Two-Step Approaches to Natural Language Formalisms

DE

Studies in Generative Grammar 64

Editors

Henk van Riemsdijk
Harry van der Hulst
Jan Koster

Mouton de Gruyter
Berlin - New York

Two-Step Approaches
to Natural Language Formalisms

by
Frank Morawietz

Mouton de Gruyter
Berlin -+ New York 2003

Mouton de Gruyter (formerly Mouton, The Hague)
is a Division of Walter de Gruyter GmbH & Co. KG, Berlin.

The series Studies in Generative Grammar was formerly published by
Foris Publications Holland.

Printed on acid-free paper which falls within the guidelines
of the ANSI to ensure permanence and durability.

ISBN 3-11-017821-4

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche

Nationalbibliografie; detailed bibliographic data is available in the
Internet at <http://dnb.ddb.de>.

© Copyright 2003 by Walter de Gruyter GmbH & Co. KG, D-10785 Berlin.

All rights reserved, including those of translation into foreign languages. No part of this
book may be reproduced in any form or by any means, electronic or mechanical, including
photocopy, recording, or any information storage and retrieval system, without permission
in writing from the publisher.

Printed in Germany.

Cover design: Christopher Schneider, Berlin.

Abstract

In this monograph, mathematical techniques from logic, automata theory and
universal algebra are employed to define a provably equivalent denotational
and operational approach toward the formalization of natural languages.

We start by exploring a classical technique connecting the three fields by
specifying constraints on analyses of natural languages in monadic second-
order (MSO) logic on trees following a proposal made by Rogers (1998). The
weak interpretation of MSO logic on trees is intertranslatable with finite-state
tree automata. Recall that finite-state tree automata characterize the class of
recognizable languages — which are, up to a projection, weakly equivalent to
the context-free languages. Therefore this classical technique is sufficient to
cope (in principle) with context-free languages. Nevertheless, we will show
that both for practical reasons and for reasons of the still too limited genera-
tive capacity an extension of the formalism is necessary.

The proposal outlined in this monograph proceeds with a two-step ap-
proach which still has provably equivalent denotational and operational de-
scriptions. In this two-step approach we model linguistic formalisms — as
for example tree adjoining grammars (TAGs) or minimalist grammars (MGs)
— which can generate non-context-free languages with two regular or two
logical steps. In the first step we model the linguistic formalisms with partic-
ular forms of tree grammars — either context-free tree grammars or multiple
context-free grammars — which also have a higher generative capacity than
context-free grammars. To make them amenable to characterizations with
MSO logic, we insert a certain amount of implicit control information ex-
plictly into the generated structures. This is done by a process which has
been called lifting in the literature (Monnich 1999).

Unfortunately, the generated structures do not correspond to the ones lin-
guists commonly assume for their analyses exactly because of the additional
information. We need the second step to transform these lifted structures
back into the intended ones. This can be done equivalently with tree-walking

vi Abstract

automata and macro tree transducers on the operational side and with MSO
definable transductions on the denotational side such that we retain the de-
sired duality.

In the course of the monograph I will show how the contemporary nat-
ural language formalisms of Government & Binding, Minimalism and Tree
Adjoining Grammar can be captured within the two-step proposal.

Acknowledgments

The study of mathematics is apt to commence in disappointment. The impor-
tant applications of the science, the theoretical interest of its ideas, and the
logical rigor of its methods, all generate the expectation of a speedy intro-
duction to the processes of interest. We are told that by its aid the stars are
counted and the billions of molecules in a drop of water are counted. Yet,
like the ghost of Hamlet’s father, this great science eludes the efforts of our
mental weapons to grasp it — “’Tis here, ’tis there, ’tis gone’ — and what we do
see does not suggest the same excuse for illusiveness as sufficed for the ghost,
that is too noble for our gross methods. ‘A show of violence’, if ever excus-
able, may surely be ‘offered’ to the trivial results which occupy the pages of
some elementary mathematical treatises.

The reason for this failure of the science to live up to its reputation is that its
fundamental ideas are not explained to the student disentangled from the tech-
nical procedure which has been invented to facilitate their exact presentation
in particular instances.

(Whitehead 1911, p. 40)

Since the work presented in the following chapters utilizes a lot of material
which stands in a mathematical tradition, the claims by Whitehead are also
true for this book. Even the reader with a firm background in “formal” lin-
guistics is faced with a large number of definitions from universal algebra,
logic and automata theory.

Fortunately, I had a couple of inspiring and extremely competent guides
for my forays into the realm of mathematical linguistics. First and foremost
is Uwe Monnich who not only understood my problems but also was pa-
tient enough to answer all of my (sometimes thick-headed) questions. On the
practical side, I profited most from Tom Cornell. Not only did he raise my
interest in MSO logic as a description language for P&P theories, he also was
my constant partner for all things related to implementations. I am also grate-
ful to Erhard Hinrichs, Klaus Schulz and Fritz Hamm for accepting the part
of referee. Their comments and questions turned out to helpful indeed. Also,

viii Acknowledgments

a lot of useful comments which improved the exposition of some parts of
the monograph considerably were made by an anonymous referee. All their
comments and insights led to a better work. Needless to say, all the errors
that remain are my own.

Special thanks also go to Craig Thiersch who took over some of my teach-
ing duties to allow me more time to finish the book.

Thanks go also to all the people I was privileged to work with, or sim-
ply to talk to; most notably my (other) co-authors Hans-Peter Kolb, Stephan
Kepser and Jens Michaelis. Thanks also go to Laura Kallmeyer, Kai-Uwe
Kiihnberger and lots of others at the Seminar fiir Sprachwissenschaft and
the Graduiertenkolleg Integriertes Linguistik-Studium at the University of
Tiibingen who provided help, advice and a stimulating, if sometimes dis-
tracting environment. Final thanks go to Carmella Payne who spend a lot of
time correcting my English.

Since a large part of the work underlying this monograph was done while
I worked in the project A8 of the Sonderforschungsbereich 340, thanks also
go to the Deutsche Forschungsgemeinschaft for providing the necessary fund-
ing.

And last, but not least, I have to thank my wife and family who suffered
with me through long years without any visible progress. Without their sup-
port, I wouldn’t have been free to spend so much time on my work.

Parts of this book have been published in various papers: The part dealing
with the classical result is an extended and modified version of topics pre-
sented in Morawietz and Cornell (1997a,b,c, 1999) and Morawietz (1999).
The part with the presentation of the actual two-step approach is an extension
of the work reported on in Kolb, Monnich, and Morawietz (1999a,b, 2000),
Kolb, Michaelis, Monnich, and Morawietz (2003), Michaelis, Monnich, and
Morawietz (2000a,b) and Morawietz and Monnich (2001).

Tiibingen, Juli 2003
Frank Morawietz

Contents

Abstract

Acknowledgments,

I Introduction.

1 Overview
1.1 Desiderata for a linguistic formalism
1.2 Logic, algebra and formal language theory
1.3 Outline

2 Technical preliminaries
2.1 Alphabets, words and languages
2.2 Trees. o i e e e
23 Algebras

I The Classical Approach

Using MSO Logic as a Description Language for Natural
Language Syntax

3 Model-theoretic syntax and monadic second-order logic
3.1 Overview of the classical approach

3.2 Monadic second-order logic
3.2.1 Monadic second-order logicontrees

3.2.2 Anexample language: L,z(vp

3.2.3 A small example grammar

oo W W

X

Contents

Finite-state devices
4.1 Finite-state language processing
4.1.1 Finite-state automata
4.1.2 Finite-state transducer
42 Treeautomata e
4.3 Tree-walking automata
44 Treetransducer i
4.4.1 Top-down tree transducer
442 Macro tree transducer

Decidability and definability
5.1 Representing MSO formulas with tree automata
5.2 Codingofrelations
5.3 Constructing automata from MSO formulas

5.3.1 The decidability proof (various base steps)

5.3.2 The decidability proof (inductive step)

5.3.3 Computational complexity
54 Finitemodeltheory
5.5 Definability of relations in MSO logic
5.6 Definable MSO transductions
5.7 Terminology

Applications Lo L
6.1 Parsing with tree automata L.
6.2 Compiling grammatical principles to FSTAs
6.3 Approximating P&P grammars00 L.
6.4 Some experimental results L.
6.5 Further applications
6.5.1 MSOlogicandCLP
6.5.2 MSO logic as an automaton specification language .
6.5.3 Querylanguages
6.5.4 Hardware verification
6.5.5 Other MSO languages

Intermediate conclusion

Contents Xi

III Two Steps Are Better Than One

Extending the Use of MSO Logic to Non-Context-Free

Linguistic Formalisms 109
8 Overview of the two-step approach 111
9 Non-context-freeness of natural language 115
9.1 Minimalist grammars 115
9.2 Tree adjoining grammar 121
9.3 Linguistic motivation: verbraising 124

10 The first step: Lifting 131
10.1 Tree grammars e 131
10.1.1 Context-free tree grammars 134

10.1.2 Multiple context-free grammars 140

102 Lifting 141
10.2.1 Lifting CFTGs 141

10.2.2 Liftng MCFGs 145

10.3 Coding the lifted structures 150
10.3.1 Treeautomata. 151

10.3.2 MSOlogic 152

10.4 Summing up the firststep 153

11 The second step: Reconstruction 155
11.1 Reconstructing lifted M)CFTGs 156
11.1.1 Reconstruction with FSTWAs 158

11.1.2 Reconstruction with MSO transductions 165

11.1.3 Reconstruction with MTTs 166

11.2 Reconstructing lifted MCFGs 169
11.2.1 Reconstruction with FSTWAs 173

11.2.2 Reconstruction with MSO transductions 175

11.2.3 Reconstruction with MTTs 176

11.3 Summary of the two-step approach 180

xii Contents

IV Conclusion and Outlook 183
12 Conclusion 185
13 Outlook 187
V Appendix 191
Acronyms 193

B MONAcode 194
B.1 XBarTheory 194
B.2 Co-Indexation 202

C Additional MSO Definitions 207
C.1 The MSO Definition of Intended Dominance 207

D PrologCode, 209
D.1 Apply a given MTT to a tree generated by an RTG 209
D.2 The Example Grammars 213
D.2.1 The CFTG Example: T*and M. 213

D.2.2 The TAG Example: '}, ; and Mpy oo 214

D.2.3 The MCFG Example: Gycpgand Mg 215
Endnotes 218
Bibliography 223
Mathematical Symbols L. 240

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
54

6.1
6.2
6.3

8.1

9.1
9.2
9.3
94
9.5
9.6

10.1

Anexample of atree domain 21
An example for asymmetric directed c-command 38
Distribution of Max and Proj 41
Asimple FSA 45
Asimple FST 48
Asimple FSTA. 50
A tree automaton recognizing an non-context-free tree set . . . 51
One step of a TDTT derivation 55
One step of an MTT derivation 57
The automaton for AC-Com(x,y) 62
The automaton for Path(X) 63
An example run of the Path(X) automaton 64

Definite clauses and auxiliary definitions for the append relation 77

An example for the need for categories 89
Adjunction structures 90
A problem for Rogers’s X-bartheory 94
Overview of the two-step approach 113
Schematic presentation of MERGE and MOVE 119
An example derivation of the MG Gy, 121
Schematic presentation of adjunction in TAGs 122
An example derivation of the TAG Grag . . - 123
The structure of Germanic Verb Raising 127
An example derivation of the MG Gyg 129

Derivation steps in Regular Grammars 132

Xiv List of Figures

10.2 Derivation steps in Regular Tree Grammars
10.3 Derivation steps in Context-Free Grammars
10.4 Derivation steps in Context-Free Tree Grammars
10.5 Anexample derivation of the CFTGI"
10.6 An example derivation of the MCFTG I'74g from Example 10.7
10.7 Intuition for simple lifting
10.8 An example derivation of the lifted CFTGTX
10.9 An example derivation of the lifted MCFTG T,
10.10 An example derivation of the lifted MCFG Gyep - - - - - - -
10.11 The tree automaton for 5.

11.1 Intended relations on a lifted structure: CFTGs
11.2 The FSTWA for dominance on intended structures: CFTGs . .
11.3 Intended relations on a lifted structure: MCFTGs
11.4 The FSTWA for dominance on intended structures: MCFTGs .
11.5 The FSTWA for precedence on intended structures: MCFTGs .
11.6 Intuition behind the construction of the MTT: CFTGs
11.7 The rules of the example MTT Mz
11.8 The rules of the example MTT Mpe oo
11.9 Intended relations on a lifted structure: MCFGs
11.10 The FSTWA for dominance on intended structures: MCFGs . .
11.11 Intuition behind the construction of the MTT: MCFGs
11.12 The rules of the example MTT Mg, . =~

List of Tables

1.1 The Chomsky Hierarchy 7
1.2 Grammar Formalisms in a Refined Chomsky Hierarchy 11
1.3 Two Ways of Formalizing Grammar 12

6.1 Interleaving the Intersection and Yield-Automaton Construction 87
6.2 Statistics for Various Predicates 99

10.1 Grammars, Automata and Language Classes 134

Table of Acronyms 193

Part I

Introduction

Chapter 1

Overview

This monograph is concerned with formal, mathematical approaches to lin-
guistics. In particular, we will use classical techniques from logic, universal
algebra and automata theory to define a formalism for natural language syn-
tax

— which has a clearly defined limited generative capacity, but is still expres-
sive enough to account for the empirical data,

— which has a provably equivalent operational and denotational interpreta-
tion and, furthermore,

— which forms the basis for some of the major approaches to linguistics
proposed in the literature.

Since the book combines techniques from many areas of linguistics, (theo-
retical) computational linguistics, (theoretical) computer science and math-
ematics, it may require some intellectual effort even for readers with a firm
background in formal linguistics. Therefore I will try throughout the course
of this work to motivate unfamiliar notions and concepts and provide illus-
trating examples wherever possible.

Formal approaches to linguistics are necessary for many reasons. We will
refrain from recapitulating the entire discussion here. Instead, we will focus
on some crucial statements which motivate this work. Consider the following
paragraph stated in Chomsky (1957):

Precisely constructed models for linguistic structure can play an important
role, both negative and positive, in the process of discovery itself. By push-
ing a precise but inadequate formulation to an unacceptable conclusion, we
can often expose the exact source of the inadequacy and, consequently, gain a
deeper understanding of the linguistic data. More positively, a formalized the-
ory may automatically provide solutions for many problems other than those

4 Overview

for which it was explicitly designed. Obscure and intuition-bound notions
can neither lead to absurd conclusions nor provide new and correct ones, and
hence they fail to be useful in two important respects. I think that some of
those linguists who have questioned the value of precise and technical devel-
opment of linguistic theory have failed to recognize the productive potential
in the method of rigorously stating a proposed theory and applying it strictly
to linguistic material with no attempt to avoid unacceptable conclusions by
ad hoc adjustments or loose formulation.

We can summarize the reasons given by Chomsky analogously with the key-
words given in Frank (1990) which put a slightly different emphasis on the
points:

Theory Testing: Formalizing a theory leads to the discovery of errors and
holes in a theory.

Perspicuity of Grammatical Representations: Modular formalization of
linguistic analyses in an appropriate grammar formalism provides a way
of writing a grammar cleanly without the need to deal with processing-
specific or formalism-inherent details. Moreover, the formalism itself
might encode linguistic universals such that it is impossible to write a
grammar with certain undesired properties.

Psychological Modeling of Languages: The formalization might provide a
psychologically plausible mechanism for the use of language.

Since theory testing seems to be widely accepted as a reason for formal
approaches, we will not go into any detail here. But since the second point
addresses the main motivation behind this monograph, it deserves some fur-
ther clarification: If one can build a Turing machine to demonstrate that one
can parse a particular syntactic construction, say, subject—verb agreement,
(almost) nothing has been shown. If we can show that the same construction
can be handled by context-free (CF) grammars, we have not only shown that
it can be decided for every input whether the subject and the verb agree on
some features, but also that we can parse such constructions in at most cubic
time. While in this case the observation may seem trivial, we will hopefully
point out more salient contributions in the course of this work. Most notably,
we will be concerned with formalisms with an adequate generative power
and with an adequate descriptive complexity.

Desiderata for a linguistic formalism 5

While the computational complexity of a problem is usually defined in
terms of the resources required for its computational solution on some ma-
chine model, descriptive complexity looks at the complexity of describing the
problem (seen as a collection of relational structures) in a logic, measuring
logical resources such as the type and number of variables, quantifiers, oper-
ators, etc. It is a non-trivial fact that there is a close correspondence between
these two, with many natural logics corresponding exactly to independently
defined complexity classes (cf. Fagin 1974; Immerman 1987).

The last point stated above, psychological modelability, will not play a
role in this presentation. I do not believe that the formalism(s) presented in
this book reflect psychological reality. Some of their properties, on the other
hand, might indeed be relevant, but since this discussion leads too far off the
main focus of the book I will leave this open for others to address.

The preceding paragraphs have already outlined the main questions ad-
dressed in this monograph: Can we find a formalism for natural languages
which is empirically adequate but of limited generative capacity such that
the formalism itself says something on natural languages? To specify more
closely the kind of formalism we are looking for, we review some of the
desiderata which have been posed for natural language formalisms.

1.1 Desiderata for a linguistic formalism

Since the main focus of this book is on the development and presentation of
formalisms for the specification of natural language grammars, we will start
by clarifying which properties are desired in this type of formalism.

As laid out at length in Pollard and Sag (1994), as in any science, model-
ing reality requires the formalization of the relation between the observable,
empirical facts and the derivable theorems of the formal theory. Therefore
we have to specify what the objects of our formalisms are and how they are
related to the ontological categories we strive to model. Moreover, it seems
mandatory that we want the formalism itself to be a theory in the technical
sense, i.e., the well-formed or admissible structures are characterized or at
least described by the theory.

Maybe the linguistic theory with the greatest impact in the last decades
is what emerges from the work by Noam Chomsky (Chomsky 1965, 1982,
1985) as the Government & Binding (GB) approach in the Principles-and-
Parameter (P&P) framework. The approach has three layers of (syntactic)
analysis of linguistic utterances: deep- or D-structure, surface- or S-structure

6 Overview

and logical form. The output or phonetic form (PF) is generated from the
S-structure with phonological rules. Linguistic well-formedness conditions
can then apply on all levels of representation. An utterance whose derivation
yields a structural representation which is acceptable on all levels is deemed
grammatical.

In all the approaches in this tradition of the work by Noam Chomsky, trees
are used as the objects of the structural analyses of utterances. Therefore, in
the case of this monograph, the objects of the theory which we will model will
be nodes in labeled trees or the trees themselves. Historically, this might have
been an artifact of the fact that for context-free grammars the derivation trees
and the derived trees are identical. But since trees have proven to be very
useful indeed, they continue to be used as the main explanatory method even
in formalisms where the equivalence between derivation trees and derived
trees does not hold any more.

It seems obvious that in order to facilitate the task of the grammar writer,
it would be best to aim for the formal language defined by the formalisms,
i.e., the constraint language, to be as natural as possible. With the term “natu-
ral”, we mean here that the language is close enough to the basic explanatory
mechanisms proposed by the particular formalism so that a direct transla-
tion of empirical analyses into the formal language is possible. To further
help the grammar writer, it is also desirable for the formalism to be modular,
i.e., to consist of (simple) independent parts which, through their interaction,
achieve the necessary complexity to deal with natural languages. Modularity
has the benefit that the parts of a theory can be developed and tested indepen-
dent from each other. But at the same time the formalism must also meet the
criterion to be efficiently processable, ideally, incrementally.

As presented in the section above, one of the central points of this book
will be the specification of formalisms with a clearly defined descriptive com-
plexity such that the question of decidability which is usually posited as a
further desideratum, is trivially fulfilled. While we want a formalism with
a strictly limited generative capacity, we need a formalism, on the other
hand, which is expressive enough to handle the necessary empirical con-
structions needed for natural languages, especially those which go beyond
the power of context-free grammars. Historically, the Chomsky Hierarchy
(see Table 1.1 on the facing page) was the first approach towards capturing
the descriptive complexity of natural languages. As we will see below, this
classification turned out to be too simple to model the observable facts.

Desiderata for a linguistic formalism 7

Table 1.1: The Chomsky Hierarchy

Chomsky Type Language class Rule type
0 recursively enumerable no restrictions
1 context-sensitive YiIAY2 — Y1072
2 context-free A—a
3 regular A—aAl|Aa

The following notational conventions apply: Lowercase letters are terminals, upper-
case ones nonterminals. o, Y,7Y> are strings of terminals or nonterminals.

Another set of desiderata comes form the research on Tree Adjoining
Grammars (TAG, Joshi et al. 1975; Joshi 1985, 1987; Joshi and Schabes
1997) and therefore rather from the generative side of linguistic formalisms.
Here the search is for a formal family of languages that contains all natural
languages but also has “nice” computational properties. Since the Chomsky
Hierarchy, according to Joshi, does not provide such a family, he proposed an
additional class between the context-free and the context-sensitive languages
which he called the mildly context-sensitive languages. These languages have
to obey the following three conditions. Firstly, each language has to be semi-
linear and therefore has to have the constant growth property. Secondly, each
language has to be parseable in polynomial time. And thirdly, each language
can only allow a limited number of cross-serial dependencies. In the case of
TAGs, the boundary seems to be drawn at four crossing dependencies.

Semi-linear in this context means that the set of occurrence vectors of the
alphabet symbols of the words of the language is semi-linear, i.e., it can be
decomposed into a finite union of linear sets. The connection between semi-
linearity and formal languages was first proven by Parikh who showed that
every context-free language is semi-linear (Parikh 1966).

Constant growth here means that there exists a constant ¢ and a finite set
of constants C such that for any word w of length greater than c there exists
a prefix w’ of w such that the length of w equals the length of w’ plus some
element from C.

Typical examples of mildly context-sensitive languages are the copy lan-
guage (e.g., ww for w € X¥), the languages modeling crossing dependen-
cies (e.g., a"b"c"d™) or the languages modeling multiple agreements (e.g.,
a'b’ch).

8 Overview

While the search for a formalism with all these properties might seem like
the search for the philosopher’s stone, the criteria all deserve our attention and
will be considered during the deliberations laid out in the course of this book.

1.2 Logic, algebra and formal language theory

The languages we use in everyday communication are called natural lan-
guages. What we will use and discuss in this book, though, are formal lan-
guages — exactly defined and formally specified artificial languages which
serve particular purposes. Examples of the use of formal languages can be
found in a variety of areas such as arithmetic, set theory, logic, algebra, pro-
gramming languages or in the languages of the Chomsky Hierarchy. Even
in theoretical linguistics they are employed for numerous tasks on all levels
of linguistic “processing” such as phonology, morphology, syntax, semantics
etc. The idea behind the use of formal languages is that by modeling a natural
language with a formal language, one can learn about the underlying princi-
ples and properties of natural languages. In this book I will focus on the use
of formal languages for the specification of the syntax of natural languages —
in particular within the paradigm of theories as proposed by Noam Chomsky,
the Principles & Parameters (P&P) approach, although some of the tools and
methods that I present and employ might well be suited to other tasks as well.

It is important to carefully distinguish the usages of the words syntax
(structure of a sentence) and semantics (meaning of a sentence) in linguistics
from the ones in relation to formal languages. In formal language theory the
distinction between syntax and semantics is one between form, i.e., expres-
sions, axioms, rules of inference, etc., and content, i.e., the relation of the
system to its models.

Another important question concerns the chosen methodology. In this
monograph the most prominent “tools” will be logic and algebra.

In science we attempt to model reality (to a certain degree) with formal
methods. It then seems natural to choose logic as a way to formalize the
deductive or inferencing process which allows us to draw conclusions from
some basic assumptions; particularly, since logic allows us to reason about
reasoning. While this might seem circular, a clear distinction between object-
and meta-language enables us to use logic for both purposes.

In approaches dealing with natural languages we are faced with an infi-
nite amount of data needing to be systematicized. So what is more “logical”
than trying to reduce our empirical observations to a small number of observ-

Logic, algebra and formal language theory 9

able facts (axioms) and then specifying the inference rules which allows the
reasoning about the facts we want to explain.

On the other hand we are interested not only in licensing utterances, but
also in the structures which provide an analysis of these utterances. At this
point we have to define these structures and relate them to our logical lan-
guage. Both algebra — to formalize the underlying models — and model the-
ory — to formalize the relation between these models and the chosen logical
language — become necessary.

Additionally, logic offers a very concise way of modeling natural lan-
guages. Usually a few simple constraints are sufficient to ensure the correct
formalization of complex phenomena. And, since logic does not talk about
how the necessary models are generated, it is not dependent on a particular
mode of processing, e.g., parsing or generation.

To my knowledge, Johnson and Postal (1980) were the first to propose
a logical description language for a linguistic formalism (Arc-Pair Gram-
mar, which used predicate logic). In connection with the P&P approaches,
the first papers seems to have been by Marcus et al. (1983) who proposed
their D-Theory (description theory) to deal with specific aspects of parsing.
Marcus’ proposals have been taken up in other papers (Barton and Berwick
1985; Berwick and Weinberg 1985; Weinberg 1988; Stabler 1992), but these
approaches have, until Rogers (1998), not received the same rigorous math-
ematical treatment as the approaches formalizing feature structures with log-
ics (Kasper and Rounds 1986; Kasper 1987a,b; Moshier and Rounds 1987;
Moshier 1988, 1993; Johnson 1988, 1990, 1991; King 1989; Carpenter 1992).

A different, historically older view, advertises the fact that natural lan-
guages are generative, i.e., they can be produced by humans with finite re-
sources. Again, we take a finite number of basic items, a lexicon, and a num-
ber of rules and can generate bigger items/utterances from the basic ones.
The advantages of this view are more oriented towards processing: a speci-
fication of a grammar in this form can easily be implemented and there are
a huge number of well-known techniques making the resulting program ef-
ficient. This generative view is maybe best exemplified with Generalized
Phrase Structure Grammar (GPSG, Gazdar et al. 1985) where the “standard”
approach of processing consists of the compilation of a given GPSG into
a context-free grammar used for parsing. Historically, the early works by
Chomsky on Transformational Grammar (Chomsky 1956, 1959) had a strong
connection to formal languages and therefore to the generative paradigm.

10 Overview

Active research in the 1980s for other formalisms led to the proof of the
weak equivalence of a number of mildly context-sensitive formalisms used
in connection with natural languages. Specifically, tree-adjoining grammars
(TAG), combinatory categorial grammars (CCG, Steedman 1988), linear in-
dexed grammars (LIG, Gazdar 1988), and head grammars (HG, Pollard 1984)
have been shown to be weakly equivalent. Recently, another class of mildly
context-sensitive grammar formalisms has been proven to be weakly equiva-
lent. Among others, the following families of (string) languages are identical:

MCFL languages generated by multiple context-free grammars,

MCTAL languages generated by set local multi-component tree ad-
joining grammars,

LCFRL languages generated by linear context-free rewriting sys-
tems,

LUSCL languages generated by local unordered scattered context
grammars,

STR(HR) languages generated by string generating hyperedge re-

placement grammars,

OUT(DTWT) output languages of deterministic tree-walking tree-to-
string transducers,

yDT;.(REGT) yields of images of regular tree languages under determin-
istic finite-copying top-down tree transductions

(more on these equivalences can be found, e.g., in Engelfriet 1997; Rambow
and Satta 1999; van Vugt 1996; Weir 1992). We summarize the formalisms
which will be considered in the course of this book and their (weak) “gen-
erative power” in Table 1.2 on the next page. We added some well known
formalisms to further illustrate the area we are working in, e.g., Lambek Cal-
culus (LC, Lambek 1958) and Indexed Grammars (IG, Aho 1968).

Commonly, the logical approaches to theoretical linguistics are referred
to as the constraint-based or representational approaches, whereas the latter
ones are referred to as the generative or operational ones.

In mathematical logic, as we stated above, a formal language is defined to
be a deduction system — which is subject to proof theory — and the definition
of a class structures which interpret the symbols of the deductive language
and which are subject to model theory. The resulting logic is correct if the
deductive calculus manipulates the formal symbols in such a way that their
meaning is provably preserved.

Logic, algebra and formal language theory 11

Table 1.2: Grammar Formalisms in a Refined Chomsky Hierarchy

Chomsky Type Grammar Formalism
context-free LC, CFG
-
mildly context-sensitive TAG, CCG, LIG, HG, MCFTG
-
LCFRS, MCFG, HRG, DTWT, MCTAG, LUSCG
-
indexed CFTG, IG

There is a comparable situation in computer science. If we consider our
formal language to be a programming language, then the operational seman-
tics tells us how something is computed whereas the denotational semantics
tells us what is computed. The procedural view of the operational semantics
is akin to proof theory. The denotational semantics can be compared to the
model theory of mathematical logic. And, again, it is desired that both are
provably equivalent. The difference appears to be on the level of abstrac-
tion: it is very well possible that an algorithm implemented in two program-
ming languages has an identical denotational semantics since they compute
the same function, but the way they achieve the computation is completely
different operationally.

As stated above, the same dichotomy exists in linguistics, sometimes even
within the same paradigm as is exemplified within the Chomskian tradition
with the P&P-based approaches (Chomsky 1965, 1982, 1985) and the Mini-
malist Program (Chomsky 1995) or in the shift in Head-Driven Phrase Struc-
ture Grammar (HPSG) from a more unification oriented view (Pollard and
Sag 1987) to a licensing theory (Pollard and Sag 1994).

In more detail, linguists use transformational or unification-based deriva-
tions as well as chain-based representations or descriptions of (typed) feature
structures to code the sound-meaning pairs of a grammar. But in linguistics
the two views are not treated as two sides of the same coin which comple-
ment one another. Rather the contrary is the case: Linguists discuss which
of the alternatives is better. And, even worse, in Brody (1995) it is claimed
that a linguistic theory which contains both chains and movement is lacking
explanatory adequacy since one of the two mechanisms is redundant.

12 Overview

Table 1.3: Two Ways of Formalizing Grammar

Logic: Proof Theory vs. Model Theory
Computation: ~ Operational Semantics vs. Denotational Semantics
Linguistics: Derivations vs. Licensing Conditions

In direct contrast to this line of thought, we think that a linguistic theory
needs both a denotational and an operational semantics which are provably
equivalent in analogy to the views in computer science and mathematical
logic. Both views contribute important insights and seem essential to bridge
the gap between the high-level languages commonly employed by grammar
writers and the practical needs of the implementor.

We are aware that the situation in linguistics is not as clear cut as in com-
puter science and logic. Formalizations of transformational theories, in par-
ticular, treat movement as a relation between trees, i.e., the relation is formal-
ized in the object language and trees are the objects of the theory (e.g., Stabler
1992). Compared to that, representational theories most often have a single
model and chains are sequences of nodes in that single tree (e.g., Rogers
1998). Are these chains the denotational equivalent of the movement steps?
But the attempt of formulating both theories may actually help in isolating
the real differences — if there are any — between the two views. The crucial
fact here is that it is necessary to show that the relation between sound and
meaning is preserved no matter how they are characterized or generated. In
case we can indeed show that movement-based and chain-based approaches
can be handled within one formalism, we would have shown that the differ-
ence between the usage of entire trees or collections of nodes is not a deep or
substantive difference, but an artifact of the formalization.

So, we think that by providing a formal system with both a representa-
tional and an operational interpretation, it becomes possible to focus on the
relevant differences between linguistic theories, i.e., differences of an empir-
ical kind. And, furthermore, we are attempting to provide this formal system
in such a general way that it is independent of the particular linguistic theory
involved. While we draw our main motivation from the realm of the Chom-
skian tradition, we remain open to other theories as well. A summary of the
connection between denotation and operation in the various fields is given in
Table 1.3.

Logic, algebra and formal language theory 13

Since there are almost no approaches putting the same emphasis on a
provably equivalent denotational and operational system for linguistic for-
malisms, there is almost no literature to review. But in the following para-
graphs we try to give a brief overview of the history of the methodology
employed in this monograph.

The advances — not the least through important contributions by Chom-
sky (e.g., Chomsky 1956, 1959) — of formal language theory in the 1950s
and 1960s, which had provided much initial evidence for the feasibility of the
generative approach, seemed to suggest a stronger role of the formal frame-
work in Generative Grammar research. It had established, for the classes of
the Chomsky Hierarchy of formal languages, an intimate connection between
the form of a grammar (the types of rules employed), the computational re-
sources needed to process it, and the type of (string) language specified by
it, see Table 1.1 on page 7. In its application to natural languages, this line
of thought aims at establishing a formal system which is defined automata-
theoretically and/or via rule types and which by its inherent restriction of
expressive power provides guidance through the empirical mine-fields of lin-
guistic theory formation.

The first attempt at an algebraic treatment of language classes goes back
to the late 1950s. Maybe most influential were the works of Biichi (1960).
Right from the start, descriptive complexity played a prominent role. The be-
ginning of the enterprise is marked by a paper by Elgot (1961). In this paper
he proved the equivalence between monadic second-order logic (MSO) with
one successor function (S1S) with finite-state automata and therefore with
the regular (string) languages. This paper provoked a whole series of pa-
pers in the 1960s and 1970s (Mezei and Wright 1967; Thatcher and Wright
1968; Rabin 1969; Thatcher 1970; Doner 1970) transferring the results on
strings to trees. The finite-state tree automata introduced by both Thatcher &
Wright and Doner needed for the decidability proof of MSO logic with mul-
tiple successor functions (SmS) opened a new field for both automata theory
and formal languages (see Gécseg and Steinby 1984) and finite model the-
ory and descriptive complexity theory (see Ebbinghaus and Flum 1995). Of
particular importance for this work is the expansion to many-sorted algebras
(Maibaum 1974; Engelfriet and Schmidt 1977, 1978). The new technique al-
lowed an algebraic characterization of the indexed languages with the help of
context-free tree grammars (CFTGs) by Fischer (1968) and Rounds (1970a,b)
and an algebraic refinement of the Chomsky Hierarchy (Ménnich 1993).

14 Overview

Because of the growing distance between linguistics and the theory of
formal languages there has almost been no impact of this in linguistic the-
orizing with respect to the approaches in the P&P paradigm. When in the
early 70s Peters and Ritchie formulated their famous (though not necessarily
well-understood) result that there is an Aspects-style transformational gram-
mar for any recursively enumerable language, i.e., that the formal framework
of transformational grammar in itself not only does not restrict the class of
natural languages in any way, but does not even ensure computability of the
grammars couched in these terms (Peters and Ritchie 1971, 1973), almost all
research in that direction ceased. The enthusiasm for questions of compu-
tational complexity was seriously abated, and the stage was set for a major
shift in emphasis of linguistic theorizing towards substantive issues: Not to
get the formal framework “exactly right” became the primary goal now, but
the discovery of “exactly the right” structural properties of natural language —
in what ever way formulated. Except for paying lip-service, most of the little
formal work done on the basis of P&P theory has not addressed questions
of finding a weak but adequate theory. Either formalization was restricted
to some fixed version of the theory — usually in some “machine-readable”
language under the heading of GB-parsing (Macias 1990; Kolb and Thier-
sch 1991; Fong 1992; Johnson and Stabler 1993; Veenstra 1998) — without
consideration for alternatives or future developments, or a strong meta-theory
like full predicate logic — maybe even of higher order — was used to accom-
modate the wide variety of means of P&P theory formation (Stabler 1992).

Despite the indisputable merits of this work in elucidating many aspects
of P&P theory neither strategy is likely to yield a formal framework for Gen-
erative Grammar in the sense outlined above: The former, while relatively
close to the ultimate purpose of the P&P model, is premature: change seems
to be about the only constant in linguistic theorizing and consequently there
has not been a consistent, let alone complete, set of principles at any stage
of GB-development. The latter, on the other hand, seems to go nicely with
actual linguistic practice since it provides all the flexibility needed to express
new generalizations. However, in a Swiss-Army-Knife-type framework the
particular structural properties of natural language grammars will just be ac-
cidents without any explanatory force. Neither can such formalizations, due
to their unrestrictive character, provide any significant guidance for linguistic
theorizing, nor are there general decision procedures for such strong logics,
hence these attempts are in danger of formalizing for formalization’s sake.

Outline 15

Only the dissertation by Jim Rogers (1994) addressed the growing com-
petence in formal language theory. His MSO-based approach to linguistic
theories (most notably P&P-based approaches and towards tree adjoining
grammar (TAG)) uses the results by Doner, Thatcher & Wright and Rabin
on decidability and descriptive complexity. He was able to show in a rig-
orous formalization of a large grammar of English (implementing the ideas
from Rizzi 1990) that most parts of a modern P&P grammar can be captured
by context-free means.

His non-decidability results are interesting as well. The long debate
among linguists whether free indexation is an appropriate method for lin-
guistic theorizing can be answered in the negative since free indexation is not
decidable.! Unfortunately it turns out that the logic is too weak to capture lan-
guages such as Dutch or Swiss German precisely because of this descriptive
complexity result.

In this monograph, I will start with Rogers’s work and use methods from
universal algebra, logic and automata theory to extend the formalism of MSO
logic in such a way that we retain the nice properties but gain enough gener-
ative capacity to address the linguistic facts.

So, let us restate our objective: The goal of this work is to develop a
meta-theory for the expression of theories of natural language syntax on the
basis of a weak logic, which makes direct use of the primitive notions of
grammatical theories. Thus complexity theory and formal language theory
regain their former importance, although they appear slightly different from
the early days.

1.3 Outline

Let us now briefly outline the structure of the monograph. This first part deals
with the introductions and the most basic technical preliminaries.

The second part introduces what has been coined model-theoretic syn-
tax, most notably approaches dealing with P&P formalisms from a logic
oriented point of view with a strong emphasis on model-theory and decid-
ability and definability results. We pick the most prominent member of its
kind, namely Rogers’s work and elucidate the underlying mathematical re-
sults while preparing the field for the techniques we will use in the third part
of the book. We will call the work which directly builds upon Rogers thesis
the classical approach since it uses the results from formal language theory in
an undiluted form. After the introductory overview, we present the necessary

16 Overview

formal tools for the classical approach, MSO logic and finite-state devices,
before turning to the relation between the two, namely a short recapitulation
of the important parts of the decidability proof which has been enhanced with
two sections of definability issues, both of which we need later in the course
of this work. The first of those is concerned with inductive definability, the
second one with the definability of MSO transductions. Before concluding
this part with a review of the strengths and weaknesses of the classical ap-
proach, we also outline a couple of applications and experiences which we
have had with the MSO to tree automata compilation process.

The third part deals with our proposal for the extension of the classical ap-
proach with a second step. In particular, we recall the argumentation why we
need more generative capacity by presenting arguments for the non-context-
freeness of natural languages and by reviewing formalisms which can handle
them. In the next chapter we present the fist step of our proposal, namely
the coding of the linguistic formalisms with special kinds of tree grammars.
Since those can generate structures with non-context-free yields, and we want
to keep MSO logic as the description language, we have to lift these structures
by explicitly inserting control information. Thereby we make them character-
izable with regular means, in particular regular tree grammars or finite-state
tree automata, and therefore with MSO logic as well. As presented in another
chapter, the extra symbols have to be “removed” to recover the intended in-
formation both by logical and operational means.

The last part contains a summary of the presented results as well as an
outlook about work which is yet to be done. And finally, we collect some rel-
evant but distracting details in an appendix. What may be especially helpful
to the reader is the table of acronyms on page 193 and the list of mathematical
symbols.

Chapter 2

Technical preliminaries

Mathematics is often considered a difficult and mysterious science, because
of the numerous symbols which it employs. Of course, nothing is more in-
comprehensible than a symbolism which we do not understand. Also a sym-
bolism, which we only partially understand and are unaccustomed to use, is
difficult to follow. In exactly the same way the technical terms of any pro-
fession or trade are incomprehensible to those who have never been trained
to use them. But this is not because they are difficult in themselves. On the
contrary they have invariably been introduced to make things easy.

(Whitehead 1911, p. 40)

In this spirit, we will lay out a number of basic definitions and notations
(mostly) from universal algebra which will be used throughout this analysis
of natural language formalisms. We hope that they are chosen in such a way
that they are helpful to the reader and not an obstacle in understanding. Nev-
ertheless, we will assume that almost all of the terms are fairly well known
to most of the readers, therefore we do not try to explain or motivate them in
any depth.

The definitions in this section are fairly general and used throughout the
monograph. Therefore they have been separated from the particular chapters
and are presented in their own section. Since most of the definitions are
basic ones from the realm of universal algebra, readers familiar with universal
algebra might skip this part of the book and come back only as needed.

2.1 Alphabets, words and languages

Whenever we will talk about strings or trees, we will use alphabets to denote
the symbols which can appear as the elements of the string or as the labels of
the trees. Since one can associate other information, e.g., their sort, rank or

18 Technical preliminaries

arity information, with these symbols, we give the full definition of a many-
sorted alphabet although sometimes simpler versions are enough.

A string or word over an alphabet is a finite sequence of symbols from
the alphabet.

Definition 2.1 (words and alphabets). Let A be a finite set of symbols (an
alphabet). Then
A* — U An

neN

is the set of all words (or strings) over the set A. Each element w € A" is
called a word of length n. The empty word is denoted by €. So, words are
simply special cases of ordered tuples which we choose to write in a particular
fashion.

In algebraic terms, A* is the free monoid generated from A with respect
to concatenation and identity €.

Most of the time we will omit an explicit concatenation symbol (-) by
simple juxtaposition of words, i.e., wiwy = wy - wy.

The length of a word w is denoted with |w|. By definition |e| = 0.

A word v is a sub-word of w if there exist v;,v, € A* such that w =
vi-v-vy. If vi = ¢ vis called a prefix (of w) and if v, =€ v is called a suffix
(of w).

Definition 2.2 (many-sorted alphabet). For a given set of sorts §, a many-
sorted alphabet X (over S) is an indexed family (X, |w € $*,s € §) of dis-
joint sets. A symbol 6 € X, is an operator of type (w,s), arity w, sort s and
rank |w|. The rank of ¢ is denoted by rank(c). The elements of % ; are also
called constants (of sort s).

In case S is a singleton {s}, i.e., in case X is a single-sorted or ranked
alphabet (over sort s), we usually write ¥, to denote the (unique) set of op-
erators of rank n € N since for § = {s} each (w,s) € §* x S is of the form
(s",s) for some n € N. Therefore we can simplify the notation by focusing
on the arity of the alphabet symbol.

To leave the sorting information underspecified, we will simply use the
term alphabet to denote both the many-sorted and the single-sorted case.
Sometimes alphabets are also called signatures.

A (string) language is just a collection of words over an alphabet.

Trees 19

Definition 2.3 (language). Let A be an alphabet. Then each subset L C A*
is called a language over A. We call the set of all languages over A L(A).

We can use operations on these sets to create new sets, i.e., we can build
languages out of other languages.

Definition 2.4 (operations on languages). Let £, and £, be two languages
over A. Then we can define the regular operations of intersection, union,
concatenation, complement and Kleene closure of £; and £, as follows:

LNL={w|we Liandw € Ly}

LiUL={w|we LiorwE Ly}

Ly-Ly={wiwy |w; € Ly and w; € L}
Li=A"—1,

Li={w|w=wiwy---w,forn>0and w; € L;}

A language is called regular if it can be obtained from the empty language
0 and the “basic” languages £, = {a} for all a € A by applying the regular
operations a finite number of times.

2.2 Trees

So far, all the definitions dealt with strings. Now we turn to trees which are
the main topic of this monograph. Trees are used in various applications
not only in linguistics, but also in computer science or mathematics. The
study of trees is a rich field since fairly often the step from strings to trees
is not only natural, but also provides new insights and opens new perspec-
tives. Maybe the most easily accessible example is the fact that in the case of
strings automata are reversible, i.e., usually they can work from left-to-right
or right-to-left without any consequences, whereas in the case of trees it does
matter whether one starts from the root or from the leaves (cf. Section 4.2 on
page 49).

Due to the diverse areas of applications of trees, we have a choice of how
to define them: as restricted, labeled graphs, as ground terms or as a set of
node addresses with a labeling function. We will start with the second way
of defining trees, but will also define them with a labeling function below.
Since the definitions are all equivalent, there is no harm in choosing the most
convenient definition for the task at hand. For the automata theory, we prefer

20 Technical preliminaries

the term-based view, whereas for the logical applications we prefer the view
using node addresses. We do not need the power of the definition built upon
graphs.

Definition 2.5 (tree (via alphabets)). Let X be a many-sorted alphabet and
S a set of sorts. The set of trees T (X) (over a many-sorted alphabet ¥) is built
up using the operators in the usual way:

(i) If o € Z¢ s for some s € S then © is a (trivial) tree of sort s.

(ii) If, for some s € Sand w = s1---5, withs; € S, 0 € X, and #1,...,1, €
T (%) with #; of sort s; then 6(¢1,...,1,) is a tree of sort s.

Sometimes we will refer to 7'(X) with Ts.

The usage of a single-sorted alphabet simplifies the above construction in
the sense that we can ignore the information about the sorts and simply focus
on the arity. Intuitively, the leaves of the trees are formed by the constants of
the alphabet whereas the other elements form the interior nodes and have as
many daughters as is required by their rank.

The next definition is needed in the second part of the book when we will
use trees with variables as leaves in tree grammars.

Definition 2.6 (trees with variables). Let X be a many-sorted alphabet, S a
set of sorts and X = (X; | s € §) a family of disjoint sets of variables. Each set
X; = {x1,x2,...} contains only variables of sort s. By X,,, n € N, we denote the
subset {xj,...,x,}. Variables are considered to be constants, i.e., operators
of rank 0. Then the family 7'(Z,X) is defined as T(2(X)), where £(X) is a
new many-sorted alphabet built as follows:

(1) E(X)e,s - Ze,s UXS
(i) Z(X)ys = Zy s for w #e.

Analogously to the string case, we define a tree language to be a collec-
tion of trees.

Definition 2.7 (tree language). Let X be a many-sorted or ranked alphabet.
A tree language L is a subset of 7'(X).

As mentioned above, there is an alternative way of specifying trees via
tree domains.

Trees 21

Definition 2.8 (tree domain). A tree domain 7 is a subset of strings over a
linearly ordered set which is closed under prefix and left sister.

T C N* is a tree domain if for all u,v € N* and i, j € N the following
holds:

(1) uv € T = u € T (prefix closure) and
(i) ui € 7T and j <i= uj € T (left-sister closure).

If we limit 7 to be a finite subset, we are dealing with finite trees.
For the following example (see Figure 2.1), we use the set {0, 1} in place
of N, yielding the binary branching tree domain 7.

€
/\
0 i
A /\
00 01 10 i

000 001 o010 011 100 101 110 111

Figure 2.1: An example of a tree domain

The elements of a tree domain are called nodes. For each n € T, nis a
daughter of m € ‘T if there exists an i € {0, 1} such that n = m-i. A node
is called a leaf if it has no children. The distinguished node € forms its root.
Paths are simply prefixes of the string of numbers denoting a node.

Definition 2.9 (tree (via tree domains)). Let A be a set and 7 a tree domain.
A tree over A is a (partial) function z : T — A.

The domain of the tree ¢ is denoted 7 (). For n € I (¢), t(n) is called the
label of n.

The two definitions of trees are obviously related. In fact, a tree under
this second definition is only well-formed if A is a many sorted (or ranked)
alphabet and all nodes have the right number of daughters according to the
rank of the elements from A.

22 Technical preliminaries

2.3 Algebras

In later stages of the book we will make use of a technique called lifting (cf.
Monnich 1999) which is based on the notion of derived algebras. Intuitively,
terms from one sort of algebra will be translated into terms in another sort of
algebra. To this end, we have to formally introduce the notion of an algebra.
Furthermore, we have to give a definition of the way in which the operator
symbols induce operations on an algebra, i.e., we need a precise definition
how term forming symbols can be regarded as operations.

Definition 2.10 (X-algebra). Let S be a set of sorts and X a many-sorted
alphabet. A X-algebra A consists of an S-indexed family (A*|s € §) of dis-
joint sets, the carriers of A, and for each operator 6 € X,,5, 64 : A" — A’ is a
function, where A = A x --- x A% and w = 51 ---5,, with s; € S.

The set 7'(X) can be made into a X-algebra 7 by specifying the operations
as follows. For every o € X, where s € § and w = s1---5, with 5; € S,
and every ty,...,t, € T(X) with ¢; of sort s; we identify 6+ (71,...,1,) with
(11, .. sty).

We also need structure preserving mappings between these algebras. As
usual, they are called homomorphisms. So, different algebras, defined over
the same operator domain, are related to each other if a mapping between
their carriers exists that is compatible with the basic structural operations.

Definition 2.11 (X-homomorphism). Let 4 and B be X-algebras and S a set
of sorts. A X-homomorphism 4 : 4 — B is an indexed family of functions
hs : A* — B*, s € § such that for every operator of type (w,s) = (W -+ wy,s)

hs(ca(ai,....ay)) =0g(hy, (a1),... ,h, (an))
for every n-tuple (ay,...,a,) € A".

A particular homomorphism is constituted by the function which com-
putes the yield of a tree.

Definition 2.12 (yield). Let X be a many-sorted (or ranked) alphabet. The
yield of a tree is defined such that each operator 6 € X with rank(c) = n is
interpreted as n-ary concatenation.

(i) yield(c) = o for 6 € Z¢ 5 (or Xp)

Algebras 23

(ii) yield(o(t1,...,t,)) = yield(t;)---yield(t,) for 6 € %,,; with rank(c) =n
(or X,) and t; € T(X),,, (or T(X))

We can also accommodate the trees which contain variables: The set of
trees 7(Z,X) can be made into a X-algebra by defining the operations in
the following way. For every f in X, for every (z1,...,,) in T(Z,X)":
f‘T(Z,X) ([1 yonn ,[n) = f([] e ,ln).

Every variable-free tree 1 € T(X) has a value in every Z-algebra 4. It is
the value at ¢ of the unique homomorphism 4 : 7 (X) — 4.

The existence of a unique homomorphism from the X-algebra of trees into
an arbitrary 2-algebra A provides also the basis for the view that regards the
elements of T(2(X,,)) as derived operations. Each tree t € T(X(X,,),s) with
w=wi ---w, induces an n-ary function 4 : A" — A®.

The meaning of the function ¢4 is defined in the following way. For every
tuple (ay,...,a,) € A¥: tg(ay,...,a,) =a(t), where a: 7 (X,X,,) — A is the
unique homomorphism with a(x;) = a;.

In the particular case where 4 is the Z-algebra 7 (Z,X,,) of trees over
¥ that contain at most variables from X, = {xi,...,x,} at their leaves the
unique homomorphism extending the assignment of a tree t; € T(X,X,,) to
the variable x; in X, acts as a substitution t7(z x,) ((t1,...,t:)) = t[{t1,. ..)]
where the right hand side indicates the result of substituting #; for x; in t.

The notion of a Lawvere-algebra (Lawvere 1963) will play an important
role in the second part of this book. Those algebras are generalizations of
algebras coming from category theory. Lawvere algebras can always be seen
as a special kind of category where the set of objects is the set of strings on a
given alphabet. The morphisms of the category are the carriers of the algebra.

Definition 2.13. Given a set of sorts .S, an algebraic (Lawvere) theory, as an
algebra, is an $*x S*-sorted algebra 4 whose carriers (A%“") |u,v € §*) con-
sist of the morphisms of the theory and whose operations are of the following
types, where n € N, u = uy - - -u,, with u; € §* for 1 <i<nmandv,w € S*,

projection: e Alusui)
composition: Cluww) € Al s AW, Aluw)
target tupling: ()() € AL) s oo AVtn) A

As should be clear from the chosen names, the operations of projection, com-
position and tupling have the the following intended interpretations: Consider

24 Technical preliminaries

a tuple . Then the projection 7, returns the ith element of 7. Given functions
C, f and g; of appropriate types, i.e., (w,s),(v,s), (w,v;), composition satis-
fies the rule C(t) = f(gi(¢),...,g,(t)) with n = |v| and ¢ a tuple of sort w.
Similarly, tupling satisfies 7' (1) = (g1(¢),...,8x(2)).

From category theory we have that the projections and the operations of
target tupling are required to satisfy the identities for products. The compo-
sition operations must satisfy associativity, i.e.,

C(vau;) (((Xl,...,OCn)(v’u),E'i‘) = o for oy €A<V’”i>, 1<i<n

(C(v,u,ul)(Ban?)a e 7C(v,u,u,l)(BanZ))(v7u) = B for B € A(\@u)

Cuva) (OC’C(V’W’Z) (B’Y)) = Cluwz) (C(u,v,w) (aa B)a'Y))
for o € A(u,v) ’ B S A<V’W>,Y S A(W,Z>

Cluaw) (T) ()) = 0t for oL € Aluv)
where u = uy ---u, withu; € §* for 1 <i<nandv,w,z € S".

Definition 2.6 on page 20 simplifies in case of a single sorted signature.
Let X be a single-sorted signature and X = {xj,x2,x3,...} a countable set
of variables. For k € N define X; C X as {xj,...,x}. Then, the set of -
ary trees T(X,X;) (over Z) is the set of trees T(X') over the single-sorted
signature ¥’ = (X |n € N), where X, = X9 U Xy and X/, = %, for n > 0. Note
that 7(Z,Xx) CT(Z,X;) fork <I. Let T(Z,X) = Ugen T (Z, Xi).

The power set (T (Z,X)) of T(X,X) constitutes the central example of
interest for formal language theory. The carriers (§(T (k,m))|k,m € N) of
the corresponding S* x.S*-Lawvere algebra are constituted by the power sets
of the sets T (k,m), where each T (k,m) is the set of all m-tuples of k-ary trees,
ie., T(k,m)={(t1,...,tm)|t; € T(Z,Xx)}. Since S is a singleton, S* can be
identified with N, because up to length each w € $* is uniquely specified (cf.
Definition 2.2 on page 18). For i,k € N with 1 <i <k the projection constant
7tk is defined as {x;}. Composition is defined as substitution of the projection
constants and target tupling is simply tupling.

Much later in this monograph, we will note that an arbitrary number of
nonterminals on the right hand sides (RHSs) of rules of an multiple context-
free grammar entails the use of tuples of tuples in the definition of the cor-
responding mapping. That is to say, each nonterminal on the RHS generates

Algebras 25

a tuple of terminal strings rather than a single string (cf. Definition 10.8 on
page 140). Therefore we defined the Lawvere algebra in such a way that each
component ; of any u is from S*. Since in the illustrating examples we will
use only rules with one nonterminal on the RHS, each u; we employ there is
of length one (i.e., from .§) such that we can safely ignore the “outer” tupling.

More on algebraic Lawvere theories in general can be found in, e.g., Wag-
ner (1994). More on the connection to linguistics is elaborated in M&nnich
(1998, 1999).

Part 11

The Classical Approach

Using MSO Logic as a Description
Language for Natural Language
Syntax

Chapter 3

Model-theoretic syntax and monadic second-order
logic

In recent years there has been a growing interest in the combination of licens-
ing and generative approaches to linguistic formalisms. As we argued previ-
ously, in the ideal case, both are provably equivalent. The identical question
arises in logic as well as in computational deliberations and in the design of
grammatical theories. All three areas must be brought together to bridge the
gap between theoretical and computational linguistics.

It was somewhat surprising that Jim Rogers showed in his dissertation
(Rogers 1998) that this desideratum could actually be fulfilled even for ap-
proaches in the P&P paradigm by using a classical logical approach, namely
monadic-second order (MSO) logic on trees. Not only is this logic decidable,
but — if limited to quantification over finite sets — the decidability proof al-
lows a direct translation into finite-state (tree) automata.” By presenting large
parts of Rizzi’s book Relativized Minimality (Rizzi 1990) in MSO logic, he
was able to show that these parts of contemporary theorizing could be rigor-
ously formalized so that a descriptive complexity result could be obtained.

This licensing and logic-based approach to P&P theories (Cornell 1992,
1994; Rogers 1997, 1996, 1998) together with the ones using modal logics by
Marcus Kracht (Kracht 1993, 1995; Michaelis and Kracht 1997; Kracht 1999)
and Patrick Blackburn (Blackburn et al. 1993; Blackburn and Meyer-Viol
1994) have then been coined model-theoretic syntax. For a recent overview
of the field, see Cornell (1996). We will only briefly recapitulate the aspects
which pertain to our monograph.

Not surprisingly, after our initial discussion, model-theoretic techniques
are the underlying principle of a large number of grammar formalisms for
natural language, not only for approaches in the P&P tradition, but also for
Lexical Functional Grammar (LFG, Kaplan and Bresnan 1983; Blackburn

30 Model-theoretic syntax and monadic second-order logic

and Gardent 1995), Head-Driven Phrase Structure Grammar (HPSG, Pollard
and Sag 1987, 1994; King 1989, 1994b; Carpenter 1992), Dependency Gram-
mar (Hays 1964; Gaifman 1965; Kunze 1977; McCawley 1986; Duchier and
Thater 1999; Duchier 1999), Functional Unification Grammar (FUG, Kay
1983, 1984), and Tree Adjoining Grammar (TAG, Joshi et al. 1975; Joshi
1985, 1987; Rambow et al. 1995; Vijay-Shanker et al. 1995).

More concretely, constraint-based formalisms characterize objects with
logical description languages declaratively, i.e., without the specification of
how to generate admissible structures. Both the logical approaches to GB and
HPSG use well-formedness conditions on particular structures, i.e., trees and
(typed) feature structures, respectively. In the case of GB this presupposes
that we use a monostratal grammar formalism. Movement has to be encoded
as well-formedness conditions of chains of traces and fillers. To be able to use
these formalisms in applications, computational linguistics has to provide a
connection between model theory and theorem proving on the one hand, and
natural language processing on the other. We bridge the gap between the two
in this first part of the book by exploiting the connection between constraints
in MSO logic on trees and tree automata. Since the solutions to constraints
expressed in MSO logic are represented by tree automata which recognize the
assignment trees satisfying the formulas, we can directly use the automata as
the operational interpretation of our formalism; the aim of this part being the
exploitation of Rogers’s formalization in relation to tree automata.

In this book, we focus in this second part on the use of MSO logic for for-
malizations of Principle and Parameter (P&P) approaches in the Government
and Binding tradition (Chomsky 1982). But since the advent of Chomsky’s
Minimalist Program (Chomsky 1995), there has been a shift back from using
licensing conditions to generating theories. With that in mind, in the third part
we are concerned with two open problems from the direct use of MSO logic
as a specification language for linguistic theories. Structures characterizable
by MSO logic yield only context-free (string) languages — natural languages,
on the other hand, are argued to be at least mildly context-sensitive. Secondly,
the advent of the minimalist program forces one to reconsider the derivational
approaches. It was essential to find a way to address both of these problems
while retaining the (desirable) properties of the original formalism.

Overview of the classical approach 31

3.1 Overview of the classical approach

In this part of the monograph we will explore the logic-automaton connec-
tion, i.e., we will introduce monadic second-order (MSO) logic on trees. In
particular, LI% p» the tree description language proposed by Rogers will serve
as the main source of examples. Afterwards we will introduce several types
of finite state machines which will be needed in the course of the work. To
a certain extent, we will introduce abstract machines which are only needed
in the third part of the book. In this sense this part also serves as an extended
presentation of the necessary preliminaries for the later work. However, it
seemed more convenient and better accessible for the reader to introduce all
finite-state devices in one chapter. This presentation is followed by the core
of this second part: the outline of the proof of the decidability of MSO logic
by the compilation to tree automata. We will show that it is enough to present
tree automata for the basic relations from the signature since the rest of the
proof simply rests on an induction which relies on closure properties of tree
automata. Before we relate the findings of the previous chapters to notions of
model-theoretic syntax, we will introduce some more facts about the defin-
ability of relations and transductions within MSO logic. In the next chapter
we will examine the practical use which can be gotten from the classical
techniques for natural language processing by discussing some applications.
The final chapter of this second part reviews the strengths and weaknesses
inherent in this “classical” compilation technique.

3.2 Monadic second-order logic

The techniques we are introducing here come originally from an old result in
logic, namely that the weak MSO theory of two successor functions (WS2S)
is decidable (Thatcher and Wright 1968; Doner 1970). A “weak” second-
order theory is one in which the set variables are allowed to range only over
finite sets. There is a more powerful result available: it has been shown by
Rabin (1969) that the strong second-order theory (variables range over in-
finite sets) of even countably many successor functions (S®S) is decidable.
However, in our linguistic applications we need only to quantify over finite
sets, so the weaker theory is enough, and the techniques correspondingly sim-
pler. In fact, since we are interested in using the technique of the decidability
proof for natural language processing and the proof works by showing a cor-
respondence between formulas in the language of WS2S and tree automata

32 Model-theoretic syntax and monadic second-order logic

and there is no efficient minimization algorithm for the corresponding class
of Rabin automata on infinite sets, using strong S®S is not an option.

All of these results are generalizations to trees of a result on strings orig-
inally due to Biichi (1960). Thus, the applications we mention here could be
adapted to strings with finite-state automata replacing tree automata. There
are also MSO languages on graphs (Courcelle 1990, 1997), but since there
are no automata with the desired closure properties for graphs we will ignore
those approaches.

3.2.1 Monadic second-order logic on trees

In this section we will present the formal definitions for MSO logic on trees,
i.e., multiple successor structures and introduce the necessary notation. In
most cases we use only two successor functions. Since one can always com-
pile multiply branching structures down to binary branching ones, we do not
loose expressive power.

Note that it is an ongoing debate whether binary trees are sufficient for
P&P theories. This debate is beyond the scope of the topics presented here.
The reason for using only binary branching structures in this monograph is
merely to keep the technical presentation simpler.

We begin with the specification of the syntax of an MSO language on
trees. Intuitively, an MSO logical language is like standard first-order pred-
icate logic extended with variables ranging over sets and quantifiers ranging
over these MSO variables. More specifically, it has a syntax of both first
and (monadic) second-order quantification, all the usual logical connectives,
a (countably infinite) set of first-order variables ranging over nodes and a
(countably infinite) set of monadic second-order variables ranging over (fi-
nite) sets.

Definition 3.1 (MSO Language). The MSO-Language L (of WS2S) con-
sists of

a set of monadic second-order variables: X,Y,... . X,,Y;,...;
— aset of individual variables: x,y,...,X;,Vi,...;

boolean connectives: —, A, V, ...;

quantifiers over individuals and sets: 3, V;

— binary predicates for the successor functions (i € {1,2}): s;;

Monadic second-order logic 33

— prefix, equality and membership: <, =, €.

Free variables, terms, well-formed formulas and sentences are defined as
for first-order predicate logic.

Definition 3.2 (Terms, Well-Formed Formulas, Free Variables and Sen-
tences).

— The variables are the only terms of the MSO language.’

— the set of the well-formed formulas (W FF) is defined as the smallest set
fulfilling the following conditions:

e if x and y are individual variables and s; is a successor relation, then
the application of s; to the arguments is also a well-formed formula,
ie, si(x,y) € WFF,

e if x and y are individual variables and X is a monadic second-order
variable, then x ~ y, x <y and x € X (alternatively X (x)) are in WFF,

e if @ and y are in WFF, then —-@, Ay and @V y are also in WFF,

e if x is an individual variable and X is a monadic second-order variable
and @ is in WFF, then (3x)[o], (3X)[o] and (Vx)[o], (VX)[@] are in
WFF.

— the set of free variables of an MSO formula ¢ is defined as follows:*

Free(x;) = {x;}
Free(si(x,y)) = {x,y}

Free(xoy) = {x,y} foro € {~,<}
Free(xeX)= {x,X}
Free(—¢) = Free(0)

Free(0oy) = Free(¢)UFree(y) foroe {A,V,—,...}
Free((va)[o]) = Free(o) - {x}
Free((Ix)[]) = Free(¢) —{x}
Free(#X)[g]) = Free(s) — {X)
Free((FX)[o]) = Free(9) — (X}

— Sentences are well-formed formulas without free variables, i.e., Free(¢) =
0 for ¢ an MSO formula.

34 Model-theoretic syntax and monadic second-order logic

We will sometimes write ¢(x,...,x,,X],...,X,) for the formula ¢ with
free individual variables xi,...,x, and free set variables X, ...,Xj,.

Informally, we create a tree description logic by fixing the domain of the
interpretation to “trees” and adding binary relations to the syntax which will
be interpreted as the successor functions. So, for the structure of WS2S, we
are going to assume a (binary) tree domain with the extension of (at least) the
two successor relations. These correspond intuitively to the relations of left
and right daughter and are used to navigate through the tree. As we will show,
the structure can be extended with interpretations of other definable relations
we may want to use. We will call this basic structure of WS2S N».

Recalling the necessary definition of the binary tree domain ‘7 from the
section with the preliminaries, we have the prerequisites to define N».

Definition 3.3. The structure of WS2S (N) is a tuple (T, €, s0,51) such that
T, is a binary tree domain with root € and s, s; the left and right successor
relations respectively.

Note that this is an infinite, though only binary branching tree. The exten-
sion to arbitrary, but fixed branching trees simply consists in choosing more
successor functions and the corresponding tree domain. Note that we have an
infinite model whereas we allow quantification only over finite sets. Since we
are only interested in finite trees for linguistic analyses, we have two choices
to achieve the desired limitation. We either can use a separate MSO variable
in all our formalizations which denotes the finite tree that we are interested
in and make all quantification relative to that variable. Or we can switch to
finite model theory, viz., finite tree domains. In the following sections we
will tacitly assume the necessary distinguished MSO variable for the tree that
we want to define since using the infinite model corresponds to the usage in
the classical results. But in Section 5.3.3 on page 72, we will also state the
necessary definitions for finite model theory. At this point, both approaches
work equally well. We will overload the term WS2S to mean the structure of
two successor functions as well as its MSO language.

Formally, each MSO formula represents a constraint on the valuation of
its free variables which is determined by the assignment of the variables to
(sets of) nodes.

Definition 3.4 (variable assignment and satisfiability). Let 7 be a tree do-
main and VAR a set of (MSO) variables. A variable assignment is a total
function o.: VAR — (7).

Monadic second-order logic 35

Satisfaction is relative to these assignments. We will write satisfaction as
N, = o[a] for ¢ an MSO formula, o a variable assignment. As for first-order
logic, satisfiability of a formula means that there exists a variable assignment
which makes the formula true (in the given model).

Since these assignments are such that they map variables to nodes in a
tree, i.e., the assignments together with the domain of interpretation form a
(labeled) tree, we will also speak of assignment trees.

Intuitively, MSO predicates, i.e., monadic second-order variables, pick
out sets of nodes. We can think of the predicates as features labeling the
nodes. A tree, then, is just a rooted, dominance connected subset 7 of the
domain of N,. A labeled tree is a k+ 1-tuple (T, F},.. ., Fy) of the tree T and
k features.’> Therefore, MSO formulas with the underlying interpretation on
N, are constraints on trees. And a grammar in this setting becomes just the
specification of a k 4+ 1-ary relation characterizing the well-formed trees. An
example can be found in Section 3.2.3 on page 39.

As we will see later, the proofs of the decidability results are inductive
on the structure of MSO formulas. So, we can choose our particular tree de-
scription language rather freely, knowing (a) that the resulting logic will be
decidable and (b) that the translation to automata will go through as long as
the atomic formulas of the language represent relations which can be trans-
lated (by hand if necessary) to tree automata recognizing the “right” assign-
ments to their free variables. We will see how this is done in the next section.
However, note that further proof is required that these languages have the full
power of WS2S.

Because of the flexibility concerning the signature of the MSO languages,
the use of the decidability result is not fixed to a particular area of natural
language formalisms. For example, Ayari et al. (1998) have investigated the
usefulness of these techniques in dealing with record-like feature trees which
unfold feature structures; there the attributes of an attribute-value term are
translated to distinct successor functions. On the other hand, we will base our
work on Rogers (1998) who has developed a language rich in long-distance
relations (dominance and precedence) which is more appropriate for work in
GB theory. Compact automata can be easily constructed to represent domi-
nance and precedence relations.

36 Model-theoretic syntax and monadic second-order logic

3.2.2 Anexample language: L

In this monograph, we draw our examples from tree description logics used
in the P&P paradigm. In particular L,2(7 p» the logic proposed in Rogers (1998),
will serve as our main source. Note that L,%’ p has been demonstrated to offer
concise and well founded formalizations of concepts involved in P&P ap-
proaches. In fact, Rogers encodes in his monograph most of the proposals
made in Relativized Minimality by Rizzi (1990) naturally and perspicuously.
Although Rogers has shown that L,%’ p is intertranslatable with SnS and there-
fore not limited to either binary or finite trees, we use it only in the weak
sense over finite binary trees since in linguistics as well as in natural lan-
guage processing it seems a reasonable assumption that we are dealing with
finite trees only. The limitation to the binary case, on the other hand, is just
for convenience (see the remark above).

The strength and naturalness of Roger s’s formalization stems from two
facts. First of all, he is able to define a set of primitive relations which formal-
ize linguistically relevant tree configurations such as dominance, immediate
dominance and precedence. This links the formal definitions given above
with the notions linguists use in their analysis of natural languages. And sec-
ondly, the monadic second-order variables allow to designate sets of nodes
in the tree. Therefore they serve the purpose of features or labels as well
as general sets of nodes and, since we can also quantify over these sets, the
resulting language is surprisingly flexible.

Therefore, the language of L,z(vp is designed to express relationships be-
tween nodes in trees representing linguistic structures. There are local rela-
tions on nodes such as the immediate dominance relation as well as nonlocal
ones such as the reflexive transitive closure of immediate dominance, which
is simply called dominance. Various other theory independent relations for
reasoning about relations between nodes can be defined in WS2S and added
freely, e.g., proper precedence to express ordering information. We parame-
terize the language with both individual and predicate constants.

Example 3.5. Let L,% p be defined by a set K of countably many individual
constants; a set P of countably many predicate constants; a countably infinite
set X = X U X of first-order and monadic second-order variables; A,V,— —
logical connectives; V, 3 — quantifiers; (,),[,] — brackets; <1,<*, <" — imme-
diate, reflexive, and proper dominance; < — proper precedence; and €,~ —
set membership and equality.

Monadic second-order logic 37

In the remainder of the book we will mostly use Lgm. The change does
not limit the power of the language since both the pre(ficate and individual
constants correspond to free (global) variables. In fact, if one uses a tool to
compile the automata from the formulas, one must use free variables since
the compilation process cannot handle constants. We deviate slightly from
Rogers’s definition of the language and use X (x) and x € X interchangeably.

We will freely use appropriate symbols for standard combinations of the
boolean operators (for example =, %, <, ...), uppercase letters to denote
set variables and lowercase ones to denote individual ones. As an example
for relations definable in this language, take the subset relation in (3.1), the
constraint for a set to contain exactly one member in (3.2) and, more linguis-
tically motivated, the formula denoting the relation of directed asymmetric
c-command in the sense of Kayne (1994), see (3.3).

The following notational conventions apply: Comments are preceeded
by a % sign, defined predicates will appear in sans-serif font whereas MSO
variables will simply be italicized. Recall that we presuppose a further MSO
variable for the designated tree to ensure finiteness of the defined tree. For
better readability, we will leave this variable implicit.

3.1) XxCv &L (voreX =xev]
(3.2) Sing(X) (g) % for all subsets Y of X, Y =X orY =0

(W[Y CX = (VZ)[(X CY VY CZ)]|A
% and X is not the empty set
Fr)[X Y]

(3.3) AC-Com(x,y) £, 9 x c-commands y
(Vo)z<tx =zt y] A= (x < y) A
% but y does not c-command x
—((V2)[z<aTy =z x] A= (y <™ x)) A
% and x precedes y

X<y

The relation in (3.3) is not monadic, but reducible via syntactic substitu-
tion to an MSO signature. We can define and use these explicitly definable
relations freely, but we cannot quantify over them. A relation r is explicitly
MSO definable iff there exists an MSO formula ¢ such that r(Xj,...,X,) <

38 Model-theoretic syntax and monadic second-order logic

Figure 3.1: An example for asymmetric directed c-command

¢(Xi,...,X,). For a more exhaustive discussion of definability issues, see
Section 5.5 on page 75.

The formula in (3.1) is simple enough to be self-explanatory, whereas the
one in (3.2) demonstrates how to use second-order quantification. Therefore
we will explain it briefly. A set is a singleton iff all its subsets are either equal
to it or the empty set and it itself is nonempty. This formalization uses the
fact that the empty set is a subset of all sets. So, if we find a set which is not a
superset of X, one knows that X is non-empty. The definition in (3.3) is more
linguistically motivated and specifies asymmetric, directed c-command. As
can be seen directly in the formula, two nodes asymmetrically c-command
each other from “left-to-right” iff x c-commands y, y does not c-command
x and x precedes y. As usual, a node x c-commands another node y if all
of x’s ancestors also dominate y, but x itself is not on a common path with
y. We depict an example tree in Figure 3.1. The dashed arrow represents
the c-command relation. Note that x also c-commands a and b, but does not
asymmetrically c-command a.

In linguistic applications, we generally use versions of c-command which
are restricted to be local, in the sense that no element of a certain type is
allowed to intervene. The general form of such a locality condition LC might
then be formalized as follows.

LC(x,y) L, AC-Com(x,y) A

% there does not exist z with property P:
(-3z)[z€ PA

% such that it intervenes between x and y:
Aw)w<axAw<tzAz<aTy]]

Here property P is meant to be the property identifying a relevant intervener
for the relation meant to hold between x and y. Note that this property could
include that some other node be the left successor of z with certain properties,

Monadic second-order logic 39

that is, this general scheme fits cases where the intervening item is not itself
directly on the path between x and y. The reader may note that the defini-
tion of LC is a building-block for definitions of government. So, with this
language we can easily express even complex linguistic relations.

A structure for L,% p consists of an appropriate set of nodes, i.e., a tree
domain, with relations interpreting the elements from the signature. We limit
the structure to dominance, parent and precedence since proper dominance
can be defined in these terms. This structure is a more specific alternative for
the one given in Def. 3.3 on page 34 for N,.

Example 3.6. A model for LIZ(’P isatuple (7,1,P,D,L,R,)pecp With:
T a nonempty tree domain
I a function from K to T
P, D, L Dbinary relations on 7 which interpret <1, <* and <

R, are relations of appropriate arity on 7 interpreting p € P.
A model for £ is then just a tuple (T, P, D, L).

We will presuppose the use of this type of models whenever we speak
of L,%’ p and the more general one of N otherwise. Again, appropriate steps
have to be taken to ensure the finiteness of the resulting trees either via a
designated MSO variable or by the limitation to finite tree domains.

3.2.3 A small example grammar

In this section we will present a set of formulas as an example grammar which
allow, among many other things, trees with a GBish distribution of features
marking nodes which belong to a projection line and the maximal elements
of these lines. Let it be noted here that this example grammar is not meant
to represent a serious approach to P&P grammars. It is simply supposed to
give some intuition what one can do with the logical formulas, or better, with
these constraints, to achieve a certain distribution of features in trees.

First of all we have to ensure that all the nodes which appear in the trees
T in question are indeed licensed by the grammar, i.e., either by a rule or by
a lexical element.

Licensed(T) <5 (Vx € T)[Lex(x) V Rule(x)]

40 Model-theoretic syntax and monadic second-order logic

A lexicon in this setting simply becomes a disjunction. Each disjunct en-
codes the possible distribution of features on a lexical node. For simplicity,
we treat the words or lexical items as features, i.e., MSO variables. The fol-
lowing lexicon has just six words and four features indicating the respective
categories.

Lex(x) &, (C(x) A weil(x))
vV (V(x) A schlug(x))
vV (N(x) A (Schuft(x)VHund(x)))
vV (D(x) A (der(x)Vden(x)))

The predicate Rule(x) also licenses single nodes by requiring the existence
of appropriate daughters as well as by ensuring the correct labeling. This
example grammar has only three rules, one building CPs, one for a transitive
verb and one for NPs. The rules are simply of the form that they posit the
necessary daughters with their respective labeling. Note that the precedence
constraint excludes equality of the daughters.

Rule(x) g}(ﬂy,z)[(C(x) = x<dyAx<1zAC(Y)AV(z) Ay <2)
V(V(x) = x<ayAx<1zAD(y)AV(z) Ay < z)
V(D(x) = x<tyAx<1zAD(y) AN(z) Ay < 2)]

For simplicity we have already assumed the trees to be at most binary branch-
ing. Now we also want to make sure that there are no unlicensed unary
branches, i.e., each node in the tree has to have either exactly two daugh-
ters (and therefore it can not be lexical) or it has to be lexical, i.e., it can not
have any daughters.

Bin_Branch(T') £, % x has at least two daughters
(VxeT)[(Fy,zeT)x<ayrx<tzA-(y~z) A
% x has at most two daughters
(WweT)x<w= (wryVw=az)|A
% and is not lexical
—Lex(x)]
% unless it is a leaf
Vo(IyeT)x<y]]

Monadic second-order logic 41

weil der Schuft den Hund schlug

Figure 3.2: Distribution of Max and Proj

Cat(x,y) is just an auxiliary predicate which is true if two nodes have the
same category feature.

Cat(x,y) 2L (C(x)

(N(x)

Viy) v
D(y))

C(y)
N©))

(V(x)
(D(x)

= V -
= V =
Finally, after having defined the shape of the tree and the basic distribution of
the category features, we can turn to the distribution of the features marking
projection lines and their respective maximal element. The nodes lying on
a projection line are marked with the feature Proj and the maximal element
with Max. If two nodes stand in the immediate dominance relation and they

have the same category feature, then the mother is labeled with Proj.
Proj_Princ(T) <5 (vx € T)[(3y € T)[x <y A Cat(x,)] < Proj(x)]
If two nodes which stand in the immediate dominance relation do not carry

the same category label, then the lower one is labeled with Max since its
projection line ends here.

Max_Princ(T) £ (vx € T)[(3y € T)[y <x A ~Cat(x,y)] < Max(x)]

42 Model-theoretic syntax and monadic second-order logic

Then the well-formed tree 7 has to obey all the principles, i.e.,

well-formed(T) £, Licensed(T') A Bin_Branch(T) A
Proj_Princ(T") A Max_Princ(T')

The following is an example tree allowed by the grammar given above. It
is presented graphically in Figure 3.2 on the page before. We use M for Max
and P for Proj and split the nodes licensed by the lexicon into a terminal
labeled with the actual word and a preterminal labeled with the category for
convenience.

Chapter 4

Finite-state devices

Finite-state devices constitute an efficient, powerful and flexible tool in di-
verse areas such as program compilation, hardware modeling or database
management. Their use in computational linguistics is an area of active re-
search as is indicated by a recent survey (Roche and Schabes 1997) on finite-
state language processing (FSNLP). The mathematical and algorithmic re-
sults presented in that volume unfortunately do not cover most of the types of
finite-state machines that we will use throughout the book. Neither the tree
automata we will introduce in this chapter, nor the tree-walking automata and
the macro tree transducer used in the second part of this monograph seem to
be used in these application oriented approaches to natural language process-
ing. This is partly due to the fact that this area of research utilizing finite-state
devices has completely different goals compared to the ones we have in this
monograph. Whereas they want to build actual machines for particular tasks
such as parsing, we want to characterize language classes as collections of
entities which can be recognized by a particular type of automaton. Neverthe-
less, we can certainly transfer some of their claims to our setting. Therefore
we will very briefly outline some of the standard techniques and results.

Generally, there are two main benefits cited for finite-state devices. They
are efficient, e.g., a finite-state automaton can process a given sentence in
time linear in the length of the sentence. And furthermore, they are flexible,
e.g., finite-state machines are closed under a variety of operations.

One limitation of finite-state devices consists in their limited expressive
power. Finite-state automata, for example, are only able to capture regular
languages. By using tree automata we retain the flexibility, but gain one step
in the Chomsky hierarchy from regular to context-free languages.

Some familiarity with finite state devices is assumed in this chapter. For
readers who want to refresh their memory, I’ll recommend Yu (1997).

44 Finite-state devices

4.1 Finite-state language processing

In this section I will briefly recapitulate some of the work from Roche and
Schabes (1997) to prepare the groundwork for the switch to tree automata
which appear as a natural generalization of the work presented in Roche and
Schabes. But I will neither discuss particular applications in any detail nor
do more than mention variations of the standard definitions.

Finite-state automata (FSAs) and finite-state transducer (FSTs) are the
main concepts used in this section. Note that both work on strings. This will
already be the main difference to the classes of automata we will introduce in
the following section.

4.1.1 Finite-state automata

Let us review the definition of deterministic FSAs, the generalization to non-
deterministic automata is straightforward.

Definition 4.1 (Finite-State Automaton). A (deterministic) finite-state au-
tomaton 2 is a 5-tuple (Q,X,9,qo0,F) with Q the (finite) set of states, X a
finite set of symbols (an alphabet), gy € Q the initial state, /' C Q the final
states and 8 : Q x (XU {e}) — Q the transition function.

Nondeterministic FSAs are also 5-tuples (Q,X, 8,1, F), but they may have
more than one rule for a given (alphabet, state)-pair. Therefore transitions of
nondeterministic automata have sets of states as the result of a transition, i.e.,
d: 0 x (2U{e}) — (Q), and they have a set of start states /.

Since FSAs can always be determinized (see below), we will silently assume
that we are always dealing with deterministic FSAs unless stated otherwise.
FSAs are usually represented graphically such that states are indicated
by nodes and transitions by arcs. Furthermore, the initial state is marked
with an ingoing arrowhead and final states by two concentric circles. A
simple example is shown in Figure 4.1 on the facing page. This graphi-
cal representation corresponds to the following definition of the FSA 21 =
{q0,q1},{a,b},8,90,{qo}) with 3 as given below:

q 1490 490 41 4q1
G |a b a b

8(¢.9) |90 @1 91 qo

Finite-state language processing 45

Figure 4.1: A simple FSA

Each FSA represents a set of strings over the alphabet £ where for each
string there are transitions from the initial to a final state of the automaton
while consuming the string, the language recognized by the FSA. More pre-
cisely, a single transition of an FSA is defined from state ¢ € Q on reading
symbol G € X to be 8(¢,0). We can generalize these transitions from single
symbols to strings in the following way.

Definition 4.2. Let 2% = (Q,X,8,qo,F) be an FSA. The extended transition
function o from Q x X* to Q is defined as follows:

(i) forallg € 0, 8(q,€) =¢

(i) forallwe X*anda € X, §(¢,wa) =8(q1,a) where 8(q,w) =qi.

Definition 4.3. Let 2 = (Q,X,8,qo,F) be an FSA. The language L(2) of a
deterministic FSA 2! is defined to be:®

L) ={we="|8(qo,w) eF}
Languages recognized by FSAs are called regular.

The example automaton given in Figure 4.1 above recognizes the lan-
guage L(A) C {a,b}* where each string w € L(2() has an even number of
bs.

The central results about FSAs were proven in papers by Kleene (1956)
and Rabin and Scott (1959). The results relate the class of languages rec-
ognized by FSAs to closure properties. The idea is to construct automata
from other automata with “natural” operations and showing that the result
is still regular. In particular, FSAs are closed under union (L(2(; Ul,) =
L(20) U L(A,)), concatenation (L(A; -Ap) = L(A;) - L(A,)), complemen-
tation (L(A) = Z* — £(2)), intersection (L(A; NA) = L(A;) N L(Ay)) and
Kleene star (L(20*) = L(2()*). I will not repeat the proofs here, the interested

46 Finite-state devices

reader is referred to any textbook on formal language theory, e.g. Lewis and
Papadimitriou (1998). These results directly relate FSAs with regular expres-
sions. In fact, they characterize the same languages.

Note that the naive constructions usually are augmented with two useful
techniques. First of all, one considers only the states which are reachable
from the initial state(s) by some transitions. This can directly be used in
constructing the new automata by starting from the initial states and using
only those which can be generated from there on. The other construction is
the one which removes useless states. A state is useless, if no final state can
be reached from it. One can simply compute the useless states by doing a
reverse reachability construction starting with the final states. Both of these
fairly simple improvements can be folded into the basic constructions — as
for example the intersection construction — and help to speed up building the
automata by keeping them small.

Furthermore, FSAs are also closed under determinization (via a subset
construction of the states) which means that we can pick the more convenient
version of FSA and be certain that the other closure properties still hold.
Again, particulars of this construction can be found in any textbook, e.g.
Lewis and Papadimitriou (1998).

The closure properties are powerful and not all other formalisms in natu-
ral language processing have them, e.g., as is well-known, context-free gram-
mars are not closed under intersection nor under complementation. FSAs, on
the other hand, can be used to build other automata incrementally from sets
of constraints according to these natural operations.

FSAs can also be minimized and therefore have a normal form which
ensures optimal space and time efficiency. Minimization works by remov-
ing any useless states (and the transitions using them), followed by forming
equivalence classes of states which behave identically. The details are out-
lined in any standard textbook on automata theory.

We conclude this brief introduction of FSAs by giving a number of im-
portant decidable properties regarding their languages:

4.1) Membership: we L(A)
Emptiness: L(A)=0
Totality: L(A)=Z*
Subset: L(Q[]) C L(le)
Equality: L(A))=L(Ay)

Finite-state language processing 47

The results all rely on the crucial fact that the emptiness of the language rec-
ognized by an automaton is decidable together with the closure operations
outlined above. The emptiness can be decided by a simple fixpoint construc-
tion on the set of states which can be reached with arbitrary alphabet symbols
from the initial states. If a final state can be found in this way, the language
is non-empty. The process terminates since there are only a finite number of
states to consider. Note that minimization gives us another way of deciding
this question: the canonical empty automaton has just one state which is ini-
tial but non-final. Again, this turns FSAs into a flexible framework which can
be used to incrementally build applications.

The applications of FSAs in natural language processing include, among
others, morphology, phonology, lexica, dictionaries, pattern matching, speech
processing, optical character recognition and grammar approximation (Roche
and Schabes 1997). Occasionally, the applications require the extension or
modification of the basic definitions, e.g., to weighted finite automata. I will
not go into the details here, the interested reader is referred to the relevant
literature, e.g., Pereira and Riley (1997).

4.1.2 Finite-state transducer

I will be even briefer about finite-state transducers. Since we will need tree
transducer in the second part of the book it seems helpful to recall at least the
basic definitions and properties of FSTs.

But first, we have to define what a transduction is. Let A and B be two
(arbitrary) sets of, e.g., words or trees. A binary relation 7 C A X B can be
considered to be a (partial) mapping between elements of A and B. These
mappings associate some elements from A with one or many elements from
B. These relations are more commonly called transductions, T : A — B.

Intuitively, the main difference between automata and transducers is the
fact that transducer produce an output while consuming the input. Therefore
they have two (not necessarily disjoint) alphabets; one for the input and one
for the output string. So, whereas all an FSA can tell us is whether it has
reached the end of a string in a final state, i.e., whether the string is well-
formed, a transducer can at the same time generate an output string. In fact,
a transducer defines such a relation between two languages.

Definition 4.4 (Finite-State Transducer). A finite-state transducer ¥ is a
6-tuple (Q,X,Q,8,q0,F) with QO the (finite) set of states, X, Q finite sets of

48 Finite-state devices

ale b/1 ale

)
(4
_/V

b/1

Figure 4.2: A simple FST

symbols (input and output alphabet), gp € Q the initial state, F C Q the final
states and 8 : Q x (ZU{e}) — Q x (QU {e}) the transition function.

¥ is deterministic if forallg € Q and 6 € £ |8(¢,6) Ud(g,€)| = 1, oth-
erwise it is called non-deterministic.

We can associate an underlying FSA with each FST by just defining the
FSA to work on an alphabet of pairs from Z x Q.

An example is again graphically displayed in Figure 4.2. The only dif-
ference to the FSA in Figure 4.1 on page 45 is that the arcs are now labeled
with pairs of symbols where the first one is the input and the second one the
output symbol.

Transitions are defined as for automata. If we are in state ¢g; and read
symbol G; of the input word w = G} -G, and have generated the output
o -~y and a transition exists in ¥ 8(g;, 0, gk,), we continue the com-
putation in state g; and append @y to the output u = ®; - - - ;.

Definition 4.5. Let T = (Q,X,Q,8,q0,F) be an FST and w = wy - --w,, € X*.
Then T(w) is the set of all output words v =v; ---v, € Q" of T for w if there
exists a sequence of transitions from ¢ to some g; € F

(6]1aV1) e S(CIO’Wl)a (QZ’VZ) e 8(q17W2)7' L (C]navn) 6 S(anlawn)

and g, € F.
In this sense the transition realized by ¥ is {(w,v) | v € T(w)}.

Our example transducer from Figure 4.2 transduces the words with even
occurrences of bs into strings of 1s such that it counts the bs, e.g., aabbaba is
transduced to 111.

As with FSAs, the power and flexibility of FSTs come from the diverse
closure results, although it should be noted that FSTs as defined here (they
allow e-transitions) are not closed under intersection. The reader is referred
to Roche and Schabes (1997) for details.

Tree automata 49

4.2 Tree automata

Recall that we are not solely interested in strings but in their structural de-
scription which can be modeled with trees. Therefore we will introduce an
appropriate class of automata working on trees. And furthermore, the switch
to tree automata also results in a gain of expressive power since the yields of
recognizable trees are the context-free languages (Gécseg and Steinby 1984).

Since we are only using MSO logic on finite trees, the introduction of
tree automata is sufficient. We do not have to follow Rabin (1969) in the
specification of automata on infinite trees.

Intuitively, FSAs work on a rather special sort of tree already. Consider
turning a string by 90 degrees and re-interpreting the old precedence infor-
mation as dominance. Then FSAs work on unary branching trees, i.e., on
a special monadic alphabet. Now we generalize this to arbitrarily branching
trees by switching to a ranked alphabet for the input symbols and generalizing
the transition function from (state, alphabet symbol)-pairs to multiple states
on the left hand side of a transition. This is quite natural from the perspective
which views automata recognizing terms over a ranked alphabet as a special
form of algebra. More specifically, terms are seen as finite labeled trees as
defined in the preliminaries (cf. Section 2 on page 17). Strings over a finite
alphabet are simply terms over a unary ranked alphabet and the generaliza-
tion to arbitrarily branching terms is straightforward. For example, the string
aba becomes the tree a(b(a(e))) via a bijection defined such that each word
w € QF is taken to t,, € Tx({€}), with £ = X; = Q a ranked alphabet, in the
following way:

(i) t. =€, € anew symbol, and
(i) tw=u(t,) forw=uv,veZ* uci

Now we can generalize the terms and automata correspondingly. We
already introduced terms over a ranked alphabet in the preliminaries (see,
again, Section 2 on page 17). Therefore we can immediately turn to the tree
automata which recognize them. As can be seen, we prefer in this case an
algebraic definition of trees.

To be able to define deterministic tree automata, we follow Gécseg and
Steinby (1997) in assuming that leaves have two daughters which are both in
the initial state. Algebraically, this corresponds to the addition of a terminat-
ing “null”-symbol A labeling special nodes below the intended leaves. These

50 Finite-state devices

A= <{a0,a1},{A,B},S,ao,{d0}>

d(ap,ap,A) =ap &(ap,a1,A) = a;
d(ar,ap,A) =ar &(ay,a1,A) =a;
S(Clo,ao,B) =daj 6(610,611,3) = daj
S(al,ao,B)—al 6(611,611,3):611

Figure 4.3: A simple FSTA

are connected with a null-ary transition function into the intended initial state.
Most of the time we will omit both these nodes and the transitions for better
readability.

Intuitively, a finite-state bottom-up tree automaton (FSTA) creeps up the
tree from the frontier to the root using the labels as alphabet symbols for the
transitions and assigning a state to each subtree. If the root is reached in a
final state, the tree has been recognized.

Definition 4.6 (Tree Automaton). A (deterministic) finite-state bottom-up
tree automaton (FSTA) 2 is a 5-tuple (A, X, , a9, F) with A the (finite) set of
states, X a ranked alphabet, ay € A the initial state, ' C A the final states and
§: U, (A" x %,) — A the transition function.

Again, we can extend the transition function inductively from labels to
entire trees by defining

(1) 8(?») = ap and
(i) 8(a(r1,...,1x)) =8(8(11),...,8(ta),0), forf; € Tg, 1 < i< n,G € X,

An automaton 2 accepts a tree t € Tx iff S(I) € F. The language recognized
by 2 is denoted by T'(A) = {r|0(¢) € F}. Sets of trees which are the language
of some tree automaton are called recognizable.

As an example, the automaton in Figure 4.3 recognizes trees from an
alphabet with X, = {A, B} where all the nodes are labeled with A. Unfortu-
nately, there is no suitable graphical representation for FSTAs. Therefore it
is necessary to give the full specification as outlined in the formal definition.

This admittedly very simple tree automaton recognizes all binary trees
whose interior nodes are labeled with A by staying in the initial and, at the
same time, final state ap. As soon as we encounter a node labeled B, we go
into a sink state (a;). We will eliminate the transitions to the sink state in the

Tree automata 51

A = ({ag,a1},{A,B},d,a0,{a1})

S(ap,ap,A) =ap O(ap,a1,A) =a;
S(ay,a0,A) =ar d(ai,a1,A) =a;
8(ao,a0,B) = aj

Figure 4.4: A tree automaton recognizing an non-context-free tree set

remainder of the paper since they do not contribute knowledge on acceptable
structures.

As can be seen from the definition of the yie/d-homomorphism in Defini-
tion 2.12 on page 22, the tree language recognized by a tree automaton can be
turned into a string language by interpreting all the nonterminals as concate-
nation operators of the appropriate arity, i.e., the string language £ () associ-
ated with a tree automaton 2l is defined to be L(2() = {w | w = yield(t) for t €

As mentioned previously, Gécseg and Steinby (1984) show that for any
tree automaton 2, £(2l) is a context-free language and that for any context-
free language L there is a tree automaton 2 such that £ = £(2(). But note that
tree automata are only equivalent to context-free grammars up to a projection!
Consider for example the tree automaton given in Figure 4.4. It recognizes
trees which have exactly one node labeled with b. There is no context-free
grammar which will have this set of trees as derivation trees since if in a rule
an A can be rewritten into a B once, it can happen for any A. But if we take
as nonterminals pairs of states and alphabet symbols, then we can write an
appropriate grammar. If we then project the states away, the resulting trees
are the ones recognized by the tree automaton.

Let us re-state briefly the results about boolean operations which can be
directly transfered from the previous discussions of standard FSAs, before we
explain the new ones. As for FSAs, bottom-up tree automata are closed un-
der complementation, intersection, union, Kleene star, projection and cylin-
drification of alphabets, determinization’ and minimization. Most of the con-
structions are adaptions from the corresponding ones on finite-state automata.
Most notably, the binary constructions are all variants of building the cross-
product of the two automata involved and then computing the “right” set of
final states.

We will use the constructions during the compilation from formulas to
automata to parallel connectives and quantifiers in MSO formulas. Again,

52 Finite-state devices

the questions presented in (4.1) on page 46 remain decidable since we are
still dealing with finite sets of states such that reachability is decidable and
the automata retain the necessary closure properties.

There are two operations which have not been introduced so far, but
which are necessary for the decidability proof of MSO logic on trees, namely
projection and cylindrification of alphabets. Intuitively, when we quantify
a variable in MSO logic and have a corresponding tree automaton, then we
have to remove the element corresponding to that variable from the alphabet.
Here we need the projection operation. Conjoining two automata (formulas)
requires that they work on the same alphabet, i.e., the boolean constructions
assume that 7'(2(;) and T'(2,) are both subsets of Tx, for some fixed X — we
need cylindrification.

Therefore, for the handling of the projection and the conjunction of the
alphabets we need a general construction which takes us from a set of trees
in one alphabet X to another, call it Q2. Assume that we are given a mapping
P: ¥ — Q; we extend it to a mapping P from Ty — Tg in the natural way.
That is:

P(c) = P(c) foro € %

P(S(t1,....12)) = P()(P(t1),...,P(ty)) for 6 € 5,

Now suppose that T() C Ts, with A = (A,X,8,a0,F). We construct
a nondeterministic automaton 8 working on the new “projected” alphabet
as presented in (4.2). But first we have to introduce some notation. Let

G be a set of functions. Then G(xi,...,x,) is meant to denote {z|(3g €
G)lgxiy...,xy) =2] }.
(4.2) B = (A,Q,8p, a0, F)

Sp(ay,...,an,0) =8(ay,...,a,, P~ (w)) for w € Q

Then one can show that (see Morawietz and Cornell 1997b)

Considering the remark on notation above, 8(aj, ... ,a,, P~ (®)) denotes the
set of a such that, for some ¢ with P(c) = m, the following equation holds:
d(ay,...,a,,0) = a. The result is a non-deterministic automaton. Since
bottom-up tree automata are closed under determinization, we can always

Tree-walking automata 53

determinize the resulting automata afterwards and gain the desired new au-
tomaton.

We can also define cylindrification, i.e., an inverse to the projection func-
tion. Suppose, again, that we have a projection P : £ — € and a tree automa-
ton A = (A,Q,d,a0,F). By definition, T (2() is recognizable. Then we can
define a new automaton B recognizing 7'(*B) = P! (T(2A)) as follows:

B = (A,%,0p,a0,F)
op(ai,...,ay,0) =9d(ay,...,a,,P(0)) forceX

More details on both the specification and implementation of FSTAs and
their constructions can be found in Morawietz and Cornell (1997b) and Klar-
lund (1998). Standard references for tree automata on finite sets are Gécseg
and Steinby (1984, 1997), for FSTAs on infinite ones, see Thomas (1990).

4.3 Tree-walking automata

Furthermore, we will need a variant of finite-state automata: tree-walking
automata with tests (FSTWA). Intuitively, those automata — which are a vari-
ation of the tree-walking automata introduced in Aho and Ullman (1971) —
make transitions from nodes in a tree to other nodes along its branches. Each
single transition can either test a label of a node, move up in the tree or down
to a specific daughter.

Definition 4.7 (Tree—Walking Automaton). A finite-state tree-walking au-
tomaton with tests, (FSTWA) over a ranked alphabet X is a finite automaton
A= (0,A,d,I,F) with states Q, directives A, transitions : Q x A — Q and
the initial and final states / C Q and F' C Q which traverses a tree ¢ € Ty along
connected edges using three kinds of directives:

T — “move up to the mother of the current node (if the current node

has a mother and is its i-th daughter)”
li = “move to the i-th daughter of the current node (if it exists)”, and

¢o(x) — “verify that @ holds at the current node”.

For any tree ¢ € Tx, such an automaton 2{ computes a node relation

R,(A) ={(x,)| (x,qi) =" (y,qy) for some g; € [and g7 € F'}

54 Finite-state devices

where for all states g;,¢; € Q and nodes x,y int, (x,q;) = (y,¢;) if and only
if 3d € A: (gi,d,q;) € & and y is reachable from x in ¢ via d. Note that x is
reachable from itself if the directive was a (successful) test.

It is important not to confuse this relation with the walking language rec-
ognized by the automaton, i.e., the string of directives needed to come from
the initial to the final node in a path.

If all the tests @(x) of 2 are definable in MSO logic, 2 specifies a regular
tree-node relation. Bloem and Engelfriet (1997a), who may be consulted for
details, prove that any regular tree-node relation is itself MSO definable and
provide a general translation of 2 into an MSO formula which we will present
in Section 5.5 on page 75. We, however, will not exploit the full power of the
definition: a basic tree-walking automaton restricting ¢ to simple tests of
node labels (which are trivially MSO definable via the membership relation)
is sufficient for our purposes.

4.4 Tree transducer

We need yet another type of finite-state machine later in the paper: Macro
Tree Transducer (MTTs). Since those are not so well known, we will intro-
duce them via the more accessible standard top-down tree transducers. These
are not so different from the bottom-up tree automata or the standard FSTs
introduced above. Instead of working from the leaves towards the root, the
top-down tree transducer start from the root and work their way downwards to
the leaves. And, of course, they produce an output tree along the way. In the
following paragraphs we will use the notation as introduced in Engelfriet and
Vogler (1985). Our presentation is also inspired by Engelfriet and Maneth
(2000). A full introduction to tree transductions can be found in Gécseg and
Steinby (1997).

4.4.1 Top-down tree transducer

Intuitively, top-down tree transducers transform trees over a ranked alpha-
bet X into ones over a ranked alphabet €. They traverse a tree from the
root to the leaves (the input tree) and output on each transition step a new
tree whose nodes can contain labels from both alphabets, states and vari-
ables. More formally, the right hand sides of such a production are trees from
T(QUZX(X)UQ). For this definition we assume that Q is a ranked alphabet
containing only unary symbols.

Tree transducer 55

qo0

\

a —— 49 c Qo Q0 = b
N | | | T
r1 T2 I I9 a Q0 c Q0

N \ \
t1 to t1 to

Figure 4.5: One step of a TDTT derivation

Definition 4.8 (Top-Down Tree Transducer). Let X be a set of variables. A
top-down tree transducer (TDTT) is a a tuple T = (Q,Z,Q, o, P) with states
0, ranked alphabets X and € (input and output), initial state go and a finite
set of productions P of the form

q(o(xy,...,x,)) — t

wheren > 0,x; € X,0€X,andt € T(QUE(X)UQ).

The transition relation (:T>) is defined similarly to the string case (see
Definition 4.5 on page 48). We traverse a tree and construct a new tree
while doing so (see Engelfriet and Vogler (1985) for a full definition). The
transduction realized by a top-down tree transducer 7 is then defined to be

{(t,0) ET(Z) X T(Q) | go(t1) =" 1}

Consider as a very simple example the transducer 7" which maps binary
trees whose interior nodes are labeled with a’s into ternary trees whose inte-
rior nodes are labeled with b’s. The leaves are labeled with p and are trans-
duced into ¢’s. Furthermore, new leaves labeled ¢ are introduced at every
branching point. X consists of one binary symbol a and one constant p, € of
one ternary symbol b and two constants ¢ and c¢. The transducer has only one
state go and the two productions below:

qo(a(x1,x2)) — b(qo(x1),¢,q0(x2))
q0(p) —q

Figure 4.5 shows one application of the nontrivial rule. The left hand side
displays the rule in tree notation whereas the right hand side displays an actual
transition.

If we have already transduced a subtree 3 of the input and are in state g
and currently working on a node labeled with @ with immediate subtrees #,

56 Finite-state devices

and #,, then we can rewrite it into a tree labeled with b whose leftmost and
rightmost daughter are in state gg applied to #; and #, respectively and the
middle daughter is labeled with the terminal symbol c.

4.4.2 Macro tree transducer

By generalizing the set of states to a ranked alphabet, we can extend the
notion of a top-down tree transducer to a macro tree transducer. This allows
to pass parameters — which contain a limited amount of context from the
part of the input tree we have already seen — into the right hand sides. We
formalize these new right hand sides as follows:

Definition 4.9. Let X and € be ranked alphabets and n,m > 0. The set of right
hand sides RHS(X,Q,n,m) over X and Q with n variables and m parameters
is the smallest set rhs C T(ZUQ, X, UY,,) such that

1. Y, Crhs
2. For o € Q; with k > 0 and @y,...,Q € rhs, ®(Qy,...,Qx) € rhs

3. For g € O+ withk >0, x; € X, and @1, ...,0 € rhs, q(x;,Q1,...,0r) €
rhs

The productions of macro tree transducers contain one “old” parameter
(an alphabet symbol with the appropriate number of variables, the x;’s) and
additionally a number of context parameters (the y;’s). In Engelfriet and
Vogler (1985), the x;’s are called input variables and the y;’s formal parame-
ters.

Definition 4.10 (Macro Tree Transducer). Let X and Y be two sets of vari-
ables. A macro tree transducer (MTT) is a five-tuple M = (Q,X,Q, qo, P) with
Q a ranked alphabet of states, ranked alphabets ¥ and Q (input and output),
initial state go of rank 1, and a finite set of productions P of the form

CI(G(X] g 7Xn)7)’1,-~ . 7ym) —1

where n,m >0, x; € X,y; €Y, q € Quuy1,06 € X, and t € RHS(Z,Q,n,m).
The productions p € P of M are used as subtree rewriting rules, i.e., one

can construct new terms out of the old ones by replacing the x;’s with el-

ements from Ty and the y;’s by sentential forms.® The transition relation

of M is denoted by M. The transduction realized by M is the function
M *
{(11,0) €T(E)XT(Q)[(q0,11) = 12}

Tree transducer 57

b
o /’\
/’\ z b
1 b Q Y3 qo o
a Y1 Y2 Ys - [| qo = /’\
- Qo Y2 T2 /’\ ti b 9o S3 Qo
T1 T2 ‘ a S$1 S2 83 | | |
v N Q0 s ts

t1 t2 I
S1

Figure 4.6: One step of an MTT derivation

An MTT is deterministic if for each pair g € Q,,41 and ¢ € ¥, there is at
most one rule in P with ¢(G(xy,...,x,),v1,--.,Ym) on the left hand side.

An MTT is called simple if it is simple in the input (i.e., for every g €
Om+1 and G € %, each x € X; occurs exactly once in RHS(Z,Q,n,m)) and
simple in the parameters (i.e., for every ¢ € O,,+1 and 6 € X4, each y € Y;,, oc-
curs exactly once in RHS(X,Q,n,m)). The MTT discussed in the remainder
of the paper will be simple. Note that if we disregard the input, MTTs turn
into CFTGs.

A little care has to be taken in the definition of the transition relation
with respect to the occuring parameters y;. Derivations are dependent on the
order of tree substitutions. Inside-out means that trees from 7'(€2) have to be
substituted for the parameters whereas in outside-in derivations any subtree
must not be rewritten if it is in some context parameter. Neither of these
classes contains the other.” Since we are only dealing with simple MTTs in
our approach, all modes are equivalent and can safely be ignored.

TDTTs result from MTTs by dropping the context parameters. If we drop
the input variables from TDTTs, they turn into regular tree grammars.

Consider for example the following rule of an MTT M.

qo(a(x1,x2),y1,2,¥3) — b(x1,b(q0(y1)),q0(y2),¥3,90(x2))

In analogy to the presentation in Figure 4.5 on page 55, we illustrate the
the rule above in Figure 4.6 without being too concerned about the formal
details of specifying a full transducer.

The only difference (apart from a totally different transduction) is that we
now have parameters which appear as trees s; through s3. Those trees can
also be freely used on the right hand sides of the MTT productions.

Chapter 5
Decidability and definability

The theorem given below is the cornerstone of this first part of our approach.
It was discovered independently by Doner (1970) and Thatcher and Wright
(1968).

Theorem 5.1 (Doner; Thatcher & Wright). The weak monadic second-
order theory of 2 successor functions (WS2S) is decidable.

In this section I will help the reader to develop an intuition for the decid-
ability proof in at least one direction. Since the proof of the theorem above
is constructive, the goal is to present how automata represent constraints, i.e.,
formulas in MSO logic. The consequence of the theorem for us is the imme-
diate application of compiling a representational theory into an operational
device.

Let it be noted again that an even stronger result exists: SnS, the strong
MSO theory of two successor functions, is decidable as well (Rabin 1969).
But since finite trees are sufficient for our purposes, we can safely use the
weak theory. This has the additional advantage that we can use standard
finite-state or tree automata which work on finite strings or trees, instead of
the more complicated Rabin automata which work on infinite objects. This
makes the entire approach more applicable to the techniques developed and
used in finite-state language processing as presented in Section 4.1.

5.1 Representing MSO formulas with tree automata

In this section we take a closer look at the connection between MSO formulas
and tree automata. It should be pointed out immediately that the translation
from formulas to automata, while effective, is of non-elementary complex-
ity. In the worst case, the number of states can be given as a function of the
number of free variables in the input formula with a stack of exponents as

Representing MSO formulas with tree automata 59

tall as the number of the formula’s quantifier alternations. However, there is
a growing body of work in the computer science literature on computer hard-
ware and system verification (e.g., Kelb et al. 1997; Klarlund 1998; Basin and
Klarlund 1998) and software development (e.g., Sandholm and Schwartzbach
1998; Damgaard et al. 1999; Elgaard et al. 2000; Mgller and Schwartzbach
2001) suggesting that in practical cases the extreme explosiveness of this
technique can be effectively controlled, and our own experiments suggest that
this should be the case in most linguistic applications as well. Experiences
with a software tool are documented in Morawietz and Cornell (1999).

The attraction of the proposed approach is obvious: the connection allows
the linguist the specification of ideas about natural language in a concise man-
ner in logic and at the same time provides a representation of the constraints
which can be efficiently used for processing.

The decidability proof works by showing a correspondence between for-
mulas in the language of WS2S and tree automata, developed in such a way
that the formula is satisfiable iff the set of trees accepted by the corresponding
automaton is nonempty.

More specifically, Doner (1970) and Thatcher and Wright (1968) show
that each formula in MSO logic can be represented by a tree automaton which
recognizes the relevant assignment trees. One step in the proof is to encode
the variable assignments as the inverse of the labeling function, another the
inductive construction of automata. Then WS2S is decidable since the empti-
ness problem for tree automata is decidable.

Please recall that an assignment function maps first order variables to
nodes and second-order variables to sets of nodes in N,. The labeling func-
tion on the trees the automaton accepts does the converse: it maps nodes to
the set of free variables to which that node is assigned. Concretely, we can
think of nodes as being labeled with bit-strings such that bit i is on at node n
if and only if # is to be assigned to variable X;.

More formally, let again N, be the structure of WS2S and (b()?) a formula
with free variables X. We can safely ignore individual variables since they
can be encoded as properly constrained set variables with the formula for
Sing(X) given in (3.2) on page 37. For each relation r(X) from the signature
of the MSO logic, we have to define a tree automaton 2" recognizing the
proper assignment trees. Recall that we need a special variable to ensure the
finiteness of our trees.

60 Decidability and definability

Then we can inductively build a tree automaton 2? for each MSO formula
®(X), such that
N, = 0[t] <=1 € T(A?)

where T assigns sets of nodes to the free variables X and ¢ is the correspond-
ing assignment tree. The automaton compactly represents the (potentially
infinite) number of valuations, i.e., the solutions to constraints.

5.2 Coding of relations

Before we turn to the inductive construction of the automata, we have to
make the notion of “representing” an MSO formula by a tree automaton more
concrete. For simplicity we again limit the discussion to the binary case.

The key to the correspondence between automata and formulas is the use
of a certain family of alphabets with a particular interpretation — a coding
scheme — according to which a tree can represent a tuple of sets of nodes
in Nj. In this section we set out the essentials of that coding scheme. This
scheme is somewhat easier to present if we think of trees as tree domains
together with a labeling function than if we think of them as terms.

For an n-ary relation we choose an alphabet

2 ={0,1}",

that is, the set of n-ary strings of bits. Then, given a binary tree ¢ : {0,1}* —
{0,1}", if a node w € {0,1}* has a label 7(w) = (k1,...,k,), then wherever
k; = 1, we interpret w as a member of set Xj, the ith set variable. In this way
we can interpret a X" tree as encoding an assignment function for variables in
the (monadic second-order) language of WS2S. The tree ¢ is interpreted as a
function assigning to each X; the set of nodes in which the ith bit is “on”.

Recall that technically we can only encode tuples of sets this way, so we
can only encode assignments to sequences of set variables. However, it is
relatively easy to deal with individual variables as well. At very least, we can
translate to a language in which all individual variables have been replaced
one-for-one with set variables which are constrained to denote singleton sets.
We can do this because singletonhood is definable in a language without in-
dividual variables (cf. (3.2)).10

Note that the set of trees which represent a certain tuple of sets will nec-
essarily be infinite. To see this note that the n-tuple 0" labels a node which
plays no direct role in the sets being picked out. Now suppose we have a tree

Coding of relations 61

t which represents the desired tuple. Furthermore suppose that some of its
leaves are labeled with A, a zero-place function symbol which plays no role
in the representation of the tuple. Clearly we can take any of these A-labeled
nodes and replace it with 0"(A,A)!'! without either adding, removing or dis-
placing any node marked for membership in one of the sets. Furthermore we
can repeat this process as often as we like. Any tree we derive in this manner
will represent the same tuple of sets as the tree with which we started. The
same procedure can go in the other direction as well: any subtree of the form
0" (A,) can be replaced with A, and we can do this as often as we like without
affecting the tuple of sets which the tree represents.

There are two ways of doing this. If we want to be able to say “the
tree” that officially encodes a tuple, then we must take steps to isolate one
member of this infinite set for special treatment. Both Doner (1970) and
Thatcher and Wright (1968) ultimately follow this course. On the other hand,
as Doner (1970) shows, given any set of trees which represent a given tuple,
both its minimal member and its “closure” under extension with and removal
of filler-trees 0" (A, A) form recognizable sets. In spite of historical precedent,
it seems to us that the encoding via the closure is simpler to implement than
the encoding via minimal representatives, and that is how we will precede.
From now on we will distinguish the following two notions:

— aset of trees represents the relation made up of the tuples the trees encode;

— aset of trees encodes a relation just in case it contains all of the trees that
encode each tuple of the relation.

Note that encoding is a strictly stronger notion than representation; a set
which encodes a relation necessarily represents it, but a set which (merely)
represents a relation does not necessarily encode it. We will be at some pains
to ensure that the automata we construct for a given formula recognize that
formula’s encoding. A more extensive discussion why this distinction is nec-
essary is presented in Morawietz and Cornell (1997b). Since it is directly
related to the implementation of a tool to translate MSO formulas into tree
automata, we do not go into any details.

So now we can say what it means for a relation R on y;,(7;) to be
recognizable, Ty being the domain of N,. An n-ary set-valued relation R is a
subset of (2£i,(72))". Each member r of R C (§yi,(72))" is thus an n-tuple
of (finite) sets of nodes, and can be encoded by a (finite) X"-labeled tree. The

62 Decidability and definability

A= <A,22,Ot,ao,F>,
A={ap,a1,a2,a3,as,as},
22 = {(x,y), (x,), (~x,y), (~x,) }

F={as},
a(ag,ag, (—x,—y)) =ap ofdo,ao,(x,7y)) =as
a(ag,ao, (—x, y))=ar ofao,ar,(~x,7y)) =az
afag,az,(~x,7y)) =ax oao,as, (—x,7y)) = a4
a(ar,ao, (—x,7y)) =ax ofaz,ap, (—x,7y)) = a
o(as,az, (—x,7y)) =as ofas,ao,(~x,y)) = as

all other transitions are to as

Figure 5.1: The automaton for AC-Com(x,y)

relation R is, then, encodable by a set of trees, namely the full set of trees
which encode its members. So we have the following.

Definition 5.2. An n-ary relation R is recognizable if and only if it can be
encoded by a recognizable set of X"-trees.

Consider as a first example the tree automaton corresponding to Kayne’s
asymmetric c-command relation from (3.3) on page 37, see Figure 5.1. For
readability, we denote the alphabet of node labels in such a way that the
tuples indicating for each free variable whether a node is assigned to it or
not consist of the variable names (standing for 1) or their negations (standing
for 0), respectively. In this case we have only free variables x and y, so the
alphabet consists in this concrete case of the tuples (x,y), (-x,y), (x,—y) and
<_\)C ;)

On closer examination of the transitions, we note that we just percolate
the initial state as long as we find nodes which are neither x nor y.!> From the
initial state on both the left and the right subtree we can either go to the state
denoting “found x” (a3) if we read symbol (x,—y) or to the state denoting
“found y” (a;) if we read symbol (—x,y). After finding a dominating node
while being in a; — which switches the state to a; — we can percolate ap
as long as the other branch does not immediately dominate x. If we come
into the situation that we have as on the left subtree and a; on the right one,
we go to the final state a4 which again can be percolated as long as empty
symbols are read. Clearly, the automaton recognizes all trees which have the
desired c-command relation between the two nodes. But in addition to the
arbitrary number of intermediate nodes, we can also have an arbitrary number

Coding of relations 63

2= <{a0’a1’a27a3}’{<ﬁx>’ <X>},0L,ao,{ao,a1,a2}>

ofag, a0, (—X)) =ap ofao,a0,{ X)) =a
oaog,ar,(—X)) =ax afag,ar,{ X)) =a
o(ar,a0,(—X)) =az ofar,ao,(X)) =a
(X(Clo,az,<ﬁx>) =ap (X(Clz,ao,<ﬁx>) =ap

all other transitions are to a3

Figure 5.2: The automaton for Path(X)

of (—x,—y) labeled nodes dominating the constellation or being dominated
by it such that we recognize the closure of the (AC-Com) relation in the sense
of Doner. The relation can now serve as a new primitive in further MSO
formulas.

A further example which uses second-order variables is given with the
definition of the predicate Path. A path is a connected set of nodes where all
nodes are related by dominance.

(5.1) Connected(P) £
% If an element falls between any two other elements
% wrt domination it has to be in P.

(Vx,y,2)[(x EPAYy EPAX< zAz<"y) =z € P]

(5.2) Path(P) £

% P is connected and linearly ordered.
Connected(P) A (Vx,y € P)[x 1"y Vy <"x]

The tree automaton recognizing the relation looks as given in Figure 5.2.
The automaton works on a very simple alphabet: either a node is a member
of the set X or it isn’t. Let us briefly review the workings of the automaton.
The initial state is ag. We remain in the initial state until we encounter a node
labeled for membership in X, at which point we transit to state a;. As long
as we are in a; on exactly one daughter and the mother node is also assigned
to X, we remain in a;. Note that if we find ourselves in a; on both daughters,
then we enter as, the sink state. If we are in a; on one daughter and the
mother is not in X, then we enter state a,, indicating that we have completed
our search for the path X. Any further X-nodes force us into state a3: this tree
cannot represent an assignment function satisfying the constraints on Path-
hood. All of states ag, a; and a; are final states: X may be the empty set

64 Decidability and definability

Figure 5.3: An example run of the Path(X) automaton

(ap), it may include the root (a;) or not (a;). See the example tree given in
Figure 5.3. The tree in the figure is annotated with the states and the labels
the automaton finds upon traversing it.

There are many other ways one can define the property of a set of nodes
as constituting a path. However, any other equivalent definition would still
yield an automaton isomorphic to the one given for the formula Path in Fig-
ure 5.2 on the page before. That is, minimized automata are normal forms.

5.3 Constructing automata from MSO formulas

How do we construct the necessary automata from the MSO formulas?

Due to the inductive nature of the proof, all we have to do is present au-
tomata exhibiting the relations from our signature, say for L,% p- And then we
can use the closure of tree automata under the operations of complementation,
union, intersection and projection to “mimic” the corresponding connectives
from the logic.

We start by simply presenting the automata for equality, dominance, prece-
dence and set membership to prove the base case.

5.3.1 The decidability proof (various base steps)

The base of the induction involves proving that the relations definable by
atomic formulas of the relevant language are recognizable. In the case of
L,%’ p» We must prove five cases.

Constructing automata from MSO formulas 65

Theorem 5.3. The relations defined by the following formulas are all recog-
nizable.

1. x<1*y, 2. x<y, 3. x=<y, 4. x=y, 5. xeX.

We prove theorem 5.3 by brute force, exhibiting five automata which rec-
ognize the encodings of the five relations defined in the theorem.

Keep in mind, however, that our encoding scheme is defined as if all our
variables were set variables. We will see below that in all of these proofs
the assignments to individual variables appearing in these formulas are con-
strained to be unique. Put another way, it is as if we translated our formulas
to a language containing only set variables, but where certain of these sets
were in addition constrained to be singletons. (That is, we appear to adopt
a typographical convention which requires all lower-case variables to denote
singleton sets. Note that we still write x; € X;, not x; C X;.)

Unless defined differently, the following automata work on the ranked

alphabet X = {(x,y), (x,—y), (-x,y), (-x,7y) }.

Case 1: Dominance. We define here a tree automaton 2 such that 7'(2)
encodes the relation x <1* y.

A= ({ao,a1,a2,a3},%,0,a0,{az})
oag,ap, (—x, y))=ay,
ofay,ap,(x,7y)) = a,
ofag,ar,(x,7y)) = ay,

oa;,ag, (—x,7y)) = a;, a; € {ap,ay,az},
o(ap,a;, (—x,~y)) = aj, a; € {ap,ar,ay},

all other transitions are to as.

Note that for any tree recognized by %I, only a single node can be labeled
(x,—y) and only a single node can be labeled (—x,y). That is, variables x
and y are assigned to unique nodes by any variable assignment encoded by
a tree in 7(2(). This is assured by the fact that all subtrees peripheral to
a path containing denotata for x and y must be assigned ap by 2. But no
subtree containing either (—x,y) or (x,—y) (or for that matter (x,y)) can be
assigned ag. So nodes for x and y must be found on a single path to the root,
and, clearly, they can only be found once on any given path. Informally, the

66 Decidability and definability

automaton 2l is in state ag while it is searching for an occurrence of a node
labeled (—x,y). Once it has found such a node it changes to a;, which means
that it is currently searching for a node labeled (x,—y). In case it has found a
node of that type it switches to the final state a,.

As long as 2 sees only nodes labeled (—x,—y), it remains in whatever
state it is currently in, so the node denoted by x can be arbitrarily far above the
node denoted by y, and both can be embedded arbitrarily deeply in the tree,
and arbitrarily far above the frontier. This last point assures that 2l recognizes
a true encoding.

Case 2: Immediate Dominance. The immediate dominance automaton is
a simple variant of the dominance automaton of the last paragraph. We need
only disallow (—x, —y) from intervening between the node labeled (—x,y) and
the node labeled (x,—y). That is, we can remain in state a; only momentarily.

A= ({ap,a1,a2,a3},Z,0,a0,{az})
oao,a, (—x, y)) =ar,
ofay,ap,(x,7y)) = ay,
ofag,ar,(x,7y)) =a,

ola;,ag, (—x,7y)) = a;, a; € {ap,ar}
oag,a;, (—x,7y)) = a;, a; € {ap,ar}
all other transitions are to as.

Case 3: Precedence. Essentially, x < y just in case there is a pair of sisters
the leftmost one of which (reflexively) dominates x and the rightmost one of
which (reflexively) dominates y. The automaton encodes this fairly directly.

A= ({ag,a1,a2,a3,a4},%,0,a0,{az})
o(ag,ap, { x,7y)) =ay,
o(ag,ap, (—x, y)) =a,
ofay,az, (—x,~y)) = as,
o(a;,ap, (—x,7y)) = a;, a; € {ap,ay,az,a3},
o(ag,a;, (—x,—y)) = a;, a; € {ap,ay,ay,a3},
all other transitions are to ay.

Constructing automata from MSO formulas 67

Once again, the set of nodes labeled (x,—y) is a singleton, and likewise for
(—x,y). Also, 2 does recognize the official encoding of the precedence re-
lation, though this fact is a little trickier to establish. A simple argument
suffices, however, to show that whenever 8(1;) = ag and §(t;) = ao, then
8((—x,—y)(11,12)) = ao. So, in essence, all representations of the tuple of
empty sets are treated equivalently.

Case 4: Equality. The automaton for x ~ y is designed to scan an input tree
for a single node labeled (x,y).

A= ({ap,a1,a2},Z,0,a0,{a })
oao, ao, (x,y)) = ai,
o(a;,ap, (—x,7y)) = a;, a; € {ap,a; },
oag,a;, (—x,7y)) = a;, a; € {ag,a; },

all other transitions are to as.

Again, only a single node labeled (x,y) is tolerated. All other nodes must be
labeled (—x,—y).

Case 5: Set membership (a.k.a. ‘singleton subset’). The automaton for
x € X (properly, X; C X, A Sing(X))) is essentially similar to the automaton
for equality, except that now only x is constrained to appear uniquely. Nodes
labeled (—x,X) may appear freely; in fact they are indistinguishable from
(—x, =X, reflecting that the relation defined here is completely indifferent to
the size of X, as long as it is at least 1. The careful reader will have noted that
we are working on a different alphabet now:

A= ({ao,a1,a2},Z,0,a0,{a}),
Z={{xX),{x,2X), (-x,X), (~x,2X)}
oao,ap, (x,X)) = a,
ola;,ag, (—x,k)) = a;, ke {-X,X},a; € {ap,a;},
oao,a;, (—x,k)) = a;, ke {-X,X},a; € {ap,a;},

all other transitions are to a.

This completes the “brute force” proof of the base case for decidability of our
language.

68 Decidability and definability

5.3.2 The decidability proof (inductive step)

The “modular” nature of the decidability proof is emphasized by the fact
that the inductive step is independent of the particular variety of MSO lan-
guage we choose. This step is common to proofs of the decidability of both
the language of WS2S and L,% p» and indeed it assures the decidability of
any monadic second order language with “automaton-definable” atomic for-
mulas. So we can choose an arbitrary monadic second-order language L,
assuming only that all relations definable by L’s atomic formulas alone are
recognizable.

First, all sentences of L are either of the form (3X)[¢] or of the form
—(3X)[0]. We know that

N, = (3X)[0] iff there is an A C T and N, = ¢(A)

for 7, the domain of Nj. Such an A exists just in case the (unary) relation
defined by ¢ is non-empty. (Each member of that unary relation is a potential
candidate for X.) By the same token, N = —(3X)[9] just in case the relation
defined by ¢ is empty. So the decidability of £ reduces to the decidability of
emptiness for the £-definable relations.

The argument runs as follows. If we can show that all L-definable re-
lations are recognizable, then, knowing that the emptiness of recognizable
sets is decidable, we have immediately that the emptiness of L-definable re-
lations is decidable, and so membership of L-sentences in the L-theory of
N, is decidable as well.

We prove this by induction. In the previous section we showed that the
atomic well-formed formulas of L7 , define recognizable relations, by the
brute force approach of actually exhibiting the automata which witness this
fact. To prove the inductive step, we must prove the following claim (which
is essentially Lemma 19 in Thatcher and Wright (1968), and the second half
of Theorem 3.7 in Doner (1970)):

Theorem 5.4. If formulas ¢ and \y define recognizable relations, then so do

1. oAV, 2. -0, 3. (3X)[0].

Assuming that aut stands for an automaton constructor, the proof is a mat-
ter of exhibiting the constructions by which we arrive at aut(¢ A v), aut(—¢)
and aut((3X)[0]), given aut(0) and aut(y).

Constructing automata from MSO formulas 69

Case 1: Conjunction. Unsurprisingly, the construction which proves the
conjunction case is based on the construction for the intersection of two rec-
ognizable sets. However, simple intersection is not quite enough, since ¢ and
v may differ on their variables. Suppose that ¢ has free variables X; and X»,
while y has free variables X, and X3. That is, ¢ defines relation R(X;,X>)
while y defines relation S(X»,X3). Our first problem is to get the relations to
“line up”. The solution is as follows. Clearly, R is the projection of some re-
lation R'(X1,X>,X3), under a projection Py which maps (ky,ka,k3) — (ki k).
Similarly, S is the projection of a relation S'(X;,X>,X3) under a projection
P, which maps (ki,kp,k3) — (ka,k3). Since the recognizable sets are closed
under inverse projection (“cylindrification”), and by assumption both R and
S are recognizable, it must be the case that R’ and S’ are recognizable as well.

So the first step is to identify the relevant projections and invert them,
giving us automata 2’ and B’ working on a new, common alphabet ¥’ and
recognizing R' and §', respectively. Now R'N S’ is a 3-ary relation which is
just the set of trees recognized by the cross-product automaton

(AxB,X o/ x B, a9 x by,Ar X BF)

(Recall that the inverse projection construction preserves the initial and final
states of its inputs; for example, A" = (A,X' 0/, ag,AF), where only the tran-
sition function and the alphabet differ from 2(.) The same construction can
be extended to handle formulas that overlap on any number of variables.

Case 2: Negation. This case is relatively straightforward, as long as we can
make the following assumption. If we are attempting to construct aut(—d),
we must be able to assume that aut(¢) is deterministic. The conjunction con-
struction and the complementation construction itself preserve this property
of their inputs. Since all of the atomic automata are deterministic, we need
only worry about this constraint in the case of existential quantification, to be
considered below.

As long as our determinism constraint is satisfied, the construction for
aut(—0) is just complementation. If the input automaton is

aut(0) = (A, Z,0,a0,AF),
then its complement is
aut(_'q)) = <A727a7a07A _AF>

and that is that.

70 Decidability and definability

Case 3: Quantification. The core of this construction is the projection con-
struction from Section 4.2 on page 49. We wish to construct aut((3X;)[9]),
given aut(¢). Suppose ¢ defines a relation

RX1,.... Xi,.. ., X))

Then aut(¢) is a tree automaton that recognizes trees each of which encodes
atuple S of subsets (S1,...,S,). The formula ((3X;)9)(S) is satisfiable by any
sequence of sets S whose i-th member can be replaced by a set S} such that
0(S[S:/X;]) is satisfiable. That formula is satisfiable if the set of tuples of sets
which satisfy it is not empty. That set of tuples is the relation ¢ defines. So
(3X;)0 defines a relation which is a projection of the relation defined by ¢,
where the projection removes or suppresses the ith member of the elements
of X" to yield X"~

The projection function corresponding to the quantifier prefix (3X;) is the
following.

ProXt =3 = (ky, ok k) s (ki1 kig k)

Unfortunately, one can easily observe that the output of this construction
need not recognize an encoding, even when its input does.

Suppose we have an automaton 2l which recognizes the following tree,
together with all of its extensions by 00.

1

o

01
Now take the projection function P defined as follows:

P:32 o3 = (ky k) (ky)

Then applying P to the tree above yields

S — =

So the automaton we derive by applying the projection construction to 2 will
recognize this tree and all of its extensions by 0.

Constructing automata from MSO formulas 71

Now, our original automaton, 2, recognized the official encoding of a
certain relation (essentially the relation holding between nodes which are the
root and nodes which are the first successor of the root). But this is no longer
true of the projected automaton! In particular, it will not recognize the fol-
lowing tree which was obtained by replacing the subtree 0 with the empty
tree, even though this tree encodes the same 1-tuple of sets as the tree above.

1

Therefore we need to do a little clean-up work if we want our automata to
maintain the official encoding. This is not just a matter of pointless book-
keeping! If T'(2() encodes a given relation, then its complement encodes the
complement of the relation. But now if we complemented the projected au-
tomaton (even after making it deterministic!), we would wind up with a set
of trees containing the tree above, which therefore does not even represent
the complement of the projection of 7' (1), since that tree encodes a tuple in
T(A).

For this purpose we need a further operation on automata: the truncation
operation. Intuitively, this operation “updates” the initial states to ensure that
no spurious “empty” nodes are required by the automaton.

First, let us define the set V of trees as being those subtrees of trees in
P(T (1)) which are labeled only with 0. We need to compute the set of states
Ay which are assigned by & to members of V. This is easy to do: we need only
a slight variant of the procedure computing the reachable states mentioned
for checking the emptiness of an automaton’s recognized forest. There we
allowed node-labels to range freely over the alphabet. All we need to do now
is to fix our attention on transitions for nodes labeled with 0’s. We proceed
as follows.

AO = OL(ZQ)
AyTh= Ay U (e] (Farax € AY)oar,a2,0") = Q}
ie., Ay Ua(Ay x Ay x 0")

AV = UA"?

m<m

Once again, the construction is guaranteed to reach a fixpoint in a number
of steps bounded by the size of A. At that point, Ay = Aj;. Note that the
definition presupposed a nondeterministic automaton as input.

72 Decidability and definability

Now we construct from 2(a nondeterministic automaton 21’ by just chang-
ing the initial states: 2" = (A, %, o, Ay, Ap). Note that the resulting automaton
2" is only truly nondeterministic at the leaves of a tree.

This gives us a “roll-up” or truncation construction. For completeness we
should provide also a closure construction which guarantees that the entire
extension got by replacing empty trees with 0"-labeled trees is recognized.
Note however that in practice, while we need the truncation construction, we
do not need the closure construction, since its behavior can be easily built into
the primitive automata and is inherited under the various constructions.'?

Coming back to our construction of the relevant automata for quantifi-
cation, we have to apply truncation here. But we are not done yet! Both
projection and truncation introduce nondeterminacy into the automaton, and
we must therefore determinize the output in case we later apply the comple-
mentation operation.'* So the sequence of steps we must go through are as
follows.

1. Apply the projection construction.
2. Apply the truncation construction.
3. Apply the subset construction.

This gives us a deterministic automaton which recognizes the projection of
the encoding of T (aut(d)).

5.3.3 Computational complexity

We now have all the ingredients to take a look at the sources for the non-
elementary complexity of the translation from MSO formulas to automata.

In fact, the explosion is caused by the alternation between quantifier
blocks, since quantification results in nondeterministic automata, but nega-
tion needs deterministic ones as input. That is to say, for each universal
quantifier followed by an existential one (and vice versa) we need the subset
construction which has an exponential worst case complexity: the number
of states can grow according to a function with a stack of exponents whose
height is determined by the number of ¥— quantifier alternations. As we will
see later, this is not just a theoretical problem but results in a real “practical”
problem, see Section 6.3 on page 95.

Finite model theory 73

5.4 Finite model theory

Instead of considering a single infinite model (in our case N;) with a dedi-
cated MSO variable for the resulting (finite) tree, we can alternatively switch
to finite model theory and consider a priori finite strings or finite trees as
models for the MSO formulas.

As mentioned, while the computational complexity of a problem is usu-
ally defined in terms of the resources required for its computational solution
on some machine model, descriptive complexity looks at the complexity of
describing the problem (seen as a collection of relational structures) in a logic,
measuring logical resources such as the type and number of variables, quan-
tifiers, operators, etc.

The correspondence between a syntactically restricted class of logical
formulas and a time-restricted class of computations has attracted consid-
erable attention both in the logic and the computer science community and
was the beginning of a series of important results that provide analogous log-
ical descriptions of other complexity classes. This research program, i.e., the
systematic study and development of logical resources that capture complex-
ity classes is well documented in the monograph on finite model theory by
Ebbinghaus and Flum (1995) to which we refer for further information.

The problems addressed in this monograph where, on the computational
side, finite automata are taken into account rather than resource-bounded Tur-
ing machines, as is usually done, has been called descriptive theory of rec-
ognizability in the recent overview by Thomas (1997) and is handled in its
own section in Ebbinghaus and Flum (1995), Finite Automata and Logic: A
Microcosm of Finite Model Theory.

If we follow the tradition of finite model theory, our formalizations have
to be changed accordingly. We begin with the definition of the finite mod-
els we will use, i.e., words and trees. The careful reader will later notice a
similarity to the structures introduced in connection with the MSO definable
transductions (see Section 5.6 on page 80).

Definition 5.5 (word models). Let X be an alphabet and let ©(X) be the vo-
cabulary {s} U{Ps |0 € X}, where s is binary and the P; are monadic. A word
model for u € T* is a structure of the form

W= (A,s,Ps)

where |A| = length(u), s is an ordering of A and the P correspond to positions

74 Decidability and definability

in u carrying the label o:
Ps ={a € A|label(a) = G}.

Both definitions, i.e., the one for words and the one for trees given below,
use a finite set of objects with some imposed order to represent strings and
trees. The order basically defines the edges between the nodes. In the string
case this is simple linear precedence, in the tree case a lexicographic order.
In order to talk about the labels at certain positions in the structures, we have
to include predicates denoting the relevant alphabet symbols.

Definition 5.6 (labeled tree models). Let X be a ranked alphabet and let T(X)
be the vocabulary {si,...,s,} U{Ps|0 € X}, where the s; are binary and the
Ps monadic. A tree model for t € Tx is a structure of the form

T = (Avsia<aP6)1§i§n

where A is in one-one correspondence with dom(t), the tree domain of ¢, the
s;i (i=1,...,n) are the successor functions over the tree domain, < is the
prefix order and the P correspond to positions with label G:

Ps ={a € Al|label(a) =c}.

Then we can state the two theorems relating these finite structures with
MSO logic as follows:

Theorem 5.7 (Elgot). L is a regular language over the alphabet X iff L is
definable in monadic second order logic over the vocabulary 1(X). More
succinctly (for @ an MSO sentence):

L is a regular language iff there exists ¢ such that

L=Mod(¢) = {ueX|uk o}

Theorem 5.8 (Doner, Thatcher—Wright). Ler X be a ranked alphabet. L C
X* is a context-free language iff L is the yield of a set of tree models definable
in monadic second order logic over the vocabulary 1(Z).

Let @ be an MSO sentence. Then L is a context-free language iff there
exists ¢ such that

L = yield(Mod(9)) = yield({t € Tz |t = ¢}).

Definability of relations in MSO logic 75

By this simple expedient of switching from a single infinite to a set of
finite models, the non-elementary complexity of checking satisfiability via
the logic-automaton compilation can be tackled from a different angle.

We can also switch from looking at the question of deciding satisfiability
(is there a model) to the question of deciding satisfaction (for a given model,
can the formula be made true). Assuming a fixed MSO formula, i.e., a tree
automaton, it can be decided in linear time whether a given finite tree is ac-
cepted by that automaton. But since we cannot generally assume that we are
dealing with a fixed formula, this technical trick is not always open to us.

The switch to finite models also allows to address the problem of the
decidability of extensions of MSO logic on trees with further relations. It is
trivially decidable whether a given MSO formula holds for a given finite set of
finite trees by the simple expedient of running the corresponding automaton
on all trees. The non-decidability facts cited by Rogers in his thesis address
satisfiability and rely on the use of the classical technique with the single
infinite model.

It clearly is a philosophical question which approach is psychologically
more appropriate. Since the ensuing discussion clearly would lead too far
afield, we will leave this, admittedly very interesting and important, question
open for further research.

The reformulation of the theorems does not play a prominent role in the
succeeding chapters, but please note that we have to presuppose finite rela-
tional structures for the MSO transductions.

5.5 Definability of relations in MSO logic

After presenting the decidability of MSO logic we face the related question
of what is definable within the logic. Particularly, which relations between
nodes and sets of nodes are definable to be used freely.

Firstly, we can use all relations which are explicitly definable in WS2S.
An example of an explicit definition is the one of asymmetric c-command
given in (3.3), i.e., those relations which reduce via syntactic substitution.

Definition 5.9 (explicit MSO definability). A relation r is explicitly MSO
definable iff there exists an MSO formula ¢ such that

r(Xi,...,.Xn) <= 0(X1,...,Xy).

76 Decidability and definability

As alluded to in Section 3.2.2 on page 36, we can define and use these
explicitly definable relations, but we cannot quantify over them. This allows
us to define more complex building blocks for more complex definitions, e.g.,
the direct use of predicates for c-command instead of having to specify the
relevant node configurations over and over again. Basically, we can tailor the
description language to our needs.

In further parts of this book, we will also need to define binary relations
recursively. While that is not possible in general, there are special cases
where the definability can be ensured.

Moschovakis (1974) provides the notions of first and second-order induc-
tive definability to designate those relations which are recursively definable.!’
The following paragraphs relate the model-theoretic notions with the opera-
tional ones built upon fixpoints.

We are going to define the relations recursively via an operator which
computes all the tuples of sets contained in it. Since we will be limiting our-
selves to positive occurrences of the relation symbol, the operator is mono-
tone and a least fixed point exists. An inductive definition is not satisfiable
by a single relation but by a whole set of them. These are the fixed points
of the operator. Intuitively, an inductive definition corresponds to a recursive
definite clause definition in a logic programming language (see for example
the definitions in Hohfeld and Smolka 1988) where the relation we define
is to be added to the signature of our model. In general, the name of the
predicate in the definite clause corresponds to a third-order variable. For ex-
ample in a fact like the base case of append(X,Y,Z) (cf. Figure 5.4 on the
facing page),'® we can view append as a third-order variable with monadic
second-order arguments. In the following all the X; and X are meant to be
(monadic) second-order variables. X is a third-order variable with monadic
arguments. Naturally we do not allow quantification over the non-monadic
and third-order variables. We assume the extension of the variable assign-
ments to these second- and third-order variables such that they assign sets of
nodes, i.e., relations on individuals or sets of sets of nodes, i.e., relations on
sets. Recall that X denotes a tuple of distinct variables; X, stands for a tuple
of length n.

Definition 5.10. Let R C (7)" and ¢ be a formula with Free(¢) = {X,, X}
such that X has arity n and occurs only positively. Then we define the operator

Ty : 9(9(T)") — 2(92(T)") as
Ty (S) == {a(X,) N2 = 0[o] and ou(X) = S}.

Definability of relations in MSO logic 77

append(X,Y,Z) <
{Elist(X)\Y ~ Z}

append(X,Y,Z) «
{Head(x,X) AHead(x,Z) A Tail(X,U) ATail(Z,V)} &
append(U,Y,V)

Max(xX) xEXA(VyeEX)y#x=x<aTy]
Elist(X) =(3x)[x € X]
Nelist(X) <:f> (3x)[x € X] APath(X)
List(X) <L Elist(X) V Nelist(X)
Head(x,X) £ Nelist(X) A Max(x,X)
Tail(X,Y) €4 ¥ € X ANelist(X) A List(Y)

A (Vx € X)[-Head(x,X) <= x € Y]

Figure 5.4: Definite clauses and auxiliary definitions for the append relation

The corresponding least fixpoint of I'9(0) =T (Un o Fﬁ(@)), i.e., the least
Iy such that Iy (I (0)) = I(0) will be called F(T'y).

The relation R is called (second-order) inductively definable iff there ex-
ists such a formula ¢(X,,,X) such that R = F(Ty).

Note that the relations we define here are sets of sets and computed as
fixpoints. The main fact to note is that the inductive definitions must not con-
tain a negated occurrence of the variable which is used to denote the relation.
We can classify the inductively definable relations as follows.

Definition 5.11. Let ¢ be the formula defining the relation r of arity n, i.e.,
¢(X,,,X) and o(X) =r

(1) If the definition of the relation r uses only first-order induction, i.e., ¢
is of the form ¢()?n,X) with each X; € X, being only a singleton set
and Ty(r) = {o(X,,) | N2 = 0[o] and oi(X) = r} with fixpoint F(Ty) = 7.
The fixpoint exists if X occurs only positively. The relation is explicitly
second-order definable by the T1}-formula

r(X,) <= (V2)[(V5)[0Gn, Z) = Fu € Z) = X, € 7]

since it defines the property to be the least relation fulfilling ¢. Note that
if n =1, the preceding formula quantifies only over monadic second-
order variables such that the relation is monadic second-order definable.

78 Decidability and definability

(i1) If the definition of the relation r uses second-order induction ¢ is of the
form 4)(}?,,,X) with X, being arbitrary (monadic) second-order variables.
Then the fixpoint F'(I'y) exists if X represents r and X occurs only posi-
tively.

Morawietz (1999) shows that in general inductive second-order definable
relations are undecidable by coding a Post Correspondence Problem (Post
1946).!7 But the statement above gives us one (unattractive) way to ensure
the decidability of recursively defined relations. We can only allow singleton
variables to appear in the atoms in all directly or indirectly recursive predi-
cates. The new relations we introduce are then limited to r* C T, i.e., sets.
Unfortunately, this does not help us to define the needed binary relations and
therefore is not of any immediate use.

On the other hand, there are binary inductive definitions which are decid-
able. Maybe the most obvious example is a definition of proper domination
via recursion on immediate domination. Results from logic programming
and higher order unification related to properties such as groundness or lin-
earity of the involved programs or queries (Devienne et al. 1994; Levy 1996)
suggest that we might be able to find an interesting subclass. Other inter-
esting subclasses of definable relations are identified as the binary matching
relations (Lautemann et al. 1995) and the binary relations recognizable by
tree-walking automata (Bloem and Engelfriet 1997a,b). The results of Bloem
and Engelfriet in turn are based on a paper by Klarlund and Schwartzbach
(1993) who use so called “routing” expressions, i.e., regular expressions, to
define paths in an MSO definable tree. Since we will need these relations
later on, we briefly present the relevant results here.

Basically, the idea behind the approach of Bloem and Engelfriet is that
those relations are inductively definable where the induction is such that only
paths in a given tree are defined recursively. These paths can then be tra-
versed with a tree walking-automaton. Finally the walking language of such
an automaton is converted algorithmically into a non-recursive MSO formula.

The theorem is stated in Bloem and Engelfriet (1997a) as follows, REG-R
is the set of the binary node relations definable with tree-walking automata,
i.e, the regular tree node relations, and MSO-R the set of the MSO definable
binary node relations

Theorem 5.12 (Bloem & Engelfriet).

REG-R = MSO-R

Definability of relations in MSO logic 79

Since we are only interested in one direction of the proof, namely the one
from the tree-walking automata (FSTWAs) to the MSO formulas, we will
only present the necessary facts for translating a given tree-walking automa-
ton into an MSO formula. Recall that an FSTWA is an ordinary FSA which
works on an alphabet of directives which allow the traversal of trees. This
means that it starts on a node, traverses a tree according to its directives and
stops at a node (not necessarily different from the start node). The sets of
pairs of nodes computed in this way constitute the desired relation.

This direction of the proof works by taking the walking language, i.e.,
the string of directives needed to get from one node to another one and rep-
resenting it with the help of regular expressions. These regular expressions
then are recursively translated into the non-recursive MSO formulas.

The recursive procedure trans which translates the regular expression de-
noting the walking language of any given tree-walking automaton into an
MSO formula is given as follows (we use the symbol L for false):

(5.3) transp(x,y) = L
trans |, (x,y) = edg;(x,y)
transy, (x,y) = edg;(y,x)
transg(,) (x,y) = ¢) ANx=y
transy,uw, (x,y) = transy, (x,y) V transy, (x,y)
transy,.w, (x,y) = (3z)[transy, (x,z) Atransy, (z,y)]
transy+ (x,y) = trans*W (x,y)
transy, (x,y) = (VX)(Vv,w)[(v € X Atransy (v,w) = w € X) A
xeX —yeX]

The resulting formula uses only the MSO definable tests of the original au-
tomaton, the closed sets constructed via (5.5) for the Kleene-x-case, and the
edg,, relations defined in (5.4). No recursion is involved any more!

The edge relation simply ensures that there exists a well-formed local tree
to support the needed daughter relation, i.e., there are enough left sisters.

(5.4) edg,, (x, y) (Elxl, X)X QXA AX <X AX <Dy
AX]p <X A Axpop <yA(Yw)[x<gw
AWREXIN - AWHEX] AWEY —y < W]

80 Decidability and definability

For the case of the recursion inherent in reflexive dominance another stan-
dard solution exists in MSO logic on finite trees. It is a well-known fact (e.g.
Courcelle 1990) that the reflexive transitive closure R* of a binary relation R
on nodes is (weakly) MSO definable, if R itself is. This is done via a second-
order property which holds of the sets of nodes which are closed under R:

(5.5) R-closed(X) £ (vx,y)[x € X AR(x,y) — y € X]

Using the closed sets, we can define the reflexive transitive closure of a rela-
tion analogously to the last case in (5.3).

5.6 Definable MSO transductions

The definition of MSO definable transductions plays no role in this second
part of the book and can safely be skipped on first reading. Nevertheless,
since it concerns MSO definability, we state the necessary facts here.

The following paragraphs go directly back to Courcelle (1997). For con-
venience, we repeat some of the previous definitions here in a slightly more
general form. Recall that representation of objects with relational structures
makes them available for the use of logical description languages. Let R be
a finite set of relation symbols with the corresponding arity for each r € R
given by p(r). A relational structure R, = (Dg, (rg)reg) consists of the do-
main Dg and the p(r)-ary relations rg C Dgér).

Example 5.13. Let A be an alphabet. A word w € A* can be considered as a
relational structure ||w|| = (Dg,,,(r%,,)rex,,) in the following way.

Ry, is defined to be {s,Paly, ... ,Pén} for A = {ay,...,a,} where s is bi-
nary (successor) and the P, 1 <i < n, are unary (labels).

oo ifw=e
R {1,2,...,k} if wis not empty and |w| =k

s = {(1,2),(2,3),...,(k— 1,k)}
P, = {j€Dg,,| ifa;isthe jthletter of w}

i

Similarly, we can code trees as relational structures by using a tree do-
main as the domain Dg_, of the structure and defining s as the corresponding
tree order, i.e, the corresponding successor functions.

Definable MSO transductions 81

Then one can use logic directly to define tree transductions. The classical
technique of interpreting a relational structure within another one forms the
basis for MSO transductions. Intuitively, the output tree is interpreted on the
input tree. E.g., suppose that we want to transduce the input tree #; into the
output tree f,. The nodes of the output tree #, will be a subset of the nodes
from #; specified with a unary MSO relation ranging over the nodes of #;.
The daughter relation will be specified with a binary MSO relation with free
variables x and y ranging over the nodes from ;. We will use this concept in
the second part of this book to transform lifted trees into the intended ones.

Definition 5.14 (MSO transduction). Let R and Q be two finite sets of
ranked relation symbols. A (non-copying) MSO transduction of a relational
structure X (with set of relation symbols R) into another one Q (with set of
relation symbols Q) is defined to be a tuple (@,V,(0,)4c0) consisting of an
MSO formula ¢ defining the domain of the transduction in &, an MSO for-
mula y defining the resulting domain of Q, and a family of MSO formulas
0, defining the new relations Q using only definable formulas from the “old”
structure R, i.e., for a a variable assignment,

Do ={d € Dg | (R,d) |= ylo]}

and for each g € O

qq ={(d1,...,d,) GD'(’l] (R.,dy,...,dy) = 84la]} where n=p(q)

Note that the transduction is only defined if ¢ holds. Furthermore it is
important to note that the transductions we have used to illustrate the transi-
tions of the various tree transducers cannot be defined with this kind of MSO
transduction. This is due to the fact that we always require the domain to
be a subset of the original domain whereas the examples given previously all
require a copying MSO transduction. The transductions we will implement
in the third part of this book will be non-copying, though.

Looking ahead, our description of non-context-free phenomena with two
devices with only regular power is an instance of the theorem that the image
of an MSO definable class of structures under a definable transduction is not
MSO definable in general (Courcelle 1997).

Theorem 5.15 (Courcelle). The image of an MSO definable class of struc-
tures is not MSO definable in general.

82 Decidability and definability

What is of further interest to us is that there is a relation between the
MSO definable transductions and the macro tree transducers introduced in
Section 4.4.2 on page 56.

In Engelfriet and Maneth (1999) it is proven that a special class of MTTs
is equivalent to the MSO definable tree translations. The restrictions on
MTTs necessary for the proof are that they are finite-copying and that they
have a regular look-ahead. A full, technical presentation of these notions is
beyond the scope of this monograph. The interested reader is referred to the
original literature. Intuitively, regular look-ahead means that every rule of
an MTT is associated with an FSTA which is called upon to verify the ap-
plicability of the rule. The class of tree transductions realized by MTTs with
and without a regular look-ahead are equivalent (Engelfriet and Vogler 1985).
The restriction to be finite-copying intuitively consists of the fact that every
subtree can only be processed a bounded number of times. This is true for
copying via the input tree as well as the for copying via the parameters which
makes the technical presentation quite involved. Alternatively, one can also
show that the MTTs are only of linear size increase since those have been
shown to be MSO definable as well (Engelfriet and Maneth 2001). Since we
can always construct both the MTTs and the MSO transductions separately,
we ignore these points and silently assume that we can construct an MSO
transduction for every MTT.

5.7 Terminology

To sum up the presentation of the concepts concerning MSO-based model-
theoretic syntax, [will briefly recapitulate the parlance introduced in the pre-
ceding sections to provide an overview of the terminology which links MSO
logic directly with the underlying finite-state automata and therefore forms
the basis of the following chapter on applications of the compilation tech-
nique.

— A constraint is satisfiable iff it results in an automaton recognizing a non-
empty language, i.e., if the resulting minimized automaton has at least
one final state which is reachable by some number of transitions from the
initial state.

— A constraint is valid iff it results in the trivial non-empty automaton, i.e.,
if the resulting minimized automaton has only one state which is initial
and final.

Terminology 83

— The following tests are decidable: w e L, L =0, L=X", L; C Lp, L1 =
L

— A (maximally) binary branching tree is a subset 7' of the domain of N,. A
labeled tree is a tuple (T, Fy,. .., F) where T stands for the nodes marking
the tree and the F; denote the k variables/features labeling the tree.

— A grammar in this setting is a definition of a k + 1-ary relation on N
designating all and only the well-formed labeled trees.

— The recognition problem is just the emptiness problem for the conjunction
of the grammar formula/automaton with a formula/automaton character-
izing the input. This point will be elaborated in Section 6.1 on page 85.

— Simplifying somewhat, the parsing problem can bee seen as the conjunc-
tion of the grammar formula/automaton with a formula/automaton char-
acterizing the input. Naturally, for the extraction of a parse tree from that
forest, one has to compute the actual intersection of the two tree sets. We
will show in the next chapter how to do this efficiently.

Chapter 6

Applications

In this chapter we take a look at how we can use the techniques developed in
the preceding sections for natural language processing. This chapter focuses
on exploring the “real world use” of the MSO logic to tree automaton compi-
lation. Therefore it can easily be skipped by the reader more interested in the
formal, two-step approach following in the third part of this book.

There are two perspectives one can take on the equivalence of MSO logic
and tree automata. First, one can think of the decidability proof as suggesting
a way of doing (MSO) theorem proving. This is the way things are done
in computer science applications such as hardware and system verification.
However, one can also think of things the other way around, and take MSO
logic as a specification language for automata. So we can make use of the
logic-automaton correspondence either as a way of proving theorems using
automata or as a way of manufacturing automata to MSO specifications.

An appealing — but naive — idea for using the translation from formulas
into automata is to use the resulting efficient finite-state automata directly for
parsing. This presupposes that the automaton can be compiled at all. Unfortu-
nately, so far it has not been possible, using existing tools and machines with
large memory to compile an entire P&P grammar. Nevertheless, we will show
how to use tree automata for parsing before we proceed with a more modest
application, namely to compile and use only modules of the theory. Those
two sections are primarily concerned with the efficiency of the compilation.
A further application addresses the problem of the limited expressibility of
L,%’ p — in particular the fact that free-indexation which is often employed in
GB accounts of long-distance dependencies is undecidable — from a practical
viewpoint, i.e., we try to approximate a full theory by guessing the necessary
number of indeces. Finally, we briefly mention other possibilities for using
the techniques.

Parsing with tree automata 85

6.1 Parsing with tree automata

As discussed in Cornell (2000), one can use tree automata directly for pars-
ing. Let us recapitulate his discussion here.

One might think that we can directly use tree automata for parsing of
context-free languages with all the benefits of the more standard FSA ap-
proaches to parsing. However, the main feature of tree automata is that they
recognize (parse) trees. But those are what we want to construct in parsing!
While this approach might seem circular, we will show in the following para-
graphs a solution for parsing with tree automata which strongly resembles
the known approaches to context-free grammars. The idea is essentially that
a tree automaton may recognize all trees over a certain signature which al-
lows the necessary underspecification to allow a meaningful parsing process
via intersection of automata in the spirit of Lang (1992).

What we need to parse with MSO grammars — apart from the FSTA rec-
ognizing the well-formed trees according to a given MSO specification — is
a tree automaton recognizing a particular input string.'® Therefore we con-
struct an automaton where the leaves are formed by the words we want to
recognize. At this point we do not care which structure the tree has, all we
need is the appearance of the string at the leaves.

More formally, given a many sorted or ranked alphabet ¥ and a string
w € X, there exists a subset 73" of Ty such that w is the yield of all r € 73",
there is no t € Ty — T3 which yields w and there is a tree automaton)"
recognizing 73"

We construct the tree automaton)" = (Q", X, 8", qo, F") as follows. Let
w = wj...w, with |w| = n. Intuitively, we will have states corresponding to
leave nodes indicating that we read a particular word from the input and states
which correspond to interior nodes which care only about the branching fac-
tor and the right order of the appearing subtrees. The automaton will have
complex states with a semantics borrowed from standard approaches to pars-
ing of context-free grammars. In the simple case, we will indicate with state
(i,) that we read word w; (which implies that j =i+ 1) or, in the case of a
nonterminal node that we found a subtree spanning w;...w;. For the empty
word we have to add states (i,i) for all 0 < i < n. That means, we need the
following set of states Q":

0" ={(i,))|0<i< j<n}U{qo}.

The transitions are set up such that, for the elements w; € Zo, 8" (qo,w;) =

86 Applications

(i—1,i). Note that w; might equal w; although i # j. Thus the automaton
is nondeterministic. But since bottom-up tree automata are closed under de-
terminization, we can ignore this issue here. The transitions are defined as
follows: For allc € X", n > 0,

G0 ifq=00).92= (s 02)s @0 = (n-1,J)
(q]7"'7qn70)_ .
undef otherwise

As can easily be seen, all the transitions do is to ensure the correct branching
and the appropriate sequent of daughter states. Finally, we have to specify
the final state(s). The run of the automaton was successful if we found a state
spanning the entire string, i.e., F"* = {(0,n)}.

This layout gives us the following refined definition of the parsing prob-
lem using tree automata:

Algorithm 6.1 (parsing with tree automata). Let X be a many sorted or
ranked alphabet. Given a tree automaton & representing a grammar and
therefore recognizing a subset of 7s and a string w over X, we construct the
yields-automaton %)" as specified above and intersect it with & to yield the
parse-forest automaton L%, i.e., ®NY" = P". The resulting automaton L
recognizes all and only the well-formed trees yielding w, i.e., it compactly
represents the parse forest for w.

Since we have to construct a new yields-automaton for every input, this
approach is too inefficient to be used in “real” applications. Fortunately, we
can interleave the construction of the yields automaton and the parsing pro-
cess — the intersection construction.

The intersection construction uses pairs of states of the input automata as
its own states. What we find in our case are states which look remarkably like
the items used in standard chart parsing approaches, e.g., initial states have
the form (o,,, (i —1,7)). If we just drop the slightly complicated notation,
i.e., the extra set of braces, we get tuples of the form (w;,i — 1,i) which are
exactly the items used in CYK-parsing. Then the construction of the parse
forest automaton P with the interleaved construction of the yields-automaton
is strongly reminiscent of CYK parsing, see Table 6.1 on the next page.

The given algorithm is a generalization of the one given in Cornell (2000)
to arbitrarily branching tree automata. Note that we still presuppose that the
grammar automaton & is deterministic. By using the leaves of the parse

© e N L R W N =

Parsing with tree automata 87

Table 6.1: Interleaving the Intersection and Yield-Automaton Construction

% Initialize
— 0
— 0
3 — 0
n «— length(w)
for i=1 to n do
I — I U {(w,i—1,i)}
end for
% Process the agenda
while 1#0 do
remove (B,i,j) from [
P — P U {(B,i,j)}
for all c€%,, m>0 do
for all (B',k,i1),(B% i1,i2),...,(B" Y in_1,i) €P do
A «— 8%(B!',....B" ! B,o)
if (Ak,j) € PUI then
add (A,k,j) to I
end if
add ((B',k,i1),...,(B" Vin_1,i),(B,i,j),0) = (Ak,j) to &%
end for
end for
end while

~

tree, i.e., the input string, to initialize our agenda / we get a bottom-up con-
struction of the parse automaton ‘3. Essentially, this follows from using the
reachable-states construction. In the algorithm, the symbol ‘-’ is used for
an assignment. So, in the algorithm, we take an element from the agenda,
add it to the productions of the parse automaton 33 and infer new items from
the agenda through possible transitions already in the parse automaton 3 and
grammar automaton &.

The removal of useless states — a state is useless if no final state can be
reached from it — usually practiced in FSNLP to keep the automata as small
as possible, can serve as a top-down analogue to the top-down guidance used
in Earley-based approaches to parsing. It remains an open problem to specify
the corresponding algorithms.

We have shown in this section how one can directly use tree automata for
parsing. Thus, given a tree automaton representing a grammar, however it
was specified, we can use it together with the algorithm above to parse sen-

88 Applications

tences. But it is still an open question whether a grammar automaton for a
P&P theory can be compiled at all. In the next section, we turn to a more mod-
est proposal, namely how we can use parts of the grammar independently.

6.2 Compiling grammatical principles to FSTAs

In this section, we consider our most modest proposal, namely to do automa-
ton construction and theory verification on subparts of the grammar. The
question of which grammatical properties can be compiled in a reasonable
time is largely empirical. The software tool MONA for the compilation of
MSO formulas into both FSAs and tree automata (Klarlund and Mgller 1998
has been used to investigate this question.

As an example of the application of this tool, we compiled an automaton
from the X-Bar Theory presented in Rogers’s monograph. Note that this is a
non-trivial part of the overall P&P-theory formalized there (cf. Rogers 1998).

In many variants of P&P-theories this module of the grammar is essen-
tially a set of simple phrase structure rules defining possible d-structures,
over which transformations will later operate. Rogers’s formalization is of a
monostratal theory, however, in which well-formedness conditions on chains
take the place of movement transformations. As a result, the X-Bar theory
Rogers presents is far from trivial, since it must describe the kinds of struc-
tures that arise after transformations have applied. As a result it amounts to
some five pages of MSO formulas which serve as input to MONA, see Ap-
pendix B.1 on page 194.

Additional complications arise in the MSO specification of X-Bar theory
because, in the underlying grammatical theory, there are three layers of struc-
ture: nodes of the tree are “segments” which are grouped into “categories”
(sets of nodes which have been “split” by adjunctions here refering to a purely
structural notion having little or nothing to do with morphosyntactic cate-
gories like noun, verb, preposition, etc.). Then categories are assigned “bar-
level” features. So bar-levels, being features, are sets of categories, which
in turn are sets of segments. However, it is easy to avoid this third-order
notion by associating features with the segments in such a way as to assure
that every segment of a category has features identical to those which, in the
grammatical theory, are to be assigned to the category. Furthermore we have
to keep track of which nodes are trace positions in their chains, which nodes
by contrast are still in their base positions, and which phrases are adjuncts,
i.e., attached to a segment of a non-trivial category.

Compiling grammatical principles to FSTAs 89

Who did Lena invite to her birthday party?

Figure 6.1: An example for the need for categories

Figure 6.1, which is a slightly modified figure from Rogers’s book, de-
picts a motivation of the need for these complex categories. We want that I;
c-commands its trace t;. But under the standard node-based definition this is
simply not true. The solution taken by Rogers (following the GB tradition
and in particular Rizzi) is to say that I; is not dominated by the category la-
beled with C, i.e., both of the nodes labeled with C and therefore the next
possible category dominating both I; and t; is C which gives us the desired
c-command relation.

In general an adjunction structure resulting in the formation of categories
has the following schematic form, see Figure 6.2 on the following page (again
taken from Rogers). The XPs form a category resulting from adjoining two
YPs of which the lower one itself has an adjoint ZP. We use the feature Ad j
to pick out the adjoint nodes, i.e., in this case the maximal YP nodes and the
ZP node. The mother node of the entire tree labeled XP might or might not
be labeled with Ad j depending on whether it is used as an adjunct or not.

The main content of X-Bar theory is a set of conditions on the distribution
of the bar-level features, and a principle which states that every category has a
“head”, another category immediately below it with which it shares essential
features like grammatical category (noun, verb, etc.). A node is allowed to be
labeled with Bar0 if it has exactly one lexical child category whose features
it inherits. It is labeled Bar/ if its category immediately dominates a node (its
head) which is labeled Bar0 and all its other (non-head) children are labeled

90 Applications

XP
YP Adj XP —Adj
YP Adj XP —Ad

YP-Adj ZPAdj Spec-Adj X -Adj

Figure 6.2: Adjunction structures

Bar2. Finally, a node is labeled Bar2 if it is a trace (i.e., is assigned to the set
Trace) or its category immediately dominates some corresponding category
belonging to Barl and all its non-head children are in Bar2. The X-Bar mod-
ule encodes these three definitions and principles limiting the distribution of
adjuncts (i.e., of the Ad j feature) such that no node is marked as adjoined un-
less it is the immediate child of a non-minimal node of a non-trivial category
and that we cannot adjoin to any arbitrary node, e.g., not to traces.

We recapitulate Rogers’s definition very closely to be able to show where
the problems occur. Please recall that his formulas are formalizing the notions
from Relativized Minimality by Rizzi (1990). Therefore we do not discuss the
pros and cons of the linguistic analyses, but concentrate on the presentation of
the technical realization. Recall again that Rogers takes the representational
approach, i.e., move-o. is encoded in well-formedness conditions of chains.
In parts the presentation is reminiscent of the introductory example given in
Section 3.2.3 on page 39.

The very first definition is somewhat artificial, it just ensures that certain
features have to be equal for any two given nodes. This is achieved by simply
listing the features in a conjunction.

F.Eq(x,y)g(xéN@yEN)/\(xGV@yEV)/\...

A component is a connected path through a tree such that all its nodes
are labeled identically with respect to the features defined by F.Eq and by
ensuring that the feature marking adjoint nodes are distributed properly. This
is defined such that for any two nodes in the component which are directly
related by immediate dominance, there exists another unique daughter which

Compiling grammatical principles to FSTAs 91

is an adjunct. The definition for Path(X) was given in (5.2) on page 63.

Comp(X) &L Path(x)
A (Vx,y)[(x € X Ny € X) = Feq(x,y)]
A (VX) (3y) (Vo) [(x € X AX € X Ax<x) =
(X gAdjAx<aynys# X Ny e AdjN
(x<z= (z=x' Vzry))))

A category is just a maximal component.

Cat(X) <L Comp(X) A (VY)[(X CY AY € X) = —Comp(Y)]

Naturally we have to make sure that all adjuncts are indeed in the right con-
figuration, i.e., there exists a category which contains a node dominating it
and a further node which is a sister. Each node labeled with Ad; is the child
of a node from a non-trivial category.

(Vx)[x € Adj = (3y,z,Y)[x £ zAy<<xAy<izACat(Y) ANy €Y Nz €Y]]

We overload the definition of Cat in the sense that we also have a binary
predicates Cat(X,x) if x is a member of the category X and Cat(x,y) if two
nodes belong to the same category.

Cat(X,x) £ cat(X) Axe X
Cat(x,y) 2L (3x)[Cat(X,x) A Cat(X,)]

Now we are in the position to recast the primitives of the MSO language
(dominance, precedence, etc.) in terms of categories as basic objects. A
node from a category dominates another node in case all nodes of the cate-
gory properly dominate it. It follows immediately that a category does not
dominate nodes which are adjoined to it.

D(x,y) FLUN (Vo) [Cat(x,x') = X' <7y

For the definition of precedence we define two auxiliary predicates encoding
the notions of exclusion and inclusion. A node x stands in the exclusion
relation to another node y if no node of x’s category stands in the (reflexive)
dominance relation to y.

Excl(x,y) 4L (vx/)[Cat(x,x') = ~(¥' <*y)]

92 Applications

A node x includes another one y in case x does not exclude y.

Incl(x,y) &, —Excl(x,y)

A node x now precedes another one y if both of their categories exclude each
other and if x precedes y in the old sense.

Prec(x,y) &, Excl(x,y) AExcl(y,x) Ax <y

Two nodes stand in the immediate dominance relation if they stand in the
dominance relation and no category falls properly between them. Here ad-
junction plays a crucial role since a category must neither dominate the nodes
adjoined to it nor the ones adjoined to its children. For a full discussion of
this issue, see Rogers (1998)

d
ID(x,y) £ D(x.3) A —(Z2) (Exel(z,%) AD(.)
V (z € Ad j NExcl(z,x) Alncl(z,y))]
Now we can state the definition of c-command between categories. It is not

much different from the definition given in (3.3) on page 37 only that we do
not demand asymmetry and directedness.

d
C-Com(x,y) £ ~D(x,y) A =D () A (V3)[D(z.x) = D(z,y)]
And finally the definition for asymmetric directed c-command is identical

to the one given in (3.3). It shows that with this admittedly complicated
machinery, we can hide the complexities of the definitions completely.

AC-Com(x,y) &, C-Com(x,y) A =C-Com(y,x) A Prec(x,y)
Before we can turn to the actual definition of the X-Bar principles, we

need some more auxiliary definitions to facilitate the presentation. Not all of
them are defined for categories. The first predicate is self-explanatory.

Sibling(x,y) L, ZyA(F2)[z<tx Nz Y]

Compiling grammatical principles to FSTAs 93

As usual, we want only one head in any given local tree. It is marked with
the feature Hd.

x € Hd = (Yy)[Sibling(x,y) =y & Hd)|

A category projects its features to the category which it immediately domi-
nates and which is its head.

. d
Proj(x,y) &, ID(x,y) Ay € Hd

This implies the sharing of the relevant features, the head-features, here en-
coded in F.EqProj.

Proj(x,y) = F.EqProj(x,y)

Projection is a central notion in the X-Bar theory since it relates a category
with its ancestors.

Now we see how it is used in the definition of the X-Bar principles. First
of all, we require that every node has either a bar level feature or is lexical.

(Vx)[x € BarOV x € Barl V x € Bar2 \ Lexicon(x)]

A node has bar level 2 if it is either a trace or it immediately dominates a
category which has bar level 1 and all its non-head children are maximal, i.e.,
XPs.

(Vx) [x € Bar2 =
x € Trace A\ (Vy)[—D(x,y)] V
(3y)[y € Barl AProj(x,y)] A (Vy)[(ID(x,y) Ay & Hd) =y € Bar2]]

A node has bar level 1 if it is the projection of a lexical head and all non-head
children are maximal.

(Vx) [x € Barl =
(3y)[y € Bar0 A Proj(x,y)] A (Vy)[(ID(x,y) Ay € Hd) = y € BarZ]]
And finally, a node has bar level 0 if it has exactly one child which it projects
and which is lexical and in base position if itself is in base position.
(Vx) [x € Bar0 =
(3Y)[ID(x,y)] A (¥y)[ID(x,y) = (Lexicon(y) A Proj(x, y) A
(x € Base < y € Base))|]

94 Applications

(Bar0,Barl)

(Bar0, Jan)

(Jan)

Figure 6.3: A problem for Rogers’s X-bar theory

Rogers then goes on from there to define all the notions such as, e.g., com-
plementizer or specifier which are used in linguistic theorizing. We stop here
since we have all ingredients to make our point.

One sees immediately that such an X-Bar theory becomes quite com-
plicated indeed, and its correctness correspondingly hard to verify by hand,
although the presentation is natural enough and stays close to the linguistic
statements. In fact, we did discover a minor bug in Rogers’s formalization.
We attempted to prove the assertion that Rogers’s X-Bar theory implies the
disjointness of the three bar-levels, i.e., that no node can belong to more than
one bar-level. We created a predicate XBar which encoded all the definitions
given above and then we coded the implication as an MSO formula, and at-
tempted to prove it in MONA.

XBar(T') = Disjoint(Bar0, Barl)

The attempt failed, with MONA reporting a counterexample.'® In particular,
Rogers’s X-Bar theory does not imply that the BarO-feature is disjoint from
the Barl and Bar2 features.

The problem arises because of the fact that the distribution of features
is such that they can appear anywhere they are not explicitly forbidden. In
our case this means that the constraints allow for example a unary branching
subtree with two nodes; a node which is labeled with both Bar0 and Barl and
whose (unique) daughter is at the same time lexical and Bar0. In such a tree
all constraints are satisfied. The mother node fulfills the Barl constraint since
it has a Bar0O daughter and no other children and the Bar0 constraint since it
has a unique daughter which is lexical, see Figure 6.3. This second node is
allowed since Rogers does not place a constraint on the sets denoting lexical
elements. Positively expressed, this means that they are allowed to appear on
internal nodes of a parse tree. To avoid this we have to add conditions forcing
the lexical variables to only appear on the frontier of our parse tree.

Approximating P&P grammars 95

(—3x,y)[Lexicon(x) A ID(x,y)]

Furthermore, both to avoid errors of this type and to improve efficiency, we
added a constraint which makes all our features appear only on nodes in the
parse tree, i.e., we ensured that all our features are subsets of the set encoding
our parse tree. The variable we use to denote the parse tree is initialized as
a connected, rooted set for convenience. That constraint is not necessary, but
makes the results much more readable.

The resulting corrected XBar-predicate has 11 free variables and its de-
scription consists of the aforementioned five pages of MONA formulas. We
only assumed absolutely necessary features and a minimum of lexical entries
(in fact only two lexical entries and 8 features). Nevertheless it represents a
full module of a large scale formalization of a P&P theory, the predicate could
be compiled in less than 5 min, see Table 6.2 on page 99, and it could be used
in further verification tasks. This shows that — while we still do not know
whether it is feasible to compile a grammar automaton — we can indeed han-
dle interesting linguistic properties with these techniques. And, as a further
advantage, we can verify even immensely complicated theories automatically
and generate counter-examples which help in debugging.

6.3 Approximating P&P grammars

As stated, the set of well-formed trees defined by a P&P grammar which uses
free indexation is not in general recognizable. Therefore we cannot hope
in principle to construct a grammar formula which defines exactly the well-
formed parse trees strongly generated by a P&P grammar using just the MSO
logic—tree automaton correspondence. One question which arises immedi-
ately in a more practical and less theoretical setting is how well we can ap-
proximate a context-sensitive language with a context free grammar. There
are two features of P&P grammars which help us here. First, P&P gram-
mars are principle-based, so they are readily formalized in logic. The logic
of WS2S is insufficient, but it should be easy to embed it in a more powerful
logic which is sufficient. Then the techniques of general model theory will
become available to address the question of how good an approximation we
can achieve. Secondly, P&P grammars are modular, so it may be possible to
isolate those parts of the grammar which exceed the expressive capacity of
WS2S. In that case we can observe quite directly the compromises that would

96 Applications

have to be made to stay within an MSO logic for natural language. This is
indeed the case here: the power of a P&P grammar seems to come rather
directly from the assumption of an unbounded supply of referential indices,
which can be used to keep track of arbitrarily many simultaneously occurring
long-distance dependencies. Tree automata, on the other hand, can only keep
track of a bounded number of distinct objects via their (finite) set of states.
Hence, no formalization of a grammar in MSO logic is possible without the
assumption of a bounded number of indices.

So the problem of approximating a full P&P grammar becomes the prob-
lem of estimating in advance how many indices will be enough. Clearly, any
given sentence will require a bounded number of indices, but we cannot re-
alistically expect to recompile our entire grammar automaton for each input
sentence.’’ We can, however, precompile a number of different versions of
a grammar offline, each with an index theory of a different size, and then se-
lect which grammar automaton to use given the input sentence. So it makes
sense to consider how one could formalize the parts of the grammar that rely
on indices in such a way that they can be parameterized with the number of
indices and compiled in a variety of sizes.

Furthermore there are a number of ways in which one can “engineer” a
theory so that it uses a minimal number of indices. For example, any one
index can be used to keep track of any number of distinct chains, as long as
those chains do not overlap. Also, there is no need to make each notionally
distinct index correspond to a single feature: if we have n “index variables” /;
then we can use them as bits of a complex index, meaning that we have in fact
2" possible distinct indices. We can extend this idea by making use of other
features besides special purpose index (or index-bit) features: using bar-level
features for example, we can distinguish between the twelfth Bar2 chain and
the twelfth BarO chain. Pursuing this strategy we end up with the approach
Rogers actually employs. He uses no special purpose index variables but
rather only combinations of those features which are independently required
in the grammar. This reduces the number of possible alphabet symbols that
an automaton must deal with.

Given such a bounded set of indices which we can use on a particular
parse, we proceed to formalize the necessary conditions in our MSO tree
logic. As noted above, what we use for our “indices” is formally relatively
unimportant. What matters is what it means for two nodes to be co-indexed,
see below. That is the definition which gives the theory its “memory re-

Approximating P&P grammars 97

sources”. Note that in MSO logic free variables must be represented in both
the head of the formula and the resulting automaton to preserve their satis-
fying assignments. In case one is not interested in the information provided
by a particular variable, it can be bound existentially at the top level of the
formula. Where readability is more of an issue, one can leave these “global”
variables out under the assumption that they are implicit. However, since
they cannot be ignored in the alphabet of the automata, we try to be more ex-
act. Therefore, I, stands for the n indices we have to create depending on the
input, and the “definitions” we now present are really definition schemata.

- d
Coldx(x,) 2L (xely & yeh)A...A(xel, & yel,)

After the instantiation of the schematic representation, we can compile an
automaton for the corresponding memory limited grammar formula. All the
predicates which depend on any predicate scheme at any point will them-
selves have to be schematized, of course, and realized as families of defini-
tions which vary in the number of their arguments. As an example of these
we present a formula scheme encoding a simple version of a “trace binding
condition” (a simplified version of the empty category principle which uses c-
command instead of local government), which simply requires that all traces
have a c-commanding antecedent with which they are co-indexed. TBind will
have n+ 2 arguments; n depending on the number of indices currently al-
lowed and the chosen coding. The needed c-command definition simply says
that all nodes z which properly dominate x also have to dominate y and that x
must not reflexively dominate y, recall the discussion on page 37.

C-Com(x,y) <dé—f>(Vz) [z<tx=z<aT Y| A(x<™y)

TBind(P, Trace,I,) £, ¢, for all traces in the parse tree
(Vx € P)[x € Trace =

% there exists a proper antecedent.

(Jy € P)[C-Com(y,x) A Co_ldx(x,yj,,)]]

In this definition scheme we use a set called Trace to identify traces.
Naturally this presupposes that we formulate more appropriate constraints on
the distribution of this label in the resulting parse tree in our grammar.

In conclusion, we note that the logic-automaton connection may be fruit-
ful for doing principle-based parsing, even in spite of the principled limitation

98 Applications

to weakly context-free languages. In particular, it seems unlikely that, in any
given corpus of input sentences, there are any which require large numbers
of overlapping chains: the same drain on memory which this causes for tree
automata seems to affect human language users as well (Stabler 1994). The
fact that we can adjust to such memory limitations without substantially af-
fecting the underlying grammar — all we require is a special definition of what
it means to be co-indexed — is especially welcome. However, for doing the-
ory verification these limitations remain serious: given n indices, the claim
that there are only n indices is a theorem, but not a theorem of the underlying
grammar. On the other hand, if there is a sentence in the language which
actually does have n+ 1 overlapping chains it will be rejected by a limited
grammar. So we have neither soundness nor completeness for doing theorem
proving.

6.4 Some experimental results

Even supposing, as seems reasonable, that real world parsers can function
with a limited supply of indices, we still have to face the extreme explosive
potential of the formula-to-automaton compilation procedure. It is still an
open question which formulas can be compiled on present day computers.
We used MONA (Klarlund and Mgller 1998) to provide some answers to the
usability of these ideas in practice.

The main innovation in MONA, which seems indeed to be a real tech-
nical breakthrough, is the use of binary decision diagrams (BDDs) to com-
press the transition tables of the output automata. (An introduction to BDDs
can for example be found in Bryant (1992).) Since an alphabet of k fea-
tures contains 2% symbols, alphabet size, and hence transition table size, is
a problem which, while only elementarily complex, can actually dominate
in practice the non-elementary complexity of the actual compilation proce-
dure. The use of this technique significantly improves performance over
our own prototype so that we can advance considerably with compilations
than what was reported in Morawietz and Cornell (1997c). Now we can
actually implement significant modules of a large scale P&P theory and ver-
ify them (recall the discussion of X-Bar theory in Sect. 6.2). But we also
encountered limits on the number of indices in the compilation of various
TBind predicates. In this section we summarize some of our results so far.
Timings where done on a SUN Sparc 20 with 225 MB of RAM using a
beta release of version 1.2 of MONA. Our results are displayed in Table 6.2.

Some experimental results 99

Table 6.2: Statistics for Various Predicates

Predicate/N Total Time [A] oy |BDD|
Connected 00:00:00.090 4 25
Path 00:00:00.130 4 21
C-Com 00:00:00.170 5 40 19
TBind/2 00:00:00.230 12 832 52
TBind/4 00:00:01.610 80 76288 422
TBind/8 00:55:15.000 2304 - 13881
TBind/16 core dump after approx. 10 min
TBind'/4 00:00:07.480 87 145963 759
TBind'/6 00:04:58.830 457 - 4901
TBind'/7 core dump after approx. 30 min
XBar 00:04:51.080 66 18133 982

The first column of the table contains the predicate identifier and the num-
ber of indices (not the index bits). The second column contains the time
needed to compile the automaton without the printing of the actual output
automaton. The third column contains the number of states in the output
automaton, the fourth column the number of transitions. The number of
transitions has been compacted in the sense that it uses a don’t care sym-

bol, i.e., if transitions on ¢; and ¢ and both (xy,...,X;—1,X;,Xi1,...,%,) and
(X1ye e ey Xim1, —XG, Xi41,- - -, %) lead to the same state ¢, we have only a sin-
gle transition on (xy,...,xi—1, L, Xi11,...,%,). Also note that for very large

automata we cannot present the exact number of transitions any more since
printing the result takes too much time and space and unfortunately MONA
does not have an option to display (only) the number of transitions without
printing the full automaton. The last column contains the size of the BDD
used to represent the transition table. One readily observes the enormous
gains this compression scheme confers by comparing this to the transition
table size.

100 Applications

Consider the tricky “grammar engineering” question of what kind of cod-
ing to use for indices, as discussed above. In TBind, we used features to en-
code index bits and in TBind’ we straightforwardly used features to encode
(disjoint) indices. The second approach turned out to consume considerable
amounts of memory: we were only able to compile an automaton with six
indices, though on a machine with 800 megabytes of RAM it is possible to
compile TBind’ with at least seven indices (Nils Klarlund, p.c.). Using the
index-bit encoding we could compile a version of TBind with eight indices
(i.e., three index bit features) on our own machines; however, adding another
bit again ran us out of memory resources.?! The steepness of the relevant
curves leads us to suspect that no present day machine will be able to com-
pile TBind/16. The use of index bits cannot in principle reduce the memory
load which long distance dependencies place on automata. This shows that
MSO logic is exponentially more compact in coding the facts than tree au-
tomata.

An interesting question is whether a large machine can compile TBind'/9.
More generally, the discreet encoding allows one to better approximate the
capacity of available machines. Adding a bit increases the number of chains
that can be represented too greatly, even though in general this encoding leads
to more compact automata. The compactness gain is more than offset by the
memory requirements that even one more chain places on a tree automaton’s
state space.

Another interesting point to observe is that the memory demands in these
compilations mainly came from intermediate automata. Considering Table
6.2, one notes that the BDD size and number of states in the automata which
are actually output are not overwhelmingly large. So while it requires rather
large and powerful computers to manufacture automata from MSO formulas,
the resulting automata can potentially be put to use on much smaller ma-
chines.

6.5 Further applications

In this section we will very briefly outline some further uses of the compi-
lation technique presented in the preceding chapters. Since they are either
speculative or deal with work which is only marginally related to the material
presented in this monograph, the presentation will be sketchy at best and is
only given to provide starting points for further reading.

Further applications 101

6.5.1 MSO logic and CLP

The automaton for a grammar formula is presumably considerably larger than
a parse-forest automaton, that is, the automaton for the grammar conjoined
with an input description. Considering the problems we might have in ex-
tending the compilation of separate modules to an entire grammar automa-
ton, it makes sense to search for ways to incrementally construct the parse-
forest automaton for a particular input. For this, we propose the embedding
of the MSO constraint language into a constraint logic programming (CLP)
scheme. Intuitively, the constraint base is an automaton which represents
the incremental accumulation of knowledge about the possible valuations of
variables constructed by applying and solving clauses with their associated
constraints. We can start with a description of the input and add further con-
straints incrementally rather then having to represent all constraints at once
and then limiting them to an input. That is to say, we actually use the com-
piler on line as the constraint solver. Some obvious advantages include the
ability to use our succinct and flexible constraint language with negation and
MSO quantification. In fact, we gain even more power, since we can include
inductive definitions of relations and have a way of guiding the compilation
process under the control of a program.

Morawietz (1999) presented a CLP language built upon MSO logic fol-
lowing Hohfeld and Smolka (1988). Logic programming (LP) nicely reflects
the separation of the actual logic of a program and the control of its execu-
tion (Lloyd 1984). Programs in the LP paradigm are sets of logical clauses.
These programs are interpreted within Herbrand models, i.e., sets of ground
atoms. One could be content with this declarative interpretation, but on the
other hand, one wants to compute with them. The added operational inter-
pretation used in most LP languages is based on SLD-resolution (Linear res-
olution with a Selection function for Definite clauses). Then the semantics is
reformulated in procedural terms of least models and fixpoints such that the
languages have provably equivalent denotational and operational semantics.
Two problems with this approach — the generate and test paradigm to find the
solutions and the use of uninterpreted structures — can be overcome by the
addition of constraints to the standard logic programming scheme.

Intuitively, with the constraint logic programming scheme we developed a
way to give definite clause specifications over MSO formulas. This extended
language can be used to constrain the variables by incrementally adding suit-
able constraints to a constraint store. The store can be viewed as a tree au-

102 Applications

tomaton representing the possible valuations. In fact, the generation of the
tree automaton we are interested in is controlled by the incremental construc-
tion. By doing this, we can focus on just those parts of the grammar which
are relevant to the actual computation instead of having to consider — and
precompile — all possibilities inherent in the grammar at once. A standard
interpreter (left to right, depth first search) is sufficient for the execution of
one of our programs. The answer of a search branch of such a program is
a satisfiable MSO constraint represented by a tree automaton. Backtracking
then allows the search for more answers. Furthermore, the embedding allows
for applying a wealth of techniques developed in general for (constraint) logic
programming and the corresponding interpreters to optimize the behaviour of
the programs.

The CLP language was supposed to serve both the facilitation of the use
of MSO formalizations in computational linguistics and the extension of the
generative capacity of MSO-based grammar formalisms. The arguments on
non-context-freeness of natural languages are our main motivation for the
necessity of the extension. For a more detailed presentation of the necessary
arguments see our discussion of verb raising phenomena in German, Dutch
and Swiss German in Section 9.3 on page 124.

Unfortunately it turns out that we can write a program in the CLP lan-
guage which has an SLD refutation iff a given Post correspondence system
has a solution. Therefore we can state the next lemma.

Lemma 6.2. Satisfiability in MSO logic extended by an CLP scheme is un-
decidable.

Furthermore, we can achieve the same by only considering a smallest
binary program (see Hanschke and Wiirtz (1993) for a definition) by the use
of difference lists. Since smallest binary programs (on terms) are Turing
equivalent (Devienne et al. 1994), it seems that our extension has the same
power.

There are two directions one can take from here. Firstly, we can accept
the extension as it is. In that case we have defined a general purpose pro-
gramming language on trees. Compared with Prolog, the difference is that
we do not interpret terms over a Herbrand universe, but sets of nodes in Nj.
And secondly, we can search for (syntactic) characterizations of decidable
subclasses of these inductive definitions. We pursued this last proposal in
Section 5.5 and will continue to use it in the third part of this book.

Further applications 103

6.5.2 MSO logic as an automaton specification language

In the tradition of the approaches to finite-state language processing men-
tioned in Section 4.1 one could also use the presented techniques simply for
the specification of (tree) automata from a powerful constraint language. In
FSNLP, the flexibility of finite-state devices is usually implemented in a type
of finite-state calculus. Recall that FSTAs are closed under all the major
operations: intersection, union, complementation, determinization and mini-
mization. There is only one difference to FSAs, namely that FSTAs are not
reversible. And, since it is possible to parse (context-free) languages using
tree automata, the use of FSTAs represents a step in the hierarchy of lan-
guage classes. To my knowledge there are no published results in this di-
rection (yet). Considering the descriptive complexity of natural languages,
it seems obvious that the gain in expressive power might well be worth the
slight decrease in efficiency.

Another aspect of FSNLP is not so easily addressed. Most finite-state cal-
culi also offer the possibility to specify transducers. But we have not experi-
mented with linguistically motivated tree transductions at all. What remains
is very tentative: As we will see later, one can define transductions with MSO
logic. These in turn correspond to a special class of macro tree transductions
(Engelfriet and Maneth 1999). This might allow an analogue construction of
a calculus of tree transformations.

104 Applications

6.5.3 Query languages

Query languages for structured documents form an important application of
the theoretical results presented above. As is shown in Neven (1999) and
Neven and Schwentick (1999, 2000), MSO logic seems to provide a powerful
and flexible language which can also be implemented efficiently.

A structured document is a text with an implicit structure; the main ex-
ample of course being Web pages written in HTML. Each such text, while
being nothing more than a text to the reader, has to be structured in itself into
headers, paragraphs etc. with tags. Furthermore, there is associated informa-
tion, e.g., author and creation date/time, which has to be represented as well
for archiving such pages in a database. These data seem to be tree structured
and could be handled with the techniques presented in this book.

XML with the corresponding Data Type Definitions (DTD) seems to be
developing toward a standard to specify structured documents. As it turns out
DTDs seem to correspond to regular tree languages with certain non-local
information (Chidlovskii 2000).

Querying structured documents is a challenge to be achieved for intelli-
gent document retrieval. Standard search-techniques like a simple keyword
search return only occurrences of these keywords. They are not able to relate
them to the structure of the underlying document. Consider the following
simple example (taken from Neven 1999):

Suppose we are looking for newspaper articles written in August 2000 where
the header contains the word submarine. Searching for the keywords “August
2000” and “submarine” gives all Web pages containing these keywords at
some completely arbitrary position. The simple mechanism of search engines
does not allow to specify that “submarine” should occur as the header of the
article and that “August 2000 should be a date. The need for new database
systems and associated query languages capable of storing and manipulating
such structured documents therefore emerges.

If we now consider the above mentioned fact that there is non-local infor-
mation in structured documents (e.g., links), we know that MSO alone cannot
be sufficient. As we will see in the next part of this book, there might be a
way of accommodating a certain amount of non-locality with MTTs.

6.5.4 Hardware verification

In spite of the non elementary complexity, some very encouraging results
from the areas of computer hardware and system verification (Kelb et al.

Further applications 105

1997; Basin and Klarlund 1995, 1998; Klarlund and Mgller 1998; Klarlund
1998; Jensen et al. 1997) suggest that the techniques for implementing the
compilation process are in fact efficient; it is the problem space expressible
in MSO tree logics that is hard. And, as we have seen, non-local dependencies

seem to provide one of the few breaking points of the technique (Morawietz
and Cornell 1999; Klarlund et al. 2000).

6.5.5 Other MSO languages

As we stated previously, the decidability proof for WS2S is inductive on the
structure of MSO formulas and therefore we can choose our particular tree
description language rather freely, knowing that the resulting logic will be
decidable and that the translation to automata will go through as long as the
atomic formulas of the language represent relations which can be translated
(by hand if necessary) to tree automata.

For example, Niehren and Podelski (1992), Ayari et al. (1998) and Klar-
lund and Schwartzbach (1997) have investigated the usefulness of these tech-
niques in dealing with feature trees which unfold feature structures; there
the attributes of an attribute-value term are translated to distinct successor
functions. Furthermore, in Ayari, Basin, and Podelski and Klarlund and
Schwartzbach, two concepts from programming languages are integrated into
an MSO specification language, namely high-level data structures such as
records and recursively-defined datatypes. The integration is based on a new
logic whose variables range over record-like trees and an algorithm for trans-
lating datatypes into tree automata.

One can imagine other possibilities as well: as we saw in Section 3.2.2 on
page 36, the automaton for Kayne-style asymmetric, precedence-restricted c-
command (Kayne 1994) is very compact, and makes a suitable primitive for
a description language along the lines suggested by Frank and Vijay-Shanker
(1995).

Chapter 7

Intermediate conclusion

In this second part of the book we introduced the grammar formalism of MSO
logic with its decidability proof. We drew our examples from the work by
Jim Rogers and explored the practical use the application of the compilation
technique has.

In particular, we showed how to use the automata-based theorem proving
techniques to implement linguistic processing and theory verification. The
advantages are readily apparent. The direct use of a flexible and succinct
description language together with an environment to test the formalizations
with the resulting finite, deterministic tree automata offers a way of com-
bining the needs of both formalization and processing. Furthermore, it be-
comes possible to have a descriptive complexity result for theories which
were thought to be almost “resistant” to formal approaches of this kind.

We can also say that while it is theoretically not possible to write a for-
mula covering a non-context-free theory, we can still use the independent
parts of the formalization and families of definitions with respect to a partic-
ular input to answer questions of grammaticality of sentences.

On the practical side, the advent of MONA has enabled us to advance sig-
nificantly with the experiments on the compilation of P&P-based grammati-
cal theories. Although a definitive answer on the question whether an entire
grammatical theory can be compiled into one automaton is still not possible,
we know that we can compile non-trivial modules. But there are still many
problems left, even on the processing side. The form of the formulas has a
large effect on the time required by the compiler and it is important to figure
out which sort of formulas can be compiled more efficiently than others. Fur-
thermore, writing grammar formulas in WS2S or LI% p 1s an experience akin
to assembler programming, i.e., error prone and time consuming. Therefore
it remains to be seen how much impact higher-level languages such as FIDO

Intermediate conclusion 107

(Klarlund and Schwartzbach 1997) and LISA (Ayari et al. 1998) have on the
time required to formalize and compile P&P theories.

Unfortunately, the drawbacks of the classical approach are also imme-
diately obvious. The staggering complexity bound and, paradoxically, the
descriptive complexity result both have to be addressed. The fact remains
that there simply are natural languages which require for their analysis more
than context-free power. We will address these issues in the following third
part of our monograph.

Part 111

Two Steps Are Better Than One

Extending the Use of MSO Logic to
Non-Context-Free Linguistic
Formalisms

Chapter 8

Overview of the two-step approach

Algebra may be considered, in its most general form, as the science which
treats the combinations of arbitrary signs and symbols by means of defined
though arbitrary laws: for we may assume any laws for the combination and
incorporation of such symbols, so long as our assumptions are independent,
and therefore not inconsistent with each other: in order, however, that such a
science may not be one of useless and barren speculations, we choose some
subordinate science as the guide merely, and not as the foundation of our
assumptions, and frame them in such a manner that Algebra may become
the most general form of that science, when the symbols denote the same
quantities which are the objects of its calculations: ...

Peacock (1830)

In the preceding parts of this book I have shown what can be achieved with
the technique of compiling MSO formulas into tree automata. While the
technique is very attractive in general since it allows for the specification of
linguistic theories in a concise logic while retaining the computational prop-
erties of finite-state devices, there are three major remaining problems. One is
the very conciseness of the logical specification which results in an exponen-
tial blow-up of the generated tree automata such that it cannot be expected
that an entire grammar can be compiled into a single tree automaton. The
second and third ones are related. There has been a change in the linguistic
formalisms as proposed by N. Chomsky. Instead of the monostratal, repre-
sentational GB theory, linguists nowadays tend to use the approach proposed
in the Minimalist Program (Chomsky 1995). Minimalist grammars are still
monostratal, but derivational. This is at least true for the versions formalized
in Stabler’s approaches (Stabler 1997, 1999b; Stabler and Keenan 2000). So,
in the first part of the monograph, we presented a formalism which provided
an operational as well as a denotational description of theories in the GB tra-
dition. In this second part, we will show that there is a logical description

112 Overview of the two-step approach

of Minimalism?? as well as of TAGs.?® Furthermore, minimalist theories can
easily generate non-context-free structures. Since there unarguably are natu-
ral languages which allow for, e.g., cross-serial dependencies which require
non-context-free structures for their analysis, the generative capacity of the
linguistic formalisms has to be at least adequate for those phenomena. So,
our second problem is to deal with derivational approaches to syntax and the
third one to accommodate the necessary increase in generative capacity.

In this third part of the book, universal algebra will play an even more
prominent role for the definition of linguistic formalisms. As specified in the
preliminaries, we regard a language as a set of basic items — words — with
basic operations — the structure building rules — defined on them, i.e., an al-
gebra. The “sentences” of the language are then those structures which can
be generated form the basic items with the help of the operations. An alge-
braic term then describes the process by which an element is formed from the
generators. More on viewing linguistic formalisms as algebraic theories can
be found in, e.g., Janssen (2000). This unifying view enables the presenta-
tion of a general technique for coping with so-called mildly context-sensitive
structures in a general way.

Monnich (1999) forms the cornerstone of the work presented in this vol-
ume. In this paper, Monnich showed how to treat non-context-free structures
within an algebraicized variant of macro-grammars. The technique of trans-
lating the original alphabets into nominalized, derived counterparts brings
them back into the realm of structures characterizable by regular tree gram-
mars or, equivalently, MSO logic. In this book, the technique is used and
augmented to account for more grammar formalisms. And we can close the
gap to linguistics by reconstructing the intended structures from the derived
ones with means which are again regular and MSO logic based, respectively.

The approach proposed in this monograph is presented graphically in
Figure 8.1 on the next page. We start from well understood (algebraic)
tree generating formalisms and lift the resulting trees by inserting a certain
amount of control information. In our work, the particular tree-generating
formalisms considered will be Context-Free Tree Grammars (CFTGs), Mon-
adic Context-Free Tree Grammars (MCFTGs) and Multiple Context-Free
Grammars (MCFGs). Since these have been shown to be weakly equivalent
to TAGs (Monnich 1997a; Fujiyoshi and Kasai 2000) and Minimalist Gram-
mars (Michaelis 2001a), respectively, we can apply our two-step technique.?*

Overview of the two-step approach 113

(M)CFTGs MCFGs

LIFT Lawvere

MSO, RTG, FSTA

Regular Tree Sets

(simple) (simple)
FSTWA MTT MSOyyans | Attribute Transducer

Mildly Context—Sensitive Structures

Figure 8.1: Overview of the two-step approach

These lifted trees can then be recognized/generated with formalisms hav-
ing only context-free generative capacity such as Regular Tree Grammars
(RTGs), MSO logic or bottom-up finite-state tree automata (FSTA). But since
these trees contain the additional control information, it is necessary to trans-
form them into the linguistically relevant ones. For this purpose we will
use either tree-walking automata (FSTWA), simple macro tree transducers
(MTT) or MSO definable transductions.”> All of these transformation de-
vices have only context-free power such that we can indeed describe mildly
context-free structures with two regular steps.

Naturally, to make these techniques fully accessible to the reader, we
have to present some more definitions and notations during the course of the
discussion.

114 Overview of the two-step approach

It has to be admitted that the use of lifting operations is not the only device
that has been employed for the purpose of providing grammar formalisms
with a controlled increase of generative capacity. Alternative systems that
were developed for the same purpose are, e.g., tree adjoining grammars, head
grammars and linear indexed grammars (cf. Vijay-Shanker and Weir 1994).
Although these systems make highly restrictive claims about the structure of
natural language formalisms their predictive power is closely tied to the in-
dividual strategy they exploit to extend the context-free paradigm. The great
advantage of the tree oriented formalism derives from its connection with de-
scriptive complexity theory. Tree properties can be classified according to the
complexity of logical formulas expressing them. This leads to a perspicu-
ous and fully grammar independent characterization of tree families by MSO
logic. Although this characterization encompasses only regular tree sets, the
lifting process of Section 10.2 on page 141 allows us to simulate the effect of
CFTG-like productions with regular rewrite rules.

In the following sections we will begin to lay out the motivation and the
need for this complex approach before we define the necessary tree gener-
ating formalisms. We proceed with the definitions for lifting, i.e., for the
insertion of the extra control information which enables the treatment with
mechanisms which have only context-free power. This allows the coding of
the lifted formalisms with equivalently finite-state tree automata and MSO
logic. These two codings will be presented in their own section. Finally, we
will show how to transform the trees with the control information into the
intended ones.

Chapter 9

Non-context-freeness of natural language

The main obstacle for the simple and direct use of MSO logic stems from the
fact that theories in the minimalist tradition (Chomsky 1995) are derivational
and that they allow non-context-free structures and therefore cannot be dealt
with by the classical approach outlined in the previous part. In this chapter we
will formally define minimalist grammars following Stabler (1997, 1999b)
and tree adjoining grammars following Vijay-Shanker and Weir (1994) and
Joshi and Schabes (1997). Both are formalisms which have a descriptive
complexity which is higher than the one of context-free grammars. Further-
more, we will sketch a linguistic phenomenon — verb raising in a dialect of
Swiss German following Shieber (1985) — which requires for its analysis non-
context-free structures to illustrate the need for the machinery proposed in
this part of the monograph.

9.1 Minimalist grammars

The shift in emphasis back from general interacting principles to rule-based
linguistic constructions with the additional constraints of the required opti-
mality of the ensuing derivations necessitated the definition of a new gram-
mar type: Minimalist Grammars. In this section we will briefly introduce the
formalism as it is present in the work of Stabler (1997, 1999b).

In a nutshell (and suppressing a plethora of important details), a mini-
malist derivation is powered by just two operations: MERGE, combining two
structures in a rather straightforward way creating a new node by “project-
ing” one of the input structures and installing both as its sole daughters, and
MOVE, which is dependent on the existence of a pair of attracting/attracted
features in the structure so far constructed. It raises an element of the struc-
ture carrying the attracted feature and attaches it somewhere higher up in
a checking-configuration with the attracting feature, which is deleted in the

116 Non-context-freeness of natural language

process. There are two kinds of attracting features, called strong and weak, in-
ducing immediate or delayed movement, respectively. In our case, the moved
element will always be adjoined to the element carrying the attracting feature.
For details we refer the reader to Chomsky (1995), especially chapter 4.

We give the formal definition of a minimalist grammar (MG) along the
lines of Stabler (1997).2° In order to keep the presentation simple, we omit
the cases of strong selection (triggering head movement), and covert move-
ment. Thus the definition given here comes close to the one given in Stabler
(1999b), where some further restrictions are formulated as to which subtrees
of a given tree may move. In fact, the example MG which will be considered
below respects both the definition in Stabler (1997) as well as that in Stabler
(1999b).

We begin by giving yet another definition of trees. They are rather special
trees and used only in the definition of minimalist grammars. We will simply
call them expression trees.

Definition 9.1 (Expression Trees). For a given set (of features), Feat, a five-
tuple T = (Ng, <, <q, <1, Labely) fulfilling (E1)—(E3) is called an expression
tree (over Feat).

(E1) (Ng,<i,<¢) is a finite, binary ordered tree (domain). Ny denotes the non-
empty set of nodes. <; and < denote the usual relations of dominance
and precedence defined on a subset of Ny X Ng, respectively, i.e., <
is the reflexive and transitive closure of <, the relation of immediate
dominance.*’

(E2) <:C N; x N; denotes the asymmetric relation of (immediate) projection
which holds for any two siblings in (N¢,<},<¢), i.e., each node x € Ny
different from the root either (immediately) projects over its sibling y
(x <¢y) or vice versa (y <g x).

(E3) The function Label, assigns a string from Feat” to every leaf of the tree
(N¢,<t,=1), i.e., a leaf is labeled by a finite sequence of features from
Feat.

The set of all expressions trees over Feat is denoted by Exp(Feat).

Before we define the minimalist grammars themselves, we need some
further notations. Consider T= (Ny,<},<+,<¢,Label;) € Exp(Feat) with Feat
being a set of features.

Minimalist grammars 117

Each x€ N; has a head h(x) € Ny — a leaf such that x<; h(x) holds, and
such that each y € N; on the path from x to h(x) with y#x projects over its
sister. The head of a tree T is the head of T’s root.

A subtree v of T is a maximal projection (in t), if the root of v is a node
X € Ny such that x is the root of T or x’s sister projects over x. The maximal
projection dominated by the sister of the head of 7 is the complement (of T).
Each maximal projection in T which is not dominated by the mother of the
head of 1 is a specifier (of T).

T has feature [€ Feat if T’s head-label starts with f. T is simple (a head)
if it consists of exactly one node, otherwise T is complex (a non-head).

Let r; be the root of T. Suppose v and ¢ € Exp(Feat) to be subtrees of
T with roots r, and rg, respectively, such that r; <¢ ry, and r; <¢ rp. Then we
take [<v,¢] (or [~@,v]) to denote T in case that r, <; rq and ry, < rg (oOr
o =<1).

Definition 9.2 (Stabler 1997). A 4-tuple G = (Non-Syn,Syn,Lex, ¥) that
obeys (M1)—(M4) is called a minimalist grammar (MG).

(M1) Non-Syn is a finite set of non-syntactic features partitioned into a set
Phon of phonetic features and a set Sem of semantic features.

(M2) Syn is a finite set of synfactic features partitioned into the sets Base,
Select, Licensees and Licensors such that for each (basic) category
x € Base the existence of ~“x € Select is possible, and for each -x €
Licensees the existence of +X € Licensors is possible. Moreover, the
set Base contains at least the category c.

(M3) Lex is a finite set of expressions over Feat = Non-Syn U Syn such that
for each tree T = (Ng, <}, <¢, <r,Label;) € Lex the function Label, as-
signs to each leaf in (N, <, <) a string from

Select*Licensors, Select*Base;Licensees*Phon*Sem* C Feat* .28
€ t4

(M4) The set ¥ consists of the structure building functions MERGE and
MOVE as defined in (me) and (mo), respectively.

(me) The function MERGE is a partial mapping from two expression trees to
a new expression tree, i.e., from Exp(Feat) x Exp(Feat) to Exp(Feat).

118 Non-context-freeness of natural language

A pair of expressions (v, @) belongs to Dom(MERGE) if v has feature
=x and @ has category x for some x € Base.?® Then,

MERGE(V,9) = [-V/,¢'] if v is simple and has feature ~x,

where V' and ¢’ are expressions resulting from v and @, respectively,
by deleting the feature the respective head-label starts with. And

MERGE(V,9) = [-¢/,v'] if v is complex and has feature ~x,

where V' and ¢’ are expressions as in case (me.1).

(mo) The function MOVE is a partially defined mapping from an expression
tree into a new expression tree, i.e., from Exp(Feat) to Exp(Feat). An
expression v belongs to Dom(MOVE) in case that v has feature +X €
Licensors, and v has exactly one subtree ¢ that is a maximal projection
and has feature -x € Licensees. Then,

MOVE(v) = [-¢/,0'] if v has feature +X

Here V' results from v by deleting the feature +X from v’s head-label,
while the subtree @ is replaced by a single node labeled €. ¢’ is the
expression resulting from @ just by deleting the licensee feature -x that
¢’s head-label starts with.

Note that, by (me), a simple tree (head) selects another tree as its comple-
ment to the right, whereas a complex tree selects another tree as a specifier to
the left.

Intuitively, MERGE and MOVE take trees with matching feature pairs as
their input and produce new trees as their output with the “clashing” fea-
ture pair removed. Recall that each node is labeled with a string of features.
Consider the simplified schematic presentation of MERGE and MOVE in Fig-
ure 9.1 on the next page. The input to MERGE are two trees whose root nodes
are labeled with the feature pair ~a and a. Then we can remove those features
and create a new tree which is headed by the tree which had the label ~a. This
is indicated by the symbol < on the new root.

The input to move, on the other hand, is a single tree whose root is labeled
with a feature +F and which contains a subtree whose root has an accessible
- f feature. We can move this subtree into a specifier position and remove the
feature pair.

Minimalist grammars 119

<
/a\b a x MERGE b x
>
+F a b a
MOVE
-f b

Figure 9.1: Schematic presentation of MERGE and MOVE

To illustrate MGs and their generative power, we give as an example a
simple MG G,,,, for the copy language over {1,2}*.

Example 9.3. Let G,,,, be an MG with Sem = 0, Phon = {1,2}, Base =
{c, a1, az, b, ¢y, ¢z, d}, Licensors = {+Ly,+L,}, Licensees = {-11,-1,},
Select = {"a;,"a», b, c1,7c2,°d}, and with Lex consisting of the following
10 simple expressions, where i € {1,2},%°

oy =a;-11i Yi ="b+Lic;i-11i {3 ="b+Lid
Bi="ab-12i 0;="ci+lob-12i {p="d+Lsc
Then, e.g., fori € {1,2},
MOVE(MERGE ({,,MOVE(MERGE({;, MERGE(B;,0,))))) € Exp(Feat)
and the string language generated is L(G,,,,) = {ww |w € {1,2}*}.
Let G = (Non-Syn, Syn, Lex, F) be an MG. Then CL(G) = ;i CL¥(G)

is the closure of Lex (under the functions in F). For k € N the sets CL¥(G) C
Exp(Feat) are inductively defined by

120 Non-context-freeness of natural language

CL'(G) = Lex
CL*(G) = CLKG)
U {MERGE(, @) | (v, @) € Dom(MERGE) NCL¥(G) x CL¥(G)}

U {MOVE(v) |v € Dom(MOVE) NCL¥(G)}

Every t© € CL(G) is called an expression in G. Such a T is complete (in G)
if its head-label is in {c}Phon*Sem" and each other of its leaf-labels is in
Phon*Sem®*. Hence, a complete expression has category c, and this instance
of c is the only instance of a syntactic feature within all leaf-labels.

The (phonetic) yield Y (t) of an expression T € Exp(Feat) is the string
created by concatenating T’s leaf-labels “from left to right” and stripping off
all non-phonetic features. L(G) = {Y (1) |t € CL(G) with T is complete} is
the (string) language (derivable by G) and is called a minimalist language.

A derivation of the admittedly very simple string 11" is given in Fig-
ure 9.2 on the facing page where we instantiate the example expression tree
given in Example 9.3 with i = 1. Note that the very first MERGE has been
omitted. As can be seen, even this simple string entails a fairly complicated
derivation with two movements.

Michaelis (2001a) proves the fact that each MG is weakly equivalent to
a linear context-free rewriting system (LCFRS) or a multiple context-free
grammar (MCFG) by giving an algorithm for the transformation.’! We will
not reproduce the proof here. However, the core idea is that for the set of
trees appearing as intermediate steps in converging derivations of G, one can
define a finite partition. The equivalence classes of this partition are formed
by sets of trees where the features triggering movement appear in identical
structural positions. Each nonterminal in a corresponding MCFG represents
such an equivalence class, i.e., an infinite set of trees. The reader interested
in more details of the transformation is referred to the original paper and fur-
thermore to Michaelis et al. (2001), where the translation is exemplified with
the grammar given in Example 9.3 on the page before. Because of Michaelis’
proof, we can state the following theorem.

Theorem 9.4 (Michaelis). Each minimalist grammar is weakly equivalent to
an LCFRS (or an MCFG).

In the following chapters we will silently presuppose that it is enough to
deal with MCFGs since we can transform any given MG appropriately.

Tree adjoining grammar 121

A
< 1 <
MERGE MOVE
___}G /\ __0_> /\
b—1,1 —141 —1,1 —1;1 —1,1 €

1 < 1 €c >
MERGE VAN VAN
€ /<\ 1 <
—-151 € € €

Figure 9.2: An example derivation of the MG G, given in Example 9.3 on
page 119

9.2 Tree adjoining grammar

Tree Adjoining Grammar (TAG, Joshi et al. 1975; Joshi 1985, 1987) is maybe
the prototypical mildly context-sensitive formalism for natural languages. In
fact, the desiderata Joshi poses for any formalism dealing with natural lan-
guages coined this terminology (recall the discussion in the introduction, see
Section 1.1 on page 5).

Since we will also show how to cope with the formalism of Tree Adjoin-
ing Grammar, we will very briefly sketch a simplified version of the defini-
tions given in Joshi and Schabes (1997) or Vijay-Shanker and Weir (1994).32

Definition 9.5 (Tree Adjoining Grammar). A Tree Adjoining Grammar
(TAG) is a quintuple G = (Vy, V7, S, I,4) where Vy is a finite set of nonter-
minals, Vy a finite set of terminals, S € Vi the start symbol, [a finite set of
initial trees and A4 a finite set of auxiliary trees.

122 Non-context-freeness of natural language

TAL

Figure 9.3: Schematic presentation of adjunction in TAGs

Initial trees are such that all interior nodes (including the root node) are
labeled with nonterminals and all nodes on the frontier are labeled with termi-
nal or nonterminal symbols; the nonterminals being marked for substitution.
The same holds for the auxiliary trees with one exception. There exists one
distinguished leaf-node which is labeled with the same nonterminal as the
root node. This node is called the foot node. Furthermore, the nodes can be
marked to allow or forbid adjunction. For simplicity, we only indicate nodes
where no adjunction is allowed by putting a bar on top of them.

New trees are built from the sets / and A4 via adjunction or substitution.
Adjunction is defined such that an auxiliary tree is spliced into an existing
tree such that it basically “expands” a nonterminal. Consider the schematic
representation of adjunction in Figure 9.3. The subtree rooted in the node
labeled with the nonterminal A is taken out of the leftmost tree. The new
auxiliary tree is inserted in its place (if the root and foot are also labeled with
the identical nonterminal A) and the original subtree is appended at the foot
node.

There also exists a simpler operation in TAGs, called substitution, to gen-
erate new trees. Intuitively, in substitution, a nonterminal is replaced by a
tree with a matching nonterminal at its root. Since we do not need the formal
definitions here, the reader is referred to the literature cited above for details.
The corresponding tree and string languages are defined straightforwardly.

An example for a TAG generating the non-CF language a"*b"c"d" is given
below:

Example 9.6. Let Grag = ({S},{a,b,c,d},S,{a},{B}) be a TAG. The only
initial tree o and the only auxiliary tree (3 are given as follows:

Tree adjoining grammar 123

A

AN
- A = A
j A
|

R

Il
o —-LAn

=™

I
8

m.%%%w

N

A derivation yielding aabbccdd has only two steps, both adjoin the auxiliary
tree in the only possible position, see Figure 9.4.

It can be shown that TAGs can only generate string languages with de-
pendencies up to four, i.e., a"b"c"d" can be generated, but there is no TAG
which generates a"b"*c"d"e".

Interestingly, it has been shown by Monnich (1997a) and Fujiyoshi and
Kasai (2000) that TAGs are weakly equivalent to a restricted form of CFTGs:
monadic context-free tree grammars ((M)CFTGs). Therefore, our techniques
are immediately applicable. To a large extent, the intuition behind the proof
is fairly simple. Since CFTGs can insert multiple subtrees in a single step,
but TAGs only a single one, all we have to do is limit the appearing opera-
tive nonterminals of the CFTG to unary or monadic ones. This will become
clearer after the formal definition and the intuitive explanation of CFTGs in
Definition 10.1 on page 135. For the moment, we just state the theorem.

124 Non-context-freeness of natural language

Theorem 9.7 (Monnich; Fujiyoshi & Kasai). The languages generated by
TAGs are weakly equivalent to those generated by monadic CFTGs.

Since the proof is constructive, i.e., there exists an algorithm to transform
any given TAG into an equivalent monadic CFTG, we will tacitly assume in
the following chapters that it is enough to deal with (M)CFTGs.

9.3 Linguistic motivation: verb raising

Calvin: “I like to verb words.”
Hobbes: “What?”

Calvin: “I take nouns and adjectives and use them as verbs. Remember when
“access’ was a thing? Now it’s something to do. It got verbed. Verbing
weirds language.”

Hobbes: “Maybe we can eventually make language a complete impediment
to understanding.”

Bill Watterson, in the newspaper cartoon Calvin and Hobbes

As mentioned in the introduction, the exercise in formal coding is made nec-
essary by the fact that natural language sports at least some constructions
which lead to (i) non-CF string languages, or (ii) to non-CF, or better, non-
recognizable structures, even though the resulting string languages are for-
mally context-free. Let us note here that it is not the goal of this section
to attempt a linguistically relevant discussion of cross-serial dependencies.
All we want to show is that a formalism for natural languages has to handle
non-context-free structures and how our proposal could do it. For a seri-
ous introduction of approaches to cross-serial dependencies see Pullum and
Gazdar (1982). Both of the phenomena enumerated above show up in the
West-Germanic languages: the verbal complex of Ziiritiiiitsch (a dialect of
Swiss German as spoken around Ziirich) is an example of (i), while (ii) is ex-
hibited — for different reasons — by the corresponding constructions of Dutch
and Standard German (Huybregts 1976, 1984):

(9.1) a. (... weil) der Karl die Maria dem Peter den Hans schwimmen lehren
helfen ldsst

(German fragment as a string language:

Palindrome language — CF)

Linguistic motivation: verb raising 125

b. (... omdat) Karel Marie Piet Jan laat helpen leren zwemmen
(Dutch fragment as a string language:
a'b" — CF)

c. (... wil) de Karl d’Maria em Peter de Hans laat hiilffe ldrne schwiime
(Ziiritiiiitsch fragment as a string language:
a'b"c"d"™ — Non-CF)

(... because) Charles Mary Peter John lets help to teach to swim
(... because) Charles lets Mary help Peter to teach John to swim

Looking closely at, e.g., the Swiss German example, we notice that the
DPs and the Vs of which the DPs are objects occur in cross-serial order. This
is observable since the verbs mark their objects for case. It appears that there
are no limits on the length of such constructions in grammatical sentences of
Swiss German. This fact alone would not suffice to prove that Swiss Ger-
man is not a context-free string language. It could still be the case that Swiss
German in foto is context-free even though it subsumes an isolable context-
sensitive fragment. Relying on the closure of context-free languages under
intersection with regular languages (Huybregts 1984, for Dutch) and (Shieber
1985, for Swiss German) were able to show that not only the fragment ex-
hibiting the cross-serial dependencies but the whole of the languages has to
be assumed as non-context-free.

Shieber’s argument runs as follows. Consider the following sentences
which were taken from Shieber (1985) and which exhibit cross-serial depen-
dencies similarly to the ones given in (9.1):

(9.2) a. Jan sdit das mer em Hans es huus hdlfed aastriiche.

b. John said that we helped Hans (to) paint the house.

(9.3) a. Jan sdit das mer d’chind em Hans es huus lond hiilfed aastriiche.

b. John said that we let the children help Hans paint the house.

(9.4) a. Jan sdgit das mer d’chind em Hans es huus haend wele laa hdlfed
aastriiche.

b. John said that we have wanted to let the children help Hans paint the
house.

126 Non-context-freeness of natural language

The NPs and the Vs of which the NPs are objects occur in cross-serial or-
der. D’chind is the object of lond, em Hans is the object of hdilfe, and es huus
is the object of aastriiche. Furthermore, the verbs mark their objects for case:
hdilfe requires dative case, while lond and aastriiche require the accusative. It
appears that there are no limits on the length of such constructions in gram-
matical sentences of Ziiritiititsch. Shieber poses four claims about sentences
of this type: Firstly, there are subordinate clauses where all Vs follow all
NPs. Secondly, sentences where all dative NPs precede all accusative NPs
and all verbs subcategorizing for dative NPs precede all verbs subcategoriz-
ing for accusative NPs are acceptable. Thirdly, the number of verbs and their
corresponding NPs agree. And lastly, an arbitrary number of verbs can occur
in such clauses. These facts alone would not suffice to prove that Ziiritiiiitsch
is not a context-free string language. It could still be the case that the entire
language of Ziiritiilitsch is context-free even though it subsumes a context-
sensitive fragment. Recall that the intersection of a context-free language
with a regular language is again a context-free language.

So, Shieber intersects Ziiritiilitsch, e.g., (9.4), with the regular language
given in (9.5a) to obtain the result in (9.6). As is well known, this language
is not context-free.

(9.5) a. Jan sdit das mer (d’chind)* (em Hans)* es huus hdand wele (laa)*
(hdlfe)* aastriiche.

b. John said that we (the children)* (Hans)* the house wanted to (let)*
(help)* paint.

(9.6) Jan sdit das mer (d’chind)"(em Hans)"es huus hind wele (laa)" (hdlfe)™
aastriiche.

And therefore it follows that the original language itself cannot have been
context-free.

Ziritiititsch is not an isolated case that one could try to sidestep and to
classify as methodologically insignificant. During the last 15 years a core
of structural phenomena has been found in genetically and typologically un-
related languages that leaves no alternative to reverting to grammatical for-
malisms whose generative power exceeds that of context-free grammars.?

Huybregts (1984) provides a similar argument for Dutch taking into ac-
count a particular fragment: in contrast to Swiss German, Dutch does not

Linguistic motivation: verb raising 127

cp
/\
C‘ 1P
/\
because DP

Charles

“DP-cluster”

a: ;-
DpP
' Vv VO Vo
1
| AVEEVAN
DP, c ViVoo VoV
Vs /\ let let /\
ViV,

SR %
EVe AER
PPy V.nfl V.nfl
A A
DP, V. Vi Vo Vo1 Vi
:
‘ overt CASE V-cluster
German + o
Dutch — B
Ziiritiititsch + B

Figure 9.5: The structure of Germanic Verb Raising

show overt case-marking of objects. Therefore Huybregts’ argument cru-
cially relies on a given morphologized — and thus syntactical — difference
between animate and inanimate pronominals. The proof of the non-context-
freeness proceeds then analogously to Shieber’s argument.

Abstracting from the details of the particular languages, the standard anal-
yses of these cross-serial constructions involve the following property which
is problematic from the point of view of context-freeness: In all cases they
posit a bipartite structure like the one in Figure 9.5 with basically all DPs on
one branch and all the verbs on the other — but with fixed syntactic and seman-
tic relations between the branches, whether visibly marked (as in Ziiritiititsch,
Standard German) or not (Dutch).

128 Non-context-freeness of natural language

As is easily conceived, there is no context-free device which could di-
rectly handle the unbounded number of non-local dependencies the structural
separation of the two “clusters” enforces. A relatively simple transforma-
tional device as the minimalist MERGE-MOVE machine, however, has little
difficulty to combine nearness and separation in the required way.

The following assumptions suffice for a(n overly simplified) treatment of
our example construction, generally known as verb raising (VR):

— VR is a lexical property of a certain class of verbs, e.g., lassen-laten-
laa (“let”), helfen-helpen-hdlffe (‘“help”)... but not of, e.g., schwimmen-
zwemmen-schwiime (“‘swim”);

— VR-verbs take V P-complements;

— VR-verbs (optionally) have a strong V-feature, like the one standardly
postulated for the inflectional head I;

— PF serializes complex Vy/ly as head-last (German) or head-first (Dutch /
Ziritiiiitsch).

The minimalist MERGE-MOVE machine achieves the complex result by a se-
quence of very simple discrete steps and so VR comes as close to being a
consequence of formal universals as a basically idiosyncratic phenomenon
will ever be.

We will show briefly how one could generate the bipartite structures indi-
cated in Figure 9.5 on the page before with an MG according to the definitions
given in Section 9.1.

Example 9.8. For our example, we only specify the relevant lexicon of the
MG Gy and leave the sets of features implicit. In fact, the lexicon is fairly
simple. We can express it schematically as given below. In this minimalist
grammar, we do not use actual lexical elements, but rather the main categories
as phonological material to facilitate the understanding of the dependencies.
We need n different DPs, n different verbs (one of the form /V,,/ and n— 1 of
the form /V,_;/, 1 <i <n—1) and one inflectional element. There are two
different entries for the verbs since we need a base case to start the creation
of the verbal complex and a “recursive” step which is terminated with the
inflectional head.

[dp] /DP./ [dp v v-] /Va/
[Fv +v i] /I/ [fv +V =dp v v-| /V,—;/

Linguistic motivation: verb raising 129

proj Mare proj MERDE proj
proj 17wl proj adj /DP, 1/ proj
-] ¢ [=dp v v-] ; di
/DPy/ Vi / /DPy/ Vn AZYA /Vi_1/ proj aaj
IDPu/ tv, Vel AT
* . MOVE .
— proj = proj
/DP1/ proj /DP1/ proj adj f},
proj A proj adj
/N .
) ALY)
/DPnl/K /ady\ /DPnl/% /Va/ [Va-1/
proj tv,_, /Va/ [Va-1/ proj tv,_,
/DPp/ tVn /DPy/ tVn

Figure 9.6: An example derivation of the MG Gy given in Example 9.8

Note that we allow ourselves x- features indicating movement to the
right. In Stabler’s original system this type of head-movement was done
within a special MERGE-step which did movement and merging of structures
at the same time, triggered by X+ features. We think that it is clearer to sepa-
rate the two operations.

Note that we deliberately do not use Stabler’s “projection”-labels for the
intermediate nodes (<,>), but rather use proj(x,y) and adj(x,y) as short-
hands for Chomsky’s head-of-y(x,y) and [head-of-y, head-of-y|(x,y), respec-
tively, to allow for the differences in word order. We assume that ad j(x,y) is
“spelled-out” xy in German and yx in Dutch and Ziiritiiitsch.

130 Non-context-freeness of natural language

We cannot go into much detail here, but as one can see in Figure 9.6 on
the preceding page, we skipped the initial merge of the lowermost verb with
the lowermost DP and the next merge with the next highest verb. The result-
ing tree has both a v- and a +V feature available which triggers a movement.
We indicate the moved category with an appropriately indexed trace. The re-
sulting structure then demands the merging of a DP which makes a v feature
available which triggers the merging of the next verb. After finitely many
steps we choose an inflectional node instead of a verb for merging. It trig-
gers the last move and leads to the final result. Clearly, the result corresponds
to the schematic representation chosen for cross-serial dependencies in Fig-
ure 9.5 on page 127.

In this section, we have presented linguistic reasons why MSO logic alone
can not be sufficient. But in order to concentrate on the relevant details, we
will use short, artificial examples in the following sections to illustrate our
proposals.

Chapter 10
The first step: Lifting

We begin the presentation of our approach with the introduction of the for-
malisms which are adequate for the desiderata outlined in the previous sec-
tions. This means that they have to be mildly context-sensitive, but character-
izable with both logic (in particular MSO logic) and some type of automaton
(in particular tree automata). Since to my knowledge no formalism exists
which is immediately suitable, we present a two-step approach with the de-
sired properties. Therefore we will introduce two types of tree grammars
which can be “lifted”, i.e., a certain amount of control information is explic-
itly coded in the trees, such that they are amenable to formalizations in terms
of tree automata and MSO logic. In this chapter, I will present context-free
tree grammars (CFTGs), two specializations of CFTGS, monadic CFTGs and
regular tree grammars (RTGs) and multiple context-free grammars (MCFGs).
All of these have an adequate descriptive complexity. In Michaelis (2001a,b)
it is proven that MCFGs are weakly equivalent to MGs. Since the proof is
constructive, we can algorithmically transform any given MG into a weakly
equivalent MCFG. The weak equivalence between TAGs and CFTGs has
independently been proven by Monnich (1997a) and Fujiyoshi and Kasai
(2000). Therefore both CFTGs and MCFGs form an adequate basis for the
following work.

10.1 Tree grammars

The algebraic perspective allows the uniform and natural extension from
strings to trees by the simple technique of generalizing from unary to multi-
ary operators. In this section, in the same way as presented in the preliminar-
ies (Section 2 on page 17) and the section of tree automata (Section 4.2 on
page 49), grammars working on strings are generalized to grammars working
on trees. Thus we have a natural counterpart to the Chomsky hierarchy: reg-

132 The first step: Lifting

REG

Figure 10.1: Derivation steps in Regular Grammars

ular tree grammars correspond to the known regular grammars and context-
free tree grammars to the context-free grammars.>*

We will illustrate this with a couple of (over)simplified pictures. In a
regular grammar, we replace a nonterminal A simply with a string, see Fig-
ure 10.1. The nonterminal always appears at the right end of the string.®
Therefore the replacement is simply appended at the rightmost side.

Conversely, in the tree case, the nonterminal A appears somewhere on the
“right” end of the tree, i.e., the frontier, see Figure 10.2. But, as in the string
case, the new tree is simply substituted for the nonterminal.

For context-free grammars, the nonterminal A can appear anywhere in
the string (cf. Figure 10.3 on the facing page). But, again, the new string
is simply inserted in its place. Note that basically the unary daughter of A
is taken, the new string inserted at A’s position and the (degenerate) subtree
rooted in A’s daughter is appended to the right.

REG-T

Figure 10.2: Derivation steps in Regular Tree Grammars

Tree grammars 133

CF

Figure 10.3: Derivation steps in Context-Free Grammars

Finally, context-free tree grammars allow the nonterminal A to appear
anywhere inside of a tree, see Figure 10.4. Now A has more than one daugh-
ter. Lets say, it dominates n subtrees. In a derivation step, we have to replace
A with a new tree with exactly n empty slots. These slots have to be filled
with some of the n subtrees — the original daughters — of A. Please note that
although the order and number of the subtrees in the example is preserved
upon insertion in the new tree in Figure 10.4, this is not required by the for-
mal definition given later. In fact, the ability to permute the daughters freely
and to copy and delete subtrees is a crucial part of the generative power of
context-free tree grammars. This simple figure only serves as an illustration
of the basic concept. I hope that this analogy demonstrates that indeed tree
grammars and their derivations arise naturally as generalizations of the more
standard string grammars.

In Table 10.1 on the following page, there is an overview of the connec-
tion between the language classes from the Chomsky hierarchy together with

it

Figure 10.4: Derivation steps in Context-Free Tree Grammars

CF-T

134 The first step: Lifting

Table 10.1: Grammars, Automata and Language Classes

Language Automata Tree Grammar
regular FSA

context-free bottom-up FSTA RTG

mildly context-sensitive MCFTG, MCFG
indexed CFTG

classes of finite-state devices recognizing them and tree grammars generating
them. Naturally this overview contains only those types of automata and tree
grammars which we will use in the remainder of this monograph.

In the next section the grammar formalisms used will be formally defined
and illustrated with examples.

10.1.1 Context-free tree grammars

We now formally introduce context-free tree grammars (CFTGs). This type
of grammar is related to a type of grammars which were defined by Fis-
cher (1968) and which were called macro grammars. In his setting, the use
of macro-like productions served the purpose of making simultaneous string
copying a primitive operation. CFTGs constitute an algebraic generalization
of macro grammars (cf. Rounds 1970b).

Let us view grammars as a mechanism in which local transformations on
trees can be performed. The central ingredient of a grammar is a finite set of
productions, where each production is a pair of trees. Such a set of produc-
tions determines a binary relation on trees such that two trees # and ¢’ stand
in that relation if ¢’ is the result of removing in ¢ an occurrence of a first com-
ponent in a production pair and replacing it by the second component of the
same pair. The simplest type of such a replacement is defined by a produc-
tion that specifies the substitution of a single-node tree 7y by another tree ¢;.
Two trees ¢ and ¢’ satisfy the relation determined by this simple production
if the tree ¢’ differs from the tree ¢ in having a subtree 7; that is rooted at an
occurrence of a leaf node # in . In slightly different terminology, produc-
tions of this kind incorporate instructions to rewrite an auxiliary variable as a
complex symbol that, autonomously, stands for an element of a tree algebra.
Recall that in context-free string grammars a nonterminal auxiliary symbol is

Tree grammars 135

rewritten as a string of terminal and nonterminal symbols, independently of
the context in which it occurs. As long as the carrier of a tree algebra is made
of constant tree terms the process of replacing null-ary variables by trees is
analogous. As we will see, the situation changes dramatically if the carrier
of the algebra is made of symbolic counterparts of derived operations and the
variables in production rules range over these second-level entities.

Definition 10.1 (Context-Free Tree Grammar). For a singleton set of sorts
S, a context-free tree grammar (CFTG) for S is a 5-tuple I' = (£, F, S, X, P),
where X and F are ranked alphabets of inoperatives and operatives over S,
respectively. S € F is the start symbol, X is a countable set of variables, and
P is a finite set of productions. Each p € P is of the form F(x;, - ,x,) — ¢
for some n € N, where F € F,,, x1,-++ ,x, € X,and t € T(ZUF, {x1,-- ,x,}).

Intuitively, an application of a rule F(xj,...,x,) — ¢ “rewrites” a tree
rooted in F as the tree ¢ with its respective variables substituted by F’s daugh-
ters.

A CFTGT = (X,F,8,X,P) with F, = 0 for n # 0 is called a regular tree
grammar (RTG). Since RTGs always just substitute some tree for a leaf-node,
it is easy to see that they can only generate recognizable sets of trees, a for-
teriori context-free string languages (Mezei and Wright 1967). If F, is non-
empty for some n # 0, that is, if we allow the operatives to be parameterized
by variables, however, the situation changes. CFTGs in general are capable
of generating sets of structures, the yields of which belong to the class of
context-sensitive languages known as the indexed languages. In fact, CFTGs
characterize the class of indexed languages modulo the inside-out derivation
mode (Rounds 1970b).

Because of the impossibility of mirroring the process of copying in a
grammar with a completely uncontrolled derivation regime, we restrict our-
selves to the following mode of derivation.

Definition 10.2. Let "= (X, F,S,X,P) be a CFTG and let 7,1 € T(ZUF). ¢/
is directly derivable by an inside-out step from t (t = 1) if there is a tree 1y €
T(XUF,{x}) containing exactly one occurrence of x, a corresponding rule
F(x1,...,xy) — 1", and trees t1,...,t,, € T(X) such that t = to[F (t1,...,tn)]
and 1" = 1y[t"[t1,. .. ,tn]]. The inside-out restriction on the derivation scheme
requires that the trees #,#, through 7, be terminal trees, i.e., do not contain
variables or operatives. As is customary =" denotes the transitive-reflexive
closure of =.

136 The first step: Lifting

Accordingly, a function symbol may be replaced only if all its arguments
are trees over the terminal alphabet. In the conventional case this form of
replacement mechanism would correspond to a “rightmost” derivation where
“rightmost” is to be understood with respect to the linear order of the leaves
forming the frontier of a tree in a derivation step.

In the following definition of a tree language we now switch back to ac-
cepting only trees over the ranked alphabet X, i.e., we do not allow operatives
to remain in the final trees.

Definition 10.3 (Inside-Out Tree Language). Let I' = (X, F, S, X,P) be a
CFTG. We call L(I') ={r € T(Z) | S =" t} the context-free inside-out tree
language generated by I" from S.

In the case of RTGs the analogy with the conventional string theory goes
through and inside-out and outside-in derivations yield the same languages.

We will exemplify the gain in generative power of context-free tree gram-
mars compared to RTGs — or standard context-free grammars — with an arti-
ficial construction of the string language a"b™c"d™ which is a subset of the
actual non context-free dependencies occurring in Swiss German (see Sec-
tion 9.3 on page 124). The example uses the full power of the second-order
substitutions of derived operators.

Example 10.4. Let T = (XyUZX,,FoUFy4, S, X, P) be defined as follows:

¥ = Aga,b,c,d} ¥ = {e}
X = {x1,x2,%3,%2} Fo = {S} Fs = {F}

I

S
S — F(ag,c,g)
S — F(g,b,ed)

F(X],XZ,X3,)C4 — F(o(a X]) XQ,O(C X3),X4)

)
F(x1,x,x3,x4) — F(x1,0(b,x),x3,0(d,xs))
)

F(x1,x2,x3,%3) — o(e(e(x1,x2),x3),X4)

7

The tree language generated by the grammar in Example 10.4 can intuitively
be described as a parallel derivation of a’s and ¢’s and b’s and d’s. Therefore,
the number of occurrences of @’s and ¢’s and of b’s and d’s, respectively, has
to be the same. By taking the yield of the tree terms, we get the language
L={d"b"c"d"}.

Tree grammars 137

F
F T
s—= 7t = A A T =
F T
T ° 2
° ® ® ° /\d/\
E ° ° e
a/\ab/\sc/\cd/\a ./\. c/\c
NN\

a a b e

Figure 10.5: An example derivation of the CFTG I given in Example 10.4

In Figure 10.5 we show an example derivation of the string aabced. It uses
the second rule for S, followed by successive application of the first, second
and third rule for F.

The definition of a CFTG given above could be canonically generalized
to the case of many-sorted signatures X and F over some set of sorts .S. Since
we will be concerned with such generalized versions of CFTGs only in their
regular form, we restrict our definition to simplify our presentation. Therefore
we give a “new” definition of RTGs although we already presented them as
special cases of CFTGs.

Definition 10.5 (Regular Tree Grammar). For a set of sorts .S, a regular
tree grammar (RTG) for § is a 4-tuple G = (X, F,S,P), where £ = (3, |w €
S*,s € 8) is a many-sorted signature of inoperatives and F = (Fgs|s € §) a
(reduced) many-sorted signature of operatives of rank 0. Moreover, X and F
are finite. S € F is the start symbol and P is a finite set of productions. Each
p € P has the form F — ¢, where F € F¢; for some s € Sandt € T(ZUF),
i.e., a term (tree) over X UF, such that ¢ is of sort s.

Lett,t" € T(XUF) and p=F — t € P. We say t’ directly derives t"
(by the application of p), also denoted by t' = ¢”, if ¢’ has a leaf-node F and
¢ results from ¢’ by substituting 7 for this node F. Let =* be the reflexive
and transitive closure of =-. The tree-language generated by G is the set
Lr(G) = {r e T(®) |5 ="1}.

The yield Y (z) of ar € T(ZUF) is the string resulting from concatenating
the leaf-nodes of r “from left to right.” Thus, Y () € (UsesZe,s UUses Fes)™

138 The first step: Lifting

The string-language generated by G is the set Ly = {Y(¢)|r € Ly(G)} C
(Uses Zes)"

Since RTG-rules (even based on a many-sorted signature) still just sub-
stitute some tree for a leaf-node, it is still the case that they generate recog-
nizable sets of trees, i.e., context-free string languages.

An example for a regular tree grammar and a corresponding derivation
will be given later in the paper in the context of the discussion of lifting, see
Example 10.11 on page 143.

We will show in Section 10.3.1 on page 151 the equivalence between
RTGs and FSTAs which ensures the closure of the regular tree languages
under the standard boolean operations. This is somewhat surprising since the
regular tree languages yield the context-free string languages which are not
closed under intersection. That RTGs are closed under intersection is due
to the fact that we are not talking about the strings, but rather about strings
together with their structure, i.e., the trees. Thus, the simple step from strings
to trees enables us to use operations which were not available before.

Finally, since we need them to show how to handle TAGs, we also define
monadic context-free tree grammars (MCFTGs). Since they are only a sim-
plification of the definition we have given in Definition 10.1 on page 135, we
outline only the differences here. The main difference is that MCFTGs allow
only one variable to appear in each rule. As a consequence, the operatives of
the CFTG are also constrained to be at most unary, i.e., they can only have at
most one argument and therefore allow only one variable in their scope.

Definition 10.6 (Monadic Context-Free Tree Grammar). Let S be a set
of sorts. A monadic context-free tree grammar (MCFTG) for S is a 5-tuple
I'=(Z,FoUF},S,X,P), i.e., a CFTG, where all the rules in P are of one of the
following “unary” types where (A,B,C,B; € Fi{UFp, 1 <i<n,ac X, x € X):

A—a

A — B(C)
A(x) — a(By,...,Bi—1,x;,Bit1,...,By)
A(x) — B(Ba(...By(x)...))

As an example, we present an MCFTG I'r4¢ for a"b”c"d" generating the
same language as the TAG grammar G4 given in Example 9.6 on page 122.

Tree grammars 139

_Ejl

_EJI _’_f‘n
feb)
5}
o

I\C)/Jl(,J
[EJ/}I(/J
b
N —F

om

%l

[\®)

o
>OJ>

o

S’:>T:>
€

Figure 10.6: An example derivation of the MCFTG I'746 from Example 10.7

Example 10.7. Let T'r46 = ({a,b,c,d,,S;,5°},{S,5',S1,5,,a,b,¢,d}, S,
{x},P) with P given as follows

S — S(e) a —a
S(x) — S1(S(S2(x))) b —b
S(x) — S(x) ¢ —c

S1(x) — S,(a,x,d) d —d
S (x) — S,(b,x,c)

A corresponding derivation of the string abbccdd is shown in Figure 10.6.
The example derivation is somewhat longer than the one given for the almost
identical TAG grammar generating the same language. This is due to the fact
that we need nonterminals to introduce each branching of the resulting tree
separately. In the first step, we simply rewrite the start symbol into a unary
branching tree with a single nonterminal which is again labeled with S and
which dominates €. In the second one, the symbol § is replaced with the term
S1(S(S2(x))) where the (degenerate) tree € is simply appended in the only
argument position x of S,. This step is repeated before we terminate with an
application of the rule rewriting S to S?. We simplified the presentation in the
sense that in this last step we also applied the rules for the “barred” operatives,
i.e., we replaced each S;, i € {1,2} with the corresponding term and each
s € {E,E,E,E} with s. As one can see, the recursive step can be iterated
arbitrarily often yielding the desired non-context-free language a"b"c""d".

140 The first step: Lifting

10.1.2 Multiple context-free grammars

We include the definition of multiple context-free grammars (MCFG) into
this section although, strictly speaking, they are not tree grammars, but string
grammars working on tuples of strings. Intuitively, each nonterminal repre-
sents a tuple of (terminal) strings and therefore has an arity. Each rule of
an MCFG is basically like a context-free rule, but associated with a function
which executes basic morphisms of the right arity on the tuples of strings.*¢
We present this formalism here since they can be used as representations of
MGs and our approach is applicable to it. Furthermore, if we view the right
hand sides of the rules as a function applied to the nonterminals as arguments,
we can also view them as a sort of tree grammar. Historically, MCFGs are
a specialization of the generalized context-free grammars introduced by Pol-
lard (1984) and are very similar to LCFRSs. They have the same generative
capacity, although they are not restricted to be non-erasing. We follow Seki
et al. (1991) in our presentation of the formal definition.

Definition 10.8. A multiple context-free grammar (MCFQG) is defined as a
five-tuple G = (Vw,Vr,Vg,P,S) with Vi, Vr, Vi and P being a finite set of
nonterminals, terminals, linear basic morphisms and productions, respec-
tively. § € Vi is the start symbol. There is a function d from Vy to N
such that d(S) = 1. Each p € P has the form A — f(Ao,...,A,—1) for
A,Ag,...,A,_1 €Vy and f € F a function from (V;)¥ to (V;:)4*) with ar-
ity k = 2?2—01 d(A;). Recall that basic morphisms are those which use only
variables, constants, concatenation, composition and tupling.

The derivation-relation = for G is defined as follows: If A — f() €
P then A = f(), where f() € (V;)® (i.e., f is some constant tuple of
terminal strings). If A — f(Ao,...,A,—1) € P and A; =g t; for some #; €
(V)44 then A; =g f(to, ... ,t,—1). The language generated by G is L(G) =
{reVf|S :>*g t}. As usual, =" stands for the reflexive transitive closure of
=.

We also have to state one important result concerning the generative ca-
pacity of MCFGs. The class of languages generated by MCFGs properly
includes the class of context-free languages and is properly included in the
class of context-sensitive languages (Seki et al. 1991). Therefore, from this
perspective, they are an adequate formalism for our purposes.

As for the other grammar formalisms, we illustrate the definition with an
example grammar yielding a simple non-context-free language.

Lifting 141

Example 10.9. Consider the following MCFG Gycrc=({S,A},{a1,a2,a3},
S, P) with P as defined below:

S — g(A) gxy,z) = xz
P=¢ A — f() 10 = (a1, a2,a3)
A — h(A) h(x,y,z) = (xai,yay,zaz)

The language generated by Gucrg is L(Gucrg) = ajasads. An example
derivation of the string ajajayazazas firstly replaces all the nonterminals and
then “executes” the functions. In the first step, the function f generates a
tuple (a1,az,a3) whose components are then augmented with the appropriate
symbols by 4 and “terminated” by g.

§—g(A)
— g(h(A))
— g(h(f()))
— g(h({a1,a2,a3)))
— g({a1a1,aaz,a3a3))

— ajdajazanaszas

10.2 Lifting

We call the process which makes the control information inherent in term
based grammar formalisms explicit lifting. The intuition here is that basic
assumptions are commonly made about the interpretation of terms which are
usually left implicit. We make them explicit by inserting the “control” infor-
mation which allows us to code the resulting structures with regular means,
i.e., regular tree grammars or finite-state tree automata.

10.2.1 Lifting CFTGs

The intuition behind the lifting process is that each term compactly encodes
information such as composition, concatenation or (later on) tupling.

Any context-free tree grammar I” for a singleton set of sorts § can be
transformed into a regular tree grammar I'" for the set of sorts S*, which
characterizes a (necessarily recognizable) set of trees encoding the instruc-
tions necessary to convert them by means of a unique homomorphism / into

142 The first step: Lifting

c
T~
fla,b) ~ c a b
T
fom o m

Figure 10.7: Intuition for simple lifting

the ones the original grammar generates (Maibaum 1974). This “lifting” is
achieved by constructing a new, derived alphabet (an N-sorted signature) X-
for a given single-sorted signature X, as well as by translating the terms over
the original signature into terms of the derived one via a primitive recursive
procedure. The lift-operation takes a term in 7'(X, X;) and transforms it into
one in 7' (XL, k). Since S is a singleton, we can identify $* with N (cf. Defini-
tion 2.2 on page 18). By T (X, k) we denote the set of all trees over X* which
are of sort k.

Intuitively, the lifting eliminates variables and composes functions with
their arguments explicitly, e.g., a term f(a,b) = f(x1,x2) o (a,b) is lifted to
the term c(c(f,m1,m2),a,b), see Figure 10.7. The old function symbol f now
becomes a constant, the variables are replaced with appropriate projection
symbols and the only remaining non-null-ary alphabet symbols are the ex-
plicit composition symbols c.

Definition 10.10 (LIFTg;,,.). Let X be a ranked alphabet and X a set of
variables {xi,...,x}, k € N, a finite set of variables. The derived N-sorted
alphabet " is defined as follows: For each n >0, X, = {f'|f € Z,} is a
new set of symbols of type (g,n); for each n > 1 and each i,1 <i <n, n} is
a new symbol, the ith projection symbol of type (g,n); for each n,k > 0 the
new symbol ¢, is the (n,k)th composition symbol of type (nkj - - - k,, k) with

ky =--- =k, = k. The set of all ¢, ; will be denoted by C, the set of all] by
I1.
Eéo - 2/5,0
X, = Z,u{n!1<i <n} forn>1
S s = Acnk) for nk>0 and k=k for 1 <i<k

L o .
2,s = 0 otherwise

Lifting 143

For k > 0, LIFTST : T(X,X;) — T(Z%,k) is defined as follows:

— k
= T

)
LIFTSZ(f) = cox(f’) for fe 2
) = cax(f,LIFTSE(t1),. .., LIFTS(1,))

LIFTSZ(x;

LIFTSE(f(t1, .. -, 1n)
forn>1,f€X, and t,...,t, € T(Z,Xx)

Note that this very general procedure allows the translation of any term
over the original signature. The left hand side as well as the right hand side
(RHS) of a rule of a CFTG I" = (X, F, X, S,P) is simply a term belonging to
T(ZUF,X), and also any structure generated by T

Further remarks on the observation that the result of lifting a CFTG is
always a RTG can be found in M6nnich (1999).

As an example, we present the lifted version I': = (XL FE §7 PL) of the
CFTG T given in Example 10.4 on page 136. The translation process for
grammars is centered around the lift-morphism for the translation of the al-
phabets of the operatives and inoperatives and the RHSs of the production
rules. Since the rest of the translation follows trivially from this, we dispense
with a formal definition. Note that for better readability, we omit the 77 from
Zéz, all the O0- and 1-place composition symbols and the subscripts on all
other composition symbols.

Example 10.11. Let I'* be an RTG defined as follows:

2570 = {ed. b, ,d} 2572 = {o}
st, = {ntndndnmi} =L .. = {c} (for simplicity)
For = {5} Feo = {F}

S — &

S — c(F',d e, ¢)
pL _ S — c(F,e b ed)
F' — c(F c(d, a,nl),né,c(o’,c’,ngl),ni)

(F/vnlv (/’blvné)vnéac(./’d/’ni))

F'o— o c(o (o' m},m3), m3),)

o

FF — ¢

7
We parallel the derivation for aabced shown in Figure 10.5 on page 137 with
this lifted grammar in Figure 10.8 on the next page.

144 The first step: Lifting

F’ c To c Ty
o d m o ¢ m
c
! '
— c a € c €
C & Up) & Ty
F' m c T3 c o ad m o (' m
o U m o d my

= c a € €
”’\
c c) c T4
T T T
c m c 3 c o a m o (' m
ST T T
o ¢ m o UV m o d m
T
o ¢ w3
T
o m M

Figure 10.8: An example derivation of the lifted CFTG I'" given in Example 10.11
Lifting MCFTGs

Lifting MCFTGs uses the same definitions for lifting as is used for general
CFTGs. To further illustrate the techniques, we present the continuation of
Example 10.7 on page 138. Because the grammar is sufficiently simple, we
include the subscripts on the composition symbols. Note that we now have
only null-ary operatives, though we do have extra composition and projection
symbols.

Example 10.12. Let T'%,; = ({a,b,c,d,e,S;,5°},{S,5,51,5,,a,b,c,d}, S,
P) with P given as follows

Lifting 145

We parallel the derivation given in Figure 10.6 on page 139 with the new
grammar as given in Figure 10.9 on the following page. Note that nontermi-
nals are now simply replaced by entire subtrees and no extra insertions take
place.

10.2.2 Lifting MCFGs

Now we turn to the translation of MCFGs to RTGs. Each rule of a given
MCEFG is recursively transformed into a RTG-rule by coding the implicit op-
erations of projection, tupling and composition as nonterminals or terminals.
This becomes possible simply by viewing the terms appearing in the rules of
the MCFG as elements of a free N x N-sorted Lawvere algebra. The result-
ing RTG then “operates on” this Lawvere algebra. Recall that we are using
a simple example MCFG with maximally one nonterminal on the RHSs and
therefore do not have to build tuples from tuples.

Intuitively, again, we have to make the implicit operations which are “hid-
den” in the standard presentation of the MCFG-rules explicit. Simply using a
tuple, e.g., the pair (a,b), means that we need an explicit tupling operator ()
to combine a and b. In the same spirit, as outlined above, using xpx; means
that the values of the two variables are concatenated with an implicit concate-
nation operator. And finally, applying a function to some arguments is a com-
position ¢ of the function with its arguments. Note that thereby the function
becomes a constant, i.e., we reify the function. In this sense, a term such as
f(a,b) becomes more complex: c(c(f,()(x1,x2)),()(a,b)). The next step
is to translate these single-sorted terms into the corresponding many-sorted
Lawvere algebra.’’

For 1 <i <3, let 7ti3 denote the i-th projection which maps a 3-tuple of
strings from V' to its i-th component, i.e., a 1-tuple. Therefore the corre-

146 The first step: Lifting

€(1.0)
€(1,0) C(1,1) €
c'(l.l)/\s Sl/\c(l,l)
S = C7\0) — 51/\0(1,1) [) Cy’\l) o
s N o N8
S, =l e)

0wl S wl

S,Ad C(l,l)/\c(l 1) 514\

s m €i,1) i
S

1
b m e

Figure 10.9: An example derivation of the lifted MCFTG F% A given in Example
10.12

sponding Lawvere arity of 7,7 and 73 is (3,1). Let ‘o’ denote the usual
binary operation of concatenation defined for strings from V7, i.e., ‘@’ maps
a 2-tuple to a 1-tuple. Thus ‘e’ is of Lawvere arity (2, 1). Similarly, the cor-
responding (Lawvere) arity of terminals is (0,1) and of nonterminals (0,a),
where a stands for the arity of the nonterminal.

In the following paragraphs, we will sketch the translation T from non-
terminal rules of the example MCFG to RTG-rules. T takes each rule X —
f(Y), where X,Y € Vy and f € Vp, of the MCFG including the correspond-
ing definition of the mapping f(xi,...,x;) with k > 0 and transforms it into
a RTG-rule as follows. We create a mother node labeled with the appropri-
ate binary composition ¢ ;) such that the left daughter contains the “lifted”
version of f(xi,...,x¢) under LIFT4yyere and the right daughter the transla-

Lifting 147

tion of the nonterminal Y (a formal definition of LIFT e follows below).
Both nonterminals X and Y are used “unchanged”, but annotated with the
corresponding Lawvere arity resulting in the following schematic presenta-
tion of the translation: X(; ;) — c(j) (LIFTL(f(x1,...,xx)),Y(jx)), Where f
is a mapping from k-tuples to /-tuples of terminal strings.

Note that having more than one nonterminal on the RHS of an MCFG-
rule leads to an RTG-rule which requires an additional tupling node above the
corresponding nonterminals in the second argument of the composition. This
tupling node has to contain the information how to compose the tuples result-
ing from the computation of the nonterminals, e.g., if the tuple is of length
four and dominates two nonterminals, the first nonterminal could contribute
one, two or three components and correspondingly the second nonterminal
three, two or one component. Suppose we indicate this splitting with a super-
script. So, there is no unique tupling node of a certain type anymore, but a
family of tupling operators of each type which can be differentiated via their
superscripts, i.e., for a given MCFG rule X — f(Y;,...,Y,) the resulting
RTG rule looks as follows

X(jay — €ty (LIFTL(F ety ,0)), C) 0 (Yt - i)

for k = k; - - - k,. Looking ahead, the superscript is needed to guide the tree-
walking automaton into the right branch of the lifted tree. This presupposes
that we also have more detailed projection symbols which can actually refer
to the components of a particular tuple such that the tree-walking automaton
computing a m-link can actually determine the correct filler. All of this can
be implemented via a nondeterministic traversal of the relevant daughters of
such a special tupling node. Since there is no insight gained by an exact
specification of the necessary schematic representation, we omit this — in our
case trivial — tupling node and all the ensuing complications in the example
for better readability.

After this intuitive presentation of the translation of MCFG rules, we for-

mally define the translation LIFT e Of the functions as follows:3®

Definition 10.13 (LIFT 4yyere). Let S be a set or sorts, X = {X,,; | (w,s) €
S*x S} be an $*x S-indexed set and X = {x1,...,x}, kK € N, a finite set of
variables. The derived S*x S-sorted alphabet X (indexed by (5*x.S)*x (5*x
S)) is defined as follows: For each w € $*,s € S, Z;<W7S> ={f'lfeZy}is
a new set of symbols of sort (g, (w,s)); for each w =w;---w, € §* and each
i,1 <i<n,mis anew symbol of sort (€, (w,w;)), the ith projection symbol;

148 The first step: Lifting

for each u,v,w € §* the new symbol ¢, ,,,) is the composition symbol of
sort ((u,v)(v,w), (u,w)) and for each u,v € §* the new symbol (), is the
tupling symbol of sort ((v,u1) -+ (v,up), (v,u)).

L _
€ (ws) zX—;(w,s)

Z§,<w7wi>:{nlw|1§i Sn} forwzwl...wnej*

EL

vy)+ (utn), (vu)

- {()(wu)} for v,u,u; € $* and
u=ur-up,1 <i<nneN

Z%%VN‘GWM%W) = {C(MMW)} for u,v,w € §*

For k >0, (w,s) € §*xS, LIFTLY : T(X(Xy),s) — T(EF, (w,s)) is defined
as follows:

LIFTLZ (x;)

W
T (wowi)

LIFTLY ((f) = Jles) for f € Ze o)

LIFTLY (((t1, .- tn)) = () (o (LIFTLY, ((11), ..., LIFTLY ((1,)))

where each LIFTL}, ((1;),1 < i < n, is of sort
(vu;), u=uy...u, and t1,...,t, € T(X(Xy),s)
LIFTLY ((f(t1, - s1n)) = Clumu) (Fowr C) (LIFTLY((11),...,LIFTL>(z,)))
where each LIFTL} ((1;),1 < i < n, is of sort
(u,vi) and f € Z¢ 1,9,V = V1...V,, and
ty sty € T(Z(X),5)
Again, we continue an example. The grammar Gy, is the result of
applying the lifting algorithm to Gycrc given in Example 10.9 on page 141.

For readability, we give the typing information separately and not immedi-
ately in the definition of Gj;cpg-

Example 10.14. The grammar Gy,-r; = ({S,A},{a1,a2,a3}, S, P) resulting
from the lifting process has the productions given below. The productions
rely on the fact that the nonterminals and new symbols have the following

Lawvere types

Lifting 149

S,aj,ax,a3 : (0,1) 0,0, o (3,1)
A : (0,3) c :of various types
o :(2,1) () . of various types

Then the three rules can be displayed graphically as follows:

€(0,3,1)

¢z Ao

2 (Je ()0.3)
S0y —— A?) Apg —— T
€(3,2,1) T3(3,1) a1(0,1) @2(0,1) @3(0,1)

21 (Je
/\

3 3
Ty M3

¢(0,3,3)
()(3,3) A0,3)
-
A(0,3) - €(3,2,1) €(3,2,1) C(3,2,1)

®(2,1) ()(3,2) ®(2,1) ()(3,2) ®(2,1) ()(3,2)

7T?(3,1) a1(3,1) 7r3(3,1) a2(3,1) 7Tg(z,l) a3(3,1)

€(3,0,1)
ai(3,1)

ai0,) ()0

These rules contain the simplification indicated with the ~» symbol in the
last line. Whenever a terminal of type (3, 1) appears, it stands for the given
complex tree.

In Figure 10.10 on the following page, we find an example derivation of
the lifted grammar Gy, parallel to the derivation given in Example 10.9 on
page 141 for the MCFG Gycr¢. This derivation also contains the simplifica-
tion described above.

150 The first step: Lifting

€(0,3,1)

®(2,1) ()(3,2)
S(O,l) == /\3
€32,1) T3(31)

®(2,1) ()(3,2)
/\

3 3
1) M3

€(0,3,1)

€(3.2,1) €(0,3,3)
®(2,1) ()(3,2) ()(3,3) A(o,s)

€(3,2,1) ﬂ'g(g)l) €(3,2,1) €(3,2,1) €(3,2,1)
®(2,1) ()(3,2) ®(2,1) ()(3,2) ®(2,1) ()(3,2) ®(2,1) ()(3,2)

77?(3,1) ”3(3,1) ”%(3,1) @1(3,1) ”3(3,1) @2(3,1) 7r3(3,1) @3(3,1)

€(0,3,1)
€(3,2,1) €(0,3,3)
°2,1) ()2 ()33 ()0.3)
=
€(3,2,1) 772(3,1) €(3,2,1) €(3,2,1) €(3,2,1) @1(0,1)@2(0,1) A3(0,1)
/\ /\
®(2,1) ()(3,2) ®(2,1) ()(3,2) ®(2,1) ()(3,2) ®(2,1) ()(3,2)
77‘1;(3,1) 773(3,1) “f(3,1) a1(3,1) “3(3,1) a2(3,1) 77‘3;(3,1) a3(3,1)

Figure 10.10: An example derivation of the lifted MCFG G, given in Example
10.14

10.3 Coding the lifted structures

In the previous section we have shown how to code the non-context-free
structures with regular tree grammars via lifting. In the last part of this chap-
ter, we will show how to code RTGs themselves with FSTAs and from there
with MSO logic. Or, more precisely, we will show how to construct an FSTA
which recognizes the tree language of a given RTG. Furthermore, we will
give an MSO formula which characterizes the same set of trees as well.

Coding the lifted structures 151

10.3.1 Tree automata

Since 'Y in (10.11) generates a regular set of trees, we can construct a tree
automaton Az = (Q,X,8,qo, Q) to recognize this set.

Construction of a tree automaton from a given lifted context-free tree
grammar I'Y = (3£ FL 8 PE), ie., an RTG, is straightforward. Intuitively,
since tree automata recognize only local trees in each transition, we have to
use auxiliary transitions for RHSs of lifted macro productions with trees of
depth greater than one in order to recognize the correct trees incrementally.
So, what we are doing is decomposing the RHSs into trees of depth one which
can then be recognized by a transition, i.e., a preliminary step involves trans-
forming T'* into a normal form TVF = (££ FVF ' PNF) via the introduction
of auxiliary rules and new nonterminals. In our example, the lifted tree gram-
mar is not in the desired normal form, but it is easy to see how to change this.
For example, the production F' — c(F',c(o',d’,n}), 73, c(o', ', 7}),7]) is
transformed into the following three new productions:

! / 4 4
F —>C(F,Ca,7t2,cc,7t4),
C, — c(o',d',n}) and

C, — (o,).

The full translation of the other productions into the corresponding normal
form is left to the reader. The resulting rules and nonterminals are reflected
both in the new transitions and in the states we need. In the following, we
assume without loss of generality, that the trees on the RHSs of the lifted
macro productions are of depth one.

Recall that, according to the definition above, a tree automaton operates
on a ranked alphabet £ = (X, |n € N). Therefore, in our case, we use the
inoperative symbols of the lifted grammar to construct X, but we reduce the
explicit many-sorted type information by defining X, as {c € | rank(c) =
n}. For the set of states O, we need distinguishable states for each of the
terminals, nonterminals and projection symbols appearing in RHSs of the
rules. Furthermore, we need a new initial state g, i.e., Q = {¢s|0 € Eés U
F¥F1U {go}.*° In the automaton, the state which corresponds to the start
symbol S’ of the grammar becomes the single final state, i.e., Qr = {gs }.

Since our tree automata work bottom up, we have to start the processing
at the bottom by having transitions from the new initial state to a new state
encoding that we read a particular symbol on the frontier of the tree. So,

152 The first step: Lifting

Ql]"L = <Q,2,5,CIO, {qsl}>

d: U Qn X 2 — Q
1<n<5
(90,€) — ¢e (9,90 19m,,¢) — 4c,
(90,d") — qu (9¢59¢ qns:¢) — 4qc.
(q0,b") — aw (qe,qp qmy¢) — qc,
(q0,¢") — qo (90,90 Grs¢) — 4c,
(QO7d/) — qa (q0’7q7t| 7q7t27c) — 4G
(q0,m1) — 4qn (9¢,49Cy5qm3:C) — 4c;
(q07n2) — q4m, (q0’7qC37th47c) — qFr’
(q0,m3) — qn, (gFqn, 9C, dns9C,,€) — qF
(q0,m4) — 4qn, (qr,9c,,qm9C. qns:€) — qF
(q0,9") — qo (ar', Ge s b+ g6+ 9a) — 4y
(q0,€8) — gqs (@F's Ga s 9e + 49c » Ge €) — 45

Figure 10.11: The tree automaton for I'-

together with the transitions encoding the productions, we have to construct
two kinds of transitions in &:

— transitions from the initial state on all subtrees reading a terminal symbol
o, i.e., elements of all the X; from I, to the corresponding state; i.e., gg X
0 — (gs;

— transitions recognizing the internal structure of the local trees appearing
in RHSs, i.e., from the states corresponding to the leaves of a tree on
a RHS to the nonterminal D of the left hand side, i.e., for each lifted tree
grammar production of depth one D — ¢(dy, ... ,d,) we have to construct
a transition in the automaton which looks as follows: g4, X --- X gg, X ¢ —

qp-

Accordingly, the tree automaton corresponding to the RTG T'* given in Ex-
ample 10.11 on page 143 looks as given in Figure 10.11. As the reader can
easily check, the automaton recognizes the same set of trees.

10.3.2 MSO logic

Alternatively, we can also code RTGs with MSO logic. The standard way of
doing this requires that we first construct the corresponding tree automaton.

Summing up the first step 153

In Thomas (1990) tree automata are converted to formulas in MSO logic
by basically encoding their behaviour. Under the assumption that we have a
state set Q = {0,...,m} with the initial state gy = 0, the (closed) X}-formula
@9, given there adapted to our signature and for maximally S-ary tree au-
tomata looks as given below. P, stands for the predicate labeling a node with

the symbol a and leaf(x) FEN (=3y)[x <y

Intuitively, the sets X; label the tree where the automaton assumes state
i. The first two lines of the formula say that we cannot have a node which
is in two states and that X is our “initial” set; the second one licenses the
distribution of the sets according to the transitions and the last one says that
we need a root node which is in a “final” set.

P £ (o Xn) (A I € XY EX)1A
i#]
(Vx)[leaf(x) — x € Xo)

A (Yxi,ox,) Voa €X, Ay<tg Ay € XAy € Po)
1<I<5 (iy ‘--l-gl;z}/)@

V (3xVy)[x <ty Ax € Xj
iEQf

In Kolb et al. (1999a) we also propose a way of directly coding the be-
haviour of the RTG with logical formulas. Since this does not contribute any
new insights, the interested reader is referred to the paper for further infor-
mation.

We refrain from giving more examples of both the construction of FSTAs
and MSO formulas from RTGs in the interest of brevity. We think that the
constructions are simple enough that nothing is lost by the omission. Never-

theless, we later use a similar formula @g |, for the tree automaton ng/
9MCFG M

coding the behaviour of the lifted example MCFG Gy q-

CFG

10.4 Summing up the first step

We can summarize the preceding chapter outlining the first step as follows:
Various forms of tree grammars have been motivated to be adequate represen-
tations of (some) natural language formalisms. Due to the needed descriptive
complexity, the formalisms are not characterizable by MSO logic. Therefore
we introduced the step of lifting. lifting modifies the generated structures by

154 The first step: Lifting

inserting explicit control information into the trees such that they are charac-
terizable with regular means: the lifted structures of both CFTGs and MCFGs
can be coded equivalently with RTGs, FSTAs and MSO logic. Therefore we
have one formalism with the desired duality of an equivalent operational and
denotational semantics.

Chapter 11

The second step: Reconstruction

Unfortunately, the terminal trees of a lifted tree grammars presented in Fig-
ure 10.8 on page 144, Figure 10.9 on page 146 and Figure 10.10 on page 150
generated/recognized by the grammars T'F, T'% 4G O Glycrg given in the Ex-
amples 10.11, 10.12 and 10.14 or the tree automaton in Figure 10.11 on
page 152, don’t seem to have much in common with the structures linguists
want to talk about, i.e., the structures generated by the “original” grammars
which are presented in Figure 10.5 on page 137, Figure 10.6 on page 139 or
Example 10.9 on page 141.

However, the lifted structures contain the intended structures. As men-
tioned before, there is a mapping 4 from these explicit structures onto struc-
tures interpreting the compositions (the ¢’s), tuplings (the ()’s) and the pro-
jections (the 7’s) the way the names we have given them suggest, viz. as
compositions, tuplings and projections, respectively, which are, in fact, ex-
actly the intended structures.

On the denotational side, we will implement the mapping 4 with an MSO
definable tree transduction (as defined in Section 5.6 on page 80) and opera-
tionally with both tree-walking automata (defined in Section 4.3 on page 53)
and Macro Tree Transducer (see Section 4.4.2 on page 56) to transform the
lifted structures into the intended ones. Each of the following sections will
address the approaches reconstructing lifted CFTGs, MCFTGs and MCFGs.

Let us restate our goal then: Rogers (1998) has shown the suitability of
an MSO description language LéP for linguistics which is based upon the
primitive relations of immediate (<), proper (<1T) and reflexive (<1*) domi-
nance and proper precedence (<). We will show how to define these relations
with an MSO transduction, an FSTWA or an MTT thereby implementing the
unique homomorphism mapping the terms into elements of the corresponding
context-free tree language, i.e., the trees linguists want to talk about.

156 The second step: Reconstruction

Immediate Dominance
Intended Dominance
—_——— m1-link

....... m3-link

Figure 11.1: Intended relations on a lifted structure: CFTGs

Put differently, it should be possible to define a set of relations R/ =
{«, <", «* (dominance), c-command, < (precedence), ...} holding between
the nodes n € N* of the explicit or lifted tree T- which carry a “linguistic”
label L in such a way, that when interpreting «* € R’ as a tree order on the set
of “linguistic” nodes and < € R! as the precedence relation on the resulting
structure, we have a “new’” description language on the intended structures.

11.1 Reconstructing lifted (M)CFTGs

As mentioned, we will use both an MSO definable tree transduction built
upon tree-walking automata and an MTT to transform the lifted structures
into the intended ones. The core of this transduction will be the definition
of the new relations via tree-walking automata. In what follows, we will
confine ourselves almost exclusively to the dominance relation from which
most linguistically relevant relations can be derived.

Reconstructing lifted (M)CFTGs 157

To do so, it is helpful to note a few general facts (illustrated in Fig-

ure 11.1 on the facing page with another rendering of the last tree of the
derivation given in Figure 10.8 on page 144):

1.

Our trees — that no longer contain substitutable elements from F(— feature
three families of labels: the “linguistic” symbols, i.e., the lifted inopera-
tives of the underlying macro-grammar, L = lift(U,~(Z,); the “composi-
tion” symbols C = {¢, x},n,k > 0; and the “projection” symbols TI.

All non-terminal nodes in T are labeled by some ¢, € C. This is due
to the fact that the “composition” symbols are the only non-terminals of a
lifted grammar. No terminal node is labeled by some ¢, x.

. The terminal nodes in 7' are either labeled by some “linguistic”” symbol

or by some “projection” symbol &t; € IT.

. Any “linguistic” node properly dominating anything in the intended tree

is on some left branch in TZ, i.e., it is the left-most daughter of some ¢, €
C. This lies in the nature of composition: ¢, k(xo,x1,...,%,) evaluates to

X0 (X1, sXn).

. For any node p labeled with some “projection” symbol w; € ITin T there

is a unique node u (labeled with some ¢, x € C by (2.)) which properly
dominates p and whose i-th sister will eventually evaluate to the value
of . Moreover, u will be the first node properly dominating p which is
on a left branch. This crucial fact is arrived at by easy induction on the
construction of I'" from I". The intuition of the induction is as follows.
The construction of I'" involves making each operative nonterminal into a
leftmost daughter. The variables of that operative are instantiated (in the
unlifted version) by applying the rule to some existing tree(s). The fillers
for the variables (and therefore the projection symbols) will be found in
those trees. So, we have to find the topmost element of a RHS (which will
be a composition symbol) and the fillers will be somewhere in its sisters.

By (4.) it is not hard to find possible dominees in any T'~. It is the problem

of determining the actual “filler” of a candidate-dominee which makes up the
complexity of the definition of <. There are three cases to account for:

6. If the node considered carries a “linguistic” label, it evaluates to itself;

158 The second step: Reconstruction

7. if it has a “composition” label ¢, , it evaluates to whatever its function
symbol — by (4.) its leftmost daughter — evaluates to;

8. if it carries a “projection” label m;, it evaluates to whatever the node it
“points to” — by (5.) the " sister of the first C-node on a left branch
dominating it — evaluates to. Two examples for n-links can be found in
Figure 11.1 on page 156.

Note that cases (7.) and (8.) are inherently recursive such that a simple MSO
definition cannot be found.

11.1.1 Reconstruction with FSTWAs

In general, recursive definitions in MSO may lead to undecidability and are
therefore disallowed. Fortunately, as we presented in Section 5.5 on page 75,
there are certain techniques to ensure that some relation R which would most
naturally be defined recursively has a valid MSO definition. Still, special care
has to be taken to establish that the relations defined are well-behaved in this
respect. In our case this caveat applies to <t as well as to its reflexive transitive
closure «*.

In Figure 11.1 on page 156 the m;-link and the m3-link are examples of
such a path from the projection symbol to the corresponding filler.

Following Bloem and Engelfriet (1997a), we will use a (basic) tree-
walking automaton with node-label tests to specify the intended (immediate)
dominance relation on lifted trees (indicated in Figure 11.1 on page 156 with
slightly thicker grey lines), thus showing in passing that it is a regular tree
node relation.

To keep the automaton small and perspicuous, we consider the case with
ternary (binary) branching in the explicit (intended) trees and macros with at
most four parameters. This is probably the only linguistically relevant case.
The extension to the general case, however, is trivial, as long as branching is
bounded by some n < ®.

We define 2, = (Q,A,d,1,F) with states Q, directives A, transitions &
and the initial and final states / C Q and F' C Q, respectively, as given graph-
ically in Figure 11.2 on the facing page. Construction of the automaton is
based upon the careful analysis of the trees involved which has been given
above. We have to “undo” the lifting process by associating the old function
symbols, i.e., the intended interior nodes, via the composition symbols with

Reconstructing lifted (M)CFTGs 159

T2/3/4/5 Tas3/4/5 Tas3/4/5 T2/3/4/5

Figure 11.2: The FSTWA for dominance on intended structures: CFTGs

their respective daughters. Basically, the facts we presented in (6.) through
(8.) above are implemented.

The automaton works as follows (we annotate the text with the states the
automaton is in): First of all (start state i), if we can read a “linguistic” label
on the node we started in (state) and if that node is the first (leftmost) daugh-
ter (state d), we go to one of its sisters (state e). Then depending on the case
we are in, we can again “read” a linguistic label and halt (state f), or read
a composition symbol (state d.) and find the leftmost daughter (state e), or
read a projection symbol (one of the states u; to u4) and find the correspond-
ing node by walking upward until we are on a leftmost daughter (one of the
states d; to dy) and then finding the second, third, forth or fifth sister respec-
tively (state e). The automaton is universal in the sense that the only variable
part it contains is the number of projection functions we have to deal with,
i.e., the number of the needed “triangles” in the lower part of the automaton.

As indicated in Section 4.3 on page 53, % 4 specifies, for any tree 7, the
node relation

< = R4 = {(x,y)] there is a successful run of 2 on
¢ starting in an initial state at node

x and ending at node y in a final one}.

However, there is another interpretation of such a tree-walking automaton.

160 The second step: Reconstruction

Viewed as an ordinary FSA over the alphabet A, 2 recognizes a regular
(string-) language, the walking language W ; in our case the walking-language

We= L(x) Ty (lz UlzUJ4U lS)‘(WC UWn, UWn, UWn, UWH4)*'L(X)

with
We = C)- L

Wi, = IL(x)-(T2UT3UTaUTs)" - T1- Liva

which is finally translated into an MSO-formula transy_ (x, y).40 The rather
tedious process, carried through in Appendix C.1 on page 207, proceeds in-
ductively via the translation steps given in (5.3) on page 79.

Therefore the resulting formula uses only the MSO definable tests of the
original automaton, the closed sets constructed via (5.5) on page 80 for the
Kleene-*-case, and the edg, relations (here with 1 <n <5) defined in (5.4).

x<y &, transy, (x,y)

Recall that for the case of the recursion inherent in reflexive dominance
a standard solution exists via a second-order property which holds of the sets
of nodes which are closed under the relevant relation. We repeat the original
definition (5.5) here for convenience.

R-closed(X) £ (x,y)[x € X AR(x,y) — y € X]

Now, for any node n, the intersection of all such closed sets which contain
n is exactly the set of m, such that R*(n,m). Since we are dealing with the
(finite) trees generated by a context-free grammar, this construction can be
safely exploited for our purposes; «* and <™ can be defined as follows:

Reflexive Dominance:

xa'y £L o (vx)[«-closed(X)AxEX —yeX]

Proper dominance:
xaty L, xa*yAxy
To further exemplify the constructions using tree-walking automata, we
also give the one dealing with the TAG example (see Example 10.12 on
page 144) in Figure 11.4 on page 162. But first consider the tree displayed in

Reconstructing lifted (M)CFTGs 161

(1.0)

@31)1)\ c(3.1) T
S,%d C(1,1) C(1,1) S,mc
A AY
St TCI C(3’1) TCI
St%(:

Figure 11.3: Intended relations on a lifted structure: MCFTGs

Figure 11.3 which again contains the last tree of the derivation given in Fig-
ure 10.9 on page 146. The intended tree is indicated with the thicker, mostly
curved lines. Note that the order of the lines does not reflect the order of the
nodes in the tree. Precedence has to be defined separately. The deliberations
parallel to (1.)—(8.) are left as an exercise to the reader. In fact, all that is
needed is a limitation to one projection function and a reduction of the num-
ber of possible daughters and correspondingly the tree-walking automaton
is much simpler. All we have to do here is to reconstruct the daughters of
the function symbols by going up and down again and possibly resolving the
single (recursive) case of finding the filler for the projection symbol.

We must also give a tree-walking automaton for the intended precedence
relation, similar to the automaton for dominance. We will do this only for
this simplest case of MCFTGs since the argument and the construction of
the automaton involved are fairly complex. The use of MCFTGs allows us
to ignore the interactions between several variables on one level. Note fur-
thermore that the RTGs in all the examples we have given are linear RTGs,
i.e., they use each variable only once in any RHS. If the automata were not
linear, then the copying of nodes makes it very hard to unravel the intended
relationships. Consequently, we can present the definition for precedence as
follows.

162 The second step: Reconstruction

(i }—tw(a)
T2/3/4

Figure 11.4: The FSTWA for dominance on intended structures: MCFTGs

The first step is defined with an FSTWA which encodes the immediate
precedence relations between sisters. Then we define precedence following
the same reasoning as before, namely as proper precedence, based upon the
definition of immediate precedence.

Looking at the example in Figure 11.3 on the page before, what can we
observe concerning precedence? The linguistically labeled terminals seem
to appear in the right order such that precedence reduces to sisterhood. But
what happens with the intended interior nodes? And how should we treat the
projection nodes? The nonterminals have to be inserted for the “right” pro-
jection symbols and then precedence is reducible to sisterhood. But finding
the correct projection symbol for a filler is non-trivial.

The FSTWA given in Figure 11.5 on the facing page basically consists
of two parts: the first part deals with those cases where the nodes which are
labeled with a linguistic label are already sisters (i.e., the intended terminal
nodes), or have a node labeled with a projection node as sister (i.e., they
precede a nonterminal). Between them we simply have an immediate prece-
dence relation which, in the case of a projection node, has to be found via a
further traversal of the tree. In Figure 11.5 on the next page those nodes are
identified by going up a non-leftmost branch, and then by descending to the
non-leftmost sisters. If the node found bears a linguistic label, we are done.

Reconstructing lifted (M)CFTGs 163

Iy (x)

(i)
T2/3/4

Figure 11.5: The FSTWA for precedence on intended structures: MCFTGs

If it bears a projection symbol, we proceed analogously to the definitions for
dominance, i.e., go up until we find a leftmost node and then go down to the
right branch.

The situation is complicated by the fact that every node with a linguistic
label at the same time is a potential filler for a projection node.*! Basically,
we have to reverse the process which finds a filler for a projection node. But
since a projection line can consist of several projection nodes, how do we
know when to stop? The FSTWA ensures that the possible projection nodes to
the fillers are found by recursively looking up and then down a tree. Starting
from the nodes bearing a linguistic label which are on a leftmost branch it
has to look upwards on leftmost branches until it finds the first right branch.
At this point it must descend again into the subtree to find the projection
node. This is achieved by repeatedly going down non-leftmost branches as
long as there are composition nodes and testing for a projection node. If
we find one, we can start computing its sisters. If it doesn’t have any, it
starts the entire process recursively. The resulting relation will be indicated
by <(imm and the corresponding formula generated with the process outlined
previously transy,_ .

164 The second step: Reconstruction

We are now in a position to finish the definition of precedence by using
the definition of immediate precedence. As usual, two nodes stand in the
precedence relation if they either stand in the immediate precedence relation
or if they are dominated by nodes which stand in the immediate precedence
relation:

x<y &, (FJu,v)[u«*xnv <y Atransy, (u,v)]

Finally, we turn to the possible complications with the specification of
other automata defining the intended precedence relation. Basically there are
two sources of problems. The first problem appears when we have more than
one projection function, i.e., more than one variable in the original, unlifted
grammar. Then we have far more cases to cover in finding the potential pro-
jection node corresponding to the filler we are considering since nodes can
be permuted by the projection functions. This does not represent a major
obstacle, but requires a finer analysis of the possible structures involved and
therefore complicates the automaton. What becomes necessary is a definition
which takes the intended dominance relations into account. We can para-
phrase it as follows. Generally we have to separate two cases. If x and y are
terminal nodes, they stand in the precedence relation if for some internal node
z dominating x and y (in the intended tree) and for the paths X and Y used by
the FSTWA to connect z with x and y (in the lifted tree), respectively, the first
leaf node on X precedes the first leaf node on Y. This admittedly complicated
condition is necessary because the FSTWA might connect z with, e.g., x via
a projection node. Then, this intermediate leaf is the one which determines
the intended precedence relation. And, as a further condition, we need that if
x and y are internal nodes of the intended tree, they stand in the precedence
relation if every terminal node which x dominates precedes (in the lifted tree)
every terminal node that y dominates. Naturally, we also need the appropriate
“mixed” cases between terminal and nonterminal nodes.

The second problem is more severe. In case we are not dealing with a
linear RTG, i.e., there are variables which appear more than once on the RHS
of an unlifted rule, we must be even more careful because now a filler can
have more than one antecedent, i.e., there is more than one projection node
which evaluates to it. This leads to the conclusion that suddenly one node
immediately precedes two other nodes which cannot be desired. So far, we
have no solution worked out. We know that a solution exists, because, looking
ahead, we can also reconstruct the intended structures with an MTT which

Reconstructing lifted (M)CFTGs 165

implies both dominance and precedence. One possible solution is copying
the node as often as it is needed.*> Another solution might be to take each
individual run of the automaton into consideration which complicates matters
considerably. But since this is speculation and not necessary for any of the
examples, we ignore this particular problem.

We will not present any further tree-walking automata for the definition
of the intended precedence relation since the basic technique has been intro-
duced very carefully using the FSTWAs recognizing the dominance relation
between the intended nodes.

11.1.2 Reconstruction with MSO transductions

Now we can turn to the definition of the transduction via MSO logic. Since
we prepared it with the presentation of the needed tree-walking automata,
almost no work remains to be done.

Using the defined formula for < the specific MSO transduction we need
to transform the lifted structures into the intended ones simply looks as fol-
lows:

((Pv v, (eq)q€Q)

O={«, <" <" q...}

¢ = O,
v = L(x)
B4(x,y) = transy_(x,y)
0 (x,y) = (VX)[«-closed(X)AxEX —y€X]
0+ (x,y) = x«*yVxsty
O4(xy) = x<y
Olbes = taken over from R

As desired, the domain of the transduction is characterized by the MSO for-
mula for the lifted trees (see Section 10.3). The domain, i.e., the set of
nodes, of the intended tree is characterized by the formula y which identi-
fies the nodes with a “linguistic” label. Building on this domain, we define
the other primitives of our description language analogous to L%Q p with the
given FSTWAs.#3

166 The second step: Reconstruction

Note that while standardly “linguistic” relations like c-command or gov-
ernment would be defined in terms of dominance, our approach allows the
alternative route of taking, in the spirit of Frank and Vijay-Shanker (1998),
c-command as the primitive relation of linguistic structure by defining, in a
similar, though — since Chomsky’s (1985) distinction between segments and
categories has to be accommodated — somewhat more complicated fashion,
an FSTWA which computes the intended c-command relation directly, with-
out recourse to dominance.

11.1.3 Reconstruction with MTTs

As stated previously, there is a unique morphism £ from the “lifted” terms
over the derived alphabet X* into the terms over the tree substitution algebra.

The morphism 4 in the case of lifted CFTGs is defined inductively as
follows:

h(f)
h(m})
h(C(l,ll yoo 7[71))

fx1,...,x,) for f€X,
X

h(t)[h(ty),... h(t,)]

where #[t1,...,1,] denotes the result of substituting #; for x; in ¢ for 7 € T(Z, Xi),
t; € T(Z,X,,). %

Let X be a lifted alphabet as before. The unique morphism 4 can be
performed by a simple macro tree transducer M = <Q,2L,2, qo,P), where
Q = {q. | n the rank of some element in XL}, go is the initial state and P is a
finite family of rules.

The MTT which we construct to carry out the transformation effected by
the unique homomorphism 4 combines in a particularly perspicuous way the
actions of a top-down finite tree transducer — based upon the syntactic struc-
ture of the lifted alphabet X~ — and the production aspect of the underlying
CFTG via its (i.e., the MTT’s) dependence on the local context (parameters).

How can we construct the necessary productions to recover the intended
trees? We take an intuitive approach to explaining the construction of the
needed MTT which is strongly dependent on another careful inspection of
the tree in Figure 11.1 on page 156.

In general, in the first argument we will have a tree during a transduction.
So in the rules, we have to take care of all symbols which can appear as
mothers of (possibly trivial) trees with the number of variables corresponding

Reconstructing lifted (M)CFTGs 167

() ~ ()
T~ Vi
[]
® — S
yroooy2
Cn k
— T M qk<cn,k(xl»---,xn+l)ayl»---,Yk)—’
X1 cee At k+1
%(xlaCIk(xL)’la---,Yk)»---aCIk<xn+la)’1a---O’k))

n+1

Figure 11.6: Intuition behind the construction of the MTT: CFTGs

to their arities in the first argument of any left hand side. We try to depict the
intuition behind the construction of the MTT graphically in Figure 11.6.

After careful inspection of the tree language generated by the lifted RTG
I, the simplest case is certainly when we are faced with a constant from .
In this case all we have to do is to map it back to the corresponding element
from X, regardless of the parameters, if there are any. In case we encounter
a projection symbol we simply have to return the corresponding parameter.
This presupposes that we stored the “right” information there.

Furthermore, all rules with a symbol whose “unlifted” version was not a
constant will have as many parameters as are needed to compute the corre-
sponding function, e.g., ‘@’ is binary and therefore needs two parameters (see
the last rule in Example 11.1 on the following page). The resulting rule has,
on the right hand side, simply the “executed” function.

For the rules headed by a composition symbol ¢, we need as many pa-
rameters as are prescribed by k. This is due to the fact that while generally the
relevant information in the lifted trees is on the leftmost branch, we neverthe-
less need the other daughters to be able to unravel the projections. Basically,
we follow a depth-first strategy on the leftmost component of the lifted trees.
But we are passing the necessary context computed in parallel (i.e., the evalu-
ation of the computation of the other, non-leftmost daughters) down into that
computation as well.

Similarly, we also get the necessary states from the arities of the compo-
sition symbols. The rules then simply pass the state and the parameters of
the left hand side of the rule to the arguments of the alphabet symbol while
continuing to work on the first argument. As an example consider an n+ 1

168 The second step: Reconstruction

branching fork whose mother is labeled with ¢, x. Then we have to construct
a rule which has on the left hand side state g, with arity K+ 1. It has as its
first argument a term with functor ¢, x and arguments xi,...,x,41. The other
arguments are the parameters y; to yx. The right hand side has state g, of
arity n+ 1 with the first argument simply being x; and the other arguments
being g (xi,y1,---,vk), 1 <i<n+1.

Example 11.1. For our concrete example, the set of rules P of the MTT
Mp® look as given below (and graphically in Figure 11.7 on page 170):*

qo(ca0(x1,x2,%3,x4,%5)) —
q4(x1,90(x2),q0(x3),q0(x4),q0(x5))
qo(0') — o foro € {a,b,c,d,e}
qa(Cca.4(X1,X2,X3,X4,X5),Y1,¥2,¥3,Y4) —
q4(x1,94(xX2,1,Y2,Y3,Y4), 94 (X3,51,2,¥3,V4),
q4(Xa,¥1,Y2,3,Y4),q4(X5,Y1,¥2,Y3,Y4))
q4(Pi,y1,Y2,Y3,4) — Vi for P,=m;
q4(0',y1,2,3,y4) — © foro € {a,b,c,d,e}
qa(c2,4(x1,%2,X3),51,2,¥3,y4) —
q2(x1,94(x2,¥1,¥2,53,¥4), 4 (X3,Y1,2,Y3,Y4))
a2 (', y1,52) — @ (y1,y2)

As one can see, the only remaining tree forming symbol which remains
on the right hand sides is the concatenation ‘e’. So, we are indeed back in
our “old” alphabet X. The parameters serve just as memory slots to pass the
necessary information for undoing the projections and explicit compositions
further down into the tree.

From the preceding motivating discussion and the display of the rules in
Example 11.1 it should be clear that the states of the MTT do not play any
role beyond requiring the right number of arguments.

Generally, an MTT works in a depth-first fashion on the leftmost daugh-
ters. But it starts fresh copies of itself on the other daughters whose results
are then fed back to the “main” computation via the parameters. Specifically,
applying this MTT to the tree in Figure 11.1 on page 156 yields the final tree
from the derivation displayed in Figure 10.5 on page 137. To get the reader
started, let us consider the first rule in Example 11.1 beginning the transduc-
tion on the root of the tree displayed in Figure 11.1 on page 156. We start in

Reconstructing lifted MCFGs 169

state go and our root is indeed labeled with ¢4 9. Then we continue in state
q4 with its leftmost daughter and pass as parameters the results of computing
qo of the other daughters. Since in this case they are elements from X5, we
can simply use the appropriate constants from X in further computations. The
rest of the computation leading to the final result is straightforward and left
as an exercise.

The reader interested in further details of the working of the MTT on
a given lifted RTG can find a simple Prolog program in Appendix D on
page 209 which, given both an MTT and a lifted RTG, produces trees and
their intended counterparts via iterative deepening.

Again, we exemplify the constructions further by also giving the one
dealing with the TAG example T’} (see Example 10.12 on page 144) in
Figure 11.8 on page 171. First reconsider the tree displayed in Figure 11.3 on
page 161. The intended tree (displayed as the last tree in Figure 10.6 on
page 139) can again be reconstructed with an MTT, see the grey lines in
the figure. The intuition for the construction of the MTT has not changed
compared to the case of CFTGs, it has only gotten simpler. Since we are
only dealing with one projection, the necessary bookkeeping can be reduced
drastically. The necessary transitions for the concrete MTT My are given
graphically in Figure 11.8 on page 171. There is only one nonterminal of
arity three: S; which gets the necessary daughters via the context parameters
y1 to y3 (see the last rule in the left column). The same holds for the unary
nonterminal SY. As usual, the alphabet symbols are simply transduced into
themselves. What remains is to handle the compositions. Again, we continue
the traversal on the leftmost branch and start “new” transducer on the other
daughters so that their result will be available to the “main” computation in
the parameters. Via this construction we generate the arguments for the inte-
rior nodes of the intended tree. It is left as an exercise to the reader to use the
MTT MF%‘AG to transduce the example tree in Figure 11.3 on page 161.

11.2 Reconstructing lifted MCFGs

After the presentation of the various ways of reconstructing the intended trees
out of lifted (M)CFTGs, we now repeat the process with the lifted MCFGs.
Again, we will specify an MSO transduction built upon tree-walking au-
tomata as well as an MTT to recover the linguistically relevant trees.

170 The second step: Reconstruction

90 qq
| TS
C4,0 N 1 qo 490 4o 9o
T L
r1 T2 T3 T4 T To I3 T4 Ts
q0
\ — o foro € {a,b,c,d, e}
O_/
q4
TS
Ca,aY1 Y2 Y3 Y4 N
TS
r1 T2 T3 T4 Ts
q4
1 q4 q4 q4

q4
T T T T
T2 Y1 Y2 Y3 Ya X3 Y1 Y2 Y3 Y4 Ta Y1 Y2 Y3 Ya Ts Y1 Y2 Y3 Ya

q4
TS — Y for P, =m;
P Y1 Y2 Ys Ya

q4

S — o foro € {a,b,c,d,c}
o Y1 Y2 Y3 Ya

q4 q2
TS T
C24Y1 Y2 Y3 Ya — T qa qa
T T T
Ty T2 I3 T2 Y1 Y2 Y3 Y4 T3 Y1 Y2 Y3 Y4
q2 °
T — AN
o Y1 Y2 Y1 Y2

Figure 11.7: The rules of the example MTT M.

Reconstructing lifted MCFGs 171

cho /N @
/(\’ — 1 Q1 [N
‘ o
1 T2 oo foro € {a,b,c,d,c}
q1
q1 q1
PN P N——
) Ton
cLy Y L Q1
/N /N o 50
1 o T2 Y1 /\ SN !
Sy wn Y1
q1 q3
T _— N n
C(3,1) Y1] q1 q q a/\y — o
P !
1 X2 T3 T x/\ /\ /\ foro € {a,b,c,d, e}
1 2 3 4 2 Y1 T3 W Ty Y1
q3 Sy

Se 1 Y2 u3 Yy oy2 Y3

Figure 11.8: The rules of the example MTT MF%AG

Since the MSO transduction itself is in a certain sense universal, we will
not refer back to our particular example to present it. The only variable part
is the number of different projection constants appearing in the RTG, i.e., n?,
ng and 11:% and the FSTWAs needed to implement the various primitives from
the description language.

Again, the core of the transduction is a tree-walking automaton defining
the binary relation of immediate dominance (<) on the nodes belonging to
the intended structures. It is based on another, but very similar, set of simple
observations. The reader is encouraged to check them against the example
tree ¢ generated by Gj,cpg given in Figure 11.9 on the following page.*
Naturally they are very similar to the ones given previously for CFTGs. Since
they are not identical, but follow the same reasoning, they serve as further
illustration of the idea behind the reconstruction of the intended trees. Note,
that we again indicated the dominance relations of the intended tree with
thicker lines. Further work is required to also get the intended precedence
relations. In fact, with the exception of the intended children of the intended
root, the left-to-right order of the displayed lines is backwards.

172 The second step: Reconstruction

€(0,3,1)

°(2,1) ()2 €(3,2,1) ()(373\—‘/ \()(0,3)

-

/\\3 \~“~~
€321 T3(3,1) C(3,2,1)
VAN VN
ey ey ey e o2 . (Js2)

; 20N 4

KE(ERY Ty My 96D T3(3,1) @3(3,1) as(0,1)
€(3,2,1) ai(0,1)
7\

®(2,1) ()(3,2)

3
To3,1) 92(3,1) a2(0,1)

Figure 11.9: Intended relations on a lifted structure: MCFGs

1. This time, our trees feature four families of labels: the “linguistic” sym-
bols L, i.e., the lifted symbols of the underlying MCFG; the “composition”
symbols C = {c(y,,,) }; the “tupling” symbols (), and the “projection”
symbols IT= {nf}

2. Now, all nonterminal nodes in 7 are labeled by some ¢,y € C or a “tu-
pling” symbol. Note that no terminal node is labeled by some ¢,

3. The terminal nodes in ¢ are either labeled by some “linguistic” symbol as
before, a “tupling” symbol of the form () 0), i.e. the “empty” tuple, or
by some “projection” symbol n{-‘.

4. Again, any “linguistic” node properly dominating anything in the intended
tree is on some left branch inz, i.e., it is the left daughter of some c(,,,,,) €
C. But now it furthermore is the sister of a tupling symbol whose daugh-
ters have to be evaluated to find the the intended daughters.

The following point is also similar to the one we presented in the discussion
on the reconstruction of structures generated from lifted CFTGs. But now we
also have to cope with the tupling symbols which accounts for the differences
and the greater complexity of the observations.

5. For any node v labeled with some “projection” symbol 7t} € IT in ¢ there
is a unique node u (labeled with some c(,,,,) € C) which properly dom-

Reconstructing lifted MCFGs 173

inates v and which dominates a node labeled with a “tupling” symbol
(which does not dominate v) whose i-th daughter will eventually evaluate
to the value of ¥, Moreover, u will be the first node properly dominating
v which is reachable via a transition up a “left” branch (];) and bears a
composition symbol. This fact is again arrived at by induction on the con-
struction of g]’WCFG from Gucrg. The idea behind the proof is similar to
the one presented previously. We are again reconstructing the application
of a rule containing variables to an existing tree.*® The difference now is
that the unique node dominating the inserted tree appears no longer on a
leftmost branch but as the right daughter of the topmost node such that we
have to reformulate the conditions accordingly. And, naturally, we also
have to account for the tupling nodes which appear interspersed in the
tree.

By (4.) it is not hard to find possible dominees in any ¢. It is the problem
of determining the actual “filler” of a candidate-dominee which makes up the
complexity of the definition of <. There are three cases to account for:

6. If the node considered carries a “linguistic” label, it evaluates to itself;

7. if it has a “composition” label c(,,,,), it evaluates to whatever its leftmost
daughter evaluates to;

8. if it carries a “projection” label né‘, it evaluates to whatever the node it
“points to” — by (5.) the i daughter of a “tupling” node which is domi-
nated by the first C-node on a left branch dominating it — evaluates to.

Again, note that cases (7.) and (8.) are inherently recursive. But the use of
tree-walking automata ensures the definability. In Figure 11.9 on the preced-
ing page the ng-link marked with the dashed line is an example of such a path
from the projection symbol to the corresponding filler.

11.2.1 Reconstruction with FSTWASs

According to the observations made above, a tree-walking automaton is de-
fined to relate those nodes x and y which stand in the intended immediate
dominance relation, i.e., x««y. The automaton is given graphically in Fig-
ure 11.10 on the following page. It starts on any node with a “linguistic”
label (denoted here by L) which means for the given example e,a;,as,as.
Then it has to go up the first branch, read a composition symbol and descend

174 The second step: Reconstruction

L(z)oT10C(z)ol2

(T2113) (T2173) (T2173)

Figure 11.10: The FSTWA for dominance on intended structures: MCFGs

to its sister. If it reads a “linguistic” node, the automaton stops. If it reads a
composition symbol, the automaton goes to the left daughter and tries again.
If it reads a tupling symbol, the automaton proceeds with its daughters (again,
see the thicker, grey lines in Figure 11.9 on page 172). On finding a projection
symbol, it searches for the appropriate “filler” by going upwards until it is on
a leftmost branch which is labeled with a composition symbol. Then it walks
to the second sister or further down the leftmost branch until it hits a tupling
node to whose appropriate daughter it descends to find the filler. The whole
process is recursive, i.e., on finding another projection symbol, the automa-
ton again tries to find an appropriate filler (see the ng-link in Figure 11.9 on
page 172.)

However, viewed as an ordinary finite-state automaton over the alpha-
bet of directives A, the FSTWA recognizes a regular (string-) language, the
walking language

Reconstructing lifted MCFGs 175
We=L(x)-T1-C(x) |2~ (W(y UWe UWr, UWn, UW,)" - L(x)
with

Wiy=0)x) -(Lhul2)
We = C(x) - |4
Wi, =T (x) - (T2 U T3)" - To - (()(x) - (T2 U T3)" T1)™
Cx) - Lo+ (Cx) - L))" ()x) - L

which can be translated recursively into an MSO formula transy_ defining
the relation < (see Bloem and Engelfriet 1997a).

11.2.2 Reconstruction with MSO transductions

Finally, the MSO transduction (@,V, (8,)c0) With Q = {«, <", «*, <, ...}
we use to transform the lifted structures into the intended ones is identical to
the one given for CFTGs and looks as follows:

¢ =0 QMCFG
v=L()
0.4 (x,y) = transy_(x,y)
04 (x,y) = (VX)[«—closed(X) Ax € X — y € X]
94+(x7y)—x4 yVx#y
04 (x,y) = transy,_ (x,y)

O1abels = taken over from R

As desired, the domain of the transduction is characterized by the MSO for-
mula Qg - for the lifted trees. The domain, i.e., the set of nodes, of the
intended tree is characterized by the formula y which identifies the nodes
with a “linguistic” label which stand indeed in the new dominance relation
to some other node. From there we can define the other primitives of a tree
description language as previously discussed.

176 The second step: Reconstruction

11.2.3 Reconstruction with MTTs

For the specification of the MTT, we come again back to the unigue morphism
h from the “lifted” terms over the derived alphabet X into the terms over the
tree substitution algebra.

Since we are now working in a Lawvere-Algebra with the additional op-
eration of tupling, the homomorphism has to be augmented accordingly. The
morphism # for the case of the reconstruction of lifted MCFGs is defined
inductively as follows:

where t[t1, ...,] denotes the result of substituting #; for x; in ¢ for t € T(Z, Xi),
f € T(Z,Xm).

Again, this unique morphism / can be performed by a simple macro
tree transducer M = (Q,%,Vr U{e},qo, P), where Q = {q, |for all ¢(,,,,,) €Z
where the leftmost daughter is not a tupling node } U {¢’, | for all Clupw) € Z
where the leftmost daughter is a tupling node ()., € Z,i € {1,...,s}} U
{g}| forall (). €Z,i€{l,....u} },* qo is the initial state and P is a fi-
nite family of rules. Recall, that we use only a simple example with just one
nonterminal on the RHS of the MCFG-rules. This simplifies the “lifted” trees
as well as the MTT we have to define.

We take — yet again — an intuitive approach to explaining the construction
of the needed MTT which now is strongly dependent on inspection of the tree
in Figure 11.9 on page 172 and the homomorphism /% given above.

Before we proceed, we briefly review some notation for the states intro-
duced above. In this slightly more complicated case, the states have both
sub- and superscripts. The subscripts convey information about the number
of parameters and the superscripts hint at computations which will return the
particular arguments of a tupling operation. Furthermore, we will also use
variables with both super- and subscripts. In this case, the superscripts in-
dicate the type of the mother node of the tree which has to be substituted,
whereas the subscripts just give us new variables of the same type. This typ-
ing of the variables is — strictly speaking — not necessary since one can either
assume that the input trees of the MTT have been generated with an appropri-

Reconstructing lifted MCFGs 177

c ~0
T~)i
°
o ~ N\
Yoo »n
()(v,u))
— T qu/(()(v,u)('xlv"'axu)ayla"'7yv)—)qv(-xiayla"'ayv)
—————
Xl Xy vl s
Cluwrw) (vw) (uw)
N () (X)) ——
x(V,W) x(uvv> utl
q\/<x(V7W)7q1]4('x(Ll7V)7yl7"'ayu)7"'7q;(-x(u-"/)7y17"'ayu))
v+1
Clwrw) i (vw) L (u,)
— T ~ qa(qu,v,w)(x’ X)7ylv---a))u)—)
()(v,w) x(‘w) ' u+1
Cli;<x(v'w)a%ll(x(u'v)»yl»---a)’u)a---761‘,;()5(”"})’)’1’---’)’14))
v+1
forl <i<w

Figure 11.11: Intuition behind the construction of the MTT: MCFGs

ate RTG and therefore are well-typed; or, alternatively, that we could change
the definition of the MTT to an MTT with regular look-ahead. Then the look-
ahead — implemented with a tree automaton — ensures the well-typing of the
input.

Again, in the first argument of a rule from P we will have a simple input
tree during a transduction. So in the rules, we have to take care of all symbols
which can appear as mothers of (possibly trivial) trees with the number of
variables x; corresponding to their arities in the first argument of any left
hand side (LHS). We try to depict the intuition behind the construction of this
kind of MTT graphically in Figure 11.11.

It is not surprising that after another careful inspection of the tree lan-
guage generated by the lifted RTG G/, the simplest case is again the one
where we are faced with a constant, i.e., with an element from X~ with rank
0 which is simply mapped back to the corresponding element from Vr, re-
gardless of the parameters, if, indeed, there are any. Similarly, in the case

178 The second step: Reconstruction

that we encounter a projection symbol, we simply return the corresponding
parameter with the desired information.

Repeating the argumentation from above, all rules with a constant symbol
whose “unlifted” version was not a constant — in this case only the concate-
nation symbol ‘e’ — need as many parameters as are needed to compute the
corresponding function, e.g., again, ‘e’ is binary and therefore needs two pa-
rameters (see the third rule in Example 11.2 on the next page). The resulting
rule has, on the RHS, simply the “executed” function.

The more complicated cases involve branching nodes in the tree. Those
are labeled with either a tupling or a composition symbol introduced by the
lifting process. Let us turn to the easier case of tupling first.

Our first step involves constructing the rules for nodes labeled with a
tupling symbol by inspecting the sort information in the subscript. Further-
more, the state on the LHS is marked with a superscript indicating along
which branch of the tuple we have to descend, i.e., which argument/daughter
of the tupling node we are currently evaluating. Given a symbol ()(w)’ we
construct a transition with state ¢i, of arity v+ 1 which has as arguments a
term labeled with ()(W) which has an appropriate number u of daughters
x;, and v parameters on the LHS. On the RHS, we start a “fresh” transducer
(state g,) on argument x; of the term and the parameters, therefore g, is also
of arity v+ 1.

For the rules headed by a composition symbol ¢, as many parame-
ters on the LHS as are prescribed by u and as many parameters on the RHS
as prescribed by v are needed. Analogously to the case of reconstructing
lifted CFTG:es, this is due to the fact that while generally the relevant informa-
tion in the lifted trees is on the leftmost branch (recall the facts (1) to (8) on
page 173), we nevertheless need the other daughters to be able to unravel the
projections. We also follow a depth-first strategy on the leftmost component
of the lifted trees while still passing the necessary context (i.e., the evaluation
of the computation of the other daughters) down into that computation. As
for CFTGs, we construct the necessary states from the arities of the compo-
sition symbols. The rules then simply pass the state and the parameters of
the LHS of the rule to the arguments of the alphabet symbol while continuing
to work on the first argument. As an example consider a fork whose mother
is labeled with c(,,,,). Then we have to construct a rule which has on the
LHS state g, with arity u + 1. Its first argument is a term with functor ¢,
and two appropriately typed arguments x(**) and x(“*). The other arguments

Reconstructing lifted MCFGs 179

are the parameters y; to y,. The RHS has state ¢, of arity v+ 1 with the
first argument simply being the first daughter of the composition symbol, i.e.,
x"%)and the other arguments being q, (x(“’v), ViseeosVu)s (i <v), with the
interpretation that we have no parameters if # < 1. Furthermore, we have to
supplement the state on the LHS with superscripts according to the typing
information if the leftmost, i.e., the head-daughter carries a tupling symbol.
More concretely, if the head-daughter of ¢, 18 ()(V’W) we need w transi-
tions with superscripts ranging from 1 to w, i.e., ¢, where i € {1,...,w}. And
then, if the state on the LHS had a superscript, that is to say, we are working
on the computation of a value of an element of a tuple, we simply pass this
superscript on to the state on the RHS.

For our continued example, the set of rules P of the MTT M%CFG is
shown graphically in Figure 11.12 on page 181. Note that we are dealing
with the trees as given in Figure 11.9 on page 172, i.e., a simplified version.
The Prolog implementation given in Appendix D.2.3 on page 215 uses the
unabbreviated definition, though.

Example 11.2. Non-graphically, the set of rules P of the MTT Mg, . appear
as given below:°

610(0(0,371)(x?’])vxgm))) —

3, 0,3 0,3 0,3
(Y ab (), @ (), 3 ()
go(0) — o

for 6 € {ay(0,1),a2(0,1),a3(0,1) }
42(°(271),)’1 y2) — °(2,1)()’1 ,y2)
Q3(Pi7ylay27y3)—>yi fOfPi:nj,i€{1,2,3}

73(0,y1,y2,y3) — ©
for o € {a1(o,1)aa2(0,1)7"3(071)}

2,1) (32 2,1 32
6]3(0(372,1)(965')7)6&));yh)’27)’3)%6]2(x§)76]§(x§)7)’17)’27)’3)

32
q%(xg)7ylay27y3))

616(0(0,3,3) (x§3’3),x§0’3))) —
i (33 03 0,3 0,3
7, (5 g (), A, B ()

forie{1,2,3}

180 The second step: Reconstruction

()03 0D 0 KDYy — go (V) for i € {1,2,3}

(3,1) _(3,1) 3,1))

‘1[3(()(3,3)()61’ \ Xy ,xg 3.1

>y17y2>y3) —>q3(x‘ ')>y17y2>y3)
forie {1,2,3}

S

q5(()(3,2)(X§3’1),X§3’1)),y1,yz,y3) — g3 y1,2,33)

forie {1,2}

We observe again: the only remaining tree forming symbol which re-
mains on the RHSs is the concatenation ‘e’. So, we are indeed back with
our “old” alphabet. The parameters serve just as memory slots to pass the
necessary information for undoing the projections and explicit compositions
further down the tree.

Applying the given MTT for the grammar G};qp; to the tree in Fig-
ure 11.9 on page 172 yields a final tree for a derivation of the MCFG dis-
played in Example 9.3. Namely the one indicated by the thicker grey lines
in Figure 11.9 on page 172. To get the reader started, let us consider the first
rule in Example 11.2 on the preceding page beginning the transduction on
the root of the tree displayed in Figure 11.9 on page 172. We start in state
go and our root is indeed labeled with c(o3 1). Then we continue in state g3
with its leftmost daughter and pass as parameter y; the result of computing g
of the second daughter (in this case with i € {1,2,3}). These transductions
have to be computed separately and yield the input to the “final” projection
n?. The rest of the computation leading to the final result is straightforward,
if tedious, and left as an exercise.

Again, the interested reader can find a simple Prolog implementation in
the Appendix D on page 209 which allows some simple experiments.

11.3 Summary of the two-step approach

We have shown in this third part of the book how to account for cross-serial
dependencies by coupling a logical domain specification followed by a logi-
cally definable transduction and a bottom-up finite-state tree automaton with
a tree transformation induced by a macro tree transducer. The result is, of
course, not restricted to cross-serial dependencies. Any type of structural re-
lationship that is amenable to a formal analysis by means of CFTGs can be

qo
€(0,3,1)
PN
2D 5(09)
qo
a
q3
T
C(3.21) Y1 Y2 Y3
PN
22D 432
q3

oW ¥ s
@
€(0,3.3)

N

z§3‘3) xgo‘a)

i

o
()3

200 70D 40

T

()(3,3) Y1 Y2 Y3
m(ls,l)zé&nzgs,n
4

e S

()2 1 Y2 Y3

S

q2
T
®(2,1) Y1 Y2

Summary of the two-step approach

181

q3
P
s g @ @
\ \
150,3) z(10,3) x§o,3)
-0 for o € {ay(0,1),a2(0,1), @3(0,1) }
q2
-
- P @ @
P P
A2 v oy PP o s
- = Y for P; = m;,1 € {1,2,3}
-0 for o € {a1(3,1),@2(3,1), @3(3,1) }
@
P
-5 M @ @ fori € {1,2,3}
|
209 509) ,(0.9)
qo0
- 0,1) fori € {1,2,3}
T
q3
R T fori € {1,2,3}
2BV oy s
q3
- N fori € {1,2,3}
AV v s
®(2,1)
— = S
Y Y2

Figure 11.12: The rules of the example MTT MG;VICFG

182 The second step: Reconstruction

described according to the same operational or logical procedure. The origi-
nal context-free tree language is first translated into its explicit presentation.
A corresponding tree automaton/closed MSO formula then isolates the ex-
plicit tree family within the realm of all possible finite trees on the lifted sig-
nature. The MTT/MSO transduction finally serves to reestablish the intended
structural relations.

One drawback of the approach, namely that there is no principled connec-
tion between tree grammars as we presented them and linguistic formalisms
which can handle non-context-free phenomena is addressed as well. On the
one hand, we presented monadic CFTGs which are equivalent to TAGs. And,
on the other hand, we took the result of Michaelis’ translation of MGs into
MCEFGs as the input to our two-step approach. In particular, we have shown
how to define a RTG by lifting the corresponding MCFG-rules into terms of
a free Lawvere theory. This gives us again both a regular (via tree automata
and macro tree transducers) and a logical description (via MSO logic and an
MSO definable transduction) of the intended syntactic trees. Equivalently, we
provide both an operational and a denotational account of Stabler’s version
of Minimalism without having to go via derivation trees.

In the wake of the celebrated result of Peters and Ritchie (1973) on the
generative strength of Transformational Grammars a great number of re-
search activities were inspired by the so-called universal base hypothesis.
One version of this hypothesis can be paraphrased as claiming that there ex-
ists a fixed grammar G that plays the role of the base component of a Trans-
formational Grammar of any natural language. Adapting this methodological
point to our result it can be stated as follows: Empirical linguistic phenomena
that can be accommodated within the framework of MGs are amenable to a
regular analysis followed by a fixed universal transduction.

Comparing this statement of the result of the paper with the characteriza-
tion of context-free graph languages by Engelfriet and van Oostrom (1996),
we want to stress the point that our regular description of CFTG, MCFTG and
MCEFG languages does not provide a characterization of this language fam-
ily in the technical understanding of an equivalence between these languages
and languages defined by a regular tree language/closed MSO formula and
a macro tree transducer/MSO transduction. For a recent result on the equiv-
alence between regular tree languages followed by an MSO definable tree
transduction and the tree languages generated by context-free graph gram-
mars see Engelfriet and Maneth (1999).

Part IV

Conclusion and Outlook

Chapter 12

Conclusion

After presenting the “classical” technique of using MSO logic on multiple
successor functions as a grammar formalism for P&P-based theories, we an-
alyzed the strengths and weaknesses of this proposal. Since the approach
stops short in two crucial respects, namely the generative capacity and the
adequacy towards other (generative) grammar formalisms, we proposed in
this monograph a two-step approach which retains the description language
MSO logic on the denotational side and still has a provably equivalent oper-
ational interpretation via different types of automata.

All the constructions that have been cited as evidence for the need of
context-sensitive grammatical devices for the description of natural languages
seem to be amenable to an analysis within the framework of context-free
tree grammars or multiple context-free grammars. Based on the Mezei and
Wright (1967) result according to which structural accounts of the context-
free tree level can be lifted to the regular tree level where composition and
projection occur as explicit node labels, the third part of the book has focused
on a fine-grained analysis of the process connecting the initial level of explicit
trees with the intended level of context-free or macro trees. In accordance
with the three types of classical approaches in formal language theory we
have provided logical, grammatical and automata-theoretic characterizations
of the homomorphism relating the initial tree algebra of (Lawvere) terms to
the substitution algebra of macro terms. Along the way first steps were taken
in the direction of “reverse” linguistics. For contemporary models such as
Tree Adjoining Grammar and Minimalism it has been shown how to accom-
modate their main ideas within the algebraic framework outlined above.

Beyond these particular observations, it is interesting to see what the
prominent existing approaches in linguistic theory look like when recast in
this algebraic, two-step setting.

186 Conclusion

Building on the formulation of central proposals in tree adjoining gram-
mar, categorial grammar, and even formulations of Chomskian minimalist
grammars that have been formalized by the work of Stabler, Michaelis and
others in an algebra of trees, the work presented in this work leads to precise
ways of translating or “embedding” the proposals in one notation into pro-
posals of other notations, allowing comparisons among theories that were not
possible before. Already, the intertranslatability results have allowed parsing
algorithms for one notation to be adapted to other notations (Stabler 1999a;
Harkema 2000; Morawietz 2000a,b) and even influenced the development
of formalisms in the minimalist tradition (Stabler and Keenan 2000). Fur-
ther development of this perspective promises much deeper insight into the
fundamental properties of human languages, properties that notational diver-
sity is too often obscuring. In particular, ongoing work reveals that a very
wide range of notations are intertranslatable, and with this development, the
prospects for clear, precise and general statements of the universal properties
of human languages look very good, including in particular, specifications of
minimal sets of basic operations required to define human languages.

The influence of the formal work on minimalist grammars has led to a
reformulation of Stabler’s analysis of MGs. In Stabler and Keenan (2000)
MGs are very close to MCFGs. This has an interesting effect on the gener-
ative capacity. While we have been careful in the course of this monograph
to focus on the weak generative capacity, the new formalization is strongly
equivalent, i.e., not only the sets of strings, but also the tree sets generated by
MGs and the derived MCFGs are equivalent.

The question of strong and weak generative capacity with respect to TAGs
and MCFTGs can also be answered. Analysis of the equivalence proof of
TAGs and MCFTGs reveals that both generate “similar” tree sets. The fact
that we are not dealing with equality but rather with similarity is due to the
use of adjunction constraints in TAGs. These constraints have to be simu-
lated in MCFTGs with different nonterminals. By constructing appropriate
equivalence classes of these nonterminals, we can identify the tree generated
by the TAG. So, in a certain limited sense, we have strong equivalence.

The price we have to pay for the extensions gained with the two-step
approach is the loss of the naturalness of MSO logic as a description language
for natural language syntax. It is no longer possible to write MSO formulas
to directly encode principles as in Rogers’s monograph. We now have to take
a detour via the tree grammar formalisms.

Chapter 13
Outlook

Given the background of the general research agenda specified in this book,
some areas of further research impose themselves that seem well suited to
continue the work previously described.

Even though the existence of context-sensitive phenomena in natural lan-
guages is firmly established, an open debate continues about the exact level
of complexity that has to be assumed for a descriptively adequate linguis-
tic theory. As we presented in the introduction, the desiderata for a mildly
context-sensitive grammar formalism include semi-linearity. But there might
be one phenomenon, namely case-stacking in Old Georgian, which is not
semi-linear (Michaelis and Kracht 1997). The empirical debate is still open,
but if case-stacking is as productive as it is claimed to be, it cannot be formal-
ized within multiple context-free grammars since those are semi-linear. The
condition in the definition of multiple context-free grammars that is responsi-
ble for this weakness is the stipulation that each component of the value of an
associated mapping is not allowed to appear in the value of the function more
than once. Dropping this condition leads to a much larger class of languages
where structures like unlimited case-stackings in Old Georgian can easily be
described. The question which poses itself immediately is “Are natural lan-
guages semi-linear?”. Further work has to be invested in this question on
the empirical side. On the other hand, please note that Monnich (1997b) has
shown that CFTGs are powerful enough to account for the structures neces-
sary to analyze Old Georgian case structures.

The question whether one can indeed characterize a class of languages
with the proposed two-step approach is also open. It is a natural question
which class of languages is captured by coupling an RTG with an MSO-
definable transduction. But note that we are not addressing this general prob-
lem in our monograph. Rather, we are asking ourselves which class of lan-

188 Outlook

guages can be characterized by RTGs in the special form of lifted Lawvere
terms coupled with an MSO transduction implementing the unique homo-
morphism between the algebra of Lawvere terms to the underlying intended
algebra. Again, this question is too ambitious to be answered here. But we
have shown in this work that in the even more specific case that we are dealing
with RTGs which result from lifting (linear) CFTGs or MCFGs, the transduc-
tion we proposed results in tree sets which are generated by (linear) CFTGs
or MCFGs respectively. In this very special case, we indeed gave a charac-
terization in the technical sense, and not only a description of the language
classes involved.

In the conclusion we have stated that we are able to use our algebraic
approach as a unifying framework for natural language formalisms. We have
shown how to represent theories in the tradition of Government & Binding,
Minimalism and Tree Adjoining Grammars both with an operational and an
denotational semantics. A similar representation of the main missing contem-
porary formalism, namely HPSG, seems to be much more difficult. Asis well
known, the results by Biichi (1960), Thatcher and Wright (1968) and Doner
(1970) and Rabin (1969) on the equivalence between logical and grammat-
ical specifications of regular families of trees cannot be extended to graphs.
However, recent results on the logical definability of graphs state that regu-
lar sets of trees over a fixed set of graph operations are second-order defin-
able. The direction of further research now aims at a reformulation of feature
logics such as the one proposed by King (1994a) into MSO logic. This at-
tempt seems feasible since the regular set of trees which serves as the central
ingredient of the MSO definable graph languages is again amenable to the
techniques we presented in this book. The consequence of this reformulation
would be not only an operational approach toward HPSG, but would also al-
low the analysis of the highly idiosyncratic feature logics with more standard
mathematical means.

Further work must also be invested in the practical applications of the
two-step approach. We already sketched the possible areas of web technol-
ogy, i.e., the analysis, storage, retrieval and querying of structured documents
via the developed logical tools. The development of MSO logic based sys-
tems seems a promising application of widespread use. The major obstacle
here may be the non-elementary computational complexity of the logic-to-
automaton compilation technique.

Outlook 189

However, in recent research Neven and Schwentick (2002) have proposed
a limited version of MSO logic, called guarded MSO, which has a far better
complexity but is still as expressive as the original. The price one has to pay
is that the guarded formulas may be exponentially longer than the original
ones. It is an open question whether guarded MSO would be suitable for our
purposes.

Furthermore, considering the need for finite-state calculi with a genera-
tive capacity higher than regular languages, it seems promising to develop
and implement an MSO logic based toolkit for the specification of finite-state
grammars. Since the generated tree automata are neutral with respect to the
difference between generating and accepting devices there are no theoretical
or practical obstacles concerning the level of regular tree sets which can be
handled, although the additional control information has to be filtered by the
intersection with a second finite-state device.

Building on such a toolkit, it would be extremely interesting to construct
appropriate grammars and experiment with the resulting tree automata with
respect to parsing and generation.

Maybe the most ambitious goal for further research is the isolation of lin-
guistic universals. The algebraic approach allows us to treat a language as
the closure of a set of basic items under defined operations. The algebraic ap-
proach towards language invariants developed by Ed Keenan and Ed Stabler
has already been applied to several fragments of languages and has helped
to put the comparison between different linguistic similarity types on a firm
methodological basis Keenan and Stabler (1996, 1997); Stabler and Keenan
(2000). So, the goal would be to reduce the needed operations to a small set
of grammatical primitives. Naturally we have to differentiate between the ar-
tificial functions (e.g., composition, projection and tuple-formation) respon-
sible for the recursive structure and the functions responsible for the linguistic
structural similarity (e.g., case-marking or inflectional functions). The iden-
tification of such a (minimal) set for both classes of functions can then be
tested against data from different languages. If these tests are successful one
can claim the universality of the proposed linguistic functions.

Part V

Appendix

Appendix A

Acronyms
CCG combinatory categorial grammar
CFTG context-free tree grammar
FSA finite-state automaton
FSLP finite-state language processing
FST finite-state transducer
FSTA bottom-up finite-state tree automaton
FSTWA finite-state tree-walking automaton
GB government & binding
GPSG generalized phrase structure grammar
HG head grammar
HPSG head-driven phrase structure grammar
IG indexed grammar
LCFRS linear context-free rewriting system
LIG linear indexed grammar
LUSCG linear unordered scattered context grammar
MCFG multiple context-free grammar
MCFTG monadic context-free tree grammar
MCTAG set local multi-component tree adjoining grammar
MG minimalist grammar
MSO monadic second-order logic
MTT macro tree transducer
PF phonetic form
P&P principles & parameters
RTG regular tree grammar
TAG tree adjoining grammar
TDTT top-down tree transducer

Appendix B

MONA code

B.1 XBar Theory

switch to tree mode
ws2S;

HHEHE R R R
VARIABLE DECLARATIONS
varl x,v,z,a,b,c;
var2 Bar(0,Barl,Bar2,John, Sleeps,
X,Y, Adj, N, v, I1,12,1I3,14,1I5,16, Base, Trace, Parse;

HHHEH A A R R R R R R R R R R R
#

PREDICATE DECLARATIONS

#

HHHEH A A R R R R R R A R R R

FhEH R R R
tree logic signature
immediate dominance

pred id (varl x, varl y) = (x.0 = y) | (x.1 =y);

transitive closure of immediate dominance

pred d (varl x, varl y) = (x < y);

transitive reflexive closure of immediate dominance

pred rd (varl x, varl y) = (x <= y);

precedence

pred p (varl x, varl y) = exl z,u,v: rd(u,x) & rd(v,y) &
(z.0 = u) & (z.1 =v) &

=Y

XBar Theory 195

HHHEH R A R R R R R R

auxiliary definitions

all sets are a subset of the set in the first argument
pred Subsll(var2 X, var2 A, var2 B, var2 C, var2 D, var2 E,
var2 F, var2 G, var2 H, var2 I, var2 J) =
A sub X & Bsub X & C sub X &D sub X & E sub X &
F sub X & Gsub X & Hsub X & I sub X & J sub X;

disjointN: N the number of disjoint sets
pred disjoint2(var2 A, var2 B) =

(" (ex1 t: (t in A & t in B
pred disjoint3(var2 A, var2 B, var2 C

))

)
)
)) &
)
)

(" (ex1 t: (t in A & t in B
(ex1 t: (tinA & t inC)) &
" (exl t: (tdn B & t in C)));

pred disjointd(var2 A, var2 B, var2 C, var2 D) =

(" (ex1 t: (t in A&t in B)) &
“(exl t: (tinA&tinC)) &
" (exl t: (tin A& t in D)) &
“(exl t: (tinB &t inC)) &
“(exl t: (tin B & t in D)) &
“(exl t: (tdn C & t in D)));
pred disjoint5(var2 A, var2 B, var2 C, var2 D, var2 E) =
(" (ex1 t: (tin A& t in B)) &
“(exl t: (tinA&tinC)) &
“ (exl t: (tin A & t in D)) &
“(exl t: (tin A& t inE)) &
" (exl t: (tinB &t in C)) &
" (exl t: (tin B & t in D)) &
“(exl t: (tin B & t in E)) &
“(exl t: (tinC& t in D)) &
“(exl t: (tinC &t inE)) &
“(exl t: (tinD & t in E)));
pred disjoint6(var2 A, var2 B, var2 C, var2 D, var2 E, var2 F) =
(" (ex1 t: (tin A& t in B)) &
“(exl t: (tinA & tinC)) &
“(exl t: (tinA &t in D)) &
“(ex1 t: (tin A&t inE)) &
“(exl t: (tin A& t inF)) &
" (exl t: (tinB& tin C)) &
" (ex1 t: (tin B & t in D)) &

196 MONA code

(ex1 t: (tin B & t in E)) &
" (exl t: (tin B & t in F)) &
“(exl t: (tinC &t in D)) &
“(exl t: (tinC &t in E)) &
“(exl t: (tinC &t inF)) &
“(ex1 t: (tinD & t in E)) &
“(ex1 t: (tinD & t in F)) &
“(exl t: (tAn E & t in F)));
Rogers’s thesis page 49/50
pred myroot(varl x) = (alll y: rd(x,y));
pred InclRoot (var2 X) = exl x: (x in X & myroot(x));

pred Rooted (var2 X) =
exl x: (alll y: (x in X & (y in X => rd(x,y))));

pred Connected (var2 X) =

alll x,v,z: ((x in X & y in X & rd(x,z) & rd(z,y)) =>

z in X);

pred Path(var2 X) = Connected(X) &

alll x,y: ((x in X & v in X) => (rd(x,V) | rd(y,x)));
pred Subset(var2 X, var2 Y) = X sub Y;

trees are connected sets which contain the root
pred Tree (var2 Parse) =
Connected(Parse) & InclRoot(Parse);

FHEHEH R A R R R R R R R R R
#

LINGUISTICALLY MOTIVATED DEFINITIONS

#

FHEHE R R R R R R

FHE R R R

LEXICON: a naive and small one

pred Lexicon (varl x, var2 N, var2 V, var2 John, var2 Sleeps) =
disjoint2 (John, Sleeps) &
(x in John & x in N & x notin V) |
(x in Sleeps & X in V & x notin N);

c-command: a node x c-commands another one y in case all nodes
which properly dominate it, also dominate the other and it does
not dominate or equal vy.

XBar Theory 197

pred c_com (varl x, varl y) = alll z: (d(z,x) => d(z,y)) &
“(rd(x,y));:

technical definitions to ensure equality of feature bundles
pred FEq (varl x, varl y, var2 N, var2 V) =

(x in N <=> y in N) &

(x in V <=> y in V) ;
pred Projects (varl x, varl y, var2 N, var2 V) =

(x in N <=> y in N) &

(x in V <=> y in V) ;

FhEHE R R R
Xbar - THEORY
on catories not on nodes

auxiliary for category
pred Component (var2 X, var2 Adj, var2 N, var2 V) =

Path(X) &
alll x,y: ((x in X & v in X) => FEq(x,v,N,V)) &
alll x,v: exl y: alll z: ((x in X & v in X & id(x,v)) =>
(v notin Adj & id(x,y) & v "=y & vy in Adj &
(id(x,z) => (z=v | z=v))));

a category is a maximal component
pred Category (var2 X, var2 Adj, var2 N, var2 V) =
Component (X,Adj,N,V) &
all2 Y: ((Subset(X,Y) & " (Subset(Y,X))) =>
~ (Component (Y,Adj,N,V)));
pred Categoryl (var2 X, varl x, var2 Adj, var2 N, var2 V) =
Category(X,Adj,N,V) & x in X;
pred Cat (varl x, varl y, var2 Adj, var2 N, var2 V) =
ex2 X: Categoryl (X,x,Adj,N,V) & Categoryl(X,y,Adj,N,V);
highest and lowest element of a category
pred MaxSeg (varl x, var2 Adj, var2 N, var2 V) =
ex2 X: (Categoryl(X,x,Adj,N,V) & alll y: (y in X =>
rd(x,y)));
pred MinSeg (varl x, var2 Adj, var2 N, var2 V) =
ex2 X: (Categoryl(X,x,Adj,N,V) & alll y: (y in X =>
rd(y,x)));

relations among categories
pred D(varl x, varl y, var2 Adj, var2 N, var2 V) =
alll v: (Cat(x,v,Adj,N,V) => d(v,y));

198 MONA code

pred Excludes(varl x, varl y, var2 Adj, var2 N, var2 V) =
alll v: (Cat(x,v,Adj,N,V) => ~(rd(v,y)));

pred Includes(varl x, varl y, var2 Adj, var2 N, var2 V) =
~(Excludes (x,y,Adj,N,V));

pred LeftOf(varl x, varl y, var2 Adj, var2 N, var2 V) =
Excludes (x,v,Adj,N,V) & Excludes(y,x,Adj,N,V) & p(x,v);

pred ID(varl x, varl y, var2 Adj, var2 N, var2 V) =
D(x,v,Adj,N,V) &
“(exl z: ((Excludes(z,x,Adj,N,V) & D(z,y,Adj,N,V)) |

(z in Adj & Excludes(z,x,Adj,N,V) &
Includes(z,y,Adj,N,V))));

command relations again
pred CCom(varl x, varl y, var2 Adj, var2 N, var2 V) =
“(D(x,y,Adj,N,V)) & " (D(y,x,Adj,N,V)) &
alll z: (D(z,x,Adj,N,V) => D(z,y,Adj,N,V));
pred MCom(varl x, varl y, var2 Adj, var2 N, var2 V,
var2 Bar2) =
“(D(x,y,Adj,N,V)) & " (D(y,x,Adj,N,V)) &
alll z: ((x in Bar2 & D(z,x,Adj,N,V)) => D(z,y,Adj,N,V));
pred ACCom(varl x, varl y, var2 Adj, var2 N, var2 V) =
CCom(x,y,Adj,N,V) & ~(CCom(y,x,Ad],N,V));

identifying nodes with certain properties: Head, XP, Comp, Spec
pred HeadXP(varl x, varl y, var2 Adj, var2 N, var2 V) =
ID(y,x,Adj,N,V) &
alll z: ID(y,z,Adj,N,V) => ~(LeftOf(x,z,Adj,N,V));
pred HeadXBar(varl x, varl y, var2 Adj, var2 N, var2 V) =
ID(y,x,Adj,N,V) &
alll z: ID(y,z,Adj,N,V) => ~(LeftOf(z,x,Adj,N,V));

pred MaxProjection(varl x, varl y, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Base) =
(y in Base | y in Bar2) &
x in Bar2 & Includes(x,y,Adj,N,V) &
alll z: ((z in Bar2 & Includes(z,y,Adj,N,V)) =>
Includes(z,x,Adj,N,V));
pred MaxProj(varl x, var2 Bar2) =
X 1in Bar2;

pred Head (varl x, varl y, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Base) =

XBar Theory 199

(y in Base | y in Bar2) &
exl v,w: (MaxProjection(w,y,Bar2,Adj,N,V,Base) &
HeadXP(v,w,Adj,N,V) & HeadXBar (x,v,Adj,N,V));
pred Hea (varl x, var2 Bar2, var2 Adj, var2 N, var2 V,
var2 Base) =
exl y: Head(x,y,Bar2,Adj,N,V,Base);

pred Comp (varl x, varl y, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Base) =
(v in Base | y in Bar2) &
exl v,w: (MaxProjection(w,y,Bar2,Adj,N,V,Base) &
HeadXP (v,w,Adj,N,V) & ID(v,x,Adj,N,V) &
~ (HeadXBar (x,v,Adj,N,V)));
pred Com(varl x, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Base) =
exl y: Comp(x,y,Bar2,Adj,N,V,Base);

pred Spec(varl x, varl vy,
var2 Bar2, var2 Adj, var2 N, var2 V, var2 Base) =
(v in Base | vy in Bar2) &
exl w: (MaxProjection(w,y,Bar2,Adj,N,V,Base) &
ID(w,x,Adj,N,V) & ~(HeadXP(x,w,Adj,N,V)));
pred Spe(varl x, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Base) =
exl y: Spec(x,y,Bar2,Adj,N,V,Base);

FHEHH R R R R R A R R R
PRINCIPLES

distribution of the Adj feature
pred adj(var2 Parse, var2 Adj, var2 N, var2 V) =
alll x where (x in Parse): (x in Adj =>
(exl v,z where (y in Parse & z in Parse):
(ex2 Y: id(y,x) & id(y,z) & Category(Y,Adj,N,V) &
yin Y &z in Y)));

some more restrictions on Adjuncts
pred adjres(var2 Parse, var2 Bar(O, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Base, var2 Trace, var2 John,
var2 Sleeps) =
alll x,y where (x in Parse & y in Parse): ((x in Adj &
id(x,y)) =>

200 MONA code

(v notin Trace & ~ Lexicon(y,N,V,John,Sleeps) &
((x in Bar0 & y in Bar0) |
(x in Bar2 & y notin Bar0)))) &
“(exl x,vy where (x in Parse & y in Parse):
(x in Bar0 & id(x,y) & v in Adj &
y notin Base));

every node has to have a barlevel or be lexical
pred bar(var2 Parse, var2 Bar(O, var2 Barl, var2 Bar2, var2 N,
var2 V, var2 John, var2 Sleeps) =
alll x where (x in Parse): (x in Bar0 | x in Barl |
x in Bar2 | Lexicon(x,N,V,John,Sleeps));

conditions on xbar structure depending on barlevel
pred barZero(var2 Parse, var2 Bar(O, var2 Adj, var2 N, var2 V,
var2 Base, var2 John, var2 Sleeps) =
alll x where (x in Parse): (x in Bar(0 =>
((exl vy where (y in Parse):
(ID(x,y,Ad]j,N,V) &
alll v where (v in Parse):
(ID(x,v,Adj,N,V) =>
v=y))) &
(alll y where (y in Parse): (ID(x,y,Adj,N,V) =>
(Lexicon(y,N,V,John, Sleeps) &
Projects(x,y,N,V) &
(x in Base <=> y in Base))))));
pred barOne(var2 Parse, var2 Bar(, var2 Barl, var2 Bar2,
var2 Adj, var2 N, var2 V) =
alll x where (x in Parse): (x in Barl =>
((exl y where (y in Parse): (
HeadXBar (y,x,Adj,N,V) &
y in Bar0 & Projects(x,y,N,V))) &
(alll y where (y in Parse): (
(ID(x,y,Ad],N,V) &
~ (HeadXBar (y,x,Adj,N,V))) =>
y in Bar2))));
pred barTwo(var2 Parse, var2 Barl, var2 Bar2, var2 Adj, var2 N,
var2 V, var2 Trace) =
alll x where (x in Parse): (x in Bar2 =>
((x in Trace & (alll y where (y in Parse):
(" (D(x,y,Ad3,N,V))))) |
(exl y where (y in Parse): (

XBar Theory 201

HeadXP(y,x,Adj,N,V) &
y in Barl & Projects(x,y,N,V)) &
alll v where (vy in Parse): (
(ID(x,y,Adj,N,V) &
~ (HeadXP(y,x,Adj,N,V))) =>
y in Bar2))));

the xbar principle
pred XBar (var2 Parse, var2 Bar(, var2 Barl, var2 Bar2,
var2 Adj, var2 N, var2 V,
var2 Base, var2 Trace, var2 John, var2 Sleeps) =
adj (Parse,Adj,N,V) &
adjres (Parse,Bar0,Bar2,Ad]j,N,V,Base, Trace,John, Sleeps) &
bar (Parse,Bar0,Barl,Bar2,N,V,John, Sleeps) &
barZero (Parse,Bar0,Adj,N,V,Base,John, Sleeps) &
barOne (Parse,Bar0,Barl,Bar2,Adj,N,V) &
barTwo (Parse, Barl,Bar2,Adj,N,V, Trace) ;

HhEHE R
FEATURE PRINCIPLES
pred Features(var2 Parse, var2 Bar(O, var2 Barl, var2 Bar2,
var2 Adj, var2 N, var2 V, var2 Base, var2 Trace,
var2 John, var2 Sleeps) =
Subsll (Parse,Bar0,Barl,Bar2,Adj,N,V,Base, Trace,John, Sleeps) &
("(exl x,y where (x in Parse & y in Parse):
(x in John | x in Sleeps) & 1id(x,y)));

HHEHE R R R
GRAMMAR FORMULA
we are interested only in a certain part of the result -> a
labeled parse tree which has to be
-- finite
-- a tree
-- restrictions on the variables representing features
+ all labels appear only in the tree (this makes the
automaton smaller)
+ Bar levels are disjoint
-- linguistic modules
+ X-Bar theory
+ Government
+ Lexicon (lexical entries are represented as disjoint
sets)

H= HE S e S S HE S

202 MONA code

+ Binding & Control
+ Chains
(+ Reconstruction)

pred Gram(var2 Parse, var2 Bar(O, var2 Barl, var2 Bar2,
var2 Adj, var2 N, var2 V,
var2 Base, var2 Trace, var2 John, var2 Sleeps) =
Tree(Parse) &
Features (Parse,Bar0,Barl,Bar2,Adj,N,V,Base, Trace,John,
Sleeps) &
XBar (Parse,Bar0,Barl,Bar2,Adj,N,V,Base, Trace, John, Sleeps) ;

BHER R R R R
formula to compile

Gram(Parse,Bar0,Barl,Bar2,Adj,N,V, Base, Trace, John, Sleeps) ;

B.2 Co-Indexation

We refrain from giving the full definition of the various disjointness predicates. They
are further generalizations of the ones given in the previous section.

switch to tree mode
ws2S;

HhEHH R R
VARIABLE DECLARATIONS

varl a,b,c;

var2 I1,I12,13,I4,15,16,17,18, Trace, P;

FHEHE R R R R R R
#

PREDICATE DECLARATIONS

#

HHEHE R R R R R R

BHER R R R
tree logic signature

immediate dominance

pred id (varl x, varl y) = (x.0 = y) | (x.1 =y);

transitive closure of immediate dominance
pred d (varl x, varl y) = (X < Vy);

Co-Indexation

transitive reflexive closure of immediate dominance

pred rd (varl x, varl y) = (x <= y);

precedence

pred p (varl x, varl y) = exl z,u,v: rd(u,x) & rd(v,y) &
(z.0 =u) & (z.1 =v) &
X "=y

203

HHEHE R R R R

auxiliary definitions
omitted:
disjointN: N the number of disjoint sets

HHEHE R R R R R R

#
LINGUISTICALLY MOTIVATED DEFINITIONS
#

HHEHH R A R R R R R

B S
c-command: a node x c-commands another one y in case all nodes
which properly dominate it, also dominate the other and it does

not dominate or equal y.
pred c_com (varl x, varl y) = alll z: (d(z,x) => d(z,y)) &
“(rd(x,y));:

additional conditions: directed, asymmetric c-command
pred da_ccom (varl x, varl y) = c_com(x,y) & ~(c_com(y,x)) &
p(x,y);:

BHEREH R R R R R
INDEX THEORY: we need N different indices to mark the occurring
chains; two nodes are co-indexed in case they are both in the
same index and all other indices are either disjoint or equal.

indexN: N the number of indices
pred indexl (var2 X, var2 Il) =
(X = I1);
pred index2 (var2 X, var2 Il, var2 I2) =
((Xx = I1) | (X = 1I2)) & disjoint2(I1,I2);
pred 1ndex3 (var2 X, var2 Il1, var2 I2, var2 I3) =
((X = 11) | (X =12) | (X =1I3)) & disjoint3(I1,I2,13);

204 MONA code

pred index4 (var2 X, var2 Il, var2 I2, var2 I3, var2 I4) =

((x = 11)

| (x =12) | (X

I13) | (X = 14)) &

disjoint4(I1,I2,13,1I4);
pred index5 (var2 X, var2 Il, var2 I2, var2 I3, var2 14,

((X = I1)
(X = I5)

var2 I5)
| (X =12) | (X =13) | (X =1I4) |
) & disjoint5(I1,I2,1I3,14,1I5);

pred index6 (var2 X, var2 Il, var2 I2, var2 I3, var2 14,

(X = I1)
(X = I6)

var2 I5, var2 I6) =
| (x =12) | (X =1I3) | (X=1I4) | (X = I5)
) & disjoint6(I1,I2,13,14,15,616);

pred index7 (var2 X, var2 Il, var2 I2, var2 I3, var2 I4,

((X = I1)
(X = 1I5)

var2 I5, var2 I6, var2 I7) =
| (X =12) | (X =1I3) | (X =1I4) |
| (X =16) | (X=17)) &

disjoint7(I1,I2,I3,I4,15,16,1I7);
pred index8 (var2 X, var2 Il, var2 I2, var2 I3, var2 I4,

((X = I1)
(X = 1I5)

var2 I5, var2 I6, var2 I7, var2 I8) =
| (X =12) | (X =1I3) | (X =1I4) |
| (X =16) | (X =1I7) | (X=18)) &

disjoint8(I1,I2,13,14,15,16,17,18);

co_idxN: N
pred co_idxl
ex2 X: (
pred co_idx2
ex2 X: (
pred co_idx3
ex2 X: (
pred co_idx4

ex2 X: (
pred co_idx5

ex2 X: (
pred co_idx6

ex2 X: |
pred co_idx7

ex2 X: |

the number of indices
(varl x, varl y, var2 Il) =
index1(X,I1) & x in X & y in X);
(varl x, varl y, var2 Il, var2 I2) =
index2 (X,I1,I2) & X in X & vy in X);
(varl x, varl y, var2 Il, var2 I2, var2 I3) =
index3(X,I1,I2,I3) & x in X & v in X);
(varl x, varl y, var2 Il, var2 I2, var2 I3,
var2 I4) =
index4 (X,I1,12,13,I4) & x in X & v in X);
(varl x, varl y, var2 Il, var2 12, var2 I3,
var2 I4, var2 I5) =
index5(X,I1,12,13,14,I5) & x in X & v in X);
(varl x, varl y, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5, var2 I6) =
index6(X,I1,I2,13,14,1I5,16) & x in X & y in X);
(varl x, varl y, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5, var2 16, var2 I7) =
index7(X,I1,12,13,14,15,16,17) & x in X & y in X);

Co-Indexation 205

pred co_idx8 (varl x, varl y, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5, var2 I6, var2 I7, var2 I8) =
ex2 X: (index8(X,I1,I2,I3,I4,15,16,17,1I8) & x in X &
y in X);

HHEHF R R R
ECP: if something is a Trace, then there has to exist a
c-commanding co-indexed antecedent.
ecpN: N the number of indices
pred ecpl (var2 P, var2 Trace, var2 Il) =
alll x: ((x in P & x in Trace) =>
(ex1 v: (y in P & c_com(y,x) & co_idx1l(x,y,I1))));
pred ecp2 (var2 P, var2 Trace, var2 Il, var2 I2) =
alll x: ((x in P & x in Trace) =>
(ex1 y: (y in P & c_com(y,x) &
co_1dx2 (x,v,I1,12))));
pred ecp3 (var2 P, var2 Trace, var2 Il, var2 I2, var2 I3) =
alll x: ((x in P & x in Trace) =>
(ex1 y: (y in P & c_com(y,x) &
co_idx3(x,vy,I1,1I2,1I3))));
pred ecpd (var2 P, var2 Trace, var2 Il, var2 I2, var2 I3,
var2 I4) =
alll x: ((x in P & X in Trace) =>
(ex1 v: (v in P & c_com(y,x) &
co_idx4 (x,y,I1,12,13,14))));
pred ecp5 (var2 P, var2 Trace, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5) =
alll x: ((x in P & X in Trace) =>
(ex1 y: (y in P & c_com(y,x) &
co_idx5(x,y,I1,12,13,14,15))));
pred ecp6 (var2 P, var2 Trace, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5, var2 16) =
alll x: ((x in P & X in Trace) =>
(ex1 v: (v in P & c_com(y,x) &
co_idx6 (x,y,I1,I2,1I3,14,1I5,16))));
pred ecp7 (var2 P, var2 Trace, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5, var2 16, var2 I7) =
alll x: ((x in P & x in Trace) =>
(ex1 yv: (v in P & c_com(y,x) &
co_idx7(x,y,I1,12,13,14,15,16,1I7))));

206 MONA code

pred ecp8 (var2 P, var2 Trace, var2 Il, var2 I2, var2 I3,
var2 I4, var2 I5, var2 I6, var2 I7, var2 I8) =
alll x: ((x in P & x in Trace) =>
(ex1 y: (y in P & c_com(y,X) &
co_idx8(x,y,I1,I12,13,14,15,16,1I7,18))));

FhEHH R R R
formula(s) to compile

=+

ecpl (P, Trace, I1);

ecp2 (P, Trace, I1,1I2);

ecp3 (P, Trace,I11,12,1I3);

ecp4 (P, Trace,I11,12,13,14);

ecp5 (P, Trace,I1,12,13,1I4,1I5);

ecpb (P, Trace,I1,12,13,I4,1I5,16);

ecp?7 (P, Trace,I1,12,13,14,15,16,1I7);

ecp8(P,Trace,I1,12,13,14,15,16,17,1I8);

T

Appendix C
Additional MSO Definitions

C.1 The MSO Definition of Intended Dominance for I'> Structures

The translation via (5.3) on page 79 of the walking-language W4 derived from the
tree-walking automaton 2 4 in Figure 11.2 on page 159 yields the following MSO-
definition of <y for binary branching intended trees and underlying grammars with
macros with at most four parameters. We allow ourselves a predicate lexical(x) which
identifies all elements with a “lexical” label, i.e., in the example those are o, €, o/,
b,c,and d'.

(C.1) x<ayy £, transy_ (x,y)
PN lexical(x) A (3z)[edg; (z,x) A
(Fu)[(edg,(z,u) Vedgs(z,u) Vedg,(z,u) V edgs(z,u)) A
(VX)) (Vv,w)[(v € X A (c-link(v,w) V
(m1-link(v, w) V ma-link (v, w) V
n3-link(v, w) V ma-link(v,w))) —
weX)ANueX —yeX)|A
lexical(y)]].

(C.2) c-link(x,y) &, C(x) Aedg; (x,y)

(C3) melink(xy) €L 11 () A (32) (VX)) (Ve v) (e € XA
(edg, (v,u) V edgs(v,u) V edg, (v,u) V edgs (v, u))

—veX)A(xeX —z€X)A

(3w)[edg; (w,z) Aedgy (w,y)]].

208 Additional MSO Definitions

(C4) morlink(x,y) 2L T (x) A (32) (VX)) (Vat, v) [(e € XA
(edg,(v,u) Vedgs(v,u) V edg, (v,u) V edgs (v, u))

—veX)ANxeX —zeX)A

(3w)[edg; (w,z) Aedgs(w,y)]]-

We omit the corresponding definitions for m3-link(x,y) and ma-link(x,y).

The edg-relations used above are instances of the following definition scheme
suitable for the general, n-branching tree (note that it was already given in (5.4) on
page 79):

d
(C.5) edg, (x,y) &, (Fxty e X)) r<<xXp A A <IXp 1 AX QY
Ax] <X A Axp—p <y A (Yw)[x<aw
AWREXIAAWREX 1 AWy —y<w]

In a similar vein, generalization of <y to the unrestricted case <t of the n-branching
tree and macros of arity i, n,i < ® is trivial. The only changes required concern (C.1)
and (C.3/C.4), again introducing a definition scheme in the case of (C.3’):

€1 x4yl lexical(x) A (3z)[edg, (z,x) A (3l V. edg, (z,u))A
(VX)) (Yv,w)[(v € X A (c-link(v,w) V (1<_/<wni-link(v, w)))
—weX)A(ueX —yeX)]]Alexical(y)].

(€3 melink(x,y) ZL TI(x) A (32) (VX)) (Vat, v) [(1 € X A
('V edg,(vu)) =veX)A(xeX —z€X)A

l<n<w

(3w)[edg, (w,z) Aedg;; 1 (w,y)]]-

Appendix D

Prolog Code

D.1 Apply a given MTT to a tree generated by an RTG

%% Apply an MTT to the trees generated by a regular tree grammar.

%% Output in Latex is possible.

(library(lists)).

:- ensure_loaded

:- dynamic latexon/0.

%% Example grammars and MTTs

(iowa) .
(tcs).
(tag) .

:- ensure_loaded
:- ensure_loaded

9
°

:- ensure_loaded

9
°

%% tree printing
:- ensure_loaded

(tree_print).

%% generate a tree with an RTG and transduce it using an MTT

-Tree)

process(RTGTree, MITTree)

%% process(+Tree,

internal_gen(Tree),

(Tree, RTGTree),

transduce(RTGTree, MTTTree).

name_tree

tree generation via an RTG
uses iterative deepening!

o0 0P oe
o0 o° oe

210 Prolog Code

° 0° o oP
X° 0P 0P o°

00

gen(-Tree)

gets the start symbol and starts walking and replacing from
there, prints the output. While it does so, it counts the
number of rule applications - iterative deepening!

gen (Tree) :-

00
oo

ssymbol (S),
num(Steps) ,
gen(S,Tree, 0, Steps, Steps),
print (’'Tree generated with '),
print (Steps),
print(’ rule applications:’),
treeprint (Tree) .

the same as above but without output

internal_gen(Tree) :-

o0 0P o° oe
o° 0P o° o

0P 0P o°
o° o° o°

ssymbol (S),
num(Steps) ,
gen (S, Tree, 0, Steps, Steps) .

gen(+Tree, -Tree, +Depth)

the predicate walks the tree, replacing each nonterminal it
finds with a tree from a corresponding rule and continues
walking. Three cases: we are looking at a terminal, a
nonterminal or at a branching node. Case one and three are
both handled by the second clause. The process allows exactly
Steps steps.

gen (X, Tree, In,Out,Max) :-

In =< Max,

atom(X),

gr (X,LHS),

NewIn is In+1,

gen (LHS, Tree,NewIn, Out, Max) .

gen (M/Ds,M/NewDs, In, Out,Max) : -

X
oo
00

oo

gen_aux (Ds,NewDs, In, Out,Max) .

gen_aux(+ListOfTrees, -ListOfTrees)
simple double recursion needed to walk the daughters

gen_aux([],[],In,In,_Max).
gen_aux ([H|T], [Tree|Trees], In,Out,Max) : -

gen (H, Tree, In,Outl, Max),
gen_aux (T, Trees,Outl,Out,Max) .

Apply a given MTT to a tree generated by an RTG 211

oe

92000000000000000200000000000000000020000000000000000000000000000
%%%%%%%%%%%%%%%%%%%%%%%%5%%%5%%%5%%%%%%%%%%%5%%%%%%%%%%%%%%%5%%%%%

%%
%% transduction predicates

%% transduce(+Tree, -Tree)

transduce (InTree, OutTree) : -
startstate(Q0),
print (' Input Tree:’),
treeprint (InTree),
transduce (Q0, InTree, [],0utTree),
print (’Output Tree:’),
treeprint (OutTree) .

transduce(+State, +InTree, +ListOfParameters, -OutTree)
InTree is given as (NodeName-Value)/ListOfDaughters
transduce(Q, (N-V) /Ds, Ps,OutTree) : -
rule(Q-[V/Ds,Ps],RHS),
(RHS = Sym/L -> if something is a
terminating rule
and belongs to the
original alphabet
- record its node name as
well

(alph(v) ->

O0° o° o° o° o°

OutTree = (N-Sym)/L

oe

oe

OutTree = Sym/L - or else only pass it on

trans_star (RHS,OutTree) % or else recurse on the RHS

trans_star(+RHS, -Tree)

is used to construct the parametres from R in Out, calls the
new resulting transduction

trans_star (Q- [H|R],OutTree) :-

trans_star_aux(R,Out),

transduce (Q,H,Out,OutTree) .

o0 oP oe
o0 oP o°

%% trans_star_aux(+ListOfSpecialTrees, -Tree)
% recurses through the list and transduces the subtrees yielding
% the parameters
trans_star_aux([],[]).
trans_star_aux([H|T], [R|Rs]) :-
(H=_Sym/_L -> % 1f something is a tree

o0 oe

212 Prolog Code

R=H % pass it on

H = Q-[Tree|Ps], % if not transduce it
transduce(Q, Tree, Ps,R)

) !
trans_star_aux(T,Rs) .

num(Y),
X is Y+1.

%% walk a tree and name the nodes uniquely with ‘nN’, where N is
%%

a number.
name_tree(In, Out) :-
nametree(In, 0, _, Out).

%% nametree(+Tree, +NumbersSoFar, -MaxNum, -NewTree)
nametree(X/Ds, In, Out, (Name-X)/NewDs) :-

Outl is In+1,

make_name (In, Name),

name_star(Ds, Outl, Out, NewDs).

%% simple double recursion needed to transform the daughters
name_star([],In,In, []).
name_star ([H|T], In,Out, [Tree|Trees]): -
nametree (H, In,Outl, Tree),
name_star (T,Outl,Out, Trees) .

%% make_name (+Number, -Atom)

make_name(N, Name) :-
number_chars (N, L),
append ([110],L,L1),
name (Name, L1) .

The Example Grammars 213

D.2 The Example Grammars

D.2.1 The CFTG Example: I'> and My«

oe

5555555555 %%5%%5%%5%5%5%%5%5%%%% ~*- Mode: Prolog -*- %%%%%%%%%%%%%%%%%
%% tcs.pl ---
%% Example grammar and MTT for the CFTG example: Gamma L

00
R A

oe

%% Input examples: an alphabet, an RTG and an MTT
%% alphabet - the unlifted signature of the CFTG
alphabet([a,b,c,d, e, dot]).

%% transducer for the CFTG MTT
%% rule(LHS, RHS).

%% LHS = State - [AlphabetSymbol/ListOfDaughters,

%% ListOfParameters]

%% RHS = State - ListOfSpecialTrees or

%% Tree

%% SpecialTrees can either be trees (daughters [Xs] or parameters
%% [Ys] from LHS) or State - ListOfTree pairs

startstate(qg0) .

rule(q0-[c40/[X1,X2,X3,X4,X5],[1],q4-[X1,q0-[X2],q0-[X3],q0-[X4],
q0-[X5]17) .
rule(q0-[X/[1,[1]1,X/[]).

rule(g2-[dot/[], [¥Y1,Y2]],dot/[Y1,Y2]).

rule(qgd-[cd4d/[X1,X2,X3,%X4,X5],[Y1,Y2,Y3,v4]1],
qd-[X1,q4-[X2,Y1,Y2,Y3,Y4],q4-[X3,Y1,Y2,Y3,Y4],
qd-[X4,Y1,Y2,Y3,Y4],q4-[X5,Y1,Y2,Y3,Y411).
rule(qg4-[c24/[X1,X2,X3]1,[Y1,Y2,Y3,Y4]],
g2-[X1,q4-[X2,Y1,Y2,Y3,Y4],q4-[X3,Y1,Y2,Y3,Y4]]).
rule(qgd-[pd4l/[],[Yl,_Y2,_Y3,_Y4]],Y1l).
rule (g4-[p42/[1, [_Y1,Y2,_Y3,_Y4]],¥2).
rule(gd-[p43/1[], [Yl,_Y2 Y3,_Y4]]1,Y3).
rule(qg4-[p44d/[],[_Y1,_Y2,_Y3,Y4]],Y4).
rule(qd-[a/[],[_Y1, Y2 _vY3, Y4]],a/[]).
rule(g4-[b/[],[_Y1,_Y2,_Y3,_Y4]],b/I[]).
rule(g4-[c/[],[_Y1,_Y2, Y3, Y4]],c/[]).
rule(g4-[d/[],[_Y1,_Y2, Y3, Y4]],d/[]).
rule(g4-[e/[],[_Y1,_Y2,_Y3,_Y4]],e/[]).

214 Prolog Code

o

% RTG (lifted CFTG for the language a"nb"mc"nd"m)

rules are: gr(LHS, RHS) where LHS is a simple nonterminal
and RHS is a lifted tree

%% Note that nonterminals do not have following daughters

ssymbol (s) .

oe
oe

oe
oe

gr(s,e/[]).
gr(s,cd0/[f,a/[1,e/[1,c/[1,e/11]).
gr(s,cd40/[£,e/[]1,b/[],e/[1,d/111]).
gr(f,cdd/[f,c24/[dot/[],a/[1,p41/11],p42/1],
c24/[dot/[],c/1]1,p43/11]1,p044/111)
gr(f,cdd/[f,p41/[], c24/[dot/[]1,b/[],p42/111,
p43/11,c24/[dot/[],d/[],p44/[111)
gr(f,c24/[dot/[],c24/[dot/[],c24/[dot/[],p41/[],p42/11]1,043/[11,

pdd/[11).

D.2.2 The TAG Example: I'k,; and M+

TAG

0000000000000000000000000 . 200000000000000000
%%%%%%%%%%%%%%%%%%%%%%%%% —*- Mode: Prolog -*- %%%%%%%%%%%%%%%%%

oe

%% tag.pl ---
%% Example grammar and MTT for the TAG example: Gamma”L_TAG

00
0000000000000 0060000000

oe

%% Input examples: an alphabet, an RTG and an MTT
> alphabet - the unlifted signature of the MCFTG
alphabet([a,b,c,d, e, st,st0]).

oo
N

oe
oe

transducer for the MCFTG MTT
rule(LHS, RHS).

oo
oe

%% LHS = State - [AlphabetSymbol/ListOfDaughters,
%% ListOfParameters]

%% RHS = State - ListOfSpecialTrees or

%% Tree

oe
oe

SpecialTrees can either be trees (daughters [Xs] or parameters
[Ys] from LHS) or State - ListOfTree pairs

oe
oe

startstate(q0) .
rule(q0-[c10/[X1,X2],[1],ql-[X1,q0-[X2]]).
rule(q0-[X/[],[11,X/[1).
rule(q0-[X/[11,X/[1).

rule(g3-[st/[], [Y1,Y2,Y3]],st/[Y1,Y2,Y3]).

The Example Grammars 215

rule(ql-[st0/[], [Y1]],st0/[Y¥1]).
rule(qgl-[cll/[X1,X2], [Y1]],
ql-[X1,ql-[X2,Y1]]).
rule(gl-[c31/[X1,X2,X3,X4], [Y1]],
a3-[X1,ql-[X2,Y1],ql-[X3,Y1],ql-[X4,Y1]]).
rule(ql-[pll/[], [Y1]],Y1).
rule(ql-fa/[], [_Y1]],a/[]).
rule(ql-[b/[], [_Y1]],D/[]).
rule(ql-[c/ (], [_Y1]],c/[]).
rule(ql-[d/[], [_Y1]],d/[]).
rule(ql-fe/[], [_Y1]],e/[]).

%% RTG (lifted MCFTG for the langeuage a"nb"nc’"nd"n)

%% rules are: gr(LHS, RHS) where LHS is a simple nonterminal
%% and RHS is a lifted tree

%% Note that nonterminals do not have following daughters
ssymbol (sp) .

r(sp,cl0/[s,e/[]1]).
r(s,cll/[sbl,cll/[s,cll/[sb2,p11/[1111).
gr(s,cll/[st0/[]1,p11/111).
r(sbl,c31/[st/[],a/[]1,p11/[],d/111).
r(sb2,c31/[st/[],b/[1,p11/[],c/I11).

D.2.3 The MCFG Example: Gy;cr; and M Ghocra

$39%35%25%525%525%95%%%%%%% ~*- Mode: Prolog -*- $%%3%%%%%%%%%%%%%%

%% Example grammar and MTT for the MCFG example: G’_MCFG

00
0000000000000 000

oe

%% Input examples: an alphabet, an RTG and an MTT
%% alphabet - the unlifted signature of the MCFG
alphabet ([al,a2,a3,dot]).

oe
oe

transducer for the simple example MCFG
rule(LHS, RHS).

o0 oe
o° oP

LHS = State - [AlphabetSymbol/ListOfDaughters,
ListOfParameters]
%% RHS = State - ListOfSpecialTrees or
%% Tree

SpecialTrees can either be trees (daughters [Xs] or parameters
[Ys] from LHS) or State - ListOfTree pairs

o0 oP
o0 oP

216 Prolog Code

startstate(qg0) .

rule(q0-[c031/[X1,%2], [1],93-[X1,q01-[X2],q02-[X2],q03-[X2]]).
rule(q0-[X/[1,[1]1,X/[1).

rule(g2-[dot/[], [¥Y1,¥2]],dot/[Y1,Y2]).

rule(qg3-[p31/11,[Y1l,_Y2,_Y3]1,Y1).

rule(g3-[p32/(],[_Y1,Y2,_Y3]],Y2).

rule(qg3-[p33/[],[_Y1,_Y2,Y311,Y3).
(

rule(g3-[c301/[X1,_X2],[_Y1,_Y2,_Y3]],X1).
% for the simplified case remove the rule above and uncomment
% the following three rules

oe

oe

$ rule(qg3-[al/[],[_Y1,_Y2,_Y3]],al/[]).
$ rule(qg3-[a2/[],[_Y1,_Y2,_Y3]],a2/[]).
% rule(qg3-[a3/[]1,[_Y1,_Y2,_Y311,a3/I11).
rule(g3-[c321/[X1,X2],[Y1,Y2,Y3]],92-[X1,g31-[X2,Y1,Y2,Y3]

a32-[X2,Y1,Y2,Y31]) .

rule(g01-[c033/[X1,x2],[1],931-[X1,q01-[X2],g02-[X2],q03-[X2]]).
rule(g01-[t03/[X1,_X2,_X3],[1]1,90-[X1]).

rule(g02-1[c033/[X1,x2], [1]1,q32-[X1,q01-[X2],q02-[X2],q03-[x21]) .
rule(q02-[t03/[_X1,X2,_x31,[11,q0-[X2]).

rule(q03-[c033/[X1,X2],[1],q33-[X1,q01-[X2],q02-[X2],g03-[X2]11]).
rule(q03-[t03/[_X1, X2,%31,[11,q0-[X3]).

rule(qg31-[t33/([X1,_X2,_X3],[Y1,Y2,Y3]],q3-[X1,Y1,Y2,Y3]).
rule(g31-[t32/[X1,_X2],[Y1,Y2,Y3]],q3-[X1,Y1,Y2,Y3]).

rule(qg32-[t33/[_X1,X2,_X3],[Y1,Y2,Y3]],93-[X2,Y1,Y2,Y3]).
rule(qg32-[t32/[_X1,X2],[Y1,Y2,Y3]],q3-[X2,Y1,Y2,Y3]).

rule(g33-[t33/[_X1,_X2,X31,[Y1,Y2,Y3]],93-[X3,Y1,Y2,Y3]).

oe

% RTG (lifted MCFG for the language al’n a2”n a3’n

% rules are: gr(LHS, RHS) where LHS is a simple nonterminal
and RHS is a lifted tree

% Note that nonterminals do not have following daughters
ssymbol (s) .

o0 oe
oe

oe

The Example Grammars 217
gr(a,t03/[al/[]1,a2/[]1,a3/[11).

gr(s,c031/[c321/[dot/[],t32/[c321/[dot/[],t32/[p31/[],p32/[111,
p33/0111,al).

oe

for the simplified case, replace the subtree dominated by c¢301
% simply by the appropriate ai
(

gr(a,c033/[t33/[c321/[dot/[],t32/[p31/[],c301/[al/[1,E30/[1111,

€321/[dot/[],t32/[p32/11,c301/[a2/[1,t30/[111]

c321/[dot/[],t32/[p33/[],c301/[a3/[],t30/[11111,
al).

Notes

1 Formally one can show that the addition of a relation encoding free indexation
to Rogers’s formal system leads to undecidability via a reduction from the tiling
problem.

2 Note that Rogers does not use this fact in his thesis. He used the full power of
Rabin’s result, namely that SwS, the strong theory of multiple successor func-
tions, is decidable (Rabin 1969). The automata employed there — so called Rabin
automata — work on infinite sets and therefore do not have efficient minimization
algorithms. Thus, they cannot be used efficiently in applications.

3 If the MSO language £ would contain constants, those would be terms too.
4 For an MSO language with constants ¢;, we have to add the line Free(c;) = 0.

5 Note that the variable 7' denoting the set of nodes under consideration can be
used to ensure the finiteness of the characterized trees since finiteness is definable
in MSO logic via the lexicographic order (<) inherent in trees: Finite(X) &)
(VY)(3x)(Vy)[Subset(Y,X) — (x €Y A (y € Y — y<x))] with Subset(X,Y) de-

fined as in (3.1) on page 37.

6 For nondeterministic FSAs we need the condition for membership in the lan-
guage to read 0(qgo, w) NF # 0 under the assumption that we have an appropriate
extended transition function .

7 Note that fop-down tree automata do not have this property: deterministic top-
down tree automata recognize a strictly narrower family of tree sets. Whereas
FSAs are reversible, this is not true for tree automata.

8 Sentential forms are built as follows: If 6 € " and 71, ... ,t, are sentential forms,
then o(t1,...,,) is also a sentential form. And, furthermore, if ¢ € Q has rank
n+1forn>0,s€Tsandt,...,1, are sentential forms, then ¢(s,71,...,t,) is a
sentential form.

10

11

12

13

14

15

16

17

18

19

Notes 219

We will encounter the same phenomenon in Definition 10.1 on page 135 where
we define derivations of context-free tree grammars.

There is yet another solution, which is often employed in practice. It is quite
easy to assure as part of the construction of primitive automata that certain sets
can contain only one member. In effect, this amounts to constructing the relevant
cross product automaton, optimizing it and renaming the states.

We use this expression as a shorthand for a simple tree with a mother which is
labeled with 0" and two daughters labeled with A.

Recall from the discussion preceding Definition 4.6 on page 50, that we assume
that the leaves of the trees are labeled with terminating As. As an example, look
at the tree displayed in Figure 3.1 on page 38. The node labeled with x is treated
as being in state a3 according to the topmost rule in the right column of the
automaton.

The curious reader is referred to the proof of Lemma 11 in Thatcher and Wright
(1968).

It may be more efficient to delay determinization until a negation is actually
encountered, at which time we can also minimize the resulting automaton.

A detailed analysis of these notions in relation to L7 , can be found in Rogers
(1998). '

The definite clauses in Figure 5.4 on page 77 are given such that the disjunc-
tion is reflected via multiple clauses. The constraints which decide whether a
clause is applicable are enclosed in curly braces. Clearly, as given here, append
constitutes a recursive definition. The auxiliary definitions serve as a (recursive)
formalization of lists with appropriate heads and tails.

Using the append relation defined in Figure 5.4 on page 77, one can write a
predicate successively generating all possible sequences of indices.

Note that using the string as a tree as discussed in Section 4.2 on page 49 does
not help here since we are after the structure of the string. And, furthermore, we
want the yield of a tree to represent the string, not the internal nodes.

Without reference to special properties of a particular software tool, in general if
P = Q is unsatisfiable then any MSO logic-to-automaton compiler will construct
the empty automaton. In that case, P A ~Q will be satisfiable and the resulting
automaton can be used to generate counterexamples to the original query.

220 Notes

20

21

22

23

24

25

26

27

28

29

Note that the problem of estimating the number of indices a sentence will re-
quire is considerably simpler than the problem of estimating the number of traces
it may contain. Roughly, every movable expression (overt or covert) is either
headed by an overt lexical item or else licensed by an overt lexical item’s selec-
tional properties.

This happened even on the machines of the MONA crew (Nils Klarlund, p.c.).

Approaches to Minimalism in the tradition of categorial grammar (e.g., Cornell
1998, 1999a,b; Lecomte 1997, 1998) also address this issue. The advantage we
offer with our approach is that we can treat not only Minimalism, but other
formalisms such as TAGs and GB and maybe even HPSG (see Chapter 13 on
page 187) within the same setup.

TAGs are not the focus of our work, but since they are so closely tied to a simpli-
fication of the techniques we need to deal with minimalist theories, we can easily
incorporate them. For TAGs, the operational/denotational distinction has not
been a major theme for research. There are approaches using logical formalisms
(e.g. Rambow et al. 1995; Vijay-Shanker et al. 1995) as well as the standard op-
erational one (e.g. Joshi et al. 1975; Joshi 1985, 1987) as well as hybrid ones
(e.g., Kallmeyer 1999).

GB can still (trivially) be treated with the techniques introduced in the preceding
part (going back to Jim Rogers’s dissertation).

In the figure we also mention simple attribute transducer, which can also be
used to implement the desired tree-transductions. But these ATTs are not within
the scope of this monograph since they require many more prerequisites which
would only distract from the main issues. A preliminary version of a transduction
built upon them can be found in Michaelis et al. (2001). The paper by van Vugt
(1996) contains more on the equivalence between some mildly context-sensitive
grammar formalisms and restricted forms of attribute grammars.

The following paragraphs have been taken almost verbatim from Michaelis et al.
(2001).

For all 3,y € Ny, y <y iff yw=yi for some i € N\ {0}, and x <y iff = wiy’
and Y=,y for some o,y € (N\ {0})* and i, j € N\ {0} with i < j. Re-
call that N; is a unique prefix closed and left closed subset of (N\ {0})" (cf.
Definition 2.8 on page 21).

Base, stands for Base U {¢}.

For each (partial) mapping f from a set M; into a set M, we take Dom(f) to

30

31

32

33

34

35

36

37

38

39

40

41

Notes 221

denote the domain of f, the subset of M7 for which f is defined.

Since all lexical entries are heads, we simply represent them by their respective
(unique) labels.

MCFGs will be introduced formally in Section 10.1.2 on page 140. LCFRSs are
weakly equivalent to MCFGs, but play no further role in this monograph.

Our definition uses a certain amount of handwaving and even ignores some as-
pects of TAGs such as for example adjunction constraints. Therefore it has to be
taken with a grain of salt. However, nothing important has been left out such that
the claims we make about this simplified version of TAGS are still valid for the
full version.

We have to leave the question of how much generative capacity is needed open.
While we presuppose in this book that mild context-sensitivity is enough, there
exist discussions of phenomena which might go beyond, e.g., Suffixaufnahme in
Old Georgian. We will come back to this point briefly in Chapter 13 on page 187.

Clearly, while this is true concerning the levels in the hierarchy, it is not true
concerning the generative capacity.

Note that the string in the figure is turned by 90 degrees to emphasize the con-
nection to the tree case.

Basic morphisms are concatenation, projection and tupling.

Here we have to recall the definitions concerning Lawvere algebras from Sec-
tion 2.3 on page 22.

Note that we give the full formal definition although we are dealing with a single
sorted set . The definition simplifies accordingly in the examples.

We do not need states for the composition symbols since each composition cor-
responds to a nonterminal due to the normal form.

Since IT-nodes are never leftmost daughters, the sublanguage L(x)- 11 -(]2 U |3
U l4U |s)- (W, UWpn, UWn, UWn,)* - We* - L(x) would be even more accurate
for our purposes. The trivial changes to 2 4 required to compute exactly this
language (adding an extra state and duplicating several transitions) only enlarge
the automaton, decreasing its perspicuity without providing any new insights.

In this particular example, where we have only one projection node, the only
potential fillers will either be a second daughter or the leftmost daughter of a

222 Notes

42

43

44

45

46

47

48

49

50

composition node which is a right daughter.

Note that using this solution requires a more general definition of an MSO trans-
duction as well.

Note that we discussed the FSTWA defining the precedence relation only for
liftted MCFTGs.

Itis a simple task to translate this recursive definition into a Prolog program. But
since we can simulate a Turing machine with Prolog, nothing much is gained
on the formal side. In case one considers implementing the approach, it makes
sense to use this simple homomorphism directly.

The CFTG I'" can be found in Example 10.11 on page 143.

Although it might seem overkill to present the rules both ways, as terms and as
trees, we think that the reader can only profit from two different representations.

Recall that a leaf labeled with a term a(3 1) of type (3,1) is a shorthand for the
term ¢(3 0,1)(a(0,1), ()(3.0))-

Because of the limitation to the appearance of at most one nonterminal on each
RHS, we indeed apply the rule to one tree only. Although the use of tuples
ensures that more than one variable can be used in each function corresponding
to a rule.

Note that this informal motivation for the needed states does not mean that the
resulting transitions will refer to information about particular daughters.

Please recall that the transitions leading to constant symbols of type (3, 1) are
artifacts of the simplification we alluded to in Example 10.14 on page 148. Note
furthermore, that the use of more than one nonterminal on the RHS of an MCFG-
rule entails, as outlined in Section 10.2.2 on page 145, extra tupling nodes which
naturally have to be accommodated by the MTT. In particular, it has to make use
of the additional superscripts to determine the appropriate daughter to find the
correct value.

Bibliography

Aho, A. V.
1968 Indexed grammars — an extension to context free grammars. J. ACM
15: 647-671
Aho, A. V. and J. D. Ullman
1971 Translations on a context-free grammar. Information and Control 19:
439-475

Ayari, A., D. Basin, and A. Podelski
1998 LISA: A specification language based on WS2S. In: M. Nielsen and
W. Thomas (eds.), Computer Science Logic, 11th International Work-
shop, CSL’97, Annual Conference of the EACSL, Aarhus, Denmark:
Springer, LNCS

Barton, G. E., Jr. and R. C. Berwick
1985 Parsing with assertion sets and information monotonicity. In: Proceed-

ings of IJCAI-85, pp. 769-771

Basin, D. and N. Klarlund

1995 Hardware verification using monadic second-order logic. In:
Computer-Aided Verification (CAV °95), Springer, vol. 939 of LNCS,
pp-31-41

1998 Automata based symbolic reasoning in hardware verification. Formal

Methods In System Design 13: 255-288, Extended version of: “Hard-
ware verification using monadic second-order logic,” CAV ’95, LNCS
939

Berwick, R. C. and A. Weinberg
1985 Deterministic parsing: A modern view. In: Proceedings of NELS 15,
Brown University, Providence, RI, pp. 15-33

Blackburn, P. and C. Gardent
1995 A specification language for lexical-functional grammars. Tech.
Rep. 51, Computational Linguistics at the University of the Saarland
(CLAUS)

224 Bibliography

Blackburn, P., C. Gardent, and W. Meyer-Viol

1993 Talking about trees. In: Proceedings of the 6th EACL, pp. 21-29
1994 Linguistics, logic, and finite trees. Report CS-R9412, CWI, Amster-
dam

Bloem, R. and J. Engelfriet

1997a Characterization of properties and relations defined in Monadic Sec-
ond Order logic on the nodes of trees. Tech. Rep. 97-03, Dept. of Com-
puter Science, Leiden University

1997b Monadic second order logic and node relations on graphs and trees.
In: J. Mycielski, G. Rozenberg, and A. Salomaa (eds.), Structures in
Logic and Computer Science, Springer-Verlag, vol. 1261 of Lecture
Notes in Computer Science, pp. 144-161

Brody, M.
1995 Lexico-Logical Form. Cambridge, Ma.: MIT Press
Bryant, R. E.
1992 Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3): 293-318
Biichi, J. R.
1960 Weak second-order arithmetic and finite automata. Zeitschrift fiir

mathematische Logik und Grundlagen der Mathematik 6: 66-92

Carpenter, B.
1992 The Logic of Typed Feature Structures, vol. 32 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press

Chidlovskii, B.
2000 Using regular tree automata as XML schemas. In: Proc. IEEE Ad-
vances in Digital Libraries Conference

Chomsky, N.
1956 Three models for the description of language. I.R.E. Transactions of
Information Theory 2: 113-124
1957 Syntactic Structures. The Hague: Mouton
1959 On certain formal properties of grammars. Information and Control

2(2): 137-167
1965 Aspects of the Theory of Syntax. Cambridge, Mass: MIT Press

1982 Lectures on Government and Binding. Dordrecht, Holland: Foris Pub-
lications

1985 Barriers. Cambridge, MA: MIT Press

1995 The Minimalist Program, vol. 28 of Current Studies in Linguistics.

MIT Press

Bibliography 225

Cornell, T. L.

1992

1994

1996
1998

1999a

1999b

2000

Courcelle, B.

1990

1997

Description Theory, Licensing Theory, and Principle—Based Gram-
mars and Parsers. Ph.D. thesis, UCLA

On determining the consistency of partial descriptions of trees. In:
32nd Annual Meeting of the ACL: Proceedings of the Conference, As-
sociation for Computational Linguistics, Las Cruces, New Mexico, pp.
163-170

Model-theoretic syntax. Glot International 2(1/2)

Island effects in type logical approaches to the minimalist program.
In: Proceedings of FHCG-98 Joint Conference On Formal Grammar,
Head-Driven Phrase Structure Grammar, and Categorial Grammar,
Saarbriicken, Germany

Derivational and representational views of minimalist syntactic cal-
culi. In: A. Lecomte, F. Lamarche, and G. Perrier (eds.), Logical As-
pects of Computational Linguistics (LACL "97), Berlin: Springer, no.
1582 in LNAI, pp. 92-111

Representational minimalism. In: H.-P. Kolb and U. Monnich (eds.),
The Mathematics of Syntactic Structure, Mouton de Gruyter, no. 44 in
Studies in Generative Grammar

Parsing and grammar engineering with tree automata. In: Algebraic
Methods in Language Processing: Second AMAST Workshop on Lan-
guage Processing, Parlevink, University of Towa, TWLT

Graph rewriting: An algebraic and logic approach. In: J. van Leeuwen
(ed.), Handbook of Theoretical Computer Science, Elsevier, vol. B of
Handbook of Theoretical Computer Science, pp. 193-242

The expression of graph properties and graph transformations in
monadic second-order logic. In: G. Rozenberg (ed.), Handbook of
Graph Grammars and Computing by Graph Transformation. Vol. I:
Foundations, World Scientific, chap. 5, pp. 313-400

Damgaard, N., N. Klarlund, and M. 1. Schwartzbach

1999

YakYak: Parsing with logical side constraints. In: Proceedings of
DLT’99

Devienne, P., P. Lebgue, A. Parrain, J. Routier, and J. Wiirtz

1994

Doner, J.

1970

Smallest horn clause programs. Journal of Logic Programming 19, 20:
1-41

Tree acceptors and some of their applications. Journal of Computer
and System Sciences 4: 406—451

226 Bibliography

Duchier, D.
1999 Axiomatizing dependency parsing using set constraints. In: Proceed-
ings of MOL 6, Orlando, Florida

Duchier, D. and S. Thater
1999 Parsing with tree descriptions: a constraint based approach. In: Pro-
ceedings of NLULP’99

Ebbinghaus, H.-D. and J. Flum
1995 Finite Model Theory. Berlin: Springer

Elgaard, J., A. Mgller, and M. 1. Schwartzbach
2000 Compile-time debugging of C programs working on trees. In: Pro-
ceedings of European Symposium on Programming Languages and
Systems, Berlin: Springer, vol. 1782 of LNCS

Elgot, C. C.
1961 Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98: 21-51

Engelfriet, J.
1997 Context-free graph grammars. In: G. Rozenberg and A. Salomaa
(eds.), Handbook of Formal Languages. Vol. IlIl: Beyond Words,
Springer, chap. 3, pp. 125-213

Engelfriet, J. and S. Maneth

1999 Macro tree transducers, attribute grammars, and MSO definable tree
translations. Information and Computation 154: 34-91
2000 Tree languages generated by context-free graph grammars. In: H.-J. K.

H. Ehrig, G. Engels and G. Rozenberg (eds.), Proceedings of Theory
and Applications of Graph Transformations - TAGT 98, no. 1764 in
LNCS, pp. 15-29

2001 Macro tree translations of linear size increase are mso definable. Tech-
nical Report 01-08, Leiden Institute of Advanced Computer Science,
Leiden University

Engelfriet, J. and V. van Oostrom
1996 Regular description of context-free graph languages. Journal Comp.
& Syst. Sci. 53(3): 556-574

Engelfriet, J. and E. Schmidt
1977 10 and OI, part I. J. Comput. System Sci. 15: 328-353

1978 10 and OI, part I1. J. Comput. System Sci. 16: 67-99

Engelfriet, J. and H. Vogler
1985 Macro tree transducers. Journal of Computer and System Sciences
31(1): 71-146

Bibliography 227

Fagin, R.
1974 Generalized first-order spectra and polynomial-time recognizable sets.
In: R. Karp (ed.), Complexity of Computation, AMS, vol. 7 of SIAM-
AMS Proc., pp. 27-41
Fischer, M. J.
1968 Grammars with macro-like productions. In: Proceedings of the 9th An-
nual Symposium on Switching and Automata Theory, IEEE, pp. 131-
142
Fong, S.
1992 Computational Properties of Principle-Based Grammatical Theories.
Ph.D. thesis, MIT
Frank, R.
1990 Computation and Linguistic Theory: A Government Binding Theory
Farser using Tree Adjoining Grammar. Master’s thesis, University of
Pennsylvania

Frank, R. and K. Vijay-Shanker

1995 C-command and grammatical primitives. Presentation at the 18th
GLOW Colloquium, University of Tromsg
1998 Primitive c-command. Ms., Johns Hopkins University & Universtiy of
Delaware
Fujiyoshi and Kasai
2000 Spinal-formed context-free tree grammars. MST: Mathematical Sys-
tems Theory 33
Gaifman, H.
1965 Dependency systems and phrase-structure systems. Information and
Control 8(3): 304-337
Gazdar, G.
1988 Applicability of indexed grammars to natural languages. In: U. Reyle

and C. Rohrer (eds.), Natural Language Parsing and Linguistic Theo-
ries, Dordrecht: D. Reidel, pp. 69-94

Gazdar, G, E. Klein, G. K. Pullum, and I. A. Sag
1985 Generalized Phrase Structure Grammar. Cambridge, Massachusetts:
Harvard University Press

Gécseg, F. and M. Steinby
1984 Tree Automata. Budapest: Akadémiai Kiadé

1997 Tree languages. In: G. Rozenberg and A. Salomaa (eds.), Handbook
of Formal Languages: Beyond Words, Berlin: Springer, vol. 3

228 Bibliography

Hanschke, P. and J. Wiirtz
1993 Satisfiability of the smallest binary program. Information Processing
Letters 45(5): 237-241

Harkema, H.
2000 A recognizer for minimalist grammars. In: Sixth International Work-
shop on Parsing Technologies, INPT’2000
Hays, D. G.
1964 Dependency theory: A formalism and some observations. Language

40(4): 511-525, prepared for US Air Force Project Rand

Hohfeld, M. and G. Smolka
1988 Definite relations over constraint languages. LILOG Report 53, IBM
Deutschland, Stuttgart, Germany

Huybregts, M. A. C.

1976 Overlapping dependencies in Dutch. Utrecht Working Papers in Lin-
guistics 1: 24—-65
1984 The weak adequacy of context-free phrase structure grammar. In: G. J.

de Haan, M. Trommelen, and W. Zonneveld (eds.), Van periferie naar
kern, Dordrecht: Foris, pp. 81-99

Immerman, N.

1987 Languages that capture complexity classes. SIAM J. of Computing
16(4): 760-778
Janssen, T. M.
2000 An algebraic approach to grammatical theories for natural language.

In: A. Nijholt, G. Scollo, T. Rus, and D. Heylen (eds.), Algebraic
Methods in Language Processing, AMiLP 2000, University of lowa

Jensen, J. L., M. E. Joergensen, N. Klarlund, and M. I. Schwartzbach
1997 Automatic verification of pointer programs using monadic second-
order logic. In: PLDI *97

Johnson, D. and P. Postal
1980 Arc Pair Grammar. Princeton, NJ: Princeton University Press

Johnson, M.
1988 A Logic of Attribute-Value Structures and the Theory of Grammar.
Stanford/Chicago: CSLI/Chicago University Press

Johnson, M.

1990 Expressing disjunctive and negative feature constraints with classical
first-order logic. In: Proceedings of the 28th Meeting of the Associ-
ation for Computational Linguistics, Association for Computational
Linguistics, Association for Computational Linguistics

Bibliography 229

1991 Features and formulae. Computational Linguistics 17(2): 131-151

Johnson, M. and E. P. Stabler
1993 Topics in principle based parsing. Notes for a course taught at the LSA
Summer Institute, Columbus, OH, 1993

Joshi, A. K.

1985 Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural description. In: D. Dowty, L. Karttunen,
and A. Zwicky (eds.), Natural Language Parsing, Cambridge, UK:
Cambridge University Press, pp. 206-250

1987 An introduction to tree adjoining grammars. In: Manaster-Ramer
(ed.), Mathematics of Language, Amsterdam: John Benjamins

Joshi, A. K., L. S. Levy, and M. Takahashi

1975 Tree adjunct grammars. Journal of Computer and System Sciences 10:
136-63
Joshi, A. K. and Y. Schabes
1997 Tree adjoining grammars. In: G. Rozenberg and A. Salomaa (eds.),

Handbook of Formal Languages, Berlin: Springer, vol. 3: Beyond
Words of Handbook of Formal Languages, pp. 69-123

Kallmeyer, L.
1999 Underspecification in tree description grammar. In: H.-P. Kolb and
U. Monnich (eds.), The Mathematics of Syntactic Structure: Trees
and their Logics, Mouton de Gruyter, no. 44 in Studies in Generative

Grammar
Kaplan, R. M. and J. Bresnan
1983 Lexical-functional grammar: A formal system for grammatical repre-

sentation. In: J. Bresnan (ed.), The Mental Representation of Gram-
matical Relations, Cambridge, Mass: MIT Press, pp. 173-381

Kasper, R. T.
1987a Feature Structures: A Logical Theory with Application to Language
Analysis. Ph.D. thesis, University of Michigan
1987b A unification method for disjunctive feature descriptions. In: ACL Pro-
ceedings, 25th Annual Meeting, Stanford, CA, pp. 235-242

Kasper, R. T. and W. C. Rounds
1986 A logical semantics for feature structures. In: ACL Proceedings, 24th
Annual Meeting, Columbia University, New York, NY, pp. 257-271

Kay, M.
1983 Unification grammar. Tech. rep., Xerox Palo Alto Research Center,
Palo Alto, CA

230 Bibliography

1984

Kayne, R. S.
1994

Functional unification grammar: a formalism for machine translation.
COLING-84 pp. 15-78

The Antisymmetry of Syntax, vol. 25 of Linguistic Inquiry Mono-
graphs. Cambridge, Mass. and London, England: MIT Press

Keenan, E. L. and E. P. Stabler

1996

1997

Abstract syntax. In: A.-M. DiSciullo (ed.), Configurations: Essays on
Structure and Interpretation, Somerville, Massachusetts: Cascadilla
Press, pp. 329-344

Syntactic invariants. In: 6th Annual Conference on Language, Logic
and Computation, Stanford

Kelb, P., T. Margaria, M. Mendler, and C. Gsottberger

1997

King, P. J.
1989

1994a

1994b

Klarlund, N.
1998

Klarlund, N.
1998

Klarlund, N.,

2000

Klarlund, N.
1993

MOSEL: A flexible toolset for monadic second-order logic. In:
E. Brinksma (ed.), Tools and Algorithms for The Construction and
Analysis of Systems: International Workshop, TACAS *97, Lecture
Notes in Computer Science 1019, Springer, pp. 183-202

A Logical Formalism for Head-Driven Phrase Structure Grammar.
Ph.D. thesis, Manchester University, Manchester, England

An expanded logical formalism for head—driven phrase stucture gram-
mar. Arbeitspapiere des SFB 340 59, SFB 340, Universitit Tiibingen

Typed feature structures as descriptions. In COLING-94

MONA & Fido: The logic-automaton connection in practice. In:
M. Nielsen and W. Thomas (eds.), Computer Science Logic, 11th
International Workshop, CSL’97, Annual Conference of the EACSL,
Aarhus, Denmark: Springer, LNCS

and A. Mgller
MONA Version 1.2 User Manual. BRICS Notes Series NS-98-3, De-
partment of Computer Science, University of Aarhus

A. Mgller, and M. 1. Schwartzbach
MONA implementation secrets Proceedings of CIAA 2000

and M. L. Schwartzbach

Graph types. In: Conference Record of the Twventieth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
Charleston, South Carolina: ACM Press, pp. 196-205

1997

Kleene, S. C.
1956

Bibliography 231

A domain-specific language for regular sets of strings and trees.
In: Proceedings of the Conference on Domain-Specific Languages,
USENIX, Santa Barbara, Ca.

Representation of events in nerve nets and finite automata. In:

C. Shannon and J. McCarthy (eds.), Automata Studies, Princeton Uni-
versity Press

Kolb, H.-P.,, J. Michaelis, U. Monnich, and F. Morawietz

2003

An operational and denotational approach to non-context-freeness.
Theoretical Computer Science 293: 261-289

Kolb, H.-P., U. Monnich, and F. Morawietz

1999a

1999b

2000

Logical description of cross-serial dependencies. In: Proceedings of
the Workshop Finite Model Theory and its Applications at FloC ’99,
Trento, Italy

Regular description of cross-serial dependencies. In: Proceedings of
MOL 6, Orlando, Florida

Descriptions of cross-serial dependencies. Grammars 3(2/3): 189-216

Kolb, H.-P. and C. L. Thiersch

1991

Kracht, M.
1993

1995

1999

Kunze, J.

1977

Lambek, J.
1958

Levels and empty categories in a principles and parameter approach
to parsing. In: H. Haider and K. Netter (eds.), Reptresentation and
Derivation in the Theory of Grammar, Dordrecht: Kluwer

Mathematical aspects of command relations. In: Sixth Conference of
the European Chapter of the Association for Computational Linguis-
tics, EACL, pp. 240-249

Syntactic codes and grammar refinement. Journal of Logic, Language
and Information 4: 41-60

Adjunction structures and syntactic domains. In: H.-P. Kolb and
U. Monnich (eds.), The Mathematics of Syntactic Structure: Trees
and their Logics, Mouton de Gruyter, no. 44 in Studies in Generative
Grammar

Dependency grammar as syntactic model in several procedures of au-
tomatic sentence analysis. Linguistics 195: 46-62

The mathematics of sentence structure. American Mathematical
Monthly 65: 154-169

232 Bibliography

Lang, B.
1992 Recognition can be harder than parsing. In: Proc. of the 2" Int. Work-
shop on Tree Adjoining Grammars. Philadelphia, PA, June 1992

Lautemann, C., T. Schwentick, and D. Thérien

1995 Logics for context-free languages. In: L. Pacholski and J. Tiuryn
(eds.), Computer Science Logic 94, Springer, pp. 205-216, LNCS
933

Lawvere, E. W.

1963 Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia

University, Braunschweig
Lecomte, A.

1997 POM-nets and minimalism. In: C. Casadio (ed.), Proceedings of the
IV Roma Workshop: Dynamic Perspectives in Logic and Linguistics,
Universita di Roma Tre

1998 Categorial minimalism. In: Proceedings of LACL’98, Grenoble,
France

Levy, J.

1996 Linear second-order unification. In: H. Ganzinger (ed.), Proceedings
of the 7th International Conference on Rewriting Techniques and Ap-
plications (RTA-96), Berlin: Springer-Verlag, vol. 1103 of LNCS, pp.
332-346

Lewis, H. R. and C. H. Papadimitriou
1998 Elements of the Theory of Computation. Upper Saddle River, New Jer-
sey: Prentice-Hall, Inc.
Lloyd, J.
1984 Foundations of Logic Programming. Berlin: Springer
Macias, B.
1990 An Incremental Parser for Government-Binding Theory. Ph.D. thesis,

University of Cambridge
Maibaum, T. S. E.

1974 A generalized approach to formal languages. J. Comput. System Sci.
88: 409-439
Marcus, M. P, D. Hindle, and M. M. Fleck
1983 D-theory: Talking about talking about trees. In: 21st Annual Meeting

of the ACL: Proceedings of the Conference, pp. 129—136

McCawley, J. D.
1986 Encyclopedic Dictionary of Semiotics, Mouton de Gruyter, chap. Syn-
tax, pp. 1061-71

Bibliography 233

Mezei, J. and J. B. Wright

1967

Michaelis, J.
1999

2001a

2001b

Michaelis, J.
1997

Michaelis, J.,

2000a

2000b

2001

Algebraic automata and contextfree sets. Information and Control 11:
3-29

Derivational minimalism is mildly context-sensitive. Linguistics in
Potsdam (LiP) 5, Institut fiir Linguistik, Universitit Potsdam, Avail-
able under http://www.ling.uni-potsdam.de/~michael/

Derivational minimalism is mildly context-sensitive. In: M. Moortgat
(ed.), LACL ’98, Berlin: Springer, vol. 2014 of LNAI

On Formal Properties of Minimalist Grammars. Ph.D. thesis, Univer-
sity of Potsdam

and M. Kracht

Semilinearity as a syntactic invariant. In: C. Retoré (ed.), Proceedings
of the Ist International Conference on Logical Aspects of Computa-
tional Linguistics (LACL-96), Berlin: Springer, vol. 1328 of LNAI, pp.
329-345

U. Monnich, and F. Morawietz

Algebraic descriptions of derivational minimalism. In: Algebraic
Methods in Language Processing: Second AMAST Workshop on Lan-
guage Processing, Parlevink, University of lowa, TWLT

Derivational minimalism in two regular and logical steps. In: Proceed-
ings of the Tag+5 Conference, Paris

On minimalist attribute grammars and macro tree transducers. In:
C. Rohrer, A. Rossdeutscher, and H. Kamp (eds.), Linguistic Form
and its Computation, CSLI Publications, pp. 287-326

Mgller, A. and M. Schwartzbach

2001

Monnich, U.
1993

1997a

1997b

1998

The pointer assertion logic engine. In: C. Norris and J. J. B. Fen-
wick (eds.), Proceedings of the ACM SIGPLAN ’01 Conference on
Programming Language Design and Implementation (PLDI-01),N.Y.:
ACMPress, vol. 36.5 of ACM SIGPLAN Notices, pp. 221-231

Algebraic refinement of the Chomsky hierarchy. Course notes, 5th Eu-
ropean Summer School in Logic, Language and Information, Lisbon

Adjunction as substitution. In: G.-J. M. Kruijff, G. Morill, and
R. Oehrle (eds.), Formal Grammar ’97, Aix-en-Provence, pp. 169—

178
Lexikalisch kontrollierte Kreuzabhingigkeiten und Kongruenzmor-

phologien. Talk at Meeting of the SFBs 471, 340 and 282, Available
under http://tcl.sfs.uni-tuebingen.de/~tcl/uwe/uwe_moennich.html
TAGs M-constructed. In: TAG+ 4th Workshop, Philadelphia

234 Bibliography

1999 On cloning contextfreeness. In: H.-P. Kolb and U. Monnich (eds.),
The Mathematics of Syntactic Structure, Mouton de Gruyter, no. 44 in
Studies in Generative Grammar, pp. 195-229

Morawietz, F.

1999 Monadic second order logic, tree automata and constraint logic pro-
gramming. In: H.-P. Kolb and U. Ménnich (eds.), The Mathematics of
Syntactic Structure, Mouton de Gruyter, no. 44 in Studies in Genera-
tive Grammar

2000a Chart parsing and constraint programming. In: Proceedings of
COLING-2000

2000b Chart parsing as constraint propagation. In: F. Morawietz (ed.), Some
Aspects of Natural Language Processing and Constraint Program-
ming, Universitdt Tiibingen, no. 150 in Arbeitspapiere des SFB 340,
pp- 29-50

Morawietz, F. and T. L. Cornell

1997a Approximating Principles and Parameters Grammars with MSO Tree
Logics. In: Proceedings of LACL "97, Nancy, France
1997b On the recognizability of relations over a tree definable in a monadic

second order tree description language. Arbeitspapiere des SFB
340 85, SFB 340, Universitit Tiibingen

1997c Representing constraints with automata. In: Proceedings of the 35th
Annual Meeting of the ACL and the 8th Conference of the EACL,
Madrid, Spain: Association for Computational Linguistics, pp. 468—

475

1999 The Logic-Automaton Connection in Linguistics. In: Proceedings of
LACL 1997, Springer, no. 1582 in LNAI

2001 A model-theoretic description of tree adjoining grammars. Elec-

tronic Notes in Theoretical Computer Science 53 (53), Formal Gram-
mar/MOL Conference 2001. Elsevier Science

Moschovakis, Y. N.

1974 Elementary Induction on Abstract Structures. Amsterdam: North-
Holland
Moshier, M. A.
1988 Extensions to Unification Grammar for the Description of Program-

ming Languages. Ph.D. thesis, University of Michigan

1993 On completeness theorems for feature logics. CLAUS Report 31, Uni-
versitit des Saarlandes, Saarbriicken, Germany

Bibliography 235

Moshier, M. A. and W. C. Rounds
1987 A logic for partially specified data structures. In: ACM (ed.), POPL
'87. Fourteenth Annual ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of programming languages, January 21-23, 1987, Munich, W.
Germany, New York, NY, USA: ACM Press, pp. 156167

Neven, F.
1999 Design and Analysis of Query Languages for Structured Documents —
A Formal and Logical Approach. Ph.D. thesis, Limburgs Universitair
Centrum
Neven, F. and T. Schwentick
1999 Query automata. In: ACM (ed.), Proceedings of the Eighteenth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems: PODS 1999: Philadelphia, Pennsylvania, May 31-June 2,
1999, New York, NY 10036, USA: ACM Press, pp. 205-214

2000 Expressive and efficient pattern languages for tree-structured data. In:
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, ACM, pp. 145-156

2002 Automata- and logic-based pattern languages for tree-structured data.
Manuscript, URL: http://alpha.luc.ac.be/~lucg5503/publs.html

Niehren, J. and A. Podelski
1992 Feature automata and recognizable sets of feature trees. In: M.-C.
Gaudel and J.-P. Jouannaud (eds.), Proccedings of the 4th Interna-
tional Joint Conference on Theory and Practice of Software Develop-
ment, Orsay, France: Springer, no. 668 in LNCS, pp. 356-375

Parikh, R.

1966 On context-free languages. Journal of the ACM 13: 570-581
Peacock, G.

1830 A Treatise on Algebra. Cambridge

Pereira, F. C. N. and M. D. Riley
1997 Speech recognition by composition of weighted finite automata. In:
Roche and Schabes (1997)

Peters, P. S. and R. W. Ritchie

1971 On restricting the base component of transformational grammars. In-
formation and Control 18(5): 483-501
1973 On the generative power of transformational grammars. Information

Sciences 6: 49-83

Pollard, C. J.
1984 Generalized Context-Free Grammars, Head Grammars and Natural
Language. Ph.D. thesis, Stanford University

236 Bibliography

Pollard, C.J. and I. A. Sag

1987 Information-Based Syntax and Semantics, vol. 13 of CSLI Lecture
Notes. CSLI Publications
1994 Head-Driven Phrase Structure Grammar. University of Chicago Press
and CSLI Publications
Post, E.
1946 A variant of a recursively unsolvable problem. Bulletin of the Ameri-

can Mathematical Society 52: 264-268

Pullum, G. and G. Gazdar
1982 Natural languages and context-free languages. Linguistics and Philos-
ophy 4(4): 471-504

Rabin, M. O.
1969 Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141: 1-35

Rabin, M. O. and D. Scott
1959 Finite automata and their decision problems. IBM Journal of Research
and Development 3: 114-125

Rambow, O. and G. Satta
1999 Independent parallelism in finite copying parallel rewriting systems.
Theoretical Computer Science 223(1-2): 87-120

Rambow, O., K. Vijay-Shanker, and D. Weir
1995 D-Tree Grammars. In: Proceedings of ACL

Rizzi, L.
1990 Relativized Minimality. MIT Press

Roche, E. and Y. Schabes (eds.)
1997 Finite-State Language Processing. Language, Speech, and Communi-
cation Series, MIT Press

Rogers, J.

1994 Studies in the Logic of Trees with Applications to Grammar For-
malisms. Ph.D. thesis, University of Delaware, Dep. of Computer &
Information Sciences, Newark, DE 19716, Published as Technical Re-
port No. 95-04

1996 A model-theoretic framework for theories of syntax. In: Proc. of the
34th Annual Meeting of the ACL, Santa Cruz, USA

1997 On descriptive complexity, language complexity, and GB. In:

P. Blackburn and M. de Rijke (eds.), Specifying Syntactic Structures,
CSLI Publications

Bibliography 237

1998 A Descriptive Approach to Language-Theoretic Complexity. Studies
in Logic, Language, and Information, CSLI Publications and FoL LI
Rounds, W. C.
1970a Mappings and grammars on trees. Mathematical Systems Theory 4:
257-287
1970b Tree-oriented proofs of some theorems on context-free and indexed

languages. In: Proceedings of the 2nd Annual ACM Symposium on
Theory of Computing, pp. 109-116

Sandholm, A. and M. 1. Schwartzbach

1998

Distributed safety controllers for web services. In: E. Astesiano (ed.),
Fundamental Approaches to Software Engineering, FASE’98, LNCS
1382, Springer-Verlag, no. 1382 in Lecture Notes in Computer Sci-
ence, pp. 270-284, Also available as BRICS Technical Report RS-97-
47

Seki, H., T. Matsumura, M. Fujii, and T. Kasami

1991 On multiple context-free grammars. Theoretical Computer Science
88(2): 191-229
Shieber, S. M.
1985 Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8: 333-343
Stabler, E. P.
1992 The Logical Approach to Syntax: Foundations, Specifications and Im-
plementations of Theories of Government and Binding. Cambridge,
Ma.: MIT Press
1994 The finite connectivity of linguistic structure. In: C. C. Jr., L. Frazier,
and K. Rayner (eds.), Perspectives on Sentence Processing, Hillsdale,
New Jersey: Lawrence Erlbaum, pp. 303-336
1997 Derivational minimalism. In: C. Retoré (ed.), Logical Aspects of Com-
putational Linguistics, Berlin: Springer, pp. 6895, LNAI 1328
1999a Performance models for a derivational minimalism. Presented at the
Workshop Linguistic Form and its Computation of the SFB 340 in
Bad Teinach, Draft
1999b Remnant movement and complexity. In: G. Bouma, G.-J. M. Kruijff,
E. Hinrichs, and R. T. Oehrle (eds.), Constraints and Resources in
Natural Language Syntax and Semantics, CSLI, vol. II of Studies in
Constrained Based Lexicalism, pp. 299-326
Stabler, E. P. and E. L. Keenan
2000 Structural similarity. In: A. Nijholt, G. Scollo, T. Rus, and D. Heylen

(eds.), Algebraic Methods in Language Processing, AMiLP 2000, Uni-
versity of Iowa

238 Bibliography

Steedman, M.
1988 Combinators and grammar. In: R. Oehrle, E. Bach, and D. Wheeler
(eds.), Categorial Grammar and Natural Language Structures, Dor-
drecht: Reidel, pp. 417-442

Thatcher, J. W.
1970 Generalized sequential machines. J. Comput. System Sci. 4: 339-367

Thatcher, J. W. and J. B. Wright

1968 Generalized finite automata theory with an application to a decision
problem of second-order logic. Mathematical Systems Theory 2(1):
57-81
Thomas, W.
1990 Automata on infinite objects. In: J. van Leeuwen (ed.), Handbook

of Theoretical Computer Science, Elsevier Science Publishers B. V.,
chap. 4, pp. 133-191

1997 Languages, automata, and logic. In: G. Rozenberg and A. Salomaa
(eds.), Handbook of Formal Languages, Berlin: Springer, vol. 3: Be-
yond Words, pp. 389-455

Veenstra, M.
1998 Formalizing the Minimalist Program. Ph.D. thesis, University of
Groningen

Vijay-Shanker, K., D. Weir, and O. Rambow
1995 Parsing d-tree grammars. In: Proceedings of the International Work-
shop on Parsing Technologies, ACL/SIGPARSE, Prag, pp. 252-259

Vijay-Shanker, K. and D. J. Weir
1994 The equivalence of four extensions of context-free grammars. Mathe-
matical Systems Theory 27(6): 511-546

van Vugt, N.
1996 Generalized Context-Free Grammars. Ph.D. thesis, Leiden University,
Leiden, The Netherlands

Wagner, E. G.
1994 Algebraic semantics. In: S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum (eds.), Semantic Structures, Oxford University Press, vol. 3
of Handbook of Logic in Computer Science, pp. 323-393

Weinberg, A.
1988 Locality Principles in Syntax and in Parsing. Ph.D. thesis, MIT

Bibliography 239

Weir, D. J.
1992 Linear context-free rewriting systems and deterministic tree-walk
transducers. In: 30th Meeting of the Association for Computational
Linguistics (ACL’92)
Whitehead, A. N.
1911 An Introduction to Mathematics. London: Williams and Northgate,
Reprinted by Oxford University Press
Yu, S.
1997 Regular languages. In: G. Rozenberg and A. Salomaa (eds.), Hand-

book of Formal Languages: Word, Language, Grammar, Berlin:
Springer, vol. 1

Mathematical Symbols

aut

Cnk

Cluv,w)

o

bi
Ti

aX-algebra
afinite setof symbols
the set of all wordsover A
an automaton constructor
an automaton e
a composition symbol L L.
a composition symbol L L.
the transition function of a finite state machine
the extended transition function of a finite state machine

a directive of an FSTWA: godown
a directive of an FSTWA: goup
the relation of immediate dominance
the immediate dominance relation on lifted structures

the relation of reflexive dominance
the dominance relation on lifted structures
the empty word
the set of final states of a finite state machine

a minimalist grammar

FPs
Q

q0

Mathematical Symbols

atree adjoining grammar
a context-free tree grammar
a lifted context-free tree grammar
aregular tree grammar
a multiple context-free grammar
a lifted multiple context-free grammar
ahomomorphism
alanguage
a language over the alphabet A
the Kleene closure of the language £
a particular MSO language
the satisfaction relation
the structure of WS2S
MSO formulas
aprojection symbol
the powerset Operator
the relation of proper precedence
the precedence relation on lifted structures
MSO predicates coding the symbol G
a set of states of a finite state machine

the initial state of a finite state machine

RHS(XZ,Q,n,m) the set of RHSs of an MTT over X and Q with n

variables and m parameters

242

Mathematical Symbols

asetofsorts
analphabet
the set of symbols of arityn
alifted alphabet
an n-tuple of symbolsover X
an indexed family withwe S*andse S
an operator; amemberof £
..,1y) atree/term with mother node G and subtrees 71, ... ,1,
atreedomain
a binary branching tree domain
an expression tre€o v vttt

a finite state transducer

T (k,m) the set of all m-tuples of k-ary trees

T(X),Ts the set of trees over the alphabet X

C Dow atuplingsymbol

we A" awordoflengthn
(w,s) the type of an operator
S®S the strong MSO theory of countably many successors

X a family of sorted variables
fn avector of n MSO variables
X, the set of variables {x,...,x,}
XY, ...X,Ys MSOwvariables

X, Y, -

. Xi,Vi,. .. individual variables

Index

X-algebra, 22
2-homomorphism, 22
£2,36

L% p. 36

P&P, 5

MERGE, 115, 117
MOVE, 115, 118

adjunction structure, 89

algebra
>—,22
derived, 22
Lawvere, 23

alphabet, 17, 18
many-sorted, 18
ranked, 18
single-sorted, 18

arity, 18

assignment tree, 34

c-command, 37, 38
CFTG, 135
Chomsky Hierarchy, 6
coding
of variables, 59
scheme, 60
combinatorial explosion, 72
combinatory categorial grammars, 10
complement, 19
complexity
computational, 4, 73
descriptive, 4, 13, 73, 114, 131
composition, 23
concatenation, 19
constant growth, 7

context-free language, 74

context-free tree grammar, 135
monadic, 138

cylindrification, 52

decidability of WS2S, 59
definability
explicitly MSO, 38
explicitly MSO, 75
inductive, 76
regular relations, 78
denotational semantics, 11
derived
algebra, 22
operations, 23

emptiness, 46
equality, 46
expression trees, 116

finite model
tree model, 74
word model, 73
finite-state
automaton, 44
macro tree transducer, 56
top-down tree transducer, 54
transducer, 47
tree automaton, 50
tree-walking automaton, 53
free variables, 33
FSA, 44
extended transition function, 45
language, 45
FST, 47

244 Index

transitions, 48

FSTA, 50
extended transition function, 50
language, 50

FSTWA, 53
node relation, 53
walking-language, 54

GB, 5
grammar, 35
multiple context-free, 140
minimalist, 117
MSO, 82
tree
context-free, 135
monadic context-free, 138
regular (many-sorted), 137
regular (single-sorted), 135
tree adjoining, 121

head grammars, 10
homomorphism, 22

Indexed Grammars, 10
inductive definability, 76
intersection, 19

Kleene closure, 19

labeled tree model, 74

Lambek Calculus, 10

language
LCFRL, 10
LUSCL, 10
MCFL, 10
MCTAL, 10
OUT(DTWT), 10
STR(HR), 10
yDTs.(REGT), 10
context-free, 74
FSA, 45
minimalist, 120
MSO, 32

operations on, 19

regular, 19, 45, 74

string, 19

tree, 20, 136, 137
Lawvere algebra, 23
lifting

CFTG, 142

Lawvere, 147

MCEFG, 147

MCFTG, 142

simple, 142
linear indexed grammars, 10

macro tree transducer, 56
MCEG, 140
MCFTG, 138
membership, 46
merge, 115, 117
mild context-sensitivity, 7
Minimalist Grammar, 117
model theory, 10
monadic CFTG, 138
move, 115, 118
MSO
free variables, 33
grammar, 82
language, 32
logical language, 32
satisfiability, 34
sentences, 33
structure, 34
terms, 33
transduction, 81
lifted CFTG, 165
lifted MCFG, 175
lifted MCFTG, 165
variable assignment, 34
well-formed formulas, 33
MSO predicate
Prec(x,y), 91
R-closed(X), 80
XCv,37
AC-Com(x,y), 37,91

Bin_Branch(T'), 39
C-Com(x,y), 91,97
Cat(X), 90
Cat(X,x), 90
Cat(x,y), 39,90
Co_ldx(x,y,1,), 97
Comp(X), 90
Connected(P), 63
D(x,y), 91
Excl(x,y), 91
F.Eq(x,y), 90
ID(x,y), 91
Incl(x,y), 91
LC(x,y), 38
Lex(x), 39
Licensed(T), 39
Max_Princ(T'), 39
Path(P), 63
Proj_Princ(T'), 39
Proj(x,y), 92
Rule(x), 39
Sibling(x,y), 92
Sing(X), 37
TBind(P, Trace,f,,), 97
edg, (+.), 79
well-formed(T'), 39
c-command
asymmetric directed, 37

FSTA, 153

MTT, 56
right-hand-sides, 56
transitions, 56

multiple context-free grammar, 140

operational semantics, 11
operations derived, 23
operator, 18

parsing problem, 82, 86
prefix, 18

projection, 23, 52
proof theory, 10

Index 245

rank, 18
recognition problem, 82
recognizable sets, 50
regular
language, 19, 45, 74
operation, 19
tree node relation, 54
regular tree grammar
many-sorted, 137
single-sorted, 135
relation
encoding of, 61
explicit MSO definability, 75
explicit SO definability, 77
MSO definability, 77
of regular, 78
inductive, 76
recognizability of, 61
representation of, 61
relational structure, 80
RTG, 135, 137

satisfaction, 75
satisfiability, 75, 82
in MSO, 34
of WS28, 60
semi-linear, 7
sentences, 33
signature, 18
sort, 18
string, 18
structure
for L,% ps 39
for WS2S, 34
relational, 80
subset, 46
suffix, 18

TAG, 10, 121

TDTT, 54
transitions, 54

terms, 33

theory testing, 4

246 Index

top-down tree transducer, 54
totality, 46
transducer, 47
tree
macro, 56
top-down, 54
transduction, 47
Transformational Grammar, 9
transition
context-free tree grammar, 135
regular tree grammar, 137
tree, 82
expression, 116
labeled, 35, 82
language, 20, 50, 136, 137
inside-out, 136
via alphabet, 20
via tree domains, 21
with variables, 20
tree adjoining grammar, 121
tree automaton, 50
for T't, 152
for Path(X), 63

for AC-Com(x,y), 62
for dominance, 65
for equality, 67
for immediate dominance, 66
for precedence, 66
for set membership, 67
non-CF, 51
tree domain, 20
tree-adjoining grammars, 10
tree-walking automaton, 53
tupling, 23
type, 18

union, 19

validity, 82
variable assignment, 34

walking-language, 54
well-formed formulas, 33
word, 18

word model, 73

yield, 22

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Part I Introduction
	Chapter 1 Overview
	Chapter 2 Technical preliminaries
	Part II The Classical Approach: Using MSO Logic as a Description Language for Natural Language Syntax
	Chapter 3 Model-theoretic syntax and monadic second-order logic
	Chapter 4 Finite-state devices
	Chapter 5 Decidability and definability
	Chapter 6 Applications
	Chapter 7 Intermediate conclusion
	Part III Two Steps Are Better Than One: Extending the Use of MSO Logic to Non-Context-Free Linguistic Formalisms
	Chapter 8 Overview of the two-step approach
	Chapter 9 Non-context-freeness of natural language
	Chapter 10 The first step:Li fting
	Chapter 11 The second step:Reconstructi on
	Part IV Conclusion and Outlook
	Chapter 12 Conclusion
	Chapter 13 Outlook
	Part V Appendix
	Appendix A Acronyms
	Appendix B MONA code
	Appendix C Additional MSO Definitions
	Appendix D Prolog Code
	Notes
	Bibliography
	Mathematical Symbols
	Index

