidates within the sentence. The constraint is implemented by preventing the
inference from resetting the idy value of the pronoun if the compatible noun is in a
lower proposition and follows the pronoun.

As an aid to formulating the inference as a rule of an LA-think grammar, we propose
a kind of declarative analysis which resembles the schematic characterization of a
rule application, for example, 3.5.1 and 10.2.2. It consists of a two-level structure,
characterizing the inference navigation at the upper and the relevant proplets at the
lower level. Consider the declarative two-level analysis of the first example in 10.3.1:

10.3.2 LH’:That Mary had found the answer pleased her. (n/v-cnn)

prn: q

fnc: 28 please
prn: 27

arg: Mary answer
n/v: that find noun: Mary

fnc: find
idy: 1
prn: 27

noun: answer
fnc: find
idy: 2
prn: 27 prn: 28

verb: please
arg: 27 find pro_1

prn: 28

noun: pro_1
fnc: please
idy: 3

fnc:
idy: i

noun:
arg: X Y
fnc: r

prn: q

mdr:

n/v: sc
fnc:

prn: r
idy: i

noun: PRO_n

pattern level

proplet level

At the pattern level, the inference navigation is indicated by arrows between the pat-
terns. This preliminary analysis does not yet constitute a rule, because there is no rule
name, no definition of operations, and no rule package. The analysis will be completed
later into the rule of an LA-think grammar, namely 10.3.6, for the relevant extrapropo-
sitional coreference inferences. For future reference, the name of the associated rule
is indicated in the heading, here (n/v-cnn).

At the proplet level, the five proplets representing the example are shown. Three of
them match patterns at the upper level. By binding the variables of the upper level to

10.3 Langacker–Ross Constraint for Sentential Arguments 167

corresponding values in the language proplets, the inference navigation indicated at
the upper level is executed at the lower level. The coreference inference uses a retrieval
based on the values of lower attributes, for example, fnc, in contrast to the navigation
underlying language production, which uses a retrieval based on core values only.

Starting from the pronoun, the inference in 10.3.2 searches for a compatible noun
in a small pool of proplets with a prn value adjacent to that of the pronoun.2 This
search consists in two steps. First, the navigation proceeds extrapropositionally from
the pronoun to an adjacent n/v proplet which must have the same fnc value as the
pronoun (here please). Then, the navigation proceeds intrapropositionally from the
n/v proplet to a noun proplet the core value of which must be (i) the same as one
of the arg values of the n/v proplet and (ii) be grammatically compatible with the
pronoun. This third proplet (here Mary) is the coreferential noun candidate.3

Using the same patterns, the crucial (noncoreferential) example of the Langacker–
Ross constraint is represented as follows:

10.3.3 H’L: %She knew that Mary had found the answer

verb: know
arg: pro_1 28 find
mdr:
prn: 27

arg: Mary answer
n/v: that find

fnc: 27 know
prn: 28

noun: Mary
fnc: find

noun: answer
fnc: find

prn: 28 prn: 28
idy: 2 idy: 3

prn: q

fnc:
idy: i

noun:

prn: q

arg: X Y
n/v: sc

fnc: r

noun: PRO_n

fnc: know
idy: 1
prn: 27

fnc:
idy: i
prn: r

noun: pro_1

pattern level

proplet level

As before, the pronoun is in the higher proposition (H’), but the noun candidate does
not precede (H’L) – as indicated by the prn values of the proplets. Therefore, corefer-
ence must be blocked by not resetting the pronoun’s idy value.

Next, consider the schematic analysis of the examples L’H and HL’, in which the
pronoun is in the lower proposition:

10.3.4 L’H: That she had found the answer pleased Mary (n/v-pro)

noun: answer
fnc: find
idy: 2
prn: 27 prn: 28

verb: please
arg: 27 find Mary

noun: Mary

idy: 1
prn: 28

fnc:
idy: i

noun:

fnc: please
mdr:

prn: q

noun: PRO_n

fnc: 28 please
prn: 27

n/v: that find

fnc: r

arg: pro_1 answer
idy: 3
prn: 27

fnc:
idy: i

fnc: find

prn: rprn: r

n/v: sc
arg: X PRO_n Y

pattern level

proplet level

noun: pro_1

2 For example, if the prn value of the pronoun is 10, then the adjacent prn values of the coreferential
noun candidates are 9 and 11. The prn values, like the idy values, are provided automatically by the
JavaTM implementations of LA-hear during syntactic–semantic parsing.

3 It is a candidate only because the pronouns in question always permit an indexical interpretation as
well. Cf. FoCL’99, Sect. 6.3.

168 10. Intrapropositional and Extrapropositional Coreference

10.3.5 HL’: Mary knew that she had found the answer(n/v-pro)

noun: answer
fnc: find

prn: 28
idy: 3

verb: know

mdr:
prn: 27

n/v: that find

fnc: 27 know
prn: 28

noun: Mary

prn: 27

fnc: know arg: Mary 28 find arg: pro_1 answer
noun: pro_1
fnc: find

idy: 1 idy: 2
prn: 28

fnc:
idy: i

noun:
fnc:
idy: i

prn: q prn: r
fnc:
prn: r

n/v: sc
arg: X PRO_n Y

noun: PRO_npattern level

proplet level

Here coreference is possible no matter whether the lower proposition L’ precedes (cf.
10.3.4) or follows (cf. 10.3.5) the higher proposition H.

Having established the patterns, it is only a short step to the rules of an LA-think
grammar formalizing the inference. All we have to add to the patterns are the rule
names, the rule operations, and the rule packages. In addition, the start states STS and
the final states STF of the LA-grammar have to be defined.

10.3.6 DEFINITION OF LA-think.pro-2 (SENTENTIAL ARGUMENTS)

STS =def { (
[
noun: PRO_n

]
{n/v-cnn, n/v-pro}) }

n/v-cnn:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦

⎡
⎢⎣

n/v: sc β
arg: X γ Y
fnc: r α
prn: q

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦ if q and r are adjacent, q < r, and

PRO_n and γ are compatible, set i = j {}

n/v-pro:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦

⎡
⎢⎣

n/v: sc α
arg: X PRO_n Y
fnc: r β
prn: r

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦if q and r are adjacent and

PRO_n and γ are compatible, set i = j {}

STF = def {(
[
noun: α

]
rpn/v−cnn), (

[
noun: α

]
rpn/v−pro)}

The first rule, called n/v-cnn, handles the coreferential noun in the sentential argument
and the pronoun in the higher proposition, while the second rule, called n/v-pro, han-
dles the pronoun in the sentential argument and the coreferential noun in the higher
proposition. Note that the operation of the first, but not the second, rule is restricted
by the condition q < r, which means that the proposition with the prn value q must
precede the proposition with the prn value r. The rule packages are both empty.

10.4 Langacker–Ross Constraint for Adnominal Sentential Modifiers

The second kind of extrapropositional functor–argument structures are sentential
modifiers in adnominal use (relative clauses). Like sentential arguments, they are sub-
ject to the Langacker–Ross constraint. We continue to use the LH’, H’L, L’H, HL’
notation to characterize the constellations, even though the subclause L may be lo-
cated in the middle of the higher clause H. The LH HL distinction is used here to
indicate the piece of H which contains the part relevant for the pronoun–noun relation
(namely either the pronoun or the coreferential noun).

10.4 Langacker–Ross Constraint for Adnominal Sentential Modifiers 169

10.4.1 LANGACKER–ROSS CONSTRAINT IN ADNOMINAL SUBCLAUSES

1. LH’: The man who loves the woman kissed her.
2. H’L: %She was kissed by the man who loves the woman.
3. L’H: The man who loves her kissed the woman.
4. HL’: The woman was kissed by the man who loves her.

Because the proplet patterns for adnominal sentential modifiers differ from those for
sentential arguments (cf. Sect. 10.3), the implementation of the Langacker–Ross con-
straints for relative clauses requires another set of inference rules. Based on the time-
linear hearer and speaker mode derivations of extrapropositional functor–argument
structure in Sects. 7.4 and 7.5, the primary relations for adnominal sentential modi-
fiers are already available.

Of the constellations in 10.4.1, LH’ (Example 1) has received a great deal of atten-
tion in Logical Semantics for natural language. On this approach of truth-conditional
Predicate Calculus, pronouns are treated as variables bound by quantifiers. The LH’
constellation, widely known as the “donkey sentence,” raises the problem that the
scope of the quantifier postulated in the analysis of the antecedent does not reach to
bind the coreferential pronoun.4 When pronominal coreference is based on inferenc-
ing, however, no such problem arises, as shown by the following analysis.

As in the preceding section, we begin the analysis with a two-level representation
consisting of the proplets of the relevant example at the lower and the relevant rule
patterns at the upper level:

10.4.2 LH’: Every farmer who owns a donkey beats it (adn-cnn)

Every farmer who owns a donkey beats it

mdr:

prn: 2
idy: 1
prn: 1

noun: farmer
fnc: beat
mdr: 2 own

prn: 2

a/v: own noun: donkey
fnc: own

mdr:

prn: 1

verb: beat
arg: farmer pro 2

mdr:
fnc: beat

prn: 1

noun: pro_2

noun:
fnc:
mdr:
idy: j

mdr:
fnc:

idy: i

idy: 2 idy: 3 (=2)
mdd: 1 farmer
arg: # donkey

noun:
fnc:

idy: k
prn: rprn: qprn: r

mdr: q

noun: PRO_n

pattern level

proplet level

Based on the fnc value of the pronoun, the inference retrieves a second noun with
the same fnc value (here beat), the same prn value (here 1), and a propositional mdr
value (here 2 own). The mdr value is used to retrieve a pronoun-compatible third noun
proplet which has this value in its fnc attribute. It is the coreferential noun candidate.

4 For example, if Every man who loves a woman loses her is represented as ∀x [[man(x) & ∃y [woman(y)
& love(x,y)] → lose(x, y)], the y in lose(x,y) is not bound by the existential quantifier. First pointed out
by Geach (1969), such examples have led to much work on the “donkey sentence” (Kamp and Reyle
1993; Geurts 2002).

170 10. Intrapropositional and Extrapropositional Coreference

Because 10.4.2 is structurally equivalent to Example 1 of 10.4.1, we may turn next
to Example 2 in 10.4.1. It illustrates the grammatical structure in which no coreference
is possible between a pronoun and a compatible noun:

10.4.3 H’L: %She was kissed by the man who loves the woman

noun:
fnc:

noun:
fnc:
mdr:
idy: jidy: i

prn: r prn: q

mdr:

prn: 1

verb: kiss

idy: 2

noun: man
fnc: kiss
mdr: 2 love

prn: 1 prn: 2

a/v: love

mdd: 1 man
arg: # Mary fnc: love

mdr:
idy: 3
prn: 2

noun: woman
arg: man pro_1

mdr: q

noun: PRO_n

noun: pro_1

mdr:
fnc:

idy: k
prn: r

mdr:

prn: 1

fnc: kiss

idy: 1

pattern level

proplet level

As in 10.4.2, the pronoun is in the higher clause H’, but the noun candidate does not
precede. Due to the fixed word order of English, passive (cf. Sect. 6.5) had to be used
to obtain the H’L correlation in this relative clause construction.

Finally, consider the L’H (Example 3) and HL’ (Example 4) constellations, both of
which permit a coreferential interpretation of the compatible noun–pronoun pair.

10.4.4 L’H: The man who loves her kissed the woman (adn-pro)

mdr:

prn: 1

verb: kiss
arg: man woman

noun:
fnc:
mdr: r

prn: q
idy: k

mdr:
fnc:

idy: i
prn: r

idy: 1
prn: 1 prn: 2

noun: man
fnc: kiss
mdr: 2 love

a/v: love
arg: # pro_1
mdd: 1 man mdr:

fnc: love

idy: 2
prn: 2

noun: pro_1

noun: PRO_n noun:
fnc:
mdr:
idy: j
prn: q

mdr:

noun: woman
fnc: kiss

idy: 3
prn: 1

pattern level

proplet level

10.4.5 HL’: The woman was kissed by the man who loves her (adn-pro)

idy: 2

noun: man
fnc: kiss
mdr: 2 love

prn: 1

mdr:

prn: 1

fnc: kiss

idy: 1

noun:
fnc:
mdr:

noun:
fnc:
mdr: r

prn: q

mdr:
fnc:

idy: k idy: i idy: j
prn: rprn: q

noun: PRO_n

pattern level

mdr:

prn: 1

verb: kiss

prn: 2

a/v: love

mdd: 1 man
fnc: love
mdr:
idy: 3
prn: 2

arg: man woman
noun: pro_1

arg: # pro_1
noun: woman

proplet level

Using the patterns characterizing the coreference inferences in the four examples
above, it is only a short step to the LA-grammar handling pronoun–noun relations
involving adnominal sentential modifiers (relative clauses):

10.5 Langacker–Ross Constraint for Adverbial Sentential Modifiers 171

10.4.6 DEFINITION OF LA-think.pro-3 (ADNOMINAL SENTENTIAL MODIFIERS)

STS =def { (
[
noun: PRO_n

]
{adn-cnn adn-pro}) }

adn-cnn:

⎡
⎢⎢⎣

noun: PRO_n
fnc: α
mdr:
idy: i
prn: r

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: β
fnc: α
mdr: q γ
idy: k
prn: r

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: δ
fnc: γ
mdr:
idy: j
prn: q

⎤
⎥⎥⎦if q and r are adjacent, q < r, and

PRO_n and α are compatible, set i = j {}

adn-pro:

⎡
⎢⎢⎣

noun: PRO_n
fnc: α
mdr:
idy: i
prn: r

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: β
fnc: γ
mdr: r α
idy: k
prn: q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: δ
fnc: γ
mdr:
idy: j
prn: q

⎤
⎥⎥⎦ if q and r are adjacent and

PRO_n and γ are compatible, set i = j {}

STF = def {(
[
noun: α

]
rpadn−fnc), (

[
noun: α

]
rpadn−mdr)}

The rule adn-cnn of LA-think.pro-3 resembles the rule n/v-cnn of LA-think.pro-2 (cf.
10.3.6) in that the pronoun must follow the coreferential noun, while the rule adn-pro
resembles the rule n/v-pro in that the pronoun may either precede or follow.

10.5 Langacker–Ross Constraint for Adverbial Sentential Modifiers

The remaining extrapropositional functor–argument structure is adverbial sentential
modifiers.5 Like sentential arguments (cf. Sect. 10.3) and adnominal sentential modi-
fiers (cf. Sect. 10.4), they are subject to the Langacker–Ross constraint:

10.5.1 LANGACKER–ROSS CONSTRAINT IN ADVERBIAL SUBCLAUSES

1. LH’: When Mary returned she kissed John.
2. H’L: %She kissed John when Mary returned.
3. L’H: When she returned Mary kissed John.
4. HL’: Mary kissed John when she returned.

Consider the two-level analysis of the first example in 10.5.1:

10.5.2 LH’: When Mary returned she kissed John (adv-cnn)

prn: 28

noun: John
fnc: kiss
idy: 3

prn: 28
mdr: 27 return

verb: kiss
arg: pro_1 John

prn: q prn: q

fnc:
idy: j

prn: 27 prn: 27

arg: Mary
noun: Mary
fnc: return
idy: 1

noun:

mdd: 28 kiss

mdd: r

a/v: when return

a/v: sc
fnc:

prn: r
idy: i

prn: 28

noun: pro_1
fnc: kiss
idy: 2

arg: X Y
noun: PRO_n

pattern level

proplet level

5 Adverbial sentential modifiers are especially suited to illustrate the constraint in English because their
order is free. Thus we do not have to resort to using subject versus object sentence (cf. Sect. 10.3)
or active versus passive (cf. Sect. 10.4) for obtaining the different orders needed for the relevant
constellations. In fact, adverbial subclauses provide for eight constellations because they allow the
coreferential noun or pronoun in subject position (cf. 10.5.1) and in object position (cf. 10.5.7).

172 10. Intrapropositional and Extrapropositional Coreference

The pronoun she is in the higher clause H’. Its fnc value kiss is the same as the mdd
value of the a/v proplet return with an adjacent prn value. The arg value of the second
proplet is the same as the core value of the third proplet Mary – which is a legal
coreferential noun candidate for she.

Using the same patterns, the noncoreferential example of the Langacker–Ross con-
straint is represented as follows:

10.5.3 H’L: %She kissed John when Mary returned

verb: kiss

prn: 27
mdr: 28 return
arg: pro_1 John

noun: John
fnc: kiss

prn: 27
idy: 2

prn: q

noun:
fnc:

prn: q
idy: j

noun: Mary
fnc: return arg: Mary

prn: 28 prn: 28
idy: 3

a/v: when return

a/v: sc

mdd: 27 kiss

mdd: r
arg: X Y

noun: PRO_n

noun: pro_1
fnc: kiss

prn: 27
idy: 1

fnc:

prn: r
idy: ipattern level

proplet level

As before the pronoun is in the higher clause (H’), but the noun candidate does not
precede (H’L) – as indicated by the prn values of the proplets. Therefore, coreference
must be blocked by not resetting the pronoun’s idy value.

The constellations with the pronoun in the lower clause, i.e., L’H (Example 3) and
HL’ (Example 4), are illustrated below:

10.5.4 L’H: When she returned Mary kissed John (adv-pro)

prn: 28

noun: John
fnc: kiss
idy: 3

prn: 27
mdd: 28 kiss

a/v: when return
arg: pro_1

a/v: sc

prn: 28
mdr: 27 return

verb: kiss
arg:Mary John

arg: X pro_n Y

noun: Mary

prn: 28

fnc: kiss
idy: 2

fnc:
idy: j

noun:

prn: r
mdd: q

prn: q

noun: PRO_n

noun: pro_1

prn: 27
idy: 1
fnc: return

fnc:
idy: i
prn: r

pattern level

proplet level

10.5.5 HL’: Mary kissed John when she returned (adv-pro)

noun: John
fnc: kiss

prn: 27
idy: 2

noun: Mary
fnc: kiss
idy: 1
prn: 27

verb: kiss

prn: 27
mdr: 28 return
arg: Mary John

noun:
fnc:
idy: i

fnc:
idy: j

noun: pro_1
fnc: return
idy: 3
prn: 28prn: 28

a/v: when return

a/v: sc

mdd: 27 kiss
arg: pro_1

prn: q prn: r
mdd: q

prn: r

noun: PRO_n
arg: X PRO_n Y

pattern level

proplet level

Using the patterns characterizing the coreference inferences in the four examples
above, it is only a short step to the LA-grammar for adverbial subclauses with the
relevant noun–pronoun pairs in subject position:

10.5 Langacker–Ross Constraint for Adverbial Sentential Modifiers 173

10.5.6 DEFINITION OF LA-think.pro-4 (ADVERBIAL SENTENTIAL MODIFIERS)

STS =def { (
[
noun: PRO_n

]
{adv-cnn adv-pro}) }

adv-cnn:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦

⎡
⎢⎣

a/v: sc β
arg: X γ Y
mdd: r α
prn: q

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦ if q and r are adjacent, q < r, and

PRO_n and γ are compatible, set i = j {}

adv-pro:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦

⎡
⎢⎣

a/v: sc α
fnc: X PRO_n Y
mdd: q β
prn: r

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦if q and r are adjacent and

PRO_n and γ are compatible, set i = j {}

STF = def {(
[
noun: α

]
rpadv−cnn), (

[
noun: α

]
rpadv−pro)}

Next, let us show that the corresponding set of sentences with an oblique pronoun
or an oblique coreferential noun is handled by this grammar as well:

10.5.7 LANGACKER–ROSS CONSTRAINT FOR OBLIQUE COREFERENTS

1. LH’: When Mary returned John kissed her.
2. H’L: %John kissed her when Mary returned.
3. L’H: When she returned John kissed Mary.
4. HL’: John kissed Mary when she returned.

Consider the two-level analyses of these examples:

10.5.8 LH’: When Mary returned John kissed her (adv-cnn)

prn: 28

noun: John
fnc: kiss
idy: 3

prn: 28

noun: pro_1
fnc: kiss
idy: 2

prn: q prn: q

fnc:
idy: j

prn: 27 prn: 27

arg: Mary
noun: Mary
fnc: return
idy: 1

noun:

mdd: 28 kiss

mdd: r

a/v: when return

a/v: sc

prn: 28
mdr: 27 return

verb: kiss

arg: X Y

arg: John pro_1

fnc:

prn: r
idy: i

noun: PRO_n

pattern level

proplet level

10.5.9 H’L: %John kissed her when Mary returned

noun: John
fnc: kiss

prn: 27
idy: 2

noun: pro_1
fnc: kiss

prn: 27
idy: 1

fnc:

prn: r
idy: i

verb: kiss

prn: 27
mdr: 28 return
arg: John pro_1

noun: PRO_n

prn: q

noun:
fnc:

prn: q
idy: j

noun: Mary
fnc: return arg: Mary

prn: 28 prn: 28
idy: 3

a/v: when return

a/v: sc

mdd: 27 kiss

mdd: r
arg: X Y

pattern level

proplet level

174 10. Intrapropositional and Extrapropositional Coreference

10.5.10 L’H: When she returned John kissed Mary (adv-pro)

prn: 28

noun: John
fnc: kiss
idy: 3

prn: 27
mdd: 28 kiss

a/v: when return
arg: pro_1

a/v: sc

prn: 28
mdr: 27 return

verb: kiss
arg:John Mary

noun: Mary

prn: 28

fnc: kiss
idy: 2

fnc:
idy: j

noun:

prn: r prn: q
mdd: q
arg: X PRO_n Y

noun: PRO_n

noun: pro_1

prn: 27
idy: 1
fnc: return

fnc:
idy: i
prn: r

pattern level

proplet level

10.5.11 H’L: John kissed Mary when she returned (adv-pro)

noun: John
fnc: kiss

prn: 27
idy: 2

prn: 28

a/v: when return

a/v: sc

mdd: 27 kiss
arg: pro_1

prn: r
mdd: q
arg: X PRO_n Y

noun: pro_1
fnc: return
idy: 3
prn: 28

fnc:
idy: j

noun: Mary
fnc: kiss
idy: 1
prn: 27

verb: kiss

prn: 27
mdr: 28 return
arg:John Mary

noun:
fnc:
idy: i
prn: q prn: r

noun: PRO_n

pattern level

proplet level

LA-think.pro-4, defined in 10.5.6, applies also to the above examples with oblique
coreferents: The difference between the pronoun in subject versus object position,
e.g., she kissed John (cf. 10.5.1) versus John kissed her (cf. 10.5.7), is handled in
the higher verb proplet which does not participate in the inference navigation; and
similarly for the coreferent noun in subject versus object position.

10.6 Handling Pronominal Coreference by Means of Inference

In conclusion, let us combine the LA-grammars for establishing intrapropositional
coreference (LA-think.pro-1, cf. 10.2.1), and for establishing extrapropositional coref-
erence in sentential argument constructions (LA-think.pro-2, cf. 10.3.6), adnominal
sentential modifier constructions (LA-think.pro-3, cf. 10.4.6), and adverbial senten-
tial modifier constructions (LA-think.pro-4, cf. 10.5.6) into one. Combining these
four LA-grammars into the new grammar LA-think.pro is based on (i) collecting
the rule names of the smaller grammars into the rule package of the new start state
STS , (ii) listing the rules of the smaller grammars in the new one, and (iii) collecting
the specifications of final states under a new STF .

In the combined grammar LA-think.pro, the rule rfl-0 for grammatically incompat-
ible constellations of reflexive pronouns and nouns (cf. 10.2.1) is renamed pro-0 and
generalized to serve all the coreference rules. Pronouns are represented uniformly by
the variable PRO_n, which can match the core values of reflexive as well as nonreflex-
ive personal pronouns. The distinction between reflexive and nonreflexive pronouns
is handled in the operations. The prn value of the coreferential noun must be the same
as, or adjacent to, that of the pronoun.6

6 This simplified assumption will have to be revised for handling extrapropositional functor–argument
constructions with several levels of embedding.

10.6 Handling Pronominal Coreference by Means of Inference 175

10.6.1 DEFINITION OF LA-think.pro

STS =def { (
[
noun: PRO_n

]
{pro-0 rfl-1 n/v-cnn n/v-pro adn-cnn adn-pro adv-cnn adv-pro}) }

pro-0:

[
noun: PRO_n
idy: j
prn: r

][
noun: α
idy: i
prn: q

]
PRO_n and α are not compatible,
set nw = preceding noun
in the input sequence

{pro-0 rfl-1
n/v-cnn n/v-PRO
adn-cnn adn-PRO
adv-cnn adv-PRO}

rfl-1:

[
noun: PRO_n
idy: j
prn: r

][
noun: α
idy: i
prn: r

]
if PRO_n is a reflexive pronoun,
and PRO_n and α are compatible,
set j = i

{}

n/v-cnn:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦
⎡
⎢⎣

n/v: sc β
arg: X γ Y
fnc: r α
prn: q

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦

if PRO_n is a nonreflexive personal pronoun,
PRO_n and γ are compatible,
q and r are adjacent, and q < r,
set i = j

{}

n/v-pro:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦
⎡
⎢⎣

n/v: sc α
arg: X PRO_n Y
fnc: r β
prn: r

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦

if PRO_n is a nonreflexive personal pronoun,
PRO_n and γ are compatible,
and q and r are adjacent,
set i = j

{}

adn-cnn:

⎡
⎢⎢⎣

noun: PRO_n
fnc: α
mdr:
idy: i
prn: r

⎤
⎥⎥⎦
⎡
⎢⎢⎣

noun: β
fnc: α
mdr: q γ
idy: k
prn: r

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: δ
fnc: γ
mdr:
idy: j
prn: q

⎤
⎥⎥⎦

if PRO_n is a nonreflexive personal pronoun,
PRO_n and α are compatible,
q and r are adjacent, and q < r,
set i = j

{}

adn-pro:

⎡
⎢⎢⎣

noun: PRO_n
fnc: α
mdr:
idy: i
prn: r

⎤
⎥⎥⎦
⎡
⎢⎢⎣

noun: β
fnc: γ
mdr: r α
idy: k
prn: q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

noun: δ
fnc: γ
mdr:
idy: j
prn: q

⎤
⎥⎥⎦

if PRO_n is a nonreflexive personal pronoun,
PRO_n and γ are compatible,
and q and r are adjacent,
set i = j

{}

adv-cnn:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦
⎡
⎢⎣

a/v: sc β
arg: X γ Y
mdd: r α
prn: q

⎤
⎥⎦

⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦

if PRO_n is a nonreflexive personal pronoun,
PRO_n and γ are compatible,
q and r are adjacent, and q < r,
set i = j

{}

adv-pro:

⎡
⎢⎣

noun: PRO_n
fnc: α
idy: i
prn: r

⎤
⎥⎦
⎡
⎢⎣

a/v: sc α
fnc: X PRO_n Y
mdd: q β
prn: r

⎤
⎥⎦
⎡
⎢⎣

noun: γ
fnc: β
idy: j
prn: q

⎤
⎥⎦

if PRO_n is a nonreflexive personal pronoun,
PRO_n and γ are compatible,
and q and r are adjacent,
set i = j

{}

STF = def {(
[
noun: α

]
rprfl−1), (

[
noun: α

]
rpn/v−cnn), (

[
noun: α

]
rpn/v−pro),

(
[
noun: α

]
rpadn−cnn), (

[
noun: α

]
rpadn−pro), (

[
noun: α

]
rpadv−cnn)

(
[
noun: α

]
rpadn−pro)}

LA-think.pro is triggered into action whenever its STS pattern [noun: PRO_n] matches
an incoming proplet to be stored in the Word Bank. Input to LA-think.pro are all the
noun proplets of a sentence containing a pronoun. Whether or not a coreferential in-
terpretation provided by LA-think.pro is to be adopted by the agent as the most likely,
however, must be decided by taking the utterance situation into account, including the
preceding text or dialog, and the current context.

Having compatible ss patterns, the eight rules are equally applicable. Having in-
compatible nw patterns, at most one of them can be successful. Consequently, LA-
think.pro is a C1-Lag (cf. FoCL’99, Sect. 11.5) and does coreference adjustment for

176 10. Intrapropositional and Extrapropositional Coreference

any given pronoun in linear time. Despite its low mathematical complexity, the han-
dling of coreference by means of inferences is sufficiently powerful descriptively.

This is illustrated below with an analysis of the Bach–Peters sentence (Peters and
Ritchie 1973; Jacobson 2000). We begin with the derivation of the primary relations:

10.6.2 HEARER MODE DERIVATION OF THE BACH–PETERS SENTENCE

mdr:
fnc:

idy:
prn:

noun: pro_1

fnc:
mdr:
idy:
prn:

noun: prize

arg:

prn:

mdr:

verb: get

verb: deserve
arg:

prn:

mdr: mdr:
fnc:

idy:
prn:

noun: pro_1
arg:

prn:

mdr:

verb: get
fnc:
mdr:
idy:
prn:

noun: n_2
fnc:
mdr:
idy:
prn:

noun: prize

mdr:

noun: pro_2
fnc:

idy:
prn:

fnc:
mdr:
idy:
prn:

man

noun: man

verb: deserve
arg:

prn:

mdr:

fnc:
mdr:

noun: man a/v: v_1
arg: rel_1

noun: n_1
fnc:
mdr:

fnc:
mdr:
idy:
prn:

noun: man

prn: 39

prn: 39 prn: 40

a/v: v_1
arg: rel_1fnc:

noun: man

mdr: v_1

prn: 39 prn: 40

arg: rel_1fnc:
noun: man a/v: deserve

idy: 1

idy: 1

idy: 1

idy: 1
prn: 39 prn: 40

noun: man a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

idy: 1
prn: 39 prn: 40

idy: 2
prn: 40

mdr:
arg: manfnc: get
verb: get

prn: 39

noun: man a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

idy: 1
prn: 39 prn: 40

idy: 2
prn: 40

mdr:
fnc: get

verb: get
arg: man n_2

prn: 39

mdr:

noun: n_2
fnc: get

prn: 39

a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

prn: 40
idy: 2
prn: 40

mdr:

verb: get

prn: 39

arg: man prize
noun: prize
fnc: get

prn: 39

a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

prn: 40
idy: 2
prn: 40

mdr:

verb: get

prn: 39

arg: man prize
noun: prize
fnc: get

prn: 39

mdr:

noun: pro_2
fnc: v_2

prn: 41 prn: 41

arg:

prn:

mdr:

verb: want

fnc:
noun: man a/v: deserve

arg: rel_1 pro_1
mdr:

noun: pro_1
fnc: deserve

idy: 1
prn: 39 prn: 40

idy: 2
prn: 40

noun: man a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

idy: 1
prn: 39 prn: 40

idy: 2
prn: 40

fnc: v_1

prn:

mdr:
arg: man

noun: man a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

idy: 1
prn: 39 prn: 40

idy: 2
prn: 40

mdr:
fnc: get

verb: get

prn: 39

mdr:
arg: man prize

noun: prize
fnc: get

prn: 39

a/v: deserve
arg: rel_1 pro_1

mdr:

noun: pro_1
fnc: deserve

prn: 40
idy: 2
prn: 40

mdr:

verb: get

prn: 39

arg: man prize
noun: prize
fnc: get

prn: 39

mdr:

prn: 41 prn: 41

noun: pro_2a/v: want
fnc: want

prn: 41

mdr: 40 deserve

mdr: 40 deserve

mdr: 40 deserve

mdr: 40 deserve

mdr: 40 deserve

mdr: 40 deserve

noun: man

idy: 1
prn: 39

fnc: get
mdr: 40 deserve

noun: man

idy: 1
prn: 39

fnc: get

noun: man

idy: 1
prn: 39

fnc: get

mdr: 40 deserve

mdr: 40 deserve

mdr: 41 v_2

mdr: 41 v_2

mdr: 41 want
idy: 3 idy: 4

fnc:
mdr:

prn:

noun: n_2

idy: 3

idy: 3

idy: 3

idy: 3

idy: 3

idy: 4

mdr:

noun: pro_2
fnc:

prn:
idy: 4

will get the itdeserveswho prize which he

prn:

a/v: v_2
arg:

prn:

mdr:

verb: want

wants

prn:

arg: rel_2

arg: rel_2

arg: pro_2 rel_2

arg: pro_2 rel_2

arg: rel_2arg:

prn:

mdr:

verb: v_2

arg:

prn:

mdr:

verb: v_2

verb: v_2

a/v: v_3

a/v: v_3

a/v: v_3

noun: n_1
fnc:
mdr:
idy:
prn:

the
lexical lookup

syntactic semantic parsing

result of syntactic semantic parsing

a/v: v_1

prn:

arg: rel_1

mdd:mdd:

mdd:

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man

mdd: 39 man mdd: 39 prize

mdd: 39 prize

mdd: 39 prize

mdd:

10.6 Handling Pronominal Coreference by Means of Inference 177

In Transformational Grammar (TG), this example has been used to prove that TG is
undecidable.7 In Database Semantics, in contrast, no complexity problem arises, due
to (i) the lexical treatment of pronouns and (ii) the separate derivation of primary and
secondary relations. As usual in the DBS analysis of natural language (cf. FoCL’99,
12.5.7 and 21.5.2), the mathematical complexity of the derivation 10.6.2 is linear.

Next, let us turn to the secondary relations, i.e., the inferences for providing
proper coreference. The Bach–Peters sentence contains two constellations support-
ing a coreference inference, namely an HL’ and an L’H constellation of adnominal
sentential modifiers (cf. Examples 3 and 4 in 10.4.1):

10.6.3 THE HL’ CONSTELLATION

H: The man will get the prize
L’: which he wants

10.6.4 THE L’H CONSTELLATION

The man H: will get the prize
L’: who deserves it

Using the proplets resulting from the derivation 10.6.2, the assignment of the proper
coreferences may be characterized schematically as follows:

10.6.5 THE COREFERENCE INFERENCES

a/v: deserve

prn: 2

who deserves

mdd: 1 man
arg: # pro_1

mdr:
fnc:

idy: i
prn: r

mdr:
fnc: want

prn: 3

noun: pro_2

idy: 4 (=1)

he

HL’

L’H

noun: PRO_n

mdr:
fnc:

idy: i

mdr:
fnc: deserve

prn: 2

prn: r

it

noun: pro_1

idy: 2 (=3)

noun:
fnc:

prn: q

mdr:
idy: j

noun:
fnc:
mdr: r

prn: q
idy: k

the man

noun: man
fnc: get
mdr: 2 deserve
idy: 1
prn: 1

will get

verb: get

mdr:
arg: man prize

prn: 1

which wants

a/v: want

prn: 3

mdd: 1 prize
arg: pro_2 #

noun:
fnc:
mdr: r

prn: q
idy: k

noun:
fnc:

prn: q

mdr:
idy: j

fnc: get
noun: prize

mdr: 3 want

prn: 1

the prize

idy: 3

noun: PRO_n

pattern level

proplet level

pattern level

The patterns for the HL’ constellation are shown above, while the patterns for the L’H
constellation are shown below the proplet level. Given that in both constellations the
pronoun is in the lower clause, the coreference inference of both is handled by the
same rule, namely adn-pro of LA-think.pro grammar defined in 10.6.1.
7 Peters and Ritchie (1973). The complexity problem arises because TG derives pronouns from “full

noun phrases” in the “deep structure” which are identical with their ante/post/cedent. Therefore, the
pronoun it is expanded into the prize he wants, and the pronoun he into the man who deserves it,
leading to an infinite regress. This phenomenon is a direct consequence of TG’s method of deriving
pronouns from “underlying full noun phrases.”

Remark Concluding Part II

In this part, the major constructions of natural language have been analyzed from a
semantic point of view. In accordance to the classic tradition, the elementary semantic
relations are (i) functor–argument structure, (ii) coordination, and (iii) coreference.
These elementary relations have been treated here first in isolation and have then been
systematically combined into grammatical structures of arbitrary complexity.

In free text, however, many additional structures may be found. This variety raises
the question of how to complement the grammatical taxonomy motivated by the se-
mantic representations with a maximally complete data coverage of the surface varia-
tions. Consider the following proposal:

After building an automatic word form recognition providing full coverage for the
natural language at hand,8 corpora may be turned automatically into n-gram like se-
quences of categories, ordered according to frequency. Starting at the top of the list,
the category sequences are analyzed and used to build a small initial fragment of
Database Semantics (DBS). Then more and more of the following category sequences
are analyzed and incorporated into the fragment.

Compared to the substitution-based approaches, this is easy due to the time-linear
nature of the syntactic–semantic (hearer mode) and semantic–syntactic (speaker mode)
analysis in DBS (cf. FoCL’99, Sect. 18.1). Furthermore, if the frequency distribution
of the different category sequences turns out to correspond to the frequency distribu-
tion of the different word forms in corpora (cf. FoCL’99, 15.4.2, 15.4.3), this method
will result in an extremely rapid extension of the data coverage.

How to define and extend a formal fragment of English is shown in the following
Part III. The fragments are defined as declarative specifications for LA-hear, LA-think,
and LA-speak grammars, which allow their direct implementation as running software
in a programming language of choice. Due to the required degree of detail, the scope
of the grammatical analyses in Part III will have to be more narrow than in Part II.

8 Given a good traditional dictionary existing online and an off-the-shelf software framework for the
allomorph approach (cf. FoCL’99, Chapts. 13–15), this may be achieved in a few month, depending
on the natural language.

Part III

The Declarative Specification of Formal Fragments

11. DBS.1: Hearer Mode

The declarative specification (cf. Sect. 1.2) of a system of natural language communi-
cation must be defined at a level of detail sufficient for a straightforward implementa-
tion in a programming language of choice. Given the large structural variety of natural
language expressions, the size of the lexicon, and the complexity of natural language
communication, let us begin with a small “fragment.”

By a fragment we mean a system of natural language communication which has lim-
ited coverage, but is functionally complete in that it models the hearer mode, the think
mode (defined as navigating through the content of the database), and the speaker
mode. Given the limitation of having to use standard computers rather than robots,
the following fragments do not include contextual recognition and action (i.e., they
are capable of mediated reference only, cf. 2.5.1). Therefore, the Word Bank may be
simplified to store language proplets without a separate context section (cf. 3.3.1).

The first fragment of English defined in Database Semantics is called DBS.1. For
simplicity, the coverage of DBS.1 is restricted to the sentence sequence

Julia sleeps. John sings. Susanne dreams.

The focus of DBS.1 is on concatenating propositions, as in a text (extrapropositional
coordination, cf. Sect. 9.2). DBS.1 consists of components for automatic word form
recognition and production, and three LA-grammars, called LA-hear.1, LA-think.1,
and LA-speak.1. In Chaps. 13 and 14, DBS.1 will be extended into DBS.2 without
losing any of the previously achieved functionality or coverage.

11.1 Automatic Word Form Recognition

For a cognitive agent with language, the cycle of communication may begin in the
speaker mode or in the hearer mode. However, before an agent can produce language,
its Word Bank must be filled with content. In order to read content automatically into
the system, let us begin the definition of the fragment with the hearer mode.

An LA-hear system consists of two components: (i) a system of word form recog-
nition and (ii) an LA-hear grammar for syntactic–semantic interpretation. Word form
recognition takes unanalyzed natural language surfaces as input and produces corre-
sponding lexically analyzed types as output.1

1 For a detailed description of automatic word form recognition see FoCL’99, Chaps. 13–15.

184 11. DBS.1: Hearer Mode

The basic functioning of automatic word form recognition may be characterized
schematically as a combination of surface recognition and lexical lookup:

11.1.1 SURFACE RECOGNITION AND LEXICAL LOOKUP

analyzed surface

(isolated proplet)

prn:

sur: Julia

mdr:
fnc:
idy: +

noun: Julia

Julia

sur: sleeps
verb: sleep

sem: pres
mdr:
arg:
...
prn:

sleeps
lexical lookup

Julia sleeps external sign

hearer
surface recognition

cat: snp cat: ns3’ v
sem: f

unanalyzed surface

In surface recognition, the external sign surfaces (token) are matched with cor-
responding internal sign surfaces (types) provided by the agent’s Word Bank (cf.
Sects. 4.3–4.5). This process may be achieved by speech recognition, optical char-
acter recognition (OCR), or by simply typing the letters of the external surface into
the computer. In the latter procedure, the external surface is converted directly into
a digitally coded, modality-independent form – as opposed to speech recognition or
OCR, which are modality-dependent (cf. Sect. 2.2).

The internal representation of the unanalyzed surface is submitted to lexical lookup.
Lexical lookup is based on an electronic lexicon defined as a list of lexical entries.
Assuming that each entry is defined as an isolated proplet, lexical lookup compares
the unanalyzed surface with the value of the sur attribute of each entry. The proplet
with a sur value matching the unanalyzed surface is returned as the result.

Depending on whether lexical lookup is based on full word forms or on morpho-
logical analysis, there are different kinds of automatic word form recognition (cf.
FoCL’99, Sect. 13.5). The full form method is the simplest, but it can only recog-
nize a finite number of items. An infinite number of word forms can be recognized by
systems based on morphologically analyzing the surface into smaller parts called allo-
morphs, e.g., learn, ing, or ed. Such a compositional approach is especially important
for languages with a morphology richer than English.

No matter which method of automatic word form recognition is used, it should work
for any language. Changing to another language should require no more than provid-
ing another language-specific lexicon and, if present, other rules of morphological
analysis. Also, it must be possible at any time to replace the current component of
automatic word form recognition by a more advanced one (modularity). For this, the
new component must merely be input/output equivalent with the old one: It should
take unanalyzed surface tokens as input and render lexically analyzed surface types
(e.g., isolated proplets) as output, which are passed to the parser.

11.2 Lexicon of LA-hear.1 185

11.2 Lexicon of LA-hear.1

In order for an LA-hear grammar to parse a sentence or text, it must be able to lexically
recognize all the word forms occurring in it. Let us therefore define the word forms
needed for the small fragment of DBS.1. For simplicity, we use full-form lookup.

To facilitate storage and retrieval, the entries in a lexicon are usually ordered alpha-
betically, using the word form surface as the key. However, to show the structure of
the different kinds of words, the following entries are ordered according to the part of
speech, i.e., first all the nouns, then all the verbs, and finally the punctuation sign.

11.2.1 THE LEXICAL ENTRIES OF LA-hear.1

proper names:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: Julia
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: John
noun: John
cat: nm
sem: m
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: Susanne
noun: Susanne
cat: nm
sem: f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

finite one-place verbs, inflected for third-person singular⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sleeps
erb: sleep
cat: ns3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sings
verb: sing
cat: ns3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: dreams
verb: dream
cat: ns3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

punctuation sign[
sur: .
cat: v′ decl

]

The three kinds of lexical entries have in common that their first attribute, called sur,
takes the surface of the word form as its value (cf. 4.1.2, 1). It is printed here in sans
serif font. In the hearer mode, it serves as the key to be matched with the unanalyzed
input surface (cf. 11.1.1).

The nouns and verbs are examples of content words, while the punctuation sign
is an example of a function word. In content words, the second attribute is the core
attribute (cf. 4.1.2, 2). It specifies the basic part of speech, i.e., noun, verb, or adj, and
may take a concept, a name marker, or an index as its value. For simplicity, concepts
are represented by a corresponding English word serving as a placeholder (cf. 4.1.4
ff.) and are printed in italics.

The next two attributes, cat and sem, are called grammatical attributes (cf. 4.1.2, 3).
cat specifies the syntactic category of the word form. It retains the notation of category

186 11. DBS.1: Hearer Mode

segments familiar from the older syntactic systems of LA-grammar (NEWCAT’84
and CoL’89). In the simple LA-hear.1 grammar defined in 11.4.1, the following cate-
gory segments are used:

11.2.2 VALUES OF THE cat ATTRIBUTE

decl = declarative sentence
nm = proper name
ns3′ = nominative third-person singular valency position
v = verb, unmarked for sentence mood
v′ = valency position for verb unmarked for sentence mood

Being constants, the category segments are written in lowercase Roman letters.
The sem attribute specifies semantic properties of the word form. In LA-hear.1,

these are the gender values in noun proplets and a tense value in verb proplets:

11.2.3 VALUES OF THE sem ATTRIBUTE

f = femininum
m = masculinum

pres = present tense

The remaining attributes of the isolated proplets in the lexicon 11.2.1 do not have
values yet, but will receive values during syntactic–semantic parsing. The attributes
in question are of three kinds. The first specifies intrapropositional relations between
content words in terms of traditional valency relations (cf. 4.1.2, 4):

11.2.4 INTRAPROPOSITIONAL CONTINUATION ATTRIBUTES

arg: specifies the arguments of verbs (list)
fnc: specifies the functor of nouns (atom)
mdr: specifies the modifiers of nouns and verbs (list)
mdd: specifies the modified of adnominals and adverbials (atom)

The value restrictions specified above will have to be revised for handling the con-
structions presented in Part II. For example, the attribute fnc must be able to take
nonatomic values, e.g., [fnc: 28 amuse], as in 7.1.2, 1.

The second specifies extrapropositional relations (cf. 4.1.2, 5). These are the iden-
tity relation between nouns and the coordination relation between verbs.

11.2.5 EXTRAPROPOSITIONAL CONTINUATION ATTRIBUTES

idy: identity between nouns. Takes a number as value.
nc: next conjunct. Takes an optional conjunction, a proposition number, and a verb concept as value.
pc: previous conjunct. Takes values similar to nc.

The attribute idy is restricted to nouns and prepositional phrases (complex adjectives),
while the attributes nc and pc are used by DBS-1 only in verbs.

The third kind of attribute with a nonlexical value is a bookkeeping attribute (cf.
4.1.2, 6):

11.3 Preamble of LA-hear.1 187

11.2.6 BOOKKEEPING ATTRIBUTE OF LA-hear.1

prn: proposition number

This attribute is common to all proplets representing content words. Analyzed content
words belonging to the same proposition have a common prn value.

Finally, consider the feature structure of the function word in 11.2.1. The punctua-
tion sign has only two attributes, one for the surface and one for the syntactic category.
This is sufficient because the punctuation sign is absorbed into the proplet of the verb
(e.g., 11.5.2).

11.3 Preamble of LA-hear.1

The rules of LA-hear.1 are based on patterns defined as flat (nonrecursive) feature
structures. The patterns of the rule level differ from their counterparts at the language
level by using variables rather than constants as the values of some of their attributes.
These variables are defined in the preamble of an LA-hear grammar, including the
restrictions on their domain and their agreement conditions. In this way, different
rules may utilize the same variable definitions provided by the preamble.

The rules of LA-hear.1 use the following binding variables:

11.3.1 LIST OF BINDING VARIABLES

SM = sentence mood
VT = verb type filler
VT′ = verb type valency position
NP = noun phrase filler
NP′ = noun phrase valency position
α, β, γ, etc., = for individual concepts like Julia, sleep, young, etc.,
i, j, k = for number values of the prn and idy attributes

As explained in Sect. 3.2, the matching of a proplet pattern at the rule level with a
proplet at the language level requires (i) that all attributes in the rule pattern have coun-
terparts in the language proplet and (ii) that the attribute values of the language proplet
satisfy the restrictions of the corresponding variables of corresponding attributes in the
rule patterns. The variables of LA-hear.1 have the following restrictions:

11.3.2 RESTRICTION OF BINDING VARIABLES

SM ε {decl}
VT ε {v}
VT′ ε {v′}
NP ε {nm}
NP′ε {ns3′}

The set of values for these variables will be extended in later versions of the grammar.
The role of variable restrictions may be shown schematically as follows:

188 11. DBS.1: Hearer Mode

11.3.3 MATCHING BETWEEN A VARIABLE AND A CONSTANT

rule level:

[
cat: NP

]
matching?

language level:

[
cat: nm

]

The match is successful because the constant value nm of the attribute cat at the lan-
guage level is defined in 11.3.2 to be in the restriction set of the variable value NP of
the corresponding attribute at the rule level.

The definition of restricted variables may be extended to a simple, general treatment
of agreement.2 This is done by defining conditionals of the following form:

If variable X has the values a, b, or c, then the variable Y must have the
values p or q.

Such a conditional relates two variables X and Y at the rule level by further refining
their restrictions.

The agreement conditions of LA-hear.1 are very simple and relate valency fillers to
suitable valency positions.

11.3.4 AGREEMENT CONDITIONS

if VT ε {v}, then VT′ ε {v′}
if NP ε {nm}, then NP′ ε {ns3′}

For a more detailed analysis of agreement regarding the restrictions between nominal
valency fillers and the verb, between finite auxiliaries and the nonfinite main verb, and
between determiners and nouns in English see the preamble of LA-hear.2 defined in
Sect. 13.2.

11.4 Definition of LA-hear.1

For parsing simple texts like

Julia sleeps. John dreams. Susanne sings.

LA-hear.1 requires three rules, called NOM+FV (nominative plus finite verb), S+IP
(sentence plus interpunctuation), and IP+START (interpunctuation plus start of the
new sentence). The states and rules of this input grammar are based on the definition

2 For a complete treatment of agreement in English see FoCL’99, Sect. 16.3, pp. 307–310, and
Chap. 17, pp. 331–332.

11.4 Definition of LA-hear.1 189

of attributes and values in Sect. 11.2 and on the definition of variables and agreement
in Sect. 11.3.

NOM+FV adds a finite verb to a sentence start consisting of a noun, S+IP adds a
full stop to a sentence start ending in a finite verb, and IP+START adds a noun to a
sentence start ending in a full stop. Then the cycle starts over again: Treating the noun
as the new sentence start, NOM+FV adds a finite verb, etc.

In addition to these three rules, LA-hear.1 defines a start state STS which ensures
that a derivation begins with the rule NOM+FV, and a final state STF which ensures
that a derivation ends with an application of the rule S+IP.

11.4.1 FORMAL DEFINITION OF LA-hear.1

STS =def { (
[
cat: X

]
{1 NOM+FV}) }

NOM+FV {2 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦
⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw

S+IP {3 IP+START}[
verb: α
cat: VT
prn: k

][
cat: VT′ SM

] replace SM VT
set k PC
set α PCV
copyss

IP+START {1 NOM+FV}[
verb: α
cat: SM
nc:

][
noun: β
cat: NP
prn: k

] increment nw.prn
ecopy k ss.nc
acopy ‘NCV’ ss.nc
copyss copynw

STF =def {(
[
cat: decl

]
rpS+IP)}

The rules in the rule packages of the grammar are numbered in sequence.3 These
numbers are useful in debugging because a rule may be called from different rule
packages.4

Each rule consists of a rule name, e.g., NOM+FV, a rule package, e.g., {2 S+IP}, a
pattern for the sentence start, a pattern for the next word, and a list of operations, e.g.,
delete NP’ nw.cat.

The operations of the rules have the following interpretation (see also Appendix
B.5.2–B.5.5):

3 During grammar development, the contents of the rule packages may frequently change. Therefore the
grammar-specific numbering of the rules should be provided automatically by the system. Otherwise,
the grammar writer has to adjust the numbering by hand after each revision.

4 This is not illustrated by LA-hear.1, due to the fact that each of its rule packages has only one rule
and each rule is called from only one rule package. See the definition of LA-hear.2 in 13.2.4 instead.

190 11. DBS.1: Hearer Mode

11.4.2 DEFINITIONS OF THE OPERATIONS

delete variable proplet-attr. = delete the value corresponding to the variable in the corresponding
attribute of the corresponding proplet at the level of language.

Example: delete NP′ nw.cat (in NOM+FV)

acopy variable proplet-attr. = additively copy value(s) corresponding to the variable into the
specified target slot; default position is at the end of the target slot.

Examples: acopy α nw.arg (in NOM+FV)
acopy PCV nw.pc (in NOM+FV)
acopy ‘NCV’ ss.nc (in IP+START)

ecopy variable proplet-attr. = exclusively copy value(s) corresponding to the
variable into the specified proplet attribute.

Examples: ecopy β ss.fnc (in NOM+FV)
ecopy PC nw.pc (in NOM+FV)
ecopy k ss.nc (in IP+START)

set value variable = rule-based (rather than matching-based) binding
of a variable to a value.

Examples: set β NCV (in NOM+FV)
set k PC (in S+IP)
set α PCV (in S+IP)

replace variable2 variable1 = replace value of variable1 with value of variable2.
Examples: replace SM VT (in S+IP)

increment proplet-attr. = increment numerical value of corresponding
attribute by one.

Example: increment nw.prn (in IP+START)

copyss = include the proplets of the sentence start in the result.
Examples: NOM+FV, S+IP, IP+START

copynw = include the proplet of the next word in the result.

Examples: NOM+FV, IP+START

To add a value “additively” with acopy means that the target attribute may already
have non-NIL values. To add a value “exclusively” with ecopy means that the target
attribute may not have any non-NIL values. Instead of referring to a value by means of
a variable, e.g., acopy α nw.arg, the operations may also refer to a value by specifying
a proplet attribute, e.g., acopy ss.noun nw.arg.

The set operation allows binding a value to a variable by a rule (rather than binding
a value to a variable by matching rule patterns with the language level). The variables
NCV (next conjunct verb), PC (previous conjunct prn), and PCV (previous conjunct
verb) are a special kind of global variable. They are called loading variables because
they are assigned values at certain stages of the derivation by certain rules, such that
the values can be (i) used or (ii) supplied at other stages. Loading variables occur at
the level of language and the level of rules, in contrast to the binding variables, which
occur only at the level of rules.

The operations apply in the order of their appearance in the rule. Their functioning
will be explained in connection with the detailed sample derivation presented in the
following section.

11.5 Interpreting a Sequence of Sentences 191

11.5 Interpreting a Sequence of Sentences

An LA-hear derivation is activated by the first word form passed to the grammar by au-
tomatic word form recognition. This analyzed word form (lexical proplet) is matched
with the pattern(s) of the start state STS . If the match is successful, the associated rule
package of the start state STS is activated, the second word is provided by automatic
word form recognition, and the rules of the rule package are applied to the first and
second proplet serving as ss and nw (cf. 3.4.3, Appendix B.1).

Given the definition of LA-hear.1 (cf. 11.4.1) and the first word form of our sample
text, this operation is successful: The pattern [cat: X] of the start state trivially matches
the lexical type of Julia, activating lexical lookup of the second word form sleep and
the rule package {1 NOM+FV}. The single rule in this rule package is applied to the
lexical proplets of the first two words:

11.5.1 COMBINING Julia AND sleeps

NOM+FV {2 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦

⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.1 Julia
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.2 sleeps
verb: sleep
cat: ns3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: v
sem: pres
mdr:
arg: Julia
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

The proplets at the language level have a word number as subscript. It refers to the
word which the proplet represents, indicating the word’s position in the surface.

The precondition for applying the operations is the successful matching between
the rule patterns and the language proplets in accordance with the matching condi-
tions 3.2.3. The attribute condition is fulfilled insofar as the attributes of the patterns
are a subset of the attributes of the corresponding language proplets. The value condi-
tion includes the requirement that the agreement condition between the values of the
variables is fullfilled. Given that cat values satisfy the restiction of the variable NP to
nm and and the variable NP’ to ns3′ (cf. 11.3.4), the operations may apply.

The effect of the operations is shown in the proplets to the right of the arrow. The
first operation, delete NP′ nw.cat, deletes the category segment ns3′ in the cat attribute
of the verb. The second operation, acopy α nw.arg, copies the value Julia of the noun

192 11. DBS.1: Hearer Mode

attribute into the arg attribute of the proplet sleep. The third operation, ecopy β ss.fnc,
copies the value sleep of the verb attribute into the fnc attribute of the proplet Julia.
Linguistically, the first operation models the canceling of the nominative valency po-
sition, while the second and third operations realize the functor–argument structure
holding between the first and the second proplet.

The following three operations ecopy PC nw.pc, acopy PCV nw.pc, and set β NCV
are for establishing the extrapropositional relations between the present and the pre-
vious proposition. However, given that the current sentence is initial, the three opera-
tions apply vacuously in this particular case.5 A nonvacuous application of the three
operations in question is shown in 11.5.4.

The last two operations copyss and copynw specify that both input proplets are in
the output of the rule. The proplets in the output differ from the input proplet in that
the latter have been subjected to the rule operations.

The application of NOM+FV activates its rule package, which contains only one
rule: S+IP. The input to S+IP consists of the output of NOM+FV and the new next
word “.” (punctuation, full stop). The application of S+IP in the derivation of Julia
sleeps + . is illustrated below:

11.5.2 COMBINING Julia sleeps AND .

S+IP {3 IP+START}[
verb: α
cat: VT
prn: k

] [
cat: VT′ SM

] replace SM VT
set k PC
set α PCV
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: v
sem: pres
mdr:
arg: Julia
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

[
sur: 1.3 .
cat: v′ decl

]
3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

The first operation replaces the cat value v of the verb with decl. The second and
the third operations introduce the loading variables PC and PCV and assign values to
them. These values, namely PC = 1 and PCV = sleep, are for the pc slot of the verb of
the next proposition. Because the proplets of the next proposition are not yet available
(and might not come at all), the patterns of the current rule S+IP have no place for the
variables PC and PCV. This is why PC and PCV cannot be assigned values via pattern
matching with the language level, but by means of the rule operations in question.

5 If there were a previous proposition, the PC and PCV variables would have been bound to values,
which would now be copied into the pc slot of the current proposition (forward loading). Also, the
NCV variable would have been copied as a name into the nc slot of the previous proposition; it would
now be provided with a value (backward loading) .

11.5 Interpreting a Sequence of Sentences 193

The last operation copies only the sentence start into the result. This is because
punctuation is treated as a function word which is absorbed into the verb.

The application of S+IP activates its rule package, which contains only one rule:
IP+START. The input to IP+START consists of the output of S+IP and the new next
word, i.e., John. The application of IP+START in the derivation of Julia sleeps. +
John is illustrated below:

11.5.3 COMBINING Julia sleeps. AND John

3 IP+START {1 NOM+FV }

[
verb: α
cat: SM
nc:

] [
noun: β
cat: NP
prn: k

] increment nw.prn

ecopy k ss.nc
acopy ‘NCV’ ss.nc
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.1 John
noun: John
cat: nm
sem: m
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 NCV
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc:
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

The operation increment nw.prn in IP+START increments the proposition number of
the nw, which happens to be the first word of the next proposition. The second opera-
tion copies the incremented prn value of the nw into the nc slot of the ss, i.e., the verb
proplet sleep. The third operation adds the variable name NCV to the nc slot of the ss.
NCV will be provided with a value in the following proposition (backward loading)
by the rule NOM+FV, which applies next.

11.5.4 COMBINING Julia sleeps. John AND sings

1 NOM+FV {2 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦

⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 NCV
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc:
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.2 sings
verb: sing
cat: ns3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

194 11. DBS.1: Hearer Mode

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc: sing
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: v
sem: pres
mdr:
arg: John
nc:
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

The proplets of the previous sentence are shown in addition to the current sentence
start in order to illustrate the assignment of the nc (next conjunct) and the pc (previous
conjunct) values. Reference to the previous proposition is needed because the coordi-
nation of two propositions is coded in their respective verbs, and – due to the word
order of English – the verb of the current proposition is only now being provided.

Although the ss-pattern fits two input proplets, Julia and John, only the proposition
number of the John proplet is in concord with the counter value of the current sentence
start. Furthermore, even though the nw-pattern roughly6 fits the input proplets sleep
and sing, only sing is a possible candidate because the nw proplet must be provided
by lexical lookup.

As in 11.5.2, the first three operations code the functor–argument relations between
the two proplets of proposition 2. The fourth and the fifth operation copy the PC
and PCV values set in 11.5.2 by S+IP into the pc slot of the current verb proplet
(resulting in pc: 1 sleep in the sing proplet). The sixth operation assigns a value to the
NCV variable of the previous verb proplet (backward loading, resulting in nc: 2 sing
in the sleep proplet). Now the first two propositions of the test sample are properly
concatenated via the nc and pc values of their verb proplets sleep and sing.

Given that the test sentences all have the same structure, the remainder of the deriva-
tion is analogous to the steps shown above, and is therefore omitted. The sequence of
word forms in the test sample is added by the following rule applications:

11.5.5 SEQUENCE OF RULE APPLICATIONS IN DERIVING THE SAMPLE OF DBS-1

1.1 Julia
1 NOM+FV 1.2 sleeps
2 S+IP 1.3 .
3 IP+START 2.1 John
1 NOM+FV 2.2 sings
2 S+IP 2.3 .
3 IP+START 3.1 Susanne
1 NOM+FV 3.2 dreams
2 S+IP 3.3 .

The first line contains the first word provided by the start state STS . Each subsequent
line consists of a rule number, e.g., 1, a rule name, e.g., NOM+FV, and a next word.
The latter consists of a proposition.word number, e.g., 1.2, and a surface, e.g., sleeps.

6 In fact, the nw-pattern would not fit the proplet sleep because of conflicting cat values (see variable
restrictions 11.3.2).

11.6 Storing the Output of LA-hear.1 in a Word Bank 195

The format illustrated in 11.5.5 is suited well to show the transitions through the
finite-state backbone of an LA-grammar during a derivation. The rules and rule pack-
ages of LA-hear.1 form the following finite-state transition network:

11.5.6 FINITE-STATE TRANSITION NETWORK OF LA-hear.1

START

1 NOM+FV

3 IP+START

2 S+IP

The perplexity of this system is 3 : 3 = 1, that is, only one attempted rule application
per composition. The notion of perplexity as applied to an LA-grammar is explained
in FoCL’99, p. 339.

With no upper limit on the length, LA-hear.1 analyzes infinitely many sentence
sequences.7 The simplest way to expand the data coverage of LA-hear.1 is by adding
more proper names and more one-place verbs to its lexicon.

11.6 Storing the Output of LA-hear.1 in a Word Bank

The hearer’s next step of interpreting a text of natural language consists in sorting the
proplets derived into the Word Bank.

11.6.1 SORTING AN LA-hear DERIVATION INTO A WORD BANK

owner records member records
(isolated proplets) (connected proplets)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: dream
cat: n-s3’ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: dream
cat: decl
sem: pres
mdr:
arg: Susanne
nc:
pc: 2 sing
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc: sing
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7 This is illustrated by repetitive sequences like Julia sleeps.
Julia sleeps. Julia sleeps.
Julia sleeps. Julia sleeps. Julia sleeps. Etc.

196 11. DBS.1: Hearer Mode

owner records member records
(isolated proplets) (connected proplets)⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: n-s3’ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: n-s3’ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Susanne
cat: nm
sem: f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Susanne
cat: nm
sem: f
mdr:
fnc: dream
idy: 3
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In this Word Bank, complete lexical proplets (rather than just their core values, cf.
3.3.1) are used as the owner records. The owner records of the verbs are represented
by the unmarked form of the present tense, e.g., sing, whereby the cat value n-s3’
represents a valency position for “nominative minus singular third-person.”

The LA-hear.1 interpretation shown in 11.5.1–11.5.4 has resulted in a set of pro-
plets the elements of which are sorted into the Word Bank 11.6.1 according to their
main key, i.e., the value of their core attribute. Sorting proplets into a Word Bank is
completely automatic. It constitutes the first step of the hearer’s pragmatic interpre-
tation and corresponds to the down arrow in 2.5.1 (simplified theory of language).
Subsequent steps of pragmatic interpretation consist in inferences.

12. DBS.1: Speaker Mode

This chapter completes the definition of DBS.1 by modeling the speaker mode for the
test sample derived in the previous chapter in the hearer mode. The fragment’s speaker
mode is based on two LA-grammars, called LA-think.1 and LA-speak.1.

LA-think navigates through the content of a Word Bank by taking a proplet as in-
put, computing a continuation proplet, and specifying an output position. Navigating
through the content of a Word Bank is like moving a focus point from one proplet to
the next, highlighting the proplets traversed. The navigation procedure models thought
as a temporary activation of certain propositions in a potentially vast amount of con-
tent.

In language production, the rule patterns of LA-speak match the sequence of pro-
plets activated by LA-think and produce a sequence of corresponding natural language
surfaces as output. This process requires adjustment of word order, lexicalization in-
cluding the precipitation of function words, and the handling of agreement.

12.1 Definition of LA-think.1

The combination of (i) proplets in a Word Bank and (ii) an LA-think grammar con-
stitutes an LA-think system. An LA-think system is designed for the autonomous
navigation through the content of a Word Bank. The proplets provided by the Word
Bank to LA-think have a similar function as those provided by automatic word form
recognition to LA-hear.

The content of the Word Bank and the navigation through this content by means of
an LA-think grammar is independent of a particular natural language. The navigation
is used for the derivation of inferences (cf. Sect. 5.3) and for conceptualization. For
simplicity, we are dealing here only with conceptualization – which is the speaker’s
process of selecting what to say.

Given that the rule patterns of LA-think.1 apply to proplets which have been derived
by means of the lexicon and the rules of LA-hear.1, it follows that LA-think.1 must
use the same attributes and the same values as the LA-hear.1 system defined in the
previous chapter. LA-think.1 is defined as follows:

12.1.1 FORMAL DEFINITION OF LA-think.1

LX: proplet tokens in the Word Bank 11.6.1

198 12. DBS.1: Speaker Mode

STS =_def {([verb: α] {1 V_N_V})}

V_N_V {2 V_V_V}[
verb: α
arg: β
prn: i

] [
noun: β
fnc: α
prn: i

]
output position ss
switch to LA-speak.1 (optional, only in the speaker mode)

V_V_V {1 V_N_V}[
verb: α
nc: j β
prn: i

] [
verb: β
pc: i α
prn: j

]
output position nw

STF =_def { ([verb: x] rpV_N_V)}

The start state STS of LA-think.1 is activated when a verb proplet in the Word Bank
is activated by an external or internal stimulus. This triggers the application of the
rule(s) in the associated rule package, here {1 V_N_V}, to the initial proplet, starting
the navigation.

LA-think.1 has only two rules, called V_N_V and V_V_V, whereby V stands for
verb and N for noun. The first letter of these rule names represents the sentence start
proplet, the second the next word proplet, and the third the output position (serving as
the resulting sentence start and the beginning of the next transition).

The rule V_N_V is for intrapropositional navigation; it proceeds from the V to the
N back to the V. The rule V_V_V is for extrapropositional navigation; it proceeds
from the current V to the next V and stays there.

The rules and rule packages of LA-think.1 constitute the following finite-state tran-
sition network:

12.1.2 FINITE-STATE TRANSITION NETWORK OF LA-think.1

START
1 V_N_V

2 V_V_V

Before explaining the formal details of LA-think.1, such as the proplet patterns and
operations of its rules, let us characterize its functioning schematically:

12.1.3 SCHEMATIC DESCRIPTION OF LA-think.1 NAVIGATION:

rule name sample navigation rule package

V_N_V sleep_Julia_sleep {V_V_V}
V_V_V sleep_dream_dream {V_N_V}

After the successful application of the first rule, the second rule is called (cf. rule
package), which adds a second V, which calls the first rule, which adds a second N,
etc. This is illustrated by the following schematic derivation of our sample sequence:

12.2 Navigating with LA-think.1 199

12.1.4 DERIVING A VNVNVN SEQUENCE

sleep Julia + sing John + dream Susanne
VN VN VN

rule name navigation steps result sequence

V_N_V sleep_Julia_sleep VN
V_V_V sleep_sing_sing VNV
V_N_V sing_John_sing VNVN
V_V_V sing_dream_dream VNVNV
V_N_V dream_Susanne_dream VNVNVN

The underlying sequence for each proposition is VN (e.g., sleep Julia) rather than NV
(e.g., Julia sleep), because the coordination between two propositions is defined by
their verbs’ nc and pc values.

In addition to an extrapropositional V_V_V navigation based on the coordination
between verb proplets, DBS also supports an extrapropositional N_N_N navigation
based on the identity between noun proplets. Just as a coordination-based V_V_V
transition must start the next proposition with its V proplet, an identity-based N_N_N
transition must start the next proposition with an N proplet. Consequently, the univer-
sal navigation cannot be limited to the intrapropositional traversal of VN, VNN, and
VNNN sequences, but must also support the intrapropositional traversal of NV, NVN,
and NVNN sequences (see Appendix A for a more detailed discussion).

Which of the two kinds of extrapropositional transitions applies depends on whether
the coordination-based V_V or an identity-based N_N concatenation from one propo-
sition to the next is chosen by the speaker. For the moment we will concentrate on V_V
transitions and the concomitant VN order,1 leaving the N_N concatenations and the
concomitant NV order for later. The intrapropositional VNN and VNNN navigation
of propositions with two- and three-place verbs and their correct surface serialization
in English is shown in Chap. 14.

12.2 Navigating with LA-think.1

An LA-think navigation begins with the first proplet passed to the grammar by the
control structure, reflecting, for example, an external stimulus.2 This connected pro-
plet (token in a Word Bank) is matched with the pattern(s) of the start state STS (cf.
12.1.1). If the match is successful, the proplet constitutes the beginning of an activated
sequence and the rule package associated with the start state STS is called up.

1 Given that English is a subject–verb–object (SVO) language, production from an underlying VN,
VNN, or VNNN order based on the coordination of verbs seems to be more challenging and instruc-
tive than from an underlying NV, NVN, or NVNN order based on the identity of nouns.

2 This is realized in the JSLIM implementation by typing the base form of a verb to the prompt (cf.
Appendix B, B.6.3)

200 12. DBS.1: Speaker Mode

12.2.1 PROVIDING AN INITIAL PROPLET FOR THE NAVIGATION⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

The starting point of the navigation is chosen
by activating an arbitrary proplet in the word bank 11.6.1.

Now the rule(s) in the rule package(s) of the start state(s) STS are applied by match-
ing their ss-pattern with the initial proplet, binding the variables in the ss-pattern to
corresponding values of the initial proplet. These bindings hold also in the nw-pattern,
thus permitting retrieval of a unique continuation proplet, here Julia:

12.2.2 TRAVERSING THE FIRST PROPOSITION

1 V_N_V {2 V_V_V}[
verb: α
arg: β
prn: i

] [
noun: β
fnc: α
prn: i

]
output position ss
switch to LA-speak.1

Level of the
first navigation rule

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

Level of the matching Word Bank
proplets. The navigation traverses
the noun Julia and returns to the verb.

Activated sequence:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

The noun traversed is added
to the activated sequence.

The above navigation from the verb via the noun back to the verb enables a con-
tinuation from the current verb to the verb of another proposition, using the rule
V_V_V (see rule package of V_N_V). While V_N_V uses the arg feature to find
an intrapropositional continuation, V_V_V uses the nc feature to find an extrapropo-
sitional continuation.

12.2 Navigating with LA-think.1 201

12.2.3 TRANSITION TO THE SECOND PROPOSITION

2 V_V_V {1 V_N_V}[
verb: α
nc: j β
prn: i

] [
verb: β
pc: i α
prn: j

]
output position nw

Level of the
second navigation rule⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

Level of the matching Word Bank
proplets. The navigation traverses
the verb sing of a second proposition
and stays there.

Activated sequence:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

The verb traversed is added
to the activated sequence.

The output of the above rule is the new V, thus matching the ss-pattern of the next
rule. Consequently, the derivation is in the same state as in 12.2.2 and continues in
the same way. The rule package recalls V_N_V. The remainder of the derivation is
omitted for reasons of space.

After traversing the three propositions of our test example, the activated sequence is
as follows:

12.2.4 ACTIVATED SEQUENCE AT THE END OF THE NAVIGATION⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc: sing
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: dream
cat: decl
sem: pres
mdr:
arg: Susanne
nc:
pc:2 sing
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Susanne
cat: nm
sem: f
mdr:
fnc: dream
idy: 3
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

The partial derivation shown in 12.2.2–12.2.3 shows the maximally verbose dis-
play format of LA-think.1. This format corresponds to the maximally verbose display
format of LA-hear.1 shown in Sect. 11.5.

202 12. DBS.1: Speaker Mode

12.3 Automatic Word Form Production

The navigation powered by LA-think may either run as pure thought, i.e., without
a concomitant language production, or it may serve as the conceptualization of the
speaker mode. In the latter case, there is a frequent switching between LA-think and
LA-speak.

Just as LA-hear requires automatic word form recognition in order to run, LA-speak
requires automatic word form production. In LA-speak.1, word form production is
based on lexicalization functions which take (i) full-form patterns3 and (ii) lexicaliza-
tion tables as input and render word form surfaces as output.

Lexicalization tables have the form

If α = f, then α′ = g,

where α and α′ are variables, f is a language-independent concept4 serving as a
proplet value, and g is its language-dependent counterpart.

Full-form patterns are roughly defined as follows:

If proplet pattern X matches proplet p such that p has an attribute with the
value α, then α lexicalizes as prefix prefix... α′ suffix suffix....

The sample text of DBS.1 requires the lexicalization of proper names, of verbs in
the third-person singular present tense form, and of full stops. These are provided by
the lexicalization functions lex-n, lex-fv, and lex-p.

12.3.1 THE FUNCTION lex-n FOR THE GENERATION OF PROPER NAMES

If

[
noun: α
cat: nm

]
matches an activated N proplet, then lex-n [noun: α] = α′.

If α = then α′ =
John John
Julia Julia
Susanne Susanne

The full-form pattern is followed here by a lexicalization table for core values. Lex-
icalization tables provide a simple method to extend lexical coverage in language
production.

12.3.2 THE FUNCTION lex-fv FOR THE GENERATION OF VERB FORMS

If

[
verb: α
arg: β z
sem: pres

] [
noun: β
cat: nm

]
match an activated VN sequence, then lex-fv [verb: α] = α′+s.

3 A word form production based on full-form patterns corresponds to a word form recognition based
on full-form lookup (cf. Sects. 11.1 and 11.2).

4 As pointed out in Sect. 11.3, concepts are represented here by corresponding English words. It is
for this reason that the lexicalization tables for English appear to be rather trivial. In a nontrivial
implementation, the lexicalization table would show the surfaces of different languages for the same
concept, e.g., book, livre, buch, etc. This would be most useful for implementing translingual infor-
mation retrieval systems as described in Frederking, Mitamura, Nyberg, and Carbonell (1997).

12.4 Definition of LA-speak.1 203

If α = then α′ =
dream dream
sing sing
sleep sleep

Here the input pattern is defined for two proplets, the subject and the verb. The V pro-
plets in the Word Bank (cf. 11.6.1) have the cat value decl. Thus, the information re-
garding person and number of the nominative, needed to select the proper inflectional
form of the verb (agreement), must be obtained by matching the related nominative N
proplet, specified by the first value of the arg attribute of the verb. For example, if α′

= dream, then α′+s = dreams.
The generation of full stops, finally, is handled by a lexicalization function with a

“zero” lexicalization table:

12.3.3 THE FUNCTION lex-p FOR THE GENERATION OF A FULL STOP

If

[
verb: α
cat: decl
arg: β

] [
noun: β
verb: α

]
match an activated VN sequence, then lex-p [verb: α] = . (full stop).

Items are lexicalized by the full-form pattern alone if they belong to a very small class,
and are realized from values other than the core value (here from decl). This applies to
function words like pronouns and determiners, which are lexicalized solely by means
of full-form patterns (cf. Sect. 14.3), without any lexicalization tables.

The lexicalization functions are called by the rules of LA-speak. A rule application
of LA-speak fails if the associated lexicalization function is not successful – either be-
cause the input does not match the input condition of the full-form pattern or because
the lexicalization table is not defined for the value in question.

12.4 Definition of LA-speak.1

The input to LA-speak.1 consists of the proplets originally derived by LA-hear.1 and
then activated in the process of an LA-think.1 navigation. Therefore the states and
rules of LA-speak.1 must use the same attributes and values as LA-hear.1 and LA-
think.1.

12.4.1 FORMAL DEFINITION OF LA-speak.1

LX: proplet tokens in the activated sequence

STS=def {(
[
verb: α

]
{1 –NoP}) }

–NoP {2 –FVERB}[
noun: β
cat: nm
prn: i

]
lex-n

[
noun: β

]

204 12. DBS.1: Speaker Mode

–FVERB {3 –STOP}⎡
⎢⎣

verb: α
cat: decl
arg: β
prn: i

⎤
⎥⎦ lex-fv

[
verb: α

]

–STOP {1 –NoP}⎡
⎢⎣

verb: β
cat: decl
arg: α
prn: i

⎤
⎥⎦ lex-p

[
verb: β

]
switch to LA-think.1

STF =def {(
[
cat:decl

]
rp−STOP)}

The arguments of the lexicalization functions, for example, [verb: α], are an abbrevi-
ation of the full proplet pattern preceding in the same rule.

Each rule application lexicalizes only one word form, whereby the rule names –NoP
(name or pronoun), –FVERB (finite verb), and –STOP (punctuation sign) indicate
what kind of word form is lexicalized. The rule names of LA-speak are preceded by a
minus (–), indicating that something is given out by the agent, in contradistinction to
those of LA-hear, which contain a plus (+), as in NOM+FV, indicating that something
is coming into the agent.

The LA-speak.1 grammar handles word order serialization and function word pre-
cipitation by means of a simple finite-state transition network, defined by the rules
and their rule packages:

12.4.2 FINITE-STATE TRANSITION NETWORK OF LA-speak.1

START
1 NoP

3 STOP

2 VFERB

Lexicalization, on the other hand, is handled by the appropriate functions, defined in
Sect. 12.3, and called lex-n, lex-fv, and lex-p.

12.5 Producing a Sequence of Sentences

LA-speak.1 is started by the LA-think.1 rule V_N_V, which switches to LA-speak.1
(cf. 12.1.1) after activating the second proplet of a proposition. Once the initial propo-
sition has been realized by LA-speak.1, –STOP switches back to LA-think.1, which
adds the proplets of the next proposition to the activated sequence, and so on.

12.5 Producing a Sequence of Sentences 205

Given that the LA-think aspect of this process has already been shown in Sect. 12.2,
the following output derivation of the test sequence is limited to the operations of
LA-speak. The incremental switching between LA-think and LA-speak is illustrated
in 14.4.1, 14.5.1, and 14.6.1 for DBS.2.

12.5.1 REALIZING Julia OF THE FIRST PROPOSITION

1 –NoP {2 –FVERB}[
noun: β
cat: nm
prn: i

]
lex-n

[
noun: β

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: Julia ⇐!⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

At this point, LA-think has navigated from V to N and back to V, activating the VN
proplets shown at the language level and switching to LA-speak. The LA-speak rule
–NoP realizes the N proplet as a proper name (cf. ⇐!), ensuring that the sentence
begins with a nominal. The rule package of –NoP calls the LA-speak rule –FVERB.

12.5.2 REALIZING sleeps OF THE FIRST PROPOSITION

2 –FVERB {3 –STOP}⎡
⎢⎣

verb: α
arg: β
cat: decl
prn: i

⎤
⎥⎦ lex-fv

[
verb: α

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: sleeps ⇐!⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In this rule application, the V proplet is realized as a finite verb form (cf. ⇐!), ensuring
that the finite verb is in postnominative position. The verbal ending is supplied by the
lexicalization function (cf. 12.3.3). The rule package of –FVERB calls the LA-speak
rule –STOP.

206 12. DBS.1: Speaker Mode

12.5.3 REALIZING THE PUNCTUATION SIGN OF THE FIRST PROPOSITION

3 –STOP {1–NoP}⎡
⎢⎣

verb: α
cat: decl
arg: β
prn: i

⎤
⎥⎦ lex-p

[
verb: α

]
switch to LA-think.1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: . ⇐!⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sleep
cat: decl
sem: pres
mdr:
arg: Julia
nc: 2 sing
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: sleep
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In this rule application, the punctuation sign (cf. ⇐!) is lexicalized from the V proplet.
This completes the realization of the first proposition traversed. The second operation
of the rule –STOP triggers a switch to LA-think.1 (called a speak-think or ST switch),
which results in adding the proplets of the second proposition to the activated se-
quence (cf. 12.2.3).

Following the subsequent TS (think–speak) switch, the rule –NoP called by the rule
package of –STOP is applied to the proplets of the second proposition, realizing the
surface John.

12.5.4 REALIZING John OF THE SECOND PROPOSITION

1 –NoP {2 –FVERB}[
noun: β
cat: nm
prn: i

]
lex-n

[
noun: β

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc: sing
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: sing
cat: decl
sem: pres
mdr:
arg: John
nc: 3 dream
pc: 1 sleep
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: John ⇐!⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: John
cat: nm
sem: m
mdr:
fnc: sing
idy: 2
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The LA-speak.1 derivation continues in synchronization with the LA-think.1 naviga-
tion until the test example, originally interpreted in the hearer mode, is coded back into
an English surface in the speaker mode. See 9.2.2 for the corresponding production in
the simplified format of Part II.

12.6 Summarizing the DBS.1 System 207

12.6 Summarizing the DBS.1 System

The DBS.1 system defined in the previous and the present chapter consists of the
following components:

1. Word form recognition (Sects. 11.1 and 11.2) takes unanalyzed surfaces of natu-
ral language as input, and produces corresponding analyzed lexical entries (types,
isolated proplets) as output. For simplicity, it is based here on a lookup from a
full-form lexicon.

2. LA-hear.1 (Sects. 11.3 and 11.4) takes the output of automatic word form recog-
nition as input, and produces sets of connected proplets serving as the input sign’s
semantic representation.

3. Word Bank (Sect. 11.6) takes the output of LA-hear.1 as input, and stores it
automatically by using the core values of the proplets as the key.

4. LA-think.1 (Sect. 12.1) takes the proplets of the Word Bank as input, navigates
autonomously through the content of the Word Bank, and activates the proplets
traversed.

5. LA-speak.1 (Sect. 12.3) matches the proplets activated by LA-think.1, and pro-
duces unanalyzed surfaces of natural language with the help of

6. Word form production (Sect. 12.3) which takes proplets as input and renders
suitable surfaces as output. For simplicity it is based here on full-form patterns
and lexicalization tables.

Once this cycle of communication has been implemented for the purposely simple
DBS.1 system defined above, its empirical coverage may be increased as follows: (i)
automatic word form recognition and production are extended to handle additional
word forms, and (ii) the syntactic–semantic (hearer mode) and semantic–syntactic
(speaker mode) parsing of LA-hear, LA-think, and LA-speak are extended to handle
additional constructions.

These extensions require no more than revising the input and output lexica, the list
of attributes, values, etc., in the preamble of LA-hear, and the rule systems of LA-
hear, LA-think, and LA-speak. In other words, the basic software machine underlying
DBS.1 is not affected by the process of upscaling from DBS.1 to DBS.2 and beyond.

Compared to a natural cognitive agent, DBS.1 is greatly simplified because (i) LA-
think has not yet been extended to inferencing, (ii) the word form recognition of LA-
hear and (iii) word form production of LA-speak do not handle modality-dependent
signs, (iv) there is no contextual recognition and action, such that the context is limited
to interacting with the language level alone, and consequently (v) the control structure
of the system cannot be designed to interact with the agent’s internal and external
environment.

Nevertheless, the system represented by DBS.1 already provides the interfaces nec-
essary for adding the missing functionalities. Inferencing can be defined in extended

208 12. DBS.1: Speaker Mode

versions of LA-think; the current word form recognition and production can be re-
placed by morphology-based, modality-dependent variants; contextual input and out-
put can be extended to include nonverbal cognition; and the control structure of the
system can be upscaled from fixed schemata5 to a sensible interaction with the task
environment.

5 DBS.1 does not provide for random choices, because its LA-grammars are deterministic. The kind of
control structure needed for modeling cognitive agents based on Database Semantics is described in
Hausser (2002a).

13. DBS.2: Hearer Mode

In this chapter, LA-hear.1 is extended to complex noun and verb phrases. As examples,
we use a small text consisting of the following sentences:

The heavy old car hit a beautiful tree.
The car had been speeding.
A farmer gave the driver a lift.

The extension results in LA-hear.2, which handles the intrapropositional functor–
argument structures presented in 6.2.1, 6.3.1, and 6.4.1.

The upscaling from LA-hear.1 to LA-hear.2 is based solely on changes in the lin-
guistic definitions. Compared to LA-hear.1, LA-hear.2 has an extended lexicon, a re-
vised preamble for an extended handling of agreement, and a revised rule system for
handling the additional constructions of the test sequence.

13.1 Lexicon of LA-hear.2

The syntactic–semantic parsing of the new test sequence requires that each word form
is provided with a lexical analysis. We extend the LA-hear.1 lexicon with complete
paradigms of personal pronouns, determiners, nouns, main verbs, auxiliaries, and ad-
jectives. Based on these lexical word forms, a general treatment of agreement between
English determiners and nouns, between auxiliaries and nonfinite main verbs, and be-
tween the subject and the verb will be defined in 13.2.3.

13.1.1 PROPER NAMES

As in LA-hear.1 (cf. Sect. 11.2)

13.1.2 PERSONAL PRONOUNS1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: I
noun: I
cat: ns1
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: you
noun: you
cat: pro2
sem:
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: he
noun: he
cat: ns3
sem: sg m
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: she
noun: he
cat: ns3
sem: sg f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: it
noun: he
cat: snp
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: we
noun: I
cat: np-2
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 For an explanation of the category segments of the personal pronouns, see FoCL’99, 17.2.1.

210 13. DBS.2: Hearer Mode

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: they
noun: he
cat: np-2
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: me
noun: I
cat: obq
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: him
noun: he
cat: obq
sem: sg m
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: her
noun: he
cat: obq
sem: sg f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: us
noun: I
cat: obq
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: them
noun: he
cat: obq
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13.1.3 DETERMINERS⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: a
noun: n_1
cat: sn′ snp
sem: indef sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: every
noun: n_1
cat: sn′ snp
sem: pl exh
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: some
noun: n_1
cat: pn′ pnp
sem: pl sel
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: all
noun: n_1
cat: pn′ pnp
sem: pl exh
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: the
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13.1.4 NOUNS⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: car
noun: car
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: cars
noun: car
cat: pn
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: driver
noun: driver
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: drivers
noun: driver
cat: pn
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: farmer
noun: farmer
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: farmers
noun: farmer
cat: pn
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: lift
noun: lift
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: lifts
noun: lift
cat: pn
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: tree
noun: tree
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: trees
noun: tree
cat: pn
sem: pl
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The feature structures of proper names, personal pronouns, determiners, and nouns
share the same attributes. They differ mainly in the value of their core attribute noun.
In proper names, the core value is a name marker, in pronouns a pointer,2 in nouns a
concept, and in determiners a substitution value to be replaced by a concept.3

The values of the cat attribute specify combinatorial properties of a word form, such
as agreement and valency. A list of all cat values, including those of verbs and adjec-
tives, is provided in 13.1.13. The values of the sem attribute characterize semantic
properties of a word form, such as natural gender or tense. A list of all sem values is

2 For simplicity, the distinction between the indexicals of first-, second-, and third-person is represented
by the core values I, you, and he, regardless of case, number, or gender.

3 The different kinds of core values correspond to the different kinds of signs, which in turn have
different mechanisms of reference (cf. 2.6.4–2.6.7). These are implemented in the pragmatics of
Database Semantics. The theory of signs presumed here is presented in FoCL’99, Chap. 6.

13.1 Lexicon of LA-hear.2 211

provided in 13.1.14. For a detailed analysis of complex nouns and verbs in English,
see FoCL’99, Sects. 17.1–17.4.

13.1.5 MAIN VERBS, ONE-PLACE

1 Third-person singular present tense: as in LA-hear.1 (cf. Sect. 11.2).

2 Non-third-person singular present tense⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sleep
verb: sleep
cat: n-s3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sing
verb: sing
cat: n-s3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: dream
verb: dream
cat: n-s3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: speed
verb: speed
cat: n-s3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 Past tense – past participle⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: slept
verb: sleep
cat: n′ v
sem: past/perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sang
verb: sing
cat: n′ v
sem: past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: dreamt
verb: dream
cat: n′ v
sem: past/perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: speeded
verb: speed
cat: n′ v
sem: past/perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 Separate past participle⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sung
verb: sing
cat: hv
sem: perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5 Present participle⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: sleeping
verb: sleep
cat: be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: singing
verb: sing
cat: be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: dreaming
verb: dream
cat: be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: speeding
verb: speed
cat: be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The proplets in 13.1.5, 1–5 differ mainly in the values of their sur and verb attributes.
In accordance with Surface Compositionality, homonymous past tense and past par-

212 13. DBS.2: Hearer Mode

ticiple forms are treated as one lexical entry (cf. 13.1.5, 3). If past tense and past
participle have different surfaces, as in sang versus sung, this is reflected in the values
of their sem attributes and the cat attribute of the past participle (compare 3 and 4).

With additional valency positions in the cat attribute, the analysis of one-place verbs
extends to two- and three-place verbs.

13.1.6 MAIN VERBS, TWO-PLACE

1 Third-person singular present tense⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hits
verb: hit
cat: ns3′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: knows
verb: know
cat: ns3′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 Non-third-person singular present tense⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hit
verb: hit
cat: n-s3′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: know
verb: know
cat: n-s3′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 Past tense/past participle⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hit
verb: hit
cat: n′ a′ v
sem: past/perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: knew
verb: know
cat: n′ a′ v
sem: past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 Separate past participle⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: known
verb: know
cat: a′ hv
sem: perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13.1 Lexicon of LA-hear.2 213

5 Present participle⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hitting
verb: hit
cat: a′ be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: knowing
verb: know
cat: a′ be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13.1.7 FORMS OF A THREE-PLACE MAIN VERB⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: give
verb: give
cat: n-s3′ d′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: gives
verb: give
cat: ns3′ d′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: gave
verb: give
cat: n′ d′ a′ v
sem: past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: given
verb: give
cat: d′ a′ hv
sem: perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: giving
verb: give
cat: d′ a′ be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next, consider the lexical definition of the auxiliaries be, have, and do. Their feature
structures have the same attributes as the main verbs.

13.1.8 FORMS OF THE AUXILIARY be⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: am
verb: v_1
cat: ns1′ be′ v
sem: be_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: ain’t
verb: v_1
cat: ns13′ be′ v
sem: be_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: is
verb: v_1
cat: ns3′ be′ v
sem: be_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: isn’t
verb: v_1
cat: ns3′ be′ v
sem: be_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: are
verb: v_1
cat: n-s13′ be′ v
sem: be_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: aren’t
verb: v_1
cat: n-s13′ be′ v
sem: be_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: was
verb: v_1
cat: ns13′ be′ v
sem: be_past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: wasn’t
verb: v_1
cat: ns13′ be′ v
sem: be_past neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: were
verb: v_1
cat: n-s13′ be′ v
sem: be_past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: weren’t
verb: v_1
cat: n-s13′ be′ v
sem: be_past neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: been
verb: v_1
cat: be′ hv
sem: be_perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: being
verb: v_1
cat: be′ be
sem: be_prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

214 13. DBS.2: Hearer Mode

13.1.9 FORMS OF THE AUXILIARY have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: have
verb: v_1
cat: n-s3′ hv′ v
sem: hv_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: haven’t
verb: v_1
cat: n-s3′ hv′ v
sem: hv_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: has
verb: v_1
cat: s3′ hv′ v
sem: hv_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hasn’t
verb: v_1
cat: s3′ hv′ v
sem: hv_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: had
verb: v_1
cat: n′ hv′ v
sem: hv_past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hadn’t
verb: v_1
cat: n′ hv′ v
sem: hv_past neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: having
verb: v_1
cat: be′ hv
sem: hv_prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13.1.10 FORMS OF THE AUXILIARY do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: do
verb: v_1
cat: n-s3′ do′ v
sem: do_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: don’t
verb: v_1
cat: n-s3′ do′ v
sem: do_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: does
verb: v_1
cat: ns3′ do′ v
sem: do_pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: doesn’t
verb: v_1
cat: ns3′ do′ v
sem: do_pres neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: did
verb: v_1
cat: n′ do′ v
sem: do_past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: didn’t
verb: v_1
cat: n′ do′ v
sem: do_past neg
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: doing
verb: v_1
cat: a′ be
sem: do_prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: done
verb: v_1
cat: a′ hv
sem: do_perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, consider the lexical definition of adjectives (cf. Sect. 6.3). Adjectives have
the cat value adn when used as adnominal modifiers, and adv when used as adverbial
modifiers.

13.1.11 FORMS OF ADNOMINALS⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: beautiful
adj: beautiful
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: heavy
adj: heavy
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: heavier
adj: heavy
cat: adn
sem: comp
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: heaviest
adj: heavy
cat: adn
sem: SUP
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: old
adj: old
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: older
adj: old
cat: adn
sem: comp
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13.1 Lexicon of LA-hear.2 215

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: oldest
adj: old
cat: adn
sem: sup
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13.1.12 FORMS OF ADVERBIALS⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: heavily
adj: heavy
cat: adv
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: beautifully
adj: beautiful
cat: adv
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The present chapter describes adnominal uses of elementary adjectives. Chap. 15 de-
scribes adverbial uses and prepositional phrases (complex adjectives). The value B
(for “blocked”) is explained in 15.1.1 ff.

In LA-hear.2, the attribute cat may take the following category segments as values:

13.1.13 LEXICAL VALUES OF THE cat ATTRIBUTE

decl = declarative sentence
v = verb, unmarked for sentence mood
ns1 = nominative singular first-person filler
pro2 = nominative and oblique second-person singular and plural filler
ns3 = nominative singular third-person filler
np-2 = nominative plural minus second-person filler (i.e. plural first- and third-person)
obq = noun phrase filler in the oblique (nonnominative) case
snp = third-person singular noun phrase filler unmarked for case
pnp = third-person plural noun phrase filler unmarked for case
np = third-person noun phrase filler unmarked for case and number
nm = proper name
sn = singular noun valency filler
pn = plural noun valency filler
nn = noun filler unmarked for number
be = valency filler indicating a present participle
hv = valency filler indicating a past participle
adn = adnominal
v′ = valency position for verb unmarked for sentence mood
n′ = valency position for nominative of any person or number
n-s3′ = valency position for nominative minus singular third-person
ns1′ = valency position for nominative singular first-person
ns3′ = valency position for nominative singular third-person
ns13′ = valency position for nominative singular first- and third-person
n-s13′ = valency position for nominative minus singular first- and third-person
a′ = accusative valency position for oblique noun phrase
d′ = dative valency position for oblique noun phrase
sn′ = valency position for third-person singular noun
pn′ = valency position for third-person plural noun
be′ = valency position for a present participle

216 13. DBS.2: Hearer Mode

hv′ = valency position for a past participle
do′ = valency position for an infinitive

The attribute sem may take the following values:

13.1.14 LEXICAL VALUES OF THE sem ATTRIBUTE

f = femininum
m = masculinum
sg = singular
pl = plural
def = definite
indef = indefinite
sel = selective
exh = exhaustive
pres = present tense
past = past tense
perf = past participle
prog = progressive
be_pres = present tense of auxiliary be
hv_pres = present tense of auxiliary have
do_pres = present tense of auxiliary do, including modals
be_past = past tense of auxiliary be
hv_past = past tense of auxiliary have
do_past = past tense of auxiliary do, including modals
be_perf = past participle of auxiliary be
hv_perf = past participle of auxiliary have
do_perf = past participle of auxiliary do
neg = negated
comp = comparative
sup = superlative

Many attributes of lexical types (isolated proplets) which currently have the value NIL
(represented by space) will be filled during syntactic–semantic parsing (hearer mode).

13.2 Preamble and Definition of LA-hear.2

The rules of LA-hear.2 define patterns which are based on restricted variables. As in
LA-hear.1, these variables, their restrictions, and their agreement relations are defined
in the preamble of LA-hear.2.

13.2.1 LIST OF VARIABLES

α, β, γ = for a core value
SM = sentence mood
VT = verb type filler
VT′ = verb type valency position
NP = noun phrase filler
NP′ = noun phrase valency position
OBQ = oblique noun phrase filler
OBQ′ = oblique noun phrase valency position
N = noun filler
N′ = noun valency position
AUX = auxiliary filler
AUX′ = auxiliary valency position

13.2 Preamble and Definition of LA-hear.2 217

X, Y, Z = .?.?.?.? (arbitrary sequence up to length 4)
N_n = simultaneous substitution variable for a noun
V_n = simultaneous substitution variable for a verb

13.2.2 RESTRICTIONS OF VARIABLES

SM ε {decl}
VT ε {v}
VT′ ε {v′}
NP ε {pro2, nm, ns1, ns3, np-2, snp, pnp, pn, np, obq}
NP′ ε {n′, n-s3′, ns1′, ns3′, ns13′, n-s13′, d′, a′}
OBQ ε {snp, pnp, pn, obq}
OBQ′ ε {d′, a′}
N ε {sn, pn}
N′ ε {nn′, sn′, pn′}
AUX ε {do, hv, be}
AUX′ ε {do′, hv′, be′}
N_n ε {n_1, n_2, n_3, . . . }
V_n ε {v_1, v_2, v_3, . . . }

13.2.3 AGREEMENT CONDITIONS

if NP = ns1, then NP′ ε {n′, n-s3′, ns1′, ns13′}
if NP = pro2, then NP′ ε {n′, n-s3′, n-s13′ , d′, a′}
if NP = ns3, then NP′ ε {n′, ns3′, ns13′}
if NP = np-2, then NP′ ε {n′, n-s3′, n-s13′}
if NP ε {nm, snp}, then NP′ ε {n′, ns3′, ns13′ , d′, a′}
if NP = pnp, then NP′ ε {n′, n-s3′, n-s13′ , d′, a′}
if NP = np, then NP′ ε {n′, ns3′, ns13′ , n-s3′, n-s13′, d′, a′}
if NP = obq, then NP′ ε {d′, a′}
if AUX′ = do′ , then AUX = n-s3′

if AUX′ = hv′ , then AUX ε {hv, n′}
if AUX′ = be′, then AUX = be
if N′ = nn′, then N ε {nn, sn, pn}
if N′= sn′, then N ε {nn, sn}
if N′= pn′, then N ε {nn, pn}

Note that the agreement conditions for verbal valency specify the positions for a filler,
while those for auxiliaries and determiners specify the fillers for a position.

The infinitive form of the verb equals that of the non-third-person singular present
tense, e.g. give as in I, you, we, they give, John wanted to give, and John didn’t give. To
avoid a lexical ambiguity, agreement between the auxiliary do and its nonfinite verb
uses the non-third-person singular present tense form as the infinitive. Similarly, to
avoid an ambiguity between the past tense and the past participle of most verbs, e.g.
learned (regular) and slept (irregular), agreement between the auxiliary have and its
nonfinite verb is specified for hv (separate past participle form), or if not available –
as indicated by the sem-value past/perf (e.g. 13.1.5, 3) – for n′.

The states and rules of LA-hear.2 extend LA-hear.1 by (i) revising the start state, (ii)
adding the new rules DET+ADN (determiner plus adnominal), DET+NN (determiner
plus noun), FV+NP (finite verb plus noun phrase), and AUX+NFV (auxiliary plus
nonfinite verb), and (iii) modifying the existing rules NOM+FV and IP+START by

218 13. DBS.2: Hearer Mode

extending their rule packages and loosening the nw pattern of IP+START. The rule
S+IP and the final state STF remain unchanged. The LA-hear.1 sample continues to
be parsed by LA-hear.2.

13.2.4 FORMAL DEFINITION OF LA-HEAR.2

STS =def { (
[
cat: X

]
{1 DET+ADN, 2 DET+NN, 3 NOM+FV}) }

DET+ADN {4 DET+ADN, 5 DET+NN}⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
copyss copynw

DET+NN {6 NOM+FV, 7 FV+NP, 8 S+IP}[
noun: N_n
cat: N′ X
sem: Y

][
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss

NOM+FV {9 FV+NP, 10 AUX+NFV, 11 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦
⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw

FV+NP {12 DET+ADN, 13 DET+NN, 14 FV+NP, 15 S+IP}

[
verb: β
cat: NP′ X VT
arg:

][
noun: α
cat: Y NP
fnc:

] delete NP′ ss.cat
acopy α ss.arg
ecopy β nw.fnc
copysscopynw

AUX+NFV {16 AUX+NFV, 17 FV+NP 18 S+IP}[
verb: V_n
cat: AUX′ V
sem: X

] [
verb: α
cat: Y AUX
sem: Z

] replace Y AUX′

acopy nw.sem ss.sem
replace α V_n
copyss

S+IP { 19 IP+START}[
verb: α
cat: VT
prn: k

][
cat: VT′ SM

] replace SM VT
set k ss.PC
set α PCV
copyss

IP+START {1 DET+ADN, 2 DET+NN, 3 NOM+FV}[
verb: α
cat: SM
nc:

][
noun: β
cat: X NP
prn: k

] increment nw.prn
ecopy k ss.nc
acopy ‘NCV’ ss.nc
copyss copynw

STF =def { (
[
cat: decl

]
rp S+IP)}

LA-hear.2 defines the following finite-state transition network (cf. FoCL’99, p. 333):

13.2 Preamble and Definition of LA-hear.2 219

13.2.5 FINITE-STATE TRANSITION NETWORK OF LA-HEAR.2

START

4

2

12

11

7
13

6

8

3 NOM+FV

10 AUX+NFV

1 DET+ADN 5 DET+NN

9 FV+NP

14

IP+START

15 17

18 S+IP

16

19

Almost every rule is called from several different rule packages. For example,
DET+ADN is called from the start state, from DET+ADN itself, as well as from
FV+NP and from IP+START. It is for this reason that the numbering of rule names
in rule packages was introduced in LA-hear.1 (cf. 11.5.5 following). The grammatical
perplexity (cf. FoCL’99, p. 339) of LA-hear.2 is 19 : 7 = 2.71, that is, 2.71 attempted
rule applications on average per composition.

The sequence of word forms in the test sample of LA-hear.2 is added by the follow-
ing rule applications:

13.2.6 SEQUENCE OF RULE APPLICATIONS IN DERIVATIONS 5.4, 5.5, AND 5.6

1.1 The
1 DET+ADN 1.2 heavy
4 DET+ADN 1.3 old
5 DET+NN 1.4 car
6 NOM+FV 1.5 hit
9 FV+NP 1.6 a
12 DET+ADN 1.7 beautiful
5 DET+NN 1.8 tree
8 S+IP 1.9 .

19 IP+START 2.1 The
2 DET+NN 2.2 car
6 NOM+FV 2.3 had
10 AUX+NFV 2.4 been
16 AUX+NFV 2.5 speeding
18 S+IP 2.6 .

19 IP+START 3.1 The
2 DET+NN 3.2 farmer
6 NOM+FV 3.3 gave
9 FV+NP 3.5 the
13 DET+NN 3.6 driver
7 FV+NP 3.7 a
13 DET+NN 3.8 lift
8 S+IP 3.4 .

220 13. DBS.2: Hearer Mode

This way of characterizing a derivation is similar to 11.5.5, but the transitions through
the finite-state transition network 13.2.5 of LA-hear.2 are much more varied.

13.3 Interpreting a Sentence with Complex Noun Phrases

Next, let us analyze each derivation of the LA-hear.2 test examples using the verbose
format, which shows the rules explicitly with their patterns and operations in combi-
nation with the associated proplets at the language level. The first sample sentence is
The heavy old car hit a beautiful tree.

The start state pattern [cat: X] trivially matches the lexical type of the first word form,
here the, thus activating the rule package {1 DET+ADN, 2 DET+NN, 3 NOM+FV}
of STS of LA-hear.2. After lexical lookup of the next word heavy, the three rules
of the start package are applied to the proplets the and heavy. Of these rules, only
DET+ADN matches the input:

13.3.1 COMBINING The AND heavy

1 DET+ADN {4 DET+ADN, 5 DET+NN}⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
copyss copynw

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.1 the
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.2 heavy
adj: heavy
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: heavy
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

Prior to the application of the operations, proposition and identity numbers are sup-
plied by the control structure. The first operation copies the value heavy of the variable
α into the ss.mdr attribute. The second operation copies the value n_1 of the ss.noun
attribute into the nw.mdd attribute. The third operation adds the identity number of
the ss to the nw.mdd attribute. Both input proplets are retained in the output.

After the application of DET+ADN, the category of the determiner proplet the re-
mains unchanged: it is nn’ np.4 The mdd slot of the adnominal proplet heavy now
contains the substitution value n_1. The rule package of DET+ADN differs from the
previous rule package of the start state.

The rule package {4 DET+ADN, 5 DET+NN} is applied to the resulting sentence
start and the new next word old. Of the rules in this rule package, only DET+ADN
matches the input. In other words, the same rule applies again (modifier recursion):
4 The definite article of English can be singular or a plural, depending on the noun. The resulting com-

plication in the handling of agreement is easily programmed, but not formalized here for simplicity.

13.3 Interpreting a Sentence with Complex Noun Phrases 221

13.3.2 COMBINING The heavy AND old

4 DET+ADN {4 DET+ADN, 5 DET+NN}⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: heavy
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.3 old
adj: old
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: heavy

old
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

The current reapplication of the rule DET+ADN adds the value old of the variable α
to the value of the ss.mdr attribute and copies the substitution value n_1 of the ss.noun
attribute into the nw.mdd attribute. All three input proplets are copied into the output.

After the application of DET+ADN, its rule package {4 DET+ADN, 5 DET+NN}
is applied to the resulting sentence start and the new next word car. Of the rules in this
rule package, this time DET+NN matches the input.

13.3.3 COMBINING The heavy old AND car

5 DET+NN { 6 NOM+FV, 7 FV+NP, 8 S+IP}[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: heavy old
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.4 car
noun: car
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy old
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd: car 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr: B
mdd: car 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

The first operation, delete N′ ss.cat, cancels the nominal valency in the determiner.
The second operation, acopy nw.sem ss.sem, adds the value sg to the sem attribute
of the determiner. The third operation, replace α N_n, replaces all occurrences of the
substitution value n_1 by the value of the noun attribute of the next word. In this way

222 13. DBS.2: Hearer Mode

all the relevant values of the next word are copied into the sentence start proplets and
the next word proplet is discarded (copyss, but not copynw).

In other words, the noun proplet (content word) is absorbed into the determiner
(function word), which becomes the nominal proplet in the sense of representing a
content word. This is different from the handling of punctuation signs (cf. 11.4.2),
where the full stop proplet (function word) is absorbed into the verb (content word).
During language production, determiners and full stops are precipitated from nominal
and verbal proplets, respectively.5

After the application of the rule DET+NN, its rule package {6 NOM+FV, 7 FV+NP,
8 S+IP} is applied to the resulting sentence start and the next word hit. Of the rules
in this package, only the patterns of NOM+FV match the input. This rule has been
inherited unchanged from LA-hear.1. Its application here resembles 11.5.1: Because
the current input sentence is at the beginning of the sample text, the operations for
establishing extrapropositional relations with a preceding sentence apply vacuously.
The operations in question are ecopy PC nw.pc, acopy PCV nw.pc (use of a previous
forward loading) and set β NCV (current backward loading). See 11.5.4, 13.4.3, and
13.5.3 for noninitial, nonvacuous applications of these operations.

13.3.4 COMBINING The heavy old car AND hit

6 NOM+FV {9 FV+NP, 10 AUX+NFV, 11 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦

⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy old
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.5 hit
verb: hit
cat: n′ a′ v
sem: past
mdr:
arg:
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: a′ v
sem: past
mdr:
arg: car
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

adj: heavy old

For reasons of space, only the relevant sentence start proplet is shown. The proplets
omitted are listed underneath the sentence start proplet (here adj: heavy old).

The next derivation step is the application of the rule package {9 FV+NP, 10
AUX+NFV, 11 S+IP} of NOM+FV to the resulting sentence start and the next word,
the determiner a. Of the rules in this rule package, only the patterns of the rule FV+NP

5 The precipitation of determiners is illustrated in 14.4.2, 14.4.7, 14.5.2, 14.6.2, 14.6.5, and 14.6.7. The
precipitation of full stops is shown in 12.5.3, 14.4.10, 14.5.7, and 14.6.9.

13.3 Interpreting a Sentence with Complex Noun Phrases 223

match the input. Note that the cat pattern Y NP′ of the nw matches determiners as well
as names and pronouns (because the variable Y does not require a non-NIL value).

13.3.5 COMBINING The heavy old car hit AND a

9 FV+NP {12 DET+ADN, 13 DET+NN, 14 FV+NP, 15 S+IP}[
verb: β
cat: NP′ X VT
arg:

][
noun: α
cat: Y NP
fnc:

] delete NP′ ss.cat
acopy α ss.arg
ecopy β nw.fnc
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: a′ v
sem: past
mdr:
arg: car
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.6 a
noun: n_2
cat: sn′ snp
sem: indef sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: v
sem: past
mdr:
arg: car n_2
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_2
cat: sn′ snp
sem: indef sg
mdr:
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

adj: heavy old, noun: car

The interesting point of this and the following two rule applications is the handling of
a complex noun phrase in postverbal position. Whereas a complex noun in preverbal
position is put together first and then combined with the verb, a complex noun in
postverbal position is added to the verb incrementally, as required by a strictly time-
linear derivation order.6

Despite the apparent asymmetry in the derivation of complex noun phrases in pre-
versus postverbal position, the rule DET+ADN applies alike in either case, and sim-
ilarly for DET+NN. This is due to the use of the substitution variable N_n in these
rules and the corresponding value n_1/n_2/...,7 which serves as a placeholder in the
noun attribute of the determiner (e.g. 13.3.1), the arg attribute of the verb (e.g. 13.3.5),
and the mdd attribute of adnominal adjectives (e.g. 13.3.2). When the content word is
finally added, all occurences of the value n_n are substituted globally.8

After the application of FV+NP, its rule package {12 DET+ADN, 13 DET+NN,
14 FV+NP, 15 S+IP} is applied to the set of proplets comprising the resulting sen-
tence start and the next word beautiful. Of these rules, only the patterns of the rule
DET+ADN match the input.

6 See FoCL’99, Sect. 17.1, pp. 321–326, for further discussion from a syntactic point of view. The
analogous case for pre- and postverbal noun coordination is discussed above in connection with 8.2.3.

7 Each time a lexical placeholder value is introduced into a derivation, it is automatically incremented
(e.g. n_1 in 13.3.1 and n_2 in 13.3.5).

8 The case of determiner–adnominal–noun combinations is illustrated in 13.3.1–13.3.3 (preverbal) and
13.3.5–13.3.7 (postverbal), that of determiner–noun combinations in 13.4.2 (preverbal), 13.5.2 (pre-
verbal), 13.5.5 (postverbal), and 13.5.7 (postverbal). The same technique is used in auxiliary-verb
combinations, as illustrated in 13.4.5.

224 13. DBS.2: Hearer Mode

13.3.6 COMBINING The heavy old car hit a AND beautiful

12 DET+ADN {4 DET+ADN, 5 DET+NN}

⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: v
sem: past
mdr:
arg: car n_2
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_2
cat: sn′ snp
sem: indef sg
mdr:
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.7 beautiful
adj: beautiful
cat: adn
sem:
mdr: B
mdd:
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: v
sem: past
mdr:
arg: car n_2
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_2
cat: sn′ snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr: B
mdd: n_2 2
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

adj: heavy old, noun: car

Given that there are several adjective proplets in the input, namely heavy, old, and
beautiful, there seems to be a choice as to which adjective proplet should be matched
by the nw-pattern. However, because the matching proplet of an nw-pattern must be
provided by lexical lookup, the only candidate for matching the nw-pattern is the adn
proplet beautiful.

A similar choice seems to arise when applying the ss-pattern, due to the presence
of two noun proplets, namely car and the indefinite article. However, because the ss-
pattern of DET+ADN explicitly specifies the variable N_n as the ss core value, it can
only match the definite article (cf. variable restrictions 13.2.2).

The next step in the derivation is the application of the rule package {4 DET+ADN,
5 DET+NN} of DET+ADN to the resulting sentence start and the next word tree. Of
the rules in this rule package, only the patterns of the rule DET+NN match the input.

13.3.7 COMBINING The heavy old car hit a beautiful AND tree

5 DET+NN {6 NOM+FV, 7 FV+NP, 8 S+IP}[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: sn′ v
sem: past
mdr:
arg: car n_2
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_2
cat: sn′ snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr: B
mdd: n_2 2
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 1.8 tree
noun: tree
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

8

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: v
sem: past
mdr:
arg: car tree
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

13.3 Interpreting a Sentence with Complex Noun Phrases 225

adj: heavy old
noun: car

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr: B
mdd: tree 2
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

The substitution value n_2 in the verb proplet hit, the determiner proplet a, and the
adjective proplet beautiful is globally replaced by the value tree (replace α N_n). As in
13.3.3, the noun proplet is absorbed into the determiner. The postverbal noun proplet
tree has the same kind of structure as the preverbal proplet car, and the postverbal
adjective proplet beautiful has the same structure as the preverbal proplets heavy and
old.

Finally, the “.” (punctuation) is added by the rule S+IP (cf. rule package of DET+NN).

13.3.8 COMBINING The heavy old car hit a beautiful tree AND .

8 S+IP {19 IP+START}[
verb: α
cat: VT
prn: k

] [
cat: VT′ SM

] replace SM VT
set k PC
set α PCV
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: v
sem: past
mdr:
arg: car tree
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: np
sem: indef sg
mdr:
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

[
sur: 1.9 .
cat: v′ decl

]
8

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: np
sem: indef sg
mdr:
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

adj: heavy old beautiful
noun: car

As in 11.5.2, the loading variables PC and PCV are assigned values, here PC = 1 and
PCV = hit. The punctuation proplet is absorbed into the verb proplet (copyss).

The result of this derivation is the following set of proplets:

13.3.9 RESULT OF PARSING The heavy old car hit a beautiful tree.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy

old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd: car 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr: B
mdd: car 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr: B
mdd: tree 2
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

226 13. DBS.2: Hearer Mode

These proplets are almost ready to be sorted into the hearer’s Word Bank. It merely
remains to be seen whether there follows another sentence. If this is the case, the verb
proplet of the current sentence will have to be supplied with the proper nc values.

13.4 Interpreting a Sentence with a Complex Verb Phrase

The next sample sentence is The car had been speeding. It is connected to the first
sample sentence by applying IP+START, which is called by S+IP (13.3.8). After lex-
ical lookup of the next word the, IP+START applies as follows:

13.4.1 COMBINING The heavy old car hit a beautiful tree. AND The

19 IP+START {1 DET+ADN, 2 DET+NN, 3 NOM+FV}

[
verb: α
cat: SM
nc:

] [
noun: β
cat: X NP
prn: k

] increment nw.prn
ecopy k ss.nc
acopy ‘NCV’ ss.nc
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.1 the
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc: 2 NCV
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

This step is analogous to 11.5.3. The first operation increments the prn value of the
nw. The second operation copies the prn value k = 2 of the nw into the nc slot of the
ss. The third operation adds the variable name NCV to the nc slot of the ss.

After the application of IP+START, its rule package {1 DET+ADN, 2 DET+NN,
3 NOM+FV} is applied to the resulting sentence start and the next word car. Of these
rules, only the patterns of the rule DET+NN match the input.

13.4.2 COMBINING The AND car

2 DET+NN {6 NOM+FV, 7 FV+NP, 8 S+IP}

[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.2 car
noun: car
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc:
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

13.4 Interpreting a Sentence with a Complex Verb Phrase 227

This rule application shows the combination of the definite article and a noun without
intervening adnominal adjectives (in contradistinction to the previous sample deriva-
tion). The noun proplet is absorbed into the determiner, including the sem value sg.9

After the application of DET+NN, its rule package {6 NOM+FV, 7 FV+NP, 8 S+IP}
is applied to the resulting sentence start and the next word had. Of these rules, only
the patterns of the rule NOM+FV match the input.

13.4.3 COMBINING The car AND had

6 NOM+FV {9 FV+NP, 10 AUX+NFV, 11 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦

⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc: 2 NCV
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc:
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.3 had
verb: v_1
cat: n′ hv′ v
sem: hv_past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc: 2 v_1
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: v_1
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: v_1
cat: hv′ v
sem: hv_past
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

In this application of NOM+FV, the extrapropositional relations between the verbs
of the first and second sentence are established. This involves the proplet hit of the
previous sentence, which is why it is shown here at the language level.

Let us consider the rule operations one by one. The first, delete NP′ nw.cat, cancels
the nominative valency position in had. The second, acopy α nw.arg, copies the value
car of the ss attribute noun into the arg attribute of the nw proplet had. The third, ecopy
β ss.fnc, copies the substitution value v_1 exclusively into the fnc attribute of the ss
proplet car. The fourth, ecopy PC nw.pc copies the value 1, assigned in 13.3.8 to the
loading variable PC, into the pc attribute of the auxiliary. The fifth, acopy PCV nw.pc,
adds the value hit, assigned in 13.3.8 to the loading variable PCV (forward loading),
in the pc attribute of the auxiliary. The sixth, set β NCV, provides the value v_1 to the
loading variable NCV of the previous verb (backward loading). The last operations,
copyss and copynw, retain the ss and nw proplets in the output.

After the application of NOM+FV, its rule package {9 FV+NP, 10 AUX+NFV, 11
S+IP} is applied to the resulting sentence start and the next word been. Of these rules,
only the patterns of the rule AUX+NFV match the input.
9 To handle the agreement between a definite noun phrase subject and a present tense finite verb, either

the agreement condition associated with the rule NOM+FV must refer to the sem slot of the definite
noun phrase, or the rule DET+NN must modify the determiner cat value np into snp or pnp, depending
on the cat value of the noun.

228 13. DBS.2: Hearer Mode

13.4.4 COMBINING The car had AND been

10 AUX+NFV {16 AUX+NFV, 17 FV+NP 18 S+IP}[
verb: V_n
cat: AUX′ v
sem: X

] [
verb: α
cat: Y AUX
sem: Z

] replace Y AUX′

acopy nw.sem ss.sem
replace α V_n
copyss

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: v_1
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: v_1
cat: hv′ v
sem: hv_past
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.4 been
verb: v_2
cat: be′ hv
sem: be_perf
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: v_2
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: v_2
cat: be′ v
sem: hv_past be_perf
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

In this rule application, the finite auxiliary had absorbs the nonfinite auxiliary been.
Thereby the substitution value v_2 of the proplet been replaces all occurrences of
the substitution value v_1 (including that in the nc slot of the previous verb hit, cf.
13.4.3). The syntactic category of the auxiliary verb proplet is changed from hv′ v to
be′ v, preparing the addition of a progressive form. The semantic effect is the addition
of the value be_perf to the sem attribute of the auxiliary.

After the application of AUX+NFV, its rule package {16 AUX+NFV, 17 FV+NP 18
S+IP} is applied to the resulting sentence start and the next word speeding. Of these
rules, only the patterns of the rule AUX+NFV match the input.

13.4.5 COMBINING The car had been AND speeding

16 AUX+NFV {16 AUX+NFV, 17 FV+NP 18 S+IP}[
verb: V_n
cat: AUX′ v
sem: X

] [
verb: α
cat: Y AUX
sem: Z

] replace Y AUX′

acopy nw.sem ss.sem
replace α V_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: v_2
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: v_2
cat: be′ v
sem: hv_past

be_perf
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 2.5 speeding
verb: speed
cat: be
sem: prog
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: v
sem: hv_past

be_perf prog
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

In the application of AUX+NFV, the nonfinite main verb speeding is absorbed into
the proplet representing the complex auxiliary had been: The operation replace α V_n
replaces all instances of the substitution value v_2 with the value speed – including
the v_2 value in the nc slot of hit (cf. 13.4.3). In the previous two derivation steps, the

13.5 Interpreting a Sentence with a Three-Place Verb 229

values of the arg and pc attributes have been supplied incrementally to the auxiliary
proplet and are already in place.

After the application of AUX+NFV, its rule package {16 AUX+NFV, 17 FV+NP
18 S+IP} is applied to the resulting sentence start and the next word “.” (punctuation,
full stop). Of these rules, only the patterns of the rule S+IP match the input.

13.4.6 COMBINING The car had been speeding AND .

18 S+IP {19 IP+START}[
verb: α
cat: VT
prn: k

] [
cat: VT′ SM

] replace SM VT
set k PC
set α PCV
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: v
sem: hv_past be_perf prog
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

[
sur: 2.6 .
cat: v′ decl

]
6

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: decl
sem: hv_past be_perf prog
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

As in 11.5.2 and 13.3.8, the loading variables PC and PCV are assigned values, here
PC = 2 and PCV = speed. The punctuation proplet is absorbed into the verb proplet
(copyss). The derivation results in the following set of proplets:

13.4.7 RESULT OF PARSING The car had been speeding.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: decl
sem: hv_past be_perf prog
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

All function words, i.e.the, had, been, and . (full stop), have been absorbed into con-
tent word proplets, where they are reflected as sem and cat values. Extrapropositional
pc relations to the previous sentence have been established. Also, values for the pc
slot of the following verb have been assigned (forward loading).

13.5 Interpreting a Sentence with a Three-Place Verb

The third sample sentence is A farmer gave the driver a lift, illustrating the handling of
a three-place verb. The continuation from the previous to the current sample sentence
is again provided by the rule IP+START, which is the only rule in the rule package of
S+IP (cf. 13.4.6):

230 13. DBS.2: Hearer Mode

13.5.1 COMBINING The car had been speeding. AND A

19 IP+START { 1 DET+ADN, 2 DET+NN, 3 NOM+FV}

[
verb: α
cat: SM
nc:

] [
noun: β
cat: X NP
prn: k

] increment nw.prn
ecopy k ss.nc
acopy ‘NCV’ ss.nc
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: decl
sem: hv_past

be_perf prog
mdr:
arg: car
nc:
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.1 A
noun: n_1
cat: sn′ snp
sem: indef sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: decl
sem: past perf prog
mdr:
arg: car
nc: 3 NCV
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: sn′ snp
sem: indef sg
mdr:
fnc:
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

This rule application is analogous to that shown in 13.4.1. After the application of
IP+START, its rule package {1 DET+ADN, 2 DET+NN, 3 NOM+FV} is applied to
the resulting sentence start and the next word car. Of these rules, only the patterns of
the rule DET+NN match the input.

13.5.2 COMBINING A AND farmer

2 DET+NN {6 NOM+FV, 7 FV+NP, 8 S+IP}

[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
v sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: sn′ snp
sem: indef sg
mdr:
fnc:
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.2 farmer
noun: farmer
cat: sn
sem:
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc:
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

This rule application is analogous to 13.4.2. The difference between the definite article
used in 13.4.2 and the indefinite article used here appears in the values def vs. indef
in the respective sem attributes. For further discussion of the handling of determiners
(“quantifiers”) in Database Semantics, see Sect. 6.2.

After the application of DET+NN, its rule package {6 NOM+FV, 7 FV+NP, 8 S+IP}
is applied to the resulting sentence start and the next word gave. Of these rules, only
the patterns of the rule NOM+FV match the input.

13.5.3 COMBINING A farmer AND gave

6 NOM+FV {9 FV+NP, 10 AUX+NFV, 11 S+IP}

13.5 Interpreting a Sentence with a Three-Place Verb 231

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦

⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: decl
sem: past

perf prog
mdr:
arg: car
nc: 3 NCV
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc:
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.3 gave
verb: give
cat: n′ d′ a′ v
sem: past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: decl
sem: past

perf prog
mdr:
arg: car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: d′ a′ v
sem: past
mdr:
arg: farmer
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

This rule application is analogous to 13.3.2, except that here the finite verb is a main
verb rather than an auxiliary. The NCV variable of the previous verb proplet speed
is supplied with the value give. Also, the pc slot of the current verb proplet give is
supplied with the values of PC and PCV set in 13.4.6, i.e. 2 speed.

After the application of FV+NP, its rule package {9 FV+NP, 10 AUX+NFV, 11
S+IP} is applied to the resulting sentence start and the next word the. Of these rules,
only the patterns of the rule FV+NP match the input.

13.5.4 COMBINING A farmer gave AND the

9 FV+NP {12 DET+ADN, 13 DET+NN, 14 FV+NP, 15 S+IP}[
verb: β
cat: NP′ X VT
arg:

][
noun: α
cat: Y NP
fnc:

] delete NP′ ss.cat
acopy α ss.arg
ecopy β nw.fnc
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: d′ a′ v
sem: past
mdr:
arg: farmer
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.4 the
noun: n_2
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: a′ v
sem: past
mdr:
arg: farmer n_1
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_2
cat: nn′ np
sem: def
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

noun: farmer

In this rule application, the first oblique argument position d′ is canceled in the cat
attribute of the verb.

After the application of FV+NP, its rule package {12 DET+ADN, 13 DET+NN, 14
FV+NP, 15 S+IP} is applied to the resulting sentence start and the next word driver.
Of these rules, only the patterns of the rule DET+NN match the input.

232 13. DBS.2: Hearer Mode

13.5.5 COMBINING A farmer gave the AND driver

13 DET+NN {6 NOM+FV, 7 FV+NP, 8 S+IP}[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: a′ v
sem: past
mdr:
arg: farmer n_2
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_2
cat: nn′ np
sem: def
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.5 driver
noun: driver
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: a′ v
sem: past
mdr:
arg: farmer driver
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

After the application of DET+NN, its rule package {6 NOM+FV, 7 FV+NP, 8 S+IP}
is applied to the resulting sentence start and the next word a. Of these rules, only the
patterns of the rule FV+NP match the input.

13.5.6 COMBINING A farmer gave the driver AND a

7 FV+NP {12 DET+ADN, 13 DET+NN, 14 FV+NP, 15 S+IP}[
verb: β
cat: NP′ X VT
arg:

] [
noun: α
cat: Y NP
fnc:

] delete NP′ ss.cat
acopy α ss.arg
ecopy β nw.fnc
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: a′ v
sem: past
mdr:
arg: farmer driver
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.6 a
noun: n_3
cat: sn′ snp
sem: indef sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: v
sem: past
mdr:
arg: farmer driver n_3
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_3
cat: sn′ snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

After the application of FV+NP, its rule package {12 DET+ADN, 13 DET+NN, 14
FV+NP, 15 S+IP} is applied to the resulting sentence start and the next word lift. Of
these rules, only the patterns of the rule DET+NN match the input.

13.5.7 COMBINING A farmer gave the driver a AND lift

13 DET+NN {6 NOM+FV, 7 FV+NP, 8 S+IP}

13.5 Interpreting a Sentence with a Three-Place Verb 233

[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: v
sem: past
mdr:
arg: farmer driver n_3
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_3
cat: sn′ snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: 3.7 lift
noun: lift
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: v
sem: past
mdr:
arg: farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

The derivation concludes with an application of S+IP, adding the punctuation sign:

13.5.8 COMBINING A farmer gave the driver a lift AND .

8 S+IP { 19 IP+START}[
verb: α
cat: VT
prn: k

] [
cat: VT′ SM

] replace SM VT
set k PC
set α PCV
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: v
sem: past
mdr:
arg: farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

[
sur: 3.8 .
cat: v′ decl

]
8

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

The derivation of the third test sentence results in the following set of proplets:

13.5.9 RESULT OF PARSING A farmer gave the driver a lift.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

As the semantic representation of the last sentence in the sample text, the nc slot of
the verb proplet give is empty. If the text were continued, the next rule to apply would
be IP+START. It would fill the nc slot of the verb with the values 4 NCV.

234 13. DBS.2: Hearer Mode

13.6 Storing the Output of LA-hear.2 in a Word Bank

The hearer’s final step of interpreting a text of natural language is the pragmatic in-
terpretation. It begins quite simply by sorting the proplets derived into a Word Bank.
This step uses the concepts of the proplets as the primary key and is completely auto-
matic. The proplets of the sample sequence of LA-hear.2 derived above result in the
following Word Bank.

13.6.1 SORTING PROPLETS OF LA-HEAR.2 SAMPLE INTO WORD BANK

owner records member records
(isolated proplets) (connected proplets)⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: beautiful
adj: beautiful
cat: adn
sem:
mdr: B
mdd: tree 2
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: car
noun: car
cat: np
sem: def sg
mdr: heavy old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: car
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: driver
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: sn
sem:
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: farmer
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: n-s3′ d′ a′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: gave
verb: give
cat: decl
sem: past
mdr:
arg: farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13.6 Storing the Output of LA-hear.2 in a Word Bank 235

owner records member records⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: heavy
adj: heavy
cat: adn
sem:
mdr: B
mdd: car 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: n-s3′ a′ v
sem: PRES
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: hit
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: old
adj: old
cat: adn
sem:
mdr: B
mdd: car 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: speed
cat: n-s3′ v
sem: pres
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: speeding
verb: speed
cat: decl
sem: hv_past be_perf prog
mdr:
arg: car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: lift
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: tree
noun: tree
cat: np
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Once the proplets have been sorted into the Word Bank, the main task of language
pragmatics is inferencing. Given the sample sequence of LA-hear.2, a human inter-
preter would readily agree:

236 13. DBS.2: Hearer Mode

that the occurrences of car in the first and the second sentence are coreferential,
that speeding probably caused the car to hit the tree,
that hitting the tree damaged the car,
that the event attracted the attention of the farmer,
that the driver belonged to the car,
that the farmer helped the driver,
etc.

These pragmatic inferences lead from the literal meaning of the sign (meaning1), il-
lustrated by the semantic representations 13.3.7, 13.4.7, and 13.5.9, to the utterance
meaning10 of the speaker (meaning2). They constitute a major part of language un-
derstanding.11

Some pragmatic inferences could be easily implemented and are thus quite tempt-
ing. For example, in accordance with the treatment of coference in Chap. 10, the
LA-hear.2 system has assigned different idy values to the two occurrences of car by
default, as shown by the following token line, repeated from 13.6.1 for convenience:

isolated proplet connected proplets⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: car
noun: car
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

It would be easy enough to extend the LA-think.pro grammar defined in 10.6.1 to as-
sign extrasentential coreference by adjusting the idy numbers to be equal. This, how-
ever, would lead beyond the limits of the present chapter, which has the task of illus-
trating the establishment of the primary relations in terms of a surface compositional,
time-linear syntactic–semantic derivation.

Extending the present system to a systematic pragmatic interpretation would re-
quire (i) that the episodic propositions in a Word Bank are complemented by abso-
lute propositions coding world knowledge, (ii) that the episodic propositions are re-
lated to the spatio-temporal orientation system of the cognitive agent (robot), (iii) that
the different sign kinds of symbol, indexical, and name are implemented as different
reference mechanisms, etc. Database Semantics has been designed to include these
structures, but for present purposes, hearer mode pragmatics is limited to sorting the
proplets into the Word Bank.

10 The distinction between meaning1 and meaning2 is defined in 2.6.1, and is discussed in FoCL’99,
pp. 76, 77, 86, 108, and 500–503.

11 In addition to inferencing, understanding – and not just language understanding – is based on depictive
and enactive imagery (cf. MacWhinney 2005b). In Database Semantics, these aspects are handled in
terms of the core values (cf. Sect. 5.6).

14. DBS.2: Speaker Mode

The production of coherent language presupposes coherent content in the speaker’s
database. The most reliable manner of acquiring content is direct observation. Thereby,
the coherence of the content follows from the coherence of the external world.1

Another possibility to acquire content is the interpretation of natural language signs.
Because such signs are produced by authors who may reorder and reconnect elements
that are familiar from observation, content coded by the signs of a language may be
incoherent.

Only agents capable of direct observation have the means to evaluate whether or not
a given language-coded content is coherent, and to label it accordingly. This, how-
ever, requires autonomous context recognition and action, which are not yet available
to us for technical reasons. It is therefore our responsibility as users to provide the
current DBS.2 system with coherent content as a precondition for coherent language
production.

14.1 Definition of LA-think.2

In the previous chapter, the test sequence The heavy old car hit a beautiful tree. The
car had been speeding. A farmer gave the driver a lift., regarded as a coherent content,
was automatically read into the Word Bank by LA-hear.2. Given this content, the
construction of a complete cycle of communication next requires the definition of a
navigation parser for its activation. This navigation parser is LA-think.2.

LA-think.2 is based on the same software mechanism as LA-think.1. LA-think.2
inherits the rules V_N_V and V_V_V from LA-think.1, though in modified form,
and adds three more, namely V_N_N, N_A_N, and N_A_V. The additional rules are
needed for traversing adnominal modifier proplets, abbreviated as A.

14.1.1 FORMAL DEFINITION OF LA-think.2

LX: episodic proplets in the Word Bank 13.6.1

STS =def {([verb: α] {1 V_N_V, 2 V_N_N })}

1 See FoCL’99, Sect. 23.4, pp. 464–466, for further discussion.

238 14. DBS.2: Speaker Mode

V_N_V {3 V_N_V, 4 V_N_N, 5 V_V_V}[
verb: β
arg: !X α Y
prn: i

] ⎡
⎢⎣

noun: α
fnc: β
mdr: NIL
prn: i

⎤
⎥⎦ mark α in ss-arg

output position ss
activate LA-speak.2

V_N_N {6 N_A_N, 7 N_A_V}[
verb: β
arg: !X α Y
prn: i

] ⎡
⎢⎣

noun: α
mdr: γ Z
fnc: β
prn: i

⎤
⎥⎦ mark α in ss-arg

output position nw
activate LA-speak.2

N_A_N {8 N_A_N, 9 N_A_V}[
noun:α
mdr: !X β Y
prn: i

] [
adj: β
mdd: α
prn: i

]
mark β in ss-mdr
output position ss
activate LA-speak.2

N_A_V {10 V_N_V, 11 V_N_N, 12 V_V_V}⎡
⎢⎣

noun: α
fnc: γ
mdr: !X β
prn: i

⎤
⎥⎦

[
adj: β
mdd: α
prn: i

]
end-mark β in ss-mdr
output position ss-fnc
activate LA-speak.2

V_V_V {1 V_N_V, 2 V_N_N})}⎡
⎢⎣

verb: α
arg: !X
nc: j β
prn: i

⎤
⎥⎦

⎡
⎢⎣

verb: β
arg: γ
pc: i α
prn: m

⎤
⎥⎦ output position nw

STF =def {(
[
verb: α

]
rp V_N_V), (

[
verb: α

]
rp N_A_V)}

LA-think.2 adds to the operations introduced by LA-think.1 two more, called mark
and end-mark. Mark adds the sign ! before a value (e.g., !β in N_A_N), while end-
mark adds it behind (e.g., β! in N_A_V). The mark operations prevent repeated in-
trapropositional traversal of the same argument (cf. FoCL’99, p. 464, Tracking Princi-
ples). In V_N_V and V_N_N, the traversed nominal filler is marked in the V proplet.
In N_A_N and N_A_V the traversed adnominal modifier is marked in the N proplet.

The rule V_N_V traverses a noun without modifiers (mdr: NIL) and returns to the V
of the current proposition. By letting V_N_V call itself (see rule package), the original
LA-think.1 rule is expanded to verbs with more than one argument, for example, see
(two-place) and give (three-place).

The new rules V_N_N, N_A_N, and N_A_V are for adding an unlimited number of
intraphrasal adnominals (modifier recursion), such as girl_hot_cool_beautiful_young
_honest_rich_modest_intelligent_charming_witty_sweet_erudite_endearing, etc. The
rule V_N_N traverses nouns with at least one adnominal modifier (mdr: γ Z). From
its output position N, the navigation continues with the rules N_A_N or N_A_V.

14.1 Definition of LA-think.2 239

The rule N_A_N is used for nouns with several adnominal modifiers. The applica-
tion traverses the A and returns to the N, whereby the modifier traversed is marked in
the mdr attribute of the N. The rule N_A_V is for traversing the last adnominal mod-
ifier: The application traverses the A and returns to the V of the current proposition,
whereby the modifier traversed is end-marked in the mdr attribute of the N.

The rule V_V_V provides an extrapropositional continuation, based on the nc or pc
values of the current V proplet. The LA-think.2 version of this rule requires that all
arguments of the current verb have been traversed, as indicated by the value !X of its
arg attribute.

The rules and rule packages form the following finite-state transition network:

14.1.2 FINITE-STATE TRANSITION NETWORK OF LA-think.2

START

1

3

4

8

7
1112

2 V_N_N

10 V_N_V
5 V_V_V

6 N_A_N

9 N_A_V

This schema reflects the fact that the rule packages of LA-think.2 each contain several
rules – in contradistinction to LA-think.1, where each rule package contains only a
single rule (cf. 12.1.1 and 12.1.2).

Furthermore, the rule packages of LA-think.2 contain potentially input-compatible
rules,2 for example, V_N_V and V_N_N. This results in the possibility of alternative
continuations. For example, with a slight loosening of the rule patterns, the system
could traverse the content of the first sample sentence only partially as in The car
hit the tree, omitting the adnominal modifiers heavy, old, and beautiful. For present
purposes, however, it is most instructive to illustrate a complete traversal of the Word
Bank content.

Before explaining the formal details of LA-think.2, let us characterize its function-
ing schematically. As in Sect. 12.1, we proceed in two steps. First, the rule names, a
sample navigation illustrating an application of each rule, and the rule packages for

2 For further discussion of this notion see FoCL’99, Sect. 11.3, pp. 209–212.

240 14. DBS.2: Speaker Mode

the continuations are shown (cf. 14.1.3). Then the proplet sequence underlying the
DBS.2 test sentences is derived by giving the rule name, the associated navigation,
and the resulting sequence of activated V, N, and A proplets (cf. 14.1.4).

14.1.3 SCHEMATIC DESCRIPTION OF LA-think.2:

rule name sample navigation rule package

V_N_V give_girl_give {V_N_V, V_N_N, V_V_V}
V_N_N give_girl_girl {N_A_N, N_A_V}
N_A_N girl_beautiful_girl {N_A_N, N_A_V}
N_A_V girl_young_give {V_N_V, V_N_N, V_V_V}
V_V_V give_ read_read {V_N_V, V_N_N}

The above examples show the operations of rules in isolation. Next consider the op-
erations applying in the sequence which underlies the DBS.2 test sentences:

14.1.4 DERIVING A VNAANA VN VNNN SEQUENCE

rule name navigation steps result sequence

V_N_N hit_car_car VN
N_A_N car_heavy_car VNA
N_A_V car_old_hit VNAA
V_N_N hit_tree_tree VNAAN
N_A_V tree_beautiful_hit VNAANA
V_V_V hit_speed_speed VNAANA V
V_N_V speed_car_speed VNAANA VN
V_V_V speed_give_give VNAANA VN V
V_N_V give_farmer_give VNAANA VN VN
V_N_V give_driver_give VNAANA VN VNN
V_N_V give_lift_give VNAANA VN VNNN

Starting at hit, LA-think.2 retrieves the first arg value car. From car, LA-think.2 re-
trieves the first mdr value heavy and returns to car. From there, LA-think.2 retrieves
the second mdr value old and proceeds to the fnc value of car, i.e., hit. From hit, the
second arg value tree is retrieved. From tree, LA-think.2 retrieves the mdr value beau-
tiful and returns to hit.

From hit, LA-think.2 retrieves the nc value speed, proceeding to the second propo-
sition. From speed, LA-think.2 retrieves the arg value car and returns to speed. From
speed, LA-think.2 retrieves the nc value give, proceeding to the third proposition, etc.

14.2 Definition of LA-speak.2

Based on the navigation patterns of LA-think, LA-speak.2 (re)produces the intrapropo-
sitional functor–argument structures which are presented in 6.2.1, 6.3.1, and 6.4.1 in

14.2 Definition of LA-speak.2 241

the hearer mode. Given the intricate patterns of the lexicalization functions defined in
the following Sect. 14.3, the rules of LA-speak.2 can handle function word precipita-
tion and word order in a rather simple fashion.

14.2.1 FORMAL DEFINITION OF LA-speak.2

STS =def {(
[
noun: α

]
{1 –DET, 2 –NoP})}

–DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

–NoP {5 –FVERB, 6 –AUX, 7 –DET, 8 –NoP, 9 –STOP}[
verb: β
arg: !X !α Y
prn: i

]⎡
⎢⎣

noun: α
fnc: β
cat: nm
prn: i

⎤
⎥⎦ lex-n

[
noun: α

]
mark β in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2

–ADN {10 –ADN, 11 –NOUN}

[
noun: α
mdr: !X β+ Y
prn: i

]⎡
⎢⎣

adj: β
cat: adn
mdd: α
prn: i

⎤
⎥⎦

where β+ = !β or β+ = β!

lex-an
[
adj: β

]
if β+ = !β, activate LA-think.2
if β+ = β!, end-mark β+ again

–NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2

–FVERB {17 –DET, 18 –NoP, 19 –STOP}⎡
⎢⎣

verb: β
cat: decl
arg: !α X
prn: i

⎤
⎥⎦ lex-fv

[
verb: β

]
mark decl in [verb: β]
if X �= NIL activate LA-think.2

–AUX {20 –AUX, 21 –NVERB}⎡
⎢⎢⎣

verb: β
cat: decl
sem: !X AUX Y
arg: !α Z
prn: i

⎤
⎥⎥⎦ lex-ax

[
verb: β

]
mark ax in

[
verb: β

]

–NVERB {22 –DET, 23 –NoP, 24 –STOP}⎡
⎢⎢⎣

verb: β
cat: decl
sem: !X Y
arg: !α Z
prn: i

⎤
⎥⎥⎦ lex-nv

[
verb: β

]
mark decl in [verb: β]
Z �= NIL activate LA-think.2

242 14. DBS.2: Speaker Mode

–STOP {1 –DET, 2 N}⎡
⎢⎣

verb: β
cat: !decl
arg: !X !α
prn: i

⎤
⎥⎦

[
noun: !α
fnc: β
prn: i

]
lex-p

[
verb: β

]
activate LA-think.2

STF =def {(
[
cat:decl

]
rp−STOP)}

The rules –NoP and –NOUN are distinguished because only –NOUN is called by
–DET.

LA-speak.2 resembles LA-speak.1 in that each rule application lexicalizes one word
form. The variable !X is matched either by NIL or by a sequence of one or more values
each marked by !. The ! markings are either introduced by the rules of LA-think.2 (see,
for example, V_N_V) or by the rules of LA-speak.2 (see, for example, –FVERB).
These markings are of a temporary nature. They serve to prevent the system from
using a value more than once during navigation and language production, and are
removed from the Word Bank when they are no longer needed for the navigation or
production in question.

The rules and rule-packages of LA-speak.2 define the following FSN:

14.2.2 FINITE-STATE TRANSITION NETWORK OF LA-speak.2

8

10

12

20

6
23

7

11

9

14

18
17

16 15

22

24

2 NoP

1 DET

3 ADN

5 FVERB

13 AUX 21 NVERB

4 NOUN

19 STOP

The grammatical perplexity of LA-speak.2 is 24 : 8 = 3, that is, 3 attempted rule
applications on average per realization.3

3 There is the additional computational cost of automatic word form production (cf. Sect. 14.3), but
given a suitable implementation, based, for example, on a trie structure for access to the lexicalization
tables, the cost will be no more than a constant.

14.3 Automatic Word Form Production 243

14.3 Automatic Word Form Production

The rules of LA-speak.2 apply to activated proplets which must be realized as
language-dependent external surfaces. As in LA-speak.1, this step is handled by the
function lexicalize, which matches one or more proplets with patterns and renders a
surface as output.

In LA-speak.2, the realization of proper names and pronouns is handled by the same
lexicalization function, called lex-n. The realization of different verb forms, in con-
trast, is handled by three different lexicalization functions. They are lex-fv for finite
main verbs, lex-ax for auxiliaries, and lex-nv for nonfinite main verbs. In other words,
the classification of word forms in language production is orthogonal to the paradigms
of traditional morphology, which seem to be motivated mainly in the context of lan-
guage interpretation.4

In addition to the lexicalization of n, fv, ax, and nv, LA-speak.2 requires the lexical-
ization of nn, d, an, and p, for nouns, determiners, adnominal adjectives, and punctua-
tion signs, respectively. These word forms are realized by the lexicalization functions
lex-nn , lex-d, lex-an, and lex-p.

The lexicalization functions of LA-speak.2 resemble those of LA-speak.1 (cf.
Sect. 12.3) in that they consist of (i) a full-form pattern defined as a conditional and
(ii) a lexicalization table. In order to handle the complexity of LA-speak.2 lexical-
ization, however, the following functions combine several full-form patterns and the
associated tables. Such a sequence of full-form patterns with tables is interpreted by
first trying the first pattern, then the second and so on, until a successful match has
been found.

The patterns of the lexicalization functions ignore the ! markings introduced by the
rule operations of LA-think.2 (cf. 14.1.1).

14.3.1 THE FUNCTION lex-n FOR REALIZING NAMES OR PRONOUNS

If

[
noun: α
cat: nm

]
matches an activated N proplet, then lex-n [noun: α] = α′.

4 The distinction between language interpretation and language production may help to explain a long-
standing contradiction in morphological classification. According to the standard view, word forms
are classified as inflectional if they do not change grammatical function, represented by the the part
of speech, and as derivational if they do. For example, learn and learns have the same part of speech
and therefore belong to the same inflectional paradigm, while learn and learner have different parts
of speech, for which reason learner is treated as a derivational form.

The apparent contradiction arises with past participles. For example, written clearly belongs into
the verbal paradigm write, writes, writing, wrote, written. Yet written changes grammatical function: It
works like an adnominal adjective, as in the written letter (in other languages such as Latin or German,
it even inflects to agree with the noun or the determiner).

The contradiction disappears if we take a rather liberal view of inflectional paradigms in language
interpretation, and a rather strict view of grammatical function during language production. In lan-
guage interpretation, the goal is to sort all possible word forms, including derivational ones, around
the same semantic core. In language production, in contrast, the goal is to select the correct grammat-
ical function for a given semantic core.

244 14. DBS.2: Speaker Mode

If α = then α′ =
John John
Julia Julia
Susanne Susanne

If one of the following patterns matches an activated N proplet, then lex-n applied to this proplet
produces the associated surface:

pattern surface pattern surface[
noun: I
cat: ns1

]
I

[
noun:you
cat: pro2

]
you[

noun:he
cat: ns3
sem: sg m

]
he

[
noun:he
cat: ns3
sem: sg f

]
she

[
noun:he
cat: snp
sem: sg

]
it

[
noun:I
cat: np1

]
we

[
noun:he
cat: np3

]
they

[
noun:I
cat: obq
sem: sg

]
me

[
noun:he
cat: obq
sem: sg m

]
him

[
noun:he
cat: obq
sem: sg f

]
her

[
noun:I
cat: obq
sem: pl

]
us

[
noun:he
cat: obq
sem: pl

]
them

14.3.2 THE FUNCTION lex-d FOR REALIZING DETERMINERS

If one of the following patterns matches an activated N proplet (cf. 6.2.9), then lex-d applied to this proplet
produces the associated surface:

pattern surface pattern surface

[
sem: indef sg

]
a(n)

[
cat: snp
sem: pl exh

]
every

[
sem: sel

]
some

[
cat: pnp
sem: pl exh

]
all[

sem: def
]

5 the

14.3.3 THE FUNCTION lex-nn FOR REALIZING NOUNS

If

[
noun: α
sem: sg

]
matches an activated N proplet, then lex-nn[noun: α] = α′.

If

[
noun: α
sem: pl

]
matches an activated N proplet, then lex-nn[noun: α] = α′+s.

5 Technically, the value patterns require additional variables, for example,
[
sem: X def Y

]
, to indicate

that def may be preceded or followed by other values. When not required for relevant distinctions,
this aspect is omitted for the sake of simplicity and perspicuity.

14.3 Automatic Word Form Production 245

If α = car then α′ = car
driver driver
farmer farmer
lift lift

14.3.4 THE FUNCTION lex-fv FOR REALIZING FINITE VERB FORMS

If

⎡
⎢⎣

verb: α
cat: decl
sem: pres
arg: β X

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
matches an activated sequence VN, where
NP ε {ns3, snp}, then lex-fv[verb: α] = α′+s.

If

⎡
⎢⎣

verb: α
cat: decl
sem: pres
arg: β X

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
matches an activated sequence VN, where
NP ε {ns1, pro2, np-2, pnp}, then lex-fv[verb: α] = α′.

If α = dream then α′ = dream
give give
hit hit
know know
sing sing
sleep sleep
speed speed

If

⎡
⎢⎣

verb: α
cat: decl
sem: TEMP
arg: β x

⎤
⎥⎦ matches an activated sequence VN, where TEMP ε {past, past/perf},

then lex-fv[verb: α] = α′+ed or produces the associated surface.

If α = speed then the surface is = sped
dream dreamt
give gave
hit hit
know knew
sing sang
sleep slept

If α = learn then α′ = learn
.

14.3.5 THE FUNCTION lex-ax FOR REALIZING AUXILIARIES

If one of the following patterns matches an activated V proplet, then lex-ax applied to this
proplet produces the associated surface:

pattern surface⎡
⎢⎣

verb: α
cat: decl
sem: be_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: ns1
fnc: α

]
am

⎡
⎢⎣

verb: α
cat: decl
sem: be_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: ns1
fnc: α

]
ain’t

246 14. DBS.2: Speaker Mode

pattern surface⎡
⎢⎣

verb: α
cat: decl
sem: be_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
are, where NP ε {pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
aren’t, where NP ε {pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
is, where NP ε {np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
isn’t, where NP ε {np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_past X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
was, where NP ε {ns1, np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_past X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
wasn’t, where NP ε {ns1, np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_past X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
were, where NP ε {pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_past X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
weren’t, where NP ε {pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: be_perf X
arg: β

⎤
⎥⎦ been

⎡
⎢⎣

verb: α
cat: decl
sem: hv_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
have, where NP ε {np1, pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: hv_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
haven’t, where NP ε {np1, pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: hv_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
has, where NP ε {np3, nm, snp}

14.3 Automatic Word Form Production 247

pattern surface⎡
⎢⎣

verb: α
cat: decl
sem: hv_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
hasn’t, where NP ε {np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: hv_past X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
had, where NP ε {np1, pro2, np-2, nm, snp, pnp, np3}

⎡
⎢⎣

verb: α
cat: decl
sem: hv_past X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
hadn’t, where NP ε {np1, pro2, np-2, nm, snp, pnp, np3}

⎡
⎢⎣

verb: α
cat: decl
sem: do_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
do, where NP ε {np1, pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: do_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
don’t, where NP ε {np1, pro2, np-2, pnp}

⎡
⎢⎣

verb: α
cat: decl
sem: do_pres X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
does, where NP ε {np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: do_pres X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
doesn’t, where NP ε {np3, nm, snp}

⎡
⎢⎣

verb: α
cat: decl
sem: do_past X
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
did, where NP ε {np1, pro2, np-2, nm, snp, pnp, np3}

⎡
⎢⎣

verb: α
cat: decl
sem: do_past X neg
arg: β

⎤
⎥⎦

[
noun: β
cat: NP
fnc: α

]
didn’t, where NP ε {np1, pro2, np-2, nm, snp, pnp, np3}

14.3.6 THE FUNCTION lex-nv FOR REALIZING NONFINITE VERB FORMS

If

[
verb: α
cat: decl
sem: prog

]
matches an activated proplet V, then lex-nv[verb: α] = α′+ing, whereby α and α′

are related as follows:6

If α = then α′ =
dream dream
give giv

6 This is for treating simple allomorph phenomena as in giv+ing and hit+t+ing. The allomorphy in
semiregular paradigms is discussed in FoCL’99, pp. 263 ff.

248 14. DBS.2: Speaker Mode

hit hitt
know know
sing sing
sleep sleep
speed speed

If

[
verb: α
cat: decl
sem: perf

]
matches an activated proplet V, then lex-fv[verb: α] produces the surface α′:7

α = α′ =
give given
know known
sing sung

14.3.7 THE FUNCTION lex-adn FOR REALIZING ELEMENTARY ADNOMINALS

If

[
adj: α
cat: adn
sem:

]
matches an activated proplet a, then lex-adn[adj: α] = α′.

If α = then α′ =
beautiful beautiful
heavy heavy
old old

If

[
adj: α
cat: adn
sem: comp

]
matches an activated proplet a, then lex-adn[adj: α] = α′+er.

If

[
adj: α
cat: adn
sem: sup

]
matches an activated proplet a, then lex-adn[adj: α] = α′+est.

If α = then α′ =
heavy heavy8

old old

14.3.8 THE FUNCTION lex-p FOR REALIZING A FULL STOP

If
[
cat: decl

]
matches an activated V proplet, then lex-p applied to this proplet produces the

surface . (full stop).

The functions lex-n, lex-d, lex-nn, lex-fv, lex-nv, lex-ax, lex-an, and lex-p are called by
the rules of LA-speak.2, defined in the preceding section.

7 Past participles are treated here as regular if their surface equals that of the past tense (cf. 14.3.4). In
this case, the sem attribute of the V proplet has the value past/perf. This value originates in the lexical
definitions of LA-hear.2 (cf. 13.1.5, 13.1.6, and 13.1.7). Examples are learn+ed, but also hit, dreamt,
and slept.

8 The allographic variation of heavy in the comparative and superlative is disregarded here for simplic-
ity. A completely accurate treatment can be provided in either case by specifying the surface directly,
as illustrated in 14.3.4.

14.4 Producing a Sentence with Complex Noun Phrases 249

14.4 Producing a Sentence with Complex Noun Phrases

The derivations in this and the following two sections are based on the rule patterns
of LA-speak.2 which match sequences of proplets activated by LA-think.2. The LA-
speak rules realize word forms based on the lexicalization functions defined in Sect.
14.3.

Before we proceed with the verbose derivation of the first sample sentence of DBS.2,
however, let us summarize the interchanging LA-think and LA-speak applications
with their different mark operations. The sequence of activated proplets in the Word
Bank 13.6.1 underlying the sample sentence The heavy old car hit the beautiful tree.
is initially VN and then extended step by step to VNAANA.

14.4.1 LA-THINK AND LA-SPEAK RULE APPLICATIONS WITH MARKINGS

14 –STOP

8 –FVERB 7 –NOUN 13 –NOUN
mark V decl mark N car mark N tree

2 –DET 4 –ADN 6 –ADN 10 –DET 12 –ADN
end-mark N old end-mark N beautiful⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy

old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr:
mdd: car 1
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr:
mdd: car 1
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr:
mdd: tree 2
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 V_N_N 3 N_A_N 5 N_A_V 9 V_N_N 11 N_A_V
mark V car mark N heavy end-mark N old mark V tree end-mark N beautiful

The rule names and markings below the six proplets indicate the operations of LA-
think; those above indicate the operations of LA-speak. The time-linear order of the
derivation, frequently switching between LA-think and LA-speak, is indicated by the
consecutive numbering 1,2, 3,, 14 in 14.4.1. These numbers will be used in the
explanations of the following verbose LA-speak derivation to indicate the sequence
position of each rule application.9 To make them more conspicuous, the sequencing
numbers will be surrounded by cornered brackets, e.g., <1>.

To start the derivation, the V proplet hit in the Word Bank 13.6.1 has been activated,
either by a previous LA-think operation or by an external stimulus. Based on <1>
V_N_N, LA-think adds the initial N proplet to the activated sequence. It !-marks the
first value car of the attribute arg in the V proplet, and switches to LA-speak.

9 The numbers indicating sequence positions are distinct from those preceding the LA-speak rule
names, which refer to the numbering of rules in the rule packages of the grammar, for example
1 –DET in 14.4.2.

250 14. DBS.2: Speaker Mode

The rule package of the start state of LA-speak contains –DET and –NoP. When
these rules are applied to the activated VN proplets, –NoP fails to lexicalize because
the cat value of the N proplet car is not nm (cf. 14.3.1). Lexicalization of <2> –DET,
however, succeeds, resulting in the realization of the.

14.4.2 REALIZING The

1 –DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy

old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur:the⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: heavy

old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The non-NIL mdr value heavy triggers a switch to LA-think. <3> N_A_N applies,
adds the A proplet representing heavy to the underlying sequence, now VNA, !-marks
the first mdr value in the N proplet (cf. 14.4.3), and switches back to LA-speak.

The rule package of –DET contains –ADN and –NOUN. –NOUN fails because the
value of the noun’s mdr attribute is not NIL and the currently relevant value has not
been end-marked, but <4> –ADN is successful:

14.4.3 REALIZING heavy

3 –ADN {10 –ADN, 11 –NOUN}

[
noun: α
mdr: !X β+ Y
prn: i

]⎡
⎢⎣

adj: β
cat: adn
mdd: α
prn: i

⎤
⎥⎦

where β+ = !β or β+ = β!

lex-an
[
adj: β

]
if β+ = !β, activate LA-think.2
if β+ = β!, end-mark β+ again⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: !heavy

old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr:
mdd: 1 car
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: !heavy

old
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: heavy⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: heavy
cat: adn
sem:
mdr:
mdd: 1 car
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because β+ = !β, the system switches to LA-think. <5> N_A_V applies, extending

14.4 Producing a Sentence with Complex Noun Phrases 251

the underlying sequence to VNAA, !-end-marking the second mdr value old in the
N proplet, and switching back to LA-speak. The rules –ADN and –NOUN are tried;
–NOUN fails, but <6> –ADN succeeds again.

14.4.4 REALIZING old

10 –ADN {10 –ADN, 11 –NOUN}

[
noun: α
mdr: !X β+ Y
prn: i

]⎡
⎢⎣

adj: β
cat: adn
mdd: α
prn: i

⎤
⎥⎦

where β+ = !β or β+ = β!

lex-an
[
adj: β

]
if β+ = !β, activate LA-think.2
if β+ = β!, end-mark β+ again⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: !heavy

old!
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr:
mdd: 1 car
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: !heavy

old!!
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: old⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: old
cat: adn
sem:
mdr:
mdd: car 1
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because β+ = β!, there is no switch to LA-think. Instead, old! is end-marked again,
resulting in old!!. This allows LA-speak to continue, now with the realization of the
surface car from the corresponding noun proplet. It was originally activated for the
realization of the phrase-initial determiner the in 14.4.2 and has provided the contin-
uation proplets heavy and old at the level of the navigation.

The rule package of –ADN in 14.4.4 contains –ADN and –NOUN. This time, –ADN
fails, blocked by the !! end-marker, whereas <7> –NOUN succeeds:

14.4.5 REALIZING car

11 –NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr: !heavy

old!!
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: car⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !car
cat: np
sem: def sg
mdr: !heavy

old!!
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

252 14. DBS.2: Speaker Mode

Because !X has no assigned value, i.e., X = NIL, there is no switch to LA-think
Next, the rules –FVERB, –DET, –NoP, and –STOP are tried. –DET and –NoP fail

because of the !-marked value of the noun attribute. –STOP fails because the arg value
tree of the V proplet is still unmarked. Remains <8> –FVERB:

14.4.6 REALIZING hit

12 –FVERB {17 –DET, 18 –NoP, 19 –STOP}⎡
⎢⎣

verb: β
cat: decl
arg: !α X
prn: i

⎤
⎥⎦ lex-fv

[
verb: β

]
mark decl in [verb: β]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !car
cat: np
sem: def sg
mdr: !heavy

old!!
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: hit⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !car
cat: np
sem: def sg
mdr: !heavy

old!!
fnc: hit
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Because X
= NIL, there is a switch to LA-think. LA-think extends the underlying
sequence to VNAAN using <9> V_N_N, !-marks the second value in the arg attribute
of the V proplet, and switches to LA-speak. The rules –DET, –NoP, and –STOP are
tried. –NoP fails lexicalization, and –STOP fails because the noun value tree of the
just activated N proplet has not yet been !-marked. <10> –DET, however, succeeds:

14.4.7 REALIZING a

17 –DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car !tree
nc 2 speed:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car !tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: a⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The unmarked mdr value beautiful triggers a switch to LA-think. LA-think uses <11>
N_A_V to extend the underlying sequence to VNAANA. N_A_V end-marks the

14.4 Producing a Sentence with Complex Noun Phrases 253

mdr value beautiful (cf. 14.1.1) and switches back to LA-speak, which applies <12>
–ADN.

14.4.8 REALIZING beautiful

3 –ADN {10 –ADN, 11 –NOUN}

[
noun: α
mdr: !X β+ Y
prn: i

] ⎡
⎢⎣

adj: β
cat: adn
mdd: α
prn: i

⎤
⎥⎦

where β+ = !β or β+ = β!

lex-an
[
adj: β

]
if β+ = !β, activate LA-think.2
if β+ = β!, end-mark β+ again

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car

!tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful!
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr:
mdd: tree 2
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car

!tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful!!
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

sur: beautiful⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: beautiful
cat: adn
sem:
mdr:
mdd: tree 2
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because the mdr value beautiful is end-marked, it gets end-marked again, and there is
no switch to LA-think.

Now the rules –ADN and –NOUN are applied once more, –ADN fails, blocked by
the !! end-marker, whereas <13> –NOUN succeeds.

14.4.9 REALIZING tree

11 –NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car !tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: tree
cat: snp
sem: indef sg
mdr: beautiful!
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car !tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: tree⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !tree
cat: snp
sem: indef sg
mdr: beautiful!!
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because Y=NIL, no switch to LA-think is triggered. Application of –FVERB fails
because of !decl, introduced in 14.4.6; –AUX fails because its lexicalization fails;
–DET and –NoP fail because tree in the N proplet is !-marked. <14> –STOP, however,
applies successfully, adding punctuation:

254 14. DBS.2: Speaker Mode

14.4.10 REALIZING . (FULL STOP)

16 –STOP {1 –DET, 2 –NoP}

⎡
⎢⎣

verb: β
cat: !decl
arg: !X !α
prn: i

⎤
⎥⎦

[
noun: !α
fnc: β
prn: i

]
lex-p

[
verb: β

]
activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car !tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !tree
cat: snp
sem: indef sg
mdr: beautiful!!
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: .⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: hit
cat: !decl
sem: past
mdr:
arg: !car !tree
nc: 2 speed
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !tree
cat: snp
sem: indef sg
mdr: beautiful!!
fnc: hit
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In conclusion, LA-speak switches to LA-think. Using V_V_V, the V proplet of the
next proposition is traversed and added to the activated sequence, now VNAANA V.

14.5 Producing a Sentence with a Complex Verb Phrase

Before we proceed with the verbose LA-speak derivation of the second sample sen-
tence let us summarize the interchanging LA-think and LA-speak applications with
their different !-mark operations. The proplet sequence underlying the sentence The
car had been speeding. is VN.

14.5.1 LA-THINK AND LA-SPEAK RULE APPLICATION WITH MARKINGS

7 –STOP

6 -NFVERB
mark V decl

5 –AUX
mark V be_past

4 –AUX 3 –NOUN
mark V hv_past mark N car

2 –DET⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: hv_past be_perf prog
mdr:
arg: car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 V_N_V
mark V car

14.5 Producing a Sentence with a Complex Verb Phrase 255

The realization of the previous sentence in Sect. 14.4 has ended with the LA-speak
rule –STOP and an obligatory switch to LA-think. Application of V_V_V has pro-
vided the transition to the V proplet of the current proposition. After activation of
the V proplet speed, based on V_V_V, and the N proplet car, based on <1> V_N_V,
LA-think switches to LA-speak.

The rule package of the LA-speak start state contains the rules –DET and –NoP,
which are applied to the activated VN proplets. Lexicalization of –NoP fails, but that
of <2> –DET succeeds:

14.5.2 REALIZING The

1 –DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: the⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because the mdr value X = NIL, there is no switch LA-think. Of the rules in the
current package, –ADN fails, but <3> –NOUN succeeds:

14.5.3 REALIZING car

4 –NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: car⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

256 14. DBS.2: Speaker Mode

Because !X=NIL, there is no switch to LA-think. Of the rules now activated, –FVERB
fails lexicalization; –DET and –NoP fail because of the !-marked noun value; –STOP
fails because decl has not been !-marked yet; but <4> –AUX succeeds.

14.5.4 REALIZING had

sectionRealizing had
13 –AUX {20 –AUX, 21 –NVERB}⎡

⎢⎢⎣
verb: β
cat: decl
sem: !X AUX Y
arg: !α Z
prn: i

⎤
⎥⎥⎦ lex-ax

[
verb: β

]
mark ax in

[
verb: β

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: had⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: !hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This rule has no switch to LA-think. Of the now activated rules, –NVERB fails be-
cause of failing lexicalization, but <5> –AUX applies again:

14.5.5 REALIZING been

20 –AUX {20 –AUX, 21 –NVERB}⎡
⎢⎢⎣

verb: β
cat: decl
sem: !X AUX Y
arg: !α Z
prn: i

⎤
⎥⎥⎦ lex-ax

[
verb: β

]
mark ax in

[
verb: β

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: !hv_past

be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: been⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: !hv_past

!be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

14.5 Producing a Sentence with a Complex Verb Phrase 257

Of the now activated rules, –AUX fails lexicalization, but <6> –NVERB succeeds.

14.5.6 REALIZING speeding

21 –NVERB {22 –DET, 23 –NoP, 24 –STOP}⎡
⎢⎢⎣

verb: β
cat: decl
sem: !X Y
arg: !α Z
prn: i

⎤
⎥⎥⎦ lex-nv

[
verb: β

]
mark decl in [verb: β]
if Z �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: !hv_past

!be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: speeding⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: !decl
sem: !hv_past

!be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because Z=NIL, there is no switch to LA-think. Of the rules now activated, –DET
and –NoP fail because all noun values are !-marked in the V proplet, but <7> –STOP
succeeds:

14.5.7 REALIZING . (FULL STOP)

24 –STOP {1 –DET, 2 –NoP}⎡
⎢⎣

verb: β
cat: !decl
arg: !X !α
prn: i

⎤
⎥⎦

[
noun: !α
fnc: β
prn: i

]
lex-p

[
verb: β

]
activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: !hv_past

!be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: .⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb:speed
cat: decl
sem: !hv_past

!be_perf
prog

mdr:
arg: !car
nc: 3 give
pc: 1 hit
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !car
cat: np
sem: def sg
mdr:
fnc: speed
idy: 3
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This rule has an unconditional switch to LA-think. LA-think applies the rule V_V_V
to traverse the V proplet give of the next proposition, extending the activated underly-
ing sequence to VNAANA VN V.

258 14. DBS.2: Speaker Mode

14.6 Producing a Sentence with a Three-Place Verb

As in 14.4.1 and 14.5.1, let us begin the production analysis of the third sample sen-
tence A farmer gave the driver a lift. by summarizing the interchanging LA-think and
LA-speak applications with their different !-mark operations. The proplet sequence
underlying the sample sentence is initially VN and is then extended step by step to
VNNN.

14.6.1 LA-THINK AND LA-SPEAK RULE APPLICATIONS WITH MARKINGS

11 –STOP

4 –FVERB 3 –NOUN 7 –NOUN 10 –NOUN
mark V decl mark N farmer mark N driver mark N lift

2 –DET 6 –DET 9 –DET⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 V_N_V 5 V_N_V 8 V_N_V
mark V farmer mark V driver mark V lift

The realization of the previous sentence in Sect. 14.5 has ended with the LA-speak
rule –STOP and an obligatory switch to LA-think. Application of V_V_V has pro-
vided the transition to the V proplet of the current proposition. From there LA-think
proceeds by applying <1> V_N_V, adding the first N proplet to the activated sequence.

This rule triggers a switch to LA-speak, the start state of which activates –DET and
–NoP. The lexicalization of –NoP fails, but <2> –DET succeeds:

14.6.2 REALIZING A

1 –DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: the⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

14.6 Producing a Sentence with a Three-Place Verb 259

Because the mdr value X = NIL, no switch to LA-think is triggered. Of the two LA-
speak rules now active, –ADN fails (no mdr value in the N proplet), but <3> –NOUN
succeeds:

14.6.3 REALIZING farmer

4 –NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: farmer⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because !X=NIL, no switch to LA-think is triggered. The activated LA-speak rules are
–FVERB, –AUX, –DET, –NoP, and –STOP. –DET and –NoP fail because !farmer has
been !-marked; –AUX fails lexicalization; –STOP fails because decl is still unmarked,
but <4> –FVERB succeeds.

14.6.4 REALIZING gave

12 –FVERB {17 –DET, 18 –NoP, 19 –STOP}⎡
⎢⎣

verb: β
cat: decl
arg: !α X
prn: i

⎤
⎥⎦ lex-fv

[
verb: β

]
mark decl in [verb: β]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: gave⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: !decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: farmer
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 4
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because X
= NIL, a switch to LA-think is triggered. LA-think traverses driver by

260 14. DBS.2: Speaker Mode

using <5> V_N_V, !-marks the second arg value in the V proplet, and switches to LA-
speak. It tries the rules –DET, –NoP, and –STOP. –NoP fails lexicalization; –STOP
fails because the V proplet still has unmarked arg values; but <6> –DET succeeds:

14.6.5 REALIZING the

17 –DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: the⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because the mdr value X = NIL, no switch to LA-think is triggered. For the same
reason –ADN fails and <7> –NOUN succeeds:

14.6.6 REALIZING driver

4 –NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: !decl
sem: past
mdr:
arg: !farmer !driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: !decl
sem: past
mdr:
arg: !farmer !driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: driver⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !driver
cat: np
sem: def sg
mdr:
fnc: give
idy: 5
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

!X and Y
= NIL trigger a switch to LA-think. LA-think traverses the third N proplet
with <8> V_N_V, !-marks the third value in the arg attribute of the V proplet and
switches back to LA-speak.

Of the activated LA-speak rules, –FVERB and –AUX fail because of the !-marked
decl value; –NoP fails lexicalization; –STOP fails because the value of the noun at-
tribute of the last N proplet has not been !-marked; but <9> –DET succeeds.

14.6 Producing a Sentence with a Three-Place Verb 261

14.6.7 REALIZING a

14 –DET {3 –ADN, 4 –NOUN}[
noun: α
mdr: X
prn: i

]
lex-d

[
noun: α

]
if X �= NIL activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer driver lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur: a⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because the mdr value Z = NIL, no switch to LA-think is triggered. For the same
reason –ADN fails and <10> –NOUN succeeds:

14.6.8 REALIZING lift

4 –NOUN {12 –FVERB, 13 –AUX, 14 –DET, 15 –NoP, 16 –STOP}

[
verb: β
arg: !X !α Y
prn: i

] [
noun: α
mdr: Z γ
prn: i

] where Z γ = NIL or γ = δ!!

lex-nn
[
noun: α

]
mark α in [noun: α]
if !X �= NIL and Y �= NIL activate LA-think.2⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: !decl
sem: past
mdr:
arg: !farmer !driver !lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: !decl
sem: past
mdr:
arg: !farmer !driver !lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sur:lift⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because Y=NIL, no switch to LA-think is triggered. Of the LA-speak rules now acti-
vated, –FVERB and –AUX fail because decl is !-marked; –DET and –NoP fail because
the noun value of the last N is !-marked; but <11> –STOP succeeds:

14.6.9 REALIZING . (FULL STOP)

16 –STOP {1 –DET, 2 –NoP}

262 14. DBS.2: Speaker Mode

⎡
⎢⎣

verb: β
cat: !decl
arg: !X !α
prn: i

⎤
⎥⎦

[
noun: !α
fnc: β
prn: i

]
lex-p

[
verb: β

]
activate LA-think.2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer !driver !lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

sur: .⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: give
cat: decl
sem: past
mdr:
arg: !farmer !driver !lift
nc:
pc: 2 speed
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: !lift
cat: snp
sem: indef sg
mdr:
fnc: give
idy: 6
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

–STOP triggers an unconditional switch to LA-think. However, LA-think cannot find
a continuation proplet in the Word Bank 13.6.1 because the nc attribute of give has the
value NIL. Therefore the STF definition of LA-think applies, checks whether the last
state derived is a legal final state, and ends the process in a well-formed completion.

The interaction between LA-think and LA-speak in Sects. 14.4, 14.5, and the current
section is maximally incremental in the sense (i) that LA-speak continues to realize
surfaces as long as the currently activated proplets allow and (ii) that the LA-think
navigation continues only after the surfaces derivable from the currently activated
proplets have all been realized. This has the effect of reducing the number of possible
proplets serving as candidates for matching with the LA-speak patterns, especially at
the beginning of a derivation.

Later, as more proplets have been added to the activated sequence, the earlier pro-
plets have been systematically !-marked in past rule applications of both grammars –
which reduces the set of matching candidates from the other end. As a consequence,
a maximally incremental system can guide the intended matching with much simpler
and more efficient pattern definitions than one which activates future proplets earlier
than necessary.

15. DBS.3: Adnominal and Adverbial Modifiers

This chapter deals with “prepositional phrase attachment” in the hearer mode. It ex-
tends LA-hear.2 into LA-hear.3 by adding elementary adverbs like quickly, preposi-
tional phrases like on the table, and intensifiers like very, as in very quickly, the very
big table, and on the very big table. Apart from their variety of position and interpre-
tation, prepositional phrases present a challenge because when used in sequence they
result in a kind of ambiguity which must be treated with great care to avoid exponen-
tial complexity in the worst case.

15.1 Interpreting Elementary and Complex Modifiers

Prepositional phrases are complex adjectives (cf. Sect. 6.3). They consist of (i) a
preposition like in, on, under, above, below, before, behind, etc., and (ii) a noun phrase
which may be elementary (consisting of a name or pronoun) or complex (consisting
of a determiner, an open number of adjectives, and a noun).

A prepositional phrase has nominal as well as adjectival qualities. The nominal
quality derives from the fact that a prepositional phrase like on the big table contains a
noun, for which reason its proplet requires an idy and an mdr attribute – in contradis-
tinction to elementary adjectives like fast, which do not. The adjectival quality derives
from the fact that a prepositional phrase functions as an adjective, for which reason
its proplet should have the same attributes as an elementary adjective.

One way to resolve the dilemma is to define different kinds of proplets for elemen-
tary adjectives and prepositions (similar to the definition of n/v and a/v proplets, cf.
7.1.1). The other way is to define the proplets of elementary adjectives with dummy
idy and mdr attributes, as illustrated below:

15.1.1 PREPOSITION, COMPLEX ADJECTIVE, AND ELEMENTARY ADJECTIVE

on on the big table fast⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: on
adj: on n_2
cat: adj
sem:
mdr:
mdd:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: on
adj: on table
cat: adj
sem: def sg
mdr: big
mdd: apple 1
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: fast
adj: fast
cat: adj
sem:
mdr: B
mdd: car 4
idy: B
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

264 15. DBS.3: Adnominal and Adverbial Modifiers

While the mdr attribute of the prepositional phrase may take zero or more adnomi-
nals as values, this attribute has the value B (for “blocked”) in elementary adjectives.
Similarly, while the idy (identity) attribute in prepositional phrases specifies the idy
number of the noun contained, this attribute has the value B in elementary adjectives.

In this way, the current fragment continues to be based on only three major kinds of
proplets1 with the core attributes noun (for arguments or objects), verb (for functors
or relations), and adj (for properties or modifiers), plus two minor kinds with the core
attributes n/v and a/v for sentential arguments and sentential modifiers, respectively.
Having a small and stable number of feature structures is important for the definition
and continuous update of the standard relational database underlying the implemen-
tation of LA-hear, LA-think, and LA-speak, implemented by Fischer (2004).

Whether an adjective is used adnominally or adverbially is reflected by the value of
its mdd (modified) attribute: in adnominal use, the mdd attribute contains a noun; in
adverbial use, it contains a verb. In adnominally used adjectives, the noun value of the
mdd attribute is followed by the idy-number of the modified noun (for example, apple
1 in the prepositional phrase and car 4 in the elementary adjective of 15.1.1).2

The distinction between adnominal and adverbial use is illustrated below:

15.1.2 REPRESENTING (eat) the apple on the table (ADNOMINAL)

⎡
⎢⎢⎢⎢⎢⎣

noun: apple
cat: np
sem: def sg
fnc: eat
mdr: on table
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

adj: on table
cat: adn
sem: def sg
mdr:
mdd: apple 1
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎦

15.1.3 REPRESENTING eat (the apple) on the table (ADVERBIAL)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: on table
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

adj: on table
cat: adv
sem: def sg
mdr:
mdd: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎦

The mdd attribute of an adjective has a unique value because it can modify only a
single verb or a single noun. The mdr attribute of nouns or verbs, in contrast, can have

1 These three kinds of feature structures are differentiated into (i) language and context proplets, (ii)
symbol, indexical, and name proplets, and (iii) isolated, episodic, and absolute proplets solely in terms
of various characteristic values.

2 The idy number is placed behind the noun value in order to avoid confusion with the prn numbers,
which are written before extrapropositional values (see Chaps. 7 and 9). Happily, mdd attributes take
at most one value, making the conventions unambiguous.

15.1 Interpreting Elementary and Complex Modifiers 265

several values. For example, the mdr values of the proplet apple in the small red apple
on the table would be [mdr: small red on table], while that of the proplet eat in Julia
ate the apple quickly on the table would be [mdr: quickly on table].

Adjectives differ in the positions they can take in a sentence depending on whether
they are used adnominally or adverbially, and whether they are elementary or com-
plex. In preparation of our formal treatment let us survey the different possibilities.

The positioning of elementary adnominals is the simplest. They occur noun-phrase
internally between the determiner and the noun, as in the following examples:

15.1.4 POSITIONS OF ELEMENTARY ADNOMINALS

(i) The + young + girl ate an apple (modifying the subject)
(ii) Julia gave the + young + girl an apple (modifying the indirect object)
(iii) Julia gave the girl a + red + apple (modifying the direct object)

These cases have already been treated in LA-hear.2.3 The “+” signs indicate the com-
positions required (i) to add the modifier and (ii) to continue after the modifier.

Next, consider complex adnominals (i.e., prepositional phrases in adnominal use).
Like elementary adnominals, their position is fixed relative to the noun they modify.
However, while elementary adnominals are positioned prenominally, complex adnom-
inals are positioned postnominally:

15.1.5 POSITIONS OF COMPLEX ADNOMINALS (PREPOSITIONAL PHRASES)

(i) the apple + on the table + pleased Julia (modifying the subject)
(ii) Julia ate the apple + on the table (modifying the direct object)
(iii) Julia gave John the apple + on the table (modifying the direct object)

The relevant composition in all three examples adds the preposition on to a sentence
start ending in the noun apple. The subsequent handling of different internal structures
of prepositional phrases is the same for all three positions. Different internal structures
of complex adnominals are exemplified by on Fido, on the dog, on the big dog, and
on the very big dog. Example (ii) is explicitly derived in 15.2.1–15.2.7 below.

In contradistinction to adnominals, the position of adverbials need not be adjacent
to the word they modify. Consider elementary adverbials:

15.1.6 POSITIONS OF ELEMENTARY ADVERBIALS

(i) quickly + Julia ate the apple
(ii) Julia + quickly + ate the apple
(iii) Julia slept + soundly
(iv) Julia ate the apple + quickly

3 For explicit derivations see 13.3.1–13.3.3 (preverbal) and 13.3.6–13.3.7 (postverbal).

266 15. DBS.3: Adnominal and Adverbial Modifiers

The relevant composition of Example (i) is between a sentence initial elementary
adverbial and the nominative, and is shown explicitly in 15.3.7. The relevant com-
position of Example (ii) is between the nominative and an elementary adverbial, and
is shown explicitly in 15.3.9. In both examples, the continuation adding the verb is
handled by the same rule ADVNOM+FV, illustrated in 15.3.10. The relevant compo-
sition of (iii) and (iv) is between the verb and an elementary adverbial, and is shown
explicitly in 15.3.3.

Complex adjectives in adverbial use have a more restricted distribution than the
corresponding elementary adverbs, as shown below:

15.1.7 POSITIONS OF PREPOSITIONAL PHRASES USED AS ADVERBS

(i) on the table + Julia ate an apple
(ii) *Julia + on the table + ate the apple
(iii) Julia slept + on the table
(iv) Julia ate the apple + on the table

As indicated by the asterisk *, Example (ii) is ungrammatical – even though the cor-
responding sentence with an elementary adverb is not (cf. 15.1.6, ii). The prevention
of the ungrammatical construction (ii) is explained in 15.3.5. The relevant composi-
tion of Example (i) in 15.1.7 is analogous to (i) in 15.1.6, and is shown explicitly in
15.3.8. The relevant composition of Examples (iii) and (iv) is between the verb and
the preposition, and is shown explicitly in 15.3.1.

An important and interesting detail common to noun phrases, prepositional phrases,
and elementary adverbs is the use of intensifiers like very and detensifiers like rather.4

In Database Semantics, intensifiers are treated as function words which absorb the
modified elementary adjective (cf. Sect. 15.4). Thus, intensifiers are not treated as
modifiers of the adjective, represented by separate (connected, i.e., nonlexical) pro-
plets, but rather as values of the sem attribute (cf. 15.4.5).

The possible positions of intensifiers are illustrated in the following examples:

15.1.8 POSITIONS OF INTENSIFIERS

(i) the + very big + table (noun phrase)
(ii) on the + very big + table (prepositional phrase)
(iii) very quickly + Julia ate an apple (elementary adverbial)
(iv) Julia + very quickly + ate an apple (elementary adverbial)
(v) Julia ate the apple + very quickly (elementary adverbial)

The relevant compositions of these constructions are shown explicitly in 15.4.4–
15.5.6.
4 For simplicity, and following wider practice, we use the term “intensifier” to include detensifiers

unless specified otherwise.

15.1 Interpreting Elementary and Complex Modifiers 267

Let us turn now to the ambiguities introduced systematically by prepositional
phrases.5 One kind of ambiguity arises between the adnominal and the adverbial use,
as in Julia ate the apple + on the table. On one reading on the table modifies apple
(adnominal or ADN), but on the other it modifies eat (adverbial or ADV).

A second kind of ambiguity arises when prepositional phrases are used in sequence.
In that case, the later phrases may modify either (a) the noun or (b) the verb preceding
the sequence, or (c) the prepositional phrase preceding within the sequence:

15.1.9 INTERPRETATIONS OF SEQUENCES OF PREPOSITIONAL PHRASES

(i) the car + in the garage + with the broken window
(ii) Julia walked + into the garden + with John’s shoes

In (i), with the broken window may either modify car (adnominal reading) or garage
(ad-adjectival reading). In (ii), with John’s shoes may either modify walk (adverbial
reading) or garden (ad-adjectival reading).

The ad-adjectival (or ADA) reading may combine with the adnominal (or ADN)
and the adverbial (or ADV) reading, as in the following example, which shows the
different readings of Julia ate the apple + on the table + behind the tree + in the
garden:

15.1.10 READINGS CREATED BY A SEQUENCE PREPOSITIONAL PHRASES

.ate the apple + on the table behind the treeJulia

ADV

ADV ADV

ADN

ADN

ADN

in the garden
ADA ADA

++

The first prepositional phrase, on the table, may modify apple (ADN) or eat (ADV).
The second prepositional phrase, behind the tree, may modify apple (ADN), eat
(ADV), or on the table (ADA). The third prepositional phrase, in the garden, may
modify apple (ADN), eat (ADV), or behind the tree (ADA).

In Nativist linguistics, it is general practice to represent each reading and each com-
bination of readings in a sentence by a separate tree. The trees resulting from all the
combinations of readings in Example 15.1.10 may be summarized abstractly as fol-
lows:
5 These kinds of systematic ambiguity do not arise with elementary adjectives. This is because in

adnominal use they are alway positioned before the modified noun, as in the fast car. Also, the dis-
tinction between adnominal and adverbial use is often marked morphologically, as in beautiful vs.
beautifully.

268 15. DBS.3: Adnominal and Adverbial Modifiers

15.1.11 NATIVIST TREATMENT OF PREPOSITIONAL PHRASE AMBIGUITIES

Julia ate the apple

on the table
ADN

ADV
on the table

behind the tree

behind the tree

ADV

behind the tree

behind the tree

ADV

ADA

ADA

in the garden

in the garden

ADN

ADV

in the garden

in the garden

in the garden

ADN

ADV

in the garden

in the garden

in the garden

ADN

ADV

in the garden

ADA

ADA

behind the tree
ADN

in the garden

in the garden

ADN

ADV

in the garden
ADA

ADA

in the garden

in the garden

ADN

ADV

in the garden

behind the tree
ADN

in the garden

in the garden

ADN

ADV

in the garden

ADA

ADA

Given that there is no grammatical limit on the length of a sequence of prepositional
phrases, the approach illustrated above results in an exponential increase of readings.
More precisely, the general formula for the Nativist method results in 2 · 3n−1 read-

15.1 Interpreting Elementary and Complex Modifiers 269

ings in the worst case, where n is the number of prepositional phrases, for n > 2. In
Example 15.1.11, n equals 3; therefore there are 2 · 32 = 18 different readings.

From the viewpoint of Database Semantics, however, such a multiplying out of all
combinations of readings serves no purpose in communication. In production, the
speaker has only one combination of readings in mind anyway. In interpretation, the
hearer has to determine which of the possible combinations is the appropriate one.
This can by done much better if the possible readings are represented individually for
each prepositional phrase in the sentence – without the additional step of computing
and representing all their possible combinations in the form of separate tree structures.

As shown in 6.6.1, our alternative approach is based on semantic doubling. This
applies to ambiguities which are strictly semantic. For example, the word perch is
lexically ambiguous between place to roost and kind of fish, whereby both meanings
have the same syntactic category, namely noun. Therefore, a sentence containing the
word perch may be treated as syntactically unambiguous, though with two meanings1
attached to it:

15.1.12 EXAMPLE OF LEXICALLY-BASED SEMANTIC DOUBLING

perch

kind of fishplace to roost

The osprey is looking for a

The choice between the two meanings is determined by the pragmatics, i.e., the prin-
ciple of the best match between the meaning1 alternatives and the context of use.

Because prepositional phrases are the same syntactically regardless of whether their
interpretation is ADN, ADV, or ADA, semantic doubling may also be used for se-
quences of prepositional phrases, resulting in the following reanalysis of Example
15.1.11:

15.1.13 PREPOSITIONAL PHRASE AMBIGUITY AS SEMANTIC DOUBLING

[ADN] [ADV]

in the gardenbehind the treeon the table+Julia ate the apple + +

[ADN] [ADV] [ADA] [ADN] [ADV] [ADA]

The analysis is syntactically unambiguous in the sense that only one representation is
derived. It is ambiguous semantically,6 however, in that the first prepositional phrase
has an ADN and an ADV meaning, while the second and third have an ADN, ADV,
and ADA meaning attached to them.

This way of indicating the alternative interpretations for each prepositional phrase
is sufficient for all purposes of semantic and pragmatic interpretation. For example,

6 The distinction between syntactic, semantic, and pragmatic ambiguity is explained in FoCL’99,
pp. 232 ff.

270 15. DBS.3: Adnominal and Adverbial Modifiers

if the hearer picks the ADN interpretation of the first prepositional phrase, the ADV
interpretation is discarded. If the hearer picks the ADA interpretation of the second
prepositional phrase, the ADN and ADV interpretations of the second prepositional
phrase are discarded, and similarly for the other prepositional phrases. The procedure
of choosing between the interpretations provided by semantic doubling is defined in
LA-think as part of the hearer’s inferencing (analogous to the inferencing for handling
indirect uses, cf. Sect. 5.4).

In terms of computational complexity, semantic doubling is much more efficient
than the Nativist method. Instead of multiplying the local ambiguities in a sentence,
as illustrated in 15.1.11, semantic doubling only adds the local ambiguities, resulting
in linear complexity. More precisely, the formula for semantic doubling in sequences
of prepositional phrases is 2 + [3 · (n – 1)] readings in the worst case. In Example
15.1.13, n equals 3; therefore there are only 2 + [3 · (3 – 1)] = 8 readings – contained
in a single syntactic–semantic analysis.

The intuitive representation of the readings presented in 15.1.13 in terms of semantic
doubling is formalized in Database Semantics as the following set of proplets:

15.1.14 FORMALIZING SEMANTIC DOUBLING IN DATABASE SEMANTICS

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: decl
sem: past
mdr: %on table

%behind tree
%in garden

arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on table

%behind tree
%in garden

fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr: %behind tree
mdd: %apple 2

%eat
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: behind tree
cat: adj
sem: def sg
mdr: %in garden
mdd: %apple 2

%eat
%on table 3

idy: 4
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: in garden
cat: adj
sem: def sg
mdr:
mdd: %apple 2

%eat
%behind tree 4

idy: 5
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

11

Note that the mdr attributes of eat and apple each have three values, namely %on
table, %behind tree and %in garden. Also, the mdr attribute of on table has the value
%behind tree and the mdr attribute of behind tree has the value %in garden. The
% marker characterizes these values as possible mdr values; which of these values
constitute the correct interpretation must be determined via inferences.

Furthermore, the mdd attribute of on table has two values, namely %apple 2 and
%eat. The mdd attributes of behind tree and in garden each have three values, namely

15.1 Interpreting Elementary and Complex Modifiers 271

%apple 2 and %eat, as well as %on table 3 and %behind tree 4, respectively. In the
mdd attributes, the % marker indicates that only one of several values can be selected,
thus maintaining the general rule that modifiers have a unique modified.

In summary, there are altogether eight modifiers distributed over the proplets eat,
apple, on table, and behind tree, and eight modified distributed over the proplets on
table, behind tree, and in garden. In this way, the intuitive idea of semantic doubling
shown in 15.1.13 has a straightforward formal realization in Database Semantics.

The names of the rules producing semantic doubling are preceded by %, for exam-
ple, %+ADV, %+ADN, and %+ADA. Accordingly, these rules are called “percentage
rules” because (i) their simultaneous application derives a single output (in contrast
to syntactic ambiguities in LA-grammar, in which each successful application starts a
separate branch of possible continuations), and (ii) they introduce possible semantic
relations, i.e., with a likelihood of holding which is less than a 100%.

The simultaneous application of percentage rules may be illustrated as follows:

15.1.15 ADDING PREPOSITION. PHRASE WITH ADV AND ADN INTERPRETATION

mdd
noun
mdr

adj

verb adj
mddmdr

+
Julia eat

nominative verb oblique prep. phrase

apple on table
language level

second rule level

first rule level

%+ADV:

%+ADN:

At the language level, there is the sentence start Julia eat apple, consisting of a set
of proplets, and the next word on table. For simplicity, the latter is treated as a single
proplet representing the prepositional phrase on the table and is added as a whole.7

The rules %+ADN and %+ADV apply simultaneously to combine the ss and the nw.
%+ADN (first rule level) has a pattern for a noun and an adjective; it copies the adj

value of the next word into the mdr slot of the noun and the noun value of the ss into
the mdd slot of the nw. %+ADV (second rule level) has a pattern for a verb and an
adjective; it copies the adj value of the next word into the mdr slot of the verb and the
verb value of the ss into the mdd slot of the nw. The arrows indicating the copying
operations at the two rule levels are executed at the language level.

Next consider the addition of a second prepositional phrase, behind the tree. This
time there is not only an ADV and an ADN interpretation, but also an ADA interpre-
tation relative to the preceding prepositional phrase on the table:

7 The incremental addition of the prepositional phrase is shown in 15.2.4–15.2.6 for the ADN inter-
pretation, the addition of the preposition for the ADV interpretation in 15.3.1, and the addition of the
preposition for the ADA interpretation in 15.2.4.

272 15. DBS.3: Adnominal and Adverbial Modifiers

15.1.16 PREPOSITIONAL PHRASE WITH ADV, ADN, AND ADA INTERPRETATION

Julia eat

nominative verb oblique prep. phrase

apple on table behind tree

prep. phrase

+
language level

mdd
adj

mdd
adj

noun
mdr

verb
mdr

adj
mdd

first rule level

second rule level

third rule level

adj
mdr

%+ADV:

%+ADN:

%+ADA:

After adding the third prepositional phrase in the garden in the same way, there will
be eight mdr and eight mdd values marked with %, corresponding to 15.1.14.

15.2 ADN and ADA Interpretations of Prepositional Phrases

Before we extend LA-hear.2 into LA-hear.3, let us analyze a number of examples an-
ticipating the rules of LA-hear.3 defined in 15.6.2 below. We begin with the sentence
Julia ate the apple on the table in its ADN interpretation, i.e., Example 15.1.5 (ii). As
the first example of an LA-hear.3 analysis, it is presented as a complete derivation, in
contrast to the syntactic–semantic analysis of later examples, which will be limited to
the relevant composition(s).

The step by step derivation begins with familiar NOM+FV, followed by FV+NP and
DET+NN. These rules are extended only insofar as additional rule names have been
added to their rule packages, in concord with the definition of LA-hear.3 in 15.6.2.

15.2.1 COMBINING Julia AND ate WITH NOM+FV

NOM+FV {22 FV+NP, 23 AUX+NFV, 24 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦

⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: ate
verb: eat
cat: n′ a′ v
sem: past
mdr:
arg:
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: a′ v
sem: past
mdr:
arg: Julia
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

15.2 ADN and ADA Interpretations of Prepositional Phrases 273

15.2.2 COMBINING Julia ate AND the WITH FV+NP

FV+NP {DET+NN, DET+ADN, DET+INT, FV+NP, %NP+PREP, %V+ADV, V+INT, S+IP}[
verb: β
cat: NP′ X VT
arg:

][
noun: α
cat: Y NP
fnc:

] delete NP′ ss.cat
acopy α ss.arg
ecopy β nw.fnc
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: a′ v
sem: past
mdr:
arg: Julia
nc:
pc:
prn: 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: the
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
arg: Julia n_1
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

15.2.3 COMBINING Julia ate the AND apple WITH DET+NN

DET+NN {NOM+FV, ADVNOM+FV, FV+NP, %NP+PREP, %V+ADV, V+INT, S+IP}[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
arg: Julia n_1
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: apple
noun: apple
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

The rule package of DET+NN contains two new rules, %NP+PREP and %V+ADV.
Both apply in the derivation of Julia ate the apple + on the table, one for the adnominal
and the other for the adverbial interpretation of the prepositional phrase.

The concurrent application of the percentage rules %NP+PREP and %V+ADV will
result in only one output. In this single output, however, the adnominal relation be-
tween the preposition on and the noun apple, and the adverbial relation between
this preposition and the verb eat will be in place. Subsequently, the derivation will
be continued by PREP+NP in 15.2.5 and by PREP+NN in 15.2.6, whereby the se-
quence %NP+PREP, PREP+NP, PREP+NN is the incremental counterpart to simpli-
fied %+ADN in 15.1.15, while the sequence %V+ADV, PREP+NP, PREP+NN is the
incremental counterpart to simplified %+ADV of that same example.

Dealing here with the ADN interpretation first, let us consider the application of
%NP+PREP, adding the preposition on in its adnominal interpretation to the sentence

274 15. DBS.3: Adnominal and Adverbial Modifiers

start Julia ate the apple. (The relevant composition of the corresponding adverbial
interpretation based on %V+ADV is shown in 15.3.1.)

15.2.4 COMBINING Julia ate the apple AND on WITH %NP+PREP

%NP+PREP {PREP+NP}⎡
⎢⎣

noun: α
cat: N
mdr:
idy: j

⎤
⎥⎦

[
adj: PREP N_n
cat: adj
mdd:

] %ecopy nw.adj ss.mdr
%ecopy α nw.mdd
acopy ss.idy nw.mdd
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: on
adj: on n_2
cat: adj
sem:
mdr:
mdd:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on n_2
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: adj
sem:
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

Copying operations preceded by % add this marker to the copied value. The first
operation, %ecopy nw.adj ss.mdr, copies the value %on n_2 of the adj attribute into
the mdr attribute of the modified noun apple. The second and third operations copy
the noun value (%acopy α nw.mdd) and the idy value (ecopy ss.idy nw.mdd) of the
modified into the mdd slot of the preposition. Both input proplets are retained in the
result.

PREP+NP, currently the only rule in the rule package of %NP+PREP, applies next.
PREP+NP adds the noun phrase after a preposition, regardless of whether it is used
as an ADN, ADV, or ADA, and regardless of whether the noun phrase is elementary
(as in book for + Julia) or complex (as in book for + the very pretty young woman).

15.2.5 COMBINING Julia ate the apple on AND the WITH PREP+NP

PREP+NP {PREP+NN,PREP+ADN,PREP+INT,%NP+PREP,%V+ADV,%PREP+PREP,ADV+NOM,S+IP}[
adj: PREP N_n
cat: adj
sem:

] [
noun: α
cat: Y NP
sem: x

] replace α N_n
acopy Y ss.cat:1
acopy nw.sem ss.sem
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on n_2
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: adj
sem:
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: the
noun: n_3
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on n_3
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_3
cat: nn′ adj
sem: def
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

15.2 ADN and ADA Interpretations of Prepositional Phrases 275

In this example, two function words, on and the, are combined. More specifically, the
determiner the is absorbed by the preposition on. In the next step, the noun table will
be absorbed by the combination of the two function words.8

The first operation of PREP+NP, replace α N_n, replaces the substitution value
n_2 of the preposition by the noun value of the nw, which happens to be another
substitution value, namely n_3.9 As a result, the adj slot of the preposition and the
mdr slot of the modified apple continue to contain the same simultaneous substitution
values, as desired. The second operation, acopy Y ss.cat:1, adds the category segment
sn′ to the left of the cat value adj of the ss, resulting in sn′ adj. The third operation,
acopy nw.sem ss.sem, copies the sem value of the nw into the sem slot of the ss.
Having copied all relevant details of the nw into the ss, the rule retains only the ss in
the output (copyss, but not copynw).

Next applies the new rule PREP+NN. It resembles DET+NN, except that the sen-
tence start is an adjective rather than a noun.

15.2.6 COMBINING Julia ate the apple on the AND table WITH PREP+NN

PREP+NN {ADV+NOM, NOM+FV, FV+NP, %NP+PREP, %V+ADV, %PREPP+PREP, V+INT, S+IP}[
adj: PREP N_n
cat: N′ adj
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on n_3
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_3
cat: nn′ adj
sem: def
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: table
noun: table
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on table
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

Skipping the application of S+IP, the result of this derivation is as follows:

15.2.7 THE ADN-INTERPRETATION OF Julia ate the apple on the table

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr: %on table
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

8 If the next word had been a proper name, for example, Fido as in on + Fido, the noun would have
been absorbed by the preposition directly. In this case, the mdr slot of the modified would contain
%on Fido.

9 Remember that a substitution value introduced by a lexical item gets automatically incremented by
the control structure of the parser (cf. 6.2.1).

276 15. DBS.3: Adnominal and Adverbial Modifiers

The adj proplet on table is characterized as an adnominal by the value of its mdd
attribute, %apple 2, and by the value of the mdr attribute %on table of apple.

Next consider continuing Julia ate the apple on the table with behind the tree. As
noted in 15.1.9 and 15.1.10, this additional prepositional phrase can have three read-
ings, namely ADN, ADV, and ADA. The ADN reading is handled by %NP+PREP
already illustrated in 15.2.4: The rule simply selects the first noun phrase preceding
the preposition, regardless of intervening prepositional phrases. The ADV reading will
be discussed in the following section 15.3. It remains the ADA reading, according to
which behind the tree modifies on table.10

The relevant composition for continuing Julia ate the apple on the table with the
preposition behind in its ADA interpretation is based on the new rule %PREPP+PREP
(for %PREPositional Phrase + PREPosition), which is illustrated below:

15.2.8 COMBINING the apple on the table AND behind WITH %PREPP+PREP

%PREPP+PREP {PREP+NP}⎡
⎢⎣

adj: PREP α
cat: adj
mdr:
idy: j

⎤
⎥⎦

[
adj: PREP N_n
cat: adj
mdd:

] %ecopy nw.adj ss.mdr
%ecopy ss.adj nw.mdd
acopy ss.idy nw.mdd
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: snp
sem: def sg
mdr: %on table
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: behind
adj: behind n_4
cat: adj
sem:
mdr:
mdd:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: snp
sem: def sg
mdr: %on table
fnc:
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr: %behind n_4
mdd: %apple 2
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: behind
adj: behind n_4
cat: adj
sem:
mdr:
mdd: %on table
idy: 4
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

8

%PREPP+PREP is the initial incremental counterpart to nonincremental (elementary)
%+ADA in 15.1.16. Like %NP+PREP and %V+ADV, %PREPP+PREP is continued
with PREP+NP.

The composition shown in 15.2.8 is simplified insofar as the rule package of
PREP+NN (cf. 15.2.6) simultaneously calls %NP+PREP, %V+ADV, and
%PREPP+PREP (cf. 15.1.16). Therefore, the proplets shown at the language level
of 15.2.8 would normally show the semantic relations introduced by %NP+PREP and
%V+ADV as well. In other words, the effects of the concurrent instances of semantic
doubling have been omitted here for the sake of transparency.
10 In other words, the apple is on the table and the table is behind the tree.

15.3 ADV Interpretation of Prepositional Phrases 277

15.3 ADV Interpretation of Prepositional Phrases

Having derived the ADN interpretation of the prepositional phrase in Julia ate the
apple + on the table in the previous section, let us turn to the adverbial interpretation
of this example. The initial derivation steps are identical to 15.2.1–15.2.3.

Next comes the relevant composition of adding the preposition on in its ADV inter-
pretation. This step is handled by the new rule %V+ADV, called by DET+NN:

15.3.1 COMBINING Julia ate the apple AND on WITH %V+ADV

%V+ADV {PREP+NP, %V+ADV, S+IP}[
verb: α
cat: V
mdr:

] [
adj: β X
cat: ADV
mdd:

]
%acopy nw.adj ss.mdr
%ecopy α nw.mdd
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
mdd:
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎣

sur: on
adj: on n_2
cat: adj
sem:
mdr:
mdd:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: %on n_2
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: adj
sem:
mdr:
mdd %:eat
idy: 3
prn:

⎤
⎥⎥⎥⎥⎥⎥⎦

5

%V+ADV differs from %NP+PREP in that the ss-pattern of %V+ADV matches a
verb, while the ss-pattern of %NP+PREP matches a noun. %V+ADV adds elementary
adverbs as well as prepositions (as the beginning of a complex adjective, due to the
nw pattern [adj: β X]), while %NP+PREP (cf. 15.2.4) adds only prepositions. A third
difference is the use of the variable ADV, which is restricted to the values adj and
adv (cf. the preamble of LA-hear.3 defined in 15.6.1, 2). Serving as the value of the
cat attribute, it can match prepopositions with the cat value adj as well as elementary
adverbs like slowly with the cat value adv.

The first operation of %V+ADV, %acopy nw.adj ss.mdr, copies the value on table
of the adj attribute of the nw into the mdr attribute of the ss. The second operation,
%ecopy α nw.mdd, copies the value eat of the verb attribute of the ss into the mdd
attribute of the nw. Both input proplets are retained in the output.

The derivation continues with PREP+NP and PREP+NN in analogy to 15.2.5 and
15.2.6, respectively. The result is:

15.3.2 THE ADV-INTERPRETATION OF Julia ate the apple on the table

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: %on table
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd: %eat
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

278 15. DBS.3: Adnominal and Adverbial Modifiers

The adjective proplet on table is characterized as an adverbial modifier by the value
eat of its mdd attribute, and the value on table of the mdr attribute of the proplet eat.

As in 15.2.4, the composition shown in 15.3.2 is simplified insofar as the rule
package of PREP+NN (cf. 15.2.6) simultaneously calls %NP+PREP and %V+ADV.
Therefore, the proplets shown at the language level of 15.3.2 would normally show
the semantic relations introduced by %NP+PREP as well.

Next, consider the adverbial interpretation of the elementary adjective fast in Julia
ate the apple fast (cf. 15.1.6, iv). Even though fast is not excluded from adnominal
use, as in the fast car, an adnominal interpretation is not permitted here because el-
ementary adnominals require a prenominal position.11 The relevant composition is
again handled by %V+ADV:

15.3.3 COMBINING Julia ate the apple AND fast WITH %V+ADV

%V+ADV {PREP+NP, %V+ADV, S+IP}[
verb: α
cat: v
mdr:

] [
adj: β X
cat: ADV
mdd:

]
%acopy nw.adj ss.mdr
%ecopy α nw.mdd
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: fast
adj: fast
cat: adj
sem:
mdr:
mdd:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: %fast
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: fast
cat: adj
sem:
mdr:
mdd: %eat
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

The result of the overall derivation is as follows:

15.3.4 RESULT OF INTERPRETING Julia ate the apple fast

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: %fast
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: fast
cat: adj
sem:
mdr:
mdd: %eat
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

Note that adjectives following an elementary adverbial can have only an adverbial
interpretation. For example, while the prepositional phrase on the table in

11 An elementary adverbial like quickly, as in Julia at the apple quickly, would be prevented from an
adnominal interpretation also by its morphological marking. See Dauses (1997) et seq. for a critical
discussion of this kind of redundancy, which is common in many natural languages.

15.3 ADV Interpretation of Prepositional Phrases 279

Julia ate the apple on the table quickly.
can have an adnominal as well as an adverbial interpretation, it can be interpreted only
adverbially in

Julia ate the apple quickly on the table.
This observation is implemented by excluding the rule name %NP+PREP from the
rule package of %V+ADV. Consider the following schematic analysis:

15.3.5 INTERPRETATION OF POSTADVERBIAL PREPOSITIONAL PHRASES

ate apple the tablequickly
PREP+NNPREP+NP%V+ADVDET+NNFV+NP

the

%V+ADV
%NP+PREP

1

3

on
NOM+FV

Julia

ADV

2

4

5

ADN

The rules are written underneath – and into the spaces between – the words. The first
occurrence of DET+NN, combining Julia ate the and apple, calls both %NP+PREP
(adnominal) and %V+ADV (adverbial). However, given the nature of the next word
quickly (crossed out arrow 1), only %V+ADV can fire (arrow 2). Next, %V+ADV ap-
plies again to add the preposition on. Because %V+ADV contains neither %NP+PREP
(crossed out arrow 3) nor %PREPP+NP (crossed out arrow 4) in its rule package, the
only interpretation possible is the adverbial one (arrow 5).

15.3.6 RESULT OF INTERPRETING Julia ate the apple quickly on the table

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: %quick

%on table
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adj
sem:
mdr:
mdd: %eat
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd: %eat
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

Even though the mdr values of the verb are marked by the % sign, they may be inferred
to each hold completely, i.e., a 100%, because the corresponding mdd attributes in the
proplets quick and on table contain only a single value each (compare 15.1.14).

Next let us consider adverbials in preverbal position. They are a challenge insofar
as, for example, in quickly + Julia ate an apple the adverbial quickly combines with the
nominative Julia, providing no immediate opportunity to code the mdd–mdr relation
between the adverb quickly and the verb ate (suspension). The solution is based on
using the simultaneous substitution value v_1 to serve as a value of the nominative’s
fnc attribute and of the adverbial’s mdd attribute.

An initial adverb and the nominative are combined with the new rule ADV+NOM:

280 15. DBS.3: Adnominal and Adverbial Modifiers

15.3.7 COMBINING Quickly AND Julia WITH ADV+NOM

ADV+NOM {NOM+ADV, ADVNOM+FV, DET+NN, DET+ADN, DET+INT}[
adj: α
cat: ADV
mdd:

] [
noun: β
cat: Y NP
fnc:

] acopy v_n ss.mdd
ecopy v_n nw.fnc
replace adv ss.cat
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur: quickly
adj: quick
cat: adv
sem:
mdr:
mdd:
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: Julia
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem:
mdr:
mdd: v_1
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_1
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

In this example, ADV+NOM is called by the start state.
The operations acopy v_n ss.mdd and ecopy v_n nw.fnc write the simultaneous sub-

stitution value v_1 into the mdd slot of the adverb and into the fnc slot of the nomina-
tive. The operation replace adv ss.cat ensures that the category of the modifier is adv
(here vacuous; 15.3.8 shows a nonvacuous application of this operation).

The rule ADV+NOM is also used to combine a prepositional phrase with the nomi-
native, in which case it is called by PREP+NP (for example, in for Mary + John bought
a dog) or PREP+NN (for example, On the table + Julia ate an apple). The relevant
composition of the latter example is shown below:

15.3.8 COMBINING On the table AND Julia WITH ADV+NOM

ADV+NOM {NOM+ADV, ADVNOM+FV, DET+NN, DET+ADN, DET+INT}[
adj: α
cat: ADV
mdd:

] [
noun: β
cat: Y NP
fnc:

] acopy v_n ss.mdd
ecopy v_n nw.fnc
replace adv ss.cat
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: Julia
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adv
sem: def sg
mdr:
mdd: v_1
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_1
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

While adverbs occurring initially in the order adverb+nominative can be elementary
or complex, as shown by 15.3.7 and 15.3.8, respectively, the inverse order nomina-
tive+adverb is restricted to elementary adverbs. For example, Julia + quickly ate the
apple is grammatical, while *Julia + on the table ate the apple is not.12

12 At least not in the ADV interpretation of the prepositional phrase.

15.3 ADV Interpretation of Prepositional Phrases 281

This is accounted for by the new rule NOM+ADV. It restricts the cat value of the
next word to adv and does not include the names of rules for continuing a prepositional
phrase, such as PREP+NP, PREP+NN, and DET+ADN, in its rule package:

15.3.9 COMBINING Julia AND quickly WITH NOM+ADV

NOM+ADV {ADVNOM+FV}[
noun: β
cat: NP
fnc:

] [
adj: α
cat: adv
mdd:

]
acopy v_1 nw.mdd
ecopy v_1 ss.fnc
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: quickly
adj: quick
cat: adv
sem:
mdr:
mdd:
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_1
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem:
mdr:
mdd: v_1
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

NOM+ADV may be called not only by the start state, but also by ADV+NOM, as in
On the table + Julia + quickly (ate an apple).

Sentence starts containing preverbal adverbials, as derived in 15.3.7, 15.3.8, and
15.3.9 as well as the ADV+NOM – NOM+ADV combination mentioned above, are
all continued with ADVNOM+FV. It resembles NOM+FV (cf. 15.2.1) except that it
also handles the mdr–mdd relation between prenominative adverbials and the post-
nominative verb. In the following example, ADVNOM+FV is called by ADV+NOM:

15.3.10 COMBINING Quickly Julia AND ate WITH ADVNOM+FV

ADVNOM+FV {FV+NP, AUX+NFV, %V+ADV, S+IP}

[
adj: α
cat: adv
mdd: V_n

] [
noun: β
cat: NP
fnc: V_n

] ⎡
⎢⎢⎣

verb: γ
cat: NP′ X VT
mdr:
arg:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy β nw.arg
replace γ V_n
acopy α nw.mdr
ecopy PC nw.pc
acopy PCV nw.pc
set γ NCV
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem:
mdr:
mdd: v_2
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_2
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: n′ a′ v
sem: past
mdr:
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem:
mdr:
mdd: eat
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: a′ v
sem: past
mdr: quick
arg: Julia
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

In conclusion, consider the syntactic–semantic analysis of On the table Julia quickly
ate the apple. The result, based on the rule sequence PREP+NP, PREP+NN, ADV+NOM,

282 15. DBS.3: Adnominal and Adverbial Modifiers

NOM+ADV, ADVNOM+FV, FV+NP, DET+NN, IP, is represented as the following
set of proplets:

15.3.11 RESULT OF PARSING On the table Julia quickly ate the apple⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr:
mdd: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem:
mdr:
mdd: eat
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: decl
sem: past
mdr: on table quick
arg: Julia apple
nc: pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 3
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7

The mdd values, i.e., eat, and corresponding mdr values, i.e., on table and quick, are
not marked with % because PREP+NP and NOM+ADV are not percentage rules.

15.4 Intensifiers in Noun Phrases and Prepositional Phrases

Intensifiers like very and rather (cf. 15.1.8) are function words which absorb their
adjective, just as determiners are function words which absorb their noun. In Database
Semantics, function words are viewed as wrappers which are filled with associated
content words. Consider the following example of three increasingly complex noun
phrases, whereby the determiner and the intensifier are treated as wrappers:

15.4.1 WRAPPERS IN NOUN PHRASES

the very

big table

the

the

table

big table

very

mdd: table
sem:
cat: adj
adj: bignoun: table

sem: def sg
mdr: big

mdd: table
sem:
cat: adj
adj: bignoun: table

sem: def sg
mdr: big

mdr:
sem: def sg

noun: table
cat: np

cat: np

cat: np

On the left, wrappers13 are represented as “[”, and their content words (or “heads”) as
“�”. The time-linear filling of the wrappers is indicated by the solid left arrows. The
dotted double arrows indicate the bidirectional relations between the content words.
13 In Nativism, wrappers are called “modifiers,” as in “head and modifier.” This deviates from the proper

use of the term modifier in logic, which describes the semantic role of adjectives and is unsuitable to
express the intuitive analysis of the function words we call wrappers.

15.4 Intensifiers in Noun Phrases and Prepositional Phrases 283

The resulting proplets are shown on the right in simplified form, whereby the arrows
are intended to draw attention to relevant relations and locations.

In the first example, the wrapper the is filled with the content word table. Such a
combination is shown explicitly in 13.4.2. In the second example, the content word
big intervenes between the wrapper the and the content word table. The bidirectional
relation is between wrapped table and unwrapped big. An explicit derivation is shown
in 13.3.1–13.3.3 and in 13.3.6–13.3.7. In the third example, the content word big is
put into the wrapper very. The bidirectional relation is between wrapped table and
wrapped big. This construction will be modeled in 15.4.4–15.4.6 below.

In prepositional phrases with a complex noun phrase (i.e., excepting prepositional
phrases with a proper name, e.g., on Fido), two wrappers are combined:

15.4.2 WRAPPERS IN PREPOSITIONAL PHRASES

theon

on

on

table

the

the very

big table

big table

adj: on table

...

adj: big

sem:

...mdd: table
mdr:

 very

adj: on table

mdr: big

...mdd:

adj: big

sem:

...mdd: table
mdr:

adj: on table

mdr: big

...mdd:

cat: adj

cat: adj cat: adj

cat: adj cat: adj

sem: def sg

sem: def sg

sem: def sg

The examples are analogous to those in 15.4.1, except that the initial wrapper on is
is filled with the wrapper the, resulting in the combined wrapper on the. The first
example has been derived explicitly in 15.2.4–15.2.6. The second example will be
derived below in 15.4.7, 15.4.8, and the third in 15.4.10.

Before we turn to prepositional phrases with adjectives and intensifiers, however, let
us treat the third example in 15.4.1, i.e., the use of an intensifier in the noun phrase the
very big table (see also 15.1.8, i), beginning with the lexical analysis of intensifiers:

15.4.3 LEXICAL ANALYSIS OF INTENSIFIER very AND DETENSIFIER rather⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: very
adj: a_1
cat: int
sem: very
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: rather
adj: a_1
cat: int
sem: rather
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

284 15. DBS.3: Adnominal and Adverbial Modifiers

Intensifiers are wrappers of adjectives and therefore have the feature structure of ad-
jectives, just as determiners (cf. 13.1.3) are wrappers of nouns and therefore have the
feature structure of nouns. As wrappers, intensifiers and determiners have in common
that the value of their core attributes is a simultaneous substitution value.

The derivation of the very big table begins with the combination of the and very.
This requires the new rule DET+INT, illustrated below.

15.4.4 COMBINING The AND very WITH DET+INT

DET+INT {INT+ADJ}

⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: A_n
mdd:
cat:

] acopy nw.adj ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
replace adn nw.cat
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur: the
noun: n_1
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: very
adj: a_1
cat: adj
sem: very
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: a_1
fnc:
idy: 1
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adn
sem: very
mdr: B
mdd: n_1 1
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

The first operation, acopy nw.adj ss.mdr, copies the value a_1 of the intensifier into the
mdr slot of the determiner. The second operation, acopy ss.noun nw.mdd, copies the
value n_1 of the determiner into the mdd slot of the intensifier. The third operation,
ecopy ss.idy nw.mdd, copies the identity number of the noun into the mdd slot of
the intensifier. The fourth operation, replace adn nw.cat, replaces the value of the
cat attribute of the intensifier with adn. Given that the article and the intensifier are
wrappers for two different content words, here the for table and very for big, both
proplets are retained in the output.

The next step is the combination of the very and big. It has the grammatical function
of embedding the adjective into the intensifier, based on the new rule INT+ADJ:

15.4.5 COMBINING The very AND big WITH INT+ADJ

INT+ADJ {DET+NN,DET+ADN,DET+INT,ADV+NOM,ADVNOM+FV,%V+ADV,S+IP}[
adj: A_n
cat: ADJ

] [
adj: β
cat: ADJ

] replace β A_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: a_1
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adn
sem: very
mdr: B
mdd: n_1 1
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: big
adj: big
cat: adj
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: big
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

15.4 Intensifiers in Noun Phrases and Prepositional Phrases 285

The first operation, replace β A_n, globally replaces the value a_1 with big. In this
way, the adjective is absorbed by the intensifier and the determiner is supplied with
the correct modifier (mdr). The nw proplet is not retained in the output.

Finally, the noun is added, using familiar DET+NN. Because it globally replaces
the value n_1, the proplet representing very big obtains the correct modified (mdd).

15.4.6 COMBINING The very big AND table WITH DET+NN

DET+NN {NOM+FV, ADJ+NOM, FV+NP, %NP+PREP, %V+ADV, V+INT, S+IP}

[
noun: N_n
cat: N′ X
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: n_1
cat: nn′ np
sem: def
mdr: big
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: n_1 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: table
noun: table
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: table
cat: np
sem: def sg
mdr: big
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: table 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

The first operation, delete N′ ss.cat, cancels the valency position of the noun in the
cat attribute of the determiner. The second operation, acopy nw.sem ss.sem, adds
the segment sg (for singular) to the sem slot of the determiner. The third operation,
replace α N_n, globally replaces the value n_1 with table. Having been absorbed into
the determiner, the nw proplet is not retained in the output.

Let us return to prepositional phrases. Having derived on the table in postverbal
position in 15.2.4 – 15.2.6, we will now derive the examples on the big table and on
the very big table in initial position. Both examples begin with familiar PREP+NP
(cf. 15.2.5), which combines the wrappers on (preposition) and the (determiner). The
result is a preposition with additional values in the cat and the sem slot.

15.4.7 COMBINING THE PREPOSITION On AND the WITH PREP+NP

PREP+NP {PREP+NN,PREP+ADN,PREP+INT,%NP+PREP,%V+ADV,%PREPP+PREP,ADV+NOM,S+IP}[
adj: PREP N_n
cat: adj
sem:

][
noun: α
cat: Y NP
sem: X

] replace α N_n
acopy Y ss.cat:1
acopy nw.sem ss.sem
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur: on
adj: on n_1
cat: adj
sem:
mdr:
mdd:
idy:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: the
noun: n_2
cat: nn′ np
sem: def
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr:
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

286 15. DBS.3: Adnominal and Adverbial Modifiers

The first operation, replace α N_n, replaces the substitution value n_1 with n_2. The
second operation, acopy N′ ss.cat:1, fronts the nn′ segment of the cat attribute of
the determiner to the adj segment of the cat attribute of the preposition. The third
operation, acopy nw.sem ss.sem, copies the def segment of the sem attribute of the
determiner into the sem slot of the preposition. Having absorbed the determiner into
the preposition, the proplet of the next word is discarded.

Deriving the example On the big table first, the new rule PREP+ADN applies next:

15.4.8 COMBINING On the AND big WITH PREP+ADN

PREP+ADN {PREP+ADN, PREP+NN, PREP+INT}⎡
⎢⎣

adj: PREP N_n
cat: N′ ADJ
mdr:
idy: j

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
acopy ss.adj nw.mdd
ecopy ss.idy nw.mdd
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr:
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: big
adj: big
cat: adj
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr: big
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: big
adj: big
cat: adj
sem:
mdr: B
mdd: on n_2 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

This rule is the counterpart to DET+ADN (cf. 13.3.1, 13.3.2, 13.3.6). The first oper-
ation, acopy α ss.mdr, copies the value big into the modifier slot of the ss, i.e., the
proplet representing on the. The second operation, acopy ss.adj nw.mdd, adds on n_2
to the mdd slot of the adnominal. The third operation, ecopy ss.idy nw.mdd copies the
idy number of the ss into the mdd slot of the nw, thus identifying the table in question
as the modified of big. Both input proplets are retained in the output.

Next applies the familiar rule PREP+NN (see 15.2.6 above and 15.4.12 below). The
result is as follows:

15.4.9 RESULT OF PARSING On the big table⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr: big
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: big
adj: big
cat: adj
sem:
mdr: B
mdd: on table 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

It remains to derive the example On the very big table, i.e., a prepositional phrase
with an intensifier preceding an adnominal (here big, cf. 15.1.8, ii). The first composi-
tion of on and the is shown above in 15.4.7. Next applies the new rule PREP+INT. It

15.4 Intensifiers in Noun Phrases and Prepositional Phrases 287

is like DET+INT (cf. 15.4.4), except that the sentence start is an adjective rather than
a noun. Both rules have the same rule package containing only one rule.

15.4.10 COMBINING On the AND very WITH PREP+INT

PREP+INT {INT+ADJ}

⎡
⎢⎣

adj: PREP N_n
cat: N′ adj
mdr:
idy: j

⎤
⎥⎦

[
adj: A_n
cat: adj
mdd:

] acopy nw.adj ss.mdr
acopy ss.adj nw.mdd
ecopy ss.idy nw.mdd
replace adn nw.cat
copyss copynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr:
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: very
adj: a_1
cat: adj
sem: very
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr: a_1
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adn
sem: very
mdr: B
mdd: on n_2 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

The first operation, acopy nw.adj ss.mdr, copies the value a_1 of the intensifier into the
mdr slot of the proplet representing on the, thus ensuring that it will have the modifier
big (cf. 15.4.5). The second operation, acopy ss.adj nw.mdd, adds the value on n_2 to
the mdd slot of the intensifier. The third operation, ecopy ss.idy nw.mdd, copies the
idy value of the ss into the mdd of the intensifier, thus ensuring that the modifier very
big will identify the correct table. The fourth operation, replace adn nw.cat, replaces
the cat value of the intensifier with adn. Both input proplets are retained in the output.
The derivation continues with INT+ADJ (compare 15.4.5):

15.4.11 COMBINING On the very AND big WITH INT+ADJ

INT+ADJ {DET+NN, DET+ADN, DET+INT, ADV+NOM, ADVNOM+FV, %V+ADV, S+IP}

[
adj: A_n
cat: ADJ

] [
adj: β
cat: ADJ

]
replace β A_n
copyss

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr: a_1
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adn
sem: very
mdr: B
mdd: on n_2 1
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: big
adj: big
cat: adj
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr: big
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: on n_2 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

The derivation concludes with familiar PREP+NN (cf. 15.2.6), which resembles
DET+NN except that the ss is an adjective rather than a noun:

288 15. DBS.3: Adnominal and Adverbial Modifiers

15.4.12 COMBINING On the very big AND table WITH PREP+NN

PREP+NN {ADV+NOM, NOM+FV, FV+NP, %NP+PREP, %V+ADV, %PREPP+PREP, S+IP}[
adj: PREP N_n
cat: N′ adj
sem: Y

] [
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on n_2
cat: nn′ adj
sem: def
mdr: big
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: on n_2 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: table
noun: table
cat: sn
sem: sg
mdr:
fnc:
idy:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr: big
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: on table 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

The output of this rule is also the result of parsing the phrase in question:

15.4.13 RESULT OF PARSING On the very big table⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: on table
cat: adj
sem: def sg
mdr: big
mdd:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: big
cat: adn
sem: very
mdr: B
mdd: on table 1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

Given that the input phrase contains only two content words, the output consists of
only two proplets. All function words, i.e., the preposition on, the determiner the, and
the intensifier very, have been reduced to certain values in certain attributes of these
two proplets. Given that intensifiers in prepositional phrases are phrase-internal, their
handling is the same for prepositional phrases in different positions and grammatical
functions (see Sect. 15.2), and requires no further demonstration.

15.5 Elementary Adverbs with Intensifiers

Intensifiers of elementary adverbs, as in very quickly, are a challenge insofar as they
occur in various positions. Because elementary adverbs are not phrase-internal, tran-
sitions must be built for preverbal prenominative adverbs (cf. 15.1.8, iii), preverbal
postnominative adverbs (cf. 15.1.8, iv), and postverbal adverbs (cf. 15.1.8, v).

The derivation of the preverbal prenominative example very quickly Julia ate an
apple begins with familiar INT+ADJ (cf. 15.4.5 and 15.4.11):

15.5.1 COMBINING Very AND quickly WITH INT+ADJ

INT+ADJ {DET+NN, DET+ADN, DET+INT, ADV+NOM, ADVNOM+FV, %V+ADV, S+IP}

15.5 Elementary Adverbs with Intensifiers 289

[
adj: A_n
cat: ADJ

] [
adj: β
cat: ADJ

] replace β A_n
copyss

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: very
adj: a_1
cat: adj
sem: very
mdr: B
mdd:
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: quickly
adj: quick
cat: adv
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adj
sem: very
mdr: B
mdd:
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

The operation replace β A_n replaces the value a_1 in the ss with the value quick of
the next word. The proplet of the next word is not retained in the output.

The above composition has the effect of the intensifier absorbing the adjective. From
then on, the derivation runs just as Quickly Julia ate the apple, as shown in 15.3.7 and
15.3.10. The result of parsing our current example is shown below:

15.5.2 RESULT OF PARSING Very quickly Julia ate the apple

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem: very
mdr: B
mdd: eat
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: eat
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: quick
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: apple
cat: np
sem: def sg
mdr:
fnc: eat
idy: 2
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

Next, consider the derivation of Julia very quickly ate the apple, showing the combi-
nation of an intensifier and an elementary adverb in preverbal position. It begins with
the new rule NOM+INT, called by the start state.

15.5.3 COMBINING Julia AND very WITH NOM+INT

NOM+INT {INT+ADJ}[
noun: β
cat: NP
fnc:

] [
adj: A_n
cat: adj
mdd:

] acopy v_1 nw.mdd
ecopy v_1 ss.fnc
replace adv nw.cat
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc:
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: very
adj: a_1
cat: adj
sem: very
mdr: B
mdd:
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_1
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adv
sem: very
mdr: B
mdd: v_1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

The first operation, acopy v_1 nw.mdd, copies the value v_1 into the mdd slot of
the intensifier, while the second operation, ecopy v_1 ss.fnc, copies it into the fnc
slot of the nominative. These occurrences of the value v_1 will be replaced by eat,

290 15. DBS.3: Adnominal and Adverbial Modifiers

thus providing the nominative and the intensifier with the same fnc and mdd values,
respectively. The third operation, replace adv nw.cat, replaces the cat value of the
intensifier with adv. Both input proplets are retained in the output.

The derivation continues with familiar INT+ADJ (cf. 15.5.1), this time in postnom-
inative position.

15.5.4 COMBINING Julia very AND quickly WITH INT+ADJ

INT+ADJ {DET+NN, DET+ADN, DET+INT, ADV+NOM, ADVNOM+FV, %V+ADV, S+IP}[
adj: A_n
cat: ADJ

] [
adj: β
cat: ADJ

] replace β A_n
copyss

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_1
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adv
sem: very
mdr: B
mdd: v_1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: quickly
adj: quick
cat: adv
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Julia
cat: nm
sem: f
mdr:
fnc: v_1
idy: 1
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem: very
mdr: B
mdd: v_1
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

The derivation continues with familiar ADVNOM+FV (cf. 15.3.10). Keep in mind
that, for purposes of pattern matching with the rule level, proplets are regarded as un-
ordered sets, for which reason the Julia quick output of INT+ADJ in 15.5.4 is equiva-
lent to the quick Julia input of ADVNOM+FV in 15.3.10. Based on the rule sequence
NOM+INT, INT+ADJ, ADVNOM+FV, FV+NP, DET+NN, and S+IP, the derivation
has the same result as that of the previous sentence, shown in 15.5.2 above (excepting
the word number subscripts).

Finally, consider the derivation of Julia ate the apple very quickly, showing the com-
bination of an intensifier and an elementary adverb in postverbal position (cf. 15.1.8,
v). The initial part of the sentence, i.e., Julia ate the apple, is as shown in 15.2.1–
15.2.3. At this point, DET+NN calls the new rule V+INT:

15.5.5 COMBINING Julia ate the apple AND very WITH V+INT

V+INT {INT+ADJ}

[
verb: α
mdr:

] [
adj: A_n
cat: adj
mdd:

] acopy α nw.mdd
acopy nw.adj ss.mdr
replace adv nw.cat
copysscopynw⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr:
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: very
adj: a_1
cat: adj
sem: very
mdr: B
mdd:
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: a_1
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adv
sem: very
mdr: B
mdd: eat
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

15.6 Definition of LA-hear.3 291

The first operation, acopy α nw.mdd, copies the verb value of eat into the mdd slot
of very. The second operation, acopy nw.adj ss.mdr, copies the adj value a_1 of very
into the mdr slot of eat. The third operation, replace adv nw.cat, changes the cat value
of very to adv. Next applies familiar INT+ADJ (cf. 15.4.5, 15.4.11, 15.5.1, 15.5.4),
called by V+INT:

15.5.6 COMBINING Julia ate the apple very AND quickly WITH INT+ADJ

INT+ADJ {DET+NN, DET+ADN, DET+INT, ADV+NOM, ADVNOM+FV, %V+ADV, S+IP}

[
adj: A_n
cat: ADJ

] [
adj: β
cat: ADJ

]
replace β A_n
copyss⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: a_1
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: a_1
cat: adv
sem: very
mdr: B
mdd: eat
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur: quickly
adj: quick
cat: adv
sem:
mdr: B
mdd:
idy: B
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: eat
cat: v
sem: past
mdr: quick
arg: Julia apple
nc:
pc:
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sur:
adj: quick
cat: adv
sem: very
mdr: B
mdd: eat
idy: B
prn: 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5

The derivation concludes with S+IP (cf. 11.5.1 and 13.3.8). Based on the rule se-
quence NOM+FV, FV+NP, DET+NN, V+INT, INT+ADJ, S+IP, the derivation has
the same result as that shown in 15.5.2 above (excepting the word number subscripts).

15.6 Definition of LA-hear.3

The analysis of various kinds of modifiers developed in the preceding sections will
now be summarized as the formal grammar LA-hear.3. Compared to LA-hear.2, LA-
hear.3 has 14 new rules,14 which are temporarily marked here with “$”.

15.6.1 LEXICON AND PREAMBLE OF LA-HEAR3

1. Lexicon of LA-hear.3:
lexicon of LA-hear.1 and LA-hear.2 plus first entry of 15.1.1 and entries of 15.4.3.

2. Preamble of LA-hear3:
variable definitions, restrictions, and agreement conditions of LA-hear.1 (cf.
11.2.2) and LA-hear.2 (cf. 13.2.1) plus

PREP ε {on, in, above, below, ...}
ADJ ε {adj, adn, adv}
ADV ε {adj, adv}
ADN ε {adj, adn}
A_n = simultaneous substitution variable for an adjective

14 Because of its complexity, the finite-state transition network of LA-hear.3 is omitted.

292 15. DBS.3: Adnominal and Adverbial Modifiers

15.6.2 FORMAL DEFINITION OF LA-HEAR.3

STS =def { (
[
cat: X

]
{1 DET+NN, 2 DET+ADN, 3 DET+INT, 4 NOM+ADV, 5 NOM+INT,
6 NOM+FV, 7 INT+ADJ, 8 PREP+NP, 9 ADV+NOM}) }

DET+NN {10 NOM+FV, 11 FV+NP, 12 S+IP, 13 %NP+PREP, 14 %V+ADV, 15 V+INT}[
noun: N_n
cat: N′ X
sem: Y

][
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss

DET+ADN {16 DET+NN, 17 DET+ADN, 18 DET+INT}⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
copyss copynw

$ DET+INT {19 INT+ADJ}⎡
⎢⎣

noun: N_n
cat: N′ X
mdr:
idy:

⎤
⎥⎦

[
adj: A_n
mdd:

] acopy nw.adj ss.mdr
ecopy ss.noun nw.mdd
acopy ss.idy nw.mdd
copyss copynw

$ NOM+ADV {20 ADVNOM+FV}[
noun: β
cat: NP
fnc:

][
adj: α
cat: adv
mdd:

]
acopy v_1 nw.mdd
acopy v_1 ss.fnc
copysscopynw

$ NOM+INT {21 INT+ADJ}[
noun: β
cat: NP
fnc:

][
adj: A_n
cat: adj
mdd:

] acopy v_1 nw.mdd
acopy v_1 ss.fnc
replace adv nw.cat
copysscopynw

NOM+FV {22 FV+NP, 23 AUX+NFV, 24 S+IP}

⎡
⎢⎣

noun: α
cat: NP
fnc:
prn: k

⎤
⎥⎦
⎡
⎢⎢⎣

verb: β
cat: NP′ X VT
arg:
nc:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy α nw.arg
ecopy β ss.fnc
ecopy PC nw.pc
acopy PCV nw.pc
set β NCV
copyss copynw

$ INT+ADJ {25 DET+NN, 26 DET+ADN, 27 DET+INT, 28 ADV+NOM, 29 ADVNOM+FV,
30 %V+ADV, 31 S+IP}[

adj: A_n
cat: ADJ

][
adj: β
cat: ADJ

]
replace β A_n
copyss

$ PREP+NP {32 PREP+NN, 33 PREP+ADN, 34 PREP+INT, 35 %NP+PREP, 36 %V+ADV,
37 %PREPP+PREP, 38 ADV+NOM, 39 S+IP}[

adj: PREP N_n
cat: adj
sem:

][
noun: α
cat: Y NP
sem: X

] replace α N_n
acopy Y ss.cat:1
acopy nw.sem ss.sem
copyss

15.6 Definition of LA-hear.3 293

$ ADV+NOM {40 NOM+ADV, 41 ADVNOM+FV, 42 DET+NN, 43 DET+ADN, 44 DET+INT}[
adj: α
cat: ADV
mdd:

][
noun: β
cat: Y NP
fnc:

] acopy v_n ss.mdd
acopy v_n nw.fnc
replace adv ss.cat
copysscopynw

FV+NP {45 DET+NN, 46 DET+ADN, 47 DET+INT, 48 FV+NP, 49 %NP+PREP, 50 %V+ADV,
51 V+INT, 52 S+IP}

[
verb: β
cat: NP′ X VT
arg:

][
noun: α
cat: Y NP
fnc:

] delete NP′ ss.cat
acopy α ss.arg
ecopy β nw.fnc
copysscopynw

S+IP {53 IP+START}[
verb: α
cat: VT
prn: k

][
cat: VT′ SM

] replace SM VT
set k PC
set α PCV
copyss

$ %NP+PREP {54 PREP+NP}⎡
⎢⎣

noun: α
cat: N
mdr:
idy: j

⎤
⎥⎦
[

adj: PREP N_n
cat: adj
mdd:

] ecopy nw.adj ss.mdr
%ecopy α nw.mdd
acopy ss.idy nw.mdd
copysscopynw

$ %V+ADV {55 PREP+NP, 56 %V+ADV, 57 S+IP}[
verb: α
cat: v
mdr:

][
adj: β X
cat: ADV
mdd:

]
acopy nw.adj ss.mdr
ecopy α nw.mdd
copysscopynw

$ V+INT {58 INT+ADJ}[
verb: α
mdr:

][
adj: A_n
cat: adj
mdd:

]
acopy α nw.mdd
acopy nw.adj ss.mdr
copysscopynw

$ PREP+NN {59 ADV+NOM, 60 NOM+FV, 62 FV+NP, 62 %NP+PREP,
63 %V+ADV, 64 % PREPP+PREP, 65 S+IP}[

adj: PREP N_n
cat: N′ adj
sem: Y

][
noun: α
cat: N
sem: Z

] delete N′ ss.cat
acopy nw.sem ss.sem
replace α N_n
copyss

$ PREP+ADN {66 PREP+ADN, 67 PREP+NN, 68 PREP+INT}⎡
⎢⎣

adj: PREP N_n
cat: N′ ADJ
mdr:
idy: j

⎤
⎥⎦

[
adj: α
cat: adn
mdd:

] acopy α ss.mdr
acopy ss.adj nw.mdd
ecopy ss.idy nw.mdd
copyss copynw

$ PREP+INT {69 INT+ADJ}⎡
⎢⎣

adj: PREP N_n
cat: N′ adj
mdr:
idy: j

⎤
⎥⎦

[
adj: A_n
cat: adj
mdd:

] acopy nw.adj ss.mdr
acopy ss.adj nw.mdd
ecopy ss.idy nw.mdd
replace adn nw.cat
copyss copynw

294 15. DBS.3: Adnominal and Adverbial Modifiers

$ %PREPP+PREP {70 PREP+NP}⎡
⎢⎣

adj: PREP α
cat: adj
mdr:
idy: j

⎤
⎥⎦
[

adj: PREP N_n
cat: adj
mdd:

] %ecopy nw.adj ss.mdr
%ecopy ss.adj nw.mdd
acopy ss.idy nw.mdd
copysscopynw

$ ADVNOM+FV {71 FV+NP, 72 AUX+NFV, 73 %V+ADV, 74 S+IP}

[
adj: α
cat: adv
mdd: V_n

][
noun: β
cat: NP
fnc: V_n

]⎡
⎢⎢⎣

verb: γ
cat: NP′ X VT
mdr:
arg:
pc:

⎤
⎥⎥⎦

delete NP′ nw.cat
acopy β nw.arg
replace γ V_n
acopy α nw.mdr
ecopy PC nw.pc
acopy PCV nw.pc
set γ NCV
copyss copynw

AUX+NFV {75 AUX+NFV, 76 FV+NP, 77 S+IP}[
verb: V_n
cat: AUX′ V
sem: X

] [
verb: α
cat: Y AUX
sem: Z

] replace Y AUX′

acopy nw.sem ss.sem
replace α V_n
copyss

IP+START {1 DET+NN, 2 DET+ADN, 3 DET+INT, 4 NOM+ADV, 5 NOM+INT, 6 NOM+FV,
7 INT+ADJ, 8 PREP+NP, 9 ADV+NOM}[

verb: α
cat: SM
nc:

][
noun: β
cat: NP
prn:

] increment nw.prn
ecopy k ss.nc
acopy ‘NCV’ ss.nc
copyss copynw

STF =def { (
[
cat: decl

]
rp S+IP)}

The extension of LA-hear.2 to LA-hear.3 has increased the number of rules from 7
to 21, and the total number of different transitions (i.e., the sum of all rule names in
all rule packages) from 19 to 77. Thus, the perplexity of 2.71 of LA-hear.2 (cf. 13.2.5
ff.) has increased to 3.66 in LA-hear.3 (77:21 = 3.66).15

Even more important than grammatical perplexity, however, is the degree of am-
biguity. Leaving lexical ambiguities aside, the only possible source of ambiguity are
rule packages with input-compatible rules.16 Incompatible input conditions are easiest
to spot in rules which specify different categories for the next word. In rules which
specify different sentence starts, however, matters may be more complicated – due to
the possibility of selecting different proplets in the same sentence start.

To simplify matters, consider the following list of all LA-hear.3 rules with their
associated rule packages, whereby each rule in a rule package is provided with an
example. This is to provide a rough idea of whether rule packages contain input-
compatible rules by looking at the examples rather than the formal ss and nw patterns.

15 In other words, the average size of a rule package is 3.66 rules; therefore there is an average of 3.66
rules to choose from in each combination of each path of the derivation.

16 See FoCL’99, Sect. 11.3.

15.6 Definition of LA-hear.3 295

15.6.3 TRANSITIONS HANDLED BY RULE PACKAGES

Rule name Rule package Applications of rules in rule package

IP+START: DET+NN The + table
(= STS) DET+ADN The + beautiful (table)

DET+INT The + very (beautiful table)
NOM+ADV Julia + quickly (ate an apple)
NOM+INT Julia + very (quickly ate an apple)
NOM+FV Julia + read (the book)
INT+ADJ Very + quickly (Julia ate an apple)
PREP+NP On + the (table)
ADV+NOM Quickly + Julia (ate an apple)

DET+NN: NOM+FV the book + pleased (Julia)
FV+NP Julia gave the man + a (book)
S+IP Julia read the book + .
%NP+PREP the book + on (the table pleased Julia)
%V+ADV Julia read the book + on (the table)
V+INT Julia ate the apple + very (quickly)

DET+ADN: DET+NN the big + table
DET+ADN the big + beautiful (table)
DET+INT the big + very (beautiful table)

DET+INT: INT+ADJ the very + beautiful (table)

NOM+ADV: ADVNOM+FV Julia quickly + ate (an apple)

NOM+INT: INT+ADJ The young woman + very (quickly ate an apple)

NOM+FV: FV+NP Julia ate + the (apple)
AUX+NFV Julia has + eaten (an apple)
S+IP Julia slept + .

INT+ADJ: DET+NN the very beautiful + table
DET+ADN the very beautiful + big (table)
DET+INT the very beautiful + very (big table)
ADV+NOM very quickly + Julia
ADVNOM+FV Julia very quickly + ate (an apple)
%V+ADV Julia slept very soundly + on (the table)
S+IP Julia slept very soundly + .

296 15. DBS.3: Adnominal and Adverbial Modifiers

Rule name Rule package Applications of rules in rule package

PREP+NP: PREP+NN on the + table
PREP+ADN on the + big (table)
PREP+INT on the + very (big table)
%NP+PREP the letter for Julia + on (the table)
%V+ADV John read the letter for Julia + quickly
%PREPP+PREP the letter for Julia + from Hamburg
ADV+NOM for Mary + John bought a book
S+IP John read the letter for Julia + .

ADV+NOM NOM+ADV On the table Julia + quickly (ate an apple)
ADVNOM+FV Quickly Julia + ate (an apple)
DET+NN Quickly the + girl (ate an apple)
DET+ADN Quickly the + pretty (girl ate an apple)
DET+INT Quickly the + very (pretty girl ate an apple)

FV+NP: DET+NN John saw the + table
DET+ADN John saw the + beautiful (table)
DET+INT John saw the + very (beautiful table)
FV+NP John gave Julia + the (book)
%NP+PREP John saw Julia + from (Hamburg)
%V+ADV John saw Julia + from (Hamburg)
V+INT John saw Julia + very (often).
S+IP John saw Julia + .

S+IP: IP+START Julia was sleeping. + The (dog barked)

%NP+PREP: PREP+NP the book on + the (table)

%V+ADV: PREP+NP Julia ate the apple on + the (table)
%V+ADV Julia ate the apple quickly + on (the table)
S+IP Julia ate the apple quickly + .

V+INT: INT+ADJ Julia slept very + soundly

PREP+NN: ADV+NOM on the table + Julia (ate an apple)
NOM+FV the book on the table + pleased (Julia)
FV+NP Julia gave the man in the corner + a (book)
%NP+PREP Julia ate the apple on the table + behind (the tree)
%V+ADV Julia ate the apple on the table + behind (the tree)
%PREPP+PREP Julia ate the apple on the table + behind (the tree)
S+IP Julia ate the apple on the table + .

15.6 Definition of LA-hear.3 297

Rule name Rule package Applications of rules in rule package

PREP+ADN PREP+ADN on the big + beautiful (table)
PREP+NN on the big + table
PREP+INT on the big + very (beautiful table)

PREP+INT INT+ADJ on the very + beautiful (table)

%PREPP+PREP PREP+NP Julia ate the apple on the table + behind (the tree)

ADVNOM+FV: FV+NP Julia quickly ate + an (apple)
AUX+NFV In this bed Julia will + sleep
%V+ADV Quickly Julia slipped + under (the covers)
S+IP In this bed Julia slept + .

AUX+NFV: AUX+NFV the car had been + speeding
FV+NP Julia had read + the (book)
S+IP Julia was sleeping + .

IP+START: DET+NN The + table
DET+ADN The + beautiful (table)
DET+INT The + very (beautiful table)
NOM+ADV Julia + quickly (ate an apple)
NOM+INT Julia + very (quickly ate an apple)
NOM+FV Julia + read (the book)
INT+ADJ Very + quickly (Julia ate an apple)
PREP+NP On + the (table)
ADV+NOM Quickly + Julia (ate an apple)

It turns out that in each rule package almost all the rules have incompatible next word
patterns and are therefore not input-compatible. In those cases where the next word
patterns happen to be compatible, it can usually be shown fairly easily that the rules
are input-incompatible nevertheless due to their different sentence starts (consider, for
example, DET+INT and NOM+INT in the IP+START package).

The only critical cases remaining are the rule packages of DET+NN, FV+NP,
PREP+NN, and PREP+NP, each of which has more than one percentage rule in its
rule package. This kind of rule is special, however, in that different percentage rules
in the same rule package jointly produce a single output (rather than each starting
a separate branch, as in syntactic ambiguities). In this way, the potentially recursive
ADN–ADV–ADA ambiguity of prepositional phrase sequences is handled instead by
means of semantic doubling – which is of linear complexity. We conclude therefore
that the complexity of LA-hear.3 is linear.

298 15. DBS.3: Adnominal and Adverbial Modifiers

In order to complete DBS.3, it remains to define the grammars LA-think.3 and LA-
speak.3. We have shown in Chaps. 12 and 14 how LA-think and LA-speak grammars
are to be designed for an existing LA-hear grammar. Thus it is fairly routine to define
LA-think.3 and LA-speak.3 for existing LA-hear.3 in an analogous manner.

Remark Concluding Part III

This part has presented formal fragments of English. They are specified as definitions
of LA-hear, LA-think, and LA-speak grammars, including word form interpretation
and production. In future work, these fragments may be extended in several directions.

First, they should be upscaled to the coverage of Part II and beyond. This may be
done (i) by first writing the running software and then extracting the declarative spec-
ification from it, (ii) by writing the declarative specification first and then implement-
ing it as running software, or (iii) by developing the declarative specification and the
running software hand in hand. Whichever method is chosen, at the end there must be
both: the declarative specification as the description of the necessary properties and
the running software as the verification.

Second, the fragments of English should be complemented by corresponding frag-
ments of other languages. This is important for determining the degree of variation in
the mapping between the language-dependent surfaces and the (relatively?) language-
independent semantic representations. After all, it is not clear whether or not typolog-
ically different kinds of natural language can all be supplied with the same semantic
representations; it might well be that the universal basis is limited to the context level
(pace Chomsky) such that there may be some fundamental differences in the semantic
representations of typologically different languages,17 buffered by the pragmatics.

Third, the fragments must be integrated into robots with external interfaces for
recognition and action at the language and the context level. Here, the primary fo-
cus is not on the upscaling to a maximal data coverage, but rather on solving the basic
task of developing a control structure with a suitable pragmatics. The solution will
have considerable impact on how to answer the question of the preceding paragraph.

Of the following Appendices A, B, and C, two deal with general aspects of Database
Semantics: Appendix A discusses the relation between the navigation order and the
resulting surface in typologically different natural languages. Appendix B discusses
the relation between the general software framework of Database Semantics and its
language-dependent applications in the hearer, the think, and the speaker mode.

Appendix C, finally, is a glossary. It provides lists of the attributes, the values, the
variable restrictions, the agreement conditions, the rule names, and the examples ana-
lyzed in this book, including brief explanations and references to corresponding loca-
tions in the preceding pages.

17 Nichols (1992) argues that the surface form of certain natural languages may limit function and
content.

Appendices

A. Universal Basis of Word Order Variation

This appendix investigates (i) the possible navigations through one-, two-, and three-
place propositions, and (ii) the possible variations of surface order for a given navi-
gation. The latter depend on the type of language and the syntactic construction. The
languages compared are English (SVO, fixed word order), German (SVO, free word
order), and Korean (SOV, free word order1). The constructions are different sentence
moods (declarative versus yes/no interrogative) and different voices of the verb (active
versus passive).

A.1 Overview of the Basic Railroad System

The interpretation of natural language is based on an ordered sequence of word forms
in a sentence and of sentences in a text or dialogue. The result of the interpretation,
however, is an unordered set of proplets, whereby the grammatical relations between
them are coded solely in terms of features, defined as attribute–value pairs. During
thought, a sequential order is reintroduced into this set by a navigation which fol-
lows the intra- and extrapropositional relations between the proplets (cf. 3.5.4). This
navigation order is the basis of word order in language production.

For simplicity, let us represent the functor–argument relations between nouns and
verbs in one-, two-, and three-place propositions in the following standard format:

A.1.1 ONE-PLACE, TWO-PLACE, AND THREE-PLACE PROPOSITIONS

three place proposition: NV N N

one place proposition: V N

two place proposition: V N N

The first N is regarded as the agent or underlying subject, and the second N as the
patient or underlying object. In three-place propositions, the second N is the indirect
and the third N the direct object. One-, two- and three-place propositions are also
written as VN, VNN, or VNNN, respectively.

1 Cf. Chang (1996); Choi and Kim (1986).

304 A. Universal Basis of Word Order Variation

In addition to intrapropositional relations, there are also two kinds of extraproposi-
tional relations, namely the coordination between verbs and the identity between
nouns. During a navigation, the extrapropositional relations are distinguished as to
whether they lead into or out of the current proposition (cf. 9.6.1).

One-place propositions may have the following extrapropositional relations:

A.1.2 EXTRAPROPOSITIONAL RELATIONS OF ONE-PLACE PROPOSITIONS

V NV... V N V...

coordination based

preceding
proposition

V N...N...

identity based

preceding
proposition

coordination based

next
proposition

V N ...N...

identity based

next
proposition

2 input relations 2 output relations

The two upper relations are coordination-based; those below are identity-based. The
left pair are in-going relations, the right pair out-going.

As an example of two propositions related by a coordination-based relation between
their verbs consider:

Julia sang. Then Susanne slept.
Here the relation based on the conjunction then (cf. 9.1.1) is out-going for the first
sentence and in-going for the second.

At the level of the database, the direction of the navigation may be inverted (cf.
9.6.1), as represented by the surface:

Susanne slept. Before that Julia sang.
Coordination-based relations may also be established by one proposition simply

following another, without a conjunction (cf. 9.2.1), as in:
Julia worked. Susanne slept.
As an example of two propositions related by an identity-based relation between

(one of) their nouns consider:
Susanne slept. She dreamed.

Here the identity-based relation (cf. 10.1.2, 2) between Susanne and she is out-going
for the first proposition and in-going for the second.

If two propositions are connected by more than one extrapropositional relation, there
arises a choice as to which relation should be used for the navigation. For example,
in:

A.1 Overview of the Basic Railroad System 305

Julia worked. Then she sang.
the navigation uses the coordination relation, whereas in:

Julia worked. She then sang.
it uses the identity relation.

Any proposition in a Word Bank normally has a coordination-based relation to a
preceding and a following proposition, simply because the time-linear order of the
propositions’ arrival is automatically interpreted as a primary relation. Identity-based
relations, in contrast, are a secondary relation which must be established on the basis
of inferences (cf. Chap. 10), utilizing equality of names, definiteness, pronouns, etc.

In one-place propositions, the combination of two in-going and two out-going rela-
tions (cf. A.1.2) results in four possible constellations of extrapropositional relations:

V... VNi V... ...Ni... VNi V...
V... VNi ...NiNi... VNi ...Ni....

In the extrapropositional ante- or postcedent ...Ni..., the subscript is used to indicate
coreference with the subject of the current proposition.

Next let us turn to two-place propositions. They have three possible kinds of in-
going and three possible kinds of out-going relations:

A.1.3 EXTRAPROPOSITIONAL RELATIONS OF TWO-PLACE PROPOSITIONS

V NN

V NN

...N...

V NNV...

N......

V NN

V NN ...

...N...

V NN V...

N...

3 input relations 3 output relations

coordination based

preceding
proposition

identity based

preceding
proposition

identity based

preceding
proposition

coordination based

next
proposition

identity based

next
proposition

identity based

next
proposition

Of the three in-going relations on the left, one is coordination-based and two are
identity-based. The first and second correspond to those in A.1.2, while the third is
between the noun of a preceding proposition and the object of the current two-place
proposition. The analogous situation holds for the three out-going relations in A.1.3.

306 A. Universal Basis of Word Order Variation

The combination of three in-going and three out-going relations in two-place propo-
sitions results in nine possible constellations of extrapropositional relations:

V... VNiNj V... ...Ni... VNiNj V... ...Nj ... VNiNj V...
V... VNiNj ...Ni... ...Ni... VNiNj ...Ni... ...Nj ... VNiNj ...Ni...
V... VNiNj ...Nj... ...Ni... VNiNj ...Nj... ..Nj ... VNiNj ...Nj...

The subscripts ‘i’ and ‘j’ indicate coreference of extrapropositional antecedents and
postcedents with the subject and the object, respectively.

Finally consider three-place propositions. They have four possible kinds of in-going
and four possible kinds of out-going relations:

A.1.4 EXTRAPROPOSITIONAL RELATIONS OF THREE-PLACE PROPOSITIONS

.

4 output relations4 input relations

V NN NV NN N...N...N

V NN ...N VV NNV... N

V NN NV NN N...N...N

coordination based coordination based

preceding
proposition

V NN NV NN N...N...N

identity based

preceding
proposition

identity based

next
proposition

identity based

next
proposition

identity based

preceding
proposition

identity based

preceding
proposition

identity based

next
proposition

next
proposition

Of the four in-going relations on the left, the first is coordination-based and the others
are identity-based, and similarly for the out-going relations. Their combination results
in sixteen possible constellations of extrapropositional relations. Using the subscript

A.2 Incremental Language Production Based on Navigation 307

‘i’, ‘j’, and ‘k’ for coreference with the subject, indirect object, and direct object, re-
spectively, they may be written as the following sequence patterns:

V.. VNiNjNk V.. ..Ni.. VNiNjNk V.. ..Nj.. VNiNjNk V.. ..Nk.. VNiNjNk V..
V.. VNiNjNk ..Ni.. ..Ni.. VNiNjNi ..Ni.. ..Nj.. VNiNjNk ..Ni.. ..Nk.. VNiNjNk ..Ni..
V.. VNiNjNk ..NjNi.. VNiNjNk ..NjNj.. VNiNjNk ..NjNk.. VNiNjNk ..Nj ..
V.. VNiNjNk ..Nk.. ..Ni.. VNiNjNk ..Nk.. ..Nj.. VNiNjNk ..Nk.. ..Nk.. VNiNjNk ..Nk..

We note with relief that three places seem to be the maximum for propositions. Nev-
ertheless, there are many more possible railroad patterns to be considered. First, there
are the adjectives which may be added as adnominal, adverbial, and ad-adjectival
modifiers to elementary propositions (cf. 15.1.10). Second, the treatment of ex-
trapropositional relations so far has been limited to coordination and must be com-
plemented with a treatment of subordination (cf. Chaps. 7 and 9).

However, rather than getting too far ahead in exploring all the relations possible in
a Word Bank, let us turn next to the production of natural language surfaces. This
procedure is based on navigating along the extra- and intrapropositional relations.
Thereby, each of the 29 railroad systems discussed above (namely 4 + 9 + 16) permits
a multitude of different navigation orders. For example, a VNN proposition may be
traversed by going from the V to the first N and then the second, or by going from the
V to the second N and then the first.

These different navigation steps are powered by an LA-think grammar. Currently,
LA-think merely executes legal continuations, leaving the important task of choosing
between the several possibilities given at each step to a still primitive control structure,
consisting of random selection or fixed schemata. Ideally, the control structure should
provide the agent with short-, mid-, and long-term purposes relative to which different
choices are evaluated.

In addition to the railroad system and the choice of the navigation, the surface order
depends on the word order regularities of the target language, which are handled by a
language-dependent LA-speak grammar. As illustrated in 14.4.1, 14.5.1, and 14.6.1,
during language production the system switches frequently between LA-think and
LA-speak. The language-dependent aspect of the LA-think rules specifies whether
the system should continue to navigate or switch to LA-speak. The LA-speak rules
specify whether the system should continue to realize surfaces or switch to LA-think
(cf. Chaps. 12 and 14).

A.2 Incremental Language Production Based on Navigation

As an example of the incremental interaction between LA-think and LA-speak con-
sider the following schematic derivation of the sentence The girl could have eaten an
apple. This sentence is based on an underlying VNN proposition. For simplicity, the
navigation is viewed in isolation, disregarding the in-going and out-going extrapropo-
sitional relations. We are thus dealing with the following railroad system:

308 A. Universal Basis of Word Order Variation

A.2.1 RAILROAD SYSTEM OF AN ISOLATED TWO-PLACE PROPOSITION

V NN

This railroad system may be traversed in two alternative orders, indicated below by
numbers 1, 2, 3, and 4 on the transitions:

A.2.2 ALTERNATIVE NAVIGATION ORDERS

V NN V NN
1

4
4

3

2

13

2

The navigation on the left activates the proplets in the order VSO (verb subject object)
while that on the right activates the proplets in the order VOS. In English declaratives,
a VSO navigation is reflected by active, e.g., The girl ate the apple, while a VOS
navigation is reflected by passive, e.g., The apple was eaten by the girl (cf. 6.5.2).

Next, the language-independent navigation orders shown in A.2.2 must be adapted
to the language-dependent word order of the language at hand, for example, the SVO
surface order of English. This is based on the distinction between transitions with and
without surface realization. Surface realization is implemented as a switch from LA-
think (navigation) to LA-speak (realization). Navigations which switch the system to
LA-speak have their numbers marked with @. Consider the following example:

A.2.3 NAVIGATION WITH ACTIVATION OF SURFACE REALIZATION

V NN
4

2@

1@
3@

Here, a basic SVO surface order is derived via the activation sequence 1@ 2@ 3@.
Transition 4 returns to the verb without any surface realization and readies the system
for a coordination-based extrapropositional navigation to the verb of the next propo-
sition. A basic SOV surface order, as for Korean, would be derived from the same
railroad system and the same navigation order via the alternative activation sequence
1@ 3@ 4@.

It remains to show how the function words, originally absorbed into the proplets
during language interpretation with LA-hear, are precipitated from these proplets by

A.2 Incremental Language Production Based on Navigation 309

LA-speak during language production. As an example, consider the production of the
sentence The girl could have eaten an apple based on the navigation A.2.3 (see also
Sects. 6.4 and 14.5).

The production must precipitate the determiners the and an from the N proplets,
and the auxiliaries could and have from the V proplet. As in previous examples (e.g.,
3.5.3), the derivation uses abstract surfaces: determiners are represented as d, nouns
as nn, auxiliaries as ax, nonfinite verbs as nv, and punctuation signs as p.

Let us assume that the proplets underlying our sample derivation share the proposi-
tion number i ([prn: i]). Each word form surface produced in the derivation is num-
bered, from i.1 to i.8:

A.2.4 SCHEMATIC PRODUCTION OF The girl could have eaten an apple

activated sequence realization
i

. . . V
V N

i.1 d d
V N

i.2 d nn d nn
V N

i.3 ax d nn d nn ax
V N

i.4 ax ax d nn d nn ax ax
V N

i.5 ax ax nv d nn d nn ax ax nv
V N

i.6 ax ax nv d nn d d nn ax ax nv d
V N N

i.7 ax ax nv d nn d nn d nn ax ax nv d nn
V N N

i.8 ax ax nv p d nn d nn d nn ax ax nv d nn p
V N N

After activating the initial V, LA-think traverses and activates the first N, resulting
in the proplet sequence VN. The navigation (cf. A.2.2) consists of two steps, namely
from the V to the first N (1) and back to the V (2). After the navigation, the system
switches to LA-speak to realize the surface sequence d nn (i.1–i.2) from the N proplet.
corresponding to 1@, and the sequence ax ax nv from the V proplet (i.3–i.5), corre-
sponding to 2@ (cf. A.2.3). In i.5, the system switches back to LA-think to traverse
and activate the second N, resulting in the proplet sequence VNN. Again, the naviga-
tion consists of two steps, namely from the V to the second N (3) and back to the V
(4). Then the system switches to LA-speak to realize the surface sequence d nn from

310 A. Universal Basis of Word Order Variation

the second N proplet (i.6–i.7), corresponding to 3@, and the p from the V proplet,
resulting in the overall surface sequence d nn ax ax nv d nn p. The application of the
last LA-speak rule switches the system to LA-think, enabling it to proceed to the next
proposition.

The time-linear derivation of a d nn ax ax nv d nn p surface sequence from a VNN
proplet sequence shown in A.2.4 is based on two factors:

A.2.5 PRODUCTION PRINCIPLES OF SURFACE ORDERING

Earlier surfaces may be produced from later proplets.
Example: The initial d nn surface sequence is achieved by realizing the second
proplet in the activated VN sequence first (cf. line i.1–i.2 in A.2.4).
Later surfaces may be produced from earlier proplets.
Example: The final punctuation p (full stop) is realized from the first proplet in the
VNN sequence (cf. line i.8 in A.2.4).

These possibilities are based on the patterns of the LA-speak rules: they may match
any of the proplets traversed so far in order to produce certain surfaces.

The basic strategy is to realize as many surfaces as possible from the activated pro-
plet sequence. The navigation stops as soon as a newly activated proplet can provide
additional surfaces. The navigation resumes when the currently activated proplet se-
quence can produce no more surfaces.

This maximally incremental interaction between LA-think and LA-speak is moti-
vated not only by psychological considerations,2 but also by computational efficiency.
The reason is that an incremental activation of proplets results in a more restricted set
of candidates for matching by the LA-speak rules than an activated proplet sequence
which is complete from the start. Chaps. 12 and 14 have shown the production of
various constructions from underlying proplet sequences in explicit detail.

A.3 Realizing Alternative Word Orders from One-Place Propositions

By controlling the moment of when a particular surface is realized from a sequence of
activated proplets, the characteristic word orders of different natural languages can be
realized from the same navigation. As examples, let us consider three different natural
languages, namely English, German, and Korean. After a brief summary of the basic
word order of these languages, we will present the derivation of simple3 declarative
sentences and the corresponding yes/no interrogatives.

The basic word order of English declarative sentences is subject–verb–object (SVO),
whereby the verb is postnominative. This means that in a sentence with an initial ad-
verb, for example, Suddenly John left, the adverb and the nominative share the place

2 For corresponding evidence from language interpretation see footnote 13 on page 31.
3 As illustrated by Example A.2.4, i.e., sentences without subclauses.

A.3 Realizing Alternative Word Orders from One-Place Propositions 311

before the verb. In sentences with two- or three-place verbs, the order of the arguments
is interpreted as nominative-accusative or nominative-dative-accusative, respectively.

The basic word order of German declarative sentences is also SVO, but with the
verb in second position. This means that in a sentence with an initial adverb, for
example, Plötzlich ging John (Suddenly left John), the subject appears third
following the verb. Also, in sentences with two- or three-place verbs, the position of
the nominative, dative, and accusative is free, as long as the verb is in second position.

The basic word order of Korean is subject–object–verb (SOV); arguments are case-
marked with suffixes and their order is free. The SOV order holds even in yes/no
interrogatives, whereby interrogatives and declaratives are distinguished morphologi-
cally by the suffixes ta (declarative) and kka (interrogative) on the verb.

In old English and contemporary German, in contrast, yes/no interrogatives have the
verb in initial position, for example, Ging John? (Left John?). Modern English
uses a complex verb construction with a sentence-initial auxiliary or modal, followed
by the nominative and the nonfinite main verb, as in Did John leave?

The simplest constellation is a one-place proposition, represented by the VN no-
tation introduced in A.1.1. In coordination-based extrapropositional concatenation,
the proplets of the current proposition are preceded and followed by the Vs of the
preceding and the following proposition. Thus, the underlying proplet sequence is
V...VN...V. The following two examples use the same navigation order, but differ in
when the system switches to LA-speak, indicated by ‘@’:

A.3.1 ONE-PLACE DECLARATIVE AND YES/NO INTERROGATIVE NAVIGATION

V NV V... ...

0 3

preceding
proposition

next
proposition

V NV V... ...

3

2
preceding
proposition

next
proposition

English, German, and Korean declaratives

1@

2@

0@
1@

SV: subject verb

VS: verb subject

Korean yes/no interrogatives

old English and German yes/no interrogatives

312 A. Universal Basis of Word Order Variation

The arrows between the proplets indicate the relations between the proplets and con-
stitute the railroad system for the navigation. The numbers indicate the order of the
navigation steps through the railroad system.

The navigation is driven by two rules of an LA-think grammar (cf. Sect. 14.1), called
V_V_V and V_N_V. The rule V_V_V moves from the V of the preceding proposition
to the V of the present proposition (0), with the present V as output position. The rule
V_N_V moves from the V of the present proposition to the N (1) and back to the V
(2), with the present V as output position. A second application of the rule V_V_V
moves from the V of the present proposition to the V of the next proposition (3), with
the next V as output position. These moves are common to both graphs.

Now consider the surface realizations of the two navigations. In the upper graph,
transition 0 proceeds from the V of the previous proposition to the V of the present
proposition without realizing a surface. Transitions 1@ and 2@ proceed from the V
to the N and back to the V of current proposition, first realizing the N and then the V.
Transition 3 proceeds from the current to the next V.

In the lower graph, in contrast, transition 0@ realizes the V of the current proposi-
tion and transition 1@ realizes the N. The following transitions 2 and 3 proceed from
the N back to the V and then to the next V.4

The results are the alternative surface orders noun–verb (upper graph) and verb–
noun (lower graph) from a common proplet network and a common navigation. These
alternative orders constitute the basic surface serializations of the syntactic mood and
the genus verbi (voice) of the languages in question. In the case of one-place propo-
sitions, the basic word order of declarative sentences is subject–verb in English, Ger-
man, and Korean. The interrogative serialization, in contrast, is verb-subject in old
English and German, but subject–verb in Korean. In addition to the basic surface order
handled by the LA-think navigation, production requires function word precipitation,
as shown schematically in A.2.4, and the selection of the proper morpho-syntactic
properties, including agreement (cf. Sects. 14.2–14.6).

A.4 Realizing Basic SO Word Orders from Two-Place Propositions

The surface orders derivable from two-place propositions are more varied than those
derivable from one-place propositions. In addition to the alternative between the
subject–verb and the verb–subject order, two-place propositions provide the alterna-
tive between the subject–object and the object–subject order.

As a result, two-place propositions provide six basic surface orders, namely the
three SO orders SVO, VSO, and SOV, and the three OS orders OVS, VOS, and OSV
– as compared to the two basic surface orders VS and SV of one-place propositions

4 In dialog-initial interrogatives (i.e., in the absence of a preceding proposition), the verb is realized in
the process of activating the proposition-initial V proplet. Whether or not transition 3 to the next V
realizes a surface depends on the sentence mood of the next sentence.

A.4 Realizing Basic SO Word Orders from Two-Place Propositions 313

(cf. A.3.1). Let us begin with the three SO orders of two-place propositions, while the
corresponding OS orders are presented in Sect. A.5 of this appendix.

The following examples show the proplet network and the navigation resulting in the
SVO declaratives of English and German, the VSO yes/no interrogatives of modern
English and German, and the SOV declaratives and yes/no interrogatives of Korean:

A.4.1 TWO-PLACE SO NAVIGATION FOR SVO AND SOV LANGUAGES

V NNV V... ...

5

preceding
proposition

next
proposition

V NNV V... ...

0 5

preceding
proposition

next
proposition

V NNV V... ...

0 5

preceding
proposition

next
proposition

English and German declaratives

4

4

2

1@

2@

3@

0@
1@

3@

1@
3@

4@

SVO: subject verb object

VSO: verb subject object

SOV: subject object verb

2[@]

modern English and German yes/no interrogatives

Korean declaratives and yes/no interrogatives

All three examples are based on the same navigation order through the same
V...VNN...V proplet network. Based on the rule V_V_V, the navigation proceeds from
the V of the preceding proposition to the V of the current proposition (0). Then the
rule V_N_V navigates from the current V to the first N (1) and back to the current V
(2). Then the rule V_N_V applies again, navigating from the current V to the second

314 A. Universal Basis of Word Order Variation

N (3) and back to the current V (4). Finally, the rule V_V_V applies once more to
proceed to the V of the following proposition (5).

The language- and mood-specific difference between the three examples consists
solely in when certain navigation steps switch to surface realization. The SVO surface
of the first example is realized by the steps 1@, 2@, and 3@. The VSO surface of
the second example is realized by the steps 0@, 1@, 3@, whereby the parentheses
in 2[@] indicate the complex verb construction of English yes/no interrogatives, for
example, Did Julia eat the apple? as opposed to German Aß Julia den Apfel? (Ate
Julia the apple?). The SOV surface of the third example is realized by the
steps 1@, 3@, 4@.

Again, the alternative SVO, VSO, and SOV surface serializations, derived from a
common navigation through a common proplet network, constitute only the most ba-
sic language- and mood-dependent surface orders from which the sequence of con-
crete surfaces, including function word precipitation, must be realized. Consider the
interrogative counterpart to A.2.4: Could the girl have eaten an apple?

A.4.2 SCHEMATIC PRODUCTION OF Could the girl have eaten an apple?

activated sequence realization
i

. . . V
i.1 ax ax

V N
i.2 ax d ax d

V N
i.3 ax d nn ax d nn

V N
i.4 ax ax d nn ax d nn ax

V N
i.5 ax ax nv d nn ax d nn ax nv

V N
i.6 ax ax nv d nn d ax d nn ax nv d

V N N
i.7 ax ax nv d nn d nn ax d nn ax nv d nn

V N N
i.8 ax ax nv p d nn d nn ax d nn ax nv d nn p

V N N

The transition 2[@] of the second example in A.4.1 is reflected above in the transition
from i.3 to i.5: after realizing the surface of the first N proplet, i.e., d nn or the girl,
the navigation returns to the initial V and realizes the remainder of the complex verb,
namely ax nv, representing have eaten.

A.4 Realizing Basic SO Word Orders from Two-Place Propositions 315

As an example of a VSO yes/no interrogative without a complex verb construction
and a 2 rather than a 2[@] transition consider the following schematic derivation of
German Aß das Mädchen den Apfel? (Ate the girl the apple?).

A.4.3 SCHEMATIC PRODUCTION OF Aß das Mädchen den Apfel?

activated sequence realization
i

. . . V
i.1 v v

V
i.2 v d v d

V N
i.3 v d nn v d nn

V N
i.4 v d nn d v d nn d

V N N
i.5 v d nn d nn v d nn d nn

V N N
i.6 v p d nn d nn v d nn d nn p

V N N

The absence of a 2[@] transition is shown in i.4: after realizing the first N with LA-
speak, the system switches to LA-think, navigates back to the V, and gathers the in-
formation for retrieving the second N proplet. Unlike English, no additional surfaces
are yielded from the V proplet. After activating the second N, the system switches to
LA-speak to realize the surfaces d nn yielded by the second N proplet.

While German yes/no interrogatives with an elementary verb form have a 2 rather
than a 2[@] transition, corresponding sentences with a complex verb have a 2[@]
transition just like English. Consider the following schematic derivation of Könnte das
Mädchen einen Apfel gegessen haben? (Could the girl an apple eaten
have?), which is the counterpart to the English example derived in A.4.2.

A.4.4 GERMAN Könnte das Mädchen einen Apfel gegessen haben?

activated sequence realization
i

. . . V
i.1 ax ax

V
i.2 ax d ax d

V N

316 A. Universal Basis of Word Order Variation

i.3 ax d nn ax d nn
V N

i.4 ax d nn d ax d nn d
V N N

i.5 ax d nn d nn ax d nn d nn
V N N

i.6 ax nv d nn d nn ax d nn d nn nv
V N N

i.7 ax nv ax d nn d nn ax d nn d nn nv ax
V N N

i.8 ax nv ax p d nn d nn ax d nn d nn nv ax p
V N N

Note that the activation of the second N proplet is in line i.6 of A.4.2 (English) and
in line i.4 of A.4.4 (German) – despite the fact that both sentences use corresponding
complex verbs and nouns. This is due to the different language-dependent LA-speak
grammars. They realize different amounts of surface yielded from the currently acti-
vated proplets, thus creating different needs to activate a new proplet.

A.5 Realizing OS Word Orders from Alternative Navigations

In addition to the standard SO (subject object) order, natural languages also use the
nonstandard OS (object subject) order. The communicative purpose is topicalization
of the object. An OS order is based on an alternative navigation which moves from the
V to the second N (object), returns to the V, and then moves to the first N (subject).

English being a fixed word order language can realize such an OVS surface order
only by means of the passive,5 as opposed to the active. In free word order languages
like German and Korean, in contrast, the order of the nouns in declarative clauses may
be simply reversed, as in German Den Apfel aß das Mädchen, which transliterates
as The appleacc ate the girlnom.6 In addition, German can realize an OS
surface also by means of the passive construction, analogous to English.

The derivation of OVS, VOS, and OSV surface orders from a standard VNN proplet
network is based on the following navigations:

5 The inversion of the subject–object order characteristic of passive in English is not the case generally.
This is shown by German, where the free word order permits passive sentences with an SVO order,
like Von dem Mädchen wurde der Apfel gegessen (By the girl was the apple eaten).

According to Givòn (1997), the universal function of passive is the possibility to suppress the
(deep) subject or agent, as in The apple was eaten. In Korean, passives which do not suppress the
agent are considered unnatural (Prof. Jae-Woong Choe, Korea University, Seoul, 2005, personal com-
munication).

6 The case marking is frequently deficient in German, as in Das Kind füttert die Mutter, which translit-
erates as The childnom/acc feeds the motheracc/nom, and results in syntactic ambiguity.

A.5 Realizing OS Word Orders from Alternative Navigations 317

A.5.1 TWO-PLACE OS NAVIGATION FOR SVO AND SOV LANGUAGES

V NNV V... ...

0 5

4preceding
proposition

next
proposition

V NNV V... ...

5

4
preceding
proposition

next
proposition

0@
3@

3@
1@

2@

1@

declarative English and German passive, and German OS active

V NNV V... ...

0 5

Korean declaratives and interrogatives with topicalized object

2preceding
proposition

next
proposition

3@
1@

4@

OVS: object verb subject

VOS: verb object subject

OSV: object subject verb

2[@]

yes/no interrogative of English passive and German active/passive

These graphs constitute the same railroad system as the SO representation in A.4.1 and
show the relations between proplets as a conventional VNN network. The difference is
in the navigation order, represented by the numbers associated with the dotted arrows:
In the OS navigation the transitions 1 and 2 are between the V and the second N,
while they are between the V and the first N in the SO navigation. Accordingly, in the
OS navigation the transitions 3 and 4 are between the V and the first N, while they
are between the V and the second N in SO navigation. Due to the different traversal
orders, the activation numbers are the same in the SO and the OS navigation (compare
A.4.1 and A.5.1): For OVS surfaces, they are 1@ 2@ 3@; for VOS surfaces, they are
0@ 1@ 2[@] 3@; and for OSV surfaces they are 1@3@4@.

Examples of declarative OSV surfaces in English are the apple was eaten by the
girl and The apple could have been eaten by the girl. Examples of yes/no interrogative
VOS surfaces in English are Was the apple eaten by the girl? and Could the apple
have been eaten by the girl?.

318 A. Universal Basis of Word Order Variation

Consider the following schematic derivation of the latter example, whereby d, nn,
ax, nv, and p stand for determiner, noun, auxiliary, nonfinite verb, and punctuation
as before, and pp stands for preposition. The nonstandard activation order of the N
proplets is indicated by realizing the second N before the first (cf. 6.5.2).

A.5.2 PRODUCTION OF Could the apple have been eaten by the girl?

activated sequence realization
i

. . . V
i.1 ax ax

V
i.2 ax d ax d

V
i.3 ax d nn ax d nn

V N
i.4 ax ax d nn ax d nn ax

V N
i.5 ax ax ax d nn ax d nn ax ax

V N
i.6 ax ax ax nv d nn ax d nn ax ax nv

V N
i.7 ax ax ax nv pp d nn ax d nn ax ax nv pp

V N N
i.8 ax ax ax nv pp d d nn ax d nn ax ax nv pp d

V N N
i.9 ax ax ax nv pp d nn d nn ax d nn ax ax nv pp d nn

V N N
i.10 ax ax ax nv p pp d nn d nn ax d nn ax ax nv pp d nn p

V N N

Our derivation of a two-place passive in English as a OVS (declarative) or VOS
(yes/no interrogative) realization treats the prepositional phrase by the girl as an N
proplet (noun), in contradistinction to prepositional phrases used as modifiers, which
are treated as A proplets (complex adjectives, cf. Chap. 15).

A.6 Realizing Basic Word Orders from Three-Place Propositions

While two-place propositions allow two different navigation orders, namely SO and
OS, three-place propositions allow six, namely SDI, SID, DSI, DIS, ISD, and IDS.
Thereby S stands for subject (or ‘deep’ nominative), D for direct object (or ‘deep’

A.6 Realizing Basic Word Orders from Three-Place Propositions 319

accusative), and I for indirect object (or ‘deep’ dative). For brevity, we show only
SID, SDI, and DSI of the six navigation orders for three-place propositions:

A.6.1 THREE OF THE SIX NAVIGATION GRAPHS

V NNV...

0

4

...N
preceding
proposition proposition

next

1
3

2

6

5
7

V

VSID: verb subject I_object D_object

V NNV...

0

...N
preceding
proposition proposition

next

7

V
1

2

3

4

5

6

V NNV...

0

...N
preceding
proposition proposition

next

7

3

4
V

5

6

1

2

VSDI: verb subject D_object I_object

VDSI: verb D_object subject I_object

In contradistinction to A.3.1 (one-place propositions) and to A.4.1 and A.5.1 (two-
place propositions), the above graphs have no @ markers. Thus, each of the graphs
illustrated in A.6.1 must still be specialized to an NVNN, a VNNN, or an NNNV
surface order by adding the @ sign to certain transitions. The result are 18 different
surfaces, namely SVDI, VSDI, SDIV, SVID, VSID, SIDV, DVSI, VDSI, DSIV, DVIS,
VDIS, DISV, IVSD, VISD, ISDV, IVDS, VIDS, and IDSV.

For example, the first graph represents an SID navigation. A declarative SVID sur-
face, such as English The man gave the child an apple (cf. 6.2.1, 6.2.2, Sect.13.5, and
Sect. 14.6) and similarly German, is based on a 1@ 2@ 3@ 5@ realization. A corre-
sponding yes/no interrogative VSID surface of old English and German is based on a
0@ 1@ 3@ 5@ realization. A declarative or a yes/no interrogative SIDV surface of
Korean is based on a 1@ 3@ 5@ 6@ realization.

320 A. Universal Basis of Word Order Variation

The second graph is based on an SDI navigation. A declarative SVDI surface, such
as English The man gave the apple to a child and similarly German7 is based on
a 1@ 2@ 3@ 5@ realization. A corresponding yes/no interrogative VSDI surface of
English and German is based on a 0@ 1@ 3@ 5@ realization. A declarative or yes/no
interrogative SDIV surface of Korean is based on a 1@ 3@ 5@ 6@ realization.

The third graph is based on an DSI navigation. A declarative DVSI surface, such
as English passive The apple was given by the man to a child and German active
Den Apfel gab der Mann einem Kind (The apple gave the man a child)
is based on a 1@ 2@ 3@ 5@ realization. A corresponding yes/no interrogative VSDI
surface of English, i.e., Was the apple given by the man to a child? and German Gab
den Apfel der Mann einem Kind? (Gave the apple the man a child?) is
based on a 0@ 1@ 3@ 5@ realization. A declarative or yes/no interrogative DSIV
surface of Korean is based on a 1@ 3@ 5@ 6@ realization.

It turns out that the activation numbers for NVNN surfaces are always 1@ 2@ 3@
5@, regardless of whether they are derived from SDI, SID, DSI, DIS, ISD, or IDS
navigations. Furthermore, the activation numbers for VNNN surfaces are always 0@
1@ 3@ 5@, and the activation numbers for NNNV surfaces are 1@ 3@ 5@ 6@,
regardless of the navigation. This is similar to two-place propositions (cf. A.4.1 and
A.5.1), where the activation numbers for NVN surfaces are 1@2@3@, the activation
numbers for VNN are 0@ 1@ 2[@] 3@, and the activation numbers for NNV are 1@
3@ 4@, regardless of whether they are derived from SO or from OS navigations.

7 The corresponding realization for German is Der Mann gab den Apfel einem Kind (The man gave
the apple a child). In other words, it is realized without a preposition corresponding to En-
glish to.

B. Declarative Description of the Motor Procedure

In a DBS system, two aspects are to be distinguished: one is the definitions provided
by the linguist, the other the software which will run with any such definitions as long
as they maintain the general format of the overall system. The definitions required
include the lexicon; the start state; the number, names, and content of the rules; the
content of the rule packages; the number and names of the proplet attributes; the con-
stants and variables; the rule patterns; the final states; and the choice of the operations.

The software for running the linguist-provided definitions during natural language
communication includes a general system of word form recognition and production,
a database for the storage and retrieval of proplets, and LA-grammars for the hearer,
the think, and the speaker mode. The engine driving these components is called the
motor. This appendix describes the motor procedure of LA-hear in Sects. B.1–B.5,
and the motor procedures of LA-think and LA-speak in Sect. B.6.

B.1 Start State Application

In LA-grammar, a derivation proceeds simultaneously at two levels: (i) the grammar
level and (ii) the object level. During a derivation, the specifications of the grammar
level are applied to proplets at the object level, based on pattern matching and vertical
variable binding. In LA-hear derivations, the object level is the language level.

The first step of an LA-hear derivation is the application of the start state definition
STS (grammar level) to each reading of the first word (language level). The applica-
tion of STS to a first word reading may be characterized schematically as follows:

B.1.1 APPLYING STS TO A FIRST WORD READING

grammar level: STS =def (<ss-pattern> rp0)
language level: <first word>

If the first word proplet (provided by lexical lookup) matches the ss-pattern of STS ,
the application is successful and results in a start state.

A state is generally defined as an ordered pair consisting of a rule package (gram-
mar level) and a sentence start (language level). A sentence start ss is a sequence of
proplets. In the case of a start state, the sequence of ss-proplets is a unit sequence
because the ss-pattern can match at most one proplet, i.e., a reading of the first word.

322 B. Declarative Description of the Motor Procedure

B.1.2 START STATE RESULTING FROM APPLYING LA-HEAR STS DEFINITION

grammar level: (rp0

language level: <first word>)

If the first word is lexically ambiguous, represented by the proplets w1-a, w1-b, and
w1-c, for example, application of a start state definition may result in several states:

B.1.3 APPLYING START STATE DEFINITION STS TO AMBIGUOUS FIRST WORD

application of start state definition resulting start states

grammar level (<ss-pattern> rp0) ⇒ (rp0

language level <w1-a proplet> <w1-a proplet>)

grammar level (<ss-pattern> rp0) ⇒ (rp0

language level <w1-b proplet> <w1-b proplet>)

grammar level (<ss-pattern> rp0) ⇒ (rp0

language level <w1-c proplet> <w1-c proplet>)

For the motor, the application of a start state definition is based on an input and an
output which are defined simultaneously at the grammar and the language level. At
the grammar level, the input is the start state definition, consisting of an ss-pattern and
a rule package; the output is the rule package. At the language level, the input and
output is a unit sequence of a language proplet representing a first word reading, here
<w1-a proplet>, <w1-b proplet>, and <w1-c proplet>.

The matching between the ss-pattern of a start state definition and a lexical proplet
is shown explicitly in the derivation displayed by the JSLIM implementation:

B.1.4 JSLIM DISPLAY OF A START STATE APPLICATION (INPUT)

1.
Start state: [cat: X] rp:{NOM+FV, DET+NN, DET+ADN}

[sur: Julia]
[noun: Julia]
[cat: nm]
[sem: f]
[mdr:]
[fnc:]
[idy: +1]
[prn:]

The first line specifies the number of the word being consumed by the derivation,
here 1. The second line represents the grammar level. It indicates the derivation step,
Start state, the ss-pattern [cat: X], and the rule package rp. Directly below
the ss-pattern of the rule, the matching language proplet (representing a reading of the
first word) is displayed.

B.1 Start State Application 323

During a successful pattern matching, the variables at the grammar level are verti-
cally bound to corresponding constants at the language level. The number and names
of the attributes, variables, and constants are free and are defined in the grammar. The
vertical binding of grammar-level variables to language-level constants is the means
for executing grammar-level operations at the language level.

The output of the application B.1.4 is not shown separately in the JSLIM derivation,
because it appears in the sentence start of the next composition. Conceptually, such
an output may be reconstructed as follows:

B.1.5 OUTPUT OF THE APPLICATION OF A START STATE DEFINITION

rp:{NOM+FV, DET+NN, DET+ADN}

[sur: Julia]
[noun: Julia]
[cat: nm]
[sem: f]
[mdr:]
[fnc:]
[idy: 1]
[prn: 1]

The control structure of the motor provides a resulting start state with a prn value, and
in the case of a noun proplet with an idy value.

The application of a start state definition with an unrestricted ss-pattern (e.g., [cat: X]
as in B.1.4) cannot fail.1 Instead, the possibility of rejecting a first word reading is
postponed to the rule applications of the first combination (because rules check not
only the next word but also the sentence start by means of pattern matching).

Let us assume, for example, that the rule package rp0 of the start state definition
STS contains the rules r-1, r-2, and r-3, and that the first word has the lexical readings
w1-a, w1-b, and w1-c. Then the choice between these lexical readings can be decided
as follows by the respective ss-patterns of these rules:

B.1.6 CONTROLLING THE CHOICE OF THE FIRST WORD READING

grammar level r-1: <ss-a pattern> nw-pattern operations rp1

language level <w1-a proplet>

grammar level r-2: <ss-b pattern> nw-pattern operations rp2

language level <w1-b proplet>

grammar level r-3: <ss-c pattern> nw-pattern operations rp3

language level <w1-c proplet>

1 In some languages, for example, the formal language akbkck (cf. FoCL p. 188, 10.2.3), the ss-pattern
of the start state definition may be restricted to a certain word or kind of word.

324 B. Declarative Description of the Motor Procedure

In this example, the rules are represented in their usual standard form, consisting of a
rule name, e.g., r-1, a sentence start pattern, e.g., <ss-a pattern>, a next word pattern,
a set of operations, and a rule package.

Rule r-1 will accept only the w1-a reading, r-2 only the w1-b reading, and r-3 only
the w1-c reading of the first word – due to the different ss-patterns of the three rules.
Thus, even though each lexical proplet is associated with the same rule package rp0

in B.1.3, only one of its rules will be successful with each of the lexical readings. It is
up to the grammar writer to provide the rules with sufficiently specific ss-patterns.

B.2 Matching between Proplet Patterns and Language Proplets

The matching of proplet patterns at the grammar level and proplets at the language
level has two functions: (i) limiting the acceptance of certain language proplets by the
grammar (as illustrated in B.1.6), and (ii) assigning language-level values to grammar-
level variables (required to execute the operations of LA-grammar rules, cf. Sect. B.4).
Both functions are based on the use of variables.

Database Semantics uses three kinds of variables: binding variables, replacement
variables, and loading variables. These variables differ from those used in Predicate
Calculus because there are no quantifiers in DBS (cf. Sects. 5.3 and 6.2).

The binding variables are of four kinds: (i) unrestricted binding variables for se-
quences of zero or more segments, written in uppercase, e.g., X; (ii) binding variables
restricted to certain sets of individual grammar constants, written in uppercase, e.g.,
NP; (iii) binding variables restricted to individual core values2 written in lowercase
Greek letters, e.g., α; and (iv) simultaneous substitution variables, written as N_n,
V_n, and A_n, and restricted to the substitution values n_1, n_2, n_3, etc., for nouns,
v_1, v_2, v_3, etc., for verbs, and a_1, a_2, a_3, etc., for adjectives, respectively.3

The replacement variables are not bound to a value, but are replaced by it (cf. 4.1.3,
4.1.4). In the LA-grammars 5.1.2, 5.1.8, 5.1.9, replacement variables occur only at the
grammar level, like binding variables. The replacement variables RA.1, RA.2, etc., are
restricted to attributes, while the replacement variables RV.1, RV.2, etc., are restricted
to values.

The loading variables PC, PCV, and NCV (cf. p. 186, 188)4 occur at the grammar
and the object level, and serve to provide the extra-propositional connections. PC, for
previous conjunct, is restricted to the proposition number of the previous sentence,
PCV to the verb of the previous sentence, and NCV to the verb of the next sentence.

2 i.e., concepts (cf. 2.6.4), indexical pointers (cf. 2.6.5), and name markers (cf. 2.6.7).
3 Examples illustrating the use of substitution variables at the grammar level and the corresponding

substitution values at the language level in complex nouns are 13.3.1, 13.3.2, 13.3.3, 13.3.6, and
13.3.7, in complex verbs 13.4.4 and 13.4.5, and in complex adjectives 15.4.4, 15.4.5, 15.4.10, 15.4.11,
15.5.1, 15.5.3, 15.5.4, 15.5.5, and 15.5.6.

4 Examples illustrating the use of loading variables at various stages of a derivation are 11.5.2, 11.5.3,
13.4.6, 13.5.3, and 13.5.8.

B.2 Matching between Proplet Patterns and Language Proplets 325

Successful matching is based on the attribute condition and the value condition, de-
fined in 3.2.3. These two conditions are completely general and must be implemented
as part of the motor. The proplet patterns and language proplets used in the conditions,
in contrast, are defined in the grammar: The proplet patterns are provided to the motor
by the grammar rules, while the language proplets are provided to the motor by the
previous state (sentence start) and the lexicon of the grammar (next word).

While the attribute condition is straightforward, the value condition requires a def-
inition of the notion of compatibility. The compatibility between the variable of a
proplet pattern and a corresponding constant of a language proplet is based on vari-
able restrictions defined in the preamble of the grammar (e.g., 13.2.2). For example,
if the variable VAR-i is restricted as

VAR-i ε {const-1, const-2, const-3}
then the feature

[attribute-k: VAR-i]
of a proplet pattern will be compatible with the features

[attribute-k: const-1]
or

[attribute-k: const-2]
or

[attribute-k: const-3]
of a language proplet – but not, for example, with the feature

[attribute-k: const-4].
The definition of variable restrictions in the grammar is similar in effect to the typ-

ing of attributes, but is more flexible and more differentiated. For example, instead
of restricting an attribute, e.g., attribute-k, to a certain type of value, e.g., positive
integers, we define the value of the attribute as a variable, e.g.,

attribute-k: VAR-num
and then define VAR-num by restricting it to positive integers, e.g.,

VAR-num ε {1, 2, 3, ..., n}
Should it turn out later that attribute-k may also take characters as value, we rede-
fine the restriction of its variable. We can specify the kind of value, e.g., integer or
character, or explicitly list specific items.

It is possible to define a restricted variable in terms of other variables. For example,
VAR-top may be defined as

VAR-top ⊆ {VAR-sub1 VAR-sub3 VAR-sub5}
where

VAR-sub1 ε {a2, a4, a5},
VAR-sub3 ε {b1,b2, b3}, and
VAR-sub5 ε {d4, d5, d8}.

The set-theoretic relations between variable restrictions are defined in the grammar
and built bottom up from the elementary constants.

326 B. Declarative Description of the Motor Procedure

B.3 Time-Linear Breadth-First Derivation Order

In a rule application, the patterns of the grammar level and the proplets of the language
level are aligned as follows:

B.3.1 LEVEL ALIGNMENT IN A RULE APPLICATION

grammar level r-1: <ss-pattern 1 ss-pattern 2 ... > nw-pattern operations rp1

language level <w1-a proplet w2-a proplet ... > nw proplet

For a sentence start pattern to apply successfully to the language level, all patterns of
the sequence at the grammar level must find matching proplets at the language level
(as in B.3.1), but not vice versa. Thus, the number of ss-patterns may be smaller than
the number of proplets in the sentence start. The next word pattern, in contrast, must
match exactly one proplet. The successful application of a rule results in a state:

B.3.2 STATE RESULTING FROM A RULE APPLICATION

(rp-1
<w1-a’ w2-a’ w3-a’>)

The output proplets in B.3.2, e.g., w1-a’, will normally differ from the input proplets
in B.3.1, e.g., w1-a, due to the application of certain rule operations.

If the input provides another next word, the state resulting from a rule application
will trigger another left-associative composition. For this, the next word is lexically
analyzed as a set of readings which is positioned at the language level next to the
sentence start (nw-addition). For example, if the next word has the lexical readings
w4-a, w4-b, and w4-c, the following expression results from B.3.2:

B.3.3 nw-ADDITION

rp-1
<w1-a’ w2-a’ w3-a’> {w4-a

w4-b
w4-c}

Next, the rule package is expanded into a set of rules. For example, if rp-1 = {r-i r-j
r-k}, then B.3.3 is turned into the following expression:

B.3.4 EXPANSION OF THE RULE PACKAGE

{r-i r-j r-k}
<w1-a’ w2-a’ w3-a’> {w4-a

w4-b
w4-c}

B.4 Rule Application and the Basic Structure of the LA-Hear Motor 327

Then, the Cartesian product of all rules of the rule package and all readings of the
next word are formed, whereby sentence starts and next words are turned into input
pairs at the language level. In this way, Example B.3.4 results in the following set of
ordered pairs, each consisting of (i) a rule name (grammar level) and (ii) an input pair
(language level) of an ss and an nw:

B.3.5 CARTESIAN PRODUCT OF RP CONTENT AND nw READINGS

r-i
<w1-a’ w2-a’ w3-a’> w4-a

r-i
<w1-a’ w2-a’ w3-a’> w4-b

r-i
<w1-a’ w2-a’ w3-a’> w4-c

r-j
<w1-a’ w2-a’ w3-a’> w4-a

r-j
<w1-a’ w2-a’ w3-a’> w4-b

r-j
<w1-a’ w2-a’ w3-a’> w4-c

r-k
<w1-a’ w2-a’ w3-a’> w4-a

r-k
<w1-a’ w2-a’ w3-a’> w4-b

r-k
<w1-a’ w2-a’ w3-a’> w4-c

Finally, all rule names at the grammar level are expanded into the corresponding ex-
plicit rule definitions. Thereby, each element of the Cartesian product B.3.5 is turned
into a structure like B.3.1. By applying the rules, a new set of states like B.3.2 results.

Now the combination cycle starts over again. As before, the steps are (i) nw-addition
by calling up the readings of the next word (cf. B.3.3), (ii) expanding the rule package
(cf. B.3.4), (iii) formation of the Cartesian product (cf. B.3.5), (iv) replacing the rule
names by the actual definitions (cf. B.4.1), and (v) rule application (cf. B.3.1).

B.4 Rule Application and the Basic Structure of the LA-Hear Motor

The first step of a rule application is matching the rule patterns at the grammar level
with the correlated proplets at the language level. If matching fails, the rule application

328 B. Declarative Description of the Motor Procedure

is discarded. Matching fails whenever the attribute condition or the value condition,
defined in 3.2.3, are not satisfied.

If matching succeeds, the variables at the grammar level are bound to the corre-
sponding values of the language level (vertical variable binding), and the operations
of the rule are executed. The correlation between rule patterns and proplets is automat-
ically displayed by the JSLIM derivation, illustrated below using the implementation
of Kycia (2004).

B.4.1 JSLIM DISPLAY OF A RULE APPLICATION

2.1
NOM+FV: [noun: alpha] [verb: beta] ecopy nw_verb ss_fnc rp:{AUX+NFV,

[cat: NP] [cat: NP’ X VT] delete_NP’_nw-cat S+IP, FV+NP}
[fnc: nil] [arg: nil] acopy ss_noun nw_arg

[ctn: nil] acopy ps_verb nw_ctp
acopy ps_prn nw_ctp
acopy nw_verb ps_ctn
increase IDY
copy_nw

[sur: Julia] [sur: ate]
[noun: Julia] [verb: eat]
[cat: nm] [cat: n’ a’ v]
[sem: f] [sem: past]
[mdr:] [mdr:]
[fnc:] [arg:]
[idy: +1] [ctn:]
[prn:] [ctp:]

[prn:]

The ss- and the nw-pattern are positioned above the ss- and the nw-proplets (level
alignment, cf. B.3.1). Matching is successful. The variable alpha is bound to the
value Julia, the restricted variable NP is bound to the value nm (for name), etc.

This binding of variables at the grammar level to values at the language level is the
precondition for performing the operations of the rule. For example, the operation
acopy ss_noun nw_arg specifies that the value of the noun attribute in the ss
should be copied into the arg attribute of the nw. By binding the variable alpha at
the grammar level to the constant value Julia at the language level, the copying
operation defined at the grammar level can be performed at the language level. The
result of the rule operations is shown in the sentence start of the next composition:

B.4.2 JSLIM DISPLAY OF A RULE APPLICATION

3.13
FV+NP: [verb: beta] [noun: alpha] delete_NP’_ss-cat rp:{DET+NN,

[cat: NP’ X VT] [cat: Y Np] ecopy ss_verb nw_fnc DET+ADN,
[arg:] [fnc: nil] acopy nw_noun ss_arg FV+NP, S+IP}

increase IDY
copy_nw
copy_ss

B.4 Rule Application and the Basic Structure of the LA-Hear Motor 329

[sur:] [sur: a]
[verb: eat] [noun: n_1]
[cat: a’ v] [cat: sn’ snp]
[sem: past] [sem: indef]
[mdr:] [mdr:]
[arg: Julia] [fnc:]
[ctn:] [idy: +1]
[ctp:] [prn:]
[prn: 7]
[wrn: 2]

The prn value and the wrn attribute are added by the control structure of the motor.
The nw proplet eat of the previous composition B.4.1 now serves as the ss. The oper-
ations of the previous composition have (i) canceled the nominative valency in the cat
attribute and (ii) added the value Julia to the arg attribute.

The interaction of the input, the motor, and the LA-hear grammar may shown
schematically as follows:

B.4.3 STEPPING THROUGH THE OPERATIONS OF THE LA-HEAR MOTOR

apply start state definition
derive states

final statescall
check final states

form Cartesian product

apply rules
derive states

call lexicon

call lexicon
call rule package content

call start state definition

call rule definitions

1
2
3
4
5
6
7
8
9

10
11
12

loop

word surface

word surface

input motor grammar

In line 1, the initial word surface is fed into the system. This starts the LA-hear mo-
tor by triggering lexical lookup, resulting in a set of initial proplets (analyzed word
readings). In line 2, the start state definition is called from the grammar. In line 3, it is
applied to each element in the set of initial proplets (cf. B.1.1). In line 4, this results in
a set of states, whereby each state is an ordered pair consisting of a rule package name
and a proplet representing a reading of the initial word form (cf. B.1.3). In line 5, the
next word arrives, triggering lexical lookup (cf. B.3.3); this results in a set of proplets
representing lexical readings. In line 6, the rule packages are unpacked (cf. B.3.4).
In line 7, the Cartesian product is formed (cf. B.3.5); each of its elements consists
of a rule name, a sentence start (set of proplets), and a next word (single proplet). In
line 8, the rule names are replaced by the actual rule definitions. In line 9, each rule
in the Cartesian product is applied to its sentence start and its next word. In line 10,
this results in a set of states and causes the intake of another next word (line 5). The
loop between lines 5 and 10 continues until there is no next word available. When

330 B. Declarative Description of the Motor Procedure

this happens, the final state definition is called from the grammar (line 11). In line 12,
the final state definition is applied to the current set of states, distinguishing between
complete and incomplete well-formed expressions.

B.5 Operations

The operations of a rule interact closely with the specification of its patterns. Assume,
for example, that the sentence start of a composition consists of a sequence of five
noun proplets at the language level and a sequence of two noun patterns at the gram-
mar level. Then the correlation between patterns and proplets can be controlled via
the agreement of the attributes and the compatibility of their values.

For example, the following two patterns each fit only one of the five proplets at the
language level, assuming that the constant m is in the restriction set of the binding
variable M and the constant n is in the restriction set of binding variable N.

B.5.1 CORRELATION OF PATTERNS AND PROPLETS

r-i:

⎡
⎢⎣

noun: α
cat: M
...
prn: i

⎤
⎥⎦

⎡
⎢⎣

noun: β
cat: N
...
prn: i

⎤
⎥⎦

⎡
⎢⎣

noun: k1
cat: a
...
prn: 23

⎤
⎥⎦

⎡
⎢⎣

noun: k2
cat: m
...
prn: 23

⎤
⎥⎦
⎡
⎢⎣

noun: k3
cat: b
...
prn: 23

⎤
⎥⎦
⎡
⎢⎣

noun: k4
cat: n
...
prn: 23

⎤
⎥⎦

⎡
⎢⎣

noun: k5
cat: c
...
prn: 23

⎤
⎥⎦

In addition to an unambiguous specification of the proplets and the attributes, opera-
tions sometimes require reference to a particular value of an attribute. For this, regular
expressions with variables and constants are used at the grammar level. For example,
if an attribute at the language level has the values a b c d, the value d may be re-
ferred to at the grammar level with the expression X D (last value), with X D Y (in any
position), or X d Y (using the constant d instead of the restricted variable D).

The following descriptions of the operations (see also 11.4.2) present (i) the ss-
pattern, the nw-pattern, and the operation at the grammar level, and (ii) the corre-
sponding attribute–value pairs at the language level. The result of the operation is
shown at the language level to the right of the ‘⇒’, directly below the formulation of
the operation.

B.5.2 CANCELING OF VALENCY POSITIONS

ss nw operation
grammar level: [cat: X NP’ Y] [cat: NP] delete NP’ ss.cat

language level: [cat: a b np’ c] [cat: np] ⇒[cat: a b c] [cat: np]

B.5 Operations 331

ss nw operation
grammar level: [cat: NP] [cat: X NP’ Y] delete NP’ nw.cat

language level: [cat: np] [cat: a b np’ c] ⇒[cat: np] [cat: a b c]

Based on the restriction sets and agreement conditions of the binding variables NP and
NP’ (cf. preamble of LA-hear.2, 13.2.2 and 13.2.3), proper agreement between the
values corresponding to NP and NP’ at the language level is checked automatically as
an essential part of matching and thus as a precondition for executing the operation.

B.5.3 ADDITIVE COPYING (acopy)

ss nw operation
grammar level: [noun: α] [arg: X] acopy ss.noun nw.arg

language level: [noun: John][arg: Julia] ⇒[noun: John] [arg: Julia John]

ss nw operation
grammar level: [arg: X] [noun: α] acopy α ss.arg:1

language level: [arg: Julia] [noun: John] ⇒[arg: John Julia] [noun: John]

As a default, the operation acopy adds the copied value at the end of the target slot. It
is also possible to specify the position, using the numbers 1, 2, 3, etc., and –1, –2, –3,
etc., in the target attribute, whereby 1 stands for the first position from the left, while
–1 stands for the first position from the right, and accordingly for 2, –2, 3, –3, etc.

B.5.4 EXCLUSIVE COPYING (ecopy)

ss nw operation
grammar level: [verb: α] [fnc:] ecopy α nw.fnc

language level: [verb: know][fnc:] ⇒[verb: know] [fnc: know]

ss nw operation
grammar level: [fnc:] [verb: α] acopy nw.verb ss.fnc

language level: [fnc:] [verb: know] ⇒[fnc: know] [verb: know]

ecopy has no target position (in contradistinction to acopy) because the target attribute
must have the value NIL by definition. Note that the value to be copied may be speci-
fied as a variable, e.g., α, or by means of a proplet.attribute, e.g., nw.verb.

B.5.5 RAISING OR LOWERING NUMERICAL VALUES (increment – decrement))

ss operation
grammar level: [idy: N] increment ss.idy

language level: [idy: 11] ⇒[idy: 12]

332 B. Declarative Description of the Motor Procedure

The operations increment and decrement each refer to a single proplet only, like delete.
If the sentence start at the grammar level consists of several patterns, the proplet in
question is specified using the word number (wrn: d), for example, acopy ss-d.noun
nw.arg instead of acopy ss.noun nw.arg (cf. B.5.1).

The automatic representation of the derivation by JSLIM does not explicitly show
the results of the operations (in contradistinction to B.5.2–B.5.5). They are specified
implicitly, however, in the ss.proplets of the next composition (cf. B.4.2), and at the
end of the derivation in the presentation of the resulting proplets.

B.6 Basic Structure of the LA-Think and the LA-Think–Speak Motor

As in all LA-grammars, LA-think derivations are defined at two levels, (i) the gram-
mar level and (ii) the object level, whereby the connection between the two levels is
based on pattern matching and vertical variable binding. The object level of an LA-
think derivation is the context level.

The start state definition of an LA-think grammar applies to a context proplet in
the Word Bank – in contradistinction to an LA-hear grammar, in which the start state
definition applies to a language proplet provided by the lexicon.

B.6.1 APPLYING THE START STATE DEFINITION OF LA-think

grammar level: STS =def (<ss-pattern> rp1)
context level: <initial proplet>

The initial context proplet starting an LA-think derivation is selected by the agent’s
control structure. In JSLIM, where no autonomous control structure is available yet,
the initial proplet is chosen by the user by typing a verb-name at the prompt.

The successful application of the start state definition results in a state.

B.6.2 START STATE RESULTING FROM APPLYING LA-THINK STS DEFINITION

grammar level: (rp1

context level: <initial proplet>)

In JSLIM, the application of a start state is displayed as follows:

B.6.3 JSLIM DISPLAY OF AN LA-THINK START STATE APPLICATION (INPUT)

dbs2.DBS2-THINK> know
Think mode

1.
Start state: [verb: alpha] rp:{V_N_N}

[sur:]

B.6 Basic Structure of the LA-Think and the LA-Think–Speak Motor 333

[verb: know]
[cat: DECL]
[sem: pres]
[mdr:]
[arg: Julia John]
[ctn:]
[ctp:]
[prn: 8]
[wrdn: 4]

After the successful application of the start state definition, a proplet corresponding to
the next word must be selected. This is done by applying the rule(s) contained in the rp
to the initial proplet provided by the Word Bank, here the rule V_N_N. As explained
in Sect. 3.5, the proplet of an LA-think sentence start provides information which is
sufficient to retrieve (activate) one or more semantically related successor proplet(s).
For example, possible successors in B.6.3 are the proplets Julia and John.

To prevent the derivation from splitting into more and more parallel paths, the con-
trol structure must choose among the continuation alternatives arising at each point
of the navigation. For example, choosing the proplet Julia as the successor in B.6.3
constitutes a forward navigation (underlying an active sentence), while choosing the
proplet John constitutes a backward navigation (underlying a passive sentence).

The interaction between the input, the motor, and the LA-think grammar may be
summarized schematically as follows:

B.6.4 STEPPING THROUGH THE OPERATIONS OF THE LA-THINK MOTOR

apply start state definition
derive state
call rule package content

callinitial proplet 1 start state definition
2
3
4

call rule definitions5
6
7

9
8

10
final statescall

check final state

apply rules
derive states
select state

word bank

input motor grammar

In line 1, the initial proplet is activated, starting the LA-think motor. It calls the start
state definition from the grammar and applies it to the initial proplet (line 2). In line 3,
the start state is derived, consisting of a rule package and the initial proplet. In line 4,
the content of the rule package is called from the grammar. In line 5, the rule names
in the rule package are replaced by their actual definitions. In line 6, the rules are
applied to the input proplet, resulting in several successor states (line 7). In line 8, one
of the successor states is chosen, while the others are discarded. This constellation is
equivalent to that of line 3, such that the derivation loops back to line 4, continuing
the navigation. In the current implementation, the procedure stops in a state in which
no un-traversed successor proplets are available and accessible in the Word Bank. At

334 B. Declarative Description of the Motor Procedure

this point, the motor calls the definition of final states from the grammar (line 9) to
determine whether or not the navigation ended in a legal final state (line 10).

The LA-think motor is simpler than the LA-hear motor (cf. B.4.3). This is because
(i) the beginning of an LA-think derivation starts with a single proplet, while that of an
LA-hear derivation may start with several first word readings, (ii) LA-think finds the
successor proplets directly in the Word Bank, while LA-hear requires lexical lookup
of the next word, and (iii) LA-think applies the rules in a rule package to a single
proplet, while LA-hear applies the rules in a rule package to a set of ordered pairs.

If the agent is in the speaker mode, the LA-think navigation is combined with the
LA-speak realization. Thereby, the contextual input, the motor, and the LA-think and
LA-speak grammars interact as follows:

B.6.5 STEPPING THROUGH THE OPERATIONS OF THE LA-THINK–SPEAK MOTOR

call

call1
2
3
4

call5
6
7
8

word bank

LA think rule package content
LA think rule definitions

9 switch to LA speak

apply LA think start state definition
derive LA think state

apply LA think rules
derive LA think states
select LA think state

LA think start state definition

10 call LA speak start state definition
11 apply LA speak start state definition
12 derive LA speak state
13 call
14 call

LA speak rule package content
LA speak rule definitions

15 apply LA speak rules
16 derive LA speak state
17 switch to LA think

call final LA speak states
19
18

check LA speak final state

initial proplet

input motor grammar

Up to line 8, the LA-think–speak motor is the same as the LA-think motor. However,
while the LA-think motor provides an alternative between (i) looping back to line 4
and (ii) exiting, the LA-think–speak motor provides an alternative between (i) looping
back to line 4 and (ii) switching to LA-speak (line 9).

If LA-speak has not been used before, the LA-speak start state definition is called
from the grammar (line 10) and applied to one of the proplets activated by LA-think
(line 11). The derivation of an LA-speak start state in line 12 does not yet result in the
utterance of a surface. This happens in lines 13, 14, and 15.

If LA-speak has been used before, the derivation jumps from line 9 to line 13. Ei-
ther way, after deriving an LA-speak state in line 16, there is an alternative between
(i) looping back to line 13 to produce another surface, (ii) switching to LA-think to
continue the navigation (return to line 4), and (iii) exiting (lines 18 and 19).

C. Glossary

C.1 Proplet Attributes

Cf. 4.1.2, 11.2.4, 11.2.5, and B.4.2.

attribute: full name: value(s):

adj adjective modifiers in adnominal and adverbial use
arg argument the nouns belonging to a verb
cat category category segments specifying combinatorial properties
fnc functor the verb belonging to a noun
idy identity integer indicating whether two nouns are distinct or not
mdd modified noun, verb, or adjective which a modifier modifies
mdr modifier adjective modifying a noun, a verb, or an adjective
nc next conjunct proposition number and verb of the next proposition
noun noun symbols, indexicals, names, and substitution variables
pc previous conjunct proposition number and verb of the previous proposition
pcn punctuation punctuation signs ‘.’, ‘?’, and ‘!’
prn proposition number integer holding the proplets of a proposition together
sem semantics semantic segments specifying noncombinatorial properties
sur surface surface of a word form
trc transition counter sequence of integers for keeping track of how often

a proplet in the Word Bank has been traversed
verb verb finite and nonfinite verbs, auxiliaries, and modals
wrn word number integer for numbering next word proplets

C.2 Proplet Values

Cf. 11.2.2, 11.2.3, 13.1.13, and 13.1.14.

value: explanation: attribute:

a_1, a_2, etc. substitution value for adjectives adj
a′ accusative valency position cat of a verb
adn adnominal cat of an adjective
adv adverbial cat of an adjective

336 C. Glossary

value: explanation: attribute:

be be, valency filler in nonfinite verb cat of a nonfinite verb
be′ be, valency position in auxiliary cat of an auxiliary
be-past past tense of auxiliary be sem of a verb
be-perf past participle of auxiliary be sem of a verb
be-pres present tense of auxiliary be sem of a verb
comp comparative sem of a adjective
d′ dative valency position cat of a verb
def definite sem of a determiner
decl declarative sentence cat of a verb
do′ do, valency position in auxiliary cat of an auxiliary
do-past past tense of auxiliary do sem of a verb
do-perf past participle of auxiliary do sem of a verb
do-pres pres tense of auxiliary do sem of a verb
exh exhaustive sem of a determiner
f femininum sem of a noun
hv have cat of an nonfinite verb
hv′ have, valency position in auxiliary cat of auxiliary
hv-past past tense of auxiliary have sem of a verb
hv-perf past participle of auxiliary have sem of a verb
hv-pres present tense of auxiliary have sem of a verb
imp imperative cat of a verb
indef indefinite sem of a noun
interrog interrogative cat of a verb
m masculinum sem of a noun
n_1, n_2, etc. substitution value for nouns noun of a determiner
n′ unrestricted nominative valency position cat of a verb
neg negated sem of a verb
ns1′ nominative singular first-person cat of a verb
n-s3′ nominative except singular third-person cat of a verb
nm proper name cat of a noun
nn noun filler unmarked for number cat of a noun
nn′ noun valency position unmarked for cat of a determiner

number
np 3rd pers. noun phrase unmarked for case cat of a determiner

and number
np-2 nominative plural first- and third-person cat of a pronoun
ns1 nominative singular first-person cat of a pronoun
ns13′ nominative singular first- and cat of a verb

third-person
ns3 nominative singular third-person cat of a noun
ns3′ singular third-person cat of a verb

C.3 Variables, Restrictions, and Agreement Conditions 337

value: explanation: attribute:

n-s13′ nominative except singular first- and cat of a verb
third-person

obq oblique (nonnominative) cat of a pronoun
past past tense sem of a verb
perf past participle sem of a verb
pl plural sem of a noun
pn plural noun cat of a noun
pn′ plural noun cat of a determiner
pnp third-person plural noun phrase cat of a determiner
pres present tense sem of a verb
pro_1, pro_2, etc. indexical of a nonreflexive pronoun noun
pro2 second-person unmarked for number cat of a pronoun

and case
prog progressive sem of a verb
rfl_1, rfl_2, etc. indexical of a reflexive pronoun noun
sg singular sem of a noun
sel selective sem of a determiner
sn singular noun cat of a noun
sn′ singular noun cat of a determiner
snp third-person singular noun phrase cat of a determiner
sup superlative sem of a adjective
v verb, unmarked for sentence mood cat of a verb
v′ verb unmarked for sentence mood cat of a punctuation mark
v_1, v_2, etc. substitution value for verbs verb
vi verb, marked for interrogative cat of a verb
vimp verb, marked for imperative cat of a verb

C.3 Variables, Restrictions, and Agreement Conditions

C.3.1 BINDING VARIABLES, cf. 4.1.2, 11.2.4, 11.2.5, and 15.6.1.

variables: explanation: restriction set:

α, β, etc. for representing individual concepts Julia, sleep, young, etc.
A_n simultaneous substitution variable for adj. a_1, a_2, a_3, . . .
ADJ adjective adj, adn, adv
ADV adverbial adj, adv
ADN adnominal adj, adn
AUX auxiliary valency filler do, hv, be
AUX′ auxiliary valency position do′, hv′, be′

i, j, k integer values of the prn and idy attributes 1, 2, 3, . . .

338 C. Glossary

variables: explanation: restriction set:

N noun filler nn, sn, pn
N′ noun valency position

nn′, sn′, pn′

N_n simultaneous substitution variable for noun n_1, n_2, n_3, . . .
NP noun phrase filler pro2, nm, ns1, ns3, np-2,

snp, pnp, np, obq
NP′ noun phrase valency position n′, n-s3′, ns1′, ns3′,

ns13′, n-s13′, d′, a′

OBQ oblique noun phrase filler snp, pnp, np, obq
OBQ′ oblique noun phrase valency position D’, A’
PREP preposition on, in, above, below, ...
PRO_n variable for nonreflexive pronoun pro_1, pro_2, etc.
RFL_n variable for a reflexive pronoun rfl_1, rfl_2, etc.
SM sentence mood decl, interrog, imp
TEMP tempus past, past/perf
V_n simultaneous substitution variable for verb v_1, v_2, v_3, . . .
VT verb type filler v, vi, vimp
VT′ verb type valency position v’, vi’, vimp’
X, Y, Z .?.?.?.? (arbitrary sequence up to length 4) none

C.3.2 REPLACEMENT VARIABLES, cf. 4.1.4, 5.1.2, 5.1.8, and 5.1.9.

variables: explanation: restriction set:

RA.n replace-attribute variable noun, adj, verb
RV.n replace-value variable core values of lexical items

C.3.3 LOADING VARIABLES, cf. 11.5.2, 11.5.3, 11.5.4, 13.3.8, 13.4.3, 13.4.6,
13.5.1, and 13.5.3.

variables: full name: restriction set:

PC previous conjunct proposition number integer
PCV previous conjunct verb core value of verb
NCV next conjunct verb core value of verb

C.3.4 AGREEMENT CONDITIONS

Cf. 11.2.3 and 13.2.3.

if AUX′ = do′, then AUX = n-s3′

if AUX′ = hv′, then AUX ε {hv, n′}
if AUX′ = be′, then AUX = be

C.4 Abstract Surfaces 339

if N′ = nn′, then N ε {nn, sn, pn}
if N′= sn′, then N ε {nn, sn}
if N′= pn′, then N ε {nn, pn}

if NP ε {nm, snp}, then NP′ ε { n′, ns3′, ns13′, d′, a′}
if NP = ns1, then NP′ ε {n′, n-s3′, ns1′, ns13′}
if NP = ns3, then NP′ ε {ns3′, ns13′}
if NP = np-2, then NP′ ε { n′, n-s3′}
if NP = np, then NP′ ε {n′, ns3′, n-s3′, n-s13′ , d′, a′}
if NP = obq, then NP′ ε {d′, a′}
if NP = pnp, then NP′ ε {n′, n-s3′, n-s13′, d′, a′}
if NP = pro2, then NP′ ε {n′, n-s3′, n-s13′, d′, a′}

C.4 Abstract Surfaces

Cf. 3.5.3, 6.2.2, 6.3.2, 6.3.4, 6.4.2, etc.

surface: full name:

an adnominal adjective
av adverbial adjective
ax auxiliary
cc coordinating conjunction
d determiner
fv finite verb
n proper name
nn noun
nv nonfinite verb
sc subordinating conjunction
wh relative pronoun
p punctuation sign
pp preposition

C.5 Rule Names

C.5.1 LA-hear, cf. 11.4.1, 13.2.4, and 15.6.2.

rule name: paraphrase:

AUX+NFV auxiliary plus nonfinite verb
ADV+NOM adverbial adjective plus nominative
ADVNOM+FV adverbial–nominative combination plus finite verb
DET+ADN determiner plus adnominal adjective

340 C. Glossary

rule name: paraphrase:

DET+INT determiner plus intensifier
DET+NN determiner plus noun
FV+NP finite verb plus noun phrase
INT+ADJ intensifier plus adjective
IP + START interpunctuation sign plus start of next sentence
NOM+ADV nominative plus adverbial adjective
NOM+FV nominative plus finite verb
NP+PREP noun phrase plus preposition
PREP+ADN preposition plus adnominal adjective
PREP+INT preposition plus intensifier
PREP+NN preposition plus noun
PREP+NP preposition plus noun phrase
PREPP+PREP prepositional phrase plus preposition
S+IP sentence plus interpunctuation sign
V+ADV verb plus adverbial adjective
V+INT verb plus intensifier

C.5.2 LA-think, cf. 12.1.1 and 14.1.1.

rule name: paraphrase:

N_A_N noun_adnominal_noun navigation
N_A_V noun_adnominal_verb navigation
V_N_N verb_noun_noun navigation
V_N_V verb_noun_verb navigation
V_V_V verb_verb_verb navigation

C.5.3 LA-speak, cf. 12.4.1 and 14.2.1.

rule name: paraphrase: lexicalization function

-ADN realizing an adnominal adjective lex-an
-AUX realizing an auxiliary lex-ax
-DET realizing a determiner lex-d
-FVERB realizing a finite verb lex-fv
-NoP realizing a name or a pronoun lex-n
-NOUN realizing a noun lex-nn
-NVERB realizing a nonfinite verb lex-nv
-STOP realizing a full-stop lex-p

C.6 List of Analyzed Examples 341

C.6 List of Analyzed Examples

C.6.1 INTRAPROPOSITIONAL FUNCTOR–ARGUMENT STRUCTURE

1. Julia knows John. (3.4.2; 3.5.3)
2. The man gave the child an apple. (6.2.1; 6.2.2)
3. Every man loves a woman. (6.2.7)
4. The little black dog barked. (6.3.1; 6.3.2)
5. Fido barked loudly. (6.3.3; 6.3.4)
6. Fido has been barking. (6.4.1; 6.4.2)
7. The book was read by John. (6.5.1; 6.5.2)
8. Julia ate the apple on the table. (6.6.2; 6.6.4)

C.6.2 EXTRAPROPOSITIONAL FUNCTOR–ARGUMENT STRUCTURE

9. That Fido barked amused Mary. (7.2.1; 7.2.2)
10. John heard that Fido barked. (7.3.1; 7.3.2)
11. The dog which saw Mary quickly barked. (7.4.1; 7.4.2; 7.4.3)
12. The little dog which Mary saw barked. (7.5.1; 7.5.2)
13. When Fido barked Mary smiled. (7.6.1; 7.6.2)

C.6.3 INTRAPROPOSITIONAL COORDINATION

14. The man, the woman, and the child slept. (8.2.1; 8.2.2)
15. John bought an apple, a pear, and a peach. (8.2.4; 8.2.5)
16. John bought, cooked, and ate the pizza. (8.3.2; 8.3.3)
17. John loves a smart, pretty, and rich girl. (8.3.4)
18. John talked slowly, gently, and seriously. (8.3.5)
19. Bob ate an apple, walked his dog, and read a paper. (8.4.1; 8.4.5)
20. Bob bought, peeled, and ate an apple, a pear, and a peach (8.4.4)
21. Bob ate an apple, Jim a pear, and Bill a peach. (8.5.1; 8.5.4)
22. Bob, Jim, and Bill ate an apple, a pear, and a peach. (8.5.3)
23. Bob bought, Jim peeled, and Bill ate the peach. (8.6.1; 8.6.4)
24. Bob, Jim, and Bill bought, peeled, and ate the peach. (8.6.3)

C.6.4 EXTRAPROPOSITIONAL COORDINATION

25. Julia sang. Then Sue slept. John read. (9.1.1)
26. Sue slept. John bought, cooked, and ate a pizza. Julia sang. (9.1.2)
27. Julia slept. John sang. (9.2.1; 9.2.2)
28. That the man, the woman, and the child slept surprised Mary. (9.3.1, 1)
29. That the man bought, cooked, and ate the pizza surprised Mary. (9.3.1, 2)
30. That Bob ate an apple, a pear, and a peach, surprised Mary. (9.3.1, 3)

342 C. Glossary

31. Mary saw that the man, the woman and the child slept. (9.3.2, 1)
32. Mary saw that the man bought, cooked, and ate the pizza. (9.3.2, 2)
33. Mary saw that Bob bought an apple, a pear, and a peach. (9.3.2, 3)
34. Mary saw the man who bought, cooked, and ate the pizza. (9.3.3, 2)
35. Mary saw the man who bought an apple, a pear, and a peach. (9.3.3, 3)
36. Mary saw the pizza which Bob, Jim, and Bill ate. (9.3.4, 1)
37. Mary saw the pizza which the man bought, cooked, and ate. (9.3.4, 2)
38. Mary arrived after Bob, Jim, and Bill had eaten a pizza. (9.3.5, 1)
39. After Bob had bought, cooked, and eaten the pizza, Mary arrived. (9.3.5, 2)
40. Mary arrived after Bob had eaten an apple, a pear, and a peach. (9.3.5, 3)
41. That Bob ate an apple, walked his dog, and read a paper, amused Mary. (9.4.1, 1)
42. That Bob ate an apple, Jim a pear, and Bill a peach, amused Mary. (9.4.1, 2)
43. That Bob bought, Jim peeled, and Bill ate the peach, amused Mary. (9.4.1, 3)
44. Mary saw that Bob ate an apple, walked his dog, and read a paper. (9.4.2, 1)
45. Mary saw that Bob ate an apple, Jim a pear, and Bill a peach. (9.4.2, 2)
46. Mary saw that Bob bought, Jim peeled, and Bill ate the peach . (9.4.2, 3)
47. The man who ate an apple, walked his dog, and read a paper loves Mary. (9.4.3,

1)
48. Mary saw the peach which Bob bought, Jim peeled, and Bill ate. (9.4.4, 3)
49. Mary arrived after Bob had eaten an apple, walked his dog, and read a paper.

(9.4.5, 1)
50. After Bob had eaten an apple, Jim a pear, and Bill a peach, Mary arrived. (9.4.5,

2)
51. Mary arrived after Bob had bought, Jim had peeled, and Bill had eaten the peach.

(9.4.5, 3)
52. Julia is singing.STAR Susanne is dreaming.(STAR) (9.5.2, 1)
53. Julia is singing.STAR Susanne is dreaming.STA′R′

(9.5.2, 2)
54. Who is singing? STAR Julia.STA′R′

(9.5.2, 3; 9.5.3)
55. Who did John say that Bill believes that Mary loves? (9.5.6)
56. Peter left the house. Then Peter crossed the street. (9.6.1, 1)
57. Peter crossed the street. Before that Peter left the house. (9.6.1, 2)
58. Peter, who had left the house, crossed the street. (9.6.2, 1)
59. After Peter had left the house, he crossed the street. (9.6.2, 2)

C.6.5 INTRA- AND EXTRAPROPOSITIONAL COREFERENCE

60. Julia ate an apple. Then Julia took a nap. (10.1.2, 1)
61. Julia ate an apple. Then she took a nap. (10.1.2, 2)
62. %John shaved John. (10.1.2, 3)
63. John shaved himself. (10.1.2, 4; 10.2.3)
64. The man washed his hands, clipped his nails, and shaved himself. (10.1.2, 5)
65. That Mary had found the answer pleased her. (10.3.2)

C.6 List of Analyzed Examples 343

66. %She knew that Mary had found the answer. (10.3.3)
67. That she had found the answer pleased Mary. (10.3.4)
68. Mary knew that she had found the answer. (10.3.5)
69. Every farmer who owns a donkey beats it. (10.4.2)
70. %She was kissed by the man who loves the woman. (10.4.3)
71. The man who loves her kissed the woman. (10.4.4)
72. The woman was kissed by the man who loves her. (10.4.5)
73. When Mary returned she kissed John. (10.5.2)
74. %She kissed John when Mary returned. (10.5.3)
75. When she returned Mary kissed John. (10.5.4)
76. Mary kissed John when she returned. (10.5.5)
77. When Mary returned John kissed her. (10.5.8)
78. %John kissed her when Mary returned. (10.5.9)
79. When she returned John kissed Mary. (10.5.10)
80. John kissed Mary when she returned. (10.5.11)
81. The man who deserves it will get the prize he wants. (10.6.2)

C.6.6 EXTRAPROPOSITIONAL COORDINATION

82. Julia sleeps. John sings. Susanne dreams. (11.5.1–11.5.4; 12.2.1–12.2.4; 12.5.1–
12.5.4)

C.6.7 INTRAPROPOSITIONAL FUNCTOR–ARGUMENT STRUCTURE

83. The heavy old car hit a beautiful tree. The car had been speeding. A farmer gave
the driver a lift. (13.3.1–13.5.8; 14.1.4; 14.4.1–14.6.9)

C.6.8 ADNOMINAL AND ADVERBIAL MODIFIERS

84. Julia ate the apple on the table behind the tree in the garden. (15.1.14; 15.2.1–
15.2.8; 15.3.1; 15.3.2)

85. Julia ate the apple fast. (15.3.3; 15.3.4)
86. Julia ate the apple quickly on the table. (15.3.6)
87. Quickly Julia ate the apple. (15.3.7; 15.3.10)
88. On the table Julia ate the apple. (15.3.8)
89. Julia quickly ate the apple. (15.3.9)
90. On the table Julia quickly ate the apple. (15.3.11)
91. The very big table (15.4.4–15.4.6)
92. On the big table (15.4.7–15.4.9)
93. On the very big table (15.4.10–15.4.13)
94. Very quickly Julia ate the apple. (15.5.1–15.5.2)
95. Julia very quickly ate the apple. (15.5.3–15.5.4)
96. Julia ate the apple very quickly. (15.5.5–15.5.6)

344 C. Glossary

C.6.9 REALIZING BASIC WORD ORDERS FROM TWO-PLACE PROPOSITIONS

97. The girl could have eaten an apple. (A.2.4)
98. Could the girl have eaten an apple? (A.4.2)
99. Aß das Mädchen den Apfel? (A.4.3)

100. Könnte das Mädchen einen Apfel gegessen haben? (A.4.4)
101. Could the apple have been eaten by the girl? (A.5.2)

Concluding Remark

According to Brooks (2002, p. 5), robots with human capabilities will be a reality
by 2022. This raises the question of whether the computational reconstruction of nat-
ural language communication will be achieved (i) nonsymbolically on the basis of
statistics alone or (ii) by a symbolic, rule-based, functional framework like Database
Semantics (DBS), supplemented by statistics.

That statistics alone is not enough is shown by the following analogy:1 “Imagine
that the Martians came to Earth and modeled cars statistically: they would never run!”
In other words, frequency-based correlations are not sufficient for building a working
automobile. Instead, a detailed functional model of the combustion engine, the brakes,
the steering mechanism, the transmission, the differential, etc., is required – and sim-
ilarly for the computational reconstruction of natural language communication.

DBS has been designed to provide such a functional model by integrating

1. a traditional grammar approach based on the morpho-syntactic classification of
word forms and the analysis of valency, agreement, and word order,

2. a traditional logic approach based on the notions of reference, functor–argument
structure, coordination, coreference, and inference,

3. a modern database consisting of external interfaces, a data structure, and an algo-
rithm, and

4. the methodological principles of interface equivalence, input/output equivalence,
functional equivalence, and the incremental upscaling of an efficient (real-time)
implementation for verifying the declarative specification of the overall system.

These components have been combined here in the systematic reconstruction of the
robot’s auto-channel (cf. 1.4.3). The resulting system is only a beginning, however.
The many places in need of additional work are pointed out throughout the text.

1 Borrowed from FoCL’992, p. 40.

Bibliography

Abney, S. (1991) “Parsing by chunks,” in R. Berwick, S. Abney, and C. Tenny (eds.)
Principle-Based Parsing. Dordrecht: Kluwer Academic

Ágel, V. (2000) Valenztheorie. Tübingen: Gunter Narr

AIJ’01 = Hausser, R. (2001) “Database Semantics for natural language,” Artificial
Intelligence, 130.1:27–74

Ajdukiewicz, K. (1935) “Die syntaktische Konnexität,” Studia Philosophica 1:1–27

Anderson, J.R., and C. Lebiere (1998) The Atomic Components of Thought. Mahwah,
NJ: Lawrence Erlbaum

Austin, J.L. (1962) How to Do Things with Words. Oxford, England: Clarendon Press

Barsalou, L. (1999) “Perceptual symbol systems,” Behavioral and Brain Sciences
22:577–660

Bar-Hillel, Y. (1964) Language and Information. Selected Essays on Their Theory
and Application. Reading, MA: Addison-Wesley

Barwise, J., and J. Perry (1983) Situations and Attitudes. Cambridge, MA: MIT Press

Beaugrande, R.-A., and W.U. Dressler (1981) Einführung in die Textlinguistik. Tübin-
gen: Niemeyer

Berners-Lee, T., J. Hendler, and O. Lassila (2001) “The Semantic Web,” Scientific
American, May 17, 2001

Bertossi, L., G. Katona, K.-D. Schewe, and B. Thalheim (eds.) (2003) Semantics in
Databases. Berlin Heidelberg New York: Springer

Biederman, I. (1987) “Recognition-by-components: a theory of human image under-
standing,” Psychological Review 94:115–147

Bloomfield, L. (1933) Language, New York: Holt, Rinehart, and Winston

Bochenski, I. (1961) A History of Formal Logic. Notre Dame, Indiana: Univ. of Notre
Dame Press

348 Bibliography

Bransford, J.D., and Franks, J.J. (1971) “The abstraction of linguistic ideas,” Cogni-
tive Psychology 2:331–350

Bresnan, J. (ed.) (1982) The Mental Representation of Grammatical Relation. Cam-
bridge, MA: MIT Press

Bresnan, J. (2001) Lexical-Functional Syntax. Malden, MA: Blackwell

Brill, F. (1993) “Automatic grammar induction and parsing free text: a transforma-
tion-based approach,” in Proceedings of the 1993 European ACL, The Netherlands:
Utrecht

Brill, F. (1994) “Some advances in rule-based part of speech tagging,” AAAI 1994

Brooks, R.A. (2002) Flesh and Machines: How Robots Will Change Us. New York,
NY: Pantheon

Chang, Suk-Jin (1996) Korean. Philadelphia: John Benjamins

Carbonell, J.G., and R. Joseph (1986) “FrameKit+: a knowledge representation sys-
tem,” Carnegie Mellon Univ., Department of Computer Science

Charniak, E. (2001) “Immediate-Head parsing for language models,” Proceedings of
the 39th Annual Meeting of the Association for Computational Linguistics

Carpenter, B. (1992) The Logic of Typed Feature Structures, Cambrigde: Cambridge
Univ. Press

Choe, Jay-Woong, and R. Hausser (2006) “Handling quantifiers in database seman-
tics,” in Y. Kiyoki, H. Kangassalo, and M. Duží (eds.), Information Modelling and
Knowledge Bases XVII. Amsterdam: IOS Press Ohmsha

Choi, Key-Sun, and Gil Chang Kim (1986) “Parsing Korean: a free word-order lan-
guage,” Literary and Linguistic Computing 1.3:123–128

Chomsky, N. (1957) Syntactic Structures. The Hague: Mouton

Chomsky, N. (1995) The Minimalist Program. Cambridge, MA: MIT Press

Clark, H. H. (1996) Using Language. Cambridge, UK: Cambridge Univ. Press

CoL’89 = Hausser, R. (1989) Computation of Language, An Essay on Syntax, Seman-
tics, and Pragmatics in Natural Man-Machine Communication, Symbolic Compu-
tation: Artificial Intelligence, pp. 425, Berlin Heidelberg New York: Springer

Collins, M. J. (1999) Head-driven Statistical Models for Natural Language Parsing.
Univ. of Pennsylvania, Ph.D. Dissertation

Copestake, A., D. Flickinger, C. Pollard, and I. Sag (2006) “Minimal Recursion Se-
mantics: an introduction,” Research on Language and Computation 3.4:281–332

Croft, W. (1995) “Modern syntactic typology,” in M. Shibatani and T. Bynon (eds.)
Approaches to Language Typology, Oxford: Clarendon Press

Bibliography 349

Dauses, A. (1997) Einführung in die allgemeine Sprachwissenschaft: Sprachtypen,
sprachliche Kategorien und Funktionen. Stuttgart: Steiner

Déjean, H. (1998) Concepts et algorithmes pour la découverte des structures formelles
des langues. Thèse pour l’obtention du Doctorat de l’université de Caen

Dorr, B. (1993) Machine Translation: A View from the Lexicon. Cambridge, MA:
MIT Press

Earley, J. (1970) “An efficient context-free parsing algorithm,” Commun. ACM
13.2:94–102, reprinted in B. Grosz, K. Sparck Jones, and B.L. Webber (eds.) Read-
ings in Natural Language Processing (1986), Los Altos, CA: Morgan Kaufmann

Eberhard, K.M., M.J. Spivey-Knowlton, J.C. Sedivy, and M.K. Tanenhaus (1995)
“Eye movements as a window into real-time spoken language comprehension in
natural contexts,” Journal of Psycholinguistic Research 24.6:409–437

Elmasri, R., and S.B. Navathe (1989) Fundamentals of Database Systems. Redwood
City, CA: Benjamin-Cummings

Engel, U. (1991) Deutsche Grammatik. 2nd ed., Heidelberg: Julius Groos

Fillmore, C., P. Kay, L. Michaelis, and Ivan A. Sag (forthcoming) Construction
Grammar. Stanford: CSLI

Fischer, W. (2004) Implementing Database Semantics as an RDMS. Diplom Thesis,
Department of Computer Science, Universität Erlangen–Nürnberg

FoCL’99 = Hausser, R. (1999/2001) Foundations of Computational Linguistics,
Human–Computer Communication in Natural Language, 2nd ed., pp. 578, Berlin
Heidelberg New York: Springer

Frederking, R., T. Mitamura, E. Nyberg, and J. Carbonell (1997) “Translingual infor-
mation access,” presented at the AAAI Spring Symposium on Cross-Language Text
and Speech Retrieval

Frege, G. (1967) Kleine Schriften. I. Angelelli (ed.), Darmstadt: Wissenschaftliche
Buchgesellschaft

Gazdar, G., E. Klein, G. Pullum, and I. Sag (1985) Generalized Phrase Structure
Grammar. Cambridge, MA: Harvard Univ. Press

Geach, P.T. (1969) “Quine’s syntactical insights,” in D. Davidson and J. Hintikka
(eds.), Words and Objections, Essays on the Work of W. v. Quine. Dordrecht: Reidel

Geurts, B. (2002) “Donkey business,” Linguistics and Philosophy 25:129–156

Gibson, E. J. (1969) Principles of Perceptual Learning and Development. Englewood
Cliffs, NJ: Prentice Hall

Givòn, T. (1997) Grammatical Relations: A Functionalist Perspective. Amsterdam:
John Benjamins

350 Bibliography

Greenbaum, S., and R. Quirk (1990) A Student’s Grammar of English. London: Long-
man

Greenberg, J. (1963) “Some universals of grammar with particular reference to the
order of meaningful elements,” in J. Greenberg (ed.) Universals of Language. Cam-
bridge, MA: MIT Press

Grice, P. (1957) “Meaning,” Philosophical Review 66:377–388

Grice, P. (1965) “Utterer’s meaning, sentence meaning, and word meaning,” Founda-
tions of Language 4:1–18

Grosz, B., and C. Sidner (1986) “Attention, intentions, and the structure of discourse,”
Computational Linguistics 12.3:175–204

Halliday, M.A.K., and R. Hasan (1976) Cohesion in English. London: Longman

Hanrieder, G. (1996) Incremental Parsing of Spoken Language Using a Left-Associa-
tive Unification Grammar. Inaugural Dissertation, CLUE, Universität Erlangen–
Nürnberg [in German]

Hauser, M. D. (1996) The Evolution of Communication. Cambridge, MA: MIT Press

Hausser, R.: for references cited as SCG’84, NEWCAT’86, CoL’89, TCS’92,
FoCL’1999, AIJ’01, and L&I’05, see p. VIII above. For online papers and a list of
publications, see http://www.linguistik.uni-erlangen.de/de_contents/publications.php

Hausser, R. (2002a) “Autonomous control structure for artificial cognitive agents,”
in H. Kangassalo, H. Jaakkola, E. Kawaguchi, and T. Welzer (eds.) Information
Modeling and Knowledge Bases XIII, Amsterdam: IOS Press Ohmsha

Hausser, R. (2005b) “What if Chomsky were right?” Comments on the paper “Multi-
ple solutions to the logical problem of language acquisition” by Brian MacWhinney,
Journal of Child Language 31:919–922

Helfenbein, D. (2005) The Handling of Pronominal Coreference in Database Seman-
tics. MA-thesis, CLUE, Universität Erlangen–Nürnberg [in German]

Hellwig, P. (2003) “Dependency unification grammar,” in V. Ágel, L.M. Eichinger,
H.-W. Eroms, P. Hellwig, H.-J. Heringer, and H. Lobin (eds.) Dependency and Va-
lency. An International Handbook of Contemporary Research, Berlin: Mouton de
Gruyter

Herbst, T. (1999) “English valency structures – a first sketch,” Erfurt Electronic Stud-
ies in English (EESE) 6/99

Herbst T., D. Heath, I. F. Roe, and D. Götz (2004) A Valency Dictionary of English:
A Corpus-Based Anaysis of the Complementation Patterns of English Verbs, Nouns,
and Adjectives. Berlin: Mouton de Gruyter

Bibliography 351

Heß, K., J. Brustkern, and W. Lenders (1983) Maschinenlesbare Deutsche Lexika.
Dokumentation – Vergleich – Integration. Tübingen: Niemeyer

Hubel, D.H., and T.N. Wiesel (1962) “Receptive fields, binocular interaction, and
functional architecture in the cat’s visual cortex,” Journal of Physiology 160:106–
154

Hudson, R. A. (1976) “Conjunction reduction, gapping and right-node-raising,” Lan-
guage 52.3:535–562

Hudson, R. A. (1991) English Word Grammar. Oxford: Blackwell.

Hurford, J., M. Studdert-Kennedy, and C. Knight (1998) Approaches to the Evolution
of Language. Cambridge, England: Cambridge Univ. Press

Ickler, T. (1994) “Zur Bedeutung der sogenannten ‘Modalpartikeln’,” in Sprachwis-
senschaft 19.3-4:374–404

Jackendoff, R. S. (1972) “Gapping and related rules,” Linguistic Inquiry 2:21–35

Jacobson, P. (2000) “Paycheck pronouns, Bach–Peters sentences, and variable-free
semantics,” in Natural Language Semantics 8.2:77–155

Jezzard, P., P.M. Matthews, and S. Smith (2001) Functional Magnetic Resonance
Imaging: An Introduction to Methods. Oxford: Oxford Univ. Press

Kamp, J.A.W., and U. Reyle (1993) From Discourse to Logic. Dordrecht: Kluwer

Kasami. T. (1965) “An efficient recognition and syntax algorithm for context-free
languages,” Technical Report AFCLR-65-758

Kay, M. (1980) “Algorithm schemata and data structures in syntactic processing,”
reprinted in B.J. Grosz, K. Sparck Jones, and B. Lynn Webber (eds.) Readings in
Natural Language Processing (1986). San Mateo, CA: Morgan Kaufmann, 35–70

Kempson, R., and Cormack, A. (1981) “Ambiguity and quantification,” Linguistics
and Philosophy 4:259–309

Kirkpatrick, K. (2001) “Object recognition,” Chapter 4 of G. Cook (ed.) Avian
Visual Cognition. Cyberbook in cooperation with Comparative Cognitive Press,
http://www.pigeon.psy.tufts.edu/avc/toc.htm

Kučera, H., and W.N. Francis (1967) Computational Analysis of Present-Day En-
glish. Providence, Rhode Island: Brown Univ. Press

Kycia, A. (2004) An Implementation of Database Semantics in Java. MA-thesis,
CLUE, Universität Erlangen–Nürnberg [in German]

L&I’05 = Hausser, R. (2005) “Memory-Based pattern completion in Database Seman-
tics,” Language and Information, 9.1:69–92, Seoul: Korean Society for Language
and Information

352 Bibliography

Lakoff, G., and M. Johnson (1980) Metaphors We Live By. Chicago: The Univ. of
Chicago Press

Lakoff, G., and S. Peters (1969) “Phrasal conjunction and symmetric predicates,” in
D.A. Reibel and S. Schane (eds.), 113–142

Langacker, R. (1969) “Pronominalization and the chain of command,” in D.A. Reibel
and S. A. Schane (eds.), 160–186

Lee, Kiyong (2002) “A simple syntax for complex semantics,” in Language, Infor-
mation, and Computation, Proceedings of the 16th Pacific Asia Conference, 2–27

Lee, Kiyong (2004) “A computational treatment of some case-related problems in Ko-
rean,” Perspectives on Korean Case and Case Marking, 21–56, Seoul: Taehaksa

Lees, R.B., and E.S. Klima (1963) “Rules for English pronominalization,” Language
39:17–28

Lenders, W. (1990) “Semantische Relationen in Wörterbuch-Einträgen – Eine Com-
puteranalyse des DUDEN-Universalwörterbuchs,” Proceedings of the GLDV-Jahres-
tagung 1990, 92–105

Lenders, W. (1993) “Tagging – Formen und Tools,” Proceedings of the GLDV-Jahres-
tagung 1993, 369–401

Leśniewski, S. (1929) “Grundzüge eines neuen Systems der Grundlagen der Ma-
thematik,” Warsaw: Fundamenta Mathematicae 14:1–81

LIMAS-Korpus (1973) Mannheim: Institut für Deutsche Sprache.

Liu, Haitao (2001) “Some ideas on natural language processing,” in Terminology
Standardization and Information Technology 1:23–27

Lobin, H. (1993a) “Linguistic perception and syntactic structure,” in E. Hajicova (ed.)
Functional Description of Language, Charles Univ., Prague

Lobin, H. (1993b) Koordinations-Syntax als prozedurales Phänomen. Tübingen:
Gunter Narr

MacWhinney, B. (1987) “The Competition Model,” in B. MacWhinney (ed.) Mecha-
nisms of Language Acquisition, 249–308, Hillsdale, NJ: Lawrence Erlbaum

MacWhinney, B. (ed.) (1999) The Emergence of Language from Embodiment. Hills-
dale, NJ: Lawrence Erlbaum

MacWhinney, B. (2004) “A multiple process solution to the logical problem of lan-
guage acquisition,” Journal of Child Language 31:883–914

MacWhinney, B. (2005a) “Item-based constructions and the logical problem,” ACL
2005, 46–54

MacWhinney, B. (2005b) “The emergence of grammar from perspective,” in D.
Pecher and R. A. Zwaan (eds.), The Grounding of Cognition: The Role of Perception

Bibliography 353

and Action in Memory, Language, and Thinking, 198-223, Mahwah, NJ: Lawrence
Erlbaum

März, B. (2005) The Handling of Coordination in Database Semantics. MA-thesis,
CLUE, Universität Erlangen–Nürnberg [in German]

Mann, W.C., and S. A. Thompson (eds.) 1993 Discourse Description: Diverse Lin-
guistic Analyses of a Fund-Raising Text. Amsterdam: John Benjamins

Matthews, P.M., J. Adcock, Y. Chen, S. Fu, J. T. Devlin, M. F. S. Rushworth, S. Smith,
C. Beckmann, and S. Iversen (2003) “Towards understanding language organisation
in the brain using fMRI” in Human Brain Mapping 18.3: 239–247

Mel’čuk, I. A. (1988) Dependency Syntax: Theory and Practice. New York: State
Univ. of New York Press

Mel’čuk, I. A., and A. Polguère (1987) “A formal lexicon in the meaning-text theory,”
in Computational Linguistics 13.3-4:13–54

Meyer-Wegener, K. (2003) Multimediale Datenbanken: Einsatz von Datenbanktech-
nik in Multimedia-Systemen. 2nd ed., Wiesbaden: Teubner

Montague, R. (1974) Formal Philosophy. New Haven: Yale Univ. Press

Neisser, U. (1964). “Visual search,” Scientific American 210.6:94–102

NEWCAT’86 = Hausser, R. (1986) NEWCAT: Parsing Natural Language Using Left-
Associative Grammar, Lecture Notes in Computer Science 231, pp. 540, Berlin
Heidelberg New York: Springer

Newton, I. (1687/1999) The Principia: Mathematical Principles of Natural Philoso-
phy. I.B. Cohen and A. Whitman (Translators), Berkeley: Univ. of California Press.

Nichols, J. (1992) Linguistic Diversity in Space and Time. Chicago: The University
of Chicago Press

Nyberg, E.H., and T. Mitamura (2002) “Evaluating QA systems on multiple dimen-
sions,” paper presented at the LREC Workshop on Resources and Evaluation for
Question Answering Systems, Las Palmas, Canary Island, Spain, May 28, 2002

Nyberg, E. (1988) “The FrameKit User’s Guide, Version 2.0,” CMU-CMT-MEMO

Östman, J.-O., and M. Fried (eds.) (2004) Construction Grammars: Cognitive Ground-
ing and Theoretical Extensions. Amsterdam: John Benjamins

van Oirsouw, R. R. (1987) The Syntax of Coordination. London: Croom Helm

Peirce, C.S. Collected Papers. C. Hartshorne and P. Weiss (eds.), Cambridge, MA:
Harvard Univ. Press. 1931–1935

Pereira, F., and S. Shieber (1987) Prolog and Natural-Language Analysis. Stanford:
CSLI

354 Bibliography

Peters, S., and Ritchie, R. (1973) “On the generative power of transformational gram-
mar,” Information and Control 18:483–501

Piaget, J. (1926) The Language and Thought of the Child. London: Routledge

Pollard, C., and I. Sag (1987) Information-Based Syntax and Semantics. Vol. I, Fun-
damentals. Stanford: CSLI

Pollard, C., and I. Sag (1994) Head-Driven Phrase Structure Grammar. Stanford:
CSLI

Portner, P. (2005) “The semantics of imperatives within a theory of clause types,” in
Kazuha Watanabe and R.B. Young (eds.), Proceedings of Semantics and Linguistic
Theory 14. Ithaca, NY: CLC Publications

Post, E. (1936) “Finite combinatory processes – formulation I,” Journal of Symbolic
Logic I:103–105

Quillian, M. (1968) “Semantic memory,” in M. Minsky (ed.), Semantic Information
Processing, 227–270, Cambridge, MA: MIT Press

Quine, W. v. O. (1960) Word and Object. Cambridge, MA: MIT Press

Quirk, R., J. Svartvik, G. Leech, and S. Greenbaum (1985) A Comprehensive Gram-
mar of the English Language. New York: Longman

Reibel, D.A., and S. A. Schane (eds.) (1969) Modern Studies of English. Englewood
Cliffs, NJ: Prentice Hall

Reiter, E., and R. Dale (1997) “Building applied natural-language generation sys-
tems,” Journal of Natural-Language Engineering 3:57–87

Rosch, E. (1975) “Cognitive representations of semantic categories,” Journal of Ex-
perimental Psychology, General 104:192–253

Ross, J.R. (1969) On the cyclic nature of English pronominalization, in D.A. Reibel
and S. A. Schane (eds.), 187–200

Ross, J. R. (1970) “Gapping and the order of constituents,” in Bierwisch, M., and K.
E. Heidolph (eds.) Progress in Linguistics. The Hague: Mouton

Roy, D. (2003) “Grounded spoken language acquisition: experiments in word learn-
ing,” IEEE Transactions on Multimedia 5.2:197–209

Russell, B. (1905) “On denoting,” Mind 14:479–493

Sag, I., G. Gazdar, T. Wasow, and S. Weisler (1985) “Coordination and how to dis-
tinguish categories,” Natural Language and Linguistic Theory 3:117–171

Schank, R., and R. Abelson (1977) Scripts, Plans, Goals, and Understanding: An
Inquiry into Human Knowledge Structures. Hillsdale, NJ: Lawrence Erlbaum

Bibliography 355

Saussure, F. de (1972) Cours de linguistique générale. Édition critique préparée par
Tullio de Mauro, Paris: Éditions Payot

SCG’84 = Hausser, R. (1984) Surface Compositional Grammar, pp. 274, München:
Wilhelm Fink Verlag

Searle, J.R. (1969) Speech Acts. Cambridge, England: Cambridge Univ. Press

Sedivy, J.C., M.K. Tanenhaus, C.G. Chambers, and G.N. Carlson (1999) “Achieving
incremental semantic interpretation through contextual representation,” Cognition
71:109–147

Shieber, S. (ed.) (2004) The Turing Test. Verbal Behavior as the Hallmark of Intelli-
gence. Cambridge, MA: MIT Press

Sowa, J.F. (1984) Conceptual Structures. Reading, MA: Addison-Wesley

Sowa, J. F. (2000) Conceptual Graph Standard. Revised version of December 6,
2000. http://www.bestweb.net/ sowa/cg/cgstand.htm

Spivey, M.J., M.K. Tanenhaus, K.M. Eberhard, and J.C. Sedivy (2002) “Eye move-
ments and spoken language comprehension: effects of visual context on syntactic
ambiguity resolution,” Cognitive Psychology 45: 447–481

Stassen, L. (1985) Comparison and Universal Grammar, Oxford: Basil Blackwell

Steedman, M. (2005) “Surface-Compositional scope-alternation without existential
quantifiers,” Draft 5.1, Sept 2005

Steels, L. (1999) The Talking Heads Experiment. Antwerp: limited pre-edition for the
Laboratorium exhibition

Stein, N. L., and Trabasso, T. (1982). “What’s in a story? An approach to comprehen-
sion,” in R. Glaser (ed.), Advances in the Psychology of Instruction. Vol. 2, 213–268.
Hillsdale, NJ: Lawrence Erlbaum

Tarski, A. (1935) “Der Wahrheitsbegriff in den Formalisierten Sprachen,” Studia
Philosophica I:262–405

Tarski, A. (1944) “The semantic concept of truth,” in Philosophy and Phenomeno-
logical Research 4:341–375

TCS’92 = Hausser, R. (1992) “Complexity in Left-Associative Grammar,” Theoreti-
cal Computer Science, 106.2:283-308

Tesnière, L. (1959) Éléments de syntaxe structurale. Paris: Editions Klincksieck

Thórisson, K. (2002) “Natural turn-taking needs no manual: computational theory
and model, from perception to action,” in B. Granström, D. House, and I. Karlsson
(eds.) Multimodality in Language and Speech System, 173–207, Dordrecht: Kluwer

Tomasello, M. (1999) The Cultural Origin of Human Cognition. Cambridge, MA:
Harvard Univ. Press

356 Bibliography

Tomita, M. (1986) Efficient Parsing for Natural Language. Boston: Kluwer Academic

Tugwell, D. (1998) Dynamic Syntax. Ph.D. Thesis, Univ. of Edinburgh

Twiggs, M. (2005) The Handling of Passive in Database Semantics. MA-thesis,
CLUE, Universität Erlangen–Nürnberg [in German]

Vergne, J., and E. Giguet (1998) “Regards théoriques sur le ‘tagging’,” in proceedings
of the fifth annual conference Le Traitement Automatique des Langues Naturelles
(TALN)

Weydt, H. (1969) Abtönungspartikel. Die deutschen Modalwörter und ihre französis-
chen Entsprechungen. Bad Homburg: Gehlen

Wittgenstein, L. (1921) “Logisch-philosophische Abhandlung,” Annalen der Natur-
philosophie 14:185–262

Winograd T. (1983) Language as a Cognitive Process. London: Addison-Wesley

Wierzbicka, A. (1991) Cross-Cultural Pragmatics: The Semantics of Human Inter-
action. Berlin: Mouton de Gruyter

Younger, D. (1967) “Recognition and parsing of context-free languages in time n 3,”
Information and Control 10.2:189–208

Name Index

Abelson, R., 3
Abney, S., 3
Ágel, V., 3
Ajdukiewicz, K., 3
Anderson, J.R., VII
Aristotle, 4, 11
Austin, J.L., 3

Bar-Hillel, Y., 3
Barsalou, L., 160
Barwise, J., 91
Beaugrande,R.-A., 3
Berners-Lee, T., 4
Bertossi, L., VI
Biederman, I., 55
Bochenski, I., 72
Bransford, J., 54
Bresnan, J., 3, 35
Brill, E., 3
Brooks, R.A., 345

Carbonell, J., 202
Carpenter, B., 35
Chang, Suk-Jin, 303
Charniak, E., 3
Choe, Jae-Woong, 63, 316
Choi, Key-Sun, 303
Chomsky, N., 3, 5, 299
Clark, H.H., 9
Cocke, J., 3
Collins, M.J., 3
Copestake, A., 92
Cormack, A., 92

Croft, W., 63
Déjean, H., 3
Dale, R., 3
Dauses, A., 278
Dorr, B., 3
Dressler, W., 3

Earley, J., 3
Eberhard, K.M., 31
Elmasri, R., 35
Engel, U., 81

Fillmore, C., 3
Fischer, W., 264
Flickinger, D., 92
Francis, W.N., 118
Franks, J., 54
Frederking, R., 202
Frege, G., 37
Fried, M., 3

Gazdar, G., 3, 35, 117
Geach, P.T., 169
Geurts, G., 169
Gibson, J., 54
Giguet, E., 3
Givòn, T., 316
Greenbaum, S., 118
Greenberg, J., 45
Grice, P., 3, 75
Grosz, B., 165

Halliday, M.A.K., 3
Handl, J., 6

358 Name Index

Hasan, R., 3
Hauser, M.D., 21
Heß, K., 118
Helfenbein, D., 165
Hellwig, P., 3
Hendler, J., 4
Herbst, T., 3
Hučinova, M., 118
Huang, H.-Y., 118
Hubel, D., 54
Hudson, R.A., 3, 117

Ickler, T., 81

Jackendoff, R.S., 117
Jacobson, P., 176
Jezzard, P., 14
Johnson, M., 75, 76

Kalender, K., 118
Kamp, J.A.W., 91, 169
Kapfer, J., 6
Kasami, T., 3
Katona, G., VI
Kay, M., 3
Kempson, R., 92
Kim, Gil Chang, 303
Kim, Soora, 118
Kirkpatrick, K., 55
Klima, E.S., 163
Kučera, H., 118
Kycia, A., 6, 328

Lakoff, G., 75, 76
Langacker, R., 165
Lassila, O., 4
Leśniewski, S., 3
Lebiere, C., VII
Lee, Kiyong, 113
Lees, R.B., 163
Lenders, W., 118
Liu, Haitao, 13
Lobin, H., 116

März, B, 118
MacWhinney, B., 21, 23, 236
Mann, W.C., 3
Matthews, P.M., 14
Mel’čuk, I. A., 3
Meyer-Wegener, K., 25
Mitamura, T., 202
Montague, R., 3, 6, 91

Navathe, S.B., 35
Neisser, U., 54
Neumann, J. von, 1
Newton, I., V
Nichols, J., 136, 299
Nyberg, E., 202

Östman, J.-O., 3
Oirsouw, R. van, 133

Peirce, C.S., 51
Pereira, F., 3
Perry, J., 91
Peters, S., 176, 177
Piaget, J., 54
Pollard, C., 3, 35
Portner, P., 161
Post, E., 3

Quillian, R., 3
Quine, W.v.O., 50
Quirk, R., 118

Reiter, E., 3
Reyle, U., 91, 169
Ritchie, R., 176, 177
Rosch, E., 54
Ross, J.R., 165
Russell, B., 90, 93

Sag, I., 3, 35, 117
Saussure, F. de, 4, 60
Schank, R., 3
Schewe, K.-D., VI
Schwartz, J., 3

Name Index 359

Scott, D., 11
Searle, J.R., 3
Sedivy, J.C., 31
Shieber, S., 3, 44
Sidner, C., 165
Soellch, G., 118
Sowa, J.F., 3
Spivey, M.J., 31
Stassen, L., 63
Steedman, M., 92
Steels, L., 58
Stein, N.L., 54

Tanenhaus, M.K., 31
Tarski, A., 3
Tesnière, L., 3
Thórisson, K., 10
Thalheim, B., VI

Thompson, S.A., 3
Tkemaladze, S., 118
Tomita, M, 3
Trabasso, T., 54
Tugwell, D., 4
Twiggs, M., 100

Vergne, J., 3

Wasow, T., 117
Weisler, S., 117
Weydt, H., 81
Wierzbicka, A., 3
Wiesel, T., 54
Wittgenstein, L., 16

Younger, H., 3

Subject Index

absolute proposition, 50, 61, 69–71, 73,
79, 80

abstract data type, 1
action, 1–3, 5, 6, 10, 13, 16, 17, 21, 23,

24, 27–29, 36, 39, 43, 51, 57–
60, 78

active, 98–100, 158, 303, 308, 316, 320
adjacent prn value, 167
adjective, 52, 88, 94–97, 100, 263, 265,

283, 284
adnominal, 94, 126, 214, 248, 264,

265, 267, 276, 279, 287
adverbial, 95, 126, 215, 264–266

agreement, 220
agreement conditions, 188, 217
algebraic definition, 11
ambiguity, 92, 100, 101, 109, 121, 157,

217, 267–271, 294, 297, 322
analytic, 61, 96
ASCII (American Standard Code for

Information Interchange), 24
attribute condition, 37
auto-channel, 14
automatic dialogue systems, VI
auxiliary, 97, 213, 214, 245–247

B (blocked), 215, 264, 283
Bach–Peters sentence, 5, 163, 176, 177
backward loading, 192
Behaviorism, 29
best match, 75, 100
bidirectional pointering, 36
bookkeeping attribute, 53, 186

Brill Tagger/Parser, 3

cat attribute, 88, 97, 185, 186, 215
Categorial Grammar, 3, 10
central cognition, 22
Chart Parser, 3
Chinese, 33, 136
Chunk Parser, 3
coherence, 29, 72, 237
comma, 121, 125
complex coordination, 118, 126, 128,

130–136, 141
complexity, 10, 14, 19, 102, 136, 176,

177, 263, 270, 297
conceptualization, 2, 27, 44, 65, 197,

202
conjunction, 304, 305

coordinating, 115, 118, 121, 123
subordinating, 105, 107, 108

constituent coordination, 118
constituent structure, 13
Construction Grammar, 3
content extraction, VI
continuation attribute, 52, 186
control structure, 1, 5, 44, 50, 307, 332,

333
convergence, 65
coordinating conjunction, 115, 118, 121,

123, 137, 139
coordination, 51, 63, 72, 115, 137, 161,

304
core attribute, 52, 185
coreference, 5, 43, 51, 87, 92, 161–177

362 Subject Index

CYK Parser, 3
Czech, 136

data structure, 1
declarative, 161
declarative specification, VI, 6, 9, 11,

12, 16, 27, 42, 54, 55, 61, 183
definite article, 93, 220, 227
Dependency Grammar, 3
determiner, 89–93, 210, 244
direct use of language, 75–78
Discourse Semantics, 4
donkey sentence, 5, 169

Earley Algorithm, 3
English, 20, 136, 303, 310, 312, 313,

316, 319
Epimenides Paradox, 13
episodic proposition, 50, 69–71, 73, 74,

79, 80, 153
explicit hypothesis formation, 12
external interfaces, 1–3, 9–11, 17, 21–

23, 25, 26, 28, 29, 35, 42, 43,
46, 51, 57

extrapolation of introspection, 15
extrapropositional relation, 71, 103–105,

109, 137–141, 147, 153, 157–
160, 303–305, 307, 308

extrasentential, 103, 137–139, 162, 165

feature approach, 54
finite-state transition network, 195, 198,

204, 219, 239, 242
forward loading, 192
fragment, 3, 6, 183
frequency, 118, 135
function word absorption, 45, 88–90,

101, 106, 113, 193, 222, 225,
227, 228, 266, 282, 285, 289

function word precipitation, 44, 90, 97,
204, 241, 308

functor–argument structure, 36, 41, 43,
51, 63, 87, 103, 161

gapping, 5, 13, 118, 135, 147
object, 117, 133, 141, 147–150
subject, 117, 126, 128, 147, 149,

150
verb, 117, 130, 147–150

GB (Government and Binding), 4, 42
Generative Grammar, 9, 13
generic sentence, 69
genus verbi, 63, 98
geon approach, 54
Georgian, 136
German, 20, 37, 59, 81, 113, 118, 136,

243, 303, 311–316, 319
global variable, 190
GPSG (Generalized Phrase Structure

Grammar), 3, 4, 35, 42
greenhorn, 79
Grice’s meaning definition, 75

hand–eye coordination, 39
head-driven parser, 3
horizontal variable binding, 41, 72, 73,

92
HPSG (Head-Driven Phrase Structure

Grammar), 3, 4, 35, 42

identity, 161, 304
immediate action, 25
immediate recognition, 25
immediate reference, 27–29, 60
imperative, 161
indirect use of language, 65, 76–78
inference, 71–74
input compatible, 239
input-compatible, 294
intensifier, 266, 282–284, 286–290
intention, 58, 59, 75
internal matching, 30, 39, 51, 56, 61,

75, 77, 79
Internet querying, VI
interrogative, 66, 156, 157, 161, 311,

312, 314
wh, 155, 156

Subject Index 363

yes/no, 303, 310, 311, 313–315,
317–320

intrasentential, 103, 137, 138, 165
isolated proplet, 41, 47, 60, 207, 216,

234, 321

kind of sign, 1, 32
Korean, 113, 136, 303, 311–313, 316,

319

LA-grammar (Left-Associative Gram-
mar)

LA-hear.1, 189
LA-hear.2, 218
LA-letter-IN, 47
LA-letter-OUT, 49
LA-speak.1, 203
LA-speak.2, 241
LA-think.1, 197
LA-think.2, 237

Langacker–Ross constraint, 165–169,
171–173

language production, 1–4, 10, 30, 31,
44–46, 51, 59, 78, 90, 95–97,
99, 101, 102, 106, 108, 110,
112, 114, 120, 123, 125, 126,
129, 132, 135, 140, 165, 199,
270, 307, 309, 310

Latin, 243
lexical lookup, 2, 6, 37, 41, 42, 59, 60,

79, 90, 321, 329, 332
lexicalization function, 202, 203, 243–

248
lexicon, 27, 52, 62, 185, 209, 291, 321
LFG (Lexical Functional Grammar), 3,

4, 35, 42
literal meaning1, 18, 30–32, 60, 76, 80,

81
loading variable, 190, 192–194
long-distance dependency, 156

machine translation, VI, 3
matching condition, 37

matching conditions, 191
mediated action, 25
mediated recognition, 25
mediated reference, 28, 29, 46, 183
medium, 17, 23, 25
metadata mark-up, V, 3
metalanguage, 1, 4, 25–27
metaphor, 75, 76, 160
modality, 16, 22–25, 59, 184, 207, 208
Model Theory, 3, 29, 91
modifier coordination, 126
modifier recursion, 94, 126, 220, 238
modus ponens, 72–74
mood

sentence, 66, 139, 140, 161, 162,
303, 312, 314

verb, 63
morphology, 2, 27, 61, 96
motor

LA-hear, 329
LA-think, 333
LA-think–speak, 334

Nativism, 5, 29, 35, 42, 102, 118, 133,
267, 269, 270, 282

nonconstituent coordination, 118
nonmonotonic reasoning, 74
noun, 52, 210, 244

operations, 41, 43, 47, 49, 189, 328,
330, 332

OWL (Web Ontology Language), 4

part of speech, 32, 33, 60, 96, 117, 126
particle, 81
passive, 98–100, 158, 303, 308, 316,

318, 320
perceptual grounding, 3
peripheral cognition, 22, 24
perplexity, 195, 219, 242, 294
personal pronoun, 162, 165, 209, 210,

243, 244
perspective taking, 78, 98, 158, 160

364 Subject Index

Phrase Structure Grammar, 3, 10, 41,
42

practical linguistics, V
practical mechanics, V
pragmatics, 27, 29–32, 34, 155
precipitation, 308
precision, VI
Predicate Calculus, 41, 72, 73, 91, 92,

94, 169
preposition, 100–102, 263, 265, 266,

271, 273–277, 279, 285, 288,
318

primary coding, 77–79
primary relations, 87, 115, 161, 162,

169, 177
proper name, 185, 243, 244
proplet, 35
proplet shell, 53
propositional attitudes, 13
Propositional Calculus, 71, 72
prototype approach, 54
punctuation, 185, 192, 204, 205, 225,

229, 233, 248, 253, 310
purpose, 307

quantifier, 72, 91, 92, 169, 324
question, 66, 67, 155

RDF (Resource Description Framework),
4

recall, VI
recognition, 1–3, 5, 6, 10, 16, 17, 21,

23, 24, 26–29, 36, 39, 43, 51,
54, 57–60, 62, 78

reference, 1, 6, 16, 25, 26, 37, 50, 51,
54, 56, 62, 63, 76, 78

referent, 37
reflexive pronoun, 163–165
regular expression, 330
relative clause, 103, 105, 108–111, 168
relative pronoun, 111, 143, 150, 151
right-node-raising, 5, 117, 133
root, 61

Russian, 136

schema approach, 54
secondary coding, 76–79
secondary relation, 6, 79, 87, 161, 162,

165, 177
sem attribute, 88, 97, 186
semantic doubling, 100, 102, 269–271
Semantic Networks, 3
semantics, 2, 27
sense, 37
sentence mood, 66, 139, 140, 303
sentential argument, 103–105, 166
sentential modifier, 103, 104, 108
service channel, 15
sign recognition/production, 23, 24
simple coordination, 118, 121, 123, 126,

132, 141
Situation Semantics, 4
SLIM theory of language, 5, 27, 29, 30,

34, 60, 76
smart solution, V, 13
solipsism, 16
Speech Act Theory, 3, 29
speech recognition, 184
speech recognition., VI
STAR (Space–Time–Agent–Recipient),

30, 69, 71, 75, 153–155, 159
state, 321, 322, 326, 327
statistics, V, 3, 58
Structuralism, 29
subject gapping, 147
subordinating conjunction, 105, 107,

108, 113
substitution value, 89, 90, 94, 97, 99,

106, 108, 109, 120, 122, 210,
223, 225, 228, 275, 279, 280,
284, 286

sur attribute, 52
Surface Compositionality, 17–19, 29,

89, 211

Subject Index 365

suspension, 113, 114, 134, 135, 140,
279

syntax, 2, 3, 27
synthetic, 61, 96

Tagalog, 136
template approach, 54
Text Linguistics, 9
TG (Transformational Grammar), 177
theoretical linguistics, V
theoretical mechanics, V
thought, 5, 31, 157, 159, 197
time, 159
time-linear, 4–6, 10, 17, 19, 20, 29–

31, 40, 41, 43, 44, 46–48, 55,
62, 63, 89, 95, 105, 116, 118,
135, 139

topicalization, 316
Truth-Conditional Semantics, 4, 9, 13,

25–27, 72, 91, 169
turn-taking, 4, 10, 11, 43, 153, 154
type/token, 55–57, 59–61, 69, 70, 73,

74
typing, 325

unification, 42
upscaling, VI, 13, 14, 16, 17
user-friendliness, 13
utterance meaning2, 30, 76

vagueness, 13

Valency Theory, 3, 18–20, 63, 186
value condition, 37
variable, 20, 37, 41, 47, 49, 55

binding, 44, 54, 67, 324, 328
global, 190
loading, 190, 192–194, 225, 227,

229, 324
replacement, 53, 66, 68, 324
restrictions, 187, 217, 291, 325
substitution, 223, 291

verb, 52, 211–213, 245, 247
verification, VI, 3, 9, 12, 16
vertical variable binding, 41, 73, 323,

328
voices of verb, 98, 99, 303, 312
von Neumann machine, 1

wh question, 66–68, 155, 156
Word Bank, 39, 43, 48, 69, 195, 196,

234
word form production, 50, 202, 207,

243
word form recognition, 50, 62, 183
word number, 191
word order, 45, 90, 204, 241, 310
wrapper, 282–285

XML, 3

yes/no question, 66–68, 156

	Contents
	Introduction
	Part I. The Communication Mechanism of Cognition
	1. Matters of Method
	1.1 Sign- or Agent-Oriented Analysis of Language?
	1.2 Verification Principle
	1.3 Equation Principle
	1.4 Objectivation Principle
	1.5 Equivalence Principles for Interfaces and for Input/Output
	1.6 Surface Compositionality and Time-Linearity

	2. Interfaces and Components
	2.1 Cognitive Agents with and without Language
	2.2 Modalities and Media
	2.3 Alternative Ontologies for Referring with Language
	2.4 Theory of Language and Theory of Grammar
	2.5 Immediate Reference and Mediated Reference
	2.6 The SLIM Theory of Language

	3. Data Structure and Algorithm
	3.1 Proplets for Coding Propositional Content
	3.2 Internal Matching between Language and Context Proplets
	3.3 Storage of Proplets in a Word Bank
	3.4 Time-Linear Algorithm of LA-Grammar
	3.5 Cycle of Natural Language Communication
	3.6 Bare Bone Example of Database Semantics: DBS-letter

	4. Concept Types and Concept Tokens
	4.1 Kinds of Proplets
	4.2 Type–Token Relation for Establishing Reference
	4.3 Context Recognition
	4.4 Context Action
	4.5 Sign Recognition and Production
	4.6 Universal versus Language-Dependent Properties

	5. Forms of Thinking
	5.1 Retrieving Answers to Questions
	5.2 Episodic versus Absolute Propositions
	5.3 Inference: Reconstructing Modus Ponens
	5.4 Indirect Uses of Language
	5.5 Secondary Coding as Perspective Taking
	5.6 Shades of Meaning

	Part II. The Major Constructions of Natural Language
	6. Intrapropositional Functor–Argument Structure
	6.1 Overview
	6.2 Determiners
	6.3 Adjectives
	6.4 Auxiliaries
	6.5 Passive
	6.6 Prepositions

	7. Extrapropositional Functor–Argument Structure
	7.1 Overview
	7.2 Sentential Argument as Subject
	7.3 Sentential Argument as Object
	7.4 Adnominal Sentential Modifier with Subject Gap
	7.5 Adnominal Sentential Modifier with Object Gap
	7.6 Adverbial Sentential Modifier

	8. Intrapropositional Coordination
	8.1 Overview
	8.2 Simple Coordination of Nouns in Subject and Object Position
	8.3 Simple Coordination of Verbs and of Adjectives
	8.4 Complex Coordination of Verbs and Objects: Subject Gapping
	8.5 Complex Coordination of Subjects and Objects: Verb Gapping
	8.6 Complex Coordination of Subjects and Verbs: Object Gapping

	9. Extrapropositional Coordination
	9.1 Overview
	9.2 Interpretation and Production of Extrapropositional Coordination
	9.3 Simple Coordinations as Sentential Arguments and Modifiers
	9.4 Complex Coordinations as Sentential Arguments and Modifiers
	9.5 Turn-Taking in Questions and Answers
	9.6 Complex Propositions as Thought Structures

	10. Intrapropositional and Extrapropositional Coreference
	10.1 Overview
	10.2 Intrapropositional Coreference
	10.3 Langacker–Ross Constraint for Sentential Arguments
	10.4 Langacker–Ross Constraint for Adnominal Sentential Modifiers
	10.5 Langacker–Ross Constraint for Adverbial Sentential Modifiers
	10.6 Handling Pronominal Coreference by Means of Inference

	Part III. The Declarative Specification of Formal Fragments
	11. DBS.1: Hearer Mode
	11.1 Automatic Word Form Recognition
	11.2 Lexicon of LA-hear.1
	11.3 Preamble of LA-hear.1
	11.4 Definition of LA-hear.1
	11.5 Interpreting a Sequence of Sentences
	11.6 Storing the Output of LA-hear.1 in a Word Bank

	12. DBS.1: Speaker Mode
	12.1 Definition of LA-think.1
	12.2 Navigating with LA-think.1
	12.3 Automatic Word Form Production
	12.4 Definition of LA-speak.1
	12.5 Producing a Sequence of Sentences
	12.6 Summarizing the DBS.1 System

	13. DBS.2: Hearer Mode
	13.1 Lexicon of LA-hear.2
	13.2 Preamble and Definition of LA-hear.2
	13.3 Interpreting a Sentence with Complex Noun Phrases
	13.4 Interpreting a Sentence with a Complex Verb Phrase
	13.5 Interpreting a Sentence with a Three-Place Verb
	13.6 Storing the Output of LA-hear.2 in a Word Bank

	14. DBS.2: Speaker Mode
	14.1 Definition of LA-think.2
	14.2 Definition of LA-speak.2
	14.3 Automatic Word Form Production
	14.4 Producing a Sentence with Complex Noun Phrases
	14.5 Producing a Sentence with a Complex Verb Phrase
	14.6 Producing a Sentence with a Three-Place Verb

	15. DBS.3: Adnominal and Adverbial Modifiers
	15.1 Interpreting Elementary and Complex Modifiers
	15.2 ADN and ADA Interpretations of Prepositional Phrases
	15.3 ADV Interpretation of Prepositional Phrases
	15.4 Intensifiers in Noun Phrases and Prepositional Phrases
	15.5 Elementary Adverbs with Intensifiers
	15.6 Definition of LA-hear.3

	Appendices
	A. Universal Basis of Word Order Variation
	A.1 Overview of the Basic Railroad System
	A.2 Incremental Language Production Based on Navigation
	A.3 Realizing Alternative Word Orders from One-Place Propositions
	A.4 Realizing Basic SO Word Orders from Two-Place Propositions
	A.5 Realizing OS Word Orders from Alternative Navigations
	A.6 Realizing Basic Word Orders from Three-Place Propositions

	B. Declarative Description of the Motor Procedure
	B.1 Start State Application
	B.2 Matching between Proplet Patterns and Language Proplets
	B.3 Time-Linear Breadth-First Derivation Order
	B.4 Rule Application and the Basic Structure of the LA-Hear Motor
	B.5 Operations
	B.6 Basic Structure of the LA-Think and the LA-Think–Speak Motor

	C. Glossary
	C.1 Proplet Attributes
	C.2 Proplet Values
	C.3 Variables, Restrictions, and Agreement Conditions
	C.4 Abstract Surfaces
	C.5 Rule Names
	C.6 List of Analyzed Examples

	Bibliography
	Name Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

